LCOV - code coverage report
Current view: top level - src/bin/pg_dump - pg_dump_sort.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 328 554 59.2 %
Date: 2025-02-22 07:14:56 Functions: 18 21 85.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * pg_dump_sort.c
       4             :  *    Sort the items of a dump into a safe order for dumping
       5             :  *
       6             :  *
       7             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       8             :  * Portions Copyright (c) 1994, Regents of the University of California
       9             :  *
      10             :  *
      11             :  * IDENTIFICATION
      12             :  *    src/bin/pg_dump/pg_dump_sort.c
      13             :  *
      14             :  *-------------------------------------------------------------------------
      15             :  */
      16             : #include "postgres_fe.h"
      17             : 
      18             : #include "catalog/pg_class_d.h"
      19             : #include "common/int.h"
      20             : #include "lib/binaryheap.h"
      21             : #include "pg_backup_utils.h"
      22             : #include "pg_dump.h"
      23             : 
      24             : /*
      25             :  * Sort priority for database object types.
      26             :  * Objects are sorted by type, and within a type by name.
      27             :  *
      28             :  * Triggers, event triggers, and materialized views are intentionally sorted
      29             :  * late.  Triggers must be restored after all data modifications, so that
      30             :  * they don't interfere with loading data.  Event triggers are restored
      31             :  * next-to-last so that they don't interfere with object creations of any
      32             :  * kind.  Matview refreshes are last because they should execute in the
      33             :  * database's normal state (e.g., they must come after all ACLs are restored;
      34             :  * also, if they choose to look at system catalogs, they should see the final
      35             :  * restore state).  If you think to change this, see also the RestorePass
      36             :  * mechanism in pg_backup_archiver.c.
      37             :  *
      38             :  * On the other hand, casts are intentionally sorted earlier than you might
      39             :  * expect; logically they should come after functions, since they usually
      40             :  * depend on those.  This works around the backend's habit of recording
      41             :  * views that use casts as dependent on the cast's underlying function.
      42             :  * We initially sort casts first, and then any functions used by casts
      43             :  * will be hoisted above the casts, and in turn views that those functions
      44             :  * depend on will be hoisted above the functions.  But views not used that
      45             :  * way won't be hoisted.
      46             :  *
      47             :  * NOTE: object-type priorities must match the section assignments made in
      48             :  * pg_dump.c; that is, PRE_DATA objects must sort before DO_PRE_DATA_BOUNDARY,
      49             :  * POST_DATA objects must sort after DO_POST_DATA_BOUNDARY, and DATA objects
      50             :  * must sort between them.
      51             :  */
      52             : 
      53             : /* This enum lists the priority levels in order */
      54             : enum dbObjectTypePriorities
      55             : {
      56             :     PRIO_NAMESPACE = 1,
      57             :     PRIO_PROCLANG,
      58             :     PRIO_COLLATION,
      59             :     PRIO_TRANSFORM,
      60             :     PRIO_EXTENSION,
      61             :     PRIO_TYPE,                  /* used for DO_TYPE and DO_SHELL_TYPE */
      62             :     PRIO_CAST,
      63             :     PRIO_FUNC,
      64             :     PRIO_AGG,
      65             :     PRIO_ACCESS_METHOD,
      66             :     PRIO_OPERATOR,
      67             :     PRIO_OPFAMILY,              /* used for DO_OPFAMILY and DO_OPCLASS */
      68             :     PRIO_CONVERSION,
      69             :     PRIO_TSPARSER,
      70             :     PRIO_TSTEMPLATE,
      71             :     PRIO_TSDICT,
      72             :     PRIO_TSCONFIG,
      73             :     PRIO_FDW,
      74             :     PRIO_FOREIGN_SERVER,
      75             :     PRIO_TABLE,
      76             :     PRIO_TABLE_ATTACH,
      77             :     PRIO_DUMMY_TYPE,
      78             :     PRIO_ATTRDEF,
      79             :     PRIO_LARGE_OBJECT,
      80             :     PRIO_PRE_DATA_BOUNDARY,     /* boundary! */
      81             :     PRIO_TABLE_DATA,
      82             :     PRIO_SEQUENCE_SET,
      83             :     PRIO_LARGE_OBJECT_DATA,
      84             :     PRIO_STATISTICS_DATA_DATA,
      85             :     PRIO_POST_DATA_BOUNDARY,    /* boundary! */
      86             :     PRIO_CONSTRAINT,
      87             :     PRIO_INDEX,
      88             :     PRIO_INDEX_ATTACH,
      89             :     PRIO_STATSEXT,
      90             :     PRIO_RULE,
      91             :     PRIO_TRIGGER,
      92             :     PRIO_FK_CONSTRAINT,
      93             :     PRIO_POLICY,
      94             :     PRIO_PUBLICATION,
      95             :     PRIO_PUBLICATION_REL,
      96             :     PRIO_PUBLICATION_TABLE_IN_SCHEMA,
      97             :     PRIO_SUBSCRIPTION,
      98             :     PRIO_SUBSCRIPTION_REL,
      99             :     PRIO_DEFAULT_ACL,           /* done in ACL pass */
     100             :     PRIO_EVENT_TRIGGER,         /* must be next to last! */
     101             :     PRIO_REFRESH_MATVIEW        /* must be last! */
     102             : };
     103             : 
     104             : /* This table is indexed by enum DumpableObjectType */
     105             : static const int dbObjectTypePriority[] =
     106             : {
     107             :     [DO_NAMESPACE] = PRIO_NAMESPACE,
     108             :     [DO_EXTENSION] = PRIO_EXTENSION,
     109             :     [DO_TYPE] = PRIO_TYPE,
     110             :     [DO_SHELL_TYPE] = PRIO_TYPE,
     111             :     [DO_FUNC] = PRIO_FUNC,
     112             :     [DO_AGG] = PRIO_AGG,
     113             :     [DO_OPERATOR] = PRIO_OPERATOR,
     114             :     [DO_ACCESS_METHOD] = PRIO_ACCESS_METHOD,
     115             :     [DO_OPCLASS] = PRIO_OPFAMILY,
     116             :     [DO_OPFAMILY] = PRIO_OPFAMILY,
     117             :     [DO_COLLATION] = PRIO_COLLATION,
     118             :     [DO_CONVERSION] = PRIO_CONVERSION,
     119             :     [DO_TABLE] = PRIO_TABLE,
     120             :     [DO_TABLE_ATTACH] = PRIO_TABLE_ATTACH,
     121             :     [DO_ATTRDEF] = PRIO_ATTRDEF,
     122             :     [DO_INDEX] = PRIO_INDEX,
     123             :     [DO_INDEX_ATTACH] = PRIO_INDEX_ATTACH,
     124             :     [DO_STATSEXT] = PRIO_STATSEXT,
     125             :     [DO_RULE] = PRIO_RULE,
     126             :     [DO_TRIGGER] = PRIO_TRIGGER,
     127             :     [DO_CONSTRAINT] = PRIO_CONSTRAINT,
     128             :     [DO_FK_CONSTRAINT] = PRIO_FK_CONSTRAINT,
     129             :     [DO_PROCLANG] = PRIO_PROCLANG,
     130             :     [DO_CAST] = PRIO_CAST,
     131             :     [DO_TABLE_DATA] = PRIO_TABLE_DATA,
     132             :     [DO_SEQUENCE_SET] = PRIO_SEQUENCE_SET,
     133             :     [DO_DUMMY_TYPE] = PRIO_DUMMY_TYPE,
     134             :     [DO_TSPARSER] = PRIO_TSPARSER,
     135             :     [DO_TSDICT] = PRIO_TSDICT,
     136             :     [DO_TSTEMPLATE] = PRIO_TSTEMPLATE,
     137             :     [DO_TSCONFIG] = PRIO_TSCONFIG,
     138             :     [DO_FDW] = PRIO_FDW,
     139             :     [DO_FOREIGN_SERVER] = PRIO_FOREIGN_SERVER,
     140             :     [DO_DEFAULT_ACL] = PRIO_DEFAULT_ACL,
     141             :     [DO_TRANSFORM] = PRIO_TRANSFORM,
     142             :     [DO_LARGE_OBJECT] = PRIO_LARGE_OBJECT,
     143             :     [DO_LARGE_OBJECT_DATA] = PRIO_LARGE_OBJECT_DATA,
     144             :     [DO_PRE_DATA_BOUNDARY] = PRIO_PRE_DATA_BOUNDARY,
     145             :     [DO_POST_DATA_BOUNDARY] = PRIO_POST_DATA_BOUNDARY,
     146             :     [DO_EVENT_TRIGGER] = PRIO_EVENT_TRIGGER,
     147             :     [DO_REFRESH_MATVIEW] = PRIO_REFRESH_MATVIEW,
     148             :     [DO_POLICY] = PRIO_POLICY,
     149             :     [DO_PUBLICATION] = PRIO_PUBLICATION,
     150             :     [DO_PUBLICATION_REL] = PRIO_PUBLICATION_REL,
     151             :     [DO_PUBLICATION_TABLE_IN_SCHEMA] = PRIO_PUBLICATION_TABLE_IN_SCHEMA,
     152             :     [DO_REL_STATS] = PRIO_STATISTICS_DATA_DATA,
     153             :     [DO_SUBSCRIPTION] = PRIO_SUBSCRIPTION,
     154             :     [DO_SUBSCRIPTION_REL] = PRIO_SUBSCRIPTION_REL,
     155             : };
     156             : 
     157             : StaticAssertDecl(lengthof(dbObjectTypePriority) == NUM_DUMPABLE_OBJECT_TYPES,
     158             :                  "array length mismatch");
     159             : 
     160             : static DumpId preDataBoundId;
     161             : static DumpId postDataBoundId;
     162             : 
     163             : 
     164             : static int  DOTypeNameCompare(const void *p1, const void *p2);
     165             : static bool TopoSort(DumpableObject **objs,
     166             :                      int numObjs,
     167             :                      DumpableObject **ordering,
     168             :                      int *nOrdering);
     169             : static void findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs);
     170             : static int  findLoop(DumpableObject *obj,
     171             :                      DumpId startPoint,
     172             :                      bool *processed,
     173             :                      DumpId *searchFailed,
     174             :                      DumpableObject **workspace,
     175             :                      int depth);
     176             : static void repairDependencyLoop(DumpableObject **loop,
     177             :                                  int nLoop);
     178             : static void describeDumpableObject(DumpableObject *obj,
     179             :                                    char *buf, int bufsize);
     180             : static int  int_cmp(void *a, void *b, void *arg);
     181             : 
     182             : 
     183             : /*
     184             :  * Sort the given objects into a type/name-based ordering
     185             :  *
     186             :  * Normally this is just the starting point for the dependency-based
     187             :  * ordering.
