Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * inval.c
4 : * POSTGRES cache invalidation dispatcher code.
5 : *
6 : * This is subtle stuff, so pay attention:
7 : *
8 : * When a tuple is updated or deleted, our standard visibility rules
9 : * consider that it is *still valid* so long as we are in the same command,
10 : * ie, until the next CommandCounterIncrement() or transaction commit.
11 : * (See access/heap/heapam_visibility.c, and note that system catalogs are
12 : * generally scanned under the most current snapshot available, rather than
13 : * the transaction snapshot.) At the command boundary, the old tuple stops
14 : * being valid and the new version, if any, becomes valid. Therefore,
15 : * we cannot simply flush a tuple from the system caches during heap_update()
16 : * or heap_delete(). The tuple is still good at that point; what's more,
17 : * even if we did flush it, it might be reloaded into the caches by a later
18 : * request in the same command. So the correct behavior is to keep a list
19 : * of outdated (updated/deleted) tuples and then do the required cache
20 : * flushes at the next command boundary. We must also keep track of
21 : * inserted tuples so that we can flush "negative" cache entries that match
22 : * the new tuples; again, that mustn't happen until end of command.
23 : *
24 : * Once we have finished the command, we still need to remember inserted
25 : * tuples (including new versions of updated tuples), so that we can flush
26 : * them from the caches if we abort the transaction. Similarly, we'd better
27 : * be able to flush "negative" cache entries that may have been loaded in
28 : * place of deleted tuples, so we still need the deleted ones too.
29 : *
30 : * If we successfully complete the transaction, we have to broadcast all
31 : * these invalidation events to other backends (via the SI message queue)
32 : * so that they can flush obsolete entries from their caches. Note we have
33 : * to record the transaction commit before sending SI messages, otherwise
34 : * the other backends won't see our updated tuples as good.
35 : *
36 : * When a subtransaction aborts, we can process and discard any events
37 : * it has queued. When a subtransaction commits, we just add its events
38 : * to the pending lists of the parent transaction.
39 : *
40 : * In short, we need to remember until xact end every insert or delete
41 : * of a tuple that might be in the system caches. Updates are treated as
42 : * two events, delete + insert, for simplicity. (If the update doesn't
43 : * change the tuple hash value, catcache.c optimizes this into one event.)
44 : *
45 : * We do not need to register EVERY tuple operation in this way, just those
46 : * on tuples in relations that have associated catcaches. We do, however,
47 : * have to register every operation on every tuple that *could* be in a
48 : * catcache, whether or not it currently is in our cache. Also, if the
49 : * tuple is in a relation that has multiple catcaches, we need to register
50 : * an invalidation message for each such catcache. catcache.c's
51 : * PrepareToInvalidateCacheTuple() routine provides the knowledge of which
52 : * catcaches may need invalidation for a given tuple.
53 : *
54 : * Also, whenever we see an operation on a pg_class, pg_attribute, or
55 : * pg_index tuple, we register a relcache flush operation for the relation
56 : * described by that tuple (as specified in CacheInvalidateHeapTuple()).
57 : * Likewise for pg_constraint tuples for foreign keys on relations.
58 : *
59 : * We keep the relcache flush requests in lists separate from the catcache
60 : * tuple flush requests. This allows us to issue all the pending catcache
61 : * flushes before we issue relcache flushes, which saves us from loading
62 : * a catcache tuple during relcache load only to flush it again right away.
63 : * Also, we avoid queuing multiple relcache flush requests for the same
64 : * relation, since a relcache flush is relatively expensive to do.
65 : * (XXX is it worth testing likewise for duplicate catcache flush entries?
66 : * Probably not.)
67 : *
68 : * Many subsystems own higher-level caches that depend on relcache and/or
69 : * catcache, and they register callbacks here to invalidate their caches.
70 : * While building a higher-level cache entry, a backend may receive a
71 : * callback for the being-built entry or one of its dependencies. This
72 : * implies the new higher-level entry would be born stale, and it might
73 : * remain stale for the life of the backend. Many caches do not prevent
74 : * that. They rely on DDL for can't-miss catalog changes taking
75 : * AccessExclusiveLock on suitable objects. (For a change made with less
76 : * locking, backends might never read the change.) The relation cache,
77 : * however, needs to reflect changes from CREATE INDEX CONCURRENTLY no later
78 : * than the beginning of the next transaction. Hence, when a relevant
79 : * invalidation callback arrives during a build, relcache.c reattempts that
80 : * build. Caches with similar needs could do likewise.
81 : *
82 : * If a relcache flush is issued for a system relation that we preload
83 : * from the relcache init file, we must also delete the init file so that
84 : * it will be rebuilt during the next backend restart. The actual work of
85 : * manipulating the init file is in relcache.c, but we keep track of the
86 : * need for it here.
87 : *
88 : * Currently, inval messages are sent without regard for the possibility
89 : * that the object described by the catalog tuple might be a session-local
90 : * object such as a temporary table. This is because (1) this code has
91 : * no practical way to tell the difference, and (2) it is not certain that
92 : * other backends don't have catalog cache or even relcache entries for
93 : * such tables, anyway; there is nothing that prevents that. It might be
94 : * worth trying to avoid sending such inval traffic in the future, if those
95 : * problems can be overcome cheaply.
96 : *
97 : * When making a nontransactional change to a cacheable object, we must
98 : * likewise send the invalidation immediately, before ending the change's
99 : * critical section. This includes inplace heap updates, relmap, and smgr.
100 : *
101 : * When wal_level=logical, write invalidations into WAL at each command end to
102 : * support the decoding of the in-progress transactions. See
103 : * CommandEndInvalidationMessages.
104 : *
105 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
106 : * Portions Copyright (c) 1994, Regents of the University of California
107 : *
108 : * IDENTIFICATION
109 : * src/backend/utils/cache/inval.c
110 : *
111 : *-------------------------------------------------------------------------
112 : */
113 : #include "postgres.h"
114 :
115 : #include <limits.h>
116 :
117 : #include "access/htup_details.h"
118 : #include "access/xact.h"
119 : #include "access/xloginsert.h"
120 : #include "catalog/catalog.h"
121 : #include "catalog/pg_constraint.h"
122 : #include "miscadmin.h"
123 : #include "storage/procnumber.h"
124 : #include "storage/sinval.h"
125 : #include "storage/smgr.h"
126 : #include "utils/catcache.h"
127 : #include "utils/injection_point.h"
128 : #include "utils/inval.h"
129 : #include "utils/memdebug.h"
130 : #include "utils/memutils.h"
131 : #include "utils/rel.h"
132 : #include "utils/relmapper.h"
133 : #include "utils/snapmgr.h"
134 : #include "utils/syscache.h"
135 :
136 :
137 : /*
138 : * Pending requests are stored as ready-to-send SharedInvalidationMessages.
139 : * We keep the messages themselves in arrays in TopTransactionContext (there
140 : * are separate arrays for catcache and relcache messages). For transactional
141 : * messages, control information is kept in a chain of TransInvalidationInfo
142 : * structs, also allocated in TopTransactionContext. (We could keep a
143 : * subtransaction's TransInvalidationInfo in its CurTransactionContext; but
144 : * that's more wasteful not less so, since in very many scenarios it'd be the
145 : * only allocation in the subtransaction's CurTransactionContext.) For
146 : * inplace update messages, control information appears in an
147 : * InvalidationInfo, allocated in CurrentMemoryContext.
148 : *
149 : * We can store the message arrays densely, and yet avoid moving data around
150 : * within an array, because within any one subtransaction we need only
151 : * distinguish between messages emitted by prior commands and those emitted
152 : * by the current command. Once a command completes and we've done local
153 : * processing on its messages, we can fold those into the prior-commands
154 : * messages just by changing array indexes in the TransInvalidationInfo
155 : * struct. Similarly, we need distinguish messages of prior subtransactions
156 : * from those of the current subtransaction only until the subtransaction
157 : * completes, after which we adjust the array indexes in the parent's
158 : * TransInvalidationInfo to include the subtransaction's messages. Inplace
159 : * invalidations don't need a concept of command or subtransaction boundaries,
160 : * since we send them during the WAL insertion critical section.
161 : *
162 : * The ordering of the individual messages within a command's or
163 : * subtransaction's output is not considered significant, although this
164 : * implementation happens to preserve the order in which they were queued.
165 : * (Previous versions of this code did not preserve it.)
166 : *
167 : * For notational convenience, control information is kept in two-element
168 : * arrays, the first for catcache messages and the second for relcache
169 : * messages.
170 : */
171 : #define CatCacheMsgs 0
172 : #define RelCacheMsgs 1
173 :
174 : /* Pointers to main arrays in TopTransactionContext */
175 : typedef struct InvalMessageArray
176 : {
177 : SharedInvalidationMessage *msgs; /* palloc'd array (can be expanded) */
178 : int maxmsgs; /* current allocated size of array */
179 : } InvalMessageArray;
180 :
181 : static InvalMessageArray InvalMessageArrays[2];
182 :
183 : /* Control information for one logical group of messages */
184 : typedef struct InvalidationMsgsGroup
185 : {
186 : int firstmsg[2]; /* first index in relevant array */
187 : int nextmsg[2]; /* last+1 index */
188 : } InvalidationMsgsGroup;
189 :
190 : /* Macros to help preserve InvalidationMsgsGroup abstraction */
191 : #define SetSubGroupToFollow(targetgroup, priorgroup, subgroup) \
192 : do { \
193 : (targetgroup)->firstmsg[subgroup] = \
194 : (targetgroup)->nextmsg[subgroup] = \
195 : (priorgroup)->nextmsg[subgroup]; \
196 : } while (0)
197 :
198 : #define SetGroupToFollow(targetgroup, priorgroup) \
199 : do { \
200 : SetSubGroupToFollow(targetgroup, priorgroup, CatCacheMsgs); \
201 : SetSubGroupToFollow(targetgroup, priorgroup, RelCacheMsgs); \
202 : } while (0)
203 :
204 : #define NumMessagesInSubGroup(group, subgroup) \
205 : ((group)->nextmsg[subgroup] - (group)->firstmsg[subgroup])
206 :
207 : #define NumMessagesInGroup(group) \
208 : (NumMessagesInSubGroup(group, CatCacheMsgs) + \
209 : NumMessagesInSubGroup(group, RelCacheMsgs))
210 :
211 :
212 : /*----------------
213 : * Transactional invalidation messages are divided into two groups:
214 : * 1) events so far in current command, not yet reflected to caches.
