LCOV - code coverage report
Current view: top level - src/backend/utils/hash - dynahash.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 418 515 81.2 %
Date: 2025-08-31 20:18:56 Functions: 34 37 91.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * dynahash.c
       4             :  *    dynamic chained hash tables
       5             :  *
       6             :  * dynahash.c supports both local-to-a-backend hash tables and hash tables in
       7             :  * shared memory.  For shared hash tables, it is the caller's responsibility
       8             :  * to provide appropriate access interlocking.  The simplest convention is
       9             :  * that a single LWLock protects the whole hash table.  Searches (HASH_FIND or
      10             :  * hash_seq_search) need only shared lock, but any update requires exclusive
      11             :  * lock.  For heavily-used shared tables, the single-lock approach creates a
      12             :  * concurrency bottleneck, so we also support "partitioned" locking wherein
      13             :  * there are multiple LWLocks guarding distinct subsets of the table.  To use
      14             :  * a hash table in partitioned mode, the HASH_PARTITION flag must be given
      15             :  * to hash_create.  This prevents any attempt to split buckets on-the-fly.
      16             :  * Therefore, each hash bucket chain operates independently, and no fields
      17             :  * of the hash header change after init except nentries and freeList.
      18             :  * (A partitioned table uses multiple copies of those fields, guarded by
      19             :  * spinlocks, for additional concurrency.)
      20             :  * This lets any subset of the hash buckets be treated as a separately
      21             :  * lockable partition.  We expect callers to use the low-order bits of a
      22             :  * lookup key's hash value as a partition number --- this will work because
      23             :  * of the way calc_bucket() maps hash values to bucket numbers.
      24             :  *
      25             :  * The memory allocator function should match malloc's semantics of returning
      26             :  * NULL on failure.  (This is essential for hash tables in shared memory.
      27             :  * For hash tables in local memory, we used to use palloc() which will throw
      28             :  * error on failure; but we no longer do, so it's untested whether this
      29             :  * module will still cope with that behavior.)
      30             :  *
      31             :  * dynahash.c provides support for these types of lookup keys:
      32             :  *
      33             :  * 1. Null-terminated C strings (truncated if necessary to fit in keysize),
      34             :  * compared as though by strcmp().  This is selected by specifying the
      35             :  * HASH_STRINGS flag to hash_create.
      36             :  *
      37             :  * 2. Arbitrary binary data of size keysize, compared as though by memcmp().
      38             :  * (Caller must ensure there are no undefined padding bits in the keys!)
      39             :  * This is selected by specifying the HASH_BLOBS flag to hash_create.
      40             :  *
      41             :  * 3. More complex key behavior can be selected by specifying user-supplied
      42             :  * hashing, comparison, and/or key-copying functions.  At least a hashing
      43             :  * function must be supplied; comparison defaults to memcmp() and key copying
      44             :  * to memcpy() when a user-defined hashing function is selected.
      45             :  *
      46             :  * Compared to simplehash, dynahash has the following benefits:
      47             :  *
      48             :  * - It supports partitioning, which is useful for shared memory access using
      49             :  *   locks.
      50             :  * - Shared memory hashes are allocated in a fixed size area at startup and
      51             :  *   are discoverable by name from other processes.
      52             :  * - Because entries don't need to be moved in the case of hash conflicts,
      53             :  *   dynahash has better performance for large entries.
      54             :  * - Guarantees stable pointers to entries.
      55             :  *
      56             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      57             :  * Portions Copyright (c) 1994, Regents of the University of California
      58             :  *
      59             :  *
      60             :  * IDENTIFICATION
      61             :  *    src/backend/utils/hash/dynahash.c
      62             :  *
      63             :  *-------------------------------------------------------------------------
      64             :  */
      65             : 
      66             : /*
      67             :  * Original comments:
      68             :  *
      69             :  * Dynamic hashing, after CACM April 1988 pp 446-457, by Per-Ake Larson.
      70             :  * Coded into C, with minor code improvements, and with hsearch(3) interface,
      71             :  * by ejp@ausmelb.oz, Jul 26, 1988: 13:16;
      72             :  * also, hcreate/hdestroy routines added to simulate hsearch(3).
      73             :  *
      74             :  * These routines simulate hsearch(3) and family, with the important
      75             :  * difference that the hash table is dynamic - can grow indefinitely
      76             :  * beyond its original size (as supplied to hcreate()).
      77             :  *
      78             :  * Performance appears to be comparable to that of hsearch(3).
      79             :  * The 'source-code' options referred to in hsearch(3)'s 'man' page
      80             :  * are not implemented; otherwise functionality is identical.
      81             :  *
      82             :  * Compilation controls:
      83             :  * HASH_STATISTICS causes some usage statistics to be maintained, which can be
      84             :  * logged by calling hash_stats().
      85             :  *
      86             :  * Problems & fixes to ejp@ausmelb.oz. WARNING: relies on pre-processor
      87             :  * concatenation property, in probably unnecessary code 'optimization'.
      88             :  *
      89             :  * Modified margo@postgres.berkeley.edu February 1990
      90             :  *      added multiple table interface
      91             :  * Modified by sullivan@postgres.berkeley.edu April 1990
      92             :  *      changed ctl structure for shared memory
      93             :  */
      94             : 
      95             : #include "postgres.h"
      96             : 
      97             : #include <limits.h>
      98             : 
      99             : #include "access/xact.h"
     100             : #include "common/hashfn.h"
     101             : #include "lib/ilist.h"
     102             : #include "port/pg_bitutils.h"
     103             : #include "storage/shmem.h"
     104             : #include "storage/spin.h"
     105             : #include "utils/dynahash.h"
     106             : #include "utils/memutils.h"
     107             : 
     108             : 
     109             : /*
     110             :  * Constants
     111             :  *
     112             :  * A hash table has a top-level "directory", each of whose entries points
     113             :  * to a "segment" of ssize bucket headers.  The maximum number of hash
     114             :  * buckets is thus dsize * ssize (but dsize may be expansible).  Of course,
     115             :  * the number of records in the table can be larger, but we don't want a
     116             :  * whole lot of records per bucket or performance goes down.
     117             :  *
     118             :  * In a hash table allocated in shared memory, the directory cannot be
     119             :  * expanded because it must stay at a fixed address.  The directory size
     120             :  * should be selected using hash_select_dirsize (and you'd better have
     121             :  * a good idea of the maximum number of entries!).  For non-shared hash
     122             :  * tables, the initial directory size can be left at the default.
     123             :  */
     124             : #define DEF_SEGSIZE            256
     125             : #define DEF_SEGSIZE_SHIFT      8    /* must be log2(DEF_SEGSIZE) */
     126             : #define DEF_DIRSIZE            256
     127             : 
     128             : /* Number of freelists to be used for a partitioned hash table. */
     129             : #define NUM_FREELISTS           32
     130             : 
     131             : /* A hash bucket is a linked list of HASHELEMENTs */
     132             : typedef HASHELEMENT *HASHBUCKET;
     133             : 
     134             : /* A hash segment is an array of bucket headers */
     135             : typedef HASHBUCKET *HASHSEGMENT;
     136             : 
     137             : /*
     138             :  * Per-freelist data.
     139             :  *
     140             :  * In a partitioned hash table, each freelist is associated with a specific
     141             :  * set of hashcodes, as determined by the FREELIST_IDX() macro below.
     142             :  * nentries tracks the number of live hashtable entries having those hashcodes
     143             :  * (NOT the number of entries in the freelist, as you might expect).
     144             :  *
     145             :  * The coverage of a freelist might be more or less than one partition, so it
     146             :  * needs its own lock rather than relying on caller locking.  Relying on that
     147             :  * wouldn't work even if the coverage was the same, because of the occasional
     148             :  * need to "borrow" entries from another freelist; see get_hash_entry().
     149             :  *
     150             :  * Using an array of FreeListData instead of separate arrays of mutexes,
     151             :  * nentries and freeLists helps to reduce sharing of cache lines between
     152             :  * different mutexes.
     153             :  */
     154             : typedef struct
     155             : {
     156             :     slock_t     mutex;          /* spinlock for this freelist */
     157             :     int64       nentries;       /* number of entries in associated buckets */
     158             :     HASHELEMENT *freeList;      /* chain of free elements */
     159             : } FreeListData;
     160             : 
     161             : /*
     162             :  * Header structure for a hash table --- contains all changeable info
     163             :  *
     164             :  * In a shared-memory hash table, the HASHHDR is in shared memory, while
     165             :  * each backend has a local HTAB struct.  For a non-shared table, there isn't
     166             :  * any functional difference between HASHHDR and HTAB, but we separate them
     167             :  * anyway to share code between shared and non-shared tables.
     168             :  */
     169             : struct HASHHDR
     170             : {
     171             :     /*
     172             :      * The freelist can become a point of contention in high-concurrency hash
     173             :      * tables, so we use an array of freelists, each with its own mutex and
     174             :      * nentries count, instead of just a single one.  Although the freelists
     175             :      * normally operate independently, we will scavenge entries from freelists
     176             :      * other than a hashcode's default freelist when necessary.
     177             :      *
     178             :      * If the hash table is not partitioned, only freeList[0] is used and its
     179             :      * spinlock is not used at all; callers' locking is assumed sufficient.
     180             :      */
     181             :     FreeListData freeList[NUM_FREELISTS];
     182             : 
     183             :     /* These fields can change, but not in a partitioned table */
     184             :     /* Also, dsize can't change in a shared table, even if unpartitioned */
     185             :     int64       dsize;          /* directory size */
     186             :     int64       nsegs;          /* number of allocated segments (<= dsize) */
     187             :     uint32      max_bucket;     /* ID of maximum bucket in use */
     188             :     uint32      high_mask;      /* mask to modulo into entire table */
     189             :     uint32      low_mask;       /* mask to modulo into lower half of table */
     190             : 
     191             :     /* These fields are fixed at hashtable creation */
     192             :     Size        keysize;        /* hash key length in bytes */
     193             :     Size        entrysize;      /* total user element size in bytes */
     194             :     int64       num_partitions; /* # partitions (must be power of 2), or 0 */
     195             :     int64       max_dsize;      /* 'dsize' limit if directory is fixed size */
     196             :     int64       ssize;          /* segment size --- must be power of 2 */
     197             :     int         sshift;         /* segment shift = log2(ssize) */
     198             :     int         nelem_alloc;    /* number of entries to allocate at once */
     199             :     bool        isfixed;        /* if true, don't enlarge */
     200             : 
     201             : #ifdef HASH_STATISTICS
     202             : 
     203             :     /*
     204             :      * Count statistics here.  NB: stats code doesn't bother with mutex, so
     205             :      * counts could be corrupted a bit in a partitioned table.
