LCOV - code coverage report
Current view: top level - src/include/access - htup_details.h (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 153 158 96.8 %
Date: 2025-02-22 07:14:56 Functions: 53 54 98.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * htup_details.h
       4             :  *    POSTGRES heap tuple header definitions.
       5             :  *
       6             :  *
       7             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       8             :  * Portions Copyright (c) 1994, Regents of the University of California
       9             :  *
      10             :  * src/include/access/htup_details.h
      11             :  *
      12             :  *-------------------------------------------------------------------------
      13             :  */
      14             : #ifndef HTUP_DETAILS_H
      15             : #define HTUP_DETAILS_H
      16             : 
      17             : #include "access/htup.h"
      18             : #include "access/transam.h"
      19             : #include "access/tupdesc.h"
      20             : #include "access/tupmacs.h"
      21             : #include "storage/bufpage.h"
      22             : #include "varatt.h"
      23             : 
      24             : /*
      25             :  * MaxTupleAttributeNumber limits the number of (user) columns in a tuple.
      26             :  * The key limit on this value is that the size of the fixed overhead for
      27             :  * a tuple, plus the size of the null-values bitmap (at 1 bit per column),
      28             :  * plus MAXALIGN alignment, must fit into t_hoff which is uint8.  On most
      29             :  * machines the upper limit without making t_hoff wider would be a little
      30             :  * over 1700.  We use round numbers here and for MaxHeapAttributeNumber
      31             :  * so that alterations in HeapTupleHeaderData layout won't change the
      32             :  * supported max number of columns.
      33             :  */
      34             : #define MaxTupleAttributeNumber 1664    /* 8 * 208 */
      35             : 
      36             : /*
      37             :  * MaxHeapAttributeNumber limits the number of (user) columns in a table.
      38             :  * This should be somewhat less than MaxTupleAttributeNumber.  It must be
      39             :  * at least one less, else we will fail to do UPDATEs on a maximal-width
      40             :  * table (because UPDATE has to form working tuples that include CTID).
      41             :  * In practice we want some additional daylight so that we can gracefully
      42             :  * support operations that add hidden "resjunk" columns, for example
      43             :  * SELECT * FROM wide_table ORDER BY foo, bar, baz.
      44             :  * In any case, depending on column data types you will likely be running
      45             :  * into the disk-block-based limit on overall tuple size if you have more
      46             :  * than a thousand or so columns.  TOAST won't help.
      47             :  */
      48             : #define MaxHeapAttributeNumber  1600    /* 8 * 200 */
      49             : 
      50             : /*
      51             :  * Heap tuple header.  To avoid wasting space, the fields should be
      52             :  * laid out in such a way as to avoid structure padding.
      53             :  *
      54             :  * Datums of composite types (row types) share the same general structure
      55             :  * as on-disk tuples, so that the same routines can be used to build and
      56             :  * examine them.  However the requirements are slightly different: a Datum
      57             :  * does not need any transaction visibility information, and it does need
      58             :  * a length word and some embedded type information.  We can achieve this
      59             :  * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple
      60             :  * with the fields needed in the Datum case.  Typically, all tuples built
      61             :  * in-memory will be initialized with the Datum fields; but when a tuple is
      62             :  * about to be inserted in a table, the transaction fields will be filled,
      63             :  * overwriting the datum fields.
      64             :  *
      65             :  * The overall structure of a heap tuple looks like:
      66             :  *          fixed fields (HeapTupleHeaderData struct)
      67             :  *          nulls bitmap (if HEAP_HASNULL is set in t_infomask)
      68             :  *          alignment padding (as needed to make user data MAXALIGN'd)
      69             :  *          object ID (if HEAP_HASOID_OLD is set in t_infomask, not created
      70             :  *          anymore)
      71             :  *          user data fields
      72             :  *
      73             :  * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three
      74             :  * physical fields.  Xmin and Xmax are always really stored, but Cmin, Cmax
      75             :  * and Xvac share a field.  This works because we know that Cmin and Cmax
      76             :  * are only interesting for the lifetime of the inserting and deleting
      77             :  * transaction respectively.  If a tuple is inserted and deleted in the same
      78             :  * transaction, we store a "combo" command id that can be mapped to the real
      79             :  * cmin and cmax, but only by use of local state within the originating
      80             :  * backend.  See combocid.c for more details.  Meanwhile, Xvac is only set by
      81             :  * old-style VACUUM FULL, which does not have any command sub-structure and so
      82             :  * does not need either Cmin or Cmax.  (This requires that old-style VACUUM
      83             :  * FULL never try to move a tuple whose Cmin or Cmax is still interesting,
      84             :  * ie, an insert-in-progress or delete-in-progress tuple.)
      85             :  *
      86             :  * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid
      87             :  * is initialized with its own TID (location).  If the tuple is ever updated,
      88             :  * its t_ctid is changed to point to the replacement version of the tuple.  Or
      89             :  * if the tuple is moved from one partition to another, due to an update of
      90             :  * the partition key, t_ctid is set to a special value to indicate that
      91             :  * (see ItemPointerSetMovedPartitions).  Thus, a tuple is the latest version
      92             :  * of its row iff XMAX is invalid or
      93             :  * t_ctid points to itself (in which case, if XMAX is valid, the tuple is
      94             :  * either locked or deleted).  One can follow the chain of t_ctid links
      95             :  * to find the newest version of the row, unless it was moved to a different
      96             :  * partition.  Beware however that VACUUM might
      97             :  * erase the pointed-to (newer) tuple before erasing the pointing (older)
      98             :  * tuple.  Hence, when following a t_ctid link, it is necessary to check
      99             :  * to see if the referenced slot is empty or contains an unrelated tuple.
