Line data Source code
1 : /*
2 : * simplehash.h
3 : *
4 : * When included this file generates a "templated" (by way of macros)
5 : * open-addressing hash table implementation specialized to user-defined
6 : * types.
7 : *
8 : * It's probably not worthwhile to generate such a specialized implementation
9 : * for hash tables that aren't performance or space sensitive.
10 : *
11 : * Compared to dynahash, simplehash has the following benefits:
12 : *
13 : * - Due to the "templated" code generation has known structure sizes and no
14 : * indirect function calls (which show up substantially in dynahash
15 : * profiles). These features considerably increase speed for small
16 : * entries.
17 : * - Open addressing has better CPU cache behavior than dynahash's chained
18 : * hashtables.
19 : * - The generated interface is type-safe and easier to use than dynahash,
20 : * though at the cost of more complex setup.
21 : * - Allocates memory in a MemoryContext or another allocator with a
22 : * malloc/free style interface (which isn't easily usable in a shared
23 : * memory context)
24 : * - Does not require the overhead of a separate memory context.
25 : *
26 : * Usage notes:
27 : *
28 : * To generate a hash-table and associated functions for a use case several
29 : * macros have to be #define'ed before this file is included. Including
30 : * the file #undef's all those, so a new hash table can be generated
31 : * afterwards.
32 : * The relevant parameters are:
33 : * - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo'
34 : * will result in hash table type 'foo_hash' and functions like
35 : * 'foo_insert'/'foo_lookup' and so forth.
36 : * - SH_ELEMENT_TYPE - type of the contained elements
37 : * - SH_KEY_TYPE - type of the hashtable's key
38 : * - SH_DECLARE - if defined function prototypes and type declarations are
39 : * generated
40 : * - SH_DEFINE - if defined function definitions are generated
41 : * - SH_SCOPE - in which scope (e.g. extern, static inline) do function
42 : * declarations reside
43 : * - SH_RAW_ALLOCATOR - if defined, memory contexts are not used; instead,
44 : * use this to allocate bytes. The allocator must zero the returned space.
45 : * - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions
46 : * are defined, so you can supply your own
47 : * The following parameters are only relevant when SH_DEFINE is defined:
48 : * - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key
49 : * - SH_EQUAL(table, a, b) - compare two table keys
50 : * - SH_HASH_KEY(table, key) - generate hash for the key
51 : * - SH_STORE_HASH - if defined the hash is stored in the elements
52 : * - SH_GET_HASH(tb, a) - return the field to store the hash in
53 : *
54 : * The element type is required to contain a "status" member that can store
55 : * the range of values defined in the SH_STATUS enum.
56 : *
57 : * While SH_STORE_HASH (and subsequently SH_GET_HASH) are optional, because
58 : * the hash table implementation needs to compare hashes to move elements
59 : * (particularly when growing the hash), it's preferable, if possible, to
60 : * store the element's hash in the element's data type. If the hash is so
61 : * stored, the hash table will also compare hashes before calling SH_EQUAL
62 : * when comparing two keys.
63 : *
64 : * For convenience the hash table create functions accept a void pointer
65 : * that will be stored in the hash table type's member private_data. This
66 : * allows callbacks to reference caller provided data.
67 : *
68 : * For examples of usage look at tidbitmap.c (file local definition) and
69 : * execnodes.h/execGrouping.c (exposed declaration, file local
70 : * implementation).
71 : *
72 : * Hash table design:
73 : *
74 : * The hash table design chosen is a variant of linear open-addressing. The
75 : * reason for doing so is that linear addressing is CPU cache & pipeline
76 : * friendly. The biggest disadvantage of simple linear addressing schemes
77 : * are highly variable lookup times due to clustering, and deletions
78 : * leaving a lot of tombstones around. To address these issues a variant
79 : * of "robin hood" hashing is employed. Robin hood hashing optimizes
80 : * chaining lengths by moving elements close to their optimal bucket
81 : * ("rich" elements), out of the way if a to-be-inserted element is further
82 : * away from its optimal position (i.e. it's "poor"). While that can make
83 : * insertions slower, the average lookup performance is a lot better, and
84 : * higher fill factors can be used in a still performant manner. To avoid
85 : * tombstones - which normally solve the issue that a deleted node's
86 : * presence is relevant to determine whether a lookup needs to continue
87 : * looking or is done - buckets following a deleted element are shifted
88 : * backwards, unless they're empty or already at their optimal position.
