LCOV - code coverage report
Current view: top level - src/bin/pg_dump - pg_dump_sort.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 317 540 58.7 %
Date: 2024-11-21 08:14:44 Functions: 18 21 85.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * pg_dump_sort.c
       4             :  *    Sort the items of a dump into a safe order for dumping
       5             :  *
       6             :  *
       7             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
       8             :  * Portions Copyright (c) 1994, Regents of the University of California
       9             :  *
      10             :  *
      11             :  * IDENTIFICATION
      12             :  *    src/bin/pg_dump/pg_dump_sort.c
      13             :  *
      14             :  *-------------------------------------------------------------------------
      15             :  */
      16             : #include "postgres_fe.h"
      17             : 
      18             : #include "catalog/pg_class_d.h"
      19             : #include "common/int.h"
      20             : #include "lib/binaryheap.h"
      21             : #include "pg_backup_utils.h"
      22             : #include "pg_dump.h"
      23             : 
      24             : /*
      25             :  * Sort priority for database object types.
      26             :  * Objects are sorted by type, and within a type by name.
      27             :  *
      28             :  * Triggers, event triggers, and materialized views are intentionally sorted
      29             :  * late.  Triggers must be restored after all data modifications, so that
      30             :  * they don't interfere with loading data.  Event triggers are restored
      31             :  * next-to-last so that they don't interfere with object creations of any
      32             :  * kind.  Matview refreshes are last because they should execute in the
      33             :  * database's normal state (e.g., they must come after all ACLs are restored;
      34             :  * also, if they choose to look at system catalogs, they should see the final
      35             :  * restore state).  If you think to change this, see also the RestorePass
      36             :  * mechanism in pg_backup_archiver.c.
      37             :  *
      38             :  * On the other hand, casts are intentionally sorted earlier than you might
      39             :  * expect; logically they should come after functions, since they usually
      40             :  * depend on those.  This works around the backend's habit of recording
      41             :  * views that use casts as dependent on the cast's underlying function.
      42             :  * We initially sort casts first, and then any functions used by casts
      43             :  * will be hoisted above the casts, and in turn views that those functions
      44             :  * depend on will be hoisted above the functions.  But views not used that
      45             :  * way won't be hoisted.
      46             :  *
      47             :  * NOTE: object-type priorities must match the section assignments made in
      48             :  * pg_dump.c; that is, PRE_DATA objects must sort before DO_PRE_DATA_BOUNDARY,
      49             :  * POST_DATA objects must sort after DO_POST_DATA_BOUNDARY, and DATA objects
      50             :  * must sort between them.
      51             :  */
      52             : 
      53             : /* This enum lists the priority levels in order */
      54             : enum dbObjectTypePriorities
      55             : {
      56             :     PRIO_NAMESPACE = 1,
      57             :     PRIO_PROCLANG,
      58             :     PRIO_COLLATION,
      59             :     PRIO_TRANSFORM,
      60             :     PRIO_EXTENSION,
      61             :     PRIO_TYPE,                  /* used for DO_TYPE and DO_SHELL_TYPE */
      62             :     PRIO_CAST,
      63             :     PRIO_FUNC,
      64             :     PRIO_AGG,
      65             :     PRIO_ACCESS_METHOD,
      66             :     PRIO_OPERATOR,
      67             :     PRIO_OPFAMILY,              /* used for DO_OPFAMILY and DO_OPCLASS */
      68             :     PRIO_CONVERSION,
      69             :     PRIO_TSPARSER,
      70             :     PRIO_TSTEMPLATE,
      71             :     PRIO_TSDICT,
      72             :     PRIO_TSCONFIG,
      73             :     PRIO_FDW,
      74             :     PRIO_FOREIGN_SERVER,
      75             :     PRIO_TABLE,
      76             :     PRIO_TABLE_ATTACH,
      77             :     PRIO_DUMMY_TYPE,
      78             :     PRIO_ATTRDEF,
      79             :     PRIO_LARGE_OBJECT,
