LCOV - code coverage report
Current view: top level - src/backend/access/nbtree - nbtree.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 444 518 85.7 %
Date: 2025-12-31 09:17:30 Functions: 27 29 93.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * nbtree.c
       4             :  *    Implementation of Lehman and Yao's btree management algorithm for
       5             :  *    Postgres.
       6             :  *
       7             :  * NOTES
       8             :  *    This file contains only the public interface routines.
       9             :  *
      10             :  *
      11             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      12             :  * Portions Copyright (c) 1994, Regents of the University of California
      13             :  *
      14             :  * IDENTIFICATION
      15             :  *    src/backend/access/nbtree/nbtree.c
      16             :  *
      17             :  *-------------------------------------------------------------------------
      18             :  */
      19             : #include "postgres.h"
      20             : 
      21             : #include "access/nbtree.h"
      22             : #include "access/relscan.h"
      23             : #include "access/stratnum.h"
      24             : #include "commands/progress.h"
      25             : #include "commands/vacuum.h"
      26             : #include "nodes/execnodes.h"
      27             : #include "pgstat.h"
      28             : #include "storage/bulk_write.h"
      29             : #include "storage/condition_variable.h"
      30             : #include "storage/indexfsm.h"
      31             : #include "storage/ipc.h"
      32             : #include "storage/lmgr.h"
      33             : #include "storage/read_stream.h"
      34             : #include "utils/datum.h"
      35             : #include "utils/fmgrprotos.h"
      36             : #include "utils/index_selfuncs.h"
      37             : #include "utils/memutils.h"
      38             : 
      39             : 
      40             : /*
      41             :  * BTPARALLEL_NOT_INITIALIZED indicates that the scan has not started.
      42             :  *
      43             :  * BTPARALLEL_NEED_PRIMSCAN indicates that some process must now seize the
      44             :  * scan to advance it via another call to _bt_first.
      45             :  *
      46             :  * BTPARALLEL_ADVANCING indicates that some process is advancing the scan to
      47             :  * a new page; others must wait.
      48             :  *
      49             :  * BTPARALLEL_IDLE indicates that no backend is currently advancing the scan
      50             :  * to a new page; some process can start doing that.
      51             :  *
      52             :  * BTPARALLEL_DONE indicates that the scan is complete (including error exit).
      53             :  */
      54             : typedef enum
      55             : {
      56             :     BTPARALLEL_NOT_INITIALIZED,
      57             :     BTPARALLEL_NEED_PRIMSCAN,
      58             :     BTPARALLEL_ADVANCING,
      59             :     BTPARALLEL_IDLE,
      60             :     BTPARALLEL_DONE,
      61             : } BTPS_State;
      62             : 
      63             : /*
      64             :  * BTParallelScanDescData contains btree specific shared information required
      65             :  * for parallel scan.
      66             :  */
      67             : typedef struct BTParallelScanDescData
      68             : {
      69             :     BlockNumber btps_nextScanPage;  /* next page to be scanned */
      70             :     BlockNumber btps_lastCurrPage;  /* page whose sibling link was copied into
      71             :                                      * btps_nextScanPage */
      72             :     BTPS_State  btps_pageStatus;    /* indicates whether next page is
      73             :                                      * available for scan. see above for
      74             :                                      * possible states of parallel scan. */
      75             :     LWLock      btps_lock;      /* protects shared parallel state */
      76             :     ConditionVariable btps_cv;  /* used to synchronize parallel scan */
      77             : 
      78             :     /*
      79             :      * btps_arrElems is used when scans need to schedule another primitive
      80             :      * index scan with one or more SAOP arrays.  Holds BTArrayKeyInfo.cur_elem
      81             :      * offsets for each = scan key associated with a ScalarArrayOp array.
      82             :      */
      83             :     int         btps_arrElems[FLEXIBLE_ARRAY_MEMBER];
      84             : 
      85             :     /*
      86             :      * Additional space (at the end of the struct) is used when scans need to
      87             :      * schedule another primitive index scan with one or more skip arrays.
      88             :      * Holds a flattened datum representation for each = scan key associated
      89             :      * with a skip array.
      90             :      */
      91             : }           BTParallelScanDescData;
      92             : 
      93             : typedef struct BTParallelScanDescData *BTParallelScanDesc;
      94             : 
      95             : 
      96             : static bool _bt_start_prim_scan(IndexScanDesc scan);
      97             : static void _bt_parallel_serialize_arrays(Relation rel, BTParallelScanDesc btscan,
      98             :                                           BTScanOpaque so);
      99             : static void _bt_parallel_restore_arrays(Relation rel, BTParallelScanDesc btscan,
     100             :                                         BTScanOpaque so);
     101             : static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
     102             :                          IndexBulkDeleteCallback callback, void *callback_state,
     103             :                          BTCycleId cycleid);
     104             : static BlockNumber btvacuumpage(BTVacState *vstate, Buffer buf);
     105             : static BTVacuumPosting btreevacuumposting(BTVacState *vstate,
     106             :                                           IndexTuple posting,
     107             :                                           OffsetNumber updatedoffset,
     108             :                                           int *nremaining);
     109             : 
     110             : 
     111             : /*
     112             :  * Btree handler function: return IndexAmRoutine with access method parameters
     113             :  * and callbacks.
     114             :  */
     115             : Datum
     116     3479748 : bthandler(PG_FUNCTION_ARGS)
     117             : {
     118             :     static const IndexAmRoutine amroutine = {
     119             :         .type = T_IndexAmRoutine,
     120             :         .amstrategies = BTMaxStrategyNumber,
     121             :         .amsupport = BTNProcs,
     122             :         .amoptsprocnum = BTOPTIONS_PROC,
     123             :         .amcanorder = true,
     124             :         .amcanorderbyop = false,
     125             :         .amcanhash = false,
     126             :         .amconsistentequality = true,
     127             :         .amconsistentordering = true,
     128             :         .amcanbackward = true,
     129             :         .amcanunique = true,
     130             :         .amcanmulticol = true,
     131             :         .amoptionalkey = true,
     132             :         .amsearcharray = true,
     133             :         .amsearchnulls = true,
     134             :         .amstorage = false,
     135             :         .amclusterable = true,
     136             :         .ampredlocks = true,
     137             :         .amcanparallel = true,
     138             :         .amcanbuildparallel = true,
     139             :         .amcaninclude = true,
     140             :         .amusemaintenanceworkmem = false,
     141             :         .amsummarizing = false,
     142             :         .amparallelvacuumoptions =
     143             :         VACUUM_OPTION_PARALLEL_BULKDEL | VACUUM_OPTION_PARALLEL_COND_CLEANUP,
     144             :         .amkeytype = InvalidOid,
     145             : 
     146             :         .ambuild = btbuild,
     147             :         .ambuildempty = btbuildempty,
     148             :         .aminsert = btinsert,
     149             :         .aminsertcleanup = NULL,
     150             :         .ambulkdelete = btbulkdelete,
     151             :         .amvacuumcleanup = btvacuumcleanup,
     152             :         .amcanreturn = btcanreturn,
     153             :         .amcostestimate = btcostestimate,
     154             :         .amgettreeheight = btgettreeheight,
     155             :         .amoptions = btoptions,
     156             :         .amproperty = btproperty,
     157             :         .ambuildphasename = btbuildphasename,
     158             :         .amvalidate = btvalidate,
     159             :         .amadjustmembers = btadjustmembers,
     160             :         .ambeginscan = btbeginscan,
     161             :         .amrescan = btrescan,
     162             :         .amgettuple = btgettuple,
     163             :         .amgetbitmap = btgetbitmap,
     164             :         .amendscan = btendscan,
     165             :         .ammarkpos = btmarkpos,
     166             :         .amrestrpos = btrestrpos,
     167             :         .amestimateparallelscan = btestimateparallelscan,
     168             :         .aminitparallelscan = btinitparallelscan,
     169             :         .amparallelrescan = btparallelrescan,
     170             :         .amtranslatestrategy = bttranslatestrategy,
     171             :         .amtranslatecmptype = bttranslatecmptype,
     172             :     };
     173             : 
     174     3479748 :     PG_RETURN_POINTER(&amroutine);
     175             : }
     176             : 
     177             : /*
     178             :  *  btbuildempty() -- build an empty btree index in the initialization fork
     179             :  */
     180             : void
     181         156 : btbuildempty(Relation index)
     182             : {
     183         156 :     bool        allequalimage = _bt_allequalimage(index, false);
     184             :     BulkWriteState *bulkstate;
     185             :     BulkWriteBuffer metabuf;
     186             : 
     187         156 :     bulkstate = smgr_bulk_start_rel(index, INIT_FORKNUM);
     188             : 
     189             :     /* Construct metapage. */
     190         156 :     metabuf = smgr_bulk_get_buf(bulkstate);
     191         156 :     _bt_initmetapage((Page) metabuf, P_NONE, 0, allequalimage);
     192         156 :     smgr_bulk_write(bulkstate, BTREE_METAPAGE, metabuf, true);
     193             : 
     194         156 :     smgr_bulk_finish(bulkstate);
     195         156 : }
     196             : 
     197             : /*
     198             :  *  btinsert() -- insert an index tuple into a btree.
     199             :  *
     200             :  *      Descend the tree recursively, find the appropriate location for our
     201             :  *      new tuple, and put it there.
     202             :  */
     203             : bool
     204     7419612 : btinsert(Relation rel, Datum *values, bool *isnull,
     205             :          ItemPointer ht_ctid, Relation heapRel,
     206             :          IndexUniqueCheck checkUnique,
     207             :          bool indexUnchanged,
     208             :          IndexInfo *indexInfo)
     209             : {
     210             :     bool        result;
     211             :     IndexTuple  itup;
     212             : 
     213             :     /* generate an index tuple */
     214     7419612 :     itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
     215     7419612 :     itup->t_tid = *ht_ctid;
     216             : 
     217     7419612 :     result = _bt_doinsert(rel, itup, checkUnique, indexUnchanged, heapRel);
     218             : 
     219     7419078 :     pfree(itup);
     220             : 
     221     7419078 :     return result;
     222             : }
     223             : 
     224             : /*
     225             :  *  btgettuple() -- Get the next tuple in the scan.
     226             :  */
     227             : bool
     228    36471432 : btgettuple(IndexScanDesc scan, ScanDirection dir)
     229             : {
     230    36471432 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     231             :     bool        res;
     232             : 
     233             :     Assert(scan->heapRelation != NULL);
     234             : 
     235             :     /* btree indexes are never lossy */
     236    36471432 :     scan->xs_recheck = false;
     237             : 
     238             :     /* Each loop iteration performs another primitive index scan */
     239             :     do
     240             :     {
     241             :         /*
     242             :          * If we've already initialized this scan, we can just advance it in
     243             :          * the appropriate direction.  If we haven't done so yet, we call
     244             :          * _bt_first() to get the first item in the scan.
