LCOV - code coverage report
Current view: top level - src/include/executor - tuptable.h (source / functions) Hit Total Coverage
Test: PostgreSQL 13devel Lines: 37 37 100.0 %
Date: 2019-11-15 22:06:47 Functions: 10 10 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * tuptable.h
       4             :  *    tuple table support stuff
       5             :  *
       6             :  *
       7             :  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
       8             :  * Portions Copyright (c) 1994, Regents of the University of California
       9             :  *
      10             :  * src/include/executor/tuptable.h
      11             :  *
      12             :  *-------------------------------------------------------------------------
      13             :  */
      14             : #ifndef TUPTABLE_H
      15             : #define TUPTABLE_H
      16             : 
      17             : #include "access/htup.h"
      18             : #include "access/sysattr.h"
      19             : #include "access/tupdesc.h"
      20             : #include "access/htup_details.h"
      21             : #include "storage/buf.h"
      22             : 
      23             : /*----------
      24             :  * The executor stores tuples in a "tuple table" which is a List of
      25             :  * independent TupleTableSlots.
      26             :  *
      27             :  * There's various different types of tuple table slots, each being able to
      28             :  * store different types of tuples. Additional types of slots can be added
      29             :  * without modifying core code. The type of a slot is determined by the
      30             :  * TupleTableSlotOps* passed to the slot creation routine. The builtin types
      31             :  * of slots are
      32             :  *
      33             :  * 1. physical tuple in a disk buffer page (TTSOpsBufferHeapTuple)
      34             :  * 2. physical tuple constructed in palloc'ed memory (TTSOpsHeapTuple)
      35             :  * 3. "minimal" physical tuple constructed in palloc'ed memory
      36             :  *    (TTSOpsMinimalTuple)
      37             :  * 4. "virtual" tuple consisting of Datum/isnull arrays (TTSOpsVirtual)
      38             :  *
      39             :  *
      40             :  * The first two cases are similar in that they both deal with "materialized"
      41             :  * tuples, but resource management is different.  For a tuple in a disk page
      42             :  * we need to hold a pin on the buffer until the TupleTableSlot's reference
      43             :  * to the tuple is dropped; while for a palloc'd tuple we usually want the
      44             :  * tuple pfree'd when the TupleTableSlot's reference is dropped.
      45             :  *
      46             :  * A "minimal" tuple is handled similarly to a palloc'd regular tuple.
      47             :  * At present, minimal tuples never are stored in buffers, so there is no
      48             :  * parallel to case 1.  Note that a minimal tuple has no "system columns".
      49             :  * (Actually, it could have an OID, but we have no need to access the OID.)
      50             :  *
      51             :  * A "virtual" tuple is an optimization used to minimize physical data copying
      52             :  * in a nest of plan nodes.  Until materialized pass-by-reference Datums in
      53             :  * the slot point to storage that is not directly associated with the
      54             :  * TupleTableSlot; generally they will point to part of a tuple stored in a
      55             :  * lower plan node's output TupleTableSlot, or to a function result
      56             :  * constructed in a plan node's per-tuple econtext.  It is the responsibility
      57             :  * of the generating plan node to be sure these resources are not released for
      58             :  * as long as the virtual tuple needs to be valid or is materialized.  Note
      59             :  * also that a virtual tuple does not have any "system columns".
      60             :  *
      61             :  * The Datum/isnull arrays of a TupleTableSlot serve double duty.  For virtual
      62             :  * slots they are the authoritative data.  For the other builtin slots,
      63             :  * the arrays contain data extracted from the tuple.  (In this state, any
      64             :  * pass-by-reference Datums point into the physical tuple.)  The extracted
      65             :  * information is built "lazily", ie, only as needed.  This serves to avoid
      66             :  * repeated extraction of data from the physical tuple.
      67             :  *
      68             :  * A TupleTableSlot can also be "empty", indicated by flag TTS_FLAG_EMPTY set
      69             :  * in tts_flags, holding no valid data.  This is the only valid state for a
      70             :  * freshly-created slot that has not yet had a tuple descriptor assigned to
      71             :  * it.  In this state, TTS_SHOULDFREE should not be set in tts_flags, tts_tuple
      72             :  * must be NULL and tts_nvalid zero.