89 : *
90 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
91 : * Portions Copyright (c) 1994, Regents of the University of California
92 : *
93 : * src/include/lib/simplehash.h
94 : */
95 :
96 : #include "port/pg_bitutils.h"
97 :
98 : /* helpers */
99 : #define SH_MAKE_PREFIX(a) CppConcat(a,_)
100 : #define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name)
101 : #define SH_MAKE_NAME_(a,b) CppConcat(a,b)
102 :
103 : /* name macros for: */
104 :
105 : /* type declarations */
106 : #define SH_TYPE SH_MAKE_NAME(hash)
107 : #define SH_STATUS SH_MAKE_NAME(status)
108 : #define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY)
109 : #define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE)
110 : #define SH_ITERATOR SH_MAKE_NAME(iterator)
111 :
112 : /* function declarations */
113 : #define SH_CREATE SH_MAKE_NAME(create)
114 : #define SH_DESTROY SH_MAKE_NAME(destroy)
115 : #define SH_RESET SH_MAKE_NAME(reset)
116 : #define SH_INSERT SH_MAKE_NAME(insert)
117 : #define SH_INSERT_HASH SH_MAKE_NAME(insert_hash)
118 : #define SH_DELETE_ITEM SH_MAKE_NAME(delete_item)
119 : #define SH_DELETE SH_MAKE_NAME(delete)
120 : #define SH_LOOKUP SH_MAKE_NAME(lookup)
121 : #define SH_LOOKUP_HASH SH_MAKE_NAME(lookup_hash)
122 : #define SH_GROW SH_MAKE_NAME(grow)
123 : #define SH_START_ITERATE SH_MAKE_NAME(start_iterate)
124 : #define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at)
125 : #define SH_ITERATE SH_MAKE_NAME(iterate)
126 : #define SH_ALLOCATE SH_MAKE_NAME(allocate)
127 : #define SH_FREE SH_MAKE_NAME(free)
128 : #define SH_ESTIMATE_SPACE SH_MAKE_NAME(estimate_space)
129 : #define SH_STAT SH_MAKE_NAME(stat)
130 :
131 : /* internal helper functions (no externally visible prototypes) */
132 : #define SH_COMPUTE_SIZE SH_MAKE_NAME(compute_size)
133 : #define SH_UPDATE_PARAMETERS SH_MAKE_NAME(update_parameters)
134 : #define SH_NEXT SH_MAKE_NAME(next)
135 : #define SH_PREV SH_MAKE_NAME(prev)
136 : #define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance)
137 : #define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket)
138 : #define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash)
139 : #define SH_INSERT_HASH_INTERNAL SH_MAKE_NAME(insert_hash_internal)
140 : #define SH_LOOKUP_HASH_INTERNAL SH_MAKE_NAME(lookup_hash_internal)
141 :
142 : /* generate forward declarations necessary to use the hash table */
143 : #ifdef SH_DECLARE
144 :
145 : /* type definitions */
146 : typedef struct SH_TYPE
147 : {
148 : /*
149 : * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash
150 : * tables. Note that the maximum number of elements is lower
151 : * (SH_MAX_FILLFACTOR)
152 : */
153 : uint64 size;
154 :
155 : /* how many elements have valid contents */
156 : uint32 members;
157 :
158 : /* mask for bucket and size calculations, based on size */
159 : uint32 sizemask;
160 :
161 : /* boundary after which to grow hashtable */
162 : uint32 grow_threshold;
163 :
164 : /* hash buckets */
165 : SH_ELEMENT_TYPE *data;
166 :
167 : #ifndef SH_RAW_ALLOCATOR
168 : /* memory context to use for allocations */
169 : MemoryContext ctx;
170 : #endif
171 :
172 : /* user defined data, useful for callbacks */
173 : void *private_data;
174 : } SH_TYPE;
175 :
176 : typedef enum SH_STATUS
177 : {
178 : SH_STATUS_EMPTY = 0x00,
179 : SH_STATUS_IN_USE = 0x01
180 : } SH_STATUS;
181 :
182 : typedef struct SH_ITERATOR
183 : {
184 : uint32 cur; /* current element */
185 : uint32 end;
186 : bool done; /* iterator exhausted? */
187 : } SH_ITERATOR;
188 :
189 : /* externally visible function prototypes */
190 : #ifdef SH_RAW_ALLOCATOR
191 : /* <prefix>_hash <prefix>_create(uint32 nelements, void *private_data) */
192 : SH_SCOPE SH_TYPE *SH_CREATE(uint32 nelements, void *private_data);
193 : #else
194 : /*
195 : * <prefix>_hash <prefix>_create(MemoryContext ctx, uint32 nelements,
196 : * void *private_data)
197 : */
198 : SH_SCOPE SH_TYPE *SH_CREATE(MemoryContext ctx, uint32 nelements,
199 : void *private_data);
200 : #endif
201 :
202 : /* void <prefix>_destroy(<prefix>_hash *tb) */
203 : SH_SCOPE void SH_DESTROY(SH_TYPE * tb);
204 :
205 : /* void <prefix>_reset(<prefix>_hash *tb) */
206 : SH_SCOPE void SH_RESET(SH_TYPE * tb);
207 :
208 : /* void <prefix>_grow(<prefix>_hash *tb, uint64 newsize) */
209 : SH_SCOPE void SH_GROW(SH_TYPE * tb, uint64 newsize);
210 :
211 : /* <element> *<prefix>_insert(<prefix>_hash *tb, <key> key, bool *found) */
212 : SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found);
213 :
214 : /*
215 : * <element> *<prefix>_insert_hash(<prefix>_hash *tb, <key> key, uint32 hash,
216 : * bool *found)
217 : */
218 : SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key,
219 : uint32 hash, bool *found);
220 :
221 : /* <element> *<prefix>_lookup(<prefix>_hash *tb, <key> key) */
222 : SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key);
223 :
224 : /* <element> *<prefix>_lookup_hash(<prefix>_hash *tb, <key> key, uint32 hash) */
225 : SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key,
226 : uint32 hash);
227 :
228 : /* void <prefix>_delete_item(<prefix>_hash *tb, <element> *entry) */
229 : SH_SCOPE void SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry);
230 :
231 : /* bool <prefix>_delete(<prefix>_hash *tb, <key> key) */
232 : SH_SCOPE bool SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key);
233 :
234 : /* void <prefix>_start_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
235 : SH_SCOPE void SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter);
236 :
237 : /*
238 : * void <prefix>_start_iterate_at(<prefix>_hash *tb, <prefix>_iterator *iter,
239 : * uint32 at)
240 : */
241 : SH_SCOPE void SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at);
242 :
243 : /* <element> *<prefix>_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
244 : SH_SCOPE SH_ELEMENT_TYPE *SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter);
245 :
246 : /* size_t <prefix>_estimate_space(double nentries) */
247 : SH_SCOPE size_t SH_ESTIMATE_SPACE(double nentries);
248 :
249 : /* void <prefix>_stat(<prefix>_hash *tb) */
250 : SH_SCOPE void SH_STAT(SH_TYPE * tb);
251 :
252 : #endif /* SH_DECLARE */
253 :
254 :
255 : /* generate implementation of the hash table */
256 : #ifdef SH_DEFINE
257 :
258 : #ifndef SH_RAW_ALLOCATOR
259 : #include "utils/memutils.h"
260 : #endif
261 :
262 : /* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */
263 : #define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1)
264 :
265 : /* normal fillfactor, unless already close to maximum */
266 : #ifndef SH_FILLFACTOR
267 : #define SH_FILLFACTOR (0.9)
268 : #endif
269 : /* increase fillfactor if we otherwise would error out */
270 : #define SH_MAX_FILLFACTOR (0.98)
271 : /* grow if actual and optimal location bigger than */
272 : #ifndef SH_GROW_MAX_DIB
273 : #define SH_GROW_MAX_DIB 25
274 : #endif
275 : /* grow if more than elements to move when inserting */
276 : #ifndef SH_GROW_MAX_MOVE
277 : #define SH_GROW_MAX_MOVE 150
278 : #endif
279 : #ifndef SH_GROW_MIN_FILLFACTOR
280 : /* but do not grow due to SH_GROW_MAX_* if below */
281 : #define SH_GROW_MIN_FILLFACTOR 0.1
282 : #endif
283 :
284 : #ifdef SH_STORE_HASH
285 : #define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey))
286 : #else
287 : #define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey))
288 : #endif
289 :
290 : /*
291 : * Wrap the following definitions in include guards, to avoid multiple
292 : * definition errors if this header is included more than once. The rest of
293 : * the file deliberately has no include guards, because it can be included
294 : * with different parameters to define functions and types with non-colliding
295 : * names.