     245             :          */
     246    36488372 :         if (!BTScanPosIsValid(so->currPos))
     247    16528112 :             res = _bt_first(scan, dir);
     248             :         else
     249             :         {
     250             :             /*
     251             :              * Check to see if we should kill the previously-fetched tuple.
     252             :              */
     253    19960260 :             if (scan->kill_prior_tuple)
     254             :             {
     255             :                 /*
     256             :                  * Yes, remember it for later. (We'll deal with all such
     257             :                  * tuples at once right before leaving the index page.)  The
     258             :                  * test for numKilled overrun is not just paranoia: if the
     259             :                  * caller reverses direction in the indexscan then the same
     260             :                  * item might get entered multiple times. It's not worth
     261             :                  * trying to optimize that, so we don't detect it, but instead
     262             :                  * just forget any excess entries.
     263             :                  */
     264      463194 :                 if (so->killedItems == NULL)
     265      173640 :                     so->killedItems = palloc_array(int, MaxTIDsPerBTreePage);
     266      463194 :                 if (so->numKilled < MaxTIDsPerBTreePage)
     267      463194 :                     so->killedItems[so->numKilled++] = so->currPos.itemIndex;
     268             :             }
     269             : 
     270             :             /*
     271             :              * Now continue the scan.
     272             :              */
     273    19960260 :             res = _bt_next(scan, dir);
     274             :         }
     275             : 
     276             :         /* If we have a tuple, return it ... */
     277    36488370 :         if (res)
     278    29221346 :             break;
     279             :         /* ... otherwise see if we need another primitive index scan */
     280     7267024 :     } while (so->numArrayKeys && _bt_start_prim_scan(scan));
     281             : 
     282    36471430 :     return res;
     283             : }
     284             : 
     285             : /*
     286             :  * btgetbitmap() -- gets all matching tuples, and adds them to a bitmap
     287             :  */
     288             : int64
     289       18690 : btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm)
     290             : {
     291       18690 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     292       18690 :     int64       ntids = 0;
     293             :     ItemPointer heapTid;
     294             : 
     295             :     Assert(scan->heapRelation == NULL);
     296             : 
     297             :     /* Each loop iteration performs another primitive index scan */
     298             :     do
     299             :     {
     300             :         /* Fetch the first page & tuple */
     301       19328 :         if (_bt_first(scan, ForwardScanDirection))
     302             :         {
     303             :             /* Save tuple ID, and continue scanning */
     304       15356 :             heapTid = &scan->xs_heaptid;
     305       15356 :             tbm_add_tuples(tbm, heapTid, 1, false);
     306       15356 :             ntids++;
     307             : 
     308             :             for (;;)
     309             :             {
     310             :                 /*
     311             :                  * Advance to next tuple within page.  This is the same as the
     312             :                  * easy case in _bt_next().
     313             :                  */
     314     2134938 :                 if (++so->currPos.itemIndex > so->currPos.lastItem)
     315             :                 {
     316             :                     /* let _bt_next do the heavy lifting */
     317       20968 :                     if (!_bt_next(scan, ForwardScanDirection))
     318       15356 :                         break;
     319             :                 }
     320             : 
     321             :                 /* Save tuple ID, and continue scanning */
     322     2119582 :                 heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid;
     323     2119582 :                 tbm_add_tuples(tbm, heapTid, 1, false);
     324     2119582 :                 ntids++;
     325             :             }
     326             :         }
     327             :         /* Now see if we need another primitive index scan */
     328       19328 :     } while (so->numArrayKeys && _bt_start_prim_scan(scan));
     329             : 
     330       18690 :     return ntids;
     331             : }
     332             : 
     333             : /*
     334             :  *  btbeginscan() -- start a scan on a btree index
     335             :  */
     336             : IndexScanDesc
     337    15887598 : btbeginscan(Relation rel, int nkeys, int norderbys)
     338             : {
     339             :     IndexScanDesc scan;
     340             :     BTScanOpaque so;
     341             : 
     342             :     /* no order by operators allowed */
     343             :     Assert(norderbys == 0);
     344             : 
     345             :     /* get the scan */
     346    15887598 :     scan = RelationGetIndexScan(rel, nkeys, norderbys);
     347             : 
     348             :     /* allocate private workspace */
     349    15887598 :     so = palloc_object(BTScanOpaqueData);
     350    15887598 :     BTScanPosInvalidate(so->currPos);
     351    15887598 :     BTScanPosInvalidate(so->markPos);
     352    15887598 :     if (scan->numberOfKeys > 0)
     353    15874426 :         so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
     354             :     else
     355       13172 :         so->keyData = NULL;
     356             : 
     357    15887598 :     so->skipScan = false;
     358    15887598 :     so->needPrimScan = false;
     359    15887598 :     so->scanBehind = false;
     360    15887598 :     so->oppositeDirCheck = false;
     361    15887598 :     so->arrayKeys = NULL;
     362    15887598 :     so->orderProcs = NULL;
     363    15887598 :     so->arrayContext = NULL;
     364             : 
     365    15887598 :     so->killedItems = NULL;      /* until needed */
     366    15887598 :     so->numKilled = 0;
     367             : 
     368             :     /*
     369             :      * We don't know yet whether the scan will be index-only, so we do not
     370             :      * allocate the tuple workspace arrays until btrescan.  However, we set up
     371             :      * scan->xs_itupdesc whether we'll need it or not, since that's so cheap.
     372             :      */
     373    15887598 :     so->currTuples = so->markTuples = NULL;
     374             : 
     375    15887598 :     scan->xs_itupdesc = RelationGetDescr(rel);
     376             : 
     377    15887598 :     scan->opaque = so;
     378             : 
     379    15887598 :     return scan;
     380             : }
     381             : 
     382             : /*
     383             :  *  btrescan() -- rescan an index relation
     384             :  */
     385             : void
     386    16531208 : btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
     387             :          ScanKey orderbys, int norderbys)
     388             : {
     389    16531208 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     390             : 
     391             :     /* we aren't holding any read locks, but gotta drop the pins */
     392    16531208 :     if (BTScanPosIsValid(so->currPos))
     393             :     {
     394             :         /* Before leaving current page, deal with any killed items */
     395       92252 :         if (so->numKilled > 0)
     396        1250 :             _bt_killitems(scan);
     397       92252 :         BTScanPosUnpinIfPinned(so->currPos);
     398       92252 :         BTScanPosInvalidate(so->currPos);
     399             :     }
     400             : 
     401             :     /*
     402             :      * We prefer to eagerly drop leaf page pins before btgettuple returns.
     403             :      * This avoids making VACUUM wait to acquire a cleanup lock on the page.
     404             :      *
     405             :      * We cannot safely drop leaf page pins during index-only scans due to a
     406             :      * race condition involving VACUUM setting pages all-visible in the VM.
     407             :      * It's also unsafe for plain index scans that use a non-MVCC snapshot.
     408             :      *
     409             :      * When we drop pins eagerly, the mechanism that marks so->killedItems[]
     410             :      * index tuples LP_DEAD has to deal with concurrent TID recycling races.
     411             :      * The scheme used to detect unsafe TID recycling won't work when scanning
     412             :      * unlogged relations (since it involves saving an affected page's LSN).
     413             :      * Opt out of eager pin dropping during unlogged relation scans for now
     414             :      * (this is preferable to opting out of kill_prior_tuple LP_DEAD setting).
     415             :      *
     416             :      * Also opt out of dropping leaf page pins eagerly during bitmap scans.
     417             :      * Pins cannot be held for more than an instant during bitmap scans either
     418             :      * way, so we might as well avoid wasting cycles on acquiring page LSNs.
     419             :      *
     420             :      * See nbtree/README section on making concurrent TID recycling safe.
     421             :      *
     422             :      * Note: so->dropPin should never change across rescans.
     423             :      */
     424    49232174 :     so->dropPin = (!scan->xs_want_itup &&
     425    16169758 :                    IsMVCCSnapshot(scan->xs_snapshot) &&
     426    47661548 :                    RelationNeedsWAL(scan->indexRelation) &&
     427    14960582 :                    scan->heapRelation != NULL);
     428             : 
     429    16531208 :     so->markItemIndex = -1;
     430    16531208 :     so->needPrimScan = false;
     431    16531208 :     so->scanBehind = false;
     432    16531208 :     so->oppositeDirCheck = false;
     433    16531208 :     BTScanPosUnpinIfPinned(so->markPos);
     434    16531208 :     BTScanPosInvalidate(so->markPos);
     435             : 
     436             :     /*
     437             :      * Allocate tuple workspace arrays, if needed for an index-only scan and
     438             :      * not already done in a previous rescan call.  To save on palloc
     439             :      * overhead, both workspaces are allocated as one palloc block; only this
     440             :      * function and btendscan know that.
     441             :      */
     442    16531208 :     if (scan->xs_want_itup && so->currTuples == NULL)
     443             :     {
     444      137018 :         so->currTuples = (char *) palloc(BLCKSZ * 2);
     445      137018 :         so->markTuples = so->currTuples + BLCKSZ;
     446             :     }
     447             : 
     448             :     /*
     449             :      * Reset the scan keys
     450             :      */
     451    16531208 :     if (scankey && scan->numberOfKeys > 0)
     452    16517806 :         memcpy(scan->keyData, scankey, scan->numberOfKeys * sizeof(ScanKeyData));
     453    16531208 :     so->numberOfKeys = 0;        /* until _bt_preprocess_keys sets it */
     454    16531208 :     so->numArrayKeys = 0;        /* ditto */
     455    16531208 : }
     456             : 
     457             : /*
     458             :  *  btendscan() -- close down a scan
     459             :  */
     460             : void
     461    15885976 : btendscan(IndexScanDesc scan)
     462             : {
     463    15885976 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     464             : 
     465             :     /* we aren't holding any read locks, but gotta drop the pins */
     466    15885976 :     if (BTScanPosIsValid(so->currPos))
     467             :     {
     468             :         /* Before leaving current page, deal with any killed items */
     469     9167678 :         if (so->numKilled > 0)
     470       90802 :             _bt_killitems(scan);
     471     9167678 :         BTScanPosUnpinIfPinned(so->currPos);
     472             :     }
     473             : 
     474    15885976 :     so->markItemIndex = -1;
     475    15885976 :     BTScanPosUnpinIfPinned(so->markPos);
     476             : 
     477             :     /* No need to invalidate positions, the RAM is about to be freed. */
     478             : 
     479             :     /* Release storage */
     480    15885976 :     if (so->keyData != NULL)
     481    15872834 :         pfree(so->keyData);
     482             :     /* so->arrayKeys and so->orderProcs are in arrayContext */
     483    15885976 :     if (so->arrayContext != NULL)
     484        4928 :         MemoryContextDelete(so->arrayContext);
     485    15885976 :     if (so->killedItems != NULL)
     486      173576 :         pfree(so->killedItems);
     487    15885976 :     if (so->currTuples != NULL)
     488      136974 :         pfree(so->currTuples);
     489             :     /* so->markTuples should not be pfree'd, see btrescan */
     490    15885976 :     pfree(so);
     491    15885976 : }
     492             : 
     493             : /*
     494             :  *  btmarkpos() -- save current scan position
     495             :  */
     496             : void
     497      130108 : btmarkpos(IndexScanDesc scan)
     498             : {
     499      130108 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     500             : 
     501             :     /* There may be an old mark with a pin (but no lock). */
     502      130108 :     BTScanPosUnpinIfPinned(so->markPos);
     503             : 
     504             :     /*
     505             :      * Just record the current itemIndex.  If we later step to next page
     506             :      * before releasing the marked position, _bt_steppage makes a full copy of
     507             :      * the currPos struct in markPos.  If (as often happens) the mark is moved
     508             :      * before we leave the page, we don't have to do that work.
