Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * tableam.h
4 : * POSTGRES table access method definitions.
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * src/include/access/tableam.h
11 : *
12 : * NOTES
13 : * See tableam.sgml for higher level documentation.
14 : *
15 : *-------------------------------------------------------------------------
16 : */
17 : #ifndef TABLEAM_H
18 : #define TABLEAM_H
19 :
20 : #include "access/relscan.h"
21 : #include "access/sdir.h"
22 : #include "access/xact.h"
23 : #include "commands/vacuum.h"
24 : #include "executor/tuptable.h"
25 : #include "storage/read_stream.h"
26 : #include "utils/rel.h"
27 : #include "utils/snapshot.h"
28 :
29 :
30 : #define DEFAULT_TABLE_ACCESS_METHOD "heap"
31 :
32 : /* GUCs */
33 : extern PGDLLIMPORT char *default_table_access_method;
34 : extern PGDLLIMPORT bool synchronize_seqscans;
35 :
36 :
37 : struct BulkInsertStateData;
38 : struct IndexInfo;
39 : struct SampleScanState;
40 : struct ValidateIndexState;
41 :
42 : /*
43 : * Bitmask values for the flags argument to the scan_begin callback.
44 : */
45 : typedef enum ScanOptions
46 : {
47 : /* one of SO_TYPE_* may be specified */
48 : SO_TYPE_SEQSCAN = 1 << 0,
49 : SO_TYPE_BITMAPSCAN = 1 << 1,
50 : SO_TYPE_SAMPLESCAN = 1 << 2,
51 : SO_TYPE_TIDSCAN = 1 << 3,
52 : SO_TYPE_TIDRANGESCAN = 1 << 4,
53 : SO_TYPE_ANALYZE = 1 << 5,
54 :
55 : /* several of SO_ALLOW_* may be specified */
56 : /* allow or disallow use of access strategy */
57 : SO_ALLOW_STRAT = 1 << 6,
58 : /* report location to syncscan logic? */
59 : SO_ALLOW_SYNC = 1 << 7,
60 : /* verify visibility page-at-a-time? */
61 : SO_ALLOW_PAGEMODE = 1 << 8,
62 :
63 : /* unregister snapshot at scan end? */
64 : SO_TEMP_SNAPSHOT = 1 << 9,
65 : } ScanOptions;
66 :
67 : /*
68 : * Result codes for table_{update,delete,lock_tuple}, and for visibility
69 : * routines inside table AMs.
70 : */
71 : typedef enum TM_Result
72 : {
73 : /*
74 : * Signals that the action succeeded (i.e. update/delete performed, lock
75 : * was acquired)
76 : */
77 : TM_Ok,
78 :
79 : /* The affected tuple wasn't visible to the relevant snapshot */
80 : TM_Invisible,
81 :
82 : /* The affected tuple was already modified by the calling backend */
83 : TM_SelfModified,
84 :
85 : /*
86 : * The affected tuple was updated by another transaction. This includes
87 : * the case where tuple was moved to another partition.
88 : */
89 : TM_Updated,
90 :
91 : /* The affected tuple was deleted by another transaction */
92 : TM_Deleted,
93 :
94 : /*
95 : * The affected tuple is currently being modified by another session. This
96 : * will only be returned if table_(update/delete/lock_tuple) are
97 : * instructed not to wait.
98 : */
99 : TM_BeingModified,
100 :
101 : /* lock couldn't be acquired, action skipped. Only used by lock_tuple */
102 : TM_WouldBlock,
103 : } TM_Result;
104 :
105 : /*
106 : * Result codes for table_update(..., update_indexes*..).
107 : * Used to determine which indexes to update.
108 : */
109 : typedef enum TU_UpdateIndexes
110 : {
111 : /* No indexed columns were updated (incl. TID addressing of tuple) */
112 : TU_None,
113 :
114 : /* A non-summarizing indexed column was updated, or the TID has changed */
115 : TU_All,
116 :
117 : /* Only summarized columns were updated, TID is unchanged */
118 : TU_Summarizing,
119 : } TU_UpdateIndexes;
120 :
121 : /*
122 : * When table_tuple_update, table_tuple_delete, or table_tuple_lock fail
123 : * because the target tuple is already outdated, they fill in this struct to
124 : * provide information to the caller about what happened. When those functions
125 : * succeed, the contents of this struct should not be relied upon, except for
126 : * `traversed`, which may be set in both success and failure cases.
127 : *
128 : * ctid is the target's ctid link: it is the same as the target's TID if the
129 : * target was deleted, or the location of the replacement tuple if the target
130 : * was updated.
131 : *
132 : * xmax is the outdating transaction's XID. If the caller wants to visit the
133 : * replacement tuple, it must check that this matches before believing the
134 : * replacement is really a match. This is InvalidTransactionId if the target
135 : * was !LP_NORMAL (expected only for a TID retrieved from syscache).
136 : *
137 : * cmax is the outdating command's CID, but only when the failure code is
138 : * TM_SelfModified (i.e., something in the current transaction outdated the
139 : * tuple); otherwise cmax is zero. (We make this restriction because
140 : * HeapTupleHeaderGetCmax doesn't work for tuples outdated in other
141 : * transactions.)
142 : *
143 : * traversed indicates if an update chain was followed in order to try to lock
144 : * the target tuple. (This may be set in both success and failure cases.)
145 : */
146 : typedef struct TM_FailureData
147 : {
148 : ItemPointerData ctid;
149 : TransactionId xmax;
150 : CommandId cmax;
151 : bool traversed;
152 : } TM_FailureData;
153 :
154 : /*
155 : * State used when calling table_index_delete_tuples().
156 : *
157 : * Represents the status of table tuples, referenced by table TID and taken by
158 : * index AM from index tuples. State consists of high level parameters of the
159 : * deletion operation, plus two mutable palloc()'d arrays for information
160 : * about the status of individual table tuples. These are conceptually one
161 : * single array. Using two arrays keeps the TM_IndexDelete struct small,
162 : * which makes sorting the first array (the deltids array) fast.
163 : *
164 : * Some index AM callers perform simple index tuple deletion (by specifying
165 : * bottomup = false), and include only known-dead deltids. These known-dead
166 : * entries are all marked knowndeletable = true directly (typically these are
167 : * TIDs from LP_DEAD-marked index tuples), but that isn't strictly required.
168 : *
169 : * Callers that specify bottomup = true are "bottom-up index deletion"
170 : * callers. The considerations for the tableam are more subtle with these
171 : * callers because they ask the tableam to perform highly speculative work,
172 : * and might only expect the tableam to check a small fraction of all entries.
173 : * Caller is not allowed to specify knowndeletable = true for any entry
174 : * because everything is highly speculative. Bottom-up caller provides
175 : * context and hints to tableam -- see comments below for details on how index
176 : * AMs and tableams should coordinate during bottom-up index deletion.
177 : *
178 : * Simple index deletion callers may ask the tableam to perform speculative
179 : * work, too. This is a little like bottom-up deletion, but not too much.
180 : * The tableam will only perform speculative work when it's practically free
181 : * to do so in passing for simple deletion caller (while always performing
182 : * whatever work is needed to enable knowndeletable/LP_DEAD index tuples to
183 : * be deleted within index AM). This is the real reason why it's possible for
184 : * simple index deletion caller to specify knowndeletable = false up front
185 : * (this means "check if it's possible for me to delete corresponding index
186 : * tuple when it's cheap to do so in passing"). The index AM should only
187 : * include "extra" entries for index tuples whose TIDs point to a table block
188 : * that tableam is expected to have to visit anyway (in the event of a block
189 : * orientated tableam). The tableam isn't strictly obligated to check these
190 : * "extra" TIDs, but a block-based AM should always manage to do so in
191 : * practice.
192 : *
193 : * The final contents of the deltids/status arrays are interesting to callers
194 : * that ask tableam to perform speculative work (i.e. when _any_ items have
195 : * knowndeletable set to false up front). These index AM callers will
196 : * naturally need to consult final state to determine which index tuples are
197 : * in fact deletable.
198 : *
199 : * The index AM can keep track of which index tuple relates to which deltid by
200 : * setting idxoffnum (and/or relying on each entry being uniquely identifiable
201 : * using tid), which is important when the final contents of the array will
202 : * need to be interpreted -- the array can shrink from initial size after
203 : * tableam processing and/or have entries in a new order (tableam may sort
204 : * deltids array for its own reasons). Bottom-up callers may find that final
205 : * ndeltids is 0 on return from call to tableam, in which case no index tuple
206 : * deletions are possible. Simple deletion callers can rely on any entries
207 : * they know to be deletable appearing in the final array as deletable.
208 : */
209 : typedef struct TM_IndexDelete
210 : {
211 : ItemPointerData tid; /* table TID from index tuple */
212 : int16 id; /* Offset into TM_IndexStatus array */
213 : } TM_IndexDelete;
214 :
215 : typedef struct TM_IndexStatus
216 : {
217 : OffsetNumber idxoffnum; /* Index am page offset number */
218 : bool knowndeletable; /* Currently known to be deletable? */
219 :
220 : /* Bottom-up index deletion specific fields follow */
221 : bool promising; /* Promising (duplicate) index tuple? */
222 : int16 freespace; /* Space freed in index if deleted */
223 : } TM_IndexStatus;
224 :
225 : /*
226 : * Index AM/tableam coordination is central to the design of bottom-up index
227 : * deletion. The index AM provides hints about where to look to the tableam
228 : * by marking some entries as "promising". Index AM does this with duplicate
229 : * index tuples that are strongly suspected to be old versions left behind by
230 : * UPDATEs that did not logically modify indexed values. Index AM may find it
231 : * helpful to only mark entries as promising when they're thought to have been
232 : * affected by such an UPDATE in the recent past.
233 : *
234 : * Bottom-up index deletion casts a wide net at first, usually by including
235 : * all TIDs on a target index page. It is up to the tableam to worry about
236 : * the cost of checking transaction status information. The tableam is in
237 : * control, but needs careful guidance from the index AM. Index AM requests
238 : * that bottomupfreespace target be met, while tableam measures progress
239 : * towards that goal by tallying the per-entry freespace value for known
240 : * deletable entries. (All !bottomup callers can just set these space related
241 : * fields to zero.)
