Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * s_lock.h
4 : * Implementation of spinlocks.
5 : *
6 : * NOTE: none of the macros in this file are intended to be called directly.
7 : * Call them through the macros in spin.h.
8 : *
9 : * The following hardware-dependent macros must be provided for each
10 : * supported platform:
11 : *
12 : * void S_INIT_LOCK(slock_t *lock)
13 : * Initialize a spinlock (to the unlocked state).
14 : *
15 : * int S_LOCK(slock_t *lock)
16 : * Acquire a spinlock, waiting if necessary.
17 : * Time out and abort() if unable to acquire the lock in a
18 : * "reasonable" amount of time --- typically ~ 1 minute.
19 : * Should return number of "delays"; see s_lock.c
20 : *
21 : * void S_UNLOCK(slock_t *lock)
22 : * Unlock a previously acquired lock.
23 : *
24 : * bool S_LOCK_FREE(slock_t *lock)
25 : * Tests if the lock is free. Returns true if free, false if locked.
26 : * This does *not* change the state of the lock.
27 : *
28 : * void SPIN_DELAY(void)
29 : * Delay operation to occur inside spinlock wait loop.
30 : *
31 : * Note to implementors: there are default implementations for all these
32 : * macros at the bottom of the file. Check if your platform can use
33 : * these or needs to override them.
34 : *
35 : * Usually, S_LOCK() is implemented in terms of even lower-level macros
36 : * TAS() and TAS_SPIN():
37 : *
38 : * int TAS(slock_t *lock)
39 : * Atomic test-and-set instruction. Attempt to acquire the lock,
40 : * but do *not* wait. Returns 0 if successful, nonzero if unable
41 : * to acquire the lock.
42 : *
43 : * int TAS_SPIN(slock_t *lock)
44 : * Like TAS(), but this version is used when waiting for a lock
45 : * previously found to be contended. By default, this is the
46 : * same as TAS(), but on some architectures it's better to poll a
47 : * contended lock using an unlocked instruction and retry the
48 : * atomic test-and-set only when it appears free.
49 : *
50 : * TAS() and TAS_SPIN() are NOT part of the API, and should never be called
51 : * directly.
52 : *
53 : * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report
54 : * failure to acquire a lock even when the lock is not locked. For example,
55 : * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must
56 : * always be used, even if you are certain the lock is free.
57 : *
58 : * It is the responsibility of these macros to make sure that the compiler
59 : * does not re-order accesses to shared memory to precede the actual lock
60 : * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this
61 : * was the caller's responsibility, which meant that callers had to use
62 : * volatile-qualified pointers to refer to both the spinlock itself and the
63 : * shared data being accessed within the spinlocked critical section. This
64 : * was notationally awkward, easy to forget (and thus error-prone), and
65 : * prevented some useful compiler optimizations. For these reasons, we
66 : * now require that the macros themselves prevent compiler re-ordering,
67 : * so that the caller doesn't need to take special precautions.
68 : *
69 : * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and
70 : * S_UNLOCK() macros must further include hardware-level memory fence
71 : * instructions to prevent similar re-ordering at the hardware level.
72 : * TAS() and TAS_SPIN() must guarantee that loads and stores issued after
73 : * the macro are not executed until the lock has been obtained. Conversely,
74 : * S_UNLOCK() must guarantee that loads and stores issued before the macro
75 : * have been executed before the lock is released.
76 : *
77 : * On most supported platforms, TAS() uses a tas() function written
78 : * in assembly language to execute a hardware atomic-test-and-set
79 : * instruction. Equivalent OS-supplied mutex routines could be used too.
80 : *
81 : *
82 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
83 : * Portions Copyright (c) 1994, Regents of the University of California
84 : *
85 : * src/include/storage/s_lock.h
86 : *
87 : *-------------------------------------------------------------------------
88 : */
89 : #ifndef S_LOCK_H
90 : #define S_LOCK_H
91 :
92 : #ifdef FRONTEND
93 : #error "s_lock.h may not be included from frontend code"
94 : #endif
95 :
96 : #if defined(__GNUC__) || defined(__INTEL_COMPILER)
97 : /*************************************************************************
98 : * All the gcc inlines
99 : * Gcc consistently defines the CPU as __cpu__.
100 : * Other compilers use __cpu or __cpu__ so we test for both in those cases.