      73             :  *
      74             :  * The tupleDescriptor is simply referenced, not copied, by the TupleTableSlot
      75             :  * code.  The caller of ExecSetSlotDescriptor() is responsible for providing
      76             :  * a descriptor that will live as long as the slot does.  (Typically, both
      77             :  * slots and descriptors are in per-query memory and are freed by memory
      78             :  * context deallocation at query end; so it's not worth providing any extra
      79             :  * mechanism to do more.  However, the slot will increment the tupdesc
      80             :  * reference count if a reference-counted tupdesc is supplied.)
      81             :  *
      82             :  * When TTS_SHOULDFREE is set in tts_flags, the physical tuple is "owned" by
      83             :  * the slot and should be freed when the slot's reference to the tuple is
      84             :  * dropped.
      85             :  *
      86             :  * tts_values/tts_isnull are allocated either when the slot is created (when
      87             :  * the descriptor is provided), or when a descriptor is assigned to the slot;
      88             :  * they are of length equal to the descriptor's natts.
      89             :  *
      90             :  * The TTS_FLAG_SLOW flag is saved state for
      91             :  * slot_deform_heap_tuple, and should not be touched by any other code.
      92             :  *----------
      93             :  */
      94             : 
      95             : /* true = slot is empty */
      96             : #define         TTS_FLAG_EMPTY          (1 << 1)
      97             : #define TTS_EMPTY(slot) (((slot)->tts_flags & TTS_FLAG_EMPTY) != 0)
      98             : 
      99             : /* should pfree tuple "owned" by the slot? */
     100             : #define         TTS_FLAG_SHOULDFREE     (1 << 2)
     101             : #define TTS_SHOULDFREE(slot) (((slot)->tts_flags & TTS_FLAG_SHOULDFREE) != 0)
     102             : 
     103             : /* saved state for slot_deform_heap_tuple */
     104             : #define         TTS_FLAG_SLOW       (1 << 3)
     105             : #define TTS_SLOW(slot) (((slot)->tts_flags & TTS_FLAG_SLOW) != 0)
     106             : 
     107             : /* fixed tuple descriptor */
     108             : #define         TTS_FLAG_FIXED      (1 << 4)
     109             : #define TTS_FIXED(slot) (((slot)->tts_flags & TTS_FLAG_FIXED) != 0)
     110             : 
     111             : struct TupleTableSlotOps;
     112             : typedef struct TupleTableSlotOps TupleTableSlotOps;
     113             : 
     114             : /* base tuple table slot type */
     115             : typedef struct TupleTableSlot
     116             : {
     117             :     NodeTag     type;
     118             : #define FIELDNO_TUPLETABLESLOT_FLAGS 1
     119             :     uint16      tts_flags;      /* Boolean states */
     120             : #define FIELDNO_TUPLETABLESLOT_NVALID 2
     121             :     AttrNumber  tts_nvalid;     /* # of valid values in tts_values */
     122             :     const TupleTableSlotOps *const tts_ops; /* implementation of slot */
     123             : #define FIELDNO_TUPLETABLESLOT_TUPLEDESCRIPTOR 4
     124             :     TupleDesc   tts_tupleDescriptor;    /* slot's tuple descriptor */
     125             : #define FIELDNO_TUPLETABLESLOT_VALUES 5
     126             :     Datum      *tts_values;     /* current per-attribute values */
     127             : #define FIELDNO_TUPLETABLESLOT_ISNULL 6
     128             :     bool       *tts_isnull;     /* current per-attribute isnull flags */
     129             :     MemoryContext tts_mcxt;     /* slot itself is in this context */
     130             :     ItemPointerData tts_tid;    /* stored tuple's tid */
     131             :     Oid         tts_tableOid;   /* table oid of tuple */
     132             : } TupleTableSlot;
     133             : 
     134             : /* routines for a TupleTableSlot implementation */
     135             : struct TupleTableSlotOps
     136             : {
     137             :     /* Minimum size of the slot */
     138             :     size_t      base_slot_size;
     139             : 
     140             :     /* Initialization. */
     141             :     void        (*init) (TupleTableSlot *slot);
     142             : 
     143             :     /* Destruction. */
     144             :     void        (*release) (TupleTableSlot *slot);
     145             : 
     146             :     /*
     147             :      * Clear the contents of the slot. Only the contents are expected to be
     148             :      * cleared and not the tuple descriptor. Typically an implementation of
     149             :      * this callback should free the memory allocated for the tuple contained
     150             :      * in the slot.