242 : */
243 : typedef struct TM_IndexDeleteOp
244 : {
245 : Relation irel; /* Target index relation */
246 : BlockNumber iblknum; /* Index block number (for error reports) */
247 : bool bottomup; /* Bottom-up (not simple) deletion? */
248 : int bottomupfreespace; /* Bottom-up space target */
249 :
250 : /* Mutable per-TID information follows (index AM initializes entries) */
251 : int ndeltids; /* Current # of deltids/status elements */
252 : TM_IndexDelete *deltids;
253 : TM_IndexStatus *status;
254 : } TM_IndexDeleteOp;
255 :
256 : /* "options" flag bits for table_tuple_insert */
257 : /* TABLE_INSERT_SKIP_WAL was 0x0001; RelationNeedsWAL() now governs */
258 : #define TABLE_INSERT_SKIP_FSM 0x0002
259 : #define TABLE_INSERT_FROZEN 0x0004
260 : #define TABLE_INSERT_NO_LOGICAL 0x0008
261 :
262 : /* flag bits for table_tuple_lock */
263 : /* Follow tuples whose update is in progress if lock modes don't conflict */
264 : #define TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS (1 << 0)
265 : /* Follow update chain and lock latest version of tuple */
266 : #define TUPLE_LOCK_FLAG_FIND_LAST_VERSION (1 << 1)
267 :
268 :
269 : /* Typedef for callback function for table_index_build_scan */
270 : typedef void (*IndexBuildCallback) (Relation index,
271 : ItemPointer tid,
272 : Datum *values,
273 : bool *isnull,
274 : bool tupleIsAlive,
275 : void *state);
276 :
277 : /*
278 : * API struct for a table AM. Note this must be allocated in a
279 : * server-lifetime manner, typically as a static const struct, which then gets
280 : * returned by FormData_pg_am.amhandler.
281 : *
282 : * In most cases it's not appropriate to call the callbacks directly, use the
283 : * table_* wrapper functions instead.
284 : *
285 : * GetTableAmRoutine() asserts that required callbacks are filled in, remember
286 : * to update when adding a callback.
287 : */
288 : typedef struct TableAmRoutine
289 : {
290 : /* this must be set to T_TableAmRoutine */
291 : NodeTag type;
292 :
293 :
294 : /* ------------------------------------------------------------------------
295 : * Slot related callbacks.
296 : * ------------------------------------------------------------------------
297 : */
298 :
299 : /*
300 : * Return slot implementation suitable for storing a tuple of this AM.
301 : */
302 : const TupleTableSlotOps *(*slot_callbacks) (Relation rel);
303 :
304 :
305 : /* ------------------------------------------------------------------------
306 : * Table scan callbacks.
307 : * ------------------------------------------------------------------------
308 : */
309 :
310 : /*
311 : * Start a scan of `rel`. The callback has to return a TableScanDesc,
312 : * which will typically be embedded in a larger, AM specific, struct.
313 : *
314 : * If nkeys != 0, the results need to be filtered by those scan keys.
315 : *
316 : * pscan, if not NULL, will have already been initialized with
317 : * parallelscan_initialize(), and has to be for the same relation. Will
318 : * only be set coming from table_beginscan_parallel().
319 : *
320 : * `flags` is a bitmask indicating the type of scan (ScanOptions's
321 : * SO_TYPE_*, currently only one may be specified), options controlling
322 : * the scan's behaviour (ScanOptions's SO_ALLOW_*, several may be
323 : * specified, an AM may ignore unsupported ones) and whether the snapshot
324 : * needs to be deallocated at scan_end (ScanOptions's SO_TEMP_SNAPSHOT).
325 : */
326 : TableScanDesc (*scan_begin) (Relation rel,
327 : Snapshot snapshot,
328 : int nkeys, struct ScanKeyData *key,
329 : ParallelTableScanDesc pscan,
330 : uint32 flags);
331 :
332 : /*
333 : * Release resources and deallocate scan. If TableScanDesc.temp_snap,
334 : * TableScanDesc.rs_snapshot needs to be unregistered.
335 : */
336 : void (*scan_end) (TableScanDesc scan);
337 :
338 : /*
339 : * Restart relation scan. If set_params is set to true, allow_{strat,
340 : * sync, pagemode} (see scan_begin) changes should be taken into account.
341 : */
342 : void (*scan_rescan) (TableScanDesc scan, struct ScanKeyData *key,
343 : bool set_params, bool allow_strat,
344 : bool allow_sync, bool allow_pagemode);
345 :
346 : /*
347 : * Return next tuple from `scan`, store in slot.
348 : */
349 : bool (*scan_getnextslot) (TableScanDesc scan,
350 : ScanDirection direction,
351 : TupleTableSlot *slot);
352 :
353 : /*-----------
354 : * Optional functions to provide scanning for ranges of ItemPointers.
355 : * Implementations must either provide both of these functions, or neither
356 : * of them.
357 : *
358 : * Implementations of scan_set_tidrange must themselves handle
359 : * ItemPointers of any value. i.e, they must handle each of the following:
360 : *
361 : * 1) mintid or maxtid is beyond the end of the table; and
362 : * 2) mintid is above maxtid; and
363 : * 3) item offset for mintid or maxtid is beyond the maximum offset
364 : * allowed by the AM.
365 : *
366 : * Implementations can assume that scan_set_tidrange is always called
367 : * before scan_getnextslot_tidrange or after scan_rescan and before any
368 : * further calls to scan_getnextslot_tidrange.
369 : */
370 : void (*scan_set_tidrange) (TableScanDesc scan,
371 : ItemPointer mintid,
372 : ItemPointer maxtid);
373 :
374 : /*
375 : * Return next tuple from `scan` that's in the range of TIDs defined by
376 : * scan_set_tidrange.
377 : */
378 : bool (*scan_getnextslot_tidrange) (TableScanDesc scan,
379 : ScanDirection direction,
380 : TupleTableSlot *slot);
381 :
382 : /* ------------------------------------------------------------------------
383 : * Parallel table scan related functions.
384 : * ------------------------------------------------------------------------
385 : */
386 :
387 : /*
388 : * Estimate the size of shared memory needed for a parallel scan of this
389 : * relation. The snapshot does not need to be accounted for.
390 : */
391 : Size (*parallelscan_estimate) (Relation rel);
392 :
393 : /*
394 : * Initialize ParallelTableScanDesc for a parallel scan of this relation.
395 : * `pscan` will be sized according to parallelscan_estimate() for the same
396 : * relation.
397 : */
398 : Size (*parallelscan_initialize) (Relation rel,
399 : ParallelTableScanDesc pscan);
400 :
401 : /*
402 : * Reinitialize `pscan` for a new scan. `rel` will be the same relation as
403 : * when `pscan` was initialized by parallelscan_initialize.
404 : */
405 : void (*parallelscan_reinitialize) (Relation rel,
406 : ParallelTableScanDesc pscan);
407 :
408 :
409 : /* ------------------------------------------------------------------------
410 : * Index Scan Callbacks
411 : * ------------------------------------------------------------------------
412 : */
413 :
414 : /*
415 : * Prepare to fetch tuples from the relation, as needed when fetching
416 : * tuples for an index scan. The callback has to return an
417 : * IndexFetchTableData, which the AM will typically embed in a larger
418 : * structure with additional information.
419 : *
420 : * Tuples for an index scan can then be fetched via index_fetch_tuple.
421 : */
422 : struct IndexFetchTableData *(*index_fetch_begin) (Relation rel);
423 :
424 : /*
425 : * Reset index fetch. Typically this will release cross index fetch
426 : * resources held in IndexFetchTableData.
427 : */
428 : void (*index_fetch_reset) (struct IndexFetchTableData *data);
429 :
430 : /*
431 : * Release resources and deallocate index fetch.
432 : */
433 : void (*index_fetch_end) (struct IndexFetchTableData *data);
434 :
435 : /*
436 : * Fetch tuple at `tid` into `slot`, after doing a visibility test
437 : * according to `snapshot`. If a tuple was found and passed the visibility
438 : * test, return true, false otherwise.
439 : *
440 : * Note that AMs that do not necessarily update indexes when indexed
441 : * columns do not change, need to return the current/correct version of
442 : * the tuple that is visible to the snapshot, even if the tid points to an
443 : * older version of the tuple.
444 : *
445 : * *call_again is false on the first call to index_fetch_tuple for a tid.
446 : * If there potentially is another tuple matching the tid, *call_again
447 : * needs to be set to true by index_fetch_tuple, signaling to the caller
448 : * that index_fetch_tuple should be called again for the same tid.
449 : *
450 : * *all_dead, if all_dead is not NULL, should be set to true by
451 : * index_fetch_tuple iff it is guaranteed that no backend needs to see
452 : * that tuple. Index AMs can use that to avoid returning that tid in
453 : * future searches.
454 : */
455 : bool (*index_fetch_tuple) (struct IndexFetchTableData *scan,
456 : ItemPointer tid,
457 : Snapshot snapshot,
458 : TupleTableSlot *slot,
459 : bool *call_again, bool *all_dead);
460 :
461 :
462 : /* ------------------------------------------------------------------------
463 : * Callbacks for non-modifying operations on individual tuples
464 : * ------------------------------------------------------------------------
465 : */
466 :
467 : /*
468 : * Fetch tuple at `tid` into `slot`, after doing a visibility test
469 : * according to `snapshot`. If a tuple was found and passed the visibility
470 : * test, returns true, false otherwise.
471 : */
472 : bool (*tuple_fetch_row_version) (Relation rel,
473 : ItemPointer tid,
474 : Snapshot snapshot,
475 : TupleTableSlot *slot);
476 :
477 : /*
478 : * Is tid valid for a scan of this relation.
479 : */
480 : bool (*tuple_tid_valid) (TableScanDesc scan,
481 : ItemPointer tid);
482 :
483 : /*
484 : * Return the latest version of the tuple at `tid`, by updating `tid` to
485 : * point at the newest version.
486 : */
487 : void (*tuple_get_latest_tid) (TableScanDesc scan,
488 : ItemPointer tid);
489 :
490 : /*
491 : * Does the tuple in `slot` satisfy `snapshot`? The slot needs to be of
492 : * the appropriate type for the AM.
493 : */
494 : bool (*tuple_satisfies_snapshot) (Relation rel,
495 : TupleTableSlot *slot,
496 : Snapshot snapshot);
497 :
498 : /* see table_index_delete_tuples() */
499 : TransactionId (*index_delete_tuples) (Relation rel,
500 : TM_IndexDeleteOp *delstate);
501 :
502 :
503 : /* ------------------------------------------------------------------------
504 : * Manipulations of physical tuples.