     100             :  * Check that the referenced tuple has XMIN equal to the referencing tuple's
     101             :  * XMAX to verify that it is actually the descendant version and not an
     102             :  * unrelated tuple stored into a slot recently freed by VACUUM.  If either
     103             :  * check fails, one may assume that there is no live descendant version.
     104             :  *
     105             :  * t_ctid is sometimes used to store a speculative insertion token, instead
     106             :  * of a real TID.  A speculative token is set on a tuple that's being
     107             :  * inserted, until the inserter is sure that it wants to go ahead with the
     108             :  * insertion.  Hence a token should only be seen on a tuple with an XMAX
     109             :  * that's still in-progress, or invalid/aborted.  The token is replaced with
     110             :  * the tuple's real TID when the insertion is confirmed.  One should never
     111             :  * see a speculative insertion token while following a chain of t_ctid links,
     112             :  * because they are not used on updates, only insertions.
     113             :  *
     114             :  * Following the fixed header fields, the nulls bitmap is stored (beginning
     115             :  * at t_bits).  The bitmap is *not* stored if t_infomask shows that there
     116             :  * are no nulls in the tuple.  If an OID field is present (as indicated by
     117             :  * t_infomask), then it is stored just before the user data, which begins at
     118             :  * the offset shown by t_hoff.  Note that t_hoff must be a multiple of
     119             :  * MAXALIGN.
     120             :  */
     121             : 
     122             : typedef struct HeapTupleFields
     123             : {
     124             :     TransactionId t_xmin;       /* inserting xact ID */
     125             :     TransactionId t_xmax;       /* deleting or locking xact ID */
     126             : 
     127             :     union
     128             :     {
     129             :         CommandId   t_cid;      /* inserting or deleting command ID, or both */
     130             :         TransactionId t_xvac;   /* old-style VACUUM FULL xact ID */
     131             :     }           t_field3;
     132             : } HeapTupleFields;
     133             : 
     134             : typedef struct DatumTupleFields
     135             : {
     136             :     int32       datum_len_;     /* varlena header (do not touch directly!) */
     137             : 
     138             :     int32       datum_typmod;   /* -1, or identifier of a record type */
     139             : 
     140             :     Oid         datum_typeid;   /* composite type OID, or RECORDOID */
     141             : 
     142             :     /*
     143             :      * datum_typeid cannot be a domain over composite, only plain composite,
     144             :      * even if the datum is meant as a value of a domain-over-composite type.
     145             :      * This is in line with the general principle that CoerceToDomain does not
     146             :      * change the physical representation of the base type value.
     147             :      *
     148             :      * Note: field ordering is chosen with thought that Oid might someday
     149             :      * widen to 64 bits.
     150             :      */
     151             : } DatumTupleFields;
     152             : 
     153             : struct HeapTupleHeaderData
     154             : {
     155             :     union
     156             :     {
     157             :         HeapTupleFields t_heap;
     158             :         DatumTupleFields t_datum;
     159             :     }           t_choice;
     160             : 
     161             :     ItemPointerData t_ctid;     /* current TID of this or newer tuple (or a
     162             :                                  * speculative insertion token) */
     163             : 
     164             :     /* Fields below here must match MinimalTupleData! */
     165             : 
     166             : #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK2 2
     167             :     uint16      t_infomask2;    /* number of attributes + various flags */
     168             : 
     169             : #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK 3
     170             :     uint16      t_infomask;     /* various flag bits, see below */
     171             : 
     172             : #define FIELDNO_HEAPTUPLEHEADERDATA_HOFF 4
     173             :     uint8       t_hoff;         /* sizeof header incl. bitmap, padding */
     174             : 
     175             :     /* ^ - 23 bytes - ^ */
     176             : 
     177             : #define FIELDNO_HEAPTUPLEHEADERDATA_BITS 5
     178             :     bits8       t_bits[FLEXIBLE_ARRAY_MEMBER];  /* bitmap of NULLs */
     179             : 
     180             :     /* MORE DATA FOLLOWS AT END OF STRUCT */
     181             : };
     182             : 
     183             : /* typedef appears in htup.h */
     184             : 
     185             : #define SizeofHeapTupleHeader offsetof(HeapTupleHeaderData, t_bits)
     186             : 
     187             : /*
     188             :  * information stored in t_infomask:
     189             :  */
     190             : #define HEAP_HASNULL            0x0001  /* has null attribute(s) */
     191             : #define HEAP_HASVARWIDTH        0x0002  /* has variable-width attribute(s) */
     192             : #define HEAP_HASEXTERNAL        0x0004  /* has external stored attribute(s) */
     193             : #define HEAP_HASOID_OLD         0x0008  /* has an object-id field */
     194             : #define HEAP_XMAX_KEYSHR_LOCK   0x0010  /* xmax is a key-shared locker */
     195             : #define HEAP_COMBOCID           0x0020  /* t_cid is a combo CID */
     196             : #define HEAP_XMAX_EXCL_LOCK     0x0040  /* xmax is exclusive locker */
     197             : #define HEAP_XMAX_LOCK_ONLY     0x0080  /* xmax, if valid, is only a locker */
     198             : 
     199             :  /* xmax is a shared locker */
     200             : #define HEAP_XMAX_SHR_LOCK  (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)
     201             : 
     202             : #define HEAP_LOCK_MASK  (HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \
     203             :                          HEAP_XMAX_KEYSHR_LOCK)
     204             : #define HEAP_XMIN_COMMITTED     0x0100  /* t_xmin committed */
     205             : #define HEAP_XMIN_INVALID       0x0200  /* t_xmin invalid/aborted */
     206             : #define HEAP_XMIN_FROZEN        (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)
     207             : #define HEAP_XMAX_COMMITTED     0x0400  /* t_xmax committed */
     208             : #define HEAP_XMAX_INVALID       0x0800  /* t_xmax invalid/aborted */
     209             : #define HEAP_XMAX_IS_MULTI      0x1000  /* t_xmax is a MultiXactId */
     210             : #define HEAP_UPDATED            0x2000  /* this is UPDATEd version of row */
     211             : #define HEAP_MOVED_OFF          0x4000  /* moved to another place by pre-9.0
     212             :                                          * VACUUM FULL; kept for binary
     213             :                                          * upgrade support */
     214             : #define HEAP_MOVED_IN           0x8000  /* moved from another place by pre-9.0
     215             :                                          * VACUUM FULL; kept for binary
     216             :                                          * upgrade support */
     217             : #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN)
     218             : 
     219             : #define HEAP_XACT_MASK          0xFFF0  /* visibility-related bits */
     220             : 
     221             : /*
     222             :  * A tuple is only locked (i.e. not updated by its Xmax) if the
     223             :  * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is
     224             :  * not a multi and the EXCL_LOCK bit is set.
