LCOV - code coverage report
Current view: top level - src/include/access - htup_details.h (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 153 158 96.8 %
Date: 2026-02-13 19:18:24 Functions: 53 54 98.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * htup_details.h
       4             :  *    POSTGRES heap tuple header definitions.
       5             :  *
       6             :  *
       7             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
       8             :  * Portions Copyright (c) 1994, Regents of the University of California
       9             :  *
      10             :  * src/include/access/htup_details.h
      11             :  *
      12             :  *-------------------------------------------------------------------------
      13             :  */
      14             : #ifndef HTUP_DETAILS_H
      15             : #define HTUP_DETAILS_H
      16             : 
      17             : #include "access/htup.h"
      18             : #include "access/transam.h"
      19             : #include "access/tupdesc.h"
      20             : #include "access/tupmacs.h"
      21             : #include "storage/bufpage.h"
      22             : #include "varatt.h"
      23             : 
      24             : /*
      25             :  * MaxTupleAttributeNumber limits the number of (user) columns in a tuple.
      26             :  * The key limit on this value is that the size of the fixed overhead for
      27             :  * a tuple, plus the size of the null-values bitmap (at 1 bit per column),
      28             :  * plus MAXALIGN alignment, must fit into t_hoff which is uint8.  On most
      29             :  * machines the upper limit without making t_hoff wider would be a little
      30             :  * over 1700.  We use round numbers here and for MaxHeapAttributeNumber
      31             :  * so that alterations in HeapTupleHeaderData layout won't change the
      32             :  * supported max number of columns.
      33             :  */
      34             : #define MaxTupleAttributeNumber 1664    /* 8 * 208 */
      35             : 
      36             : /*
      37             :  * MaxHeapAttributeNumber limits the number of (user) columns in a table.
      38             :  * This should be somewhat less than MaxTupleAttributeNumber.  It must be
      39             :  * at least one less, else we will fail to do UPDATEs on a maximal-width
      40             :  * table (because UPDATE has to form working tuples that include CTID).
      41             :  * In practice we want some additional daylight so that we can gracefully
      42             :  * support operations that add hidden "resjunk" columns, for example
      43             :  * SELECT * FROM wide_table ORDER BY foo, bar, baz.
      44             :  * In any case, depending on column data types you will likely be running
      45             :  * into the disk-block-based limit on overall tuple size if you have more
      46             :  * than a thousand or so columns.  TOAST won't help.
      47             :  */
      48             : #define MaxHeapAttributeNumber  1600    /* 8 * 200 */
      49             : 
      50             : /*
      51             :  * Heap tuple header.  To avoid wasting space, the fields should be
      52             :  * laid out in such a way as to avoid structure padding.
      53             :  *
      54             :  * Datums of composite types (row types) share the same general structure
      55             :  * as on-disk tuples, so that the same routines can be used to build and
      56             :  * examine them.  However the requirements are slightly different: a Datum
      57             :  * does not need any transaction visibility information, and it does need
      58             :  * a length word and some embedded type information.  We can achieve this
      59             :  * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple
      60             :  * with the fields needed in the Datum case.  Typically, all tuples built
      61             :  * in-memory will be initialized with the Datum fields; but when a tuple is
      62             :  * about to be inserted in a table, the transaction fields will be filled,
      63             :  * overwriting the datum fields.
      64             :  *
      65             :  * The overall structure of a heap tuple looks like:
      66             :  *          fixed fields (HeapTupleHeaderData struct)
      67             :  *          nulls bitmap (if HEAP_HASNULL is set in t_infomask)
      68             :  *          alignment padding (as needed to make user data MAXALIGN'd)
      69             :  *          object ID (if HEAP_HASOID_OLD is set in t_infomask, not created
      70             :  *          anymore)
      71             :  *          user data fields
      72             :  *
      73             :  * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three
      74             :  * physical fields.  Xmin and Xmax are always really stored, but Cmin, Cmax
      75             :  * and Xvac share a field.  This works because we know that Cmin and Cmax
      76             :  * are only interesting for the lifetime of the inserting and deleting
      77             :  * transaction respectively.  If a tuple is inserted and deleted in the same
      78             :  * transaction, we store a "combo" command id that can be mapped to the real
      79             :  * cmin and cmax, but only by use of local state within the originating
      80             :  * backend.  See combocid.c for more details.  Meanwhile, Xvac is only set by
      81             :  * old-style VACUUM FULL, which does not have any command sub-structure and so
      82             :  * does not need either Cmin or Cmax.  (This requires that old-style VACUUM
      83             :  * FULL never try to move a tuple whose Cmin or Cmax is still interesting,
      84             :  * ie, an insert-in-progress or delete-in-progress tuple.)
      85             :  *
      86             :  * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid
      87             :  * is initialized with its own TID (location).  If the tuple is ever updated,
      88             :  * its t_ctid is changed to point to the replacement version of the tuple.  Or
      89             :  * if the tuple is moved from one partition to another, due to an update of
      90             :  * the partition key, t_ctid is set to a special value to indicate that
      91             :  * (see ItemPointerSetMovedPartitions).  Thus, a tuple is the latest version
      92             :  * of its row iff XMAX is invalid or
      93             :  * t_ctid points to itself (in which case, if XMAX is valid, the tuple is
      94             :  * either locked or deleted).  One can follow the chain of t_ctid links
      95             :  * to find the newest version of the row, unless it was moved to a different
      96             :  * partition.  Beware however that VACUUM might
      97             :  * erase the pointed-to (newer) tuple before erasing the pointing (older)
      98             :  * tuple.  Hence, when following a t_ctid link, it is necessary to check
      99             :  * to see if the referenced slot is empty or contains an unrelated tuple.