505 : * ------------------------------------------------------------------------
506 : */
507 :
508 : /* see table_tuple_insert() for reference about parameters */
509 : void (*tuple_insert) (Relation rel, TupleTableSlot *slot,
510 : CommandId cid, int options,
511 : struct BulkInsertStateData *bistate);
512 :
513 : /* see table_tuple_insert_speculative() for reference about parameters */
514 : void (*tuple_insert_speculative) (Relation rel,
515 : TupleTableSlot *slot,
516 : CommandId cid,
517 : int options,
518 : struct BulkInsertStateData *bistate,
519 : uint32 specToken);
520 :
521 : /* see table_tuple_complete_speculative() for reference about parameters */
522 : void (*tuple_complete_speculative) (Relation rel,
523 : TupleTableSlot *slot,
524 : uint32 specToken,
525 : bool succeeded);
526 :
527 : /* see table_multi_insert() for reference about parameters */
528 : void (*multi_insert) (Relation rel, TupleTableSlot **slots, int nslots,
529 : CommandId cid, int options, struct BulkInsertStateData *bistate);
530 :
531 : /* see table_tuple_delete() for reference about parameters */
532 : TM_Result (*tuple_delete) (Relation rel,
533 : ItemPointer tid,
534 : CommandId cid,
535 : Snapshot snapshot,
536 : Snapshot crosscheck,
537 : bool wait,
538 : TM_FailureData *tmfd,
539 : bool changingPart);
540 :
541 : /* see table_tuple_update() for reference about parameters */
542 : TM_Result (*tuple_update) (Relation rel,
543 : ItemPointer otid,
544 : TupleTableSlot *slot,
545 : CommandId cid,
546 : Snapshot snapshot,
547 : Snapshot crosscheck,
548 : bool wait,
549 : TM_FailureData *tmfd,
550 : LockTupleMode *lockmode,
551 : TU_UpdateIndexes *update_indexes);
552 :
553 : /* see table_tuple_lock() for reference about parameters */
554 : TM_Result (*tuple_lock) (Relation rel,
555 : ItemPointer tid,
556 : Snapshot snapshot,
557 : TupleTableSlot *slot,
558 : CommandId cid,
559 : LockTupleMode mode,
560 : LockWaitPolicy wait_policy,
561 : uint8 flags,
562 : TM_FailureData *tmfd);
563 :
564 : /*
565 : * Perform operations necessary to complete insertions made via
566 : * tuple_insert and multi_insert with a BulkInsertState specified. In-tree
567 : * access methods ceased to use this.
568 : *
569 : * Typically callers of tuple_insert and multi_insert will just pass all
570 : * the flags that apply to them, and each AM has to decide which of them
571 : * make sense for it, and then only take actions in finish_bulk_insert for
572 : * those flags, and ignore others.
573 : *
574 : * Optional callback.
575 : */
576 : void (*finish_bulk_insert) (Relation rel, int options);
577 :
578 :
579 : /* ------------------------------------------------------------------------
580 : * DDL related functionality.
581 : * ------------------------------------------------------------------------
582 : */
583 :
584 : /*
585 : * This callback needs to create new relation storage for `rel`, with
586 : * appropriate durability behaviour for `persistence`.
587 : *
588 : * Note that only the subset of the relcache filled by
589 : * RelationBuildLocalRelation() can be relied upon and that the relation's
590 : * catalog entries will either not yet exist (new relation), or will still
591 : * reference the old relfilelocator.
592 : *
593 : * As output *freezeXid, *minmulti must be set to the values appropriate
594 : * for pg_class.{relfrozenxid, relminmxid}. For AMs that don't need those
595 : * fields to be filled they can be set to InvalidTransactionId and
596 : * InvalidMultiXactId, respectively.
597 : *
598 : * See also table_relation_set_new_filelocator().
599 : */
600 : void (*relation_set_new_filelocator) (Relation rel,
601 : const RelFileLocator *newrlocator,
602 : char persistence,
603 : TransactionId *freezeXid,
604 : MultiXactId *minmulti);
605 :
606 : /*
607 : * This callback needs to remove all contents from `rel`'s current
608 : * relfilelocator. No provisions for transactional behaviour need to be
609 : * made. Often this can be implemented by truncating the underlying
610 : * storage to its minimal size.
611 : *
612 : * See also table_relation_nontransactional_truncate().
613 : */
614 : void (*relation_nontransactional_truncate) (Relation rel);
615 :
616 : /*
617 : * See table_relation_copy_data().
618 : *
619 : * This can typically be implemented by directly copying the underlying
620 : * storage, unless it contains references to the tablespace internally.
621 : */
622 : void (*relation_copy_data) (Relation rel,
623 : const RelFileLocator *newrlocator);
624 :
625 : /* See table_relation_copy_for_cluster() */
626 : void (*relation_copy_for_cluster) (Relation OldTable,
627 : Relation NewTable,
628 : Relation OldIndex,
629 : bool use_sort,
630 : TransactionId OldestXmin,
631 : TransactionId *xid_cutoff,
632 : MultiXactId *multi_cutoff,
633 : double *num_tuples,
634 : double *tups_vacuumed,
635 : double *tups_recently_dead);
636 :
637 : /*
638 : * React to VACUUM command on the relation. The VACUUM can be triggered by
639 : * a user or by autovacuum. The specific actions performed by the AM will
640 : * depend heavily on the individual AM.
641 : *
642 : * On entry a transaction is already established, and the relation is
643 : * locked with a ShareUpdateExclusive lock.
644 : *
645 : * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through
646 : * this routine, even if (for ANALYZE) it is part of the same VACUUM
647 : * command.
648 : *
649 : * There probably, in the future, needs to be a separate callback to
650 : * integrate with autovacuum's scheduling.
651 : */
652 : void (*relation_vacuum) (Relation rel,
653 : const VacuumParams params,
654 : BufferAccessStrategy bstrategy);
655 :
656 : /*
657 : * Prepare to analyze block `blockno` of `scan`. The scan has been started
658 : * with table_beginscan_analyze(). See also
659 : * table_scan_analyze_next_block().
660 : *
661 : * The callback may acquire resources like locks that are held until
662 : * table_scan_analyze_next_tuple() returns false. It e.g. can make sense
663 : * to hold a lock until all tuples on a block have been analyzed by
664 : * scan_analyze_next_tuple.
665 : *
666 : * The callback can return false if the block is not suitable for
667 : * sampling, e.g. because it's a metapage that could never contain tuples.
668 : *
669 : * XXX: This obviously is primarily suited for block-based AMs. It's not
670 : * clear what a good interface for non block based AMs would be, so there
671 : * isn't one yet.
672 : */
673 : bool (*scan_analyze_next_block) (TableScanDesc scan,
674 : ReadStream *stream);
675 :
676 : /*
677 : * See table_scan_analyze_next_tuple().
678 : *
679 : * Not every AM might have a meaningful concept of dead rows, in which
680 : * case it's OK to not increment *deadrows - but note that that may
681 : * influence autovacuum scheduling (see comment for relation_vacuum
682 : * callback).
683 : */
684 : bool (*scan_analyze_next_tuple) (TableScanDesc scan,
685 : TransactionId OldestXmin,
686 : double *liverows,
687 : double *deadrows,
688 : TupleTableSlot *slot);
689 :
690 : /* see table_index_build_range_scan for reference about parameters */
691 : double (*index_build_range_scan) (Relation table_rel,
692 : Relation index_rel,
693 : struct IndexInfo *index_info,
694 : bool allow_sync,
695 : bool anyvisible,
696 : bool progress,
697 : BlockNumber start_blockno,
698 : BlockNumber numblocks,
699 : IndexBuildCallback callback,
700 : void *callback_state,
701 : TableScanDesc scan);
702 :
703 : /* see table_index_validate_scan for reference about parameters */
704 : void (*index_validate_scan) (Relation table_rel,
705 : Relation index_rel,
706 : struct IndexInfo *index_info,
707 : Snapshot snapshot,
708 : struct ValidateIndexState *state);
709 :
710 :
711 : /* ------------------------------------------------------------------------
712 : * Miscellaneous functions.
713 : * ------------------------------------------------------------------------
714 : */
715 :
716 : /*
717 : * See table_relation_size().
718 : *
719 : * Note that currently a few callers use the MAIN_FORKNUM size to figure
720 : * out the range of potentially interesting blocks (brin, analyze). It's
721 : * probable that we'll need to revise the interface for those at some
722 : * point.
723 : */
724 : uint64 (*relation_size) (Relation rel, ForkNumber forkNumber);
725 :
726 :
727 : /*
728 : * This callback should return true if the relation requires a TOAST table
729 : * and false if it does not. It may wish to examine the relation's tuple
730 : * descriptor before making a decision, but if it uses some other method
731 : * of storing large values (or if it does not support them) it can simply
732 : * return false.
733 : */
734 : bool (*relation_needs_toast_table) (Relation rel);
735 :
736 : /*
737 : * This callback should return the OID of the table AM that implements
738 : * TOAST tables for this AM. If the relation_needs_toast_table callback
739 : * always returns false, this callback is not required.
740 : */
741 : Oid (*relation_toast_am) (Relation rel);
742 :
743 : /*
744 : * This callback is invoked when detoasting a value stored in a toast
745 : * table implemented by this AM. See table_relation_fetch_toast_slice()
746 : * for more details.
747 : */
748 : void (*relation_fetch_toast_slice) (Relation toastrel, Oid valueid,
749 : int32 attrsize,
750 : int32 sliceoffset,
751 : int32 slicelength,
752 : struct varlena *result);
753 :
754 :
755 : /* ------------------------------------------------------------------------
756 : * Planner related functions.
757 : * ------------------------------------------------------------------------
758 : */
759 :
760 : /*
761 : * See table_relation_estimate_size().
762 : *
763 : * While block oriented, it shouldn't be too hard for an AM that doesn't
764 : * internally use blocks to convert into a usable representation.
765 : *
766 : * This differs from the relation_size callback by returning size
767 : * estimates (both relation size and tuple count) for planning purposes,
768 : * rather than returning a currently correct estimate.
769 : */
770 : void (*relation_estimate_size) (Relation rel, int32 *attr_widths,
771 : BlockNumber *pages, double *tuples,
772 : double *allvisfrac);
773 :
774 :
775 : /* ------------------------------------------------------------------------
776 : * Executor related functions.
777 : * ------------------------------------------------------------------------
778 : */
779 :
780 : /*
781 : * Fetch the next tuple of a bitmap table scan into `slot` and return true
782 : * if a visible tuple was found, false otherwise.
783 : *
784 : * `lossy_pages` is incremented if the bitmap is lossy for the selected
785 : * page; otherwise, `exact_pages` is incremented. These are tracked for
786 : * display in EXPLAIN ANALYZE output.
787 : *
788 : * Prefetching additional data from the bitmap is left to the table AM.
789 : *
790 : * This is an optional callback.
791 : */
792 : bool (*scan_bitmap_next_tuple) (TableScanDesc scan,
793 : TupleTableSlot *slot,
794 : bool *recheck,
795 : uint64 *lossy_pages,
796 : uint64 *exact_pages);
797 :
798 : /*
799 : * Prepare to fetch tuples from the next block in a sample scan. Return
800 : * false if the sample scan is finished, true otherwise. `scan` was
801 : * started via table_beginscan_sampling().
802 : *
803 : * Typically this will first determine the target block by calling the
804 : * TsmRoutine's NextSampleBlock() callback if not NULL, or alternatively
805 : * perform a sequential scan over all blocks. The determined block is
806 : * then typically read and pinned.
