LCOV - code coverage report
Current view: top level - src/bin/pg_dump - pg_dump_sort.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 310 533 58.2 %
Date: 2024-10-10 04:14:55 Functions: 18 21 85.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * pg_dump_sort.c
       4             :  *    Sort the items of a dump into a safe order for dumping
       5             :  *
       6             :  *
       7             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
       8             :  * Portions Copyright (c) 1994, Regents of the University of California
       9             :  *
      10             :  *
      11             :  * IDENTIFICATION
      12             :  *    src/bin/pg_dump/pg_dump_sort.c
      13             :  *
      14             :  *-------------------------------------------------------------------------
      15             :  */
      16             : #include "postgres_fe.h"
      17             : 
      18             : #include "catalog/pg_class_d.h"
      19             : #include "common/int.h"
      20             : #include "lib/binaryheap.h"
      21             : #include "pg_backup_archiver.h"
      22             : #include "pg_backup_utils.h"
      23             : #include "pg_dump.h"
      24             : 
      25             : /*
      26             :  * Sort priority for database object types.
      27             :  * Objects are sorted by type, and within a type by name.
      28             :  *
      29             :  * Triggers, event triggers, and materialized views are intentionally sorted
      30             :  * late.  Triggers must be restored after all data modifications, so that
      31             :  * they don't interfere with loading data.  Event triggers are restored
      32             :  * next-to-last so that they don't interfere with object creations of any
      33             :  * kind.  Matview refreshes are last because they should execute in the
      34             :  * database's normal state (e.g., they must come after all ACLs are restored;
      35             :  * also, if they choose to look at system catalogs, they should see the final
      36             :  * restore state).  If you think to change this, see also the RestorePass
      37             :  * mechanism in pg_backup_archiver.c.
      38             :  *
      39             :  * On the other hand, casts are intentionally sorted earlier than you might
      40             :  * expect; logically they should come after functions, since they usually
      41             :  * depend on those.  This works around the backend's habit of recording
      42             :  * views that use casts as dependent on the cast's underlying function.
      43             :  * We initially sort casts first, and then any functions used by casts
      44             :  * will be hoisted above the casts, and in turn views that those functions
      45             :  * depend on will be hoisted above the functions.  But views not used that
      46             :  * way won't be hoisted.
      47             :  *
      48             :  * NOTE: object-type priorities must match the section assignments made in
      49             :  * pg_dump.c; that is, PRE_DATA objects must sort before DO_PRE_DATA_BOUNDARY,
      50             :  * POST_DATA objects must sort after DO_POST_DATA_BOUNDARY, and DATA objects
      51             :  * must sort between them.
      52             :  */
      53             : 
      54             : /* This enum lists the priority levels in order */
      55             : enum dbObjectTypePriorities
      56             : {
      57             :     PRIO_NAMESPACE = 1,
      58             :     PRIO_PROCLANG,
      59             :     PRIO_COLLATION,
      60             :     PRIO_TRANSFORM,
      61             :     PRIO_EXTENSION,
      62             :     PRIO_TYPE,                  /* used for DO_TYPE and DO_SHELL_TYPE */
      63             :     PRIO_CAST,
      64             :     PRIO_FUNC,
      65             :     PRIO_AGG,
      66             :     PRIO_ACCESS_METHOD,
      67             :     PRIO_OPERATOR,
      68             :     PRIO_OPFAMILY,              /* used for DO_OPFAMILY and DO_OPCLASS */
      69             :     PRIO_CONVERSION,
      70             :     PRIO_TSPARSER,
      71             :     PRIO_TSTEMPLATE,
      72             :     PRIO_TSDICT,
      73             :     PRIO_TSCONFIG,
      74             :     PRIO_FDW,
      75             :     PRIO_FOREIGN_SERVER,
      76             :     PRIO_TABLE,
      77             :     PRIO_TABLE_ATTACH,
      78             :     PRIO_DUMMY_TYPE,
      79             :     PRIO_ATTRDEF,
      80             :     PRIO_LARGE_OBJECT,
      81             :     PRIO_PRE_DATA_BOUNDARY,     /* boundary! */
      82             :     PRIO_TABLE_DATA,
      83             :     PRIO_SEQUENCE_SET,
      84             :     PRIO_LARGE_OBJECT_DATA,
      85             :     PRIO_POST_DATA_BOUNDARY,    /* boundary! */
      86             :     PRIO_CONSTRAINT,
      87             :     PRIO_INDEX,
      88             :     PRIO_INDEX_ATTACH,
      89             :     PRIO_STATSEXT,
      90             :     PRIO_RULE,
      91             :     PRIO_TRIGGER,
      92             :     PRIO_FK_CONSTRAINT,
      93             :     PRIO_POLICY,
      94             :     PRIO_PUBLICATION,
      95             :     PRIO_PUBLICATION_REL,
      96             :     PRIO_PUBLICATION_TABLE_IN_SCHEMA,
      97             :     PRIO_SUBSCRIPTION,
      98             :     PRIO_SUBSCRIPTION_REL,
      99             :     PRIO_DEFAULT_ACL,           /* done in ACL pass */
     100             :     PRIO_EVENT_TRIGGER,         /* must be next to last! */
     101             :     PRIO_REFRESH_MATVIEW        /* must be last! */
     102             : };
     103             : 
     104             : /* This table is indexed by enum DumpableObjectType */
     105             : static const int dbObjectTypePriority[] =
     106             : {
     107             :     [DO_NAMESPACE] = PRIO_NAMESPACE,
     108             :     [DO_EXTENSION] = PRIO_EXTENSION,
     109             :     [DO_TYPE] = PRIO_TYPE,
     110             :     [DO_SHELL_TYPE] = PRIO_TYPE,
     111             :     [DO_FUNC] = PRIO_FUNC,
     112             :     [DO_AGG] = PRIO_AGG,
     113             :     [DO_OPERATOR] = PRIO_OPERATOR,
     114             :     [DO_ACCESS_METHOD] = PRIO_ACCESS_METHOD,
     115             :     [DO_OPCLASS] = PRIO_OPFAMILY,
     116             :     [DO_OPFAMILY] = PRIO_OPFAMILY,
     117             :     [DO_COLLATION] = PRIO_COLLATION,
     118             :     [DO_CONVERSION] = PRIO_CONVERSION,
     119             :     [DO_TABLE] = PRIO_TABLE,
     120             :     [DO_TABLE_ATTACH] = PRIO_TABLE_ATTACH,
     121             :     [DO_ATTRDEF] = PRIO_ATTRDEF,
     122             :     [DO_INDEX] = PRIO_INDEX,
     123             :     [DO_INDEX_ATTACH] = PRIO_INDEX_ATTACH,
     124             :     [DO_STATSEXT] = PRIO_STATSEXT,
     125             :     [DO_RULE] = PRIO_RULE,
     126             :     [DO_TRIGGER] = PRIO_TRIGGER,
     127             :     [DO_CONSTRAINT] = PRIO_CONSTRAINT,
     128             :     [DO_FK_CONSTRAINT] = PRIO_FK_CONSTRAINT,
     129             :     [DO_PROCLANG] = PRIO_PROCLANG,
     130             :     [DO_CAST] = PRIO_CAST,
     131             :     [DO_TABLE_DATA] = PRIO_TABLE_DATA,
     132             :     [DO_SEQUENCE_SET] = PRIO_SEQUENCE_SET,
     133             :     [DO_DUMMY_TYPE] = PRIO_DUMMY_TYPE,
     134             :     [DO_TSPARSER] = PRIO_TSPARSER,
     135             :     [DO_TSDICT] = PRIO_TSDICT,
     136             :     [DO_TSTEMPLATE] = PRIO_TSTEMPLATE,
     137             :     [DO_TSCONFIG] = PRIO_TSCONFIG,
     138             :     [DO_FDW] = PRIO_FDW,
     139             :     [DO_FOREIGN_SERVER] = PRIO_FOREIGN_SERVER,
     140             :     [DO_DEFAULT_ACL] = PRIO_DEFAULT_ACL,
     141             :     [DO_TRANSFORM] = PRIO_TRANSFORM,
     142             :     [DO_LARGE_OBJECT] = PRIO_LARGE_OBJECT,
     143             :     [DO_LARGE_OBJECT_DATA] = PRIO_LARGE_OBJECT_DATA,
     144             :     [DO_PRE_DATA_BOUNDARY] = PRIO_PRE_DATA_BOUNDARY,
     145             :     [DO_POST_DATA_BOUNDARY] = PRIO_POST_DATA_BOUNDARY,
     146             :     [DO_EVENT_TRIGGER] = PRIO_EVENT_TRIGGER,
     147             :     [DO_REFRESH_MATVIEW] = PRIO_REFRESH_MATVIEW,
     148             :     [DO_POLICY] = PRIO_POLICY,
     149             :     [DO_PUBLICATION] = PRIO_PUBLICATION,
     150             :     [DO_PUBLICATION_REL] = PRIO_PUBLICATION_REL,
     151             :     [DO_PUBLICATION_TABLE_IN_SCHEMA] = PRIO_PUBLICATION_TABLE_IN_SCHEMA,
     152             :     [DO_SUBSCRIPTION] = PRIO_SUBSCRIPTION,
     153             :     [DO_SUBSCRIPTION_REL] = PRIO_SUBSCRIPTION_REL,
     154             : };
     155             : 
     156             : StaticAssertDecl(lengthof(dbObjectTypePriority) == (DO_SUBSCRIPTION_REL + 1),
     157             :                  "array length mismatch");
     158             : 
     159             : static DumpId preDataBoundId;
     160             : static DumpId postDataBoundId;
     161             : 
     162             : 
     163             : static int  DOTypeNameCompare(const void *p1, const void *p2);
     164             : static bool TopoSort(DumpableObject **objs,
     165             :                      int numObjs,
     166             :                      DumpableObject **ordering,
     167             :                      int *nOrdering);
     168             : static void findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs);
     169             : static int  findLoop(DumpableObject *obj,
     170             :                      DumpId startPoint,
     171             :                      bool *processed,
     172             :                      DumpId *searchFailed,
     173             :                      DumpableObject **workspace,
     174             :                      int depth);
     175             : static void repairDependencyLoop(DumpableObject **loop,
     176             :                                  int nLoop);
     177             : static void describeDumpableObject(DumpableObject *obj,
     178             :                                    char *buf, int bufsize);
     179             : static int  int_cmp(void *a, void *b, void *arg);
     180             : 
     181             : 
     182             : /*
     183             :  * Sort the given objects into a type/name-based ordering
     184             :  *
     185             :  * Normally this is just the starting point for the dependency-based
     186             :  * ordering.
