Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * nbtsearch.c
4 : * Search code for postgres btrees.
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * IDENTIFICATION
11 : * src/backend/access/nbtree/nbtsearch.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 :
16 : #include "postgres.h"
17 :
18 : #include "access/nbtree.h"
19 : #include "access/relscan.h"
20 : #include "access/xact.h"
21 : #include "miscadmin.h"
22 : #include "pgstat.h"
23 : #include "storage/predicate.h"
24 : #include "utils/lsyscache.h"
25 : #include "utils/rel.h"
26 :
27 :
28 : static void _bt_drop_lock_and_maybe_pin(IndexScanDesc scan, BTScanPos sp);
29 : static Buffer _bt_moveright(Relation rel, Relation heaprel, BTScanInsert key,
30 : Buffer buf, bool forupdate, BTStack stack,
31 : int access);
32 : static OffsetNumber _bt_binsrch(Relation rel, BTScanInsert key, Buffer buf);
33 : static int _bt_binsrch_posting(BTScanInsert key, Page page,
34 : OffsetNumber offnum);
35 : static bool _bt_readpage(IndexScanDesc scan, ScanDirection dir,
36 : OffsetNumber offnum, bool firstPage);
37 : static void _bt_saveitem(BTScanOpaque so, int itemIndex,
38 : OffsetNumber offnum, IndexTuple itup);
39 : static int _bt_setuppostingitems(BTScanOpaque so, int itemIndex,
40 : OffsetNumber offnum, ItemPointer heapTid,
41 : IndexTuple itup);
42 : static inline void _bt_savepostingitem(BTScanOpaque so, int itemIndex,
43 : OffsetNumber offnum,
44 : ItemPointer heapTid, int tupleOffset);
45 : static inline void _bt_returnitem(IndexScanDesc scan, BTScanOpaque so);
46 : static bool _bt_steppage(IndexScanDesc scan, ScanDirection dir);
47 : static bool _bt_readfirstpage(IndexScanDesc scan, OffsetNumber offnum,
48 : ScanDirection dir);
49 : static bool _bt_readnextpage(IndexScanDesc scan, BlockNumber blkno,
50 : BlockNumber lastcurrblkno, ScanDirection dir,
51 : bool seized);
52 : static Buffer _bt_lock_and_validate_left(Relation rel, BlockNumber *blkno,
53 : BlockNumber lastcurrblkno);
54 : static bool _bt_endpoint(IndexScanDesc scan, ScanDirection dir);
55 :
56 :
57 : /*
58 : * _bt_drop_lock_and_maybe_pin()
59 : *
60 : * Unlock the buffer; and if it is safe to release the pin, do that, too.
61 : * This will prevent vacuum from stalling in a blocked state trying to read a
62 : * page when a cursor is sitting on it.
63 : *
64 : * See nbtree/README section on making concurrent TID recycling safe.
65 : */
66 : static void
67 9314006 : _bt_drop_lock_and_maybe_pin(IndexScanDesc scan, BTScanPos sp)
68 : {
69 9314006 : _bt_unlockbuf(scan->indexRelation, sp->buf);
70 :
71 9314006 : if (IsMVCCSnapshot(scan->xs_snapshot) &&
72 9012230 : RelationNeedsWAL(scan->indexRelation) &&
73 9007284 : !scan->xs_want_itup)
74 : {
75 8901838 : ReleaseBuffer(sp->buf);
76 8901838 : sp->buf = InvalidBuffer;
77 : }
78 9314006 : }
79 :
80 : /*
81 : * _bt_search() -- Search the tree for a particular scankey,
82 : * or more precisely for the first leaf page it could be on.
83 : *
84 : * The passed scankey is an insertion-type scankey (see nbtree/README),
85 : * but it can omit the rightmost column(s) of the index.
86 : *
87 : * Return value is a stack of parent-page pointers (i.e. there is no entry for
88 : * the leaf level/page). *bufP is set to the address of the leaf-page buffer,
89 : * which is locked and pinned. No locks are held on the parent pages,
90 : * however!
91 : *
92 : * The returned buffer is locked according to access parameter. Additionally,
93 : * access = BT_WRITE will allow an empty root page to be created and returned.
94 : * When access = BT_READ, an empty index will result in *bufP being set to
95 : * InvalidBuffer. Also, in BT_WRITE mode, any incomplete splits encountered
96 : * during the search will be finished.
97 : *
98 : * heaprel must be provided by callers that pass access = BT_WRITE, since we
99 : * might need to allocate a new root page for caller -- see _bt_allocbuf.
100 : */
101 : BTStack
102 20249282 : _bt_search(Relation rel, Relation heaprel, BTScanInsert key, Buffer *bufP,
103 : int access)
104 : {
105 20249282 : BTStack stack_in = NULL;
106 20249282 : int page_access = BT_READ;
107 :
108 : /* heaprel must be set whenever _bt_allocbuf is reachable */
109 : Assert(access == BT_READ || access == BT_WRITE);
110 : Assert(access == BT_READ || heaprel != NULL);
111 :
112 : /* Get the root page to start with */
113 20249282 : *bufP = _bt_getroot(rel, heaprel, access);
114 :
115 : /* If index is empty and access = BT_READ, no root page is created. */
116 20249282 : if (!BufferIsValid(*bufP))
117 508348 : return (BTStack) NULL;
118 :
119 : /* Loop iterates once per level descended in the tree */
120 : for (;;)
121 16305112 : {
122 : Page page;
123 : BTPageOpaque opaque;
124 : OffsetNumber offnum;
125 : ItemId itemid;
126 : IndexTuple itup;
127 : BlockNumber child;
128 : BTStack new_stack;
129 :
130 : /*
131 : * Race -- the page we just grabbed may have split since we read its
132 : * downlink in its parent page (or the metapage). If it has, we may
133 : * need to move right to its new sibling. Do that.
134 : *
135 : * In write-mode, allow _bt_moveright to finish any incomplete splits
136 : * along the way. Strictly speaking, we'd only need to finish an
137 : * incomplete split on the leaf page we're about to insert to, not on
138 : * any of the upper levels (internal pages with incomplete splits are
139 : * also taken care of in _bt_getstackbuf). But this is a good
140 : * opportunity to finish splits of internal pages too.
141 : */
142 36046046 : *bufP = _bt_moveright(rel, heaprel, key, *bufP, (access == BT_WRITE),
143 : stack_in, page_access);
144 :
145 : /* if this is a leaf page, we're done */
146 36046046 : page = BufferGetPage(*bufP);
147 36046046 : opaque = BTPageGetOpaque(page);
148 36046046 : if (P_ISLEAF(opaque))
149 19740934 : break;
150 :
151 : /*
152 : * Find the appropriate pivot tuple on this page. Its downlink points
153 : * to the child page that we're about to descend to.
154 : */
155 16305112 : offnum = _bt_binsrch(rel, key, *bufP);
156 16305112 : itemid = PageGetItemId(page, offnum);
157 16305112 : itup = (IndexTuple) PageGetItem(page, itemid);
158 : Assert(BTreeTupleIsPivot(itup) || !key->heapkeyspace);
159 16305112 : child = BTreeTupleGetDownLink(itup);
160 :
161 : /*
162 : * We need to save the location of the pivot tuple we chose in a new
163 : * stack entry for this page/level. If caller ends up splitting a
164 : * page one level down, it usually ends up inserting a new pivot
165 : * tuple/downlink immediately after the location recorded here.
166 : */
167 16305112 : new_stack = (BTStack) palloc(sizeof(BTStackData));
168 16305112 : new_stack->bts_blkno = BufferGetBlockNumber(*bufP);
169 16305112 : new_stack->bts_offset = offnum;
170 16305112 : new_stack->bts_parent = stack_in;
171 :
172 : /*
173 : * Page level 1 is lowest non-leaf page level prior to leaves. So, if
174 : * we're on the level 1 and asked to lock leaf page in write mode,
175 : * then lock next page in write mode, because it must be a leaf.
176 : */
177 16305112 : if (opaque->btpo_level == 1 && access == BT_WRITE)
178 5878412 : page_access = BT_WRITE;
179 :
180 : /* drop the read lock on the page, then acquire one on its child */
181 16305112 : *bufP = _bt_relandgetbuf(rel, *bufP, child, page_access);
182 :
183 : /* okay, all set to move down a level */
184 16305112 : stack_in = new_stack;
185 : }
186 :
187 : /*
188 : * If we're asked to lock leaf in write mode, but didn't manage to, then
189 : * relock. This should only happen when the root page is a leaf page (and
190 : * the only page in the index other than the metapage).
191 : */
192 19740934 : if (access == BT_WRITE && page_access == BT_READ)
193 : {
194 : /* trade in our read lock for a write lock */
195 818524 : _bt_unlockbuf(rel, *bufP);
196 818524 : _bt_lockbuf(rel, *bufP, BT_WRITE);
197 :
198 : /*
199 : * Race -- the leaf page may have split after we dropped the read lock
200 : * but before we acquired a write lock. If it has, we may need to
201 : * move right to its new sibling. Do that.
202 : */
203 818524 : *bufP = _bt_moveright(rel, heaprel, key, *bufP, true, stack_in, BT_WRITE);
204 : }
205 :
206 19740934 : return stack_in;
207 : }
208 :
209 : /*
210 : * _bt_moveright() -- move right in the btree if necessary.
211 : *
212 : * When we follow a pointer to reach a page, it is possible that
213 : * the page has changed in the meanwhile. If this happens, we're
214 : * guaranteed that the page has "split right" -- that is, that any
215 : * data that appeared on the page originally is either on the page
216 : * or strictly to the right of it.
217 : *
218 : * This routine decides whether or not we need to move right in the
219 : * tree by examining the high key entry on the page. If that entry is
220 : * strictly less than the scankey, or <= the scankey in the
221 : * key.nextkey=true case, then we followed the wrong link and we need
222 : * to move right.
223 : *
224 : * The passed insertion-type scankey can omit the rightmost column(s) of the
225 : * index. (see nbtree/README)
226 : *
227 : * When key.nextkey is false (the usual case), we are looking for the first
228 : * item >= key. When key.nextkey is true, we are looking for the first item
229 : * strictly greater than key.
230 : *
231 : * If forupdate is true, we will attempt to finish any incomplete splits
232 : * that we encounter. This is required when locking a target page for an
233 : * insertion, because we don't allow inserting on a page before the split is
234 : * completed. 'heaprel' and 'stack' are only used if forupdate is true.
235 : *
236 : * On entry, we have the buffer pinned and a lock of the type specified by
237 : * 'access'. If we move right, we release the buffer and lock and acquire
238 : * the same on the right sibling. Return value is the buffer we stop at.
239 : */
240 : static Buffer
241 36864570 : _bt_moveright(Relation rel,
242 : Relation heaprel,
243 : BTScanInsert key,
244 : Buffer buf,
245 : bool forupdate,
246 : BTStack stack,
247 : int access)
248 : {
249 : Page page;
250 : BTPageOpaque opaque;
251 : int32 cmpval;
252 :
253 : Assert(!forupdate || heaprel != NULL);
254 :
255 : /*
256 : * When nextkey = false (normal case): if the scan key that brought us to
257 : * this page is > the high key stored on the page, then the page has split
258 : * and we need to move right. (pg_upgrade'd !heapkeyspace indexes could
259 : * have some duplicates to the right as well as the left, but that's
260 : * something that's only ever dealt with on the leaf level, after
261 : * _bt_search has found an initial leaf page.)
262 : *
263 : * When nextkey = true: move right if the scan key is >= page's high key.
264 : * (Note that key.scantid cannot be set in this case.)
265 : *
266 : * The page could even have split more than once, so scan as far as
267 : * needed.
268 : *
269 : * We also have to move right if we followed a link that brought us to a
270 : * dead page.
271 : */
272 36864570 : cmpval = key->nextkey ? 0 : 1;
273 :
274 : for (;;)
275 : {
276 36866200 : page = BufferGetPage(buf);
277 36866200 : opaque = BTPageGetOpaque(page);
278 :
279 36866200 : if (P_RIGHTMOST(opaque))
280 28104496 : break;
281 :
282 : /*
283 : * Finish any incomplete splits we encounter along the way.
284 : */
285 8761704 : if (forupdate && P_INCOMPLETE_SPLIT(opaque))
286 : {
287 0 : BlockNumber blkno = BufferGetBlockNumber(buf);
288 :
289 : /* upgrade our lock if necessary */
290 0 : if (access == BT_READ)
291 : {
292 0 : _bt_unlockbuf(rel, buf);
293 0 : _bt_lockbuf(rel, buf, BT_WRITE);
294 : }
295 :
296 0 : if (P_INCOMPLETE_SPLIT(opaque))
297 0 : _bt_finish_split(rel, heaprel, buf, stack);
298 : else
299 0 : _bt_relbuf(rel, buf);
300 :
301 : /* re-acquire the lock in the right mode, and re-check */
302 0 : buf = _bt_getbuf(rel, blkno, access);
303 0 : continue;
304 : }
305 :
306 8761704 : if (P_IGNORE(opaque) || _bt_compare(rel, key, page, P_HIKEY) >= cmpval)
307 : {
308 : /* step right one page */
309 1630 : buf = _bt_relandgetbuf(rel, buf, opaque->btpo_next, access);
310 1630 : continue;
311 : }
312 : else
313 : break;
314 : }
315 :
316 36864570 : if (P_IGNORE(opaque))
317 0 : elog(ERROR, "fell off the end of index \"%s\"",
318 : RelationGetRelationName(rel));
319 :
320 36864570 : return buf;
321 : }
322 :
323 : /*
324 : * _bt_binsrch() -- Do a binary search for a key on a particular page.
325 : *
326 : * On an internal (non-leaf) page, _bt_binsrch() returns the OffsetNumber
327 : * of the last key < given scankey, or last key <= given scankey if nextkey
328 : * is true. (Since _bt_compare treats the first data key of such a page as
329 : * minus infinity, there will be at least one key < scankey, so the result
330 : * always points at one of the keys on the page.)