     188             :  */
     189             : void
     190         320 : sortDumpableObjectsByTypeName(DumpableObject **objs, int numObjs)
     191             : {
     192         320 :     if (numObjs > 1)
     193         320 :         qsort(objs, numObjs, sizeof(DumpableObject *),
     194             :               DOTypeNameCompare);
     195         320 : }
     196             : 
     197             : static int
     198    14944548 : DOTypeNameCompare(const void *p1, const void *p2)
     199             : {
     200    14944548 :     DumpableObject *obj1 = *(DumpableObject *const *) p1;
     201    14944548 :     DumpableObject *obj2 = *(DumpableObject *const *) p2;
     202             :     int         cmpval;
     203             : 
     204             :     /* Sort by type's priority */
     205    14944548 :     cmpval = dbObjectTypePriority[obj1->objType] -
     206    14944548 :         dbObjectTypePriority[obj2->objType];
     207             : 
     208    14944548 :     if (cmpval != 0)
     209     3780416 :         return cmpval;
     210             : 
     211             :     /*
     212             :      * Sort by namespace.  Typically, all objects of the same priority would
     213             :      * either have or not have a namespace link, but there are exceptions.
     214             :      * Sort NULL namespace after non-NULL in such cases.
     215             :      */
     216    11164132 :     if (obj1->namespace)
     217             :     {
     218    10555750 :         if (obj2->namespace)
     219             :         {
     220    10555650 :             cmpval = strcmp(obj1->namespace->dobj.name,
     221    10555650 :                             obj2->namespace->dobj.name);
     222    10555650 :             if (cmpval != 0)
     223      556902 :                 return cmpval;
     224             :         }
     225             :         else
     226         100 :             return -1;
     227             :     }
     228      608382 :     else if (obj2->namespace)
     229          70 :         return 1;
     230             : 
     231             :     /* Sort by name */
     232    10607060 :     cmpval = strcmp(obj1->name, obj2->name);
     233    10607060 :     if (cmpval != 0)
     234     9020160 :         return cmpval;
     235             : 
     236             :     /* To have a stable sort order, break ties for some object types */
     237     1586900 :     if (obj1->objType == DO_FUNC || obj1->objType == DO_AGG)
     238           0 :     {
     239         146 :         FuncInfo   *fobj1 = *(FuncInfo *const *) p1;
     240         146 :         FuncInfo   *fobj2 = *(FuncInfo *const *) p2;
     241             :         int         i;
     242             : 
     243             :         /* Sort by number of arguments, then argument type names */
     244         146 :         cmpval = fobj1->nargs - fobj2->nargs;
     245         146 :         if (cmpval != 0)
     246          36 :             return cmpval;
     247         124 :         for (i = 0; i < fobj1->nargs; i++)
     248             :         {
     249         124 :             TypeInfo   *argtype1 = findTypeByOid(fobj1->argtypes[i]);
     250         124 :             TypeInfo   *argtype2 = findTypeByOid(fobj2->argtypes[i]);
     251             : 
     252         124 :             if (argtype1 && argtype2)
     253             :             {
     254         124 :                 if (argtype1->dobj.namespace && argtype2->dobj.namespace)
     255             :                 {
     256         124 :                     cmpval = strcmp(argtype1->dobj.namespace->dobj.name,
     257         124 :                                     argtype2->dobj.namespace->dobj.name);
     258         124 :                     if (cmpval != 0)
     259          32 :                         return cmpval;
     260             :                 }
     261          92 :                 cmpval = strcmp(argtype1->dobj.name, argtype2->dobj.name);
     262          92 :                 if (cmpval != 0)
     263          78 :                     return cmpval;
     264             :             }
     265             :         }
     266             :     }
     267     1586754 :     else if (obj1->objType == DO_OPERATOR)
     268             :     {
     269     1174042 :         OprInfo    *oobj1 = *(OprInfo *const *) p1;
     270     1174042 :         OprInfo    *oobj2 = *(OprInfo *const *) p2;
     271             : 
     272             :         /* oprkind is 'l', 'r', or 'b'; this sorts prefix, postfix, infix */
     273     1174042 :         cmpval = (oobj2->oprkind - oobj1->oprkind);
     274     1174042 :         if (cmpval != 0)
     275       29100 :             return cmpval;
     276             :     }
     277      412712 :     else if (obj1->objType == DO_ATTRDEF)
     278             :     {
     279         880 :         AttrDefInfo *adobj1 = *(AttrDefInfo *const *) p1;
     280         880 :         AttrDefInfo *adobj2 = *(AttrDefInfo *const *) p2;
     281             : 
     282             :         /* Sort by attribute number */
     283         880 :         cmpval = (adobj1->adnum - adobj2->adnum);
     284         880 :         if (cmpval != 0)
     285         880 :             return cmpval;
     286             :     }
     287      411832 :     else if (obj1->objType == DO_POLICY)
     288             :     {
     289          42 :         PolicyInfo *pobj1 = *(PolicyInfo *const *) p1;
     290          42 :         PolicyInfo *pobj2 = *(PolicyInfo *const *) p2;
     291             : 
     292             :         /* Sort by table name (table namespace was considered already) */
     293          42 :         cmpval = strcmp(pobj1->poltable->dobj.name,
     294          42 :                         pobj2->poltable->dobj.name);
     295          42 :         if (cmpval != 0)
     296          42 :             return cmpval;
     297             :     }
     298      411790 :     else if (obj1->objType == DO_RULE)
     299             :     {
     300      304934 :         RuleInfo   *robj1 = *(RuleInfo *const *) p1;
     301      304934 :         RuleInfo   *robj2 = *(RuleInfo *const *) p2;
     302             : 
     303             :         /* Sort by table name (table namespace was considered already) */
     304      304934 :         cmpval = strcmp(robj1->ruletable->dobj.name,
     305      304934 :                         robj2->ruletable->dobj.name);
     306      304934 :         if (cmpval != 0)
     307      304934 :             return cmpval;
     308             :     }
     309      106856 :     else if (obj1->objType == DO_TRIGGER)
     310             :     {
     311         704 :         TriggerInfo *tobj1 = *(TriggerInfo *const *) p1;
     312         704 :         TriggerInfo *tobj2 = *(TriggerInfo *const *) p2;
     313             : 
     314             :         /* Sort by table name (table namespace was considered already) */
     315         704 :         cmpval = strcmp(tobj1->tgtable->dobj.name,
     316         704 :                         tobj2->tgtable->dobj.name);
     317         704 :         if (cmpval != 0)
     318         704 :             return cmpval;
     319             :     }
     320             : 
     321             :     /* Usually shouldn't get here, but if we do, sort by OID */
     322     1251094 :     return oidcmp(obj1->catId.oid, obj2->catId.oid);
     323             : }
     324             : 
     325             : 
     326             : /*
     327             :  * Sort the given objects into a safe dump order using dependency
     328             :  * information (to the extent we have it available).
     329             :  *
     330             :  * The DumpIds of the PRE_DATA_BOUNDARY and POST_DATA_BOUNDARY objects are
     331             :  * passed in separately, in case we need them during dependency loop repair.
     332             :  */
     333             : void
     334         320 : sortDumpableObjects(DumpableObject **objs, int numObjs,
     335             :                     DumpId preBoundaryId, DumpId postBoundaryId)
     336             : {
     337             :     DumpableObject **ordering;
     338             :     int         nOrdering;
     339             : 
     340         320 :     if (numObjs <= 0)            /* can't happen anymore ... */
     341           0 :         return;
     342             : 
     343             :     /*
     344             :      * Saving the boundary IDs in static variables is a bit grotty, but seems
     345             :      * better than adding them to parameter lists of subsidiary functions.
     346             :      */
     347         320 :     preDataBoundId = preBoundaryId;
     348         320 :     postDataBoundId = postBoundaryId;
     349             : 
     350         320 :     ordering = (DumpableObject **) pg_malloc(numObjs * sizeof(DumpableObject *));
     351        1060 :     while (!TopoSort(objs, numObjs, ordering, &nOrdering))
     352         740 :         findDependencyLoops(ordering, nOrdering, numObjs);
     353             : 
     354         320 :     memcpy(objs, ordering, numObjs * sizeof(DumpableObject *));
     355             : 
     356         320 :     free(ordering);
     357             : }
     358             : 
     359             : /*
     360             :  * TopoSort -- topological sort of a dump list
     361             :  *
     362             :  * Generate a re-ordering of the dump list that satisfies all the dependency
     363             :  * constraints shown in the dump list.  (Each such constraint is a fact of a
     364             :  * partial ordering.)  Minimize rearrangement of the list not needed to
     365             :  * achieve the partial ordering.