296 : */
297 : #ifndef SIMPLEHASH_H
298 : #define SIMPLEHASH_H
299 :
300 : #ifdef FRONTEND
301 : #define sh_error(...) pg_fatal(__VA_ARGS__)
302 : #define sh_log(...) pg_log_info(__VA_ARGS__)
303 : #else
304 : #define sh_error(...) elog(ERROR, __VA_ARGS__)
305 : #define sh_log(...) elog(LOG, __VA_ARGS__)
306 : #endif
307 :
308 : #endif
309 :
310 : /*
311 : * Compute allocation size for hashtable. Result can be passed to
312 : * SH_UPDATE_PARAMETERS. (Keep SH_ESTIMATE_SPACE in sync with this!)
313 : */
314 : static inline uint64
315 205540 : SH_COMPUTE_SIZE(uint64 newsize)
316 : {
317 : uint64 size;
318 :
319 : /* supporting zero sized hashes would complicate matters */
320 205540 : size = Max(newsize, 2);
321 :
322 : /* round up size to the next power of 2, that's how bucketing works */
323 205540 : size = pg_nextpower2_64(size);
324 : Assert(size <= SH_MAX_SIZE);
325 :
326 : /*
327 : * Verify that allocation of ->data is possible on this platform, without
328 : * overflowing Size.
329 : */
330 205540 : if (unlikely((((uint64) sizeof(SH_ELEMENT_TYPE)) * size) >= SIZE_MAX / 2))
331 0 : sh_error("hash table too large");
332 :
333 205540 : return size;
334 : }
335 :
336 : /*
337 : * Update sizing parameters for hashtable. Called when creating and growing
338 : * the hashtable.
339 : */
340 : static inline void
341 102770 : SH_UPDATE_PARAMETERS(SH_TYPE * tb, uint64 newsize)
342 : {
343 102770 : uint64 size = SH_COMPUTE_SIZE(newsize);
344 :
345 : /* now set size */
346 102770 : tb->size = size;
347 102770 : tb->sizemask = (uint32) (size - 1);
348 :
349 : /*
350 : * Compute the next threshold at which we need to grow the hash table
351 : * again.
352 : */
353 102770 : if (tb->size == SH_MAX_SIZE)
354 0 : tb->grow_threshold = ((double) tb->size) * SH_MAX_FILLFACTOR;
355 : else
356 102770 : tb->grow_threshold = ((double) tb->size) * SH_FILLFACTOR;
357 102770 : }
358 :
359 : /* return the optimal bucket for the hash */
360 : static inline uint32
361 53117758 : SH_INITIAL_BUCKET(SH_TYPE * tb, uint32 hash)
362 : {
363 53117758 : return hash & tb->sizemask;
364 : }
365 :
366 : /* return next bucket after the current, handling wraparound */
367 : static inline uint32
368 22921272 : SH_NEXT(SH_TYPE * tb, uint32 curelem, uint32 startelem)
369 : {
370 22921272 : curelem = (curelem + 1) & tb->sizemask;
371 :
372 : Assert(curelem != startelem);
373 :
374 22921272 : return curelem;
375 : }
376 :
377 : /* return bucket before the current, handling wraparound */
378 : static inline uint32
379 3573082 : SH_PREV(SH_TYPE * tb, uint32 curelem, uint32 startelem)
380 : {
381 3573082 : curelem = (curelem - 1) & tb->sizemask;
382 :
383 : Assert(curelem != startelem);
384 :
385 3573082 : return curelem;
386 : }
387 :
388 : /* return distance between bucket and its optimal position */
389 : static inline uint32
390 10789432 : SH_DISTANCE_FROM_OPTIMAL(SH_TYPE * tb, uint32 optimal, uint32 bucket)
391 : {
392 10789432 : if (optimal <= bucket)
393 10727512 : return bucket - optimal;
394 : else
395 61920 : return (tb->size + bucket) - optimal;
396 : }
397 :
398 : static inline uint32
399 12308544 : SH_ENTRY_HASH(SH_TYPE * tb, SH_ELEMENT_TYPE * entry)
400 : {
401 : #ifdef SH_STORE_HASH
402 4866702 : return SH_GET_HASH(tb, entry);
403 : #else
404 7441842 : return SH_HASH_KEY(tb, entry->SH_KEY);
405 : #endif
406 : }
407 :
408 : /* default memory allocator function */
409 : static inline void *SH_ALLOCATE(SH_TYPE * type, Size size);
410 : static inline void SH_FREE(SH_TYPE * type, void *pointer);
411 :
412 : #ifndef SH_USE_NONDEFAULT_ALLOCATOR
413 :
414 : /* default memory allocator function */
415 : static inline void *
416 93270 : SH_ALLOCATE(SH_TYPE * type, Size size)
417 : {
418 : #ifdef SH_RAW_ALLOCATOR
419 722 : return SH_RAW_ALLOCATOR(size);
420 : #else
421 92548 : return MemoryContextAllocExtended(type->ctx, size,
422 : MCXT_ALLOC_HUGE | MCXT_ALLOC_ZERO);
423 : #endif
424 : }
425 :
426 : /* default memory free function */
427 : static inline void
428 44786 : SH_FREE(SH_TYPE * type, void *pointer)
429 : {
430 44786 : pfree(pointer);
431 44786 : }
432 :
433 : #endif
434 :
435 : /*
436 : * Create a hash table with enough space for `nelements` distinct members.