331 : *
332 : * On a leaf page, _bt_binsrch() returns the final result of the initial
333 : * positioning process that started with _bt_first's call to _bt_search.
334 : * We're returning a non-pivot tuple offset, so things are a little different.
335 : * It is possible that we'll return an offset that's either past the last
336 : * non-pivot slot, or (in the case of a backward scan) before the first slot.
337 : *
338 : * This procedure is not responsible for walking right, it just examines
339 : * the given page. _bt_binsrch() has no lock or refcount side effects
340 : * on the buffer.
341 : */
342 : static OffsetNumber
343 28941428 : _bt_binsrch(Relation rel,
344 : BTScanInsert key,
345 : Buffer buf)
346 : {
347 : Page page;
348 : BTPageOpaque opaque;
349 : OffsetNumber low,
350 : high;
351 : int32 result,
352 : cmpval;
353 :
354 28941428 : page = BufferGetPage(buf);
355 28941428 : opaque = BTPageGetOpaque(page);
356 :
357 : /* Requesting nextkey semantics while using scantid seems nonsensical */
358 : Assert(!key->nextkey || key->scantid == NULL);
359 : /* scantid-set callers must use _bt_binsrch_insert() on leaf pages */
360 : Assert(!P_ISLEAF(opaque) || key->scantid == NULL);
361 :
362 28941428 : low = P_FIRSTDATAKEY(opaque);
363 28941428 : high = PageGetMaxOffsetNumber(page);
364 :
365 : /*
366 : * If there are no keys on the page, return the first available slot. Note
367 : * this covers two cases: the page is really empty (no keys), or it
368 : * contains only a high key. The latter case is possible after vacuuming.
369 : * This can never happen on an internal page, however, since they are
370 : * never empty (an internal page must have at least one child).
371 : */
372 28941428 : if (unlikely(high < low))
373 11080 : return low;
374 :
375 : /*
376 : * Binary search to find the first key on the page >= scan key, or first
377 : * key > scankey when nextkey is true.
378 : *
379 : * For nextkey=false (cmpval=1), the loop invariant is: all slots before
380 : * 'low' are < scan key, all slots at or after 'high' are >= scan key.
381 : *
382 : * For nextkey=true (cmpval=0), the loop invariant is: all slots before
383 : * 'low' are <= scan key, all slots at or after 'high' are > scan key.
384 : *
385 : * We can fall out when high == low.
386 : */
387 28930348 : high++; /* establish the loop invariant for high */
388 :
389 28930348 : cmpval = key->nextkey ? 0 : 1; /* select comparison value */
390 :
391 188596680 : while (high > low)
392 : {
393 159666332 : OffsetNumber mid = low + ((high - low) / 2);
394 :
395 : /* We have low <= mid < high, so mid points at a real slot */
396 :
397 159666332 : result = _bt_compare(rel, key, page, mid);
398 :
399 159666332 : if (result >= cmpval)
400 100723698 : low = mid + 1;
401 : else
402 58942634 : high = mid;
403 : }
404 :
405 : /*
406 : * At this point we have high == low.
407 : *
408 : * On a leaf page we always return the first non-pivot tuple >= scan key
409 : * (resp. > scan key) for forward scan callers. For backward scans, it's
410 : * always the _last_ non-pivot tuple < scan key (resp. <= scan key).
411 : */
412 28930348 : if (P_ISLEAF(opaque))
413 : {
414 : /*
415 : * In the backward scan case we're supposed to locate the last
416 : * matching tuple on the leaf level -- not the first matching tuple
417 : * (the last tuple will be the first one returned by the scan).
418 : *
419 : * At this point we've located the first non-pivot tuple immediately
420 : * after the last matching tuple (which might just be maxoff + 1).
421 : * Compensate by stepping back.
422 : */
423 12625236 : if (key->backward)
424 44470 : return OffsetNumberPrev(low);
425 :
426 12580766 : return low;
427 : }
428 :
429 : /*
430 : * On a non-leaf page, return the last key < scan key (resp. <= scan key).
431 : * There must be one if _bt_compare() is playing by the rules.
432 : *
433 : * _bt_compare() will seldom see any exactly-matching pivot tuples, since
434 : * a truncated -inf heap TID is usually enough to prevent it altogether.
435 : * Even omitted scan key entries are treated as > truncated attributes.
436 : *
437 : * However, during backward scans _bt_compare() interprets omitted scan
438 : * key attributes as == corresponding truncated -inf attributes instead.
439 : * This works just like < would work here. Under this scheme, < strategy
440 : * backward scans will always directly descend to the correct leaf page.
441 : * In particular, they will never incur an "extra" leaf page access with a
442 : * scan key that happens to contain the same prefix of values as some
443 : * pivot tuple's untruncated prefix. VACUUM relies on this guarantee when
444 : * it uses a leaf page high key to "re-find" a page undergoing deletion.
445 : */
446 : Assert(low > P_FIRSTDATAKEY(opaque));
447 :
448 16305112 : return OffsetNumberPrev(low);
449 : }
450 :
451 : /*
452 : *
453 : * _bt_binsrch_insert() -- Cacheable, incremental leaf page binary search.
454 : *
455 : * Like _bt_binsrch(), but with support for caching the binary search
456 : * bounds. Only used during insertion, and only on the leaf page that it
457 : * looks like caller will insert tuple on. Exclusive-locked and pinned
458 : * leaf page is contained within insertstate.
459 : *
460 : * Caches the bounds fields in insertstate so that a subsequent call can
461 : * reuse the low and strict high bounds of original binary search. Callers
462 : * that use these fields directly must be prepared for the case where low
463 : * and/or stricthigh are not on the same page (one or both exceed maxoff
464 : * for the page). The case where there are no items on the page (high <
465 : * low) makes bounds invalid.
466 : *
467 : * Caller is responsible for invalidating bounds when it modifies the page
468 : * before calling here a second time, and for dealing with posting list
469 : * tuple matches (callers can use insertstate's postingoff field to
470 : * determine which existing heap TID will need to be replaced by a posting
471 : * list split).
472 : */
473 : OffsetNumber
474 11997492 : _bt_binsrch_insert(Relation rel, BTInsertState insertstate)
475 : {
476 11997492 : BTScanInsert key = insertstate->itup_key;
477 : Page page;
478 : BTPageOpaque opaque;
479 : OffsetNumber low,
480 : high,
481 : stricthigh;
482 : int32 result,
483 : cmpval;
484 :
485 11997492 : page = BufferGetPage(insertstate->buf);
486 11997492 : opaque = BTPageGetOpaque(page);
487 :
488 : Assert(P_ISLEAF(opaque));
489 : Assert(!key->nextkey);
490 : Assert(insertstate->postingoff == 0);
491 :
492 11997492 : if (!insertstate->bounds_valid)
493 : {
494 : /* Start new binary search */
495 7185260 : low = P_FIRSTDATAKEY(opaque);
496 7185260 : high = PageGetMaxOffsetNumber(page);
497 : }
498 : else
499 : {
500 : /* Restore result of previous binary search against same page */
501 4812232 : low = insertstate->low;
502 4812232 : high = insertstate->stricthigh;
503 : }
504 :
505 : /* If there are no keys on the page, return the first available slot */
506 11997492 : if (unlikely(high < low))
507 : {
508 : /* Caller can't reuse bounds */
509 21794 : insertstate->low = InvalidOffsetNumber;
510 21794 : insertstate->stricthigh = InvalidOffsetNumber;
511 21794 : insertstate->bounds_valid = false;
512 21794 : return low;
513 : }
514 :
515 : /*
516 : * Binary search to find the first key on the page >= scan key. (nextkey
517 : * is always false when inserting).
518 : *
519 : * The loop invariant is: all slots before 'low' are < scan key, all slots
520 : * at or after 'high' are >= scan key. 'stricthigh' is > scan key, and is
521 : * maintained to save additional search effort for caller.
522 : *
523 : * We can fall out when high == low.
524 : */
525 11975698 : if (!insertstate->bounds_valid)
526 7163466 : high++; /* establish the loop invariant for high */
527 11975698 : stricthigh = high; /* high initially strictly higher */
528 :
529 11975698 : cmpval = 1; /* !nextkey comparison value */
530 :
531 64417772 : while (high > low)
532 : {
533 52442074 : OffsetNumber mid = low + ((high - low) / 2);
534 :
535 : /* We have low <= mid < high, so mid points at a real slot */
536 :
537 52442074 : result = _bt_compare(rel, key, page, mid);
538 :
539 52442074 : if (result >= cmpval)
540 40381258 : low = mid + 1;
541 : else
542 : {
543 12060816 : high = mid;
544 12060816 : if (result != 0)
545 10994274 : stricthigh = high;
546 : }
547 :
548 : /*
549 : * If tuple at offset located by binary search is a posting list whose
550 : * TID range overlaps with caller's scantid, perform posting list
551 : * binary search to set postingoff for caller. Caller must split the
552 : * posting list when postingoff is set. This should happen
553 : * infrequently.
554 : */
555 52442074 : if (unlikely(result == 0 && key->scantid != NULL))
556 : {
557 : /*
558 : * postingoff should never be set more than once per leaf page
559 : * binary search. That would mean that there are duplicate table
560 : * TIDs in the index, which is never okay. Check for that here.
561 : */
562 423248 : if (insertstate->postingoff != 0)
563 0 : ereport(ERROR,
564 : (errcode(ERRCODE_INDEX_CORRUPTED),
565 : errmsg_internal("table tid from new index tuple (%u,%u) cannot find insert offset between offsets %u and %u of block %u in index \"%s\"",
566 : ItemPointerGetBlockNumber(key->scantid),
567 : ItemPointerGetOffsetNumber(key->scantid),
568 : low, stricthigh,
569 : BufferGetBlockNumber(insertstate->buf),
570 : RelationGetRelationName(rel))));
571 :
572 423248 : insertstate->postingoff = _bt_binsrch_posting(key, page, mid);
573 : }
574 : }
575 :
576 : /*
577 : * On a leaf page, a binary search always returns the first key >= scan
578 : * key (at least in !nextkey case), which could be the last slot + 1. This
579 : * is also the lower bound of cached search.
580 : *
581 : * stricthigh may also be the last slot + 1, which prevents caller from
582 : * using bounds directly, but is still useful to us if we're called a
583 : * second time with cached bounds (cached low will be < stricthigh when
584 : * that happens).
585 : */
586 11975698 : insertstate->low = low;
587 11975698 : insertstate->stricthigh = stricthigh;
588 11975698 : insertstate->bounds_valid = true;
589 :
590 11975698 : return low;
591 : }
592 :
593 : /*----------
594 : * _bt_binsrch_posting() -- posting list binary search.
595 : *
596 : * Helper routine for _bt_binsrch_insert().
597 : *
598 : * Returns offset into posting list where caller's scantid belongs.
599 : *----------
600 : */
601 : static int
602 423248 : _bt_binsrch_posting(BTScanInsert key, Page page, OffsetNumber offnum)
603 : {
604 : IndexTuple itup;
605 : ItemId itemid;
606 : int low,
607 : high,
608 : mid,
609 : res;
610 :
611 : /*
612 : * If this isn't a posting tuple, then the index must be corrupt (if it is
613 : * an ordinary non-pivot tuple then there must be an existing tuple with a
614 : * heap TID that equals inserter's new heap TID/scantid). Defensively
615 : * check that tuple is a posting list tuple whose posting list range
616 : * includes caller's scantid.
617 : *
618 : * (This is also needed because contrib/amcheck's rootdescend option needs
619 : * to be able to relocate a non-pivot tuple using _bt_binsrch_insert().)
620 : */
621 423248 : itemid = PageGetItemId(page, offnum);
622 423248 : itup = (IndexTuple) PageGetItem(page, itemid);
623 423248 : if (!BTreeTupleIsPosting(itup))
624 402196 : return 0;
625 :
626 : Assert(key->heapkeyspace && key->allequalimage);
627 :
628 : /*
629 : * In the event that posting list tuple has LP_DEAD bit set, indicate this
630 : * to _bt_binsrch_insert() caller by returning -1, a sentinel value. A
631 : * second call to _bt_binsrch_insert() can take place when its caller has
632 : * removed the dead item.
633 : */
634 21052 : if (ItemIdIsDead(itemid))
635 6 : return -1;
636 :
637 : /* "high" is past end of posting list for loop invariant */
638 21046 : low = 0;
639 21046 : high = BTreeTupleGetNPosting(itup);
640 : Assert(high >= 2);
641 :
642 169752 : while (high > low)
643 : {
644 148706 : mid = low + ((high - low) / 2);
645 148706 : res = ItemPointerCompare(key->scantid,
646 : BTreeTupleGetPostingN(itup, mid));
647 :
648 148706 : if (res > 0)
649 77530 : low = mid + 1;
650 71176 : else if (res < 0)
651 71176 : high = mid;
652 : else
653 0 : return mid;
654 : }
655 :
656 : /* Exact match not found */
657 21046 : return low;
658 : }
659 :
660 : /*----------
661 : * _bt_compare() -- Compare insertion-type scankey to tuple on a page.
662 : *
663 : * page/offnum: location of btree item to be compared to.
664 : *
665 : * This routine returns:
666 : * <0 if scankey < tuple at offnum;
667 : * 0 if scankey == tuple at offnum;
668 : * >0 if scankey > tuple at offnum.
669 : *
670 : * NULLs in the keys are treated as sortable values. Therefore
671 : * "equality" does not necessarily mean that the item should be returned
672 : * to the caller as a matching key. Similarly, an insertion scankey
673 : * with its scantid set is treated as equal to a posting tuple whose TID
674 : * range overlaps with their scantid. There generally won't be a
675 : * matching TID in the posting tuple, which caller must handle
676 : * themselves (e.g., by splitting the posting list tuple).