     366             :  *
     367             :  * The input is the list of numObjs objects in objs[].  This list is not
     368             :  * modified.
     369             :  *
     370             :  * Returns true if able to build an ordering that satisfies all the
     371             :  * constraints, false if not (there are contradictory constraints).
     372             :  *
     373             :  * On success (true result), ordering[] is filled with a sorted array of
     374             :  * DumpableObject pointers, of length equal to the input list length.
     375             :  *
     376             :  * On failure (false result), ordering[] is filled with an unsorted array of
     377             :  * DumpableObject pointers of length *nOrdering, listing the objects that
     378             :  * prevented the sort from being completed.  In general, these objects either
     379             :  * participate directly in a dependency cycle, or are depended on by objects
     380             :  * that are in a cycle.  (The latter objects are not actually problematic,
     381             :  * but it takes further analysis to identify which are which.)
     382             :  *
     383             :  * The caller is responsible for allocating sufficient space at *ordering.
     384             :  */
     385             : static bool
     386        1060 : TopoSort(DumpableObject **objs,
     387             :          int numObjs,
     388             :          DumpableObject **ordering, /* output argument */
     389             :          int *nOrdering)        /* output argument */
     390             : {
     391        1060 :     DumpId      maxDumpId = getMaxDumpId();
     392             :     binaryheap *pendingHeap;
     393             :     int        *beforeConstraints;
     394             :     int        *idMap;
     395             :     DumpableObject *obj;
     396             :     int         i,
     397             :                 j,
     398             :                 k;
     399             : 
     400             :     /*
     401             :      * This is basically the same algorithm shown for topological sorting in
     402             :      * Knuth's Volume 1.  However, we would like to minimize unnecessary
     403             :      * rearrangement of the input ordering; that is, when we have a choice of
     404             :      * which item to output next, we always want to take the one highest in
     405             :      * the original list.  Therefore, instead of maintaining an unordered
     406             :      * linked list of items-ready-to-output as Knuth does, we maintain a heap
     407             :      * of their item numbers, which we can use as a priority queue.  This
     408             :      * turns the algorithm from O(N) to O(N log N) because each insertion or
     409             :      * removal of a heap item takes O(log N) time.  However, that's still
     410             :      * plenty fast enough for this application.
     411             :      */
     412             : 
     413        1060 :     *nOrdering = numObjs;       /* for success return */
     414             : 
     415             :     /* Eliminate the null case */
     416        1060 :     if (numObjs <= 0)
     417           0 :         return true;
     418             : 
     419             :     /* Create workspace for the above-described heap */
     420        1060 :     pendingHeap = binaryheap_allocate(numObjs, int_cmp, NULL);
     421             : 
     422             :     /*
     423             :      * Scan the constraints, and for each item in the input, generate a count
     424             :      * of the number of constraints that say it must be before something else.
     425             :      * The count for the item with dumpId j is stored in beforeConstraints[j].
     426             :      * We also make a map showing the input-order index of the item with
     427             :      * dumpId j.
     428             :      */
     429        1060 :     beforeConstraints = (int *) pg_malloc0((maxDumpId + 1) * sizeof(int));
     430        1060 :     idMap = (int *) pg_malloc((maxDumpId + 1) * sizeof(int));
     431     4183042 :     for (i = 0; i < numObjs; i++)
     432             :     {
     433     4181982 :         obj = objs[i];
     434     4181982 :         j = obj->dumpId;
     435     4181982 :         if (j <= 0 || j > maxDumpId)
     436           0 :             pg_fatal("invalid dumpId %d", j);
     437     4181982 :         idMap[j] = i;
     438    10922482 :         for (j = 0; j < obj->nDeps; j++)
     439             :         {
     440     6740500 :             k = obj->dependencies[j];
     441     6740500 :             if (k <= 0 || k > maxDumpId)
     442           0 :                 pg_fatal("invalid dependency %d", k);
     443     6740500 :             beforeConstraints[k]++;
     444             :         }
     445             :     }
     446             : 
     447             :     /*
     448             :      * Now initialize the heap of items-ready-to-output by filling it with the
     449             :      * indexes of items that already have beforeConstraints[id] == 0.
     450             :      *
     451             :      * We enter the indexes into pendingHeap in decreasing order so that the
     452             :      * heap invariant is satisfied at the completion of this loop.  This
     453             :      * reduces the amount of work that binaryheap_build() must do.
     454             :      */
     455     4183042 :     for (i = numObjs; --i >= 0;)
     456             :     {
     457     4181982 :         if (beforeConstraints[objs[i]->dumpId] == 0)
     458       64784 :             binaryheap_add_unordered(pendingHeap, (void *) (intptr_t) i);
     459             :     }
     460        1060 :     binaryheap_build(pendingHeap);
     461             : 
     462             :     /*--------------------
     463             :      * Now emit objects, working backwards in the output list.  At each step,
     464             :      * we use the priority heap to select the last item that has no remaining
     465             :      * before-constraints.  We remove that item from the heap, output it to
     466             :      * ordering[], and decrease the beforeConstraints count of each of the
     467             :      * items it was constrained against.  Whenever an item's beforeConstraints
     468             :      * count is thereby decreased to zero, we insert it into the priority heap
     469             :      * to show that it is a candidate to output.  We are done when the heap
     470             :      * becomes empty; if we have output every element then we succeeded,
     471             :      * otherwise we failed.
     472             :      * i = number of ordering[] entries left to output
     473             :      * j = objs[] index of item we are outputting
     474             :      * k = temp for scanning constraint list for item j
     475             :      *--------------------
     476             :      */
     477        1060 :     i = numObjs;
     478     2467388 :     while (!binaryheap_empty(pendingHeap))
     479             :     {
     480             :         /* Select object to output by removing largest heap member */
     481     2466328 :         j = (int) (intptr_t) binaryheap_remove_first(pendingHeap);
     482     2466328 :         obj = objs[j];
     483             :         /* Output candidate to ordering[] */
     484     2466328 :         ordering[--i] = obj;
     485             :         /* Update beforeConstraints counts of its predecessors */
     486     6256570 :         for (k = 0; k < obj->nDeps; k++)
     487             :         {
     488     3790242 :             int         id = obj->dependencies[k];
     489             : 
     490     3790242 :             if ((--beforeConstraints[id]) == 0)
     491     2401544 :                 binaryheap_add(pendingHeap, (void *) (intptr_t) idMap[id]);
     492             :         }
     493             :     }
     494             : 
     495             :     /*
     496             :      * If we failed, report the objects that couldn't be output; these are the
     497             :      * ones with beforeConstraints[] still nonzero.
     498             :      */
     499        1060 :     if (i != 0)
     500             :     {
     501         740 :         k = 0;
     502     2995482 :         for (j = 1; j <= maxDumpId; j++)
     503             :         {
     504     2994742 :             if (beforeConstraints[j] != 0)
     505     1715654 :                 ordering[k++] = objs[idMap[j]];
     506             :         }
     507         740 :         *nOrdering = k;
     508             :     }
     509             : 
     510             :     /* Done */
     511        1060 :     binaryheap_free(pendingHeap);
     512        1060 :     free(beforeConstraints);
     513        1060 :     free(idMap);
     514             : 
     515        1060 :     return (i == 0);
     516             : }
     517             : 
     518             : /*
     519             :  * findDependencyLoops - identify loops in TopoSort's failure output,
     520             :  *      and pass each such loop to repairDependencyLoop() for action
     521             :  *
     522             :  * In general there may be many loops in the set of objects returned by
     523             :  * TopoSort; for speed we should try to repair as many loops as we can
     524             :  * before trying TopoSort again.  We can safely repair loops that are
     525             :  * disjoint (have no members in common); if we find overlapping loops
     526             :  * then we repair only the first one found, because the action taken to
     527             :  * repair the first might have repaired the other as well.  (If not,
     528             :  * we'll fix it on the next go-round.)
     529             :  *
     530             :  * objs[] lists the objects TopoSort couldn't sort
     531             :  * nObjs is the number of such objects
     532             :  * totObjs is the total number of objects in the universe
     533             :  */
     534             : static void
     535         740 : findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs)
     536             : {
     537             :     /*
     538             :      * We use three data structures here:
     539             :      *
     540             :      * processed[] is a bool array indexed by dump ID, marking the objects
     541             :      * already processed during this invocation of findDependencyLoops().
     542             :      *
     543             :      * searchFailed[] is another array indexed by dump ID.  searchFailed[j] is
     544             :      * set to dump ID k if we have proven that there is no dependency path
     545             :      * leading from object j back to start point k.  This allows us to skip
     546             :      * useless searching when there are multiple dependency paths from k to j,
     547             :      * which is a common situation.  We could use a simple bool array for
     548             :      * this, but then we'd need to re-zero it for each start point, resulting
     549             :      * in O(N^2) zeroing work.  Using the start point's dump ID as the "true"
     550             :      * value lets us skip clearing the array before we consider the next start
     551             :      * point.
     552             :      *
     553             :      * workspace[] is an array of DumpableObject pointers, in which we try to
     554             :      * build lists of objects constituting loops.  We make workspace[] large
     555             :      * enough to hold all the objects in TopoSort's output, which is huge
     556             :      * overkill in most cases but could theoretically be necessary if there is
     557             :      * a single dependency chain linking all the objects.
