LCOV - code coverage report
Current view: top level - src/backend/access/nbtree - nbtutils.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 624 720 86.7 %
Date: 2025-02-22 07:14:56 Functions: 28 31 90.3 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * nbtutils.c
       4             :  *    Utility code for Postgres btree implementation.
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/nbtree/nbtutils.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : 
      16             : #include "postgres.h"
      17             : 
      18             : #include <time.h>
      19             : 
      20             : #include "access/nbtree.h"
      21             : #include "access/reloptions.h"
      22             : #include "commands/progress.h"
      23             : #include "miscadmin.h"
      24             : #include "utils/datum.h"
      25             : #include "utils/lsyscache.h"
      26             : 
      27             : #define LOOK_AHEAD_REQUIRED_RECHECKS    3
      28             : #define LOOK_AHEAD_DEFAULT_DISTANCE     5
      29             : 
      30             : static inline int32 _bt_compare_array_skey(FmgrInfo *orderproc,
      31             :                                            Datum tupdatum, bool tupnull,
      32             :                                            Datum arrdatum, ScanKey cur);
      33             : static bool _bt_advance_array_keys_increment(IndexScanDesc scan, ScanDirection dir);
      34             : static void _bt_rewind_nonrequired_arrays(IndexScanDesc scan, ScanDirection dir);
      35             : static bool _bt_tuple_before_array_skeys(IndexScanDesc scan, ScanDirection dir,
      36             :                                          IndexTuple tuple, TupleDesc tupdesc, int tupnatts,
      37             :                                          bool readpagetup, int sktrig, bool *scanBehind);
      38             : static bool _bt_advance_array_keys(IndexScanDesc scan, BTReadPageState *pstate,
      39             :                                    IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
      40             :                                    int sktrig, bool sktrig_required);
      41             : #ifdef USE_ASSERT_CHECKING
      42             : static bool _bt_verify_arrays_bt_first(IndexScanDesc scan, ScanDirection dir);
      43             : static bool _bt_verify_keys_with_arraykeys(IndexScanDesc scan);
      44             : #endif
      45             : static bool _bt_check_compare(IndexScanDesc scan, ScanDirection dir,
      46             :                               IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
      47             :                               bool advancenonrequired, bool prechecked, bool firstmatch,
      48             :                               bool *continuescan, int *ikey);
      49             : static bool _bt_check_rowcompare(ScanKey skey,
      50             :                                  IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
      51             :                                  ScanDirection dir, bool *continuescan);
      52             : static void _bt_checkkeys_look_ahead(IndexScanDesc scan, BTReadPageState *pstate,
      53             :                                      int tupnatts, TupleDesc tupdesc);
      54             : static int  _bt_keep_natts(Relation rel, IndexTuple lastleft,
      55             :                            IndexTuple firstright, BTScanInsert itup_key);
      56             : 
      57             : 
      58             : /*
      59             :  * _bt_mkscankey
      60             :  *      Build an insertion scan key that contains comparison data from itup
      61             :  *      as well as comparator routines appropriate to the key datatypes.
      62             :  *
      63             :  *      The result is intended for use with _bt_compare() and _bt_truncate().
      64             :  *      Callers that don't need to fill out the insertion scankey arguments
      65             :  *      (e.g. they use an ad-hoc comparison routine, or only need a scankey
      66             :  *      for _bt_truncate()) can pass a NULL index tuple.  The scankey will
      67             :  *      be initialized as if an "all truncated" pivot tuple was passed
      68             :  *      instead.
      69             :  *
      70             :  *      Note that we may occasionally have to share lock the metapage to
      71             :  *      determine whether or not the keys in the index are expected to be
      72             :  *      unique (i.e. if this is a "heapkeyspace" index).  We assume a
      73             :  *      heapkeyspace index when caller passes a NULL tuple, allowing index
      74             :  *      build callers to avoid accessing the non-existent metapage.  We
      75             :  *      also assume that the index is _not_ allequalimage when a NULL tuple
      76             :  *      is passed; CREATE INDEX callers call _bt_allequalimage() to set the
      77             :  *      field themselves.
      78             :  */
      79             : BTScanInsert
      80    11477410 : _bt_mkscankey(Relation rel, IndexTuple itup)
      81             : {
      82             :     BTScanInsert key;
      83             :     ScanKey     skey;
      84             :     TupleDesc   itupdesc;
      85             :     int         indnkeyatts;
      86             :     int16      *indoption;
      87             :     int         tupnatts;
      88             :     int         i;
      89             : 
      90    11477410 :     itupdesc = RelationGetDescr(rel);
      91    11477410 :     indnkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
      92    11477410 :     indoption = rel->rd_indoption;
      93    11477410 :     tupnatts = itup ? BTreeTupleGetNAtts(itup, rel) : 0;
      94             : 
      95             :     Assert(tupnatts <= IndexRelationGetNumberOfAttributes(rel));
      96             : 
      97             :     /*
      98             :      * We'll execute search using scan key constructed on key columns.
      99             :      * Truncated attributes and non-key attributes are omitted from the final
     100             :      * scan key.
     101             :      */
     102    11477410 :     key = palloc(offsetof(BTScanInsertData, scankeys) +
     103    11477410 :                  sizeof(ScanKeyData) * indnkeyatts);
     104    11477410 :     if (itup)
     105    11341108 :         _bt_metaversion(rel, &key->heapkeyspace, &key->allequalimage);
     106             :     else
     107             :     {
     108             :         /* Utility statement callers can set these fields themselves */
     109      136302 :         key->heapkeyspace = true;
     110      136302 :         key->allequalimage = false;
     111             :     }
     112    11477410 :     key->anynullkeys = false;    /* initial assumption */
     113    11477410 :     key->nextkey = false;        /* usual case, required by btinsert */
     114    11477410 :     key->backward = false;       /* usual case, required by btinsert */
     115    11477410 :     key->keysz = Min(indnkeyatts, tupnatts);
     116    11477410 :     key->scantid = key->heapkeyspace && itup ?
     117    22954820 :         BTreeTupleGetHeapTID(itup) : NULL;
     118    11477410 :     skey = key->scankeys;
     119    30889430 :     for (i = 0; i < indnkeyatts; i++)
     120             :     {
     121             :         FmgrInfo   *procinfo;
     122             :         Datum       arg;
     123             :         bool        null;
     124             :         int         flags;
     125             : 
     126             :         /*
     127             :          * We can use the cached (default) support procs since no cross-type
     128             :          * comparison can be needed.
     129             :          */
     130    19412020 :         procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);
     131             : 
     132             :         /*
     133             :          * Key arguments built from truncated attributes (or when caller
     134             :          * provides no tuple) are defensively represented as NULL values. They
     135             :          * should never be used.
     136             :          */
     137    19412020 :         if (i < tupnatts)
     138    19167358 :             arg = index_getattr(itup, i + 1, itupdesc, &null);
     139             :         else
     140             :         {
     141      244662 :             arg = (Datum) 0;
     142      244662 :             null = true;
     143             :         }
     144    19412020 :         flags = (null ? SK_ISNULL : 0) | (indoption[i] << SK_BT_INDOPTION_SHIFT);
     145    19412020 :         ScanKeyEntryInitializeWithInfo(&skey[i],
     146             :                                        flags,
     147    19412020 :                                        (AttrNumber) (i + 1),
     148             :                                        InvalidStrategy,
     149             :                                        InvalidOid,
     150    19412020 :                                        rel->rd_indcollation[i],
     151             :                                        procinfo,
     152             :                                        arg);
     153             :         /* Record if any key attribute is NULL (or truncated) */
     154    19412020 :         if (null)
     155      265244 :             key->anynullkeys = true;
     156             :     }
     157             : 
     158             :     /*
     159             :      * In NULLS NOT DISTINCT mode, we pretend that there are no null keys, so
     160             :      * that full uniqueness check is done.
     161             :      */
     162    11477410 :     if (rel->rd_index->indnullsnotdistinct)
     163         186 :         key->anynullkeys = false;
     164             : 
     165    11477410 :     return key;
     166             : }
     167             : 
     168             : /*
     169             :  * free a retracement stack made by _bt_search.
     170             :  */
     171             : void
     172    20229086 : _bt_freestack(BTStack stack)
     173             : {
     174             :     BTStack     ostack;
     175             : 
     176    37257306 :     while (stack != NULL)
     177             :     {
     178    17028220 :         ostack = stack;
     179    17028220 :         stack = stack->bts_parent;
     180    17028220 :         pfree(ostack);
     181             :     }
     182    20229086 : }
     183             : 
     184             : /*
     185             :  * _bt_compare_array_skey() -- apply array comparison function
     186             :  *
     187             :  * Compares caller's tuple attribute value to a scan key/array element.
     188             :  * Helper function used during binary searches of SK_SEARCHARRAY arrays.
     189             :  *
     190             :  *      This routine returns:
     191             :  *          <0 if tupdatum < arrdatum;
     192             :  *           0 if tupdatum == arrdatum;
     193             :  *          >0 if tupdatum > arrdatum.
     194             :  *
     195             :  * This is essentially the same interface as _bt_compare: both functions
     196             :  * compare the value that they're searching for to a binary search pivot.
     197             :  * However, unlike _bt_compare, this function's "tuple argument" comes first,
     198             :  * while its "array/scankey argument" comes second.
     199             : */
     200             : static inline int32
     201       73712 : _bt_compare_array_skey(FmgrInfo *orderproc,
     202             :                        Datum tupdatum, bool tupnull,
     203             :                        Datum arrdatum, ScanKey cur)
     204             : {
     205       73712 :     int32       result = 0;
     206             : 
     207             :     Assert(cur->sk_strategy == BTEqualStrategyNumber);
     208             : 
     209       73712 :     if (tupnull)                /* NULL tupdatum */
     210             :     {
     211           6 :         if (cur->sk_flags & SK_ISNULL)
     212           6 :             result = 0;         /* NULL "=" NULL */
     213           0 :         else if (cur->sk_flags & SK_BT_NULLS_FIRST)
     214           0 :             result = -1;        /* NULL "<" NOT_NULL */
     215             :         else
     216           0 :             result = 1;         /* NULL ">" NOT_NULL */
     217             :     }
     218       73706 :     else if (cur->sk_flags & SK_ISNULL) /* NOT_NULL tupdatum, NULL arrdatum */
     219             :     {
     220           6 :         if (cur->sk_flags & SK_BT_NULLS_FIRST)
     221           0 :             result = 1;         /* NOT_NULL ">" NULL */
     222             :         else
     223           6 :             result = -1;        /* NOT_NULL "<" NULL */
     224             :     }
     225             :     else
     226             :     {
     227             :         /*
     228             :          * Like _bt_compare, we need to be careful of cross-type comparisons,
     229             :          * so the left value has to be the value that came from an index tuple
     230             :          */
     231       73700 :         result = DatumGetInt32(FunctionCall2Coll(orderproc, cur->sk_collation,
     232             :                                                  tupdatum, arrdatum));
     233             : 
     234             :         /*
     235             :          * We flip the sign by following the obvious rule: flip whenever the
     236             :          * column is a DESC column.
     237             :          *
     238             :          * _bt_compare does it the wrong way around (flip when *ASC*) in order
     239             :          * to compensate for passing its orderproc arguments backwards.  We
     240             :          * don't need to play these games because we find it natural to pass
     241             :          * tupdatum as the left value (and arrdatum as the right value).
     242             :          */
     243       73700 :         if (cur->sk_flags & SK_BT_DESC)
     244          24 :             INVERT_COMPARE_RESULT(result);
     245             :     }
     246             : 
     247       73712 :     return result;
     248             : }
     249             : 
     250             : /*
     251             :  * _bt_binsrch_array_skey() -- Binary search for next matching array key
     252             :  *
     253             :  * Returns an index to the first array element >= caller's tupdatum argument.
     254             :  * This convention is more natural for forwards scan callers, but that can't
     255             :  * really matter to backwards scan callers.  Both callers require handling for
     256             :  * the case where the match we return is < tupdatum, and symmetric handling
     257             :  * for the case where our best match is > tupdatum.
     258             :  *
     259             :  * Also sets *set_elem_result to the result _bt_compare_array_skey returned
     260             :  * when we used it to compare the matching array element to tupdatum/tupnull.
     261             :  *
     262             :  * cur_elem_trig indicates if array advancement was triggered by this array's
     263             :  * scan key, and that the array is for a required scan key.  We can apply this
     264             :  * information to find the next matching array element in the current scan
     265             :  * direction using far fewer comparisons (fewer on average, compared to naive
     266             :  * binary search).  This scheme takes advantage of an important property of
     267             :  * required arrays: required arrays always advance in lockstep with the index
     268             :  * scan's progress through the index's key space.
     269             :  */
     270             : int
     271       28026 : _bt_binsrch_array_skey(FmgrInfo *orderproc,
     272             :                        bool cur_elem_trig, ScanDirection dir,
     273             :                        Datum tupdatum, bool tupnull,
     274             :                        BTArrayKeyInfo *array, ScanKey cur,
     275             :                        int32 *set_elem_result)
     276             : {
     277       28026 :     int         low_elem = 0,
     278       28026 :                 mid_elem = -1,
     279       28026 :                 high_elem = array->num_elems - 1,
     280       28026 :                 result = 0;
     281             :     Datum       arrdatum;
     282             : 
     283             :     Assert(cur->sk_flags & SK_SEARCHARRAY);
     284             :     Assert(cur->sk_strategy == BTEqualStrategyNumber);
     285             : 
     286       28026 :     if (cur_elem_trig)
     287             :     {
     288             :         Assert(!ScanDirectionIsNoMovement(dir));
     289             :         Assert(cur->sk_flags & SK_BT_REQFWD);
     290             : 
     291             :         /*
     292             :          * When the scan key that triggered array advancement is a required
     293             :          * array scan key, it is now certain that the current array element
     294             :          * (plus all prior elements relative to the current scan direction)
     295             :          * cannot possibly be at or ahead of the corresponding tuple value.
     296             :          * (_bt_checkkeys must have called _bt_tuple_before_array_skeys, which
     297             :          * makes sure this is true as a condition of advancing the arrays.)
     298             :          *
     299             :          * This makes it safe to exclude array elements up to and including
     300             :          * the former-current array element from our search.
     301             :          *
     302             :          * Separately, when array advancement was triggered by a required scan
     303             :          * key, the array element immediately after the former-current element
     304             :          * is often either an exact tupdatum match, or a "close by" near-match
     305             :          * (a near-match tupdatum is one whose key space falls _between_ the
     306             :          * former-current and new-current array elements).  We'll detect both
     307             :          * cases via an optimistic comparison of the new search lower bound
     308             :          * (or new search upper bound in the case of backwards scans).
     309             :          */
     310       27496 :         if (ScanDirectionIsForward(dir))
     311             :         {
     312       27472 :             low_elem = array->cur_elem + 1; /* old cur_elem exhausted */
     313             : 
     314             :             /* Compare prospective new cur_elem (also the new lower bound) */
     315       27472 :             if (high_elem >= low_elem)
     316             :             {
     317       20130 :                 arrdatum = array->elem_values[low_elem];
     318       20130 :                 result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
     319             :                                                 arrdatum, cur);
     320             : 
     321       20130 :                 if (result <= 0)
     322             :                 {
     323             :                     /* Optimistic comparison optimization worked out */
     324       20044 :                     *set_elem_result = result;
     325       20044 :                     return low_elem;
     326             :                 }
     327          86 :                 mid_elem = low_elem;
     328          86 :                 low_elem++;     /* this cur_elem exhausted, too */
     329             :             }
     330             : 
     331        7428 :             if (high_elem < low_elem)
     332             :             {
     333             :                 /* Caller needs to perform "beyond end" array advancement */
     334        7348 :                 *set_elem_result = 1;
     335        7348 :                 return high_elem;
     336             :             }
     337             :         }
     338             :         else
     339             :         {
     340          24 :             high_elem = array->cur_elem - 1; /* old cur_elem exhausted */
     341             : 
     342             :             /* Compare prospective new cur_elem (also the new upper bound) */
     343          24 :             if (high_elem >= low_elem)
     344             :             {
     345          18 :                 arrdatum = array->elem_values[high_elem];
     346          18 :                 result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
     347             :                                                 arrdatum, cur);
     348             : 
     349          18 :                 if (result >= 0)
     350             :                 {
     351             :                     /* Optimistic comparison optimization worked out */
     352          18 :                     *set_elem_result = result;
     353          18 :                     return high_elem;
     354             :                 }
     355           0 :                 mid_elem = high_elem;
     356           0 :                 high_elem--;    /* this cur_elem exhausted, too */
     357             :             }
     358             : 
     359           6 :             if (high_elem < low_elem)
     360             :             {
     361             :                 /* Caller needs to perform "beyond end" array advancement */
     362           6 :                 *set_elem_result = -1;
     363           6 :                 return low_elem;
     364             :             }
     365             :         }
     366             :     }
     367             : 
     368        1116 :     while (high_elem > low_elem)
     369             :     {
     370         650 :         mid_elem = low_elem + ((high_elem - low_elem) / 2);
     371         650 :         arrdatum = array->elem_values[mid_elem];
     372             : 
     373         650 :         result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
     374             :                                         arrdatum, cur);
     375             : 
     376         650 :         if (result == 0)
     377             :         {
     378             :             /*
     379             :              * It's safe to quit as soon as we see an equal array element.
     380             :              * This often saves an extra comparison or two...
     381             :              */
     382         144 :             low_elem = mid_elem;
     383         144 :             break;
     384             :         }
     385             : 
     386         506 :         if (result > 0)
     387         446 :             low_elem = mid_elem + 1;
     388             :         else
     389          60 :             high_elem = mid_elem;
     390             :     }
     391             : 
     392             :     /*
     393             :      * ...but our caller also cares about how its searched-for tuple datum
     394             :      * compares to the low_elem datum.  Must always set *set_elem_result with
     395             :      * the result of that comparison specifically.
     396             :      */
     397         610 :     if (low_elem != mid_elem)
     398         418 :         result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
     399         418 :                                         array->elem_values[low_elem], cur);
     400             : 
     401         610 :     *set_elem_result = result;
     402             : 
     403         610 :     return low_elem;
     404             : }
     405             : 
     406             : /*
     407             :  * _bt_start_array_keys() -- Initialize array keys at start of a scan
     408             :  *
     409             :  * Set up the cur_elem counters and fill in the first sk_argument value for
     410             :  * each array scankey.
     411             :  */
     412             : void
     413       74478 : _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
     414             : {
     415       74478 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     416             :     int         i;
     417             : 
     418             :     Assert(so->numArrayKeys);
     419             :     Assert(so->qual_ok);
     420             : 
     421      149268 :     for (i = 0; i < so->numArrayKeys; i++)
     422             :     {
     423       74790 :         BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
     424       74790 :         ScanKey     skey = &so->keyData[curArrayKey->scan_key];
     425             : 
     426             :         Assert(curArrayKey->num_elems > 0);
     427             :         Assert(skey->sk_flags & SK_SEARCHARRAY);
     428             : 
     429       74790 :         if (ScanDirectionIsBackward(dir))
     430        7586 :             curArrayKey->cur_elem = curArrayKey->num_elems - 1;
     431             :         else
     432       67204 :             curArrayKey->cur_elem = 0;
     433       74790 :         skey->sk_argument = curArrayKey->elem_values[curArrayKey->cur_elem];
     434             :     }
     435       74478 :     so->scanBehind = so->oppositeDirCheck = false;    /* reset */
     436       74478 : }
     437             : 
     438             : /*
     439             :  * _bt_advance_array_keys_increment() -- Advance to next set of array elements
     440             :  *
     441             :  * Advances the array keys by a single increment in the current scan
     442             :  * direction.  When there are multiple array keys this can roll over from the
     443             :  * lowest order array to higher order arrays.
     444             :  *
     445             :  * Returns true if there is another set of values to consider, false if not.
     446             :  * On true result, the scankeys are initialized with the next set of values.