677 : *
678 : * CRUCIAL NOTE: on a non-leaf page, the first data key is assumed to be
679 : * "minus infinity": this routine will always claim it is less than the
680 : * scankey. The actual key value stored is explicitly truncated to 0
681 : * attributes (explicitly minus infinity) with version 3+ indexes, but
682 : * that isn't relied upon. This allows us to implement the Lehman and
683 : * Yao convention that the first down-link pointer is before the first
684 : * key. See backend/access/nbtree/README for details.
685 : *----------
686 : */
687 : int32
688 237954372 : _bt_compare(Relation rel,
689 : BTScanInsert key,
690 : Page page,
691 : OffsetNumber offnum)
692 : {
693 237954372 : TupleDesc itupdesc = RelationGetDescr(rel);
694 237954372 : BTPageOpaque opaque = BTPageGetOpaque(page);
695 : IndexTuple itup;
696 : ItemPointer heapTid;
697 : ScanKey scankey;
698 : int ncmpkey;
699 : int ntupatts;
700 : int32 result;
701 :
702 : Assert(_bt_check_natts(rel, key->heapkeyspace, page, offnum));
703 : Assert(key->keysz <= IndexRelationGetNumberOfKeyAttributes(rel));
704 : Assert(key->heapkeyspace || key->scantid == NULL);
705 :
706 : /*
707 : * Force result ">" if target item is first data item on an internal page
708 : * --- see NOTE above.
709 : */
710 237954372 : if (!P_ISLEAF(opaque) && offnum == P_FIRSTDATAKEY(opaque))
711 2925768 : return 1;
712 :
713 235028604 : itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
714 235028604 : ntupatts = BTreeTupleGetNAtts(itup, rel);
715 :
716 : /*
717 : * The scan key is set up with the attribute number associated with each
718 : * term in the key. It is important that, if the index is multi-key, the
719 : * scan contain the first k key attributes, and that they be in order. If
720 : * you think about how multi-key ordering works, you'll understand why
721 : * this is.
722 : *
723 : * We don't test for violation of this condition here, however. The
724 : * initial setup for the index scan had better have gotten it right (see
725 : * _bt_first).
726 : */
727 :
728 235028604 : ncmpkey = Min(ntupatts, key->keysz);
729 : Assert(key->heapkeyspace || ncmpkey == key->keysz);
730 : Assert(!BTreeTupleIsPosting(itup) || key->allequalimage);
731 235028604 : scankey = key->scankeys;
732 296670114 : for (int i = 1; i <= ncmpkey; i++)
733 : {
734 : Datum datum;
735 : bool isNull;
736 :
737 275454782 : datum = index_getattr(itup, scankey->sk_attno, itupdesc, &isNull);
738 :
739 275454782 : if (scankey->sk_flags & SK_ISNULL) /* key is NULL */
740 : {
741 478278 : if (isNull)
742 157024 : result = 0; /* NULL "=" NULL */
743 321254 : else if (scankey->sk_flags & SK_BT_NULLS_FIRST)
744 264 : result = -1; /* NULL "<" NOT_NULL */
745 : else
746 320990 : result = 1; /* NULL ">" NOT_NULL */
747 : }
748 274976504 : else if (isNull) /* key is NOT_NULL and item is NULL */
749 : {
750 198 : if (scankey->sk_flags & SK_BT_NULLS_FIRST)
751 0 : result = 1; /* NOT_NULL ">" NULL */
752 : else
753 198 : result = -1; /* NOT_NULL "<" NULL */
754 : }
755 : else
756 : {
757 : /*
758 : * The sk_func needs to be passed the index value as left arg and
759 : * the sk_argument as right arg (they might be of different
760 : * types). Since it is convenient for callers to think of
761 : * _bt_compare as comparing the scankey to the index item, we have
762 : * to flip the sign of the comparison result. (Unless it's a DESC
763 : * column, in which case we *don't* flip the sign.)
764 : */
765 274976306 : result = DatumGetInt32(FunctionCall2Coll(&scankey->sk_func,
766 : scankey->sk_collation,
767 : datum,
768 : scankey->sk_argument));
769 :
770 274976306 : if (!(scankey->sk_flags & SK_BT_DESC))
771 274976240 : INVERT_COMPARE_RESULT(result);
772 : }
773 :
774 : /* if the keys are unequal, return the difference */
775 275454782 : if (result != 0)
776 213813272 : return result;
777 :
778 61641510 : scankey++;
779 : }
780 :
781 : /*
782 : * All non-truncated attributes (other than heap TID) were found to be
783 : * equal. Treat truncated attributes as minus infinity when scankey has a
784 : * key attribute value that would otherwise be compared directly.
785 : *
786 : * Note: it doesn't matter if ntupatts includes non-key attributes;
787 : * scankey won't, so explicitly excluding non-key attributes isn't
788 : * necessary.
789 : */
790 21215332 : if (key->keysz > ntupatts)
791 204774 : return 1;
792 :
793 : /*
794 : * Use the heap TID attribute and scantid to try to break the tie. The
795 : * rules are the same as any other key attribute -- only the
796 : * representation differs.
797 : */
798 21010558 : heapTid = BTreeTupleGetHeapTID(itup);
799 21010558 : if (key->scantid == NULL)
800 : {
801 : /*
802 : * Forward scans have a scankey that is considered greater than a
803 : * truncated pivot tuple if and when the scankey has equal values for
804 : * attributes up to and including the least significant untruncated
805 : * attribute in tuple. Even attributes that were omitted from the
806 : * scan key are considered greater than -inf truncated attributes.
807 : * (See _bt_binsrch for an explanation of our backward scan behavior.)
808 : *
809 : * For example, if an index has the minimum two attributes (single
810 : * user key attribute, plus heap TID attribute), and a page's high key
811 : * is ('foo', -inf), and scankey is ('foo', <omitted>), the search
812 : * will not descend to the page to the left. The search will descend
813 : * right instead. The truncated attribute in pivot tuple means that
814 : * all non-pivot tuples on the page to the left are strictly < 'foo',
815 : * so it isn't necessary to descend left. In other words, search
816 : * doesn't have to descend left because it isn't interested in a match
817 : * that has a heap TID value of -inf.
818 : *
819 : * Note: the heap TID part of the test ensures that scankey is being
820 : * compared to a pivot tuple with one or more truncated -inf key
821 : * attributes. The heap TID attribute is the last key attribute in
822 : * every index, of course, but other than that it isn't special.
823 : */
824 16744054 : if (!key->backward && key->keysz == ntupatts && heapTid == NULL &&
825 7878 : key->heapkeyspace)
826 7878 : return 1;
827 :
828 : /* All provided scankey arguments found to be equal */
829 16736176 : return 0;
830 : }
831 :
832 : /*
833 : * Treat truncated heap TID as minus infinity, since scankey has a key
834 : * attribute value (scantid) that would otherwise be compared directly
835 : */
836 : Assert(key->keysz == IndexRelationGetNumberOfKeyAttributes(rel));
837 4266504 : if (heapTid == NULL)
838 3968 : return 1;
839 :
840 : /*
841 : * Scankey must be treated as equal to a posting list tuple if its scantid
842 : * value falls within the range of the posting list. In all other cases
843 : * there can only be a single heap TID value, which is compared directly
844 : * with scantid.
845 : */
846 : Assert(ntupatts >= IndexRelationGetNumberOfKeyAttributes(rel));
847 4262536 : result = ItemPointerCompare(key->scantid, heapTid);
848 4262536 : if (result <= 0 || !BTreeTupleIsPosting(itup))
849 4103546 : return result;
850 : else
851 : {
852 158990 : result = ItemPointerCompare(key->scantid,
853 : BTreeTupleGetMaxHeapTID(itup));
854 158990 : if (result > 0)
855 137938 : return 1;
856 : }
857 :
858 21052 : return 0;
859 : }
860 :
861 : /*
862 : * _bt_first() -- Find the first item in a scan.
863 : *
864 : * We need to be clever about the direction of scan, the search
865 : * conditions, and the tree ordering. We find the first item (or,
866 : * if backwards scan, the last item) in the tree that satisfies the
867 : * qualifications in the scan key. On success exit, data about the
868 : * matching tuple(s) on the page has been loaded into so->currPos. We'll
869 : * drop all locks and hold onto a pin on page's buffer, except when
870 : * _bt_drop_lock_and_maybe_pin dropped the pin to avoid blocking VACUUM.
871 : * _bt_returnitem sets the next item to return to scan on success exit.
872 : *
873 : * If there are no matching items in the index, we return false, with no
874 : * pins or locks held. so->currPos will remain invalid.
875 : *
876 : * Note that scan->keyData[], and the so->keyData[] scankey built from it,
877 : * are both search-type scankeys (see nbtree/README for more about this).
878 : * Within this routine, we build a temporary insertion-type scankey to use
879 : * in locating the scan start position.
880 : */
881 : bool
882 13218580 : _bt_first(IndexScanDesc scan, ScanDirection dir)
883 : {
884 13218580 : Relation rel = scan->indexRelation;
885 13218580 : BTScanOpaque so = (BTScanOpaque) scan->opaque;
886 : BTStack stack;
887 : OffsetNumber offnum;
888 : BTScanInsertData inskey;
889 : ScanKey startKeys[INDEX_MAX_KEYS];
890 : ScanKeyData notnullkeys[INDEX_MAX_KEYS];
891 13218580 : int keysz = 0;
892 : StrategyNumber strat_total;
893 13218580 : BlockNumber blkno = InvalidBlockNumber,
894 : lastcurrblkno;
895 :
896 : Assert(!BTScanPosIsValid(so->currPos));
897 :
898 : /*
899 : * Examine the scan keys and eliminate any redundant keys; also mark the
900 : * keys that must be matched to continue the scan.
901 : */
902 13218580 : _bt_preprocess_keys(scan);
903 :
904 : /*
905 : * Quit now if _bt_preprocess_keys() discovered that the scan keys can
906 : * never be satisfied (eg, x == 1 AND x > 2).
907 : */
908 13218580 : if (!so->qual_ok)
909 : {
910 : Assert(!so->needPrimScan);
911 1046 : _bt_parallel_done(scan);
912 1046 : return false;
913 : }
914 :
915 : /*
916 : * If this is a parallel scan, we must seize the scan. _bt_readfirstpage
917 : * will likely release the parallel scan later on.
918 : */
919 13217534 : if (scan->parallel_scan != NULL &&
920 446 : !_bt_parallel_seize(scan, &blkno, &lastcurrblkno, true))
921 314 : return false;
922 :
923 : /*
924 : * Initialize the scan's arrays (if any) for the current scan direction
925 : * (except when they were already set to later values as part of
926 : * scheduling the primitive index scan that is now underway)
927 : */
928 13217220 : if (so->numArrayKeys && !so->needPrimScan)
929 1038 : _bt_start_array_keys(scan, dir);
930 :
931 13217220 : if (blkno != InvalidBlockNumber)
932 : {
933 : /*
934 : * We anticipated calling _bt_search, but another worker bet us to it.
935 : * _bt_readnextpage releases the scan for us (not _bt_readfirstpage).
936 : */
937 : Assert(scan->parallel_scan != NULL);
938 : Assert(!so->needPrimScan);
939 : Assert(blkno != P_NONE);
940 :
941 8 : if (!_bt_readnextpage(scan, blkno, lastcurrblkno, dir, true))
942 0 : return false;
943 :
944 8 : _bt_returnitem(scan, so);
945 8 : return true;
946 : }
947 :
948 : /*
949 : * Count an indexscan for stats, now that we know that we'll call
950 : * _bt_search/_bt_endpoint below
951 : */
952 13217212 : pgstat_count_index_scan(rel);
953 :
954 : /*----------
955 : * Examine the scan keys to discover where we need to start the scan.
956 : *
957 : * We want to identify the keys that can be used as starting boundaries;
958 : * these are =, >, or >= keys for a forward scan or =, <, <= keys for
959 : * a backwards scan. We can use keys for multiple attributes so long as
960 : * the prior attributes had only =, >= (resp. =, <=) keys. Once we accept
961 : * a > or < boundary or find an attribute with no boundary (which can be
962 : * thought of as the same as "> -infinity"), we can't use keys for any
963 : * attributes to its right, because it would break our simplistic notion
964 : * of what initial positioning strategy to use.
965 : *
966 : * When the scan keys include cross-type operators, _bt_preprocess_keys
967 : * may not be able to eliminate redundant keys; in such cases we will
968 : * arbitrarily pick a usable one for each attribute. This is correct
969 : * but possibly not optimal behavior. (For example, with keys like
970 : * "x >= 4 AND x >= 5" we would elect to scan starting at x=4 when
971 : * x=5 would be more efficient.) Since the situation only arises given
972 : * a poorly-worded query plus an incomplete opfamily, live with it.
973 : *
974 : * When both equality and inequality keys appear for a single attribute
975 : * (again, only possible when cross-type operators appear), we *must*
976 : * select one of the equality keys for the starting point, because
977 : * _bt_checkkeys() will stop the scan as soon as an equality qual fails.
978 : * For example, if we have keys like "x >= 4 AND x = 10" and we elect to
979 : * start at x=4, we will fail and stop before reaching x=10. If multiple
980 : * equality quals survive preprocessing, however, it doesn't matter which
981 : * one we use --- by definition, they are either redundant or
982 : * contradictory.
983 : *
984 : * Any regular (not SK_SEARCHNULL) key implies a NOT NULL qualifier.
985 : * If the index stores nulls at the end of the index we'll be starting
986 : * from, and we have no boundary key for the column (which means the key
987 : * we deduced NOT NULL from is an inequality key that constrains the other
988 : * end of the index), then we cons up an explicit SK_SEARCHNOTNULL key to
989 : * use as a boundary key. If we didn't do this, we might find ourselves
990 : * traversing a lot of null entries at the start of the scan.