     509             :      */
     510      130108 :     if (BTScanPosIsValid(so->currPos))
     511      130108 :         so->markItemIndex = so->currPos.itemIndex;
     512             :     else
     513             :     {
     514           0 :         BTScanPosInvalidate(so->markPos);
     515           0 :         so->markItemIndex = -1;
     516             :     }
     517      130108 : }
     518             : 
     519             : /*
     520             :  *  btrestrpos() -- restore scan to last saved position
     521             :  */
     522             : void
     523       54042 : btrestrpos(IndexScanDesc scan)
     524             : {
     525       54042 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     526             : 
     527       54042 :     if (so->markItemIndex >= 0)
     528             :     {
     529             :         /*
     530             :          * The scan has never moved to a new page since the last mark.  Just
     531             :          * restore the itemIndex.
     532             :          *
     533             :          * NB: In this case we can't count on anything in so->markPos to be
     534             :          * accurate.
     535             :          */
     536       53934 :         so->currPos.itemIndex = so->markItemIndex;
     537             :     }
     538             :     else
     539             :     {
     540             :         /*
     541             :          * The scan moved to a new page after last mark or restore, and we are
     542             :          * now restoring to the marked page.  We aren't holding any read
     543             :          * locks, but if we're still holding the pin for the current position,
     544             :          * we must drop it.
     545             :          */
     546         108 :         if (BTScanPosIsValid(so->currPos))
     547             :         {
     548             :             /* Before leaving current page, deal with any killed items */
     549         108 :             if (so->numKilled > 0)
     550           0 :                 _bt_killitems(scan);
     551         108 :             BTScanPosUnpinIfPinned(so->currPos);
     552             :         }
     553             : 
     554         108 :         if (BTScanPosIsValid(so->markPos))
     555             :         {
     556             :             /* bump pin on mark buffer for assignment to current buffer */
     557         108 :             if (BTScanPosIsPinned(so->markPos))
     558           0 :                 IncrBufferRefCount(so->markPos.buf);
     559         108 :             memcpy(&so->currPos, &so->markPos,
     560             :                    offsetof(BTScanPosData, items[1]) +
     561         108 :                    so->markPos.lastItem * sizeof(BTScanPosItem));
     562         108 :             if (so->currTuples)
     563           0 :                 memcpy(so->currTuples, so->markTuples,
     564           0 :                        so->markPos.nextTupleOffset);
     565             :             /* Reset the scan's array keys (see _bt_steppage for why) */
     566         108 :             if (so->numArrayKeys)
     567             :             {
     568           0 :                 _bt_start_array_keys(scan, so->currPos.dir);
     569           0 :                 so->needPrimScan = false;
     570             :             }
     571             :         }
     572             :         else
     573           0 :             BTScanPosInvalidate(so->currPos);
     574             :     }
     575       54042 : }
     576             : 
     577             : /*
     578             :  * btestimateparallelscan -- estimate storage for BTParallelScanDescData
     579             :  */
     580             : Size
     581          64 : btestimateparallelscan(Relation rel, int nkeys, int norderbys)
     582             : {
     583          64 :     int16       nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
     584             :     Size        estnbtreeshared,
     585             :                 genericattrspace;
     586             : 
     587             :     /*
     588             :      * Pessimistically assume that every input scan key will be output with
     589             :      * its own SAOP array
     590             :      */
     591          64 :     estnbtreeshared = offsetof(BTParallelScanDescData, btps_arrElems) +
     592             :         sizeof(int) * nkeys;
     593             : 
     594             :     /* Single column indexes cannot possibly use a skip array */
     595          64 :     if (nkeyatts == 1)
     596          46 :         return estnbtreeshared;
     597             : 
     598             :     /*
     599             :      * Pessimistically assume that all attributes prior to the least
     600             :      * significant attribute require a skip array (and an associated key)
     601             :      */
     602          18 :     genericattrspace = datumEstimateSpace((Datum) 0, false, true,
     603             :                                           sizeof(Datum));
     604          36 :     for (int attnum = 1; attnum < nkeyatts; attnum++)
     605             :     {
     606             :         CompactAttribute *attr;
     607             : 
     608             :         /*
     609             :          * We make the conservative assumption that every index column will
     610             :          * also require a skip array.
     611             :          *
     612             :          * Every skip array must have space to store its scan key's sk_flags.
     613             :          */
     614          18 :         estnbtreeshared = add_size(estnbtreeshared, sizeof(int));
     615             : 
     616             :         /* Consider space required to store a datum of opclass input type */
     617          18 :         attr = TupleDescCompactAttr(rel->rd_att, attnum - 1);
     618          18 :         if (attr->attbyval)
     619          18 :         {
     620             :             /* This index attribute stores pass-by-value datums */
     621          18 :             Size        estfixed = datumEstimateSpace((Datum) 0, false,
     622          18 :                                                       true, attr->attlen);
     623             : 
     624          18 :             estnbtreeshared = add_size(estnbtreeshared, estfixed);
     625          18 :             continue;
     626             :         }
     627             : 
     628             :         /*
     629             :          * This index attribute stores pass-by-reference datums.
     630             :          *
     631             :          * Assume that serializing this array will use just as much space as a
     632             :          * pass-by-value datum, in addition to space for the largest possible
     633             :          * whole index tuple (this is not just a per-datum portion of the
     634             :          * largest possible tuple because that'd be almost as large anyway).
     635             :          *
     636             :          * This is quite conservative, but it's not clear how we could do much
     637             :          * better.  The executor requires an up-front storage request size
     638             :          * that reliably covers the scan's high watermark memory usage.  We
     639             :          * can't be sure of the real high watermark until the scan is over.
     640             :          */
     641           0 :         estnbtreeshared = add_size(estnbtreeshared, genericattrspace);
     642           0 :         estnbtreeshared = add_size(estnbtreeshared, BTMaxItemSize);
     643             :     }
     644             : 
     645          18 :     return estnbtreeshared;
     646             : }
     647             : 
     648             : /*
     649             :  * _bt_start_prim_scan() -- start scheduled primitive index scan?
     650             :  *
     651             :  * Returns true if _bt_checkkeys scheduled another primitive index scan, just
     652             :  * as the last one ended.  Otherwise returns false, indicating that the array
     653             :  * keys are now fully exhausted.
     654             :  *
     655             :  * Only call here during scans with one or more equality type array scan keys,
     656             :  * after _bt_first or _bt_next return false.
     657             :  */
     658             : static bool
     659       88926 : _bt_start_prim_scan(IndexScanDesc scan)
     660             : {
     661       88926 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     662             : 
     663             :     Assert(so->numArrayKeys);
     664             : 
     665       88926 :     so->scanBehind = so->oppositeDirCheck = false;    /* reset */
     666             : 
     667             :     /*
     668             :      * Array keys are advanced within _bt_checkkeys when the scan reaches the
     669             :      * leaf level (more precisely, they're advanced when the scan reaches the
     670             :      * end of each distinct set of array elements).  This process avoids
     671             :      * repeat access to leaf pages (across multiple primitive index scans) by
     672             :      * advancing the scan's array keys when it allows the primitive index scan
     673             :      * to find nearby matching tuples (or when it eliminates ranges of array
     674             :      * key space that can't possibly be satisfied by any index tuple).
     675             :      *
     676             :      * _bt_checkkeys sets a simple flag variable to schedule another primitive
     677             :      * index scan.  The flag tells us what to do.
     678             :      *
     679             :      * We cannot rely on _bt_first always reaching _bt_checkkeys.  There are
     680             :      * various cases where that won't happen.  For example, if the index is
     681             :      * completely empty, then _bt_first won't call _bt_readpage/_bt_checkkeys.
     682             :      * We also don't expect a call to _bt_checkkeys during searches for a
     683             :      * non-existent value that happens to be lower/higher than any existing
     684             :      * value in the index.
     685             :      *
     686             :      * We don't require special handling for these cases -- we don't need to
     687             :      * be explicitly instructed to _not_ perform another primitive index scan.
     688             :      * It's up to code under the control of _bt_first to always set the flag
     689             :      * when another primitive index scan will be required.
     690             :      *
     691             :      * This works correctly, even with the tricky cases listed above, which
     692             :      * all involve access to leaf pages "near the boundaries of the key space"
     693             :      * (whether it's from a leftmost/rightmost page, or an imaginary empty
     694             :      * leaf root page).  If _bt_checkkeys cannot be reached by a primitive
     695             :      * index scan for one set of array keys, then it also won't be reached for
     696             :      * any later set ("later" in terms of the direction that we scan the index
     697             :      * and advance the arrays).  The array keys won't have advanced in these
     698             :      * cases, but that's the correct behavior (even _bt_advance_array_keys
     699             :      * won't always advance the arrays at the point they become "exhausted").
     700             :      */
     701       88926 :     if (so->needPrimScan)
     702             :     {
     703             :         /*
     704             :          * Flag was set -- must call _bt_first again, which will reset the
     705             :          * scan's needPrimScan flag
     706             :          */
     707       17578 :         return true;
     708             :     }
     709             : 
     710             :     /* The top-level index scan ran out of tuples in this scan direction */
     711       71348 :     if (scan->parallel_scan != NULL)
     712          30 :         _bt_parallel_done(scan);
     713             : 
     714       71348 :     return false;
     715             : }
     716             : 
     717             : /*
     718             :  * _bt_parallel_serialize_arrays() -- Serialize parallel array state.