     558             :      */
     559             :     bool       *processed;
     560             :     DumpId     *searchFailed;
     561             :     DumpableObject **workspace;
     562             :     bool        fixedloop;
     563             :     int         i;
     564             : 
     565         740 :     processed = (bool *) pg_malloc0((getMaxDumpId() + 1) * sizeof(bool));
     566         740 :     searchFailed = (DumpId *) pg_malloc0((getMaxDumpId() + 1) * sizeof(DumpId));
     567         740 :     workspace = (DumpableObject **) pg_malloc(totObjs * sizeof(DumpableObject *));
     568         740 :     fixedloop = false;
     569             : 
     570     1716394 :     for (i = 0; i < nObjs; i++)
     571             :     {
     572     1715654 :         DumpableObject *obj = objs[i];
     573             :         int         looplen;
     574             :         int         j;
     575             : 
     576     1715654 :         looplen = findLoop(obj,
     577             :                            obj->dumpId,
     578             :                            processed,
     579             :                            searchFailed,
     580             :                            workspace,
     581             :                            0);
     582             : 
     583     1715654 :         if (looplen > 0)
     584             :         {
     585             :             /* Found a loop, repair it */
     586       53422 :             repairDependencyLoop(workspace, looplen);
     587       53422 :             fixedloop = true;
     588             :             /* Mark loop members as processed */
     589      160854 :             for (j = 0; j < looplen; j++)
     590      107432 :                 processed[workspace[j]->dumpId] = true;
     591             :         }
     592             :         else
     593             :         {
     594             :             /*
     595             :              * There's no loop starting at this object, but mark it processed
     596             :              * anyway.  This is not necessary for correctness, but saves later
     597             :              * invocations of findLoop() from uselessly chasing references to
     598             :              * such an object.
     599             :              */
     600     1662232 :             processed[obj->dumpId] = true;
     601             :         }
     602             :     }
     603             : 
     604             :     /* We'd better have fixed at least one loop */
     605         740 :     if (!fixedloop)
     606           0 :         pg_fatal("could not identify dependency loop");
     607             : 
     608         740 :     free(workspace);
     609         740 :     free(searchFailed);
     610         740 :     free(processed);
     611         740 : }
     612             : 
     613             : /*
     614             :  * Recursively search for a circular dependency loop that doesn't include
     615             :  * any already-processed objects.
     616             :  *
     617             :  *  obj: object we are examining now
     618             :  *  startPoint: dumpId of starting object for the hoped-for circular loop
     619             :  *  processed[]: flag array marking already-processed objects
     620             :  *  searchFailed[]: flag array marking already-unsuccessfully-visited objects
     621             :  *  workspace[]: work array in which we are building list of loop members
     622             :  *  depth: number of valid entries in workspace[] at call
     623             :  *
     624             :  * On success, the length of the loop is returned, and workspace[] is filled
     625             :  * with pointers to the members of the loop.  On failure, we return 0.
     626             :  *
     627             :  * Note: it is possible that the given starting object is a member of more
     628             :  * than one cycle; if so, we will find an arbitrary one of the cycles.
     629             :  */
     630             : static int
     631    42905890 : findLoop(DumpableObject *obj,
     632             :          DumpId startPoint,
     633             :          bool *processed,
     634             :          DumpId *searchFailed,
     635             :          DumpableObject **workspace,
     636             :          int depth)
     637             : {
     638             :     int         i;
     639             : 
     640             :     /*
     641             :      * Reject if obj is already processed.  This test prevents us from finding
     642             :      * loops that overlap previously-processed loops.
     643             :      */
     644    42905890 :     if (processed[obj->dumpId])
     645    30024232 :         return 0;
     646             : 
     647             :     /*
     648             :      * If we've already proven there is no path from this object back to the
     649             :      * startPoint, forget it.
     650             :      */
     651    12881658 :     if (searchFailed[obj->dumpId] == startPoint)
     652     1265992 :         return 0;
     653             : 
     654             :     /*
     655             :      * Reject if obj is already present in workspace.  This test prevents us
     656             :      * from going into infinite recursion if we are given a startPoint object
     657             :      * that links to a cycle it's not a member of, and it guarantees that we
     658             :      * can't overflow the allocated size of workspace[].
     659             :      */
     660    31578868 :     for (i = 0; i < depth; i++)
     661             :     {
     662    19968054 :         if (workspace[i] == obj)
     663        4852 :             return 0;
     664             :     }
     665             : 
     666             :     /*
     667             :      * Okay, tentatively add obj to workspace
     668             :      */
     669    11610814 :     workspace[depth++] = obj;
     670             : 
     671             :     /*
     672             :      * See if we've found a loop back to the desired startPoint; if so, done
     673             :      */
     674    54049882 :     for (i = 0; i < obj->nDeps; i++)
     675             :     {
     676    42492490 :         if (obj->dependencies[i] == startPoint)
     677       53422 :             return depth;
     678             :     }
     679             : 
     680             :     /*
     681             :      * Recurse down each outgoing branch
     682             :      */
     683    52693618 :     for (i = 0; i < obj->nDeps; i++)
     684             :     {
     685    41190236 :         DumpableObject *nextobj = findObjectByDumpId(obj->dependencies[i]);
     686             :         int         newDepth;
     687             : 
     688    41190236 :         if (!nextobj)
     689           0 :             continue;           /* ignore dependencies on undumped objects */
     690    41190236 :         newDepth = findLoop(nextobj,
     691             :                             startPoint,
     692             :                             processed,
     693             :                             searchFailed,
     694             :                             workspace,
     695             :                             depth);
     696    41190236 :         if (newDepth > 0)
     697       54010 :             return newDepth;
     698             :     }
     699             : 
     700             :     /*
     701             :      * Remember there is no path from here back to startPoint
     702             :      */
     703    11503382 :     searchFailed[obj->dumpId] = startPoint;
     704             : 
     705    11503382 :     return 0;
     706             : }
     707             : 
     708             : /*
     709             :  * A user-defined datatype will have a dependency loop with each of its
     710             :  * I/O functions (since those have the datatype as input or output).
     711             :  * Similarly, a range type will have a loop with its canonicalize function,
     712             :  * if any.  Break the loop by making the function depend on the associated
     713             :  * shell type, instead.
     714             :  */
     715             : static void
     716         384 : repairTypeFuncLoop(DumpableObject *typeobj, DumpableObject *funcobj)
     717             : {
     718         384 :     TypeInfo   *typeInfo = (TypeInfo *) typeobj;
     719             : 
     720             :     /* remove function's dependency on type */
     721         384 :     removeObjectDependency(funcobj, typeobj->dumpId);
     722             : 
     723             :     /* add function's dependency on shell type, instead */
     724         384 :     if (typeInfo->shellType)
     725             :     {
     726         300 :         addObjectDependency(funcobj, typeInfo->shellType->dobj.dumpId);
     727             : 
     728             :         /*
     729             :          * Mark shell type (always including the definition, as we need the
     730             :          * shell type defined to identify the function fully) as to be dumped
     731             :          * if any such function is
     732             :          */
     733         300 :         if (funcobj->dump)
     734         300 :             typeInfo->shellType->dobj.dump = funcobj->dump |
     735             :                 DUMP_COMPONENT_DEFINITION;
     736             :     }
     737         384 : }
     738             : 
     739             : /*
     740             :  * Because we force a view to depend on its ON SELECT rule, while there
     741             :  * will be an implicit dependency in the other direction, we need to break
     742             :  * the loop.  If there are no other objects in the loop then we can remove
     743             :  * the implicit dependency and leave the ON SELECT rule non-separate.
     744             :  * This applies to matviews, as well.
     745             :  */
     746             : static void
     747       47600 : repairViewRuleLoop(DumpableObject *viewobj,
     748             :                    DumpableObject *ruleobj)
     749             : {
     750             :     /* remove rule's dependency on view */
     751       47600 :     removeObjectDependency(ruleobj, viewobj->dumpId);
     752             :     /* flags on the two objects are already set correctly for this case */
     753       47600 : }
     754             : 
     755             : /*
     756             :  * However, if there are other objects in the loop, we must break the loop
     757             :  * by making the ON SELECT rule a separately-dumped object.
     758             :  *
     759             :  * Because findLoop() finds shorter cycles before longer ones, it's likely
     760             :  * that we will have previously fired repairViewRuleLoop() and removed the
     761             :  * rule's dependency on the view.  Put it back to ensure the rule won't be
     762             :  * emitted before the view.
     763             :  *
     764             :  * Note: this approach does *not* work for matviews, at the moment.
     765             :  */
     766             : static void
     767          20 : repairViewRuleMultiLoop(DumpableObject *viewobj,
     768             :                         DumpableObject *ruleobj)
     769             : {
     770          20 :     TableInfo  *viewinfo = (TableInfo *) viewobj;
     771          20 :     RuleInfo   *ruleinfo = (RuleInfo *) ruleobj;
     772             : 
     773             :     /* remove view's dependency on rule */
     774          20 :     removeObjectDependency(viewobj, ruleobj->dumpId);
     775             :     /* mark view to be printed with a dummy definition */
     776          20 :     viewinfo->dummy_view = true;
     777             :     /* mark rule as needing its own dump */
     778          20 :     ruleinfo->separate = true;
     779             :     /* put back rule's dependency on view */
     780          20 :     addObjectDependency(ruleobj, viewobj->dumpId);
     781             :     /* now that rule is separate, it must be post-data */
     782          20 :     addObjectDependency(ruleobj, postDataBoundId);
     783          20 : }
     784             : 
     785             : /*
     786             :  * If a matview is involved in a multi-object loop, we can't currently fix
     787             :  * that by splitting off the rule.  As a stopgap, we try to fix it by
     788             :  * dropping the constraint that the matview be dumped in the pre-data section.
     789             :  * This is sufficient to handle cases where a matview depends on some unique
     790             :  * index, as can happen if it has a GROUP BY for example.