     151             :      */
     152             :     void        (*clear) (TupleTableSlot *slot);
     153             : 
     154             :     /*
     155             :      * Fill up first natts entries of tts_values and tts_isnull arrays with
     156             :      * values from the tuple contained in the slot. The function may be called
     157             :      * with natts more than the number of attributes available in the tuple,
     158             :      * in which case it should set tts_nvalid to the number of returned
     159             :      * columns.
     160             :      */
     161             :     void        (*getsomeattrs) (TupleTableSlot *slot, int natts);
     162             : 
     163             :     /*
     164             :      * Returns value of the given system attribute as a datum and sets isnull
     165             :      * to false, if it's not NULL. Throws an error if the slot type does not
     166             :      * support system attributes.
     167             :      */
     168             :     Datum       (*getsysattr) (TupleTableSlot *slot, int attnum, bool *isnull);
     169             : 
     170             :     /*
     171             :      * Make the contents of the slot solely depend on the slot, and not on
     172             :      * underlying resources (like another memory context, buffers, etc).
     173             :      */
     174             :     void        (*materialize) (TupleTableSlot *slot);
     175             : 
     176             :     /*
     177             :      * Copy the contents of the source slot into the destination slot's own
     178             :      * context. Invoked using callback of the destination slot.
     179             :      */
     180             :     void        (*copyslot) (TupleTableSlot *dstslot, TupleTableSlot *srcslot);
     181             : 
     182             :     /*
     183             :      * Return a heap tuple "owned" by the slot. It is slot's responsibility to
     184             :      * free the memory consumed by the heap tuple. If the slot can not "own" a
     185             :      * heap tuple, it should not implement this callback and should set it as
     186             :      * NULL.
     187             :      */
     188             :     HeapTuple   (*get_heap_tuple) (TupleTableSlot *slot);
     189             : 
     190             :     /*
     191             :      * Return a minimal tuple "owned" by the slot. It is slot's responsibility
     192             :      * to free the memory consumed by the minimal tuple. If the slot can not
     193             :      * "own" a minimal tuple, it should not implement this callback and should
     194             :      * set it as NULL.
     195             :      */
     196             :     MinimalTuple (*get_minimal_tuple) (TupleTableSlot *slot);
     197             : 
     198             :     /*
     199             :      * Return a copy of heap tuple representing the contents of the slot. The
     200             :      * copy needs to be palloc'd in the current memory context. The slot
     201             :      * itself is expected to remain unaffected. It is *not* expected to have
     202             :      * meaningful "system columns" in the copy. The copy is not be "owned" by
     203             :      * the slot i.e. the caller has to take responsibility to free memory
     204             :      * consumed by the slot.
     205             :      */
     206             :     HeapTuple   (*copy_heap_tuple) (TupleTableSlot *slot);
     207             : 
     208             :     /*
     209             :      * Return a copy of minimal tuple representing the contents of the slot.
     210             :      * The copy needs to be palloc'd in the current memory context. The slot
     211             :      * itself is expected to remain unaffected. It is *not* expected to have
     212             :      * meaningful "system columns" in the copy. The copy is not be "owned" by
     213             :      * the slot i.e. the caller has to take responsibility to free memory
     214             :      * consumed by the slot.
     215             :      */
     216             :     MinimalTuple (*copy_minimal_tuple) (TupleTableSlot *slot);
     217             : };
     218             : 
     219             : /*
     220             :  * Predefined TupleTableSlotOps for various types of TupleTableSlotOps. The
     221             :  * same are used to identify the type of a given slot.