     206             :      */
     207             :     uint64      accesses;
     208             :     uint64      collisions;
     209             :     uint64      expansions;
     210             : #endif
     211             : };
     212             : 
     213             : #define IS_PARTITIONED(hctl)  ((hctl)->num_partitions != 0)
     214             : 
     215             : #define FREELIST_IDX(hctl, hashcode) \
     216             :     (IS_PARTITIONED(hctl) ? (hashcode) % NUM_FREELISTS : 0)
     217             : 
     218             : /*
     219             :  * Top control structure for a hashtable --- in a shared table, each backend
     220             :  * has its own copy (OK since no fields change at runtime)
     221             :  */
     222             : struct HTAB
     223             : {
     224             :     HASHHDR    *hctl;           /* => shared control information */
     225             :     HASHSEGMENT *dir;           /* directory of segment starts */
     226             :     HashValueFunc hash;         /* hash function */
     227             :     HashCompareFunc match;      /* key comparison function */
     228             :     HashCopyFunc keycopy;       /* key copying function */
     229             :     HashAllocFunc alloc;        /* memory allocator */
     230             :     MemoryContext hcxt;         /* memory context if default allocator used */
     231             :     char       *tabname;        /* table name (for error messages) */
     232             :     bool        isshared;       /* true if table is in shared memory */
     233             : 
     234             :     /* freezing a shared table isn't allowed, so we can keep state here */
     235             :     bool        frozen;         /* true = no more inserts allowed */
     236             : 
     237             :     /* We keep local copies of these fixed values to reduce contention */
     238             :     Size        keysize;        /* hash key length in bytes */
     239             :     int64       ssize;          /* segment size --- must be power of 2 */
     240             :     int         sshift;         /* segment shift = log2(ssize) */
     241             : 
     242             :     /*
     243             :      * In a USE_VALGRIND build, non-shared hashtables keep an slist chain of
     244             :      * all the element blocks they have allocated.  This pacifies Valgrind,
     245             :      * which would otherwise often claim that the element blocks are "possibly
     246             :      * lost" for lack of any non-interior pointers to their starts.
     247             :      */
     248             : #ifdef USE_VALGRIND
     249             :     slist_head  element_blocks;
     250             : #endif
     251             : };
     252             : 
     253             : /*
     254             :  * Key (also entry) part of a HASHELEMENT
     255             :  */
     256             : #define ELEMENTKEY(helem)  (((char *)(helem)) + MAXALIGN(sizeof(HASHELEMENT)))
     257             : 
     258             : /*
     259             :  * Obtain element pointer given pointer to key
     260             :  */
     261             : #define ELEMENT_FROM_KEY(key)  \
     262             :     ((HASHELEMENT *) (((char *) (key)) - MAXALIGN(sizeof(HASHELEMENT))))
     263             : 
     264             : /*
     265             :  * Fast MOD arithmetic, assuming that y is a power of 2 !
     266             :  */
     267             : #define MOD(x,y)               ((x) & ((y)-1))
     268             : 
     269             : /*
     270             :  * Private function prototypes
     271             :  */
     272             : static void *DynaHashAlloc(Size size);
     273             : static HASHSEGMENT seg_alloc(HTAB *hashp);
     274             : static bool element_alloc(HTAB *hashp, int nelem, int freelist_idx);
     275             : static bool dir_realloc(HTAB *hashp);
     276             : static bool expand_table(HTAB *hashp);
     277             : static HASHBUCKET get_hash_entry(HTAB *hashp, int freelist_idx);
     278             : static void hdefault(HTAB *hashp);
     279             : static int  choose_nelem_alloc(Size entrysize);
     280             : static bool init_htab(HTAB *hashp, int64 nelem);
     281             : pg_noreturn static void hash_corrupted(HTAB *hashp);
     282             : static uint32 hash_initial_lookup(HTAB *hashp, uint32 hashvalue,
     283             :                                   HASHBUCKET **bucketptr);
     284             : static int64 next_pow2_int64(int64 num);
     285             : static int  next_pow2_int(int64 num);
     286             : static void register_seq_scan(HTAB *hashp);
     287             : static void deregister_seq_scan(HTAB *hashp);
     288             : static bool has_seq_scans(HTAB *hashp);
     289             : 
     290             : 
     291             : /*
     292             :  * memory allocation support
     293             :  */
     294             : static MemoryContext CurrentDynaHashCxt = NULL;
     295             : 
     296             : static void *
     297     3126362 : DynaHashAlloc(Size size)
     298             : {
     299             :     Assert(MemoryContextIsValid(CurrentDynaHashCxt));
     300     3126362 :     return MemoryContextAllocExtended(CurrentDynaHashCxt, size,
     301             :                                       MCXT_ALLOC_NO_OOM);
     302             : }
     303             : 
     304             : 
     305             : /*
     306             :  * HashCompareFunc for string keys
     307             :  *
     308             :  * Because we copy keys with strlcpy(), they will be truncated at keysize-1
     309             :  * bytes, so we can only compare that many ... hence strncmp is almost but
     310             :  * not quite the right thing.
     311             :  */
     312             : static int
     313      981536 : string_compare(const char *key1, const char *key2, Size keysize)
     314             : {
     315      981536 :     return strncmp(key1, key2, keysize - 1);
     316             : }
     317             : 
     318             : 
     319             : /************************** CREATE ROUTINES **********************/
     320             : 
     321             : /*
     322             :  * hash_create -- create a new dynamic hash table
     323             :  *
     324             :  *  tabname: a name for the table (for debugging purposes)
     325             :  *  nelem: maximum number of elements expected
     326             :  *  *info: additional table parameters, as indicated by flags
     327             :  *  flags: bitmask indicating which parameters to take from *info
     328             :  *
     329             :  * The flags value *must* include HASH_ELEM.  (Formerly, this was nominally
     330             :  * optional, but the default keysize and entrysize values were useless.)
     331             :  * The flags value must also include exactly one of HASH_STRINGS, HASH_BLOBS,
     332             :  * or HASH_FUNCTION, to define the key hashing semantics (C strings,
     333             :  * binary blobs, or custom, respectively).  Callers specifying a custom
     334             :  * hash function will likely also want to use HASH_COMPARE, and perhaps
     335             :  * also HASH_KEYCOPY, to control key comparison and copying.
     336             :  * Another often-used flag is HASH_CONTEXT, to allocate the hash table
     337             :  * under info->hcxt rather than under TopMemoryContext; the default
     338             :  * behavior is only suitable for session-lifespan hash tables.
     339             :  * Other flags bits are special-purpose and seldom used, except for those
     340             :  * associated with shared-memory hash tables, for which see ShmemInitHash().
     341             :  *
     342             :  * Fields in *info are read only when the associated flags bit is set.
     343             :  * It is not necessary to initialize other fields of *info.
     344             :  * Neither tabname nor *info need persist after the hash_create() call.
     345             :  *
     346             :  * Note: It is deprecated for callers of hash_create() to explicitly specify
     347             :  * string_hash, tag_hash, uint32_hash, or oid_hash.  Just set HASH_STRINGS or
     348             :  * HASH_BLOBS.  Use HASH_FUNCTION only when you want something other than
     349             :  * one of these.
     350             :  *
     351             :  * Note: for a shared-memory hashtable, nelem needs to be a pretty good
     352             :  * estimate, since we can't expand the table on the fly.  But an unshared
     353             :  * hashtable can be expanded on-the-fly, so it's better for nelem to be
     354             :  * on the small side and let the table grow if it's exceeded.  An overly
     355             :  * large nelem will penalize hash_seq_search speed without buying much.
     356             :  */
     357             : HTAB *
     358      725712 : hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
     359             : {
     360             :     HTAB       *hashp;
     361             :     HASHHDR    *hctl;
     362             : 
     363             :     /*
     364             :      * Hash tables now allocate space for key and data, but you have to say
     365             :      * how much space to allocate.
     366             :      */
     367             :     Assert(flags & HASH_ELEM);
     368             :     Assert(info->keysize > 0);
     369             :     Assert(info->entrysize >= info->keysize);
     370             : 
     371             :     /*
     372             :      * For shared hash tables, we have a local hash header (HTAB struct) that
     373             :      * we allocate in TopMemoryContext; all else is in shared memory.
     374             :      *
     375             :      * For non-shared hash tables, everything including the hash header is in
     376             :      * a memory context created specially for the hash table --- this makes
     377             :      * hash_destroy very simple.  The memory context is made a child of either
     378             :      * a context specified by the caller, or TopMemoryContext if nothing is
     379             :      * specified.
     380             :      */
     381      725712 :     if (flags & HASH_SHARED_MEM)
     382             :     {
     383             :         /* Set up to allocate the hash header */
     384       19382 :         CurrentDynaHashCxt = TopMemoryContext;
     385             :     }
     386             :     else
     387             :     {
     388             :         /* Create the hash table's private memory context */
     389      706330 :         if (flags & HASH_CONTEXT)
     390      392008 :             CurrentDynaHashCxt = info->hcxt;
     391             :         else
     392      314322 :             CurrentDynaHashCxt = TopMemoryContext;
     393      706330 :         CurrentDynaHashCxt = AllocSetContextCreate(CurrentDynaHashCxt,
     394             :                                                    "dynahash",
     395             :                                                    ALLOCSET_DEFAULT_SIZES);
     396             :     }
     397             : 
     398             :     /* Initialize the hash header, plus a copy of the table name */
     399      725712 :     hashp = (HTAB *) MemoryContextAlloc(CurrentDynaHashCxt,
     400      725712 :                                         sizeof(HTAB) + strlen(tabname) + 1);
     401     9434256 :     MemSet(hashp, 0, sizeof(HTAB));
     402             : 
     403      725712 :     hashp->tabname = (char *) (hashp + 1);
     404      725712 :     strcpy(hashp->tabname, tabname);
     405             : 
     406             :     /* If we have a private context, label it with hashtable's name */
     407      725712 :     if (!(flags & HASH_SHARED_MEM))
     408      706330 :         MemoryContextSetIdentifier(CurrentDynaHashCxt, hashp->tabname);
     409             : 
     410             :     /*
     411             :      * Select the appropriate hash function (see comments at head of file).
     412             :      */
     413      725712 :     if (flags & HASH_FUNCTION)
     414             :     {
     415             :         Assert(!(flags & (HASH_BLOBS | HASH_STRINGS)));
     416       27838 :         hashp->hash = info->hash;
     417             :     }
     418      697874 :     else if (flags & HASH_BLOBS)
     419             :     {
     420             :         Assert(!(flags & HASH_STRINGS));
     421             :         /* We can optimize hashing for common key sizes */
     422      593256 :         if (info->keysize == sizeof(uint32))
     423      416680 :             hashp->hash = uint32_hash;
     424             :         else
     425      176576 :             hashp->hash = tag_hash;
     426             :     }
     427             :     else
     428             :     {
     429             :         /*
     430             :          * string_hash used to be considered the default hash method, and in a
     431             :          * non-assert build it effectively still is.  But we now consider it
     432             :          * an assertion error to not say HASH_STRINGS explicitly.  To help
     433             :          * catch mistaken usage of HASH_STRINGS, we also insist on a
     434             :          * reasonably long string length: if the keysize is only 4 or 8 bytes,
     435             :          * it's almost certainly an integer or pointer not a string.
     436             :          */
     437             :         Assert(flags & HASH_STRINGS);
     438             :         Assert(info->keysize > 8);
     439             : 
     440      104618 :         hashp->hash = string_hash;
     441             :     }
     442             : 
     443             :     /*
     444             :      * If you don't specify a match function, it defaults to string_compare if
     445             :      * you used string_hash, and to memcmp otherwise.
     446             :      *
     447             :      * Note: explicitly specifying string_hash is deprecated, because this
     448             :      * might not work for callers in loadable modules on some platforms due to
     449             :      * referencing a trampoline instead of the string_hash function proper.
     450             :      * Specify HASH_STRINGS instead.
     451             :      */
     452      725712 :     if (flags & HASH_COMPARE)
     453       14604 :         hashp->match = info->match;
     454      711108 :     else if (hashp->hash == string_hash)
     455      104618 :         hashp->match = (HashCompareFunc) string_compare;
     456             :     else
     457      606490 :         hashp->match = memcmp;
     458             : 
     459             :     /*
     460             :      * Similarly, the key-copying function defaults to strlcpy or memcpy.