     791             :  *
     792             :  * Note that the "next object" is not necessarily the matview itself;
     793             :  * it could be the matview's rowtype, for example.  We may come through here
     794             :  * several times while removing all the pre-data linkages.  In particular,
     795             :  * if there are other matviews that depend on the one with the circularity
     796             :  * problem, we'll come through here for each such matview and mark them all
     797             :  * as postponed.  (This works because all MVs have pre-data dependencies
     798             :  * to begin with, so each of them will get visited.)
     799             :  */
     800             : static void
     801         310 : repairMatViewBoundaryMultiLoop(DumpableObject *boundaryobj,
     802             :                                DumpableObject *nextobj)
     803             : {
     804             :     /* remove boundary's dependency on object after it in loop */
     805         310 :     removeObjectDependency(boundaryobj, nextobj->dumpId);
     806             : 
     807             :     /*
     808             :      * If that object is a matview or matview stats, mark it as postponed into
     809             :      * post-data.
     810             :      */
     811         310 :     if (nextobj->objType == DO_TABLE)
     812             :     {
     813          80 :         TableInfo  *nextinfo = (TableInfo *) nextobj;
     814             : 
     815          80 :         if (nextinfo->relkind == RELKIND_MATVIEW)
     816          80 :             nextinfo->postponed_def = true;
     817             :     }
     818         230 :     else if (nextobj->objType == DO_REL_STATS)
     819             :     {
     820          70 :         RelStatsInfo *nextinfo = (RelStatsInfo *) nextobj;
     821             : 
     822          70 :         if (nextinfo->relkind == RELKIND_MATVIEW)
     823          70 :             nextinfo->postponed_def = true;
     824             :     }
     825         310 : }
     826             : 
     827             : /*
     828             :  * If a function is involved in a multi-object loop, we can't currently fix
     829             :  * that by splitting it into two DumpableObjects.  As a stopgap, we try to fix
     830             :  * it by dropping the constraint that the function be dumped in the pre-data
     831             :  * section.  This is sufficient to handle cases where a function depends on
     832             :  * some unique index, as can happen if it has a GROUP BY for example.
     833             :  */
     834             : static void
     835          80 : repairFunctionBoundaryMultiLoop(DumpableObject *boundaryobj,
     836             :                                 DumpableObject *nextobj)
     837             : {
     838             :     /* remove boundary's dependency on object after it in loop */
     839          80 :     removeObjectDependency(boundaryobj, nextobj->dumpId);
     840             :     /* if that object is a function, mark it as postponed into post-data */
     841          80 :     if (nextobj->objType == DO_FUNC)
     842             :     {
     843          80 :         FuncInfo   *nextinfo = (FuncInfo *) nextobj;
     844             : 
     845          80 :         nextinfo->postponed_def = true;
     846             :     }
     847          80 : }
     848             : 
     849             : /*
     850             :  * Because we make tables depend on their CHECK constraints, while there
     851             :  * will be an automatic dependency in the other direction, we need to break
     852             :  * the loop.  If there are no other objects in the loop then we can remove
     853             :  * the automatic dependency and leave the CHECK constraint non-separate.
     854             :  */
     855             : static void
     856        1134 : repairTableConstraintLoop(DumpableObject *tableobj,
     857             :                           DumpableObject *constraintobj)
     858             : {
     859             :     /* remove constraint's dependency on table */
     860        1134 :     removeObjectDependency(constraintobj, tableobj->dumpId);
     861        1134 : }
     862             : 
     863             : /*
     864             :  * However, if there are other objects in the loop, we must break the loop
     865             :  * by making the CHECK constraint a separately-dumped object.
     866             :  *
     867             :  * Because findLoop() finds shorter cycles before longer ones, it's likely
     868             :  * that we will have previously fired repairTableConstraintLoop() and
     869             :  * removed the constraint's dependency on the table.  Put it back to ensure
     870             :  * the constraint won't be emitted before the table...
     871             :  */
     872             : static void
     873          10 : repairTableConstraintMultiLoop(DumpableObject *tableobj,
     874             :                                DumpableObject *constraintobj)
     875             : {
     876             :     /* remove table's dependency on constraint */
     877          10 :     removeObjectDependency(tableobj, constraintobj->dumpId);
     878             :     /* mark constraint as needing its own dump */
     879          10 :     ((ConstraintInfo *) constraintobj)->separate = true;
     880             :     /* put back constraint's dependency on table */
     881          10 :     addObjectDependency(constraintobj, tableobj->dumpId);
     882             :     /* now that constraint is separate, it must be post-data */
     883          10 :     addObjectDependency(constraintobj, postDataBoundId);
     884          10 : }
     885             : 
     886             : /*
     887             :  * Attribute defaults behave exactly the same as CHECK constraints...
     888             :  */
     889             : static void
     890        1906 : repairTableAttrDefLoop(DumpableObject *tableobj,
     891             :                        DumpableObject *attrdefobj)
     892             : {
     893             :     /* remove attrdef's dependency on table */
     894        1906 :     removeObjectDependency(attrdefobj, tableobj->dumpId);
     895        1906 : }
     896             : 
     897             : static void
     898         312 : repairTableAttrDefMultiLoop(DumpableObject *tableobj,
     899             :                             DumpableObject *attrdefobj)
     900             : {
     901             :     /* remove table's dependency on attrdef */
     902         312 :     removeObjectDependency(tableobj, attrdefobj->dumpId);
     903             :     /* mark attrdef as needing its own dump */
     904         312 :     ((AttrDefInfo *) attrdefobj)->separate = true;
     905             :     /* put back attrdef's dependency on table */
     906         312 :     addObjectDependency(attrdefobj, tableobj->dumpId);
     907         312 : }
     908             : 
     909             : /*
     910             :  * CHECK constraints on domains work just like those on tables ...
     911             :  */
     912             : static void
     913         200 : repairDomainConstraintLoop(DumpableObject *domainobj,
     914             :                            DumpableObject *constraintobj)
     915             : {
     916             :     /* remove constraint's dependency on domain */
     917         200 :     removeObjectDependency(constraintobj, domainobj->dumpId);
     918         200 : }
     919             : 
     920             : static void
     921           0 : repairDomainConstraintMultiLoop(DumpableObject *domainobj,
     922             :                                 DumpableObject *constraintobj)
     923             : {
     924             :     /* remove domain's dependency on constraint */
     925           0 :     removeObjectDependency(domainobj, constraintobj->dumpId);
     926             :     /* mark constraint as needing its own dump */
     927           0 :     ((ConstraintInfo *) constraintobj)->separate = true;
     928             :     /* put back constraint's dependency on domain */
     929           0 :     addObjectDependency(constraintobj, domainobj->dumpId);
     930             :     /* now that constraint is separate, it must be post-data */
     931           0 :     addObjectDependency(constraintobj, postDataBoundId);
     932           0 : }
     933             : 
     934             : static void
     935           0 : repairIndexLoop(DumpableObject *partedindex,
     936             :                 DumpableObject *partindex)
     937             : {
     938           0 :     removeObjectDependency(partedindex, partindex->dumpId);
     939           0 : }
     940             : 
     941             : /*
     942             :  * Fix a dependency loop, or die trying ...
     943             :  *
     944             :  * This routine is mainly concerned with reducing the multiple ways that
     945             :  * a loop might appear to common cases, which it passes off to the
     946             :  * "fixer" routines above.
