LCOV - code coverage report
Current view: top level - src/backend/access/nbtree - nbtreadpage.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 772 852 90.6 %
Date: 2025-12-11 17:18:42 Functions: 24 24 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * nbtreadpage.c
       4             :  *    Leaf page reading for btree index scans.
       5             :  *
       6             :  * NOTES
       7             :  *    This file contains code to return items that satisfy the scan's
       8             :  *    search-type scan keys within caller-supplied btree leaf page.
       9             :  *
      10             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      11             :  * Portions Copyright (c) 1994, Regents of the University of California
      12             :  *
      13             :  * IDENTIFICATION
      14             :  *    src/backend/access/nbtree/nbtreadpage.c
      15             :  *
      16             :  *-------------------------------------------------------------------------
      17             :  */
      18             : 
      19             : #include "postgres.h"
      20             : 
      21             : #include "access/nbtree.h"
      22             : #include "access/relscan.h"
      23             : #include "storage/predicate.h"
      24             : #include "utils/datum.h"
      25             : #include "utils/rel.h"
      26             : 
      27             : 
      28             : /*
      29             :  * _bt_readpage state used across _bt_checkkeys calls for a page
      30             :  */
      31             : typedef struct BTReadPageState
      32             : {
      33             :     /* Input parameters, set by _bt_readpage for _bt_checkkeys */
      34             :     ScanDirection dir;          /* current scan direction */
      35             :     OffsetNumber minoff;        /* Lowest non-pivot tuple's offset */
      36             :     OffsetNumber maxoff;        /* Highest non-pivot tuple's offset */
      37             :     IndexTuple  finaltup;       /* Needed by scans with array keys */
      38             :     Page        page;           /* Page being read */
      39             :     bool        firstpage;      /* page is first for primitive scan? */
      40             :     bool        forcenonrequired;   /* treat all keys as nonrequired? */
      41             :     int         startikey;      /* start comparisons from this scan key */
      42             : 
      43             :     /* Per-tuple input parameters, set by _bt_readpage for _bt_checkkeys */
      44             :     OffsetNumber offnum;        /* current tuple's page offset number */
      45             : 
      46             :     /* Output parameters, set by _bt_checkkeys for _bt_readpage */
      47             :     OffsetNumber skip;          /* Array keys "look ahead" skip offnum */
      48             :     bool        continuescan;   /* Terminate ongoing (primitive) index scan? */
      49             : 
      50             :     /*
      51             :      * Private _bt_checkkeys state used to manage "look ahead" optimization
      52             :      * and primscan scheduling (only used during scans with array keys)
      53             :      */
      54             :     int16       rechecks;
      55             :     int16       targetdistance;
      56             :     int16       nskipadvances;
      57             : 
      58             : } BTReadPageState;
      59             : 
      60             : 
      61             : static void _bt_set_startikey(IndexScanDesc scan, BTReadPageState *pstate);
      62             : static bool _bt_scanbehind_checkkeys(IndexScanDesc scan, ScanDirection dir,
      63             :                                      IndexTuple finaltup);
      64             : static bool _bt_oppodir_checkkeys(IndexScanDesc scan, ScanDirection dir,
      65             :                                   IndexTuple finaltup);
      66             : static void _bt_saveitem(BTScanOpaque so, int itemIndex,
      67             :                          OffsetNumber offnum, IndexTuple itup);
      68             : static int  _bt_setuppostingitems(BTScanOpaque so, int itemIndex,
      69             :                                   OffsetNumber offnum, const ItemPointerData *heapTid,
      70             :                                   IndexTuple itup);
      71             : static inline void _bt_savepostingitem(BTScanOpaque so, int itemIndex,
      72             :                                        OffsetNumber offnum,
      73             :                                        ItemPointer heapTid, int tupleOffset);
      74             : static bool _bt_checkkeys(IndexScanDesc scan, BTReadPageState *pstate, bool arrayKeys,
      75             :                           IndexTuple tuple, int tupnatts);
      76             : static bool _bt_check_compare(IndexScanDesc scan, ScanDirection dir,
      77             :                               IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
      78             :                               bool advancenonrequired, bool forcenonrequired,
      79             :                               bool *continuescan, int *ikey);
      80             : static bool _bt_check_rowcompare(ScanKey header,
      81             :                                  IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
      82             :                                  ScanDirection dir, bool forcenonrequired, bool *continuescan);
      83             : static bool _bt_rowcompare_cmpresult(ScanKey subkey, int cmpresult);
      84             : static bool _bt_tuple_before_array_skeys(IndexScanDesc scan, ScanDirection dir,
      85             :                                          IndexTuple tuple, TupleDesc tupdesc, int tupnatts,
      86             :                                          bool readpagetup, int sktrig, bool *scanBehind);
      87             : static void _bt_checkkeys_look_ahead(IndexScanDesc scan, BTReadPageState *pstate,
      88             :                                      int tupnatts, TupleDesc tupdesc);
      89             : static bool _bt_advance_array_keys(IndexScanDesc scan, BTReadPageState *pstate,
      90             :                                    IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
      91             :                                    int sktrig, bool sktrig_required);
      92             : static bool _bt_advance_array_keys_increment(IndexScanDesc scan, ScanDirection dir,
      93             :                                              bool *skip_array_set);
      94             : static bool _bt_array_increment(Relation rel, ScanKey skey, BTArrayKeyInfo *array);
      95             : static bool _bt_array_decrement(Relation rel, ScanKey skey, BTArrayKeyInfo *array);
      96             : static void _bt_array_set_low_or_high(Relation rel, ScanKey skey,
      97             :                                       BTArrayKeyInfo *array, bool low_not_high);
      98             : static void _bt_skiparray_set_element(Relation rel, ScanKey skey, BTArrayKeyInfo *array,
      99             :                                       int32 set_elem_result, Datum tupdatum, bool tupnull);
     100             : static void _bt_skiparray_set_isnull(Relation rel, ScanKey skey, BTArrayKeyInfo *array);
     101             : static inline int32 _bt_compare_array_skey(FmgrInfo *orderproc,
     102             :                                            Datum tupdatum, bool tupnull,
     103             :                                            Datum arrdatum, ScanKey cur);
     104             : static void _bt_binsrch_skiparray_skey(bool cur_elem_trig, ScanDirection dir,
     105             :                                        Datum tupdatum, bool tupnull,
     106             :                                        BTArrayKeyInfo *array, ScanKey cur,
     107             :                                        int32 *set_elem_result);
     108             : #ifdef USE_ASSERT_CHECKING
     109             : static bool _bt_verify_keys_with_arraykeys(IndexScanDesc scan);
     110             : #endif
     111             : 
     112             : 
     113             : /*
     114             :  *  _bt_readpage() -- Load data from current index page into so->currPos
     115             :  *
     116             :  * Caller must have pinned and read-locked so->currPos.buf; the buffer's state
     117             :  * is not changed here.  Also, currPos.moreLeft and moreRight must be valid;
     118             :  * they are updated as appropriate.  All other fields of so->currPos are
     119             :  * initialized from scratch here.
     120             :  *
     121             :  * We scan the current page starting at offnum and moving in the indicated
     122             :  * direction.  All items matching the scan keys are loaded into currPos.items.
     123             :  * moreLeft or moreRight (as appropriate) is cleared if _bt_checkkeys reports
     124             :  * that there can be no more matching tuples in the current scan direction
     125             :  * (could just be for the current primitive index scan when scan has arrays).
     126             :  *
     127             :  * In the case of a parallel scan, caller must have called _bt_parallel_seize
     128             :  * prior to calling this function; this function will invoke
     129             :  * _bt_parallel_release before returning.
     130             :  *
     131             :  * Returns true if any matching items found on the page, false if none.
     132             :  */
     133             : bool
     134    16172132 : _bt_readpage(IndexScanDesc scan, ScanDirection dir, OffsetNumber offnum,
     135             :              bool firstpage)
     136             : {
     137    16172132 :     Relation    rel = scan->indexRelation;
     138    16172132 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     139             :     Page        page;
     140             :     BTPageOpaque opaque;
     141             :     OffsetNumber minoff;
     142             :     OffsetNumber maxoff;
     143             :     BTReadPageState pstate;
     144             :     bool        arrayKeys,
     145    16172132 :                 ignore_killed_tuples = scan->ignore_killed_tuples;
     146             :     int         itemIndex,
     147             :                 indnatts;
     148             : 
     149             :     /* save the page/buffer block number, along with its sibling links */
     150    16172132 :     page = BufferGetPage(so->currPos.buf);
     151    16172132 :     opaque = BTPageGetOpaque(page);
     152    16172132 :     so->currPos.currPage = BufferGetBlockNumber(so->currPos.buf);
     153    16172132 :     so->currPos.prevPage = opaque->btpo_prev;
     154    16172132 :     so->currPos.nextPage = opaque->btpo_next;
     155             :     /* delay setting so->currPos.lsn until _bt_drop_lock_and_maybe_pin */
     156    16172132 :     pstate.dir = so->currPos.dir = dir;
     157    16172132 :     so->currPos.nextTupleOffset = 0;
     158             : 
     159             :     /* either moreRight or moreLeft should be set now (may be unset later) */
     160             :     Assert(ScanDirectionIsForward(dir) ? so->currPos.moreRight :
     161             :            so->currPos.moreLeft);
     162             :     Assert(!P_IGNORE(opaque));
     163             :     Assert(BTScanPosIsPinned(so->currPos));
     164             :     Assert(!so->needPrimScan);
     165             : 
     166             :     /* initialize local variables */
     167    16172132 :     indnatts = IndexRelationGetNumberOfAttributes(rel);
     168    16172132 :     arrayKeys = so->numArrayKeys != 0;
     169    16172132 :     minoff = P_FIRSTDATAKEY(opaque);
     170    16172132 :     maxoff = PageGetMaxOffsetNumber(page);
     171             : 
     172             :     /* initialize page-level state that we'll pass to _bt_checkkeys */
     173    16172132 :     pstate.minoff = minoff;
     174    16172132 :     pstate.maxoff = maxoff;
     175    16172132 :     pstate.finaltup = NULL;
     176    16172132 :     pstate.page = page;
     177    16172132 :     pstate.firstpage = firstpage;
     178    16172132 :     pstate.forcenonrequired = false;
     179    16172132 :     pstate.startikey = 0;
     180    16172132 :     pstate.offnum = InvalidOffsetNumber;
     181    16172132 :     pstate.skip = InvalidOffsetNumber;
     182    16172132 :     pstate.continuescan = true; /* default assumption */
     183    16172132 :     pstate.rechecks = 0;
     184    16172132 :     pstate.targetdistance = 0;
     185    16172132 :     pstate.nskipadvances = 0;
     186             : 
     187    16172132 :     if (scan->parallel_scan)
     188             :     {
     189             :         /* allow next/prev page to be read by other worker without delay */
     190        1336 :         if (ScanDirectionIsForward(dir))
     191        1336 :             _bt_parallel_release(scan, so->currPos.nextPage,
     192             :                                  so->currPos.currPage);
     193             :         else
     194           0 :             _bt_parallel_release(scan, so->currPos.prevPage,
     195             :                                  so->currPos.currPage);
     196             :     }
     197             : 
     198    16172132 :     PredicateLockPage(rel, so->currPos.currPage, scan->xs_snapshot);
     199             : 
     200    16172132 :     if (ScanDirectionIsForward(dir))
     201             :     {
     202             :         /* SK_SEARCHARRAY forward scans must provide high key up front */
     203    16115148 :         if (arrayKeys)
     204             :         {
     205       91774 :             if (!P_RIGHTMOST(opaque))
     206             :             {
     207       29180 :                 ItemId      iid = PageGetItemId(page, P_HIKEY);
     208             : 
     209       29180 :                 pstate.finaltup = (IndexTuple) PageGetItem(page, iid);
     210             : 
     211       29180 :                 if (unlikely(so->scanBehind) &&
     212        2570 :                     !_bt_scanbehind_checkkeys(scan, dir, pstate.finaltup))
     213             :                 {
     214             :                     /* Schedule another primitive index scan after all */
     215         406 :                     so->currPos.moreRight = false;
     216         406 :                     so->needPrimScan = true;
     217         406 :                     if (scan->parallel_scan)
     218           0 :                         _bt_parallel_primscan_schedule(scan,
     219             :                                                        so->currPos.currPage);
     220         406 :                     return false;
     221             :                 }
     222             :             }
     223             : 
     224       91368 :             so->scanBehind = so->oppositeDirCheck = false;    /* reset */
     225             :         }
     226             : 
     227             :         /*
     228             :          * Consider pstate.startikey optimization once the ongoing primitive
     229             :          * index scan has already read at least one page
     230             :          */
     231    16114742 :         if (!pstate.firstpage && minoff < maxoff)
     232       29124 :             _bt_set_startikey(scan, &pstate);
     233             : 
     234             :         /* load items[] in ascending order */
     235    16114742 :         itemIndex = 0;
     236             : 
     237    16114742 :         offnum = Max(offnum, minoff);
     238             : 
     239    61368636 :         while (offnum <= maxoff)
     240             :         {
     241    58021604 :             ItemId      iid = PageGetItemId(page, offnum);
     242             :             IndexTuple  itup;
     243             :             bool        passes_quals;
     244             : 
     245             :             /*
     246             :              * If the scan specifies not to return killed tuples, then we
     247             :              * treat a killed tuple as not passing the qual
     248             :              */
     249    58021604 :             if (ignore_killed_tuples && ItemIdIsDead(iid))
     250             :             {
     251     4558534 :                 offnum = OffsetNumberNext(offnum);
     252     4558534 :                 continue;
     253             :             }
     254             : 
     255    53463070 :             itup = (IndexTuple) PageGetItem(page, iid);
     256             :             Assert(!BTreeTupleIsPivot(itup));
     257             : 
     258    53463070 :             pstate.offnum = offnum;
     259    53463070 :             passes_quals = _bt_checkkeys(scan, &pstate, arrayKeys,
     260             :                                          itup, indnatts);
     261             : 
     262             :             /*
     263             :              * Check if we need to skip ahead to a later tuple (only possible
     264             :              * when the scan uses array keys)
     265             :              */
     266    53463070 :             if (arrayKeys && OffsetNumberIsValid(pstate.skip))
     267             :             {
     268             :                 Assert(!passes_quals && pstate.continuescan);
     269             :                 Assert(offnum < pstate.skip);
     270             :                 Assert(!pstate.forcenonrequired);
     271             : 
     272        4572 :                 offnum = pstate.skip;
     273        4572 :                 pstate.skip = InvalidOffsetNumber;
     274        4572 :                 continue;
     275             :             }
     276             : 
     277    53458498 :             if (passes_quals)
     278             :             {
     279             :                 /* tuple passes all scan key conditions */
     280    40143346 :                 if (!BTreeTupleIsPosting(itup))
     281             :                 {
     282             :                     /* Remember it */
     283    39608256 :                     _bt_saveitem(so, itemIndex, offnum, itup);
     284    39608256 :                     itemIndex++;
     285             :                 }
     286             :                 else
     287             :                 {
     288             :                     int         tupleOffset;
     289             : 
     290             :                     /* Set up posting list state (and remember first TID) */
     291             :                     tupleOffset =
     292      535090 :                         _bt_setuppostingitems(so, itemIndex, offnum,
     293      535090 :                                               BTreeTupleGetPostingN(itup, 0),
     294             :                                               itup);
     295      535090 :                     itemIndex++;
     296             : 
     297             :                     /* Remember all later TIDs (must be at least one) */
     298     2996346 :                     for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
     299             :                     {
     300     2461256 :                         _bt_savepostingitem(so, itemIndex, offnum,
     301             :                                             BTreeTupleGetPostingN(itup, i),
     302             :                                             tupleOffset);
     303     2461256 :                         itemIndex++;
     304             :                     }
     305             :                 }
     306             :             }
     307             :             /* When !continuescan, there can't be any more matches, so stop */
     308    53458498 :             if (!pstate.continuescan)
     309    12767710 :                 break;
     310             : 
     311    40690788 :             offnum = OffsetNumberNext(offnum);
     312             :         }
     313             : 
     314             :         /*
     315             :          * We don't need to visit page to the right when the high key
     316             :          * indicates that no more matches will be found there.
     317             :          *
     318             :          * Checking the high key like this works out more often than you might
     319             :          * think.  Leaf page splits pick a split point between the two most
     320             :          * dissimilar tuples (this is weighed against the need to evenly share
     321             :          * free space).  Leaf pages with high key attribute values that can
     322             :          * only appear on non-pivot tuples on the right sibling page are
     323             :          * common.
     324             :          */
     325    16114742 :         if (pstate.continuescan && !so->scanBehind && !P_RIGHTMOST(opaque))
     326             :         {
     327      131718 :             ItemId      iid = PageGetItemId(page, P_HIKEY);
     328      131718 :             IndexTuple  itup = (IndexTuple) PageGetItem(page, iid);
     329             :             int         truncatt;
     330             : 
     331             :             /* Reset arrays, per _bt_set_startikey contract */
     332      131718 :             if (pstate.forcenonrequired)
     333        2142 :                 _bt_start_array_keys(scan, dir);
     334      131718 :             pstate.forcenonrequired = false;
     335      131718 :             pstate.startikey = 0;   /* _bt_set_startikey ignores P_HIKEY */
     336             : 
     337      131718 :             truncatt = BTreeTupleGetNAtts(itup, rel);
     338      131718 :             _bt_checkkeys(scan, &pstate, arrayKeys, itup, truncatt);
     339             :         }
     340             : 
     341    16114742 :         if (!pstate.continuescan)
     342    12849436 :             so->currPos.moreRight = false;
     343             : 
     344             :         Assert(itemIndex <= MaxTIDsPerBTreePage);
     345    16114742 :         so->currPos.firstItem = 0;
     346    16114742 :         so->currPos.lastItem = itemIndex - 1;
     347    16114742 :         so->currPos.itemIndex = 0;
     348             :     }
     349             :     else
     350             :     {
     351             :         /* SK_SEARCHARRAY backward scans must provide final tuple up front */
     352       56984 :         if (arrayKeys)
     353             :         {
     354          78 :             if (minoff <= maxoff && !P_LEFTMOST(opaque))
     355             :             {
     356          60 :                 ItemId      iid = PageGetItemId(page, minoff);
     357             : 
     358          60 :                 pstate.finaltup = (IndexTuple) PageGetItem(page, iid);
     359             : 
     360          60 :                 if (unlikely(so->scanBehind) &&
     361          12 :                     !_bt_scanbehind_checkkeys(scan, dir, pstate.finaltup))
     362             :                 {
     363             :                     /* Schedule another primitive index scan after all */
     364           6 :                     so->currPos.moreLeft = false;
     365           6 :                     so->needPrimScan = true;
     366           6 :                     if (scan->parallel_scan)
     367           0 :                         _bt_parallel_primscan_schedule(scan,
     368             :                                                        so->currPos.currPage);
     369           6 :                     return false;
     370             :                 }
     371             :             }
     372             : 
     373          72 :             so->scanBehind = so->oppositeDirCheck = false;    /* reset */
     374             :         }
     375             : 
     376             :         /*
     377             :          * Consider pstate.startikey optimization once the ongoing primitive
     378             :          * index scan has already read at least one page
     379             :          */
     380       56978 :         if (!pstate.firstpage && minoff < maxoff)
     381         166 :             _bt_set_startikey(scan, &pstate);
     382             : 
     383             :         /* load items[] in descending order */
     384       56978 :         itemIndex = MaxTIDsPerBTreePage;
     385             : 
     386       56978 :         offnum = Min(offnum, maxoff);
     387             : 
     388     9231266 :         while (offnum >= minoff)
     389             :         {
     390     9174436 :             ItemId      iid = PageGetItemId(page, offnum);
     391             :             IndexTuple  itup;
     392             :             bool        tuple_alive;
     393             :             bool        passes_quals;
     394             : 
     395             :             /*
     396             :              * If the scan specifies not to return killed tuples, then we
     397             :              * treat a killed tuple as not passing the qual.  Most of the
     398             :              * time, it's a win to not bother examining the tuple's index
     399             :              * keys, but just skip to the next tuple (previous, actually,
     400             :              * since we're scanning backwards).  However, if this is the first
     401             :              * tuple on the page, we do check the index keys, to prevent
     402             :              * uselessly advancing to the page to the left.  This is similar
     403             :              * to the high key optimization used by forward scans.
     404             :              */
     405     9174436 :             if (ignore_killed_tuples && ItemIdIsDead(iid))
     406             :             {
     407      401838 :                 if (offnum > minoff)
     408             :                 {
     409      401100 :                     offnum = OffsetNumberPrev(offnum);
     410      401100 :                     continue;
     411             :                 }
     412             : 
     413         738 :                 tuple_alive = false;
     414             :             }
     415             :             else
     416     8772598 :                 tuple_alive = true;
     417             : 
     418     8773336 :             itup = (IndexTuple) PageGetItem(page, iid);
     419             :             Assert(!BTreeTupleIsPivot(itup));
     420             : 
     421     8773336 :             pstate.offnum = offnum;
     422     8773336 :             if (arrayKeys && offnum == minoff && pstate.forcenonrequired)
     423             :             {
     424             :                 /* Reset arrays, per _bt_set_startikey contract */
     425           6 :                 pstate.forcenonrequired = false;
     426           6 :                 pstate.startikey = 0;
     427           6 :                 _bt_start_array_keys(scan, dir);
     428             :             }
     429     8773336 :             passes_quals = _bt_checkkeys(scan, &pstate, arrayKeys,
     430             :                                          itup, indnatts);
     431             : 
     432     8773336 :             if (arrayKeys && so->scanBehind)
     433             :             {
     434             :                 /*
     435             :                  * Done scanning this page, but not done with the current
     436             :                  * primscan.
     437             :                  *
     438             :                  * Note: Forward scans don't check this explicitly, since they
     439             :                  * prefer to reuse pstate.skip for this instead.