437 : * Memory for the hash table is allocated from the passed-in context. If
438 : * desired, the array of elements can be allocated using a passed-in allocator;
439 : * this could be useful in order to place the array of elements in a shared
440 : * memory, or in a context that will outlive the rest of the hash table.
441 : * Memory other than for the array of elements will still be allocated from
442 : * the passed-in context.
443 : */
444 : #ifdef SH_RAW_ALLOCATOR
445 : SH_SCOPE SH_TYPE *
446 712 : SH_CREATE(uint32 nelements, void *private_data)
447 : #else
448 : SH_SCOPE SH_TYPE *
449 96774 : SH_CREATE(MemoryContext ctx, uint32 nelements, void *private_data)
450 : #endif
451 : {
452 : SH_TYPE *tb;
453 : uint64 size;
454 :
455 : #ifdef SH_RAW_ALLOCATOR
456 712 : tb = (SH_TYPE *) SH_RAW_ALLOCATOR(sizeof(SH_TYPE));
457 : #else
458 96774 : tb = (SH_TYPE *) MemoryContextAllocZero(ctx, sizeof(SH_TYPE));
459 96774 : tb->ctx = ctx;
460 : #endif
461 97486 : tb->private_data = private_data;
462 :
463 : /* increase nelements by fillfactor, want to store nelements elements */
464 97486 : size = Min((double) SH_MAX_SIZE, ((double) nelements) / SH_FILLFACTOR);
465 :
466 97486 : size = SH_COMPUTE_SIZE(size);
467 :
468 97486 : tb->data = (SH_ELEMENT_TYPE *) SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * size);
469 :
470 97486 : SH_UPDATE_PARAMETERS(tb, size);
471 97486 : return tb;
472 : }
473 :
474 : /* destroy a previously created hash table */
475 : SH_SCOPE void
476 48996 : SH_DESTROY(SH_TYPE * tb)
477 : {
478 48996 : SH_FREE(tb, tb->data);
479 48996 : pfree(tb);
480 48996 : }
481 :
482 : /* reset the contents of a previously created hash table */
483 : SH_SCOPE void
484 194740 : SH_RESET(SH_TYPE * tb)
485 : {
486 194740 : memset(tb->data, 0, sizeof(SH_ELEMENT_TYPE) * tb->size);
487 194740 : tb->members = 0;
488 194740 : }
489 :
490 : /*
491 : * Grow a hash table to at least `newsize` buckets.
492 : *
493 : * Usually this will automatically be called by insertions/deletions, when
494 : * necessary. But resizing to the exact input size can be advantageous
495 : * performance-wise, when known at some point.
496 : */
497 : SH_SCOPE void
498 5284 : SH_GROW(SH_TYPE * tb, uint64 newsize)
499 : {
500 5284 : uint64 oldsize = tb->size;
501 5284 : SH_ELEMENT_TYPE *olddata = tb->data;
502 : SH_ELEMENT_TYPE *newdata;
503 : uint32 i;
504 5284 : uint32 startelem = 0;
505 : uint32 copyelem;
506 :
507 : Assert(oldsize == pg_nextpower2_64(oldsize));
508 : Assert(oldsize != SH_MAX_SIZE);
509 : Assert(oldsize < newsize);
510 :
511 5284 : newsize = SH_COMPUTE_SIZE(newsize);
512 :
513 5284 : tb->data = (SH_ELEMENT_TYPE *) SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * newsize);
514 :
515 : /*
516 : * Update parameters for new table after allocation succeeds to avoid
517 : * inconsistent state on OOM.
518 : */
519 5284 : SH_UPDATE_PARAMETERS(tb, newsize);
520 :
521 5284 : newdata = tb->data;
522 :
523 : /*
524 : * Copy entries from the old data to newdata. We theoretically could use
525 : * SH_INSERT here, to avoid code duplication, but that's more general than
526 : * we need. We neither want tb->members increased, nor do we need to do
527 : * deal with deleted elements, nor do we need to compare keys. So a
528 : * special-cased implementation is lot faster. As resizing can be time
529 : * consuming and frequent, that's worthwhile to optimize.
530 : *
531 : * To be able to simply move entries over, we have to start not at the
532 : * first bucket (i.e olddata[0]), but find the first bucket that's either
533 : * empty, or is occupied by an entry at its optimal position. Such a
534 : * bucket has to exist in any table with a load factor under 1, as not all
535 : * buckets are occupied, i.e. there always has to be an empty bucket. By
536 : * starting at such a bucket we can move the entries to the larger table,
537 : * without having to deal with conflicts.
538 : */
539 :
540 : /* search for the first element in the hash that's not wrapped around */
541 76690 : for (i = 0; i < oldsize; i++)
542 : {
543 76690 : SH_ELEMENT_TYPE *oldentry = &olddata[i];
544 : uint32 hash;
545 : uint32 optimal;
546 :
547 76690 : if (oldentry->status != SH_STATUS_IN_USE)
548 : {
549 3148 : startelem = i;
550 3148 : break;
551 : }
552 :
553 73542 : hash = SH_ENTRY_HASH(tb, oldentry);
554 73542 : optimal = SH_INITIAL_BUCKET(tb, hash);
555 :
556 73542 : if (optimal == i)
557 : {
558 2136 : startelem = i;
559 2136 : break;
560 : }
561 : }
562 :
563 : /* and copy all elements in the old table */
564 5284 : copyelem = startelem;
565 1395820 : for (i = 0; i < oldsize; i++)
566 : {
567 1390536 : SH_ELEMENT_TYPE *oldentry = &olddata[copyelem];
568 :
569 1390536 : if (oldentry->status == SH_STATUS_IN_USE)
570 : {
571 : uint32 hash;
572 : uint32 startelem2;
573 : uint32 curelem;
574 : SH_ELEMENT_TYPE *newentry;
575 :
576 1223748 : hash = SH_ENTRY_HASH(tb, oldentry);
577 1223748 : startelem2 = SH_INITIAL_BUCKET(tb, hash);
578 1223748 : curelem = startelem2;
579 :
580 : /* find empty element to put data into */
581 : while (true)
582 : {
583 1695390 : newentry = &newdata[curelem];
584 :
585 1695390 : if (newentry->status == SH_STATUS_EMPTY)
586 : {
587 1223748 : break;
588 : }
589 :
590 471642 : curelem = SH_NEXT(tb, curelem, startelem2);
591 : }
592 :
593 : /* copy entry to new slot */
594 1223748 : memcpy(newentry, oldentry, sizeof(SH_ELEMENT_TYPE));
595 : }
596 :
597 : /* can't use SH_NEXT here, would use new size */
598 1390536 : copyelem++;
599 1390536 : if (copyelem >= oldsize)
600 : {
601 5284 : copyelem = 0;
602 : }
603 : }
604 :
605 5284 : SH_FREE(tb, olddata);
606 5284 : }
607 :
608 : /*
609 : * This is a separate static inline function, so it can be reliably be inlined
610 : * into its wrapper functions even if SH_SCOPE is extern.