     187             :  */
     188             : void
     189         308 : sortDumpableObjectsByTypeName(DumpableObject **objs, int numObjs)
     190             : {
     191         308 :     if (numObjs > 1)
     192         308 :         qsort(objs, numObjs, sizeof(DumpableObject *),
     193             :               DOTypeNameCompare);
     194         308 : }
     195             : 
     196             : static int
     197    14126476 : DOTypeNameCompare(const void *p1, const void *p2)
     198             : {
     199    14126476 :     DumpableObject *obj1 = *(DumpableObject *const *) p1;
     200    14126476 :     DumpableObject *obj2 = *(DumpableObject *const *) p2;
     201             :     int         cmpval;
     202             : 
     203             :     /* Sort by type's priority */
     204    14126476 :     cmpval = dbObjectTypePriority[obj1->objType] -
     205    14126476 :         dbObjectTypePriority[obj2->objType];
     206             : 
     207    14126476 :     if (cmpval != 0)
     208     3537892 :         return cmpval;
     209             : 
     210             :     /*
     211             :      * Sort by namespace.  Typically, all objects of the same priority would
     212             :      * either have or not have a namespace link, but there are exceptions.
     213             :      * Sort NULL namespace after non-NULL in such cases.
     214             :      */
     215    10588584 :     if (obj1->namespace)
     216             :     {
     217    10011718 :         if (obj2->namespace)
     218             :         {
     219    10011630 :             cmpval = strcmp(obj1->namespace->dobj.name,
     220    10011630 :                             obj2->namespace->dobj.name);
     221    10011630 :             if (cmpval != 0)
     222      446522 :                 return cmpval;
     223             :         }
     224             :         else
     225          88 :             return -1;
     226             :     }
     227      576866 :     else if (obj2->namespace)
     228          88 :         return 1;
     229             : 
     230             :     /* Sort by name */
     231    10141886 :     cmpval = strcmp(obj1->name, obj2->name);
     232    10141886 :     if (cmpval != 0)
     233     8593618 :         return cmpval;
     234             : 
     235             :     /* To have a stable sort order, break ties for some object types */
     236     1548268 :     if (obj1->objType == DO_FUNC || obj1->objType == DO_AGG)
     237           0 :     {
     238         146 :         FuncInfo   *fobj1 = *(FuncInfo *const *) p1;
     239         146 :         FuncInfo   *fobj2 = *(FuncInfo *const *) p2;
     240             :         int         i;
     241             : 
     242             :         /* Sort by number of arguments, then argument type names */
     243         146 :         cmpval = fobj1->nargs - fobj2->nargs;
     244         146 :         if (cmpval != 0)
     245          30 :             return cmpval;
     246         130 :         for (i = 0; i < fobj1->nargs; i++)
     247             :         {
     248         130 :             TypeInfo   *argtype1 = findTypeByOid(fobj1->argtypes[i]);
     249         130 :             TypeInfo   *argtype2 = findTypeByOid(fobj2->argtypes[i]);
     250             : 
     251         130 :             if (argtype1 && argtype2)
     252             :             {
     253         130 :                 if (argtype1->dobj.namespace && argtype2->dobj.namespace)
     254             :                 {
     255         130 :                     cmpval = strcmp(argtype1->dobj.namespace->dobj.name,
     256         130 :                                     argtype2->dobj.namespace->dobj.name);
     257         130 :                     if (cmpval != 0)
     258          26 :                         return cmpval;
     259             :                 }
     260         104 :                 cmpval = strcmp(argtype1->dobj.name, argtype2->dobj.name);
     261         104 :                 if (cmpval != 0)
     262          90 :                     return cmpval;
     263             :             }
     264             :         }
     265             :     }
     266     1548122 :     else if (obj1->objType == DO_OPERATOR)
     267             :     {
     268     1131648 :         OprInfo    *oobj1 = *(OprInfo *const *) p1;
     269     1131648 :         OprInfo    *oobj2 = *(OprInfo *const *) p2;
     270             : 
     271             :         /* oprkind is 'l', 'r', or 'b'; this sorts prefix, postfix, infix */
     272     1131648 :         cmpval = (oobj2->oprkind - oobj1->oprkind);
     273     1131648 :         if (cmpval != 0)
     274       27614 :             return cmpval;
     275             :     }
     276      416474 :     else if (obj1->objType == DO_ATTRDEF)
     277             :     {
     278         450 :         AttrDefInfo *adobj1 = *(AttrDefInfo *const *) p1;
     279         450 :         AttrDefInfo *adobj2 = *(AttrDefInfo *const *) p2;
     280             : 
     281             :         /* Sort by attribute number */
     282         450 :         cmpval = (adobj1->adnum - adobj2->adnum);
     283         450 :         if (cmpval != 0)
     284         450 :             return cmpval;
     285             :     }
     286      416024 :     else if (obj1->objType == DO_POLICY)
     287             :     {
     288          50 :         PolicyInfo *pobj1 = *(PolicyInfo *const *) p1;
     289          50 :         PolicyInfo *pobj2 = *(PolicyInfo *const *) p2;
     290             : 
     291             :         /* Sort by table name (table namespace was considered already) */
     292          50 :         cmpval = strcmp(pobj1->poltable->dobj.name,
     293          50 :                         pobj2->poltable->dobj.name);
     294          50 :         if (cmpval != 0)
     295          50 :             return cmpval;
     296             :     }
     297      415974 :     else if (obj1->objType == DO_TRIGGER)
     298             :     {
     299         724 :         TriggerInfo *tobj1 = *(TriggerInfo *const *) p1;
     300         724 :         TriggerInfo *tobj2 = *(TriggerInfo *const *) p2;
     301             : 
     302             :         /* Sort by table name (table namespace was considered already) */
     303         724 :         cmpval = strcmp(tobj1->tgtable->dobj.name,
     304         724 :                         tobj2->tgtable->dobj.name);
     305         724 :         if (cmpval != 0)
     306         724 :             return cmpval;
     307             :     }
     308             : 
     309             :     /* Usually shouldn't get here, but if we do, sort by OID */
     310     1519284 :     return oidcmp(obj1->catId.oid, obj2->catId.oid);
     311             : }
     312             : 
     313             : 
     314             : /*
     315             :  * Sort the given objects into a safe dump order using dependency
     316             :  * information (to the extent we have it available).
     317             :  *
     318             :  * The DumpIds of the PRE_DATA_BOUNDARY and POST_DATA_BOUNDARY objects are
     319             :  * passed in separately, in case we need them during dependency loop repair.
     320             :  */
     321             : void
     322         308 : sortDumpableObjects(DumpableObject **objs, int numObjs,
     323             :                     DumpId preBoundaryId, DumpId postBoundaryId)
     324             : {
     325             :     DumpableObject **ordering;
     326             :     int         nOrdering;
     327             : 
     328         308 :     if (numObjs <= 0)            /* can't happen anymore ... */
     329           0 :         return;
     330             : 
     331             :     /*
     332             :      * Saving the boundary IDs in static variables is a bit grotty, but seems
     333             :      * better than adding them to parameter lists of subsidiary functions.
     334             :      */
     335         308 :     preDataBoundId = preBoundaryId;
     336         308 :     postDataBoundId = postBoundaryId;
     337             : 
     338         308 :     ordering = (DumpableObject **) pg_malloc(numObjs * sizeof(DumpableObject *));
     339         908 :     while (!TopoSort(objs, numObjs, ordering, &nOrdering))
     340         600 :         findDependencyLoops(ordering, nOrdering, numObjs);
     341             : 
     342         308 :     memcpy(objs, ordering, numObjs * sizeof(DumpableObject *));
     343             : 
     344         308 :     free(ordering);
     345             : }
     346             : 
     347             : /*
     348             :  * TopoSort -- topological sort of a dump list
     349             :  *
     350             :  * Generate a re-ordering of the dump list that satisfies all the dependency
     351             :  * constraints shown in the dump list.  (Each such constraint is a fact of a
     352             :  * partial ordering.)  Minimize rearrangement of the list not needed to
     353             :  * achieve the partial ordering.
     354             :  *
     355             :  * The input is the list of numObjs objects in objs[].  This list is not
     356             :  * modified.