      80             :     PRIO_PRE_DATA_BOUNDARY,     /* boundary! */
      81             :     PRIO_TABLE_DATA,
      82             :     PRIO_SEQUENCE_SET,
      83             :     PRIO_LARGE_OBJECT_DATA,
      84             :     PRIO_POST_DATA_BOUNDARY,    /* boundary! */
      85             :     PRIO_CONSTRAINT,
      86             :     PRIO_INDEX,
      87             :     PRIO_INDEX_ATTACH,
      88             :     PRIO_STATSEXT,
      89             :     PRIO_RULE,
      90             :     PRIO_TRIGGER,
      91             :     PRIO_FK_CONSTRAINT,
      92             :     PRIO_POLICY,
      93             :     PRIO_PUBLICATION,
      94             :     PRIO_PUBLICATION_REL,
      95             :     PRIO_PUBLICATION_TABLE_IN_SCHEMA,
      96             :     PRIO_SUBSCRIPTION,
      97             :     PRIO_SUBSCRIPTION_REL,
      98             :     PRIO_DEFAULT_ACL,           /* done in ACL pass */
      99             :     PRIO_EVENT_TRIGGER,         /* must be next to last! */
     100             :     PRIO_REFRESH_MATVIEW        /* must be last! */
     101             : };
     102             : 
     103             : /* This table is indexed by enum DumpableObjectType */
     104             : static const int dbObjectTypePriority[] =
     105             : {
     106             :     [DO_NAMESPACE] = PRIO_NAMESPACE,
     107             :     [DO_EXTENSION] = PRIO_EXTENSION,
     108             :     [DO_TYPE] = PRIO_TYPE,
     109             :     [DO_SHELL_TYPE] = PRIO_TYPE,
     110             :     [DO_FUNC] = PRIO_FUNC,
     111             :     [DO_AGG] = PRIO_AGG,
     112             :     [DO_OPERATOR] = PRIO_OPERATOR,
     113             :     [DO_ACCESS_METHOD] = PRIO_ACCESS_METHOD,
     114             :     [DO_OPCLASS] = PRIO_OPFAMILY,
     115             :     [DO_OPFAMILY] = PRIO_OPFAMILY,
     116             :     [DO_COLLATION] = PRIO_COLLATION,
     117             :     [DO_CONVERSION] = PRIO_CONVERSION,
     118             :     [DO_TABLE] = PRIO_TABLE,
     119             :     [DO_TABLE_ATTACH] = PRIO_TABLE_ATTACH,
     120             :     [DO_ATTRDEF] = PRIO_ATTRDEF,
     121             :     [DO_INDEX] = PRIO_INDEX,
     122             :     [DO_INDEX_ATTACH] = PRIO_INDEX_ATTACH,
     123             :     [DO_STATSEXT] = PRIO_STATSEXT,
     124             :     [DO_RULE] = PRIO_RULE,
     125             :     [DO_TRIGGER] = PRIO_TRIGGER,
     126             :     [DO_CONSTRAINT] = PRIO_CONSTRAINT,
     127             :     [DO_FK_CONSTRAINT] = PRIO_FK_CONSTRAINT,
     128             :     [DO_PROCLANG] = PRIO_PROCLANG,
     129             :     [DO_CAST] = PRIO_CAST,
     130             :     [DO_TABLE_DATA] = PRIO_TABLE_DATA,
     131             :     [DO_SEQUENCE_SET] = PRIO_SEQUENCE_SET,
     132             :     [DO_DUMMY_TYPE] = PRIO_DUMMY_TYPE,
     133             :     [DO_TSPARSER] = PRIO_TSPARSER,
     134             :     [DO_TSDICT] = PRIO_TSDICT,
     135             :     [DO_TSTEMPLATE] = PRIO_TSTEMPLATE,
     136             :     [DO_TSCONFIG] = PRIO_TSCONFIG,
     137             :     [DO_FDW] = PRIO_FDW,
     138             :     [DO_FOREIGN_SERVER] = PRIO_FOREIGN_SERVER,
     139             :     [DO_DEFAULT_ACL] = PRIO_DEFAULT_ACL,
     140             :     [DO_TRANSFORM] = PRIO_TRANSFORM,
     141             :     [DO_LARGE_OBJECT] = PRIO_LARGE_OBJECT,
     142             :     [DO_LARGE_OBJECT_DATA] = PRIO_LARGE_OBJECT_DATA,
     143             :     [DO_PRE_DATA_BOUNDARY] = PRIO_PRE_DATA_BOUNDARY,
     144             :     [DO_POST_DATA_BOUNDARY] = PRIO_POST_DATA_BOUNDARY,
     145             :     [DO_EVENT_TRIGGER] = PRIO_EVENT_TRIGGER,
     146             :     [DO_REFRESH_MATVIEW] = PRIO_REFRESH_MATVIEW,
     147             :     [DO_POLICY] = PRIO_POLICY,
     148             :     [DO_PUBLICATION] = PRIO_PUBLICATION,
     149             :     [DO_PUBLICATION_REL] = PRIO_PUBLICATION_REL,
     150             :     [DO_PUBLICATION_TABLE_IN_SCHEMA] = PRIO_PUBLICATION_TABLE_IN_SCHEMA,
     151             :     [DO_SUBSCRIPTION] = PRIO_SUBSCRIPTION,
     152             :     [DO_SUBSCRIPTION_REL] = PRIO_SUBSCRIPTION_REL,
     153             : };
     154             : 
     155             : StaticAssertDecl(lengthof(dbObjectTypePriority) == (DO_SUBSCRIPTION_REL + 1),
     156             :                  "array length mismatch");
     157             : 
     158             : static DumpId preDataBoundId;
     159             : static DumpId postDataBoundId;
     160             : 
     161             : 
     162             : static int  DOTypeNameCompare(const void *p1, const void *p2);