     100             :  * Check that the referenced tuple has XMIN equal to the referencing tuple's
     101             :  * XMAX to verify that it is actually the descendant version and not an
     102             :  * unrelated tuple stored into a slot recently freed by VACUUM.  If either
     103             :  * check fails, one may assume that there is no live descendant version.
     104             :  *
     105             :  * t_ctid is sometimes used to store a speculative insertion token, instead
     106             :  * of a real TID.  A speculative token is set on a tuple that's being
     107             :  * inserted, until the inserter is sure that it wants to go ahead with the
     108             :  * insertion.  Hence a token should only be seen on a tuple with an XMAX
     109             :  * that's still in-progress, or invalid/aborted.  The token is replaced with
     110             :  * the tuple's real TID when the insertion is confirmed.  One should never
     111             :  * see a speculative insertion token while following a chain of t_ctid links,
     112             :  * because they are not used on updates, only insertions.
     113             :  *
     114             :  * Following the fixed header fields, the nulls bitmap is stored (beginning
     115             :  * at t_bits).  The bitmap is *not* stored if t_infomask shows that there
     116             :  * are no nulls in the tuple.  If an OID field is present (as indicated by
     117             :  * t_infomask), then it is stored just before the user data, which begins at
     118             :  * the offset shown by t_hoff.  Note that t_hoff must be a multiple of
     119             :  * MAXALIGN.
     120             :  */
     121             : 
     122             : typedef struct HeapTupleFields
     123             : {
     124             :     TransactionId t_xmin;       /* inserting xact ID */
     125             :     TransactionId t_xmax;       /* deleting or locking xact ID */
     126             : 
     127             :     union
     128             :     {
     129             :         CommandId   t_cid;      /* inserting or deleting command ID, or both */
     130             :         TransactionId t_xvac;   /* old-style VACUUM FULL xact ID */
     131             :     }           t_field3;
     132             : } HeapTupleFields;
     133             : 
     134             : typedef struct DatumTupleFields
     135             : {
     136             :     int32       datum_len_;     /* varlena header (do not touch directly!) */
     137             : 
     138             :     int32       datum_typmod;   /* -1, or identifier of a record type */
     139             : 
     140             :     Oid         datum_typeid;   /* composite type OID, or RECORDOID */
     141             : 
     142             :     /*
     143             :      * datum_typeid cannot be a domain over composite, only plain composite,
     144             :      * even if the datum is meant as a value of a domain-over-composite type.
     145             :      * This is in line with the general principle that CoerceToDomain does not
     146             :      * change the physical representation of the base type value.
     147             :      *
     148             :      * Note: field ordering is chosen with thought that Oid might someday
     149             :      * widen to 64 bits.
     150             :      */
     151             : } DatumTupleFields;
     152             : 
     153             : struct HeapTupleHeaderData
     154             : {
     155             :     union
     156             :     {
     157             :         HeapTupleFields t_heap;
     158             :         DatumTupleFields t_datum;
     159             :     }           t_choice;
     160             : 
     161             :     ItemPointerData t_ctid;     /* current TID of this or newer tuple (or a
     162             :                                  * speculative insertion token) */
     163             : 
     164             :     /* Fields below here must match MinimalTupleData! */
     165             : 
     166             : #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK2 2
     167             :     uint16      t_infomask2;    /* number of attributes + various flags */
     168             : 
     169             : #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK 3
     170             :     uint16      t_infomask;     /* various flag bits, see below */
     171             : 
     172             : #define FIELDNO_HEAPTUPLEHEADERDATA_HOFF 4
     173             :     uint8       t_hoff;         /* sizeof header incl. bitmap, padding */
     174             : 
     175             :     /* ^ - 23 bytes - ^ */
     176             : 
     177             : #define FIELDNO_HEAPTUPLEHEADERDATA_BITS 5
     178             :     bits8       t_bits[FLEXIBLE_ARRAY_MEMBER];  /* bitmap of NULLs */
     179             : 
     180             :     /* MORE DATA FOLLOWS AT END OF STRUCT */
     181             : };
     182             : 
     183             : /* typedef appears in htup.h */
     184             : 
     185             : #define SizeofHeapTupleHeader offsetof(HeapTupleHeaderData, t_bits)
     186             : 
     187             : /*
     188             :  * information stored in t_infomask:
     189             :  */
     190             : #define HEAP_HASNULL            0x0001  /* has null attribute(s) */
     191             : #define HEAP_HASVARWIDTH        0x0002  /* has variable-width attribute(s) */
     192             : #define HEAP_HASEXTERNAL        0x0004  /* has external stored attribute(s) */
     193             : #define HEAP_HASOID_OLD         0x0008  /* has an object-id field */
     194             : #define HEAP_XMAX_KEYSHR_LOCK   0x0010  /* xmax is a key-shared locker */
     195             : #define HEAP_COMBOCID           0x0020  /* t_cid is a combo CID */
     196             : #define HEAP_XMAX_EXCL_LOCK     0x0040  /* xmax is exclusive locker */
     197             : #define HEAP_XMAX_LOCK_ONLY     0x0080  /* xmax, if valid, is only a locker */
     198             : 
     199             :  /* xmax is a shared locker */
     200             : #define HEAP_XMAX_SHR_LOCK  (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)
     201             : 
     202             : #define HEAP_LOCK_MASK  (HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \
     203             :                          HEAP_XMAX_KEYSHR_LOCK)
     204             : #define HEAP_XMIN_COMMITTED     0x0100  /* t_xmin committed */
     205             : #define HEAP_XMIN_INVALID       0x0200  /* t_xmin invalid/aborted */
     206             : #define HEAP_XMIN_FROZEN        (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)
     207             : #define HEAP_XMAX_COMMITTED     0x0400  /* t_xmax committed */
     208             : #define HEAP_XMAX_INVALID       0x0800  /* t_xmax invalid/aborted */
     209             : #define HEAP_XMAX_IS_MULTI      0x1000  /* t_xmax is a MultiXactId */
     210             : #define HEAP_UPDATED            0x2000  /* this is UPDATEd version of row */
     211             : #define HEAP_MOVED_OFF          0x4000  /* moved to another place by pre-9.0
     212             :                                          * VACUUM FULL; kept for binary
     213             :                                          * upgrade support */
     214             : #define HEAP_MOVED_IN           0x8000  /* moved from another place by pre-9.0
     215             :                                          * VACUUM FULL; kept for binary
     216             :                                          * upgrade support */
     217             : #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN)
     218             : 
     219             : #define HEAP_XACT_MASK          0xFFF0  /* visibility-related bits */
     220             : 
     221             : /*
     222             :  * A tuple is only locked (i.e. not updated by its Xmax) if the
     223             :  * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is
     224             :  * not a multi and the EXCL_LOCK bit is set.