215 : * 2) events in previous commands of current transaction; these have
216 : * been reflected to local caches, and must be either broadcast to
217 : * other backends or rolled back from local cache when we commit
218 : * or abort the transaction.
219 : * Actually, we need such groups for each level of nested transaction,
220 : * so that we can discard events from an aborted subtransaction. When
221 : * a subtransaction commits, we append its events to the parent's groups.
222 : *
223 : * The relcache-file-invalidated flag can just be a simple boolean,
224 : * since we only act on it at transaction commit; we don't care which
225 : * command of the transaction set it.
226 : *----------------
227 : */
228 :
229 : /* fields common to both transactional and inplace invalidation */
230 : typedef struct InvalidationInfo
231 : {
232 : /* Events emitted by current command */
233 : InvalidationMsgsGroup CurrentCmdInvalidMsgs;
234 :
235 : /* init file must be invalidated? */
236 : bool RelcacheInitFileInval;
237 : } InvalidationInfo;
238 :
239 : /* subclass adding fields specific to transactional invalidation */
240 : typedef struct TransInvalidationInfo
241 : {
242 : /* Base class */
243 : struct InvalidationInfo ii;
244 :
245 : /* Events emitted by previous commands of this (sub)transaction */
246 : InvalidationMsgsGroup PriorCmdInvalidMsgs;
247 :
248 : /* Back link to parent transaction's info */
249 : struct TransInvalidationInfo *parent;
250 :
251 : /* Subtransaction nesting depth */
252 : int my_level;
253 : } TransInvalidationInfo;
254 :
255 : static TransInvalidationInfo *transInvalInfo = NULL;
256 :
257 : static InvalidationInfo *inplaceInvalInfo = NULL;
258 :
259 : /* GUC storage */
260 : int debug_discard_caches = 0;
261 :
262 : /*
263 : * Dynamically-registered callback functions. Current implementation
264 : * assumes there won't be enough of these to justify a dynamically resizable
265 : * array; it'd be easy to improve that if needed.
266 : *
267 : * To avoid searching in CallSyscacheCallbacks, all callbacks for a given
268 : * syscache are linked into a list pointed to by syscache_callback_links[id].
269 : * The link values are syscache_callback_list[] index plus 1, or 0 for none.
270 : */
271 :
272 : #define MAX_SYSCACHE_CALLBACKS 64
273 : #define MAX_RELCACHE_CALLBACKS 10
274 : #define MAX_RELSYNC_CALLBACKS 10
275 :
276 : static struct SYSCACHECALLBACK
277 : {
278 : int16 id; /* cache number */
279 : int16 link; /* next callback index+1 for same cache */
280 : SyscacheCallbackFunction function;
281 : Datum arg;
282 : } syscache_callback_list[MAX_SYSCACHE_CALLBACKS];
283 :
284 : static int16 syscache_callback_links[SysCacheSize];
285 :
286 : static int syscache_callback_count = 0;
287 :
288 : static struct RELCACHECALLBACK
289 : {
290 : RelcacheCallbackFunction function;
291 : Datum arg;
292 : } relcache_callback_list[MAX_RELCACHE_CALLBACKS];
293 :
294 : static int relcache_callback_count = 0;
295 :
296 : static struct RELSYNCCALLBACK
297 : {
298 : RelSyncCallbackFunction function;
299 : Datum arg;
300 : } relsync_callback_list[MAX_RELSYNC_CALLBACKS];
301 :
302 : static int relsync_callback_count = 0;
303 :
304 :
305 : /* ----------------------------------------------------------------
306 : * Invalidation subgroup support functions
307 : * ----------------------------------------------------------------
308 : */
309 :
310 : /*
311 : * AddInvalidationMessage
312 : * Add an invalidation message to a (sub)group.
313 : *
314 : * The group must be the last active one, since we assume we can add to the
315 : * end of the relevant InvalMessageArray.
316 : *
317 : * subgroup must be CatCacheMsgs or RelCacheMsgs.
318 : */
319 : static void
320 6923738 : AddInvalidationMessage(InvalidationMsgsGroup *group, int subgroup,
321 : const SharedInvalidationMessage *msg)
322 : {
323 6923738 : InvalMessageArray *ima = &InvalMessageArrays[subgroup];
324 6923738 : int nextindex = group->nextmsg[subgroup];
325 :
326 6923738 : if (nextindex >= ima->maxmsgs)
327 : {
328 766012 : if (ima->msgs == NULL)
329 : {
330 : /* Create new storage array in TopTransactionContext */
331 710070 : int reqsize = 32; /* arbitrary */
332 :
333 710070 : ima->msgs = (SharedInvalidationMessage *)
334 710070 : MemoryContextAlloc(TopTransactionContext,
335 : reqsize * sizeof(SharedInvalidationMessage));
336 710070 : ima->maxmsgs = reqsize;
337 : Assert(nextindex == 0);
338 : }
339 : else
340 : {
341 : /* Enlarge storage array */
342 55942 : int reqsize = 2 * ima->maxmsgs;
343 :
344 55942 : ima->msgs = (SharedInvalidationMessage *)
345 55942 : repalloc(ima->msgs,
346 : reqsize * sizeof(SharedInvalidationMessage));
347 55942 : ima->maxmsgs = reqsize;
348 : }
349 : }
350 : /* Okay, add message to current group */
351 6923738 : ima->msgs[nextindex] = *msg;
352 6923738 : group->nextmsg[subgroup]++;
353 6923738 : }
354 :
355 : /*
356 : * Append one subgroup of invalidation messages to another, resetting
357 : * the source subgroup to empty.
358 : */
359 : static void
360 1940000 : AppendInvalidationMessageSubGroup(InvalidationMsgsGroup *dest,
361 : InvalidationMsgsGroup *src,
362 : int subgroup)
363 : {
364 : /* Messages must be adjacent in main array */
365 : Assert(dest->nextmsg[subgroup] == src->firstmsg[subgroup]);
366 :
367 : /* ... which makes this easy: */
368 1940000 : dest->nextmsg[subgroup] = src->nextmsg[subgroup];
369 :
370 : /*
371 : * This is handy for some callers and irrelevant for others. But we do it
372 : * always, reasoning that it's bad to leave different groups pointing at
373 : * the same fragment of the message array.
374 : */
375 1940000 : SetSubGroupToFollow(src, dest, subgroup);
376 1940000 : }
377 :
378 : /*
379 : * Process a subgroup of invalidation messages.
380 : *
381 : * This is a macro that executes the given code fragment for each message in
382 : * a message subgroup. The fragment should refer to the message as *msg.
383 : */
384 : #define ProcessMessageSubGroup(group, subgroup, codeFragment) \
385 : do { \
386 : int _msgindex = (group)->firstmsg[subgroup]; \
387 : int _endmsg = (group)->nextmsg[subgroup]; \
388 : for (; _msgindex < _endmsg; _msgindex++) \
389 : { \
390 : SharedInvalidationMessage *msg = \
391 : &InvalMessageArrays[subgroup].msgs[_msgindex]; \
392 : codeFragment; \
393 : } \
394 : } while (0)
395 :
396 : /*
397 : * Process a subgroup of invalidation messages as an array.
398 : *
399 : * As above, but the code fragment can handle an array of messages.
400 : * The fragment should refer to the messages as msgs[], with n entries.
401 : */
402 : #define ProcessMessageSubGroupMulti(group, subgroup, codeFragment) \
403 : do { \
404 : int n = NumMessagesInSubGroup(group, subgroup); \
405 : if (n > 0) { \
406 : SharedInvalidationMessage *msgs = \
407 : &InvalMessageArrays[subgroup].msgs[(group)->firstmsg[subgroup]]; \
408 : codeFragment; \
409 : } \
410 : } while (0)
411 :
412 :
413 : /* ----------------------------------------------------------------
414 : * Invalidation group support functions
415 : *
416 : * These routines understand about the division of a logical invalidation
417 : * group into separate physical arrays for catcache and relcache entries.
418 : * ----------------------------------------------------------------
419 : */
420 :
421 : /*
422 : * Add a catcache inval entry
423 : */
424 : static void
425 5531366 : AddCatcacheInvalidationMessage(InvalidationMsgsGroup *group,
426 : int id, uint32 hashValue, Oid dbId)
427 : {
428 : SharedInvalidationMessage msg;
429 :
430 : Assert(id < CHAR_MAX);
431 5531366 : msg.cc.id = (int8) id;
432 5531366 : msg.cc.dbId = dbId;
433 5531366 : msg.cc.hashValue = hashValue;
434 :
435 : /*
436 : * Define padding bytes in SharedInvalidationMessage structs to be
437 : * defined. Otherwise the sinvaladt.c ringbuffer, which is accessed by
438 : * multiple processes, will cause spurious valgrind warnings about
439 : * undefined memory being used. That's because valgrind remembers the
440 : * undefined bytes from the last local process's store, not realizing that
441 : * another process has written since, filling the previously uninitialized
442 : * bytes
443 : */
444 : VALGRIND_MAKE_MEM_DEFINED(&msg, sizeof(msg));
445 :
446 5531366 : AddInvalidationMessage(group, CatCacheMsgs, &msg);
447 5531366 : }
448 :
449 : /*
450 : * Add a whole-catalog inval entry
451 : */
452 : static void
453 222 : AddCatalogInvalidationMessage(InvalidationMsgsGroup *group,
454 : Oid dbId, Oid catId)
455 : {
456 : SharedInvalidationMessage msg;
457 :
458 222 : msg.cat.id = SHAREDINVALCATALOG_ID;
459 222 : msg.cat.dbId = dbId;
460 222 : msg.cat.catId = catId;
461 : /* check AddCatcacheInvalidationMessage() for an explanation */
462 : VALGRIND_MAKE_MEM_DEFINED(&msg, sizeof(msg));
463 :
464 222 : AddInvalidationMessage(group, CatCacheMsgs, &msg);
465 222 : }
466 :
467 : /*
468 : * Add a relcache inval entry
469 : */
470 : static void
471 2022542 : AddRelcacheInvalidationMessage(InvalidationMsgsGroup *group,
472 : Oid dbId, Oid relId)
473 : {
474 : SharedInvalidationMessage msg;
475 :
476 : /*
477 : * Don't add a duplicate item. We assume dbId need not be checked because
478 : * it will never change. InvalidOid for relId means all relations so we
479 : * don't need to add individual ones when it is present.