     440             :                  */
     441             :                 Assert(!passes_quals && pstate.continuescan);
     442             :                 Assert(!pstate.forcenonrequired);
     443             : 
     444          18 :                 break;
     445             :             }
     446             : 
     447             :             /*
     448             :              * Check if we need to skip ahead to a later tuple (only possible
     449             :              * when the scan uses array keys)
     450             :              */
     451     8773318 :             if (arrayKeys && OffsetNumberIsValid(pstate.skip))
     452             :             {
     453             :                 Assert(!passes_quals && pstate.continuescan);
     454             :                 Assert(offnum > pstate.skip);
     455             :                 Assert(!pstate.forcenonrequired);
     456             : 
     457          36 :                 offnum = pstate.skip;
     458          36 :                 pstate.skip = InvalidOffsetNumber;
     459          36 :                 continue;
     460             :             }
     461             : 
     462     8773282 :             if (passes_quals && tuple_alive)
     463             :             {
     464             :                 /* tuple passes all scan key conditions */
     465     8770560 :                 if (!BTreeTupleIsPosting(itup))
     466             :                 {
     467             :                     /* Remember it */
     468     8727286 :                     itemIndex--;
     469     8727286 :                     _bt_saveitem(so, itemIndex, offnum, itup);
     470             :                 }
     471             :                 else
     472             :                 {
     473       43274 :                     uint16      nitems = BTreeTupleGetNPosting(itup);
     474             :                     int         tupleOffset;
     475             : 
     476             :                     /* Set up posting list state (and remember last TID) */
     477       43274 :                     itemIndex--;
     478             :                     tupleOffset =
     479       43274 :                         _bt_setuppostingitems(so, itemIndex, offnum,
     480       43274 :                                               BTreeTupleGetPostingN(itup, nitems - 1),
     481             :                                               itup);
     482             : 
     483             :                     /* Remember all prior TIDs (must be at least one) */
     484      166476 :                     for (int i = nitems - 2; i >= 0; i--)
     485             :                     {
     486      123202 :                         itemIndex--;
     487      123202 :                         _bt_savepostingitem(so, itemIndex, offnum,
     488             :                                             BTreeTupleGetPostingN(itup, i),
     489             :                                             tupleOffset);
     490             :                     }
     491             :                 }
     492             :             }
     493             :             /* When !continuescan, there can't be any more matches, so stop */
     494     8773282 :             if (!pstate.continuescan)
     495         130 :                 break;
     496             : 
     497     8773152 :             offnum = OffsetNumberPrev(offnum);
     498             :         }
     499             : 
     500             :         /*
     501             :          * We don't need to visit page to the left when no more matches will
     502             :          * be found there
     503             :          */
     504       56978 :         if (!pstate.continuescan)
     505         130 :             so->currPos.moreLeft = false;
     506             : 
     507             :         Assert(itemIndex >= 0);
     508       56978 :         so->currPos.firstItem = itemIndex;
     509       56978 :         so->currPos.lastItem = MaxTIDsPerBTreePage - 1;
     510       56978 :         so->currPos.itemIndex = MaxTIDsPerBTreePage - 1;
     511             :     }
     512             : 
     513             :     /*
     514             :      * If _bt_set_startikey told us to temporarily treat the scan's keys as
     515             :      * nonrequired (possible only during scans with array keys), there must be
     516             :      * no lasting consequences for the scan's array keys.  The scan's arrays
     517             :      * should now have exactly the same elements as they would have had if the
     518             :      * nonrequired behavior had never been used.  (In general, a scan's arrays
     519             :      * are expected to track its progress through the index's key space.)
     520             :      *
     521             :      * We are required (by _bt_set_startikey) to call _bt_checkkeys against
     522             :      * pstate.finaltup with pstate.forcenonrequired=false to allow the scan's
     523             :      * arrays to recover.  Assert that that step hasn't been missed.
     524             :      */
     525             :     Assert(!pstate.forcenonrequired);
     526             : 
     527    16171720 :     return (so->currPos.firstItem <= so->currPos.lastItem);
     528             : }
     529             : 
     530             : /*
     531             :  * _bt_start_array_keys() -- Initialize array keys at start of a scan
     532             :  *
     533             :  * Set up the cur_elem counters and fill in the first sk_argument value for
     534             :  * each array scankey.
     535             :  */
     536             : void
     537       81760 : _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
     538             : {
     539       81760 :     Relation    rel = scan->indexRelation;
     540       81760 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     541             : 
     542             :     Assert(so->numArrayKeys);
     543             :     Assert(so->qual_ok);
     544             : 
     545      164140 :     for (int i = 0; i < so->numArrayKeys; i++)
     546             :     {
     547       82380 :         BTArrayKeyInfo *array = &so->arrayKeys[i];
     548       82380 :         ScanKey     skey = &so->keyData[array->scan_key];
     549             : 
     550             :         Assert(skey->sk_flags & SK_SEARCHARRAY);
     551             : 
     552       82380 :         _bt_array_set_low_or_high(rel, skey, array,
     553             :                                   ScanDirectionIsForward(dir));
     554             :     }
     555       81760 :     so->scanBehind = so->oppositeDirCheck = false;    /* reset */
     556       81760 : }
     557             : 
     558             : /*
     559             :  * Determines an offset to the first scan key (an so->keyData[]-wise offset)
     560             :  * that is _not_ guaranteed to be satisfied by every tuple from pstate.page,
     561             :  * which is set in pstate.startikey for _bt_checkkeys calls for the page.
     562             :  * This allows caller to save cycles on comparisons of a prefix of keys while
     563             :  * reading pstate.page.
     564             :  *
     565             :  * Also determines if later calls to _bt_checkkeys (for pstate.page) should be
     566             :  * forced to treat all required scan keys >= pstate.startikey as nonrequired
     567             :  * (that is, if they're to be treated as if any SK_BT_REQFWD/SK_BT_REQBKWD
     568             :  * markings that were set by preprocessing were not set at all, for the
     569             :  * duration of _bt_checkkeys calls prior to the call for pstate.finaltup).
     570             :  * This is indicated to caller by setting pstate.forcenonrequired.
     571             :  *
     572             :  * Call here at the start of reading a leaf page beyond the first one for the
     573             :  * primitive index scan.  We consider all non-pivot tuples, so it doesn't make
     574             :  * sense to call here when only a subset of those tuples can ever be read.
     575             :  * This is also a good idea on performance grounds; not calling here when on
     576             :  * the first page (first for the current primitive scan) avoids wasting cycles
     577             :  * during selective point queries.  They typically don't stand to gain as much
     578             :  * when we can set pstate.startikey, and are likely to notice the overhead of
     579             :  * calling here.  (Also, allowing pstate.forcenonrequired to be set on a
     580             :  * primscan's first page would mislead _bt_advance_array_keys, which expects
     581             :  * pstate.nskipadvances to be representative of every first page's key space.)
     582             :  *
     583             :  * Caller must call _bt_start_array_keys and reset startikey/forcenonrequired
     584             :  * ahead of the finaltup _bt_checkkeys call when we set forcenonrequired=true.
     585             :  * This will give _bt_checkkeys the opportunity to call _bt_advance_array_keys
     586             :  * with sktrig_required=true, restoring the invariant that the scan's required
     587             :  * arrays always track the scan's progress through the index's key space.
     588             :  * Caller won't need to do this on the rightmost/leftmost page in the index
     589             :  * (where pstate.finaltup isn't ever set), since forcenonrequired will never
     590             :  * be set here in the first place.
     591             :  */
     592             : static void
     593       29290 : _bt_set_startikey(IndexScanDesc scan, BTReadPageState *pstate)
     594             : {
     595       29290 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     596       29290 :     Relation    rel = scan->indexRelation;
     597       29290 :     TupleDesc   tupdesc = RelationGetDescr(rel);
     598             :     ItemId      iid;
     599             :     IndexTuple  firsttup,
     600             :                 lasttup;
     601       29290 :     int         startikey = 0,
     602       29290 :                 arrayidx = 0,
     603             :                 firstchangingattnum;
     604       29290 :     bool        start_past_saop_eq = false;
     605             : 
     606             :     Assert(!so->scanBehind);
     607             :     Assert(pstate->minoff < pstate->maxoff);
     608             :     Assert(!pstate->firstpage);
     609             :     Assert(pstate->startikey == 0);
     610             :     Assert(!so->numArrayKeys || pstate->finaltup ||
     611             :            P_RIGHTMOST(BTPageGetOpaque(pstate->page)) ||
     612             :            P_LEFTMOST(BTPageGetOpaque(pstate->page)));
     613             : 
     614       29290 :     if (so->numberOfKeys == 0)
     615       10794 :         return;
     616             : 
     617             :     /* minoff is an offset to the lowest non-pivot tuple on the page */
     618       18496 :     iid = PageGetItemId(pstate->page, pstate->minoff);
     619       18496 :     firsttup = (IndexTuple) PageGetItem(pstate->page, iid);
     620             : 
     621             :     /* maxoff is an offset to the highest non-pivot tuple on the page */
     622       18496 :     iid = PageGetItemId(pstate->page, pstate->maxoff);
     623       18496 :     lasttup = (IndexTuple) PageGetItem(pstate->page, iid);
     624             : 
     625             :     /* Determine the first attribute whose values change on caller's page */
     626       18496 :     firstchangingattnum = _bt_keep_natts_fast(rel, firsttup, lasttup);
     627             : 
     628       27734 :     for (; startikey < so->numberOfKeys; startikey++)
     629             :     {
     630       21310 :         ScanKey     key = so->keyData + startikey;
     631             :         BTArrayKeyInfo *array;
     632             :         Datum       firstdatum,
     633             :                     lastdatum;
     634             :         bool        firstnull,
     635             :                     lastnull;
     636             :         int32       result;
     637             : 
     638             :         /*
     639             :          * Determine if it's safe to set pstate.startikey to an offset to a
     640             :          * key that comes after this key, by examining this key
     641             :          */
     642       21310 :         if (key->sk_flags & SK_ROW_HEADER)
     643             :         {
     644             :             /* RowCompare inequality (header key) */
     645           0 :             ScanKey     subkey = (ScanKey) DatumGetPointer(key->sk_argument);
     646           0 :             bool        satisfied = false;
     647             : 
     648             :             for (;;)
     649           0 :             {
     650             :                 int         cmpresult;
     651           0 :                 bool        firstsatisfies = false;
     652             : 
     653           0 :                 if (subkey->sk_attno > firstchangingattnum) /* >, not >= */
     654           0 :                     break;      /* unsafe, preceding attr has multiple
     655             :                                  * distinct values */
     656             : 
     657           0 :                 if (subkey->sk_flags & SK_ISNULL)
     658           0 :                     break;      /* unsafe, unsatisfiable NULL subkey arg */
     659             : 
     660           0 :                 firstdatum = index_getattr(firsttup, subkey->sk_attno,
     661             :                                            tupdesc, &firstnull);
     662           0 :                 lastdatum = index_getattr(lasttup, subkey->sk_attno,
     663             :                                           tupdesc, &lastnull);
     664             : 
     665           0 :                 if (firstnull || lastnull)
     666             :                     break;      /* unsafe, NULL value won't satisfy subkey */
     667             : 
     668             :                 /*
     669             :                  * Compare the first tuple's datum for this row compare member
     670             :                  */
     671           0 :                 cmpresult = DatumGetInt32(FunctionCall2Coll(&subkey->sk_func,
     672             :                                                             subkey->sk_collation,
     673             :                                                             firstdatum,
     674             :                                                             subkey->sk_argument));
     675           0 :                 if (subkey->sk_flags & SK_BT_DESC)
     676           0 :                     INVERT_COMPARE_RESULT(cmpresult);
     677             : 
     678           0 :                 if (cmpresult != 0 || (subkey->sk_flags & SK_ROW_END))
     679             :                 {
     680           0 :                     firstsatisfies = _bt_rowcompare_cmpresult(subkey,
     681             :                                                               cmpresult);
     682           0 :                     if (!firstsatisfies)
     683             :                     {
     684             :                         /* Unsafe, firstdatum does not satisfy subkey */
     685           0 :                         break;
     686             :                     }
     687             :                 }
     688             : 
     689             :                 /*
     690             :                  * Compare the last tuple's datum for this row compare member
     691             :                  */
     692           0 :                 cmpresult = DatumGetInt32(FunctionCall2Coll(&subkey->sk_func,
     693             :                                                             subkey->sk_collation,
     694             :                                                             lastdatum,
     695             :                                                             subkey->sk_argument));
     696           0 :                 if (subkey->sk_flags & SK_BT_DESC)
     697           0 :                     INVERT_COMPARE_RESULT(cmpresult);
     698             : 
     699           0 :                 if (cmpresult != 0 || (subkey->sk_flags & SK_ROW_END))
     700             :                 {
     701           0 :                     if (!firstsatisfies)
     702             :                     {
     703             :                         /*
     704             :                          * It's only safe to set startikey beyond the row
     705             :                          * compare header key when both firsttup and lasttup
     706             :                          * satisfy the key as a whole based on the same
     707             :                          * deciding subkey/attribute.  That can't happen now.
     708             :                          */
     709           0 :                         break;  /* unsafe */
     710             :                     }
     711             : 
     712           0 :                     satisfied = _bt_rowcompare_cmpresult(subkey, cmpresult);
     713           0 :                     break;      /* safe iff 'satisfied' is true */
     714             :                 }
     715             : 
     716             :                 /* Move on to next row member/subkey */
     717           0 :                 if (subkey->sk_flags & SK_ROW_END)
     718           0 :                     break;      /* defensive */
     719           0 :                 subkey++;
     720             : 
     721             :                 /*
     722             :                  * We deliberately don't check if the next subkey has the same
     723             :                  * strategy as this iteration's subkey (which happens when
     724             :                  * subkeys for both ASC and DESC columns are used together),
     725             :                  * nor if any subkey is marked required.  This is safe because
     726             :                  * in general all prior index attributes must have only one
     727             :                  * distinct value (across all of the tuples on the page) in
     728             :                  * order for us to even consider any subkey's attribute.
     729             :                  */
     730             :             }
     731             : 
     732           0 :             if (satisfied)
     733             :             {
     734             :                 /* Safe, row compare satisfied by every tuple on page */
     735        8992 :                 continue;
     736             :             }
     737             : 
     738       12072 :             break;              /* unsafe */
     739             :         }
     740       21310 :         if (key->sk_strategy != BTEqualStrategyNumber)
     741             :         {
     742             :             /*
     743             :              * Scalar inequality key.
     744             :              *
     745             :              * It's definitely safe for _bt_checkkeys to avoid assessing this
     746             :              * inequality when the page's first and last non-pivot tuples both
     747             :              * satisfy the inequality (since the same must also be true of all
     748             :              * the tuples in between these two).
     749             :              *
     750             :              * Unlike the "=" case, it doesn't matter if this attribute has
     751             :              * more than one distinct value (though it _is_ necessary for any
     752             :              * and all _prior_ attributes to contain no more than one distinct
     753             :              * value amongst all of the tuples from pstate.page).
     754             :              */
     755        4730 :             if (key->sk_attno > firstchangingattnum)  /* >, not >= */
     756         360 :                 break;          /* unsafe, preceding attr has multiple
     757             :                                  * distinct values */
     758             : 
     759        4370 :             firstdatum = index_getattr(firsttup, key->sk_attno, tupdesc, &firstnull);
     760        4370 :             lastdatum = index_getattr(lasttup, key->sk_attno, tupdesc, &lastnull);
     761             : 
     762        4370 :             if (key->sk_flags & SK_ISNULL)
     763             :             {
     764             :                 /* IS NOT NULL key */
     765             :                 Assert(key->sk_flags & SK_SEARCHNOTNULL);
     766             : 
     767         142 :                 if (firstnull || lastnull)
     768             :                     break;      /* unsafe */
     769             : 
     770             :                 /* Safe, IS NOT NULL key satisfied by every tuple */
     771         142 :                 continue;
     772             :             }
     773             : 
     774             :             /* Test firsttup */
     775        4228 :             if (firstnull ||
     776        4228 :                 !DatumGetBool(FunctionCall2Coll(&key->sk_func,
     777             :                                                 key->sk_collation, firstdatum,
     778             :                                                 key->sk_argument)))
     779             :                 break;          /* unsafe */
     780             : 
     781             :             /* Test lasttup */
     782        4228 :             if (lastnull ||
     783        4228 :                 !DatumGetBool(FunctionCall2Coll(&key->sk_func,
     784             :                                                 key->sk_collation, lastdatum,
     785             :                                                 key->sk_argument)))
     786             :                 break;          /* unsafe */
     787             : 
     788             :             /* Safe, scalar inequality satisfied by every tuple */
     789        4122 :             continue;
     790             :         }
     791             : 
     792             :         /* Some = key (could be a scalar = key, could be an array = key) */
     793             :         Assert(key->sk_strategy == BTEqualStrategyNumber);
     794             : 
     795       16580 :         if (!(key->sk_flags & SK_SEARCHARRAY))
     796             :         {
     797             :             /*
     798             :              * Scalar = key (possibly an IS NULL key).
     799             :              *
     800             :              * It is unsafe to set pstate.startikey to an ikey beyond this
     801             :              * key, unless the = key is satisfied by every possible tuple on
     802             :              * the page (possible only when attribute has just one distinct
     803             :              * value among all tuples on the page).
     804             :              */
     805       13088 :             if (key->sk_attno >= firstchangingattnum)
     806       10706 :                 break;          /* unsafe, multiple distinct attr values */
     807             : 
     808        2382 :             firstdatum = index_getattr(firsttup, key->sk_attno, tupdesc,
     809             :                                        &firstnull);
     810        2382 :             if (key->sk_flags & SK_ISNULL)
     811             :             {
     812             :                 /* IS NULL key */
     813             :                 Assert(key->sk_flags & SK_SEARCHNULL);
     814             : 
     815           0 :                 if (!firstnull)
     816           0 :                     break;      /* unsafe */
     817             : 
     818             :                 /* Safe, IS NULL key satisfied by every tuple */
     819           0 :                 continue;
     820             :             }
     821        2382 :             if (firstnull ||
     822        2382 :                 !DatumGetBool(FunctionCall2Coll(&key->sk_func,
     823             :                                                 key->sk_collation, firstdatum,
     824             :                                                 key->sk_argument)))
     825             :                 break;          /* unsafe */
     826             : 
     827             :             /* Safe, scalar = key satisfied by every tuple */
     828        2382 :             continue;
     829             :         }
     830             : 
     831             :         /* = array key (could be a SAOP array, could be a skip array) */
     832        3492 :         array = &so->arrayKeys[arrayidx++];
     833             :         Assert(array->scan_key == startikey);
     834        3492 :         if (array->num_elems != -1)
     835             :         {
     836             :             /*
     837             :              * SAOP array = key.
     838             :              *
     839             :              * Handle this like we handle scalar = keys (though binary search
     840             :              * for a matching element, to avoid relying on key's sk_argument).
     841             :              */
     842         840 :             if (key->sk_attno >= firstchangingattnum)
     843         840 :                 break;          /* unsafe, multiple distinct attr values */
     844             : 
     845           0 :             firstdatum = index_getattr(firsttup, key->sk_attno, tupdesc,
     846             :                                        &firstnull);
     847           0 :             _bt_binsrch_array_skey(&so->orderProcs[startikey],
     848             :                                    false, NoMovementScanDirection,
     849             :                                    firstdatum, firstnull, array, key,
     850             :                                    &result);
     851           0 :             if (result != 0)
     852           0 :                 break;          /* unsafe */
     853             : 
     854             :             /* Safe, SAOP = key satisfied by every tuple */
     855           0 :             start_past_saop_eq = true;
     856           0 :             continue;
     857             :         }
     858             : 
     859             :         /*
     860             :          * Skip array = key
     861             :          */
     862             :         Assert(key->sk_flags & SK_BT_SKIP);
     863        2652 :         if (array->null_elem)
     864             :         {
     865             :             /*
     866             :              * Non-range skip array = key.
     867             :              *
     868             :              * Safe, non-range skip array "satisfied" by every tuple on page
     869             :              * (safe even when "key->sk_attno > firstchangingattnum").
     870             :              */
     871        2346 :             continue;
     872             :         }
     873             : 
     874             :         /*
     875             :          * Range skip array = key.
     876             :          *
     877             :          * Handle this like we handle scalar inequality keys (but avoid using
     878             :          * key's sk_argument directly, as in the SAOP array case).
     879             :          */
     880         306 :         if (key->sk_attno > firstchangingattnum)  /* >, not >= */
     881          48 :             break;              /* unsafe, preceding attr has multiple
     882             :                                  * distinct values */
     883             : 
     884         258 :         firstdatum = index_getattr(firsttup, key->sk_attno, tupdesc, &firstnull);
     885         258 :         lastdatum = index_getattr(lasttup, key->sk_attno, tupdesc, &lastnull);
     886             : 
     887             :         /* Test firsttup */
     888         258 :         _bt_binsrch_skiparray_skey(false, ForwardScanDirection,
     889             :                                    firstdatum, firstnull, array, key,
     890             :                                    &result);
     891         258 :         if (result != 0)
     892           0 :             break;              /* unsafe */
     893             : 
     894             :         /* Test lasttup */
     895         258 :         _bt_binsrch_skiparray_skey(false, ForwardScanDirection,
     896             :                                    lastdatum, lastnull, array, key,
     897             :                                    &result);
     898         258 :         if (result != 0)
     899          12 :             break;              /* unsafe */
     900             : 
     901             :         /* Safe, range skip array satisfied by every tuple on page */
     902             :     }
     903             : 
     904             :     /*
     905             :      * Use of forcenonrequired is typically undesirable, since it'll force
     906             :      * _bt_readpage caller to read every tuple on the page -- even though, in
     907             :      * general, it might well be possible to end the scan on an earlier tuple.
     908             :      * However, caller must use forcenonrequired when start_past_saop_eq=true,
     909             :      * since the usual required array behavior might fail to roll over to the
     910             :      * SAOP array.
     911             :      *
     912             :      * We always prefer forcenonrequired=true during scans with skip arrays
     913             :      * (except on the first page of each primitive index scan), though -- even
     914             :      * when "startikey == 0".  That way, _bt_advance_array_keys's low-order
     915             :      * key precheck optimization can always be used (unless on the first page
     916             :      * of the scan).  It seems slightly preferable to check more tuples when
     917             :      * that allows us to do significantly less skip array maintenance.
     918             :      */
     919       18496 :     pstate->forcenonrequired = (start_past_saop_eq || so->skipScan);
     920       18496 :     pstate->startikey = startikey;
     921             : 
     922             :     /*
     923             :      * _bt_readpage caller is required to call _bt_checkkeys against page's
     924             :      * finaltup with forcenonrequired=false whenever we initially set
     925             :      * forcenonrequired=true.  That way the scan's arrays will reliably track
     926             :      * its progress through the index's key space.
     927             :      *
     928             :      * We don't expect this when _bt_readpage caller has no finaltup due to
     929             :      * its page being the rightmost (or the leftmost, during backwards scans).
     930             :      * When we see that _bt_readpage has no finaltup, back out of everything.
     931             :      */
     932             :     Assert(!pstate->forcenonrequired || so->numArrayKeys);
     933       18496 :     if (pstate->forcenonrequired && !pstate->finaltup)
     934             :     {
     935         456 :         pstate->forcenonrequired = false;
     936         456 :         pstate->startikey = 0;
     937             :     }
     938             : }
     939             : 
     940             : /*
     941             :  * Test whether caller's finaltup tuple is still before the start of matches
     942             :  * for the current array keys.
     943             :  *
     944             :  * Called at the start of reading a page during a scan with array keys, though
     945             :  * only when the so->scanBehind flag was set on the scan's prior page.
     946             :  *
     947             :  * Returns false if the tuple is still before the start of matches.  When that
     948             :  * happens, caller should cut its losses and start a new primitive index scan.