     719             :  *
     720             :  * Caller must have exclusively locked btscan->btps_lock when called.
     721             :  */
     722             : static void
     723          36 : _bt_parallel_serialize_arrays(Relation rel, BTParallelScanDesc btscan,
     724             :                               BTScanOpaque so)
     725             : {
     726             :     char       *datumshared;
     727             : 
     728             :     /* Space for serialized datums begins immediately after btps_arrElems[] */
     729          36 :     datumshared = ((char *) &btscan->btps_arrElems[so->numArrayKeys]);
     730          72 :     for (int i = 0; i < so->numArrayKeys; i++)
     731             :     {
     732          36 :         BTArrayKeyInfo *array = &so->arrayKeys[i];
     733          36 :         ScanKey     skey = &so->keyData[array->scan_key];
     734             : 
     735          36 :         if (array->num_elems != -1)
     736             :         {
     737             :             /* Save SAOP array's cur_elem (no need to copy key/datum) */
     738             :             Assert(!(skey->sk_flags & SK_BT_SKIP));
     739          36 :             btscan->btps_arrElems[i] = array->cur_elem;
     740          36 :             continue;
     741             :         }
     742             : 
     743             :         /* Save all mutable state associated with skip array's key */
     744             :         Assert(skey->sk_flags & SK_BT_SKIP);
     745           0 :         memcpy(datumshared, &skey->sk_flags, sizeof(int));
     746           0 :         datumshared += sizeof(int);
     747             : 
     748           0 :         if (skey->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL))
     749             :         {
     750             :             /* No sk_argument datum to serialize */
     751             :             Assert(skey->sk_argument == 0);
     752           0 :             continue;
     753             :         }
     754             : 
     755           0 :         datumSerialize(skey->sk_argument, (skey->sk_flags & SK_ISNULL) != 0,
     756           0 :                        array->attbyval, array->attlen, &datumshared);
     757             :     }
     758          36 : }
     759             : 
     760             : /*
     761             :  * _bt_parallel_restore_arrays() -- Restore serialized parallel array state.
     762             :  *
     763             :  * Caller must have exclusively locked btscan->btps_lock when called.
     764             :  */
     765             : static void
     766          36 : _bt_parallel_restore_arrays(Relation rel, BTParallelScanDesc btscan,
     767             :                             BTScanOpaque so)
     768             : {
     769             :     char       *datumshared;
     770             : 
     771             :     /* Space for serialized datums begins immediately after btps_arrElems[] */
     772          36 :     datumshared = ((char *) &btscan->btps_arrElems[so->numArrayKeys]);
     773          72 :     for (int i = 0; i < so->numArrayKeys; i++)
     774             :     {
     775          36 :         BTArrayKeyInfo *array = &so->arrayKeys[i];
     776          36 :         ScanKey     skey = &so->keyData[array->scan_key];
     777             :         bool        isnull;
     778             : 
     779          36 :         if (array->num_elems != -1)
     780             :         {
     781             :             /* Restore SAOP array using its saved cur_elem */
     782             :             Assert(!(skey->sk_flags & SK_BT_SKIP));
     783          36 :             array->cur_elem = btscan->btps_arrElems[i];
     784          36 :             skey->sk_argument = array->elem_values[array->cur_elem];
     785          36 :             continue;
     786             :         }
     787             : 
     788             :         /* Restore skip array by restoring its key directly */
     789           0 :         if (!array->attbyval && skey->sk_argument)
     790           0 :             pfree(DatumGetPointer(skey->sk_argument));
     791           0 :         skey->sk_argument = (Datum) 0;
     792           0 :         memcpy(&skey->sk_flags, datumshared, sizeof(int));
     793           0 :         datumshared += sizeof(int);
     794             : 
     795             :         Assert(skey->sk_flags & SK_BT_SKIP);
     796             : 
     797           0 :         if (skey->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL))
     798             :         {
     799             :             /* No sk_argument datum to restore */
     800           0 :             continue;
     801             :         }
     802             : 
     803           0 :         skey->sk_argument = datumRestore(&datumshared, &isnull);
     804           0 :         if (isnull)
     805             :         {
     806             :             Assert(skey->sk_argument == 0);
     807             :             Assert(skey->sk_flags & SK_SEARCHNULL);
     808             :             Assert(skey->sk_flags & SK_ISNULL);
     809             :         }
     810             :     }
     811          36 : }
     812             : 
     813             : /*
     814             :  * btinitparallelscan -- initialize BTParallelScanDesc for parallel btree scan
     815             :  */
     816             : void
     817          64 : btinitparallelscan(void *target)
     818             : {
     819          64 :     BTParallelScanDesc bt_target = (BTParallelScanDesc) target;
     820             : 
     821          64 :     LWLockInitialize(&bt_target->btps_lock,
     822             :                      LWTRANCHE_PARALLEL_BTREE_SCAN);
     823          64 :     bt_target->btps_nextScanPage = InvalidBlockNumber;
     824          64 :     bt_target->btps_lastCurrPage = InvalidBlockNumber;
     825          64 :     bt_target->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED;
     826          64 :     ConditionVariableInit(&bt_target->btps_cv);
     827          64 : }
     828             : 
     829             : /*
     830             :  *  btparallelrescan() -- reset parallel scan
     831             :  */
     832             : void
     833          24 : btparallelrescan(IndexScanDesc scan)
     834             : {
     835             :     BTParallelScanDesc btscan;
     836          24 :     ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
     837             : 
     838             :     Assert(parallel_scan);
     839             : 
     840          24 :     btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
     841             :                                                   parallel_scan->ps_offset_am);
     842             : 
     843             :     /*
     844             :      * In theory, we don't need to acquire the LWLock here, because there
     845             :      * shouldn't be any other workers running at this point, but we do so for
     846             :      * consistency.
     847             :      */
     848          24 :     LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
     849          24 :     btscan->btps_nextScanPage = InvalidBlockNumber;
     850          24 :     btscan->btps_lastCurrPage = InvalidBlockNumber;
     851          24 :     btscan->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED;
     852          24 :     LWLockRelease(&btscan->btps_lock);
     853          24 : }
     854             : 
     855             : /*
     856             :  * _bt_parallel_seize() -- Begin the process of advancing the scan to a new
     857             :  *      page.  Other scans must wait until we call _bt_parallel_release()
     858             :  *      or _bt_parallel_done().
     859             :  *
     860             :  * The return value is true if we successfully seized the scan and false
     861             :  * if we did not.  The latter case occurs when no pages remain, or when
     862             :  * another primitive index scan is scheduled that caller's backend cannot
     863             :  * start just yet (only backends that call from _bt_first are capable of
     864             :  * starting primitive index scans, which they indicate by passing first=true).
     865             :  *
     866             :  * If the return value is true, *next_scan_page returns the next page of the
     867             :  * scan, and *last_curr_page returns the page that *next_scan_page came from.
     868             :  * An invalid *next_scan_page means the scan hasn't yet started, or that
     869             :  * caller needs to start the next primitive index scan (if it's the latter
     870             :  * case we'll set so.needPrimScan).
     871             :  *
     872             :  * Callers should ignore the value of *next_scan_page and *last_curr_page if
     873             :  * the return value is false.
     874             :  */
     875             : bool
     876        1658 : _bt_parallel_seize(IndexScanDesc scan, BlockNumber *next_scan_page,
     877             :                    BlockNumber *last_curr_page, bool first)
     878             : {
     879        1658 :     Relation    rel = scan->indexRelation;
     880        1658 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     881        1658 :     bool        exit_loop = false,
     882        1658 :                 status = true,
     883        1658 :                 endscan = false;
     884        1658 :     ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
     885             :     BTParallelScanDesc btscan;
     886             : 
     887        1658 :     *next_scan_page = InvalidBlockNumber;
     888        1658 :     *last_curr_page = InvalidBlockNumber;
     889             : 
     890             :     /*
     891             :      * Reset so->currPos, and initialize moreLeft/moreRight such that the next
     892             :      * call to _bt_readnextpage treats this backend similarly to a serial
     893             :      * backend that steps from *last_curr_page to *next_scan_page (unless this
     894             :      * backend's so->currPos is initialized by _bt_readfirstpage before then).
     895             :      */
     896        1658 :     BTScanPosInvalidate(so->currPos);
     897        1658 :     so->currPos.moreLeft = so->currPos.moreRight = true;
     898             : 
     899        1658 :     if (first)
     900             :     {
     901             :         /*
     902             :          * Initialize array related state when called from _bt_first, assuming
     903             :          * that this will be the first primitive index scan for the scan
     904             :          */
     905         446 :         so->needPrimScan = false;
     906         446 :         so->scanBehind = false;
     907         446 :         so->oppositeDirCheck = false;
     908             :     }
     909             :     else
     910             :     {
     911             :         /*
     912             :          * Don't attempt to seize the scan when it requires another primitive
     913             :          * index scan, since caller's backend cannot start it right now
     914             :          */
     915        1212 :         if (so->needPrimScan)
     916           0 :             return false;
     917             :     }
     918             : 
     919        1658 :     btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
     920             :                                                   parallel_scan->ps_offset_am);
     921             : 
     922             :     while (1)
     923             :     {
     924        1670 :         LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
     925             : 
     926        1670 :         if (btscan->btps_pageStatus == BTPARALLEL_DONE)
     927             :         {
     928             :             /* We're done with this parallel index scan */
     929         306 :             status = false;
     930             :         }
     931        1364 :         else if (btscan->btps_pageStatus == BTPARALLEL_IDLE &&
     932        1228 :                  btscan->btps_nextScanPage == P_NONE)
     933             :         {
     934             :             /* End this parallel index scan */
     935          16 :             status = false;
     936          16 :             endscan = true;
     937             :         }
     938        1348 :         else if (btscan->btps_pageStatus == BTPARALLEL_NEED_PRIMSCAN)
     939             :         {
     940             :             Assert(so->numArrayKeys);
     941             : 
     942          36 :             if (first)
     943             :             {
     944             :                 /* Can start scheduled primitive scan right away, so do so */
     945          36 :                 btscan->btps_pageStatus = BTPARALLEL_ADVANCING;
     946             : 
     947             :                 /* Restore scan's array keys from serialized values */
     948          36 :                 _bt_parallel_restore_arrays(rel, btscan, so);
     949          36 :                 exit_loop = true;
     950             :             }
     951             :             else
     952             :             {
     953             :                 /*
     954             :                  * Don't attempt to seize the scan when it requires another
     955             :                  * primitive index scan, since caller's backend cannot start
     956             :                  * it right now
     957             :                  */
     958           0 :                 status = false;
     959             :             }
     960             : 
     961             :             /*
     962             :              * Either way, update backend local state to indicate that a
     963             :              * pending primitive scan is required
     964             :              */
     965          36 :             so->needPrimScan = true;
     966          36 :             so->scanBehind = false;
     967          36 :             so->oppositeDirCheck = false;
     968             :         }
     969        1312 :         else if (btscan->btps_pageStatus != BTPARALLEL_ADVANCING)
     970             :         {
     971             :             /*
     972             :              * We have successfully seized control of the scan for the purpose
     973             :              * of advancing it to a new page!