     225             :  *
     226             :  * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible
     227             :  * aborted updater transaction.
     228             :  */
     229             : static inline bool
     230    48882264 : HEAP_XMAX_IS_LOCKED_ONLY(uint16 infomask)
     231             : {
     232    96680432 :     return (infomask & HEAP_XMAX_LOCK_ONLY) ||
     233    47798168 :         (infomask & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK;
     234             : }
     235             : 
     236             : /*
     237             :  * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of
     238             :  * HEAP_XMAX_EXCL_LOCK and HEAP_XMAX_KEYSHR_LOCK must come from a tuple that was
     239             :  * share-locked in 9.2 or earlier and then pg_upgrade'd.
     240             :  *
     241             :  * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple
     242             :  * FOR SHARE lockers of that tuple.  That set HEAP_XMAX_LOCK_ONLY (with a
     243             :  * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and
     244             :  * HEAP_XMAX_KEYSHR_LOCK.  That combination is no longer possible in 9.3 and
     245             :  * up, so if we see that combination we know for certain that the tuple was
     246             :  * locked in an earlier release; since all such lockers are gone (they cannot
     247             :  * survive through pg_upgrade), such tuples can safely be considered not
     248             :  * locked.
     249             :  *
     250             :  * We must not resolve such multixacts locally, because the result would be
     251             :  * bogus, regardless of where they stand with respect to the current valid
     252             :  * multixact range.
     253             :  */
     254             : static inline bool
     255       73986 : HEAP_LOCKED_UPGRADED(uint16 infomask)
     256             : {
     257             :     return
     258       76340 :         (infomask & HEAP_XMAX_IS_MULTI) != 0 &&
     259       76126 :         (infomask & HEAP_XMAX_LOCK_ONLY) != 0 &&
     260        2140 :         (infomask & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0;
     261             : }
     262             : 
     263             : /*
     264             :  * Use these to test whether a particular lock is applied to a tuple
     265             :  */
     266             : static inline bool
     267      198626 : HEAP_XMAX_IS_SHR_LOCKED(int16 infomask)
     268             : {
     269      198626 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK;
     270             : }
     271             : 
     272             : static inline bool
     273      212206 : HEAP_XMAX_IS_EXCL_LOCKED(int16 infomask)
     274             : {
     275      212206 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK;
     276             : }
     277             : 
     278             : static inline bool
     279      210348 : HEAP_XMAX_IS_KEYSHR_LOCKED(int16 infomask)
     280             : {
     281      210348 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK;
     282             : }
     283             : 
     284             : /* turn these all off when Xmax is to change */
     285             : #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \
     286             :                         HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY)
     287             : 
     288             : /*
     289             :  * information stored in t_infomask2:
     290             :  */
     291             : #define HEAP_NATTS_MASK         0x07FF  /* 11 bits for number of attributes */
     292             : /* bits 0x1800 are available */
     293             : #define HEAP_KEYS_UPDATED       0x2000  /* tuple was updated and key cols
     294             :                                          * modified, or tuple deleted */
     295             : #define HEAP_HOT_UPDATED        0x4000  /* tuple was HOT-updated */
     296             : #define HEAP_ONLY_TUPLE         0x8000  /* this is heap-only tuple */
     297             : 
     298             : #define HEAP2_XACT_MASK         0xE000  /* visibility-related bits */
     299             : 
     300             : /*
     301             :  * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins.  It is
     302             :  * only used in tuples that are in the hash table, and those don't need
     303             :  * any visibility information, so we can overlay it on a visibility flag
     304             :  * instead of using up a dedicated bit.
     305             :  */
     306             : #define HEAP_TUPLE_HAS_MATCH    HEAP_ONLY_TUPLE /* tuple has a join match */
     307             : 
     308             : /*
     309             :  * HeapTupleHeader accessor functions
     310             :  */
     311             : 
     312             : static bool HeapTupleHeaderXminFrozen(const HeapTupleHeaderData *tup);
     313             : 
     314             : /*
     315             :  * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid
     316             :  * originally used to insert the tuple.  However, the tuple might actually
     317             :  * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin
     318             :  * is visible to every snapshot.  Prior to PostgreSQL 9.4, we actually changed
     319             :  * the xmin to FrozenTransactionId, and that value may still be encountered
     320             :  * on disk.