     949             :  * Otherwise returns true.
     950             :  */
     951             : static bool
     952        2582 : _bt_scanbehind_checkkeys(IndexScanDesc scan, ScanDirection dir,
     953             :                          IndexTuple finaltup)
     954             : {
     955        2582 :     Relation    rel = scan->indexRelation;
     956        2582 :     TupleDesc   tupdesc = RelationGetDescr(rel);
     957        2582 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
     958        2582 :     int         nfinaltupatts = BTreeTupleGetNAtts(finaltup, rel);
     959             :     bool        scanBehind;
     960             : 
     961             :     Assert(so->numArrayKeys);
     962             : 
     963        2582 :     if (_bt_tuple_before_array_skeys(scan, dir, finaltup, tupdesc,
     964             :                                      nfinaltupatts, false, 0, &scanBehind))
     965         412 :         return false;
     966             : 
     967             :     /*
     968             :      * If scanBehind was set, all of the untruncated attribute values from
     969             :      * finaltup that correspond to an array match the array's current element,
     970             :      * but there are other keys associated with truncated suffix attributes.
     971             :      * Array advancement must have incremented the scan's arrays on the
     972             :      * previous page, resulting in a set of array keys that happen to be an
     973             :      * exact match for the current page high key's untruncated prefix values.
     974             :      *
     975             :      * This page definitely doesn't contain tuples that the scan will need to
     976             :      * return.  The next page may or may not contain relevant tuples.  Handle
     977             :      * this by cutting our losses and starting a new primscan.
     978             :      */
     979        2170 :     if (scanBehind)
     980           0 :         return false;
     981             : 
     982        2170 :     if (!so->oppositeDirCheck)
     983        2044 :         return true;
     984             : 
     985         126 :     return _bt_oppodir_checkkeys(scan, dir, finaltup);
     986             : }
     987             : 
     988             : /*
     989             :  * Test whether an indextuple fails to satisfy an inequality required in the
     990             :  * opposite direction only.
     991             :  *
     992             :  * Caller's finaltup tuple is the page high key (for forwards scans), or the
     993             :  * first non-pivot tuple (for backwards scans).  Called during scans with
     994             :  * required array keys and required opposite-direction inequalities.
     995             :  *
     996             :  * Returns false if an inequality scan key required in the opposite direction
     997             :  * only isn't satisfied (and any earlier required scan keys are satisfied).
     998             :  * Otherwise returns true.
     999             :  *
    1000             :  * An unsatisfied inequality required in the opposite direction only might
    1001             :  * well enable skipping over many leaf pages, provided another _bt_first call
    1002             :  * takes place.  This type of unsatisfied inequality won't usually cause
    1003             :  * _bt_checkkeys to stop the scan to consider array advancement/starting a new
    1004             :  * primitive index scan.
    1005             :  */
    1006             : static bool
    1007        4418 : _bt_oppodir_checkkeys(IndexScanDesc scan, ScanDirection dir,
    1008             :                       IndexTuple finaltup)
    1009             : {
    1010        4418 :     Relation    rel = scan->indexRelation;
    1011        4418 :     TupleDesc   tupdesc = RelationGetDescr(rel);
    1012        4418 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1013        4418 :     int         nfinaltupatts = BTreeTupleGetNAtts(finaltup, rel);
    1014             :     bool        continuescan;
    1015        4418 :     ScanDirection flipped = -dir;
    1016        4418 :     int         ikey = 0;
    1017             : 
    1018             :     Assert(so->numArrayKeys);
    1019             : 
    1020        4418 :     _bt_check_compare(scan, flipped, finaltup, nfinaltupatts, tupdesc, false,
    1021             :                       false, &continuescan,
    1022             :                       &ikey);
    1023             : 
    1024        4418 :     if (!continuescan && so->keyData[ikey].sk_strategy != BTEqualStrategyNumber)
    1025           2 :         return false;
    1026             : 
    1027        4416 :     return true;
    1028             : }
    1029             : 
    1030             : /* Save an index item into so->currPos.items[itemIndex] */
    1031             : static void
    1032    48335542 : _bt_saveitem(BTScanOpaque so, int itemIndex,
    1033             :              OffsetNumber offnum, IndexTuple itup)
    1034             : {
    1035    48335542 :     BTScanPosItem *currItem = &so->currPos.items[itemIndex];
    1036             : 
    1037             :     Assert(!BTreeTupleIsPivot(itup) && !BTreeTupleIsPosting(itup));
    1038             : 
    1039    48335542 :     currItem->heapTid = itup->t_tid;
    1040    48335542 :     currItem->indexOffset = offnum;
    1041    48335542 :     if (so->currTuples)
    1042             :     {
    1043    22340972 :         Size        itupsz = IndexTupleSize(itup);
    1044             : 
    1045    22340972 :         currItem->tupleOffset = so->currPos.nextTupleOffset;
    1046    22340972 :         memcpy(so->currTuples + so->currPos.nextTupleOffset, itup, itupsz);
    1047    22340972 :         so->currPos.nextTupleOffset += MAXALIGN(itupsz);
    1048             :     }
    1049    48335542 : }
    1050             : 
    1051             : /*
    1052             :  * Setup state to save TIDs/items from a single posting list tuple.
    1053             :  *
    1054             :  * Saves an index item into so->currPos.items[itemIndex] for TID that is
    1055             :  * returned to scan first.  Second or subsequent TIDs for posting list should
    1056             :  * be saved by calling _bt_savepostingitem().
    1057             :  *
    1058             :  * Returns an offset into tuple storage space that main tuple is stored at if
    1059             :  * needed.
    1060             :  */
    1061             : static int
    1062      578364 : _bt_setuppostingitems(BTScanOpaque so, int itemIndex, OffsetNumber offnum,
    1063             :                       const ItemPointerData *heapTid, IndexTuple itup)
    1064             : {
    1065      578364 :     BTScanPosItem *currItem = &so->currPos.items[itemIndex];
    1066             : 
    1067             :     Assert(BTreeTupleIsPosting(itup));
    1068             : 
    1069      578364 :     currItem->heapTid = *heapTid;
    1070      578364 :     currItem->indexOffset = offnum;
    1071      578364 :     if (so->currTuples)
    1072             :     {
    1073             :         /* Save base IndexTuple (truncate posting list) */
    1074             :         IndexTuple  base;
    1075      166266 :         Size        itupsz = BTreeTupleGetPostingOffset(itup);
    1076             : 
    1077      166266 :         itupsz = MAXALIGN(itupsz);
    1078      166266 :         currItem->tupleOffset = so->currPos.nextTupleOffset;
    1079      166266 :         base = (IndexTuple) (so->currTuples + so->currPos.nextTupleOffset);
    1080      166266 :         memcpy(base, itup, itupsz);
    1081             :         /* Defensively reduce work area index tuple header size */
    1082      166266 :         base->t_info &= ~INDEX_SIZE_MASK;
    1083      166266 :         base->t_info |= itupsz;
    1084      166266 :         so->currPos.nextTupleOffset += itupsz;
    1085             : 
    1086      166266 :         return currItem->tupleOffset;
    1087             :     }
    1088             : 
    1089      412098 :     return 0;
    1090             : }
    1091             : 
    1092             : /*
    1093             :  * Save an index item into so->currPos.items[itemIndex] for current posting
    1094             :  * tuple.
    1095             :  *
    1096             :  * Assumes that _bt_setuppostingitems() has already been called for current
    1097             :  * posting list tuple.  Caller passes its return value as tupleOffset.
    1098             :  */
    1099             : static inline void
    1100     2584458 : _bt_savepostingitem(BTScanOpaque so, int itemIndex, OffsetNumber offnum,
    1101             :                     ItemPointer heapTid, int tupleOffset)
    1102             : {
    1103     2584458 :     BTScanPosItem *currItem = &so->currPos.items[itemIndex];
    1104             : 
    1105     2584458 :     currItem->heapTid = *heapTid;
    1106     2584458 :     currItem->indexOffset = offnum;
    1107             : 
    1108             :     /*
    1109             :      * Have index-only scans return the same base IndexTuple for every TID
    1110             :      * that originates from the same posting list
    1111             :      */
    1112     2584458 :     if (so->currTuples)
    1113      952074 :         currItem->tupleOffset = tupleOffset;
    1114     2584458 : }
    1115             : 
    1116             : #define LOOK_AHEAD_REQUIRED_RECHECKS    3
    1117             : #define LOOK_AHEAD_DEFAULT_DISTANCE     5
    1118             : #define NSKIPADVANCES_THRESHOLD         3
    1119             : 
    1120             : /*
    1121             :  * Test whether an indextuple satisfies all the scankey conditions.
    1122             :  *
    1123             :  * Return true if so, false if not.  If the tuple fails to pass the qual,
    1124             :  * we also determine whether there's any need to continue the scan beyond
    1125             :  * this tuple, and set pstate.continuescan accordingly.  See comments for
    1126             :  * _bt_preprocess_keys() about how this is done.
    1127             :  *
    1128             :  * Forward scan callers can pass a high key tuple in the hopes of having
    1129             :  * us set *continuescan to false, and avoiding an unnecessary visit to
    1130             :  * the page to the right.
    1131             :  *
    1132             :  * Advances the scan's array keys when necessary for arrayKeys=true callers.
    1133             :  * Scans without any array keys must always pass arrayKeys=false.
    1134             :  *
    1135             :  * Also stops and starts primitive index scans for arrayKeys=true callers.
    1136             :  * Scans with array keys are required to set up page state that helps us with
    1137             :  * this.  The page's finaltup tuple (the page high key for a forward scan, or
    1138             :  * the page's first non-pivot tuple for a backward scan) must be set in
    1139             :  * pstate.finaltup ahead of the first call here for the page.  Set this to
    1140             :  * NULL for rightmost page (or the leftmost page for backwards scans).
    1141             :  *
    1142             :  * scan: index scan descriptor (containing a search-type scankey)
    1143             :  * pstate: page level input and output parameters
    1144             :  * arrayKeys: should we advance the scan's array keys if necessary?
    1145             :  * tuple: index tuple to test
    1146             :  * tupnatts: number of attributes in tupnatts (high key may be truncated)
    1147             :  */
    1148             : static bool
    1149    62368124 : _bt_checkkeys(IndexScanDesc scan, BTReadPageState *pstate, bool arrayKeys,
    1150             :               IndexTuple tuple, int tupnatts)
    1151             : {
    1152    62368124 :     TupleDesc   tupdesc = RelationGetDescr(scan->indexRelation);
    1153    62368124 :     BTScanOpaque so PG_USED_FOR_ASSERTS_ONLY = (BTScanOpaque) scan->opaque;
    1154    62368124 :     ScanDirection dir = pstate->dir;
    1155    62368124 :     int         ikey = pstate->startikey;
    1156             :     bool        res;
    1157             : 
    1158             :     Assert(BTreeTupleGetNAtts(tuple, scan->indexRelation) == tupnatts);
    1159             :     Assert(!so->needPrimScan && !so->scanBehind && !so->oppositeDirCheck);
    1160             :     Assert(arrayKeys || so->numArrayKeys == 0);
    1161             : 
    1162    62368124 :     res = _bt_check_compare(scan, dir, tuple, tupnatts, tupdesc, arrayKeys,
    1163    62368124 :                             pstate->forcenonrequired, &pstate->continuescan,
    1164             :                             &ikey);
    1165             : 
    1166             :     /*
    1167             :      * If _bt_check_compare relied on the pstate.startikey optimization, call
    1168             :      * again (in assert-enabled builds) to verify it didn't affect our answer.
    1169             :      *
    1170             :      * Note: we can't do this when !pstate.forcenonrequired, since any arrays
    1171             :      * before pstate.startikey won't have advanced on this page at all.
    1172             :      */
    1173             :     Assert(!pstate->forcenonrequired || arrayKeys);
    1174             : #ifdef USE_ASSERT_CHECKING
    1175             :     if (pstate->startikey > 0 && !pstate->forcenonrequired)
    1176             :     {
    1177             :         bool        dres,
    1178             :                     dcontinuescan;
    1179             :         int         dikey = 0;
    1180             : 
    1181             :         /* Pass arrayKeys=false to avoid array side-effects */
    1182             :         dres = _bt_check_compare(scan, dir, tuple, tupnatts, tupdesc, false,
    1183             :                                  pstate->forcenonrequired, &dcontinuescan,
    1184             :                                  &dikey);
    1185             :         Assert(res == dres);
    1186             :         Assert(pstate->continuescan == dcontinuescan);
    1187             : 
    1188             :         /*
    1189             :          * Should also get the same ikey result.  We need a slightly weaker
    1190             :          * assertion during arrayKeys calls, since they might be using an
    1191             :          * array that couldn't be marked required during preprocessing.
    1192             :          */
    1193             :         Assert(arrayKeys || ikey == dikey);
    1194             :         Assert(ikey <= dikey);
    1195             :     }
    1196             : #endif
    1197             : 
    1198             :     /*
    1199             :      * Only one _bt_check_compare call is required in the common case where
    1200             :      * there are no equality strategy array scan keys.  Otherwise we can only
    1201             :      * accept _bt_check_compare's answer unreservedly when it didn't set
    1202             :      * pstate.continuescan=false.
    1203             :      */
    1204    62368124 :     if (!arrayKeys || pstate->continuescan)
    1205    62135048 :         return res;
    1206             : 
    1207             :     /*
    1208             :      * _bt_check_compare call set continuescan=false in the presence of
    1209             :      * equality type array keys.  This could mean that the tuple is just past
    1210             :      * the end of matches for the current array keys.
    1211             :      *
    1212             :      * It's also possible that the scan is still _before_ the _start_ of
    1213             :      * tuples matching the current set of array keys.  Check for that first.
    1214             :      */
    1215             :     Assert(!pstate->forcenonrequired);
    1216      233076 :     if (_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc, tupnatts, true,
    1217             :                                      ikey, NULL))
    1218             :     {
    1219             :         /* Override _bt_check_compare, continue primitive scan */
    1220       41658 :         pstate->continuescan = true;
    1221             : 
    1222             :         /*
    1223             :          * We will end up here repeatedly given a group of tuples > the
    1224             :          * previous array keys and < the now-current keys (for a backwards
    1225             :          * scan it's just the same, though the operators swap positions).
    1226             :          *
    1227             :          * We must avoid allowing this linear search process to scan very many
    1228             :          * tuples from well before the start of tuples matching the current
    1229             :          * array keys (or from well before the point where we'll once again
    1230             :          * have to advance the scan's array keys).
    1231             :          *
    1232             :          * We keep the overhead under control by speculatively "looking ahead"
    1233             :          * to later still-unscanned items from this same leaf page.  We'll
    1234             :          * only attempt this once the number of tuples that the linear search
    1235             :          * process has examined starts to get out of hand.
    1236             :          */
    1237       41658 :         pstate->rechecks++;
    1238       41658 :         if (pstate->rechecks >= LOOK_AHEAD_REQUIRED_RECHECKS)
    1239             :         {
    1240             :             /* See if we should skip ahead within the current leaf page */
    1241       12168 :             _bt_checkkeys_look_ahead(scan, pstate, tupnatts, tupdesc);
    1242             : 
    1243             :             /*
    1244             :              * Might have set pstate.skip to a later page offset.  When that
    1245             :              * happens then _bt_readpage caller will inexpensively skip ahead
    1246             :              * to a later tuple from the same page (the one just after the
    1247             :              * tuple we successfully "looked ahead" to).
    1248             :              */
    1249             :         }
    1250             : 
    1251             :         /* This indextuple doesn't match the current qual, in any case */
    1252       41658 :         return false;
    1253             :     }
    1254             : 
    1255             :     /*
    1256             :      * Caller's tuple is >= the current set of array keys and other equality
    1257             :      * constraint scan keys (or <= if this is a backwards scan).  It's now
    1258             :      * clear that we _must_ advance any required array keys in lockstep with
    1259             :      * the scan.
    1260             :      */
    1261      191418 :     return _bt_advance_array_keys(scan, pstate, tuple, tupnatts, tupdesc,
    1262             :                                   ikey, true);
    1263             : }
    1264             : 
    1265             : /*
    1266             :  * Test whether an indextuple satisfies current scan condition.
    1267             :  *
    1268             :  * Return true if so, false if not.  If not, also sets *continuescan to false
    1269             :  * when it's also not possible for any later tuples to pass the current qual
    1270             :  * (with the scan's current set of array keys, in the current scan direction),
    1271             :  * in addition to setting *ikey to the so->keyData[] subscript/offset for the
    1272             :  * unsatisfied scan key (needed when caller must consider advancing the scan's
    1273             :  * array keys).
    1274             :  *
    1275             :  * This is a subroutine for _bt_checkkeys.  We provisionally assume that
    1276             :  * reaching the end of the current set of required keys (in particular the
    1277             :  * current required array keys) ends the ongoing (primitive) index scan.
    1278             :  * Callers without array keys should just end the scan right away when they
    1279             :  * find that continuescan has been set to false here by us.  Things are more
    1280             :  * complicated for callers with array keys.
    1281             :  *
    1282             :  * Callers with array keys must first consider advancing the arrays when
    1283             :  * continuescan has been set to false here by us.  They must then consider if
    1284             :  * it really does make sense to end the current (primitive) index scan, in
    1285             :  * light of everything that is known at that point.  (In general when we set
    1286             :  * continuescan=false for these callers it must be treated as provisional.)
    1287             :  *
    1288             :  * We deal with advancing unsatisfied non-required arrays directly, though.
    1289             :  * This is safe, since by definition non-required keys can't end the scan.
    1290             :  * This is just how we determine if non-required arrays are just unsatisfied
    1291             :  * by the current array key, or if they're truly unsatisfied (that is, if
    1292             :  * they're unsatisfied by every possible array key).
    1293             :  *
    1294             :  * Pass advancenonrequired=false to avoid all array related side effects.
    1295             :  * This allows _bt_advance_array_keys caller to avoid infinite recursion.
    1296             :  *
    1297             :  * Pass forcenonrequired=true to instruct us to treat all keys as nonrequired.
    1298             :  * This is used to make it safe to temporarily stop properly maintaining the
    1299             :  * scan's required arrays.  _bt_checkkeys caller (_bt_readpage, actually)
    1300             :  * determines a prefix of keys that must satisfy every possible corresponding
    1301             :  * index attribute value from its page, which is passed to us via *ikey arg
    1302             :  * (this is the first key that might be unsatisfied by tuples on the page).
    1303             :  * Obviously, we won't maintain any array keys from before *ikey, so it's
    1304             :  * quite possible for such arrays to "fall behind" the index's keyspace.
    1305             :  * Caller will need to "catch up" by passing forcenonrequired=true (alongside
    1306             :  * an *ikey=0) once the page's finaltup is reached.
    1307             :  *
    1308             :  * Note: it's safe to pass an *ikey > 0 with forcenonrequired=false, but only
    1309             :  * when caller determines that it won't affect array maintenance.
    1310             :  */
    1311             : static bool
    1312    62428052 : _bt_check_compare(IndexScanDesc scan, ScanDirection dir,
    1313             :                   IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
    1314             :                   bool advancenonrequired, bool forcenonrequired,
    1315             :                   bool *continuescan, int *ikey)
    1316             : {
    1317    62428052 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1318             : 
    1319    62428052 :     *continuescan = true;       /* default assumption */
    1320             : 
    1321   120255126 :     for (; *ikey < so->numberOfKeys; (*ikey)++)
    1322             :     {
    1323    71284642 :         ScanKey     key = so->keyData + *ikey;
    1324             :         Datum       datum;
    1325             :         bool        isNull;
    1326    71284642 :         bool        requiredSameDir = false,
    1327    71284642 :                     requiredOppositeDirOnly = false;
    1328             : 
    1329             :         /*
    1330             :          * Check if the key is required in the current scan direction, in the
    1331             :          * opposite scan direction _only_, or in neither direction (except
    1332             :          * when we're forced to treat all scan keys as nonrequired)
    1333             :          */
    1334    71284642 :         if (forcenonrequired)
    1335             :         {
    1336             :             /* treating scan's keys as non-required */
    1337             :         }
    1338    70861040 :         else if (((key->sk_flags & SK_BT_REQFWD) && ScanDirectionIsForward(dir)) ||
    1339    15003254 :                  ((key->sk_flags & SK_BT_REQBKWD) && ScanDirectionIsBackward(dir)))
    1340    55882530 :             requiredSameDir = true;
    1341    14978510 :         else if (((key->sk_flags & SK_BT_REQFWD) && ScanDirectionIsBackward(dir)) ||
    1342     6245388 :                  ((key->sk_flags & SK_BT_REQBKWD) && ScanDirectionIsForward(dir)))
    1343    14978510 :             requiredOppositeDirOnly = true;
    1344             : 
    1345    71284642 :         if (key->sk_attno > tupnatts)
    1346             :         {
    1347             :             /*
    1348             :              * This attribute is truncated (must be high key).  The value for
    1349             :              * this attribute in the first non-pivot tuple on the page to the
    1350             :              * right could be any possible value.  Assume that truncated
    1351             :              * attribute passes the qual.
    1352             :              */
    1353             :             Assert(BTreeTupleIsPivot(tuple));
    1354    19048320 :             continue;
    1355             :         }
    1356             : 
    1357             :         /*
    1358             :          * A skip array scan key uses one of several sentinel values.  We just
    1359             :          * fall back on _bt_tuple_before_array_skeys when we see such a value.
    1360             :          */
    1361    71282350 :         if (key->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL |
    1362             :                              SK_BT_NEXT | SK_BT_PRIOR))
    1363             :         {
    1364             :             Assert(key->sk_flags & SK_SEARCHARRAY);
    1365             :             Assert(key->sk_flags & SK_BT_SKIP);
    1366             :             Assert(requiredSameDir || forcenonrequired);
    1367             : 
    1368             :             /*
    1369             :              * Cannot fall back on _bt_tuple_before_array_skeys when we're
    1370             :              * treating the scan's keys as nonrequired, though.  Just handle
    1371             :              * this like any other non-required equality-type array key.