807 : *
808 : * As the TsmRoutine interface is block based, a block needs to be passed
809 : * to NextSampleBlock(). If that's not appropriate for an AM, it
810 : * internally needs to perform mapping between the internal and a block
811 : * based representation.
812 : *
813 : * Note that it's not acceptable to hold deadlock prone resources such as
814 : * lwlocks until scan_sample_next_tuple() has exhausted the tuples on the
815 : * block - the tuple is likely to be returned to an upper query node, and
816 : * the next call could be off a long while. Holding buffer pins and such
817 : * is obviously OK.
818 : *
819 : * Currently it is required to implement this interface, as there's no
820 : * alternative way (contrary e.g. to bitmap scans) to implement sample
821 : * scans. If infeasible to implement, the AM may raise an error.
822 : */
823 : bool (*scan_sample_next_block) (TableScanDesc scan,
824 : struct SampleScanState *scanstate);
825 :
826 : /*
827 : * This callback, only called after scan_sample_next_block has returned
828 : * true, should determine the next tuple to be returned from the selected
829 : * block using the TsmRoutine's NextSampleTuple() callback.
830 : *
831 : * The callback needs to perform visibility checks, and only return
832 : * visible tuples. That obviously can mean calling NextSampleTuple()
833 : * multiple times.
834 : *
835 : * The TsmRoutine interface assumes that there's a maximum offset on a
836 : * given page, so if that doesn't apply to an AM, it needs to emulate that
837 : * assumption somehow.
838 : */
839 : bool (*scan_sample_next_tuple) (TableScanDesc scan,
840 : struct SampleScanState *scanstate,
841 : TupleTableSlot *slot);
842 :
843 : } TableAmRoutine;
844 :
845 :
846 : /* ----------------------------------------------------------------------------
847 : * Slot functions.
848 : * ----------------------------------------------------------------------------
849 : */
850 :
851 : /*
852 : * Returns slot callbacks suitable for holding tuples of the appropriate type
853 : * for the relation. Works for tables, views, foreign tables and partitioned
854 : * tables.
855 : */
856 : extern const TupleTableSlotOps *table_slot_callbacks(Relation relation);
857 :
858 : /*
859 : * Returns slot using the callbacks returned by table_slot_callbacks(), and
860 : * registers it on *reglist.
861 : */
862 : extern TupleTableSlot *table_slot_create(Relation relation, List **reglist);
863 :
864 :
865 : /* ----------------------------------------------------------------------------
866 : * Table scan functions.
867 : * ----------------------------------------------------------------------------
868 : */
869 :
870 : /*
871 : * Start a scan of `rel`. Returned tuples pass a visibility test of
872 : * `snapshot`, and if nkeys != 0, the results are filtered by those scan keys.
873 : */
874 : static inline TableScanDesc
875 203880 : table_beginscan(Relation rel, Snapshot snapshot,
876 : int nkeys, struct ScanKeyData *key)
877 : {
878 203880 : uint32 flags = SO_TYPE_SEQSCAN |
879 : SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE;
880 :
881 203880 : return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
882 : }
883 :
884 : /*
885 : * Like table_beginscan(), but for scanning catalog. It'll automatically use a
886 : * snapshot appropriate for scanning catalog relations.
887 : */
888 : extern TableScanDesc table_beginscan_catalog(Relation relation, int nkeys,
889 : struct ScanKeyData *key);
890 :
891 : /*
892 : * Like table_beginscan(), but table_beginscan_strat() offers an extended API
893 : * that lets the caller control whether a nondefault buffer access strategy
894 : * can be used, and whether syncscan can be chosen (possibly resulting in the
895 : * scan not starting from block zero). Both of these default to true with
896 : * plain table_beginscan.
897 : */
898 : static inline TableScanDesc
899 447798 : table_beginscan_strat(Relation rel, Snapshot snapshot,
900 : int nkeys, struct ScanKeyData *key,
901 : bool allow_strat, bool allow_sync)
902 : {
903 447798 : uint32 flags = SO_TYPE_SEQSCAN | SO_ALLOW_PAGEMODE;
904 :
905 447798 : if (allow_strat)
906 447798 : flags |= SO_ALLOW_STRAT;
907 447798 : if (allow_sync)
908 53406 : flags |= SO_ALLOW_SYNC;
909 :
910 447798 : return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
911 : }
912 :
913 : /*
914 : * table_beginscan_bm is an alternative entry point for setting up a
915 : * TableScanDesc for a bitmap heap scan. Although that scan technology is
916 : * really quite unlike a standard seqscan, there is just enough commonality to
917 : * make it worth using the same data structure.
918 : */
919 : static inline TableScanDesc
920 16096 : table_beginscan_bm(Relation rel, Snapshot snapshot,
921 : int nkeys, struct ScanKeyData *key)
922 : {
923 16096 : uint32 flags = SO_TYPE_BITMAPSCAN | SO_ALLOW_PAGEMODE;
924 :
925 16096 : return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key,
926 : NULL, flags);
927 : }
928 :
929 : /*
930 : * table_beginscan_sampling is an alternative entry point for setting up a
931 : * TableScanDesc for a TABLESAMPLE scan. As with bitmap scans, it's worth
932 : * using the same data structure although the behavior is rather different.
933 : * In addition to the options offered by table_beginscan_strat, this call
934 : * also allows control of whether page-mode visibility checking is used.
935 : */
936 : static inline TableScanDesc
937 146 : table_beginscan_sampling(Relation rel, Snapshot snapshot,
938 : int nkeys, struct ScanKeyData *key,
939 : bool allow_strat, bool allow_sync,
940 : bool allow_pagemode)
941 : {
942 146 : uint32 flags = SO_TYPE_SAMPLESCAN;
943 :
944 146 : if (allow_strat)
945 134 : flags |= SO_ALLOW_STRAT;
946 146 : if (allow_sync)
947 66 : flags |= SO_ALLOW_SYNC;
948 146 : if (allow_pagemode)
949 122 : flags |= SO_ALLOW_PAGEMODE;
950 :
951 146 : return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
952 : }
953 :
954 : /*
955 : * table_beginscan_tid is an alternative entry point for setting up a
956 : * TableScanDesc for a Tid scan. As with bitmap scans, it's worth using
957 : * the same data structure although the behavior is rather different.
958 : */
959 : static inline TableScanDesc
960 786 : table_beginscan_tid(Relation rel, Snapshot snapshot)
961 : {
962 786 : uint32 flags = SO_TYPE_TIDSCAN;
963 :
964 786 : return rel->rd_tableam->scan_begin(rel, snapshot, 0, NULL, NULL, flags);
965 : }
966 :
967 : /*
968 : * table_beginscan_analyze is an alternative entry point for setting up a
969 : * TableScanDesc for an ANALYZE scan. As with bitmap scans, it's worth using
970 : * the same data structure although the behavior is rather different.
971 : */
972 : static inline TableScanDesc
973 17004 : table_beginscan_analyze(Relation rel)
974 : {
975 17004 : uint32 flags = SO_TYPE_ANALYZE;
976 :
977 17004 : return rel->rd_tableam->scan_begin(rel, NULL, 0, NULL, NULL, flags);
978 : }
979 :
980 : /*
981 : * End relation scan.
982 : */
983 : static inline void
984 762468 : table_endscan(TableScanDesc scan)
985 : {
986 762468 : scan->rs_rd->rd_tableam->scan_end(scan);
987 762468 : }
988 :
989 : /*
990 : * Restart a relation scan.
991 : */
992 : static inline void
993 1217162 : table_rescan(TableScanDesc scan,
994 : struct ScanKeyData *key)
995 : {
996 1217162 : scan->rs_rd->rd_tableam->scan_rescan(scan, key, false, false, false, false);
997 1217162 : }
998 :
999 : /*
1000 : * Restart a relation scan after changing params.
1001 : *
1002 : * This call allows changing the buffer strategy, syncscan, and pagemode
1003 : * options before starting a fresh scan. Note that although the actual use of
1004 : * syncscan might change (effectively, enabling or disabling reporting), the
1005 : * previously selected startblock will be kept.
1006 : */
1007 : static inline void
1008 30 : table_rescan_set_params(TableScanDesc scan, struct ScanKeyData *key,
1009 : bool allow_strat, bool allow_sync, bool allow_pagemode)
1010 : {
1011 30 : scan->rs_rd->rd_tableam->scan_rescan(scan, key, true,
1012 : allow_strat, allow_sync,
1013 : allow_pagemode);
1014 30 : }
1015 :
1016 : /*
1017 : * Return next tuple from `scan`, store in slot.
1018 : */
1019 : static inline bool
1020 94737440 : table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
1021 : {
1022 94737440 : slot->tts_tableOid = RelationGetRelid(sscan->rs_rd);
1023 :
1024 : /* We don't expect actual scans using NoMovementScanDirection */
1025 : Assert(direction == ForwardScanDirection ||
1026 : direction == BackwardScanDirection);
1027 :
1028 : /*
1029 : * We don't expect direct calls to table_scan_getnextslot with valid
1030 : * CheckXidAlive for catalog or regular tables. See detailed comments in
1031 : * xact.c where these variables are declared.
1032 : */
1033 94737440 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
1034 0 : elog(ERROR, "unexpected table_scan_getnextslot call during logical decoding");
1035 :
1036 94737440 : return sscan->rs_rd->rd_tableam->scan_getnextslot(sscan, direction, slot);
1037 : }
1038 :
1039 : /* ----------------------------------------------------------------------------
1040 : * TID Range scanning related functions.
1041 : * ----------------------------------------------------------------------------
1042 : */
1043 :
1044 : /*
1045 : * table_beginscan_tidrange is the entry point for setting up a TableScanDesc
1046 : * for a TID range scan.
1047 : */
1048 : static inline TableScanDesc
1049 1854 : table_beginscan_tidrange(Relation rel, Snapshot snapshot,
1050 : ItemPointer mintid,
1051 : ItemPointer maxtid)
1052 : {
1053 : TableScanDesc sscan;
1054 1854 : uint32 flags = SO_TYPE_TIDRANGESCAN | SO_ALLOW_PAGEMODE;
1055 :
1056 1854 : sscan = rel->rd_tableam->scan_begin(rel, snapshot, 0, NULL, NULL, flags);
1057 :
1058 : /* Set the range of TIDs to scan */
1059 1854 : sscan->rs_rd->rd_tableam->scan_set_tidrange(sscan, mintid, maxtid);
1060 :
1061 1854 : return sscan;
1062 : }
1063 :
1064 : /*
1065 : * table_rescan_tidrange resets the scan position and sets the minimum and
1066 : * maximum TID range to scan for a TableScanDesc created by
1067 : * table_beginscan_tidrange.