480 : */
481 6030838 : ProcessMessageSubGroup(group, RelCacheMsgs,
482 : if (msg->rc.id == SHAREDINVALRELCACHE_ID &&
483 : (msg->rc.relId == relId ||
484 : msg->rc.relId == InvalidOid))
485 : return);
486 :
487 : /* OK, add the item */
488 881172 : msg.rc.id = SHAREDINVALRELCACHE_ID;
489 881172 : msg.rc.dbId = dbId;
490 881172 : msg.rc.relId = relId;
491 : /* check AddCatcacheInvalidationMessage() for an explanation */
492 : VALGRIND_MAKE_MEM_DEFINED(&msg, sizeof(msg));
493 :
494 881172 : AddInvalidationMessage(group, RelCacheMsgs, &msg);
495 : }
496 :
497 : /*
498 : * Add a relsync inval entry
499 : *
500 : * We put these into the relcache subgroup for simplicity. This message is the
501 : * same as AddRelcacheInvalidationMessage() except that it is for
502 : * RelationSyncCache maintained by decoding plugin pgoutput.
503 : */
504 : static void
505 12 : AddRelsyncInvalidationMessage(InvalidationMsgsGroup *group,
506 : Oid dbId, Oid relId)
507 : {
508 : SharedInvalidationMessage msg;
509 :
510 : /* Don't add a duplicate item. */
511 12 : ProcessMessageSubGroup(group, RelCacheMsgs,
512 : if (msg->rc.id == SHAREDINVALRELSYNC_ID &&
513 : (msg->rc.relId == relId ||
514 : msg->rc.relId == InvalidOid))
515 : return);
516 :
517 : /* OK, add the item */
518 12 : msg.rc.id = SHAREDINVALRELSYNC_ID;
519 12 : msg.rc.dbId = dbId;
520 12 : msg.rc.relId = relId;
521 : /* check AddCatcacheInvalidationMessage() for an explanation */
522 : VALGRIND_MAKE_MEM_DEFINED(&msg, sizeof(msg));
523 :
524 12 : AddInvalidationMessage(group, RelCacheMsgs, &msg);
525 : }
526 :
527 : /*
528 : * Add a snapshot inval entry
529 : *
530 : * We put these into the relcache subgroup for simplicity.
531 : */
532 : static void
533 1010880 : AddSnapshotInvalidationMessage(InvalidationMsgsGroup *group,
534 : Oid dbId, Oid relId)
535 : {
536 : SharedInvalidationMessage msg;
537 :
538 : /* Don't add a duplicate item */
539 : /* We assume dbId need not be checked because it will never change */
540 1476604 : ProcessMessageSubGroup(group, RelCacheMsgs,
541 : if (msg->sn.id == SHAREDINVALSNAPSHOT_ID &&
542 : msg->sn.relId == relId)
543 : return);
544 :
545 : /* OK, add the item */
546 510966 : msg.sn.id = SHAREDINVALSNAPSHOT_ID;
547 510966 : msg.sn.dbId = dbId;
548 510966 : msg.sn.relId = relId;
549 : /* check AddCatcacheInvalidationMessage() for an explanation */
550 : VALGRIND_MAKE_MEM_DEFINED(&msg, sizeof(msg));
551 :
552 510966 : AddInvalidationMessage(group, RelCacheMsgs, &msg);
553 : }
554 :
555 : /*
556 : * Append one group of invalidation messages to another, resetting
557 : * the source group to empty.
558 : */
559 : static void
560 970000 : AppendInvalidationMessages(InvalidationMsgsGroup *dest,
561 : InvalidationMsgsGroup *src)
562 : {
563 970000 : AppendInvalidationMessageSubGroup(dest, src, CatCacheMsgs);
564 970000 : AppendInvalidationMessageSubGroup(dest, src, RelCacheMsgs);
565 970000 : }
566 :
567 : /*
568 : * Execute the given function for all the messages in an invalidation group.
569 : * The group is not altered.
570 : *
571 : * catcache entries are processed first, for reasons mentioned above.
572 : */
573 : static void
574 733858 : ProcessInvalidationMessages(InvalidationMsgsGroup *group,
575 : void (*func) (SharedInvalidationMessage *msg))
576 : {
577 5713160 : ProcessMessageSubGroup(group, CatCacheMsgs, func(msg));
578 1824654 : ProcessMessageSubGroup(group, RelCacheMsgs, func(msg));
579 733852 : }
580 :
581 : /*
582 : * As above, but the function is able to process an array of messages
583 : * rather than just one at a time.
584 : */
585 : static void
586 370854 : ProcessInvalidationMessagesMulti(InvalidationMsgsGroup *group,
587 : void (*func) (const SharedInvalidationMessage *msgs, int n))
588 : {
589 370854 : ProcessMessageSubGroupMulti(group, CatCacheMsgs, func(msgs, n));
590 370854 : ProcessMessageSubGroupMulti(group, RelCacheMsgs, func(msgs, n));
591 370854 : }
592 :
593 : /* ----------------------------------------------------------------
594 : * private support functions
595 : * ----------------------------------------------------------------
596 : */
597 :
598 : /*
599 : * RegisterCatcacheInvalidation
600 : *
601 : * Register an invalidation event for a catcache tuple entry.
602 : */
603 : static void
604 5531366 : RegisterCatcacheInvalidation(int cacheId,
605 : uint32 hashValue,
606 : Oid dbId,
607 : void *context)
608 : {
609 5531366 : InvalidationInfo *info = (InvalidationInfo *) context;
610 :
611 5531366 : AddCatcacheInvalidationMessage(&info->CurrentCmdInvalidMsgs,
612 : cacheId, hashValue, dbId);
613 5531366 : }
614 :
615 : /*
616 : * RegisterCatalogInvalidation
617 : *
618 : * Register an invalidation event for all catcache entries from a catalog.
619 : */
620 : static void
621 222 : RegisterCatalogInvalidation(InvalidationInfo *info, Oid dbId, Oid catId)
622 : {
623 222 : AddCatalogInvalidationMessage(&info->CurrentCmdInvalidMsgs, dbId, catId);
624 222 : }
625 :
626 : /*
627 : * RegisterRelcacheInvalidation
628 : *
629 : * As above, but register a relcache invalidation event.
630 : */
631 : static void
632 2022542 : RegisterRelcacheInvalidation(InvalidationInfo *info, Oid dbId, Oid relId)
633 : {
634 2022542 : AddRelcacheInvalidationMessage(&info->CurrentCmdInvalidMsgs, dbId, relId);
635 :
636 : /*
637 : * Most of the time, relcache invalidation is associated with system
638 : * catalog updates, but there are a few cases where it isn't. Quick hack
639 : * to ensure that the next CommandCounterIncrement() will think that we
640 : * need to do CommandEndInvalidationMessages().
641 : */
642 2022542 : (void) GetCurrentCommandId(true);
643 :
644 : /*
645 : * If the relation being invalidated is one of those cached in a relcache
646 : * init file, mark that we need to zap that file at commit. For simplicity
647 : * invalidations for a specific database always invalidate the shared file
648 : * as well. Also zap when we are invalidating whole relcache.
649 : */
650 2022542 : if (relId == InvalidOid || RelationIdIsInInitFile(relId))
651 158428 : info->RelcacheInitFileInval = true;
652 2022542 : }
653 :
654 : /*
655 : * RegisterRelsyncInvalidation
656 : *
657 : * As above, but register a relsynccache invalidation event.
658 : */
659 : static void
660 12 : RegisterRelsyncInvalidation(InvalidationInfo *info, Oid dbId, Oid relId)
661 : {
662 12 : AddRelsyncInvalidationMessage(&info->CurrentCmdInvalidMsgs, dbId, relId);
663 12 : }
664 :
665 : /*
666 : * RegisterSnapshotInvalidation
667 : *
668 : * Register an invalidation event for MVCC scans against a given catalog.
669 : * Only needed for catalogs that don't have catcaches.
670 : */
671 : static void
672 1010880 : RegisterSnapshotInvalidation(InvalidationInfo *info, Oid dbId, Oid relId)
673 : {
674 1010880 : AddSnapshotInvalidationMessage(&info->CurrentCmdInvalidMsgs, dbId, relId);
675 1010880 : }
676 :
677 : /*
678 : * PrepareInvalidationState
679 : * Initialize inval data for the current (sub)transaction.
680 : */
681 : static InvalidationInfo *
682 3996738 : PrepareInvalidationState(void)
683 : {
684 : TransInvalidationInfo *myInfo;
685 :
686 : Assert(IsTransactionState());
687 : /* Can't queue transactional message while collecting inplace messages. */
688 : Assert(inplaceInvalInfo == NULL);
689 :
690 7748002 : if (transInvalInfo != NULL &&
691 3751264 : transInvalInfo->my_level == GetCurrentTransactionNestLevel())
692 3751122 : return (InvalidationInfo *) transInvalInfo;
693 :
694 : myInfo = (TransInvalidationInfo *)
695 245616 : MemoryContextAllocZero(TopTransactionContext,
696 : sizeof(TransInvalidationInfo));
697 245616 : myInfo->parent = transInvalInfo;
698 245616 : myInfo->my_level = GetCurrentTransactionNestLevel();
699 :
700 : /* Now, do we have a previous stack entry? */
701 245616 : if (transInvalInfo != NULL)
702 : {
703 : /* Yes; this one should be for a deeper nesting level. */
704 : Assert(myInfo->my_level > transInvalInfo->my_level);
705 :
706 : /*
707 : * The parent (sub)transaction must not have any current (i.e.,
708 : * not-yet-locally-processed) messages. If it did, we'd have a
709 : * semantic problem: the new subtransaction presumably ought not be
710 : * able to see those events yet, but since the CommandCounter is
711 : * linear, that can't work once the subtransaction advances the
712 : * counter. This is a convenient place to check for that, as well as
713 : * being important to keep management of the message arrays simple.
714 : */
715 142 : if (NumMessagesInGroup(&transInvalInfo->ii.CurrentCmdInvalidMsgs) != 0)
716 0 : elog(ERROR, "cannot start a subtransaction when there are unprocessed inval messages");
717 :
718 : /*
719 : * MemoryContextAllocZero set firstmsg = nextmsg = 0 in each group,
720 : * which is fine for the first (sub)transaction, but otherwise we need
721 : * to update them to follow whatever is already in the arrays.