101 : */
102 :
103 : /*----------
104 : * Standard gcc asm format (assuming "volatile slock_t *lock"):
105 :
106 : __asm__ __volatile__(
107 : " instruction \n"
108 : " instruction \n"
109 : " instruction \n"
110 : : "=r"(_res), "+m"(*lock) // return register, in/out lock value
111 : : "r"(lock) // lock pointer, in input register
112 : : "memory", "cc"); // show clobbered registers here
113 :
114 : * The output-operands list (after first colon) should always include
115 : * "+m"(*lock), whether or not the asm code actually refers to this
116 : * operand directly. This ensures that gcc believes the value in the
117 : * lock variable is used and set by the asm code. Also, the clobbers
118 : * list (after third colon) should always include "memory"; this prevents
119 : * gcc from thinking it can cache the values of shared-memory fields
120 : * across the asm code. Add "cc" if your asm code changes the condition
121 : * code register, and also list any temp registers the code uses.
122 : *----------
123 : */
124 :
125 :
126 : #ifdef __i386__ /* 32-bit i386 */
127 : #define HAS_TEST_AND_SET
128 :
129 : typedef unsigned char slock_t;
130 :
131 : #define TAS(lock) tas(lock)
132 :
133 : static __inline__ int
134 : tas(volatile slock_t *lock)
135 : {
136 : slock_t _res = 1;
137 :
138 : /*
139 : * Use a non-locking test before asserting the bus lock. Note that the
140 : * extra test appears to be a small loss on some x86 platforms and a small
141 : * win on others; it's by no means clear that we should keep it.
142 : *
143 : * When this was last tested, we didn't have separate TAS() and TAS_SPIN()
144 : * macros. Nowadays it probably would be better to do a non-locking test
145 : * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the
146 : * testing to verify that. Without some empirical evidence, better to
147 : * leave it alone.
148 : */
149 : __asm__ __volatile__(
150 : " cmpb $0,%1 \n"
151 : " jne 1f \n"
152 : " lock \n"
153 : " xchgb %0,%1 \n"
154 : "1: \n"
155 : : "+q"(_res), "+m"(*lock)
156 : : /* no inputs */
157 : : "memory", "cc");
158 : return (int) _res;
159 : }
160 :
161 : #define SPIN_DELAY() spin_delay()
162 :
163 : static __inline__ void
164 : spin_delay(void)
165 : {
166 : /*
167 : * This sequence is equivalent to the PAUSE instruction ("rep" is
168 : * ignored by old IA32 processors if the following instruction is
169 : * not a string operation); the IA-32 Architecture Software
170 : * Developer's Manual, Vol. 3, Section 7.7.2 describes why using
171 : * PAUSE in the inner loop of a spin lock is necessary for good
172 : * performance:
173 : *
174 : * The PAUSE instruction improves the performance of IA-32
175 : * processors supporting Hyper-Threading Technology when
176 : * executing spin-wait loops and other routines where one
177 : * thread is accessing a shared lock or semaphore in a tight
178 : * polling loop. When executing a spin-wait loop, the
179 : * processor can suffer a severe performance penalty when
180 : * exiting the loop because it detects a possible memory order
181 : * violation and flushes the core processor's pipeline. The
182 : * PAUSE instruction provides a hint to the processor that the
183 : * code sequence is a spin-wait loop. The processor uses this
184 : * hint to avoid the memory order violation and prevent the
185 : * pipeline flush. In addition, the PAUSE instruction
186 : * de-pipelines the spin-wait loop to prevent it from
187 : * consuming execution resources excessively.
188 : */
189 : __asm__ __volatile__(
190 : " rep; nop \n");
191 : }
192 :
193 : #endif /* __i386__ */
194 :
195 :
196 : #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */
197 : #define HAS_TEST_AND_SET
198 :
199 : typedef unsigned char slock_t;
200 :
201 : #define TAS(lock) tas(lock)
202 :
203 : /*
204 : * On Intel EM64T, it's a win to use a non-locking test before the xchg proper,
205 : * but only when spinning.
206 : *
207 : * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T
208 : * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is
209 : * available at:
210 : * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures
211 : */
212 : #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
213 :
214 : static __inline__ int
215 104859292 : tas(volatile slock_t *lock)
216 : {
217 104859292 : slock_t _res = 1;
218 :
219 104859292 : __asm__ __volatile__(
220 : " lock \n"
221 : " xchgb %0,%1 \n"
222 : : "+q"(_res), "+m"(*lock)
223 : : /* no inputs */
224 : : "memory", "cc");
225 104859292 : return (int) _res;
226 : }
227 :
228 : #define SPIN_DELAY() spin_delay()
229 :
230 : static __inline__ void
231 651696 : spin_delay(void)
232 : {
233 : /*
234 : * Adding a PAUSE in the spin delay loop is demonstrably a no-op on
235 : * Opteron, but it may be of some use on EM64T, so we keep it.