1068 : */
1069 : static inline void
1070 66 : table_rescan_tidrange(TableScanDesc sscan, ItemPointer mintid,
1071 : ItemPointer maxtid)
1072 : {
1073 : /* Ensure table_beginscan_tidrange() was used. */
1074 : Assert((sscan->rs_flags & SO_TYPE_TIDRANGESCAN) != 0);
1075 :
1076 66 : sscan->rs_rd->rd_tableam->scan_rescan(sscan, NULL, false, false, false, false);
1077 66 : sscan->rs_rd->rd_tableam->scan_set_tidrange(sscan, mintid, maxtid);
1078 66 : }
1079 :
1080 : /*
1081 : * Fetch the next tuple from `sscan` for a TID range scan created by
1082 : * table_beginscan_tidrange(). Stores the tuple in `slot` and returns true,
1083 : * or returns false if no more tuples exist in the range.
1084 : */
1085 : static inline bool
1086 8602 : table_scan_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
1087 : TupleTableSlot *slot)
1088 : {
1089 : /* Ensure table_beginscan_tidrange() was used. */
1090 : Assert((sscan->rs_flags & SO_TYPE_TIDRANGESCAN) != 0);
1091 :
1092 : /* We don't expect actual scans using NoMovementScanDirection */
1093 : Assert(direction == ForwardScanDirection ||
1094 : direction == BackwardScanDirection);
1095 :
1096 8602 : return sscan->rs_rd->rd_tableam->scan_getnextslot_tidrange(sscan,
1097 : direction,
1098 : slot);
1099 : }
1100 :
1101 :
1102 : /* ----------------------------------------------------------------------------
1103 : * Parallel table scan related functions.
1104 : * ----------------------------------------------------------------------------
1105 : */
1106 :
1107 : /*
1108 : * Estimate the size of shared memory needed for a parallel scan of this
1109 : * relation.
1110 : */
1111 : extern Size table_parallelscan_estimate(Relation rel, Snapshot snapshot);
1112 :
1113 : /*
1114 : * Initialize ParallelTableScanDesc for a parallel scan of this
1115 : * relation. `pscan` needs to be sized according to parallelscan_estimate()
1116 : * for the same relation. Call this just once in the leader process; then,
1117 : * individual workers attach via table_beginscan_parallel.
1118 : */
1119 : extern void table_parallelscan_initialize(Relation rel,
1120 : ParallelTableScanDesc pscan,
1121 : Snapshot snapshot);
1122 :
1123 : /*
1124 : * Begin a parallel scan. `pscan` needs to have been initialized with
1125 : * table_parallelscan_initialize(), for the same relation. The initialization
1126 : * does not need to have happened in this backend.
1127 : *
1128 : * Caller must hold a suitable lock on the relation.
1129 : */
1130 : extern TableScanDesc table_beginscan_parallel(Relation relation,
1131 : ParallelTableScanDesc pscan);
1132 :
1133 : /*
1134 : * Restart a parallel scan. Call this in the leader process. Caller is
1135 : * responsible for making sure that all workers have finished the scan
1136 : * beforehand.
1137 : */
1138 : static inline void
1139 228 : table_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
1140 : {
1141 228 : rel->rd_tableam->parallelscan_reinitialize(rel, pscan);
1142 228 : }
1143 :
1144 :
1145 : /* ----------------------------------------------------------------------------
1146 : * Index scan related functions.
1147 : * ----------------------------------------------------------------------------
1148 : */
1149 :
1150 : /*
1151 : * Prepare to fetch tuples from the relation, as needed when fetching tuples
1152 : * for an index scan.
1153 : *
1154 : * Tuples for an index scan can then be fetched via table_index_fetch_tuple().
1155 : */
1156 : static inline IndexFetchTableData *
1157 26898376 : table_index_fetch_begin(Relation rel)
1158 : {
1159 26898376 : return rel->rd_tableam->index_fetch_begin(rel);
1160 : }
1161 :
1162 : /*
1163 : * Reset index fetch. Typically this will release cross index fetch resources
1164 : * held in IndexFetchTableData.
1165 : */
1166 : static inline void
1167 23136770 : table_index_fetch_reset(struct IndexFetchTableData *scan)
1168 : {
1169 23136770 : scan->rel->rd_tableam->index_fetch_reset(scan);
1170 23136770 : }
1171 :
1172 : /*
1173 : * Release resources and deallocate index fetch.
1174 : */
1175 : static inline void
1176 26896576 : table_index_fetch_end(struct IndexFetchTableData *scan)
1177 : {
1178 26896576 : scan->rel->rd_tableam->index_fetch_end(scan);
1179 26896576 : }
1180 :
1181 : /*
1182 : * Fetches, as part of an index scan, tuple at `tid` into `slot`, after doing
1183 : * a visibility test according to `snapshot`. If a tuple was found and passed
1184 : * the visibility test, returns true, false otherwise. Note that *tid may be
1185 : * modified when we return true (see later remarks on multiple row versions
1186 : * reachable via a single index entry).
1187 : *
1188 : * *call_again needs to be false on the first call to table_index_fetch_tuple() for
1189 : * a tid. If there potentially is another tuple matching the tid, *call_again
1190 : * will be set to true, signaling that table_index_fetch_tuple() should be called
1191 : * again for the same tid.
1192 : *
1193 : * *all_dead, if all_dead is not NULL, will be set to true by
1194 : * table_index_fetch_tuple() iff it is guaranteed that no backend needs to see
1195 : * that tuple. Index AMs can use that to avoid returning that tid in future
1196 : * searches.
1197 : *
1198 : * The difference between this function and table_tuple_fetch_row_version()
1199 : * is that this function returns the currently visible version of a row if
1200 : * the AM supports storing multiple row versions reachable via a single index
1201 : * entry (like heap's HOT). Whereas table_tuple_fetch_row_version() only
1202 : * evaluates the tuple exactly at `tid`. Outside of index entry ->table tuple
1203 : * lookups, table_tuple_fetch_row_version() is what's usually needed.
1204 : */
1205 : static inline bool
1206 38342550 : table_index_fetch_tuple(struct IndexFetchTableData *scan,
1207 : ItemPointer tid,
1208 : Snapshot snapshot,
1209 : TupleTableSlot *slot,
1210 : bool *call_again, bool *all_dead)
1211 : {
1212 : /*
1213 : * We don't expect direct calls to table_index_fetch_tuple with valid
1214 : * CheckXidAlive for catalog or regular tables. See detailed comments in
1215 : * xact.c where these variables are declared.
1216 : */
1217 38342550 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
1218 0 : elog(ERROR, "unexpected table_index_fetch_tuple call during logical decoding");
1219 :
1220 38342550 : return scan->rel->rd_tableam->index_fetch_tuple(scan, tid, snapshot,
1221 : slot, call_again,
1222 : all_dead);
1223 : }
1224 :
1225 : /*
1226 : * This is a convenience wrapper around table_index_fetch_tuple() which
1227 : * returns whether there are table tuple items corresponding to an index
1228 : * entry. This likely is only useful to verify if there's a conflict in a
1229 : * unique index.
1230 : */
1231 : extern bool table_index_fetch_tuple_check(Relation rel,
1232 : ItemPointer tid,
1233 : Snapshot snapshot,
1234 : bool *all_dead);
1235 :
1236 :
1237 : /* ------------------------------------------------------------------------
1238 : * Functions for non-modifying operations on individual tuples
1239 : * ------------------------------------------------------------------------
1240 : */
1241 :
1242 :
1243 : /*
1244 : * Fetch tuple at `tid` into `slot`, after doing a visibility test according to
1245 : * `snapshot`. If a tuple was found and passed the visibility test, returns
1246 : * true, false otherwise.
1247 : *
1248 : * See table_index_fetch_tuple's comment about what the difference between
1249 : * these functions is. It is correct to use this function outside of index
1250 : * entry->table tuple lookups.
1251 : */
1252 : static inline bool
1253 355246 : table_tuple_fetch_row_version(Relation rel,
1254 : ItemPointer tid,
1255 : Snapshot snapshot,
1256 : TupleTableSlot *slot)
1257 : {
1258 : /*
1259 : * We don't expect direct calls to table_tuple_fetch_row_version with
1260 : * valid CheckXidAlive for catalog or regular tables. See detailed
1261 : * comments in xact.c where these variables are declared.
1262 : */
1263 355246 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
1264 0 : elog(ERROR, "unexpected table_tuple_fetch_row_version call during logical decoding");
1265 :
1266 355246 : return rel->rd_tableam->tuple_fetch_row_version(rel, tid, snapshot, slot);
1267 : }
1268 :
1269 : /*
1270 : * Verify that `tid` is a potentially valid tuple identifier. That doesn't
1271 : * mean that the pointed to row needs to exist or be visible, but that
1272 : * attempting to fetch the row (e.g. with table_tuple_get_latest_tid() or
1273 : * table_tuple_fetch_row_version()) should not error out if called with that
1274 : * tid.
1275 : *
1276 : * `scan` needs to have been started via table_beginscan().
1277 : */
1278 : static inline bool
1279 454 : table_tuple_tid_valid(TableScanDesc scan, ItemPointer tid)
1280 : {
1281 454 : return scan->rs_rd->rd_tableam->tuple_tid_valid(scan, tid);
1282 : }
1283 :
1284 : /*
1285 : * Return the latest version of the tuple at `tid`, by updating `tid` to
1286 : * point at the newest version.
1287 : */
1288 : extern void table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid);
1289 :
1290 : /*
1291 : * Return true iff tuple in slot satisfies the snapshot.
1292 : *
1293 : * This assumes the slot's tuple is valid, and of the appropriate type for the
1294 : * AM.
1295 : *
1296 : * Some AMs might modify the data underlying the tuple as a side-effect. If so
1297 : * they ought to mark the relevant buffer dirty.
1298 : */
1299 : static inline bool
1300 239116 : table_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot,
1301 : Snapshot snapshot)
1302 : {
1303 239116 : return rel->rd_tableam->tuple_satisfies_snapshot(rel, slot, snapshot);
1304 : }
1305 :
1306 : /*
1307 : * Determine which index tuples are safe to delete based on their table TID.
1308 : *
1309 : * Determines which entries from index AM caller's TM_IndexDeleteOp state
1310 : * point to vacuumable table tuples. Entries that are found by tableam to be
1311 : * vacuumable are naturally safe for index AM to delete, and so get directly
1312 : * marked as deletable. See comments above TM_IndexDelete and comments above
1313 : * TM_IndexDeleteOp for full details.
1314 : *
1315 : * Returns a snapshotConflictHorizon transaction ID that caller places in
1316 : * its index deletion WAL record. This might be used during subsequent REDO
1317 : * of the WAL record when in Hot Standby mode -- a recovery conflict for the
1318 : * index deletion operation might be required on the standby.