     357             :  *
     358             :  * Returns true if able to build an ordering that satisfies all the
     359             :  * constraints, false if not (there are contradictory constraints).
     360             :  *
     361             :  * On success (true result), ordering[] is filled with a sorted array of
     362             :  * DumpableObject pointers, of length equal to the input list length.
     363             :  *
     364             :  * On failure (false result), ordering[] is filled with an unsorted array of
     365             :  * DumpableObject pointers of length *nOrdering, listing the objects that
     366             :  * prevented the sort from being completed.  In general, these objects either
     367             :  * participate directly in a dependency cycle, or are depended on by objects
     368             :  * that are in a cycle.  (The latter objects are not actually problematic,
     369             :  * but it takes further analysis to identify which are which.)
     370             :  *
     371             :  * The caller is responsible for allocating sufficient space at *ordering.
     372             :  */
     373             : static bool
     374         908 : TopoSort(DumpableObject **objs,
     375             :          int numObjs,
     376             :          DumpableObject **ordering, /* output argument */
     377             :          int *nOrdering)        /* output argument */
     378             : {
     379         908 :     DumpId      maxDumpId = getMaxDumpId();
     380             :     binaryheap *pendingHeap;
     381             :     int        *beforeConstraints;
     382             :     int        *idMap;
     383             :     DumpableObject *obj;
     384             :     int         i,
     385             :                 j,
     386             :                 k;
     387             : 
     388             :     /*
     389             :      * This is basically the same algorithm shown for topological sorting in
     390             :      * Knuth's Volume 1.  However, we would like to minimize unnecessary
     391             :      * rearrangement of the input ordering; that is, when we have a choice of
     392             :      * which item to output next, we always want to take the one highest in
     393             :      * the original list.  Therefore, instead of maintaining an unordered
     394             :      * linked list of items-ready-to-output as Knuth does, we maintain a heap
     395             :      * of their item numbers, which we can use as a priority queue.  This
     396             :      * turns the algorithm from O(N) to O(N log N) because each insertion or
     397             :      * removal of a heap item takes O(log N) time.  However, that's still
     398             :      * plenty fast enough for this application.
     399             :      */
     400             : 
     401         908 :     *nOrdering = numObjs;       /* for success return */
     402             : 
     403             :     /* Eliminate the null case */
     404         908 :     if (numObjs <= 0)
     405           0 :         return true;
     406             : 
     407             :     /* Create workspace for the above-described heap */
     408         908 :     pendingHeap = binaryheap_allocate(numObjs, int_cmp, NULL);
     409             : 
     410             :     /*
     411             :      * Scan the constraints, and for each item in the input, generate a count
     412             :      * of the number of constraints that say it must be before something else.
     413             :      * The count for the item with dumpId j is stored in beforeConstraints[j].
     414             :      * We also make a map showing the input-order index of the item with
     415             :      * dumpId j.
     416             :      */
     417         908 :     beforeConstraints = (int *) pg_malloc0((maxDumpId + 1) * sizeof(int));
     418         908 :     idMap = (int *) pg_malloc((maxDumpId + 1) * sizeof(int));
     419     3525034 :     for (i = 0; i < numObjs; i++)
     420             :     {
     421     3524126 :         obj = objs[i];
     422     3524126 :         j = obj->dumpId;
     423     3524126 :         if (j <= 0 || j > maxDumpId)
     424           0 :             pg_fatal("invalid dumpId %d", j);
     425     3524126 :         idMap[j] = i;
     426     9136444 :         for (j = 0; j < obj->nDeps; j++)
     427             :         {
     428     5612318 :             k = obj->dependencies[j];
     429     5612318 :             if (k <= 0 || k > maxDumpId)
     430           0 :                 pg_fatal("invalid dependency %d", k);
     431     5612318 :             beforeConstraints[k]++;
     432             :         }
     433             :     }
     434             : 
     435             :     /*
     436             :      * Now initialize the heap of items-ready-to-output by filling it with the
     437             :      * indexes of items that already have beforeConstraints[id] == 0.
     438             :      *
     439             :      * We enter the indexes into pendingHeap in decreasing order so that the
     440             :      * heap invariant is satisfied at the completion of this loop.  This
     441             :      * reduces the amount of work that binaryheap_build() must do.
     442             :      */
     443     3525034 :     for (i = numObjs; --i >= 0;)
     444             :     {
     445     3524126 :         if (beforeConstraints[objs[i]->dumpId] == 0)
     446       48952 :             binaryheap_add_unordered(pendingHeap, (void *) (intptr_t) i);
     447             :     }
     448         908 :     binaryheap_build(pendingHeap);
     449             : 
     450             :     /*--------------------
     451             :      * Now emit objects, working backwards in the output list.  At each step,
     452             :      * we use the priority heap to select the last item that has no remaining
     453             :      * before-constraints.  We remove that item from the heap, output it to
     454             :      * ordering[], and decrease the beforeConstraints count of each of the
     455             :      * items it was constrained against.  Whenever an item's beforeConstraints
     456             :      * count is thereby decreased to zero, we insert it into the priority heap
     457             :      * to show that it is a candidate to output.  We are done when the heap
     458             :      * becomes empty; if we have output every element then we succeeded,
     459             :      * otherwise we failed.
     460             :      * i = number of ordering[] entries left to output
     461             :      * j = objs[] index of item we are outputting
     462             :      * k = temp for scanning constraint list for item j
     463             :      *--------------------
     464             :      */
     465         908 :     i = numObjs;
     466     2175582 :     while (!binaryheap_empty(pendingHeap))
     467             :     {
     468             :         /* Select object to output by removing largest heap member */
     469     2174674 :         j = (int) (intptr_t) binaryheap_remove_first(pendingHeap);
     470     2174674 :         obj = objs[j];
     471             :         /* Output candidate to ordering[] */
     472     2174674 :         ordering[--i] = obj;
     473             :         /* Update beforeConstraints counts of its predecessors */
     474     5430042 :         for (k = 0; k < obj->nDeps; k++)
     475             :         {
     476     3255368 :             int         id = obj->dependencies[k];
     477             : 
     478     3255368 :             if ((--beforeConstraints[id]) == 0)
     479     2125722 :                 binaryheap_add(pendingHeap, (void *) (intptr_t) idMap[id]);
     480             :         }
     481             :     }
     482             : 
     483             :     /*
     484             :      * If we failed, report the objects that couldn't be output; these are the
     485             :      * ones with beforeConstraints[] still nonzero.
     486             :      */
     487         908 :     if (i != 0)
     488             :     {
     489         600 :         k = 0;
     490     2400228 :         for (j = 1; j <= maxDumpId; j++)
     491             :         {
     492     2399628 :             if (beforeConstraints[j] != 0)
     493     1349452 :                 ordering[k++] = objs[idMap[j]];
     494             :         }
     495         600 :         *nOrdering = k;
     496             :     }
     497             : 
     498             :     /* Done */
     499         908 :     binaryheap_free(pendingHeap);
     500         908 :     free(beforeConstraints);
     501         908 :     free(idMap);
     502             : 
     503         908 :     return (i == 0);
     504             : }
     505             : 
     506             : /*
     507             :  * findDependencyLoops - identify loops in TopoSort's failure output,
     508             :  *      and pass each such loop to repairDependencyLoop() for action
     509             :  *
     510             :  * In general there may be many loops in the set of objects returned by
     511             :  * TopoSort; for speed we should try to repair as many loops as we can
     512             :  * before trying TopoSort again.  We can safely repair loops that are
     513             :  * disjoint (have no members in common); if we find overlapping loops
     514             :  * then we repair only the first one found, because the action taken to
     515             :  * repair the first might have repaired the other as well.  (If not,
     516             :  * we'll fix it on the next go-round.)
     517             :  *
     518             :  * objs[] lists the objects TopoSort couldn't sort
     519             :  * nObjs is the number of such objects
     520             :  * totObjs is the total number of objects in the universe
     521             :  */
     522             : static void
     523         600 : findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs)
     524             : {
     525             :     /*
     526             :      * We use three data structures here:
     527             :      *
     528             :      * processed[] is a bool array indexed by dump ID, marking the objects
     529             :      * already processed during this invocation of findDependencyLoops().
     530             :      *
     531             :      * searchFailed[] is another array indexed by dump ID.  searchFailed[j] is
     532             :      * set to dump ID k if we have proven that there is no dependency path
     533             :      * leading from object j back to start point k.  This allows us to skip
     534             :      * useless searching when there are multiple dependency paths from k to j,
     535             :      * which is a common situation.  We could use a simple bool array for
     536             :      * this, but then we'd need to re-zero it for each start point, resulting
     537             :      * in O(N^2) zeroing work.  Using the start point's dump ID as the "true"
     538             :      * value lets us skip clearing the array before we consider the next start
     539             :      * point.
     540             :      *
     541             :      * workspace[] is an array of DumpableObject pointers, in which we try to
     542             :      * build lists of objects constituting loops.  We make workspace[] large
     543             :      * enough to hold all the objects in TopoSort's output, which is huge
     544             :      * overkill in most cases but could theoretically be necessary if there is
     545             :      * a single dependency chain linking all the objects.