236 : */
237 651696 : __asm__ __volatile__(
238 : " rep; nop \n");
239 651696 : }
240 :
241 : #endif /* __x86_64__ */
242 :
243 :
244 : /*
245 : * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available.
246 : *
247 : * We use the int-width variant of the builtin because it works on more chips
248 : * than other widths.
249 : */
250 : #if defined(__arm__) || defined(__arm) || defined(__aarch64__)
251 : #ifdef HAVE_GCC__SYNC_INT32_TAS
252 : #define HAS_TEST_AND_SET
253 :
254 : #define TAS(lock) tas(lock)
255 :
256 : typedef int slock_t;
257 :
258 : static __inline__ int
259 : tas(volatile slock_t *lock)
260 : {
261 : return __sync_lock_test_and_set(lock, 1);
262 : }
263 :
264 : #define S_UNLOCK(lock) __sync_lock_release(lock)
265 :
266 : #if defined(__aarch64__)
267 :
268 : /*
269 : * On ARM64, it's a win to use a non-locking test before the TAS proper. It
270 : * may be a win on 32-bit ARM, too, but nobody's tested it yet.
271 : */
272 : #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
273 :
274 : #define SPIN_DELAY() spin_delay()
275 :
276 : static __inline__ void
277 : spin_delay(void)
278 : {
279 : /*
280 : * Using an ISB instruction to delay in spinlock loops appears beneficial
281 : * on high-core-count ARM64 processors. It seems mostly a wash for smaller
282 : * gear, and ISB doesn't exist at all on pre-v7 ARM chips.
283 : */
284 : __asm__ __volatile__(
285 : " isb; \n");
286 : }
287 :
288 : #endif /* __aarch64__ */
289 : #endif /* HAVE_GCC__SYNC_INT32_TAS */
290 : #endif /* __arm__ || __arm || __aarch64__ */
291 :
292 :
293 : /* S/390 and S/390x Linux (32- and 64-bit zSeries) */
294 : #if defined(__s390__) || defined(__s390x__)
295 : #define HAS_TEST_AND_SET
296 :
297 : typedef unsigned int slock_t;
298 :
299 : #define TAS(lock) tas(lock)
300 :
301 : static __inline__ int
302 : tas(volatile slock_t *lock)
303 : {
304 : int _res = 0;
305 :
306 : __asm__ __volatile__(
307 : " cs %0,%3,0(%2) \n"
308 : : "+d"(_res), "+m"(*lock)
309 : : "a"(lock), "d"(1)
310 : : "memory", "cc");
311 : return _res;
312 : }
313 :
314 : #endif /* __s390__ || __s390x__ */
315 :
316 :
317 : #if defined(__sparc__) /* Sparc */
318 : /*
319 : * Solaris has always run sparc processors in TSO (total store) mode, but
320 : * linux didn't use to and the *BSDs still don't. So, be careful about
321 : * acquire/release semantics. The CPU will treat superfluous members as
322 : * NOPs, so it's just code space.
323 : */
324 : #define HAS_TEST_AND_SET
325 :
326 : typedef unsigned char slock_t;
327 :
328 : #define TAS(lock) tas(lock)
329 :
330 : static __inline__ int
331 : tas(volatile slock_t *lock)
332 : {
333 : slock_t _res;
334 :
335 : /*
336 : * See comment in src/backend/port/tas/sunstudio_sparc.s for why this
337 : * uses "ldstub", and that file uses "cas". gcc currently generates
338 : * sparcv7-targeted binaries, so "cas" use isn't possible.
339 : */
340 : __asm__ __volatile__(
341 : " ldstub [%2], %0 \n"
342 : : "=r"(_res), "+m"(*lock)
343 : : "r"(lock)
344 : : "memory");
345 : #if defined(__sparcv7) || defined(__sparc_v7__)
346 : /*
347 : * No stbar or membar available, luckily no actually produced hardware
348 : * requires a barrier.
349 : */
350 : #elif defined(__sparcv8) || defined(__sparc_v8__)
351 : /* stbar is available (and required for both PSO, RMO), membar isn't */
352 : __asm__ __volatile__ ("stbar \n":::"memory");
353 : #else
354 : /*
355 : * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire
356 : * barrier for sparcv8+ upwards.