     321             :  */
     322             : static inline TransactionId
     323   277657830 : HeapTupleHeaderGetRawXmin(const HeapTupleHeaderData *tup)
     324             : {
     325   277657830 :     return tup->t_choice.t_heap.t_xmin;
     326             : }
     327             : 
     328             : static inline TransactionId
     329   102143566 : HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
     330             : {
     331   102143566 :     return HeapTupleHeaderXminFrozen(tup) ?
     332   102143566 :         FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup);
     333             : }
     334             : 
     335             : static inline void
     336    22370006 : HeapTupleHeaderSetXmin(HeapTupleHeaderData *tup, TransactionId xid)
     337             : {
     338    22370006 :     tup->t_choice.t_heap.t_xmin = xid;
     339    22370006 : }
     340             : 
     341             : static inline bool
     342   269977394 : HeapTupleHeaderXminCommitted(const HeapTupleHeaderData *tup)
     343             : {
     344   269977394 :     return (tup->t_infomask & HEAP_XMIN_COMMITTED) != 0;
     345             : }
     346             : 
     347             : static inline bool
     348    65787174 : HeapTupleHeaderXminInvalid(const HeapTupleHeaderData *tup) \
     349             : {
     350    65787174 :     return (tup->t_infomask & (HEAP_XMIN_COMMITTED | HEAP_XMIN_INVALID)) ==
     351             :         HEAP_XMIN_INVALID;
     352             : }
     353             : 
     354             : static inline bool
     355   660467976 : HeapTupleHeaderXminFrozen(const HeapTupleHeaderData *tup)
     356             : {
     357   660467976 :     return (tup->t_infomask & HEAP_XMIN_FROZEN) == HEAP_XMIN_FROZEN;
     358             : }
     359             : 
     360             : static inline void
     361             : HeapTupleHeaderSetXminCommitted(HeapTupleHeaderData *tup)
     362             : {
     363             :     Assert(!HeapTupleHeaderXminInvalid(tup));
     364             :     tup->t_infomask |= HEAP_XMIN_COMMITTED;
     365             : }
     366             : 
     367             : static inline void
     368             : HeapTupleHeaderSetXminInvalid(HeapTupleHeaderData *tup)
     369             : {
     370             :     Assert(!HeapTupleHeaderXminCommitted(tup));
     371             :     tup->t_infomask |= HEAP_XMIN_INVALID;
     372             : }
     373             : 
     374             : static inline void
     375      206396 : HeapTupleHeaderSetXminFrozen(HeapTupleHeaderData *tup)
     376             : {
     377             :     Assert(!HeapTupleHeaderXminInvalid(tup));
     378      206396 :     tup->t_infomask |= HEAP_XMIN_FROZEN;
     379      206396 : }
     380             : 
     381             : static inline TransactionId
     382   130318970 : HeapTupleHeaderGetRawXmax(const HeapTupleHeaderData *tup)
     383             : {
     384   130318970 :     return tup->t_choice.t_heap.t_xmax;
     385             : }
     386             : 
     387             : static inline void
     388    26241156 : HeapTupleHeaderSetXmax(HeapTupleHeaderData *tup, TransactionId xid)
     389             : {
     390    26241156 :     tup->t_choice.t_heap.t_xmax = xid;
     391    26241156 : }
     392             : 
     393             : #ifndef FRONTEND
     394             : /*
     395             :  * HeapTupleHeaderGetRawXmax gets you the raw Xmax field.  To find out the Xid
     396             :  * that updated a tuple, you might need to resolve the MultiXactId if certain
     397             :  * bits are set.  HeapTupleHeaderGetUpdateXid checks those bits and takes care
     398             :  * to resolve the MultiXactId if necessary.  This might involve multixact I/O,
     399             :  * so it should only be used if absolutely necessary.
     400             :  */
     401             : static inline TransactionId
     402    19023292 : HeapTupleHeaderGetUpdateXid(const HeapTupleHeaderData *tup)
     403             : {
     404    19023292 :     if (!((tup)->t_infomask & HEAP_XMAX_INVALID) &&
     405    17751784 :         ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) &&
     406         376 :         !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY))
     407         316 :         return HeapTupleGetUpdateXid(tup);
     408             :     else
     409    19022976 :         return HeapTupleHeaderGetRawXmax(tup);
     410             : }
     411             : #endif                          /* FRONTEND */
     412             : 
     413             : /*
     414             :  * HeapTupleHeaderGetRawCommandId will give you what's in the header whether
     415             :  * it is useful or not.  Most code should use HeapTupleHeaderGetCmin or
     416             :  * HeapTupleHeaderGetCmax instead, but note that those Assert that you can
     417             :  * get a legitimate result, ie you are in the originating transaction!