     546             :      */
     547             :     bool       *processed;
     548             :     DumpId     *searchFailed;
     549             :     DumpableObject **workspace;
     550             :     bool        fixedloop;
     551             :     int         i;
     552             : 
     553         600 :     processed = (bool *) pg_malloc0((getMaxDumpId() + 1) * sizeof(bool));
     554         600 :     searchFailed = (DumpId *) pg_malloc0((getMaxDumpId() + 1) * sizeof(DumpId));
     555         600 :     workspace = (DumpableObject **) pg_malloc(totObjs * sizeof(DumpableObject *));
     556         600 :     fixedloop = false;
     557             : 
     558     1350052 :     for (i = 0; i < nObjs; i++)
     559             :     {
     560     1349452 :         DumpableObject *obj = objs[i];
     561             :         int         looplen;
     562             :         int         j;
     563             : 
     564     1349452 :         looplen = findLoop(obj,
     565             :                            obj->dumpId,
     566             :                            processed,
     567             :                            searchFailed,
     568             :                            workspace,
     569             :                            0);
     570             : 
     571     1349452 :         if (looplen > 0)
     572             :         {
     573             :             /* Found a loop, repair it */
     574       50518 :             repairDependencyLoop(workspace, looplen);
     575       50518 :             fixedloop = true;
     576             :             /* Mark loop members as processed */
     577      151748 :             for (j = 0; j < looplen; j++)
     578      101230 :                 processed[workspace[j]->dumpId] = true;
     579             :         }
     580             :         else
     581             :         {
     582             :             /*
     583             :              * There's no loop starting at this object, but mark it processed
     584             :              * anyway.  This is not necessary for correctness, but saves later
     585             :              * invocations of findLoop() from uselessly chasing references to
     586             :              * such an object.
     587             :              */
     588     1298934 :             processed[obj->dumpId] = true;
     589             :         }
     590             :     }
     591             : 
     592             :     /* We'd better have fixed at least one loop */
     593         600 :     if (!fixedloop)
     594           0 :         pg_fatal("could not identify dependency loop");
     595             : 
     596         600 :     free(workspace);
     597         600 :     free(searchFailed);
     598         600 :     free(processed);
     599         600 : }
     600             : 
     601             : /*
     602             :  * Recursively search for a circular dependency loop that doesn't include
     603             :  * any already-processed objects.
     604             :  *
     605             :  *  obj: object we are examining now
     606             :  *  startPoint: dumpId of starting object for the hoped-for circular loop
     607             :  *  processed[]: flag array marking already-processed objects
     608             :  *  searchFailed[]: flag array marking already-unsuccessfully-visited objects
     609             :  *  workspace[]: work array in which we are building list of loop members
     610             :  *  depth: number of valid entries in workspace[] at call
     611             :  *
     612             :  * On success, the length of the loop is returned, and workspace[] is filled
     613             :  * with pointers to the members of the loop.  On failure, we return 0.
     614             :  *
     615             :  * Note: it is possible that the given starting object is a member of more
     616             :  * than one cycle; if so, we will find an arbitrary one of the cycles.
     617             :  */
     618             : static int
     619    36335124 : findLoop(DumpableObject *obj,
     620             :          DumpId startPoint,
     621             :          bool *processed,
     622             :          DumpId *searchFailed,
     623             :          DumpableObject **workspace,
     624             :          int depth)
     625             : {
     626             :     int         i;
     627             : 
     628             :     /*
     629             :      * Reject if obj is already processed.  This test prevents us from finding
     630             :      * loops that overlap previously-processed loops.
     631             :      */
     632    36335124 :     if (processed[obj->dumpId])
     633    34570122 :         return 0;
     634             : 
     635             :     /*
     636             :      * If we've already proven there is no path from this object back to the
     637             :      * startPoint, forget it.
     638             :      */
     639     1765002 :     if (searchFailed[obj->dumpId] == startPoint)
     640      191780 :         return 0;
     641             : 
     642             :     /*
     643             :      * Reject if obj is already present in workspace.  This test prevents us
     644             :      * from going into infinite recursion if we are given a startPoint object
     645             :      * that links to a cycle it's not a member of, and it guarantees that we
     646             :      * can't overflow the allocated size of workspace[].
     647             :      */
     648     2460962 :     for (i = 0; i < depth; i++)
     649             :     {
     650      889226 :         if (workspace[i] == obj)
     651        1486 :             return 0;
     652             :     }
     653             : 
     654             :     /*
     655             :      * Okay, tentatively add obj to workspace
     656             :      */
     657     1571736 :     workspace[depth++] = obj;
     658             : 
     659             :     /*
     660             :      * See if we've found a loop back to the desired startPoint; if so, done
     661             :      */
     662    37263050 :     for (i = 0; i < obj->nDeps; i++)
     663             :     {
     664    35741832 :         if (obj->dependencies[i] == startPoint)
     665       50518 :             return depth;
     666             :     }
     667             : 
     668             :     /*
     669             :      * Recurse down each outgoing branch
     670             :      */
     671    36456178 :     for (i = 0; i < obj->nDeps; i++)
     672             :     {
     673    34985672 :         DumpableObject *nextobj = findObjectByDumpId(obj->dependencies[i]);
     674             :         int         newDepth;
     675             : 
     676    34985672 :         if (!nextobj)
     677           0 :             continue;           /* ignore dependencies on undumped objects */
     678    34985672 :         newDepth = findLoop(nextobj,
     679             :                             startPoint,
     680             :                             processed,
     681             :                             searchFailed,
     682             :                             workspace,
     683             :                             depth);
     684    34985672 :         if (newDepth > 0)
     685       50712 :             return newDepth;
     686             :     }
     687             : 
     688             :     /*
     689             :      * Remember there is no path from here back to startPoint
     690             :      */
     691     1470506 :     searchFailed[obj->dumpId] = startPoint;
     692             : 
     693     1470506 :     return 0;
     694             : }
     695             : 
     696             : /*
     697             :  * A user-defined datatype will have a dependency loop with each of its
     698             :  * I/O functions (since those have the datatype as input or output).
     699             :  * Similarly, a range type will have a loop with its canonicalize function,
     700             :  * if any.  Break the loop by making the function depend on the associated
     701             :  * shell type, instead.
     702             :  */
     703             : static void
     704         368 : repairTypeFuncLoop(DumpableObject *typeobj, DumpableObject *funcobj)
     705             : {
     706         368 :     TypeInfo   *typeInfo = (TypeInfo *) typeobj;
     707             : 
     708             :     /* remove function's dependency on type */
     709         368 :     removeObjectDependency(funcobj, typeobj->dumpId);
     710             : 
     711             :     /* add function's dependency on shell type, instead */
     712         368 :     if (typeInfo->shellType)
     713             :     {
     714         284 :         addObjectDependency(funcobj, typeInfo->shellType->dobj.dumpId);
     715             : 
     716             :         /*
     717             :          * Mark shell type (always including the definition, as we need the
     718             :          * shell type defined to identify the function fully) as to be dumped
     719             :          * if any such function is
     720             :          */
     721         284 :         if (funcobj->dump)
     722         284 :             typeInfo->shellType->dobj.dump = funcobj->dump |
     723             :                 DUMP_COMPONENT_DEFINITION;
     724             :     }
     725         368 : }
     726             : 
     727             : /*
     728             :  * Because we force a view to depend on its ON SELECT rule, while there
     729             :  * will be an implicit dependency in the other direction, we need to break
     730             :  * the loop.  If there are no other objects in the loop then we can remove
     731             :  * the implicit dependency and leave the ON SELECT rule non-separate.
     732             :  * This applies to matviews, as well.
     733             :  */
     734             : static void
     735       45688 : repairViewRuleLoop(DumpableObject *viewobj,
     736             :                    DumpableObject *ruleobj)
     737             : {
     738             :     /* remove rule's dependency on view */
     739       45688 :     removeObjectDependency(ruleobj, viewobj->dumpId);
     740             :     /* flags on the two objects are already set correctly for this case */
     741       45688 : }
     742             : 
     743             : /*
     744             :  * However, if there are other objects in the loop, we must break the loop
     745             :  * by making the ON SELECT rule a separately-dumped object.
     746             :  *
     747             :  * Because findLoop() finds shorter cycles before longer ones, it's likely
     748             :  * that we will have previously fired repairViewRuleLoop() and removed the
     749             :  * rule's dependency on the view.  Put it back to ensure the rule won't be
     750             :  * emitted before the view.
     751             :  *
     752             :  * Note: this approach does *not* work for matviews, at the moment.
     753             :  */
     754             : static void
     755          20 : repairViewRuleMultiLoop(DumpableObject *viewobj,
     756             :                         DumpableObject *ruleobj)
     757             : {
     758          20 :     TableInfo  *viewinfo = (TableInfo *) viewobj;
     759          20 :     RuleInfo   *ruleinfo = (RuleInfo *) ruleobj;
     760             : 
     761             :     /* remove view's dependency on rule */
     762          20 :     removeObjectDependency(viewobj, ruleobj->dumpId);
     763             :     /* mark view to be printed with a dummy definition */
     764          20 :     viewinfo->dummy_view = true;
     765             :     /* mark rule as needing its own dump */
     766          20 :     ruleinfo->separate = true;
     767             :     /* put back rule's dependency on view */
     768          20 :     addObjectDependency(ruleobj, viewobj->dumpId);
     769             :     /* now that rule is separate, it must be post-data */
     770          20 :     addObjectDependency(ruleobj, postDataBoundId);
     771          20 : }
     772             : 
     773             : /*
     774             :  * If a matview is involved in a multi-object loop, we can't currently fix
     775             :  * that by splitting off the rule.  As a stopgap, we try to fix it by
     776             :  * dropping the constraint that the matview be dumped in the pre-data section.