722 : */
723 142 : SetGroupToFollow(&myInfo->PriorCmdInvalidMsgs,
724 : &transInvalInfo->ii.CurrentCmdInvalidMsgs);
725 142 : SetGroupToFollow(&myInfo->ii.CurrentCmdInvalidMsgs,
726 : &myInfo->PriorCmdInvalidMsgs);
727 : }
728 : else
729 : {
730 : /*
731 : * Here, we need only clear any array pointers left over from a prior
732 : * transaction.
733 : */
734 245474 : InvalMessageArrays[CatCacheMsgs].msgs = NULL;
735 245474 : InvalMessageArrays[CatCacheMsgs].maxmsgs = 0;
736 245474 : InvalMessageArrays[RelCacheMsgs].msgs = NULL;
737 245474 : InvalMessageArrays[RelCacheMsgs].maxmsgs = 0;
738 : }
739 :
740 245616 : transInvalInfo = myInfo;
741 245616 : return (InvalidationInfo *) myInfo;
742 : }
743 :
744 : /*
745 : * PrepareInplaceInvalidationState
746 : * Initialize inval data for an inplace update.
747 : *
748 : * See previous function for more background.
749 : */
750 : static InvalidationInfo *
751 239028 : PrepareInplaceInvalidationState(void)
752 : {
753 : InvalidationInfo *myInfo;
754 :
755 : Assert(IsTransactionState());
756 : /* limit of one inplace update under assembly */
757 : Assert(inplaceInvalInfo == NULL);
758 :
759 : /* gone after WAL insertion CritSection ends, so use current context */
760 239028 : myInfo = (InvalidationInfo *) palloc0(sizeof(InvalidationInfo));
761 :
762 : /* Stash our messages past end of the transactional messages, if any. */
763 239028 : if (transInvalInfo != NULL)
764 105668 : SetGroupToFollow(&myInfo->CurrentCmdInvalidMsgs,
765 : &transInvalInfo->ii.CurrentCmdInvalidMsgs);
766 : else
767 : {
768 133360 : InvalMessageArrays[CatCacheMsgs].msgs = NULL;
769 133360 : InvalMessageArrays[CatCacheMsgs].maxmsgs = 0;
770 133360 : InvalMessageArrays[RelCacheMsgs].msgs = NULL;
771 133360 : InvalMessageArrays[RelCacheMsgs].maxmsgs = 0;
772 : }
773 :
774 239028 : inplaceInvalInfo = myInfo;
775 239028 : return myInfo;
776 : }
777 :
778 : /* ----------------------------------------------------------------
779 : * public functions
780 : * ----------------------------------------------------------------
781 : */
782 :
783 : void
784 4170 : InvalidateSystemCachesExtended(bool debug_discard)
785 : {
786 : int i;
787 :
788 4170 : InvalidateCatalogSnapshot();
789 4170 : ResetCatalogCachesExt(debug_discard);
790 4170 : RelationCacheInvalidate(debug_discard); /* gets smgr and relmap too */
791 :
792 71852 : for (i = 0; i < syscache_callback_count; i++)
793 : {
794 67682 : struct SYSCACHECALLBACK *ccitem = syscache_callback_list + i;
795 :
796 67682 : ccitem->function(ccitem->arg, ccitem->id, 0);
797 : }
798 :
799 9520 : for (i = 0; i < relcache_callback_count; i++)
800 : {
801 5350 : struct RELCACHECALLBACK *ccitem = relcache_callback_list + i;
802 :
803 5350 : ccitem->function(ccitem->arg, InvalidOid);
804 : }
805 :
806 4202 : for (i = 0; i < relsync_callback_count; i++)
807 : {
808 32 : struct RELSYNCCALLBACK *ccitem = relsync_callback_list + i;
809 :
810 32 : ccitem->function(ccitem->arg, InvalidOid);
811 : }
812 4170 : }
813 :
814 : /*
815 : * LocalExecuteInvalidationMessage
816 : *
817 : * Process a single invalidation message (which could be of any type).
818 : * Only the local caches are flushed; this does not transmit the message
819 : * to other backends.
820 : */
821 : void
822 34866676 : LocalExecuteInvalidationMessage(SharedInvalidationMessage *msg)
823 : {
824 34866676 : if (msg->id >= 0)
825 : {
826 27974256 : if (msg->cc.dbId == MyDatabaseId || msg->cc.dbId == InvalidOid)
827 : {
828 19874188 : InvalidateCatalogSnapshot();
829 :
830 19874188 : SysCacheInvalidate(msg->cc.id, msg->cc.hashValue);
831 :
832 19874188 : CallSyscacheCallbacks(msg->cc.id, msg->cc.hashValue);
833 : }
834 : }
835 6892420 : else if (msg->id == SHAREDINVALCATALOG_ID)
836 : {
837 910 : if (msg->cat.dbId == MyDatabaseId || msg->cat.dbId == InvalidOid)
838 : {
839 762 : InvalidateCatalogSnapshot();
840 :
841 762 : CatalogCacheFlushCatalog(msg->cat.catId);
842 :
843 : /* CatalogCacheFlushCatalog calls CallSyscacheCallbacks as needed */
844 : }
845 : }
846 6891510 : else if (msg->id == SHAREDINVALRELCACHE_ID)
847 : {
848 3742840 : if (msg->rc.dbId == MyDatabaseId || msg->rc.dbId == InvalidOid)
849 : {
850 : int i;
851 :
852 2644136 : if (msg->rc.relId == InvalidOid)
853 456 : RelationCacheInvalidate(false);
854 : else
855 2643680 : RelationCacheInvalidateEntry(msg->rc.relId);
856 :
857 7171616 : for (i = 0; i < relcache_callback_count; i++)
858 : {
859 4527486 : struct RELCACHECALLBACK *ccitem = relcache_callback_list + i;
860 :
861 4527486 : ccitem->function(ccitem->arg, msg->rc.relId);
862 : }
863 : }
864 : }
865 3148670 : else if (msg->id == SHAREDINVALSMGR_ID)
866 : {
867 : /*
868 : * We could have smgr entries for relations of other databases, so no
869 : * short-circuit test is possible here.
870 : */
871 : RelFileLocatorBackend rlocator;
872 :
873 420272 : rlocator.locator = msg->sm.rlocator;
874 420272 : rlocator.backend = (msg->sm.backend_hi << 16) | (int) msg->sm.backend_lo;
875 420272 : smgrreleaserellocator(rlocator);
876 : }
877 2728398 : else if (msg->id == SHAREDINVALRELMAP_ID)
878 : {
879 : /* We only care about our own database and shared catalogs */
880 702 : if (msg->rm.dbId == InvalidOid)
881 288 : RelationMapInvalidate(true);
882 414 : else if (msg->rm.dbId == MyDatabaseId)
883 280 : RelationMapInvalidate(false);
884 : }
885 2727696 : else if (msg->id == SHAREDINVALSNAPSHOT_ID)
886 : {
887 : /* We only care about our own database and shared catalogs */
888 2727634 : if (msg->sn.dbId == InvalidOid)
889 86566 : InvalidateCatalogSnapshot();
890 2641068 : else if (msg->sn.dbId == MyDatabaseId)
891 1944100 : InvalidateCatalogSnapshot();
892 : }
893 62 : else if (msg->id == SHAREDINVALRELSYNC_ID)
894 : {
895 : /* We only care about our own database */
896 62 : if (msg->rs.dbId == MyDatabaseId)
897 62 : CallRelSyncCallbacks(msg->rs.relid);
898 : }
899 : else
900 0 : elog(FATAL, "unrecognized SI message ID: %d", msg->id);
901 34866670 : }
902 :
903 : /*
904 : * InvalidateSystemCaches
905 : *
906 : * This blows away all tuples in the system catalog caches and
907 : * all the cached relation descriptors and smgr cache entries.
908 : * Relation descriptors that have positive refcounts are then rebuilt.
909 : *
910 : * We call this when we see a shared-inval-queue overflow signal,
911 : * since that tells us we've lost some shared-inval messages and hence
912 : * don't know what needs to be invalidated.
913 : */
914 : void
915 4170 : InvalidateSystemCaches(void)
916 : {
917 4170 : InvalidateSystemCachesExtended(false);
918 4170 : }
919 :
920 : /*
921 : * AcceptInvalidationMessages
922 : * Read and process invalidation messages from the shared invalidation
923 : * message queue.
924 : *
925 : * Note:
926 : * This should be called as the first step in processing a transaction.
927 : */
928 : void
929 34572124 : AcceptInvalidationMessages(void)
930 : {
931 34572124 : ReceiveSharedInvalidMessages(LocalExecuteInvalidationMessage,
932 : InvalidateSystemCaches);
933 :
934 : /*----------
935 : * Test code to force cache flushes anytime a flush could happen.
936 : *
937 : * This helps detect intermittent faults caused by code that reads a cache
938 : * entry and then performs an action that could invalidate the entry, but
939 : * rarely actually does so. This can spot issues that would otherwise
940 : * only arise with badly timed concurrent DDL, for example.
941 : *
942 : * The default debug_discard_caches = 0 does no forced cache flushes.
943 : *
944 : * If used with CLOBBER_FREED_MEMORY,
945 : * debug_discard_caches = 1 (formerly known as CLOBBER_CACHE_ALWAYS)
946 : * provides a fairly thorough test that the system contains no cache-flush
947 : * hazards. However, it also makes the system unbelievably slow --- the
948 : * regression tests take about 100 times longer than normal.
949 : *
950 : * If you're a glutton for punishment, try
951 : * debug_discard_caches = 3 (formerly known as CLOBBER_CACHE_RECURSIVELY).
952 : * This slows things by at least a factor of 10000, so I wouldn't suggest
953 : * trying to run the entire regression tests that way. It's useful to try
954 : * a few simple tests, to make sure that cache reload isn't subject to
955 : * internal cache-flush hazards, but after you've done a few thousand
956 : * recursive reloads it's unlikely you'll learn more.
957 : *----------
958 : */
959 : #ifdef DISCARD_CACHES_ENABLED
960 : {
961 : static int recursion_depth = 0;
962 :
963 : if (recursion_depth < debug_discard_caches)
964 : {
965 : recursion_depth++;
966 : InvalidateSystemCachesExtended(true);
967 : recursion_depth--;
968 : }
969 : }
970 : #endif
971 34572124 : }
972 :
973 : /*
974 : * PostPrepare_Inval
975 : * Clean up after successful PREPARE.
976 : *
977 : * Here, we want to act as though the transaction aborted, so that we will
978 : * undo any syscache changes it made, thereby bringing us into sync with the
979 : * outside world, which doesn't believe the transaction committed yet.