     974             :              */
     975        1300 :             btscan->btps_pageStatus = BTPARALLEL_ADVANCING;
     976             :             Assert(btscan->btps_nextScanPage != P_NONE);
     977        1300 :             *next_scan_page = btscan->btps_nextScanPage;
     978        1300 :             *last_curr_page = btscan->btps_lastCurrPage;
     979        1300 :             exit_loop = true;
     980             :         }
     981        1670 :         LWLockRelease(&btscan->btps_lock);
     982        1670 :         if (exit_loop || !status)
     983             :             break;
     984          12 :         ConditionVariableSleep(&btscan->btps_cv, WAIT_EVENT_BTREE_PAGE);
     985             :     }
     986        1658 :     ConditionVariableCancelSleep();
     987             : 
     988             :     /* When the scan has reached the rightmost (or leftmost) page, end it */
     989        1658 :     if (endscan)
     990          16 :         _bt_parallel_done(scan);
     991             : 
     992        1658 :     return status;
     993             : }
     994             : 
     995             : /*
     996             :  * _bt_parallel_release() -- Complete the process of advancing the scan to a
     997             :  *      new page.  We now have the new value btps_nextScanPage; another backend
     998             :  *      can now begin advancing the scan.
     999             :  *
    1000             :  * Callers whose scan uses array keys must save their curr_page argument so
    1001             :  * that it can be passed to _bt_parallel_primscan_schedule, should caller
    1002             :  * determine that another primitive index scan is required.
    1003             :  *
    1004             :  * If caller's next_scan_page is P_NONE, the scan has reached the index's
    1005             :  * rightmost/leftmost page.  This is treated as reaching the end of the scan
    1006             :  * within _bt_parallel_seize.
    1007             :  *
    1008             :  * Note: unlike the serial case, parallel scans don't need to remember both
    1009             :  * sibling links.  next_scan_page is whichever link is next given the scan's
    1010             :  * direction.  That's all we'll ever need, since the direction of a parallel
    1011             :  * scan can never change.
    1012             :  */
    1013             : void
    1014        1336 : _bt_parallel_release(IndexScanDesc scan, BlockNumber next_scan_page,
    1015             :                      BlockNumber curr_page)
    1016             : {
    1017        1336 :     ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
    1018             :     BTParallelScanDesc btscan;
    1019             : 
    1020             :     Assert(BlockNumberIsValid(next_scan_page));
    1021             : 
    1022        1336 :     btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
    1023             :                                                   parallel_scan->ps_offset_am);
    1024             : 
    1025        1336 :     LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
    1026        1336 :     btscan->btps_nextScanPage = next_scan_page;
    1027        1336 :     btscan->btps_lastCurrPage = curr_page;
    1028        1336 :     btscan->btps_pageStatus = BTPARALLEL_IDLE;
    1029        1336 :     LWLockRelease(&btscan->btps_lock);
    1030        1336 :     ConditionVariableSignal(&btscan->btps_cv);
    1031        1336 : }
    1032             : 
    1033             : /*
    1034             :  * _bt_parallel_done() -- Mark the parallel scan as complete.
    1035             :  *
    1036             :  * When there are no pages left to scan, this function should be called to
    1037             :  * notify other workers.  Otherwise, they might wait forever for the scan to
    1038             :  * advance to the next page.
    1039             :  */
    1040             : void
    1041     7286076 : _bt_parallel_done(IndexScanDesc scan)
    1042             : {
    1043     7286076 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1044     7286076 :     ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
    1045             :     BTParallelScanDesc btscan;
    1046     7286076 :     bool        status_changed = false;
    1047             : 
    1048             :     Assert(!BTScanPosIsValid(so->currPos));
    1049             : 
    1050             :     /* Do nothing, for non-parallel scans */
    1051     7286076 :     if (parallel_scan == NULL)
    1052     7285912 :         return;
    1053             : 
    1054             :     /*
    1055             :      * Should not mark parallel scan done when there's still a pending
    1056             :      * primitive index scan
    1057             :      */
    1058         164 :     if (so->needPrimScan)
    1059          36 :         return;
    1060             : 
    1061         128 :     btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
    1062             :                                                   parallel_scan->ps_offset_am);
    1063             : 
    1064             :     /*
    1065             :      * Mark the parallel scan as done, unless some other process did so
    1066             :      * already
    1067             :      */
    1068         128 :     LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
    1069             :     Assert(btscan->btps_pageStatus != BTPARALLEL_NEED_PRIMSCAN);
    1070         128 :     if (btscan->btps_pageStatus != BTPARALLEL_DONE)
    1071             :     {
    1072          88 :         btscan->btps_pageStatus = BTPARALLEL_DONE;
    1073          88 :         status_changed = true;
    1074             :     }
    1075         128 :     LWLockRelease(&btscan->btps_lock);
    1076             : 
    1077             :     /* wake up all the workers associated with this parallel scan */
    1078         128 :     if (status_changed)
    1079          88 :         ConditionVariableBroadcast(&btscan->btps_cv);
    1080             : }
    1081             : 
    1082             : /*
    1083             :  * _bt_parallel_primscan_schedule() -- Schedule another primitive index scan.
    1084             :  *
    1085             :  * Caller passes the curr_page most recently passed to _bt_parallel_release
    1086             :  * by its backend.  Caller successfully schedules the next primitive index scan
    1087             :  * if the shared parallel state hasn't been seized since caller's backend last
    1088             :  * advanced the scan.
    1089             :  */
    1090             : void
    1091          36 : _bt_parallel_primscan_schedule(IndexScanDesc scan, BlockNumber curr_page)
    1092             : {
    1093          36 :     Relation    rel = scan->indexRelation;
    1094          36 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1095          36 :     ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
    1096             :     BTParallelScanDesc btscan;
    1097             : 
    1098             :     Assert(so->numArrayKeys);
    1099             : 
    1100          36 :     btscan = (BTParallelScanDesc) OffsetToPointer(parallel_scan,
    1101             :                                                   parallel_scan->ps_offset_am);
    1102             : 
    1103          36 :     LWLockAcquire(&btscan->btps_lock, LW_EXCLUSIVE);
    1104          36 :     if (btscan->btps_lastCurrPage == curr_page &&
    1105          36 :         btscan->btps_pageStatus == BTPARALLEL_IDLE)
    1106             :     {
    1107          36 :         btscan->btps_nextScanPage = InvalidBlockNumber;
    1108          36 :         btscan->btps_lastCurrPage = InvalidBlockNumber;
    1109          36 :         btscan->btps_pageStatus = BTPARALLEL_NEED_PRIMSCAN;
    1110             : 
    1111             :         /* Serialize scan's current array keys */
    1112          36 :         _bt_parallel_serialize_arrays(rel, btscan, so);
    1113             :     }
    1114          36 :     LWLockRelease(&btscan->btps_lock);
    1115          36 : }
    1116             : 
    1117             : /*
    1118             :  * Bulk deletion of all index entries pointing to a set of heap tuples.
    1119             :  * The set of target tuples is specified via a callback routine that tells
    1120             :  * whether any given heap tuple (identified by ItemPointer) is being deleted.
    1121             :  *
    1122             :  * Result: a palloc'd struct containing statistical info for VACUUM displays.
    1123             :  */
    1124             : IndexBulkDeleteResult *
    1125        2952 : btbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
    1126             :              IndexBulkDeleteCallback callback, void *callback_state)
    1127             : {
    1128        2952 :     Relation    rel = info->index;
    1129             :     BTCycleId   cycleid;
    1130             : 
    1131             :     /* allocate stats if first time through, else re-use existing struct */
    1132        2952 :     if (stats == NULL)
    1133        2948 :         stats = palloc0_object(IndexBulkDeleteResult);
    1134             : 
    1135             :     /* Establish the vacuum cycle ID to use for this scan */
    1136             :     /* The ENSURE stuff ensures we clean up shared memory on failure */
    1137        2952 :     PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
    1138             :     {
    1139        2952 :         cycleid = _bt_start_vacuum(rel);
    1140             : 
    1141        2952 :         btvacuumscan(info, stats, callback, callback_state, cycleid);
    1142             :     }
    1143        2952 :     PG_END_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
    1144        2952 :     _bt_end_vacuum(rel);
    1145             : 
    1146        2952 :     return stats;
    1147             : }
    1148             : 
    1149             : /*
    1150             :  * Post-VACUUM cleanup.
    1151             :  *
    1152             :  * Result: a palloc'd struct containing statistical info for VACUUM displays.
    1153             :  */
    1154             : IndexBulkDeleteResult *
    1155      226258 : btvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
    1156             : {
    1157             :     BlockNumber num_delpages;
    1158             : 
    1159             :     /* No-op in ANALYZE ONLY mode */
    1160      226258 :     if (info->analyze_only)
    1161       18136 :         return stats;
    1162             : 
    1163             :     /*
    1164             :      * If btbulkdelete was called, we need not do anything (we just maintain
    1165             :      * the information used within _bt_vacuum_needs_cleanup() by calling
    1166             :      * _bt_set_cleanup_info() below).
    1167             :      *
    1168             :      * If btbulkdelete was _not_ called, then we have a choice to make: we
    1169             :      * must decide whether or not a btvacuumscan() call is needed now (i.e.
    1170             :      * whether the ongoing VACUUM operation can entirely avoid a physical scan
    1171             :      * of the index).  A call to _bt_vacuum_needs_cleanup() decides it for us
    1172             :      * now.
    1173             :      */
    1174      208122 :     if (stats == NULL)
    1175             :     {
    1176             :         /* Check if VACUUM operation can entirely avoid btvacuumscan() call */
    1177      205770 :         if (!_bt_vacuum_needs_cleanup(info->index))
    1178      205760 :             return NULL;
    1179             : 
    1180             :         /*
    1181             :          * Since we aren't going to actually delete any leaf items, there's no
    1182             :          * need to go through all the vacuum-cycle-ID pushups here.