357 : */
358 : __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n":::"memory");
359 : #endif
360 : return (int) _res;
361 : }
362 :
363 : #if defined(__sparcv7) || defined(__sparc_v7__)
364 : /*
365 : * No stbar or membar available, luckily no actually produced hardware
366 : * requires a barrier. We fall through to the default gcc definition of
367 : * S_UNLOCK in this case.
368 : */
369 : #elif defined(__sparcv8) || defined(__sparc_v8__)
370 : /* stbar is available (and required for both PSO, RMO), membar isn't */
371 : #define S_UNLOCK(lock) \
372 : do \
373 : { \
374 : __asm__ __volatile__ ("stbar \n":::"memory"); \
375 : *((volatile slock_t *) (lock)) = 0; \
376 : } while (0)
377 : #else
378 : /*
379 : * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate
380 : * release barrier for sparcv8+ upwards.
381 : */
382 : #define S_UNLOCK(lock) \
383 : do \
384 : { \
385 : __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \
386 : *((volatile slock_t *) (lock)) = 0; \
387 : } while (0)
388 : #endif
389 :
390 : #endif /* __sparc__ */
391 :
392 :
393 : /* PowerPC */
394 : #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
395 : #define HAS_TEST_AND_SET
396 :
397 : typedef unsigned int slock_t;
398 :
399 : #define TAS(lock) tas(lock)
400 :
401 : /* On PPC, it's a win to use a non-locking test before the lwarx */
402 : #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
403 :
404 : /*
405 : * The second operand of addi can hold a constant zero or a register number,
406 : * hence constraint "=&b" to avoid allocating r0. "b" stands for "address
407 : * base register"; most operands having this register-or-zero property are
408 : * address bases, e.g. the second operand of lwax.
409 : *
410 : * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002,
411 : * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop.
412 : * But if the spinlock is in ordinary memory, we can use lwsync instead for
413 : * better performance.
414 : */
415 : static __inline__ int
416 : tas(volatile slock_t *lock)
417 : {
418 : slock_t _t;
419 : int _res;
420 :
421 : __asm__ __volatile__(
422 : " lwarx %0,0,%3,1 \n"
423 : " cmpwi %0,0 \n"
424 : " bne 1f \n"
425 : " addi %0,%0,1 \n"
426 : " stwcx. %0,0,%3 \n"
427 : " beq 2f \n"
428 : "1: \n"
429 : " li %1,1 \n"
430 : " b 3f \n"
431 : "2: \n"
432 : " lwsync \n"
433 : " li %1,0 \n"
434 : "3: \n"
435 : : "=&b"(_t), "=r"(_res), "+m"(*lock)
436 : : "r"(lock)
437 : : "memory", "cc");
438 : return _res;
439 : }
440 :
441 : /*
442 : * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction.
443 : * But we can use lwsync instead for better performance.
444 : */
445 : #define S_UNLOCK(lock) \
446 : do \
447 : { \
448 : __asm__ __volatile__ (" lwsync \n" ::: "memory"); \
449 : *((volatile slock_t *) (lock)) = 0; \
450 : } while (0)
451 :
452 : #endif /* powerpc */
453 :
454 :
455 : #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */
456 : #define HAS_TEST_AND_SET
457 :
458 : typedef unsigned int slock_t;
459 :
460 : #define TAS(lock) tas(lock)
461 :
462 : /*
463 : * Original MIPS-I processors lacked the LL/SC instructions, but if we are
464 : * so unfortunate as to be running on one of those, we expect that the kernel
465 : * will handle the illegal-instruction traps and emulate them for us. On
466 : * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane
467 : * choice because any other synchronization method must involve a kernel
468 : * call. Unfortunately, many toolchains still default to MIPS-I as the
469 : * codegen target; if the symbol __mips shows that that's the case, we
470 : * have to force the assembler to accept LL/SC.
471 : *
472 : * R10000 and up processors require a separate SYNC, which has the same
473 : * issues as LL/SC.