     163             : static bool TopoSort(DumpableObject **objs,
     164             :                      int numObjs,
     165             :                      DumpableObject **ordering,
     166             :                      int *nOrdering);
     167             : static void findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs);
     168             : static int  findLoop(DumpableObject *obj,
     169             :                      DumpId startPoint,
     170             :                      bool *processed,
     171             :                      DumpId *searchFailed,
     172             :                      DumpableObject **workspace,
     173             :                      int depth);
     174             : static void repairDependencyLoop(DumpableObject **loop,
     175             :                                  int nLoop);
     176             : static void describeDumpableObject(DumpableObject *obj,
     177             :                                    char *buf, int bufsize);
     178             : static int  int_cmp(void *a, void *b, void *arg);
     179             : 
     180             : 
     181             : /*
     182             :  * Sort the given objects into a type/name-based ordering
     183             :  *
     184             :  * Normally this is just the starting point for the dependency-based
     185             :  * ordering.
     186             :  */
     187             : void
     188         308 : sortDumpableObjectsByTypeName(DumpableObject **objs, int numObjs)
     189             : {
     190         308 :     if (numObjs > 1)
     191         308 :         qsort(objs, numObjs, sizeof(DumpableObject *),
     192             :               DOTypeNameCompare);
     193         308 : }
     194             : 
     195             : static int
     196    14125866 : DOTypeNameCompare(const void *p1, const void *p2)
     197             : {
     198    14125866 :     DumpableObject *obj1 = *(DumpableObject *const *) p1;
     199    14125866 :     DumpableObject *obj2 = *(DumpableObject *const *) p2;
     200             :     int         cmpval;
     201             : 
     202             :     /* Sort by type's priority */
     203    14125866 :     cmpval = dbObjectTypePriority[obj1->objType] -
     204    14125866 :         dbObjectTypePriority[obj2->objType];
     205             : 
     206    14125866 :     if (cmpval != 0)
     207     3547162 :         return cmpval;
     208             : 
     209             :     /*
     210             :      * Sort by namespace.  Typically, all objects of the same priority would
     211             :      * either have or not have a namespace link, but there are exceptions.
     212             :      * Sort NULL namespace after non-NULL in such cases.
     213             :      */
     214    10578704 :     if (obj1->namespace)
     215             :     {
     216    10001394 :         if (obj2->namespace)
     217             :         {
     218    10001280 :             cmpval = strcmp(obj1->namespace->dobj.name,
     219    10001280 :                             obj2->namespace->dobj.name);
     220    10001280 :             if (cmpval != 0)
     221      467596 :                 return cmpval;
     222             :         }
     223             :         else
     224         114 :             return -1;
     225             :     }
     226      577310 :     else if (obj2->namespace)
     227         232 :         return 1;
     228             : 
     229             :     /* Sort by name */
     230    10110762 :     cmpval = strcmp(obj1->name, obj2->name);
     231    10110762 :     if (cmpval != 0)
     232     8587120 :         return cmpval;
     233             : 
     234             :     /* To have a stable sort order, break ties for some object types */
     235     1523642 :     if (obj1->objType == DO_FUNC || obj1->objType == DO_AGG)
     236           0 :     {
     237         156 :         FuncInfo   *fobj1 = *(FuncInfo *const *) p1;
     238         156 :         FuncInfo   *fobj2 = *(FuncInfo *const *) p2;
     239             :         int         i;
     240             : 
     241             :         /* Sort by number of arguments, then argument type names */
     242         156 :         cmpval = fobj1->nargs - fobj2->nargs;
     243         156 :         if (cmpval != 0)
     244          34 :             return cmpval;
     245         136 :         for (i = 0; i < fobj1->nargs; i++)
     246             :         {
     247         136 :             TypeInfo   *argtype1 = findTypeByOid(fobj1->argtypes[i]);