    1183             :          *
    1184             :          * Posting list tuples are a source of inaccuracy for cleanup-only
    1185             :          * scans.  btvacuumscan() will assume that the number of index tuples
    1186             :          * from each page can be used as num_index_tuples, even though
    1187             :          * num_index_tuples is supposed to represent the number of TIDs in the
    1188             :          * index.  This naive approach can underestimate the number of tuples
    1189             :          * in the index significantly.
    1190             :          *
    1191             :          * We handle the problem by making num_index_tuples an estimate in
    1192             :          * cleanup-only case.
    1193             :          */
    1194          10 :         stats = palloc0_object(IndexBulkDeleteResult);
    1195          10 :         btvacuumscan(info, stats, NULL, NULL, 0);
    1196          10 :         stats->estimated_count = true;
    1197             :     }
    1198             : 
    1199             :     /*
    1200             :      * Maintain num_delpages value in metapage for _bt_vacuum_needs_cleanup().
    1201             :      *
    1202             :      * num_delpages is the number of deleted pages now in the index that were
    1203             :      * not safe to place in the FSM to be recycled just yet.  num_delpages is
    1204             :      * greater than 0 only when _bt_pagedel() actually deleted pages during
    1205             :      * our call to btvacuumscan().  Even then, _bt_pendingfsm_finalize() must
    1206             :      * have failed to place any newly deleted pages in the FSM just moments
    1207             :      * ago.  (Actually, there are edge cases where recycling of the current
    1208             :      * VACUUM's newly deleted pages does not even become safe by the time the
    1209             :      * next VACUUM comes around.  See nbtree/README.)
    1210             :      */
    1211             :     Assert(stats->pages_deleted >= stats->pages_free);
    1212        2362 :     num_delpages = stats->pages_deleted - stats->pages_free;
    1213        2362 :     _bt_set_cleanup_info(info->index, num_delpages);
    1214             : 
    1215             :     /*
    1216             :      * It's quite possible for us to be fooled by concurrent page splits into
    1217             :      * double-counting some index tuples, so disbelieve any total that exceeds
    1218             :      * the underlying heap's count ... if we know that accurately.  Otherwise
    1219             :      * this might just make matters worse.
    1220             :      */
    1221        2362 :     if (!info->estimated_count)
    1222             :     {
    1223        2282 :         if (stats->num_index_tuples > info->num_heap_tuples)
    1224          36 :             stats->num_index_tuples = info->num_heap_tuples;
    1225             :     }
    1226             : 
    1227        2362 :     return stats;
    1228             : }
    1229             : 
    1230             : /*
    1231             :  * btvacuumscan --- scan the index for VACUUMing purposes
    1232             :  *
    1233             :  * This combines the functions of looking for leaf tuples that are deletable
    1234             :  * according to the vacuum callback, looking for empty pages that can be
    1235             :  * deleted, and looking for old deleted pages that can be recycled.  Both
    1236             :  * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
    1237             :  * btbulkdelete call occurred and _bt_vacuum_needs_cleanup returned true).
    1238             :  *
    1239             :  * The caller is responsible for initially allocating/zeroing a stats struct
    1240             :  * and for obtaining a vacuum cycle ID if necessary.
    1241             :  */
    1242             : static void
    1243        2962 : btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
    1244             :              IndexBulkDeleteCallback callback, void *callback_state,
    1245             :              BTCycleId cycleid)
    1246             : {
    1247        2962 :     Relation    rel = info->index;
    1248             :     BTVacState  vstate;
    1249             :     BlockNumber num_pages;
    1250             :     bool        needLock;
    1251             :     BlockRangeReadStreamPrivate p;
    1252        2962 :     ReadStream *stream = NULL;
    1253             : 
    1254             :     /*
    1255             :      * Reset fields that track information about the entire index now.  This
    1256             :      * avoids double-counting in the case where a single VACUUM command
    1257             :      * requires multiple scans of the index.
    1258             :      *
    1259             :      * Avoid resetting the tuples_removed and pages_newly_deleted fields here,
    1260             :      * since they track information about the VACUUM command, and so must last
    1261             :      * across each call to btvacuumscan().
    1262             :      *
    1263             :      * (Note that pages_free is treated as state about the whole index, not
    1264             :      * the current VACUUM.  This is appropriate because RecordFreeIndexPage()
    1265             :      * calls are idempotent, and get repeated for the same deleted pages in
    1266             :      * some scenarios.  The point for us is to track the number of recyclable
    1267             :      * pages in the index at the end of the VACUUM command.)
    1268             :      */
    1269        2962 :     stats->num_pages = 0;
    1270        2962 :     stats->num_index_tuples = 0;
    1271        2962 :     stats->pages_deleted = 0;
    1272        2962 :     stats->pages_free = 0;
    1273             : 
    1274             :     /* Set up info to pass down to btvacuumpage */
    1275        2962 :     vstate.info = info;
    1276        2962 :     vstate.stats = stats;
    1277        2962 :     vstate.callback = callback;
    1278        2962 :     vstate.callback_state = callback_state;
    1279        2962 :     vstate.cycleid = cycleid;
    1280             : 
    1281             :     /* Create a temporary memory context to run _bt_pagedel in */
    1282        2962 :     vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
    1283             :                                                   "_bt_pagedel",
    1284             :                                                   ALLOCSET_DEFAULT_SIZES);
    1285             : 
    1286             :     /* Initialize vstate fields used by _bt_pendingfsm_finalize */
    1287        2962 :     vstate.bufsize = 0;
    1288        2962 :     vstate.maxbufsize = 0;
    1289        2962 :     vstate.pendingpages = NULL;
    1290        2962 :     vstate.npendingpages = 0;
    1291             :     /* Consider applying _bt_pendingfsm_finalize optimization */
    1292        2962 :     _bt_pendingfsm_init(rel, &vstate, (callback == NULL));
    1293             : 
    1294             :     /*
    1295             :      * The outer loop iterates over all index pages except the metapage, in
    1296             :      * physical order (we hope the kernel will cooperate in providing
    1297             :      * read-ahead for speed).  It is critical that we visit all leaf pages,
    1298             :      * including ones added after we start the scan, else we might fail to
    1299             :      * delete some deletable tuples.  Hence, we must repeatedly check the
    1300             :      * relation length.  We must acquire the relation-extension lock while
    1301             :      * doing so to avoid a race condition: if someone else is extending the
    1302             :      * relation, there is a window where bufmgr/smgr have created a new
    1303             :      * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
    1304             :      * we manage to scan such a page here, we'll improperly assume it can be
    1305             :      * recycled.  Taking the lock synchronizes things enough to prevent a
    1306             :      * problem: either num_pages won't include the new page, or _bt_getbuf
    1307             :      * already has write lock on the buffer and it will be fully initialized
    1308             :      * before we can examine it.  Also, we need not worry if a page is added
    1309             :      * immediately after we look; the page splitting code already has
    1310             :      * write-lock on the left page before it adds a right page, so we must
    1311             :      * already have processed any tuples due to be moved into such a page.
    1312             :      *
    1313             :      * XXX: Now that new pages are locked with RBM_ZERO_AND_LOCK, I don't
    1314             :      * think the use of the extension lock is still required.
    1315             :      *
    1316             :      * We can skip locking for new or temp relations, however, since no one
    1317             :      * else could be accessing them.
    1318             :      */
    1319        2962 :     needLock = !RELATION_IS_LOCAL(rel);
    1320             : 
    1321        2962 :     p.current_blocknum = BTREE_METAPAGE + 1;
    1322             : 
    1323             :     /*
    1324             :      * It is safe to use batchmode as block_range_read_stream_cb takes no
    1325             :      * locks.
    1326             :      */
    1327        2962 :     stream = read_stream_begin_relation(READ_STREAM_MAINTENANCE |
    1328             :                                         READ_STREAM_FULL |
    1329             :                                         READ_STREAM_USE_BATCHING,
    1330             :                                         info->strategy,
    1331             :                                         rel,
    1332             :                                         MAIN_FORKNUM,
    1333             :                                         block_range_read_stream_cb,
    1334             :                                         &p,
    1335             :                                         0);
    1336             :     for (;;)
    1337             :     {
    1338             :         /* Get the current relation length */
    1339        5650 :         if (needLock)
    1340        5646 :             LockRelationForExtension(rel, ExclusiveLock);
    1341        5650 :         num_pages = RelationGetNumberOfBlocks(rel);
    1342        5650 :         if (needLock)
    1343        5646 :             UnlockRelationForExtension(rel, ExclusiveLock);
    1344             : 
    1345        5650 :         if (info->report_progress)
    1346         918 :             pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_TOTAL,
    1347             :                                          num_pages);
    1348             : 
    1349             :         /* Quit if we've scanned the whole relation */
    1350        5650 :         if (p.current_blocknum >= num_pages)
    1351        2962 :             break;
    1352             : 
    1353        2688 :         p.last_exclusive = num_pages;
    1354             : 
    1355             :         /* Iterate over pages, then loop back to recheck relation length */
    1356             :         while (true)
    1357       26518 :         {
    1358             :             BlockNumber current_block;
    1359             :             Buffer      buf;
    1360             : 
    1361             :             /* call vacuum_delay_point while not holding any buffer lock */
    1362       29206 :             vacuum_delay_point(false);
    1363             : 
    1364       29206 :             buf = read_stream_next_buffer(stream, NULL);
    1365             : 
    1366       29206 :             if (!BufferIsValid(buf))
    1367        2688 :                 break;
    1368             : 
    1369       26518 :             current_block = btvacuumpage(&vstate, buf);
    1370             : 
    1371       26518 :             if (info->report_progress)
    1372         964 :                 pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_DONE,
    1373             :                                              current_block);
    1374             :         }
    1375             : 
    1376             :         /*
    1377             :          * We have to reset the read stream to use it again. After returning
    1378             :          * InvalidBuffer, the read stream API won't invoke our callback again
    1379             :          * until the stream has been reset.
    1380             :          */
    1381        2688 :         read_stream_reset(stream);
    1382             :     }
    1383             : 
    1384        2962 :     read_stream_end(stream);
    1385             : 
    1386             :     /* Set statistics num_pages field to final size of index */
    1387        2962 :     stats->num_pages = num_pages;
    1388             : 
    1389        2962 :     MemoryContextDelete(vstate.pagedelcontext);
    1390             : 
    1391             :     /*
    1392             :      * If there were any calls to _bt_pagedel() during scan of the index then
    1393             :      * see if any of the resulting pages can be placed in the FSM now.  When
    1394             :      * it's not safe we'll have to leave it up to a future VACUUM operation.
    1395             :      *
    1396             :      * Finally, if we placed any pages in the FSM (either just now or during
    1397             :      * the scan), forcibly update the upper-level FSM pages to ensure that
    1398             :      * searchers can find them.