474 : */
475 : #if __mips < 2
476 : #define MIPS_SET_MIPS2 " .set mips2 \n"
477 : #else
478 : #define MIPS_SET_MIPS2
479 : #endif
480 :
481 : static __inline__ int
482 : tas(volatile slock_t *lock)
483 : {
484 : volatile slock_t *_l = lock;
485 : int _res;
486 : int _tmp;
487 :
488 : __asm__ __volatile__(
489 : " .set push \n"
490 : MIPS_SET_MIPS2
491 : " .set noreorder \n"
492 : " .set nomacro \n"
493 : " ll %0, %2 \n"
494 : " or %1, %0, 1 \n"
495 : " sc %1, %2 \n"
496 : " xori %1, 1 \n"
497 : " or %0, %0, %1 \n"
498 : " sync \n"
499 : " .set pop "
500 : : "=&r" (_res), "=&r" (_tmp), "+R" (*_l)
501 : : /* no inputs */
502 : : "memory");
503 : return _res;
504 : }
505 :
506 : /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */
507 : #define S_UNLOCK(lock) \
508 : do \
509 : { \
510 : __asm__ __volatile__( \
511 : " .set push \n" \
512 : MIPS_SET_MIPS2 \
513 : " .set noreorder \n" \
514 : " .set nomacro \n" \
515 : " sync \n" \
516 : " .set pop " \
517 : : /* no outputs */ \
518 : : /* no inputs */ \
519 : : "memory"); \
520 : *((volatile slock_t *) (lock)) = 0; \
521 : } while (0)
522 :
523 : #endif /* __mips__ && !__sgi */
524 :
525 :
526 :
527 : /*
528 : * If we have no platform-specific knowledge, but we found that the compiler
529 : * provides __sync_lock_test_and_set(), use that. Prefer the int-width
530 : * version over the char-width version if we have both, on the rather dubious
531 : * grounds that that's known to be more likely to work in the ARM ecosystem.
532 : * (But we dealt with ARM above.)
533 : */
534 : #if !defined(HAS_TEST_AND_SET)
535 :
536 : #if defined(HAVE_GCC__SYNC_INT32_TAS)
537 : #define HAS_TEST_AND_SET
538 :
539 : #define TAS(lock) tas(lock)
540 :
541 : typedef int slock_t;
542 :
543 : static __inline__ int
544 : tas(volatile slock_t *lock)
545 : {
546 : return __sync_lock_test_and_set(lock, 1);
547 : }
548 :
549 : #define S_UNLOCK(lock) __sync_lock_release(lock)
550 :
551 : #elif defined(HAVE_GCC__SYNC_CHAR_TAS)
552 : #define HAS_TEST_AND_SET
553 :
554 : #define TAS(lock) tas(lock)
555 :
556 : typedef char slock_t;
557 :
558 : static __inline__ int
559 : tas(volatile slock_t *lock)
560 : {
561 : return __sync_lock_test_and_set(lock, 1);
562 : }
563 :
564 : #define S_UNLOCK(lock) __sync_lock_release(lock)
565 :
566 : #endif /* HAVE_GCC__SYNC_INT32_TAS */
567 :
568 : #endif /* !defined(HAS_TEST_AND_SET) */
569 :
570 :
571 : /*
572 : * Default implementation of S_UNLOCK() for gcc/icc.
573 : *
574 : * Note that this implementation is unsafe for any platform that can reorder
575 : * a memory access (either load or store) after a following store. That
576 : * happens not to be possible on x86 and most legacy architectures (some are
577 : * single-processor!), but many modern systems have weaker memory ordering.
578 : * Those that do must define their own version of S_UNLOCK() rather than
579 : * relying on this one.
580 : */
581 : #if !defined(S_UNLOCK)
582 : #define S_UNLOCK(lock) \
583 : do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0)
584 : #endif
585 :
586 : #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */
587 :
588 :
589 : /*
590 : * ---------------------------------------------------------------------
591 : * Platforms that use non-gcc inline assembly:
592 : * ---------------------------------------------------------------------
593 : */
594 :
595 : #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */
596 :
597 : /* These are in sunstudio_(sparc|x86).s */
598 :
599 : #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc))
600 : #define HAS_TEST_AND_SET
601 :
602 : #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus)
603 : typedef unsigned int slock_t;
604 : #else
605 : typedef unsigned char slock_t;
606 : #endif
607 :
608 : extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with,
609 : slock_t cmp);
610 :
611 : #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0)
612 : #endif
613 :
614 :
615 : #ifdef _MSC_VER
616 : typedef LONG slock_t;
617 :
618 : #define HAS_TEST_AND_SET
619 : #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0))
620 :
621 : #define SPIN_DELAY() spin_delay()
622 :
623 : /* If using Visual C++ on Win64, inline assembly is unavailable.
624 : * Use a _mm_pause intrinsic instead of rep nop.