980 : *
981 : * If the prepared transaction is later aborted, there is nothing more to
982 : * do; if it commits, we will receive the consequent inval messages just
983 : * like everyone else.
984 : */
985 : void
986 634 : PostPrepare_Inval(void)
987 : {
988 634 : AtEOXact_Inval(false);
989 634 : }
990 :
991 : /*
992 : * xactGetCommittedInvalidationMessages() is called by
993 : * RecordTransactionCommit() to collect invalidation messages to add to the
994 : * commit record. This applies only to commit message types, never to
995 : * abort records. Must always run before AtEOXact_Inval(), since that
996 : * removes the data we need to see.
997 : *
998 : * Remember that this runs before we have officially committed, so we
999 : * must not do anything here to change what might occur *if* we should
1000 : * fail between here and the actual commit.
1001 : *
1002 : * see also xact_redo_commit() and xact_desc_commit()
1003 : */
1004 : int
1005 380504 : xactGetCommittedInvalidationMessages(SharedInvalidationMessage **msgs,
1006 : bool *RelcacheInitFileInval)
1007 : {
1008 : SharedInvalidationMessage *msgarray;
1009 : int nummsgs;
1010 : int nmsgs;
1011 :
1012 : /* Quick exit if we haven't done anything with invalidation messages. */
1013 380504 : if (transInvalInfo == NULL)
1014 : {
1015 225484 : *RelcacheInitFileInval = false;
1016 225484 : *msgs = NULL;
1017 225484 : return 0;
1018 : }
1019 :
1020 : /* Must be at top of stack */
1021 : Assert(transInvalInfo->my_level == 1 && transInvalInfo->parent == NULL);
1022 :
1023 : /*
1024 : * Relcache init file invalidation requires processing both before and
1025 : * after we send the SI messages. However, we need not do anything unless
1026 : * we committed.
1027 : */
1028 155020 : *RelcacheInitFileInval = transInvalInfo->ii.RelcacheInitFileInval;
1029 :
1030 : /*
1031 : * Collect all the pending messages into a single contiguous array of
1032 : * invalidation messages, to simplify what needs to happen while building
1033 : * the commit WAL message. Maintain the order that they would be
1034 : * processed in by AtEOXact_Inval(), to ensure emulated behaviour in redo
1035 : * is as similar as possible to original. We want the same bugs, if any,
1036 : * not new ones.
1037 : */
1038 155020 : nummsgs = NumMessagesInGroup(&transInvalInfo->PriorCmdInvalidMsgs) +
1039 155020 : NumMessagesInGroup(&transInvalInfo->ii.CurrentCmdInvalidMsgs);
1040 :
1041 155020 : *msgs = msgarray = (SharedInvalidationMessage *)
1042 155020 : MemoryContextAlloc(CurTransactionContext,
1043 : nummsgs * sizeof(SharedInvalidationMessage));
1044 :
1045 155020 : nmsgs = 0;
1046 155020 : ProcessMessageSubGroupMulti(&transInvalInfo->PriorCmdInvalidMsgs,
1047 : CatCacheMsgs,
1048 : (memcpy(msgarray + nmsgs,
1049 : msgs,
1050 : n * sizeof(SharedInvalidationMessage)),
1051 : nmsgs += n));
1052 155020 : ProcessMessageSubGroupMulti(&transInvalInfo->ii.CurrentCmdInvalidMsgs,
1053 : CatCacheMsgs,
1054 : (memcpy(msgarray + nmsgs,
1055 : msgs,
1056 : n * sizeof(SharedInvalidationMessage)),
1057 : nmsgs += n));
1058 155020 : ProcessMessageSubGroupMulti(&transInvalInfo->PriorCmdInvalidMsgs,
1059 : RelCacheMsgs,
1060 : (memcpy(msgarray + nmsgs,
1061 : msgs,
1062 : n * sizeof(SharedInvalidationMessage)),
1063 : nmsgs += n));
1064 155020 : ProcessMessageSubGroupMulti(&transInvalInfo->ii.CurrentCmdInvalidMsgs,
1065 : RelCacheMsgs,
1066 : (memcpy(msgarray + nmsgs,
1067 : msgs,
1068 : n * sizeof(SharedInvalidationMessage)),
1069 : nmsgs += n));
1070 : Assert(nmsgs == nummsgs);
1071 :
1072 155020 : return nmsgs;
1073 : }
1074 :
1075 : /*
1076 : * inplaceGetInvalidationMessages() is called by the inplace update to collect
1077 : * invalidation messages to add to its WAL record. Like the previous
1078 : * function, we might still fail.
1079 : */
1080 : int
1081 92644 : inplaceGetInvalidationMessages(SharedInvalidationMessage **msgs,
1082 : bool *RelcacheInitFileInval)
1083 : {
1084 : SharedInvalidationMessage *msgarray;
1085 : int nummsgs;
1086 : int nmsgs;
1087 :
1088 : /* Quick exit if we haven't done anything with invalidation messages. */
1089 92644 : if (inplaceInvalInfo == NULL)
1090 : {
1091 26640 : *RelcacheInitFileInval = false;
1092 26640 : *msgs = NULL;
1093 26640 : return 0;
1094 : }
1095 :
1096 66004 : *RelcacheInitFileInval = inplaceInvalInfo->RelcacheInitFileInval;
1097 66004 : nummsgs = NumMessagesInGroup(&inplaceInvalInfo->CurrentCmdInvalidMsgs);
1098 66004 : *msgs = msgarray = (SharedInvalidationMessage *)
1099 66004 : palloc(nummsgs * sizeof(SharedInvalidationMessage));
1100 :
1101 66004 : nmsgs = 0;
1102 66004 : ProcessMessageSubGroupMulti(&inplaceInvalInfo->CurrentCmdInvalidMsgs,
1103 : CatCacheMsgs,
1104 : (memcpy(msgarray + nmsgs,
1105 : msgs,
1106 : n * sizeof(SharedInvalidationMessage)),
1107 : nmsgs += n));
1108 66004 : ProcessMessageSubGroupMulti(&inplaceInvalInfo->CurrentCmdInvalidMsgs,
1109 : RelCacheMsgs,
1110 : (memcpy(msgarray + nmsgs,
1111 : msgs,
1112 : n * sizeof(SharedInvalidationMessage)),
1113 : nmsgs += n));
1114 : Assert(nmsgs == nummsgs);
1115 :
1116 66004 : return nmsgs;
1117 : }
1118 :
1119 : /*
1120 : * ProcessCommittedInvalidationMessages is executed by xact_redo_commit() or
1121 : * standby_redo() to process invalidation messages. Currently that happens
1122 : * only at end-of-xact.
1123 : *
1124 : * Relcache init file invalidation requires processing both
1125 : * before and after we send the SI messages. See AtEOXact_Inval()
1126 : */
1127 : void
1128 53966 : ProcessCommittedInvalidationMessages(SharedInvalidationMessage *msgs,
1129 : int nmsgs, bool RelcacheInitFileInval,
1130 : Oid dbid, Oid tsid)
1131 : {
1132 53966 : if (nmsgs <= 0)
1133 10168 : return;
1134 :
1135 43798 : elog(DEBUG4, "replaying commit with %d messages%s", nmsgs,
1136 : (RelcacheInitFileInval ? " and relcache file invalidation" : ""));
1137 :
1138 43798 : if (RelcacheInitFileInval)
1139 : {
1140 676 : elog(DEBUG4, "removing relcache init files for database %u", dbid);
1141 :
1142 : /*
1143 : * RelationCacheInitFilePreInvalidate, when the invalidation message
1144 : * is for a specific database, requires DatabasePath to be set, but we
1145 : * should not use SetDatabasePath during recovery, since it is
1146 : * intended to be used only once by normal backends. Hence, a quick
1147 : * hack: set DatabasePath directly then unset after use.
1148 : */
1149 676 : if (OidIsValid(dbid))
1150 676 : DatabasePath = GetDatabasePath(dbid, tsid);
1151 :
1152 676 : RelationCacheInitFilePreInvalidate();
1153 :
1154 676 : if (OidIsValid(dbid))
1155 : {
1156 676 : pfree(DatabasePath);
1157 676 : DatabasePath = NULL;
1158 : }
1159 : }
1160 :
1161 43798 : SendSharedInvalidMessages(msgs, nmsgs);
1162 :
1163 43798 : if (RelcacheInitFileInval)
1164 676 : RelationCacheInitFilePostInvalidate();
1165 : }
1166 :
1167 : /*
1168 : * AtEOXact_Inval
1169 : * Process queued-up invalidation messages at end of main transaction.
1170 : *
1171 : * If isCommit, we must send out the messages in our PriorCmdInvalidMsgs list
1172 : * to the shared invalidation message queue. Note that these will be read
1173 : * not only by other backends, but also by our own backend at the next
1174 : * transaction start (via AcceptInvalidationMessages). This means that
1175 : * we can skip immediate local processing of anything that's still in
1176 : * CurrentCmdInvalidMsgs, and just send that list out too.
1177 : *
1178 : * If not isCommit, we are aborting, and must locally process the messages
1179 : * in PriorCmdInvalidMsgs. No messages need be sent to other backends,
1180 : * since they'll not have seen our changed tuples anyway. We can forget
1181 : * about CurrentCmdInvalidMsgs too, since those changes haven't touched
1182 : * the caches yet.
1183 : *
1184 : * In any case, reset our state to empty. We need not physically
1185 : * free memory here, since TopTransactionContext is about to be emptied
1186 : * anyway.
1187 : *
1188 : * Note:
1189 : * This should be called as the last step in processing a transaction.
1190 : */
1191 : void
1192 820754 : AtEOXact_Inval(bool isCommit)
1193 : {
1194 820754 : inplaceInvalInfo = NULL;
1195 :
1196 : /* Quick exit if no transactional messages */
1197 820754 : if (transInvalInfo == NULL)
1198 575344 : return;
1199 :
1200 : /* Must be at top of stack */
1201 : Assert(transInvalInfo->my_level == 1 && transInvalInfo->parent == NULL);
1202 :
1203 245410 : INJECTION_POINT("AtEOXact_Inval-with-transInvalInfo");
1204 :
1205 245410 : if (isCommit)
1206 : {
1207 : /*
1208 : * Relcache init file invalidation requires processing both before and
1209 : * after we send the SI messages. However, we need not do anything
1210 : * unless we committed.