     447             :  * On false result, the scankeys stay the same, and the array keys are not
     448             :  * advanced (every array remains at its final element for scan direction).
     449             :  */
     450             : static bool
     451        7462 : _bt_advance_array_keys_increment(IndexScanDesc scan, ScanDirection dir)
     452             : {
     453        7462 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     454             : 
     455             :     /*
     456             :      * We must advance the last array key most quickly, since it will
     457             :      * correspond to the lowest-order index column among the available
     458             :      * qualifications
     459             :      */
     460       15042 :     for (int i = so->numArrayKeys - 1; i >= 0; i--)
     461             :     {
     462        7618 :         BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
     463        7618 :         ScanKey     skey = &so->keyData[curArrayKey->scan_key];
     464        7618 :         int         cur_elem = curArrayKey->cur_elem;
     465        7618 :         int         num_elems = curArrayKey->num_elems;
     466        7618 :         bool        rolled = false;
     467             : 
     468        7618 :         if (ScanDirectionIsForward(dir) && ++cur_elem >= num_elems)
     469             :         {
     470        7574 :             cur_elem = 0;
     471        7574 :             rolled = true;
     472             :         }
     473          44 :         else if (ScanDirectionIsBackward(dir) && --cur_elem < 0)
     474             :         {
     475           6 :             cur_elem = num_elems - 1;
     476           6 :             rolled = true;
     477             :         }
     478             : 
     479        7618 :         curArrayKey->cur_elem = cur_elem;
     480        7618 :         skey->sk_argument = curArrayKey->elem_values[cur_elem];
     481        7618 :         if (!rolled)
     482          38 :             return true;
     483             : 
     484             :         /* Need to advance next array key, if any */
     485             :     }
     486             : 
     487             :     /*
     488             :      * The array keys are now exhausted.
     489             :      *
     490             :      * Restore the array keys to the state they were in immediately before we
     491             :      * were called.  This ensures that the arrays only ever ratchet in the
     492             :      * current scan direction.
     493             :      *
     494             :      * Without this, scans could overlook matching tuples when the scan
     495             :      * direction gets reversed just before btgettuple runs out of items to
     496             :      * return, but just after _bt_readpage prepares all the items from the
     497             :      * scan's final page in so->currPos.  When we're on the final page it is
     498             :      * typical for so->currPos to get invalidated once btgettuple finally
     499             :      * returns false, which'll effectively invalidate the scan's array keys.
     500             :      * That hasn't happened yet, though -- and in general it may never happen.
     501             :      */
     502        7424 :     _bt_start_array_keys(scan, -dir);
     503             : 
     504        7424 :     return false;
     505             : }
     506             : 
     507             : /*
     508             :  * _bt_rewind_nonrequired_arrays() -- Rewind non-required arrays
     509             :  *
     510             :  * Called when _bt_advance_array_keys decides to start a new primitive index
     511             :  * scan on the basis of the current scan position being before the position
     512             :  * that _bt_first is capable of repositioning the scan to by applying an
     513             :  * inequality operator required in the opposite-to-scan direction only.
     514             :  *
     515             :  * Although equality strategy scan keys (for both arrays and non-arrays alike)
     516             :  * are either marked required in both directions or in neither direction,
     517             :  * there is a sense in which non-required arrays behave like required arrays.
     518             :  * With a qual such as "WHERE a IN (100, 200) AND b >= 3 AND c IN (5, 6, 7)",
     519             :  * the scan key on "c" is non-required, but nevertheless enables positioning
     520             :  * the scan at the first tuple >= "(100, 3, 5)" on the leaf level during the
     521             :  * first descent of the tree by _bt_first.  Later on, there could also be a
     522             :  * second descent, that places the scan right before tuples >= "(200, 3, 5)".
     523             :  * _bt_first must never be allowed to build an insertion scan key whose "c"
     524             :  * entry is set to a value other than 5, the "c" array's first element/value.
     525             :  * (Actually, it's the first in the current scan direction.  This example uses
     526             :  * a forward scan.)
     527             :  *
     528             :  * Calling here resets the array scan key elements for the scan's non-required
     529             :  * arrays.  This is strictly necessary for correctness in a subset of cases
     530             :  * involving "required in opposite direction"-triggered primitive index scans.
     531             :  * Not all callers are at risk of _bt_first using a non-required array like
     532             :  * this, but advancement always resets the arrays when another primitive scan
     533             :  * is scheduled, just to keep things simple.  Array advancement even makes
     534             :  * sure to reset non-required arrays during scans that have no inequalities.
     535             :  * (Advancement still won't call here when there are no inequalities, though
     536             :  * that's just because it's all handled indirectly instead.)
     537             :  *
     538             :  * Note: _bt_verify_arrays_bt_first is called by an assertion to enforce that
     539             :  * everybody got this right.
     540             :  */
     541             : static void
     542           0 : _bt_rewind_nonrequired_arrays(IndexScanDesc scan, ScanDirection dir)
     543             : {
     544           0 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     545           0 :     int         arrayidx = 0;
     546             : 
     547           0 :     for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
     548             :     {
     549           0 :         ScanKey     cur = so->keyData + ikey;
     550           0 :         BTArrayKeyInfo *array = NULL;
     551             :         int         first_elem_dir;
     552             : 
     553           0 :         if (!(cur->sk_flags & SK_SEARCHARRAY) ||
     554           0 :             cur->sk_strategy != BTEqualStrategyNumber)
     555           0 :             continue;
     556             : 
     557           0 :         array = &so->arrayKeys[arrayidx++];
     558             :         Assert(array->scan_key == ikey);
     559             : 
     560           0 :         if ((cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)))
     561           0 :             continue;
     562             : 
     563           0 :         if (ScanDirectionIsForward(dir))
     564           0 :             first_elem_dir = 0;
     565             :         else
     566           0 :             first_elem_dir = array->num_elems - 1;
     567             : 
     568           0 :         if (array->cur_elem != first_elem_dir)
     569             :         {
     570           0 :             array->cur_elem = first_elem_dir;
     571           0 :             cur->sk_argument = array->elem_values[first_elem_dir];
     572             :         }
     573             :     }
     574           0 : }
     575             : 
     576             : /*
     577             :  * _bt_tuple_before_array_skeys() -- too early to advance required arrays?
     578             :  *
     579             :  * We always compare the tuple using the current array keys (which we assume
     580             :  * are already set in so->keyData[]).  readpagetup indicates if tuple is the
     581             :  * scan's current _bt_readpage-wise tuple.
     582             :  *
     583             :  * readpagetup callers must only call here when _bt_check_compare already set
     584             :  * continuescan=false.  We help these callers deal with _bt_check_compare's
     585             :  * inability to distinguishing between the < and > cases (it uses equality
     586             :  * operator scan keys, whereas we use 3-way ORDER procs).  These callers pass
     587             :  * a _bt_check_compare-set sktrig value that indicates which scan key
     588             :  * triggered the call (!readpagetup callers just pass us sktrig=0 instead).
     589             :  * This information allows us to avoid wastefully checking earlier scan keys
     590             :  * that were already deemed to have been satisfied inside _bt_check_compare.
     591             :  *
     592             :  * Returns false when caller's tuple is >= the current required equality scan
     593             :  * keys (or <=, in the case of backwards scans).  This happens to readpagetup
     594             :  * callers when the scan has reached the point of needing its array keys
     595             :  * advanced; caller will need to advance required and non-required arrays at
     596             :  * scan key offsets >= sktrig, plus scan keys < sktrig iff sktrig rolls over.
     597             :  * (When we return false to readpagetup callers, tuple can only be == current
     598             :  * required equality scan keys when caller's sktrig indicates that the arrays
     599             :  * need to be advanced due to an unsatisfied required inequality key trigger.)
     600             :  *
     601             :  * Returns true when caller passes a tuple that is < the current set of
     602             :  * equality keys for the most significant non-equal required scan key/column
     603             :  * (or > the keys, during backwards scans).  This happens to readpagetup
     604             :  * callers when tuple is still before the start of matches for the scan's
     605             :  * required equality strategy scan keys.  (sktrig can't have indicated that an
     606             :  * inequality strategy scan key wasn't satisfied in _bt_check_compare when we
     607             :  * return true.  In fact, we automatically return false when passed such an
     608             :  * inequality sktrig by readpagetup callers -- _bt_check_compare's initial
     609             :  * continuescan=false doesn't really need to be confirmed here by us.)
     610             :  *
     611             :  * !readpagetup callers optionally pass us *scanBehind, which tracks whether
     612             :  * any missing truncated attributes might have affected array advancement
     613             :  * (compared to what would happen if it was shown the first non-pivot tuple on
     614             :  * the page to the right of caller's finaltup/high key tuple instead).  It's
     615             :  * only possible that we'll set *scanBehind to true when caller passes us a
     616             :  * pivot tuple (with truncated -inf attributes) that we return false for.
     617             :  */
     618             : static bool
     619       51992 : _bt_tuple_before_array_skeys(IndexScanDesc scan, ScanDirection dir,
     620             :                              IndexTuple tuple, TupleDesc tupdesc, int tupnatts,
     621             :                              bool readpagetup, int sktrig, bool *scanBehind)
     622             : {
     623       51992 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     624             : 
     625             :     Assert(so->numArrayKeys);
     626             :     Assert(so->numberOfKeys);
     627             :     Assert(sktrig == 0 || readpagetup);
     628             :     Assert(!readpagetup || scanBehind == NULL);
     629             : 
     630       51992 :     if (scanBehind)
     631       17880 :         *scanBehind = false;
     632             : 
     633       52168 :     for (int ikey = sktrig; ikey < so->numberOfKeys; ikey++)
     634             :     {
     635       52104 :         ScanKey     cur = so->keyData + ikey;
     636             :         Datum       tupdatum;
     637             :         bool        tupnull;
     638             :         int32       result;
     639             : 
     640             :         /* readpagetup calls require one ORDER proc comparison (at most) */
     641             :         Assert(!readpagetup || ikey == sktrig);
     642             : 
     643             :         /*
     644             :          * Once we reach a non-required scan key, we're completely done.
     645             :          *
     646             :          * Note: we deliberately don't consider the scan direction here.
     647             :          * _bt_advance_array_keys caller requires that we track *scanBehind
     648             :          * without concern for scan direction.
     649             :          */
     650       52104 :         if ((cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) == 0)
     651             :         {
     652             :             Assert(!readpagetup);
     653             :             Assert(ikey > sktrig || ikey == 0);
     654       51928 :             return false;
     655             :         }
     656             : 
     657       52104 :         if (cur->sk_attno > tupnatts)
     658             :         {
     659             :             Assert(!readpagetup);
     660             : 
     661             :             /*
     662             :              * When we reach a high key's truncated attribute, assume that the
     663             :              * tuple attribute's value is >= the scan's equality constraint
     664             :              * scan keys (but set *scanBehind to let interested callers know
     665             :              * that a truncated attribute might have affected our answer).
     666             :              */
     667           6 :             if (scanBehind)
     668           6 :                 *scanBehind = true;
     669             : 
     670           6 :             return false;
     671             :         }
     672             : 
     673             :         /*
     674             :          * Deal with inequality strategy scan keys that _bt_check_compare set
     675             :          * continuescan=false for
     676             :          */
     677       52098 :         if (cur->sk_strategy != BTEqualStrategyNumber)
     678             :         {
     679             :             /*
     680             :              * When _bt_check_compare indicated that a required inequality
     681             :              * scan key wasn't satisfied, there's no need to verify anything;
     682             :              * caller always calls _bt_advance_array_keys with this sktrig.
     683             :              */
     684           6 :             if (readpagetup)
     685           6 :                 return false;
     686             : 
     687             :             /*
     688             :              * Otherwise we can't give up, since we must check all required
     689             :              * scan keys (required in either direction) in order to correctly
     690             :              * track *scanBehind for caller
     691             :              */
     692           0 :             continue;
     693             :         }
     694             : 
     695       52092 :         tupdatum = index_getattr(tuple, cur->sk_attno, tupdesc, &tupnull);
     696             : 
     697       52092 :         result = _bt_compare_array_skey(&so->orderProcs[ikey],
     698             :                                         tupdatum, tupnull,
     699             :                                         cur->sk_argument, cur);
     700             : 
     701             :         /*
     702             :          * Does this comparison indicate that caller must _not_ advance the
     703             :          * scan's arrays just yet?
     704             :          */
     705       52092 :         if ((ScanDirectionIsForward(dir) && result < 0) ||
     706          60 :             (ScanDirectionIsBackward(dir) && result > 0))
     707       22920 :             return true;
     708             : 
     709             :         /*
     710             :          * Does this comparison indicate that caller should now advance the
     711             :          * scan's arrays?  (Must be if we get here during a readpagetup call.)
     712             :          */
     713       29172 :         if (readpagetup || result != 0)
     714             :         {
     715             :             Assert(result != 0);
     716       28996 :             return false;
     717             :         }
     718             : 
     719             :         /*
     720             :          * Inconclusive -- need to check later scan keys, too.
     721             :          *
     722             :          * This must be a finaltup precheck, or a call made from an assertion.
     723             :          */
     724             :         Assert(result == 0);
     725             :     }
     726             : 
     727             :     Assert(!readpagetup);
     728             : 
     729          64 :     return false;
     730             : }
     731             : 
     732             : /*
     733             :  * _bt_start_prim_scan() -- start scheduled primitive index scan?
     734             :  *
     735             :  * Returns true if _bt_checkkeys scheduled another primitive index scan, just
     736             :  * as the last one ended.  Otherwise returns false, indicating that the array
     737             :  * keys are now fully exhausted.
     738             :  *
     739             :  * Only call here during scans with one or more equality type array scan keys,
     740             :  * after _bt_first or _bt_next return false.
     741             :  */
     742             : bool
     743       84378 : _bt_start_prim_scan(IndexScanDesc scan, ScanDirection dir)
     744             : {
     745       84378 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     746             : 
     747             :     Assert(so->numArrayKeys);
     748             : 
     749       84378 :     so->scanBehind = so->oppositeDirCheck = false;    /* reset */
     750             : 
     751             :     /*
     752             :      * Array keys are advanced within _bt_checkkeys when the scan reaches the
     753             :      * leaf level (more precisely, they're advanced when the scan reaches the
     754             :      * end of each distinct set of array elements).  This process avoids
     755             :      * repeat access to leaf pages (across multiple primitive index scans) by
     756             :      * advancing the scan's array keys when it allows the primitive index scan
     757             :      * to find nearby matching tuples (or when it eliminates ranges of array
     758             :      * key space that can't possibly be satisfied by any index tuple).
     759             :      *
     760             :      * _bt_checkkeys sets a simple flag variable to schedule another primitive
     761             :      * index scan.  The flag tells us what to do.
     762             :      *
     763             :      * We cannot rely on _bt_first always reaching _bt_checkkeys.  There are
     764             :      * various cases where that won't happen.  For example, if the index is
     765             :      * completely empty, then _bt_first won't call _bt_readpage/_bt_checkkeys.
     766             :      * We also don't expect a call to _bt_checkkeys during searches for a
     767             :      * non-existent value that happens to be lower/higher than any existing
     768             :      * value in the index.
     769             :      *
     770             :      * We don't require special handling for these cases -- we don't need to
     771             :      * be explicitly instructed to _not_ perform another primitive index scan.
     772             :      * It's up to code under the control of _bt_first to always set the flag
     773             :      * when another primitive index scan will be required.
     774             :      *
     775             :      * This works correctly, even with the tricky cases listed above, which
     776             :      * all involve access to leaf pages "near the boundaries of the key space"
     777             :      * (whether it's from a leftmost/rightmost page, or an imaginary empty
     778             :      * leaf root page).  If _bt_checkkeys cannot be reached by a primitive
     779             :      * index scan for one set of array keys, then it also won't be reached for
     780             :      * any later set ("later" in terms of the direction that we scan the index
     781             :      * and advance the arrays).  The array keys won't have advanced in these
     782             :      * cases, but that's the correct behavior (even _bt_advance_array_keys
     783             :      * won't always advance the arrays at the point they become "exhausted").
     784             :      */
     785       84378 :     if (so->needPrimScan)
     786             :     {
     787             :         Assert(_bt_verify_arrays_bt_first(scan, dir));
     788             : 
     789             :         /*
     790             :          * Flag was set -- must call _bt_first again, which will reset the
     791             :          * scan's needPrimScan flag
     792             :          */
     793       17282 :         return true;
     794             :     }
     795             : 
     796             :     /* The top-level index scan ran out of tuples in this scan direction */
     797       67096 :     if (scan->parallel_scan != NULL)
     798          30 :         _bt_parallel_done(scan);
     799             : 
     800       67096 :     return false;
     801             : }
     802             : 
     803             : /*
     804             :  * _bt_advance_array_keys() -- Advance array elements using a tuple
     805             :  *
     806             :  * The scan always gets a new qual as a consequence of calling here (except
     807             :  * when we determine that the top-level scan has run out of matching tuples).
     808             :  * All later _bt_check_compare calls also use the same new qual that was first
     809             :  * used here (at least until the next call here advances the keys once again).
     810             :  * It's convenient to structure _bt_check_compare rechecks of caller's tuple
     811             :  * (using the new qual) as one the steps of advancing the scan's array keys,
     812             :  * so this function works as a wrapper around _bt_check_compare.
     813             :  *
     814             :  * Like _bt_check_compare, we'll set pstate.continuescan on behalf of the
     815             :  * caller, and return a boolean indicating if caller's tuple satisfies the
     816             :  * scan's new qual.  But unlike _bt_check_compare, we set so->needPrimScan
     817             :  * when we set continuescan=false, indicating if a new primitive index scan
     818             :  * has been scheduled (otherwise, the top-level scan has run out of tuples in
     819             :  * the current scan direction).
     820             :  *
     821             :  * Caller must use _bt_tuple_before_array_skeys to determine if the current
     822             :  * place in the scan is >= the current array keys _before_ calling here.
     823             :  * We're responsible for ensuring that caller's tuple is <= the newly advanced
     824             :  * required array keys once we return.  We try to find an exact match, but
     825             :  * failing that we'll advance the array keys to whatever set of array elements
     826             :  * comes next in the key space for the current scan direction.  Required array
     827             :  * keys "ratchet forwards" (or backwards).  They can only advance as the scan
     828             :  * itself advances through the index/key space.
     829             :  *
     830             :  * (The rules are the same for backwards scans, except that the operators are
     831             :  * flipped: just replace the precondition's >= operator with a <=, and the
     832             :  * postcondition's <= operator with a >=.  In other words, just swap the
     833             :  * precondition with the postcondition.)
     834             :  *
     835             :  * We also deal with "advancing" non-required arrays here.  Callers whose
     836             :  * sktrig scan key is non-required specify sktrig_required=false.  These calls
     837             :  * are the only exception to the general rule about always advancing the
     838             :  * required array keys (the scan may not even have a required array).  These
     839             :  * callers should just pass a NULL pstate (since there is never any question
     840             :  * of stopping the scan).  No call to _bt_tuple_before_array_skeys is required
     841             :  * ahead of these calls (it's already clear that any required scan keys must
     842             :  * be satisfied by caller's tuple).
     843             :  *
     844             :  * Note that we deal with non-array required equality strategy scan keys as
     845             :  * degenerate single element arrays here.  Obviously, they can never really
     846             :  * advance in the way that real arrays can, but they must still affect how we
     847             :  * advance real array scan keys (exactly like true array equality scan keys).
     848             :  * We have to keep around a 3-way ORDER proc for these (using the "=" operator
     849             :  * won't do), since in general whether the tuple is < or > _any_ unsatisfied
     850             :  * required equality key influences how the scan's real arrays must advance.
     851             :  *
     852             :  * Note also that we may sometimes need to advance the array keys when the
     853             :  * existing required array keys (and other required equality keys) are already
     854             :  * an exact match for every corresponding value from caller's tuple.  We must
     855             :  * do this for inequalities that _bt_check_compare set continuescan=false for.