611 : */
612 : static inline SH_ELEMENT_TYPE *
613 25889652 : SH_INSERT_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
614 : {
615 : uint32 startelem;
616 : uint32 curelem;
617 : SH_ELEMENT_TYPE *data;
618 : uint32 insertdist;
619 :
620 178 : restart:
621 25889830 : insertdist = 0;
622 :
623 : /*
624 : * We do the grow check even if the key is actually present, to avoid
625 : * doing the check inside the loop. This also lets us avoid having to
626 : * re-find our position in the hashtable after resizing.
627 : *
628 : * Note that this also reached when resizing the table due to
629 : * SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE.
630 : */
631 25889830 : if (unlikely(tb->members >= tb->grow_threshold))
632 : {
633 5284 : if (unlikely(tb->size == SH_MAX_SIZE))
634 0 : sh_error("hash table size exceeded");
635 :
636 : /*
637 : * When optimizing, it can be very useful to print these out.
638 : */
639 : /* SH_STAT(tb); */
640 5284 : SH_GROW(tb, tb->size * 2);
641 : /* SH_STAT(tb); */
642 : }
643 :
644 : /* perform insert, start bucket search at optimal location */
645 25889830 : data = tb->data;
646 25889830 : startelem = SH_INITIAL_BUCKET(tb, hash);
647 25889830 : curelem = startelem;
648 : while (true)
649 10202374 : {
650 : uint32 curdist;
651 : uint32 curhash;
652 : uint32 curoptimal;
653 36092204 : SH_ELEMENT_TYPE *entry = &data[curelem];
654 :
655 : /* any empty bucket can directly be used */
656 36092204 : if (entry->status == SH_STATUS_EMPTY)
657 : {
658 5038854 : tb->members++;
659 5038854 : entry->SH_KEY = key;
660 : #ifdef SH_STORE_HASH
661 2330538 : SH_GET_HASH(tb, entry) = hash;
662 : #endif
663 5038854 : entry->status = SH_STATUS_IN_USE;
664 5038854 : *found = false;
665 5038854 : return entry;
666 : }
667 :
668 : /*
669 : * If the bucket is not empty, we either found a match (in which case
670 : * we're done), or we have to decide whether to skip over or move the
671 : * colliding entry. When the colliding element's distance to its
672 : * optimal position is smaller than the to-be-inserted entry's, we
673 : * shift the colliding entry (and its followers) forward by one.
674 : */
675 :
676 31053350 : if (SH_COMPARE_KEYS(tb, hash, key, entry))
677 : {
678 : Assert(entry->status == SH_STATUS_IN_USE);
679 20263918 : *found = true;
680 20263918 : return entry;
681 : }
682 :
683 10789432 : curhash = SH_ENTRY_HASH(tb, entry);
684 10789432 : curoptimal = SH_INITIAL_BUCKET(tb, curhash);
685 10789432 : curdist = SH_DISTANCE_FROM_OPTIMAL(tb, curoptimal, curelem);
686 :
687 10789432 : if (insertdist > curdist)
688 : {
689 587058 : SH_ELEMENT_TYPE *lastentry = entry;
690 587058 : uint32 emptyelem = curelem;
691 : uint32 moveelem;
692 587058 : int32 emptydist = 0;
693 :
694 : /* find next empty bucket */
695 : while (true)
696 3012902 : {
697 : SH_ELEMENT_TYPE *emptyentry;
698 :
699 3599960 : emptyelem = SH_NEXT(tb, emptyelem, startelem);
700 3599960 : emptyentry = &data[emptyelem];
701 :
702 3599960 : if (emptyentry->status == SH_STATUS_EMPTY)
703 : {
704 586880 : lastentry = emptyentry;
705 586880 : break;
706 : }
707 :
708 : /*
709 : * To avoid negative consequences from overly imbalanced
710 : * hashtables, grow the hashtable if collisions would require
711 : * us to move a lot of entries. The most likely cause of such
712 : * imbalance is filling a (currently) small table, from a
713 : * currently big one, in hash-table order. Don't grow if the
714 : * hashtable would be too empty, to prevent quick space
715 : * explosion for some weird edge cases.
716 : */
717 3013080 : if (unlikely(++emptydist > SH_GROW_MAX_MOVE) &&
718 178 : ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
719 : {
720 178 : tb->grow_threshold = 0;
721 178 : goto restart;
722 : }
723 : }
724 :
725 : /* shift forward, starting at last occupied element */
726 :
727 : /*
728 : * TODO: This could be optimized to be one memcpy in many cases,
729 : * excepting wrapping around at the end of ->data. Hasn't shown up
730 : * in profiles so far though.
731 : */
732 586880 : moveelem = emptyelem;
733 4159962 : while (moveelem != curelem)
734 : {
735 : SH_ELEMENT_TYPE *moveentry;
736 :
737 3573082 : moveelem = SH_PREV(tb, moveelem, startelem);
738 3573082 : moveentry = &data[moveelem];
739 :
740 3573082 : memcpy(lastentry, moveentry, sizeof(SH_ELEMENT_TYPE));
741 3573082 : lastentry = moveentry;
742 : }
743 :
744 : /* and fill the now empty spot */
745 586880 : tb->members++;
746 :
747 586880 : entry->SH_KEY = key;
748 : #ifdef SH_STORE_HASH
749 304298 : SH_GET_HASH(tb, entry) = hash;
750 : #endif
751 586880 : entry->status = SH_STATUS_IN_USE;
752 586880 : *found = false;
753 586880 : return entry;
754 : }
755 :
756 10202374 : curelem = SH_NEXT(tb, curelem, startelem);
757 10202374 : insertdist++;
758 :
759 : /*
760 : * To avoid negative consequences from overly imbalanced hashtables,
761 : * grow the hashtable if collisions lead to large runs. The most
762 : * likely cause of such imbalance is filling a (currently) small
763 : * table, from a currently big one, in hash-table order. Don't grow
764 : * if the hashtable would be too empty, to prevent quick space
765 : * explosion for some weird edge cases.