1319 : */
1320 : static inline TransactionId
1321 11208 : table_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
1322 : {
1323 11208 : return rel->rd_tableam->index_delete_tuples(rel, delstate);
1324 : }
1325 :
1326 :
1327 : /* ----------------------------------------------------------------------------
1328 : * Functions for manipulations of physical tuples.
1329 : * ----------------------------------------------------------------------------
1330 : */
1331 :
1332 : /*
1333 : * Insert a tuple from a slot into table AM routine.
1334 : *
1335 : * The options bitmask allows the caller to specify options that may change the
1336 : * behaviour of the AM. The AM will ignore options that it does not support.
1337 : *
1338 : * If the TABLE_INSERT_SKIP_FSM option is specified, AMs are free to not reuse
1339 : * free space in the relation. This can save some cycles when we know the
1340 : * relation is new and doesn't contain useful amounts of free space.
1341 : * TABLE_INSERT_SKIP_FSM is commonly passed directly to
1342 : * RelationGetBufferForTuple. See that method for more information.
1343 : *
1344 : * TABLE_INSERT_FROZEN should only be specified for inserts into
1345 : * relation storage created during the current subtransaction and when
1346 : * there are no prior snapshots or pre-existing portals open.
1347 : * This causes rows to be frozen, which is an MVCC violation and
1348 : * requires explicit options chosen by user.
1349 : *
1350 : * TABLE_INSERT_NO_LOGICAL force-disables the emitting of logical decoding
1351 : * information for the tuple. This should solely be used during table rewrites
1352 : * where RelationIsLogicallyLogged(relation) is not yet accurate for the new
1353 : * relation.
1354 : *
1355 : * Note that most of these options will be applied when inserting into the
1356 : * heap's TOAST table, too, if the tuple requires any out-of-line data.
1357 : *
1358 : * The BulkInsertState object (if any; bistate can be NULL for default
1359 : * behavior) is also just passed through to RelationGetBufferForTuple. If
1360 : * `bistate` is provided, table_finish_bulk_insert() needs to be called.
1361 : *
1362 : * On return the slot's tts_tid and tts_tableOid are updated to reflect the
1363 : * insertion. But note that any toasting of fields within the slot is NOT
1364 : * reflected in the slots contents.
1365 : */
1366 : static inline void
1367 14775502 : table_tuple_insert(Relation rel, TupleTableSlot *slot, CommandId cid,
1368 : int options, struct BulkInsertStateData *bistate)
1369 : {
1370 14775502 : rel->rd_tableam->tuple_insert(rel, slot, cid, options,
1371 : bistate);
1372 14775466 : }
1373 :
1374 : /*
1375 : * Perform a "speculative insertion". These can be backed out afterwards
1376 : * without aborting the whole transaction. Other sessions can wait for the
1377 : * speculative insertion to be confirmed, turning it into a regular tuple, or
1378 : * aborted, as if it never existed. Speculatively inserted tuples behave as
1379 : * "value locks" of short duration, used to implement INSERT .. ON CONFLICT.
1380 : *
1381 : * A transaction having performed a speculative insertion has to either abort,
1382 : * or finish the speculative insertion with
1383 : * table_tuple_complete_speculative(succeeded = ...).
1384 : */
1385 : static inline void
1386 4140 : table_tuple_insert_speculative(Relation rel, TupleTableSlot *slot,
1387 : CommandId cid, int options,
1388 : struct BulkInsertStateData *bistate,
1389 : uint32 specToken)
1390 : {
1391 4140 : rel->rd_tableam->tuple_insert_speculative(rel, slot, cid, options,
1392 : bistate, specToken);
1393 4140 : }
1394 :
1395 : /*
1396 : * Complete "speculative insertion" started in the same transaction. If
1397 : * succeeded is true, the tuple is fully inserted, if false, it's removed.
1398 : */
1399 : static inline void
1400 4134 : table_tuple_complete_speculative(Relation rel, TupleTableSlot *slot,
1401 : uint32 specToken, bool succeeded)
1402 : {
1403 4134 : rel->rd_tableam->tuple_complete_speculative(rel, slot, specToken,
1404 : succeeded);
1405 4134 : }
1406 :
1407 : /*
1408 : * Insert multiple tuples into a table.
1409 : *
1410 : * This is like table_tuple_insert(), but inserts multiple tuples in one
1411 : * operation. That's often faster than calling table_tuple_insert() in a loop,
1412 : * because e.g. the AM can reduce WAL logging and page locking overhead.
1413 : *
1414 : * Except for taking `nslots` tuples as input, and an array of TupleTableSlots
1415 : * in `slots`, the parameters for table_multi_insert() are the same as for
1416 : * table_tuple_insert().
1417 : *
1418 : * Note: this leaks memory into the current memory context. You can create a
1419 : * temporary context before calling this, if that's a problem.
1420 : */
1421 : static inline void
1422 2442 : table_multi_insert(Relation rel, TupleTableSlot **slots, int nslots,
1423 : CommandId cid, int options, struct BulkInsertStateData *bistate)
1424 : {
1425 2442 : rel->rd_tableam->multi_insert(rel, slots, nslots,
1426 : cid, options, bistate);
1427 2442 : }
1428 :
1429 : /*
1430 : * Delete a tuple.
1431 : *
1432 : * NB: do not call this directly unless prepared to deal with
1433 : * concurrent-update conditions. Use simple_table_tuple_delete instead.
1434 : *
1435 : * Input parameters:
1436 : * relation - table to be modified (caller must hold suitable lock)
1437 : * tid - TID of tuple to be deleted
1438 : * cid - delete command ID (used for visibility test, and stored into
1439 : * cmax if successful)
1440 : * crosscheck - if not InvalidSnapshot, also check tuple against this
1441 : * wait - true if should wait for any conflicting update to commit/abort
1442 : * Output parameters:
1443 : * tmfd - filled in failure cases (see below)
1444 : * changingPart - true iff the tuple is being moved to another partition
1445 : * table due to an update of the partition key. Otherwise, false.
1446 : *
1447 : * Normal, successful return value is TM_Ok, which means we did actually
1448 : * delete it. Failure return codes are TM_SelfModified, TM_Updated, and
1449 : * TM_BeingModified (the last only possible if wait == false).
1450 : *
1451 : * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
1452 : * t_xmax, and, if possible, t_cmax. See comments for struct
1453 : * TM_FailureData for additional info.
1454 : */
1455 : static inline TM_Result
1456 1731864 : table_tuple_delete(Relation rel, ItemPointer tid, CommandId cid,
1457 : Snapshot snapshot, Snapshot crosscheck, bool wait,
1458 : TM_FailureData *tmfd, bool changingPart)
1459 : {
1460 1731864 : return rel->rd_tableam->tuple_delete(rel, tid, cid,
1461 : snapshot, crosscheck,
1462 : wait, tmfd, changingPart);
1463 : }
1464 :
1465 : /*
1466 : * Update a tuple.
1467 : *
1468 : * NB: do not call this directly unless you are prepared to deal with
1469 : * concurrent-update conditions. Use simple_table_tuple_update instead.
1470 : *
1471 : * Input parameters:
1472 : * relation - table to be modified (caller must hold suitable lock)
1473 : * otid - TID of old tuple to be replaced
1474 : * slot - newly constructed tuple data to store
1475 : * cid - update command ID (used for visibility test, and stored into
1476 : * cmax/cmin if successful)
1477 : * crosscheck - if not InvalidSnapshot, also check old tuple against this
1478 : * wait - true if should wait for any conflicting update to commit/abort
1479 : * Output parameters:
1480 : * tmfd - filled in failure cases (see below)
1481 : * lockmode - filled with lock mode acquired on tuple
1482 : * update_indexes - in success cases this is set to true if new index entries
1483 : * are required for this tuple
1484 : *
1485 : * Normal, successful return value is TM_Ok, which means we did actually
1486 : * update it. Failure return codes are TM_SelfModified, TM_Updated, and
1487 : * TM_BeingModified (the last only possible if wait == false).
1488 : *
1489 : * On success, the slot's tts_tid and tts_tableOid are updated to match the new
1490 : * stored tuple; in particular, slot->tts_tid is set to the TID where the
1491 : * new tuple was inserted, and its HEAP_ONLY_TUPLE flag is set iff a HOT
1492 : * update was done. However, any TOAST changes in the new tuple's
1493 : * data are not reflected into *newtup.
1494 : *
1495 : * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
1496 : * t_xmax, and, if possible, t_cmax. See comments for struct TM_FailureData
1497 : * for additional info.
1498 : */
1499 : static inline TM_Result
1500 387146 : table_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot,
1501 : CommandId cid, Snapshot snapshot, Snapshot crosscheck,
1502 : bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode,
1503 : TU_UpdateIndexes *update_indexes)
1504 : {
1505 387146 : return rel->rd_tableam->tuple_update(rel, otid, slot,
1506 : cid, snapshot, crosscheck,
1507 : wait, tmfd,
1508 : lockmode, update_indexes);
1509 : }
1510 :
1511 : /*
1512 : * Lock a tuple in the specified mode.
1513 : *
1514 : * Input parameters:
1515 : * relation: relation containing tuple (caller must hold suitable lock)
1516 : * tid: TID of tuple to lock (updated if an update chain was followed)
1517 : * snapshot: snapshot to use for visibility determinations
1518 : * cid: current command ID (used for visibility test, and stored into
1519 : * tuple's cmax if lock is successful)
1520 : * mode: lock mode desired
1521 : * wait_policy: what to do if tuple lock is not available
1522 : * flags:
1523 : * If TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS, follow the update chain to
1524 : * also lock descendant tuples if lock modes don't conflict.
1525 : * If TUPLE_LOCK_FLAG_FIND_LAST_VERSION, follow the update chain and lock
1526 : * latest version.
1527 : *
1528 : * Output parameters:
1529 : * *slot: contains the target tuple
1530 : * *tmfd: filled in failure cases (see below)
1531 : *
1532 : * Function result may be:
1533 : * TM_Ok: lock was successfully acquired
1534 : * TM_Invisible: lock failed because tuple was never visible to us
1535 : * TM_SelfModified: lock failed because tuple updated by self
1536 : * TM_Updated: lock failed because tuple updated by other xact
1537 : * TM_Deleted: lock failed because tuple deleted by other xact
1538 : * TM_WouldBlock: lock couldn't be acquired and wait_policy is skip
1539 : *
1540 : * In the failure cases other than TM_Invisible and TM_Deleted, the routine
1541 : * fills *tmfd with the tuple's t_ctid, t_xmax, and, if possible, t_cmax.
1542 : * Additionally, in both success and failure cases, tmfd->traversed is set if
1543 : * an update chain was followed. See comments for struct TM_FailureData for
1544 : * additional info.