1211 : */
1212 240858 : if (transInvalInfo->ii.RelcacheInitFileInval)
1213 35912 : RelationCacheInitFilePreInvalidate();
1214 :
1215 240858 : AppendInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
1216 240858 : &transInvalInfo->ii.CurrentCmdInvalidMsgs);
1217 :
1218 240858 : ProcessInvalidationMessagesMulti(&transInvalInfo->PriorCmdInvalidMsgs,
1219 : SendSharedInvalidMessages);
1220 :
1221 240858 : if (transInvalInfo->ii.RelcacheInitFileInval)
1222 35912 : RelationCacheInitFilePostInvalidate();
1223 : }
1224 : else
1225 : {
1226 4552 : ProcessInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
1227 : LocalExecuteInvalidationMessage);
1228 : }
1229 :
1230 : /* Need not free anything explicitly */
1231 245410 : transInvalInfo = NULL;
1232 : }
1233 :
1234 : /*
1235 : * PreInplace_Inval
1236 : * Process queued-up invalidation before inplace update critical section.
1237 : *
1238 : * Tasks belong here if they are safe even if the inplace update does not
1239 : * complete. Currently, this just unlinks a cache file, which can fail. The
1240 : * sum of this and AtInplace_Inval() mirrors AtEOXact_Inval(isCommit=true).
1241 : */
1242 : void
1243 156636 : PreInplace_Inval(void)
1244 : {
1245 : Assert(CritSectionCount == 0);
1246 :
1247 156636 : if (inplaceInvalInfo && inplaceInvalInfo->RelcacheInitFileInval)
1248 33684 : RelationCacheInitFilePreInvalidate();
1249 156636 : }
1250 :
1251 : /*
1252 : * AtInplace_Inval
1253 : * Process queued-up invalidations after inplace update buffer mutation.
1254 : */
1255 : void
1256 156636 : AtInplace_Inval(void)
1257 : {
1258 : Assert(CritSectionCount > 0);
1259 :
1260 156636 : if (inplaceInvalInfo == NULL)
1261 26640 : return;
1262 :
1263 129996 : ProcessInvalidationMessagesMulti(&inplaceInvalInfo->CurrentCmdInvalidMsgs,
1264 : SendSharedInvalidMessages);
1265 :
1266 129996 : if (inplaceInvalInfo->RelcacheInitFileInval)
1267 33684 : RelationCacheInitFilePostInvalidate();
1268 :
1269 129996 : inplaceInvalInfo = NULL;
1270 : }
1271 :
1272 : /*
1273 : * ForgetInplace_Inval
1274 : * Alternative to PreInplace_Inval()+AtInplace_Inval(): discard queued-up
1275 : * invalidations. This lets inplace update enumerate invalidations
1276 : * optimistically, before locking the buffer.
1277 : */
1278 : void
1279 114432 : ForgetInplace_Inval(void)
1280 : {
1281 114432 : inplaceInvalInfo = NULL;
1282 114432 : }
1283 :
1284 : /*
1285 : * AtEOSubXact_Inval
1286 : * Process queued-up invalidation messages at end of subtransaction.
1287 : *
1288 : * If isCommit, process CurrentCmdInvalidMsgs if any (there probably aren't),
1289 : * and then attach both CurrentCmdInvalidMsgs and PriorCmdInvalidMsgs to the
1290 : * parent's PriorCmdInvalidMsgs list.
1291 : *
1292 : * If not isCommit, we are aborting, and must locally process the messages
1293 : * in PriorCmdInvalidMsgs. No messages need be sent to other backends.
1294 : * We can forget about CurrentCmdInvalidMsgs too, since those changes haven't
1295 : * touched the caches yet.
1296 : *
1297 : * In any case, pop the transaction stack. We need not physically free memory
1298 : * here, since CurTransactionContext is about to be emptied anyway
1299 : * (if aborting). Beware of the possibility of aborting the same nesting
1300 : * level twice, though.
1301 : */
1302 : void
1303 19998 : AtEOSubXact_Inval(bool isCommit)
1304 : {
1305 : int my_level;
1306 : TransInvalidationInfo *myInfo;
1307 :
1308 : /*
1309 : * Successful inplace update must clear this, but we clear it on abort.
1310 : * Inplace updates allocate this in CurrentMemoryContext, which has
1311 : * lifespan <= subtransaction lifespan. Hence, don't free it explicitly.
1312 : */
1313 19998 : if (isCommit)
1314 : Assert(inplaceInvalInfo == NULL);
1315 : else
1316 9312 : inplaceInvalInfo = NULL;
1317 :
1318 : /* Quick exit if no transactional messages. */
1319 19998 : myInfo = transInvalInfo;
1320 19998 : if (myInfo == NULL)
1321 18348 : return;
1322 :
1323 : /* Also bail out quickly if messages are not for this level. */
1324 1650 : my_level = GetCurrentTransactionNestLevel();
1325 1650 : if (myInfo->my_level != my_level)
1326 : {
1327 : Assert(myInfo->my_level < my_level);
1328 1370 : return;
1329 : }
1330 :
1331 280 : if (isCommit)
1332 : {
1333 : /* If CurrentCmdInvalidMsgs still has anything, fix it */
1334 98 : CommandEndInvalidationMessages();
1335 :
1336 : /*
1337 : * We create invalidation stack entries lazily, so the parent might
1338 : * not have one. Instead of creating one, moving all the data over,
1339 : * and then freeing our own, we can just adjust the level of our own
1340 : * entry.
1341 : */
1342 98 : if (myInfo->parent == NULL || myInfo->parent->my_level < my_level - 1)
1343 : {
1344 74 : myInfo->my_level--;
1345 74 : return;
1346 : }
1347 :
1348 : /*
1349 : * Pass up my inval messages to parent. Notice that we stick them in
1350 : * PriorCmdInvalidMsgs, not CurrentCmdInvalidMsgs, since they've
1351 : * already been locally processed. (This would trigger the Assert in
1352 : * AppendInvalidationMessageSubGroup if the parent's
1353 : * CurrentCmdInvalidMsgs isn't empty; but we already checked that in
1354 : * PrepareInvalidationState.)
1355 : */
1356 24 : AppendInvalidationMessages(&myInfo->parent->PriorCmdInvalidMsgs,
1357 : &myInfo->PriorCmdInvalidMsgs);
1358 :
1359 : /* Must readjust parent's CurrentCmdInvalidMsgs indexes now */
1360 24 : SetGroupToFollow(&myInfo->parent->ii.CurrentCmdInvalidMsgs,
1361 : &myInfo->parent->PriorCmdInvalidMsgs);
1362 :
1363 : /* Pending relcache inval becomes parent's problem too */
1364 24 : if (myInfo->ii.RelcacheInitFileInval)
1365 0 : myInfo->parent->ii.RelcacheInitFileInval = true;
1366 :
1367 : /* Pop the transaction state stack */
1368 24 : transInvalInfo = myInfo->parent;
1369 :
1370 : /* Need not free anything else explicitly */
1371 24 : pfree(myInfo);
1372 : }
1373 : else
1374 : {
1375 182 : ProcessInvalidationMessages(&myInfo->PriorCmdInvalidMsgs,
1376 : LocalExecuteInvalidationMessage);
1377 :
1378 : /* Pop the transaction state stack */
1379 182 : transInvalInfo = myInfo->parent;
1380 :
1381 : /* Need not free anything else explicitly */
1382 182 : pfree(myInfo);
1383 : }
1384 : }
1385 :
1386 : /*
1387 : * CommandEndInvalidationMessages
1388 : * Process queued-up invalidation messages at end of one command
1389 : * in a transaction.
1390 : *
1391 : * Here, we send no messages to the shared queue, since we don't know yet if
1392 : * we will commit. We do need to locally process the CurrentCmdInvalidMsgs
1393 : * list, so as to flush our caches of any entries we have outdated in the
1394 : * current command. We then move the current-cmd list over to become part
1395 : * of the prior-cmds list.
1396 : *
1397 : * Note:
1398 : * This should be called during CommandCounterIncrement(),
1399 : * after we have advanced the command ID.
1400 : */
1401 : void
1402 1094262 : CommandEndInvalidationMessages(void)
1403 : {
1404 : /*
1405 : * You might think this shouldn't be called outside any transaction, but
1406 : * bootstrap does it, and also ABORT issued when not in a transaction. So
1407 : * just quietly return if no state to work on.
1408 : */
1409 1094262 : if (transInvalInfo == NULL)
1410 365138 : return;
1411 :
1412 729124 : ProcessInvalidationMessages(&transInvalInfo->ii.CurrentCmdInvalidMsgs,
1413 : LocalExecuteInvalidationMessage);
1414 :
1415 : /* WAL Log per-command invalidation messages for wal_level=logical */
1416 729118 : if (XLogLogicalInfoActive())
1417 8600 : LogLogicalInvalidations();
1418 :
1419 729118 : AppendInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
1420 729118 : &transInvalInfo->ii.CurrentCmdInvalidMsgs);
1421 : }
1422 :
1423 :
1424 : /*
1425 : * CacheInvalidateHeapTupleCommon
1426 : * Common logic for end-of-command and inplace variants.
1427 : */
1428 : static void
1429 21710346 : CacheInvalidateHeapTupleCommon(Relation relation,
1430 : HeapTuple tuple,
1431 : HeapTuple newtuple,
1432 : InvalidationInfo *(*prepare_callback) (void))
1433 : {
1434 : InvalidationInfo *info;
1435 : Oid tupleRelId;
1436 : Oid databaseId;
1437 : Oid relationId;
1438 :
1439 : /* Do nothing during bootstrap */
1440 21710346 : if (IsBootstrapProcessingMode())
1441 1177290 : return;
1442 :
1443 : /*
1444 : * We only need to worry about invalidation for tuples that are in system
1445 : * catalogs; user-relation tuples are never in catcaches and can't affect
1446 : * the relcache either.
1447 : */
1448 20533056 : if (!IsCatalogRelation(relation))
1449 16460898 : return;
1450 :
1451 : /*
1452 : * IsCatalogRelation() will return true for TOAST tables of system
1453 : * catalogs, but we don't care about those, either.