     248         136 :             TypeInfo   *argtype2 = findTypeByOid(fobj2->argtypes[i]);
     249             : 
     250         136 :             if (argtype1 && argtype2)
     251             :             {
     252         136 :                 if (argtype1->dobj.namespace && argtype2->dobj.namespace)
     253             :                 {
     254         136 :                     cmpval = strcmp(argtype1->dobj.namespace->dobj.name,
     255         136 :                                     argtype2->dobj.namespace->dobj.name);
     256         136 :                     if (cmpval != 0)
     257          30 :                         return cmpval;
     258             :                 }
     259         106 :                 cmpval = strcmp(argtype1->dobj.name, argtype2->dobj.name);
     260         106 :                 if (cmpval != 0)
     261          92 :                     return cmpval;
     262             :             }
     263             :         }
     264             :     }
     265     1523486 :     else if (obj1->objType == DO_OPERATOR)
     266             :     {
     267     1134444 :         OprInfo    *oobj1 = *(OprInfo *const *) p1;
     268     1134444 :         OprInfo    *oobj2 = *(OprInfo *const *) p2;
     269             : 
     270             :         /* oprkind is 'l', 'r', or 'b'; this sorts prefix, postfix, infix */
     271     1134444 :         cmpval = (oobj2->oprkind - oobj1->oprkind);
     272     1134444 :         if (cmpval != 0)
     273       30658 :             return cmpval;
     274             :     }
     275      389042 :     else if (obj1->objType == DO_ATTRDEF)
     276             :     {
     277         472 :         AttrDefInfo *adobj1 = *(AttrDefInfo *const *) p1;
     278         472 :         AttrDefInfo *adobj2 = *(AttrDefInfo *const *) p2;
     279             : 
     280             :         /* Sort by attribute number */
     281         472 :         cmpval = (adobj1->adnum - adobj2->adnum);
     282         472 :         if (cmpval != 0)
     283         472 :             return cmpval;
     284             :     }
     285      388570 :     else if (obj1->objType == DO_POLICY)
     286             :     {
     287          46 :         PolicyInfo *pobj1 = *(PolicyInfo *const *) p1;
     288          46 :         PolicyInfo *pobj2 = *(PolicyInfo *const *) p2;
     289             : 
     290             :         /* Sort by table name (table namespace was considered already) */
     291          46 :         cmpval = strcmp(pobj1->poltable->dobj.name,
     292          46 :                         pobj2->poltable->dobj.name);
     293          46 :         if (cmpval != 0)
     294          46 :             return cmpval;
     295             :     }
     296      388524 :     else if (obj1->objType == DO_RULE)
     297             :     {
     298      285854 :         RuleInfo   *robj1 = *(RuleInfo *const *) p1;
     299      285854 :         RuleInfo   *robj2 = *(RuleInfo *const *) p2;
     300             : 
     301             :         /* Sort by table name (table namespace was considered already) */
     302      285854 :         cmpval = strcmp(robj1->ruletable->dobj.name,
     303      285854 :                         robj2->ruletable->dobj.name);
     304      285854 :         if (cmpval != 0)
     305      285854 :             return cmpval;
     306             :     }
     307      102670 :     else if (obj1->objType == DO_TRIGGER)
     308             :     {
     309         724 :         TriggerInfo *tobj1 = *(TriggerInfo *const *) p1;
     310         724 :         TriggerInfo *tobj2 = *(TriggerInfo *const *) p2;
     311             : 
     312             :         /* Sort by table name (table namespace was considered already) */
     313         724 :         cmpval = strcmp(tobj1->tgtable->dobj.name,
     314         724 :                         tobj2->tgtable->dobj.name);
     315         724 :         if (cmpval != 0)
     316         724 :             return cmpval;
     317             :     }
     318             : 
     319             :     /* Usually shouldn't get here, but if we do, sort by OID */
     320     1205732 :     return oidcmp(obj1->catId.oid, obj2->catId.oid);
     321             : }
     322             : 
     323             : 
     324             : /*
     325             :  * Sort the given objects into a safe dump order using dependency
     326             :  * information (to the extent we have it available).
     327             :  *
     328             :  * The DumpIds of the PRE_DATA_BOUNDARY and POST_DATA_BOUNDARY objects are
     329             :  * passed in separately, in case we need them during dependency loop repair.