991 : *
992 : * In this loop, row-comparison keys are treated the same as keys on their
993 : * first (leftmost) columns. We'll add on lower-order columns of the row
994 : * comparison below, if possible.
995 : *
996 : * The selected scan keys (at most one per index column) are remembered by
997 : * storing their addresses into the local startKeys[] array.
998 : *
999 : * _bt_checkkeys/_bt_advance_array_keys decide whether and when to start
1000 : * the next primitive index scan (for scans with array keys) based in part
1001 : * on an understanding of how it'll enable us to reposition the scan.
1002 : * They're directly aware of how we'll sometimes cons up an explicit
1003 : * SK_SEARCHNOTNULL key. They'll even end primitive scans by applying a
1004 : * symmetric "deduce NOT NULL" rule of their own. This allows top-level
1005 : * scans to skip large groups of NULLs through repeated deductions about
1006 : * key strictness (for a required inequality key) and whether NULLs in the
1007 : * key's index column are stored last or first (relative to non-NULLs).
1008 : * If you update anything here, _bt_checkkeys/_bt_advance_array_keys might
1009 : * need to be kept in sync.
1010 : *----------
1011 : */
1012 13217212 : strat_total = BTEqualStrategyNumber;
1013 13217212 : if (so->numberOfKeys > 0)
1014 : {
1015 : AttrNumber curattr;
1016 : ScanKey chosen;
1017 : ScanKey impliesNN;
1018 : ScanKey cur;
1019 :
1020 : /*
1021 : * chosen is the so-far-chosen key for the current attribute, if any.
1022 : * We don't cast the decision in stone until we reach keys for the
1023 : * next attribute.
1024 : */
1025 13204954 : cur = so->keyData;
1026 13204954 : curattr = 1;
1027 13204954 : chosen = NULL;
1028 : /* Also remember any scankey that implies a NOT NULL constraint */
1029 13204954 : impliesNN = NULL;
1030 :
1031 : /*
1032 : * Loop iterates from 0 to numberOfKeys inclusive; we use the last
1033 : * pass to handle after-last-key processing. Actual exit from the
1034 : * loop is at one of the "break" statements below.
1035 : */
1036 13204954 : for (int i = 0;; cur++, i++)
1037 : {
1038 34246502 : if (i >= so->numberOfKeys || cur->sk_attno != curattr)
1039 : {
1040 : /*
1041 : * Done looking at keys for curattr. If we didn't find a
1042 : * usable boundary key, see if we can deduce a NOT NULL key.
1043 : */
1044 21105646 : if (chosen == NULL && impliesNN != NULL &&
1045 63208 : ((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ?
1046 : ScanDirectionIsForward(dir) :
1047 : ScanDirectionIsBackward(dir)))
1048 : {
1049 : /* Yes, so build the key in notnullkeys[keysz] */
1050 6 : chosen = ¬nullkeys[keysz];
1051 6 : ScanKeyEntryInitialize(chosen,
1052 : (SK_SEARCHNOTNULL | SK_ISNULL |
1053 6 : (impliesNN->sk_flags &
1054 : (SK_BT_DESC | SK_BT_NULLS_FIRST))),
1055 : curattr,
1056 6 : ((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ?
1057 : BTGreaterStrategyNumber :
1058 : BTLessStrategyNumber),
1059 : InvalidOid,
1060 : InvalidOid,
1061 : InvalidOid,
1062 : (Datum) 0);
1063 : }
1064 :
1065 : /*
1066 : * If we still didn't find a usable boundary key, quit; else
1067 : * save the boundary key pointer in startKeys.
1068 : */
1069 21042438 : if (chosen == NULL)
1070 65950 : break;
1071 20976488 : startKeys[keysz++] = chosen;
1072 :
1073 : /*
1074 : * We can only consider adding more boundary keys when the one
1075 : * that we just chose to add uses either the = or >= strategy
1076 : * (during backwards scans we can only do so when the key that
1077 : * we just added to startKeys[] uses the = or <= strategy)
1078 : */
1079 20976488 : strat_total = chosen->sk_strategy;
1080 20976488 : if (strat_total == BTGreaterStrategyNumber ||
1081 : strat_total == BTLessStrategyNumber)
1082 : break;
1083 :
1084 : /*
1085 : * Done if that was the last attribute, or if next key is not
1086 : * in sequence (implying no boundary key is available for the
1087 : * next attribute).
1088 : */
1089 19593936 : if (i >= so->numberOfKeys ||
1090 7838196 : cur->sk_attno != curattr + 1)
1091 : break;
1092 :
1093 : /*
1094 : * Reset for next attr.
1095 : */
1096 7837484 : curattr = cur->sk_attno;
1097 7837484 : chosen = NULL;
1098 7837484 : impliesNN = NULL;
1099 : }
1100 :
1101 : /*
1102 : * Can we use this key as a starting boundary for this attr?
1103 : *
1104 : * If not, does it imply a NOT NULL constraint? (Because
1105 : * SK_SEARCHNULL keys are always assigned BTEqualStrategyNumber,
1106 : * *any* inequality key works for that; we need not test.)
1107 : */
1108 21041548 : switch (cur->sk_strategy)
1109 : {
1110 109354 : case BTLessStrategyNumber:
1111 : case BTLessEqualStrategyNumber:
1112 109354 : if (chosen == NULL)
1113 : {
1114 107520 : if (ScanDirectionIsBackward(dir))
1115 44324 : chosen = cur;
1116 : else
1117 63196 : impliesNN = cur;
1118 : }
1119 109354 : break;
1120 19589602 : case BTEqualStrategyNumber:
1121 : /* override any non-equality choice */
1122 19589602 : chosen = cur;
1123 19589602 : break;
1124 1342592 : case BTGreaterEqualStrategyNumber:
1125 : case BTGreaterStrategyNumber:
1126 1342592 : if (chosen == NULL)
1127 : {
1128 1342592 : if (ScanDirectionIsForward(dir))
1129 1342556 : chosen = cur;
1130 : else
1131 36 : impliesNN = cur;
1132 : }
1133 1342592 : break;
1134 : }
1135 21041548 : }
1136 : }
1137 :
1138 : /*
1139 : * If we found no usable boundary keys, we have to start from one end of
1140 : * the tree. Walk down that edge to the first or last key, and scan from
1141 : * there.
1142 : *
1143 : * Note: calls _bt_readfirstpage for us, which releases the parallel scan.
1144 : */
1145 13217212 : if (keysz == 0)
1146 78056 : return _bt_endpoint(scan, dir);
1147 :
1148 : /*
1149 : * We want to start the scan somewhere within the index. Set up an
1150 : * insertion scankey we can use to search for the boundary point we
1151 : * identified above. The insertion scankey is built using the keys
1152 : * identified by startKeys[]. (Remaining insertion scankey fields are
1153 : * initialized after initial-positioning scan keys are finalized.)
1154 : */
1155 : Assert(keysz <= INDEX_MAX_KEYS);
1156 34115608 : for (int i = 0; i < keysz; i++)
1157 : {
1158 20976488 : ScanKey cur = startKeys[i];
1159 :
1160 : Assert(cur->sk_attno == i + 1);
1161 :
1162 20976488 : if (cur->sk_flags & SK_ROW_HEADER)
1163 : {
1164 : /*
1165 : * Row comparison header: look to the first row member instead
1166 : */
1167 36 : ScanKey subkey = (ScanKey) DatumGetPointer(cur->sk_argument);
1168 :
1169 : /*
1170 : * Cannot be a NULL in the first row member: _bt_preprocess_keys
1171 : * would've marked the qual as unsatisfiable, preventing us from
1172 : * ever getting this far
1173 : */
1174 : Assert(subkey->sk_flags & SK_ROW_MEMBER);
1175 : Assert(subkey->sk_attno == cur->sk_attno);
1176 : Assert(!(subkey->sk_flags & SK_ISNULL));
1177 :
1178 : /*
1179 : * The member scankeys are already in insertion format (ie, they
1180 : * have sk_func = 3-way-comparison function)
1181 : */
1182 36 : memcpy(inskey.scankeys + i, subkey, sizeof(ScanKeyData));
1183 :
1184 : /*
1185 : * If the row comparison is the last positioning key we accepted,
1186 : * try to add additional keys from the lower-order row members.
1187 : * (If we accepted independent conditions on additional index
1188 : * columns, we use those instead --- doesn't seem worth trying to
1189 : * determine which is more restrictive.) Note that this is OK
1190 : * even if the row comparison is of ">" or "<" type, because the
1191 : * condition applied to all but the last row member is effectively
1192 : * ">=" or "<=", and so the extra keys don't break the positioning
1193 : * scheme. But, by the same token, if we aren't able to use all
1194 : * the row members, then the part of the row comparison that we
1195 : * did use has to be treated as just a ">=" or "<=" condition, and
1196 : * so we'd better adjust strat_total accordingly.
1197 : */
1198 36 : if (i == keysz - 1)
1199 : {
1200 36 : bool used_all_subkeys = false;
1201 :
1202 : Assert(!(subkey->sk_flags & SK_ROW_END));
1203 : for (;;)
1204 : {
1205 36 : subkey++;
1206 : Assert(subkey->sk_flags & SK_ROW_MEMBER);
1207 36 : if (subkey->sk_attno != keysz + 1)
1208 12 : break; /* out-of-sequence, can't use it */
1209 24 : if (subkey->sk_strategy != cur->sk_strategy)
1210 0 : break; /* wrong direction, can't use it */
1211 24 : if (subkey->sk_flags & SK_ISNULL)
1212 0 : break; /* can't use null keys */
1213 : Assert(keysz < INDEX_MAX_KEYS);
1214 24 : memcpy(inskey.scankeys + keysz, subkey,
1215 : sizeof(ScanKeyData));
1216 24 : keysz++;
1217 24 : if (subkey->sk_flags & SK_ROW_END)
1218 : {
1219 24 : used_all_subkeys = true;
1220 24 : break;
1221 : }
1222 : }
1223 36 : if (!used_all_subkeys)
1224 : {
1225 12 : switch (strat_total)
1226 : {
1227 6 : case BTLessStrategyNumber:
1228 6 : strat_total = BTLessEqualStrategyNumber;
1229 6 : break;
1230 6 : case BTGreaterStrategyNumber:
1231 6 : strat_total = BTGreaterEqualStrategyNumber;
1232 6 : break;
1233 : }
1234 24 : }
1235 36 : break; /* done with outer loop */
1236 : }
1237 : }
1238 : else
1239 : {
1240 : /*
1241 : * Ordinary comparison key. Transform the search-style scan key
1242 : * to an insertion scan key by replacing the sk_func with the
1243 : * appropriate btree comparison function.
1244 : *
1245 : * If scankey operator is not a cross-type comparison, we can use
1246 : * the cached comparison function; otherwise gotta look it up in
1247 : * the catalogs. (That can't lead to infinite recursion, since no
1248 : * indexscan initiated by syscache lookup will use cross-data-type
1249 : * operators.)
1250 : *
1251 : * We support the convention that sk_subtype == InvalidOid means
1252 : * the opclass input type; this is a hack to simplify life for
1253 : * ScanKeyInit().
1254 : */
1255 20976452 : if (cur->sk_subtype == rel->rd_opcintype[i] ||
1256 20349762 : cur->sk_subtype == InvalidOid)
1257 20966732 : {
1258 : FmgrInfo *procinfo;
1259 :
1260 20966732 : procinfo = index_getprocinfo(rel, cur->sk_attno, BTORDER_PROC);
1261 20966732 : ScanKeyEntryInitializeWithInfo(inskey.scankeys + i,
1262 : cur->sk_flags,
1263 20966732 : cur->sk_attno,
1264 : InvalidStrategy,
1265 : cur->sk_subtype,
1266 : cur->sk_collation,
1267 : procinfo,
1268 : cur->sk_argument);
1269 : }
1270 : else
1271 : {
1272 : RegProcedure cmp_proc;
1273 :
1274 9720 : cmp_proc = get_opfamily_proc(rel->rd_opfamily[i],
1275 9720 : rel->rd_opcintype[i],
1276 : cur->sk_subtype,
1277 : BTORDER_PROC);
1278 9720 : if (!RegProcedureIsValid(cmp_proc))
1279 0 : elog(ERROR, "missing support function %d(%u,%u) for attribute %d of index \"%s\"",
1280 : BTORDER_PROC, rel->rd_opcintype[i], cur->sk_subtype,
1281 : cur->sk_attno, RelationGetRelationName(rel));
1282 9720 : ScanKeyEntryInitialize(inskey.scankeys + i,
1283 : cur->sk_flags,
1284 9720 : cur->sk_attno,
1285 : InvalidStrategy,
1286 : cur->sk_subtype,
1287 : cur->sk_collation,
1288 : cmp_proc,
1289 : cur->sk_argument);
1290 : }
1291 : }
1292 : }
1293 :
1294 : /*----------
1295 : * Examine the selected initial-positioning strategy to determine exactly
1296 : * where we need to start the scan, and set flag variables to control the
1297 : * initial descent by _bt_search (and our _bt_binsrch call for the leaf
1298 : * page _bt_search returns).
1299 : *----------
1300 : */
1301 13139156 : _bt_metaversion(rel, &inskey.heapkeyspace, &inskey.allequalimage);
1302 13139156 : inskey.anynullkeys = false; /* unused */
1303 13139156 : inskey.scantid = NULL;
1304 13139156 : inskey.keysz = keysz;
1305 13139156 : switch (strat_total)
1306 : {
1307 44318 : case BTLessStrategyNumber:
1308 :
1309 44318 : inskey.nextkey = false;
1310 44318 : inskey.backward = true;
1311 44318 : break;
1312 :
1313 12 : case BTLessEqualStrategyNumber:
1314 :
1315 12 : inskey.nextkey = true;
1316 12 : inskey.backward = true;
1317 12 : break;
1318 :
1319 11752376 : case BTEqualStrategyNumber:
1320 :
1321 : /*
1322 : * If a backward scan was specified, need to start with last equal
1323 : * item not first one.