     856             :  * They'll advance the array keys here, just like any other scan key that
     857             :  * _bt_check_compare stops on.  (This can even happen _after_ we advance the
     858             :  * array keys, in which case we'll advance the array keys a second time.  That
     859             :  * way _bt_checkkeys caller always has its required arrays advance to the
     860             :  * maximum possible extent that its tuple will allow.)
     861             :  */
     862             : static bool
     863       27840 : _bt_advance_array_keys(IndexScanDesc scan, BTReadPageState *pstate,
     864             :                        IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
     865             :                        int sktrig, bool sktrig_required)
     866             : {
     867       27840 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     868       27840 :     Relation    rel = scan->indexRelation;
     869       27840 :     ScanDirection dir = so->currPos.dir;
     870       27840 :     int         arrayidx = 0;
     871       27840 :     bool        beyond_end_advance = false,
     872       27840 :                 has_required_opposite_direction_only = false,
     873       27840 :                 oppodir_inequality_sktrig = false,
     874       27840 :                 all_required_satisfied = true,
     875       27840 :                 all_satisfied = true;
     876             : 
     877             :     /*
     878             :      * Unset so->scanBehind (and so->oppositeDirCheck) in case they're still
     879             :      * set from back when we dealt with the previous page's high key/finaltup
     880             :      */
     881       27840 :     so->scanBehind = so->oppositeDirCheck = false;
     882             : 
     883       27840 :     if (sktrig_required)
     884             :     {
     885             :         /*
     886             :          * Precondition array state assertion
     887             :          */
     888             :         Assert(!_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc,
     889             :                                              tupnatts, false, 0, NULL));
     890             : 
     891             :         /*
     892             :          * Required scan key wasn't satisfied, so required arrays will have to
     893             :          * advance.  Invalidate page-level state that tracks whether the
     894             :          * scan's required-in-opposite-direction-only keys are known to be
     895             :          * satisfied by page's remaining tuples.
     896             :          */
     897       27580 :         pstate->firstmatch = false;
     898             : 
     899             :         /* Shouldn't have to invalidate 'prechecked', though */
     900             :         Assert(!pstate->prechecked);
     901             : 
     902             :         /*
     903             :          * Once we return we'll have a new set of required array keys, so
     904             :          * reset state used by "look ahead" optimization
     905             :          */
     906       27580 :         pstate->rechecks = 0;
     907       27580 :         pstate->targetdistance = 0;
     908             :     }
     909             : 
     910             :     Assert(_bt_verify_keys_with_arraykeys(scan));
     911             : 
     912       59042 :     for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
     913             :     {
     914       31424 :         ScanKey     cur = so->keyData + ikey;
     915       31424 :         BTArrayKeyInfo *array = NULL;
     916             :         Datum       tupdatum;
     917       31424 :         bool        required = false,
     918       31424 :                     required_opposite_direction_only = false,
     919             :                     tupnull;
     920             :         int32       result;
     921       31424 :         int         set_elem = 0;
     922             : 
     923       31424 :         if (cur->sk_strategy == BTEqualStrategyNumber)
     924             :         {
     925             :             /* Manage array state */
     926       31148 :             if (cur->sk_flags & SK_SEARCHARRAY)
     927             :             {
     928       28704 :                 array = &so->arrayKeys[arrayidx++];
     929             :                 Assert(array->scan_key == ikey);
     930             :             }
     931             :         }
     932             :         else
     933             :         {
     934             :             /*
     935             :              * Are any inequalities required in the opposite direction only
     936             :              * present here?
     937             :              */
     938         276 :             if (((ScanDirectionIsForward(dir) &&
     939         276 :                   (cur->sk_flags & (SK_BT_REQBKWD))) ||
     940         120 :                  (ScanDirectionIsBackward(dir) &&
     941         120 :                   (cur->sk_flags & (SK_BT_REQFWD)))))
     942         150 :                 has_required_opposite_direction_only =
     943         150 :                     required_opposite_direction_only = true;
     944             :         }
     945             : 
     946             :         /* Optimization: skip over known-satisfied scan keys */
     947       31424 :         if (ikey < sktrig)
     948        3024 :             continue;
     949             : 
     950       30592 :         if (cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD))
     951             :         {
     952             :             Assert(sktrig_required);
     953             : 
     954       29096 :             required = true;
     955             : 
     956       29096 :             if (cur->sk_attno > tupnatts)
     957             :             {
     958             :                 /* Set this just like _bt_tuple_before_array_skeys */
     959             :                 Assert(sktrig < ikey);
     960           6 :                 so->scanBehind = true;
     961             :             }
     962             :         }
     963             : 
     964             :         /*
     965             :          * Handle a required non-array scan key that the initial call to
     966             :          * _bt_check_compare indicated triggered array advancement, if any.
     967             :          *
     968             :          * The non-array scan key's strategy will be <, <=, or = during a
     969             :          * forwards scan (or any one of =, >=, or > during a backwards scan).
     970             :          * It follows that the corresponding tuple attribute's value must now
     971             :          * be either > or >= the scan key value (for backwards scans it must
     972             :          * be either < or <= that value).
     973             :          *
     974             :          * If this is a required equality strategy scan key, this is just an
     975             :          * optimization; _bt_tuple_before_array_skeys already confirmed that
     976             :          * this scan key places us ahead of caller's tuple.  There's no need
     977             :          * to repeat that work now.  (The same underlying principle also gets
     978             :          * applied by the cur_elem_trig optimization used to speed up searches
     979             :          * for the next array element.)
     980             :          *
     981             :          * If this is a required inequality strategy scan key, we _must_ rely
     982             :          * on _bt_check_compare like this; we aren't capable of directly
     983             :          * evaluating required inequality strategy scan keys here, on our own.
     984             :          */
     985       30592 :         if (ikey == sktrig && !array)
     986             :         {
     987             :             Assert(sktrig_required && required && all_required_satisfied);
     988             : 
     989             :             /* Use "beyond end" advancement.  See below for an explanation. */
     990          84 :             beyond_end_advance = true;
     991          84 :             all_satisfied = all_required_satisfied = false;
     992             : 
     993             :             /*
     994             :              * Set a flag that remembers that this was an inequality required
     995             :              * in the opposite scan direction only, that nevertheless
     996             :              * triggered the call here.
     997             :              *
     998             :              * This only happens when an inequality operator (which must be
     999             :              * strict) encounters a group of NULLs that indicate the end of
    1000             :              * non-NULL values for tuples in the current scan direction.
    1001             :              */
    1002          84 :             if (unlikely(required_opposite_direction_only))
    1003           0 :                 oppodir_inequality_sktrig = true;
    1004             : 
    1005          84 :             continue;
    1006             :         }
    1007             : 
    1008             :         /*
    1009             :          * Nothing more for us to do with an inequality strategy scan key that
    1010             :          * wasn't the one that _bt_check_compare stopped on, though.
    1011             :          *
    1012             :          * Note: if our later call to _bt_check_compare (to recheck caller's
    1013             :          * tuple) sets continuescan=false due to finding this same inequality
    1014             :          * unsatisfied (possible when it's required in the scan direction),
    1015             :          * we'll deal with it via a recursive "second pass" call.
    1016             :          */
    1017       30508 :         else if (cur->sk_strategy != BTEqualStrategyNumber)
    1018          30 :             continue;
    1019             : 
    1020             :         /*
    1021             :          * Nothing for us to do with an equality strategy scan key that isn't
    1022             :          * marked required, either -- unless it's a non-required array
    1023             :          */
    1024       30478 :         else if (!required && !array)
    1025        1222 :             continue;
    1026             : 
    1027             :         /*
    1028             :          * Here we perform steps for all array scan keys after a required
    1029             :          * array scan key whose binary search triggered "beyond end of array
    1030             :          * element" array advancement due to encountering a tuple attribute
    1031             :          * value > the closest matching array key (or < for backwards scans).
    1032             :          */
    1033       29256 :         if (beyond_end_advance)
    1034             :         {
    1035             :             int         final_elem_dir;
    1036             : 
    1037         350 :             if (ScanDirectionIsBackward(dir) || !array)
    1038         148 :                 final_elem_dir = 0;
    1039             :             else
    1040         202 :                 final_elem_dir = array->num_elems - 1;
    1041             : 
    1042         350 :             if (array && array->cur_elem != final_elem_dir)
    1043             :             {
    1044          42 :                 array->cur_elem = final_elem_dir;
    1045          42 :                 cur->sk_argument = array->elem_values[final_elem_dir];
    1046             :             }
    1047             : 
    1048         350 :             continue;
    1049             :         }
    1050             : 
    1051             :         /*
    1052             :          * Here we perform steps for all array scan keys after a required
    1053             :          * array scan key whose tuple attribute was < the closest matching
    1054             :          * array key when we dealt with it (or > for backwards scans).
    1055             :          *
    1056             :          * This earlier required array key already puts us ahead of caller's
    1057             :          * tuple in the key space (for the current scan direction).  We must
    1058             :          * make sure that subsequent lower-order array keys do not put us too
    1059             :          * far ahead (ahead of tuples that have yet to be seen by our caller).
    1060             :          * For example, when a tuple "(a, b) = (42, 5)" advances the array
    1061             :          * keys on "a" from 40 to 45, we must also set "b" to whatever the
    1062             :          * first array element for "b" is.  It would be wrong to allow "b" to
    1063             :          * be set based on the tuple value.
    1064             :          *
    1065             :          * Perform the same steps with truncated high key attributes.  You can
    1066             :          * think of this as a "binary search" for the element closest to the
    1067             :          * value -inf.  Again, the arrays must never get ahead of the scan.
    1068             :          */
    1069       28906 :         if (!all_required_satisfied || cur->sk_attno > tupnatts)
    1070             :         {
    1071             :             int         first_elem_dir;
    1072             : 
    1073         506 :             if (ScanDirectionIsForward(dir) || !array)
    1074         506 :                 first_elem_dir = 0;
    1075             :             else
    1076           0 :                 first_elem_dir = array->num_elems - 1;
    1077             : 
    1078         506 :             if (array && array->cur_elem != first_elem_dir)
    1079             :             {
    1080         192 :                 array->cur_elem = first_elem_dir;
    1081         192 :                 cur->sk_argument = array->elem_values[first_elem_dir];
    1082             :             }
    1083             : 
    1084         506 :             continue;
    1085             :         }
    1086             : 
    1087             :         /*
    1088             :          * Search in scankey's array for the corresponding tuple attribute
    1089             :          * value from caller's tuple
    1090             :          */
    1091       28400 :         tupdatum = index_getattr(tuple, cur->sk_attno, tupdesc, &tupnull);
    1092             : 
    1093       28400 :         if (array)
    1094             :         {
    1095       27996 :             bool        cur_elem_trig = (sktrig_required && ikey == sktrig);
    1096             : 
    1097             :             /*
    1098             :              * Binary search for closest match that's available from the array
    1099             :              */
    1100       27996 :             set_elem = _bt_binsrch_array_skey(&so->orderProcs[ikey],
    1101             :                                               cur_elem_trig, dir,
    1102             :                                               tupdatum, tupnull, array, cur,
    1103             :                                               &result);
    1104             : 
    1105             :             Assert(set_elem >= 0 && set_elem < array->num_elems);
    1106             :         }
    1107             :         else
    1108             :         {
    1109             :             Assert(sktrig_required && required);
    1110             : 
    1111             :             /*
    1112             :              * This is a required non-array equality strategy scan key, which
    1113             :              * we'll treat as a degenerate single element array.
    1114             :              *
    1115             :              * This scan key's imaginary "array" can't really advance, but it
    1116             :              * can still roll over like any other array.  (Actually, this is
    1117             :              * no different to real single value arrays, which never advance
    1118             :              * without rolling over -- they can never truly advance, either.)
    1119             :              */
    1120         404 :             result = _bt_compare_array_skey(&so->orderProcs[ikey],
    1121             :                                             tupdatum, tupnull,
    1122             :                                             cur->sk_argument, cur);
    1123             :         }
    1124             : 
    1125             :         /*
    1126             :          * Consider "beyond end of array element" array advancement.
    1127             :          *
    1128             :          * When the tuple attribute value is > the closest matching array key
    1129             :          * (or < in the backwards scan case), we need to ratchet this array
    1130             :          * forward (backward) by one increment, so that caller's tuple ends up
    1131             :          * being < final array value instead (or > final array value instead).
    1132             :          * This process has to work for all of the arrays, not just this one:
    1133             :          * it must "carry" to higher-order arrays when the set_elem that we
    1134             :          * just found happens to be the final one for the scan's direction.
    1135             :          * Incrementing (decrementing) set_elem itself isn't good enough.
    1136             :          *
    1137             :          * Our approach is to provisionally use set_elem as if it was an exact
    1138             :          * match now, then set each later/less significant array to whatever
    1139             :          * its final element is.  Once outside the loop we'll then "increment
    1140             :          * this array's set_elem" by calling _bt_advance_array_keys_increment.
    1141             :          * That way the process rolls over to higher order arrays as needed.
    1142             :          *
    1143             :          * Under this scheme any required arrays only ever ratchet forwards
    1144             :          * (or backwards), and always do so to the maximum possible extent
    1145             :          * that we can know will be safe without seeing the scan's next tuple.
    1146             :          * We don't need any special handling for required scan keys that lack
    1147             :          * a real array to advance, nor for redundant scan keys that couldn't
    1148             :          * be eliminated by _bt_preprocess_keys.  It won't matter if some of
    1149             :          * our "true" array scan keys (or even all of them) are non-required.
    1150             :          */
    1151       28400 :         if (required &&
    1152       28140 :             ((ScanDirectionIsForward(dir) && result > 0) ||
    1153          24 :              (ScanDirectionIsBackward(dir) && result < 0)))
    1154        7378 :             beyond_end_advance = true;
    1155             : 
    1156             :         Assert(all_required_satisfied && all_satisfied);
    1157       28400 :         if (result != 0)
    1158             :         {
    1159             :             /*
    1160             :              * Track whether caller's tuple satisfies our new post-advancement
    1161             :              * qual, for required scan keys, as well as for the entire set of
    1162             :              * interesting scan keys (all required scan keys plus non-required
    1163             :              * array scan keys are considered interesting.)
    1164             :              */
    1165       25760 :             all_satisfied = false;
    1166       25760 :             if (required)
    1167       25538 :                 all_required_satisfied = false;
    1168             :             else
    1169             :             {
    1170             :                 /*
    1171             :                  * There's no need to advance the arrays using the best
    1172             :                  * available match for a non-required array.  Give up now.
    1173             :                  * (Though note that sktrig_required calls still have to do
    1174             :                  * all the usual post-advancement steps, including the recheck
    1175             :                  * call to _bt_check_compare.)
    1176             :                  */
    1177         222 :                 break;
    1178             :             }
    1179             :         }
    1180             : 
    1181             :         /* Advance array keys, even when set_elem isn't an exact match */
    1182       28178 :         if (array && array->cur_elem != set_elem)
    1183             :         {
    1184       20402 :             array->cur_elem = set_elem;
    1185       20402 :             cur->sk_argument = array->elem_values[set_elem];
    1186             :         }
    1187             :     }
    1188             : 
    1189             :     /*
    1190             :      * Advance the array keys incrementally whenever "beyond end of array
    1191             :      * element" array advancement happens, so that advancement will carry to
    1192             :      * higher-order arrays (might exhaust all the scan's arrays instead, which
    1193             :      * ends the top-level scan).
    1194             :      */
    1195       27840 :     if (beyond_end_advance && !_bt_advance_array_keys_increment(scan, dir))
    1196        7424 :         goto end_toplevel_scan;
    1197             : 
    1198             :     Assert(_bt_verify_keys_with_arraykeys(scan));
    1199             : 
    1200             :     /*
    1201             :      * Does tuple now satisfy our new qual?  Recheck with _bt_check_compare.
    1202             :      *
    1203             :      * Calls triggered by an unsatisfied required scan key, whose tuple now
    1204             :      * satisfies all required scan keys, but not all nonrequired array keys,
    1205             :      * will still require a recheck call to _bt_check_compare.  They'll still
    1206             :      * need its "second pass" handling of required inequality scan keys.
    1207             :      * (Might have missed a still-unsatisfied required inequality scan key
    1208             :      * that caller didn't detect as the sktrig scan key during its initial
    1209             :      * _bt_check_compare call that used the old/original qual.)
    1210             :      *
    1211             :      * Calls triggered by an unsatisfied nonrequired array scan key never need
    1212             :      * "second pass" handling of required inequalities (nor any other handling
    1213             :      * of any required scan key).  All that matters is whether caller's tuple
    1214             :      * satisfies the new qual, so it's safe to just skip the _bt_check_compare
    1215             :      * recheck when we've already determined that it can only return 'false'.
    1216             :      */
    1217       20416 :     if ((sktrig_required && all_required_satisfied) ||
    1218       18458 :         (!sktrig_required && all_satisfied))
    1219             :     {
    1220        1996 :         int         nsktrig = sktrig + 1;
    1221             :         bool        continuescan;
    1222             : 
    1223             :         Assert(all_required_satisfied);
    1224             : 
    1225             :         /* Recheck _bt_check_compare on behalf of caller */
    1226        1996 :         if (_bt_check_compare(scan, dir, tuple, tupnatts, tupdesc,
    1227             :                               false, false, false,
    1228        1990 :                               &continuescan, &nsktrig) &&
    1229        1990 :             !so->scanBehind)
    1230             :         {
    1231             :             /* This tuple satisfies the new qual */
    1232             :             Assert(all_satisfied && continuescan);
    1233             : 
    1234        1984 :             if (pstate)
    1235        1946 :                 pstate->continuescan = true;
    1236             : 
    1237        1984 :             return true;
    1238             :         }
    1239             : 
    1240             :         /*
    1241             :          * Consider "second pass" handling of required inequalities.
    1242             :          *
    1243             :          * It's possible that our _bt_check_compare call indicated that the
    1244             :          * scan should end due to some unsatisfied inequality that wasn't
    1245             :          * initially recognized as such by us.  Handle this by calling
    1246             :          * ourselves recursively, this time indicating that the trigger is the
    1247             :          * inequality that we missed first time around (and using a set of
    1248             :          * required array/equality keys that are now exact matches for tuple).
    1249             :          *
    1250             :          * We make a strong, general guarantee that every _bt_checkkeys call
    1251             :          * here will advance the array keys to the maximum possible extent
    1252             :          * that we can know to be safe based on caller's tuple alone.  If we
    1253             :          * didn't perform this step, then that guarantee wouldn't quite hold.
    1254             :          */
    1255          12 :         if (unlikely(!continuescan))
    1256             :         {
    1257             :             bool        satisfied PG_USED_FOR_ASSERTS_ONLY;
    1258             : 
    1259             :             Assert(sktrig_required);
    1260             :             Assert(so->keyData[nsktrig].sk_strategy != BTEqualStrategyNumber);
    1261             : 
    1262             :             /*
    1263             :              * The tuple must use "beyond end" advancement during the
    1264             :              * recursive call, so we cannot possibly end up back here when
    1265             :              * recursing.  We'll consume a small, fixed amount of stack space.
    1266             :              */
    1267             :             Assert(!beyond_end_advance);
    1268             : 
    1269             :             /* Advance the array keys a second time using same tuple */
    1270           0 :             satisfied = _bt_advance_array_keys(scan, pstate, tuple, tupnatts,
    1271             :                                                tupdesc, nsktrig, true);
    1272             : 
    1273             :             /* This tuple doesn't satisfy the inequality */
    1274             :             Assert(!satisfied);
    1275           0 :             return false;
    1276             :         }
    1277             : 
    1278             :         /*
    1279             :          * Some non-required scan key (from new qual) still not satisfied.
    1280             :          *
    1281             :          * All scan keys required in the current scan direction must still be
    1282             :          * satisfied, though, so we can trust all_required_satisfied below.