     330             :  */
     331             : void
     332         308 : sortDumpableObjects(DumpableObject **objs, int numObjs,
     333             :                     DumpId preBoundaryId, DumpId postBoundaryId)
     334             : {
     335             :     DumpableObject **ordering;
     336             :     int         nOrdering;
     337             : 
     338         308 :     if (numObjs <= 0)            /* can't happen anymore ... */
     339           0 :         return;
     340             : 
     341             :     /*
     342             :      * Saving the boundary IDs in static variables is a bit grotty, but seems
     343             :      * better than adding them to parameter lists of subsidiary functions.
     344             :      */
     345         308 :     preDataBoundId = preBoundaryId;
     346         308 :     postDataBoundId = postBoundaryId;
     347             : 
     348         308 :     ordering = (DumpableObject **) pg_malloc(numObjs * sizeof(DumpableObject *));
     349         908 :     while (!TopoSort(objs, numObjs, ordering, &nOrdering))
     350         600 :         findDependencyLoops(ordering, nOrdering, numObjs);
     351             : 
     352         308 :     memcpy(objs, ordering, numObjs * sizeof(DumpableObject *));
     353             : 
     354         308 :     free(ordering);
     355             : }
     356             : 
     357             : /*
     358             :  * TopoSort -- topological sort of a dump list
     359             :  *
     360             :  * Generate a re-ordering of the dump list that satisfies all the dependency
     361             :  * constraints shown in the dump list.  (Each such constraint is a fact of a
     362             :  * partial ordering.)  Minimize rearrangement of the list not needed to
     363             :  * achieve the partial ordering.
     364             :  *
     365             :  * The input is the list of numObjs objects in objs[].  This list is not
     366             :  * modified.
     367             :  *
     368             :  * Returns true if able to build an ordering that satisfies all the
     369             :  * constraints, false if not (there are contradictory constraints).
     370             :  *
     371             :  * On success (true result), ordering[] is filled with a sorted array of
     372             :  * DumpableObject pointers, of length equal to the input list length.
     373             :  *
     374             :  * On failure (false result), ordering[] is filled with an unsorted array of
     375             :  * DumpableObject pointers of length *nOrdering, listing the objects that
     376             :  * prevented the sort from being completed.  In general, these objects either
     377             :  * participate directly in a dependency cycle, or are depended on by objects
     378             :  * that are in a cycle.  (The latter objects are not actually problematic,
     379             :  * but it takes further analysis to identify which are which.)
     380             :  *
     381             :  * The caller is responsible for allocating sufficient space at *ordering.
     382             :  */
     383             : static bool
     384         908 : TopoSort(DumpableObject **objs,
     385             :          int numObjs,
     386             :          DumpableObject **ordering, /* output argument */
     387             :          int *nOrdering)        /* output argument */
     388             : {
     389         908 :     DumpId      maxDumpId = getMaxDumpId();
     390             :     binaryheap *pendingHeap;
     391             :     int        *beforeConstraints;
     392             :     int        *idMap;
     393             :     DumpableObject *obj;
     394             :     int         i,
     395             :                 j,
     396             :                 k;
     397             : 
     398             :     /*
     399             :      * This is basically the same algorithm shown for topological sorting in
     400             :      * Knuth's Volume 1.  However, we would like to minimize unnecessary
     401             :      * rearrangement of the input ordering; that is, when we have a choice of
     402             :      * which item to output next, we always want to take the one highest in
     403             :      * the original list.  Therefore, instead of maintaining an unordered
     404             :      * linked list of items-ready-to-output as Knuth does, we maintain a heap
     405             :      * of their item numbers, which we can use as a priority queue.  This
     406             :      * turns the algorithm from O(N) to O(N log N) because each insertion or
     407             :      * removal of a heap item takes O(log N) time.  However, that's still
     408             :      * plenty fast enough for this application.
     409             :      */
     410             : 
     411         908 :     *nOrdering = numObjs;       /* for success return */
     412             : 
     413             :     /* Eliminate the null case */
     414         908 :     if (numObjs <= 0)
     415           0 :         return true;
     416             : 
     417             :     /* Create workspace for the above-described heap */
     418         908 :     pendingHeap = binaryheap_allocate(numObjs, int_cmp, NULL);
     419             : 
     420             :     /*
     421             :      * Scan the constraints, and for each item in the input, generate a count
     422             :      * of the number of constraints that say it must be before something else.
     423             :      * The count for the item with dumpId j is stored in beforeConstraints[j].
     424             :      * We also make a map showing the input-order index of the item with
     425             :      * dumpId j.