     225             :  *
     226             :  * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible
     227             :  * aborted updater transaction.
     228             :  */
     229             : static inline bool
     230    47202234 : HEAP_XMAX_IS_LOCKED_ONLY(uint16 infomask)
     231             : {
     232    92307094 :     return (infomask & HEAP_XMAX_LOCK_ONLY) ||
     233    45104860 :         (infomask & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK;
     234             : }
     235             : 
     236             : /*
     237             :  * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of
     238             :  * HEAP_XMAX_EXCL_LOCK and HEAP_XMAX_KEYSHR_LOCK must come from a tuple that was
     239             :  * share-locked in 9.2 or earlier and then pg_upgrade'd.
     240             :  *
     241             :  * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple
     242             :  * FOR SHARE lockers of that tuple.  That set HEAP_XMAX_LOCK_ONLY (with a
     243             :  * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and
     244             :  * HEAP_XMAX_KEYSHR_LOCK.  That combination is no longer possible in 9.3 and
     245             :  * up, so if we see that combination we know for certain that the tuple was
     246             :  * locked in an earlier release; since all such lockers are gone (they cannot
     247             :  * survive through pg_upgrade), such tuples can safely be considered not
     248             :  * locked.
     249             :  *
     250             :  * We must not resolve such multixacts locally, because the result would be
     251             :  * bogus, regardless of where they stand with respect to the current valid
     252             :  * multixact range.
     253             :  */
     254             : static inline bool
     255      372176 : HEAP_LOCKED_UPGRADED(uint16 infomask)
     256             : {
     257             :     return
     258      672650 :         (infomask & HEAP_XMAX_IS_MULTI) != 0 &&
     259      663960 :         (infomask & HEAP_XMAX_LOCK_ONLY) != 0 &&
     260      291784 :         (infomask & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0;
     261             : }
     262             : 
     263             : /*
     264             :  * Use these to test whether a particular lock is applied to a tuple
     265             :  */
     266             : static inline bool
     267      198612 : HEAP_XMAX_IS_SHR_LOCKED(uint16 infomask)
     268             : {
     269      198612 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK;
     270             : }
     271             : 
     272             : static inline bool
     273      212214 : HEAP_XMAX_IS_EXCL_LOCKED(uint16 infomask)
     274             : {
     275      212214 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK;
     276             : }
     277             : 
     278             : static inline bool
     279      210484 : HEAP_XMAX_IS_KEYSHR_LOCKED(uint16 infomask)
     280             : {
     281      210484 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK;
     282             : }
     283             : 
     284             : /* turn these all off when Xmax is to change */
     285             : #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \
     286             :                         HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY)
     287             : 
     288             : /*
     289             :  * information stored in t_infomask2:
     290             :  */
     291             : #define HEAP_NATTS_MASK         0x07FF  /* 11 bits for number of attributes */
     292             : /* bits 0x1800 are available */
     293             : #define HEAP_KEYS_UPDATED       0x2000  /* tuple was updated and key cols
     294             :                                          * modified, or tuple deleted */
     295             : #define HEAP_HOT_UPDATED        0x4000  /* tuple was HOT-updated */
     296             : #define HEAP_ONLY_TUPLE         0x8000  /* this is heap-only tuple */
     297             : 
     298             : #define HEAP2_XACT_MASK         0xE000  /* visibility-related bits */
     299             : 
     300             : /*
     301             :  * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins.  It is
     302             :  * only used in tuples that are in the hash table, and those don't need
     303             :  * any visibility information, so we can overlay it on a visibility flag
     304             :  * instead of using up a dedicated bit.