1324 : */
1325 11752376 : if (ScanDirectionIsBackward(dir))
1326 : {
1327 : /*
1328 : * This is the same as the <= strategy
1329 : */
1330 154 : inskey.nextkey = true;
1331 154 : inskey.backward = true;
1332 : }
1333 : else
1334 : {
1335 : /*
1336 : * This is the same as the >= strategy
1337 : */
1338 11752222 : inskey.nextkey = false;
1339 11752222 : inskey.backward = false;
1340 : }
1341 11752376 : break;
1342 :
1343 4228 : case BTGreaterEqualStrategyNumber:
1344 :
1345 : /*
1346 : * Find first item >= scankey
1347 : */
1348 4228 : inskey.nextkey = false;
1349 4228 : inskey.backward = false;
1350 4228 : break;
1351 :
1352 1338222 : case BTGreaterStrategyNumber:
1353 :
1354 : /*
1355 : * Find first item > scankey
1356 : */
1357 1338222 : inskey.nextkey = true;
1358 1338222 : inskey.backward = false;
1359 1338222 : break;
1360 :
1361 0 : default:
1362 : /* can't get here, but keep compiler quiet */
1363 0 : elog(ERROR, "unrecognized strat_total: %d", (int) strat_total);
1364 : return false;
1365 : }
1366 :
1367 : /*
1368 : * Use the manufactured insertion scan key to descend the tree and
1369 : * position ourselves on the target leaf page.
1370 : */
1371 : Assert(ScanDirectionIsBackward(dir) == inskey.backward);
1372 13139156 : stack = _bt_search(rel, NULL, &inskey, &so->currPos.buf, BT_READ);
1373 :
1374 : /* don't need to keep the stack around... */
1375 13139156 : _bt_freestack(stack);
1376 :
1377 13139156 : if (!BufferIsValid(so->currPos.buf))
1378 : {
1379 : /*
1380 : * We only get here if the index is completely empty. Lock relation
1381 : * because nothing finer to lock exists. Without a buffer lock, it's
1382 : * possible for another transaction to insert data between
1383 : * _bt_search() and PredicateLockRelation(). We have to try again
1384 : * after taking the relation-level predicate lock, to close a narrow
1385 : * window where we wouldn't scan concurrently inserted tuples, but the
1386 : * writer wouldn't see our predicate lock.
1387 : */
1388 502840 : if (IsolationIsSerializable())
1389 : {
1390 5508 : PredicateLockRelation(rel, scan->xs_snapshot);
1391 5508 : stack = _bt_search(rel, NULL, &inskey, &so->currPos.buf, BT_READ);
1392 5508 : _bt_freestack(stack);
1393 : }
1394 :
1395 502840 : if (!BufferIsValid(so->currPos.buf))
1396 : {
1397 : Assert(!so->needPrimScan);
1398 502840 : _bt_parallel_done(scan);
1399 502840 : return false;
1400 : }
1401 : }
1402 :
1403 : /* position to the precise item on the page */
1404 12636316 : offnum = _bt_binsrch(rel, &inskey, so->currPos.buf);
1405 :
1406 : /*
1407 : * Now load data from the first page of the scan (usually the page
1408 : * currently in so->currPos.buf).
1409 : *
1410 : * If inskey.nextkey = false and inskey.backward = false, offnum is
1411 : * positioned at the first non-pivot tuple >= inskey.scankeys.
1412 : *
1413 : * If inskey.nextkey = false and inskey.backward = true, offnum is
1414 : * positioned at the last non-pivot tuple < inskey.scankeys.
1415 : *
1416 : * If inskey.nextkey = true and inskey.backward = false, offnum is
1417 : * positioned at the first non-pivot tuple > inskey.scankeys.
1418 : *
1419 : * If inskey.nextkey = true and inskey.backward = true, offnum is
1420 : * positioned at the last non-pivot tuple <= inskey.scankeys.
1421 : *
1422 : * It's possible that _bt_binsrch returned an offnum that is out of bounds
1423 : * for the page. For example, when inskey is both < the leaf page's high
1424 : * key and > all of its non-pivot tuples, offnum will be "maxoff + 1".
1425 : */
1426 12636316 : if (!_bt_readfirstpage(scan, offnum, dir))
1427 3418492 : return false;
1428 :
1429 9217824 : _bt_returnitem(scan, so);
1430 9217824 : return true;
1431 : }
1432 :
1433 : /*
1434 : * _bt_next() -- Get the next item in a scan.
1435 : *
1436 : * On entry, so->currPos describes the current page, which may be pinned
1437 : * but is not locked, and so->currPos.itemIndex identifies which item was
1438 : * previously returned.
1439 : *
1440 : * On success exit, so->currPos is updated as needed, and _bt_returnitem
1441 : * sets the next item to return to the scan. so->currPos remains valid.
1442 : *
1443 : * On failure exit (no more tuples), we invalidate so->currPos. It'll
1444 : * still be possible for the scan to return tuples by changing direction,
1445 : * though we'll need to call _bt_first anew in that other direction.
1446 : */
1447 : bool
1448 16785352 : _bt_next(IndexScanDesc scan, ScanDirection dir)
1449 : {
1450 16785352 : BTScanOpaque so = (BTScanOpaque) scan->opaque;
1451 :
1452 : Assert(BTScanPosIsValid(so->currPos));
1453 :
1454 : /*
1455 : * Advance to next tuple on current page; or if there's no more, try to
1456 : * step to the next page with data.
1457 : */
1458 16785352 : if (ScanDirectionIsForward(dir))
1459 : {
1460 16754356 : if (++so->currPos.itemIndex > so->currPos.lastItem)
1461 : {
1462 2078720 : if (!_bt_steppage(scan, dir))
1463 2052234 : return false;
1464 : }
1465 : }
1466 : else
1467 : {
1468 30996 : if (--so->currPos.itemIndex < so->currPos.firstItem)
1469 : {
1470 114 : if (!_bt_steppage(scan, dir))
1471 80 : return false;
1472 : }
1473 : }
1474 :
1475 14733038 : _bt_returnitem(scan, so);
1476 14733038 : return true;
1477 : }
1478 :
1479 : /*
1480 : * _bt_readpage() -- Load data from current index page into so->currPos
1481 : *
1482 : * Caller must have pinned and read-locked so->currPos.buf; the buffer's state
1483 : * is not changed here. Also, currPos.moreLeft and moreRight must be valid;
1484 : * they are updated as appropriate. All other fields of so->currPos are
1485 : * initialized from scratch here.
1486 : *
1487 : * We scan the current page starting at offnum and moving in the indicated
1488 : * direction. All items matching the scan keys are loaded into currPos.items.
1489 : * moreLeft or moreRight (as appropriate) is cleared if _bt_checkkeys reports
1490 : * that there can be no more matching tuples in the current scan direction
1491 : * (could just be for the current primitive index scan when scan has arrays).
1492 : *
1493 : * In the case of a parallel scan, caller must have called _bt_parallel_seize
1494 : * prior to calling this function; this function will invoke
1495 : * _bt_parallel_release before returning.
1496 : *
1497 : * Returns true if any matching items found on the page, false if none.
1498 : */
1499 : static bool
1500 12735956 : _bt_readpage(IndexScanDesc scan, ScanDirection dir, OffsetNumber offnum,
1501 : bool firstPage)
1502 : {
1503 12735956 : Relation rel = scan->indexRelation;
1504 12735956 : BTScanOpaque so = (BTScanOpaque) scan->opaque;
1505 : Page page;
1506 : BTPageOpaque opaque;
1507 : OffsetNumber minoff;
1508 : OffsetNumber maxoff;
1509 : BTReadPageState pstate;
1510 : bool arrayKeys;
1511 : int itemIndex,
1512 : indnatts;
1513 :
1514 : /* save the page/buffer block number, along with its sibling links */
1515 12735956 : page = BufferGetPage(so->currPos.buf);
1516 12735956 : opaque = BTPageGetOpaque(page);
1517 12735956 : so->currPos.currPage = BufferGetBlockNumber(so->currPos.buf);
1518 12735956 : so->currPos.prevPage = opaque->btpo_prev;
1519 12735956 : so->currPos.nextPage = opaque->btpo_next;
1520 :
1521 : Assert(!P_IGNORE(opaque));
1522 : Assert(BTScanPosIsPinned(so->currPos));
1523 : Assert(!so->needPrimScan);
1524 :
1525 12735956 : if (scan->parallel_scan)
1526 : {
1527 : /* allow next/prev page to be read by other worker without delay */
1528 1336 : if (ScanDirectionIsForward(dir))
1529 1336 : _bt_parallel_release(scan, so->currPos.nextPage,
1530 : so->currPos.currPage);
1531 : else
1532 0 : _bt_parallel_release(scan, so->currPos.prevPage,
1533 : so->currPos.currPage);
1534 : }
1535 :
1536 : /* initialize remaining currPos fields related to current page */
1537 12735956 : so->currPos.lsn = BufferGetLSNAtomic(so->currPos.buf);
1538 12735956 : so->currPos.dir = dir;
1539 12735956 : so->currPos.nextTupleOffset = 0;
1540 : /* either moreLeft or moreRight should be set now (may be unset later) */
1541 : Assert(ScanDirectionIsForward(dir) ? so->currPos.moreRight :
1542 : so->currPos.moreLeft);
1543 :
1544 12735956 : PredicateLockPage(rel, so->currPos.currPage, scan->xs_snapshot);
1545 :
1546 : /* initialize local variables */
1547 12735956 : indnatts = IndexRelationGetNumberOfAttributes(rel);
1548 12735956 : arrayKeys = so->numArrayKeys != 0;
1549 12735956 : minoff = P_FIRSTDATAKEY(opaque);
1550 12735956 : maxoff = PageGetMaxOffsetNumber(page);
1551 :
1552 : /* initialize page-level state that we'll pass to _bt_checkkeys */
1553 12735956 : pstate.minoff = minoff;
1554 12735956 : pstate.maxoff = maxoff;
1555 12735956 : pstate.finaltup = NULL;
1556 12735956 : pstate.page = page;
1557 12735956 : pstate.offnum = InvalidOffsetNumber;
1558 12735956 : pstate.skip = InvalidOffsetNumber;
1559 12735956 : pstate.continuescan = true; /* default assumption */
1560 12735956 : pstate.prechecked = false;
1561 12735956 : pstate.firstmatch = false;
1562 12735956 : pstate.rechecks = 0;
1563 12735956 : pstate.targetdistance = 0;
1564 :
1565 : /*
1566 : * Prechecking the value of the continuescan flag for the last item on the
1567 : * page (for backwards scan it will be the first item on a page). If we
1568 : * observe it to be true, then it should be true for all other items. This
1569 : * allows us to do significant optimizations in the _bt_checkkeys()
1570 : * function for all the items on the page.
1571 : *
1572 : * With the forward scan, we do this check for the last item on the page
1573 : * instead of the high key. It's relatively likely that the most
1574 : * significant column in the high key will be different from the
1575 : * corresponding value from the last item on the page. So checking with
1576 : * the last item on the page would give a more precise answer.
1577 : *
1578 : * We skip this for the first page read by each (primitive) scan, to avoid
1579 : * slowing down point queries. They typically don't stand to gain much
1580 : * when the optimization can be applied, and are more likely to notice the
1581 : * overhead of the precheck.
1582 : *
1583 : * The optimization is unsafe and must be avoided whenever _bt_checkkeys
1584 : * just set a low-order required array's key to the best available match
1585 : * for a truncated -inf attribute value from the prior page's high key
1586 : * (array element 0 is always the best available match in this scenario).
1587 : * It's quite likely that matches for array element 0 begin on this page,
1588 : * but the start of matches won't necessarily align with page boundaries.
1589 : * When the start of matches is somewhere in the middle of this page, it
1590 : * would be wrong to treat page's final non-pivot tuple as representative.
1591 : * Doing so might lead us to treat some of the page's earlier tuples as
1592 : * being part of a group of tuples thought to satisfy the required keys.
1593 : *
1594 : * Note: Conversely, in the case where the scan's arrays just advanced
1595 : * using the prior page's HIKEY _without_ advancement setting scanBehind,
1596 : * the start of matches must be aligned with page boundaries, which makes
1597 : * it safe to attempt the optimization here now. It's also safe when the
1598 : * prior page's HIKEY simply didn't need to advance any required array. In
1599 : * both cases we can safely assume that the _first_ tuple from this page
1600 : * must be >= the current set of array keys/equality constraints. And so
1601 : * if the final tuple is == those same keys (and also satisfies any
1602 : * required < or <= strategy scan keys) during the precheck, we can safely
1603 : * assume that this must also be true of all earlier tuples from the page.
1604 : */
1605 12735956 : if (!firstPage && !so->scanBehind && minoff < maxoff)
1606 : {
1607 : ItemId iid;
1608 : IndexTuple itup;
1609 :
1610 28356 : iid = PageGetItemId(page, ScanDirectionIsForward(dir) ? maxoff : minoff);
1611 28356 : itup = (IndexTuple) PageGetItem(page, iid);
1612 :
1613 : /* Call with arrayKeys=false to avoid undesirable side-effects */
1614 28356 : _bt_checkkeys(scan, &pstate, false, itup, indnatts);
1615 28356 : pstate.prechecked = pstate.continuescan;
1616 28356 : pstate.continuescan = true; /* reset */
1617 : }
1618 :
1619 12735956 : if (ScanDirectionIsForward(dir))
1620 : {
1621 : /* SK_SEARCHARRAY forward scans must provide high key up front */
1622 12691290 : if (arrayKeys && !P_RIGHTMOST(opaque))
1623 : {
1624 1350 : ItemId iid = PageGetItemId(page, P_HIKEY);
1625 :
1626 1350 : pstate.finaltup = (IndexTuple) PageGetItem(page, iid);
1627 :
1628 1350 : if (unlikely(so->oppositeDirCheck))
1629 : {
1630 : Assert(so->scanBehind);
1631 :
1632 : /*
1633 : * Last _bt_readpage call scheduled a recheck of finaltup for
1634 : * required scan keys up to and including a > or >= scan key.