     777             :  * This is sufficient to handle cases where a matview depends on some unique
     778             :  * index, as can happen if it has a GROUP BY for example.
     779             :  *
     780             :  * Note that the "next object" is not necessarily the matview itself;
     781             :  * it could be the matview's rowtype, for example.  We may come through here
     782             :  * several times while removing all the pre-data linkages.  In particular,
     783             :  * if there are other matviews that depend on the one with the circularity
     784             :  * problem, we'll come through here for each such matview and mark them all
     785             :  * as postponed.  (This works because all MVs have pre-data dependencies
     786             :  * to begin with, so each of them will get visited.)
     787             :  */
     788             : static void
     789         216 : repairMatViewBoundaryMultiLoop(DumpableObject *boundaryobj,
     790             :                                DumpableObject *nextobj)
     791             : {
     792             :     /* remove boundary's dependency on object after it in loop */
     793         216 :     removeObjectDependency(boundaryobj, nextobj->dumpId);
     794             :     /* if that object is a matview, mark it as postponed into post-data */
     795         216 :     if (nextobj->objType == DO_TABLE)
     796             :     {
     797          72 :         TableInfo  *nextinfo = (TableInfo *) nextobj;
     798             : 
     799          72 :         if (nextinfo->relkind == RELKIND_MATVIEW)
     800          72 :             nextinfo->postponed_def = true;
     801             :     }
     802         216 : }
     803             : 
     804             : /*
     805             :  * If a function is involved in a multi-object loop, we can't currently fix
     806             :  * that by splitting it into two DumpableObjects.  As a stopgap, we try to fix
     807             :  * it by dropping the constraint that the function be dumped in the pre-data
     808             :  * section.  This is sufficient to handle cases where a function depends on
     809             :  * some unique index, as can happen if it has a GROUP BY for example.
     810             :  */
     811             : static void
     812          72 : repairFunctionBoundaryMultiLoop(DumpableObject *boundaryobj,
     813             :                                 DumpableObject *nextobj)
     814             : {
     815             :     /* remove boundary's dependency on object after it in loop */
     816          72 :     removeObjectDependency(boundaryobj, nextobj->dumpId);
     817             :     /* if that object is a function, mark it as postponed into post-data */
     818          72 :     if (nextobj->objType == DO_FUNC)
     819             :     {
     820          72 :         FuncInfo   *nextinfo = (FuncInfo *) nextobj;
     821             : 
     822          72 :         nextinfo->postponed_def = true;
     823             :     }
     824          72 : }
     825             : 
     826             : /*
     827             :  * Because we make tables depend on their CHECK constraints, while there
     828             :  * will be an automatic dependency in the other direction, we need to break
     829             :  * the loop.  If there are no other objects in the loop then we can remove
     830             :  * the automatic dependency and leave the CHECK constraint non-separate.
     831             :  */
     832             : static void
     833        1016 : repairTableConstraintLoop(DumpableObject *tableobj,
     834             :                           DumpableObject *constraintobj)
     835             : {
     836             :     /* remove constraint's dependency on table */
     837        1016 :     removeObjectDependency(constraintobj, tableobj->dumpId);
     838        1016 : }
     839             : 
     840             : /*
     841             :  * However, if there are other objects in the loop, we must break the loop
     842             :  * by making the CHECK constraint a separately-dumped object.
     843             :  *
     844             :  * Because findLoop() finds shorter cycles before longer ones, it's likely
     845             :  * that we will have previously fired repairTableConstraintLoop() and
     846             :  * removed the constraint's dependency on the table.  Put it back to ensure
     847             :  * the constraint won't be emitted before the table...
     848             :  */
     849             : static void
     850          10 : repairTableConstraintMultiLoop(DumpableObject *tableobj,
     851             :                                DumpableObject *constraintobj)
     852             : {
     853             :     /* remove table's dependency on constraint */
     854          10 :     removeObjectDependency(tableobj, constraintobj->dumpId);
     855             :     /* mark constraint as needing its own dump */
     856          10 :     ((ConstraintInfo *) constraintobj)->separate = true;
     857             :     /* put back constraint's dependency on table */
     858          10 :     addObjectDependency(constraintobj, tableobj->dumpId);
     859             :     /* now that constraint is separate, it must be post-data */
     860          10 :     addObjectDependency(constraintobj, postDataBoundId);
     861          10 : }
     862             : 
     863             : /*
     864             :  * Attribute defaults behave exactly the same as CHECK constraints...
     865             :  */
     866             : static void
     867        1312 : repairTableAttrDefLoop(DumpableObject *tableobj,
     868             :                        DumpableObject *attrdefobj)
     869             : {
     870             :     /* remove attrdef's dependency on table */
     871        1312 :     removeObjectDependency(attrdefobj, tableobj->dumpId);
     872        1312 : }
     873             : 
     874             : static void
     875         220 : repairTableAttrDefMultiLoop(DumpableObject *tableobj,
     876             :                             DumpableObject *attrdefobj)
     877             : {
     878             :     /* remove table's dependency on attrdef */
     879         220 :     removeObjectDependency(tableobj, attrdefobj->dumpId);
     880             :     /* mark attrdef as needing its own dump */
     881         220 :     ((AttrDefInfo *) attrdefobj)->separate = true;
     882             :     /* put back attrdef's dependency on table */
     883         220 :     addObjectDependency(attrdefobj, tableobj->dumpId);
     884         220 : }
     885             : 
     886             : /*
     887             :  * CHECK constraints on domains work just like those on tables ...
     888             :  */
     889             : static void
     890         182 : repairDomainConstraintLoop(DumpableObject *domainobj,
     891             :                            DumpableObject *constraintobj)
     892             : {
     893             :     /* remove constraint's dependency on domain */
     894         182 :     removeObjectDependency(constraintobj, domainobj->dumpId);
     895         182 : }
     896             : 
     897             : static void
     898           0 : repairDomainConstraintMultiLoop(DumpableObject *domainobj,
     899             :                                 DumpableObject *constraintobj)
     900             : {
     901             :     /* remove domain's dependency on constraint */
     902           0 :     removeObjectDependency(domainobj, constraintobj->dumpId);
     903             :     /* mark constraint as needing its own dump */
     904           0 :     ((ConstraintInfo *) constraintobj)->separate = true;
     905             :     /* put back constraint's dependency on domain */
     906           0 :     addObjectDependency(constraintobj, domainobj->dumpId);
     907             :     /* now that constraint is separate, it must be post-data */
     908           0 :     addObjectDependency(constraintobj, postDataBoundId);
     909           0 : }
     910             : 
     911             : static void
     912           0 : repairIndexLoop(DumpableObject *partedindex,
     913             :                 DumpableObject *partindex)
     914             : {
     915           0 :     removeObjectDependency(partedindex, partindex->dumpId);
     916           0 : }
     917             : 
     918             : /*
     919             :  * Fix a dependency loop, or die trying ...
     920             :  *
     921             :  * This routine is mainly concerned with reducing the multiple ways that
     922             :  * a loop might appear to common cases, which it passes off to the
     923             :  * "fixer" routines above.