766 : */
767 10202374 : if (unlikely(insertdist > SH_GROW_MAX_DIB) &&
768 0 : ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
769 : {
770 0 : tb->grow_threshold = 0;
771 0 : goto restart;
772 : }
773 : }
774 : }
775 :
776 : /*
777 : * Insert the key into the hash-table, set *found to true if the key already
778 : * exists, false otherwise. Returns the hash-table entry in either case.
779 : */
780 : SH_SCOPE SH_ELEMENT_TYPE *
781 18331698 : SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found)
782 : {
783 18331698 : uint32 hash = SH_HASH_KEY(tb, key);
784 :
785 18331698 : return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
786 : }
787 :
788 : /*
789 : * Insert the key into the hash-table using an already-calculated hash. Set
790 : * *found to true if the key already exists, false otherwise. Returns the
791 : * hash-table entry in either case.
792 : */
793 : SH_SCOPE SH_ELEMENT_TYPE *
794 7557954 : SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
795 : {
796 7557954 : return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
797 : }
798 :
799 : /*
800 : * This is a separate static inline function, so it can be reliably be inlined
801 : * into its wrapper functions even if SH_SCOPE is extern.
802 : */
803 : static inline SH_ELEMENT_TYPE *
804 12403612 : SH_LOOKUP_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash)
805 : {
806 12403612 : const uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
807 12403612 : uint32 curelem = startelem;
808 :
809 : while (true)
810 5331468 : {
811 17735080 : SH_ELEMENT_TYPE *entry = &tb->data[curelem];
812 :
813 17735080 : if (entry->status == SH_STATUS_EMPTY)
814 : {
815 3822560 : return NULL;
816 : }
817 :
818 : Assert(entry->status == SH_STATUS_IN_USE);
819 :
820 13912520 : if (SH_COMPARE_KEYS(tb, hash, key, entry))
821 8581052 : return entry;
822 :
823 : /*
824 : * TODO: we could stop search based on distance. If the current
825 : * buckets's distance-from-optimal is smaller than what we've skipped
826 : * already, the entry doesn't exist. Probably only do so if
827 : * SH_STORE_HASH is defined, to avoid re-computing hashes?
828 : */
829 :
830 5331468 : curelem = SH_NEXT(tb, curelem, startelem);
831 : }
832 : }
833 :
834 : /*
835 : * Lookup entry in hash table. Returns NULL if key not present.
836 : */
837 : SH_SCOPE SH_ELEMENT_TYPE *
838 10670002 : SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key)
839 : {
840 10670002 : uint32 hash = SH_HASH_KEY(tb, key);
841 :
842 10670002 : return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
843 : }
844 :
845 : /*
846 : * Lookup entry in hash table using an already-calculated hash.
847 : *
848 : * Returns NULL if key not present.
849 : */
850 : SH_SCOPE SH_ELEMENT_TYPE *
851 1733610 : SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash)
852 : {
853 1733610 : return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
854 : }
855 :
856 : /*
857 : * Delete entry from hash table by key. Returns whether to-be-deleted key was
858 : * present.
859 : */
860 : SH_SCOPE bool
861 2515772 : SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key)
862 : {
863 2515772 : uint32 hash = SH_HASH_KEY(tb, key);
864 2515772 : uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
865 2515772 : uint32 curelem = startelem;
866 :
867 : while (true)
868 802168 : {
869 3317940 : SH_ELEMENT_TYPE *entry = &tb->data[curelem];
870 :
871 3317940 : if (entry->status == SH_STATUS_EMPTY)
872 145642 : return false;
873 :
874 6298968 : if (entry->status == SH_STATUS_IN_USE &&
875 3172298 : SH_COMPARE_KEYS(tb, hash, key, entry))
876 : {
877 2370130 : SH_ELEMENT_TYPE *lastentry = entry;
878 :
879 2370130 : tb->members--;
880 :
881 : /*
882 : * Backward shift following elements till either an empty element
883 : * or an element at its optimal position is encountered.
884 : *
885 : * While that sounds expensive, the average chain length is short,
886 : * and deletions would otherwise require tombstones.
887 : */
888 : while (true)
889 136366 : {
890 : SH_ELEMENT_TYPE *curentry;
891 : uint32 curhash;
892 : uint32 curoptimal;
893 :
894 2506496 : curelem = SH_NEXT(tb, curelem, startelem);
895 2506496 : curentry = &tb->data[curelem];
896 :
897 2506496 : if (curentry->status != SH_STATUS_IN_USE)
898 : {
899 2292996 : lastentry->status = SH_STATUS_EMPTY;
900 2292996 : break;
901 : }
902 :
903 213500 : curhash = SH_ENTRY_HASH(tb, curentry);
904 213500 : curoptimal = SH_INITIAL_BUCKET(tb, curhash);
905 :
906 : /* current is at optimal position, done */
907 213500 : if (curoptimal == curelem)
908 : {
909 77134 : lastentry->status = SH_STATUS_EMPTY;
910 77134 : break;
911 : }
912 :
913 : /* shift */
914 136366 : memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
915 :
916 136366 : lastentry = curentry;
917 : }
918 :
919 2370130 : return true;
920 : }
921 :
922 : /* TODO: return false; if distance too big */
923 :
924 802168 : curelem = SH_NEXT(tb, curelem, startelem);
925 : }
926 : }
927 :
928 : /*
929 : * Delete entry from hash table by entry pointer
930 : */
931 : SH_SCOPE void
932 2388 : SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry)
933 : {
934 2388 : SH_ELEMENT_TYPE *lastentry = entry;
935 2388 : uint32 hash = SH_ENTRY_HASH(tb, entry);
936 2388 : uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
937 : uint32 curelem;
938 :
939 : /* Calculate the index of 'entry' */
940 2388 : curelem = entry - &tb->data[0];
941 :
942 2388 : tb->members--;
943 :
944 : /*
945 : * Backward shift following elements till either an empty element or an
946 : * element at its optimal position is encountered.