     426             :      */
     427         908 :     beforeConstraints = (int *) pg_malloc0((maxDumpId + 1) * sizeof(int));
     428         908 :     idMap = (int *) pg_malloc((maxDumpId + 1) * sizeof(int));
     429     3532040 :     for (i = 0; i < numObjs; i++)
     430             :     {
     431     3531132 :         obj = objs[i];
     432     3531132 :         j = obj->dumpId;
     433     3531132 :         if (j <= 0 || j > maxDumpId)
     434           0 :             pg_fatal("invalid dumpId %d", j);
     435     3531132 :         idMap[j] = i;
     436     9157294 :         for (j = 0; j < obj->nDeps; j++)
     437             :         {
     438     5626162 :             k = obj->dependencies[j];
     439     5626162 :             if (k <= 0 || k > maxDumpId)
     440           0 :                 pg_fatal("invalid dependency %d", k);
     441     5626162 :             beforeConstraints[k]++;
     442             :         }
     443             :     }
     444             : 
     445             :     /*
     446             :      * Now initialize the heap of items-ready-to-output by filling it with the
     447             :      * indexes of items that already have beforeConstraints[id] == 0.
     448             :      *
     449             :      * We enter the indexes into pendingHeap in decreasing order so that the
     450             :      * heap invariant is satisfied at the completion of this loop.  This
     451             :      * reduces the amount of work that binaryheap_build() must do.
     452             :      */
     453     3532040 :     for (i = numObjs; --i >= 0;)
     454             :     {
     455     3531132 :         if (beforeConstraints[objs[i]->dumpId] == 0)
     456       49790 :             binaryheap_add_unordered(pendingHeap, (void *) (intptr_t) i);
     457             :     }
     458         908 :     binaryheap_build(pendingHeap);
     459             : 
     460             :     /*--------------------
     461             :      * Now emit objects, working backwards in the output list.  At each step,
     462             :      * we use the priority heap to select the last item that has no remaining
     463             :      * before-constraints.  We remove that item from the heap, output it to
     464             :      * ordering[], and decrease the beforeConstraints count of each of the
     465             :      * items it was constrained against.  Whenever an item's beforeConstraints
     466             :      * count is thereby decreased to zero, we insert it into the priority heap
     467             :      * to show that it is a candidate to output.  We are done when the heap
     468             :      * becomes empty; if we have output every element then we succeeded,
     469             :      * otherwise we failed.
     470             :      * i = number of ordering[] entries left to output
     471             :      * j = objs[] index of item we are outputting
     472             :      * k = temp for scanning constraint list for item j
     473             :      *--------------------
     474             :      */
     475         908 :     i = numObjs;
     476     2180016 :     while (!binaryheap_empty(pendingHeap))
     477             :     {
     478             :         /* Select object to output by removing largest heap member */
     479     2179108 :         j = (int) (intptr_t) binaryheap_remove_first(pendingHeap);
     480     2179108 :         obj = objs[j];
     481             :         /* Output candidate to ordering[] */
     482     2179108 :         ordering[--i] = obj;
     483             :         /* Update beforeConstraints counts of its predecessors */
     484     5443056 :         for (k = 0; k < obj->nDeps; k++)
     485             :         {
     486     3263948 :             int         id = obj->dependencies[k];
     487             : 
     488     3263948 :             if ((--beforeConstraints[id]) == 0)
     489     2129318 :                 binaryheap_add(pendingHeap, (void *) (intptr_t) idMap[id]);
     490             :         }
     491             :     }
     492             : 
     493             :     /*
     494             :      * If we failed, report the objects that couldn't be output; these are the
     495             :      * ones with beforeConstraints[] still nonzero.
     496             :      */
     497         908 :     if (i != 0)
     498             :     {
     499         600 :         k = 0;
     500     2405948 :         for (j = 1; j <= maxDumpId; j++)
     501             :         {
     502     2405348 :             if (beforeConstraints[j] != 0)
     503     1352024 :                 ordering[k++] = objs[idMap[j]];
     504             :         }
     505         600 :         *nOrdering = k;
     506             :     }
     507             : 
     508             :     /* Done */
     509         908 :     binaryheap_free(pendingHeap);
     510         908 :     free(beforeConstraints);
     511         908 :     free(idMap);
     512             : 
     513         908 :     return (i == 0);
     514             : }
     515             : 
     516             : /*
     517             :  * findDependencyLoops - identify loops in TopoSort's failure output,
     518             :  *      and pass each such loop to repairDependencyLoop() for action
     519             :  *
     520             :  * In general there may be many loops in the set of objects returned by
     521             :  * TopoSort; for speed we should try to repair as many loops as we can
     522             :  * before trying TopoSort again.  We can safely repair loops that are
     523             :  * disjoint (have no members in common); if we find overlapping loops
     524             :  * then we repair only the first one found, because the action taken to
     525             :  * repair the first might have repaired the other as well.  (If not,
     526             :  * we'll fix it on the next go-round.)