     305             :  */
     306             : #define HEAP_TUPLE_HAS_MATCH    HEAP_ONLY_TUPLE /* tuple has a join match */
     307             : 
     308             : /*
     309             :  * HeapTupleHeader accessor functions
     310             :  */
     311             : 
     312             : static bool HeapTupleHeaderXminFrozen(const HeapTupleHeaderData *tup);
     313             : 
     314             : /*
     315             :  * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid
     316             :  * originally used to insert the tuple.  However, the tuple might actually
     317             :  * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin
     318             :  * is visible to every snapshot.  Prior to PostgreSQL 9.4, we actually changed
     319             :  * the xmin to FrozenTransactionId, and that value may still be encountered
     320             :  * on disk.
     321             :  */
     322             : static inline TransactionId
     323   306922186 : HeapTupleHeaderGetRawXmin(const HeapTupleHeaderData *tup)
     324             : {
     325   306922186 :     return tup->t_choice.t_heap.t_xmin;
     326             : }
     327             : 
     328             : static inline TransactionId
     329   119827466 : HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
     330             : {
     331   119827466 :     return HeapTupleHeaderXminFrozen(tup) ?
     332   119827466 :         FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup);
     333             : }
     334             : 
     335             : static inline void
     336    23845504 : HeapTupleHeaderSetXmin(HeapTupleHeaderData *tup, TransactionId xid)
     337             : {
     338    23845504 :     tup->t_choice.t_heap.t_xmin = xid;
     339    23845504 : }
     340             : 
     341             : static inline bool
     342   301069000 : HeapTupleHeaderXminCommitted(const HeapTupleHeaderData *tup)
     343             : {
     344   301069000 :     return (tup->t_infomask & HEAP_XMIN_COMMITTED) != 0;
     345             : }
     346             : 
     347             : static inline bool
     348    68195674 : HeapTupleHeaderXminInvalid(const HeapTupleHeaderData *tup) \
     349             : {
     350    68195674 :     return (tup->t_infomask & (HEAP_XMIN_COMMITTED | HEAP_XMIN_INVALID)) ==
     351             :         HEAP_XMIN_INVALID;
     352             : }
     353             : 
     354             : static inline bool
     355   710208596 : HeapTupleHeaderXminFrozen(const HeapTupleHeaderData *tup)
     356             : {
     357   710208596 :     return (tup->t_infomask & HEAP_XMIN_FROZEN) == HEAP_XMIN_FROZEN;
     358             : }
     359             : 
     360             : static inline void
     361      206488 : HeapTupleHeaderSetXminFrozen(HeapTupleHeaderData *tup)
     362             : {
     363             :     Assert(!HeapTupleHeaderXminInvalid(tup));
     364      206488 :     tup->t_infomask |= HEAP_XMIN_FROZEN;
     365      206488 : }
     366             : 
     367             : static inline TransactionId
     368   128608798 : HeapTupleHeaderGetRawXmax(const HeapTupleHeaderData *tup)
     369             : {
     370   128608798 :     return tup->t_choice.t_heap.t_xmax;
     371             : }
     372             : 
     373             : static inline void
     374    28688180 : HeapTupleHeaderSetXmax(HeapTupleHeaderData *tup, TransactionId xid)
     375             : {
     376    28688180 :     tup->t_choice.t_heap.t_xmax = xid;
     377    28688180 : }
     378             : 
     379             : #ifndef FRONTEND
     380             : /*
     381             :  * HeapTupleHeaderGetRawXmax gets you the raw Xmax field.  To find out the Xid
     382             :  * that updated a tuple, you might need to resolve the MultiXactId if certain
     383             :  * bits are set.  HeapTupleHeaderGetUpdateXid checks those bits and takes care
     384             :  * to resolve the MultiXactId if necessary.  This might involve multixact I/O,
     385             :  * so it should only be used if absolutely necessary.
     386             :  */
     387             : static inline TransactionId
     388    16478286 : HeapTupleHeaderGetUpdateXid(const HeapTupleHeaderData *tup)
     389             : {
     390    16478286 :     if (!((tup)->t_infomask & HEAP_XMAX_INVALID) &&
     391    15225488 :         ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) &&
     392      153496 :         !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY))
     393      153416 :         return HeapTupleGetUpdateXid(tup);
     394             :     else
     395    16324870 :         return HeapTupleHeaderGetRawXmax(tup);
     396             : }
     397             : #endif                          /* FRONTEND */
     398             : 
     399             : /*
     400             :  * HeapTupleHeaderGetRawCommandId will give you what's in the header whether
     401             :  * it is useful or not.  Most code should use HeapTupleHeaderGetCmin or
     402             :  * HeapTupleHeaderGetCmax instead, but note that those Assert that you can
     403             :  * get a legitimate result, ie you are in the originating transaction!