947 : *
948 : * While that sounds expensive, the average chain length is short, and
949 : * deletions would otherwise require tombstones.
950 : */
951 : while (true)
952 4776 : {
953 : SH_ELEMENT_TYPE *curentry;
954 : uint32 curhash;
955 : uint32 curoptimal;
956 :
957 7164 : curelem = SH_NEXT(tb, curelem, startelem);
958 7164 : curentry = &tb->data[curelem];
959 :
960 7164 : if (curentry->status != SH_STATUS_IN_USE)
961 : {
962 1230 : lastentry->status = SH_STATUS_EMPTY;
963 1230 : break;
964 : }
965 :
966 5934 : curhash = SH_ENTRY_HASH(tb, curentry);
967 5934 : curoptimal = SH_INITIAL_BUCKET(tb, curhash);
968 :
969 : /* current is at optimal position, done */
970 5934 : if (curoptimal == curelem)
971 : {
972 1158 : lastentry->status = SH_STATUS_EMPTY;
973 1158 : break;
974 : }
975 :
976 : /* shift */
977 4776 : memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
978 :
979 4776 : lastentry = curentry;
980 : }
981 2388 : }
982 :
983 : /*
984 : * Initialize iterator.
985 : */
986 : SH_SCOPE void
987 206046 : SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
988 : {
989 206046 : uint64 startelem = PG_UINT64_MAX;
990 :
991 : /*
992 : * Search for the first empty element. As deletions during iterations are
993 : * supported, we want to start/end at an element that cannot be affected
994 : * by elements being shifted.
995 : */
996 323150 : for (uint32 i = 0; i < tb->size; i++)
997 : {
998 323150 : SH_ELEMENT_TYPE *entry = &tb->data[i];
999 :
1000 323150 : if (entry->status != SH_STATUS_IN_USE)
1001 : {
1002 206046 : startelem = i;
1003 206046 : break;
1004 : }
1005 : }
1006 :
1007 : /* we should have found an empty element */
1008 : Assert(startelem < SH_MAX_SIZE);
1009 :
1010 : /*
1011 : * Iterate backwards, that allows the current element to be deleted, even
1012 : * if there are backward shifts
1013 : */
1014 206046 : iter->cur = startelem;
1015 206046 : iter->end = iter->cur;
1016 206046 : iter->done = false;
1017 206046 : }
1018 :
1019 : /*
1020 : * Initialize iterator to a specific bucket. That's really only useful for
1021 : * cases where callers are partially iterating over the hashspace, and that
1022 : * iteration deletes and inserts elements based on visited entries. Doing that
1023 : * repeatedly could lead to an unbalanced keyspace when always starting at the
1024 : * same position.
1025 : */
1026 : SH_SCOPE void
1027 36 : SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at)
1028 : {
1029 : /*
1030 : * Iterate backwards, that allows the current element to be deleted, even
1031 : * if there are backward shifts.
1032 : */
1033 36 : iter->cur = at & tb->sizemask; /* ensure at is within a valid range */
1034 36 : iter->end = iter->cur;
1035 36 : iter->done = false;
1036 36 : }
1037 :
1038 : /*
1039 : * Iterate over all entries in the hash-table. Return the next occupied entry,
1040 : * or NULL if done.
1041 : *
1042 : * During iteration the current entry in the hash table may be deleted,
1043 : * without leading to elements being skipped or returned twice. Additionally
1044 : * the rest of the table may be modified (i.e. there can be insertions or
1045 : * deletions), but if so, there's neither a guarantee that all nodes are
1046 : * visited at least once, nor a guarantee that a node is visited at most once.
1047 : */
1048 : SH_SCOPE SH_ELEMENT_TYPE *
1049 4693598 : SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
1050 : {
1051 : /* validate sanity of the given iterator */
1052 : Assert(iter->cur < tb->size);
1053 : Assert(iter->end < tb->size);
1054 :
1055 23735904 : while (!iter->done)
1056 : {
1057 : SH_ELEMENT_TYPE *elem;
1058 :
1059 23529980 : elem = &tb->data[iter->cur];
1060 :
1061 : /* next element in backward direction */
1062 23529980 : iter->cur = (iter->cur - 1) & tb->sizemask;
1063 :
1064 23529980 : if ((iter->cur & tb->sizemask) == (iter->end & tb->sizemask))
1065 205924 : iter->done = true;
1066 23529980 : if (elem->status == SH_STATUS_IN_USE)
1067 : {
1068 4487674 : return elem;
1069 : }
1070 : }
1071 :
1072 205924 : return NULL;
1073 : }
1074 :
1075 : /*
1076 : * Estimate the amount of space needed for a hashtable with nentries entries.
1077 : * Return SIZE_MAX if that's too many entries.
1078 : *
1079 : * nentries is "double" because this is meant for use by the planner,
1080 : * which typically works with double rowcount estimates. So we'd need to
1081 : * clamp to integer somewhere and that might as well be here. We do expect
1082 : * the value not to be NaN or negative, else the result will be garbage.
1083 : */
1084 : SH_SCOPE size_t
1085 4786 : SH_ESTIMATE_SPACE(double nentries)
1086 : {
1087 : uint64 size;
1088 : uint64 space;
1089 :
1090 : /* scale request by SH_FILLFACTOR, as SH_CREATE does */
1091 4786 : nentries = nentries / SH_FILLFACTOR;
1092 :
1093 : /* fail if we'd overrun SH_MAX_SIZE entries */
1094 4786 : if (nentries >= SH_MAX_SIZE)
1095 6 : return SIZE_MAX;
1096 :
1097 : /* should be safe to convert to uint64 */
1098 4780 : size = (uint64) nentries;
1099 :
1100 : /* supporting zero sized hashes would complicate matters */
1101 4780 : size = Max(size, 2);
1102 :
1103 : /* round up size to the next power of 2, that's how bucketing works */
1104 4780 : size = pg_nextpower2_64(size);
1105 :
1106 : /* calculate space needed for ->data */
1107 4780 : space = ((uint64) sizeof(SH_ELEMENT_TYPE)) * size;
1108 :
1109 : /* verify that allocation of ->data is possible on this platform */
1110 4780 : if (space >= SIZE_MAX / 2)
1111 0 : return SIZE_MAX;
1112 :
1113 4780 : return (size_t) space + sizeof(SH_TYPE);
1114 : }
1115 :
1116 : /*
1117 : * Report some statistics about the state of the hashtable. For
1118 : * debugging/profiling purposes only.