     418             :  */
     419             : static inline CommandId
     420    27589778 : HeapTupleHeaderGetRawCommandId(const HeapTupleHeaderData *tup)
     421             : {
     422    27589778 :     return tup->t_choice.t_heap.t_field3.t_cid;
     423             : }
     424             : 
     425             : /* SetCmin is reasonably simple since we never need a combo CID */
     426             : static inline void
     427    22328278 : HeapTupleHeaderSetCmin(HeapTupleHeaderData *tup, CommandId cid)
     428             : {
     429             :     Assert(!(tup->t_infomask & HEAP_MOVED));
     430    22328278 :     tup->t_choice.t_heap.t_field3.t_cid = cid;
     431    22328278 :     tup->t_infomask &= ~HEAP_COMBOCID;
     432    22328278 : }
     433             : 
     434             : /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */
     435             : static inline void
     436     4673274 : HeapTupleHeaderSetCmax(HeapTupleHeaderData *tup, CommandId cid, bool iscombo)
     437             : {
     438             :     Assert(!((tup)->t_infomask & HEAP_MOVED));
     439     4673274 :     tup->t_choice.t_heap.t_field3.t_cid = cid;
     440     4673274 :     if (iscombo)
     441      430296 :         tup->t_infomask |= HEAP_COMBOCID;
     442             :     else
     443     4242978 :         tup->t_infomask &= ~HEAP_COMBOCID;
     444     4673274 : }
     445             : 
     446             : static inline TransactionId
     447    35744140 : HeapTupleHeaderGetXvac(const HeapTupleHeaderData *tup)
     448             : {
     449    35744140 :     if (tup->t_infomask & HEAP_MOVED)
     450           0 :         return tup->t_choice.t_heap.t_field3.t_xvac;
     451             :     else
     452    35744140 :         return InvalidTransactionId;
     453             : }
     454             : 
     455             : static inline void
     456           0 : HeapTupleHeaderSetXvac(HeapTupleHeaderData *tup, TransactionId xid)
     457             : {
     458             :     Assert(tup->t_infomask & HEAP_MOVED);
     459           0 :     tup->t_choice.t_heap.t_field3.t_xvac = xid;
     460           0 : }
     461             : 
     462             : StaticAssertDecl(MaxOffsetNumber < SpecTokenOffsetNumber,
     463             :                  "invalid speculative token constant");
     464             : 
     465             : static inline bool
     466   432686670 : HeapTupleHeaderIsSpeculative(const HeapTupleHeaderData *tup)
     467             : {
     468   432686670 :     return ItemPointerGetOffsetNumberNoCheck(&tup->t_ctid) == SpecTokenOffsetNumber;
     469             : }
     470             : 
     471             : static inline BlockNumber
     472           4 : HeapTupleHeaderGetSpeculativeToken(const HeapTupleHeaderData *tup)
     473             : {
     474             :     Assert(HeapTupleHeaderIsSpeculative(tup));
     475           4 :     return ItemPointerGetBlockNumber(&tup->t_ctid);
     476             : }
     477             : 
     478             : static inline void
     479        4128 : HeapTupleHeaderSetSpeculativeToken(HeapTupleHeaderData *tup, BlockNumber token)
     480             : {
     481        4128 :     ItemPointerSet(&tup->t_ctid, token, SpecTokenOffsetNumber);
     482        4128 : }
     483             : 
     484             : static inline bool
     485       47908 : HeapTupleHeaderIndicatesMovedPartitions(const HeapTupleHeaderData *tup)
     486             : {
     487       47908 :     return ItemPointerIndicatesMovedPartitions(&tup->t_ctid);
     488             : }
     489             : 
     490             : static inline void
     491        1250 : HeapTupleHeaderSetMovedPartitions(HeapTupleHeaderData *tup)
     492             : {
     493        1250 :     ItemPointerSetMovedPartitions(&tup->t_ctid);
     494        1250 : }
     495             : 
     496             : static inline uint32
     497     1672396 : HeapTupleHeaderGetDatumLength(const HeapTupleHeaderData *tup)
     498             : {
     499     1672396 :     return VARSIZE(tup);
     500             : }
     501             : 
     502             : static inline void
     503    23552224 : HeapTupleHeaderSetDatumLength(HeapTupleHeaderData *tup, uint32 len)
     504             : {
     505    23552224 :     SET_VARSIZE(tup, len);
     506    23552224 : }
     507             : 
     508             : static inline Oid
     509     1657036 : HeapTupleHeaderGetTypeId(const HeapTupleHeaderData *tup)
     510             : {
     511     1657036 :     return tup->t_choice.t_datum.datum_typeid;
     512             : }
     513             : 
     514             : static inline void
     515    23598176 : HeapTupleHeaderSetTypeId(HeapTupleHeaderData *tup, Oid datum_typeid)
     516             : {
     517    23598176 :     tup->t_choice.t_datum.datum_typeid = datum_typeid;
     518    23598176 : }
     519             : 
     520             : static inline int32
     521     1657036 : HeapTupleHeaderGetTypMod(const HeapTupleHeaderData *tup)
     522             : {
     523     1657036 :     return tup->t_choice.t_datum.datum_typmod;
     524             : }
     525             : 
     526             : static inline void
     527    23598176 : HeapTupleHeaderSetTypMod(HeapTupleHeaderData *tup, int32 typmod)
     528             : {
     529    23598176 :     tup->t_choice.t_datum.datum_typmod = typmod;
     530    23598176 : }
     531             : 
     532             : /*
     533             :  * Note that we stop considering a tuple HOT-updated as soon as it is known
     534             :  * aborted or the would-be updating transaction is known aborted.  For best
     535             :  * efficiency, check tuple visibility before using this function, so that the
     536             :  * INVALID bits will be as up to date as possible.