     461             :      */
     462      725712 :     if (flags & HASH_KEYCOPY)
     463           0 :         hashp->keycopy = info->keycopy;
     464      725712 :     else if (hashp->hash == string_hash)
     465             :     {
     466             :         /*
     467             :          * The signature of keycopy is meant for memcpy(), which returns
     468             :          * void*, but strlcpy() returns size_t.  Since we never use the return
     469             :          * value of keycopy, and size_t is pretty much always the same size as
     470             :          * void *, this should be safe.  The extra cast in the middle is to
     471             :          * avoid warnings from -Wcast-function-type.
     472             :          */
     473      104618 :         hashp->keycopy = (HashCopyFunc) (pg_funcptr_t) strlcpy;
     474             :     }
     475             :     else
     476      621094 :         hashp->keycopy = memcpy;
     477             : 
     478             :     /* And select the entry allocation function, too. */
     479      725712 :     if (flags & HASH_ALLOC)
     480       19382 :         hashp->alloc = info->alloc;
     481             :     else
     482      706330 :         hashp->alloc = DynaHashAlloc;
     483             : 
     484      725712 :     if (flags & HASH_SHARED_MEM)
     485             :     {
     486             :         /*
     487             :          * ctl structure and directory are preallocated for shared memory
     488             :          * tables.  Note that HASH_DIRSIZE and HASH_ALLOC had better be set as
     489             :          * well.
     490             :          */
     491       19382 :         hashp->hctl = info->hctl;
     492       19382 :         hashp->dir = (HASHSEGMENT *) (((char *) info->hctl) + sizeof(HASHHDR));
     493       19382 :         hashp->hcxt = NULL;
     494       19382 :         hashp->isshared = true;
     495             : 
     496             :         /* hash table already exists, we're just attaching to it */
     497       19382 :         if (flags & HASH_ATTACH)
     498             :         {
     499             :             /* make local copies of some heavily-used values */
     500           0 :             hctl = hashp->hctl;
     501           0 :             hashp->keysize = hctl->keysize;
     502           0 :             hashp->ssize = hctl->ssize;
     503           0 :             hashp->sshift = hctl->sshift;
     504             : 
     505           0 :             return hashp;
     506             :         }
     507             :     }
     508             :     else
     509             :     {
     510             :         /* setup hash table defaults */
     511      706330 :         hashp->hctl = NULL;
     512      706330 :         hashp->dir = NULL;
     513      706330 :         hashp->hcxt = CurrentDynaHashCxt;
     514      706330 :         hashp->isshared = false;
     515             :     }
     516             : 
     517      725712 :     if (!hashp->hctl)
     518             :     {
     519      706330 :         hashp->hctl = (HASHHDR *) hashp->alloc(sizeof(HASHHDR));
     520      706330 :         if (!hashp->hctl)
     521           0 :             ereport(ERROR,
     522             :                     (errcode(ERRCODE_OUT_OF_MEMORY),
     523             :                      errmsg("out of memory")));
     524             :     }
     525             : 
     526      725712 :     hashp->frozen = false;
     527             : 
     528      725712 :     hdefault(hashp);
     529             : 
     530      725712 :     hctl = hashp->hctl;
     531             : 
     532      725712 :     if (flags & HASH_PARTITION)
     533             :     {
     534             :         /* Doesn't make sense to partition a local hash table */
     535             :         Assert(flags & HASH_SHARED_MEM);
     536             : 
     537             :         /*
     538             :          * The number of partitions had better be a power of 2. Also, it must
     539             :          * be less than INT_MAX (see init_htab()), so call the int version of
     540             :          * next_pow2.
     541             :          */
     542             :         Assert(info->num_partitions == next_pow2_int(info->num_partitions));
     543             : 
     544       10760 :         hctl->num_partitions = info->num_partitions;
     545             :     }
     546             : 
     547      725712 :     if (flags & HASH_SEGMENT)
     548             :     {
     549           0 :         hctl->ssize = info->ssize;
     550           0 :         hctl->sshift = my_log2(info->ssize);
     551             :         /* ssize had better be a power of 2 */
     552             :         Assert(hctl->ssize == (1L << hctl->sshift));
     553             :     }
     554             : 
     555             :     /*
     556             :      * SHM hash tables have fixed directory size passed by the caller.
     557             :      */
     558      725712 :     if (flags & HASH_DIRSIZE)
     559             :     {
     560       19382 :         hctl->max_dsize = info->max_dsize;
     561       19382 :         hctl->dsize = info->dsize;
     562             :     }
     563             : 
     564             :     /* remember the entry sizes, too */
     565      725712 :     hctl->keysize = info->keysize;
     566      725712 :     hctl->entrysize = info->entrysize;
     567             : 
     568             :     /* make local copies of heavily-used constant fields */
     569      725712 :     hashp->keysize = hctl->keysize;
     570      725712 :     hashp->ssize = hctl->ssize;
     571      725712 :     hashp->sshift = hctl->sshift;
     572             : 
     573             :     /* Build the hash directory structure */
     574      725712 :     if (!init_htab(hashp, nelem))
     575           0 :         elog(ERROR, "failed to initialize hash table \"%s\"", hashp->tabname);
     576             : 
     577             :     /*
     578             :      * For a shared hash table, preallocate the requested number of elements.
     579             :      * This reduces problems with run-time out-of-shared-memory conditions.
     580             :      *
     581             :      * For a non-shared hash table, preallocate the requested number of
     582             :      * elements if it's less than our chosen nelem_alloc.  This avoids wasting
     583             :      * space if the caller correctly estimates a small table size.
     584             :      */
     585      725712 :     if ((flags & HASH_SHARED_MEM) ||
     586      706330 :         nelem < hctl->nelem_alloc)
     587             :     {
     588             :         int         i,
     589             :                     freelist_partitions,
     590             :                     nelem_alloc,
     591             :                     nelem_alloc_first;
     592             : 
     593             :         /*
     594             :          * If hash table is partitioned, give each freelist an equal share of
     595             :          * the initial allocation.  Otherwise only freeList[0] is used.
     596             :          */
     597      256344 :         if (IS_PARTITIONED(hashp->hctl))
     598       10760 :             freelist_partitions = NUM_FREELISTS;
     599             :         else
     600      245584 :             freelist_partitions = 1;
     601             : 
     602      256344 :         nelem_alloc = nelem / freelist_partitions;
     603      256344 :         if (nelem_alloc <= 0)
     604           0 :             nelem_alloc = 1;
     605             : 
     606             :         /*
     607             :          * Make sure we'll allocate all the requested elements; freeList[0]
     608             :          * gets the excess if the request isn't divisible by NUM_FREELISTS.
     609             :          */
     610      256344 :         if (nelem_alloc * freelist_partitions < nelem)
     611         104 :             nelem_alloc_first =
     612         104 :                 nelem - nelem_alloc * (freelist_partitions - 1);
     613             :         else
     614      256240 :             nelem_alloc_first = nelem_alloc;
     615             : 
     616      846248 :         for (i = 0; i < freelist_partitions; i++)
     617             :         {
     618      589904 :             int         temp = (i == 0) ? nelem_alloc_first : nelem_alloc;
     619             : 
     620      589904 :             if (!element_alloc(hashp, temp, i))
     621           0 :                 ereport(ERROR,
     622             :                         (errcode(ERRCODE_OUT_OF_MEMORY),
     623             :                          errmsg("out of memory")));
     624             :         }
     625             :     }
     626             : 
     627             :     /* Set isfixed if requested, but not till after we build initial entries */
     628      725712 :     if (flags & HASH_FIXED_SIZE)
     629        6456 :         hctl->isfixed = true;
     630             : 
     631      725712 :     return hashp;
     632             : }
     633             : 
     634             : /*
     635             :  * Set default HASHHDR parameters.
     636             :  */
     637             : static void
     638      725712 : hdefault(HTAB *hashp)
     639             : {
     640      725712 :     HASHHDR    *hctl = hashp->hctl;
     641             : 
     642    78376896 :     MemSet(hctl, 0, sizeof(HASHHDR));
     643             : 
     644      725712 :     hctl->dsize = DEF_DIRSIZE;
     645      725712 :     hctl->nsegs = 0;
     646             : 
     647      725712 :     hctl->num_partitions = 0;    /* not partitioned */
     648             : 
     649             :     /* table has no fixed maximum size */
     650      725712 :     hctl->max_dsize = NO_MAX_DSIZE;
     651             : 
     652      725712 :     hctl->ssize = DEF_SEGSIZE;
     653      725712 :     hctl->sshift = DEF_SEGSIZE_SHIFT;
     654             : 
     655      725712 :     hctl->isfixed = false;       /* can be enlarged */
     656             : 
     657             : #ifdef HASH_STATISTICS
     658             :     hctl->accesses = hctl->collisions = hctl->expansions = 0;
     659             : #endif
     660      725712 : }
     661             : 
     662             : /*
     663             :  * Given the user-specified entry size, choose nelem_alloc, ie, how many
     664             :  * elements to add to the hash table when we need more.
     665             :  */
     666             : static int
     667      761762 : choose_nelem_alloc(Size entrysize)
     668             : {
     669             :     int         nelem_alloc;
     670             :     Size        elementSize;
     671             :     Size        allocSize;
     672             : 
     673             :     /* Each element has a HASHELEMENT header plus user data. */
     674             :     /* NB: this had better match element_alloc() */
     675      761762 :     elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize);
     676             : 
     677             :     /*
     678             :      * The idea here is to choose nelem_alloc at least 32, but round up so
     679             :      * that the allocation request will be a power of 2 or just less. This
     680             :      * makes little difference for hash tables in shared memory, but for hash
     681             :      * tables managed by palloc, the allocation request will be rounded up to
     682             :      * a power of 2 anyway.  If we fail to take this into account, we'll waste
     683             :      * as much as half the allocated space.
     684             :      */
     685      761762 :     allocSize = 32 * 4;         /* assume elementSize at least 8 */
     686             :     do
     687             :     {
     688     2932754 :         allocSize <<= 1;
     689     2932754 :         nelem_alloc = allocSize / elementSize;
     690     2932754 :     } while (nelem_alloc < 32);
     691             : 
     692      761762 :     return nelem_alloc;
     693             : }
     694             : 
     695             : /*
     696             :  * Compute derived fields of hctl and build the initial directory/segment
     697             :  * arrays
     698             :  */
     699             : static bool
     700      725712 : init_htab(HTAB *hashp, int64 nelem)
     701             : {
     702      725712 :     HASHHDR    *hctl = hashp->hctl;
     703             :     HASHSEGMENT *segp;
     704             :     int         nbuckets;
     705             :     int         nsegs;
     706             :     int         i;
     707             : 
     708             :     /*
     709             :      * initialize mutexes if it's a partitioned table
     710             :      */
     711      725712 :     if (IS_PARTITIONED(hctl))
     712      355080 :         for (i = 0; i < NUM_FREELISTS; i++)
     713      344320 :             SpinLockInit(&(hctl->freeList[i].mutex));
     714             : 
     715             :     /*
     716             :      * Allocate space for the next greater power of two number of buckets,
     717             :      * assuming a desired maximum load factor of 1.
     718             :      */
     719      725712 :     nbuckets = next_pow2_int(nelem);
     720             : 
     721             :     /*
     722             :      * In a partitioned table, nbuckets must be at least equal to
     723             :      * num_partitions; were it less, keys with apparently different partition
     724             :      * numbers would map to the same bucket, breaking partition independence.