    1372             :              */
    1373       35850 :             if (forcenonrequired)
    1374    13457568 :                 return _bt_advance_array_keys(scan, NULL, tuple, tupnatts,
    1375             :                                               tupdesc, *ikey, false);
    1376             : 
    1377       33822 :             *continuescan = false;
    1378       33822 :             return false;
    1379             :         }
    1380             : 
    1381             :         /* row-comparison keys need special processing */
    1382    71246500 :         if (key->sk_flags & SK_ROW_HEADER)
    1383             :         {
    1384        2454 :             if (_bt_check_rowcompare(key, tuple, tupnatts, tupdesc, dir,
    1385             :                                      forcenonrequired, continuescan))
    1386        2388 :                 continue;
    1387          66 :             return false;
    1388             :         }
    1389             : 
    1390    71244046 :         datum = index_getattr(tuple,
    1391    71244046 :                               key->sk_attno,
    1392             :                               tupdesc,
    1393             :                               &isNull);
    1394             : 
    1395    71244046 :         if (key->sk_flags & SK_ISNULL)
    1396             :         {
    1397             :             /* Handle IS NULL/NOT NULL tests */
    1398    19061412 :             if (key->sk_flags & SK_SEARCHNULL)
    1399             :             {
    1400       18128 :                 if (isNull)
    1401         428 :                     continue;   /* tuple satisfies this qual */
    1402             :             }
    1403             :             else
    1404             :             {
    1405             :                 Assert(key->sk_flags & SK_SEARCHNOTNULL);
    1406             :                 Assert(!(key->sk_flags & SK_BT_SKIP));
    1407    19043284 :                 if (!isNull)
    1408    19043212 :                     continue;   /* tuple satisfies this qual */
    1409             :             }
    1410             : 
    1411             :             /*
    1412             :              * Tuple fails this qual.  If it's a required qual for the current
    1413             :              * scan direction, then we can conclude no further tuples will
    1414             :              * pass, either.
    1415             :              */
    1416       17772 :             if (requiredSameDir)
    1417         204 :                 *continuescan = false;
    1418       17568 :             else if (unlikely(key->sk_flags & SK_BT_SKIP))
    1419             :             {
    1420             :                 /*
    1421             :                  * If we're treating scan keys as nonrequired, and encounter a
    1422             :                  * skip array scan key whose current element is NULL, then it
    1423             :                  * must be a non-range skip array.  It must be satisfied, so
    1424             :                  * there's no need to call _bt_advance_array_keys to check.
    1425             :                  */
    1426             :                 Assert(forcenonrequired && *ikey > 0);
    1427           0 :                 continue;
    1428             :             }
    1429             : 
    1430             :             /*
    1431             :              * This indextuple doesn't match the qual.
    1432             :              */
    1433       17772 :             return false;
    1434             :         }
    1435             : 
    1436    52182634 :         if (isNull)
    1437             :         {
    1438             :             /*
    1439             :              * Scalar scan key isn't satisfied by NULL tuple value.
    1440             :              *
    1441             :              * If we're treating scan keys as nonrequired, and key is for a
    1442             :              * skip array, then we must attempt to advance the array to NULL
    1443             :              * (if we're successful then the tuple might match the qual).
    1444             :              */
    1445         228 :             if (unlikely(forcenonrequired && key->sk_flags & SK_BT_SKIP))
    1446           0 :                 return _bt_advance_array_keys(scan, NULL, tuple, tupnatts,
    1447             :                                               tupdesc, *ikey, false);
    1448             : 
    1449         228 :             if (key->sk_flags & SK_BT_NULLS_FIRST)
    1450             :             {
    1451             :                 /*
    1452             :                  * Since NULLs are sorted before non-NULLs, we know we have
    1453             :                  * reached the lower limit of the range of values for this
    1454             :                  * index attr.  On a backward scan, we can stop if this qual
    1455             :                  * is one of the "must match" subset.  We can stop regardless
    1456             :                  * of whether the qual is > or <, so long as it's required,
    1457             :                  * because it's not possible for any future tuples to pass. On
    1458             :                  * a forward scan, however, we must keep going, because we may
    1459             :                  * have initially positioned to the start of the index.
    1460             :                  * (_bt_advance_array_keys also relies on this behavior during
    1461             :                  * forward scans.)
    1462             :                  */
    1463           0 :                 if ((requiredSameDir || requiredOppositeDirOnly) &&
    1464             :                     ScanDirectionIsBackward(dir))
    1465           0 :                     *continuescan = false;
    1466             :             }
    1467             :             else
    1468             :             {
    1469             :                 /*
    1470             :                  * Since NULLs are sorted after non-NULLs, we know we have
    1471             :                  * reached the upper limit of the range of values for this
    1472             :                  * index attr.  On a forward scan, we can stop if this qual is
    1473             :                  * one of the "must match" subset.  We can stop regardless of
    1474             :                  * whether the qual is > or <, so long as it's required,
    1475             :                  * because it's not possible for any future tuples to pass. On
    1476             :                  * a backward scan, however, we must keep going, because we
    1477             :                  * may have initially positioned to the end of the index.
    1478             :                  * (_bt_advance_array_keys also relies on this behavior during
    1479             :                  * backward scans.)
    1480             :                  */
    1481         228 :                 if ((requiredSameDir || requiredOppositeDirOnly) &&
    1482             :                     ScanDirectionIsForward(dir))
    1483         222 :                     *continuescan = false;
    1484             :             }
    1485             : 
    1486             :             /*
    1487             :              * This indextuple doesn't match the qual.
    1488             :              */
    1489         228 :             return false;
    1490             :         }
    1491             : 
    1492    52182406 :         if (!DatumGetBool(FunctionCall2Coll(&key->sk_func, key->sk_collation,
    1493             :                                             datum, key->sk_argument)))
    1494             :         {
    1495             :             /*
    1496             :              * Tuple fails this qual.  If it's a required qual for the current
    1497             :              * scan direction, then we can conclude no further tuples will
    1498             :              * pass, either.
    1499             :              */
    1500    13403652 :             if (requiredSameDir)
    1501    13029806 :                 *continuescan = false;
    1502             : 
    1503             :             /*
    1504             :              * If this is a non-required equality-type array key, the tuple
    1505             :              * needs to be checked against every possible array key.  Handle
    1506             :              * this by "advancing" the scan key's array to a matching value
    1507             :              * (if we're successful then the tuple might match the qual).
    1508             :              */
    1509      373846 :             else if (advancenonrequired &&
    1510      366412 :                      key->sk_strategy == BTEqualStrategyNumber &&
    1511      290600 :                      (key->sk_flags & SK_SEARCHARRAY))
    1512        6498 :                 return _bt_advance_array_keys(scan, NULL, tuple, tupnatts,
    1513             :                                               tupdesc, *ikey, false);
    1514             : 
    1515             :             /*
    1516             :              * This indextuple doesn't match the qual.
    1517             :              */
    1518    13397154 :             return false;
    1519             :         }
    1520             :     }
    1521             : 
    1522             :     /* If we get here, the tuple passes all index quals. */
    1523    48970484 :     return true;
    1524             : }
    1525             : 
    1526             : /*
    1527             :  * Test whether an indextuple satisfies a row-comparison scan condition.
    1528             :  *
    1529             :  * Return true if so, false if not.  If not, also clear *continuescan if
    1530             :  * it's not possible for any future tuples in the current scan direction
    1531             :  * to pass the qual.
    1532             :  *
    1533             :  * This is a subroutine for _bt_checkkeys/_bt_check_compare.  Caller passes us
    1534             :  * a row compare header key taken from so->keyData[].
    1535             :  *
    1536             :  * Row value comparisons can be described in terms of logical expansions that
    1537             :  * use only scalar operators.  Consider the following example row comparison:
    1538             :  *
    1539             :  * "(a, b, c) > (7, 'bar', 62)"
    1540             :  *
    1541             :  * This can be evaluated as:
    1542             :  *
    1543             :  * "(a = 7 AND b = 'bar' AND c > 62) OR (a = 7 AND b > 'bar') OR (a > 7)".
    1544             :  *
    1545             :  * Notice that this condition is satisfied by _all_ rows that satisfy "a > 7",
    1546             :  * and by a subset of all rows that satisfy "a >= 7" (possibly all such rows).
    1547             :  * It _can't_ be satisfied by other rows (where "a < 7" or where "a IS NULL").
    1548             :  * A row comparison header key can therefore often be treated as if it was a
    1549             :  * simple scalar inequality on the row compare's most significant column.
    1550             :  * (For example, _bt_advance_array_keys and most preprocessing routines treat
    1551             :  * row compares like any other same-strategy inequality on the same column.)
    1552             :  *
    1553             :  * Things get more complicated for our row compare given a row where "a = 7".
    1554             :  * Note that a row compare isn't necessarily satisfied by _every_ tuple that
    1555             :  * appears between the first and last satisfied tuple returned by the scan,
    1556             :  * due to the way that its lower-order subkeys are only conditionally applied.
    1557             :  * A forwards scan that uses our example qual might initially return a tuple
    1558             :  * "(a, b, c) = (7, 'zebra', 54)".  But it won't subsequently return a tuple
    1559             :  * "(a, b, c) = (7, NULL, 1)" located to the right of the first matching tuple
    1560             :  * (assume that "b" was declared NULLS LAST here).  The scan will only return
    1561             :  * additional matches upon reaching tuples where "a > 7".  If you rereview our
    1562             :  * example row comparison's logical expansion, you'll understand why this is.
    1563             :  * (Here we assume that all subkeys could be marked required, guaranteeing
    1564             :  * that row comparison order matches index order.  This is the common case.)
    1565             :  *
    1566             :  * Note that a row comparison header key behaves _exactly_ the same as a
    1567             :  * similar scalar inequality key on the row's most significant column once the
    1568             :  * scan reaches the point where it no longer needs to evaluate lower-order
    1569             :  * subkeys (or before the point where it starts needing to evaluate them).
    1570             :  * For example, once a forwards scan that uses our example qual reaches the
    1571             :  * first tuple "a > 7", we'll behave in just the same way as our caller would
    1572             :  * behave with a similar scalar inequality "a > 7" for the remainder of the
    1573             :  * scan (assuming that the scan never changes direction/never goes backwards).
    1574             :  * We'll even set continuescan=false according to exactly the same rules as
    1575             :  * the ones our caller applies with simple scalar inequalities, including the
    1576             :  * rules it applies when NULL tuple values don't satisfy an inequality qual.
    1577             :  */
    1578             : static bool
    1579        2454 : _bt_check_rowcompare(ScanKey header, IndexTuple tuple, int tupnatts,
    1580             :                      TupleDesc tupdesc, ScanDirection dir,
    1581             :                      bool forcenonrequired, bool *continuescan)
    1582             : {
    1583        2454 :     ScanKey     subkey = (ScanKey) DatumGetPointer(header->sk_argument);
    1584        2454 :     int32       cmpresult = 0;
    1585             :     bool        result;
    1586             : 
    1587             :     /* First subkey should be same as the header says */
    1588             :     Assert(header->sk_flags & SK_ROW_HEADER);
    1589             :     Assert(subkey->sk_attno == header->sk_attno);
    1590             :     Assert(subkey->sk_strategy == header->sk_strategy);
    1591             : 
    1592             :     /* Loop over columns of the row condition */
    1593             :     for (;;)
    1594         240 :     {
    1595             :         Datum       datum;
    1596             :         bool        isNull;
    1597             : 
    1598             :         Assert(subkey->sk_flags & SK_ROW_MEMBER);
    1599             : 
    1600             :         /* When a NULL row member is compared, the row never matches */
    1601        2694 :         if (subkey->sk_flags & SK_ISNULL)
    1602             :         {
    1603             :             /*
    1604             :              * Unlike the simple-scankey case, this isn't a disallowed case
    1605             :              * (except when it's the first row element that has the NULL arg).
    1606             :              * But it can never match.  If all the earlier row comparison
    1607             :              * columns are required for the scan direction, we can stop the
    1608             :              * scan, because there can't be another tuple that will succeed.
    1609             :              */
    1610             :             Assert(subkey != (ScanKey) DatumGetPointer(header->sk_argument));
    1611          12 :             subkey--;
    1612          12 :             if (forcenonrequired)
    1613             :             {
    1614             :                 /* treating scan's keys as non-required */
    1615             :             }
    1616          12 :             else if ((subkey->sk_flags & SK_BT_REQFWD) &&
    1617             :                      ScanDirectionIsForward(dir))
    1618           6 :                 *continuescan = false;
    1619           6 :             else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
    1620             :                      ScanDirectionIsBackward(dir))
    1621           6 :                 *continuescan = false;
    1622          66 :             return false;
    1623             :         }
    1624             : 
    1625        2682 :         if (subkey->sk_attno > tupnatts)
    1626             :         {
    1627             :             /*
    1628             :              * This attribute is truncated (must be high key).  The value for
    1629             :              * this attribute in the first non-pivot tuple on the page to the
    1630             :              * right could be any possible value.  Assume that truncated
    1631             :              * attribute passes the qual.
    1632             :              */
    1633             :             Assert(BTreeTupleIsPivot(tuple));
    1634           6 :             return true;
    1635             :         }
    1636             : 
    1637        2676 :         datum = index_getattr(tuple,
    1638        2676 :                               subkey->sk_attno,
    1639             :                               tupdesc,
    1640             :                               &isNull);
    1641             : 
    1642        2676 :         if (isNull)
    1643             :         {
    1644             :             int         reqflags;
    1645             : 
    1646          48 :             if (forcenonrequired)
    1647             :             {
    1648             :                 /* treating scan's keys as non-required */
    1649             :             }
    1650          48 :             else if (subkey->sk_flags & SK_BT_NULLS_FIRST)
    1651             :             {
    1652             :                 /*
    1653             :                  * Since NULLs are sorted before non-NULLs, we know we have
    1654             :                  * reached the lower limit of the range of values for this
    1655             :                  * index attr.  On a backward scan, we can stop if this qual
    1656             :                  * is one of the "must match" subset.  However, on a forwards
    1657             :                  * scan, we must keep going, because we may have initially
    1658             :                  * positioned to the start of the index.
    1659             :                  *
    1660             :                  * All required NULLS FIRST > row members can use NULL tuple
    1661             :                  * values to end backwards scans, just like with other values.
    1662             :                  * A qual "WHERE (a, b, c) > (9, 42, 'foo')" can terminate a
    1663             :                  * backwards scan upon reaching the index's rightmost "a = 9"
    1664             :                  * tuple whose "b" column contains a NULL (if not sooner).
    1665             :                  * Since "b" is NULLS FIRST, we can treat its NULLs as "<" 42.
    1666             :                  */
    1667           0 :                 reqflags = SK_BT_REQBKWD;
    1668             : 
    1669             :                 /*
    1670             :                  * When a most significant required NULLS FIRST < row compare
    1671             :                  * member sees NULL tuple values during a backwards scan, it
    1672             :                  * signals the end of matches for the whole row compare/scan.
    1673             :                  * A qual "WHERE (a, b, c) < (9, 42, 'foo')" will terminate a
    1674             :                  * backwards scan upon reaching the rightmost tuple whose "a"
    1675             :                  * column has a NULL.  The "a" NULL value is "<" 9, and yet
    1676             :                  * our < row compare will still end the scan.  (This isn't
    1677             :                  * safe with later/lower-order row members.  Notice that it
    1678             :                  * can only happen with an "a" NULL some time after the scan
    1679             :                  * completely stops needing to use its "b" and "c" members.)
    1680             :                  */
    1681           0 :                 if (subkey == (ScanKey) DatumGetPointer(header->sk_argument))
    1682           0 :                     reqflags |= SK_BT_REQFWD;   /* safe, first row member */
    1683             : 
    1684           0 :                 if ((subkey->sk_flags & reqflags) &&
    1685             :                     ScanDirectionIsBackward(dir))
    1686           0 :                     *continuescan = false;
    1687             :             }
    1688             :             else
    1689             :             {
    1690             :                 /*
    1691             :                  * Since NULLs are sorted after non-NULLs, we know we have
    1692             :                  * reached the upper limit of the range of values for this
    1693             :                  * index attr.  On a forward scan, we can stop if this qual is
    1694             :                  * one of the "must match" subset.  However, on a backward
    1695             :                  * scan, we must keep going, because we may have initially
    1696             :                  * positioned to the end of the index.
    1697             :                  *
    1698             :                  * All required NULLS LAST < row members can use NULL tuple
    1699             :                  * values to end forwards scans, just like with other values.
    1700             :                  * A qual "WHERE (a, b, c) < (9, 42, 'foo')" can terminate a
    1701             :                  * forwards scan upon reaching the index's leftmost "a = 9"
    1702             :                  * tuple whose "b" column contains a NULL (if not sooner).
    1703             :                  * Since "b" is NULLS LAST, we can treat its NULLs as ">" 42.
    1704             :                  */
    1705          48 :                 reqflags = SK_BT_REQFWD;
    1706             : 
    1707             :                 /*
    1708             :                  * When a most significant required NULLS LAST > row compare
    1709             :                  * member sees NULL tuple values during a forwards scan, it
    1710             :                  * signals the end of matches for the whole row compare/scan.
    1711             :                  * A qual "WHERE (a, b, c) > (9, 42, 'foo')" will terminate a
    1712             :                  * forwards scan upon reaching the leftmost tuple whose "a"
    1713             :                  * column has a NULL.  The "a" NULL value is ">" 9, and yet
    1714             :                  * our > row compare will end the scan.  (This isn't safe with
    1715             :                  * later/lower-order row members.  Notice that it can only
    1716             :                  * happen with an "a" NULL some time after the scan completely
    1717             :                  * stops needing to use its "b" and "c" members.)
    1718             :                  */
    1719          48 :                 if (subkey == (ScanKey) DatumGetPointer(header->sk_argument))
    1720           0 :                     reqflags |= SK_BT_REQBKWD;  /* safe, first row member */
    1721             : 
    1722          48 :                 if ((subkey->sk_flags & reqflags) &&
    1723             :                     ScanDirectionIsForward(dir))
    1724           0 :                     *continuescan = false;
    1725             :             }
    1726             : 
    1727             :             /*
    1728             :              * In any case, this indextuple doesn't match the qual.
    1729             :              */
    1730          48 :             return false;
    1731             :         }
    1732             : 
    1733             :         /* Perform the test --- three-way comparison not bool operator */
    1734        2628 :         cmpresult = DatumGetInt32(FunctionCall2Coll(&subkey->sk_func,
    1735             :                                                     subkey->sk_collation,
    1736             :                                                     datum,
    1737             :                                                     subkey->sk_argument));
    1738             : 
    1739        2628 :         if (subkey->sk_flags & SK_BT_DESC)
    1740           0 :             INVERT_COMPARE_RESULT(cmpresult);
    1741             : 
    1742             :         /* Done comparing if unequal, else advance to next column */
    1743        2628 :         if (cmpresult != 0)
    1744        2388 :             break;
    1745             : 
    1746         240 :         if (subkey->sk_flags & SK_ROW_END)
    1747           0 :             break;
    1748         240 :         subkey++;
    1749             :     }
    1750             : 
    1751             :     /* Final subkey/column determines if row compare is satisfied */
    1752        2388 :     result = _bt_rowcompare_cmpresult(subkey, cmpresult);
    1753             : 
    1754        2388 :     if (!result && !forcenonrequired)
    1755             :     {
    1756             :         /*
    1757             :          * Tuple fails this qual.  If it's a required qual for the current
    1758             :          * scan direction, then we can conclude no further tuples will pass,
    1759             :          * either.  Note we have to look at the deciding column, not
    1760             :          * necessarily the first or last column of the row condition.
    1761             :          */
    1762           6 :         if ((subkey->sk_flags & SK_BT_REQFWD) &&
    1763             :             ScanDirectionIsForward(dir))
    1764           6 :             *continuescan = false;
    1765           0 :         else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
    1766             :                  ScanDirectionIsBackward(dir))
    1767           0 :             *continuescan = false;
    1768             :     }
    1769             : 
    1770        2388 :     return result;
    1771             : }
    1772             : 
    1773             : /*
    1774             :  * Call here when a row compare member returns a non-zero result, or with the
    1775             :  * result for the final ROW_END row compare member (no matter the cmpresult).
    1776             :  *
    1777             :  * cmpresult indicates the overall result of the row comparison (must already
    1778             :  * be commuted for DESC subkeys), and subkey is the deciding row member.
    1779             :  */
    1780             : static bool
    1781        2388 : _bt_rowcompare_cmpresult(ScanKey subkey, int cmpresult)
    1782             : {
    1783             :     bool        satisfied;
    1784             : 
    1785             :     Assert(subkey->sk_flags & SK_ROW_MEMBER);
    1786             : 
    1787        2388 :     switch (subkey->sk_strategy)
    1788             :     {
    1789         186 :         case BTLessStrategyNumber:
    1790         186 :             satisfied = (cmpresult < 0);
    1791         186 :             break;
    1792        1584 :         case BTLessEqualStrategyNumber:
    1793        1584 :             satisfied = (cmpresult <= 0);
    1794        1584 :             break;
    1795         246 :         case BTGreaterEqualStrategyNumber:
    1796         246 :             satisfied = (cmpresult >= 0);
    1797         246 :             break;
    1798         372 :         case BTGreaterStrategyNumber:
    1799         372 :             satisfied = (cmpresult > 0);
    1800         372 :             break;
    1801           0 :         default:
    1802             :             /* EQ and NE cases aren't allowed here */
    1803           0 :             elog(ERROR, "unexpected strategy number %d", subkey->sk_strategy);
    1804             :             satisfied = false;  /* keep compiler quiet */
    1805             :             break;
    1806             :     }
    1807             : 
    1808        2388 :     return satisfied;
    1809             : }
    1810             : 
    1811             : /*
    1812             :  * _bt_tuple_before_array_skeys() -- too early to advance required arrays?
    1813             :  *
    1814             :  * We always compare the tuple using the current array keys (which we assume
    1815             :  * are already set in so->keyData[]).  readpagetup indicates if tuple is the
    1816             :  * scan's current _bt_readpage-wise tuple.
    1817             :  *
    1818             :  * readpagetup callers must only call here when _bt_check_compare already set
    1819             :  * continuescan=false.  We help these callers deal with _bt_check_compare's
    1820             :  * inability to distinguish between the < and > cases (it uses equality
    1821             :  * operator scan keys, whereas we use 3-way ORDER procs).  These callers pass
    1822             :  * a _bt_check_compare-set sktrig value that indicates which scan key
    1823             :  * triggered the call (!readpagetup callers just pass us sktrig=0 instead).
    1824             :  * This information allows us to avoid wastefully checking earlier scan keys
    1825             :  * that were already deemed to have been satisfied inside _bt_check_compare.
    1826             :  *
    1827             :  * Returns false when caller's tuple is >= the current required equality scan
    1828             :  * keys (or <=, in the case of backwards scans).  This happens to readpagetup
    1829             :  * callers when the scan has reached the point of needing its array keys
    1830             :  * advanced; caller will need to advance required and non-required arrays at
    1831             :  * scan key offsets >= sktrig, plus scan keys < sktrig iff sktrig rolls over.
    1832             :  * (When we return false to readpagetup callers, tuple can only be == current
    1833             :  * required equality scan keys when caller's sktrig indicates that the arrays
    1834             :  * need to be advanced due to an unsatisfied required inequality key trigger.)
    1835             :  *
    1836             :  * Returns true when caller passes a tuple that is < the current set of
    1837             :  * equality keys for the most significant non-equal required scan key/column
    1838             :  * (or > the keys, during backwards scans).  This happens to readpagetup
    1839             :  * callers when tuple is still before the start of matches for the scan's
    1840             :  * required equality strategy scan keys.  (sktrig can't have indicated that an
    1841             :  * inequality strategy scan key wasn't satisfied in _bt_check_compare when we
    1842             :  * return true.  In fact, we automatically return false when passed such an
    1843             :  * inequality sktrig by readpagetup callers -- _bt_check_compare's initial
    1844             :  * continuescan=false doesn't really need to be confirmed here by us.)