     222             :  */
     223             : extern PGDLLIMPORT const TupleTableSlotOps TTSOpsVirtual;
     224             : extern PGDLLIMPORT const TupleTableSlotOps TTSOpsHeapTuple;
     225             : extern PGDLLIMPORT const TupleTableSlotOps TTSOpsMinimalTuple;
     226             : extern PGDLLIMPORT const TupleTableSlotOps TTSOpsBufferHeapTuple;
     227             : 
     228             : #define TTS_IS_VIRTUAL(slot) ((slot)->tts_ops == &TTSOpsVirtual)
     229             : #define TTS_IS_HEAPTUPLE(slot) ((slot)->tts_ops == &TTSOpsHeapTuple)
     230             : #define TTS_IS_MINIMALTUPLE(slot) ((slot)->tts_ops == &TTSOpsMinimalTuple)
     231             : #define TTS_IS_BUFFERTUPLE(slot) ((slot)->tts_ops == &TTSOpsBufferHeapTuple)
     232             : 
     233             : 
     234             : /*
     235             :  * Tuple table slot implementations.
     236             :  */
     237             : 
     238             : typedef struct VirtualTupleTableSlot
     239             : {
     240             :     TupleTableSlot base;
     241             : 
     242             :     char       *data;           /* data for materialized slots */
     243             : } VirtualTupleTableSlot;
     244             : 
     245             : typedef struct HeapTupleTableSlot
     246             : {
     247             :     TupleTableSlot base;
     248             : 
     249             : #define FIELDNO_HEAPTUPLETABLESLOT_TUPLE 1
     250             :     HeapTuple   tuple;          /* physical tuple */
     251             : #define FIELDNO_HEAPTUPLETABLESLOT_OFF 2
     252             :     uint32      off;            /* saved state for slot_deform_heap_tuple */
     253             :     HeapTupleData tupdata;      /* optional workspace for storing tuple */
     254             : } HeapTupleTableSlot;
     255             : 
     256             : /* heap tuple residing in a buffer */
     257             : typedef struct BufferHeapTupleTableSlot
     258             : {
     259             :     HeapTupleTableSlot base;
     260             : 
     261             :     /*
     262             :      * If buffer is not InvalidBuffer, then the slot is holding a pin on the
     263             :      * indicated buffer page; drop the pin when we release the slot's
     264             :      * reference to that buffer.  (TTS_FLAG_SHOULDFREE should not be set in
     265             :      * such a case, since presumably tts_tuple is pointing into the buffer.)
     266             :      */
     267             :     Buffer      buffer;         /* tuple's buffer, or InvalidBuffer */
     268             : } BufferHeapTupleTableSlot;
     269             : 
     270             : typedef struct MinimalTupleTableSlot
     271             : {
     272             :     TupleTableSlot base;
     273             : 
     274             :     /*
     275             :      * In a minimal slot tuple points at minhdr and the fields of that struct
     276             :      * are set correctly for access to the minimal tuple; in particular,
     277             :      * minhdr.t_data points MINIMAL_TUPLE_OFFSET bytes before mintuple.  This
     278             :      * allows column extraction to treat the case identically to regular
     279             :      * physical tuples.
     280             :      */
     281             : #define FIELDNO_MINIMALTUPLETABLESLOT_TUPLE 1
     282             :     HeapTuple   tuple;          /* tuple wrapper */
     283             :     MinimalTuple mintuple;      /* minimal tuple, or NULL if none */
     284             :     HeapTupleData minhdr;       /* workspace for minimal-tuple-only case */
     285             : #define FIELDNO_MINIMALTUPLETABLESLOT_OFF 4
     286             :     uint32      off;            /* saved state for slot_deform_heap_tuple */
     287             : } MinimalTupleTableSlot;
     288             : 
     289             : /*
     290             :  * TupIsNull -- is a TupleTableSlot empty?