     725             :      * (Normally nbuckets will be much bigger; this is just a safety check.)
     726             :      */
     727      725712 :     while (nbuckets < hctl->num_partitions)
     728           0 :         nbuckets <<= 1;
     729             : 
     730      725712 :     hctl->max_bucket = hctl->low_mask = nbuckets - 1;
     731      725712 :     hctl->high_mask = (nbuckets << 1) - 1;
     732             : 
     733             :     /*
     734             :      * Figure number of directory segments needed, round up to a power of 2
     735             :      */
     736      725712 :     nsegs = (nbuckets - 1) / hctl->ssize + 1;
     737      725712 :     nsegs = next_pow2_int(nsegs);
     738             : 
     739             :     /*
     740             :      * Make sure directory is big enough. If pre-allocated directory is too
     741             :      * small, choke (caller screwed up).
     742             :      */
     743      725712 :     if (nsegs > hctl->dsize)
     744             :     {
     745           0 :         if (!(hashp->dir))
     746           0 :             hctl->dsize = nsegs;
     747             :         else
     748           0 :             return false;
     749             :     }
     750             : 
     751             :     /* Allocate a directory */
     752      725712 :     if (!(hashp->dir))
     753             :     {
     754      706330 :         CurrentDynaHashCxt = hashp->hcxt;
     755      706330 :         hashp->dir = (HASHSEGMENT *)
     756      706330 :             hashp->alloc(hctl->dsize * sizeof(HASHSEGMENT));
     757      706330 :         if (!hashp->dir)
     758           0 :             return false;
     759             :     }
     760             : 
     761             :     /* Allocate initial segments */
     762     2049530 :     for (segp = hashp->dir; hctl->nsegs < nsegs; hctl->nsegs++, segp++)
     763             :     {
     764     1323818 :         *segp = seg_alloc(hashp);
     765     1323818 :         if (*segp == NULL)
     766           0 :             return false;
     767             :     }
     768             : 
     769             :     /* Choose number of entries to allocate at a time */
     770      725712 :     hctl->nelem_alloc = choose_nelem_alloc(hctl->entrysize);
     771             : 
     772      725712 :     return true;
     773             : }
     774             : 
     775             : /*
     776             :  * Estimate the space needed for a hashtable containing the given number
     777             :  * of entries of given size.
     778             :  * NOTE: this is used to estimate the footprint of hashtables in shared
     779             :  * memory; therefore it does not count HTAB which is in local memory.
     780             :  * NB: assumes that all hash structure parameters have default values!
     781             :  */
     782             : Size
     783       36050 : hash_estimate_size(int64 num_entries, Size entrysize)
     784             : {
     785             :     Size        size;
     786             :     int64       nBuckets,
     787             :                 nSegments,
     788             :                 nDirEntries,
     789             :                 nElementAllocs,
     790             :                 elementSize,
     791             :                 elementAllocCnt;
     792             : 
     793             :     /* estimate number of buckets wanted */
     794       36050 :     nBuckets = next_pow2_int64(num_entries);
     795             :     /* # of segments needed for nBuckets */
     796       36050 :     nSegments = next_pow2_int64((nBuckets - 1) / DEF_SEGSIZE + 1);
     797             :     /* directory entries */
     798       36050 :     nDirEntries = DEF_DIRSIZE;
     799       36050 :     while (nDirEntries < nSegments)
     800           0 :         nDirEntries <<= 1;        /* dir_alloc doubles dsize at each call */
     801             : 
     802             :     /* fixed control info */
     803       36050 :     size = MAXALIGN(sizeof(HASHHDR));   /* but not HTAB, per above */
     804             :     /* directory */
     805       36050 :     size = add_size(size, mul_size(nDirEntries, sizeof(HASHSEGMENT)));
     806             :     /* segments */
     807       36050 :     size = add_size(size, mul_size(nSegments,
     808             :                                    MAXALIGN(DEF_SEGSIZE * sizeof(HASHBUCKET))));
     809             :     /* elements --- allocated in groups of choose_nelem_alloc() entries */
     810       36050 :     elementAllocCnt = choose_nelem_alloc(entrysize);
     811       36050 :     nElementAllocs = (num_entries - 1) / elementAllocCnt + 1;
     812       36050 :     elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize);
     813       36050 :     size = add_size(size,
     814             :                     mul_size(nElementAllocs,
     815             :                              mul_size(elementAllocCnt, elementSize)));
     816             : 
     817       36050 :     return size;
     818             : }
     819             : 
     820             : /*
     821             :  * Select an appropriate directory size for a hashtable with the given
     822             :  * maximum number of entries.
     823             :  * This is only needed for hashtables in shared memory, whose directories
     824             :  * cannot be expanded dynamically.
     825             :  * NB: assumes that all hash structure parameters have default values!
     826             :  *
     827             :  * XXX this had better agree with the behavior of init_htab()...
     828             :  */
     829             : int64
     830       19382 : hash_select_dirsize(int64 num_entries)
     831             : {
     832             :     int64       nBuckets,
     833             :                 nSegments,
     834             :                 nDirEntries;
     835             : 
     836             :     /* estimate number of buckets wanted */
     837       19382 :     nBuckets = next_pow2_int64(num_entries);
     838             :     /* # of segments needed for nBuckets */
     839       19382 :     nSegments = next_pow2_int64((nBuckets - 1) / DEF_SEGSIZE + 1);
     840             :     /* directory entries */
     841       19382 :     nDirEntries = DEF_DIRSIZE;
     842       19382 :     while (nDirEntries < nSegments)
     843           0 :         nDirEntries <<= 1;        /* dir_alloc doubles dsize at each call */
     844             : 
     845       19382 :     return nDirEntries;
     846             : }
     847             : 
     848             : /*
     849             :  * Compute the required initial memory allocation for a shared-memory
     850             :  * hashtable with the given parameters.  We need space for the HASHHDR
     851             :  * and for the (non expansible) directory.
     852             :  */
     853             : Size
     854       19382 : hash_get_shared_size(HASHCTL *info, int flags)
     855             : {
     856             :     Assert(flags & HASH_DIRSIZE);
     857             :     Assert(info->dsize == info->max_dsize);
     858       19382 :     return sizeof(HASHHDR) + info->dsize * sizeof(HASHSEGMENT);
     859             : }
     860             : 
     861             : 
     862             : /********************** DESTROY ROUTINES ************************/
     863             : 
     864             : void
     865      124800 : hash_destroy(HTAB *hashp)
     866             : {
     867      124800 :     if (hashp != NULL)
     868             :     {
     869             :         /* allocation method must be one we know how to free, too */
     870             :         Assert(hashp->alloc == DynaHashAlloc);
     871             :         /* so this hashtable must have its own context */
     872             :         Assert(hashp->hcxt != NULL);
     873             : 
     874      124800 :         hash_stats(__func__, hashp);
     875             : 
     876             :         /*
     877             :          * Free everything by destroying the hash table's memory context.
     878             :          */
     879      124800 :         MemoryContextDelete(hashp->hcxt);
     880             :     }
     881      124800 : }
     882             : 
     883             : void
     884      124800 : hash_stats(const char *caller, HTAB *hashp)
     885             : {
     886             : #ifdef HASH_STATISTICS
     887             :     HASHHDR    *hctl = hashp->hctl;
     888             : 
     889             :     elog(DEBUG4,
     890             :          "hash_stats:  Caller: %s  Table Name: \"%s\"  Accesses: " UINT64_FORMAT "  Collisions: " UINT64_FORMAT "  Expansions: " UINT64_FORMAT "  Entries: " INT64_FORMAT "  Key Size: %zu  Max Bucket: %u  Segment Count: " INT64_FORMAT,
     891             :          caller != NULL ? caller : "(unknown)", hashp->tabname, hctl->accesses,
     892             :          hctl->collisions, hctl->expansions, hash_get_num_entries(hashp),
     893             :          hctl->keysize, hctl->max_bucket, hctl->nsegs);
     894             : #endif
     895      124800 : }
     896             : 
     897             : /*******************************SEARCH ROUTINES *****************************/
     898             : 
     899             : 
     900             : /*
     901             :  * get_hash_value -- exported routine to calculate a key's hash value
     902             :  *
     903             :  * We export this because for partitioned tables, callers need to compute
     904             :  * the partition number (from the low-order bits of the hash value) before
     905             :  * searching.
     906             :  */
     907             : uint32
     908   166659438 : get_hash_value(HTAB *hashp, const void *keyPtr)
     909             : {
     910   166659438 :     return hashp->hash(keyPtr, hashp->keysize);
     911             : }
     912             : 
     913             : /* Convert a hash value to a bucket number */
     914             : static inline uint32
     915   387232920 : calc_bucket(HASHHDR *hctl, uint32 hash_val)
     916             : {
     917             :     uint32      bucket;
     918             : 
     919   387232920 :     bucket = hash_val & hctl->high_mask;
     920   387232920 :     if (bucket > hctl->max_bucket)
     921   180817250 :         bucket = bucket & hctl->low_mask;
     922             : 
     923   387232920 :     return bucket;
     924             : }
     925             : 
     926             : /*
     927             :  * hash_search -- look up key in table and perform action
     928             :  * hash_search_with_hash_value -- same, with key's hash value already computed
     929             :  *
     930             :  * action is one of:
     931             :  *      HASH_FIND: look up key in table
     932             :  *      HASH_ENTER: look up key in table, creating entry if not present
     933             :  *      HASH_ENTER_NULL: same, but return NULL if out of memory
     934             :  *      HASH_REMOVE: look up key in table, remove entry if present
     935             :  *
     936             :  * Return value is a pointer to the element found/entered/removed if any,
     937             :  * or NULL if no match was found.  (NB: in the case of the REMOVE action,
     938             :  * the result is a dangling pointer that shouldn't be dereferenced!)
     939             :  *
     940             :  * HASH_ENTER will normally ereport a generic "out of memory" error if
     941             :  * it is unable to create a new entry.  The HASH_ENTER_NULL operation is
     942             :  * the same except it will return NULL if out of memory.
     943             :  *
     944             :  * If foundPtr isn't NULL, then *foundPtr is set true if we found an
     945             :  * existing entry in the table, false otherwise.  This is needed in the
     946             :  * HASH_ENTER case, but is redundant with the return value otherwise.
     947             :  *
     948             :  * For hash_search_with_hash_value, the hashvalue parameter must have been
     949             :  * calculated with get_hash_value().
     950             :  */
     951             : void *
     952   235930356 : hash_search(HTAB *hashp,
     953             :             const void *keyPtr,
     954             :             HASHACTION action,
     955             :             bool *foundPtr)
     956             : {
     957   235930356 :     return hash_search_with_hash_value(hashp,
     958             :                                        keyPtr,
     959   235930356 :                                        hashp->hash(keyPtr, hashp->keysize),
     960             :                                        action,
     961             :                                        foundPtr);
     962             : }
     963             : 
     964             : void *
     965   384599210 : hash_search_with_hash_value(HTAB *hashp,
     966             :                             const void *keyPtr,
     967             :                             uint32 hashvalue,
     968             :                             HASHACTION action,
     969             :                             bool *foundPtr)
     970             : {
     971   384599210 :     HASHHDR    *hctl = hashp->hctl;
     972   384599210 :     int         freelist_idx = FREELIST_IDX(hctl, hashvalue);
     973             :     Size        keysize;
     974             :     HASHBUCKET  currBucket;
     975             :     HASHBUCKET *prevBucketPtr;
     976             :     HashCompareFunc match;
     977             : 
     978             : #ifdef HASH_STATISTICS
     979             :     hctl->accesses++;
     980             : #endif
     981             : 
     982             :     /*
     983             :      * If inserting, check if it is time to split a bucket.