    1845             :  *
    1846             :  * !readpagetup callers optionally pass us *scanBehind, which tracks whether
    1847             :  * any missing truncated attributes might have affected array advancement
    1848             :  * (compared to what would happen if it was shown the first non-pivot tuple on
    1849             :  * the page to the right of caller's finaltup/high key tuple instead).  It's
    1850             :  * only possible that we'll set *scanBehind to true when caller passes us a
    1851             :  * pivot tuple (with truncated -inf attributes) that we return false for.
    1852             :  */
    1853             : static bool
    1854      329350 : _bt_tuple_before_array_skeys(IndexScanDesc scan, ScanDirection dir,
    1855             :                              IndexTuple tuple, TupleDesc tupdesc, int tupnatts,
    1856             :                              bool readpagetup, int sktrig, bool *scanBehind)
    1857             : {
    1858      329350 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    1859             : 
    1860             :     Assert(so->numArrayKeys);
    1861             :     Assert(so->numberOfKeys);
    1862             :     Assert(sktrig == 0 || readpagetup);
    1863             :     Assert(!readpagetup || scanBehind == NULL);
    1864             : 
    1865      329350 :     if (scanBehind)
    1866       84670 :         *scanBehind = false;
    1867             : 
    1868      332622 :     for (int ikey = sktrig; ikey < so->numberOfKeys; ikey++)
    1869             :     {
    1870      331870 :         ScanKey     cur = so->keyData + ikey;
    1871             :         Datum       tupdatum;
    1872             :         bool        tupnull;
    1873             :         int32       result;
    1874             : 
    1875             :         /* readpagetup calls require one ORDER proc comparison (at most) */
    1876             :         Assert(!readpagetup || ikey == sktrig);
    1877             : 
    1878             :         /*
    1879             :          * Once we reach a non-required scan key, we're completely done.
    1880             :          *
    1881             :          * Note: we deliberately don't consider the scan direction here.
    1882             :          * _bt_advance_array_keys caller requires that we track *scanBehind
    1883             :          * without concern for scan direction.
    1884             :          */
    1885      331870 :         if ((cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) == 0)
    1886             :         {
    1887             :             Assert(!readpagetup);
    1888             :             Assert(ikey > sktrig || ikey == 0);
    1889      328598 :             return false;
    1890             :         }
    1891             : 
    1892      331870 :         if (cur->sk_attno > tupnatts)
    1893             :         {
    1894             :             Assert(!readpagetup);
    1895             : 
    1896             :             /*
    1897             :              * When we reach a high key's truncated attribute, assume that the
    1898             :              * tuple attribute's value is >= the scan's equality constraint
    1899             :              * scan keys (but set *scanBehind to let interested callers know
    1900             :              * that a truncated attribute might have affected our answer).
    1901             :              */
    1902          28 :             if (scanBehind)
    1903          28 :                 *scanBehind = true;
    1904             : 
    1905          28 :             return false;
    1906             :         }
    1907             : 
    1908             :         /*
    1909             :          * Deal with inequality strategy scan keys that _bt_check_compare set
    1910             :          * continuescan=false for
    1911             :          */
    1912      331842 :         if (cur->sk_strategy != BTEqualStrategyNumber)
    1913             :         {
    1914             :             /*
    1915             :              * When _bt_check_compare indicated that a required inequality
    1916             :              * scan key wasn't satisfied, there's no need to verify anything;
    1917             :              * caller always calls _bt_advance_array_keys with this sktrig.
    1918             :              */
    1919         618 :             if (readpagetup)
    1920         348 :                 return false;
    1921             : 
    1922             :             /*
    1923             :              * Otherwise we can't give up, since we must check all required
    1924             :              * scan keys (required in either direction) in order to correctly
    1925             :              * track *scanBehind for caller
    1926             :              */
    1927         270 :             continue;
    1928             :         }
    1929             : 
    1930      331224 :         tupdatum = index_getattr(tuple, cur->sk_attno, tupdesc, &tupnull);
    1931             : 
    1932      331224 :         if (likely(!(cur->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL))))
    1933             :         {
    1934             :             /* Scankey has a valid/comparable sk_argument value */
    1935      325830 :             result = _bt_compare_array_skey(&so->orderProcs[ikey],
    1936             :                                             tupdatum, tupnull,
    1937             :                                             cur->sk_argument, cur);
    1938             : 
    1939      325830 :             if (result == 0)
    1940             :             {
    1941             :                 /*
    1942             :                  * Interpret result in a way that takes NEXT/PRIOR into
    1943             :                  * account
    1944             :                  */
    1945       16982 :                 if (cur->sk_flags & SK_BT_NEXT)
    1946       13950 :                     result = -1;
    1947        3032 :                 else if (cur->sk_flags & SK_BT_PRIOR)
    1948          30 :                     result = 1;
    1949             : 
    1950             :                 Assert(result == 0 || (cur->sk_flags & SK_BT_SKIP));
    1951             :             }
    1952             :         }
    1953             :         else
    1954             :         {
    1955        5394 :             BTArrayKeyInfo *array = NULL;
    1956             : 
    1957             :             /*
    1958             :              * Current array element/array = scan key value is a sentinel
    1959             :              * value that represents the lowest (or highest) possible value
    1960             :              * that's still within the range of the array.
    1961             :              *
    1962             :              * Like _bt_first, we only see MINVAL keys during forwards scans
    1963             :              * (and similarly only see MAXVAL keys during backwards scans).
    1964             :              * Even if the scan's direction changes, we'll stop at some higher
    1965             :              * order key before we can ever reach any MAXVAL (or MINVAL) keys.
    1966             :              * (However, unlike _bt_first we _can_ get to keys marked either
    1967             :              * NEXT or PRIOR, regardless of the scan's current direction.)
    1968             :              */
    1969             :             Assert(ScanDirectionIsForward(dir) ?
    1970             :                    !(cur->sk_flags & SK_BT_MAXVAL) :
    1971             :                    !(cur->sk_flags & SK_BT_MINVAL));
    1972             : 
    1973             :             /*
    1974             :              * There are no valid sk_argument values in MINVAL/MAXVAL keys.
    1975             :              * Check if tupdatum is within the range of skip array instead.
    1976             :              */
    1977        5900 :             for (int arrayidx = 0; arrayidx < so->numArrayKeys; arrayidx++)
    1978             :             {
    1979        5900 :                 array = &so->arrayKeys[arrayidx];
    1980        5900 :                 if (array->scan_key == ikey)
    1981        5394 :                     break;
    1982             :             }
    1983             : 
    1984        5394 :             _bt_binsrch_skiparray_skey(false, dir, tupdatum, tupnull,
    1985             :                                        array, cur, &result);
    1986             : 
    1987        5394 :             if (result == 0)
    1988             :             {
    1989             :                 /*
    1990             :                  * tupdatum satisfies both low_compare and high_compare, so
    1991             :                  * it's time to advance the array keys.
    1992             :                  *
    1993             :                  * Note: It's possible that the skip array will "advance" from
    1994             :                  * its MINVAL (or MAXVAL) representation to an alternative,
    1995             :                  * logically equivalent representation of the same value: a
    1996             :                  * representation where the = key gets a valid datum in its
    1997             :                  * sk_argument.  This is only possible when low_compare uses
    1998             :                  * the >= strategy (or high_compare uses the <= strategy).
    1999             :                  */
    2000        5388 :                 return false;
    2001             :             }
    2002             :         }
    2003             : 
    2004             :         /*
    2005             :          * Does this comparison indicate that caller must _not_ advance the
    2006             :          * scan's arrays just yet?
    2007             :          */
    2008      325836 :         if ((ScanDirectionIsForward(dir) && result < 0) ||
    2009        3252 :             (ScanDirectionIsBackward(dir) && result > 0))
    2010       63716 :             return true;
    2011             : 
    2012             :         /*
    2013             :          * Does this comparison indicate that caller should now advance the
    2014             :          * scan's arrays?  (Must be if we get here during a readpagetup call.)
    2015             :          */
    2016      262120 :         if (readpagetup || result != 0)
    2017             :         {
    2018             :             Assert(result != 0);
    2019      259118 :             return false;
    2020             :         }
    2021             : 
    2022             :         /*
    2023             :          * Inconclusive -- need to check later scan keys, too.
    2024             :          *
    2025             :          * This must be a finaltup precheck, or a call made from an assertion.
    2026             :          */
    2027             :         Assert(result == 0);
    2028             :     }
    2029             : 
    2030             :     Assert(!readpagetup);
    2031             : 
    2032         752 :     return false;
    2033             : }
    2034             : 
    2035             : /*
    2036             :  * Determine if a scan with array keys should skip over uninteresting tuples.
    2037             :  *
    2038             :  * This is a subroutine for _bt_checkkeys.  Called when _bt_readpage's linear
    2039             :  * search process (started after it finishes reading an initial group of
    2040             :  * matching tuples, used to locate the start of the next group of tuples
    2041             :  * matching the next set of required array keys) has already scanned an
    2042             :  * excessive number of tuples whose key space is "between arrays".
    2043             :  *
    2044             :  * When we perform look ahead successfully, we'll sets pstate.skip, which
    2045             :  * instructs _bt_readpage to skip ahead to that tuple next (could be past the
    2046             :  * end of the scan's leaf page).  Pages where the optimization is effective
    2047             :  * will generally still need to skip several times.  Each call here performs
    2048             :  * only a single "look ahead" comparison of a later tuple, whose distance from
    2049             :  * the current tuple's offset number is determined by applying heuristics.
    2050             :  */
    2051             : static void
    2052       12168 : _bt_checkkeys_look_ahead(IndexScanDesc scan, BTReadPageState *pstate,
    2053             :                          int tupnatts, TupleDesc tupdesc)
    2054             : {
    2055       12168 :     ScanDirection dir = pstate->dir;
    2056             :     OffsetNumber aheadoffnum;
    2057             :     IndexTuple  ahead;
    2058             : 
    2059             :     Assert(!pstate->forcenonrequired);
    2060             : 
    2061             :     /* Avoid looking ahead when comparing the page high key */
    2062       12168 :     if (pstate->offnum < pstate->minoff)
    2063           0 :         return;
    2064             : 
    2065             :     /*
    2066             :      * Don't look ahead when there aren't enough tuples remaining on the page
    2067             :      * (in the current scan direction) for it to be worth our while
    2068             :      */
    2069       12168 :     if (ScanDirectionIsForward(dir) &&
    2070       12090 :         pstate->offnum >= pstate->maxoff - LOOK_AHEAD_DEFAULT_DISTANCE)
    2071         540 :         return;
    2072       11628 :     else if (ScanDirectionIsBackward(dir) &&
    2073          78 :              pstate->offnum <= pstate->minoff + LOOK_AHEAD_DEFAULT_DISTANCE)
    2074          24 :         return;
    2075             : 
    2076             :     /*
    2077             :      * The look ahead distance starts small, and ramps up as each call here
    2078             :      * allows _bt_readpage to skip over more tuples
    2079             :      */
    2080       11604 :     if (!pstate->targetdistance)
    2081        6596 :         pstate->targetdistance = LOOK_AHEAD_DEFAULT_DISTANCE;
    2082        5008 :     else if (pstate->targetdistance < MaxIndexTuplesPerPage / 2)
    2083        5008 :         pstate->targetdistance *= 2;
    2084             : 
    2085             :     /* Don't read past the end (or before the start) of the page, though */
    2086       11604 :     if (ScanDirectionIsForward(dir))
    2087       11550 :         aheadoffnum = Min((int) pstate->maxoff,
    2088             :                           (int) pstate->offnum + pstate->targetdistance);
    2089             :     else
    2090          54 :         aheadoffnum = Max((int) pstate->minoff,
    2091             :                           (int) pstate->offnum - pstate->targetdistance);
    2092             : 
    2093       11604 :     ahead = (IndexTuple) PageGetItem(pstate->page,
    2094       11604 :                                      PageGetItemId(pstate->page, aheadoffnum));
    2095       11604 :     if (_bt_tuple_before_array_skeys(scan, dir, ahead, tupdesc, tupnatts,
    2096             :                                      false, 0, NULL))
    2097             :     {
    2098             :         /*
    2099             :          * Success -- instruct _bt_readpage to skip ahead to very next tuple
    2100             :          * after the one we determined was still before the current array keys
    2101             :          */
    2102        4170 :         if (ScanDirectionIsForward(dir))
    2103        4134 :             pstate->skip = aheadoffnum + 1;
    2104             :         else
    2105          36 :             pstate->skip = aheadoffnum - 1;
    2106             :     }
    2107             :     else
    2108             :     {
    2109             :         /*
    2110             :          * Failure -- "ahead" tuple is too far ahead (we were too aggressive).
    2111             :          *
    2112             :          * Reset the number of rechecks, and aggressively reduce the target
    2113             :          * distance (we're much more aggressive here than we were when the
    2114             :          * distance was initially ramped up).
    2115             :          */
    2116        7434 :         pstate->rechecks = 0;
    2117        7434 :         pstate->targetdistance = Max(pstate->targetdistance / 8, 1);
    2118             :     }
    2119             : }
    2120             : 
    2121             : /*
    2122             :  * _bt_advance_array_keys() -- Advance array elements using a tuple
    2123             :  *
    2124             :  * The scan always gets a new qual as a consequence of calling here (except
    2125             :  * when we determine that the top-level scan has run out of matching tuples).
    2126             :  * All later _bt_check_compare calls also use the same new qual that was first
    2127             :  * used here (at least until the next call here advances the keys once again).
    2128             :  * It's convenient to structure _bt_check_compare rechecks of caller's tuple
    2129             :  * (using the new qual) as one the steps of advancing the scan's array keys,
    2130             :  * so this function works as a wrapper around _bt_check_compare.
    2131             :  *
    2132             :  * Like _bt_check_compare, we'll set pstate.continuescan on behalf of the
    2133             :  * caller, and return a boolean indicating if caller's tuple satisfies the
    2134             :  * scan's new qual.  But unlike _bt_check_compare, we set so->needPrimScan
    2135             :  * when we set continuescan=false, indicating if a new primitive index scan
    2136             :  * has been scheduled (otherwise, the top-level scan has run out of tuples in
    2137             :  * the current scan direction).
    2138             :  *
    2139             :  * Caller must use _bt_tuple_before_array_skeys to determine if the current
    2140             :  * place in the scan is >= the current array keys _before_ calling here.
    2141             :  * We're responsible for ensuring that caller's tuple is <= the newly advanced
    2142             :  * required array keys once we return.  We try to find an exact match, but
    2143             :  * failing that we'll advance the array keys to whatever set of array elements
    2144             :  * comes next in the key space for the current scan direction.  Required array
    2145             :  * keys "ratchet forwards" (or backwards).  They can only advance as the scan
    2146             :  * itself advances through the index/key space.
    2147             :  *
    2148             :  * (The rules are the same for backwards scans, except that the operators are
    2149             :  * flipped: just replace the precondition's >= operator with a <=, and the
    2150             :  * postcondition's <= operator with a >=.  In other words, just swap the
    2151             :  * precondition with the postcondition.)
    2152             :  *
    2153             :  * We also deal with "advancing" non-required arrays here (or arrays that are
    2154             :  * treated as non-required for the duration of a _bt_readpage call).  Callers
    2155             :  * whose sktrig scan key is non-required specify sktrig_required=false.  These
    2156             :  * calls are the only exception to the general rule about always advancing the
    2157             :  * required array keys (the scan may not even have a required array).  These
    2158             :  * callers should just pass a NULL pstate (since there is never any question
    2159             :  * of stopping the scan).  No call to _bt_tuple_before_array_skeys is required
    2160             :  * ahead of these calls (it's already clear that any required scan keys must
    2161             :  * be satisfied by caller's tuple).
    2162             :  *
    2163             :  * Note that we deal with non-array required equality strategy scan keys as
    2164             :  * degenerate single element arrays here.  Obviously, they can never really
    2165             :  * advance in the way that real arrays can, but they must still affect how we
    2166             :  * advance real array scan keys (exactly like true array equality scan keys).
    2167             :  * We have to keep around a 3-way ORDER proc for these (using the "=" operator
    2168             :  * won't do), since in general whether the tuple is < or > _any_ unsatisfied
    2169             :  * required equality key influences how the scan's real arrays must advance.
    2170             :  *
    2171             :  * Note also that we may sometimes need to advance the array keys when the
    2172             :  * existing required array keys (and other required equality keys) are already
    2173             :  * an exact match for every corresponding value from caller's tuple.  We must
    2174             :  * do this for inequalities that _bt_check_compare set continuescan=false for.
    2175             :  * They'll advance the array keys here, just like any other scan key that
    2176             :  * _bt_check_compare stops on.  (This can even happen _after_ we advance the
    2177             :  * array keys, in which case we'll advance the array keys a second time.  That
    2178             :  * way _bt_checkkeys caller always has its required arrays advance to the
    2179             :  * maximum possible extent that its tuple will allow.)
    2180             :  */
    2181             : static bool
    2182      200166 : _bt_advance_array_keys(IndexScanDesc scan, BTReadPageState *pstate,
    2183             :                        IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
    2184             :                        int sktrig, bool sktrig_required)
    2185             : {
    2186      200166 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    2187      200166 :     Relation    rel = scan->indexRelation;
    2188      200166 :     ScanDirection dir = pstate ? pstate->dir : ForwardScanDirection;
    2189      200166 :     int         arrayidx = 0;
    2190      200166 :     bool        beyond_end_advance = false,
    2191      200166 :                 skip_array_advanced = false,
    2192      200166 :                 has_required_opposite_direction_only = false,
    2193      200166 :                 all_required_satisfied = true,
    2194      200166 :                 all_satisfied = true;
    2195             : 
    2196             :     Assert(!so->needPrimScan && !so->scanBehind && !so->oppositeDirCheck);
    2197             :     Assert(_bt_verify_keys_with_arraykeys(scan));
    2198             : 
    2199      200166 :     if (sktrig_required)
    2200             :     {
    2201             :         /*
    2202             :          * Precondition array state assertion
    2203             :          */
    2204             :         Assert(!_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc,
    2205             :                                              tupnatts, false, 0, NULL));
    2206             : 
    2207             :         /*
    2208             :          * Once we return we'll have a new set of required array keys, so
    2209             :          * reset state used by "look ahead" optimization
    2210             :          */
    2211      191640 :         pstate->rechecks = 0;
    2212      191640 :         pstate->targetdistance = 0;
    2213             :     }
    2214        8526 :     else if (sktrig < so->numberOfKeys - 1 &&
    2215        8526 :              !(so->keyData[so->numberOfKeys - 1].sk_flags & SK_SEARCHARRAY))
    2216             :     {
    2217        8526 :         int         least_sign_ikey = so->numberOfKeys - 1;
    2218             :         bool        continuescan;
    2219             : 
    2220             :         /*
    2221             :          * Optimization: perform a precheck of the least significant key
    2222             :          * during !sktrig_required calls when it isn't already our sktrig
    2223             :          * (provided the precheck key is not itself an array).
    2224             :          *
    2225             :          * When the precheck works out we'll avoid an expensive binary search
    2226             :          * of sktrig's array (plus any other arrays before least_sign_ikey).
    2227             :          */
    2228             :         Assert(so->keyData[sktrig].sk_flags & SK_SEARCHARRAY);
    2229        8526 :         if (!_bt_check_compare(scan, dir, tuple, tupnatts, tupdesc, false,
    2230             :                                false, &continuescan,
    2231             :                                &least_sign_ikey))
    2232        2238 :             return false;
    2233             :     }
    2234             : 
    2235      580866 :     for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
    2236             :     {
    2237      388704 :         ScanKey     cur = so->keyData + ikey;
    2238      388704 :         BTArrayKeyInfo *array = NULL;
    2239             :         Datum       tupdatum;
    2240      388704 :         bool        required = false,
    2241             :                     tupnull;
    2242             :         int32       result;
    2243      388704 :         int         set_elem = 0;
    2244             : 
    2245      388704 :         if (cur->sk_strategy == BTEqualStrategyNumber)
    2246             :         {
    2247             :             /* Manage array state */
    2248      340594 :             if (cur->sk_flags & SK_SEARCHARRAY)
    2249             :             {
    2250      208194 :                 array = &so->arrayKeys[arrayidx++];
    2251             :                 Assert(array->scan_key == ikey);
    2252             :             }
    2253             :         }
    2254             :         else
    2255             :         {
    2256             :             /*
    2257             :              * Are any inequalities required in the opposite direction only
    2258             :              * present here?
    2259             :              */
    2260       48110 :             if (((ScanDirectionIsForward(dir) &&
    2261       48110 :                   (cur->sk_flags & (SK_BT_REQBKWD))) ||
    2262           0 :                  (ScanDirectionIsBackward(dir) &&
    2263           0 :                   (cur->sk_flags & (SK_BT_REQFWD)))))
    2264       15566 :                 has_required_opposite_direction_only = true;
    2265             :         }
    2266             : 
    2267             :         /* Optimization: skip over known-satisfied scan keys */
    2268      388704 :         if (ikey < sktrig)
    2269       76032 :             continue;
    2270             : 
    2271      372390 :         if (cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD))
    2272             :         {
    2273      372390 :             required = true;
    2274             : 
    2275      372390 :             if (cur->sk_attno > tupnatts)
    2276             :             {
    2277             :                 /* Set this just like _bt_tuple_before_array_skeys */
    2278             :                 Assert(sktrig < ikey);
    2279        2296 :                 so->scanBehind = true;
    2280             :             }
    2281             :         }
    2282             : 
    2283             :         /*
    2284             :          * Handle a required non-array scan key that the initial call to
    2285             :          * _bt_check_compare indicated triggered array advancement, if any.
    2286             :          *
    2287             :          * The non-array scan key's strategy will be <, <=, or = during a
    2288             :          * forwards scan (or any one of =, >=, or > during a backwards scan).
    2289             :          * It follows that the corresponding tuple attribute's value must now
    2290             :          * be either > or >= the scan key value (for backwards scans it must
    2291             :          * be either < or <= that value).
    2292             :          *
    2293             :          * If this is a required equality strategy scan key, this is just an
    2294             :          * optimization; _bt_tuple_before_array_skeys already confirmed that
    2295             :          * this scan key places us ahead of caller's tuple.  There's no need
    2296             :          * to repeat that work now.  (The same underlying principle also gets
    2297             :          * applied by the cur_elem_trig optimization used to speed up searches
    2298             :          * for the next array element.)
    2299             :          *
    2300             :          * If this is a required inequality strategy scan key, we _must_ rely
    2301             :          * on _bt_check_compare like this; we aren't capable of directly
    2302             :          * evaluating required inequality strategy scan keys here, on our own.