     291             :  */
     292             : #define TupIsNull(slot) \
     293             :     ((slot) == NULL || TTS_EMPTY(slot))
     294             : 
     295             : /* in executor/execTuples.c */
     296             : extern TupleTableSlot *MakeTupleTableSlot(TupleDesc tupleDesc,
     297             :                                           const TupleTableSlotOps *tts_ops);
     298             : extern TupleTableSlot *ExecAllocTableSlot(List **tupleTable, TupleDesc desc,
     299             :                                           const TupleTableSlotOps *tts_ops);
     300             : extern void ExecResetTupleTable(List *tupleTable, bool shouldFree);
     301             : extern TupleTableSlot *MakeSingleTupleTableSlot(TupleDesc tupdesc,
     302             :                                                 const TupleTableSlotOps *tts_ops);
     303             : extern void ExecDropSingleTupleTableSlot(TupleTableSlot *slot);
     304             : extern void ExecSetSlotDescriptor(TupleTableSlot *slot, TupleDesc tupdesc);
     305             : extern TupleTableSlot *ExecStoreHeapTuple(HeapTuple tuple,
     306             :                                           TupleTableSlot *slot,
     307             :                                           bool shouldFree);
     308             : extern void ExecForceStoreHeapTuple(HeapTuple tuple,
     309             :                                     TupleTableSlot *slot,
     310             :                                     bool shouldFree);
     311             : extern TupleTableSlot *ExecStoreBufferHeapTuple(HeapTuple tuple,
     312             :                                                 TupleTableSlot *slot,
     313             :                                                 Buffer buffer);
     314             : extern TupleTableSlot *ExecStorePinnedBufferHeapTuple(HeapTuple tuple,
     315             :                                                       TupleTableSlot *slot,
     316             :                                                       Buffer buffer);
     317             : extern TupleTableSlot *ExecStoreMinimalTuple(MinimalTuple mtup,
     318             :                                              TupleTableSlot *slot,
     319             :                                              bool shouldFree);
     320             : extern void ExecForceStoreMinimalTuple(MinimalTuple mtup, TupleTableSlot *slot,
     321             :                                        bool shouldFree);
     322             : extern TupleTableSlot *ExecStoreVirtualTuple(TupleTableSlot *slot);
     323             : extern TupleTableSlot *ExecStoreAllNullTuple(TupleTableSlot *slot);
     324             : extern void ExecStoreHeapTupleDatum(Datum data, TupleTableSlot *slot);
     325             : extern HeapTuple ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree);
     326             : extern MinimalTuple ExecFetchSlotMinimalTuple(TupleTableSlot *slot,
     327             :                                               bool *shouldFree);
     328             : extern Datum ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot);
     329             : extern void slot_getmissingattrs(TupleTableSlot *slot, int startAttNum,
     330             :                                  int lastAttNum);
     331             : extern void slot_getsomeattrs_int(TupleTableSlot *slot, int attnum);
     332             : 
     333             : 
     334             : #ifndef FRONTEND
     335             : 
     336             : /*
     337             :  * This function forces the entries of the slot's Datum/isnull arrays to be
     338             :  * valid at least up through the attnum'th entry.
     339             :  */
     340             : static inline void
     341   176058100 : slot_getsomeattrs(TupleTableSlot *slot, int attnum)
     342             : {
     343   176058100 :     if (slot->tts_nvalid < attnum)
     344   149982996 :         slot_getsomeattrs_int(slot, attnum);
     345   176058100 : }
     346             : 
     347             : /*
     348             :  * slot_getallattrs
     349             :  *      This function forces all the entries of the slot's Datum/isnull
     350             :  *      arrays to be valid.  The caller may then extract data directly
     351             :  *      from those arrays instead of using slot_getattr.
     352             :  */
     353             : static inline void
     354     6325006 : slot_getallattrs(TupleTableSlot *slot)
     355             : {
     356     6325006 :     slot_getsomeattrs(slot, slot->tts_tupleDescriptor->natts);
     357     6325006 : }
     358             : 
     359             : 
     360             : /*
     361             :  * slot_attisnull
     362             :  *
     363             :  * Detect whether an attribute of the slot is null, without actually fetching
     364             :  * it.
     365             :  */
     366             : static inline bool
     367    26040104 : slot_attisnull(TupleTableSlot *slot, int attnum)
     368             : {
     369             :     AssertArg(attnum > 0);
     370             : 
     371    26040104 :     if (attnum > slot->tts_nvalid)
     372    25008422 :         slot_getsomeattrs(slot, attnum);
     373             : 
     374    26040104 :     return slot->tts_isnull[attnum - 1];
     375             : }
     376             : 
     377             : /*
     378             :  * slot_getattr - fetch one attribute of the slot's contents.