1635 : *
1636 : * _bt_checkkeys won't consider the scanBehind flag unless the
1637 : * scan is stopped by a scan key required in the current scan
1638 : * direction. We need this recheck so that we'll notice when
1639 : * all tuples on this page are still before the _bt_first-wise
1640 : * start of matches for the current set of array keys.
1641 : */
1642 6 : if (!_bt_oppodir_checkkeys(scan, dir, pstate.finaltup))
1643 : {
1644 : /* Schedule another primitive index scan after all */
1645 0 : so->currPos.moreRight = false;
1646 0 : so->needPrimScan = true;
1647 0 : return false;
1648 : }
1649 :
1650 : /* Deliberately don't unset scanBehind flag just yet */
1651 : }
1652 : }
1653 :
1654 : /* load items[] in ascending order */
1655 12691290 : itemIndex = 0;
1656 :
1657 12691290 : offnum = Max(offnum, minoff);
1658 :
1659 50485960 : while (offnum <= maxoff)
1660 : {
1661 47618082 : ItemId iid = PageGetItemId(page, offnum);
1662 : IndexTuple itup;
1663 : bool passes_quals;
1664 :
1665 : /*
1666 : * If the scan specifies not to return killed tuples, then we
1667 : * treat a killed tuple as not passing the qual
1668 : */
1669 47618082 : if (scan->ignore_killed_tuples && ItemIdIsDead(iid))
1670 : {
1671 3964078 : offnum = OffsetNumberNext(offnum);
1672 3964078 : continue;
1673 : }
1674 :
1675 43654004 : itup = (IndexTuple) PageGetItem(page, iid);
1676 : Assert(!BTreeTupleIsPivot(itup));
1677 :
1678 43654004 : pstate.offnum = offnum;
1679 43654004 : passes_quals = _bt_checkkeys(scan, &pstate, arrayKeys,
1680 : itup, indnatts);
1681 :
1682 : /*
1683 : * Check if we need to skip ahead to a later tuple (only possible
1684 : * when the scan uses array keys)
1685 : */
1686 43654004 : if (arrayKeys && OffsetNumberIsValid(pstate.skip))
1687 : {
1688 : Assert(!passes_quals && pstate.continuescan);
1689 : Assert(offnum < pstate.skip);
1690 :
1691 546 : offnum = pstate.skip;
1692 546 : pstate.skip = InvalidOffsetNumber;
1693 546 : continue;
1694 : }
1695 :
1696 43653458 : if (passes_quals)
1697 : {
1698 : /* tuple passes all scan key conditions */
1699 33349476 : pstate.firstmatch = true;
1700 33349476 : if (!BTreeTupleIsPosting(itup))
1701 : {
1702 : /* Remember it */
1703 32934672 : _bt_saveitem(so, itemIndex, offnum, itup);
1704 32934672 : itemIndex++;
1705 : }
1706 : else
1707 : {
1708 : int tupleOffset;
1709 :
1710 : /*
1711 : * Set up state to return posting list, and remember first
1712 : * TID
1713 : */
1714 : tupleOffset =
1715 414804 : _bt_setuppostingitems(so, itemIndex, offnum,
1716 : BTreeTupleGetPostingN(itup, 0),
1717 : itup);
1718 414804 : itemIndex++;
1719 : /* Remember additional TIDs */
1720 2679722 : for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
1721 : {
1722 2264918 : _bt_savepostingitem(so, itemIndex, offnum,
1723 : BTreeTupleGetPostingN(itup, i),
1724 : tupleOffset);
1725 2264918 : itemIndex++;
1726 : }
1727 : }
1728 : }
1729 : /* When !continuescan, there can't be any more matches, so stop */
1730 43653458 : if (!pstate.continuescan)
1731 9823412 : break;
1732 :
1733 33830046 : offnum = OffsetNumberNext(offnum);
1734 : }
1735 :
1736 : /*
1737 : * We don't need to visit page to the right when the high key
1738 : * indicates that no more matches will be found there.
1739 : *
1740 : * Checking the high key like this works out more often than you might
1741 : * think. Leaf page splits pick a split point between the two most
1742 : * dissimilar tuples (this is weighed against the need to evenly share
1743 : * free space). Leaf pages with high key attribute values that can
1744 : * only appear on non-pivot tuples on the right sibling page are
1745 : * common.
1746 : */
1747 12691290 : if (pstate.continuescan && !P_RIGHTMOST(opaque))
1748 : {
1749 119038 : ItemId iid = PageGetItemId(page, P_HIKEY);
1750 119038 : IndexTuple itup = (IndexTuple) PageGetItem(page, iid);
1751 : int truncatt;
1752 :
1753 119038 : truncatt = BTreeTupleGetNAtts(itup, rel);
1754 119038 : pstate.prechecked = false; /* precheck didn't cover HIKEY */
1755 119038 : _bt_checkkeys(scan, &pstate, arrayKeys, itup, truncatt);
1756 : }
1757 :
1758 12691290 : if (!pstate.continuescan)
1759 9896440 : so->currPos.moreRight = false;
1760 :
1761 : Assert(itemIndex <= MaxTIDsPerBTreePage);
1762 12691290 : so->currPos.firstItem = 0;
1763 12691290 : so->currPos.lastItem = itemIndex - 1;
1764 12691290 : so->currPos.itemIndex = 0;
1765 : }
1766 : else
1767 : {
1768 : /* SK_SEARCHARRAY backward scans must provide final tuple up front */
1769 44666 : if (arrayKeys && minoff <= maxoff && !P_LEFTMOST(opaque))
1770 : {
1771 24 : ItemId iid = PageGetItemId(page, minoff);
1772 :
1773 24 : pstate.finaltup = (IndexTuple) PageGetItem(page, iid);
1774 : }
1775 :
1776 : /* load items[] in descending order */
1777 44666 : itemIndex = MaxTIDsPerBTreePage;
1778 :
1779 44666 : offnum = Min(offnum, maxoff);
1780 :
1781 7639768 : while (offnum >= minoff)
1782 : {
1783 7595204 : ItemId iid = PageGetItemId(page, offnum);
1784 : IndexTuple itup;
1785 : bool tuple_alive;
1786 : bool passes_quals;
1787 :
1788 : /*
1789 : * If the scan specifies not to return killed tuples, then we
1790 : * treat a killed tuple as not passing the qual. Most of the
1791 : * time, it's a win to not bother examining the tuple's index
1792 : * keys, but just skip to the next tuple (previous, actually,
1793 : * since we're scanning backwards). However, if this is the first
1794 : * tuple on the page, we do check the index keys, to prevent
1795 : * uselessly advancing to the page to the left. This is similar
1796 : * to the high key optimization used by forward scans.
1797 : */
1798 7595204 : if (scan->ignore_killed_tuples && ItemIdIsDead(iid))
1799 : {
1800 314906 : if (offnum > minoff)
1801 : {
1802 314196 : offnum = OffsetNumberPrev(offnum);
1803 314196 : continue;
1804 : }
1805 :
1806 710 : tuple_alive = false;
1807 : }
1808 : else
1809 7280298 : tuple_alive = true;
1810 :
1811 7281008 : itup = (IndexTuple) PageGetItem(page, iid);
1812 : Assert(!BTreeTupleIsPivot(itup));
1813 :
1814 7281008 : pstate.offnum = offnum;
1815 7281008 : passes_quals = _bt_checkkeys(scan, &pstate, arrayKeys,
1816 : itup, indnatts);
1817 :
1818 : /*
1819 : * Check if we need to skip ahead to a later tuple (only possible
1820 : * when the scan uses array keys)
1821 : */
1822 7281008 : if (arrayKeys && OffsetNumberIsValid(pstate.skip))
1823 : {
1824 : Assert(!passes_quals && pstate.continuescan);
1825 : Assert(offnum > pstate.skip);
1826 :
1827 6 : offnum = pstate.skip;
1828 6 : pstate.skip = InvalidOffsetNumber;
1829 6 : continue;
1830 : }
1831 :
1832 7281002 : if (passes_quals && tuple_alive)
1833 : {
1834 : /* tuple passes all scan key conditions */
1835 7280064 : pstate.firstmatch = true;
1836 7280064 : if (!BTreeTupleIsPosting(itup))
1837 : {
1838 : /* Remember it */
1839 7239114 : itemIndex--;
1840 7239114 : _bt_saveitem(so, itemIndex, offnum, itup);
1841 : }
1842 : else
1843 : {
1844 : int tupleOffset;
1845 :
1846 : /*
1847 : * Set up state to return posting list, and remember first
1848 : * TID.
1849 : *
1850 : * Note that we deliberately save/return items from
1851 : * posting lists in ascending heap TID order for backwards
1852 : * scans. This allows _bt_killitems() to make a
1853 : * consistent assumption about the order of items
1854 : * associated with the same posting list tuple.
1855 : */
1856 40950 : itemIndex--;
1857 : tupleOffset =
1858 40950 : _bt_setuppostingitems(so, itemIndex, offnum,
1859 : BTreeTupleGetPostingN(itup, 0),
1860 : itup);
1861 : /* Remember additional TIDs */
1862 156976 : for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
1863 : {
1864 116026 : itemIndex--;
1865 116026 : _bt_savepostingitem(so, itemIndex, offnum,
1866 : BTreeTupleGetPostingN(itup, i),
1867 : tupleOffset);
1868 : }
1869 : }
1870 : }
1871 : /* When !continuescan, there can't be any more matches, so stop */
1872 7281002 : if (!pstate.continuescan)
1873 102 : break;
1874 :
1875 7280900 : offnum = OffsetNumberPrev(offnum);
1876 : }
1877 :
1878 : /*
1879 : * We don't need to visit page to the left when no more matches will
1880 : * be found there
1881 : */
1882 44666 : if (!pstate.continuescan)
1883 102 : so->currPos.moreLeft = false;
1884 :
1885 : Assert(itemIndex >= 0);
1886 44666 : so->currPos.firstItem = itemIndex;
1887 44666 : so->currPos.lastItem = MaxTIDsPerBTreePage - 1;
1888 44666 : so->currPos.itemIndex = MaxTIDsPerBTreePage - 1;
1889 : }
1890 :
1891 12735956 : return (so->currPos.firstItem <= so->currPos.lastItem);
1892 : }
1893 :
1894 : /* Save an index item into so->currPos.items[itemIndex] */
1895 : static void
1896 40173786 : _bt_saveitem(BTScanOpaque so, int itemIndex,
1897 : OffsetNumber offnum, IndexTuple itup)
1898 : {
1899 40173786 : BTScanPosItem *currItem = &so->currPos.items[itemIndex];
1900 :
1901 : Assert(!BTreeTupleIsPivot(itup) && !BTreeTupleIsPosting(itup));
1902 :
1903 40173786 : currItem->heapTid = itup->t_tid;
1904 40173786 : currItem->indexOffset = offnum;
1905 40173786 : if (so->currTuples)
1906 : {
1907 19314992 : Size itupsz = IndexTupleSize(itup);
1908 :
1909 19314992 : currItem->tupleOffset = so->currPos.nextTupleOffset;
1910 19314992 : memcpy(so->currTuples + so->currPos.nextTupleOffset, itup, itupsz);
1911 19314992 : so->currPos.nextTupleOffset += MAXALIGN(itupsz);
1912 : }
1913 40173786 : }
1914 :
1915 : /*
1916 : * Setup state to save TIDs/items from a single posting list tuple.
1917 : *
1918 : * Saves an index item into so->currPos.items[itemIndex] for TID that is
1919 : * returned to scan first. Second or subsequent TIDs for posting list should
1920 : * be saved by calling _bt_savepostingitem().
1921 : *
1922 : * Returns an offset into tuple storage space that main tuple is stored at if
1923 : * needed.
1924 : */
1925 : static int
1926 455754 : _bt_setuppostingitems(BTScanOpaque so, int itemIndex, OffsetNumber offnum,
1927 : ItemPointer heapTid, IndexTuple itup)
1928 : {
1929 455754 : BTScanPosItem *currItem = &so->currPos.items[itemIndex];
1930 :
1931 : Assert(BTreeTupleIsPosting(itup));
1932 :
1933 455754 : currItem->heapTid = *heapTid;
1934 455754 : currItem->indexOffset = offnum;
1935 455754 : if (so->currTuples)
1936 : {
1937 : /* Save base IndexTuple (truncate posting list) */
1938 : IndexTuple base;
1939 148458 : Size itupsz = BTreeTupleGetPostingOffset(itup);
1940 :
1941 148458 : itupsz = MAXALIGN(itupsz);
1942 148458 : currItem->tupleOffset = so->currPos.nextTupleOffset;
1943 148458 : base = (IndexTuple) (so->currTuples + so->currPos.nextTupleOffset);
1944 148458 : memcpy(base, itup, itupsz);
1945 : /* Defensively reduce work area index tuple header size */
1946 148458 : base->t_info &= ~INDEX_SIZE_MASK;
1947 148458 : base->t_info |= itupsz;
1948 148458 : so->currPos.nextTupleOffset += itupsz;
1949 :
1950 148458 : return currItem->tupleOffset;
1951 : }
1952 :
1953 307296 : return 0;
1954 : }
1955 :
1956 : /*
1957 : * Save an index item into so->currPos.items[itemIndex] for current posting
1958 : * tuple.
1959 : *
1960 : * Assumes that _bt_setuppostingitems() has already been called for current
1961 : * posting list tuple. Caller passes its return value as tupleOffset.