     404             :  */
     405             : static inline CommandId
     406    29210158 : HeapTupleHeaderGetRawCommandId(const HeapTupleHeaderData *tup)
     407             : {
     408    29210158 :     return tup->t_choice.t_heap.t_field3.t_cid;
     409             : }
     410             : 
     411             : /* SetCmin is reasonably simple since we never need a combo CID */
     412             : static inline void
     413    23800826 : HeapTupleHeaderSetCmin(HeapTupleHeaderData *tup, CommandId cid)
     414             : {
     415             :     Assert(!(tup->t_infomask & HEAP_MOVED));
     416    23800826 :     tup->t_choice.t_heap.t_field3.t_cid = cid;
     417    23800826 :     tup->t_infomask &= ~HEAP_COMBOCID;
     418    23800826 : }
     419             : 
     420             : /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */
     421             : static inline void
     422     4898978 : HeapTupleHeaderSetCmax(HeapTupleHeaderData *tup, CommandId cid, bool iscombo)
     423             : {
     424             :     Assert(!((tup)->t_infomask & HEAP_MOVED));
     425     4898978 :     tup->t_choice.t_heap.t_field3.t_cid = cid;
     426     4898978 :     if (iscombo)
     427      451150 :         tup->t_infomask |= HEAP_COMBOCID;
     428             :     else
     429     4447828 :         tup->t_infomask &= ~HEAP_COMBOCID;
     430     4898978 : }
     431             : 
     432             : static inline TransactionId
     433    40833222 : HeapTupleHeaderGetXvac(const HeapTupleHeaderData *tup)
     434             : {
     435    40833222 :     if (tup->t_infomask & HEAP_MOVED)
     436           0 :         return tup->t_choice.t_heap.t_field3.t_xvac;
     437             :     else
     438    40833222 :         return InvalidTransactionId;
     439             : }
     440             : 
     441             : static inline void
     442           0 : HeapTupleHeaderSetXvac(HeapTupleHeaderData *tup, TransactionId xid)
     443             : {
     444             :     Assert(tup->t_infomask & HEAP_MOVED);
     445           0 :     tup->t_choice.t_heap.t_field3.t_xvac = xid;
     446           0 : }
     447             : 
     448             : StaticAssertDecl(MaxOffsetNumber < SpecTokenOffsetNumber,
     449             :                  "invalid speculative token constant");
     450             : 
     451             : static inline bool
     452   452160730 : HeapTupleHeaderIsSpeculative(const HeapTupleHeaderData *tup)
     453             : {
     454   452160730 :     return ItemPointerGetOffsetNumberNoCheck(&tup->t_ctid) == SpecTokenOffsetNumber;
     455             : }
     456             : 
     457             : static inline BlockNumber
     458           4 : HeapTupleHeaderGetSpeculativeToken(const HeapTupleHeaderData *tup)
     459             : {
     460             :     Assert(HeapTupleHeaderIsSpeculative(tup));
     461           4 :     return ItemPointerGetBlockNumber(&tup->t_ctid);
     462             : }
     463             : 
     464             : static inline void
     465        4264 : HeapTupleHeaderSetSpeculativeToken(HeapTupleHeaderData *tup, BlockNumber token)
     466             : {
     467        4264 :     ItemPointerSet(&tup->t_ctid, token, SpecTokenOffsetNumber);
     468        4264 : }
     469             : 
     470             : static inline bool
     471       59158 : HeapTupleHeaderIndicatesMovedPartitions(const HeapTupleHeaderData *tup)
     472             : {
     473       59158 :     return ItemPointerIndicatesMovedPartitions(&tup->t_ctid);
     474             : }
     475             : 
     476             : static inline void
     477        1272 : HeapTupleHeaderSetMovedPartitions(HeapTupleHeaderData *tup)
     478             : {
     479        1272 :     ItemPointerSetMovedPartitions(&tup->t_ctid);
     480        1272 : }
     481             : 
     482             : static inline uint32
     483     2578126 : HeapTupleHeaderGetDatumLength(const HeapTupleHeaderData *tup)
     484             : {
     485     2578126 :     return VARSIZE(tup);
     486             : }
     487             : 
     488             : static inline void
     489    25663130 : HeapTupleHeaderSetDatumLength(HeapTupleHeaderData *tup, uint32 len)
     490             : {
     491    25663130 :     SET_VARSIZE(tup, len);
     492    25663130 : }
     493             : 
     494             : static inline Oid
     495     2562724 : HeapTupleHeaderGetTypeId(const HeapTupleHeaderData *tup)
     496             : {
     497     2562724 :     return tup->t_choice.t_datum.datum_typeid;
     498             : }
     499             : 
     500             : static inline void
     501    25710060 : HeapTupleHeaderSetTypeId(HeapTupleHeaderData *tup, Oid datum_typeid)
     502             : {
     503    25710060 :     tup->t_choice.t_datum.datum_typeid = datum_typeid;
     504    25710060 : }
     505             : 
     506             : static inline int32
     507     2562724 : HeapTupleHeaderGetTypMod(const HeapTupleHeaderData *tup)
     508             : {
     509     2562724 :     return tup->t_choice.t_datum.datum_typmod;
     510             : }
     511             : 
     512             : static inline void
     513    25710060 : HeapTupleHeaderSetTypMod(HeapTupleHeaderData *tup, int32 typmod)
     514             : {
     515    25710060 :     tup->t_choice.t_datum.datum_typmod = typmod;
     516    25710060 : }
     517             : 
     518             : /*
     519             :  * Note that we stop considering a tuple HOT-updated as soon as it is known
     520             :  * aborted or the would-be updating transaction is known aborted.  For best
     521             :  * efficiency, check tuple visibility before using this function, so that the
     522             :  * INVALID bits will be as up to date as possible.