     537             :  */
     538             : static inline bool
     539    36466906 : HeapTupleHeaderIsHotUpdated(const HeapTupleHeaderData *tup)
     540             : {
     541             :     return
     542    38490902 :         (tup->t_infomask2 & HEAP_HOT_UPDATED) != 0 &&
     543    38490902 :         (tup->t_infomask & HEAP_XMAX_INVALID) == 0 &&
     544     2023996 :         !HeapTupleHeaderXminInvalid(tup);
     545             : }
     546             : 
     547             : static inline void
     548      342010 : HeapTupleHeaderSetHotUpdated(HeapTupleHeaderData *tup)
     549             : {
     550      342010 :     tup->t_infomask2 |= HEAP_HOT_UPDATED;
     551      342010 : }
     552             : 
     553             : static inline void
     554     4497578 : HeapTupleHeaderClearHotUpdated(HeapTupleHeaderData *tup)
     555             : {
     556     4497578 :     tup->t_infomask2 &= ~HEAP_HOT_UPDATED;
     557     4497578 : }
     558             : 
     559             : static inline bool
     560   117505144 : HeapTupleHeaderIsHeapOnly(const HeapTupleHeaderData *tup) \
     561             : {
     562   117505144 :     return (tup->t_infomask2 & HEAP_ONLY_TUPLE) != 0;
     563             : }
     564             : 
     565             : static inline void
     566      541564 : HeapTupleHeaderSetHeapOnly(HeapTupleHeaderData *tup)
     567             : {
     568      541564 :     tup->t_infomask2 |= HEAP_ONLY_TUPLE;
     569      541564 : }
     570             : 
     571             : static inline void
     572      616804 : HeapTupleHeaderClearHeapOnly(HeapTupleHeaderData *tup)
     573             : {
     574      616804 :     tup->t_infomask2 &= ~HEAP_ONLY_TUPLE;
     575      616804 : }
     576             : 
     577             : /*
     578             :  * These are used with both HeapTuple and MinimalTuple, so they must be
     579             :  * macros.
     580             :  */
     581             : 
     582             : #define HeapTupleHeaderGetNatts(tup) \
     583             :     ((tup)->t_infomask2 & HEAP_NATTS_MASK)
     584             : 
     585             : #define HeapTupleHeaderSetNatts(tup, natts) \
     586             : ( \
     587             :     (tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \
     588             : )
     589             : 
     590             : #define HeapTupleHeaderHasExternal(tup) \
     591             :         (((tup)->t_infomask & HEAP_HASEXTERNAL) != 0)
     592             : 
     593             : 
     594             : /*
     595             :  * BITMAPLEN(NATTS) -
     596             :  *      Computes size of null bitmap given number of data columns.
     597             :  */
     598             : static inline int
     599     7206432 : BITMAPLEN(int NATTS)
     600             : {
     601     7206432 :     return (NATTS + 7) / 8;
     602             : }
     603             : 
     604             : /*
     605             :  * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including
     606             :  * header and MAXALIGN alignment padding.  Basically it's BLCKSZ minus the
     607             :  * other stuff that has to be on a disk page.  Since heap pages use no
     608             :  * "special space", there's no deduction for that.
     609             :  *
     610             :  * NOTE: we allow for the ItemId that must point to the tuple, ensuring that
     611             :  * an otherwise-empty page can indeed hold a tuple of this size.  Because
     612             :  * ItemIds and tuples have different alignment requirements, don't assume that
     613             :  * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page.
     614             :  */
     615             : #define MaxHeapTupleSize  (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData)))
     616             : #define MinHeapTupleSize  MAXALIGN(SizeofHeapTupleHeader)
     617             : 
     618             : /*
     619             :  * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can
     620             :  * fit on one heap page.  (Note that indexes could have more, because they
     621             :  * use a smaller tuple header.)  We arrive at the divisor because each tuple
     622             :  * must be maxaligned, and it must have an associated line pointer.
     623             :  *
     624             :  * Note: with HOT, there could theoretically be more line pointers (not actual
     625             :  * tuples) than this on a heap page.  However we constrain the number of line
     626             :  * pointers to this anyway, to avoid excessive line-pointer bloat and not
     627             :  * require increases in the size of work arrays.
     628             :  */
     629             : #define MaxHeapTuplesPerPage    \
     630             :     ((int) ((BLCKSZ - SizeOfPageHeaderData) / \
     631             :             (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData))))
     632             : 
     633             : /*
     634             :  * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of
     635             :  * data fields of char(n) and similar types.  It need not have anything
     636             :  * directly to do with the *actual* upper limit of varlena values, which
     637             :  * is currently 1Gb (see TOAST structures in postgres.h).  I've set it
     638             :  * at 10Mb which seems like a reasonable number --- tgl 8/6/00.
     639             :  */
     640             : #define MaxAttrSize     (10 * 1024 * 1024)
     641             : 
     642             : 
     643             : /*
     644             :  * MinimalTuple is an alternative representation that is used for transient
     645             :  * tuples inside the executor, in places where transaction status information
     646             :  * is not required, the tuple rowtype is known, and shaving off a few bytes
     647             :  * is worthwhile because we need to store many tuples.  The representation
     648             :  * is chosen so that tuple access routines can work with either full or
     649             :  * minimal tuples via a HeapTupleData pointer structure.  The access routines
     650             :  * see no difference, except that they must not access the transaction status
     651             :  * or t_ctid fields because those aren't there.
     652             :  *
     653             :  * For the most part, MinimalTuples should be accessed via TupleTableSlot
     654             :  * routines.  These routines will prevent access to the "system columns"
     655             :  * and thereby prevent accidental use of the nonexistent fields.
     656             :  *
     657             :  * MinimalTupleData contains a length word, some padding, and fields matching
     658             :  * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so
     659             :  * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both
     660             :  * structs.   This makes data alignment rules equivalent in both cases.