1454 : */
1455 4072158 : if (IsToastRelation(relation))
1456 31466 : return;
1457 :
1458 : /* Allocate any required resources. */
1459 4040692 : info = prepare_callback();
1460 :
1461 : /*
1462 : * First let the catcache do its thing
1463 : */
1464 4040692 : tupleRelId = RelationGetRelid(relation);
1465 4040692 : if (RelationInvalidatesSnapshotsOnly(tupleRelId))
1466 : {
1467 1010880 : databaseId = IsSharedRelation(tupleRelId) ? InvalidOid : MyDatabaseId;
1468 1010880 : RegisterSnapshotInvalidation(info, databaseId, tupleRelId);
1469 : }
1470 : else
1471 3029812 : PrepareToInvalidateCacheTuple(relation, tuple, newtuple,
1472 : RegisterCatcacheInvalidation,
1473 : (void *) info);
1474 :
1475 : /*
1476 : * Now, is this tuple one of the primary definers of a relcache entry? See
1477 : * comments in file header for deeper explanation.
1478 : *
1479 : * Note we ignore newtuple here; we assume an update cannot move a tuple
1480 : * from being part of one relcache entry to being part of another.
1481 : */
1482 4040692 : if (tupleRelId == RelationRelationId)
1483 : {
1484 668708 : Form_pg_class classtup = (Form_pg_class) GETSTRUCT(tuple);
1485 :
1486 668708 : relationId = classtup->oid;
1487 668708 : if (classtup->relisshared)
1488 40730 : databaseId = InvalidOid;
1489 : else
1490 627978 : databaseId = MyDatabaseId;
1491 : }
1492 3371984 : else if (tupleRelId == AttributeRelationId)
1493 : {
1494 1087024 : Form_pg_attribute atttup = (Form_pg_attribute) GETSTRUCT(tuple);
1495 :
1496 1087024 : relationId = atttup->attrelid;
1497 :
1498 : /*
1499 : * KLUGE ALERT: we always send the relcache event with MyDatabaseId,
1500 : * even if the rel in question is shared (which we can't easily tell).
1501 : * This essentially means that only backends in this same database
1502 : * will react to the relcache flush request. This is in fact
1503 : * appropriate, since only those backends could see our pg_attribute
1504 : * change anyway. It looks a bit ugly though. (In practice, shared
1505 : * relations can't have schema changes after bootstrap, so we should
1506 : * never come here for a shared rel anyway.)
1507 : */
1508 1087024 : databaseId = MyDatabaseId;
1509 : }
1510 2284960 : else if (tupleRelId == IndexRelationId)
1511 : {
1512 64088 : Form_pg_index indextup = (Form_pg_index) GETSTRUCT(tuple);
1513 :
1514 : /*
1515 : * When a pg_index row is updated, we should send out a relcache inval
1516 : * for the index relation. As above, we don't know the shared status
1517 : * of the index, but in practice it doesn't matter since indexes of
1518 : * shared catalogs can't have such updates.
1519 : */
1520 64088 : relationId = indextup->indexrelid;
1521 64088 : databaseId = MyDatabaseId;
1522 : }
1523 2220872 : else if (tupleRelId == ConstraintRelationId)
1524 : {
1525 80396 : Form_pg_constraint constrtup = (Form_pg_constraint) GETSTRUCT(tuple);
1526 :
1527 : /*
1528 : * Foreign keys are part of relcache entries, too, so send out an
1529 : * inval for the table that the FK applies to.
1530 : */
1531 80396 : if (constrtup->contype == CONSTRAINT_FOREIGN &&
1532 7882 : OidIsValid(constrtup->conrelid))
1533 : {
1534 7882 : relationId = constrtup->conrelid;
1535 7882 : databaseId = MyDatabaseId;
1536 : }
1537 : else
1538 72514 : return;
1539 : }
1540 : else
1541 2140476 : return;
1542 :
1543 : /*
1544 : * Yes. We need to register a relcache invalidation event.
1545 : */
1546 1827702 : RegisterRelcacheInvalidation(info, databaseId, relationId);
1547 : }
1548 :
1549 : /*
1550 : * CacheInvalidateHeapTuple
1551 : * Register the given tuple for invalidation at end of command
1552 : * (ie, current command is creating or outdating this tuple) and end of
1553 : * transaction. Also, detect whether a relcache invalidation is implied.
1554 : *
1555 : * For an insert or delete, tuple is the target tuple and newtuple is NULL.
1556 : * For an update, we are called just once, with tuple being the old tuple
1557 : * version and newtuple the new version. This allows avoidance of duplicate
1558 : * effort during an update.
1559 : */
1560 : void
1561 21439278 : CacheInvalidateHeapTuple(Relation relation,
1562 : HeapTuple tuple,
1563 : HeapTuple newtuple)
1564 : {
1565 21439278 : CacheInvalidateHeapTupleCommon(relation, tuple, newtuple,
1566 : PrepareInvalidationState);
1567 21439278 : }
1568 :
1569 : /*
1570 : * CacheInvalidateHeapTupleInplace
1571 : * Register the given tuple for nontransactional invalidation pertaining
1572 : * to an inplace update. Also, detect whether a relcache invalidation is
1573 : * implied.
1574 : *
1575 : * Like CacheInvalidateHeapTuple(), but for inplace updates.
1576 : */
1577 : void
1578 271068 : CacheInvalidateHeapTupleInplace(Relation relation,
1579 : HeapTuple tuple,
1580 : HeapTuple newtuple)
1581 : {
1582 271068 : CacheInvalidateHeapTupleCommon(relation, tuple, newtuple,
1583 : PrepareInplaceInvalidationState);
1584 271068 : }
1585 :
1586 : /*
1587 : * CacheInvalidateCatalog
1588 : * Register invalidation of the whole content of a system catalog.
1589 : *
1590 : * This is normally used in VACUUM FULL/CLUSTER, where we haven't so much
1591 : * changed any tuples as moved them around. Some uses of catcache entries
1592 : * expect their TIDs to be correct, so we have to blow away the entries.
1593 : *
1594 : * Note: we expect caller to verify that the rel actually is a system
1595 : * catalog. If it isn't, no great harm is done, just a wasted sinval message.
1596 : */
1597 : void
1598 222 : CacheInvalidateCatalog(Oid catalogId)
1599 : {
1600 : Oid databaseId;
1601 :
1602 222 : if (IsSharedRelation(catalogId))
1603 36 : databaseId = InvalidOid;
1604 : else
1605 186 : databaseId = MyDatabaseId;
1606 :
1607 222 : RegisterCatalogInvalidation(PrepareInvalidationState(),
1608 : databaseId, catalogId);
1609 222 : }
1610 :
1611 : /*
1612 : * CacheInvalidateRelcache
1613 : * Register invalidation of the specified relation's relcache entry
1614 : * at end of command.
1615 : *
1616 : * This is used in places that need to force relcache rebuild but aren't
1617 : * changing any of the tuples recognized as contributors to the relcache
1618 : * entry by CacheInvalidateHeapTuple. (An example is dropping an index.)
1619 : */
1620 : void
1621 124528 : CacheInvalidateRelcache(Relation relation)
1622 : {
1623 : Oid databaseId;
1624 : Oid relationId;
1625 :
1626 124528 : relationId = RelationGetRelid(relation);
1627 124528 : if (relation->rd_rel->relisshared)
1628 5268 : databaseId = InvalidOid;
1629 : else
1630 119260 : databaseId = MyDatabaseId;
1631 :
1632 124528 : RegisterRelcacheInvalidation(PrepareInvalidationState(),
1633 : databaseId, relationId);
1634 124528 : }
1635 :
1636 : /*
1637 : * CacheInvalidateRelcacheAll
1638 : * Register invalidation of the whole relcache at the end of command.
1639 : *
1640 : * This is used by alter publication as changes in publications may affect
1641 : * large number of tables.
1642 : */
1643 : void
1644 162 : CacheInvalidateRelcacheAll(void)
1645 : {
1646 162 : RegisterRelcacheInvalidation(PrepareInvalidationState(),
1647 : InvalidOid, InvalidOid);
1648 162 : }
1649 :
1650 : /*
1651 : * CacheInvalidateRelcacheByTuple
1652 : * As above, but relation is identified by passing its pg_class tuple.
1653 : */
1654 : void
1655 70150 : CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
1656 : {
1657 70150 : Form_pg_class classtup = (Form_pg_class) GETSTRUCT(classTuple);
1658 : Oid databaseId;
1659 : Oid relationId;
1660 :
1661 70150 : relationId = classtup->oid;
1662 70150 : if (classtup->relisshared)
1663 2006 : databaseId = InvalidOid;
1664 : else
1665 68144 : databaseId = MyDatabaseId;
1666 70150 : RegisterRelcacheInvalidation(PrepareInvalidationState(),
1667 : databaseId, relationId);
1668 70150 : }
1669 :
1670 : /*
1671 : * CacheInvalidateRelcacheByRelid
1672 : * As above, but relation is identified by passing its OID.
1673 : * This is the least efficient of the three options; use one of
1674 : * the above routines if you have a Relation or pg_class tuple.
1675 : */
1676 : void
1677 27602 : CacheInvalidateRelcacheByRelid(Oid relid)
1678 : {
1679 : HeapTuple tup;
1680 :
1681 27602 : tup = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
1682 27602 : if (!HeapTupleIsValid(tup))
1683 0 : elog(ERROR, "cache lookup failed for relation %u", relid);
1684 27602 : CacheInvalidateRelcacheByTuple(tup);
1685 27602 : ReleaseSysCache(tup);
1686 27602 : }
1687 :
1688 : /*
1689 : * CacheInvalidateRelSync
1690 : * Register invalidation of the cache in logical decoding output plugin
1691 : * for a database.
1692 : *
1693 : * This type of invalidation message is used for the specific purpose of output
1694 : * plugins. Processes which do not decode WALs would do nothing even when it
1695 : * receives the message.
1696 : */
1697 : void
1698 12 : CacheInvalidateRelSync(Oid relid)
1699 : {
1700 12 : RegisterRelsyncInvalidation(PrepareInvalidationState(),
1701 : MyDatabaseId, relid);
1702 12 : }
1703 :
1704 : /*
1705 : * CacheInvalidateRelSyncAll
1706 : * Register invalidation of the whole cache in logical decoding output
1707 : * plugin.
1708 : */
1709 : void
1710 6 : CacheInvalidateRelSyncAll(void)
1711 : {
1712 6 : CacheInvalidateRelSync(InvalidOid);
1713 6 : }
1714 :
1715 : /*
1716 : * CacheInvalidateSmgr
1717 : * Register invalidation of smgr references to a physical relation.
1718 : *
1719 : * Sending this type of invalidation msg forces other backends to close open
1720 : * smgr entries for the rel. This should be done to flush dangling open-file
1721 : * references when the physical rel is being dropped or truncated. Because
1722 : * these are nontransactional (i.e., not-rollback-able) operations, we just
1723 : * send the inval message immediately without any queuing.