    1283             :          */
    1284             :     }
    1285             : 
    1286             :     /*
    1287             :      * When we were called just to deal with "advancing" non-required arrays,
    1288             :      * this is as far as we can go (cannot stop the scan for these callers)
    1289             :      */
    1290       18432 :     if (!sktrig_required)
    1291             :     {
    1292             :         /* Caller's tuple doesn't match any qual */
    1293         222 :         return false;
    1294             :     }
    1295             : 
    1296             :     /*
    1297             :      * Postcondition array state assertion (for still-unsatisfied tuples).
    1298             :      *
    1299             :      * By here we have established that the scan's required arrays (scan must
    1300             :      * have at least one required array) advanced, without becoming exhausted.
    1301             :      *
    1302             :      * Caller's tuple is now < the newly advanced array keys (or > when this
    1303             :      * is a backwards scan), except in the case where we only got this far due
    1304             :      * to an unsatisfied non-required scan key.  Verify that with an assert.
    1305             :      *
    1306             :      * Note: we don't just quit at this point when all required scan keys were
    1307             :      * found to be satisfied because we need to consider edge-cases involving
    1308             :      * scan keys required in the opposite direction only; those aren't tracked
    1309             :      * by all_required_satisfied. (Actually, oppodir_inequality_sktrig trigger
    1310             :      * scan keys are tracked by all_required_satisfied, since it's convenient
    1311             :      * for _bt_check_compare to behave as if they are required in the current
    1312             :      * scan direction to deal with NULLs.  We'll account for that separately.)
    1313             :      */
    1314             :     Assert(_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc, tupnatts,
    1315             :                                         false, 0, NULL) ==
    1316             :            !all_required_satisfied);
    1317             : 
    1318             :     /*
    1319             :      * We generally permit primitive index scans to continue onto the next
    1320             :      * sibling page when the page's finaltup satisfies all required scan keys
    1321             :      * at the point where we're between pages.
    1322             :      *
    1323             :      * If caller's tuple is also the page's finaltup, and we see that required
    1324             :      * scan keys still aren't satisfied, start a new primitive index scan.
    1325             :      */
    1326       18210 :     if (!all_required_satisfied && pstate->finaltup == tuple)
    1327          48 :         goto new_prim_scan;
    1328             : 
    1329             :     /*
    1330             :      * Proactively check finaltup (don't wait until finaltup is reached by the
    1331             :      * scan) when it might well turn out to not be satisfied later on.
    1332             :      *
    1333             :      * Note: if so->scanBehind hasn't already been set for finaltup by us,
    1334             :      * it'll be set during this call to _bt_tuple_before_array_skeys.  Either
    1335             :      * way, it'll be set correctly (for the whole page) after this point.
    1336             :      */
    1337       36042 :     if (!all_required_satisfied && pstate->finaltup &&
    1338       35760 :         _bt_tuple_before_array_skeys(scan, dir, pstate->finaltup, tupdesc,
    1339       35760 :                                      BTreeTupleGetNAtts(pstate->finaltup, rel),
    1340             :                                      false, 0, &so->scanBehind))
    1341       17234 :         goto new_prim_scan;
    1342             : 
    1343             :     /*
    1344             :      * When we encounter a truncated finaltup high key attribute, we're
    1345             :      * optimistic about the chances of its corresponding required scan key
    1346             :      * being satisfied when we go on to check it against tuples from this
    1347             :      * page's right sibling leaf page.  We consider truncated attributes to be
    1348             :      * satisfied by required scan keys, which allows the primitive index scan
    1349             :      * to continue to the next leaf page.  We must set so->scanBehind to true
    1350             :      * to remember that the last page's finaltup had "satisfied" required scan
    1351             :      * keys for one or more truncated attribute values (scan keys required in
    1352             :      * _either_ scan direction).
    1353             :      *
    1354             :      * There is a chance that _bt_checkkeys (which checks so->scanBehind) will
    1355             :      * find that even the sibling leaf page's finaltup is < the new array
    1356             :      * keys.  When that happens, our optimistic policy will have incurred a
    1357             :      * single extra leaf page access that could have been avoided.
    1358             :      *
    1359             :      * A pessimistic policy would give backward scans a gratuitous advantage
    1360             :      * over forward scans.  We'd punish forward scans for applying more
    1361             :      * accurate information from the high key, rather than just using the
    1362             :      * final non-pivot tuple as finaltup, in the style of backward scans.
    1363             :      * Being pessimistic would also give some scans with non-required arrays a
    1364             :      * perverse advantage over similar scans that use required arrays instead.
    1365             :      *
    1366             :      * You can think of this as a speculative bet on what the scan is likely
    1367             :      * to find on the next page.  It's not much of a gamble, though, since the
    1368             :      * untruncated prefix of attributes must strictly satisfy the new qual
    1369             :      * (though it's okay if any non-required scan keys fail to be satisfied).
    1370             :      */
    1371         928 :     if (so->scanBehind && has_required_opposite_direction_only)
    1372             :     {
    1373             :         /*
    1374             :          * However, we need to work harder whenever the scan involves a scan
    1375             :          * key required in the opposite direction to the scan only, along with
    1376             :          * a finaltup with at least one truncated attribute that's associated
    1377             :          * with a scan key marked required (required in either direction).
    1378             :          *
    1379             :          * _bt_check_compare simply won't stop the scan for a scan key that's
    1380             :          * marked required in the opposite scan direction only.  That leaves
    1381             :          * us without an automatic way of reconsidering any opposite-direction
    1382             :          * inequalities if it turns out that starting a new primitive index
    1383             :          * scan will allow _bt_first to skip ahead by a great many leaf pages.
    1384             :          *
    1385             :          * We deal with this by explicitly scheduling a finaltup recheck on
    1386             :          * the right sibling page.  _bt_readpage calls _bt_oppodir_checkkeys
    1387             :          * for next page's finaltup (and we skip it for this page's finaltup).
    1388             :          */
    1389           6 :         so->oppositeDirCheck = true; /* recheck next page's high key */
    1390             :     }
    1391             : 
    1392             :     /*
    1393             :      * Handle inequalities marked required in the opposite scan direction.
    1394             :      * They can also signal that we should start a new primitive index scan.
    1395             :      *
    1396             :      * It's possible that the scan is now positioned where "matching" tuples
    1397             :      * begin, and that caller's tuple satisfies all scan keys required in the
    1398             :      * current scan direction.  But if caller's tuple still doesn't satisfy
    1399             :      * other scan keys that are required in the opposite scan direction only
    1400             :      * (e.g., a required >= strategy scan key when scan direction is forward),
    1401             :      * it's still possible that there are many leaf pages before the page that
    1402             :      * _bt_first could skip straight to.  Groveling through all those pages
    1403             :      * will always give correct answers, but it can be very inefficient.  We
    1404             :      * must avoid needlessly scanning extra pages.
    1405             :      *
    1406             :      * Separately, it's possible that _bt_check_compare set continuescan=false
    1407             :      * for a scan key that's required in the opposite direction only.  This is
    1408             :      * a special case, that happens only when _bt_check_compare sees that the
    1409             :      * inequality encountered a NULL value.  This signals the end of non-NULL
    1410             :      * values in the current scan direction, which is reason enough to end the
    1411             :      * (primitive) scan.  If this happens at the start of a large group of
    1412             :      * NULL values, then we shouldn't expect to be called again until after
    1413             :      * the scan has already read indefinitely-many leaf pages full of tuples
    1414             :      * with NULL suffix values.  We need a separate test for this case so that
    1415             :      * we don't miss our only opportunity to skip over such a group of pages.
    1416             :      * (_bt_first is expected to skip over the group of NULLs by applying a
    1417             :      * similar "deduce NOT NULL" rule, where it finishes its insertion scan
    1418             :      * key by consing up an explicit SK_SEARCHNOTNULL key.)
    1419             :      *
    1420             :      * Apply a test against finaltup to detect and recover from the problem:
    1421             :      * if even finaltup doesn't satisfy such an inequality, we just skip by
    1422             :      * starting a new primitive index scan.  When we skip, we know for sure
    1423             :      * that all of the tuples on the current page following caller's tuple are
    1424             :      * also before the _bt_first-wise start of tuples for our new qual.  That
    1425             :      * at least suggests many more skippable pages beyond the current page.
    1426             :      * (when so->oppositeDirCheck was set, this'll happen on the next page.)
    1427             :      */
    1428         922 :     else if (has_required_opposite_direction_only && pstate->finaltup &&
    1429           0 :              (all_required_satisfied || oppodir_inequality_sktrig) &&
    1430           0 :              unlikely(!_bt_oppodir_checkkeys(scan, dir, pstate->finaltup)))
    1431             :     {
    1432             :         /*
    1433             :          * Make sure that any non-required arrays are set to the first array
    1434             :          * element for the current scan direction
    1435             :          */
    1436           0 :         _bt_rewind_nonrequired_arrays(scan, dir);
    1437           0 :         goto new_prim_scan;
    1438             :     }
    1439             : 
    1440             :     /*
    1441             :      * Stick with the ongoing primitive index scan for now.
    1442             :      *
    1443             :      * It's possible that later tuples will also turn out to have values that
    1444             :      * are still < the now-current array keys (or > the current array keys).
    1445             :      * Our caller will handle this by performing what amounts to a linear
    1446             :      * search of the page, implemented by calling _bt_check_compare and then
    1447             :      * _bt_tuple_before_array_skeys for each tuple.
    1448             :      *
    1449             :      * This approach has various advantages over a binary search of the page.
    1450             :      * Repeated binary searches of the page (one binary search for every array
    1451             :      * advancement) won't outperform a continuous linear search.  While there
    1452             :      * are workloads that a naive linear search won't handle well, our caller
    1453             :      * has a "look ahead" fallback mechanism to deal with that problem.
    1454             :      */
    1455         928 :     pstate->continuescan = true; /* Override _bt_check_compare */
    1456         928 :     so->needPrimScan = false;    /* _bt_readpage has more tuples to check */
    1457             : 
    1458         928 :     if (so->scanBehind)
    1459             :     {
    1460             :         /* Optimization: skip by setting "look ahead" mechanism's offnum */
    1461             :         Assert(ScanDirectionIsForward(dir));
    1462          12 :         pstate->skip = pstate->maxoff + 1;
    1463             :     }
    1464             : 
    1465             :     /* Caller's tuple doesn't match the new qual */
    1466         928 :     return false;
    1467             : 
    1468       17282 : new_prim_scan:
    1469             : 
    1470             :     Assert(pstate->finaltup);    /* not on rightmost/leftmost page */
    1471             : 
    1472             :     /*
    1473             :      * End this primitive index scan, but schedule another.
    1474             :      *
    1475             :      * Note: We make a soft assumption that the current scan direction will
    1476             :      * also be used within _bt_next, when it is asked to step off this page.
    1477             :      * It is up to _bt_next to cancel this scheduled primitive index scan
    1478             :      * whenever it steps to a page in the direction opposite currPos.dir.
    1479             :      */
    1480       17282 :     pstate->continuescan = false;    /* Tell _bt_readpage we're done... */
    1481       17282 :     so->needPrimScan = true; /* ...but call _bt_first again */
    1482             : 
    1483       17282 :     if (scan->parallel_scan)
    1484          36 :         _bt_parallel_primscan_schedule(scan, so->currPos.currPage);
    1485             : 
    1486             :     /* Caller's tuple doesn't match the new qual */
    1487       17282 :     return false;
    1488             : 
    1489        7424 : end_toplevel_scan:
    1490             : 
    1491             :     /*
    1492             :      * End the current primitive index scan, but don't schedule another.
    1493             :      *
    1494             :      * This ends the entire top-level scan in the current scan direction.
    1495             :      *
    1496             :      * Note: The scan's arrays (including any non-required arrays) are now in
    1497             :      * their final positions for the current scan direction.  If the scan
    1498             :      * direction happens to change, then the arrays will already be in their
    1499             :      * first positions for what will then be the current scan direction.
    1500             :      */
    1501        7424 :     pstate->continuescan = false;    /* Tell _bt_readpage we're done... */
    1502        7424 :     so->needPrimScan = false;    /* ...don't call _bt_first again, though */
    1503             : 
    1504             :     /* Caller's tuple doesn't match any qual */
    1505        7424 :     return false;
    1506             : }
    1507             : 
    1508             : #ifdef USE_ASSERT_CHECKING
    1509             : /*
    1510             :  * Verify that the scan's qual state matches what we expect at the point that
    1511             :  * _bt_start_prim_scan is about to start a just-scheduled new primitive scan.
    1512             :  *
    1513             :  * We enforce a rule against non-required array scan keys: they must start out
    1514             :  * with whatever element is the first for the scan's current scan direction.
    1515             :  * See _bt_rewind_nonrequired_arrays comments for an explanation.
    1516             :  */
    1517             : static bool
    1518             : _bt_verify_arrays_bt_first(IndexScanDesc scan, ScanDirection dir)
    1519             : {
    1520             :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1521             :     int         arrayidx = 0;
    1522             : 
    1523             :     for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
    1524             :     {
    1525             :         ScanKey     cur = so->keyData + ikey;
    1526             :         BTArrayKeyInfo *array = NULL;
    1527             :         int         first_elem_dir;
    1528             : 
    1529             :         if (!(cur->sk_flags & SK_SEARCHARRAY) ||
    1530             :             cur->sk_strategy != BTEqualStrategyNumber)
    1531             :             continue;
    1532             : 
    1533             :         array = &so->arrayKeys[arrayidx++];
    1534             : 
    1535             :         if (((cur->sk_flags & SK_BT_REQFWD) && ScanDirectionIsForward(dir)) ||
    1536             :             ((cur->sk_flags & SK_BT_REQBKWD) && ScanDirectionIsBackward(dir)))
    1537             :             continue;
    1538             : 
    1539             :         if (ScanDirectionIsForward(dir))
    1540             :             first_elem_dir = 0;
    1541             :         else
    1542             :             first_elem_dir = array->num_elems - 1;
    1543             : 
    1544             :         if (array->cur_elem != first_elem_dir)
    1545             :             return false;
    1546             :     }
    1547             : 
    1548             :     return _bt_verify_keys_with_arraykeys(scan);
    1549             : }
    1550             : 
    1551             : /*
    1552             :  * Verify that the scan's "so->keyData[]" scan keys are in agreement with
    1553             :  * its array key state
    1554             :  */
    1555             : static bool
    1556             : _bt_verify_keys_with_arraykeys(IndexScanDesc scan)
    1557             : {
    1558             :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1559             :     int         last_sk_attno = InvalidAttrNumber,
    1560             :                 arrayidx = 0;
    1561             : 
    1562             :     if (!so->qual_ok)
    1563             :         return false;
    1564             : 
    1565             :     for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
    1566             :     {
    1567             :         ScanKey     cur = so->keyData + ikey;
    1568             :         BTArrayKeyInfo *array;
    1569             : 
    1570             :         if (cur->sk_strategy != BTEqualStrategyNumber ||
    1571             :             !(cur->sk_flags & SK_SEARCHARRAY))
    1572             :             continue;
    1573             : 
    1574             :         array = &so->arrayKeys[arrayidx++];
    1575             :         if (array->scan_key != ikey)
    1576             :             return false;
    1577             : 
    1578             :         if (array->num_elems <= 0)
    1579             :             return false;
    1580             : 
    1581             :         if (cur->sk_argument != array->elem_values[array->cur_elem])
    1582             :             return false;
    1583             :         if (last_sk_attno > cur->sk_attno)
    1584             :             return false;
    1585             :         last_sk_attno = cur->sk_attno;
    1586             :     }
    1587             : 
    1588             :     if (arrayidx != so->numArrayKeys)
    1589             :         return false;
    1590             : 
    1591             :     return true;
    1592             : }
    1593             : #endif
    1594             : 
    1595             : /*
    1596             :  * Test whether an indextuple satisfies all the scankey conditions.
    1597             :  *
    1598             :  * Return true if so, false if not.  If the tuple fails to pass the qual,
    1599             :  * we also determine whether there's any need to continue the scan beyond
    1600             :  * this tuple, and set pstate.continuescan accordingly.  See comments for
    1601             :  * _bt_preprocess_keys() about how this is done.
    1602             :  *
    1603             :  * Forward scan callers can pass a high key tuple in the hopes of having
    1604             :  * us set *continuescan to false, and avoiding an unnecessary visit to
    1605             :  * the page to the right.
    1606             :  *
    1607             :  * Advances the scan's array keys when necessary for arrayKeys=true callers.
    1608             :  * Caller can avoid all array related side-effects when calling just to do a
    1609             :  * page continuescan precheck -- pass arrayKeys=false for that.  Scans without
    1610             :  * any arrays keys must always pass arrayKeys=false.
    1611             :  *
    1612             :  * Also stops and starts primitive index scans for arrayKeys=true callers.
    1613             :  * Scans with array keys are required to set up page state that helps us with
    1614             :  * this.  The page's finaltup tuple (the page high key for a forward scan, or
    1615             :  * the page's first non-pivot tuple for a backward scan) must be set in
    1616             :  * pstate.finaltup ahead of the first call here for the page (or possibly the
    1617             :  * first call after an initial continuescan-setting page precheck call).  Set
    1618             :  * this to NULL for rightmost page (or the leftmost page for backwards scans).
    1619             :  *
    1620             :  * scan: index scan descriptor (containing a search-type scankey)
    1621             :  * pstate: page level input and output parameters
    1622             :  * arrayKeys: should we advance the scan's array keys if necessary?
    1623             :  * tuple: index tuple to test
    1624             :  * tupnatts: number of attributes in tupnatts (high key may be truncated)
    1625             :  */
    1626             : bool
    1627    69228156 : _bt_checkkeys(IndexScanDesc scan, BTReadPageState *pstate, bool arrayKeys,
    1628             :               IndexTuple tuple, int tupnatts)
    1629             : {
    1630    69228156 :     TupleDesc   tupdesc = RelationGetDescr(scan->indexRelation);
    1631    69228156 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1632    69228156 :     ScanDirection dir = so->currPos.dir;
    1633    69228156 :     int         ikey = 0;
    1634             :     bool        res;
    1635             : 
    1636             :     Assert(BTreeTupleGetNAtts(tuple, scan->indexRelation) == tupnatts);
    1637             : 
    1638    69228156 :     res = _bt_check_compare(scan, dir, tuple, tupnatts, tupdesc,
    1639    69228156 :                             arrayKeys, pstate->prechecked, pstate->firstmatch,
    1640             :                             &pstate->continuescan, &ikey);
    1641             : 
    1642             : #ifdef USE_ASSERT_CHECKING
    1643             :     if (!arrayKeys && so->numArrayKeys)
    1644             :     {
    1645             :         /*
    1646             :          * This is a continuescan precheck call for a scan with array keys.
    1647             :          *
    1648             :          * Assert that the scan isn't in danger of becoming confused.
    1649             :          */
    1650             :         Assert(!so->scanBehind && !so->oppositeDirCheck);
    1651             :         Assert(!pstate->prechecked && !pstate->firstmatch);
    1652             :         Assert(!_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc,
    1653             :                                              tupnatts, false, 0, NULL));
    1654             :     }
    1655             :     if (pstate->prechecked || pstate->firstmatch)
    1656             :     {
    1657             :         bool        dcontinuescan;
    1658             :         int         dikey = 0;
    1659             : 
    1660             :         /*
    1661             :          * Call relied on continuescan/firstmatch prechecks -- assert that we
    1662             :          * get the same answer without those optimizations
    1663             :          */
    1664             :         Assert(res == _bt_check_compare(scan, dir, tuple, tupnatts, tupdesc,
    1665             :                                         false, false, false,
    1666             :                                         &dcontinuescan, &dikey));
    1667             :         Assert(pstate->continuescan == dcontinuescan);
    1668             :     }
    1669             : #endif
    1670             : 
    1671             :     /*
    1672             :      * Only one _bt_check_compare call is required in the common case where
    1673             :      * there are no equality strategy array scan keys.  Otherwise we can only
    1674             :      * accept _bt_check_compare's answer unreservedly when it didn't set
    1675             :      * pstate.continuescan=false.