1962 : */
1963 : static inline void
1964 2380944 : _bt_savepostingitem(BTScanOpaque so, int itemIndex, OffsetNumber offnum,
1965 : ItemPointer heapTid, int tupleOffset)
1966 : {
1967 2380944 : BTScanPosItem *currItem = &so->currPos.items[itemIndex];
1968 :
1969 2380944 : currItem->heapTid = *heapTid;
1970 2380944 : currItem->indexOffset = offnum;
1971 :
1972 : /*
1973 : * Have index-only scans return the same base IndexTuple for every TID
1974 : * that originates from the same posting list
1975 : */
1976 2380944 : if (so->currTuples)
1977 922462 : currItem->tupleOffset = tupleOffset;
1978 2380944 : }
1979 :
1980 : /*
1981 : * Return the index item from so->currPos.items[so->currPos.itemIndex] to the
1982 : * index scan by setting the relevant fields in caller's index scan descriptor
1983 : */
1984 : static inline void
1985 24020524 : _bt_returnitem(IndexScanDesc scan, BTScanOpaque so)
1986 : {
1987 24020524 : BTScanPosItem *currItem = &so->currPos.items[so->currPos.itemIndex];
1988 :
1989 : /* Most recent _bt_readpage must have succeeded */
1990 : Assert(BTScanPosIsValid(so->currPos));
1991 : Assert(so->currPos.itemIndex >= so->currPos.firstItem);
1992 : Assert(so->currPos.itemIndex <= so->currPos.lastItem);
1993 :
1994 : /* Return next item, per amgettuple contract */
1995 24020524 : scan->xs_heaptid = currItem->heapTid;
1996 24020524 : if (so->currTuples)
1997 3998652 : scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset);
1998 24020524 : }
1999 :
2000 : /*
2001 : * _bt_steppage() -- Step to next page containing valid data for scan
2002 : *
2003 : * Wrapper on _bt_readnextpage that performs final steps for the current page.
2004 : *
2005 : * On entry, if so->currPos.buf is valid the buffer is pinned but not locked.
2006 : * If there's no pin held, it's because _bt_drop_lock_and_maybe_pin dropped
2007 : * the pin eagerly earlier on. The scan must have so->currPos.currPage set to
2008 : * a valid block, in any case.
2009 : */
2010 : static bool
2011 5499110 : _bt_steppage(IndexScanDesc scan, ScanDirection dir)
2012 : {
2013 5499110 : BTScanOpaque so = (BTScanOpaque) scan->opaque;
2014 : BlockNumber blkno,
2015 : lastcurrblkno;
2016 :
2017 : Assert(BTScanPosIsValid(so->currPos));
2018 :
2019 : /* Before leaving current page, deal with any killed items */
2020 5499110 : if (so->numKilled > 0)
2021 77008 : _bt_killitems(scan);
2022 :
2023 : /*
2024 : * Before we modify currPos, make a copy of the page data if there was a
2025 : * mark position that needs it.
2026 : */
2027 5499110 : if (so->markItemIndex >= 0)
2028 : {
2029 : /* bump pin on current buffer for assignment to mark buffer */
2030 362 : if (BTScanPosIsPinned(so->currPos))
2031 348 : IncrBufferRefCount(so->currPos.buf);
2032 362 : memcpy(&so->markPos, &so->currPos,
2033 : offsetof(BTScanPosData, items[1]) +
2034 362 : so->currPos.lastItem * sizeof(BTScanPosItem));
2035 362 : if (so->markTuples)
2036 348 : memcpy(so->markTuples, so->currTuples,
2037 348 : so->currPos.nextTupleOffset);
2038 362 : so->markPos.itemIndex = so->markItemIndex;
2039 362 : so->markItemIndex = -1;
2040 :
2041 : /*
2042 : * If we're just about to start the next primitive index scan
2043 : * (possible with a scan that has arrays keys, and needs to skip to
2044 : * continue in the current scan direction), moreLeft/moreRight only
2045 : * indicate the end of the current primitive index scan. They must
2046 : * never be taken to indicate that the top-level index scan has ended
2047 : * (that would be wrong).
2048 : *
2049 : * We could handle this case by treating the current array keys as
2050 : * markPos state. But depending on the current array state like this
2051 : * would add complexity. Instead, we just unset markPos's copy of
2052 : * moreRight or moreLeft (whichever might be affected), while making
2053 : * btrestrpos reset the scan's arrays to their initial scan positions.
2054 : * In effect, btrestrpos leaves advancing the arrays up to the first
2055 : * _bt_readpage call (that takes place after it has restored markPos).
2056 : */
2057 362 : if (so->needPrimScan)
2058 : {
2059 0 : if (ScanDirectionIsForward(so->currPos.dir))
2060 0 : so->markPos.moreRight = true;
2061 : else
2062 0 : so->markPos.moreLeft = true;
2063 : }
2064 :
2065 : /* mark/restore not supported by parallel scans */
2066 : Assert(!scan->parallel_scan);
2067 : }
2068 :
2069 5499110 : BTScanPosUnpinIfPinned(so->currPos);
2070 :
2071 : /* Walk to the next page with data */
2072 5499110 : if (ScanDirectionIsForward(dir))
2073 5498898 : blkno = so->currPos.nextPage;
2074 : else
2075 212 : blkno = so->currPos.prevPage;
2076 5499110 : lastcurrblkno = so->currPos.currPage;
2077 :
2078 : /*
2079 : * Cancel primitive index scans that were scheduled when the call to
2080 : * _bt_readpage for currPos happened to use the opposite direction to the
2081 : * one that we're stepping in now. (It's okay to leave the scan's array
2082 : * keys as-is, since the next _bt_readpage will advance them.)
2083 : */
2084 5499110 : if (so->currPos.dir != dir)
2085 36 : so->needPrimScan = false;
2086 :
2087 5499110 : return _bt_readnextpage(scan, blkno, lastcurrblkno, dir, false);
2088 : }
2089 :
2090 : /*
2091 : * _bt_readfirstpage() -- Read first page containing valid data for _bt_first
2092 : *
2093 : * _bt_first caller passes us an offnum returned by _bt_binsrch, which might
2094 : * be an out of bounds offnum such as "maxoff + 1" in certain corner cases.
2095 : * _bt_checkkeys will stop the scan as soon as an equality qual fails (when
2096 : * its scan key was marked required), so _bt_first _must_ pass us an offnum
2097 : * exactly at the beginning of where equal tuples are to be found. When we're
2098 : * passed an offnum past the end of the page, we might still manage to stop
2099 : * the scan on this page by calling _bt_checkkeys against the high key. See
2100 : * _bt_readpage for full details.
2101 : *
2102 : * On entry, so->currPos must be pinned and locked (so offnum stays valid).
2103 : * Parallel scan callers must have seized the scan before calling here.
2104 : *
2105 : * On exit, we'll have updated so->currPos and retained locks and pins
2106 : * according to the same rules as those laid out for _bt_readnextpage exit.
2107 : * Like _bt_readnextpage, our return value indicates if there are any matching
2108 : * records in the given direction.
2109 : *
2110 : * We always release the scan for a parallel scan caller, regardless of
2111 : * success or failure; we'll call _bt_parallel_release as soon as possible.
2112 : */
2113 : static bool
2114 12707562 : _bt_readfirstpage(IndexScanDesc scan, OffsetNumber offnum, ScanDirection dir)
2115 : {
2116 12707562 : BTScanOpaque so = (BTScanOpaque) scan->opaque;
2117 :
2118 12707562 : so->numKilled = 0; /* just paranoia */
2119 12707562 : so->markItemIndex = -1; /* ditto */
2120 :
2121 : /* Initialize so->currPos for the first page (page in so->currPos.buf) */
2122 12707562 : if (so->needPrimScan)
2123 : {
2124 : Assert(so->numArrayKeys);
2125 :
2126 646 : so->currPos.moreLeft = true;
2127 646 : so->currPos.moreRight = true;
2128 646 : so->needPrimScan = false;
2129 : }
2130 12706916 : else if (ScanDirectionIsForward(dir))
2131 : {
2132 12662386 : so->currPos.moreLeft = false;
2133 12662386 : so->currPos.moreRight = true;
2134 : }
2135 : else
2136 : {
2137 44530 : so->currPos.moreLeft = true;
2138 44530 : so->currPos.moreRight = false;
2139 : }
2140 :
2141 : /*
2142 : * Attempt to load matching tuples from the first page.
2143 : *
2144 : * Note that _bt_readpage will finish initializing the so->currPos fields.
2145 : * _bt_readpage also releases parallel scan (even when it returns false).
2146 : */
2147 12707562 : if (_bt_readpage(scan, dir, offnum, true))
2148 : {
2149 : /*
2150 : * _bt_readpage succeeded. Drop the lock (and maybe the pin) on
2151 : * so->currPos.buf in preparation for btgettuple returning tuples.
2152 : */
2153 : Assert(BTScanPosIsPinned(so->currPos));
2154 9287286 : _bt_drop_lock_and_maybe_pin(scan, &so->currPos);
2155 9287286 : return true;
2156 : }
2157 :
2158 : /* There's no actually-matching data on the page in so->currPos.buf */
2159 3420276 : _bt_unlockbuf(scan->indexRelation, so->currPos.buf);
2160 :
2161 : /* Call _bt_readnextpage using its _bt_steppage wrapper function */
2162 3420276 : if (!_bt_steppage(scan, dir))
2163 3420084 : return false;
2164 :
2165 : /* _bt_readpage for a later page (now in so->currPos) succeeded */
2166 192 : return true;
2167 : }
2168 :
2169 : /*
2170 : * _bt_readnextpage() -- Read next page containing valid data for _bt_next
2171 : *
2172 : * Caller's blkno is the next interesting page's link, taken from either the
2173 : * previously-saved right link or left link. lastcurrblkno is the page that
2174 : * was current at the point where the blkno link was saved, which we use to
2175 : * reason about concurrent page splits/page deletions during backwards scans.
2176 : *
2177 : * On entry, caller shouldn't hold any locks or pins on any page (we work
2178 : * directly off of blkno and lastcurrblkno instead). Parallel scan callers
2179 : * that seized the scan before calling here should pass seized=true; such a
2180 : * caller's blkno and lastcurrblkno arguments come from the seized scan.
2181 : * seized=false callers just pass us the blkno/lastcurrblkno taken from their
2182 : * so->currPos, which (along with so->currPos itself) can be used to end the
2183 : * scan. A seized=false caller's blkno can never be assumed to be the page
2184 : * that must be read next during a parallel scan, though. We must figure that
2185 : * part out for ourselves by seizing the scan (the correct page to read might
2186 : * already be beyond the seized=false caller's blkno during a parallel scan).
2187 : *
2188 : * On success exit, so->currPos is updated to contain data from the next
2189 : * interesting page, and we return true. We hold a pin on the buffer on
2190 : * success exit, except when _bt_drop_lock_and_maybe_pin decided it was safe
2191 : * to eagerly drop the pin (to avoid blocking VACUUM).
2192 : *
2193 : * If there are no more matching records in the given direction, we drop all
2194 : * locks and pins, invalidate so->currPos, and return false.
2195 : *
2196 : * We always release the scan for a parallel scan caller, regardless of
2197 : * success or failure; we'll call _bt_parallel_release as soon as possible.
2198 : */
2199 : static bool
2200 5499118 : _bt_readnextpage(IndexScanDesc scan, BlockNumber blkno,
2201 : BlockNumber lastcurrblkno, ScanDirection dir, bool seized)
2202 : {
2203 5499118 : Relation rel = scan->indexRelation;
2204 5499118 : BTScanOpaque so = (BTScanOpaque) scan->opaque;
2205 :
2206 : Assert(so->currPos.currPage == lastcurrblkno || seized);
2207 : Assert(!BTScanPosIsPinned(so->currPos));
2208 :
2209 : /*
2210 : * Remember that the scan already read lastcurrblkno, a page to the left
2211 : * of blkno (or remember reading a page to the right, for backwards scans)
2212 : */
2213 5499118 : if (ScanDirectionIsForward(dir))
2214 5498906 : so->currPos.moreLeft = true;
2215 : else
2216 212 : so->currPos.moreRight = true;
2217 :
2218 : for (;;)
2219 1674 : {
2220 : Page page;
2221 : BTPageOpaque opaque;
2222 :
2223 5500792 : if (blkno == P_NONE ||
2224 : (ScanDirectionIsForward(dir) ?