     984             :      *
     985             :      * NOTE: failure to expand table is not a fatal error, it just means we
     986             :      * have to run at higher fill factor than we wanted.  However, if we're
     987             :      * using the palloc allocator then it will throw error anyway on
     988             :      * out-of-memory, so we must do this before modifying the table.
     989             :      */
     990   384599210 :     if (action == HASH_ENTER || action == HASH_ENTER_NULL)
     991             :     {
     992             :         /*
     993             :          * Can't split if running in partitioned mode, nor if frozen, nor if
     994             :          * table is the subject of any active hash_seq_search scans.
     995             :          */
     996   103243472 :         if (hctl->freeList[0].nentries > (int64) hctl->max_bucket &&
     997      756190 :             !IS_PARTITIONED(hctl) && !hashp->frozen &&
     998      756190 :             !has_seq_scans(hashp))
     999      756190 :             (void) expand_table(hashp);
    1000             :     }
    1001             : 
    1002             :     /*
    1003             :      * Do the initial lookup
    1004             :      */
    1005   384599210 :     (void) hash_initial_lookup(hashp, hashvalue, &prevBucketPtr);
    1006   384599210 :     currBucket = *prevBucketPtr;
    1007             : 
    1008             :     /*
    1009             :      * Follow collision chain looking for matching key
    1010             :      */
    1011   384599210 :     match = hashp->match;        /* save one fetch in inner loop */
    1012   384599210 :     keysize = hashp->keysize;    /* ditto */
    1013             : 
    1014   473721742 :     while (currBucket != NULL)
    1015             :     {
    1016   703180658 :         if (currBucket->hashvalue == hashvalue &&
    1017   307034132 :             match(ELEMENTKEY(currBucket), keyPtr, keysize) == 0)
    1018   307023994 :             break;
    1019    89122532 :         prevBucketPtr = &(currBucket->link);
    1020    89122532 :         currBucket = *prevBucketPtr;
    1021             : #ifdef HASH_STATISTICS
    1022             :         hctl->collisions++;
    1023             : #endif
    1024             :     }
    1025             : 
    1026   384599210 :     if (foundPtr)
    1027   106451566 :         *foundPtr = (bool) (currBucket != NULL);
    1028             : 
    1029             :     /*
    1030             :      * OK, now what?
    1031             :      */
    1032   384599210 :     switch (action)
    1033             :     {
    1034   227602046 :         case HASH_FIND:
    1035   227602046 :             if (currBucket != NULL)
    1036   215130306 :                 return ELEMENTKEY(currBucket);
    1037    12471740 :             return NULL;
    1038             : 
    1039    53753692 :         case HASH_REMOVE:
    1040    53753692 :             if (currBucket != NULL)
    1041             :             {
    1042             :                 /* if partitioned, must lock to touch nentries and freeList */
    1043    53746926 :                 if (IS_PARTITIONED(hctl))
    1044    11541040 :                     SpinLockAcquire(&(hctl->freeList[freelist_idx].mutex));
    1045             : 
    1046             :                 /* delete the record from the appropriate nentries counter. */
    1047             :                 Assert(hctl->freeList[freelist_idx].nentries > 0);
    1048    53746926 :                 hctl->freeList[freelist_idx].nentries--;
    1049             : 
    1050             :                 /* remove record from hash bucket's chain. */
    1051    53746926 :                 *prevBucketPtr = currBucket->link;
    1052             : 
    1053             :                 /* add the record to the appropriate freelist. */
    1054    53746926 :                 currBucket->link = hctl->freeList[freelist_idx].freeList;
    1055    53746926 :                 hctl->freeList[freelist_idx].freeList = currBucket;
    1056             : 
    1057    53746926 :                 if (IS_PARTITIONED(hctl))
    1058    11541040 :                     SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
    1059             : 
    1060             :                 /*
    1061             :                  * better hope the caller is synchronizing access to this
    1062             :                  * element, because someone else is going to reuse it the next
    1063             :                  * time something is added to the table
    1064             :                  */
    1065    53746926 :                 return ELEMENTKEY(currBucket);
    1066             :             }
    1067        6766 :             return NULL;
    1068             : 
    1069   103243472 :         case HASH_ENTER:
    1070             :         case HASH_ENTER_NULL:
    1071             :             /* Return existing element if found, else create one */
    1072   103243472 :             if (currBucket != NULL)
    1073    38146762 :                 return ELEMENTKEY(currBucket);
    1074             : 
    1075             :             /* disallow inserts if frozen */
    1076    65096710 :             if (hashp->frozen)
    1077           0 :                 elog(ERROR, "cannot insert into frozen hashtable \"%s\"",
    1078             :                      hashp->tabname);
    1079             : 
    1080    65096710 :             currBucket = get_hash_entry(hashp, freelist_idx);
    1081    65096710 :             if (currBucket == NULL)
    1082             :             {
    1083             :                 /* out of memory */
    1084           0 :                 if (action == HASH_ENTER_NULL)
    1085           0 :                     return NULL;
    1086             :                 /* report a generic message */
    1087           0 :                 if (hashp->isshared)
    1088           0 :                     ereport(ERROR,
    1089             :                             (errcode(ERRCODE_OUT_OF_MEMORY),
    1090             :                              errmsg("out of shared memory")));
    1091             :                 else
    1092           0 :                     ereport(ERROR,
    1093             :                             (errcode(ERRCODE_OUT_OF_MEMORY),
    1094             :                              errmsg("out of memory")));
    1095             :             }
    1096             : 
    1097             :             /* link into hashbucket chain */
    1098    65096710 :             *prevBucketPtr = currBucket;
    1099    65096710 :             currBucket->link = NULL;
    1100             : 
    1101             :             /* copy key into record */
    1102    65096710 :             currBucket->hashvalue = hashvalue;
    1103    65096710 :             hashp->keycopy(ELEMENTKEY(currBucket), keyPtr, keysize);
    1104             : 
    1105             :             /*
    1106             :              * Caller is expected to fill the data field on return.  DO NOT
    1107             :              * insert any code that could possibly throw error here, as doing
    1108             :              * so would leave the table entry incomplete and hence corrupt the
    1109             :              * caller's data structure.
    1110             :              */
    1111             : 
    1112    65096710 :             return ELEMENTKEY(currBucket);
    1113             :     }
    1114             : 
    1115           0 :     elog(ERROR, "unrecognized hash action code: %d", (int) action);
    1116             : 
    1117             :     return NULL;                /* keep compiler quiet */
    1118             : }
    1119             : 
    1120             : /*
    1121             :  * hash_update_hash_key -- change the hash key of an existing table entry
    1122             :  *
    1123             :  * This is equivalent to removing the entry, making a new entry, and copying
    1124             :  * over its data, except that the entry never goes to the table's freelist.
    1125             :  * Therefore this cannot suffer an out-of-memory failure, even if there are
    1126             :  * other processes operating in other partitions of the hashtable.
    1127             :  *
    1128             :  * Returns true if successful, false if the requested new hash key is already
    1129             :  * present.  Throws error if the specified entry pointer isn't actually a
    1130             :  * table member.
    1131             :  *
    1132             :  * NB: currently, there is no special case for old and new hash keys being
    1133             :  * identical, which means we'll report false for that situation.  This is
    1134             :  * preferable for existing uses.
    1135             :  *
    1136             :  * NB: for a partitioned hashtable, caller must hold lock on both relevant
    1137             :  * partitions, if the new hash key would belong to a different partition.
    1138             :  */
    1139             : bool
    1140        1332 : hash_update_hash_key(HTAB *hashp,
    1141             :                      void *existingEntry,
    1142             :                      const void *newKeyPtr)
    1143             : {
    1144        1332 :     HASHELEMENT *existingElement = ELEMENT_FROM_KEY(existingEntry);
    1145             :     uint32      newhashvalue;
    1146             :     Size        keysize;
    1147             :     uint32      bucket;
    1148             :     uint32      newbucket;
    1149             :     HASHBUCKET  currBucket;
    1150             :     HASHBUCKET *prevBucketPtr;
    1151             :     HASHBUCKET *oldPrevPtr;
    1152             :     HashCompareFunc match;
    1153             : 
    1154             : #ifdef HASH_STATISTICS
    1155             :     HASHHDR    *hctl = hashp->hctl;
    1156             : 
    1157             :     hctl->accesses++;
    1158             : #endif
    1159             : 
    1160             :     /* disallow updates if frozen */
    1161        1332 :     if (hashp->frozen)
    1162           0 :         elog(ERROR, "cannot update in frozen hashtable \"%s\"",
    1163             :              hashp->tabname);
    1164             : 
    1165             :     /*
    1166             :      * Lookup the existing element using its saved hash value.  We need to do
    1167             :      * this to be able to unlink it from its hash chain, but as a side benefit
    1168             :      * we can verify the validity of the passed existingEntry pointer.
    1169             :      */
    1170        1332 :     bucket = hash_initial_lookup(hashp, existingElement->hashvalue,
    1171             :                                  &prevBucketPtr);
    1172        1332 :     currBucket = *prevBucketPtr;
    1173             : 
    1174        1334 :     while (currBucket != NULL)
    1175             :     {
    1176        1334 :         if (currBucket == existingElement)
    1177        1332 :             break;
    1178           2 :         prevBucketPtr = &(currBucket->link);
    1179           2 :         currBucket = *prevBucketPtr;
    1180             :     }
    1181             : 
    1182        1332 :     if (currBucket == NULL)
    1183           0 :         elog(ERROR, "hash_update_hash_key argument is not in hashtable \"%s\"",
    1184             :              hashp->tabname);
    1185             : 
    1186        1332 :     oldPrevPtr = prevBucketPtr;
    1187             : 
    1188             :     /*
    1189             :      * Now perform the equivalent of a HASH_ENTER operation to locate the hash
    1190             :      * chain we want to put the entry into.
    1191             :      */
    1192        1332 :     newhashvalue = hashp->hash(newKeyPtr, hashp->keysize);
    1193        1332 :     newbucket = hash_initial_lookup(hashp, newhashvalue, &prevBucketPtr);
    1194        1332 :     currBucket = *prevBucketPtr;
    1195             : 
    1196             :     /*
    1197             :      * Follow collision chain looking for matching key
    1198             :      */
    1199        1332 :     match = hashp->match;        /* save one fetch in inner loop */
    1200        1332 :     keysize = hashp->keysize;    /* ditto */
    1201             : 
    1202        1596 :     while (currBucket != NULL)
    1203             :     {
    1204         264 :         if (currBucket->hashvalue == newhashvalue &&
    1205           0 :             match(ELEMENTKEY(currBucket), newKeyPtr, keysize) == 0)
    1206           0 :             break;
    1207         264 :         prevBucketPtr = &(currBucket->link);
    1208         264 :         currBucket = *prevBucketPtr;
    1209             : #ifdef HASH_STATISTICS
    1210             :         hctl->collisions++;
    1211             : #endif
    1212             :     }
    1213             : 
    1214        1332 :     if (currBucket != NULL)
    1215           0 :         return false;           /* collision with an existing entry */
    1216             : 
    1217        1332 :     currBucket = existingElement;
    1218             : 
    1219             :     /*
    1220             :      * If old and new hash values belong to the same bucket, we need not
    1221             :      * change any chain links, and indeed should not since this simplistic
    1222             :      * update will corrupt the list if currBucket is the last element.  (We
    1223             :      * cannot fall out earlier, however, since we need to scan the bucket to
    1224             :      * check for duplicate keys.)