     379             :  */
     380             : static inline Datum
     381    83754220 : slot_getattr(TupleTableSlot *slot, int attnum,
     382             :              bool *isnull)
     383             : {
     384             :     AssertArg(attnum > 0);
     385             : 
     386    83754220 :     if (attnum > slot->tts_nvalid)
     387    50393954 :         slot_getsomeattrs(slot, attnum);
     388             : 
     389    83754220 :     *isnull = slot->tts_isnull[attnum - 1];
     390             : 
     391    83754220 :     return slot->tts_values[attnum - 1];
     392             : }
     393             : 
     394             : /*
     395             :  * slot_getsysattr - fetch a system attribute of the slot's current tuple.
     396             :  *
     397             :  *  If the slot type does not contain system attributes, this will throw an
     398             :  *  error.  Hence before calling this function, callers should make sure that
     399             :  *  the slot type is the one that supports system attributes.
     400             :  */
     401             : static inline Datum
     402     4996688 : slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     403             : {
     404             :     AssertArg(attnum < 0);       /* caller error */
     405             : 
     406     4996688 :     if (attnum == TableOidAttributeNumber)
     407             :     {
     408     2820990 :         *isnull = false;
     409     2820990 :         return ObjectIdGetDatum(slot->tts_tableOid);
     410             :     }
     411     2175698 :     else if (attnum == SelfItemPointerAttributeNumber)
     412             :     {
     413     2174878 :         *isnull = false;
     414     2174878 :         return PointerGetDatum(&slot->tts_tid);
     415             :     }
     416             : 
     417             :     /* Fetch the system attribute from the underlying tuple. */
     418         820 :     return slot->tts_ops->getsysattr(slot, attnum, isnull);
     419             : }
     420             : 
     421             : /*
     422             :  * ExecClearTuple - clear the slot's contents
     423             :  */
     424             : static inline TupleTableSlot *
     425   104446012 : ExecClearTuple(TupleTableSlot *slot)
     426             : {
     427   104446012 :     slot->tts_ops->clear(slot);
     428             : 
     429   104446012 :     return slot;
     430             : }
     431             : 
     432             : /* ExecMaterializeSlot - force a slot into the "materialized" state.
     433             :  *
     434             :  * This causes the slot's tuple to be a local copy not dependent on any
     435             :  * external storage (i.e. pointing into a Buffer, or having allocations in
     436             :  * another memory context).
     437             :  *
     438             :  * A typical use for this operation is to prepare a computed tuple for being
     439             :  * stored on disk.  The original data may or may not be virtual, but in any
     440             :  * case we need a private copy for heap_insert to scribble on.
     441             :  */
     442             : static inline void
     443    14904816 : ExecMaterializeSlot(TupleTableSlot *slot)
     444             : {
     445    14904816 :     slot->tts_ops->materialize(slot);
     446    14904816 : }
     447             : 
     448             : /*
     449             :  * ExecCopySlotHeapTuple - return HeapTuple allocated in caller's context
     450             :  */
     451             : static inline HeapTuple
     452    27651584 : ExecCopySlotHeapTuple(TupleTableSlot *slot)
     453             : {
     454             :     Assert(!TTS_EMPTY(slot));
     455             : 
     456    27651584 :     return slot->tts_ops->copy_heap_tuple(slot);
     457             : }
     458             : 
     459             : /*
     460             :  * ExecCopySlotMinimalTuple - return MinimalTuple allocated in caller's context
     461             :  */
     462             : static inline MinimalTuple
     463    11199788 : ExecCopySlotMinimalTuple(TupleTableSlot *slot)
     464             : {
     465    11199788 :     return slot->tts_ops->copy_minimal_tuple(slot);
     466             : }
     467             : 
     468             : /*
     469             :  * ExecCopySlot - copy one slot's contents into another.
     470             :  *
     471             :  * If a source's system attributes are supposed to be accessed in the target
     472             :  * slot, the target slot and source slot types need to match.
     473             :  */
     474             : static inline TupleTableSlot *
     475    12533224 : ExecCopySlot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     476             : {
     477             :     Assert(!TTS_EMPTY(srcslot));
     478             :     AssertArg(srcslot != dstslot);
     479             : 
     480    12533224 :     dstslot->tts_ops->copyslot(dstslot, srcslot);
     481             : 
     482    12533224 :     return dstslot;
     483             : }
     484             : 
     485             : #endif                          /* FRONTEND */
     486             : 
     487             : #endif                          /* TUPTABLE_H */

Generated by: LCOV version 1.13