     924             :  */
     925             : static void
     926       50518 : repairDependencyLoop(DumpableObject **loop,
     927             :                      int nLoop)
     928             : {
     929             :     int         i,
     930             :                 j;
     931             : 
     932             :     /* Datatype and one of its I/O or canonicalize functions */
     933       50518 :     if (nLoop == 2 &&
     934       48566 :         loop[0]->objType == DO_TYPE &&
     935         182 :         loop[1]->objType == DO_FUNC)
     936             :     {
     937           0 :         repairTypeFuncLoop(loop[0], loop[1]);
     938           0 :         return;
     939             :     }
     940       50518 :     if (nLoop == 2 &&
     941       48566 :         loop[1]->objType == DO_TYPE &&
     942         368 :         loop[0]->objType == DO_FUNC)
     943             :     {
     944         368 :         repairTypeFuncLoop(loop[1], loop[0]);
     945         368 :         return;
     946             :     }
     947             : 
     948             :     /* View (including matview) and its ON SELECT rule */
     949       50150 :     if (nLoop == 2 &&
     950       48198 :         loop[0]->objType == DO_TABLE &&
     951       48016 :         loop[1]->objType == DO_RULE &&
     952       45688 :         (((TableInfo *) loop[0])->relkind == RELKIND_VIEW ||
     953         886 :          ((TableInfo *) loop[0])->relkind == RELKIND_MATVIEW) &&
     954       45688 :         ((RuleInfo *) loop[1])->ev_type == '1' &&
     955       45688 :         ((RuleInfo *) loop[1])->is_instead &&
     956       45688 :         ((RuleInfo *) loop[1])->ruletable == (TableInfo *) loop[0])
     957             :     {
     958       45688 :         repairViewRuleLoop(loop[0], loop[1]);
     959       45688 :         return;
     960             :     }
     961        4462 :     if (nLoop == 2 &&
     962        2510 :         loop[1]->objType == DO_TABLE &&
     963           0 :         loop[0]->objType == DO_RULE &&
     964           0 :         (((TableInfo *) loop[1])->relkind == RELKIND_VIEW ||
     965           0 :          ((TableInfo *) loop[1])->relkind == RELKIND_MATVIEW) &&
     966           0 :         ((RuleInfo *) loop[0])->ev_type == '1' &&
     967           0 :         ((RuleInfo *) loop[0])->is_instead &&
     968           0 :         ((RuleInfo *) loop[0])->ruletable == (TableInfo *) loop[1])
     969             :     {
     970           0 :         repairViewRuleLoop(loop[1], loop[0]);
     971           0 :         return;
     972             :     }
     973             : 
     974             :     /* Indirect loop involving view (but not matview) and ON SELECT rule */
     975        4462 :     if (nLoop > 2)
     976             :     {
     977        3102 :         for (i = 0; i < nLoop; i++)
     978             :         {
     979        2584 :             if (loop[i]->objType == DO_TABLE &&
     980         686 :                 ((TableInfo *) loop[i])->relkind == RELKIND_VIEW)
     981             :             {
     982          40 :                 for (j = 0; j < nLoop; j++)
     983             :                 {
     984          40 :                     if (loop[j]->objType == DO_RULE &&
     985          20 :                         ((RuleInfo *) loop[j])->ev_type == '1' &&
     986          20 :                         ((RuleInfo *) loop[j])->is_instead &&
     987          20 :                         ((RuleInfo *) loop[j])->ruletable == (TableInfo *) loop[i])
     988             :                     {
     989          20 :                         repairViewRuleMultiLoop(loop[i], loop[j]);
     990          20 :                         return;
     991             :                     }
     992             :                 }
     993             :             }
     994             :         }
     995             :     }
     996             : 
     997             :     /* Indirect loop involving matview and data boundary */
     998        4442 :     if (nLoop > 2)
     999             :     {
    1000        1576 :         for (i = 0; i < nLoop; i++)
    1001             :         {
    1002        1274 :             if (loop[i]->objType == DO_TABLE &&
    1003         666 :                 ((TableInfo *) loop[i])->relkind == RELKIND_MATVIEW)
    1004             :             {
    1005        1290 :                 for (j = 0; j < nLoop; j++)
    1006             :                 {
    1007        1290 :                     if (loop[j]->objType == DO_PRE_DATA_BOUNDARY)
    1008             :                     {
    1009             :                         DumpableObject *nextobj;
    1010             : 
    1011         216 :                         nextobj = (j < nLoop - 1) ? loop[j + 1] : loop[0];
    1012         216 :                         repairMatViewBoundaryMultiLoop(loop[j], nextobj);
    1013         216 :                         return;
    1014             :                     }
    1015             :                 }
    1016             :             }
    1017             :         }
    1018             :     }
    1019             : 
    1020             :     /* Indirect loop involving function and data boundary */
    1021        4226 :     if (nLoop > 2)
    1022             :     {
    1023        1002 :         for (i = 0; i < nLoop; i++)
    1024             :         {
    1025         772 :             if (loop[i]->objType == DO_FUNC)
    1026             :             {
    1027         408 :                 for (j = 0; j < nLoop; j++)
    1028             :                 {
    1029         398 :                     if (loop[j]->objType == DO_PRE_DATA_BOUNDARY)
    1030             :                     {
    1031             :                         DumpableObject *nextobj;
    1032             : 
    1033          72 :                         nextobj = (j < nLoop - 1) ? loop[j + 1] : loop[0];
    1034          72 :                         repairFunctionBoundaryMultiLoop(loop[j], nextobj);
    1035          72 :                         return;
    1036             :                     }
    1037             :                 }
    1038             :             }
    1039             :         }
    1040             :     }
    1041             : 
    1042             :     /* Table and CHECK constraint */
    1043        4154 :     if (nLoop == 2 &&
    1044        2510 :         loop[0]->objType == DO_TABLE &&
    1045        2328 :         loop[1]->objType == DO_CONSTRAINT &&
    1046        1016 :         ((ConstraintInfo *) loop[1])->contype == 'c' &&
    1047        1016 :         ((ConstraintInfo *) loop[1])->contable == (TableInfo *) loop[0])
    1048             :     {
    1049        1016 :         repairTableConstraintLoop(loop[0], loop[1]);
    1050        1016 :         return;
    1051             :     }
    1052        3138 :     if (nLoop == 2 &&
    1053        1494 :         loop[1]->objType == DO_TABLE &&
    1054           0 :         loop[0]->objType == DO_CONSTRAINT &&
    1055           0 :         ((ConstraintInfo *) loop[0])->contype == 'c' &&
    1056           0 :         ((ConstraintInfo *) loop[0])->contable == (TableInfo *) loop[1])
    1057             :     {
    1058           0 :         repairTableConstraintLoop(loop[1], loop[0]);
    1059           0 :         return;
    1060             :     }
    1061             : 
    1062             :     /* Indirect loop involving table and CHECK constraint */
    1063        3138 :     if (nLoop > 2)
    1064             :     {
    1065         890 :         for (i = 0; i < nLoop; i++)
    1066             :         {
    1067         670 :             if (loop[i]->objType == DO_TABLE)
    1068             :             {
    1069        1780 :                 for (j = 0; j < nLoop; j++)
    1070             :                 {
    1071        1340 :                     if (loop[j]->objType == DO_CONSTRAINT &&
    1072          10 :                         ((ConstraintInfo *) loop[j])->contype == 'c' &&
    1073          10 :                         ((ConstraintInfo *) loop[j])->contable == (TableInfo *) loop[i])
    1074             :                     {
    1075          10 :                         repairTableConstraintMultiLoop(loop[i], loop[j]);
    1076          10 :                         return;
    1077             :                     }
    1078             :                 }
    1079             :             }
    1080             :         }
    1081             :     }
    1082             : 
    1083             :     /* Table and attribute default */
    1084        3128 :     if (nLoop == 2 &&
    1085        1494 :         loop[0]->objType == DO_TABLE &&
    1086        1312 :         loop[1]->objType == DO_ATTRDEF &&
    1087        1312 :         ((AttrDefInfo *) loop[1])->adtable == (TableInfo *) loop[0])
    1088             :     {
    1089        1312 :         repairTableAttrDefLoop(loop[0], loop[1]);
    1090        1312 :         return;
    1091             :     }
    1092        1816 :     if (nLoop == 2 &&
    1093         182 :         loop[1]->objType == DO_TABLE &&
    1094           0 :         loop[0]->objType == DO_ATTRDEF &&
    1095           0 :         ((AttrDefInfo *) loop[0])->adtable == (TableInfo *) loop[1])
    1096             :     {
    1097           0 :         repairTableAttrDefLoop(loop[1], loop[0]);
    1098           0 :         return;
    1099             :     }
    1100             : 
    1101             :     /* index on partitioned table and corresponding index on partition */
    1102        1816 :     if (nLoop == 2 &&
    1103         182 :         loop[0]->objType == DO_INDEX &&
    1104           0 :         loop[1]->objType == DO_INDEX)
    1105             :     {
    1106           0 :         if (((IndxInfo *) loop[0])->parentidx == loop[1]->catId.oid)
    1107             :         {
    1108           0 :             repairIndexLoop(loop[0], loop[1]);
    1109           0 :             return;
    1110             :         }
    1111           0 :         else if (((IndxInfo *) loop[1])->parentidx == loop[0]->catId.oid)
    1112             :         {
    1113           0 :             repairIndexLoop(loop[1], loop[0]);
    1114           0 :             return;
    1115             :         }
    1116             :     }
    1117             : 
    1118             :     /* Indirect loop involving table and attribute default */
    1119        1816 :     if (nLoop > 2)
    1120             :     {
    1121         440 :         for (i = 0; i < nLoop; i++)
    1122             :         {
    1123         440 :             if (loop[i]->objType == DO_TABLE)
    1124             :             {
    1125        1540 :                 for (j = 0; j < nLoop; j++)
    1126             :                 {
    1127        1320 :                     if (loop[j]->objType == DO_ATTRDEF &&
    1128         440 :                         ((AttrDefInfo *) loop[j])->adtable == (TableInfo *) loop[i])
    1129             :                     {
    1130         220 :                         repairTableAttrDefMultiLoop(loop[i], loop[j]);
    1131         220 :                         return;
    1132             :                     }
    1133             :                 }
    1134             :             }
    1135             :         }
    1136             :     }
    1137             : 
    1138             :     /* Domain and CHECK constraint */
    1139        1596 :     if (nLoop == 2 &&
    1140         182 :         loop[0]->objType == DO_TYPE &&
    1141         182 :         loop[1]->objType == DO_CONSTRAINT &&
    1142         182 :         ((ConstraintInfo *) loop[1])->contype == 'c' &&
    1143         182 :         ((ConstraintInfo *) loop[1])->condomain == (TypeInfo *) loop[0])
    1144             :     {
    1145         182 :         repairDomainConstraintLoop(loop[0], loop[1]);
    1146         182 :         return;
    1147             :     }
    1148        1414 :     if (nLoop == 2 &&
    1149           0 :         loop[1]->objType == DO_TYPE &&
    1150           0 :         loop[0]->objType == DO_CONSTRAINT &&
    1151           0 :         ((ConstraintInfo *) loop[0])->contype == 'c' &&
    1152           0 :         ((ConstraintInfo *) loop[0])->condomain == (TypeInfo *) loop[1])
    1153             :     {
    1154           0 :         repairDomainConstraintLoop(loop[1], loop[0]);
    1155           0 :         return;
    1156             :     }
    1157             : 
    1158             :     /* Indirect loop involving domain and CHECK constraint */
    1159        1414 :     if (nLoop > 2)
    1160             :     {
    1161           0 :         for (i = 0; i < nLoop; i++)
    1162             :         {
    1163           0 :             if (loop[i]->objType == DO_TYPE)
    1164             :             {
    1165           0 :                 for (j = 0; j < nLoop; j++)
    1166             :                 {
    1167           0 :                     if (loop[j]->objType == DO_CONSTRAINT &&
    1168           0 :                         ((ConstraintInfo *) loop[j])->contype == 'c' &&
    1169           0 :                         ((ConstraintInfo *) loop[j])->condomain == (TypeInfo *) loop[i])
    1170             :                     {
    1171           0 :                         repairDomainConstraintMultiLoop(loop[i], loop[j]);
    1172           0 :                         return;
    1173             :                     }
    1174             :                 }
    1175             :             }
    1176             :         }
    1177             :     }
    1178             : 
    1179             :     /*
    1180             :      * Loop of table with itself --- just ignore it.