    1225             :      */
    1226        1332 :     if (bucket != newbucket)
    1227             :     {
    1228             :         /* OK to remove record from old hash bucket's chain. */
    1229        1104 :         *oldPrevPtr = currBucket->link;
    1230             : 
    1231             :         /* link into new hashbucket chain */
    1232        1104 :         *prevBucketPtr = currBucket;
    1233        1104 :         currBucket->link = NULL;
    1234             :     }
    1235             : 
    1236             :     /* copy new key into record */
    1237        1332 :     currBucket->hashvalue = newhashvalue;
    1238        1332 :     hashp->keycopy(ELEMENTKEY(currBucket), newKeyPtr, keysize);
    1239             : 
    1240             :     /* rest of record is untouched */
    1241             : 
    1242        1332 :     return true;
    1243             : }
    1244             : 
    1245             : /*
    1246             :  * Allocate a new hashtable entry if possible; return NULL if out of memory.
    1247             :  * (Or, if the underlying space allocator throws error for out-of-memory,
    1248             :  * we won't return at all.)
    1249             :  */
    1250             : static HASHBUCKET
    1251    65096710 : get_hash_entry(HTAB *hashp, int freelist_idx)
    1252             : {
    1253    65096710 :     HASHHDR    *hctl = hashp->hctl;
    1254             :     HASHBUCKET  newElement;
    1255             : 
    1256             :     for (;;)
    1257             :     {
    1258             :         /* if partitioned, must lock to touch nentries and freeList */
    1259    65768504 :         if (IS_PARTITIONED(hctl))
    1260    12772794 :             SpinLockAcquire(&hctl->freeList[freelist_idx].mutex);
    1261             : 
    1262             :         /* try to get an entry from the freelist */
    1263    65768504 :         newElement = hctl->freeList[freelist_idx].freeList;
    1264             : 
    1265    65768504 :         if (newElement != NULL)
    1266    65096710 :             break;
    1267             : 
    1268      671794 :         if (IS_PARTITIONED(hctl))
    1269        3144 :             SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
    1270             : 
    1271             :         /*
    1272             :          * No free elements in this freelist.  In a partitioned table, there
    1273             :          * might be entries in other freelists, but to reduce contention we
    1274             :          * prefer to first try to get another chunk of buckets from the main
    1275             :          * shmem allocator.  If that fails, though, we *MUST* root through all
    1276             :          * the other freelists before giving up.  There are multiple callers
    1277             :          * that assume that they can allocate every element in the initially
    1278             :          * requested table size, or that deleting an element guarantees they
    1279             :          * can insert a new element, even if shared memory is entirely full.
    1280             :          * Failing because the needed element is in a different freelist is
    1281             :          * not acceptable.
    1282             :          */
    1283      671794 :         if (!element_alloc(hashp, hctl->nelem_alloc, freelist_idx))
    1284             :         {
    1285             :             int         borrow_from_idx;
    1286             : 
    1287           0 :             if (!IS_PARTITIONED(hctl))
    1288           0 :                 return NULL;    /* out of memory */
    1289             : 
    1290             :             /* try to borrow element from another freelist */
    1291           0 :             borrow_from_idx = freelist_idx;
    1292             :             for (;;)
    1293             :             {
    1294           0 :                 borrow_from_idx = (borrow_from_idx + 1) % NUM_FREELISTS;
    1295           0 :                 if (borrow_from_idx == freelist_idx)
    1296           0 :                     break;      /* examined all freelists, fail */
    1297             : 
    1298           0 :                 SpinLockAcquire(&(hctl->freeList[borrow_from_idx].mutex));
    1299           0 :                 newElement = hctl->freeList[borrow_from_idx].freeList;
    1300             : 
    1301           0 :                 if (newElement != NULL)
    1302             :                 {
    1303           0 :                     hctl->freeList[borrow_from_idx].freeList = newElement->link;
    1304           0 :                     SpinLockRelease(&(hctl->freeList[borrow_from_idx].mutex));
    1305             : 
    1306             :                     /* careful: count the new element in its proper freelist */
    1307           0 :                     SpinLockAcquire(&hctl->freeList[freelist_idx].mutex);
    1308           0 :                     hctl->freeList[freelist_idx].nentries++;
    1309           0 :                     SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
    1310             : 
    1311           0 :                     return newElement;
    1312             :                 }
    1313             : 
    1314           0 :                 SpinLockRelease(&(hctl->freeList[borrow_from_idx].mutex));
    1315             :             }
    1316             : 
    1317             :             /* no elements available to borrow either, so out of memory */
    1318           0 :             return NULL;
    1319             :         }
    1320             :     }
    1321             : 
    1322             :     /* remove entry from freelist, bump nentries */
    1323    65096710 :     hctl->freeList[freelist_idx].freeList = newElement->link;
    1324    65096710 :     hctl->freeList[freelist_idx].nentries++;
    1325             : 
    1326    65096710 :     if (IS_PARTITIONED(hctl))
    1327    12769650 :         SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
    1328             : 
    1329    65096710 :     return newElement;
    1330             : }
    1331             : 
    1332             : /*
    1333             :  * hash_get_num_entries -- get the number of entries in a hashtable
    1334             :  */
    1335             : int64
    1336      120950 : hash_get_num_entries(HTAB *hashp)
    1337             : {
    1338             :     int         i;
    1339      120950 :     int64       sum = hashp->hctl->freeList[0].nentries;
    1340             : 
    1341             :     /*
    1342             :      * We currently don't bother with acquiring the mutexes; it's only
    1343             :      * sensible to call this function if you've got lock on all partitions of
    1344             :      * the table.
    1345             :      */
    1346      120950 :     if (IS_PARTITIONED(hashp->hctl))
    1347             :     {
    1348      117504 :         for (i = 1; i < NUM_FREELISTS; i++)
    1349      113832 :             sum += hashp->hctl->freeList[i].nentries;
    1350             :     }
    1351             : 
    1352      120950 :     return sum;
    1353             : }
    1354             : 
    1355             : /*
    1356             :  * hash_seq_init/_search/_term
    1357             :  *          Sequentially search through hash table and return
    1358             :  *          all the elements one by one, return NULL when no more.
    1359             :  *
    1360             :  * hash_seq_term should be called if and only if the scan is abandoned before
    1361             :  * completion; if hash_seq_search returns NULL then it has already done the
    1362             :  * end-of-scan cleanup.
    1363             :  *
    1364             :  * NOTE: caller may delete the returned element before continuing the scan.
    1365             :  * However, deleting any other element while the scan is in progress is
    1366             :  * UNDEFINED (it might be the one that curIndex is pointing at!).  Also,
    1367             :  * if elements are added to the table while the scan is in progress, it is
    1368             :  * unspecified whether they will be visited by the scan or not.
    1369             :  *
    1370             :  * NOTE: it is possible to use hash_seq_init/hash_seq_search without any
    1371             :  * worry about hash_seq_term cleanup, if the hashtable is first locked against
    1372             :  * further insertions by calling hash_freeze.
    1373             :  *
    1374             :  * NOTE: to use this with a partitioned hashtable, caller had better hold
    1375             :  * at least shared lock on all partitions of the table throughout the scan!
    1376             :  * We can cope with insertions or deletions by our own backend, but *not*
    1377             :  * with concurrent insertions or deletions by another.
    1378             :  */
    1379             : void
    1380     5597888 : hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
    1381             : {
    1382     5597888 :     status->hashp = hashp;
    1383     5597888 :     status->curBucket = 0;
    1384     5597888 :     status->curEntry = NULL;
    1385     5597888 :     status->hasHashvalue = false;
    1386     5597888 :     if (!hashp->frozen)
    1387     5597888 :         register_seq_scan(hashp);
    1388     5597888 : }
    1389             : 
    1390             : /*
    1391             :  * Same as above but scan by the given hash value.
    1392             :  * See also hash_seq_search().
    1393             :  *
    1394             :  * NOTE: the default hash function doesn't match syscache hash function.
    1395             :  * Thus, if you're going to use this function in syscache callback, make sure
    1396             :  * you're using custom hash function.  See relatt_cache_syshash()
    1397             :  * for example.
    1398             :  */
    1399             : void
    1400     1571638 : hash_seq_init_with_hash_value(HASH_SEQ_STATUS *status, HTAB *hashp,
    1401             :                               uint32 hashvalue)
    1402             : {
    1403             :     HASHBUCKET *bucketPtr;
    1404             : 
    1405     1571638 :     hash_seq_init(status, hashp);
    1406             : 
    1407     1571638 :     status->hasHashvalue = true;
    1408     1571638 :     status->hashvalue = hashvalue;
    1409             : 
    1410     1571638 :     status->curBucket = hash_initial_lookup(hashp, hashvalue, &bucketPtr);
    1411     1571638 :     status->curEntry = *bucketPtr;
    1412     1571638 : }
    1413             : 
    1414             : void *
    1415    57418914 : hash_seq_search(HASH_SEQ_STATUS *status)
    1416             : {
    1417             :     HTAB       *hashp;
    1418             :     HASHHDR    *hctl;
    1419             :     uint32      max_bucket;
    1420             :     int64       ssize;
    1421             :     int64       segment_num;
    1422             :     int64       segment_ndx;
    1423             :     HASHSEGMENT segp;
    1424             :     uint32      curBucket;
    1425             :     HASHELEMENT *curElem;
    1426             : 
    1427    57418914 :     if (status->hasHashvalue)
    1428             :     {
    1429             :         /*
    1430             :          * Scan entries only in the current bucket because only this bucket
    1431             :          * can contain entries with the given hash value.
    1432             :          */
    1433     1772996 :         while ((curElem = status->curEntry) != NULL)
    1434             :         {
    1435      201358 :             status->curEntry = curElem->link;
    1436      201358 :             if (status->hashvalue != curElem->hashvalue)
    1437      192226 :                 continue;
    1438        9132 :             return (void *) ELEMENTKEY(curElem);
    1439             :         }
    1440             : 
    1441     1571638 :         hash_seq_term(status);
    1442     1571638 :         return NULL;
    1443             :     }
    1444             : 
    1445    55838144 :     if ((curElem = status->curEntry) != NULL)
    1446             :     {
    1447             :         /* Continuing scan of curBucket... */
    1448    16123662 :         status->curEntry = curElem->link;
    1449    16123662 :         if (status->curEntry == NULL)    /* end of this bucket */
    1450    11236006 :             ++status->curBucket;
    1451    16123662 :         return ELEMENTKEY(curElem);
    1452             :     }
    1453             : 
    1454             :     /*
    1455             :      * Search for next nonempty bucket starting at curBucket.
    1456             :      */
    1457    39714482 :     curBucket = status->curBucket;
    1458    39714482 :     hashp = status->hashp;
    1459    39714482 :     hctl = hashp->hctl;
    1460    39714482 :     ssize = hashp->ssize;
    1461    39714482 :     max_bucket = hctl->max_bucket;
    1462             : 
    1463    39714482 :     if (curBucket > max_bucket)
    1464             :     {
    1465      130660 :         hash_seq_term(status);
    1466      130660 :         return NULL;            /* search is done */
    1467             :     }
    1468             : 
    1469             :     /*
    1470             :      * first find the right segment in the table directory.