1119 : */
1120 : SH_SCOPE void
1121 0 : SH_STAT(SH_TYPE * tb)
1122 : {
1123 0 : uint32 max_chain_length = 0;
1124 0 : uint32 total_chain_length = 0;
1125 : double avg_chain_length;
1126 : double fillfactor;
1127 : uint32 i;
1128 :
1129 0 : uint32 *collisions = (uint32 *) palloc0(tb->size * sizeof(uint32));
1130 0 : uint32 total_collisions = 0;
1131 0 : uint32 max_collisions = 0;
1132 : double avg_collisions;
1133 :
1134 0 : for (i = 0; i < tb->size; i++)
1135 : {
1136 : uint32 hash;
1137 : uint32 optimal;
1138 : uint32 dist;
1139 : SH_ELEMENT_TYPE *elem;
1140 :
1141 0 : elem = &tb->data[i];
1142 :
1143 0 : if (elem->status != SH_STATUS_IN_USE)
1144 0 : continue;
1145 :
1146 0 : hash = SH_ENTRY_HASH(tb, elem);
1147 0 : optimal = SH_INITIAL_BUCKET(tb, hash);
1148 0 : dist = SH_DISTANCE_FROM_OPTIMAL(tb, optimal, i);
1149 :
1150 0 : if (dist > max_chain_length)
1151 0 : max_chain_length = dist;
1152 0 : total_chain_length += dist;
1153 :
1154 0 : collisions[optimal]++;
1155 : }
1156 :
1157 0 : for (i = 0; i < tb->size; i++)
1158 : {
1159 0 : uint32 curcoll = collisions[i];
1160 :
1161 0 : if (curcoll == 0)
1162 0 : continue;
1163 :
1164 : /* single contained element is not a collision */
1165 0 : curcoll--;
1166 0 : total_collisions += curcoll;
1167 0 : if (curcoll > max_collisions)
1168 0 : max_collisions = curcoll;
1169 : }
1170 :
1171 : /* large enough to be worth freeing, even if just used for debugging */
1172 0 : pfree(collisions);
1173 :
1174 0 : if (tb->members > 0)
1175 : {
1176 0 : fillfactor = tb->members / ((double) tb->size);
1177 0 : avg_chain_length = ((double) total_chain_length) / tb->members;
1178 0 : avg_collisions = ((double) total_collisions) / tb->members;
1179 : }
1180 : else
1181 : {
1182 0 : fillfactor = 0;
1183 0 : avg_chain_length = 0;
1184 0 : avg_collisions = 0;
1185 : }
1186 :
1187 0 : sh_log("size: " UINT64_FORMAT ", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %u, avg_collisions: %f",
1188 : tb->size, tb->members, fillfactor, total_chain_length, max_chain_length, avg_chain_length,
1189 : total_collisions, max_collisions, avg_collisions);
1190 0 : }
1191 :
1192 : #endif /* SH_DEFINE */
1193 :
1194 :
1195 : /* undefine external parameters, so next hash table can be defined */
1196 : #undef SH_PREFIX
1197 : #undef SH_KEY_TYPE
1198 : #undef SH_KEY
1199 : #undef SH_ELEMENT_TYPE
1200 : #undef SH_HASH_KEY
1201 : #undef SH_SCOPE
1202 : #undef SH_DECLARE
1203 : #undef SH_DEFINE
1204 : #undef SH_GET_HASH
1205 : #undef SH_STORE_HASH
1206 : #undef SH_USE_NONDEFAULT_ALLOCATOR
1207 : #undef SH_EQUAL
1208 :
1209 : /* undefine locally declared macros */
1210 : #undef SH_MAKE_PREFIX
1211 : #undef SH_MAKE_NAME
1212 : #undef SH_MAKE_NAME_
1213 : #undef SH_FILLFACTOR
1214 : #undef SH_MAX_FILLFACTOR
1215 : #undef SH_GROW_MAX_DIB
1216 : #undef SH_GROW_MAX_MOVE
1217 : #undef SH_GROW_MIN_FILLFACTOR
1218 : #undef SH_MAX_SIZE
1219 :
1220 : /* types */
1221 : #undef SH_TYPE
1222 : #undef SH_STATUS
1223 : #undef SH_STATUS_EMPTY
1224 : #undef SH_STATUS_IN_USE
1225 : #undef SH_ITERATOR
1226 :
1227 : /* external function names */
1228 : #undef SH_CREATE
1229 : #undef SH_DESTROY
1230 : #undef SH_RESET
1231 : #undef SH_INSERT
1232 : #undef SH_INSERT_HASH
1233 : #undef SH_DELETE_ITEM
1234 : #undef SH_DELETE
1235 : #undef SH_LOOKUP
1236 : #undef SH_LOOKUP_HASH
1237 : #undef SH_GROW
1238 : #undef SH_START_ITERATE
1239 : #undef SH_START_ITERATE_AT
1240 : #undef SH_ITERATE
1241 : #undef SH_ALLOCATE
1242 : #undef SH_FREE
1243 : #undef SH_ESTIMATE_SPACE
1244 : #undef SH_STAT
1245 :
1246 : /* internal function names */
1247 : #undef SH_COMPUTE_SIZE
1248 : #undef SH_UPDATE_PARAMETERS
1249 : #undef SH_COMPARE_KEYS
1250 : #undef SH_INITIAL_BUCKET
1251 : #undef SH_NEXT
1252 : #undef SH_PREV
1253 : #undef SH_DISTANCE_FROM_OPTIMAL
1254 : #undef SH_ENTRY_HASH
1255 : #undef SH_INSERT_HASH_INTERNAL
1256 : #undef SH_LOOKUP_HASH_INTERNAL
|