    1676             :      */
    1677    69228156 :     if (!arrayKeys || pstate->continuescan)
    1678    69196020 :         return res;
    1679             : 
    1680             :     /*
    1681             :      * _bt_check_compare call set continuescan=false in the presence of
    1682             :      * equality type array keys.  This could mean that the tuple is just past
    1683             :      * the end of matches for the current array keys.
    1684             :      *
    1685             :      * It's also possible that the scan is still _before_ the _start_ of
    1686             :      * tuples matching the current set of array keys.  Check for that first.
    1687             :      */
    1688       32136 :     if (_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc, tupnatts, true,
    1689             :                                      ikey, NULL))
    1690             :     {
    1691             :         /*
    1692             :          * Tuple is still before the start of matches according to the scan's
    1693             :          * required array keys (according to _all_ of its required equality
    1694             :          * strategy keys, actually).
    1695             :          *
    1696             :          * _bt_advance_array_keys occasionally sets so->scanBehind to signal
    1697             :          * that the scan's current position/tuples might be significantly
    1698             :          * behind (multiple pages behind) its current array keys.  When this
    1699             :          * happens, we need to be prepared to recover by starting a new
    1700             :          * primitive index scan here, on our own.
    1701             :          */
    1702             :         Assert(!so->scanBehind ||
    1703             :                so->keyData[ikey].sk_strategy == BTEqualStrategyNumber);
    1704        4586 :         if (unlikely(so->scanBehind) && pstate->finaltup &&
    1705          60 :             _bt_tuple_before_array_skeys(scan, dir, pstate->finaltup, tupdesc,
    1706          60 :                                          BTreeTupleGetNAtts(pstate->finaltup,
    1707             :                                                             scan->indexRelation),
    1708             :                                          false, 0, NULL))
    1709             :         {
    1710             :             /* Cut our losses -- start a new primitive index scan now */
    1711           0 :             pstate->continuescan = false;
    1712           0 :             so->needPrimScan = true;
    1713             :         }
    1714             :         else
    1715             :         {
    1716             :             /* Override _bt_check_compare, continue primitive scan */
    1717        4556 :             pstate->continuescan = true;
    1718             : 
    1719             :             /*
    1720             :              * We will end up here repeatedly given a group of tuples > the
    1721             :              * previous array keys and < the now-current keys (for a backwards
    1722             :              * scan it's just the same, though the operators swap positions).
    1723             :              *
    1724             :              * We must avoid allowing this linear search process to scan very
    1725             :              * many tuples from well before the start of tuples matching the
    1726             :              * current array keys (or from well before the point where we'll
    1727             :              * once again have to advance the scan's array keys).
    1728             :              *
    1729             :              * We keep the overhead under control by speculatively "looking
    1730             :              * ahead" to later still-unscanned items from this same leaf page.
    1731             :              * We'll only attempt this once the number of tuples that the
    1732             :              * linear search process has examined starts to get out of hand.
    1733             :              */
    1734        4556 :             pstate->rechecks++;
    1735        4556 :             if (pstate->rechecks >= LOOK_AHEAD_REQUIRED_RECHECKS)
    1736             :             {
    1737             :                 /* See if we should skip ahead within the current leaf page */
    1738        1952 :                 _bt_checkkeys_look_ahead(scan, pstate, tupnatts, tupdesc);
    1739             : 
    1740             :                 /*
    1741             :                  * Might have set pstate.skip to a later page offset.  When
    1742             :                  * that happens then _bt_readpage caller will inexpensively
    1743             :                  * skip ahead to a later tuple from the same page (the one
    1744             :                  * just after the tuple we successfully "looked ahead" to).
    1745             :                  */
    1746             :             }
    1747             :         }
    1748             : 
    1749             :         /* This indextuple doesn't match the current qual, in any case */
    1750        4556 :         return false;
    1751             :     }
    1752             : 
    1753             :     /*
    1754             :      * Caller's tuple is >= the current set of array keys and other equality
    1755             :      * constraint scan keys (or <= if this is a backwards scan).  It's now
    1756             :      * clear that we _must_ advance any required array keys in lockstep with
    1757             :      * the scan.
    1758             :      */
    1759       27580 :     return _bt_advance_array_keys(scan, pstate, tuple, tupnatts, tupdesc,
    1760             :                                   ikey, true);
    1761             : }
    1762             : 
    1763             : /*
    1764             :  * Test whether an indextuple fails to satisfy an inequality required in the
    1765             :  * opposite direction only.
    1766             :  *
    1767             :  * Caller's finaltup tuple is the page high key (for forwards scans), or the
    1768             :  * first non-pivot tuple (for backwards scans).  Called during scans with
    1769             :  * required array keys and required opposite-direction inequalities.
    1770             :  *
    1771             :  * Returns false if an inequality scan key required in the opposite direction
    1772             :  * only isn't satisfied (and any earlier required scan keys are satisfied).
    1773             :  * Otherwise returns true.
    1774             :  *
    1775             :  * An unsatisfied inequality required in the opposite direction only might
    1776             :  * well enable skipping over many leaf pages, provided another _bt_first call
    1777             :  * takes place.  This type of unsatisfied inequality won't usually cause
    1778             :  * _bt_checkkeys to stop the scan to consider array advancement/starting a new
    1779             :  * primitive index scan.
    1780             :  */
    1781             : bool
    1782           6 : _bt_oppodir_checkkeys(IndexScanDesc scan, ScanDirection dir,
    1783             :                       IndexTuple finaltup)
    1784             : {
    1785           6 :     Relation    rel = scan->indexRelation;
    1786           6 :     TupleDesc   tupdesc = RelationGetDescr(rel);
    1787           6 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1788           6 :     int         nfinaltupatts = BTreeTupleGetNAtts(finaltup, rel);
    1789             :     bool        continuescan;
    1790           6 :     ScanDirection flipped = -dir;
    1791           6 :     int         ikey = 0;
    1792             : 
    1793             :     Assert(so->numArrayKeys);
    1794             : 
    1795           6 :     _bt_check_compare(scan, flipped, finaltup, nfinaltupatts, tupdesc,
    1796             :                       false, false, false, &continuescan, &ikey);
    1797             : 
    1798           6 :     if (!continuescan && so->keyData[ikey].sk_strategy != BTEqualStrategyNumber)
    1799           0 :         return false;
    1800             : 
    1801           6 :     return true;
    1802             : }
    1803             : 
    1804             : /*
    1805             :  * Test whether an indextuple satisfies current scan condition.
    1806             :  *
    1807             :  * Return true if so, false if not.  If not, also sets *continuescan to false
    1808             :  * when it's also not possible for any later tuples to pass the current qual
    1809             :  * (with the scan's current set of array keys, in the current scan direction),
    1810             :  * in addition to setting *ikey to the so->keyData[] subscript/offset for the
    1811             :  * unsatisfied scan key (needed when caller must consider advancing the scan's
    1812             :  * array keys).
    1813             :  *
    1814             :  * This is a subroutine for _bt_checkkeys.  We provisionally assume that
    1815             :  * reaching the end of the current set of required keys (in particular the
    1816             :  * current required array keys) ends the ongoing (primitive) index scan.
    1817             :  * Callers without array keys should just end the scan right away when they
    1818             :  * find that continuescan has been set to false here by us.  Things are more
    1819             :  * complicated for callers with array keys.
    1820             :  *
    1821             :  * Callers with array keys must first consider advancing the arrays when
    1822             :  * continuescan has been set to false here by us.  They must then consider if
    1823             :  * it really does make sense to end the current (primitive) index scan, in
    1824             :  * light of everything that is known at that point.  (In general when we set
    1825             :  * continuescan=false for these callers it must be treated as provisional.)
    1826             :  *
    1827             :  * We deal with advancing unsatisfied non-required arrays directly, though.
    1828             :  * This is safe, since by definition non-required keys can't end the scan.
    1829             :  * This is just how we determine if non-required arrays are just unsatisfied
    1830             :  * by the current array key, or if they're truly unsatisfied (that is, if
    1831             :  * they're unsatisfied by every possible array key).
    1832             :  *
    1833             :  * Though we advance non-required array keys on our own, that shouldn't have
    1834             :  * any lasting consequences for the scan.  By definition, non-required arrays
    1835             :  * have no fixed relationship with the scan's progress.  (There are delicate
    1836             :  * considerations for non-required arrays when the arrays need to be advanced
    1837             :  * following our setting continuescan to false, but that doesn't concern us.)
    1838             :  *
    1839             :  * Pass advancenonrequired=false to avoid all array related side effects.
    1840             :  * This allows _bt_advance_array_keys caller to avoid infinite recursion.
    1841             :  */
    1842             : static bool
    1843    69230158 : _bt_check_compare(IndexScanDesc scan, ScanDirection dir,
    1844             :                   IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
    1845             :                   bool advancenonrequired, bool prechecked, bool firstmatch,
    1846             :                   bool *continuescan, int *ikey)
    1847             : {
    1848    69230158 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1849             : 
    1850    69230158 :     *continuescan = true;       /* default assumption */
    1851             : 
    1852   135065542 :     for (; *ikey < so->numberOfKeys; (*ikey)++)
    1853             :     {
    1854    76670804 :         ScanKey     key = so->keyData + *ikey;
    1855             :         Datum       datum;
    1856             :         bool        isNull;
    1857    76670804 :         bool        requiredSameDir = false,
    1858    76670804 :                     requiredOppositeDirOnly = false;
    1859             : 
    1860             :         /*
    1861             :          * Check if the key is required in the current scan direction, in the
    1862             :          * opposite scan direction _only_, or in neither direction
    1863             :          */
    1864    76670804 :         if (((key->sk_flags & SK_BT_REQFWD) && ScanDirectionIsForward(dir)) ||
    1865    20150498 :             ((key->sk_flags & SK_BT_REQBKWD) && ScanDirectionIsBackward(dir)))
    1866    56537632 :             requiredSameDir = true;
    1867    20133172 :         else if (((key->sk_flags & SK_BT_REQFWD) && ScanDirectionIsBackward(dir)) ||
    1868     6633712 :                  ((key->sk_flags & SK_BT_REQBKWD) && ScanDirectionIsForward(dir)))
    1869    19554770 :             requiredOppositeDirOnly = true;
    1870             : 
    1871             :         /*
    1872             :          * If the caller told us the *continuescan flag is known to be true
    1873             :          * for the last item on the page, then we know the keys required for
    1874             :          * the current direction scan should be matched.  Otherwise, the
    1875             :          * *continuescan flag would be set for the current item and
    1876             :          * subsequently the last item on the page accordingly.
    1877             :          *
    1878             :          * If the key is required for the opposite direction scan, we can skip
    1879             :          * the check if the caller tells us there was already at least one
    1880             :          * matching item on the page. Also, we require the *continuescan flag
    1881             :          * to be true for the last item on the page to know there are no
    1882             :          * NULLs.
    1883             :          *
    1884             :          * Both cases above work except for the row keys, where NULLs could be
    1885             :          * found in the middle of matching values.
    1886             :          */
    1887    76670804 :         if (prechecked &&
    1888     2145928 :             (requiredSameDir || (requiredOppositeDirOnly && firstmatch)) &&
    1889     2035848 :             !(key->sk_flags & SK_ROW_HEADER))
    1890    34268808 :             continue;
    1891             : 
    1892    74634956 :         if (key->sk_attno > tupnatts)
    1893             :         {
    1894             :             /*
    1895             :              * This attribute is truncated (must be high key).  The value for
    1896             :              * this attribute in the first non-pivot tuple on the page to the
    1897             :              * right could be any possible value.  Assume that truncated
    1898             :              * attribute passes the qual.
    1899             :              */
    1900             :             Assert(BTreeTupleIsPivot(tuple));
    1901        2286 :             continue;
    1902             :         }
    1903             : 
    1904             :         /* row-comparison keys need special processing */
    1905    74632670 :         if (key->sk_flags & SK_ROW_HEADER)
    1906             :         {
    1907        2448 :             if (_bt_check_rowcompare(key, tuple, tupnatts, tupdesc, dir,
    1908             :                                      continuescan))
    1909        2382 :                 continue;
    1910    10835420 :             return false;
    1911             :         }
    1912             : 
    1913    74630222 :         datum = index_getattr(tuple,
    1914    74630222 :                               key->sk_attno,
    1915             :                               tupdesc,
    1916             :                               &isNull);
    1917             : 
    1918    74630222 :         if (key->sk_flags & SK_ISNULL)
    1919             :         {
    1920             :             /* Handle IS NULL/NOT NULL tests */
    1921    32276454 :             if (key->sk_flags & SK_SEARCHNULL)
    1922             :             {
    1923       48236 :                 if (isNull)
    1924         164 :                     continue;   /* tuple satisfies this qual */
    1925             :             }
    1926             :             else
    1927             :             {
    1928             :                 Assert(key->sk_flags & SK_SEARCHNOTNULL);
    1929    32228218 :                 if (!isNull)
    1930    32228128 :                     continue;   /* tuple satisfies this qual */
    1931             :             }
    1932             : 
    1933             :             /*
    1934             :              * Tuple fails this qual.  If it's a required qual for the current
    1935             :              * scan direction, then we can conclude no further tuples will
    1936             :              * pass, either.
    1937             :              */
    1938       48162 :             if (requiredSameDir)
    1939          36 :                 *continuescan = false;
    1940             : 
    1941             :             /*
    1942             :              * In any case, this indextuple doesn't match the qual.
    1943             :              */
    1944       48162 :             return false;
    1945             :         }
    1946             : 
    1947    42353768 :         if (isNull)
    1948             :         {
    1949         150 :             if (key->sk_flags & SK_BT_NULLS_FIRST)
    1950             :             {
    1951             :                 /*
    1952             :                  * Since NULLs are sorted before non-NULLs, we know we have
    1953             :                  * reached the lower limit of the range of values for this
    1954             :                  * index attr.  On a backward scan, we can stop if this qual
    1955             :                  * is one of the "must match" subset.  We can stop regardless
    1956             :                  * of whether the qual is > or <, so long as it's required,
    1957             :                  * because it's not possible for any future tuples to pass. On
    1958             :                  * a forward scan, however, we must keep going, because we may
    1959             :                  * have initially positioned to the start of the index.
    1960             :                  * (_bt_advance_array_keys also relies on this behavior during
    1961             :                  * forward scans.)
    1962             :                  */
    1963           0 :                 if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
    1964             :                     ScanDirectionIsBackward(dir))
    1965           0 :                     *continuescan = false;
    1966             :             }
    1967             :             else
    1968             :             {
    1969             :                 /*
    1970             :                  * Since NULLs are sorted after non-NULLs, we know we have
    1971             :                  * reached the upper limit of the range of values for this
    1972             :                  * index attr.  On a forward scan, we can stop if this qual is
    1973             :                  * one of the "must match" subset.  We can stop regardless of
    1974             :                  * whether the qual is > or <, so long as it's required,
    1975             :                  * because it's not possible for any future tuples to pass. On
    1976             :                  * a backward scan, however, we must keep going, because we
    1977             :                  * may have initially positioned to the end of the index.
    1978             :                  * (_bt_advance_array_keys also relies on this behavior during
    1979             :                  * backward scans.)
    1980             :                  */
    1981         150 :                 if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
    1982             :                     ScanDirectionIsForward(dir))
    1983          84 :                     *continuescan = false;
    1984             :             }
    1985             : 
    1986             :             /*
    1987             :              * In any case, this indextuple doesn't match the qual.
    1988             :              */
    1989         150 :             return false;
    1990             :         }
    1991             : 
    1992             :         /*
    1993             :          * Apply the key-checking function, though only if we must.
    1994             :          *
    1995             :          * When a key is required in the opposite-of-scan direction _only_,
    1996             :          * then it must already be satisfied if firstmatch=true indicates that
    1997             :          * an earlier tuple from this same page satisfied it earlier on.
    1998             :          */
    1999    42353618 :         if (!(requiredOppositeDirOnly && firstmatch) &&
    2000    38786904 :             !DatumGetBool(FunctionCall2Coll(&key->sk_func, key->sk_collation,
    2001             :                                             datum, key->sk_argument)))
    2002             :         {
    2003             :             /*
    2004             :              * Tuple fails this qual.  If it's a required qual for the current
    2005             :              * scan direction, then we can conclude no further tuples will
    2006             :              * pass, either.
    2007             :              *
    2008             :              * Note: because we stop the scan as soon as any required equality
    2009             :              * qual fails, it is critical that equality quals be used for the
    2010             :              * initial positioning in _bt_first() when they are available. See
    2011             :              * comments in _bt_first().
    2012             :              */
    2013    10787042 :             if (requiredSameDir)
    2014    10346472 :                 *continuescan = false;
    2015             : 
    2016             :             /*
    2017             :              * If this is a non-required equality-type array key, the tuple
    2018             :              * needs to be checked against every possible array key.  Handle
    2019             :              * this by "advancing" the scan key's array to a matching value
    2020             :              * (if we're successful then the tuple might match the qual).
    2021             :              */
    2022      440570 :             else if (advancenonrequired &&
    2023         374 :                      key->sk_strategy == BTEqualStrategyNumber &&
    2024         260 :                      (key->sk_flags & SK_SEARCHARRAY))
    2025         260 :                 return _bt_advance_array_keys(scan, NULL, tuple, tupnatts,
    2026             :                                               tupdesc, *ikey, false);
    2027             : 
    2028             :             /*
    2029             :              * This indextuple doesn't match the qual.
    2030             :              */
    2031    10786782 :             return false;
    2032             :         }
    2033             :     }
    2034             : 
    2035             :     /* If we get here, the tuple passes all index quals. */
    2036    58394738 :     return true;
    2037             : }
    2038             : 
    2039             : /*
    2040             :  * Test whether an indextuple satisfies a row-comparison scan condition.
    2041             :  *
    2042             :  * Return true if so, false if not.  If not, also clear *continuescan if
    2043             :  * it's not possible for any future tuples in the current scan direction
    2044             :  * to pass the qual.
    2045             :  *
    2046             :  * This is a subroutine for _bt_checkkeys/_bt_check_compare.
    2047             :  */
    2048             : static bool
    2049        2448 : _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, int tupnatts,
    2050             :                      TupleDesc tupdesc, ScanDirection dir, bool *continuescan)
    2051             : {
    2052        2448 :     ScanKey     subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
    2053        2448 :     int32       cmpresult = 0;
    2054             :     bool        result;
    2055             : 
    2056             :     /* First subkey should be same as the header says */
    2057             :     Assert(subkey->sk_attno == skey->sk_attno);
    2058             : 
    2059             :     /* Loop over columns of the row condition */
    2060             :     for (;;)
    2061         240 :     {
    2062             :         Datum       datum;
    2063             :         bool        isNull;
    2064             : 
    2065             :         Assert(subkey->sk_flags & SK_ROW_MEMBER);
    2066             : 
    2067        2688 :         if (subkey->sk_attno > tupnatts)
    2068             :         {
    2069             :             /*
    2070             :              * This attribute is truncated (must be high key).  The value for
    2071             :              * this attribute in the first non-pivot tuple on the page to the
    2072             :              * right could be any possible value.  Assume that truncated
    2073             :              * attribute passes the qual.
    2074             :              */
    2075             :             Assert(BTreeTupleIsPivot(tuple));
    2076           6 :             cmpresult = 0;
    2077           6 :             if (subkey->sk_flags & SK_ROW_END)
    2078           6 :                 break;
    2079           0 :             subkey++;
    2080           0 :             continue;
    2081             :         }
    2082             : 
    2083        2682 :         datum = index_getattr(tuple,
    2084        2682 :                               subkey->sk_attno,
    2085             :                               tupdesc,
    2086             :                               &isNull);
    2087             : 
    2088        2682 :         if (isNull)
    2089             :         {
    2090          48 :             if (subkey->sk_flags & SK_BT_NULLS_FIRST)
    2091             :             {
    2092             :                 /*
    2093             :                  * Since NULLs are sorted before non-NULLs, we know we have
    2094             :                  * reached the lower limit of the range of values for this
    2095             :                  * index attr.  On a backward scan, we can stop if this qual
    2096             :                  * is one of the "must match" subset.  We can stop regardless
    2097             :                  * of whether the qual is > or <, so long as it's required,
    2098             :                  * because it's not possible for any future tuples to pass. On
    2099             :                  * a forward scan, however, we must keep going, because we may
    2100             :                  * have initially positioned to the start of the index.