625 : */
626 : #if defined(_WIN64)
627 : static __forceinline void
628 : spin_delay(void)
629 : {
630 : _mm_pause();
631 : }
632 : #else
633 : static __forceinline void
634 : spin_delay(void)
635 : {
636 : /* See comment for gcc code. Same code, MASM syntax */
637 : __asm rep nop;
638 : }
639 : #endif
640 :
641 : #include <intrin.h>
642 : #pragma intrinsic(_ReadWriteBarrier)
643 :
644 : #define S_UNLOCK(lock) \
645 : do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0)
646 :
647 : #endif
648 :
649 :
650 : #endif /* !defined(HAS_TEST_AND_SET) */
651 :
652 :
653 : /* Blow up if we didn't have any way to do spinlocks */
654 : #ifndef HAS_TEST_AND_SET
655 : #error PostgreSQL does not have spinlock support on this platform. Please report this to pgsql-bugs@lists.postgresql.org.
656 : #endif
657 :
658 :
659 : /*
660 : * Default Definitions - override these above as needed.
661 : */
662 :
663 : #if !defined(S_LOCK)
664 : #define S_LOCK(lock) \
665 : (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, __func__) : 0)
666 : #endif /* S_LOCK */
667 :
668 : #if !defined(S_LOCK_FREE)
669 : #define S_LOCK_FREE(lock) (*(lock) == 0)
670 : #endif /* S_LOCK_FREE */
671 :
672 : #if !defined(S_UNLOCK)
673 : /*
674 : * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This
675 : * is unsafe if the platform can reorder a memory access (either load or
676 : * store) after a following store; platforms where this is possible must
677 : * define their own S_UNLOCK. But CPU reordering is not the only concern:
678 : * if we simply defined S_UNLOCK() as an inline macro, the compiler might
679 : * reorder instructions from inside the critical section to occur after the
680 : * lock release. Since the compiler probably can't know what the external
681 : * function s_unlock is doing, putting the same logic there should be adequate.
682 : * A sufficiently-smart globally optimizing compiler could break that
683 : * assumption, though, and the cost of a function call for every spinlock
684 : * release may hurt performance significantly, so we use this implementation
685 : * only for platforms where we don't know of a suitable intrinsic. For the
686 : * most part, those are relatively obscure platform/compiler combinations to
687 : * which the PostgreSQL project does not have access.
688 : */
689 : #define USE_DEFAULT_S_UNLOCK
690 : extern void s_unlock(volatile slock_t *lock);
691 : #define S_UNLOCK(lock) s_unlock(lock)
692 : #endif /* S_UNLOCK */
693 :
694 : #if !defined(S_INIT_LOCK)
695 : #define S_INIT_LOCK(lock) S_UNLOCK(lock)
696 : #endif /* S_INIT_LOCK */
697 :
698 : #if !defined(SPIN_DELAY)
699 : #define SPIN_DELAY() ((void) 0)
700 : #endif /* SPIN_DELAY */
701 :
702 : #if !defined(TAS)
703 : extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or
704 : * s_lock.c */
705 :
706 : #define TAS(lock) tas(lock)
707 : #endif /* TAS */
708 :
709 : #if !defined(TAS_SPIN)
710 : #define TAS_SPIN(lock) TAS(lock)
711 : #endif /* TAS_SPIN */
712 :
713 :
714 : /*
715 : * Platform-independent out-of-line support routines
716 : */
717 : extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func);
718 :
719 : /* Support for dynamic adjustment of spins_per_delay */
720 : #define DEFAULT_SPINS_PER_DELAY 100
721 :
722 : extern void set_spins_per_delay(int shared_spins_per_delay);
723 : extern int update_spins_per_delay(int shared_spins_per_delay);
724 :
725 : /*
726 : * Support for spin delay which is useful in various places where
727 : * spinlock-like procedures take place.
728 : */
729 : typedef struct
730 : {
731 : int spins;
732 : int delays;
733 : int cur_delay;
734 : const char *file;
735 : int line;
736 : const char *func;
737 : } SpinDelayStatus;
738 :
739 : static inline void
740 64978242 : init_spin_delay(SpinDelayStatus *status,
741 : const char *file, int line, const char *func)
742 : {
743 64978242 : status->spins = 0;
744 64978242 : status->delays = 0;
745 64978242 : status->cur_delay = 0;
746 64978242 : status->file = file;
747 64978242 : status->line = line;
748 64978242 : status->func = func;
749 64978242 : }
750 :
751 : #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, __func__)
752 : extern void perform_spin_delay(SpinDelayStatus *status);
753 : extern void finish_spin_delay(SpinDelayStatus *status);
754 :
755 : #endif /* S_LOCK_H */
|