    1471             :      */
    1472    39583822 :     segment_num = curBucket >> hashp->sshift;
    1473    39583822 :     segment_ndx = MOD(curBucket, ssize);
    1474             : 
    1475    39583822 :     segp = hashp->dir[segment_num];
    1476             : 
    1477             :     /*
    1478             :      * Pick up the first item in this bucket's chain.  If chain is not empty
    1479             :      * we can begin searching it.  Otherwise we have to advance to find the
    1480             :      * next nonempty bucket.  We try to optimize that case since searching a
    1481             :      * near-empty hashtable has to iterate this loop a lot.
    1482             :      */
    1483   206195188 :     while ((curElem = segp[segment_ndx]) == NULL)
    1484             :     {
    1485             :         /* empty bucket, advance to next */
    1486   170468846 :         if (++curBucket > max_bucket)
    1487             :         {
    1488     3857480 :             status->curBucket = curBucket;
    1489     3857480 :             hash_seq_term(status);
    1490     3857480 :             return NULL;        /* search is done */
    1491             :         }
    1492   166611366 :         if (++segment_ndx >= ssize)
    1493             :         {
    1494      277358 :             segment_num++;
    1495      277358 :             segment_ndx = 0;
    1496      277358 :             segp = hashp->dir[segment_num];
    1497             :         }
    1498             :     }
    1499             : 
    1500             :     /* Begin scan of curBucket... */
    1501    35726342 :     status->curEntry = curElem->link;
    1502    35726342 :     if (status->curEntry == NULL)    /* end of this bucket */
    1503    24489974 :         ++curBucket;
    1504    35726342 :     status->curBucket = curBucket;
    1505    35726342 :     return ELEMENTKEY(curElem);
    1506             : }
    1507             : 
    1508             : void
    1509     5597868 : hash_seq_term(HASH_SEQ_STATUS *status)
    1510             : {
    1511     5597868 :     if (!status->hashp->frozen)
    1512     5597868 :         deregister_seq_scan(status->hashp);
    1513     5597868 : }
    1514             : 
    1515             : /*
    1516             :  * hash_freeze
    1517             :  *          Freeze a hashtable against future insertions (deletions are
    1518             :  *          still allowed)
    1519             :  *
    1520             :  * The reason for doing this is that by preventing any more bucket splits,
    1521             :  * we no longer need to worry about registering hash_seq_search scans,
    1522             :  * and thus caller need not be careful about ensuring hash_seq_term gets
    1523             :  * called at the right times.
    1524             :  *
    1525             :  * Multiple calls to hash_freeze() are allowed, but you can't freeze a table
    1526             :  * with active scans (since hash_seq_term would then do the wrong thing).
    1527             :  */
    1528             : void
    1529           0 : hash_freeze(HTAB *hashp)
    1530             : {
    1531           0 :     if (hashp->isshared)
    1532           0 :         elog(ERROR, "cannot freeze shared hashtable \"%s\"", hashp->tabname);
    1533           0 :     if (!hashp->frozen && has_seq_scans(hashp))
    1534           0 :         elog(ERROR, "cannot freeze hashtable \"%s\" because it has active scans",
    1535             :              hashp->tabname);
    1536           0 :     hashp->frozen = true;
    1537           0 : }
    1538             : 
    1539             : 
    1540             : /********************************* UTILITIES ************************/
    1541             : 
    1542             : /*
    1543             :  * Expand the table by adding one more hash bucket.
    1544             :  */
    1545             : static bool
    1546      756190 : expand_table(HTAB *hashp)
    1547             : {
    1548      756190 :     HASHHDR    *hctl = hashp->hctl;
    1549             :     HASHSEGMENT old_seg,
    1550             :                 new_seg;
    1551             :     int64       old_bucket,
    1552             :                 new_bucket;
    1553             :     int64       new_segnum,
    1554             :                 new_segndx;
    1555             :     int64       old_segnum,
    1556             :                 old_segndx;
    1557             :     HASHBUCKET *oldlink,
    1558             :                *newlink;
    1559             :     HASHBUCKET  currElement,
    1560             :                 nextElement;
    1561             : 
    1562             :     Assert(!IS_PARTITIONED(hctl));
    1563             : 
    1564             : #ifdef HASH_STATISTICS
    1565             :     hctl->expansions++;
    1566             : #endif
    1567             : 
    1568      756190 :     new_bucket = hctl->max_bucket + 1;
    1569      756190 :     new_segnum = new_bucket >> hashp->sshift;
    1570      756190 :     new_segndx = MOD(new_bucket, hashp->ssize);
    1571             : 
    1572      756190 :     if (new_segnum >= hctl->nsegs)
    1573             :     {
    1574             :         /* Allocate new segment if necessary -- could fail if dir full */
    1575        2454 :         if (new_segnum >= hctl->dsize)
    1576           0 :             if (!dir_realloc(hashp))
    1577           0 :                 return false;
    1578        2454 :         if (!(hashp->dir[new_segnum] = seg_alloc(hashp)))
    1579           0 :             return false;
    1580        2454 :         hctl->nsegs++;
    1581             :     }
    1582             : 
    1583             :     /* OK, we created a new bucket */
    1584      756190 :     hctl->max_bucket++;
    1585             : 
    1586             :     /*
    1587             :      * *Before* changing masks, find old bucket corresponding to same hash
    1588             :      * values; values in that bucket may need to be relocated to new bucket.
    1589             :      * Note that new_bucket is certainly larger than low_mask at this point,
    1590             :      * so we can skip the first step of the regular hash mask calc.
    1591             :      */
    1592      756190 :     old_bucket = (new_bucket & hctl->low_mask);
    1593             : 
    1594             :     /*
    1595             :      * If we crossed a power of 2, readjust masks.
    1596             :      */
    1597      756190 :     if ((uint32) new_bucket > hctl->high_mask)
    1598             :     {
    1599        4566 :         hctl->low_mask = hctl->high_mask;
    1600        4566 :         hctl->high_mask = (uint32) new_bucket | hctl->low_mask;
    1601             :     }
    1602             : 
    1603             :     /*
    1604             :      * Relocate records to the new bucket.  NOTE: because of the way the hash
    1605             :      * masking is done in calc_bucket, only one old bucket can need to be
    1606             :      * split at this point.  With a different way of reducing the hash value,
    1607             :      * that might not be true!
    1608             :      */
    1609      756190 :     old_segnum = old_bucket >> hashp->sshift;
    1610      756190 :     old_segndx = MOD(old_bucket, hashp->ssize);
    1611             : 
    1612      756190 :     old_seg = hashp->dir[old_segnum];
    1613      756190 :     new_seg = hashp->dir[new_segnum];
    1614             : 
    1615      756190 :     oldlink = &old_seg[old_segndx];
    1616      756190 :     newlink = &new_seg[new_segndx];
    1617             : 
    1618      756190 :     for (currElement = *oldlink;
    1619     1815598 :          currElement != NULL;
    1620     1059408 :          currElement = nextElement)
    1621             :     {
    1622     1059408 :         nextElement = currElement->link;
    1623     1059408 :         if ((int64) calc_bucket(hctl, currElement->hashvalue) == old_bucket)
    1624             :         {
    1625      519394 :             *oldlink = currElement;
    1626      519394 :             oldlink = &currElement->link;
    1627             :         }
    1628             :         else
    1629             :         {
    1630      540014 :             *newlink = currElement;
    1631      540014 :             newlink = &currElement->link;
    1632             :         }
    1633             :     }
    1634             :     /* don't forget to terminate the rebuilt hash chains... */
    1635      756190 :     *oldlink = NULL;
    1636      756190 :     *newlink = NULL;
    1637             : 
    1638      756190 :     return true;
    1639             : }
    1640             : 
    1641             : 
    1642             : static bool
    1643           0 : dir_realloc(HTAB *hashp)
    1644             : {
    1645             :     HASHSEGMENT *p;
    1646             :     HASHSEGMENT *old_p;
    1647             :     int64       new_dsize;
    1648             :     int64       old_dirsize;
    1649             :     int64       new_dirsize;
    1650             : 
    1651           0 :     if (hashp->hctl->max_dsize != NO_MAX_DSIZE)
    1652           0 :         return false;
    1653             : 
    1654             :     /* Reallocate directory */
    1655           0 :     new_dsize = hashp->hctl->dsize << 1;
    1656           0 :     old_dirsize = hashp->hctl->dsize * sizeof(HASHSEGMENT);
    1657           0 :     new_dirsize = new_dsize * sizeof(HASHSEGMENT);
    1658             : 
    1659           0 :     old_p = hashp->dir;
    1660           0 :     CurrentDynaHashCxt = hashp->hcxt;
    1661           0 :     p = (HASHSEGMENT *) hashp->alloc((Size) new_dirsize);
    1662             : 
    1663           0 :     if (p != NULL)
    1664             :     {
    1665           0 :         memcpy(p, old_p, old_dirsize);
    1666           0 :         MemSet(((char *) p) + old_dirsize, 0, new_dirsize - old_dirsize);
    1667           0 :         hashp->dir = p;
    1668           0 :         hashp->hctl->dsize = new_dsize;
    1669             : 
    1670             :         /* XXX assume the allocator is palloc, so we know how to free */
    1671             :         Assert(hashp->alloc == DynaHashAlloc);
    1672           0 :         pfree(old_p);
    1673             : 
    1674           0 :         return true;
    1675             :     }
    1676             : 
    1677           0 :     return false;
    1678             : }
    1679             : 
    1680             : 
    1681             : static HASHSEGMENT
    1682     1326272 : seg_alloc(HTAB *hashp)
    1683             : {
    1684             :     HASHSEGMENT segp;
    1685             : 
    1686     1326272 :     CurrentDynaHashCxt = hashp->hcxt;
    1687     1326272 :     segp = (HASHSEGMENT) hashp->alloc(sizeof(HASHBUCKET) * hashp->ssize);
    1688             : 
    1689     1326272 :     if (!segp)
    1690           0 :         return NULL;
    1691             : 
    1692     1326272 :     MemSet(segp, 0, sizeof(HASHBUCKET) * hashp->ssize);
    1693             : 
    1694     1326272 :     return segp;
    1695             : }
    1696             : 
    1697             : /*
    1698             :  * allocate some new elements and link them into the indicated free list
    1699             :  */
    1700             : static bool
    1701     1261698 : element_alloc(HTAB *hashp, int nelem, int freelist_idx)
    1702             : {
    1703     1261698 :     HASHHDR    *hctl = hashp->hctl;
    1704             :     Size        elementSize;
    1705             :     Size        requestSize;
    1706             :     char       *allocedBlock;
    1707             :     HASHELEMENT *firstElement;
    1708             :     HASHELEMENT *tmpElement;
    1709             :     HASHELEMENT *prevElement;
    1710             :     int         i;
    1711             : 
    1712     1261698 :     if (hctl->isfixed)
    1713           0 :         return false;
    1714             : 
    1715             :     /* Each element has a HASHELEMENT header plus user data. */
    1716     1261698 :     elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(hctl->entrysize);
    1717             : 
    1718     1261698 :     requestSize = nelem * elementSize;
    1719             : 
    1720             :     /* Add space for slist_node list link if we need one. */
    1721             : #ifdef USE_VALGRIND
    1722             :     if (!hashp->isshared)
    1723             :         requestSize += MAXALIGN(sizeof(slist_node));
    1724             : #endif
    1725             : 
    1726             :     /* Allocate the memory. */
    1727     1261698 :     CurrentDynaHashCxt = hashp->hcxt;
    1728     1261698 :     allocedBlock = hashp->alloc(requestSize);
    1729             : 
    1730     1261698 :     if (!allocedBlock)
    1731           0 :         return false;
    1732             : 
    1733             :     /*
    1734             :      * If USE_VALGRIND, each allocated block of elements of a non-shared
    1735             :      * hashtable is chained into a list, so that Valgrind won't think it's
    1736             :      * been leaked.