    1181             :      *
    1182             :      * (Actually, what this arises from is a dependency of a table column on
    1183             :      * another column, which happened with generated columns before v15; or a
    1184             :      * dependency of a table column on the whole table, which happens with
    1185             :      * partitioning.  But we didn't pay attention to sub-object IDs while
    1186             :      * collecting the dependency data, so we can't see that here.)
    1187             :      */
    1188        1414 :     if (nLoop == 1)
    1189             :     {
    1190        1414 :         if (loop[0]->objType == DO_TABLE)
    1191             :         {
    1192        1414 :             removeObjectDependency(loop[0], loop[0]->dumpId);
    1193        1414 :             return;
    1194             :         }
    1195             :     }
    1196             : 
    1197             :     /*
    1198             :      * If all the objects are TABLE_DATA items, what we must have is a
    1199             :      * circular set of foreign key constraints (or a single self-referential
    1200             :      * table).  Print an appropriate complaint and break the loop arbitrarily.
    1201             :      */
    1202           0 :     for (i = 0; i < nLoop; i++)
    1203             :     {
    1204           0 :         if (loop[i]->objType != DO_TABLE_DATA)
    1205           0 :             break;
    1206             :     }
    1207           0 :     if (i >= nLoop)
    1208             :     {
    1209           0 :         pg_log_warning(ngettext("there are circular foreign-key constraints on this table:",
    1210             :                                 "there are circular foreign-key constraints among these tables:",
    1211             :                                 nLoop));
    1212           0 :         for (i = 0; i < nLoop; i++)
    1213           0 :             pg_log_warning_detail("%s", loop[i]->name);
    1214           0 :         pg_log_warning_hint("You might not be able to restore the dump without using --disable-triggers or temporarily dropping the constraints.");
    1215           0 :         pg_log_warning_hint("Consider using a full dump instead of a --data-only dump to avoid this problem.");
    1216           0 :         if (nLoop > 1)
    1217           0 :             removeObjectDependency(loop[0], loop[1]->dumpId);
    1218             :         else                    /* must be a self-dependency */
    1219           0 :             removeObjectDependency(loop[0], loop[0]->dumpId);
    1220           0 :         return;
    1221             :     }
    1222             : 
    1223             :     /*
    1224             :      * If we can't find a principled way to break the loop, complain and break
    1225             :      * it in an arbitrary fashion.
    1226             :      */
    1227           0 :     pg_log_warning("could not resolve dependency loop among these items:");
    1228           0 :     for (i = 0; i < nLoop; i++)
    1229             :     {
    1230             :         char        buf[1024];
    1231             : 
    1232           0 :         describeDumpableObject(loop[i], buf, sizeof(buf));
    1233           0 :         pg_log_warning_detail("%s", buf);
    1234             :     }
    1235             : 
    1236           0 :     if (nLoop > 1)
    1237           0 :         removeObjectDependency(loop[0], loop[1]->dumpId);
    1238             :     else                        /* must be a self-dependency */
    1239           0 :         removeObjectDependency(loop[0], loop[0]->dumpId);
    1240             : }
    1241             : 
    1242             : /*
    1243             :  * Describe a dumpable object usefully for errors
    1244             :  *
    1245             :  * This should probably go somewhere else...
    1246             :  */
    1247             : static void
    1248           0 : describeDumpableObject(DumpableObject *obj, char *buf, int bufsize)
    1249             : {
    1250           0 :     switch (obj->objType)
    1251             :     {
    1252           0 :         case DO_NAMESPACE:
    1253           0 :             snprintf(buf, bufsize,
    1254             :                      "SCHEMA %s  (ID %d OID %u)",
    1255             :                      obj->name, obj->dumpId, obj->catId.oid);
    1256           0 :             return;
    1257           0 :         case DO_EXTENSION:
    1258           0 :             snprintf(buf, bufsize,
    1259             :                      "EXTENSION %s  (ID %d OID %u)",
    1260             :                      obj->name, obj->dumpId, obj->catId.oid);
    1261           0 :             return;
    1262           0 :         case DO_TYPE:
    1263           0 :             snprintf(buf, bufsize,
    1264             :                      "TYPE %s  (ID %d OID %u)",
    1265             :                      obj->name, obj->dumpId, obj->catId.oid);
    1266           0 :             return;
    1267           0 :         case DO_SHELL_TYPE:
    1268           0 :             snprintf(buf, bufsize,
    1269             :                      "SHELL TYPE %s  (ID %d OID %u)",
    1270             :                      obj->name, obj->dumpId, obj->catId.oid);
    1271           0 :             return;
    1272           0 :         case DO_FUNC:
    1273           0 :             snprintf(buf, bufsize,
    1274             :                      "FUNCTION %s  (ID %d OID %u)",
    1275             :                      obj->name, obj->dumpId, obj->catId.oid);
    1276           0 :             return;
    1277           0 :         case DO_AGG:
    1278           0 :             snprintf(buf, bufsize,
    1279             :                      "AGGREGATE %s  (ID %d OID %u)",
    1280             :                      obj->name, obj->dumpId, obj->catId.oid);
    1281           0 :             return;
    1282           0 :         case DO_OPERATOR:
    1283           0 :             snprintf(buf, bufsize,
    1284             :                      "OPERATOR %s  (ID %d OID %u)",
    1285             :                      obj->name, obj->dumpId, obj->catId.oid);
    1286           0 :             return;
    1287           0 :         case DO_ACCESS_METHOD:
    1288           0 :             snprintf(buf, bufsize,
    1289             :                      "ACCESS METHOD %s  (ID %d OID %u)",
    1290             :                      obj->name, obj->dumpId, obj->catId.oid);
    1291           0 :             return;
    1292           0 :         case DO_OPCLASS:
    1293           0 :             snprintf(buf, bufsize,
    1294             :                      "OPERATOR CLASS %s  (ID %d OID %u)",
    1295             :                      obj->name, obj->dumpId, obj->catId.oid);
    1296           0 :             return;
    1297           0 :         case DO_OPFAMILY:
    1298           0 :             snprintf(buf, bufsize,
    1299             :                      "OPERATOR FAMILY %s  (ID %d OID %u)",
    1300             :                      obj->name, obj->dumpId, obj->catId.oid);
    1301           0 :             return;
    1302           0 :         case DO_COLLATION:
    1303           0 :             snprintf(buf, bufsize,
    1304             :                      "COLLATION %s  (ID %d OID %u)",
    1305             :                      obj->name, obj->dumpId, obj->catId.oid);
    1306           0 :             return;
    1307           0 :         case DO_CONVERSION:
    1308           0 :             snprintf(buf, bufsize,
    1309             :                      "CONVERSION %s  (ID %d OID %u)",
    1310             :                      obj->name, obj->dumpId, obj->catId.oid);
    1311           0 :             return;
    1312           0 :         case DO_TABLE:
    1313           0 :             snprintf(buf, bufsize,
    1314             :                      "TABLE %s  (ID %d OID %u)",
    1315             :                      obj->name, obj->dumpId, obj->catId.oid);
    1316           0 :             return;
    1317           0 :         case DO_TABLE_ATTACH:
    1318           0 :             snprintf(buf, bufsize,
    1319             :                      "TABLE ATTACH %s  (ID %d)",
    1320             :                      obj->name, obj->dumpId);
    1321           0 :             return;
    1322           0 :         case DO_ATTRDEF:
    1323           0 :             snprintf(buf, bufsize,
    1324             :                      "ATTRDEF %s.%s  (ID %d OID %u)",
    1325           0 :                      ((AttrDefInfo *) obj)->adtable->dobj.name,
    1326           0 :                      ((AttrDefInfo *) obj)->adtable->attnames[((AttrDefInfo *) obj)->adnum - 1],
    1327             :                      obj->dumpId, obj->catId.oid);
    1328           0 :             return;
    1329           0 :         case DO_INDEX:
    1330           0 :             snprintf(buf, bufsize,
    1331             :                      "INDEX %s  (ID %d OID %u)",
    1332             :                      obj->name, obj->dumpId, obj->catId.oid);
    1333           0 :             return;
    1334           0 :         case DO_INDEX_ATTACH:
    1335           0 :             snprintf(buf, bufsize,
    1336             :                      "INDEX ATTACH %s  (ID %d)",
    1337             :                      obj->name, obj->dumpId);
    1338           0 :             return;
    1339           0 :         case DO_STATSEXT:
    1340           0 :             snprintf(buf, bufsize,
    1341             :                      "STATISTICS %s  (ID %d OID %u)",
    1342             :                      obj->name, obj->dumpId, obj->catId.oid);
    1343           0 :             return;
    1344           0 :         case DO_REFRESH_MATVIEW:
    1345           0 :             snprintf(buf, bufsize,