     523             :  */
     524             : static inline bool
     525    37276626 : HeapTupleHeaderIsHotUpdated(const HeapTupleHeaderData *tup)
     526             : {
     527             :     return
     528    39452710 :         (tup->t_infomask2 & HEAP_HOT_UPDATED) != 0 &&
     529    39452704 :         (tup->t_infomask & HEAP_XMAX_INVALID) == 0 &&
     530     2176078 :         !HeapTupleHeaderXminInvalid(tup);
     531             : }
     532             : 
     533             : static inline void
     534      370500 : HeapTupleHeaderSetHotUpdated(HeapTupleHeaderData *tup)
     535             : {
     536      370500 :     tup->t_infomask2 |= HEAP_HOT_UPDATED;
     537      370500 : }
     538             : 
     539             : static inline void
     540     4837492 : HeapTupleHeaderClearHotUpdated(HeapTupleHeaderData *tup)
     541             : {
     542     4837492 :     tup->t_infomask2 &= ~HEAP_HOT_UPDATED;
     543     4837492 : }
     544             : 
     545             : static inline bool
     546   129293974 : HeapTupleHeaderIsHeapOnly(const HeapTupleHeaderData *tup) \
     547             : {
     548   129293974 :     return (tup->t_infomask2 & HEAP_ONLY_TUPLE) != 0;
     549             : }
     550             : 
     551             : static inline void
     552      592588 : HeapTupleHeaderSetHeapOnly(HeapTupleHeaderData *tup)
     553             : {
     554      592588 :     tup->t_infomask2 |= HEAP_ONLY_TUPLE;
     555      592588 : }
     556             : 
     557             : static inline void
     558      657140 : HeapTupleHeaderClearHeapOnly(HeapTupleHeaderData *tup)
     559             : {
     560      657140 :     tup->t_infomask2 &= ~HEAP_ONLY_TUPLE;
     561      657140 : }
     562             : 
     563             : /*
     564             :  * These are used with both HeapTuple and MinimalTuple, so they must be
     565             :  * macros.
     566             :  */
     567             : 
     568             : #define HeapTupleHeaderGetNatts(tup) \
     569             :     ((tup)->t_infomask2 & HEAP_NATTS_MASK)
     570             : 
     571             : #define HeapTupleHeaderSetNatts(tup, natts) \
     572             : ( \
     573             :     (tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \
     574             : )
     575             : 
     576             : #define HeapTupleHeaderHasExternal(tup) \
     577             :         (((tup)->t_infomask & HEAP_HASEXTERNAL) != 0)
     578             : 
     579             : 
     580             : /*
     581             :  * BITMAPLEN(NATTS) -
     582             :  *      Computes size of null bitmap given number of data columns.
     583             :  */
     584             : static inline int
     585     7777302 : BITMAPLEN(int NATTS)
     586             : {
     587     7777302 :     return (NATTS + 7) / 8;
     588             : }
     589             : 
     590             : /*
     591             :  * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including
     592             :  * header and MAXALIGN alignment padding.  Basically it's BLCKSZ minus the
     593             :  * other stuff that has to be on a disk page.  Since heap pages use no
     594             :  * "special space", there's no deduction for that.
     595             :  *
     596             :  * NOTE: we allow for the ItemId that must point to the tuple, ensuring that
     597             :  * an otherwise-empty page can indeed hold a tuple of this size.  Because
     598             :  * ItemIds and tuples have different alignment requirements, don't assume that
     599             :  * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page.
     600             :  */
     601             : #define MaxHeapTupleSize  (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData)))
     602             : #define MinHeapTupleSize  MAXALIGN(SizeofHeapTupleHeader)
     603             : 
     604             : /*
     605             :  * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can
     606             :  * fit on one heap page.  (Note that indexes could have more, because they
     607             :  * use a smaller tuple header.)  We arrive at the divisor because each tuple
     608             :  * must be maxaligned, and it must have an associated line pointer.
     609             :  *
     610             :  * Note: with HOT, there could theoretically be more line pointers (not actual
     611             :  * tuples) than this on a heap page.  However we constrain the number of line
     612             :  * pointers to this anyway, to avoid excessive line-pointer bloat and not
     613             :  * require increases in the size of work arrays.
     614             :  */
     615             : #define MaxHeapTuplesPerPage    \
     616             :     ((int) ((BLCKSZ - SizeOfPageHeaderData) / \
     617             :             (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData))))
     618             : 
     619             : /*
     620             :  * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of
     621             :  * data fields of char(n) and similar types.  It need not have anything
     622             :  * directly to do with the *actual* upper limit of varlena values, which
     623             :  * is currently 1Gb (see TOAST structures in varatt.h).  I've set it
     624             :  * at 10Mb which seems like a reasonable number --- tgl 8/6/00.
     625             :  */
     626             : #define MaxAttrSize     (10 * 1024 * 1024)
     627             : 
     628             : 
     629             : /*
     630             :  * MinimalTuple is an alternative representation that is used for transient
     631             :  * tuples inside the executor, in places where transaction status information
     632             :  * is not required, the tuple rowtype is known, and shaving off a few bytes
     633             :  * is worthwhile because we need to store many tuples.  The representation
     634             :  * is chosen so that tuple access routines can work with either full or
     635             :  * minimal tuples via a HeapTupleData pointer structure.  The access routines
     636             :  * see no difference, except that they must not access the transaction status
     637             :  * or t_ctid fields because those aren't there.
     638             :  *
     639             :  * For the most part, MinimalTuples should be accessed via TupleTableSlot
     640             :  * routines.  These routines will prevent access to the "system columns"
     641             :  * and thereby prevent accidental use of the nonexistent fields.
     642             :  *
     643             :  * MinimalTupleData contains a length word, some padding, and fields matching
     644             :  * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so
     645             :  * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both
     646             :  * structs.   This makes data alignment rules equivalent in both cases.
     647             :  *
     648             :  * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is
     649             :  * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the
     650             :  * minimal tuple --- that is, where a full tuple matching the minimal tuple's
     651             :  * data would start.  This trick is what makes the structs seem equivalent.