     947             :  */
     948             : static void
     949       53422 : repairDependencyLoop(DumpableObject **loop,
     950             :                      int nLoop)
     951             : {
     952             :     int         i,
     953             :                 j;
     954             : 
     955             :     /* Datatype and one of its I/O or canonicalize functions */
     956       53422 :     if (nLoop == 2 &&
     957       51224 :         loop[0]->objType == DO_TYPE &&
     958         200 :         loop[1]->objType == DO_FUNC)
     959             :     {
     960           0 :         repairTypeFuncLoop(loop[0], loop[1]);
     961           0 :         return;
     962             :     }
     963       53422 :     if (nLoop == 2 &&
     964       51224 :         loop[1]->objType == DO_TYPE &&
     965         384 :         loop[0]->objType == DO_FUNC)
     966             :     {
     967         384 :         repairTypeFuncLoop(loop[1], loop[0]);
     968         384 :         return;
     969             :     }
     970             : 
     971             :     /* View (including matview) and its ON SELECT rule */
     972       53038 :     if (nLoop == 2 &&
     973       50840 :         loop[0]->objType == DO_TABLE &&
     974       50640 :         loop[1]->objType == DO_RULE &&
     975       47600 :         (((TableInfo *) loop[0])->relkind == RELKIND_VIEW ||
     976        1052 :          ((TableInfo *) loop[0])->relkind == RELKIND_MATVIEW) &&
     977       47600 :         ((RuleInfo *) loop[1])->ev_type == '1' &&
     978       47600 :         ((RuleInfo *) loop[1])->is_instead &&
     979       47600 :         ((RuleInfo *) loop[1])->ruletable == (TableInfo *) loop[0])
     980             :     {
     981       47600 :         repairViewRuleLoop(loop[0], loop[1]);
     982       47600 :         return;
     983             :     }
     984        5438 :     if (nLoop == 2 &&
     985        3240 :         loop[1]->objType == DO_TABLE &&
     986           0 :         loop[0]->objType == DO_RULE &&
     987           0 :         (((TableInfo *) loop[1])->relkind == RELKIND_VIEW ||
     988           0 :          ((TableInfo *) loop[1])->relkind == RELKIND_MATVIEW) &&
     989           0 :         ((RuleInfo *) loop[0])->ev_type == '1' &&
     990           0 :         ((RuleInfo *) loop[0])->is_instead &&
     991           0 :         ((RuleInfo *) loop[0])->ruletable == (TableInfo *) loop[1])
     992             :     {
     993           0 :         repairViewRuleLoop(loop[1], loop[0]);
     994           0 :         return;
     995             :     }
     996             : 
     997             :     /* Indirect loop involving view (but not matview) and ON SELECT rule */
     998        5438 :     if (nLoop > 2)
     999             :     {
    1000        4154 :         for (i = 0; i < nLoop; i++)
    1001             :         {
    1002        3442 :             if (loop[i]->objType == DO_TABLE &&
    1003         964 :                 ((TableInfo *) loop[i])->relkind == RELKIND_VIEW)
    1004             :             {
    1005          64 :                 for (j = 0; j < nLoop; j++)
    1006             :                 {
    1007          64 :                     if (loop[j]->objType == DO_RULE &&
    1008          20 :                         ((RuleInfo *) loop[j])->ev_type == '1' &&
    1009          20 :                         ((RuleInfo *) loop[j])->is_instead &&
    1010          20 :                         ((RuleInfo *) loop[j])->ruletable == (TableInfo *) loop[i])
    1011             :                     {
    1012          20 :                         repairViewRuleMultiLoop(loop[i], loop[j]);
    1013          20 :                         return;
    1014             :                     }
    1015             :                 }
    1016             :             }
    1017             :         }
    1018             :     }
    1019             : 
    1020             :     /* Indirect loop involving matview and data boundary */
    1021        5418 :     if (nLoop > 2)
    1022             :     {
    1023        2996 :         for (i = 0; i < nLoop; i++)
    1024             :         {
    1025        2594 :             if (loop[i]->objType == DO_TABLE &&
    1026         944 :                 ((TableInfo *) loop[i])->relkind == RELKIND_MATVIEW)
    1027             :             {
    1028        1014 :                 for (j = 0; j < nLoop; j++)
    1029             :                 {
    1030         944 :                     if (loop[j]->objType == DO_PRE_DATA_BOUNDARY)
    1031             :                     {
    1032             :                         DumpableObject *nextobj;
    1033             : 
    1034         240 :                         nextobj = (j < nLoop - 1) ? loop[j + 1] : loop[0];
    1035         240 :                         repairMatViewBoundaryMultiLoop(loop[j], nextobj);
    1036         240 :                         return;
    1037             :                     }
    1038             :                 }
    1039             :             }
    1040        2284 :             else if (loop[i]->objType == DO_REL_STATS &&
    1041         350 :                      ((RelStatsInfo *) loop[i])->relkind == RELKIND_MATVIEW)
    1042             :             {
    1043         280 :                 for (j = 0; j < nLoop; j++)
    1044             :                 {
    1045         280 :                     if (loop[j]->objType == DO_POST_DATA_BOUNDARY)
    1046             :                     {
    1047             :                         DumpableObject *nextobj;
    1048             : 
    1049          70 :                         nextobj = (j < nLoop - 1) ? loop[j + 1] : loop[0];
    1050          70 :                         repairMatViewBoundaryMultiLoop(loop[j], nextobj);
    1051          70 :                         return;
    1052             :                     }
    1053             :                 }
    1054             :             }
    1055             :         }
    1056             :     }
    1057             : 
    1058             :     /* Indirect loop involving function and data boundary */
    1059        5108 :     if (nLoop > 2)
    1060             :     {
    1061        1518 :         for (i = 0; i < nLoop; i++)
    1062             :         {
    1063        1196 :             if (loop[i]->objType == DO_FUNC)
    1064             :             {
    1065         238 :                 for (j = 0; j < nLoop; j++)
    1066             :                 {
    1067         228 :                     if (loop[j]->objType == DO_PRE_DATA_BOUNDARY)
    1068             :                     {
    1069             :                         DumpableObject *nextobj;
    1070             : 
    1071          80 :                         nextobj = (j < nLoop - 1) ? loop[j + 1] : loop[0];
    1072          80 :                         repairFunctionBoundaryMultiLoop(loop[j], nextobj);
    1073          80 :                         return;
    1074             :                     }
    1075             :                 }
    1076             :             }
    1077             :         }
    1078             :     }
    1079             : 
    1080             :     /* Table and CHECK constraint */
    1081        5028 :     if (nLoop == 2 &&
    1082        3240 :         loop[0]->objType == DO_TABLE &&
    1083        3040 :         loop[1]->objType == DO_CONSTRAINT &&
    1084        1134 :         ((ConstraintInfo *) loop[1])->contype == 'c' &&
    1085        1134 :         ((ConstraintInfo *) loop[1])->contable == (TableInfo *) loop[0])
    1086             :     {
    1087        1134 :         repairTableConstraintLoop(loop[0], loop[1]);
    1088        1134 :         return;
    1089             :     }
    1090        3894 :     if (nLoop == 2 &&
    1091        2106 :         loop[1]->objType == DO_TABLE &&
    1092           0 :         loop[0]->objType == DO_CONSTRAINT &&
    1093           0 :         ((ConstraintInfo *) loop[0])->contype == 'c' &&
    1094           0 :         ((ConstraintInfo *) loop[0])->contable == (TableInfo *) loop[1])
    1095             :     {
    1096           0 :         repairTableConstraintLoop(loop[1], loop[0]);
    1097           0 :         return;
    1098             :     }
    1099             : 
    1100             :     /* Indirect loop involving table and CHECK constraint */
    1101        3894 :     if (nLoop > 2)
    1102             :     {
    1103        1258 :         for (i = 0; i < nLoop; i++)
    1104             :         {
    1105         946 :             if (loop[i]->objType == DO_TABLE)
    1106             :             {
    1107        2516 :                 for (j = 0; j < nLoop; j++)
    1108             :                 {
    1109        1892 :                     if (loop[j]->objType == DO_CONSTRAINT &&
    1110          10 :                         ((ConstraintInfo *) loop[j])->contype == 'c' &&
    1111          10 :                         ((ConstraintInfo *) loop[j])->contable == (TableInfo *) loop[i])
    1112             :                     {
    1113          10 :                         repairTableConstraintMultiLoop(loop[i], loop[j]);
    1114          10 :                         return;
    1115             :                     }
    1116             :                 }
    1117             :             }
    1118             :         }
    1119             :     }
    1120             : 
    1121             :     /* Table and attribute default */
    1122        3884 :     if (nLoop == 2 &&
    1123        2106 :         loop[0]->objType == DO_TABLE &&
    1124        1906 :         loop[1]->objType == DO_ATTRDEF &&
    1125        1906 :         ((AttrDefInfo *) loop[1])->adtable == (TableInfo *) loop[0])
    1126             :     {
    1127        1906 :         repairTableAttrDefLoop(loop[0], loop[1]);
    1128        1906 :         return;
    1129             :     }
    1130        1978 :     if (nLoop == 2 &&
    1131         200 :         loop[1]->objType == DO_TABLE &&
    1132           0 :         loop[0]->objType == DO_ATTRDEF &&
    1133           0 :         ((AttrDefInfo *) loop[0])->adtable == (TableInfo *) loop[1])
    1134             :     {
    1135           0 :         repairTableAttrDefLoop(loop[1], loop[0]);
    1136           0 :         return;
    1137             :     }
    1138             : 
    1139             :     /* index on partitioned table and corresponding index on partition */
    1140        1978 :     if (nLoop == 2 &&
    1141         200 :         loop[0]->objType == DO_INDEX &&
    1142           0 :         loop[1]->objType == DO_INDEX)
    1143             :     {
    1144           0 :         if (((IndxInfo *) loop[0])->parentidx == loop[1]->catId.oid)
    1145             :         {
    1146           0 :             repairIndexLoop(loop[0], loop[1]);
    1147           0 :             return;
    1148             :         }
    1149           0 :         else if (((IndxInfo *) loop[1])->parentidx == loop[0]->catId.oid)
    1150             :         {
    1151           0 :             repairIndexLoop(loop[1], loop[0]);
    1152           0 :             return;
    1153             :         }
    1154             :     }
    1155             : 
    1156             :     /* Indirect loop involving table and attribute default */
    1157        1978 :     if (nLoop > 2)
    1158             :     {
    1159         624 :         for (i = 0; i < nLoop; i++)
    1160             :         {
    1161         624 :             if (loop[i]->objType == DO_TABLE)
    1162             :             {
    1163        2184 :                 for (j = 0; j < nLoop; j++)
    1164             :                 {
    1165        1872 :                     if (loop[j]->objType == DO_ATTRDEF &&
    1166         624 :                         ((AttrDefInfo *) loop[j])->adtable == (TableInfo *) loop[i])
    1167             :                     {
    1168         312 :                         repairTableAttrDefMultiLoop(loop[i], loop[j]);
    1169         312 :                         return;
    1170             :                     }
    1171             :                 }
    1172             :             }
    1173             :         }
    1174             :     }
    1175             : 
    1176             :     /* Domain and CHECK constraint */
    1177        1666 :     if (nLoop == 2 &&
    1178         200 :         loop[0]->objType == DO_TYPE &&
    1179         200 :         loop[1]->objType == DO_CONSTRAINT &&
    1180         200 :         ((ConstraintInfo *) loop[1])->contype == 'c' &&
    1181         200 :         ((ConstraintInfo *) loop[1])->condomain == (TypeInfo *) loop[0])
    1182             :     {
    1183         200 :         repairDomainConstraintLoop(loop[0], loop[1]);
    1184         200 :         return;
    1185             :     }
    1186        1466 :     if (nLoop == 2 &&
    1187           0 :         loop[1]->objType == DO_TYPE &&
    1188           0 :         loop[0]->objType == DO_CONSTRAINT &&
    1189           0 :         ((ConstraintInfo *) loop[0])->contype == 'c' &&
    1190           0 :         ((ConstraintInfo *) loop[0])->condomain == (TypeInfo *) loop[1])
    1191             :     {
    1192           0 :         repairDomainConstraintLoop(loop[1], loop[0]);
    1193           0 :         return;
    1194             :     }
    1195             : 
    1196             :     /* Indirect loop involving domain and CHECK constraint */
    1197        1466 :     if (nLoop > 2)
    1198             :     {
    1199           0 :         for (i = 0; i < nLoop; i++)
    1200             :         {
    1201           0 :             if (loop[i]->objType == DO_TYPE)
    1202             :             {
    1203           0 :                 for (j = 0; j < nLoop; j++)
    1204             :                 {
    1205           0 :                     if (loop[j]->objType == DO_CONSTRAINT &&
    1206           0 :                         ((ConstraintInfo *) loop[j])->contype == 'c' &&
    1207           0 :                         ((ConstraintInfo *) loop[j])->condomain == (TypeInfo *) loop[i])
    1208             :                     {
    1209           0 :                         repairDomainConstraintMultiLoop(loop[i], loop[j]);
    1210           0 :                         return;
    1211             :                     }
    1212             :                 }
    1213             :             }
    1214             :         }
    1215             :     }
    1216             : 
    1217             :     /*
    1218             :      * Loop of table with itself --- just ignore it.