    1346             :                      "REFRESH MATERIALIZED VIEW %s  (ID %d OID %u)",
    1347             :                      obj->name, obj->dumpId, obj->catId.oid);
    1348           0 :             return;
    1349           0 :         case DO_RULE:
    1350           0 :             snprintf(buf, bufsize,
    1351             :                      "RULE %s  (ID %d OID %u)",
    1352             :                      obj->name, obj->dumpId, obj->catId.oid);
    1353           0 :             return;
    1354           0 :         case DO_TRIGGER:
    1355           0 :             snprintf(buf, bufsize,
    1356             :                      "TRIGGER %s  (ID %d OID %u)",
    1357             :                      obj->name, obj->dumpId, obj->catId.oid);
    1358           0 :             return;
    1359           0 :         case DO_EVENT_TRIGGER:
    1360           0 :             snprintf(buf, bufsize,
    1361             :                      "EVENT TRIGGER %s (ID %d OID %u)",
    1362             :                      obj->name, obj->dumpId, obj->catId.oid);
    1363           0 :             return;
    1364           0 :         case DO_CONSTRAINT:
    1365           0 :             snprintf(buf, bufsize,
    1366             :                      "CONSTRAINT %s  (ID %d OID %u)",
    1367             :                      obj->name, obj->dumpId, obj->catId.oid);
    1368           0 :             return;
    1369           0 :         case DO_FK_CONSTRAINT:
    1370           0 :             snprintf(buf, bufsize,
    1371             :                      "FK CONSTRAINT %s  (ID %d OID %u)",
    1372             :                      obj->name, obj->dumpId, obj->catId.oid);
    1373           0 :             return;
    1374           0 :         case DO_PROCLANG:
    1375           0 :             snprintf(buf, bufsize,
    1376             :                      "PROCEDURAL LANGUAGE %s  (ID %d OID %u)",
    1377             :                      obj->name, obj->dumpId, obj->catId.oid);
    1378           0 :             return;
    1379           0 :         case DO_CAST:
    1380           0 :             snprintf(buf, bufsize,
    1381             :                      "CAST %u to %u  (ID %d OID %u)",
    1382             :                      ((CastInfo *) obj)->castsource,
    1383             :                      ((CastInfo *) obj)->casttarget,
    1384             :                      obj->dumpId, obj->catId.oid);
    1385           0 :             return;
    1386           0 :         case DO_TRANSFORM:
    1387           0 :             snprintf(buf, bufsize,
    1388             :                      "TRANSFORM %u lang %u  (ID %d OID %u)",
    1389             :                      ((TransformInfo *) obj)->trftype,
    1390             :                      ((TransformInfo *) obj)->trflang,
    1391             :                      obj->dumpId, obj->catId.oid);
    1392           0 :             return;
    1393           0 :         case DO_TABLE_DATA:
    1394           0 :             snprintf(buf, bufsize,
    1395             :                      "TABLE DATA %s  (ID %d OID %u)",
    1396             :                      obj->name, obj->dumpId, obj->catId.oid);
    1397           0 :             return;
    1398           0 :         case DO_SEQUENCE_SET:
    1399           0 :             snprintf(buf, bufsize,
    1400             :                      "SEQUENCE SET %s  (ID %d OID %u)",
    1401             :                      obj->name, obj->dumpId, obj->catId.oid);
    1402           0 :             return;
    1403           0 :         case DO_DUMMY_TYPE:
    1404           0 :             snprintf(buf, bufsize,
    1405             :                      "DUMMY TYPE %s  (ID %d OID %u)",
    1406             :                      obj->name, obj->dumpId, obj->catId.oid);
    1407           0 :             return;
    1408           0 :         case DO_TSPARSER:
    1409           0 :             snprintf(buf, bufsize,
    1410             :                      "TEXT SEARCH PARSER %s  (ID %d OID %u)",
    1411             :                      obj->name, obj->dumpId, obj->catId.oid);
    1412           0 :             return;
    1413           0 :         case DO_TSDICT:
    1414           0 :             snprintf(buf, bufsize,
    1415             :                      "TEXT SEARCH DICTIONARY %s  (ID %d OID %u)",
    1416             :                      obj->name, obj->dumpId, obj->catId.oid);
    1417           0 :             return;
    1418           0 :         case DO_TSTEMPLATE:
    1419           0 :             snprintf(buf, bufsize,
    1420             :                      "TEXT SEARCH TEMPLATE %s  (ID %d OID %u)",
    1421             :                      obj->name, obj->dumpId, obj->catId.oid);
    1422           0 :             return;
    1423           0 :         case DO_TSCONFIG:
    1424           0 :             snprintf(buf, bufsize,
    1425             :                      "TEXT SEARCH CONFIGURATION %s  (ID %d OID %u)",
    1426             :                      obj->name, obj->dumpId, obj->catId.oid);
    1427           0 :             return;
    1428           0 :         case DO_FDW:
    1429           0 :             snprintf(buf, bufsize,
    1430             :                      "FOREIGN DATA WRAPPER %s  (ID %d OID %u)",
    1431             :                      obj->name, obj->dumpId, obj->catId.oid);
    1432           0 :             return;
    1433           0 :         case DO_FOREIGN_SERVER:
    1434           0 :             snprintf(buf, bufsize,
    1435             :                      "FOREIGN SERVER %s  (ID %d OID %u)",
    1436             :                      obj->name, obj->dumpId, obj->catId.oid);
    1437           0 :             return;
    1438           0 :         case DO_DEFAULT_ACL:
    1439           0 :             snprintf(buf, bufsize,
    1440             :                      "DEFAULT ACL %s  (ID %d OID %u)",
    1441             :                      obj->name, obj->dumpId, obj->catId.oid);
    1442           0 :             return;
    1443           0 :         case DO_LARGE_OBJECT:
    1444           0 :             snprintf(buf, bufsize,
    1445             :                      "LARGE OBJECT  (ID %d OID %u)",
    1446             :                      obj->dumpId, obj->catId.oid);
    1447           0 :             return;
    1448           0 :         case DO_LARGE_OBJECT_DATA:
    1449           0 :             snprintf(buf, bufsize,
    1450             :                      "LARGE OBJECT DATA  (ID %d)",
    1451             :                      obj->dumpId);
    1452           0 :             return;
    1453           0 :         case DO_POLICY:
    1454           0 :             snprintf(buf, bufsize,
    1455             :                      "POLICY (ID %d OID %u)",
    1456             :                      obj->dumpId, obj->catId.oid);
    1457           0 :             return;
    1458           0 :         case DO_PUBLICATION:
    1459           0 :             snprintf(buf, bufsize,
    1460             :                      "PUBLICATION (ID %d OID %u)",
    1461             :                      obj->dumpId, obj->catId.oid);
    1462           0 :             return;
    1463           0 :         case DO_PUBLICATION_REL:
    1464           0 :             snprintf(buf, bufsize,
    1465             :                      "PUBLICATION TABLE (ID %d OID %u)",
    1466             :                      obj->dumpId, obj->catId.oid);
    1467           0 :             return;
    1468           0 :         case DO_PUBLICATION_TABLE_IN_SCHEMA:
    1469           0 :             snprintf(buf, bufsize,
    1470             :                      "PUBLICATION TABLES IN SCHEMA (ID %d OID %u)",
    1471             :                      obj->dumpId, obj->catId.oid);
    1472           0 :             return;
    1473           0 :         case DO_SUBSCRIPTION:
    1474           0 :             snprintf(buf, bufsize,
    1475             :                      "SUBSCRIPTION (ID %d OID %u)",
    1476             :                      obj->dumpId, obj->catId.oid);
    1477           0 :             return;
    1478           0 :         case DO_SUBSCRIPTION_REL:
    1479           0 :             snprintf(buf, bufsize,
    1480             :                      "SUBSCRIPTION TABLE (ID %d OID %u)",
    1481             :                      obj->dumpId, obj->catId.oid);
    1482           0 :             return;
    1483           0 :         case DO_PRE_DATA_BOUNDARY:
    1484           0 :             snprintf(buf, bufsize,
    1485             :                      "PRE-DATA BOUNDARY  (ID %d)",
    1486             :                      obj->dumpId);
    1487           0 :             return;
    1488           0 :         case DO_POST_DATA_BOUNDARY:
    1489           0 :             snprintf(buf, bufsize,
    1490             :                      "POST-DATA BOUNDARY  (ID %d)",
    1491             :                      obj->dumpId);
    1492           0 :             return;
    1493             :     }
    1494             :     /* shouldn't get here */
    1495           0 :     snprintf(buf, bufsize,
    1496             :              "object type %d  (ID %d OID %u)",
    1497           0 :              (int) obj->objType,
    1498             :              obj->dumpId, obj->catId.oid);
    1499             : }
    1500             : 
    1501             : /* binaryheap comparator that compares "a" and "b" as integers */
    1502             : static int
    1503    63289658 : int_cmp(void *a, void *b, void *arg)
    1504             : {
    1505    63289658 :     int         ai = (int) (intptr_t) a;
    1506    63289658 :     int         bi = (int) (intptr_t) b;
    1507             : 
    1508    63289658 :     return pg_cmp_s32(ai, bi);
    1509             : }

Generated by: LCOV version 1.14