    1737             :      */
    1738             : #ifdef USE_VALGRIND
    1739             :     if (hashp->isshared)
    1740             :         firstElement = (HASHELEMENT *) allocedBlock;
    1741             :     else
    1742             :     {
    1743             :         slist_push_head(&hashp->element_blocks, (slist_node *) allocedBlock);
    1744             :         firstElement = (HASHELEMENT *) (allocedBlock + MAXALIGN(sizeof(slist_node)));
    1745             :     }
    1746             : #else
    1747     1261698 :     firstElement = (HASHELEMENT *) allocedBlock;
    1748             : #endif
    1749             : 
    1750             :     /* prepare to link all the new entries into the freelist */
    1751     1261698 :     prevElement = NULL;
    1752     1261698 :     tmpElement = firstElement;
    1753   108942992 :     for (i = 0; i < nelem; i++)
    1754             :     {
    1755   107681294 :         tmpElement->link = prevElement;
    1756   107681294 :         prevElement = tmpElement;
    1757   107681294 :         tmpElement = (HASHELEMENT *) (((char *) tmpElement) + elementSize);
    1758             :     }
    1759             : 
    1760             :     /* if partitioned, must lock to touch freeList */
    1761     1261698 :     if (IS_PARTITIONED(hctl))
    1762      347464 :         SpinLockAcquire(&hctl->freeList[freelist_idx].mutex);
    1763             : 
    1764             :     /* freelist could be nonempty if two backends did this concurrently */
    1765     1261698 :     firstElement->link = hctl->freeList[freelist_idx].freeList;
    1766     1261698 :     hctl->freeList[freelist_idx].freeList = prevElement;
    1767             : 
    1768     1261698 :     if (IS_PARTITIONED(hctl))
    1769      347464 :         SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
    1770             : 
    1771     1261698 :     return true;
    1772             : }
    1773             : 
    1774             : /*
    1775             :  * Do initial lookup of a bucket for the given hash value, retrieving its
    1776             :  * bucket number and its hash bucket.
    1777             :  */
    1778             : static inline uint32
    1779   386173512 : hash_initial_lookup(HTAB *hashp, uint32 hashvalue, HASHBUCKET **bucketptr)
    1780             : {
    1781   386173512 :     HASHHDR    *hctl = hashp->hctl;
    1782             :     HASHSEGMENT segp;
    1783             :     int64       segment_num;
    1784             :     int64       segment_ndx;
    1785             :     uint32      bucket;
    1786             : 
    1787   386173512 :     bucket = calc_bucket(hctl, hashvalue);
    1788             : 
    1789   386173512 :     segment_num = bucket >> hashp->sshift;
    1790   386173512 :     segment_ndx = MOD(bucket, hashp->ssize);
    1791             : 
    1792   386173512 :     segp = hashp->dir[segment_num];
    1793             : 
    1794   386173512 :     if (segp == NULL)
    1795           0 :         hash_corrupted(hashp);
    1796             : 
    1797   386173512 :     *bucketptr = &segp[segment_ndx];
    1798   386173512 :     return bucket;
    1799             : }
    1800             : 
    1801             : /* complain when we have detected a corrupted hashtable */
    1802             : static void
    1803           0 : hash_corrupted(HTAB *hashp)
    1804             : {
    1805             :     /*
    1806             :      * If the corruption is in a shared hashtable, we'd better force a
    1807             :      * systemwide restart.  Otherwise, just shut down this one backend.
    1808             :      */
    1809           0 :     if (hashp->isshared)
    1810           0 :         elog(PANIC, "hash table \"%s\" corrupted", hashp->tabname);
    1811             :     else
    1812           0 :         elog(FATAL, "hash table \"%s\" corrupted", hashp->tabname);
    1813             : }
    1814             : 
    1815             : /* calculate ceil(log base 2) of num */
    1816             : int
    1817     1605070 : my_log2(int64 num)
    1818             : {
    1819             :     /*
    1820             :      * guard against too-large input, which would be invalid for
    1821             :      * pg_ceil_log2_*()
    1822             :      */
    1823     1605070 :     if (num > PG_INT64_MAX / 2)
    1824           0 :         num = PG_INT64_MAX / 2;
    1825             : 
    1826     1605070 :     return pg_ceil_log2_64(num);
    1827             : }
    1828             : 
    1829             : /* calculate first power of 2 >= num, bounded to what will fit in a int64 */
    1830             : static int64
    1831      110864 : next_pow2_int64(int64 num)
    1832             : {
    1833             :     /* my_log2's internal range check is sufficient */
    1834      110864 :     return 1L << my_log2(num);
    1835             : }
    1836             : 
    1837             : /* calculate first power of 2 >= num, bounded to what will fit in an int */
    1838             : static int
    1839     1451424 : next_pow2_int(int64 num)
    1840             : {
    1841     1451424 :     if (num > INT_MAX / 2)
    1842           0 :         num = INT_MAX / 2;
    1843     1451424 :     return 1 << my_log2(num);
    1844             : }
    1845             : 
    1846             : 
    1847             : /************************* SEQ SCAN TRACKING ************************/
    1848             : 
    1849             : /*
    1850             :  * We track active hash_seq_search scans here.  The need for this mechanism
    1851             :  * comes from the fact that a scan will get confused if a bucket split occurs
    1852             :  * while it's in progress: it might visit entries twice, or even miss some
    1853             :  * entirely (if it's partway through the same bucket that splits).  Hence
    1854             :  * we want to inhibit bucket splits if there are any active scans on the
    1855             :  * table being inserted into.  This is a fairly rare case in current usage,
    1856             :  * so just postponing the split until the next insertion seems sufficient.
    1857             :  *
    1858             :  * Given present usages of the function, only a few scans are likely to be
    1859             :  * open concurrently; so a finite-size stack of open scans seems sufficient,
    1860             :  * and we don't worry that linear search is too slow.  Note that we do
    1861             :  * allow multiple scans of the same hashtable to be open concurrently.
    1862             :  *
    1863             :  * This mechanism can support concurrent scan and insertion in a shared
    1864             :  * hashtable if it's the same backend doing both.  It would fail otherwise,
    1865             :  * but locking reasons seem to preclude any such scenario anyway, so we don't
    1866             :  * worry.
    1867             :  *
    1868             :  * This arrangement is reasonably robust if a transient hashtable is deleted
    1869             :  * without notifying us.  The absolute worst case is we might inhibit splits
    1870             :  * in another table created later at exactly the same address.  We will give
    1871             :  * a warning at transaction end for reference leaks, so any bugs leading to
    1872             :  * lack of notification should be easy to catch.
    1873             :  */
    1874             : 
    1875             : #define MAX_SEQ_SCANS 100
    1876             : 
    1877             : static HTAB *seq_scan_tables[MAX_SEQ_SCANS];    /* tables being scanned */
    1878             : static int  seq_scan_level[MAX_SEQ_SCANS];  /* subtransaction nest level */
    1879             : static int  num_seq_scans = 0;
    1880             : 
    1881             : 
    1882             : /* Register a table as having an active hash_seq_search scan */
    1883             : static void
    1884     5597888 : register_seq_scan(HTAB *hashp)
    1885             : {
    1886     5597888 :     if (num_seq_scans >= MAX_SEQ_SCANS)
    1887           0 :         elog(ERROR, "too many active hash_seq_search scans, cannot start one on \"%s\"",
    1888             :              hashp->tabname);
    1889     5597888 :     seq_scan_tables[num_seq_scans] = hashp;
    1890     5597888 :     seq_scan_level[num_seq_scans] = GetCurrentTransactionNestLevel();
    1891     5597888 :     num_seq_scans++;
    1892     5597888 : }
    1893             : 
    1894             : /* Deregister an active scan */
    1895             : static void
    1896     5597868 : deregister_seq_scan(HTAB *hashp)
    1897             : {
    1898             :     int         i;
    1899             : 
    1900             :     /* Search backward since it's most likely at the stack top */
    1901     5597868 :     for (i = num_seq_scans - 1; i >= 0; i--)
    1902             :     {
    1903     5597868 :         if (seq_scan_tables[i] == hashp)
    1904             :         {
    1905     5597868 :             seq_scan_tables[i] = seq_scan_tables[num_seq_scans - 1];
    1906     5597868 :             seq_scan_level[i] = seq_scan_level[num_seq_scans - 1];
    1907     5597868 :             num_seq_scans--;
    1908     5597868 :             return;
    1909             :         }
    1910             :     }
    1911           0 :     elog(ERROR, "no hash_seq_search scan for hash table \"%s\"",
    1912             :          hashp->tabname);
    1913             : }
    1914             : 
    1915             : /* Check if a table has any active scan */
    1916             : static bool
    1917      756190 : has_seq_scans(HTAB *hashp)
    1918             : {
    1919             :     int         i;
    1920             : 
    1921      756190 :     for (i = 0; i < num_seq_scans; i++)
    1922             :     {
    1923           0 :         if (seq_scan_tables[i] == hashp)
    1924           0 :             return true;
    1925             :     }
    1926      756190 :     return false;
    1927             : }
    1928             : 
    1929             : /* Clean up any open scans at end of transaction */
    1930             : void
    1931     1195080 : AtEOXact_HashTables(bool isCommit)
    1932             : {
    1933             :     /*
    1934             :      * During abort cleanup, open scans are expected; just silently clean 'em
    1935             :      * out.  An open scan at commit means someone forgot a hash_seq_term()
    1936             :      * call, so complain.
    1937             :      *
    1938             :      * Note: it's tempting to try to print the tabname here, but refrain for
    1939             :      * fear of touching deallocated memory.  This isn't a user-facing message
    1940             :      * anyway, so it needn't be pretty.
    1941             :      */
    1942     1195080 :     if (isCommit)
    1943             :     {
    1944             :         int         i;
    1945             : 
    1946     1145400 :         for (i = 0; i < num_seq_scans; i++)
    1947             :         {
    1948           0 :             elog(WARNING, "leaked hash_seq_search scan for hash table %p",
    1949             :                  seq_scan_tables[i]);
    1950             :         }
    1951             :     }
    1952     1195080 :     num_seq_scans = 0;
    1953     1195080 : }
    1954             : 
    1955             : /* Clean up any open scans at end of subtransaction */
    1956             : void
    1957       20102 : AtEOSubXact_HashTables(bool isCommit, int nestDepth)
    1958             : {
    1959             :     int         i;
    1960             : 
    1961             :     /*
    1962             :      * Search backward to make cleanup easy.  Note we must check all entries,
    1963             :      * not only those at the end of the array, because deletion technique
    1964             :      * doesn't keep them in order.
    1965             :      */
    1966       20102 :     for (i = num_seq_scans - 1; i >= 0; i--)
    1967             :     {
    1968           0 :         if (seq_scan_level[i] >= nestDepth)
    1969             :         {
    1970           0 :             if (isCommit)
    1971           0 :                 elog(WARNING, "leaked hash_seq_search scan for hash table %p",
    1972             :                      seq_scan_tables[i]);
    1973           0 :             seq_scan_tables[i] = seq_scan_tables[num_seq_scans - 1];
    1974           0 :             seq_scan_level[i] = seq_scan_level[num_seq_scans - 1];
    1975           0 :             num_seq_scans--;
    1976             :         }
    1977             :     }
    1978       20102 : }

Generated by: LCOV version 1.16