    1219             :      *
    1220             :      * (Actually, what this arises from is a dependency of a table column on
    1221             :      * another column, which happened with generated columns before v15; or a
    1222             :      * dependency of a table column on the whole table, which happens with
    1223             :      * partitioning.  But we didn't pay attention to sub-object IDs while
    1224             :      * collecting the dependency data, so we can't see that here.)
    1225             :      */
    1226        1466 :     if (nLoop == 1)
    1227             :     {
    1228        1466 :         if (loop[0]->objType == DO_TABLE)
    1229             :         {
    1230        1466 :             removeObjectDependency(loop[0], loop[0]->dumpId);
    1231        1466 :             return;
    1232             :         }
    1233             :     }
    1234             : 
    1235             :     /*
    1236             :      * If all the objects are TABLE_DATA items, what we must have is a
    1237             :      * circular set of foreign key constraints (or a single self-referential
    1238             :      * table).  Print an appropriate complaint and break the loop arbitrarily.
    1239             :      */
    1240           0 :     for (i = 0; i < nLoop; i++)
    1241             :     {
    1242           0 :         if (loop[i]->objType != DO_TABLE_DATA)
    1243           0 :             break;
    1244             :     }
    1245           0 :     if (i >= nLoop)
    1246             :     {
    1247           0 :         pg_log_warning(ngettext("there are circular foreign-key constraints on this table:",
    1248             :                                 "there are circular foreign-key constraints among these tables:",
    1249             :                                 nLoop));
    1250           0 :         for (i = 0; i < nLoop; i++)
    1251           0 :             pg_log_warning_detail("%s", loop[i]->name);
    1252           0 :         pg_log_warning_hint("You might not be able to restore the dump without using --disable-triggers or temporarily dropping the constraints.");
    1253           0 :         pg_log_warning_hint("Consider using a full dump instead of a --data-only dump to avoid this problem.");
    1254           0 :         if (nLoop > 1)
    1255           0 :             removeObjectDependency(loop[0], loop[1]->dumpId);
    1256             :         else                    /* must be a self-dependency */
    1257           0 :             removeObjectDependency(loop[0], loop[0]->dumpId);
    1258           0 :         return;
    1259             :     }
    1260             : 
    1261             :     /*
    1262             :      * If we can't find a principled way to break the loop, complain and break
    1263             :      * it in an arbitrary fashion.
    1264             :      */
    1265           0 :     pg_log_warning("could not resolve dependency loop among these items:");
    1266           0 :     for (i = 0; i < nLoop; i++)
    1267             :     {
    1268             :         char        buf[1024];
    1269             : 
    1270           0 :         describeDumpableObject(loop[i], buf, sizeof(buf));
    1271           0 :         pg_log_warning_detail("%s", buf);
    1272             :     }
    1273             : 
    1274           0 :     if (nLoop > 1)
    1275           0 :         removeObjectDependency(loop[0], loop[1]->dumpId);
    1276             :     else                        /* must be a self-dependency */
    1277           0 :         removeObjectDependency(loop[0], loop[0]->dumpId);
    1278             : }
    1279             : 
    1280             : /*
    1281             :  * Describe a dumpable object usefully for errors
    1282             :  *
    1283             :  * This should probably go somewhere else...
    1284             :  */
    1285             : static void
    1286           0 : describeDumpableObject(DumpableObject *obj, char *buf, int bufsize)
    1287             : {
    1288           0 :     switch (obj->objType)
    1289             :     {
    1290           0 :         case DO_NAMESPACE:
    1291           0 :             snprintf(buf, bufsize,
    1292             :                      "SCHEMA %s  (ID %d OID %u)",
    1293             :                      obj->name, obj->dumpId, obj->catId.oid);
    1294           0 :             return;
    1295           0 :         case DO_EXTENSION:
    1296           0 :             snprintf(buf, bufsize,
    1297             :                      "EXTENSION %s  (ID %d OID %u)",
    1298             :                      obj->name, obj->dumpId, obj->catId.oid);
    1299           0 :             return;
    1300           0 :         case DO_TYPE:
    1301           0 :             snprintf(buf, bufsize,
    1302             :                      "TYPE %s  (ID %d OID %u)",
    1303             :                      obj->name, obj->dumpId, obj->catId.oid);
    1304           0 :             return;
    1305           0 :         case DO_SHELL_TYPE:
    1306           0 :             snprintf(buf, bufsize,
    1307             :                      "SHELL TYPE %s  (ID %d OID %u)",
    1308             :                      obj->name, obj->dumpId, obj->catId.oid);
    1309           0 :             return;
    1310           0 :         case DO_FUNC:
    1311           0 :             snprintf(buf, bufsize,
    1312             :                      "FUNCTION %s  (ID %d OID %u)",
    1313             :                      obj->name, obj->dumpId, obj->catId.oid);
    1314           0 :             return;
    1315           0 :         case DO_AGG:
    1316           0 :             snprintf(buf, bufsize,
    1317             :                      "AGGREGATE %s  (ID %d OID %u)",
    1318             :                      obj->name, obj->dumpId, obj->catId.oid);
    1319           0 :             return;
    1320           0 :         case DO_OPERATOR:
    1321           0 :             snprintf(buf, bufsize,
    1322             :                      "OPERATOR %s  (ID %d OID %u)",
    1323             :                      obj->name, obj->dumpId, obj->catId.oid);
    1324           0 :             return;
    1325           0 :         case DO_ACCESS_METHOD:
    1326           0 :             snprintf(buf, bufsize,
    1327             :                      "ACCESS METHOD %s  (ID %d OID %u)",
    1328             :                      obj->name, obj->dumpId, obj->catId.oid);
    1329           0 :             return;
    1330           0 :         case DO_OPCLASS:
    1331           0 :             snprintf(buf, bufsize,
    1332             :                      "OPERATOR CLASS %s  (ID %d OID %u)",
    1333             :                      obj->name, obj->dumpId, obj->catId.oid);
    1334           0 :             return;
    1335           0 :         case DO_OPFAMILY:
    1336           0 :             snprintf(buf, bufsize,
    1337             :                      "OPERATOR FAMILY %s  (ID %d OID %u)",
    1338             :                      obj->name, obj->dumpId, obj->catId.oid);
    1339           0 :             return;
    1340           0 :         case DO_COLLATION:
    1341           0 :             snprintf(buf, bufsize,
    1342             :                      "COLLATION %s  (ID %d OID %u)",
    1343             :                      obj->name, obj->dumpId, obj->catId.oid);
    1344           0 :             return;
    1345           0 :         case DO_CONVERSION:
    1346           0 :             snprintf(buf, bufsize,
    1347             :                      "CONVERSION %s  (ID %d OID %u)",
    1348             :                      obj->name, obj->dumpId, obj->catId.oid);
    1349           0 :             return;
    1350           0 :         case DO_TABLE:
    1351           0 :             snprintf(buf, bufsize,
    1352             :                      "TABLE %s  (ID %d OID %u)",
    1353             :                      obj->name, obj->dumpId, obj->catId.oid);
    1354           0 :             return;
    1355           0 :         case DO_TABLE_ATTACH:
    1356           0 :             snprintf(buf, bufsize,
    1357             :                      "TABLE ATTACH %s  (ID %d)",
    1358             :                      obj->name, obj->dumpId);
    1359           0 :             return;
    1360           0 :         case DO_ATTRDEF:
    1361           0 :             snprintf(buf, bufsize,
    1362             :                      "ATTRDEF %s.%s  (ID %d OID %u)",
    1363           0 :                      ((AttrDefInfo *) obj)->adtable->dobj.name,
    1364           0 :                      ((AttrDefInfo *) obj)->adtable->attnames[((AttrDefInfo *) obj)->adnum - 1],
    1365             :                      obj->dumpId, obj->catId.oid);
    1366           0 :             return;
    1367           0 :         case DO_INDEX:
    1368           0 :             snprintf(buf, bufsize,
    1369             :                      "INDEX %s  (ID %d OID %u)",
    1370             :                      obj->name, obj->dumpId, obj->catId.oid);
    1371           0 :             return;
    1372           0 :         case DO_INDEX_ATTACH:
    1373           0 :             snprintf(buf, bufsize,
    1374             :                      "INDEX ATTACH %s  (ID %d)",
    1375             :                      obj->name, obj->dumpId);
    1376           0 :             return;
    1377           0 :         case DO_STATSEXT:
    1378           0 :             snprintf(buf, bufsize,
    1379             :                      "STATISTICS %s  (ID %d OID %u)",
    1380             :                      obj->name, obj->dumpId, obj->catId.oid);
    1381           0 :             return;
    1382           0 :         case DO_REFRESH_MATVIEW:
    1383           0 :             snprintf(buf, bufsize,
    1384             :                      "REFRESH MATERIALIZED VIEW %s  (ID %d OID %u)",
    1385             :                      obj->name, obj->dumpId, obj->catId.oid);