    1399             :      */
    1400        2962 :     _bt_pendingfsm_finalize(rel, &vstate);
    1401        2962 :     if (stats->pages_free > 0)
    1402          46 :         IndexFreeSpaceMapVacuum(rel);
    1403        2962 : }
    1404             : 
    1405             : /*
    1406             :  * btvacuumpage --- VACUUM one page
    1407             :  *
    1408             :  * This processes a single page for btvacuumscan().  In some cases we must
    1409             :  * backtrack to re-examine and VACUUM pages that were on buf's page during
    1410             :  * a previous call here.  This is how we handle page splits (that happened
    1411             :  * after our cycleid was acquired) whose right half page happened to reuse
    1412             :  * a block that we might have processed at some point before it was
    1413             :  * recycled (i.e. before the page split).
    1414             :  *
    1415             :  * Returns BlockNumber of a scanned page (not backtracked).
    1416             :  */
    1417             : static BlockNumber
    1418       26518 : btvacuumpage(BTVacState *vstate, Buffer buf)
    1419             : {
    1420       26518 :     IndexVacuumInfo *info = vstate->info;
    1421       26518 :     IndexBulkDeleteResult *stats = vstate->stats;
    1422       26518 :     IndexBulkDeleteCallback callback = vstate->callback;
    1423       26518 :     void       *callback_state = vstate->callback_state;
    1424       26518 :     Relation    rel = info->index;
    1425       26518 :     Relation    heaprel = info->heaprel;
    1426             :     bool        attempt_pagedel;
    1427             :     BlockNumber blkno,
    1428             :                 backtrack_to;
    1429       26518 :     BlockNumber scanblkno = BufferGetBlockNumber(buf);
    1430             :     Page        page;
    1431             :     BTPageOpaque opaque;
    1432             : 
    1433       26518 :     blkno = scanblkno;
    1434             : 
    1435       26518 : backtrack:
    1436             : 
    1437       26518 :     attempt_pagedel = false;
    1438       26518 :     backtrack_to = P_NONE;
    1439             : 
    1440       26518 :     _bt_lockbuf(rel, buf, BT_READ);
    1441       26518 :     page = BufferGetPage(buf);
    1442       26518 :     opaque = NULL;
    1443       26518 :     if (!PageIsNew(page))
    1444             :     {
    1445       26518 :         _bt_checkpage(rel, buf);
    1446       26518 :         opaque = BTPageGetOpaque(page);
    1447             :     }
    1448             : 
    1449             :     Assert(blkno <= scanblkno);
    1450       26518 :     if (blkno != scanblkno)
    1451             :     {
    1452             :         /*
    1453             :          * We're backtracking.
    1454             :          *
    1455             :          * We followed a right link to a sibling leaf page (a page that
    1456             :          * happens to be from a block located before scanblkno).  The only
    1457             :          * case we want to do anything with is a live leaf page having the
    1458             :          * current vacuum cycle ID.
    1459             :          *
    1460             :          * The page had better be in a state that's consistent with what we
    1461             :          * expect.  Check for conditions that imply corruption in passing.  It
    1462             :          * can't be half-dead because only an interrupted VACUUM process can
    1463             :          * leave pages in that state, so we'd definitely have dealt with it
    1464             :          * back when the page was the scanblkno page (half-dead pages are
    1465             :          * always marked fully deleted by _bt_pagedel(), barring corruption).
    1466             :          */
    1467           0 :         if (!opaque || !P_ISLEAF(opaque) || P_ISHALFDEAD(opaque))
    1468             :         {
    1469             :             Assert(false);
    1470           0 :             ereport(LOG,
    1471             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1472             :                      errmsg_internal("right sibling %u of scanblkno %u unexpectedly in an inconsistent state in index \"%s\"",
    1473             :                                      blkno, scanblkno, RelationGetRelationName(rel))));
    1474           0 :             _bt_relbuf(rel, buf);
    1475           0 :             return scanblkno;
    1476             :         }
    1477             : 
    1478             :         /*
    1479             :          * We may have already processed the page in an earlier call, when the
    1480             :          * page was scanblkno.  This happens when the leaf page split occurred
    1481             :          * after the scan began, but before the right sibling page became the
    1482             :          * scanblkno.
    1483             :          *
    1484             :          * Page may also have been deleted by current btvacuumpage() call,
    1485             :          * since _bt_pagedel() sometimes deletes the right sibling page of
    1486             :          * scanblkno in passing (it does so after we decided where to
    1487             :          * backtrack to).  We don't need to process this page as a deleted
    1488             :          * page a second time now (in fact, it would be wrong to count it as a
    1489             :          * deleted page in the bulk delete statistics a second time).
    1490             :          */
    1491           0 :         if (opaque->btpo_cycleid != vstate->cycleid || P_ISDELETED(opaque))
    1492             :         {
    1493             :             /* Done with current scanblkno (and all lower split pages) */
    1494           0 :             _bt_relbuf(rel, buf);
    1495           0 :             return scanblkno;
    1496             :         }
    1497             :     }
    1498             : 
    1499       26518 :     if (!opaque || BTPageIsRecyclable(page, heaprel))
    1500             :     {
    1501             :         /* Okay to recycle this page (which could be leaf or internal) */
    1502         230 :         RecordFreeIndexPage(rel, blkno);
    1503         230 :         stats->pages_deleted++;
    1504         230 :         stats->pages_free++;
    1505             :     }
    1506       26288 :     else if (P_ISDELETED(opaque))
    1507             :     {
    1508             :         /*
    1509             :          * Already deleted page (which could be leaf or internal).  Can't
    1510             :          * recycle yet.
    1511             :          */
    1512         128 :         stats->pages_deleted++;
    1513             :     }
    1514       26160 :     else if (P_ISHALFDEAD(opaque))
    1515             :     {
    1516             :         /* Half-dead leaf page (from interrupted VACUUM) -- finish deleting */
    1517           0 :         attempt_pagedel = true;
    1518             : 
    1519             :         /*
    1520             :          * _bt_pagedel() will increment both pages_newly_deleted and
    1521             :          * pages_deleted stats in all cases (barring corruption)
    1522             :          */
    1523             :     }
    1524       26160 :     else if (P_ISLEAF(opaque))
    1525             :     {
    1526             :         OffsetNumber deletable[MaxIndexTuplesPerPage];
    1527             :         int         ndeletable;
    1528             :         BTVacuumPosting updatable[MaxIndexTuplesPerPage];
    1529             :         int         nupdatable;
    1530             :         OffsetNumber offnum,
    1531             :                     minoff,
    1532             :                     maxoff;
    1533             :         int         nhtidsdead,
    1534             :                     nhtidslive;
    1535             : 
    1536             :         /*
    1537             :          * Trade in the initial read lock for a full cleanup lock on this
    1538             :          * page.  We must get such a lock on every leaf page over the course
    1539             :          * of the vacuum scan, whether or not it actually contains any
    1540             :          * deletable tuples --- see nbtree/README.
    1541             :          */
    1542       24614 :         _bt_upgradelockbufcleanup(rel, buf);
    1543             : 
    1544             :         /*
    1545             :          * Check whether we need to backtrack to earlier pages.  What we are
    1546             :          * concerned about is a page split that happened since we started the
    1547             :          * vacuum scan.  If the split moved tuples on the right half of the
    1548             :          * split (i.e. the tuples that sort high) to a block that we already
    1549             :          * passed over, then we might have missed the tuples.  We need to
    1550             :          * backtrack now.  (Must do this before possibly clearing btpo_cycleid
    1551             :          * or deleting scanblkno page below!)
    1552             :          */
    1553       24614 :         if (vstate->cycleid != 0 &&
    1554       24498 :             opaque->btpo_cycleid == vstate->cycleid &&
    1555           0 :             !(opaque->btpo_flags & BTP_SPLIT_END) &&
    1556           0 :             !P_RIGHTMOST(opaque) &&
    1557           0 :             opaque->btpo_next < scanblkno)
    1558           0 :             backtrack_to = opaque->btpo_next;
    1559             : 
    1560       24614 :         ndeletable = 0;
    1561       24614 :         nupdatable = 0;
    1562       24614 :         minoff = P_FIRSTDATAKEY(opaque);
    1563       24614 :         maxoff = PageGetMaxOffsetNumber(page);
    1564       24614 :         nhtidsdead = 0;
    1565       24614 :         nhtidslive = 0;
    1566       24614 :         if (callback)
    1567             :         {
    1568             :             /* btbulkdelete callback tells us what to delete (or update) */
    1569       24498 :             for (offnum = minoff;
    1570     4610882 :                  offnum <= maxoff;
    1571     4586384 :                  offnum = OffsetNumberNext(offnum))
    1572             :             {
    1573             :                 IndexTuple  itup;
    1574             : 
    1575     4586384 :                 itup = (IndexTuple) PageGetItem(page,
    1576     4586384 :                                                 PageGetItemId(page, offnum));
    1577             : 
    1578             :                 Assert(!BTreeTupleIsPivot(itup));
    1579     4586384 :                 if (!BTreeTupleIsPosting(itup))
    1580             :                 {
    1581             :                     /* Regular tuple, standard table TID representation */
    1582     4441860 :                     if (callback(&itup->t_tid, callback_state))
    1583             :                     {
    1584     1565578 :                         deletable[ndeletable++] = offnum;
    1585     1565578 :                         nhtidsdead++;
    1586             :                     }
    1587             :                     else
    1588     2876282 :                         nhtidslive++;
    1589             :                 }
    1590             :                 else
    1591             :                 {
    1592             :                     BTVacuumPosting vacposting;
    1593             :                     int         nremaining;
    1594             : 
    1595             :                     /* Posting list tuple */
    1596      144524 :                     vacposting = btreevacuumposting(vstate, itup, offnum,
    1597             :                                                     &nremaining);
    1598      144524 :                     if (vacposting == NULL)
    1599             :                     {
    1600             :                         /*
    1601             :                          * All table TIDs from the posting tuple remain, so no
    1602             :                          * delete or update required
    1603             :                          */
    1604             :                         Assert(nremaining == BTreeTupleGetNPosting(itup));
    1605             :                     }
    1606       83852 :                     else if (nremaining > 0)
    1607             :                     {
    1608             : 
    1609             :                         /*
    1610             :                          * Store metadata about posting list tuple in
    1611             :                          * updatable array for entire page.  Existing tuple
    1612             :                          * will be updated during the later call to
    1613             :                          * _bt_delitems_vacuum().
    1614             :                          */
    1615             :                         Assert(nremaining < BTreeTupleGetNPosting(itup));
    1616       37500 :                         updatable[nupdatable++] = vacposting;
    1617       37500 :                         nhtidsdead += BTreeTupleGetNPosting(itup) - nremaining;
    1618             :                     }
    1619             :                     else
    1620             :                     {
    1621             :                         /*
    1622             :                          * All table TIDs from the posting list must be
    1623             :                          * deleted.  We'll delete the index tuple completely
    1624             :                          * (no update required).