    2101             :                  * (_bt_advance_array_keys also relies on this behavior during
    2102             :                  * forward scans.)
    2103             :                  */
    2104           0 :                 if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
    2105             :                     ScanDirectionIsBackward(dir))
    2106           0 :                     *continuescan = false;
    2107             :             }
    2108             :             else
    2109             :             {
    2110             :                 /*
    2111             :                  * Since NULLs are sorted after non-NULLs, we know we have
    2112             :                  * reached the upper limit of the range of values for this
    2113             :                  * index attr.  On a forward scan, we can stop if this qual is
    2114             :                  * one of the "must match" subset.  We can stop regardless of
    2115             :                  * whether the qual is > or <, so long as it's required,
    2116             :                  * because it's not possible for any future tuples to pass. On
    2117             :                  * a backward scan, however, we must keep going, because we
    2118             :                  * may have initially positioned to the end of the index.
    2119             :                  * (_bt_advance_array_keys also relies on this behavior during
    2120             :                  * backward scans.)
    2121             :                  */
    2122          48 :                 if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
    2123             :                     ScanDirectionIsForward(dir))
    2124           0 :                     *continuescan = false;
    2125             :             }
    2126             : 
    2127             :             /*
    2128             :              * In any case, this indextuple doesn't match the qual.
    2129             :              */
    2130          60 :             return false;
    2131             :         }
    2132             : 
    2133        2634 :         if (subkey->sk_flags & SK_ISNULL)
    2134             :         {
    2135             :             /*
    2136             :              * Unlike the simple-scankey case, this isn't a disallowed case
    2137             :              * (except when it's the first row element that has the NULL arg).
    2138             :              * But it can never match.  If all the earlier row comparison
    2139             :              * columns are required for the scan direction, we can stop the
    2140             :              * scan, because there can't be another tuple that will succeed.
    2141             :              */
    2142             :             Assert(subkey != (ScanKey) DatumGetPointer(skey->sk_argument));
    2143          12 :             subkey--;
    2144          12 :             if ((subkey->sk_flags & SK_BT_REQFWD) &&
    2145             :                 ScanDirectionIsForward(dir))
    2146           6 :                 *continuescan = false;
    2147           6 :             else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
    2148             :                      ScanDirectionIsBackward(dir))
    2149           6 :                 *continuescan = false;
    2150          12 :             return false;
    2151             :         }
    2152             : 
    2153             :         /* Perform the test --- three-way comparison not bool operator */
    2154        2622 :         cmpresult = DatumGetInt32(FunctionCall2Coll(&subkey->sk_func,
    2155             :                                                     subkey->sk_collation,
    2156             :                                                     datum,
    2157             :                                                     subkey->sk_argument));
    2158             : 
    2159        2622 :         if (subkey->sk_flags & SK_BT_DESC)
    2160           0 :             INVERT_COMPARE_RESULT(cmpresult);
    2161             : 
    2162             :         /* Done comparing if unequal, else advance to next column */
    2163        2622 :         if (cmpresult != 0)
    2164        2382 :             break;
    2165             : 
    2166         240 :         if (subkey->sk_flags & SK_ROW_END)
    2167           0 :             break;
    2168         240 :         subkey++;
    2169             :     }
    2170             : 
    2171             :     /*
    2172             :      * At this point cmpresult indicates the overall result of the row
    2173             :      * comparison, and subkey points to the deciding column (or the last
    2174             :      * column if the result is "=").
    2175             :      */
    2176        2388 :     switch (subkey->sk_strategy)
    2177             :     {
    2178             :             /* EQ and NE cases aren't allowed here */
    2179         186 :         case BTLessStrategyNumber:
    2180         186 :             result = (cmpresult < 0);
    2181         186 :             break;
    2182        1590 :         case BTLessEqualStrategyNumber:
    2183        1590 :             result = (cmpresult <= 0);
    2184        1590 :             break;
    2185         240 :         case BTGreaterEqualStrategyNumber:
    2186         240 :             result = (cmpresult >= 0);
    2187         240 :             break;
    2188         372 :         case BTGreaterStrategyNumber:
    2189         372 :             result = (cmpresult > 0);
    2190         372 :             break;
    2191           0 :         default:
    2192           0 :             elog(ERROR, "unexpected strategy number %d", subkey->sk_strategy);
    2193             :             result = 0;         /* keep compiler quiet */
    2194             :             break;
    2195             :     }
    2196             : 
    2197        2388 :     if (!result)
    2198             :     {
    2199             :         /*
    2200             :          * Tuple fails this qual.  If it's a required qual for the current
    2201             :          * scan direction, then we can conclude no further tuples will pass,
    2202             :          * either.  Note we have to look at the deciding column, not
    2203             :          * necessarily the first or last column of the row condition.
    2204             :          */
    2205           6 :         if ((subkey->sk_flags & SK_BT_REQFWD) &&
    2206             :             ScanDirectionIsForward(dir))
    2207           6 :             *continuescan = false;
    2208           0 :         else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
    2209             :                  ScanDirectionIsBackward(dir))
    2210           0 :             *continuescan = false;
    2211             :     }
    2212             : 
    2213        2388 :     return result;
    2214             : }
    2215             : 
    2216             : /*
    2217             :  * Determine if a scan with array keys should skip over uninteresting tuples.
    2218             :  *
    2219             :  * This is a subroutine for _bt_checkkeys.  Called when _bt_readpage's linear
    2220             :  * search process (started after it finishes reading an initial group of
    2221             :  * matching tuples, used to locate the start of the next group of tuples
    2222             :  * matching the next set of required array keys) has already scanned an
    2223             :  * excessive number of tuples whose key space is "between arrays".
    2224             :  *
    2225             :  * When we perform look ahead successfully, we'll sets pstate.skip, which
    2226             :  * instructs _bt_readpage to skip ahead to that tuple next (could be past the
    2227             :  * end of the scan's leaf page).  Pages where the optimization is effective
    2228             :  * will generally still need to skip several times.  Each call here performs
    2229             :  * only a single "look ahead" comparison of a later tuple, whose distance from
    2230             :  * the current tuple's offset number is determined by applying heuristics.
    2231             :  */
    2232             : static void
    2233        1952 : _bt_checkkeys_look_ahead(IndexScanDesc scan, BTReadPageState *pstate,
    2234             :                          int tupnatts, TupleDesc tupdesc)
    2235             : {
    2236        1952 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    2237        1952 :     ScanDirection dir = so->currPos.dir;
    2238             :     OffsetNumber aheadoffnum;
    2239             :     IndexTuple  ahead;
    2240             : 
    2241             :     /* Avoid looking ahead when comparing the page high key */
    2242        1952 :     if (pstate->offnum < pstate->minoff)
    2243           0 :         return;
    2244             : 
    2245             :     /*
    2246             :      * Don't look ahead when there aren't enough tuples remaining on the page
    2247             :      * (in the current scan direction) for it to be worth our while
    2248             :      */
    2249        1952 :     if (ScanDirectionIsForward(dir) &&
    2250        1946 :         pstate->offnum >= pstate->maxoff - LOOK_AHEAD_DEFAULT_DISTANCE)
    2251           6 :         return;
    2252        1946 :     else if (ScanDirectionIsBackward(dir) &&
    2253           6 :              pstate->offnum <= pstate->minoff + LOOK_AHEAD_DEFAULT_DISTANCE)
    2254           0 :         return;
    2255             : 
    2256             :     /*
    2257             :      * The look ahead distance starts small, and ramps up as each call here
    2258             :      * allows _bt_readpage to skip over more tuples
    2259             :      */
    2260        1946 :     if (!pstate->targetdistance)
    2261         658 :         pstate->targetdistance = LOOK_AHEAD_DEFAULT_DISTANCE;
    2262        1288 :     else if (pstate->targetdistance < MaxIndexTuplesPerPage / 2)
    2263        1288 :         pstate->targetdistance *= 2;
    2264             : 
    2265             :     /* Don't read past the end (or before the start) of the page, though */
    2266        1946 :     if (ScanDirectionIsForward(dir))
    2267        1940 :         aheadoffnum = Min((int) pstate->maxoff,
    2268             :                           (int) pstate->offnum + pstate->targetdistance);
    2269             :     else
    2270           6 :         aheadoffnum = Max((int) pstate->minoff,
    2271             :                           (int) pstate->offnum - pstate->targetdistance);
    2272             : 
    2273        1946 :     ahead = (IndexTuple) PageGetItem(pstate->page,
    2274        1946 :                                      PageGetItemId(pstate->page, aheadoffnum));
    2275        1946 :     if (_bt_tuple_before_array_skeys(scan, dir, ahead, tupdesc, tupnatts,
    2276             :                                      false, 0, NULL))
    2277             :     {
    2278             :         /*
    2279             :          * Success -- instruct _bt_readpage to skip ahead to very next tuple
    2280             :          * after the one we determined was still before the current array keys
    2281             :          */
    2282        1130 :         if (ScanDirectionIsForward(dir))
    2283        1124 :             pstate->skip = aheadoffnum + 1;
    2284             :         else
    2285           6 :             pstate->skip = aheadoffnum - 1;
    2286             :     }
    2287             :     else
    2288             :     {
    2289             :         /*
    2290             :          * Failure -- "ahead" tuple is too far ahead (we were too aggressive).
    2291             :          *
    2292             :          * Reset the number of rechecks, and aggressively reduce the target
    2293             :          * distance (we're much more aggressive here than we were when the
    2294             :          * distance was initially ramped up).
    2295             :          */
    2296         816 :         pstate->rechecks = 0;
    2297         816 :         pstate->targetdistance = Max(pstate->targetdistance / 8, 1);
    2298             :     }
    2299             : }
    2300             : 
    2301             : /*
    2302             :  * _bt_killitems - set LP_DEAD state for items an indexscan caller has
    2303             :  * told us were killed
    2304             :  *
    2305             :  * scan->opaque, referenced locally through so, contains information about the
    2306             :  * current page and killed tuples thereon (generally, this should only be
    2307             :  * called if so->numKilled > 0).
    2308             :  *
    2309             :  * The caller does not have a lock on the page and may or may not have the
    2310             :  * page pinned in a buffer.  Note that read-lock is sufficient for setting
    2311             :  * LP_DEAD status (which is only a hint).
    2312             :  *
    2313             :  * We match items by heap TID before assuming they are the right ones to
    2314             :  * delete.  We cope with cases where items have moved right due to insertions.
    2315             :  * If an item has moved off the current page due to a split, we'll fail to
    2316             :  * find it and do nothing (this is not an error case --- we assume the item
    2317             :  * will eventually get marked in a future indexscan).
    2318             :  *
    2319             :  * Note that if we hold a pin on the target page continuously from initially
    2320             :  * reading the items until applying this function, VACUUM cannot have deleted
    2321             :  * any items from the page, and so there is no need to search left from the
    2322             :  * recorded offset.  (This observation also guarantees that the item is still
    2323             :  * the right one to delete, which might otherwise be questionable since heap
    2324             :  * TIDs can get recycled.)  This holds true even if the page has been modified
    2325             :  * by inserts and page splits, so there is no need to consult the LSN.
    2326             :  *
    2327             :  * If the pin was released after reading the page, then we re-read it.  If it
    2328             :  * has been modified since we read it (as determined by the LSN), we dare not
    2329             :  * flag any entries because it is possible that the old entry was vacuumed
    2330             :  * away and the TID was re-used by a completely different heap tuple.
    2331             :  */
    2332             : void
    2333      163008 : _bt_killitems(IndexScanDesc scan)
    2334             : {
    2335      163008 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    2336             :     Page        page;
    2337             :     BTPageOpaque opaque;
    2338             :     OffsetNumber minoff;
    2339             :     OffsetNumber maxoff;
    2340             :     int         i;
    2341      163008 :     int         numKilled = so->numKilled;
    2342      163008 :     bool        killedsomething = false;
    2343             :     bool        droppedpin PG_USED_FOR_ASSERTS_ONLY;
    2344             : 
    2345             :     Assert(BTScanPosIsValid(so->currPos));
    2346             : 
    2347             :     /*
    2348             :      * Always reset the scan state, so we don't look for same items on other
    2349             :      * pages.
    2350             :      */
    2351      163008 :     so->numKilled = 0;
    2352             : 
    2353      163008 :     if (BTScanPosIsPinned(so->currPos))
    2354             :     {
    2355             :         /*
    2356             :          * We have held the pin on this page since we read the index tuples,
    2357             :          * so all we need to do is lock it.  The pin will have prevented
    2358             :          * re-use of any TID on the page, so there is no need to check the
    2359             :          * LSN.
    2360             :          */
    2361       34548 :         droppedpin = false;
    2362       34548 :         _bt_lockbuf(scan->indexRelation, so->currPos.buf, BT_READ);
    2363             : 
    2364       34548 :         page = BufferGetPage(so->currPos.buf);
    2365             :     }
    2366             :     else
    2367             :     {
    2368             :         Buffer      buf;
    2369             : 
    2370      128460 :         droppedpin = true;
    2371             :         /* Attempt to re-read the buffer, getting pin and lock. */
    2372      128460 :         buf = _bt_getbuf(scan->indexRelation, so->currPos.currPage, BT_READ);
    2373             : 
    2374      128460 :         page = BufferGetPage(buf);
    2375      128460 :         if (BufferGetLSNAtomic(buf) == so->currPos.lsn)
    2376      128302 :             so->currPos.buf = buf;
    2377             :         else
    2378             :         {
    2379             :             /* Modified while not pinned means hinting is not safe. */
    2380         158 :             _bt_relbuf(scan->indexRelation, buf);
    2381         158 :             return;
    2382             :         }
    2383             :     }
    2384             : 
    2385      162850 :     opaque = BTPageGetOpaque(page);
    2386      162850 :     minoff = P_FIRSTDATAKEY(opaque);
    2387      162850 :     maxoff = PageGetMaxOffsetNumber(page);
    2388             : 
    2389      608556 :     for (i = 0; i < numKilled; i++)
    2390             :     {
    2391      445706 :         int         itemIndex = so->killedItems[i];
    2392      445706 :         BTScanPosItem *kitem = &so->currPos.items[itemIndex];
    2393      445706 :         OffsetNumber offnum = kitem->indexOffset;
    2394             : 
    2395             :         Assert(itemIndex >= so->currPos.firstItem &&
    2396             :                itemIndex <= so->currPos.lastItem);
    2397      445706 :         if (offnum < minoff)
    2398           0 :             continue;           /* pure paranoia */
    2399     8422626 :         while (offnum <= maxoff)
    2400             :         {
    2401     8355900 :             ItemId      iid = PageGetItemId(page, offnum);
    2402     8355900 :             IndexTuple  ituple = (IndexTuple) PageGetItem(page, iid);
    2403     8355900 :             bool        killtuple = false;
    2404             : 
    2405     8355900 :             if (BTreeTupleIsPosting(ituple))
    2406             :             {
    2407     2735714 :                 int         pi = i + 1;
    2408     2735714 :                 int         nposting = BTreeTupleGetNPosting(ituple);
    2409             :                 int         j;
    2410             : 
    2411             :                 /*
    2412             :                  * We rely on the convention that heap TIDs in the scanpos
    2413             :                  * items array are stored in ascending heap TID order for a
    2414             :                  * group of TIDs that originally came from a posting list
    2415             :                  * tuple.  This convention even applies during backwards
    2416             :                  * scans, where returning the TIDs in descending order might
    2417             :                  * seem more natural.  This is about effectiveness, not
    2418             :                  * correctness.
    2419             :                  *
    2420             :                  * Note that the page may have been modified in almost any way
    2421             :                  * since we first read it (in the !droppedpin case), so it's
    2422             :                  * possible that this posting list tuple wasn't a posting list
    2423             :                  * tuple when we first encountered its heap TIDs.
    2424             :                  */
    2425     2804670 :                 for (j = 0; j < nposting; j++)
    2426             :                 {
    2427     2802108 :                     ItemPointer item = BTreeTupleGetPostingN(ituple, j);
    2428             : 
    2429     2802108 :                     if (!ItemPointerEquals(item, &kitem->heapTid))
    2430     2733152 :                         break;  /* out of posting list loop */
    2431             : 
    2432             :                     /*
    2433             :                      * kitem must have matching offnum when heap TIDs match,
    2434             :                      * though only in the common case where the page can't
    2435             :                      * have been concurrently modified
    2436             :                      */
    2437             :                     Assert(kitem->indexOffset == offnum || !droppedpin);
    2438             : 
    2439             :                     /*
    2440             :                      * Read-ahead to later kitems here.
    2441             :                      *
    2442             :                      * We rely on the assumption that not advancing kitem here
    2443             :                      * will prevent us from considering the posting list tuple
    2444             :                      * fully dead by not matching its next heap TID in next
    2445             :                      * loop iteration.
    2446             :                      *
    2447             :                      * If, on the other hand, this is the final heap TID in
    2448             :                      * the posting list tuple, then tuple gets killed
    2449             :                      * regardless (i.e. we handle the case where the last
    2450             :                      * kitem is also the last heap TID in the last index tuple
    2451             :                      * correctly -- posting tuple still gets killed).
    2452             :                      */
    2453       68956 :                     if (pi < numKilled)
    2454       34902 :                         kitem = &so->currPos.items[so->killedItems[pi++]];
    2455             :                 }
    2456             : 
    2457             :                 /*
    2458             :                  * Don't bother advancing the outermost loop's int iterator to
    2459             :                  * avoid processing killed items that relate to the same
    2460             :                  * offnum/posting list tuple.  This micro-optimization hardly
    2461             :                  * seems worth it.  (Further iterations of the outermost loop
    2462             :                  * will fail to match on this same posting list's first heap
    2463             :                  * TID instead, so we'll advance to the next offnum/index
    2464             :                  * tuple pretty quickly.)
    2465             :                  */
    2466     2735714 :                 if (j == nposting)
    2467        2562 :                     killtuple = true;
    2468             :             }
    2469     5620186 :             else if (ItemPointerEquals(&ituple->t_tid, &kitem->heapTid))
    2470      377756 :                 killtuple = true;
    2471             : 
    2472             :             /*
    2473             :              * Mark index item as dead, if it isn't already.  Since this
    2474             :              * happens while holding a buffer lock possibly in shared mode,
    2475             :              * it's possible that multiple processes attempt to do this
    2476             :              * simultaneously, leading to multiple full-page images being sent
    2477             :              * to WAL (if wal_log_hints or data checksums are enabled), which
    2478             :              * is undesirable.
    2479             :              */
    2480     8355900 :             if (killtuple && !ItemIdIsDead(iid))
    2481             :             {
    2482             :                 /* found the item/all posting list items */
    2483      378980 :                 ItemIdMarkDead(iid);
    2484      378980 :                 killedsomething = true;
    2485      378980 :                 break;          /* out of inner search loop */
    2486             :             }
    2487     7976920 :             offnum = OffsetNumberNext(offnum);
    2488             :         }
    2489             :     }
    2490             : 
    2491             :     /*
    2492             :      * Since this can be redone later if needed, mark as dirty hint.
    2493             :      *
    2494             :      * Whenever we mark anything LP_DEAD, we also set the page's
    2495             :      * BTP_HAS_GARBAGE flag, which is likewise just a hint.  (Note that we
    2496             :      * only rely on the page-level flag in !heapkeyspace indexes.)