1545 : */
1546 : static inline TM_Result
1547 169664 : table_tuple_lock(Relation rel, ItemPointer tid, Snapshot snapshot,
1548 : TupleTableSlot *slot, CommandId cid, LockTupleMode mode,
1549 : LockWaitPolicy wait_policy, uint8 flags,
1550 : TM_FailureData *tmfd)
1551 : {
1552 169664 : return rel->rd_tableam->tuple_lock(rel, tid, snapshot, slot,
1553 : cid, mode, wait_policy,
1554 : flags, tmfd);
1555 : }
1556 :
1557 : /*
1558 : * Perform operations necessary to complete insertions made via
1559 : * tuple_insert and multi_insert with a BulkInsertState specified.
1560 : */
1561 : static inline void
1562 4178 : table_finish_bulk_insert(Relation rel, int options)
1563 : {
1564 : /* optional callback */
1565 4178 : if (rel->rd_tableam && rel->rd_tableam->finish_bulk_insert)
1566 0 : rel->rd_tableam->finish_bulk_insert(rel, options);
1567 4178 : }
1568 :
1569 :
1570 : /* ------------------------------------------------------------------------
1571 : * DDL related functionality.
1572 : * ------------------------------------------------------------------------
1573 : */
1574 :
1575 : /*
1576 : * Create storage for `rel` in `newrlocator`, with persistence set to
1577 : * `persistence`.
1578 : *
1579 : * This is used both during relation creation and various DDL operations to
1580 : * create new rel storage that can be filled from scratch. When creating
1581 : * new storage for an existing relfilelocator, this should be called before the
1582 : * relcache entry has been updated.
1583 : *
1584 : * *freezeXid, *minmulti are set to the xid / multixact horizon for the table
1585 : * that pg_class.{relfrozenxid, relminmxid} have to be set to.
1586 : */
1587 : static inline void
1588 64706 : table_relation_set_new_filelocator(Relation rel,
1589 : const RelFileLocator *newrlocator,
1590 : char persistence,
1591 : TransactionId *freezeXid,
1592 : MultiXactId *minmulti)
1593 : {
1594 64706 : rel->rd_tableam->relation_set_new_filelocator(rel, newrlocator,
1595 : persistence, freezeXid,
1596 : minmulti);
1597 64706 : }
1598 :
1599 : /*
1600 : * Remove all table contents from `rel`, in a non-transactional manner.
1601 : * Non-transactional meaning that there's no need to support rollbacks. This
1602 : * commonly only is used to perform truncations for relation storage created in
1603 : * the current transaction.
1604 : */
1605 : static inline void
1606 624 : table_relation_nontransactional_truncate(Relation rel)
1607 : {
1608 624 : rel->rd_tableam->relation_nontransactional_truncate(rel);
1609 624 : }
1610 :
1611 : /*
1612 : * Copy data from `rel` into the new relfilelocator `newrlocator`. The new
1613 : * relfilelocator may not have storage associated before this function is
1614 : * called. This is only supposed to be used for low level operations like
1615 : * changing a relation's tablespace.
1616 : */
1617 : static inline void
1618 98 : table_relation_copy_data(Relation rel, const RelFileLocator *newrlocator)
1619 : {
1620 98 : rel->rd_tableam->relation_copy_data(rel, newrlocator);
1621 98 : }
1622 :
1623 : /*
1624 : * Copy data from `OldTable` into `NewTable`, as part of a CLUSTER or VACUUM
1625 : * FULL.
1626 : *
1627 : * Additional Input parameters:
1628 : * - use_sort - if true, the table contents are sorted appropriate for
1629 : * `OldIndex`; if false and OldIndex is not InvalidOid, the data is copied
1630 : * in that index's order; if false and OldIndex is InvalidOid, no sorting is
1631 : * performed
1632 : * - OldIndex - see use_sort
1633 : * - OldestXmin - computed by vacuum_get_cutoffs(), even when
1634 : * not needed for the relation's AM
1635 : * - *xid_cutoff - ditto
1636 : * - *multi_cutoff - ditto
1637 : *
1638 : * Output parameters:
1639 : * - *xid_cutoff - rel's new relfrozenxid value, may be invalid
1640 : * - *multi_cutoff - rel's new relminmxid value, may be invalid
1641 : * - *tups_vacuumed - stats, for logging, if appropriate for AM
1642 : * - *tups_recently_dead - stats, for logging, if appropriate for AM
1643 : */
1644 : static inline void
1645 570 : table_relation_copy_for_cluster(Relation OldTable, Relation NewTable,
1646 : Relation OldIndex,
1647 : bool use_sort,
1648 : TransactionId OldestXmin,
1649 : TransactionId *xid_cutoff,
1650 : MultiXactId *multi_cutoff,
1651 : double *num_tuples,
1652 : double *tups_vacuumed,
1653 : double *tups_recently_dead)
1654 : {
1655 570 : OldTable->rd_tableam->relation_copy_for_cluster(OldTable, NewTable, OldIndex,
1656 : use_sort, OldestXmin,
1657 : xid_cutoff, multi_cutoff,
1658 : num_tuples, tups_vacuumed,
1659 : tups_recently_dead);
1660 570 : }
1661 :
1662 : /*
1663 : * Perform VACUUM on the relation. The VACUUM can be triggered by a user or by
1664 : * autovacuum. The specific actions performed by the AM will depend heavily on
1665 : * the individual AM.
1666 : *
1667 : * On entry a transaction needs to already been established, and the
1668 : * table is locked with a ShareUpdateExclusive lock.
1669 : *
1670 : * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through this
1671 : * routine, even if (for ANALYZE) it is part of the same VACUUM command.
1672 : */
1673 : static inline void
1674 222540 : table_relation_vacuum(Relation rel, const VacuumParams params,
1675 : BufferAccessStrategy bstrategy)
1676 : {
1677 222540 : rel->rd_tableam->relation_vacuum(rel, params, bstrategy);
1678 222536 : }
1679 :
1680 : /*
1681 : * Prepare to analyze the next block in the read stream. The scan needs to
1682 : * have been started with table_beginscan_analyze(). Note that this routine
1683 : * might acquire resources like locks that are held until
1684 : * table_scan_analyze_next_tuple() returns false.
1685 : *
1686 : * Returns false if block is unsuitable for sampling, true otherwise.
1687 : */
1688 : static inline bool
1689 152142 : table_scan_analyze_next_block(TableScanDesc scan, ReadStream *stream)
1690 : {
1691 152142 : return scan->rs_rd->rd_tableam->scan_analyze_next_block(scan, stream);
1692 : }
1693 :
1694 : /*
1695 : * Iterate over tuples in the block selected with
1696 : * table_scan_analyze_next_block() (which needs to have returned true, and
1697 : * this routine may not have returned false for the same block before). If a
1698 : * tuple that's suitable for sampling is found, true is returned and a tuple
1699 : * is stored in `slot`.
1700 : *
1701 : * *liverows and *deadrows are incremented according to the encountered
1702 : * tuples.
1703 : */
1704 : static inline bool
1705 10399442 : table_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin,
1706 : double *liverows, double *deadrows,
1707 : TupleTableSlot *slot)
1708 : {
1709 10399442 : return scan->rs_rd->rd_tableam->scan_analyze_next_tuple(scan, OldestXmin,
1710 : liverows, deadrows,
1711 : slot);
1712 : }
1713 :
1714 : /*
1715 : * table_index_build_scan - scan the table to find tuples to be indexed
1716 : *
1717 : * This is called back from an access-method-specific index build procedure
1718 : * after the AM has done whatever setup it needs. The parent table relation
1719 : * is scanned to find tuples that should be entered into the index. Each
1720 : * such tuple is passed to the AM's callback routine, which does the right
1721 : * things to add it to the new index. After we return, the AM's index
1722 : * build procedure does whatever cleanup it needs.
1723 : *
1724 : * The total count of live tuples is returned. This is for updating pg_class
1725 : * statistics. (It's annoying not to be able to do that here, but we want to
1726 : * merge that update with others; see index_update_stats.) Note that the
1727 : * index AM itself must keep track of the number of index tuples; we don't do
1728 : * so here because the AM might reject some of the tuples for its own reasons,
1729 : * such as being unable to store NULLs.
1730 : *
1731 : * If 'progress', the PROGRESS_SCAN_BLOCKS_TOTAL counter is updated when
1732 : * starting the scan, and PROGRESS_SCAN_BLOCKS_DONE is updated as we go along.
1733 : *
1734 : * A side effect is to set indexInfo->ii_BrokenHotChain to true if we detect
1735 : * any potentially broken HOT chains. Currently, we set this if there are any
1736 : * RECENTLY_DEAD or DELETE_IN_PROGRESS entries in a HOT chain, without trying
1737 : * very hard to detect whether they're really incompatible with the chain tip.
1738 : * This only really makes sense for heap AM, it might need to be generalized
1739 : * for other AMs later.
1740 : */
1741 : static inline double
1742 53708 : table_index_build_scan(Relation table_rel,
1743 : Relation index_rel,
1744 : struct IndexInfo *index_info,
1745 : bool allow_sync,
1746 : bool progress,
1747 : IndexBuildCallback callback,
1748 : void *callback_state,
1749 : TableScanDesc scan)
1750 : {
1751 53708 : return table_rel->rd_tableam->index_build_range_scan(table_rel,
1752 : index_rel,
1753 : index_info,
1754 : allow_sync,
1755 : false,
1756 : progress,
1757 : 0,
1758 : InvalidBlockNumber,
1759 : callback,
1760 : callback_state,
1761 : scan);
1762 : }
1763 :
1764 : /*
1765 : * As table_index_build_scan(), except that instead of scanning the complete
1766 : * table, only the given number of blocks are scanned. Scan to end-of-rel can
1767 : * be signaled by passing InvalidBlockNumber as numblocks. Note that
1768 : * restricting the range to scan cannot be done when requesting syncscan.
1769 : *
1770 : * When "anyvisible" mode is requested, all tuples visible to any transaction
1771 : * are indexed and counted as live, including those inserted or deleted by
1772 : * transactions that are still in progress.
1773 : */
1774 : static inline double
1775 2938 : table_index_build_range_scan(Relation table_rel,
1776 : Relation index_rel,
1777 : struct IndexInfo *index_info,
1778 : bool allow_sync,
1779 : bool anyvisible,
1780 : bool progress,
1781 : BlockNumber start_blockno,
1782 : BlockNumber numblocks,
1783 : IndexBuildCallback callback,
1784 : void *callback_state,
1785 : TableScanDesc scan)
1786 : {
1787 2938 : return table_rel->rd_tableam->index_build_range_scan(table_rel,
1788 : index_rel,
1789 : index_info,
1790 : allow_sync,
1791 : anyvisible,
1792 : progress,
1793 : start_blockno,
1794 : numblocks,
1795 : callback,
1796 : callback_state,
1797 : scan);
1798 : }
1799 :
1800 : /*
1801 : * table_index_validate_scan - second table scan for concurrent index build
1802 : *
1803 : * See validate_index() for an explanation.