     652             :  *
     653             :  * Note that t_hoff is computed the same as in a full tuple, hence it includes
     654             :  * the MINIMAL_TUPLE_OFFSET distance.  t_len does not include that, however.
     655             :  *
     656             :  * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data
     657             :  * other than the length word.  tuplesort.c and tuplestore.c use this to avoid
     658             :  * writing the padding to disk.
     659             :  */
     660             : #define MINIMAL_TUPLE_OFFSET \
     661             :     ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)
     662             : #define MINIMAL_TUPLE_PADDING \
     663             :     ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)
     664             : #define MINIMAL_TUPLE_DATA_OFFSET \
     665             :     offsetof(MinimalTupleData, t_infomask2)
     666             : 
     667             : struct MinimalTupleData
     668             : {
     669             :     uint32      t_len;          /* actual length of minimal tuple */
     670             : 
     671             :     char        mt_padding[MINIMAL_TUPLE_PADDING];
     672             : 
     673             :     /* Fields below here must match HeapTupleHeaderData! */
     674             : 
     675             :     uint16      t_infomask2;    /* number of attributes + various flags */
     676             : 
     677             :     uint16      t_infomask;     /* various flag bits, see below */
     678             : 
     679             :     uint8       t_hoff;         /* sizeof header incl. bitmap, padding */
     680             : 
     681             :     /* ^ - 23 bytes - ^ */
     682             : 
     683             :     bits8       t_bits[FLEXIBLE_ARRAY_MEMBER];  /* bitmap of NULLs */
     684             : 
     685             :     /* MORE DATA FOLLOWS AT END OF STRUCT */
     686             : };
     687             : 
     688             : /* typedef appears in htup.h */
     689             : 
     690             : #define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)
     691             : 
     692             : /*
     693             :  * MinimalTuple accessor functions
     694             :  */
     695             : 
     696             : static inline bool
     697    13799588 : HeapTupleHeaderHasMatch(const MinimalTupleData *tup)
     698             : {
     699    13799588 :     return (tup->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0;
     700             : }
     701             : 
     702             : static inline void
     703     5935068 : HeapTupleHeaderSetMatch(MinimalTupleData *tup)
     704             : {
     705     5935068 :     tup->t_infomask2 |= HEAP_TUPLE_HAS_MATCH;
     706     5935068 : }
     707             : 
     708             : static inline void
     709    11535718 : HeapTupleHeaderClearMatch(MinimalTupleData *tup)
     710             : {
     711    11535718 :     tup->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH;
     712    11535718 : }
     713             : 
     714             : 
     715             : /*
     716             :  * GETSTRUCT - given a HeapTuple pointer, return address of the user data
     717             :  */
     718             : static inline void *
     719   145275872 : GETSTRUCT(const HeapTupleData *tuple)
     720             : {
     721   145275872 :     return ((char *) (tuple->t_data) + tuple->t_data->t_hoff);
     722             : }
     723             : 
     724             : /*
     725             :  * Accessor functions to be used with HeapTuple pointers.
     726             :  */
     727             : 
     728             : static inline bool
     729  1092504960 : HeapTupleHasNulls(const HeapTupleData *tuple)
     730             : {
     731  1092504960 :     return (tuple->t_data->t_infomask & HEAP_HASNULL) != 0;
     732             : }
     733             : 
     734             : static inline bool
     735   553065780 : HeapTupleNoNulls(const HeapTupleData *tuple)
     736             : {
     737   553065780 :     return !HeapTupleHasNulls(tuple);
     738             : }
     739             : 
     740             : static inline bool
     741    58512096 : HeapTupleHasVarWidth(const HeapTupleData *tuple)
     742             : {
     743    58512096 :     return (tuple->t_data->t_infomask & HEAP_HASVARWIDTH) != 0;
     744             : }
     745             : 
     746             : static inline bool
     747             : HeapTupleAllFixed(const HeapTupleData *tuple)
     748             : {
     749             :     return !HeapTupleHasVarWidth(tuple);
     750             : }
     751             : 
     752             : static inline bool
     753    30881356 : HeapTupleHasExternal(const HeapTupleData *tuple)
     754             : {
     755    30881356 :     return (tuple->t_data->t_infomask & HEAP_HASEXTERNAL) != 0;
     756             : }
     757             : 
     758             : static inline bool
     759    14607910 : HeapTupleIsHotUpdated(const HeapTupleData *tuple)
     760             : {
     761    14607910 :     return HeapTupleHeaderIsHotUpdated(tuple->t_data);
     762             : }
     763             : 
     764             : static inline void
     765      296294 : HeapTupleSetHotUpdated(const HeapTupleData *tuple)
     766             : {
     767      296294 :     HeapTupleHeaderSetHotUpdated(tuple->t_data);
     768      296294 : }
     769             : 
     770             : static inline void
     771      633412 : HeapTupleClearHotUpdated(const HeapTupleData *tuple)
     772             : {
     773      633412 :     HeapTupleHeaderClearHotUpdated(tuple->t_data);
     774      633412 : }
     775             : 
     776             : static inline bool
     777    65767714 : HeapTupleIsHeapOnly(const HeapTupleData *tuple)
     778             : {
     779    65767714 :     return HeapTupleHeaderIsHeapOnly(tuple->t_data);
     780             : }
     781             : 
     782             : static inline void
     783      592588 : HeapTupleSetHeapOnly(const HeapTupleData *tuple)
     784             : {
     785      592588 :     HeapTupleHeaderSetHeapOnly(tuple->t_data);
     786      592588 : }
     787             : 
     788             : static inline void
     789      657140 : HeapTupleClearHeapOnly(const HeapTupleData *tuple)
     790             : {
     791      657140 :     HeapTupleHeaderClearHeapOnly(tuple->t_data);
     792      657140 : }
     793             : 
     794             : /* prototypes for functions in common/heaptuple.c */
     795             : extern Size heap_compute_data_size(TupleDesc tupleDesc,
     796             :                                    const Datum *values, const bool *isnull);
     797             : extern void heap_fill_tuple(TupleDesc tupleDesc,
     798             :                             const Datum *values, const bool *isnull,