     527             :  *
     528             :  * objs[] lists the objects TopoSort couldn't sort
     529             :  * nObjs is the number of such objects
     530             :  * totObjs is the total number of objects in the universe
     531             :  */
     532             : static void
     533         600 : findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs)
     534             : {
     535             :     /*
     536             :      * We use three data structures here:
     537             :      *
     538             :      * processed[] is a bool array indexed by dump ID, marking the objects
     539             :      * already processed during this invocation of findDependencyLoops().
     540             :      *
     541             :      * searchFailed[] is another array indexed by dump ID.  searchFailed[j] is
     542             :      * set to dump ID k if we have proven that there is no dependency path
     543             :      * leading from object j back to start point k.  This allows us to skip
     544             :      * useless searching when there are multiple dependency paths from k to j,
     545             :      * which is a common situation.  We could use a simple bool array for
     546             :      * this, but then we'd need to re-zero it for each start point, resulting
     547             :      * in O(N^2) zeroing work.  Using the start point's dump ID as the "true"
     548             :      * value lets us skip clearing the array before we consider the next start
     549             :      * point.
     550             :      *
     551             :      * workspace[] is an array of DumpableObject pointers, in which we try to
     552             :      * build lists of objects constituting loops.  We make workspace[] large
     553             :      * enough to hold all the objects in TopoSort's output, which is huge
     554             :      * overkill in most cases but could theoretically be necessary if there is
     555             :      * a single dependency chain linking all the objects.
     556             :      */
     557             :     bool       *processed;
     558             :     DumpId     *searchFailed;
     559             :     DumpableObject **workspace;
     560             :     bool        fixedloop;
     561             :     int         i;
     562             : 
     563         600 :     processed = (bool *) pg_malloc0((getMaxDumpId() + 1) * sizeof(bool));
     564         600 :     searchFailed = (DumpId *) pg_malloc0((getMaxDumpId() + 1) * sizeof(DumpId));
     565         600 :     workspace = (DumpableObject **) pg_malloc(totObjs * sizeof(DumpableObject *));
     566         600 :     fixedloop = false;
     567             : 
     568     1352624 :     for (i = 0; i < nObjs; i++)
     569             :     {
     570     1352024 :         DumpableObject *obj = objs[i];
     571             :         int         looplen;
     572             :         int         j;
     573             : 
     574     1352024 :         looplen = findLoop(obj,
     575             :                            obj->dumpId,
     576             :                            processed,
     577             :                            searchFailed,
     578             :                            workspace,
     579             :                            0);
     580             : 
     581     1352024 :         if (looplen > 0)
     582             :         {
     583             :             /* Found a loop, repair it */
     584       50562 :             repairDependencyLoop(workspace, looplen);
     585       50562 :             fixedloop = true;
     586             :             /* Mark loop members as processed */
     587      151866 :             for (j = 0; j < looplen; j++)
     588      101304 :                 processed[workspace[j]->dumpId] = true;
     589             :         }
     590             :         else
     591             :         {
     592             :             /*
     593             :              * There's no loop starting at this object, but mark it processed
     594             :              * anyway.  This is not necessary for correctness, but saves later
     595             :              * invocations of findLoop() from uselessly chasing references to
     596             :              * such an object.
     597             :              */
     598     1301462 :             processed[obj->dumpId] = true;
     599             :         }
     600             :     }
     601             : 
     602             :     /* We'd better have fixed at least one loop */
     603         600 :     if (!fixedloop)
     604           0 :         pg_fatal("could not identify dependency loop");
     605             : 
     606         600 :     free(workspace);
     607         600 :     free(searchFailed);
     608         600 :     free(processed);
     609         600 : }
     610             : 
     611             : /*
     612             :  * Recursively search for a circular dependency loop that doesn't include
     613             :  * any already-processed objects.
     614             :  *
     615             :  *  obj: object we are examining now
     616             :  *  startPoint: dumpId of starting object for the hoped-for circular loop
     617             :  *  processed[]: flag array marking already-processed objects
     618             :  *  searchFailed[]: flag array marking already-unsuccessfully-visited objects
     619             :  *  workspace[]: work array in which we are building list of loop members
     620             :  *  depth: number of valid entries in workspace[] at call
     621             :  *
     622             :  * On success, the length of the loop is returned, and workspace[] is filled
     623             :  * with pointers to the members of the loop.  On failure, we return 0.