2225 1777602 : !so->currPos.moreRight : !so->currPos.moreLeft))
2226 : {
2227 : /* most recent _bt_readpage call (for lastcurrblkno) ended scan */
2228 : Assert(so->currPos.currPage == lastcurrblkno && !seized);
2229 5472390 : BTScanPosInvalidate(so->currPos);
2230 5472390 : _bt_parallel_done(scan); /* iff !so->needPrimScan */
2231 5472390 : return false;
2232 : }
2233 :
2234 : Assert(!so->needPrimScan);
2235 :
2236 : /* parallel scan must never actually visit so->currPos blkno */
2237 28402 : if (!seized && scan->parallel_scan != NULL &&
2238 1212 : !_bt_parallel_seize(scan, &blkno, &lastcurrblkno, false))
2239 : {
2240 : /* whole scan is now done (or another primitive scan required) */
2241 8 : BTScanPosInvalidate(so->currPos);
2242 8 : return false;
2243 : }
2244 :
2245 28394 : if (ScanDirectionIsForward(dir))
2246 : {
2247 : /* read blkno, but check for interrupts first */
2248 28264 : CHECK_FOR_INTERRUPTS();
2249 28264 : so->currPos.buf = _bt_getbuf(rel, blkno, BT_READ);
2250 : }
2251 : else
2252 : {
2253 : /* read blkno, avoiding race (also checks for interrupts) */
2254 130 : so->currPos.buf = _bt_lock_and_validate_left(rel, &blkno,
2255 : lastcurrblkno);
2256 130 : if (so->currPos.buf == InvalidBuffer)
2257 : {
2258 : /* must have been a concurrent deletion of leftmost page */
2259 0 : BTScanPosInvalidate(so->currPos);
2260 0 : _bt_parallel_done(scan);
2261 0 : return false;
2262 : }
2263 : }
2264 :
2265 28394 : page = BufferGetPage(so->currPos.buf);
2266 28394 : opaque = BTPageGetOpaque(page);
2267 28394 : lastcurrblkno = blkno;
2268 28394 : if (likely(!P_IGNORE(opaque)))
2269 : {
2270 : /* see if there are any matches on this page */
2271 28394 : if (ScanDirectionIsForward(dir))
2272 : {
2273 : /* note that this will clear moreRight if we can stop */
2274 28264 : if (_bt_readpage(scan, dir, P_FIRSTDATAKEY(opaque), false))
2275 26600 : break;
2276 1664 : blkno = so->currPos.nextPage;
2277 : }
2278 : else
2279 : {
2280 : /* note that this will clear moreLeft if we can stop */
2281 130 : if (_bt_readpage(scan, dir, PageGetMaxOffsetNumber(page), false))
2282 120 : break;
2283 10 : blkno = so->currPos.prevPage;
2284 : }
2285 : }
2286 : else
2287 : {
2288 : /* _bt_readpage not called, so do all this for ourselves */
2289 0 : if (ScanDirectionIsForward(dir))
2290 0 : blkno = opaque->btpo_next;
2291 : else
2292 0 : blkno = opaque->btpo_prev;
2293 0 : if (scan->parallel_scan != NULL)
2294 0 : _bt_parallel_release(scan, blkno, lastcurrblkno);
2295 : }
2296 :
2297 : /* no matching tuples on this page */
2298 1674 : _bt_relbuf(rel, so->currPos.buf);
2299 1674 : seized = false; /* released by _bt_readpage (or by us) */
2300 : }
2301 :
2302 : /*
2303 : * _bt_readpage succeeded. Drop the lock (and maybe the pin) on
2304 : * so->currPos.buf in preparation for btgettuple returning tuples.
2305 : */
2306 : Assert(so->currPos.currPage == blkno);
2307 : Assert(BTScanPosIsPinned(so->currPos));
2308 26720 : _bt_drop_lock_and_maybe_pin(scan, &so->currPos);
2309 :
2310 26720 : return true;
2311 : }
2312 :
2313 : /*
2314 : * _bt_lock_and_validate_left() -- lock caller's left sibling blkno,
2315 : * recovering from concurrent page splits/page deletions when necessary
2316 : *
2317 : * Called during backwards scans, to deal with their unique concurrency rules.
2318 : *
2319 : * blkno points to the block number of the page that we expect to move the
2320 : * scan to. We'll successfully move the scan there when we find that its
2321 : * right sibling link still points to lastcurrblkno (the page we just read).
2322 : * Otherwise, we have to figure out which page is the correct one for the scan
2323 : * to now read the hard way, reasoning about concurrent splits and deletions.
2324 : * See nbtree/README.
2325 : *
2326 : * On return, we have both a pin and a read lock on the returned page, whose
2327 : * block number will be set in *blkno. Returns InvalidBuffer if there is no
2328 : * page to the left (no lock or pin is held in that case).
2329 : *
2330 : * It is possible for the returned leaf page to be half-dead; caller must
2331 : * check that condition and step left again when required.
2332 : */
2333 : static Buffer
2334 130 : _bt_lock_and_validate_left(Relation rel, BlockNumber *blkno,
2335 : BlockNumber lastcurrblkno)
2336 : {
2337 130 : BlockNumber origblkno = *blkno; /* detects circular links */
2338 :
2339 : for (;;)
2340 0 : {
2341 : Buffer buf;
2342 : Page page;
2343 : BTPageOpaque opaque;
2344 : int tries;
2345 :
2346 : /* check for interrupts while we're not holding any buffer lock */
2347 130 : CHECK_FOR_INTERRUPTS();
2348 130 : buf = _bt_getbuf(rel, *blkno, BT_READ);
2349 130 : page = BufferGetPage(buf);
2350 130 : opaque = BTPageGetOpaque(page);
2351 :
2352 : /*
2353 : * If this isn't the page we want, walk right till we find what we
2354 : * want --- but go no more than four hops (an arbitrary limit). If we
2355 : * don't find the correct page by then, the most likely bet is that
2356 : * lastcurrblkno got deleted and isn't in the sibling chain at all
2357 : * anymore, not that its left sibling got split more than four times.
2358 : *
2359 : * Note that it is correct to test P_ISDELETED not P_IGNORE here,
2360 : * because half-dead pages are still in the sibling chain.
2361 : */
2362 130 : tries = 0;
2363 : for (;;)
2364 : {
2365 130 : if (likely(!P_ISDELETED(opaque) &&
2366 : opaque->btpo_next == lastcurrblkno))
2367 : {
2368 : /* Found desired page, return it */
2369 130 : return buf;
2370 : }
2371 0 : if (P_RIGHTMOST(opaque) || ++tries > 4)
2372 : break;
2373 : /* step right */
2374 0 : *blkno = opaque->btpo_next;
2375 0 : buf = _bt_relandgetbuf(rel, buf, *blkno, BT_READ);
2376 0 : page = BufferGetPage(buf);
2377 0 : opaque = BTPageGetOpaque(page);
2378 : }
2379 :
2380 : /*
2381 : * Return to the original page (usually the page most recently read by
2382 : * _bt_readpage, which is passed by caller as lastcurrblkno) to see
2383 : * what's up with its prev sibling link
2384 : */
2385 0 : buf = _bt_relandgetbuf(rel, buf, lastcurrblkno, BT_READ);
2386 0 : page = BufferGetPage(buf);
2387 0 : opaque = BTPageGetOpaque(page);
2388 0 : if (P_ISDELETED(opaque))
2389 : {
2390 : /*
2391 : * It was deleted. Move right to first nondeleted page (there
2392 : * must be one); that is the page that has acquired the deleted
2393 : * one's keyspace, so stepping left from it will take us where we
2394 : * want to be.
2395 : */
2396 : for (;;)
2397 : {
2398 0 : if (P_RIGHTMOST(opaque))
2399 0 : elog(ERROR, "fell off the end of index \"%s\"",
2400 : RelationGetRelationName(rel));
2401 0 : lastcurrblkno = opaque->btpo_next;
2402 0 : buf = _bt_relandgetbuf(rel, buf, lastcurrblkno, BT_READ);
2403 0 : page = BufferGetPage(buf);
2404 0 : opaque = BTPageGetOpaque(page);
2405 0 : if (!P_ISDELETED(opaque))
2406 0 : break;
2407 : }
2408 : }
2409 : else
2410 : {
2411 : /*
2412 : * Original lastcurrblkno wasn't deleted; the explanation had
2413 : * better be that the page to the left got split or deleted.
2414 : * Without this check, we risk going into an infinite loop.
2415 : */
2416 0 : if (opaque->btpo_prev == origblkno)
2417 0 : elog(ERROR, "could not find left sibling of block %u in index \"%s\"",
2418 : lastcurrblkno, RelationGetRelationName(rel));
2419 : /* Okay to try again, since left sibling link changed */
2420 : }
2421 :
2422 : /*
2423 : * Original lastcurrblkno from caller was concurrently deleted (could
2424 : * also have been a great many concurrent left sibling page splits).
2425 : * Found a non-deleted page that should now act as our lastcurrblkno.
2426 : */
2427 0 : if (P_LEFTMOST(opaque))
2428 : {
2429 : /* New lastcurrblkno has no left sibling (concurrently deleted) */
2430 0 : _bt_relbuf(rel, buf);
2431 0 : break;
2432 : }
2433 :
2434 : /* Start from scratch with new lastcurrblkno's blkno/prev link */
2435 0 : *blkno = origblkno = opaque->btpo_prev;
2436 0 : _bt_relbuf(rel, buf);
2437 : }
2438 :
2439 0 : return InvalidBuffer;
2440 : }
2441 :
2442 : /*
2443 : * _bt_get_endpoint() -- Find the first or last page on a given tree level
2444 : *
2445 : * If the index is empty, we will return InvalidBuffer; any other failure
2446 : * condition causes ereport(). We will not return a dead page.
2447 : *
2448 : * The returned buffer is pinned and read-locked.
2449 : */
2450 : Buffer
2451 78080 : _bt_get_endpoint(Relation rel, uint32 level, bool rightmost)
2452 : {
2453 : Buffer buf;
2454 : Page page;
2455 : BTPageOpaque opaque;
2456 : OffsetNumber offnum;
2457 : BlockNumber blkno;
2458 : IndexTuple itup;
2459 :
2460 : /*
2461 : * If we are looking for a leaf page, okay to descend from fast root;
2462 : * otherwise better descend from true root. (There is no point in being
2463 : * smarter about intermediate levels.)
2464 : */
2465 78080 : if (level == 0)
2466 78056 : buf = _bt_getroot(rel, NULL, BT_READ);
2467 : else
2468 24 : buf = _bt_gettrueroot(rel);
2469 :
2470 78080 : if (!BufferIsValid(buf))
2471 6810 : return InvalidBuffer;
2472 :
2473 71270 : page = BufferGetPage(buf);
2474 71270 : opaque = BTPageGetOpaque(page);
2475 :
2476 : for (;;)
2477 : {
2478 : /*
2479 : * If we landed on a deleted page, step right to find a live page
2480 : * (there must be one). Also, if we want the rightmost page, step
2481 : * right if needed to get to it (this could happen if the page split
2482 : * since we obtained a pointer to it).
2483 : */
2484 90606 : while (P_IGNORE(opaque) ||
2485 66 : (rightmost && !P_RIGHTMOST(opaque)))
2486 : {
2487 0 : blkno = opaque->btpo_next;
2488 0 : if (blkno == P_NONE)
2489 0 : elog(ERROR, "fell off the end of index \"%s\"",
2490 : RelationGetRelationName(rel));
2491 0 : buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
2492 0 : page = BufferGetPage(buf);
2493 0 : opaque = BTPageGetOpaque(page);
2494 : }
2495 :
2496 : /* Done? */
2497 90606 : if (opaque->btpo_level == level)
2498 71270 : break;
2499 19336 : if (opaque->btpo_level < level)
2500 0 : ereport(ERROR,
2501 : (errcode(ERRCODE_INDEX_CORRUPTED),
2502 : errmsg_internal("btree level %u not found in index \"%s\"",
2503 : level, RelationGetRelationName(rel))));
2504 :
2505 : /* Descend to leftmost or rightmost child page */
2506 19336 : if (rightmost)
2507 6 : offnum = PageGetMaxOffsetNumber(page);
2508 : else
2509 19330 : offnum = P_FIRSTDATAKEY(opaque);
2510 :
2511 19336 : itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
2512 19336 : blkno = BTreeTupleGetDownLink(itup);
2513 :
2514 19336 : buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
2515 19336 : page = BufferGetPage(buf);
2516 19336 : opaque = BTPageGetOpaque(page);
2517 : }
2518 :
2519 71270 : return buf;
2520 : }
2521 :
2522 : /*
2523 : * _bt_endpoint() -- Find the first or last page in the index, and scan
2524 : * from there to the first key satisfying all the quals.
2525 : *
2526 : * This is used by _bt_first() to set up a scan when we've determined
2527 : * that the scan must start at the beginning or end of the index (for
2528 : * a forward or backward scan respectively).
2529 : *
2530 : * Parallel scan callers must have seized the scan before calling here.
2531 : * Exit conditions are the same as for _bt_first().
2532 : */
2533 : static bool
2534 78056 : _bt_endpoint(IndexScanDesc scan, ScanDirection dir)
2535 : {
2536 78056 : Relation rel = scan->indexRelation;
2537 78056 : BTScanOpaque so = (BTScanOpaque) scan->opaque;
2538 : Page page;
2539 : BTPageOpaque opaque;
2540 : OffsetNumber start;
2541 :
2542 : Assert(!BTScanPosIsValid(so->currPos));
2543 : Assert(!so->needPrimScan);
2544 :
2545 : /*
2546 : * Scan down to the leftmost or rightmost leaf page. This is a simplified
2547 : * version of _bt_search().
2548 : */
2549 78056 : so->currPos.buf = _bt_get_endpoint(rel, 0, ScanDirectionIsBackward(dir));
2550 :
2551 78056 : if (!BufferIsValid(so->currPos.buf))
2552 : {
2553 : /*
2554 : * Empty index. Lock the whole relation, as nothing finer to lock
2555 : * exists.
2556 : */
2557 6810 : PredicateLockRelation(rel, scan->xs_snapshot);
2558 6810 : _bt_parallel_done(scan);
2559 6810 : return false;
2560 : }
2561 :
2562 71246 : page = BufferGetPage(so->currPos.buf);
2563 71246 : opaque = BTPageGetOpaque(page);
2564 : Assert(P_ISLEAF(opaque));
2565 :
2566 71246 : if (ScanDirectionIsForward(dir))
2567 : {
2568 : /* There could be dead pages to the left, so not this: */
2569 : /* Assert(P_LEFTMOST(opaque)); */
2570 :
2571 71186 : start = P_FIRSTDATAKEY(opaque);
2572 : }
2573 60 : else if (ScanDirectionIsBackward(dir))
2574 : {
2575 : Assert(P_RIGHTMOST(opaque));
2576 :
2577 60 : start = PageGetMaxOffsetNumber(page);
2578 : }
2579 : else
2580 : {
2581 0 : elog(ERROR, "invalid scan direction: %d", (int) dir);
2582 : start = 0; /* keep compiler quiet */
2583 : }
2584 :
2585 : /*
2586 : * Now load data from the first page of the scan.
2587 : */
2588 71246 : if (!_bt_readfirstpage(scan, start, dir))
2589 1592 : return false;
2590 :
2591 69654 : _bt_returnitem(scan, so);
2592 69654 : return true;
2593 : }
|