    2303             :          */
    2304      372390 :         if (ikey == sktrig && !array)
    2305             :         {
    2306             :             Assert(sktrig_required && required && all_required_satisfied);
    2307             : 
    2308             :             /* Use "beyond end" advancement.  See below for an explanation. */
    2309        7408 :             beyond_end_advance = true;
    2310        7408 :             all_satisfied = all_required_satisfied = false;
    2311             : 
    2312        7408 :             continue;
    2313             :         }
    2314             : 
    2315             :         /*
    2316             :          * Nothing more for us to do with an inequality strategy scan key that
    2317             :          * wasn't the one that _bt_check_compare stopped on, though.
    2318             :          *
    2319             :          * Note: if our later call to _bt_check_compare (to recheck caller's
    2320             :          * tuple) sets continuescan=false due to finding this same inequality
    2321             :          * unsatisfied (possible when it's required in the scan direction),
    2322             :          * we'll deal with it via a recursive "second pass" call.
    2323             :          */
    2324      364982 :         else if (cur->sk_strategy != BTEqualStrategyNumber)
    2325       47540 :             continue;
    2326             : 
    2327             :         /*
    2328             :          * Nothing for us to do with an equality strategy scan key that isn't
    2329             :          * marked required, either -- unless it's a non-required array
    2330             :          */
    2331      317442 :         else if (!required && !array)
    2332           0 :             continue;
    2333             : 
    2334             :         /*
    2335             :          * Here we perform steps for all array scan keys after a required
    2336             :          * array scan key whose binary search triggered "beyond end of array
    2337             :          * element" array advancement due to encountering a tuple attribute
    2338             :          * value > the closest matching array key (or < for backwards scans).
    2339             :          */
    2340      317442 :         if (beyond_end_advance)
    2341             :         {
    2342        1428 :             if (array)
    2343         594 :                 _bt_array_set_low_or_high(rel, cur, array,
    2344             :                                           ScanDirectionIsBackward(dir));
    2345             : 
    2346        1428 :             continue;
    2347             :         }
    2348             : 
    2349             :         /*
    2350             :          * Here we perform steps for all array scan keys after a required
    2351             :          * array scan key whose tuple attribute was < the closest matching
    2352             :          * array key when we dealt with it (or > for backwards scans).
    2353             :          *
    2354             :          * This earlier required array key already puts us ahead of caller's
    2355             :          * tuple in the key space (for the current scan direction).  We must
    2356             :          * make sure that subsequent lower-order array keys do not put us too
    2357             :          * far ahead (ahead of tuples that have yet to be seen by our caller).
    2358             :          * For example, when a tuple "(a, b) = (42, 5)" advances the array
    2359             :          * keys on "a" from 40 to 45, we must also set "b" to whatever the
    2360             :          * first array element for "b" is.  It would be wrong to allow "b" to
    2361             :          * be set based on the tuple value.
    2362             :          *
    2363             :          * Perform the same steps with truncated high key attributes.  You can
    2364             :          * think of this as a "binary search" for the element closest to the
    2365             :          * value -inf.  Again, the arrays must never get ahead of the scan.
    2366             :          */
    2367      316014 :         if (!all_required_satisfied || cur->sk_attno > tupnatts)
    2368             :         {
    2369        3342 :             if (array)
    2370         772 :                 _bt_array_set_low_or_high(rel, cur, array,
    2371             :                                           ScanDirectionIsForward(dir));
    2372             : 
    2373        3342 :             continue;
    2374             :         }
    2375             : 
    2376             :         /*
    2377             :          * Search in scankey's array for the corresponding tuple attribute
    2378             :          * value from caller's tuple
    2379             :          */
    2380      312672 :         tupdatum = index_getattr(tuple, cur->sk_attno, tupdesc, &tupnull);
    2381             : 
    2382      312672 :         if (array)
    2383             :         {
    2384      192292 :             bool        cur_elem_trig = (sktrig_required && ikey == sktrig);
    2385             : 
    2386             :             /*
    2387             :              * "Binary search" by checking if tupdatum/tupnull are within the
    2388             :              * range of the skip array
    2389             :              */
    2390      192292 :             if (array->num_elems == -1)
    2391      160334 :                 _bt_binsrch_skiparray_skey(cur_elem_trig, dir,
    2392             :                                            tupdatum, tupnull, array, cur,
    2393             :                                            &result);
    2394             : 
    2395             :             /*
    2396             :              * Binary search for the closest match from the SAOP array
    2397             :              */
    2398             :             else
    2399       31958 :                 set_elem = _bt_binsrch_array_skey(&so->orderProcs[ikey],
    2400             :                                                   cur_elem_trig, dir,
    2401             :                                                   tupdatum, tupnull, array, cur,
    2402             :                                                   &result);
    2403             :         }
    2404             :         else
    2405             :         {
    2406             :             Assert(required);
    2407             : 
    2408             :             /*
    2409             :              * This is a required non-array equality strategy scan key, which
    2410             :              * we'll treat as a degenerate single element array.
    2411             :              *
    2412             :              * This scan key's imaginary "array" can't really advance, but it
    2413             :              * can still roll over like any other array.  (Actually, this is
    2414             :              * no different to real single value arrays, which never advance
    2415             :              * without rolling over -- they can never truly advance, either.)
    2416             :              */
    2417      120380 :             result = _bt_compare_array_skey(&so->orderProcs[ikey],
    2418             :                                             tupdatum, tupnull,
    2419             :                                             cur->sk_argument, cur);
    2420             :         }
    2421             : 
    2422             :         /*
    2423             :          * Consider "beyond end of array element" array advancement.
    2424             :          *
    2425             :          * When the tuple attribute value is > the closest matching array key
    2426             :          * (or < in the backwards scan case), we need to ratchet this array
    2427             :          * forward (backward) by one increment, so that caller's tuple ends up
    2428             :          * being < final array value instead (or > final array value instead).
    2429             :          * This process has to work for all of the arrays, not just this one:
    2430             :          * it must "carry" to higher-order arrays when the set_elem that we
    2431             :          * just found happens to be the final one for the scan's direction.
    2432             :          * Incrementing (decrementing) set_elem itself isn't good enough.
    2433             :          *
    2434             :          * Our approach is to provisionally use set_elem as if it was an exact
    2435             :          * match now, then set each later/less significant array to whatever
    2436             :          * its final element is.  Once outside the loop we'll then "increment
    2437             :          * this array's set_elem" by calling _bt_advance_array_keys_increment.
    2438             :          * That way the process rolls over to higher order arrays as needed.
    2439             :          *
    2440             :          * Under this scheme any required arrays only ever ratchet forwards
    2441             :          * (or backwards), and always do so to the maximum possible extent
    2442             :          * that we can know will be safe without seeing the scan's next tuple.
    2443             :          * We don't need any special handling for required scan keys that lack
    2444             :          * a real array to advance, nor for redundant scan keys that couldn't
    2445             :          * be eliminated by _bt_preprocess_keys.  It won't matter if some of
    2446             :          * our "true" array scan keys (or even all of them) are non-required.
    2447             :          */
    2448      312672 :         if (sktrig_required && required &&
    2449      306384 :             ((ScanDirectionIsForward(dir) && result > 0) ||
    2450        1716 :              (ScanDirectionIsBackward(dir) && result < 0)))
    2451       23864 :             beyond_end_advance = true;
    2452             : 
    2453             :         Assert(all_required_satisfied && all_satisfied);
    2454      312672 :         if (result != 0)
    2455             :         {
    2456             :             /*
    2457             :              * Track whether caller's tuple satisfies our new post-advancement
    2458             :              * qual, for required scan keys, as well as for the entire set of
    2459             :              * interesting scan keys (all required scan keys plus non-required
    2460             :              * array scan keys are considered interesting.)
    2461             :              */
    2462      143536 :             all_satisfied = false;
    2463      143536 :             if (sktrig_required && required)
    2464      137770 :                 all_required_satisfied = false;
    2465             :             else
    2466             :             {
    2467             :                 /*
    2468             :                  * There's no need to advance the arrays using the best
    2469             :                  * available match for a non-required array.  Give up now.
    2470             :                  * (Though note that sktrig_required calls still have to do
    2471             :                  * all the usual post-advancement steps, including the recheck
    2472             :                  * call to _bt_check_compare.)
    2473             :                  */
    2474             :                 break;
    2475             :             }
    2476             :         }
    2477             : 
    2478             :         /* Advance array keys, even when we don't have an exact match */
    2479      306906 :         if (array)
    2480             :         {
    2481      186526 :             if (array->num_elems == -1)
    2482             :             {
    2483             :                 /* Skip array's new element is tupdatum (or MINVAL/MAXVAL) */
    2484      154568 :                 _bt_skiparray_set_element(rel, cur, array, result,
    2485             :                                           tupdatum, tupnull);
    2486      154568 :                 skip_array_advanced = true;
    2487             :             }
    2488       31958 :             else if (array->cur_elem != set_elem)
    2489             :             {
    2490             :                 /* SAOP array's new element is set_elem datum */
    2491       23782 :                 array->cur_elem = set_elem;
    2492       23782 :                 cur->sk_argument = array->elem_values[set_elem];
    2493             :             }
    2494             :         }
    2495             :     }
    2496             : 
    2497             :     /*
    2498             :      * Advance the array keys incrementally whenever "beyond end of array
    2499             :      * element" array advancement happens, so that advancement will carry to
    2500             :      * higher-order arrays (might exhaust all the scan's arrays instead, which
    2501             :      * ends the top-level scan).
    2502             :      */
    2503      197928 :     if (beyond_end_advance &&
    2504       31272 :         !_bt_advance_array_keys_increment(scan, dir, &skip_array_advanced))
    2505        8326 :         goto end_toplevel_scan;
    2506             : 
    2507             :     Assert(_bt_verify_keys_with_arraykeys(scan));
    2508             : 
    2509             :     /*
    2510             :      * Maintain a page-level count of the number of times the scan's array
    2511             :      * keys advanced in a way that affected at least one skip array
    2512             :      */
    2513      189602 :     if (sktrig_required && skip_array_advanced)
    2514      160564 :         pstate->nskipadvances++;
    2515             : 
    2516             :     /*
    2517             :      * Does tuple now satisfy our new qual?  Recheck with _bt_check_compare.
    2518             :      *
    2519             :      * Calls triggered by an unsatisfied required scan key, whose tuple now
    2520             :      * satisfies all required scan keys, but not all nonrequired array keys,
    2521             :      * will still require a recheck call to _bt_check_compare.  They'll still
    2522             :      * need its "second pass" handling of required inequality scan keys.
    2523             :      * (Might have missed a still-unsatisfied required inequality scan key
    2524             :      * that caller didn't detect as the sktrig scan key during its initial
    2525             :      * _bt_check_compare call that used the old/original qual.)
    2526             :      *
    2527             :      * Calls triggered by an unsatisfied nonrequired array scan key never need
    2528             :      * "second pass" handling of required inequalities (nor any other handling
    2529             :      * of any required scan key).  All that matters is whether caller's tuple
    2530             :      * satisfies the new qual, so it's safe to just skip the _bt_check_compare
    2531             :      * recheck when we've already determined that it can only return 'false'.
    2532             :      *
    2533             :      * Note: In practice most scan keys are marked required by preprocessing,
    2534             :      * if necessary by generating a preceding skip array.  We nevertheless
    2535             :      * often handle array keys marked required as if they were nonrequired.
    2536             :      * This behavior is requested by our _bt_check_compare caller, though only
    2537             :      * when it is passed "forcenonrequired=true" by _bt_checkkeys.
    2538             :      */
    2539      189602 :     if ((sktrig_required && all_required_satisfied) ||
    2540      143140 :         (!sktrig_required && all_satisfied))
    2541             :     {
    2542       46984 :         int         nsktrig = sktrig + 1;
    2543             :         bool        continuescan;
    2544             : 
    2545             :         Assert(all_required_satisfied);
    2546             : 
    2547             :         /* Recheck _bt_check_compare on behalf of caller */
    2548       46984 :         if (_bt_check_compare(scan, dir, tuple, tupnatts, tupdesc, false,
    2549       46984 :                               !sktrig_required, &continuescan,
    2550       46984 :                               &nsktrig) &&
    2551       39328 :             !so->scanBehind)
    2552             :         {
    2553             :             /* This tuple satisfies the new qual */
    2554             :             Assert(all_satisfied && continuescan);
    2555             : 
    2556       37132 :             if (pstate)
    2557       36610 :                 pstate->continuescan = true;
    2558             : 
    2559       37354 :             return true;
    2560             :         }
    2561             : 
    2562             :         /*
    2563             :          * Consider "second pass" handling of required inequalities.
    2564             :          *
    2565             :          * It's possible that our _bt_check_compare call indicated that the
    2566             :          * scan should end due to some unsatisfied inequality that wasn't
    2567             :          * initially recognized as such by us.  Handle this by calling
    2568             :          * ourselves recursively, this time indicating that the trigger is the
    2569             :          * inequality that we missed first time around (and using a set of
    2570             :          * required array/equality keys that are now exact matches for tuple).
    2571             :          *
    2572             :          * We make a strong, general guarantee that every _bt_checkkeys call
    2573             :          * here will advance the array keys to the maximum possible extent
    2574             :          * that we can know to be safe based on caller's tuple alone.  If we
    2575             :          * didn't perform this step, then that guarantee wouldn't quite hold.
    2576             :          */
    2577        9852 :         if (unlikely(!continuescan))
    2578             :         {
    2579             :             bool        satisfied PG_USED_FOR_ASSERTS_ONLY;
    2580             : 
    2581             :             Assert(sktrig_required);
    2582             :             Assert(so->keyData[nsktrig].sk_strategy != BTEqualStrategyNumber);
    2583             : 
    2584             :             /*
    2585             :              * The tuple must use "beyond end" advancement during the
    2586             :              * recursive call, so we cannot possibly end up back here when
    2587             :              * recursing.  We'll consume a small, fixed amount of stack space.
    2588             :              */
    2589             :             Assert(!beyond_end_advance);
    2590             : 
    2591             :             /* Advance the array keys a second time using same tuple */
    2592         222 :             satisfied = _bt_advance_array_keys(scan, pstate, tuple, tupnatts,
    2593             :                                                tupdesc, nsktrig, true);
    2594             : 
    2595             :             /* This tuple doesn't satisfy the inequality */
    2596             :             Assert(!satisfied);
    2597         222 :             return false;
    2598             :         }
    2599             : 
    2600             :         /*
    2601             :          * Some non-required scan key (from new qual) still not satisfied.
    2602             :          *
    2603             :          * All scan keys required in the current scan direction must still be
    2604             :          * satisfied, though, so we can trust all_required_satisfied below.
    2605             :          */
    2606             :     }
    2607             : 
    2608             :     /*
    2609             :      * When we were called just to deal with "advancing" non-required arrays,
    2610             :      * this is as far as we can go (cannot stop the scan for these callers)
    2611             :      */
    2612      152248 :     if (!sktrig_required)
    2613             :     {
    2614             :         /* Caller's tuple doesn't match any qual */
    2615        5766 :         return false;
    2616             :     }
    2617             : 
    2618             :     /*
    2619             :      * Postcondition array state assertion (for still-unsatisfied tuples).
    2620             :      *
    2621             :      * By here we have established that the scan's required arrays (scan must
    2622             :      * have at least one required array) advanced, without becoming exhausted.
    2623             :      *
    2624             :      * Caller's tuple is now < the newly advanced array keys (or > when this
    2625             :      * is a backwards scan), except in the case where we only got this far due
    2626             :      * to an unsatisfied non-required scan key.  Verify that with an assert.
    2627             :      *
    2628             :      * Note: we don't just quit at this point when all required scan keys were
    2629             :      * found to be satisfied because we need to consider edge-cases involving
    2630             :      * scan keys required in the opposite direction only; those aren't tracked
    2631             :      * by all_required_satisfied.
    2632             :      */
    2633             :     Assert(_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc, tupnatts,
    2634             :                                         false, 0, NULL) ==
    2635             :            !all_required_satisfied);
    2636             : 
    2637             :     /*
    2638             :      * We generally permit primitive index scans to continue onto the next
    2639             :      * sibling page when the page's finaltup satisfies all required scan keys
    2640             :      * at the point where we're between pages.
    2641             :      *
    2642             :      * If caller's tuple is also the page's finaltup, and we see that required
    2643             :      * scan keys still aren't satisfied, start a new primitive index scan.
    2644             :      */
    2645      146482 :     if (!all_required_satisfied && pstate->finaltup == tuple)
    2646         512 :         goto new_prim_scan;
    2647             : 
    2648             :     /*
    2649             :      * Proactively check finaltup (don't wait until finaltup is reached by the
    2650             :      * scan) when it might well turn out to not be satisfied later on.
    2651             :      *
    2652             :      * Note: if so->scanBehind hasn't already been set for finaltup by us,
    2653             :      * it'll be set during this call to _bt_tuple_before_array_skeys.  Either
    2654             :      * way, it'll be set correctly (for the whole page) after this point.
    2655             :      */
    2656      228058 :     if (!all_required_satisfied && pstate->finaltup &&
    2657      164176 :         _bt_tuple_before_array_skeys(scan, dir, pstate->finaltup, tupdesc,
    2658      164176 :                                      BTreeTupleGetNAtts(pstate->finaltup, rel),
    2659             :                                      false, 0, &so->scanBehind))
    2660       17476 :         goto new_prim_scan;
    2661             : 
    2662             :     /*
    2663             :      * When we encounter a truncated finaltup high key attribute, we're
    2664             :      * optimistic about the chances of its corresponding required scan key
    2665             :      * being satisfied when we go on to recheck it against tuples from this
    2666             :      * page's right sibling leaf page.  We consider truncated attributes to be
    2667             :      * satisfied by required scan keys, which allows the primitive index scan
    2668             :      * to continue to the next leaf page.  We must set so->scanBehind to true
    2669             :      * to remember that the last page's finaltup had "satisfied" required scan
    2670             :      * keys for one or more truncated attribute values (scan keys required in
    2671             :      * _either_ scan direction).
    2672             :      *
    2673             :      * There is a chance that _bt_readpage (which checks so->scanBehind) will
    2674             :      * find that even the sibling leaf page's finaltup is < the new array
    2675             :      * keys.  When that happens, our optimistic policy will have incurred a
    2676             :      * single extra leaf page access that could have been avoided.
    2677             :      *
    2678             :      * A pessimistic policy would give backward scans a gratuitous advantage
    2679             :      * over forward scans.  We'd punish forward scans for applying more
    2680             :      * accurate information from the high key, rather than just using the
    2681             :      * final non-pivot tuple as finaltup, in the style of backward scans.
    2682             :      * Being pessimistic would also give some scans with non-required arrays a
    2683             :      * perverse advantage over similar scans that use required arrays instead.
    2684             :      *
    2685             :      * This is similar to our scan-level heuristics, below.  They also set
    2686             :      * scanBehind to speculatively continue the primscan onto the next page.
    2687             :      */
    2688      128494 :     if (so->scanBehind)
    2689             :     {
    2690             :         /* Truncated high key -- _bt_scanbehind_checkkeys recheck scheduled */
    2691             :     }
    2692             : 
    2693             :     /*
    2694             :      * Handle inequalities marked required in the opposite scan direction.
    2695             :      * They can also signal that we should start a new primitive index scan.
    2696             :      *
    2697             :      * It's possible that the scan is now positioned where "matching" tuples
    2698             :      * begin, and that caller's tuple satisfies all scan keys required in the
    2699             :      * current scan direction.  But if caller's tuple still doesn't satisfy
    2700             :      * other scan keys that are required in the opposite scan direction only
    2701             :      * (e.g., a required >= strategy scan key when scan direction is forward),
    2702             :      * it's still possible that there are many leaf pages before the page that
    2703             :      * _bt_first could skip straight to.  Groveling through all those pages
    2704             :      * will always give correct answers, but it can be very inefficient.  We
    2705             :      * must avoid needlessly scanning extra pages.
    2706             :      *
    2707             :      * Separately, it's possible that _bt_check_compare set continuescan=false
    2708             :      * for a scan key that's required in the opposite direction only.  This is
    2709             :      * a special case, that happens only when _bt_check_compare sees that the
    2710             :      * inequality encountered a NULL value.  This signals the end of non-NULL
    2711             :      * values in the current scan direction, which is reason enough to end the
    2712             :      * (primitive) scan.  If this happens at the start of a large group of
    2713             :      * NULL values, then we shouldn't expect to be called again until after
    2714             :      * the scan has already read indefinitely-many leaf pages full of tuples
    2715             :      * with NULL suffix values.  (_bt_first is expected to skip over the group
    2716             :      * of NULLs by applying a similar "deduce NOT NULL" rule of its own, which
    2717             :      * involves consing up an explicit SK_SEARCHNOTNULL key.)
    2718             :      *
    2719             :      * Apply a test against finaltup to detect and recover from the problem:
    2720             :      * if even finaltup doesn't satisfy such an inequality, we just skip by
    2721             :      * starting a new primitive index scan.  When we skip, we know for sure
    2722             :      * that all of the tuples on the current page following caller's tuple are
    2723             :      * also before the _bt_first-wise start of tuples for our new qual.  That
    2724             :      * at least suggests many more skippable pages beyond the current page.
    2725             :      * (when so->scanBehind and so->oppositeDirCheck are set, this'll happen
    2726             :      * when we test the next page's finaltup/high key instead.)
    2727             :      */
    2728      126270 :     else if (has_required_opposite_direction_only && pstate->finaltup &&
    2729        4292 :              unlikely(!_bt_oppodir_checkkeys(scan, dir, pstate->finaltup)))
    2730           2 :         goto new_prim_scan;
    2731             : 
    2732      126268 : continue_scan:
    2733             : 
    2734             :     /*
    2735             :      * Stick with the ongoing primitive index scan for now.
    2736             :      *
    2737             :      * It's possible that later tuples will also turn out to have values that
    2738             :      * are still < the now-current array keys (or > the current array keys).
    2739             :      * Our caller will handle this by performing what amounts to a linear
    2740             :      * search of the page, implemented by calling _bt_check_compare and then
    2741             :      * _bt_tuple_before_array_skeys for each tuple.
    2742             :      *
    2743             :      * This approach has various advantages over a binary search of the page.
    2744             :      * Repeated binary searches of the page (one binary search for every array
    2745             :      * advancement) won't outperform a continuous linear search.  While there
    2746             :      * are workloads that a naive linear search won't handle well, our caller
    2747             :      * has a "look ahead" fallback mechanism to deal with that problem.
    2748             :      */
    2749      129360 :     pstate->continuescan = true; /* Override _bt_check_compare */
    2750      129360 :     so->needPrimScan = false;    /* _bt_readpage has more tuples to check */
    2751             : 
    2752      129360 :     if (so->scanBehind)
    2753             :     {
    2754             :         /*
    2755             :          * Remember if recheck needs to call _bt_oppodir_checkkeys for next
    2756             :          * page's finaltup (see above comments about "Handle inequalities
    2757             :          * marked required in the opposite scan direction" for why).