     799             :                             char *data, Size data_size,
     800             :                             uint16 *infomask, bits8 *bit);
     801             : extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc);
     802             : extern Datum nocachegetattr(HeapTuple tup, int attnum,
     803             :                             TupleDesc tupleDesc);
     804             : extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
     805             :                              bool *isnull);
     806             : extern Datum getmissingattr(TupleDesc tupleDesc,
     807             :                             int attnum, bool *isnull);
     808             : extern HeapTuple heap_copytuple(HeapTuple tuple);
     809             : extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest);
     810             : extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc);
     811             : extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor,
     812             :                                  const Datum *values, const bool *isnull);
     813             : extern HeapTuple heap_modify_tuple(HeapTuple tuple,
     814             :                                    TupleDesc tupleDesc,
     815             :                                    const Datum *replValues,
     816             :                                    const bool *replIsnull,
     817             :                                    const bool *doReplace);
     818             : extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple,
     819             :                                            TupleDesc tupleDesc,
     820             :                                            int nCols,
     821             :                                            const int *replCols,
     822             :                                            const Datum *replValues,
     823             :                                            const bool *replIsnull);
     824             : extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
     825             :                               Datum *values, bool *isnull);
     826             : extern void heap_freetuple(HeapTuple htup);
     827             : extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor,
     828             :                                             const Datum *values, const bool *isnull,
     829             :                                             Size extra);
     830             : extern void heap_free_minimal_tuple(MinimalTuple mtup);
     831             : extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup, Size extra);
     832             : extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
     833             : extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup, Size extra);
     834             : extern size_t varsize_any(void *p);
     835             : extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
     836             : extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
     837             : 
     838             : #ifndef FRONTEND
     839             : /*
     840             :  *  fastgetattr
     841             :  *      Fetch a user attribute's value as a Datum (might be either a
     842             :  *      value, or a pointer into the data area of the tuple).
     843             :  *
     844             :  *      This must not be used when a system attribute might be requested.
     845             :  *      Furthermore, the passed attnum MUST be valid.  Use heap_getattr()
     846             :  *      instead, if in doubt.
     847             :  *
     848             :  *      This gets called many times, so we macro the cacheable and NULL
     849             :  *      lookups, and call nocachegetattr() for the rest.
     850             :  */
     851             : static inline Datum
     852   322521242 : fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
     853             : {
     854             :     Assert(attnum > 0);
     855             : 
     856   322521242 :     *isnull = false;
     857   322521242 :     if (HeapTupleNoNulls(tup))
     858             :     {
     859             :         CompactAttribute *att;
     860             : 
     861   133103506 :         att = TupleDescCompactAttr(tupleDesc, attnum - 1);
     862   133103506 :         if (att->attcacheoff >= 0)
     863    79366792 :             return fetchatt(att, (char *) tup->t_data + tup->t_data->t_hoff +
     864             :                             att->attcacheoff);
     865             :         else
     866    53736714 :             return nocachegetattr(tup, attnum, tupleDesc);
     867             :     }
     868             :     else
     869             :     {
     870   189417736 :         if (att_isnull(attnum - 1, tup->t_data->t_bits))
     871             :         {
     872    22446112 :             *isnull = true;
     873    22446112 :             return (Datum) 0;
     874             :         }
     875             :         else
     876   166971624 :             return nocachegetattr(tup, attnum, tupleDesc);
     877             :     }
     878             : }
     879             : 
     880             : /*
     881             :  *  heap_getattr
     882             :  *      Extract an attribute of a heap tuple and return it as a Datum.
     883             :  *      This works for either system or user attributes.  The given attnum
     884             :  *      is properly range-checked.
     885             :  *
     886             :  *      If the field in question has a NULL value, we return a zero Datum
     887             :  *      and set *isnull == true.  Otherwise, we set *isnull == false.
     888             :  *
     889             :  *      <tup> is the pointer to the heap tuple.  <attnum> is the attribute
     890             :  *      number of the column (field) caller wants.  <tupleDesc> is a
     891             :  *      pointer to the structure describing the row and all its fields.
     892             :  *
     893             :  */
     894             : static inline Datum
     895   302029204 : heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
     896             : {
     897   302029204 :     if (attnum > 0)
     898             :     {
     899   302029204 :         if (attnum > (int) HeapTupleHeaderGetNatts(tup->t_data))
     900         332 :             return getmissingattr(tupleDesc, attnum, isnull);
     901             :         else
     902   302028872 :             return fastgetattr(tup, attnum, tupleDesc, isnull);
     903             :     }
     904             :     else
     905           0 :         return heap_getsysattr(tup, attnum, tupleDesc, isnull);
     906             : }
     907             : #endif                          /* FRONTEND */
     908             : 
     909             : #endif                          /* HTUP_DETAILS_H */

Generated by: LCOV version 1.16