     661             :  *
     662             :  * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is
     663             :  * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the
     664             :  * minimal tuple --- that is, where a full tuple matching the minimal tuple's
     665             :  * data would start.  This trick is what makes the structs seem equivalent.
     666             :  *
     667             :  * Note that t_hoff is computed the same as in a full tuple, hence it includes
     668             :  * the MINIMAL_TUPLE_OFFSET distance.  t_len does not include that, however.
     669             :  *
     670             :  * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data
     671             :  * other than the length word.  tuplesort.c and tuplestore.c use this to avoid
     672             :  * writing the padding to disk.
     673             :  */
     674             : #define MINIMAL_TUPLE_OFFSET \
     675             :     ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)
     676             : #define MINIMAL_TUPLE_PADDING \
     677             :     ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)
     678             : #define MINIMAL_TUPLE_DATA_OFFSET \
     679             :     offsetof(MinimalTupleData, t_infomask2)
     680             : 
     681             : struct MinimalTupleData
     682             : {
     683             :     uint32      t_len;          /* actual length of minimal tuple */
     684             : 
     685             :     char        mt_padding[MINIMAL_TUPLE_PADDING];
     686             : 
     687             :     /* Fields below here must match HeapTupleHeaderData! */
     688             : 
     689             :     uint16      t_infomask2;    /* number of attributes + various flags */
     690             : 
     691             :     uint16      t_infomask;     /* various flag bits, see below */
     692             : 
     693             :     uint8       t_hoff;         /* sizeof header incl. bitmap, padding */
     694             : 
     695             :     /* ^ - 23 bytes - ^ */
     696             : 
     697             :     bits8       t_bits[FLEXIBLE_ARRAY_MEMBER];  /* bitmap of NULLs */
     698             : 
     699             :     /* MORE DATA FOLLOWS AT END OF STRUCT */
     700             : };
     701             : 
     702             : /* typedef appears in htup.h */
     703             : 
     704             : #define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)
     705             : 
     706             : /*
     707             :  * MinimalTuple accessor functions
     708             :  */
     709             : 
     710             : static inline bool
     711    11113702 : HeapTupleHeaderHasMatch(const MinimalTupleData *tup)
     712             : {
     713    11113702 :     return (tup->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0;
     714             : }
     715             : 
     716             : static inline void
     717     5822672 : HeapTupleHeaderSetMatch(MinimalTupleData *tup)
     718             : {
     719     5822672 :     tup->t_infomask2 |= HEAP_TUPLE_HAS_MATCH;
     720     5822672 : }
     721             : 
     722             : static inline void
     723    10129456 : HeapTupleHeaderClearMatch(MinimalTupleData *tup)
     724             : {
     725    10129456 :     tup->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH;
     726    10129456 : }
     727             : 
     728             : 
     729             : /*
     730             :  * GETSTRUCT - given a HeapTuple pointer, return address of the user data
     731             :  */
     732             : static inline void *
     733   153817192 : GETSTRUCT(const HeapTupleData *tuple)
     734             : {
     735   153817192 :     return ((char *) (tuple->t_data) + tuple->t_data->t_hoff);
     736             : }
     737             : 
     738             : /*
     739             :  * Accessor functions to be used with HeapTuple pointers.
     740             :  */
     741             : 
     742             : static inline bool
     743   932002140 : HeapTupleHasNulls(const HeapTupleData *tuple)
     744             : {
     745   932002140 :     return (tuple->t_data->t_infomask & HEAP_HASNULL) != 0;
     746             : }
     747             : 
     748             : static inline bool
     749   455575596 : HeapTupleNoNulls(const HeapTupleData *tuple)
     750             : {
     751   455575596 :     return !HeapTupleHasNulls(tuple);
     752             : }
     753             : 
     754             : static inline bool
     755    48301222 : HeapTupleHasVarWidth(const HeapTupleData *tuple)
     756             : {
     757    48301222 :     return (tuple->t_data->t_infomask & HEAP_HASVARWIDTH) != 0;
     758             : }
     759             : 
     760             : static inline bool
     761             : HeapTupleAllFixed(const HeapTupleData *tuple)
     762             : {
     763             :     return !HeapTupleHasVarWidth(tuple);
     764             : }
     765             : 
     766             : static inline bool
     767    28136780 : HeapTupleHasExternal(const HeapTupleData *tuple)
     768             : {
     769    28136780 :     return (tuple->t_data->t_infomask & HEAP_HASEXTERNAL) != 0;
     770             : }
     771             : 
     772             : static inline bool
     773    14396986 : HeapTupleIsHotUpdated(const HeapTupleData *tuple)
     774             : {
     775    14396986 :     return HeapTupleHeaderIsHotUpdated(tuple->t_data);
     776             : }
     777             : 
     778             : static inline void
     779      270782 : HeapTupleSetHotUpdated(const HeapTupleData *tuple)
     780             : {
     781      270782 :     HeapTupleHeaderSetHotUpdated(tuple->t_data);
     782      270782 : }
     783             : 
     784             : static inline void
     785      593682 : HeapTupleClearHotUpdated(const HeapTupleData *tuple)
     786             : {
     787      593682 :     HeapTupleHeaderClearHotUpdated(tuple->t_data);
     788      593682 : }
     789             : 
     790             : static inline bool
     791    59678784 : HeapTupleIsHeapOnly(const HeapTupleData *tuple)
     792             : {
     793    59678784 :     return HeapTupleHeaderIsHeapOnly(tuple->t_data);
     794             : }
     795             : 
     796             : static inline void
     797      541564 : HeapTupleSetHeapOnly(const HeapTupleData *tuple)
     798             : {
     799      541564 :     HeapTupleHeaderSetHeapOnly(tuple->t_data);
     800      541564 : }
     801             : 
     802             : static inline void
     803      616804 : HeapTupleClearHeapOnly(const HeapTupleData *tuple)
     804             : {
     805      616804 :     HeapTupleHeaderClearHeapOnly(tuple->t_data);
     806      616804 : }
     807             : 
     808             : /* prototypes for functions in common/heaptuple.c */
     809             : extern Size heap_compute_data_size(TupleDesc tupleDesc,