    2758             :          */
    2759        3092 :         so->oppositeDirCheck = has_required_opposite_direction_only;
    2760             : 
    2761             :         /*
    2762             :          * skip by setting "look ahead" mechanism's offnum for forwards scans
    2763             :          * (backwards scans check scanBehind flag directly instead)
    2764             :          */
    2765        3092 :         if (ScanDirectionIsForward(dir))
    2766        3074 :             pstate->skip = pstate->maxoff + 1;
    2767             :     }
    2768             : 
    2769             :     /* Caller's tuple doesn't match the new qual */
    2770      129360 :     return false;
    2771             : 
    2772       17990 : new_prim_scan:
    2773             : 
    2774             :     Assert(pstate->finaltup);    /* not on rightmost/leftmost page */
    2775             : 
    2776             :     /*
    2777             :      * Looks like another primitive index scan is required.  But consider
    2778             :      * continuing the current primscan based on scan-level heuristics.
    2779             :      *
    2780             :      * Continue the ongoing primitive scan (and schedule a recheck for when
    2781             :      * the scan arrives on the next sibling leaf page) when it has already
    2782             :      * read at least one leaf page before the one we're reading now.  This
    2783             :      * makes primscan scheduling more efficient when scanning subsets of an
    2784             :      * index with many distinct attribute values matching many array elements.
    2785             :      * It encourages fewer, larger primitive scans where that makes sense.
    2786             :      * This will in turn encourage _bt_readpage to apply the pstate.startikey
    2787             :      * optimization more often.
    2788             :      *
    2789             :      * Also continue the ongoing primitive index scan when it is still on the
    2790             :      * first page if there have been more than NSKIPADVANCES_THRESHOLD calls
    2791             :      * here that each advanced at least one of the scan's skip arrays
    2792             :      * (deliberately ignore advancements that only affected SAOP arrays here).
    2793             :      * A page that cycles through this many skip array elements is quite
    2794             :      * likely to neighbor similar pages, that we'll also need to read.
    2795             :      *
    2796             :      * Note: These heuristics aren't as aggressive as you might think.  We're
    2797             :      * conservative about allowing a primitive scan to step from the first
    2798             :      * leaf page it reads to the page's sibling page (we only allow it on
    2799             :      * first pages whose finaltup strongly suggests that it'll work out, as
    2800             :      * well as first pages that have a large number of skip array advances).
    2801             :      * Clearing this first page finaltup hurdle is a strong signal in itself.
    2802             :      *
    2803             :      * Note: The NSKIPADVANCES_THRESHOLD heuristic exists only to avoid
    2804             :      * pathological cases.  Specifically, cases where a skip scan should just
    2805             :      * behave like a traditional full index scan, but ends up "skipping" again
    2806             :      * and again, descending to the prior leaf page's direct sibling leaf page
    2807             :      * each time.  This misbehavior would otherwise be possible during scans
    2808             :      * that never quite manage to "clear the first page finaltup hurdle".
    2809             :      */
    2810       17990 :     if (!pstate->firstpage || pstate->nskipadvances > NSKIPADVANCES_THRESHOLD)
    2811             :     {
    2812             :         /* Schedule a recheck once on the next (or previous) page */
    2813         868 :         so->scanBehind = true;
    2814             : 
    2815             :         /* Continue the current primitive scan after all */
    2816         868 :         goto continue_scan;
    2817             :     }
    2818             : 
    2819             :     /*
    2820             :      * End this primitive index scan, but schedule another.
    2821             :      *
    2822             :      * Note: We make a soft assumption that the current scan direction will
    2823             :      * also be used within _bt_next, when it is asked to step off this page.
    2824             :      * It is up to _bt_next to cancel this scheduled primitive index scan
    2825             :      * whenever it steps to a page in the direction opposite currPos.dir.
    2826             :      */
    2827       17122 :     pstate->continuescan = false;    /* Tell _bt_readpage we're done... */
    2828       17122 :     so->needPrimScan = true; /* ...but call _bt_first again */
    2829             : 
    2830       17122 :     if (scan->parallel_scan)
    2831          36 :         _bt_parallel_primscan_schedule(scan, so->currPos.currPage);
    2832             : 
    2833             :     /* Caller's tuple doesn't match the new qual */
    2834       17122 :     return false;
    2835             : 
    2836        8326 : end_toplevel_scan:
    2837             : 
    2838             :     /*
    2839             :      * End the current primitive index scan, but don't schedule another.
    2840             :      *
    2841             :      * This ends the entire top-level scan in the current scan direction.
    2842             :      *
    2843             :      * Note: The scan's arrays (including any non-required arrays) are now in
    2844             :      * their final positions for the current scan direction.  If the scan
    2845             :      * direction happens to change, then the arrays will already be in their
    2846             :      * first positions for what will then be the current scan direction.
    2847             :      */
    2848        8326 :     pstate->continuescan = false;    /* Tell _bt_readpage we're done... */
    2849        8326 :     so->needPrimScan = false;    /* ...and don't call _bt_first again */
    2850             : 
    2851             :     /* Caller's tuple doesn't match any qual */
    2852        8326 :     return false;
    2853             : }
    2854             : 
    2855             : /*
    2856             :  * _bt_advance_array_keys_increment() -- Advance to next set of array elements
    2857             :  *
    2858             :  * Advances the array keys by a single increment in the current scan
    2859             :  * direction.  When there are multiple array keys this can roll over from the
    2860             :  * lowest order array to higher order arrays.
    2861             :  *
    2862             :  * Returns true if there is another set of values to consider, false if not.
    2863             :  * On true result, the scankeys are initialized with the next set of values.
    2864             :  * On false result, the scankeys stay the same, and the array keys are not
    2865             :  * advanced (every array remains at its final element for scan direction).
    2866             :  */
    2867             : static bool
    2868       31272 : _bt_advance_array_keys_increment(IndexScanDesc scan, ScanDirection dir,
    2869             :                                  bool *skip_array_set)
    2870             : {
    2871       31272 :     Relation    rel = scan->indexRelation;
    2872       31272 :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    2873             : 
    2874             :     /*
    2875             :      * We must advance the last array key most quickly, since it will
    2876             :      * correspond to the lowest-order index column among the available
    2877             :      * qualifications
    2878             :      */
    2879       40736 :     for (int i = so->numArrayKeys - 1; i >= 0; i--)
    2880             :     {
    2881       32410 :         BTArrayKeyInfo *array = &so->arrayKeys[i];
    2882       32410 :         ScanKey     skey = &so->keyData[array->scan_key];
    2883             : 
    2884       32410 :         if (array->num_elems == -1)
    2885       24014 :             *skip_array_set = true;
    2886             : 
    2887       32410 :         if (ScanDirectionIsForward(dir))
    2888             :         {
    2889       31498 :             if (_bt_array_increment(rel, skey, array))
    2890       22070 :                 return true;
    2891             :         }
    2892             :         else
    2893             :         {
    2894         912 :             if (_bt_array_decrement(rel, skey, array))
    2895         876 :                 return true;
    2896             :         }
    2897             : 
    2898             :         /*
    2899             :          * Couldn't increment (or decrement) array.  Handle array roll over.
    2900             :          *
    2901             :          * Start over at the array's lowest sorting value (or its highest
    2902             :          * value, for backward scans)...
    2903             :          */
    2904        9464 :         _bt_array_set_low_or_high(rel, skey, array,
    2905             :                                   ScanDirectionIsForward(dir));
    2906             : 
    2907             :         /* ...then increment (or decrement) next most significant array */
    2908             :     }
    2909             : 
    2910             :     /*
    2911             :      * The array keys are now exhausted.
    2912             :      *
    2913             :      * Restore the array keys to the state they were in immediately before we
    2914             :      * were called.  This ensures that the arrays only ever ratchet in the
    2915             :      * current scan direction.
    2916             :      *
    2917             :      * Without this, scans could overlook matching tuples when the scan
    2918             :      * direction gets reversed just before btgettuple runs out of items to
    2919             :      * return, but just after _bt_readpage prepares all the items from the
    2920             :      * scan's final page in so->currPos.  When we're on the final page it is
    2921             :      * typical for so->currPos to get invalidated once btgettuple finally
    2922             :      * returns false, which'll effectively invalidate the scan's array keys.
    2923             :      * That hasn't happened yet, though -- and in general it may never happen.
    2924             :      */
    2925        8326 :     _bt_start_array_keys(scan, -dir);
    2926             : 
    2927        8326 :     return false;
    2928             : }
    2929             : 
    2930             : /*
    2931             :  * _bt_array_increment() -- increment array scan key's sk_argument
    2932             :  *
    2933             :  * Return value indicates whether caller's array was successfully incremented.
    2934             :  * Cannot increment an array whose current element is already the final one.
    2935             :  */
    2936             : static bool
    2937       31498 : _bt_array_increment(Relation rel, ScanKey skey, BTArrayKeyInfo *array)
    2938             : {
    2939       31498 :     bool        oflow = false;
    2940             :     Datum       inc_sk_argument;
    2941             : 
    2942             :     Assert(skey->sk_flags & SK_SEARCHARRAY);
    2943             :     Assert(!(skey->sk_flags & (SK_BT_MINVAL | SK_BT_NEXT | SK_BT_PRIOR)));
    2944             : 
    2945             :     /* SAOP array? */
    2946       31498 :     if (array->num_elems != -1)
    2947             :     {
    2948             :         Assert(!(skey->sk_flags & (SK_BT_SKIP | SK_BT_MINVAL | SK_BT_MAXVAL)));
    2949        8360 :         if (array->cur_elem < array->num_elems - 1)
    2950             :         {
    2951             :             /*
    2952             :              * Just increment current element, and assign its datum to skey
    2953             :              * (only skip arrays need us to free existing sk_argument memory)
    2954             :              */
    2955          38 :             array->cur_elem++;
    2956          38 :             skey->sk_argument = array->elem_values[array->cur_elem];
    2957             : 
    2958             :             /* Successfully incremented array */
    2959          38 :             return true;
    2960             :         }
    2961             : 
    2962             :         /* Cannot increment past final array element */
    2963        8322 :         return false;
    2964             :     }
    2965             : 
    2966             :     /* Nope, this is a skip array */
    2967             :     Assert(skey->sk_flags & SK_BT_SKIP);
    2968             : 
    2969             :     /*
    2970             :      * The sentinel value that represents the maximum value within the range
    2971             :      * of a skip array (often just +inf) is never incrementable
    2972             :      */
    2973       23138 :     if (skey->sk_flags & SK_BT_MAXVAL)
    2974         640 :         return false;
    2975             : 
    2976             :     /*
    2977             :      * When the current array element is NULL, and the highest sorting value
    2978             :      * in the index is also NULL, we cannot increment past the final element
    2979             :      */
    2980       22498 :     if ((skey->sk_flags & SK_ISNULL) && !(skey->sk_flags & SK_BT_NULLS_FIRST))
    2981         436 :         return false;
    2982             : 
    2983             :     /*
    2984             :      * Opclasses without skip support "increment" the scan key's current
    2985             :      * element by setting the NEXT flag.  The true next value is determined by
    2986             :      * repositioning to the first index tuple > existing sk_argument/current
    2987             :      * array element.  Note that this works in the usual way when the scan key
    2988             :      * is already marked ISNULL (i.e. when the current element is NULL).
    2989             :      */
    2990       22062 :     if (!array->sksup)
    2991             :     {
    2992             :         /* Successfully "incremented" array */
    2993       14786 :         skey->sk_flags |= SK_BT_NEXT;
    2994       14786 :         return true;
    2995             :     }
    2996             : 
    2997             :     /*
    2998             :      * Opclasses with skip support directly increment sk_argument
    2999             :      */
    3000        7276 :     if (skey->sk_flags & SK_ISNULL)
    3001             :     {
    3002             :         Assert(skey->sk_flags & SK_BT_NULLS_FIRST);
    3003             : 
    3004             :         /*
    3005             :          * Existing sk_argument/array element is NULL (for an IS NULL qual).
    3006             :          *
    3007             :          * "Increment" from NULL to the low_elem value provided by opclass
    3008             :          * skip support routine.
    3009             :          */
    3010          36 :         skey->sk_flags &= ~(SK_SEARCHNULL | SK_ISNULL);
    3011          72 :         skey->sk_argument = datumCopy(array->sksup->low_elem,
    3012          36 :                                       array->attbyval, array->attlen);
    3013          36 :         return true;
    3014             :     }
    3015             : 
    3016             :     /*
    3017             :      * Ask opclass support routine to provide incremented copy of existing
    3018             :      * non-NULL sk_argument
    3019             :      */
    3020        7240 :     inc_sk_argument = array->sksup->increment(rel, skey->sk_argument, &oflow);
    3021        7240 :     if (unlikely(oflow))
    3022             :     {
    3023             :         /* inc_sk_argument has undefined value (so no pfree) */
    3024          30 :         if (array->null_elem && !(skey->sk_flags & SK_BT_NULLS_FIRST))
    3025             :         {
    3026          12 :             _bt_skiparray_set_isnull(rel, skey, array);
    3027             : 
    3028             :             /* Successfully "incremented" array to NULL */
    3029          12 :             return true;
    3030             :         }
    3031             : 
    3032             :         /* Cannot increment past final array element */
    3033          18 :         return false;
    3034             :     }
    3035             : 
    3036             :     /*
    3037             :      * Successfully incremented sk_argument to a non-NULL value.  Make sure
    3038             :      * that the incremented value is still within the range of the array.
    3039             :      */
    3040        7210 :     if (array->high_compare &&
    3041          42 :         !DatumGetBool(FunctionCall2Coll(&array->high_compare->sk_func,
    3042          42 :                                         array->high_compare->sk_collation,
    3043             :                                         inc_sk_argument,
    3044          42 :                                         array->high_compare->sk_argument)))
    3045             :     {
    3046             :         /* Keep existing sk_argument after all */
    3047          12 :         if (!array->attbyval)
    3048           0 :             pfree(DatumGetPointer(inc_sk_argument));
    3049             : 
    3050             :         /* Cannot increment past final array element */
    3051          12 :         return false;
    3052             :     }
    3053             : 
    3054             :     /* Accept value returned by opclass increment callback */
    3055        7198 :     if (!array->attbyval && skey->sk_argument)
    3056           0 :         pfree(DatumGetPointer(skey->sk_argument));
    3057        7198 :     skey->sk_argument = inc_sk_argument;
    3058             : 
    3059             :     /* Successfully incremented array */
    3060        7198 :     return true;
    3061             : }
    3062             : 
    3063             : /*
    3064             :  * _bt_array_decrement() -- decrement array scan key's sk_argument
    3065             :  *
    3066             :  * Return value indicates whether caller's array was successfully decremented.
    3067             :  * Cannot decrement an array whose current element is already the first one.
    3068             :  */
    3069             : static bool
    3070         912 : _bt_array_decrement(Relation rel, ScanKey skey, BTArrayKeyInfo *array)
    3071             : {
    3072         912 :     bool        uflow = false;
    3073             :     Datum       dec_sk_argument;
    3074             : 
    3075             :     Assert(skey->sk_flags & SK_SEARCHARRAY);
    3076             :     Assert(!(skey->sk_flags & (SK_BT_MAXVAL | SK_BT_NEXT | SK_BT_PRIOR)));
    3077             : 
    3078             :     /* SAOP array? */
    3079         912 :     if (array->num_elems != -1)
    3080             :     {
    3081             :         Assert(!(skey->sk_flags & (SK_BT_SKIP | SK_BT_MINVAL | SK_BT_MAXVAL)));
    3082          36 :         if (array->cur_elem > 0)
    3083             :         {
    3084             :             /*
    3085             :              * Just decrement current element, and assign its datum to skey
    3086             :              * (only skip arrays need us to free existing sk_argument memory)
    3087             :              */
    3088           6 :             array->cur_elem--;
    3089           6 :             skey->sk_argument = array->elem_values[array->cur_elem];
    3090             : 
    3091             :             /* Successfully decremented array */
    3092           6 :             return true;
    3093             :         }
    3094             : 
    3095             :         /* Cannot decrement to before first array element */
    3096          30 :         return false;
    3097             :     }
    3098             : 
    3099             :     /* Nope, this is a skip array */
    3100             :     Assert(skey->sk_flags & SK_BT_SKIP);
    3101             : 
    3102             :     /*
    3103             :      * The sentinel value that represents the minimum value within the range
    3104             :      * of a skip array (often just -inf) is never decrementable
    3105             :      */
    3106         876 :     if (skey->sk_flags & SK_BT_MINVAL)
    3107           0 :         return false;
    3108             : 
    3109             :     /*
    3110             :      * When the current array element is NULL, and the lowest sorting value in
    3111             :      * the index is also NULL, we cannot decrement before first array element
    3112             :      */
    3113         876 :     if ((skey->sk_flags & SK_ISNULL) && (skey->sk_flags & SK_BT_NULLS_FIRST))
    3114           0 :         return false;
    3115             : 
    3116             :     /*
    3117             :      * Opclasses without skip support "decrement" the scan key's current
    3118             :      * element by setting the PRIOR flag.  The true prior value is determined
    3119             :      * by repositioning to the last index tuple < existing sk_argument/current
    3120             :      * array element.  Note that this works in the usual way when the scan key
    3121             :      * is already marked ISNULL (i.e. when the current element is NULL).
    3122             :      */
    3123         876 :     if (!array->sksup)
    3124             :     {
    3125             :         /* Successfully "decremented" array */
    3126          12 :         skey->sk_flags |= SK_BT_PRIOR;
    3127          12 :         return true;
    3128             :     }
    3129             : 
    3130             :     /*
    3131             :      * Opclasses with skip support directly decrement sk_argument
    3132             :      */
    3133         864 :     if (skey->sk_flags & SK_ISNULL)
    3134             :     {
    3135             :         Assert(!(skey->sk_flags & SK_BT_NULLS_FIRST));
    3136             : 
    3137             :         /*
    3138             :          * Existing sk_argument/array element is NULL (for an IS NULL qual).
    3139             :          *
    3140             :          * "Decrement" from NULL to the high_elem value provided by opclass
    3141             :          * skip support routine.
    3142             :          */
    3143           6 :         skey->sk_flags &= ~(SK_SEARCHNULL | SK_ISNULL);
    3144          12 :         skey->sk_argument = datumCopy(array->sksup->high_elem,
    3145           6 :                                       array->attbyval, array->attlen);
    3146           6 :         return true;
    3147             :     }
    3148             : 
    3149             :     /*
    3150             :      * Ask opclass support routine to provide decremented copy of existing
    3151             :      * non-NULL sk_argument
    3152             :      */
    3153         858 :     dec_sk_argument = array->sksup->decrement(rel, skey->sk_argument, &uflow);
    3154         858 :     if (unlikely(uflow))
    3155             :     {
    3156             :         /* dec_sk_argument has undefined value (so no pfree) */
    3157           0 :         if (array->null_elem && (skey->sk_flags & SK_BT_NULLS_FIRST))
    3158             :         {
    3159           0 :             _bt_skiparray_set_isnull(rel, skey, array);
    3160             : 
    3161             :             /* Successfully "decremented" array to NULL */
    3162           0 :             return true;
    3163             :         }
    3164             : 
    3165             :         /* Cannot decrement to before first array element */
    3166           0 :         return false;
    3167             :     }
    3168             : 
    3169             :     /*
    3170             :      * Successfully decremented sk_argument to a non-NULL value.  Make sure
    3171             :      * that the decremented value is still within the range of the array.
    3172             :      */
    3173         858 :     if (array->low_compare &&
    3174          12 :         !DatumGetBool(FunctionCall2Coll(&array->low_compare->sk_func,
    3175          12 :                                         array->low_compare->sk_collation,
    3176             :                                         dec_sk_argument,
    3177          12 :                                         array->low_compare->sk_argument)))
    3178             :     {
    3179             :         /* Keep existing sk_argument after all */
    3180           6 :         if (!array->attbyval)
    3181           0 :             pfree(DatumGetPointer(dec_sk_argument));
    3182             : 
    3183             :         /* Cannot decrement to before first array element */
    3184           6 :         return false;
    3185             :     }
    3186             : 
    3187             :     /* Accept value returned by opclass decrement callback */
    3188         852 :     if (!array->attbyval && skey->sk_argument)
    3189           0 :         pfree(DatumGetPointer(skey->sk_argument));
    3190         852 :     skey->sk_argument = dec_sk_argument;
    3191             : 
    3192             :     /* Successfully decremented array */
    3193         852 :     return true;
    3194             : }
    3195             : 
    3196             : /*
    3197             :  * _bt_array_set_low_or_high() -- Set array scan key to lowest/highest element
    3198             :  *
    3199             :  * Caller also passes associated scan key, which will have its argument set to
    3200             :  * the lowest/highest array value in passing.
    3201             :  */
    3202             : static void
    3203       93850 : _bt_array_set_low_or_high(Relation rel, ScanKey skey, BTArrayKeyInfo *array,
    3204             :                           bool low_not_high)
    3205             : {
    3206             :     Assert(skey->sk_flags & SK_SEARCHARRAY);
    3207             : 
    3208       93850 :     if (array->num_elems != -1)
    3209             :     {
    3210             :         /* set low or high element for SAOP array */
    3211       84770 :         int         set_elem = 0;
    3212             : 
    3213             :         Assert(!(skey->sk_flags & SK_BT_SKIP));
    3214             : 
    3215       84770 :         if (!low_not_high)
    3216        8336 :             set_elem = array->num_elems - 1;
    3217             : 
    3218             :         /*
    3219             :          * Just copy over array datum (only skip arrays require freeing and
    3220             :          * allocating memory for sk_argument)
    3221             :          */
    3222       84770 :         array->cur_elem = set_elem;
    3223       84770 :         skey->sk_argument = array->elem_values[set_elem];
    3224             : 
    3225       84770 :         return;
    3226             :     }
    3227             : 
    3228             :     /* set low or high element for skip array */
    3229             :     Assert(skey->sk_flags & SK_BT_SKIP);
    3230             :     Assert(array->num_elems == -1);
    3231             : 
    3232             :     /* Free memory previously allocated for sk_argument if needed */
    3233        9080 :     if (!array->attbyval && skey->sk_argument)
    3234        1872 :         pfree(DatumGetPointer(skey->sk_argument));
    3235             : 
    3236             :     /* Reset flags */
    3237        9080 :     skey->sk_argument = (Datum) 0;
    3238        9080 :     skey->sk_flags &= ~(SK_SEARCHNULL | SK_ISNULL |
    3239             :                         SK_BT_MINVAL | SK_BT_MAXVAL |
    3240             :                         SK_BT_NEXT | SK_BT_PRIOR);
    3241             : 
    3242        9080 :     if (array->null_elem &&
    3243        7276 :         (low_not_high == ((skey->sk_flags & SK_BT_NULLS_FIRST) != 0)))
    3244             :     {
    3245             :         /* Requested element (either lowest or highest) has the value NULL */
    3246         962 :         skey->sk_flags |= (SK_SEARCHNULL | SK_ISNULL);
    3247             :     }
    3248        8118 :     else if (low_not_high)
    3249             :     {
    3250             :         /* Setting array to lowest element (according to low_compare) */
    3251        7402 :         skey->sk_flags |= SK_BT_MINVAL;
    3252             :     }
    3253             :     else
    3254             :     {
    3255             :         /* Setting array to highest element (according to high_compare) */
    3256         716 :         skey->sk_flags |= SK_BT_MAXVAL;
    3257             :     }
    3258             : }
    3259             : 
    3260             : /*
    3261             :  * _bt_skiparray_set_element() -- Set skip array scan key's sk_argument
    3262             :  *
    3263             :  * Caller passes set_elem_result returned by _bt_binsrch_skiparray_skey for
    3264             :  * caller's tupdatum/tupnull.