    2497             :      */
    2498      162850 :     if (killedsomething)
    2499             :     {
    2500      127766 :         opaque->btpo_flags |= BTP_HAS_GARBAGE;
    2501      127766 :         MarkBufferDirtyHint(so->currPos.buf, true);
    2502             :     }
    2503             : 
    2504      162850 :     _bt_unlockbuf(scan->indexRelation, so->currPos.buf);
    2505             : }
    2506             : 
    2507             : 
    2508             : /*
    2509             :  * The following routines manage a shared-memory area in which we track
    2510             :  * assignment of "vacuum cycle IDs" to currently-active btree vacuuming
    2511             :  * operations.  There is a single counter which increments each time we
    2512             :  * start a vacuum to assign it a cycle ID.  Since multiple vacuums could
    2513             :  * be active concurrently, we have to track the cycle ID for each active
    2514             :  * vacuum; this requires at most MaxBackends entries (usually far fewer).
    2515             :  * We assume at most one vacuum can be active for a given index.
    2516             :  *
    2517             :  * Access to the shared memory area is controlled by BtreeVacuumLock.
    2518             :  * In principle we could use a separate lmgr locktag for each index,
    2519             :  * but a single LWLock is much cheaper, and given the short time that
    2520             :  * the lock is ever held, the concurrency hit should be minimal.
    2521             :  */
    2522             : 
    2523             : typedef struct BTOneVacInfo
    2524             : {
    2525             :     LockRelId   relid;          /* global identifier of an index */
    2526             :     BTCycleId   cycleid;        /* cycle ID for its active VACUUM */
    2527             : } BTOneVacInfo;
    2528             : 
    2529             : typedef struct BTVacInfo
    2530             : {
    2531             :     BTCycleId   cycle_ctr;      /* cycle ID most recently assigned */
    2532             :     int         num_vacuums;    /* number of currently active VACUUMs */
    2533             :     int         max_vacuums;    /* allocated length of vacuums[] array */
    2534             :     BTOneVacInfo vacuums[FLEXIBLE_ARRAY_MEMBER];
    2535             : } BTVacInfo;
    2536             : 
    2537             : static BTVacInfo *btvacinfo;
    2538             : 
    2539             : 
    2540             : /*
    2541             :  * _bt_vacuum_cycleid --- get the active vacuum cycle ID for an index,
    2542             :  *      or zero if there is no active VACUUM
    2543             :  *
    2544             :  * Note: for correct interlocking, the caller must already hold pin and
    2545             :  * exclusive lock on each buffer it will store the cycle ID into.  This
    2546             :  * ensures that even if a VACUUM starts immediately afterwards, it cannot
    2547             :  * process those pages until the page split is complete.
    2548             :  */
    2549             : BTCycleId
    2550       21640 : _bt_vacuum_cycleid(Relation rel)
    2551             : {
    2552       21640 :     BTCycleId   result = 0;
    2553             :     int         i;
    2554             : 
    2555             :     /* Share lock is enough since this is a read-only operation */
    2556       21640 :     LWLockAcquire(BtreeVacuumLock, LW_SHARED);
    2557             : 
    2558       21650 :     for (i = 0; i < btvacinfo->num_vacuums; i++)
    2559             :     {
    2560          12 :         BTOneVacInfo *vac = &btvacinfo->vacuums[i];
    2561             : 
    2562          12 :         if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
    2563           2 :             vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
    2564             :         {
    2565           2 :             result = vac->cycleid;
    2566           2 :             break;
    2567             :         }
    2568             :     }
    2569             : 
    2570       21640 :     LWLockRelease(BtreeVacuumLock);
    2571       21640 :     return result;
    2572             : }
    2573             : 
    2574             : /*
    2575             :  * _bt_start_vacuum --- assign a cycle ID to a just-starting VACUUM operation
    2576             :  *
    2577             :  * Note: the caller must guarantee that it will eventually call
    2578             :  * _bt_end_vacuum, else we'll permanently leak an array slot.  To ensure
    2579             :  * that this happens even in elog(FATAL) scenarios, the appropriate coding
    2580             :  * is not just a PG_TRY, but
    2581             :  *      PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel))
    2582             :  */
    2583             : BTCycleId
    2584        2528 : _bt_start_vacuum(Relation rel)
    2585             : {
    2586             :     BTCycleId   result;
    2587             :     int         i;
    2588             :     BTOneVacInfo *vac;
    2589             : 
    2590        2528 :     LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);
    2591             : 
    2592             :     /*
    2593             :      * Assign the next cycle ID, being careful to avoid zero as well as the
    2594             :      * reserved high values.
    2595             :      */
    2596        2528 :     result = ++(btvacinfo->cycle_ctr);
    2597        2528 :     if (result == 0 || result > MAX_BT_CYCLE_ID)
    2598           0 :         result = btvacinfo->cycle_ctr = 1;
    2599             : 
    2600             :     /* Let's just make sure there's no entry already for this index */
    2601        2528 :     for (i = 0; i < btvacinfo->num_vacuums; i++)
    2602             :     {
    2603           0 :         vac = &btvacinfo->vacuums[i];
    2604           0 :         if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
    2605           0 :             vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
    2606             :         {
    2607             :             /*
    2608             :              * Unlike most places in the backend, we have to explicitly
    2609             :              * release our LWLock before throwing an error.  This is because
    2610             :              * we expect _bt_end_vacuum() to be called before transaction
    2611             :              * abort cleanup can run to release LWLocks.
    2612             :              */
    2613           0 :             LWLockRelease(BtreeVacuumLock);
    2614           0 :             elog(ERROR, "multiple active vacuums for index \"%s\"",
    2615             :                  RelationGetRelationName(rel));
    2616             :         }
    2617             :     }
    2618             : 
    2619             :     /* OK, add an entry */
    2620        2528 :     if (btvacinfo->num_vacuums >= btvacinfo->max_vacuums)
    2621             :     {
    2622           0 :         LWLockRelease(BtreeVacuumLock);
    2623           0 :         elog(ERROR, "out of btvacinfo slots");
    2624             :     }
    2625        2528 :     vac = &btvacinfo->vacuums[btvacinfo->num_vacuums];
    2626        2528 :     vac->relid = rel->rd_lockInfo.lockRelId;
    2627        2528 :     vac->cycleid = result;
    2628        2528 :     btvacinfo->num_vacuums++;
    2629             : 
    2630        2528 :     LWLockRelease(BtreeVacuumLock);
    2631        2528 :     return result;
    2632             : }
    2633             : 
    2634             : /*
    2635             :  * _bt_end_vacuum --- mark a btree VACUUM operation as done
    2636             :  *
    2637             :  * Note: this is deliberately coded not to complain if no entry is found;
    2638             :  * this allows the caller to put PG_TRY around the start_vacuum operation.
    2639             :  */
    2640             : void
    2641        2528 : _bt_end_vacuum(Relation rel)
    2642             : {
    2643             :     int         i;
    2644             : 
    2645        2528 :     LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);
    2646             : 
    2647             :     /* Find the array entry */
    2648        2528 :     for (i = 0; i < btvacinfo->num_vacuums; i++)
    2649             :     {
    2650        2528 :         BTOneVacInfo *vac = &btvacinfo->vacuums[i];
    2651             : 
    2652        2528 :         if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
    2653        2528 :             vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
    2654             :         {
    2655             :             /* Remove it by shifting down the last entry */
    2656        2528 :             *vac = btvacinfo->vacuums[btvacinfo->num_vacuums - 1];
    2657        2528 :             btvacinfo->num_vacuums--;
    2658        2528 :             break;
    2659             :         }
    2660             :     }
    2661             : 
    2662        2528 :     LWLockRelease(BtreeVacuumLock);
    2663        2528 : }
    2664             : 
    2665             : /*
    2666             :  * _bt_end_vacuum wrapped as an on_shmem_exit callback function
    2667             :  */
    2668             : void
    2669           0 : _bt_end_vacuum_callback(int code, Datum arg)
    2670             : {
    2671           0 :     _bt_end_vacuum((Relation) DatumGetPointer(arg));
    2672           0 : }
    2673             : 
    2674             : /*
    2675             :  * BTreeShmemSize --- report amount of shared memory space needed
    2676             :  */
    2677             : Size
    2678        5544 : BTreeShmemSize(void)
    2679             : {
    2680             :     Size        size;
    2681             : 
    2682        5544 :     size = offsetof(BTVacInfo, vacuums);
    2683        5544 :     size = add_size(size, mul_size(MaxBackends, sizeof(BTOneVacInfo)));
    2684        5544 :     return size;
    2685             : }
    2686             : 
    2687             : /*
    2688             :  * BTreeShmemInit --- initialize this module's shared memory
    2689             :  */
    2690             : void
    2691        1938 : BTreeShmemInit(void)
    2692             : {
    2693             :     bool        found;
    2694             : 
    2695        1938 :     btvacinfo = (BTVacInfo *) ShmemInitStruct("BTree Vacuum State",
    2696             :                                               BTreeShmemSize(),
    2697             :                                               &found);
    2698             : 
    2699        1938 :     if (!IsUnderPostmaster)
    2700             :     {
    2701             :         /* Initialize shared memory area */
    2702             :         Assert(!found);
    2703             : 
    2704             :         /*
    2705             :          * It doesn't really matter what the cycle counter starts at, but
    2706             :          * having it always start the same doesn't seem good.  Seed with
    2707             :          * low-order bits of time() instead.
    2708             :          */
    2709        1938 :         btvacinfo->cycle_ctr = (BTCycleId) time(NULL);
    2710             : 
    2711        1938 :         btvacinfo->num_vacuums = 0;
    2712        1938 :         btvacinfo->max_vacuums = MaxBackends;
    2713             :     }
    2714             :     else
    2715             :         Assert(found);
    2716        1938 : }
    2717             : 
    2718             : bytea *
    2719         326 : btoptions(Datum reloptions, bool validate)
    2720             : {
    2721             :     static const relopt_parse_elt tab[] = {
    2722             :         {"fillfactor", RELOPT_TYPE_INT, offsetof(BTOptions, fillfactor)},
    2723             :         {"vacuum_cleanup_index_scale_factor", RELOPT_TYPE_REAL,
    2724             :         offsetof(BTOptions, vacuum_cleanup_index_scale_factor)},
    2725             :         {"deduplicate_items", RELOPT_TYPE_BOOL,
    2726             :         offsetof(BTOptions, deduplicate_items)}
    2727             :     };
    2728             : 
    2729         326 :     return (bytea *) build_reloptions(reloptions, validate,
    2730             :                                       RELOPT_KIND_BTREE,
    2731             :                                       sizeof(BTOptions),
    2732             :                                       tab, lengthof(tab));
    2733             : }
    2734             : 
    2735             : /*
    2736             :  *  btproperty() -- Check boolean properties of indexes.
    2737             :  *
    2738             :  * This is optional, but handling AMPROP_RETURNABLE here saves opening the rel
    2739             :  * to call btcanreturn.
    2740             :  */
    2741             : bool
    2742         756 : btproperty(Oid index_oid, int attno,
    2743             :            IndexAMProperty prop, const char *propname,
    2744             :            bool *res, bool *isnull)
    2745             : {
    2746         756 :     switch (prop)
    2747             :     {
    2748          42 :         case AMPROP_RETURNABLE:
    2749             :             /* answer only for columns, not AM or whole index */
    2750          42 :             if (attno == 0)
    2751          12 :                 return false;
    2752             :             /* otherwise, btree can always return data */
    2753          30 :             *res = true;
    2754          30 :             return true;
    2755             : 
    2756         714 :         default:
    2757         714 :             return false;       /* punt to generic code */
    2758             :     }
    2759             : }
    2760             : 
    2761             : /*
    2762             :  *  btbuildphasename() -- Return name of index build phase.
    2763             :  */
    2764             : char *
    2765           0 : btbuildphasename(int64 phasenum)
    2766             : {
    2767           0 :     switch (phasenum)
    2768             :     {
    2769           0 :         case PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE:
    2770           0 :             return "initializing";
    2771           0 :         case PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN:
    2772           0 :             return "scanning table";
    2773           0 :         case PROGRESS_BTREE_PHASE_PERFORMSORT_1:
    2774           0 :             return "sorting live tuples";
    2775           0 :         case PROGRESS_BTREE_PHASE_PERFORMSORT_2:
    2776           0 :             return "sorting dead tuples";
    2777           0 :         case PROGRESS_BTREE_PHASE_LEAF_LOAD:
    2778           0 :             return "loading tuples in tree";
    2779           0 :         default:
    2780           0 :             return NULL;
    2781             :     }
    2782             : }
    2783             : 
    2784             : /*
    2785             :  *  _bt_truncate() -- create tuple without unneeded suffix attributes.
    2786             :  *
    2787             :  * Returns truncated pivot index tuple allocated in caller's memory context,
    2788             :  * with key attributes copied from caller's firstright argument.  If rel is
    2789             :  * an INCLUDE index, non-key attributes will definitely be truncated away,
    2790             :  * since they're not part of the key space.  More aggressive suffix
    2791             :  * truncation can take place when it's clear that the returned tuple does not
    2792             :  * need one or more suffix key attributes.  We only need to keep firstright
    2793             :  * attributes up to and including the first non-lastleft-equal attribute.
    2794             :  * Caller's insertion scankey is used to compare the tuples; the scankey's
    2795             :  * argument values are not considered here.
    2796             :  *
    2797             :  * Note that returned tuple's t_tid offset will hold the number of attributes
    2798             :  * present, so the original item pointer offset is not represented.  Caller
    2799             :  * should only change truncated tuple's downlink.  Note also that truncated
    2800             :  * key attributes are treated as containing "minus infinity" values by
    2801             :  * _bt_compare().
    2802             :  *
    2803             :  * In the worst case (when a heap TID must be appended to distinguish lastleft
    2804             :  * from firstright), the size of the returned tuple is the size of firstright
    2805             :  * plus the size of an additional MAXALIGN()'d item pointer.  This guarantee
    2806             :  * is important, since callers need to stay under the 1/3 of a page
    2807             :  * restriction on tuple size.  If this routine is ever taught to truncate
    2808             :  * within an attribute/datum, it will need to avoid returning an enlarged
    2809             :  * tuple to caller when truncation + TOAST compression ends up enlarging the
    2810             :  * final datum.
    2811             :  */
    2812             : IndexTuple
    2813       60480 : _bt_truncate(Relation rel, IndexTuple lastleft, IndexTuple firstright,
    2814             :              BTScanInsert itup_key)
    2815             : {
    2816       60480 :     TupleDesc   itupdesc = RelationGetDescr(rel);
    2817       60480 :     int16       nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
    2818             :     int         keepnatts;
    2819             :     IndexTuple  pivot;
    2820             :     IndexTuple  tidpivot;
    2821             :     ItemPointer pivotheaptid;
    2822             :     Size        newsize;
    2823             : 
    2824             :     /*
    2825             :      * We should only ever truncate non-pivot tuples from leaf pages.  It's
    2826             :      * never okay to truncate when splitting an internal page.
    2827             :      */
    2828             :     Assert(!BTreeTupleIsPivot(lastleft) && !BTreeTupleIsPivot(firstright));
    2829             : 
    2830             :     /* Determine how many attributes must be kept in truncated tuple */
    2831       60480 :     keepnatts = _bt_keep_natts(rel, lastleft, firstright, itup_key);
    2832             : 
    2833             : #ifdef DEBUG_NO_TRUNCATE
    2834             :     /* Force truncation to be ineffective for testing purposes */
    2835             :     keepnatts = nkeyatts + 1;
    2836             : #endif
    2837             : 
    2838       60480 :     pivot = index_truncate_tuple(itupdesc, firstright,
    2839             :                                  Min(keepnatts, nkeyatts));
    2840             : 
    2841       60480 :     if (BTreeTupleIsPosting(pivot))
    2842             :     {
    2843             :         /*
    2844             :          * index_truncate_tuple() just returns a straight copy of firstright
    2845             :          * when it has no attributes to truncate.  When that happens, we may
    2846             :          * need to truncate away a posting list here instead.
    2847             :          */
    2848             :         Assert(keepnatts == nkeyatts || keepnatts == nkeyatts + 1);
    2849             :         Assert(IndexRelationGetNumberOfAttributes(rel) == nkeyatts);
    2850        1320 :         pivot->t_info &= ~INDEX_SIZE_MASK;
    2851        1320 :         pivot->t_info |= MAXALIGN(BTreeTupleGetPostingOffset(firstright));
    2852             :     }
    2853             : 
    2854             :     /*
    2855             :      * If there is a distinguishing key attribute within pivot tuple, we're
    2856             :      * done
    2857             :      */
    2858       60480 :     if (keepnatts <= nkeyatts)
    2859             :     {
    2860       59402 :         BTreeTupleSetNAtts(pivot, keepnatts, false);
    2861       59402 :         return pivot;
    2862             :     }
    2863             : 
    2864             :     /*
    2865             :      * We have to store a heap TID in the new pivot tuple, since no non-TID
    2866             :      * key attribute value in firstright distinguishes the right side of the
    2867             :      * split from the left side.  nbtree conceptualizes this case as an
    2868             :      * inability to truncate away any key attributes, since heap TID is
    2869             :      * treated as just another key attribute (despite lacking a pg_attribute
    2870             :      * entry).
    2871             :      *
    2872             :      * Use enlarged space that holds a copy of pivot.  We need the extra space
    2873             :      * to store a heap TID at the end (using the special pivot tuple
    2874             :      * representation).  Note that the original pivot already has firstright's
    2875             :      * possible posting list/non-key attribute values removed at this point.
    2876             :      */
    2877        1078 :     newsize = MAXALIGN(IndexTupleSize(pivot)) + MAXALIGN(sizeof(ItemPointerData));
    2878        1078 :     tidpivot = palloc0(newsize);
    2879        1078 :     memcpy(tidpivot, pivot, MAXALIGN(IndexTupleSize(pivot)));
    2880             :     /* Cannot leak memory here */
    2881        1078 :     pfree(pivot);
    2882             : 
    2883             :     /*
    2884             :      * Store all of firstright's key attribute values plus a tiebreaker heap
    2885             :      * TID value in enlarged pivot tuple
    2886             :      */
    2887        1078 :     tidpivot->t_info &= ~INDEX_SIZE_MASK;
    2888        1078 :     tidpivot->t_info |= newsize;
    2889        1078 :     BTreeTupleSetNAtts(tidpivot, nkeyatts, true);
    2890        1078 :     pivotheaptid = BTreeTupleGetHeapTID(tidpivot);
    2891             : 
    2892             :     /*
    2893             :      * Lehman & Yao use lastleft as the leaf high key in all cases, but don't
    2894             :      * consider suffix truncation.  It seems like a good idea to follow that
    2895             :      * example in cases where no truncation takes place -- use lastleft's heap
    2896             :      * TID.  (This is also the closest value to negative infinity that's
    2897             :      * legally usable.)
    2898             :      */
    2899        1078 :     ItemPointerCopy(BTreeTupleGetMaxHeapTID(lastleft), pivotheaptid);
    2900             : 
    2901             :     /*
    2902             :      * We're done.  Assert() that heap TID invariants hold before returning.
    2903             :      *
    2904             :      * Lehman and Yao require that the downlink to the right page, which is to
    2905             :      * be inserted into the parent page in the second phase of a page split be
    2906             :      * a strict lower bound on items on the right page, and a non-strict upper
    2907             :      * bound for items on the left page.  Assert that heap TIDs follow these
    2908             :      * invariants, since a heap TID value is apparently needed as a
    2909             :      * tiebreaker.
    2910             :      */
    2911             : #ifndef DEBUG_NO_TRUNCATE
    2912             :     Assert(ItemPointerCompare(BTreeTupleGetMaxHeapTID(lastleft),
    2913             :                               BTreeTupleGetHeapTID(firstright)) < 0);
    2914             :     Assert(ItemPointerCompare(pivotheaptid,
    2915             :                               BTreeTupleGetHeapTID(lastleft)) >= 0);
    2916             :     Assert(ItemPointerCompare(pivotheaptid,
    2917             :                               BTreeTupleGetHeapTID(firstright)) < 0);
    2918             : #else
    2919             : 
    2920             :     /*
    2921             :      * Those invariants aren't guaranteed to hold for lastleft + firstright
    2922             :      * heap TID attribute values when they're considered here only because
    2923             :      * DEBUG_NO_TRUNCATE is defined (a heap TID is probably not actually
    2924             :      * needed as a tiebreaker).  DEBUG_NO_TRUNCATE must therefore use a heap
    2925             :      * TID value that always works as a strict lower bound for items to the
    2926             :      * right.  In particular, it must avoid using firstright's leading key
    2927             :      * attribute values along with lastleft's heap TID value when lastleft's
    2928             :      * TID happens to be greater than firstright's TID.