1724 : *
1725 : * Note: in most cases there will have been a relcache flush issued against
1726 : * the rel at the logical level. We need a separate smgr-level flush because
1727 : * it is possible for backends to have open smgr entries for rels they don't
1728 : * have a relcache entry for, e.g. because the only thing they ever did with
1729 : * the rel is write out dirty shared buffers.
1730 : *
1731 : * Note: because these messages are nontransactional, they won't be captured
1732 : * in commit/abort WAL entries. Instead, calls to CacheInvalidateSmgr()
1733 : * should happen in low-level smgr.c routines, which are executed while
1734 : * replaying WAL as well as when creating it.
1735 : *
1736 : * Note: In order to avoid bloating SharedInvalidationMessage, we store only
1737 : * three bytes of the ProcNumber using what would otherwise be padding space.
1738 : * Thus, the maximum possible ProcNumber is 2^23-1.
1739 : */
1740 : void
1741 96758 : CacheInvalidateSmgr(RelFileLocatorBackend rlocator)
1742 : {
1743 : SharedInvalidationMessage msg;
1744 :
1745 : /* verify optimization stated above stays valid */
1746 : StaticAssertStmt(MAX_BACKENDS_BITS <= 23,
1747 : "MAX_BACKEND_BITS is too big for inval.c");
1748 :
1749 96758 : msg.sm.id = SHAREDINVALSMGR_ID;
1750 96758 : msg.sm.backend_hi = rlocator.backend >> 16;
1751 96758 : msg.sm.backend_lo = rlocator.backend & 0xffff;
1752 96758 : msg.sm.rlocator = rlocator.locator;
1753 : /* check AddCatcacheInvalidationMessage() for an explanation */
1754 : VALGRIND_MAKE_MEM_DEFINED(&msg, sizeof(msg));
1755 :
1756 96758 : SendSharedInvalidMessages(&msg, 1);
1757 96758 : }
1758 :
1759 : /*
1760 : * CacheInvalidateRelmap
1761 : * Register invalidation of the relation mapping for a database,
1762 : * or for the shared catalogs if databaseId is zero.
1763 : *
1764 : * Sending this type of invalidation msg forces other backends to re-read
1765 : * the indicated relation mapping file. It is also necessary to send a
1766 : * relcache inval for the specific relations whose mapping has been altered,
1767 : * else the relcache won't get updated with the new filenode data.
1768 : *
1769 : * Note: because these messages are nontransactional, they won't be captured
1770 : * in commit/abort WAL entries. Instead, calls to CacheInvalidateRelmap()
1771 : * should happen in low-level relmapper.c routines, which are executed while
1772 : * replaying WAL as well as when creating it.
1773 : */
1774 : void
1775 432 : CacheInvalidateRelmap(Oid databaseId)
1776 : {
1777 : SharedInvalidationMessage msg;
1778 :
1779 432 : msg.rm.id = SHAREDINVALRELMAP_ID;
1780 432 : msg.rm.dbId = databaseId;
1781 : /* check AddCatcacheInvalidationMessage() for an explanation */
1782 : VALGRIND_MAKE_MEM_DEFINED(&msg, sizeof(msg));
1783 :
1784 432 : SendSharedInvalidMessages(&msg, 1);
1785 432 : }
1786 :
1787 :
1788 : /*
1789 : * CacheRegisterSyscacheCallback
1790 : * Register the specified function to be called for all future
1791 : * invalidation events in the specified cache. The cache ID and the
1792 : * hash value of the tuple being invalidated will be passed to the
1793 : * function.
1794 : *
1795 : * NOTE: Hash value zero will be passed if a cache reset request is received.
1796 : * In this case the called routines should flush all cached state.
1797 : * Yes, there's a possibility of a false match to zero, but it doesn't seem
1798 : * worth troubling over, especially since most of the current callees just
1799 : * flush all cached state anyway.
1800 : */
1801 : void
1802 582370 : CacheRegisterSyscacheCallback(int cacheid,
1803 : SyscacheCallbackFunction func,
1804 : Datum arg)
1805 : {
1806 582370 : if (cacheid < 0 || cacheid >= SysCacheSize)
1807 0 : elog(FATAL, "invalid cache ID: %d", cacheid);
1808 582370 : if (syscache_callback_count >= MAX_SYSCACHE_CALLBACKS)
1809 0 : elog(FATAL, "out of syscache_callback_list slots");
1810 :
1811 582370 : if (syscache_callback_links[cacheid] == 0)
1812 : {
1813 : /* first callback for this cache */
1814 411896 : syscache_callback_links[cacheid] = syscache_callback_count + 1;
1815 : }
1816 : else
1817 : {
1818 : /* add to end of chain, so that older callbacks are called first */
1819 170474 : int i = syscache_callback_links[cacheid] - 1;
1820 :
1821 203372 : while (syscache_callback_list[i].link > 0)
1822 32898 : i = syscache_callback_list[i].link - 1;
1823 170474 : syscache_callback_list[i].link = syscache_callback_count + 1;
1824 : }
1825 :
1826 582370 : syscache_callback_list[syscache_callback_count].id = cacheid;
1827 582370 : syscache_callback_list[syscache_callback_count].link = 0;
1828 582370 : syscache_callback_list[syscache_callback_count].function = func;
1829 582370 : syscache_callback_list[syscache_callback_count].arg = arg;
1830 :
1831 582370 : ++syscache_callback_count;
1832 582370 : }
1833 :
1834 : /*
1835 : * CacheRegisterRelcacheCallback
1836 : * Register the specified function to be called for all future
1837 : * relcache invalidation events. The OID of the relation being
1838 : * invalidated will be passed to the function.
1839 : *
1840 : * NOTE: InvalidOid will be passed if a cache reset request is received.
1841 : * In this case the called routines should flush all cached state.
1842 : */
1843 : void
1844 46610 : CacheRegisterRelcacheCallback(RelcacheCallbackFunction func,
1845 : Datum arg)
1846 : {
1847 46610 : if (relcache_callback_count >= MAX_RELCACHE_CALLBACKS)
1848 0 : elog(FATAL, "out of relcache_callback_list slots");
1849 :
1850 46610 : relcache_callback_list[relcache_callback_count].function = func;
1851 46610 : relcache_callback_list[relcache_callback_count].arg = arg;
1852 :
1853 46610 : ++relcache_callback_count;
1854 46610 : }
1855 :
1856 : /*
1857 : * CacheRegisterRelSyncCallback
1858 : * Register the specified function to be called for all future
1859 : * relsynccache invalidation events.
1860 : *
1861 : * This function is intended to be call from the logical decoding output
1862 : * plugins.
1863 : */
1864 : void
1865 720 : CacheRegisterRelSyncCallback(RelSyncCallbackFunction func,
1866 : Datum arg)
1867 : {
1868 720 : if (relsync_callback_count >= MAX_RELSYNC_CALLBACKS)
1869 0 : elog(FATAL, "out of relsync_callback_list slots");
1870 :
1871 720 : relsync_callback_list[relsync_callback_count].function = func;
1872 720 : relsync_callback_list[relsync_callback_count].arg = arg;
1873 :
1874 720 : ++relsync_callback_count;
1875 720 : }
1876 :
1877 : /*
1878 : * CallSyscacheCallbacks
1879 : *
1880 : * This is exported so that CatalogCacheFlushCatalog can call it, saving
1881 : * this module from knowing which catcache IDs correspond to which catalogs.
1882 : */
1883 : void
1884 19875208 : CallSyscacheCallbacks(int cacheid, uint32 hashvalue)
1885 : {
1886 : int i;
1887 :
1888 19875208 : if (cacheid < 0 || cacheid >= SysCacheSize)
1889 0 : elog(ERROR, "invalid cache ID: %d", cacheid);
1890 :
1891 19875208 : i = syscache_callback_links[cacheid] - 1;
1892 22684176 : while (i >= 0)
1893 : {
1894 2808968 : struct SYSCACHECALLBACK *ccitem = syscache_callback_list + i;
1895 :
1896 : Assert(ccitem->id == cacheid);
1897 2808968 : ccitem->function(ccitem->arg, cacheid, hashvalue);
1898 2808968 : i = ccitem->link - 1;
1899 : }
1900 19875208 : }
1901 :
1902 : /*
1903 : * CallSyscacheCallbacks
1904 : */
1905 : void
1906 62 : CallRelSyncCallbacks(Oid relid)
1907 : {
1908 104 : for (int i = 0; i < relsync_callback_count; i++)
1909 : {
1910 42 : struct RELSYNCCALLBACK *ccitem = relsync_callback_list + i;
1911 :
1912 42 : ccitem->function(ccitem->arg, relid);
1913 : }
1914 62 : }
1915 :
1916 : /*
1917 : * LogLogicalInvalidations
1918 : *
1919 : * Emit WAL for invalidations caused by the current command.
1920 : *
1921 : * This is currently only used for logging invalidations at the command end
1922 : * or at commit time if any invalidations are pending.
1923 : */
1924 : void
1925 32270 : LogLogicalInvalidations(void)
1926 : {
1927 : xl_xact_invals xlrec;
1928 : InvalidationMsgsGroup *group;
1929 : int nmsgs;
1930 :
1931 : /* Quick exit if we haven't done anything with invalidation messages. */
1932 32270 : if (transInvalInfo == NULL)
1933 20254 : return;
1934 :
1935 12016 : group = &transInvalInfo->ii.CurrentCmdInvalidMsgs;
1936 12016 : nmsgs = NumMessagesInGroup(group);
1937 :
1938 12016 : if (nmsgs > 0)
1939 : {
1940 : /* prepare record */
1941 9628 : memset(&xlrec, 0, MinSizeOfXactInvals);
1942 9628 : xlrec.nmsgs = nmsgs;
1943 :
1944 : /* perform insertion */
1945 9628 : XLogBeginInsert();
1946 9628 : XLogRegisterData(&xlrec, MinSizeOfXactInvals);
1947 9628 : ProcessMessageSubGroupMulti(group, CatCacheMsgs,
1948 : XLogRegisterData(msgs,
1949 : n * sizeof(SharedInvalidationMessage)));
1950 9628 : ProcessMessageSubGroupMulti(group, RelCacheMsgs,
1951 : XLogRegisterData(msgs,
1952 : n * sizeof(SharedInvalidationMessage)));
1953 9628 : XLogInsert(RM_XACT_ID, XLOG_XACT_INVALIDATIONS);
1954 : }
1955 : }
|