    3265             :  *
    3266             :  * We copy tupdatum/tupnull into skey's sk_argument iff set_elem_result == 0.
    3267             :  * Otherwise, we set skey to either the lowest or highest value that's within
    3268             :  * the range of caller's skip array (whichever is the best available match to
    3269             :  * tupdatum/tupnull that is still within the range of the skip array according
    3270             :  * to _bt_binsrch_skiparray_skey/set_elem_result).
    3271             :  */
    3272             : static void
    3273      154568 : _bt_skiparray_set_element(Relation rel, ScanKey skey, BTArrayKeyInfo *array,
    3274             :                           int32 set_elem_result, Datum tupdatum, bool tupnull)
    3275             : {
    3276             :     Assert(skey->sk_flags & SK_BT_SKIP);
    3277             :     Assert(skey->sk_flags & SK_SEARCHARRAY);
    3278             : 
    3279      154568 :     if (set_elem_result)
    3280             :     {
    3281             :         /* tupdatum/tupnull is out of the range of the skip array */
    3282             :         Assert(!array->null_elem);
    3283             : 
    3284         640 :         _bt_array_set_low_or_high(rel, skey, array, set_elem_result < 0);
    3285         640 :         return;
    3286             :     }
    3287             : 
    3288             :     /* Advance skip array to tupdatum (or tupnull) value */
    3289      153928 :     if (unlikely(tupnull))
    3290             :     {
    3291          36 :         _bt_skiparray_set_isnull(rel, skey, array);
    3292          36 :         return;
    3293             :     }
    3294             : 
    3295             :     /* Free memory previously allocated for sk_argument if needed */
    3296      153892 :     if (!array->attbyval && skey->sk_argument)
    3297       77882 :         pfree(DatumGetPointer(skey->sk_argument));
    3298             : 
    3299             :     /* tupdatum becomes new sk_argument/new current element */
    3300      153892 :     skey->sk_flags &= ~(SK_SEARCHNULL | SK_ISNULL |
    3301             :                         SK_BT_MINVAL | SK_BT_MAXVAL |
    3302             :                         SK_BT_NEXT | SK_BT_PRIOR);
    3303      153892 :     skey->sk_argument = datumCopy(tupdatum, array->attbyval, array->attlen);
    3304             : }
    3305             : 
    3306             : /*
    3307             :  * _bt_skiparray_set_isnull() -- set skip array scan key to NULL
    3308             :  */
    3309             : static void
    3310          48 : _bt_skiparray_set_isnull(Relation rel, ScanKey skey, BTArrayKeyInfo *array)
    3311             : {
    3312             :     Assert(skey->sk_flags & SK_BT_SKIP);
    3313             :     Assert(skey->sk_flags & SK_SEARCHARRAY);
    3314             :     Assert(array->null_elem && !array->low_compare && !array->high_compare);
    3315             : 
    3316             :     /* Free memory previously allocated for sk_argument if needed */
    3317          48 :     if (!array->attbyval && skey->sk_argument)
    3318           6 :         pfree(DatumGetPointer(skey->sk_argument));
    3319             : 
    3320             :     /* NULL becomes new sk_argument/new current element */
    3321          48 :     skey->sk_argument = (Datum) 0;
    3322          48 :     skey->sk_flags &= ~(SK_BT_MINVAL | SK_BT_MAXVAL |
    3323             :                         SK_BT_NEXT | SK_BT_PRIOR);
    3324          48 :     skey->sk_flags |= (SK_SEARCHNULL | SK_ISNULL);
    3325          48 : }
    3326             : 
    3327             : /*
    3328             :  * _bt_compare_array_skey() -- apply array comparison function
    3329             :  *
    3330             :  * Compares caller's tuple attribute value to a scan key/array element.
    3331             :  * Helper function used during binary searches of SK_SEARCHARRAY arrays.
    3332             :  *
    3333             :  *      This routine returns:
    3334             :  *          <0 if tupdatum < arrdatum;
    3335             :  *           0 if tupdatum == arrdatum;
    3336             :  *          >0 if tupdatum > arrdatum.
    3337             :  *
    3338             :  * This is essentially the same interface as _bt_compare: both functions
    3339             :  * compare the value that they're searching for to a binary search pivot.
    3340             :  * However, unlike _bt_compare, this function's "tuple argument" comes first,
    3341             :  * while its "array/scankey argument" comes second.
    3342             : */
    3343             : static inline int32
    3344      470444 : _bt_compare_array_skey(FmgrInfo *orderproc,
    3345             :                        Datum tupdatum, bool tupnull,
    3346             :                        Datum arrdatum, ScanKey cur)
    3347             : {
    3348      470444 :     int32       result = 0;
    3349             : 
    3350             :     Assert(cur->sk_strategy == BTEqualStrategyNumber);
    3351             :     Assert(!(cur->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL)));
    3352             : 
    3353      470444 :     if (tupnull)                /* NULL tupdatum */
    3354             :     {
    3355         228 :         if (cur->sk_flags & SK_ISNULL)
    3356         132 :             result = 0;         /* NULL "=" NULL */
    3357          96 :         else if (cur->sk_flags & SK_BT_NULLS_FIRST)
    3358           0 :             result = -1;        /* NULL "<" NOT_NULL */
    3359             :         else
    3360          96 :             result = 1;         /* NULL ">" NOT_NULL */
    3361             :     }
    3362      470216 :     else if (cur->sk_flags & SK_ISNULL) /* NOT_NULL tupdatum, NULL arrdatum */
    3363             :     {
    3364       30540 :         if (cur->sk_flags & SK_BT_NULLS_FIRST)
    3365          54 :             result = 1;         /* NOT_NULL ">" NULL */
    3366             :         else
    3367       30486 :             result = -1;        /* NOT_NULL "<" NULL */
    3368             :     }
    3369             :     else
    3370             :     {
    3371             :         /*
    3372             :          * Like _bt_compare, we need to be careful of cross-type comparisons,
    3373             :          * so the left value has to be the value that came from an index tuple
    3374             :          */
    3375      439676 :         result = DatumGetInt32(FunctionCall2Coll(orderproc, cur->sk_collation,
    3376             :                                                  tupdatum, arrdatum));
    3377             : 
    3378             :         /*
    3379             :          * We flip the sign by following the obvious rule: flip whenever the
    3380             :          * column is a DESC column.
    3381             :          *
    3382             :          * _bt_compare does it the wrong way around (flip when *ASC*) in order
    3383             :          * to compensate for passing its orderproc arguments backwards.  We
    3384             :          * don't need to play these games because we find it natural to pass
    3385             :          * tupdatum as the left value (and arrdatum as the right value).
    3386             :          */
    3387      439676 :         if (cur->sk_flags & SK_BT_DESC)
    3388       45498 :             INVERT_COMPARE_RESULT(result);
    3389             :     }
    3390             : 
    3391      470444 :     return result;
    3392             : }
    3393             : 
    3394             : /*
    3395             :  * _bt_binsrch_array_skey() -- Binary search for next matching array key
    3396             :  *
    3397             :  * Returns an index to the first array element >= caller's tupdatum argument.
    3398             :  * This convention is more natural for forwards scan callers, but that can't
    3399             :  * really matter to backwards scan callers.  Both callers require handling for
    3400             :  * the case where the match we return is < tupdatum, and symmetric handling
    3401             :  * for the case where our best match is > tupdatum.
    3402             :  *
    3403             :  * Also sets *set_elem_result to the result _bt_compare_array_skey returned
    3404             :  * when we used it to compare the matching array element to tupdatum/tupnull.
    3405             :  *
    3406             :  * cur_elem_trig indicates if array advancement was triggered by this array's
    3407             :  * scan key, and that the array is for a required scan key.  We can apply this
    3408             :  * information to find the next matching array element in the current scan
    3409             :  * direction using far fewer comparisons (fewer on average, compared to naive
    3410             :  * binary search).  This scheme takes advantage of an important property of
    3411             :  * required arrays: required arrays always advance in lockstep with the index
    3412             :  * scan's progress through the index's key space.
    3413             :  */
    3414             : int
    3415       31988 : _bt_binsrch_array_skey(FmgrInfo *orderproc,
    3416             :                        bool cur_elem_trig, ScanDirection dir,
    3417             :                        Datum tupdatum, bool tupnull,
    3418             :                        BTArrayKeyInfo *array, ScanKey cur,
    3419             :                        int32 *set_elem_result)
    3420             : {
    3421       31988 :     int         low_elem = 0,
    3422       31988 :                 mid_elem = -1,
    3423       31988 :                 high_elem = array->num_elems - 1,
    3424       31988 :                 result = 0;
    3425             :     Datum       arrdatum;
    3426             : 
    3427             :     Assert(cur->sk_flags & SK_SEARCHARRAY);
    3428             :     Assert(!(cur->sk_flags & SK_BT_SKIP));
    3429             :     Assert(!(cur->sk_flags & SK_ISNULL));    /* SAOP arrays never have NULLs */
    3430             :     Assert(cur->sk_strategy == BTEqualStrategyNumber);
    3431             : 
    3432       31988 :     if (cur_elem_trig)
    3433             :     {
    3434             :         Assert(!ScanDirectionIsNoMovement(dir));
    3435             :         Assert(cur->sk_flags & SK_BT_REQFWD);
    3436             : 
    3437             :         /*
    3438             :          * When the scan key that triggered array advancement is a required
    3439             :          * array scan key, it is now certain that the current array element
    3440             :          * (plus all prior elements relative to the current scan direction)
    3441             :          * cannot possibly be at or ahead of the corresponding tuple value.
    3442             :          * (_bt_checkkeys must have called _bt_tuple_before_array_skeys, which
    3443             :          * makes sure this is true as a condition of advancing the arrays.)
    3444             :          *
    3445             :          * This makes it safe to exclude array elements up to and including
    3446             :          * the former-current array element from our search.
    3447             :          *
    3448             :          * Separately, when array advancement was triggered by a required scan
    3449             :          * key, the array element immediately after the former-current element
    3450             :          * is often either an exact tupdatum match, or a "close by" near-match
    3451             :          * (a near-match tupdatum is one whose key space falls _between_ the
    3452             :          * former-current and new-current array elements).  We'll detect both
    3453             :          * cases via an optimistic comparison of the new search lower bound
    3454             :          * (or new search upper bound in the case of backwards scans).
    3455             :          */
    3456       31670 :         if (ScanDirectionIsForward(dir))
    3457             :         {
    3458       31610 :             low_elem = array->cur_elem + 1; /* old cur_elem exhausted */
    3459             : 
    3460             :             /* Compare prospective new cur_elem (also the new lower bound) */
    3461       31610 :             if (high_elem >= low_elem)
    3462             :             {
    3463       23512 :                 arrdatum = array->elem_values[low_elem];
    3464       23512 :                 result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
    3465             :                                                 arrdatum, cur);
    3466             : 
    3467       23512 :                 if (result <= 0)
    3468             :                 {
    3469             :                     /* Optimistic comparison optimization worked out */
    3470       23426 :                     *set_elem_result = result;
    3471       23426 :                     return low_elem;
    3472             :                 }
    3473          86 :                 mid_elem = low_elem;
    3474          86 :                 low_elem++;     /* this cur_elem exhausted, too */
    3475             :             }
    3476             : 
    3477        8184 :             if (high_elem < low_elem)
    3478             :             {
    3479             :                 /* Caller needs to perform "beyond end" array advancement */
    3480        8104 :                 *set_elem_result = 1;
    3481        8104 :                 return high_elem;
    3482             :             }
    3483             :         }
    3484             :         else
    3485             :         {
    3486          60 :             high_elem = array->cur_elem - 1; /* old cur_elem exhausted */
    3487             : 
    3488             :             /* Compare prospective new cur_elem (also the new upper bound) */
    3489          60 :             if (high_elem >= low_elem)
    3490             :             {
    3491          42 :                 arrdatum = array->elem_values[high_elem];
    3492          42 :                 result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
    3493             :                                                 arrdatum, cur);
    3494             : 
    3495          42 :                 if (result >= 0)
    3496             :                 {
    3497             :                     /* Optimistic comparison optimization worked out */
    3498          30 :                     *set_elem_result = result;
    3499          30 :                     return high_elem;
    3500             :                 }
    3501          12 :                 mid_elem = high_elem;
    3502          12 :                 high_elem--;    /* this cur_elem exhausted, too */
    3503             :             }
    3504             : 
    3505          30 :             if (high_elem < low_elem)
    3506             :             {
    3507             :                 /* Caller needs to perform "beyond end" array advancement */
    3508          30 :                 *set_elem_result = -1;
    3509          30 :                 return low_elem;
    3510             :             }
    3511             :         }
    3512             :     }
    3513             : 
    3514         698 :     while (high_elem > low_elem)
    3515             :     {
    3516         438 :         mid_elem = low_elem + ((high_elem - low_elem) / 2);
    3517         438 :         arrdatum = array->elem_values[mid_elem];
    3518             : 
    3519         438 :         result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
    3520             :                                         arrdatum, cur);
    3521             : 
    3522         438 :         if (result == 0)
    3523             :         {
    3524             :             /*
    3525             :              * It's safe to quit as soon as we see an equal array element.
    3526             :              * This often saves an extra comparison or two...
    3527             :              */
    3528         138 :             low_elem = mid_elem;
    3529         138 :             break;
    3530             :         }
    3531             : 
    3532         300 :         if (result > 0)
    3533         270 :             low_elem = mid_elem + 1;
    3534             :         else
    3535          30 :             high_elem = mid_elem;
    3536             :     }
    3537             : 
    3538             :     /*
    3539             :      * ...but our caller also cares about how its searched-for tuple datum
    3540             :      * compares to the low_elem datum.  Must always set *set_elem_result with
    3541             :      * the result of that comparison specifically.
    3542             :      */
    3543         398 :     if (low_elem != mid_elem)
    3544         242 :         result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
    3545         242 :                                         array->elem_values[low_elem], cur);
    3546             : 
    3547         398 :     *set_elem_result = result;
    3548             : 
    3549         398 :     return low_elem;
    3550             : }
    3551             : 
    3552             : /*
    3553             :  * _bt_binsrch_skiparray_skey() -- "Binary search" within a skip array
    3554             :  *
    3555             :  * Does not return an index into the array, since skip arrays don't really
    3556             :  * contain elements (they generate their array elements procedurally instead).
    3557             :  * Our interface matches that of _bt_binsrch_array_skey in every other way.
    3558             :  *
    3559             :  * Sets *set_elem_result just like _bt_binsrch_array_skey would with a true
    3560             :  * array.  The value 0 indicates that tupdatum/tupnull is within the range of
    3561             :  * the skip array.  We return -1 when tupdatum/tupnull is lower that any value
    3562             :  * within the range of the array, and 1 when it is higher than every value.
    3563             :  * Caller should pass *set_elem_result to _bt_skiparray_set_element to advance
    3564             :  * the array.
    3565             :  *
    3566             :  * cur_elem_trig indicates if array advancement was triggered by this array's
    3567             :  * scan key.  We use this to optimize-away comparisons that are known by our
    3568             :  * caller to be unnecessary from context, just like _bt_binsrch_array_skey.
    3569             :  */
    3570             : static void
    3571      166244 : _bt_binsrch_skiparray_skey(bool cur_elem_trig, ScanDirection dir,
    3572             :                            Datum tupdatum, bool tupnull,
    3573             :                            BTArrayKeyInfo *array, ScanKey cur,
    3574             :                            int32 *set_elem_result)
    3575             : {
    3576             :     Assert(cur->sk_flags & SK_BT_SKIP);
    3577             :     Assert(cur->sk_flags & SK_SEARCHARRAY);
    3578             :     Assert(cur->sk_flags & SK_BT_REQFWD);
    3579             :     Assert(array->num_elems == -1);
    3580             :     Assert(!ScanDirectionIsNoMovement(dir));
    3581             : 
    3582      166244 :     if (array->null_elem)
    3583             :     {
    3584             :         Assert(!array->low_compare && !array->high_compare);
    3585             : 
    3586      140112 :         *set_elem_result = 0;
    3587      140112 :         return;
    3588             :     }
    3589             : 
    3590       26132 :     if (tupnull)                /* NULL tupdatum */
    3591             :     {
    3592          24 :         if (cur->sk_flags & SK_BT_NULLS_FIRST)
    3593           0 :             *set_elem_result = -1;  /* NULL "<" NOT_NULL */
    3594             :         else
    3595          24 :             *set_elem_result = 1;   /* NULL ">" NOT_NULL */
    3596          24 :         return;
    3597             :     }
    3598             : 
    3599             :     /*
    3600             :      * Array inequalities determine whether tupdatum is within the range of
    3601             :      * caller's skip array
    3602             :      */
    3603       26108 :     *set_elem_result = 0;
    3604       26108 :     if (ScanDirectionIsForward(dir))
    3605             :     {
    3606             :         /*
    3607             :          * Evaluate low_compare first (unless cur_elem_trig tells us that it
    3608             :          * cannot possibly fail to be satisfied), then evaluate high_compare
    3609             :          */
    3610       26060 :         if (!cur_elem_trig && array->low_compare &&
    3611         706 :             !DatumGetBool(FunctionCall2Coll(&array->low_compare->sk_func,
    3612         706 :                                             array->low_compare->sk_collation,
    3613             :                                             tupdatum,
    3614         706 :                                             array->low_compare->sk_argument)))
    3615           0 :             *set_elem_result = -1;
    3616       26060 :         else if (array->high_compare &&
    3617        9968 :                  !DatumGetBool(FunctionCall2Coll(&array->high_compare->sk_func,
    3618        9968 :                                                  array->high_compare->sk_collation,
    3619             :                                                  tupdatum,
    3620        9968 :                                                  array->high_compare->sk_argument)))
    3621        6400 :             *set_elem_result = 1;
    3622             :     }
    3623             :     else
    3624             :     {
    3625             :         /*
    3626             :          * Evaluate high_compare first (unless cur_elem_trig tells us that it
    3627             :          * cannot possibly fail to be satisfied), then evaluate low_compare
    3628             :          */
    3629          48 :         if (!cur_elem_trig && array->high_compare &&
    3630           6 :             !DatumGetBool(FunctionCall2Coll(&array->high_compare->sk_func,
    3631           6 :                                             array->high_compare->sk_collation,
    3632             :                                             tupdatum,
    3633           6 :                                             array->high_compare->sk_argument)))
    3634           0 :             *set_elem_result = 1;
    3635          48 :         else if (array->low_compare &&
    3636          24 :                  !DatumGetBool(FunctionCall2Coll(&array->low_compare->sk_func,
    3637          24 :                                                  array->low_compare->sk_collation,
    3638             :                                                  tupdatum,
    3639          24 :                                                  array->low_compare->sk_argument)))
    3640           0 :             *set_elem_result = -1;
    3641             :     }
    3642             : 
    3643             :     /*
    3644             :      * Assert that any keys that were assumed to be satisfied already (due to
    3645             :      * caller passing cur_elem_trig=true) really are satisfied as expected
    3646             :      */
    3647             : #ifdef USE_ASSERT_CHECKING
    3648             :     if (cur_elem_trig)
    3649             :     {
    3650             :         if (ScanDirectionIsForward(dir) && array->low_compare)
    3651             :             Assert(DatumGetBool(FunctionCall2Coll(&array->low_compare->sk_func,
    3652             :                                                   array->low_compare->sk_collation,
    3653             :                                                   tupdatum,
    3654             :                                                   array->low_compare->sk_argument)));
    3655             : 
    3656             :         if (ScanDirectionIsBackward(dir) && array->high_compare)
    3657             :             Assert(DatumGetBool(FunctionCall2Coll(&array->high_compare->sk_func,
    3658             :                                                   array->high_compare->sk_collation,
    3659             :                                                   tupdatum,
    3660             :                                                   array->high_compare->sk_argument)));
    3661             :     }
    3662             : #endif
    3663             : }
    3664             : 
    3665             : #ifdef USE_ASSERT_CHECKING
    3666             : /*
    3667             :  * Verify that the scan's "so->keyData[]" scan keys are in agreement with
    3668             :  * its array key state
    3669             :  */
    3670             : static bool
    3671             : _bt_verify_keys_with_arraykeys(IndexScanDesc scan)
    3672             : {
    3673             :     BTScanOpaque so = (BTScanOpaque) scan->opaque;
    3674             :     int         last_sk_attno = InvalidAttrNumber,
    3675             :                 arrayidx = 0;
    3676             :     bool        nonrequiredseen = false;
    3677             : 
    3678             :     if (!so->qual_ok)
    3679             :         return false;
    3680             : 
    3681             :     for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
    3682             :     {
    3683             :         ScanKey     cur = so->keyData + ikey;
    3684             :         BTArrayKeyInfo *array;
    3685             : 
    3686             :         if (cur->sk_strategy != BTEqualStrategyNumber ||
    3687             :             !(cur->sk_flags & SK_SEARCHARRAY))
    3688             :             continue;
    3689             : 
    3690             :         array = &so->arrayKeys[arrayidx++];
    3691             :         if (array->scan_key != ikey)
    3692             :             return false;
    3693             : 
    3694             :         if (array->num_elems == 0 || array->num_elems < -1)
    3695             :             return false;
    3696             : 
    3697             :         if (array->num_elems != -1 &&
    3698             :             cur->sk_argument != array->elem_values[array->cur_elem])
    3699             :             return false;
    3700             :         if (cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD))
    3701             :         {
    3702             :             if (last_sk_attno > cur->sk_attno)
    3703             :                 return false;
    3704             :             if (nonrequiredseen)
    3705             :                 return false;
    3706             :         }
    3707             :         else
    3708             :             nonrequiredseen = true;
    3709             : 
    3710             :         last_sk_attno = cur->sk_attno;
    3711             :     }
    3712             : 
    3713             :     if (arrayidx != so->numArrayKeys)
    3714             :         return false;
    3715             : 
    3716             :     return true;
    3717             : }
    3718             : #endif

Generated by: LCOV version 1.16