    1386           0 :             return;
    1387           0 :         case DO_RULE:
    1388           0 :             snprintf(buf, bufsize,
    1389             :                      "RULE %s  (ID %d OID %u)",
    1390             :                      obj->name, obj->dumpId, obj->catId.oid);
    1391           0 :             return;
    1392           0 :         case DO_TRIGGER:
    1393           0 :             snprintf(buf, bufsize,
    1394             :                      "TRIGGER %s  (ID %d OID %u)",
    1395             :                      obj->name, obj->dumpId, obj->catId.oid);
    1396           0 :             return;
    1397           0 :         case DO_EVENT_TRIGGER:
    1398           0 :             snprintf(buf, bufsize,
    1399             :                      "EVENT TRIGGER %s (ID %d OID %u)",
    1400             :                      obj->name, obj->dumpId, obj->catId.oid);
    1401           0 :             return;
    1402           0 :         case DO_CONSTRAINT:
    1403           0 :             snprintf(buf, bufsize,
    1404             :                      "CONSTRAINT %s  (ID %d OID %u)",
    1405             :                      obj->name, obj->dumpId, obj->catId.oid);
    1406           0 :             return;
    1407           0 :         case DO_FK_CONSTRAINT:
    1408           0 :             snprintf(buf, bufsize,
    1409             :                      "FK CONSTRAINT %s  (ID %d OID %u)",
    1410             :                      obj->name, obj->dumpId, obj->catId.oid);
    1411           0 :             return;
    1412           0 :         case DO_PROCLANG:
    1413           0 :             snprintf(buf, bufsize,
    1414             :                      "PROCEDURAL LANGUAGE %s  (ID %d OID %u)",
    1415             :                      obj->name, obj->dumpId, obj->catId.oid);
    1416           0 :             return;
    1417           0 :         case DO_CAST:
    1418           0 :             snprintf(buf, bufsize,
    1419             :                      "CAST %u to %u  (ID %d OID %u)",
    1420             :                      ((CastInfo *) obj)->castsource,
    1421             :                      ((CastInfo *) obj)->casttarget,
    1422             :                      obj->dumpId, obj->catId.oid);
    1423           0 :             return;
    1424           0 :         case DO_TRANSFORM:
    1425           0 :             snprintf(buf, bufsize,
    1426             :                      "TRANSFORM %u lang %u  (ID %d OID %u)",
    1427             :                      ((TransformInfo *) obj)->trftype,
    1428             :                      ((TransformInfo *) obj)->trflang,
    1429             :                      obj->dumpId, obj->catId.oid);
    1430           0 :             return;
    1431           0 :         case DO_TABLE_DATA:
    1432           0 :             snprintf(buf, bufsize,
    1433             :                      "TABLE DATA %s  (ID %d OID %u)",
    1434             :                      obj->name, obj->dumpId, obj->catId.oid);
    1435           0 :             return;
    1436           0 :         case DO_SEQUENCE_SET:
    1437           0 :             snprintf(buf, bufsize,
    1438             :                      "SEQUENCE SET %s  (ID %d OID %u)",
    1439             :                      obj->name, obj->dumpId, obj->catId.oid);
    1440           0 :             return;
    1441           0 :         case DO_DUMMY_TYPE:
    1442           0 :             snprintf(buf, bufsize,
    1443             :                      "DUMMY TYPE %s  (ID %d OID %u)",
    1444             :                      obj->name, obj->dumpId, obj->catId.oid);
    1445           0 :             return;
    1446           0 :         case DO_TSPARSER:
    1447           0 :             snprintf(buf, bufsize,
    1448             :                      "TEXT SEARCH PARSER %s  (ID %d OID %u)",
    1449             :                      obj->name, obj->dumpId, obj->catId.oid);
    1450           0 :             return;
    1451           0 :         case DO_TSDICT:
    1452           0 :             snprintf(buf, bufsize,
    1453             :                      "TEXT SEARCH DICTIONARY %s  (ID %d OID %u)",
    1454             :                      obj->name, obj->dumpId, obj->catId.oid);
    1455           0 :             return;
    1456           0 :         case DO_TSTEMPLATE:
    1457           0 :             snprintf(buf, bufsize,
    1458             :                      "TEXT SEARCH TEMPLATE %s  (ID %d OID %u)",
    1459             :                      obj->name, obj->dumpId, obj->catId.oid);
    1460           0 :             return;
    1461           0 :         case DO_TSCONFIG:
    1462           0 :             snprintf(buf, bufsize,
    1463             :                      "TEXT SEARCH CONFIGURATION %s  (ID %d OID %u)",
    1464             :                      obj->name, obj->dumpId, obj->catId.oid);
    1465           0 :             return;
    1466           0 :         case DO_FDW:
    1467           0 :             snprintf(buf, bufsize,
    1468             :                      "FOREIGN DATA WRAPPER %s  (ID %d OID %u)",
    1469             :                      obj->name, obj->dumpId, obj->catId.oid);
    1470           0 :             return;
    1471           0 :         case DO_FOREIGN_SERVER:
    1472           0 :             snprintf(buf, bufsize,
    1473             :                      "FOREIGN SERVER %s  (ID %d OID %u)",
    1474             :                      obj->name, obj->dumpId, obj->catId.oid);
    1475           0 :             return;
    1476           0 :         case DO_DEFAULT_ACL:
    1477           0 :             snprintf(buf, bufsize,
    1478             :                      "DEFAULT ACL %s  (ID %d OID %u)",
    1479             :                      obj->name, obj->dumpId, obj->catId.oid);
    1480           0 :             return;
    1481           0 :         case DO_LARGE_OBJECT:
    1482           0 :             snprintf(buf, bufsize,
    1483             :                      "LARGE OBJECT  (ID %d OID %u)",
    1484             :                      obj->dumpId, obj->catId.oid);
    1485           0 :             return;
    1486           0 :         case DO_LARGE_OBJECT_DATA:
    1487           0 :             snprintf(buf, bufsize,
    1488             :                      "LARGE OBJECT DATA  (ID %d)",
    1489             :                      obj->dumpId);
    1490           0 :             return;
    1491           0 :         case DO_POLICY:
    1492           0 :             snprintf(buf, bufsize,
    1493             :                      "POLICY (ID %d OID %u)",
    1494             :                      obj->dumpId, obj->catId.oid);
    1495           0 :             return;
    1496           0 :         case DO_PUBLICATION:
    1497           0 :             snprintf(buf, bufsize,
    1498             :                      "PUBLICATION (ID %d OID %u)",
    1499             :                      obj->dumpId, obj->catId.oid);
    1500           0 :             return;
    1501           0 :         case DO_PUBLICATION_REL:
    1502           0 :             snprintf(buf, bufsize,
    1503             :                      "PUBLICATION TABLE (ID %d OID %u)",
    1504             :                      obj->dumpId, obj->catId.oid);
    1505           0 :             return;
    1506           0 :         case DO_PUBLICATION_TABLE_IN_SCHEMA:
    1507           0 :             snprintf(buf, bufsize,
    1508             :                      "PUBLICATION TABLES IN SCHEMA (ID %d OID %u)",
    1509             :                      obj->dumpId, obj->catId.oid);
    1510           0 :             return;
    1511           0 :         case DO_SUBSCRIPTION:
    1512           0 :             snprintf(buf, bufsize,
    1513             :                      "SUBSCRIPTION (ID %d OID %u)",
    1514             :                      obj->dumpId, obj->catId.oid);
    1515           0 :             return;
    1516           0 :         case DO_SUBSCRIPTION_REL:
    1517           0 :             snprintf(buf, bufsize,
    1518             :                      "SUBSCRIPTION TABLE (ID %d OID %u)",
    1519             :                      obj->dumpId, obj->catId.oid);
    1520           0 :             return;
    1521           0 :         case DO_PRE_DATA_BOUNDARY:
    1522           0 :             snprintf(buf, bufsize,
    1523             :                      "PRE-DATA BOUNDARY  (ID %d)",
    1524             :                      obj->dumpId);
    1525           0 :             return;
    1526           0 :         case DO_POST_DATA_BOUNDARY:
    1527           0 :             snprintf(buf, bufsize,
    1528             :                      "POST-DATA BOUNDARY  (ID %d)",
    1529             :                      obj->dumpId);
    1530           0 :             return;
    1531           0 :         case DO_REL_STATS:
    1532           0 :             snprintf(buf, bufsize,
    1533             :                      "RELATION STATISTICS FOR %s  (ID %d OID %u)",
    1534             :                      obj->name, obj->dumpId, obj->catId.oid);
    1535           0 :             return;
    1536             :     }
    1537             :     /* shouldn't get here */
    1538           0 :     snprintf(buf, bufsize,
    1539             :              "object type %d  (ID %d OID %u)",
    1540           0 :              (int) obj->objType,
    1541             :              obj->dumpId, obj->catId.oid);
    1542             : }
    1543             : 
    1544             : /* binaryheap comparator that compares "a" and "b" as integers */
    1545             : static int
    1546    50961066 : int_cmp(void *a, void *b, void *arg)
    1547             : {
    1548    50961066 :     int         ai = (int) (intptr_t) a;
    1549    50961066 :     int         bi = (int) (intptr_t) b;
    1550             : 
    1551    50961066 :     return pg_cmp_s32(ai, bi);
    1552             : }

Generated by: LCOV version 1.14