    1625             :                          */
    1626             :                         Assert(nremaining == 0);
    1627       46352 :                         deletable[ndeletable++] = offnum;
    1628       46352 :                         nhtidsdead += BTreeTupleGetNPosting(itup);
    1629       46352 :                         pfree(vacposting);
    1630             :                     }
    1631             : 
    1632      144524 :                     nhtidslive += nremaining;
    1633             :                 }
    1634             :             }
    1635             :         }
    1636             : 
    1637             :         /*
    1638             :          * Apply any needed deletes or updates.  We issue just one
    1639             :          * _bt_delitems_vacuum() call per page, so as to minimize WAL traffic.
    1640             :          */
    1641       24614 :         if (ndeletable > 0 || nupdatable > 0)
    1642             :         {
    1643             :             Assert(nhtidsdead >= ndeletable + nupdatable);
    1644       14586 :             _bt_delitems_vacuum(rel, buf, deletable, ndeletable, updatable,
    1645             :                                 nupdatable);
    1646             : 
    1647       14586 :             stats->tuples_removed += nhtidsdead;
    1648             :             /* must recompute maxoff */
    1649       14586 :             maxoff = PageGetMaxOffsetNumber(page);
    1650             : 
    1651             :             /* can't leak memory here */
    1652       52086 :             for (int i = 0; i < nupdatable; i++)
    1653       37500 :                 pfree(updatable[i]);
    1654             :         }
    1655             :         else
    1656             :         {
    1657             :             /*
    1658             :              * If the leaf page has been split during this vacuum cycle, it
    1659             :              * seems worth expending a write to clear btpo_cycleid even if we
    1660             :              * don't have any deletions to do.  (If we do, _bt_delitems_vacuum
    1661             :              * takes care of this.)  This ensures we won't process the page
    1662             :              * again.
    1663             :              *
    1664             :              * We treat this like a hint-bit update because there's no need to
    1665             :              * WAL-log it.
    1666             :              */
    1667             :             Assert(nhtidsdead == 0);
    1668       10028 :             if (vstate->cycleid != 0 &&
    1669        9912 :                 opaque->btpo_cycleid == vstate->cycleid)
    1670             :             {
    1671           0 :                 opaque->btpo_cycleid = 0;
    1672           0 :                 MarkBufferDirtyHint(buf, true);
    1673             :             }
    1674             :         }
    1675             : 
    1676             :         /*
    1677             :          * If the leaf page is now empty, try to delete it; else count the
    1678             :          * live tuples (live table TIDs in posting lists are counted as
    1679             :          * separate live tuples).  We don't delete when backtracking, though,
    1680             :          * since that would require teaching _bt_pagedel() about backtracking
    1681             :          * (doesn't seem worth adding more complexity to deal with that).
    1682             :          *
    1683             :          * We don't count the number of live TIDs during cleanup-only calls to
    1684             :          * btvacuumscan (i.e. when callback is not set).  We count the number
    1685             :          * of index tuples directly instead.  This avoids the expense of
    1686             :          * directly examining all of the tuples on each page.  VACUUM will
    1687             :          * treat num_index_tuples as an estimate in cleanup-only case, so it
    1688             :          * doesn't matter that this underestimates num_index_tuples
    1689             :          * significantly in some cases.
    1690             :          */
    1691       24614 :         if (minoff > maxoff)
    1692        5746 :             attempt_pagedel = (blkno == scanblkno);
    1693       18868 :         else if (callback)
    1694       18760 :             stats->num_index_tuples += nhtidslive;
    1695             :         else
    1696         108 :             stats->num_index_tuples += maxoff - minoff + 1;
    1697             : 
    1698             :         Assert(!attempt_pagedel || nhtidslive == 0);
    1699             :     }
    1700             : 
    1701       26518 :     if (attempt_pagedel)
    1702             :     {
    1703             :         MemoryContext oldcontext;
    1704             : 
    1705             :         /* Run pagedel in a temp context to avoid memory leakage */
    1706        5746 :         MemoryContextReset(vstate->pagedelcontext);
    1707        5746 :         oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);
    1708             : 
    1709             :         /*
    1710             :          * _bt_pagedel maintains the bulk delete stats on our behalf;
    1711             :          * pages_newly_deleted and pages_deleted are likely to be incremented
    1712             :          * during call
    1713             :          */
    1714             :         Assert(blkno == scanblkno);
    1715        5746 :         _bt_pagedel(rel, buf, vstate);
    1716             : 
    1717        5746 :         MemoryContextSwitchTo(oldcontext);
    1718             :         /* pagedel released buffer, so we shouldn't */
    1719             :     }
    1720             :     else
    1721       20772 :         _bt_relbuf(rel, buf);
    1722             : 
    1723       26518 :     if (backtrack_to != P_NONE)
    1724             :     {
    1725           0 :         blkno = backtrack_to;
    1726             : 
    1727             :         /* check for vacuum delay while not holding any buffer lock */
    1728           0 :         vacuum_delay_point(false);
    1729             : 
    1730             :         /*
    1731             :          * We can't use _bt_getbuf() here because it always applies
    1732             :          * _bt_checkpage(), which will barf on an all-zero page. We want to
    1733             :          * recycle all-zero pages, not fail.  Also, we want to use a
    1734             :          * nondefault buffer access strategy.
    1735             :          */
    1736           0 :         buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
    1737             :                                  info->strategy);
    1738           0 :         goto backtrack;
    1739             :     }
    1740             : 
    1741       26518 :     return scanblkno;
    1742             : }
    1743             : 
    1744             : /*
    1745             :  * btreevacuumposting --- determine TIDs still needed in posting list
    1746             :  *
    1747             :  * Returns metadata describing how to build replacement tuple without the TIDs
    1748             :  * that VACUUM needs to delete.  Returned value is NULL in the common case
    1749             :  * where no changes are needed to caller's posting list tuple (we avoid
    1750             :  * allocating memory here as an optimization).
    1751             :  *
    1752             :  * The number of TIDs that should remain in the posting list tuple is set for
    1753             :  * caller in *nremaining.
    1754             :  */
    1755             : static BTVacuumPosting
    1756      144524 : btreevacuumposting(BTVacState *vstate, IndexTuple posting,
    1757             :                    OffsetNumber updatedoffset, int *nremaining)
    1758             : {
    1759      144524 :     int         live = 0;
    1760      144524 :     int         nitem = BTreeTupleGetNPosting(posting);
    1761      144524 :     ItemPointer items = BTreeTupleGetPosting(posting);
    1762      144524 :     BTVacuumPosting vacposting = NULL;
    1763             : 
    1764      813518 :     for (int i = 0; i < nitem; i++)
    1765             :     {
    1766      668994 :         if (!vstate->callback(items + i, vstate->callback_state))
    1767             :         {
    1768             :             /* Live table TID */
    1769      379010 :             live++;
    1770             :         }
    1771      289984 :         else if (vacposting == NULL)
    1772             :         {
    1773             :             /*
    1774             :              * First dead table TID encountered.
    1775             :              *
    1776             :              * It's now clear that we need to delete one or more dead table
    1777             :              * TIDs, so start maintaining metadata describing how to update
    1778             :              * existing posting list tuple.
    1779             :              */
    1780       83852 :             vacposting = palloc(offsetof(BTVacuumPostingData, deletetids) +
    1781             :                                 nitem * sizeof(uint16));
    1782             : 
    1783       83852 :             vacposting->itup = posting;
    1784       83852 :             vacposting->updatedoffset = updatedoffset;
    1785       83852 :             vacposting->ndeletedtids = 0;
    1786       83852 :             vacposting->deletetids[vacposting->ndeletedtids++] = i;
    1787             :         }
    1788             :         else
    1789             :         {
    1790             :             /* Second or subsequent dead table TID */
    1791      206132 :             vacposting->deletetids[vacposting->ndeletedtids++] = i;
    1792             :         }
    1793             :     }
    1794             : 
    1795      144524 :     *nremaining = live;
    1796      144524 :     return vacposting;
    1797             : }
    1798             : 
    1799             : /*
    1800             :  *  btcanreturn() -- Check whether btree indexes support index-only scans.
    1801             :  *
    1802             :  * btrees always do, so this is trivial.
    1803             :  */
    1804             : bool
    1805     1143492 : btcanreturn(Relation index, int attno)
    1806             : {
    1807     1143492 :     return true;
    1808             : }
    1809             : 
    1810             : /*
    1811             :  * btgettreeheight() -- Compute tree height for use by btcostestimate().
    1812             :  */
    1813             : int
    1814      733274 : btgettreeheight(Relation rel)
    1815             : {
    1816      733274 :     return _bt_getrootheight(rel);
    1817             : }
    1818             : 
    1819             : CompareType
    1820           0 : bttranslatestrategy(StrategyNumber strategy, Oid opfamily)
    1821             : {
    1822           0 :     switch (strategy)
    1823             :     {
    1824           0 :         case BTLessStrategyNumber:
    1825           0 :             return COMPARE_LT;
    1826           0 :         case BTLessEqualStrategyNumber:
    1827           0 :             return COMPARE_LE;
    1828           0 :         case BTEqualStrategyNumber:
    1829           0 :             return COMPARE_EQ;
    1830           0 :         case BTGreaterEqualStrategyNumber:
    1831           0 :             return COMPARE_GE;
    1832           0 :         case BTGreaterStrategyNumber:
    1833           0 :             return COMPARE_GT;
    1834           0 :         default:
    1835           0 :             return COMPARE_INVALID;
    1836             :     }
    1837             : }
    1838             : 
    1839             : StrategyNumber
    1840           0 : bttranslatecmptype(CompareType cmptype, Oid opfamily)
    1841             : {
    1842           0 :     switch (cmptype)
    1843             :     {
    1844           0 :         case COMPARE_LT:
    1845           0 :             return BTLessStrategyNumber;
    1846           0 :         case COMPARE_LE:
    1847           0 :             return BTLessEqualStrategyNumber;
    1848           0 :         case COMPARE_EQ:
    1849           0 :             return BTEqualStrategyNumber;
    1850           0 :         case COMPARE_GE:
    1851           0 :             return BTGreaterEqualStrategyNumber;
    1852           0 :         case COMPARE_GT:
    1853           0 :             return BTGreaterStrategyNumber;
    1854           0 :         default:
    1855           0 :             return InvalidStrategy;
    1856             :     }
    1857             : }

Generated by: LCOV version 1.16