     810             :                                    const Datum *values, const bool *isnull);
     811             : extern void heap_fill_tuple(TupleDesc tupleDesc,
     812             :                             const Datum *values, const bool *isnull,
     813             :                             char *data, Size data_size,
     814             :                             uint16 *infomask, bits8 *bit);
     815             : extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc);
     816             : extern Datum nocachegetattr(HeapTuple tup, int attnum,
     817             :                             TupleDesc tupleDesc);
     818             : extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
     819             :                              bool *isnull);
     820             : extern Datum getmissingattr(TupleDesc tupleDesc,
     821             :                             int attnum, bool *isnull);
     822             : extern HeapTuple heap_copytuple(HeapTuple tuple);
     823             : extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest);
     824             : extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc);
     825             : extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor,
     826             :                                  const Datum *values, const bool *isnull);
     827             : extern HeapTuple heap_modify_tuple(HeapTuple tuple,
     828             :                                    TupleDesc tupleDesc,
     829             :                                    const Datum *replValues,
     830             :                                    const bool *replIsnull,
     831             :                                    const bool *doReplace);
     832             : extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple,
     833             :                                            TupleDesc tupleDesc,
     834             :                                            int nCols,
     835             :                                            const int *replCols,
     836             :                                            const Datum *replValues,
     837             :                                            const bool *replIsnull);
     838             : extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
     839             :                               Datum *values, bool *isnull);
     840             : extern void heap_freetuple(HeapTuple htup);
     841             : extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor,
     842             :                                             const Datum *values, const bool *isnull);
     843             : extern void heap_free_minimal_tuple(MinimalTuple mtup);
     844             : extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup);
     845             : extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
     846             : extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup);
     847             : extern size_t varsize_any(void *p);
     848             : extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
     849             : extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
     850             : 
     851             : #ifndef FRONTEND
     852             : /*
     853             :  *  fastgetattr
     854             :  *      Fetch a user attribute's value as a Datum (might be either a
     855             :  *      value, or a pointer into the data area of the tuple).
     856             :  *
     857             :  *      This must not be used when a system attribute might be requested.
     858             :  *      Furthermore, the passed attnum MUST be valid.  Use heap_getattr()
     859             :  *      instead, if in doubt.
     860             :  *
     861             :  *      This gets called many times, so we macro the cacheable and NULL
     862             :  *      lookups, and call nocachegetattr() for the rest.
     863             :  */
     864             : static inline Datum
     865   266049954 : fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
     866             : {
     867             :     Assert(attnum > 0);
     868             : 
     869   266049954 :     *isnull = false;
     870   266049954 :     if (HeapTupleNoNulls(tup))
     871             :     {
     872             :         CompactAttribute *att;
     873             : 
     874   112087132 :         att = TupleDescCompactAttr(tupleDesc, attnum - 1);
     875   112087132 :         if (att->attcacheoff >= 0)
     876    67619514 :             return fetchatt(att, (char *) tup->t_data + tup->t_data->t_hoff +
     877             :                             att->attcacheoff);
     878             :         else
     879    44467618 :             return nocachegetattr(tup, attnum, tupleDesc);
     880             :     }
     881             :     else
     882             :     {
     883   153962822 :         if (att_isnull(attnum - 1, tup->t_data->t_bits))
     884             :         {
     885    18032368 :             *isnull = true;
     886    18032368 :             return (Datum) NULL;
     887             :         }
     888             :         else
     889   135930454 :             return nocachegetattr(tup, attnum, tupleDesc);
     890             :     }
     891             : }
     892             : 
     893             : /*
     894             :  *  heap_getattr
     895             :  *      Extract an attribute of a heap tuple and return it as a Datum.
     896             :  *      This works for either system or user attributes.  The given attnum
     897             :  *      is properly range-checked.
     898             :  *
     899             :  *      If the field in question has a NULL value, we return a zero Datum
     900             :  *      and set *isnull == true.  Otherwise, we set *isnull == false.
     901             :  *
     902             :  *      <tup> is the pointer to the heap tuple.  <attnum> is the attribute
     903             :  *      number of the column (field) caller wants.  <tupleDesc> is a
     904             :  *      pointer to the structure describing the row and all its fields.
     905             :  *
     906             :  */
     907             : static inline Datum
     908   248618022 : heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
     909             : {
     910   248618022 :     if (attnum > 0)
     911             :     {
     912   248618022 :         if (attnum > (int) HeapTupleHeaderGetNatts(tup->t_data))
     913         332 :             return getmissingattr(tupleDesc, attnum, isnull);
     914             :         else
     915   248617690 :             return fastgetattr(tup, attnum, tupleDesc, isnull);
     916             :     }
     917             :     else
     918           0 :         return heap_getsysattr(tup, attnum, tupleDesc, isnull);
     919             : }
     920             : #endif                          /* FRONTEND */
     921             : 
     922             : #endif                          /* HTUP_DETAILS_H */

Generated by: LCOV version 1.14