    2929             :      */
    2930             :     ItemPointerCopy(BTreeTupleGetHeapTID(firstright), pivotheaptid);
    2931             : 
    2932             :     /*
    2933             :      * Pivot heap TID should never be fully equal to firstright.  Note that
    2934             :      * the pivot heap TID will still end up equal to lastleft's heap TID when
    2935             :      * that's the only usable value.
    2936             :      */
    2937             :     ItemPointerSetOffsetNumber(pivotheaptid,
    2938             :                                OffsetNumberPrev(ItemPointerGetOffsetNumber(pivotheaptid)));
    2939             :     Assert(ItemPointerCompare(pivotheaptid,
    2940             :                               BTreeTupleGetHeapTID(firstright)) < 0);
    2941             : #endif
    2942             : 
    2943        1078 :     return tidpivot;
    2944             : }
    2945             : 
    2946             : /*
    2947             :  * _bt_keep_natts - how many key attributes to keep when truncating.
    2948             :  *
    2949             :  * Caller provides two tuples that enclose a split point.  Caller's insertion
    2950             :  * scankey is used to compare the tuples; the scankey's argument values are
    2951             :  * not considered here.
    2952             :  *
    2953             :  * This can return a number of attributes that is one greater than the
    2954             :  * number of key attributes for the index relation.  This indicates that the
    2955             :  * caller must use a heap TID as a unique-ifier in new pivot tuple.
    2956             :  */
    2957             : static int
    2958       60480 : _bt_keep_natts(Relation rel, IndexTuple lastleft, IndexTuple firstright,
    2959             :                BTScanInsert itup_key)
    2960             : {
    2961       60480 :     int         nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
    2962       60480 :     TupleDesc   itupdesc = RelationGetDescr(rel);
    2963             :     int         keepnatts;
    2964             :     ScanKey     scankey;
    2965             : 
    2966             :     /*
    2967             :      * _bt_compare() treats truncated key attributes as having the value minus
    2968             :      * infinity, which would break searches within !heapkeyspace indexes.  We
    2969             :      * must still truncate away non-key attribute values, though.
    2970             :      */
    2971       60480 :     if (!itup_key->heapkeyspace)
    2972           0 :         return nkeyatts;
    2973             : 
    2974       60480 :     scankey = itup_key->scankeys;
    2975       60480 :     keepnatts = 1;
    2976       73652 :     for (int attnum = 1; attnum <= nkeyatts; attnum++, scankey++)
    2977             :     {
    2978             :         Datum       datum1,
    2979             :                     datum2;
    2980             :         bool        isNull1,
    2981             :                     isNull2;
    2982             : 
    2983       72574 :         datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1);
    2984       72574 :         datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2);
    2985             : 
    2986       72574 :         if (isNull1 != isNull2)
    2987       59402 :             break;
    2988             : 
    2989      145118 :         if (!isNull1 &&
    2990       72544 :             DatumGetInt32(FunctionCall2Coll(&scankey->sk_func,
    2991             :                                             scankey->sk_collation,
    2992             :                                             datum1,
    2993             :                                             datum2)) != 0)
    2994       59402 :             break;
    2995             : 
    2996       13172 :         keepnatts++;
    2997             :     }
    2998             : 
    2999             :     /*
    3000             :      * Assert that _bt_keep_natts_fast() agrees with us in passing.  This is
    3001             :      * expected in an allequalimage index.
    3002             :      */
    3003             :     Assert(!itup_key->allequalimage ||
    3004             :            keepnatts == _bt_keep_natts_fast(rel, lastleft, firstright));
    3005             : 
    3006       60480 :     return keepnatts;
    3007             : }
    3008             : 
    3009             : /*
    3010             :  * _bt_keep_natts_fast - fast bitwise variant of _bt_keep_natts.
    3011             :  *
    3012             :  * This is exported so that a candidate split point can have its effect on
    3013             :  * suffix truncation inexpensively evaluated ahead of time when finding a
    3014             :  * split location.  A naive bitwise approach to datum comparisons is used to
    3015             :  * save cycles.
    3016             :  *
    3017             :  * The approach taken here usually provides the same answer as _bt_keep_natts
    3018             :  * will (for the same pair of tuples from a heapkeyspace index), since the
    3019             :  * majority of btree opclasses can never indicate that two datums are equal
    3020             :  * unless they're bitwise equal after detoasting.  When an index only has
    3021             :  * "equal image" columns, routine is guaranteed to give the same result as
    3022             :  * _bt_keep_natts would.
    3023             :  *
    3024             :  * Callers can rely on the fact that attributes considered equal here are
    3025             :  * definitely also equal according to _bt_keep_natts, even when the index uses
    3026             :  * an opclass or collation that is not "allequalimage"/deduplication-safe.
    3027             :  * This weaker guarantee is good enough for nbtsplitloc.c caller, since false
    3028             :  * negatives generally only have the effect of making leaf page splits use a
    3029             :  * more balanced split point.
    3030             :  */
    3031             : int
    3032    13008916 : _bt_keep_natts_fast(Relation rel, IndexTuple lastleft, IndexTuple firstright)
    3033             : {
    3034    13008916 :     TupleDesc   itupdesc = RelationGetDescr(rel);
    3035    13008916 :     int         keysz = IndexRelationGetNumberOfKeyAttributes(rel);
    3036             :     int         keepnatts;
    3037             : 
    3038    13008916 :     keepnatts = 1;
    3039    21667224 :     for (int attnum = 1; attnum <= keysz; attnum++)
    3040             :     {
    3041             :         Datum       datum1,
    3042             :                     datum2;
    3043             :         bool        isNull1,
    3044             :                     isNull2;
    3045             :         CompactAttribute *att;
    3046             : 
    3047    19356600 :         datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1);
    3048    19356600 :         datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2);
    3049    19356600 :         att = TupleDescCompactAttr(itupdesc, attnum - 1);
    3050             : 
    3051    19356600 :         if (isNull1 != isNull2)
    3052    10698292 :             break;
    3053             : 
    3054    19356450 :         if (!isNull1 &&
    3055    19309394 :             !datum_image_eq(datum1, datum2, att->attbyval, att->attlen))
    3056    10698142 :             break;
    3057             : 
    3058     8658308 :         keepnatts++;
    3059             :     }
    3060             : 
    3061    13008916 :     return keepnatts;
    3062             : }
    3063             : 
    3064             : /*
    3065             :  *  _bt_check_natts() -- Verify tuple has expected number of attributes.
    3066             :  *
    3067             :  * Returns value indicating if the expected number of attributes were found
    3068             :  * for a particular offset on page.  This can be used as a general purpose
    3069             :  * sanity check.
    3070             :  *
    3071             :  * Testing a tuple directly with BTreeTupleGetNAtts() should generally be
    3072             :  * preferred to calling here.  That's usually more convenient, and is always
    3073             :  * more explicit.  Call here instead when offnum's tuple may be a negative
    3074             :  * infinity tuple that uses the pre-v11 on-disk representation, or when a low
    3075             :  * context check is appropriate.  This routine is as strict as possible about
    3076             :  * what is expected on each version of btree.
    3077             :  */
    3078             : bool
    3079     4044736 : _bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
    3080             : {
    3081     4044736 :     int16       natts = IndexRelationGetNumberOfAttributes(rel);
    3082     4044736 :     int16       nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
    3083     4044736 :     BTPageOpaque opaque = BTPageGetOpaque(page);
    3084             :     IndexTuple  itup;
    3085             :     int         tupnatts;
    3086             : 
    3087             :     /*
    3088             :      * We cannot reliably test a deleted or half-dead page, since they have
    3089             :      * dummy high keys
    3090             :      */
    3091     4044736 :     if (P_IGNORE(opaque))
    3092           0 :         return true;
    3093             : 
    3094             :     Assert(offnum >= FirstOffsetNumber &&
    3095             :            offnum <= PageGetMaxOffsetNumber(page));
    3096             : 
    3097     4044736 :     itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
    3098     4044736 :     tupnatts = BTreeTupleGetNAtts(itup, rel);
    3099             : 
    3100             :     /* !heapkeyspace indexes do not support deduplication */
    3101     4044736 :     if (!heapkeyspace && BTreeTupleIsPosting(itup))
    3102           0 :         return false;
    3103             : 
    3104             :     /* Posting list tuples should never have "pivot heap TID" bit set */
    3105     4044736 :     if (BTreeTupleIsPosting(itup) &&
    3106       21884 :         (ItemPointerGetOffsetNumberNoCheck(&itup->t_tid) &
    3107             :          BT_PIVOT_HEAP_TID_ATTR) != 0)
    3108           0 :         return false;
    3109             : 
    3110             :     /* INCLUDE indexes do not support deduplication */
    3111     4044736 :     if (natts != nkeyatts && BTreeTupleIsPosting(itup))
    3112           0 :         return false;
    3113             : 
    3114     4044736 :     if (P_ISLEAF(opaque))
    3115             :     {
    3116     4030382 :         if (offnum >= P_FIRSTDATAKEY(opaque))
    3117             :         {
    3118             :             /*
    3119             :              * Non-pivot tuple should never be explicitly marked as a pivot
    3120             :              * tuple
    3121             :              */
    3122     4017148 :             if (BTreeTupleIsPivot(itup))
    3123           0 :                 return false;
    3124             : 
    3125             :             /*
    3126             :              * Leaf tuples that are not the page high key (non-pivot tuples)
    3127             :              * should never be truncated.  (Note that tupnatts must have been
    3128             :              * inferred, even with a posting list tuple, because only pivot
    3129             :              * tuples store tupnatts directly.)
    3130             :              */
    3131     4017148 :             return tupnatts == natts;
    3132             :         }
    3133             :         else
    3134             :         {
    3135             :             /*
    3136             :              * Rightmost page doesn't contain a page high key, so tuple was
    3137             :              * checked above as ordinary leaf tuple
    3138             :              */
    3139             :             Assert(!P_RIGHTMOST(opaque));
    3140             : 
    3141             :             /*
    3142             :              * !heapkeyspace high key tuple contains only key attributes. Note
    3143             :              * that tupnatts will only have been explicitly represented in
    3144             :              * !heapkeyspace indexes that happen to have non-key attributes.
    3145             :              */
    3146       13234 :             if (!heapkeyspace)
    3147           0 :                 return tupnatts == nkeyatts;
    3148             : 
    3149             :             /* Use generic heapkeyspace pivot tuple handling */
    3150             :         }
    3151             :     }
    3152             :     else                        /* !P_ISLEAF(opaque) */
    3153             :     {
    3154       14354 :         if (offnum == P_FIRSTDATAKEY(opaque))
    3155             :         {
    3156             :             /*
    3157             :              * The first tuple on any internal page (possibly the first after
    3158             :              * its high key) is its negative infinity tuple.  Negative
    3159             :              * infinity tuples are always truncated to zero attributes.  They
    3160             :              * are a particular kind of pivot tuple.
    3161             :              */
    3162        1114 :             if (heapkeyspace)
    3163        1114 :                 return tupnatts == 0;
    3164             : 
    3165             :             /*
    3166             :              * The number of attributes won't be explicitly represented if the
    3167             :              * negative infinity tuple was generated during a page split that
    3168             :              * occurred with a version of Postgres before v11.  There must be
    3169             :              * a problem when there is an explicit representation that is
    3170             :              * non-zero, or when there is no explicit representation and the
    3171             :              * tuple is evidently not a pre-pg_upgrade tuple.
    3172             :              *
    3173             :              * Prior to v11, downlinks always had P_HIKEY as their offset.
    3174             :              * Accept that as an alternative indication of a valid
    3175             :              * !heapkeyspace negative infinity tuple.
    3176             :              */
    3177           0 :             return tupnatts == 0 ||
    3178           0 :                 ItemPointerGetOffsetNumber(&(itup->t_tid)) == P_HIKEY;
    3179             :         }
    3180             :         else
    3181             :         {
    3182             :             /*
    3183             :              * !heapkeyspace downlink tuple with separator key contains only
    3184             :              * key attributes.  Note that tupnatts will only have been
    3185             :              * explicitly represented in !heapkeyspace indexes that happen to
    3186             :              * have non-key attributes.
    3187             :              */
    3188       13240 :             if (!heapkeyspace)
    3189           0 :                 return tupnatts == nkeyatts;
    3190             : 
    3191             :             /* Use generic heapkeyspace pivot tuple handling */
    3192             :         }
    3193             :     }
    3194             : 
    3195             :     /* Handle heapkeyspace pivot tuples (excluding minus infinity items) */
    3196             :     Assert(heapkeyspace);
    3197             : 
    3198             :     /*
    3199             :      * Explicit representation of the number of attributes is mandatory with
    3200             :      * heapkeyspace index pivot tuples, regardless of whether or not there are
    3201             :      * non-key attributes.
    3202             :      */
    3203       26474 :     if (!BTreeTupleIsPivot(itup))
    3204           0 :         return false;
    3205             : 
    3206             :     /* Pivot tuple should not use posting list representation (redundant) */
    3207       26474 :     if (BTreeTupleIsPosting(itup))
    3208           0 :         return false;
    3209             : 
    3210             :     /*
    3211             :      * Heap TID is a tiebreaker key attribute, so it cannot be untruncated
    3212             :      * when any other key attribute is truncated
    3213             :      */
    3214       26474 :     if (BTreeTupleGetHeapTID(itup) != NULL && tupnatts != nkeyatts)
    3215           0 :         return false;
    3216             : 
    3217             :     /*
    3218             :      * Pivot tuple must have at least one untruncated key attribute (minus
    3219             :      * infinity pivot tuples are the only exception).  Pivot tuples can never
    3220             :      * represent that there is a value present for a key attribute that
    3221             :      * exceeds pg_index.indnkeyatts for the index.
    3222             :      */
    3223       26474 :     return tupnatts > 0 && tupnatts <= nkeyatts;
    3224             : }
    3225             : 
    3226             : /*
    3227             :  *
    3228             :  *  _bt_check_third_page() -- check whether tuple fits on a btree page at all.
    3229             :  *
    3230             :  * We actually need to be able to fit three items on every page, so restrict
    3231             :  * any one item to 1/3 the per-page available space.  Note that itemsz should
    3232             :  * not include the ItemId overhead.
    3233             :  *
    3234             :  * It might be useful to apply TOAST methods rather than throw an error here.
    3235             :  * Using out of line storage would break assumptions made by suffix truncation
    3236             :  * and by contrib/amcheck, though.
    3237             :  */
    3238             : void
    3239         264 : _bt_check_third_page(Relation rel, Relation heap, bool needheaptidspace,
    3240             :                      Page page, IndexTuple newtup)
    3241             : {
    3242             :     Size        itemsz;
    3243             :     BTPageOpaque opaque;
    3244             : 
    3245         264 :     itemsz = MAXALIGN(IndexTupleSize(newtup));
    3246             : 
    3247             :     /* Double check item size against limit */
    3248         264 :     if (itemsz <= BTMaxItemSize(page))
    3249           0 :         return;
    3250             : 
    3251             :     /*
    3252             :      * Tuple is probably too large to fit on page, but it's possible that the
    3253             :      * index uses version 2 or version 3, or that page is an internal page, in
    3254             :      * which case a slightly higher limit applies.
    3255             :      */
    3256         264 :     if (!needheaptidspace && itemsz <= BTMaxItemSizeNoHeapTid(page))
    3257         264 :         return;
    3258             : 
    3259             :     /*
    3260             :      * Internal page insertions cannot fail here, because that would mean that
    3261             :      * an earlier leaf level insertion that should have failed didn't
    3262             :      */
    3263           0 :     opaque = BTPageGetOpaque(page);
    3264           0 :     if (!P_ISLEAF(opaque))
    3265           0 :         elog(ERROR, "cannot insert oversized tuple of size %zu on internal page of index \"%s\"",
    3266             :              itemsz, RelationGetRelationName(rel));
    3267             : 
    3268           0 :     ereport(ERROR,
    3269             :             (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
    3270             :              errmsg("index row size %zu exceeds btree version %u maximum %zu for index \"%s\"",
    3271             :                     itemsz,
    3272             :                     needheaptidspace ? BTREE_VERSION : BTREE_NOVAC_VERSION,
    3273             :                     needheaptidspace ? BTMaxItemSize(page) :
    3274             :                     BTMaxItemSizeNoHeapTid(page),
    3275             :                     RelationGetRelationName(rel)),
    3276             :              errdetail("Index row references tuple (%u,%u) in relation \"%s\".",
    3277             :                        ItemPointerGetBlockNumber(BTreeTupleGetHeapTID(newtup)),
    3278             :                        ItemPointerGetOffsetNumber(BTreeTupleGetHeapTID(newtup)),
    3279             :                        RelationGetRelationName(heap)),
    3280             :              errhint("Values larger than 1/3 of a buffer page cannot be indexed.\n"
    3281             :                      "Consider a function index of an MD5 hash of the value, "
    3282             :                      "or use full text indexing."),
    3283             :              errtableconstraint(heap, RelationGetRelationName(rel))));
    3284             : }
    3285             : 
    3286             : /*
    3287             :  * Are all attributes in rel "equality is image equality" attributes?
    3288             :  *
    3289             :  * We use each attribute's BTEQUALIMAGE_PROC opclass procedure.  If any
    3290             :  * opclass either lacks a BTEQUALIMAGE_PROC procedure or returns false, we
    3291             :  * return false; otherwise we return true.
    3292             :  *
    3293             :  * Returned boolean value is stored in index metapage during index builds.
    3294             :  * Deduplication can only be used when we return true.
    3295             :  */
    3296             : bool
    3297       56250 : _bt_allequalimage(Relation rel, bool debugmessage)
    3298             : {
    3299       56250 :     bool        allequalimage = true;
    3300             : 
    3301             :     /* INCLUDE indexes can never support deduplication */
    3302       56250 :     if (IndexRelationGetNumberOfAttributes(rel) !=
    3303       56250 :         IndexRelationGetNumberOfKeyAttributes(rel))
    3304         272 :         return false;
    3305             : 
    3306      147694 :     for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(rel); i++)
    3307             :     {
    3308       92218 :         Oid         opfamily = rel->rd_opfamily[i];
    3309       92218 :         Oid         opcintype = rel->rd_opcintype[i];
    3310       92218 :         Oid         collation = rel->rd_indcollation[i];
    3311             :         Oid         equalimageproc;
    3312             : 
    3313       92218 :         equalimageproc = get_opfamily_proc(opfamily, opcintype, opcintype,
    3314             :                                            BTEQUALIMAGE_PROC);
    3315             : 
    3316             :         /*
    3317             :          * If there is no BTEQUALIMAGE_PROC then deduplication is assumed to
    3318             :          * be unsafe.  Otherwise, actually call proc and see what it says.
    3319             :          */
    3320       92218 :         if (!OidIsValid(equalimageproc) ||
    3321       91760 :             !DatumGetBool(OidFunctionCall1Coll(equalimageproc, collation,
    3322             :                                                ObjectIdGetDatum(opcintype))))
    3323             :         {
    3324         502 :             allequalimage = false;
    3325         502 :             break;
    3326             :         }
    3327             :     }
    3328             : 
    3329       55978 :     if (debugmessage)
    3330             :     {
    3331       47894 :         if (allequalimage)
    3332       47392 :             elog(DEBUG1, "index \"%s\" can safely use deduplication",
    3333             :                  RelationGetRelationName(rel));
    3334             :         else
    3335         502 :             elog(DEBUG1, "index \"%s\" cannot use deduplication",
    3336             :                  RelationGetRelationName(rel));
    3337             :     }
    3338             : 
    3339       55978 :     return allequalimage;
    3340             : }

Generated by: LCOV version 1.14