1804 : */
1805 : static inline void
1806 668 : table_index_validate_scan(Relation table_rel,
1807 : Relation index_rel,
1808 : struct IndexInfo *index_info,
1809 : Snapshot snapshot,
1810 : struct ValidateIndexState *state)
1811 : {
1812 668 : table_rel->rd_tableam->index_validate_scan(table_rel,
1813 : index_rel,
1814 : index_info,
1815 : snapshot,
1816 : state);
1817 668 : }
1818 :
1819 :
1820 : /* ----------------------------------------------------------------------------
1821 : * Miscellaneous functionality
1822 : * ----------------------------------------------------------------------------
1823 : */
1824 :
1825 : /*
1826 : * Return the current size of `rel` in bytes. If `forkNumber` is
1827 : * InvalidForkNumber, return the relation's overall size, otherwise the size
1828 : * for the indicated fork.
1829 : *
1830 : * Note that the overall size might not be the equivalent of the sum of sizes
1831 : * for the individual forks for some AMs, e.g. because the AMs storage does
1832 : * not neatly map onto the builtin types of forks.
1833 : */
1834 : static inline uint64
1835 2817730 : table_relation_size(Relation rel, ForkNumber forkNumber)
1836 : {
1837 2817730 : return rel->rd_tableam->relation_size(rel, forkNumber);
1838 : }
1839 :
1840 : /*
1841 : * table_relation_needs_toast_table - does this relation need a toast table?
1842 : */
1843 : static inline bool
1844 44498 : table_relation_needs_toast_table(Relation rel)
1845 : {
1846 44498 : return rel->rd_tableam->relation_needs_toast_table(rel);
1847 : }
1848 :
1849 : /*
1850 : * Return the OID of the AM that should be used to implement the TOAST table
1851 : * for this relation.
1852 : */
1853 : static inline Oid
1854 17588 : table_relation_toast_am(Relation rel)
1855 : {
1856 17588 : return rel->rd_tableam->relation_toast_am(rel);
1857 : }
1858 :
1859 : /*
1860 : * Fetch all or part of a TOAST value from a TOAST table.
1861 : *
1862 : * If this AM is never used to implement a TOAST table, then this callback
1863 : * is not needed. But, if toasted values are ever stored in a table of this
1864 : * type, then you will need this callback.
1865 : *
1866 : * toastrel is the relation in which the toasted value is stored.
1867 : *
1868 : * valueid identifies which toast value is to be fetched. For the heap,
1869 : * this corresponds to the values stored in the chunk_id column.
1870 : *
1871 : * attrsize is the total size of the toast value to be fetched.
1872 : *
1873 : * sliceoffset is the offset within the toast value of the first byte that
1874 : * should be fetched.
1875 : *
1876 : * slicelength is the number of bytes from the toast value that should be
1877 : * fetched.
1878 : *
1879 : * result is caller-allocated space into which the fetched bytes should be
1880 : * stored.
1881 : */
1882 : static inline void
1883 23324 : table_relation_fetch_toast_slice(Relation toastrel, Oid valueid,
1884 : int32 attrsize, int32 sliceoffset,
1885 : int32 slicelength, struct varlena *result)
1886 : {
1887 23324 : toastrel->rd_tableam->relation_fetch_toast_slice(toastrel, valueid,
1888 : attrsize,
1889 : sliceoffset, slicelength,
1890 : result);
1891 23324 : }
1892 :
1893 :
1894 : /* ----------------------------------------------------------------------------
1895 : * Planner related functionality
1896 : * ----------------------------------------------------------------------------
1897 : */
1898 :
1899 : /*
1900 : * Estimate the current size of the relation, as an AM specific workhorse for
1901 : * estimate_rel_size(). Look there for an explanation of the parameters.
1902 : */
1903 : static inline void
1904 448306 : table_relation_estimate_size(Relation rel, int32 *attr_widths,
1905 : BlockNumber *pages, double *tuples,
1906 : double *allvisfrac)
1907 : {
1908 448306 : rel->rd_tableam->relation_estimate_size(rel, attr_widths, pages, tuples,
1909 : allvisfrac);
1910 448306 : }
1911 :
1912 :
1913 : /* ----------------------------------------------------------------------------
1914 : * Executor related functionality
1915 : * ----------------------------------------------------------------------------
1916 : */
1917 :
1918 : /*
1919 : * Fetch / check / return tuples as part of a bitmap table scan. `scan` needs
1920 : * to have been started via table_beginscan_bm(). Fetch the next tuple of a
1921 : * bitmap table scan into `slot` and return true if a visible tuple was found,
1922 : * false otherwise.
1923 : *
1924 : * `recheck` is set by the table AM to indicate whether or not the tuple in
1925 : * `slot` should be rechecked. Tuples from lossy pages will always need to be
1926 : * rechecked, but some non-lossy pages' tuples may also require recheck.
1927 : *
1928 : * `lossy_pages` is incremented if the block's representation in the bitmap is
1929 : * lossy; otherwise, `exact_pages` is incremented.
1930 : */
1931 : static inline bool
1932 6677738 : table_scan_bitmap_next_tuple(TableScanDesc scan,
1933 : TupleTableSlot *slot,
1934 : bool *recheck,
1935 : uint64 *lossy_pages,
1936 : uint64 *exact_pages)
1937 : {
1938 : /*
1939 : * We don't expect direct calls to table_scan_bitmap_next_tuple with valid
1940 : * CheckXidAlive for catalog or regular tables. See detailed comments in
1941 : * xact.c where these variables are declared.
1942 : */
1943 6677738 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
1944 0 : elog(ERROR, "unexpected table_scan_bitmap_next_tuple call during logical decoding");
1945 :
1946 6677738 : return scan->rs_rd->rd_tableam->scan_bitmap_next_tuple(scan,
1947 : slot,
1948 : recheck,
1949 : lossy_pages,
1950 : exact_pages);
1951 : }
1952 :
1953 : /*
1954 : * Prepare to fetch tuples from the next block in a sample scan. Returns false
1955 : * if the sample scan is finished, true otherwise. `scan` needs to have been
1956 : * started via table_beginscan_sampling().
1957 : *
1958 : * This will call the TsmRoutine's NextSampleBlock() callback if necessary
1959 : * (i.e. NextSampleBlock is not NULL), or perform a sequential scan over the
1960 : * underlying relation.
1961 : */
1962 : static inline bool
1963 12912 : table_scan_sample_next_block(TableScanDesc scan,
1964 : struct SampleScanState *scanstate)
1965 : {
1966 : /*
1967 : * We don't expect direct calls to table_scan_sample_next_block with valid
1968 : * CheckXidAlive for catalog or regular tables. See detailed comments in
1969 : * xact.c where these variables are declared.
1970 : */
1971 12912 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
1972 0 : elog(ERROR, "unexpected table_scan_sample_next_block call during logical decoding");
1973 12912 : return scan->rs_rd->rd_tableam->scan_sample_next_block(scan, scanstate);
1974 : }
1975 :
1976 : /*
1977 : * Fetch the next sample tuple into `slot` and return true if a visible tuple
1978 : * was found, false otherwise. table_scan_sample_next_block() needs to
1979 : * previously have selected a block (i.e. returned true), and no previous
1980 : * table_scan_sample_next_tuple() for the same block may have returned false.
1981 : *
1982 : * This will call the TsmRoutine's NextSampleTuple() callback.
1983 : */
1984 : static inline bool
1985 253896 : table_scan_sample_next_tuple(TableScanDesc scan,
1986 : struct SampleScanState *scanstate,
1987 : TupleTableSlot *slot)
1988 : {
1989 : /*
1990 : * We don't expect direct calls to table_scan_sample_next_tuple with valid
1991 : * CheckXidAlive for catalog or regular tables. See detailed comments in
1992 : * xact.c where these variables are declared.
1993 : */
1994 253896 : if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
1995 0 : elog(ERROR, "unexpected table_scan_sample_next_tuple call during logical decoding");
1996 253896 : return scan->rs_rd->rd_tableam->scan_sample_next_tuple(scan, scanstate,
1997 : slot);
1998 : }
1999 :
2000 :
2001 : /* ----------------------------------------------------------------------------
2002 : * Functions to make modifications a bit simpler.
2003 : * ----------------------------------------------------------------------------
2004 : */
2005 :
2006 : extern void simple_table_tuple_insert(Relation rel, TupleTableSlot *slot);
2007 : extern void simple_table_tuple_delete(Relation rel, ItemPointer tid,
2008 : Snapshot snapshot);
2009 : extern void simple_table_tuple_update(Relation rel, ItemPointer otid,
2010 : TupleTableSlot *slot, Snapshot snapshot,
2011 : TU_UpdateIndexes *update_indexes);
2012 :
2013 :
2014 : /* ----------------------------------------------------------------------------
2015 : * Helper functions to implement parallel scans for block oriented AMs.
2016 : * ----------------------------------------------------------------------------
2017 : */
2018 :
2019 : extern Size table_block_parallelscan_estimate(Relation rel);
2020 : extern Size table_block_parallelscan_initialize(Relation rel,
2021 : ParallelTableScanDesc pscan);
2022 : extern void table_block_parallelscan_reinitialize(Relation rel,
2023 : ParallelTableScanDesc pscan);
2024 : extern BlockNumber table_block_parallelscan_nextpage(Relation rel,
2025 : ParallelBlockTableScanWorker pbscanwork,
2026 : ParallelBlockTableScanDesc pbscan);
2027 : extern void table_block_parallelscan_startblock_init(Relation rel,
2028 : ParallelBlockTableScanWorker pbscanwork,
2029 : ParallelBlockTableScanDesc pbscan);
2030 :
2031 :
2032 : /* ----------------------------------------------------------------------------
2033 : * Helper functions to implement relation sizing for block oriented AMs.
2034 : * ----------------------------------------------------------------------------
2035 : */
2036 :
2037 : extern uint64 table_block_relation_size(Relation rel, ForkNumber forkNumber);
2038 : extern void table_block_relation_estimate_size(Relation rel,
2039 : int32 *attr_widths,
2040 : BlockNumber *pages,
2041 : double *tuples,
2042 : double *allvisfrac,
2043 : Size overhead_bytes_per_tuple,
2044 : Size usable_bytes_per_page);
2045 :
2046 : /* ----------------------------------------------------------------------------
2047 : * Functions in tableamapi.c
2048 : * ----------------------------------------------------------------------------
2049 : */
2050 :
2051 : extern const TableAmRoutine *GetTableAmRoutine(Oid amhandler);
2052 :
2053 : /* ----------------------------------------------------------------------------
2054 : * Functions in heapam_handler.c
2055 : * ----------------------------------------------------------------------------
2056 : */
2057 :
2058 : extern const TableAmRoutine *GetHeapamTableAmRoutine(void);
2059 :
2060 : #endif /* TABLEAM_H */
|