     624             :  *
     625             :  * Note: it is possible that the given starting object is a member of more
     626             :  * than one cycle; if so, we will find an arbitrary one of the cycles.
     627             :  */
     628             : static int
     629    37574114 : findLoop(DumpableObject *obj,
     630             :          DumpId startPoint,
     631             :          bool *processed,
     632             :          DumpId *searchFailed,
     633             :          DumpableObject **workspace,
     634             :          int depth)
     635             : {
     636             :     int         i;
     637             : 
     638             :     /*
     639             :      * Reject if obj is already processed.  This test prevents us from finding
     640             :      * loops that overlap previously-processed loops.
     641             :      */
     642    37574114 :     if (processed[obj->dumpId])
     643    35806918 :         return 0;
     644             : 
     645             :     /*
     646             :      * If we've already proven there is no path from this object back to the
     647             :      * startPoint, forget it.
     648             :      */
     649     1767196 :     if (searchFailed[obj->dumpId] == startPoint)
     650      191612 :         return 0;
     651             : 
     652             :     /*
     653             :      * Reject if obj is already present in workspace.  This test prevents us
     654             :      * from going into infinite recursion if we are given a startPoint object
     655             :      * that links to a cycle it's not a member of, and it guarantees that we
     656             :      * can't overflow the allocated size of workspace[].
     657             :      */
     658     2461304 :     for (i = 0; i < depth; i++)
     659             :     {
     660      887182 :         if (workspace[i] == obj)
     661        1462 :             return 0;
     662             :     }
     663             : 
     664             :     /*
     665             :      * Okay, tentatively add obj to workspace
     666             :      */
     667     1574122 :     workspace[depth++] = obj;
     668             : 
     669             :     /*
     670             :      * See if we've found a loop back to the desired startPoint; if so, done
     671             :      */
     672    38499736 :     for (i = 0; i < obj->nDeps; i++)
     673             :     {
     674    36976176 :         if (obj->dependencies[i] == startPoint)
     675       50562 :             return depth;
     676             :     }
     677             : 
     678             :     /*
     679             :      * Recurse down each outgoing branch
     680             :      */
     681    37694908 :     for (i = 0; i < obj->nDeps; i++)
     682             :     {
     683    36222090 :         DumpableObject *nextobj = findObjectByDumpId(obj->dependencies[i]);
     684             :         int         newDepth;
     685             : 
     686    36222090 :         if (!nextobj)
     687           0 :             continue;           /* ignore dependencies on undumped objects */
     688    36222090 :         newDepth = findLoop(nextobj,
     689             :                             startPoint,
     690             :                             processed,
     691             :                             searchFailed,
     692             :                             workspace,
     693             :                             depth);
     694    36222090 :         if (newDepth > 0)
     695       50742 :             return newDepth;
     696             :     }
     697             : 
     698             :     /*
     699             :      * Remember there is no path from here back to startPoint
     700             :      */
     701     1472818 :     searchFailed[obj->dumpId] = startPoint;
     702             : 
     703     1472818 :     return 0;
     704             : }
     705             : 
     706             : /*
     707             :  * A user-defined datatype will have a dependency loop with each of its
     708             :  * I/O functions (since those have the datatype as input or output).
     709             :  * Similarly, a range type will have a loop with its canonicalize function,
     710             :  * if any.  Break the loop by making the function depend on the associated
     711             :  * shell type, instead.
     712             :  */
     713             : static void
     714         368 : repairTypeFuncLoop(DumpableObject *typeobj, DumpableObject *funcobj)
     715             : {
     716         368 :     TypeInfo   *typeInfo = (TypeInfo *) typeobj;
     717             : 
     718             :     /* remove function's dependency on type */
     719         368 :     removeObjectDependency(funcobj, typeobj->dumpId);
     720             : 
     721             :     /* add function's dependency on shell type, instead */
     722         368 :     if (typeInfo->shellType)
     723             :     {
     724         284 :         addObjectDependency(funcobj, typeInfo->shellType->dobj.dumpId);
     725             : 
     726             :         /*
     727             :          * Mark shell type (always including the definition, as we need the
     728             :          * shell type defined to identify the function fully) as to be dumped
     729             :          * if any such function is
     730             :          */
     731         284 :         if (funcobj->dump)
     732         284 :             typeInfo->shellType->dobj.dump = funcobj->dump |
     733             :                 DUMP_COMPONENT_DEFINITION;
     734             :     }
     735         368 : }
     736             : 
     737             : /*
     738             :  * Because we force a view to depend on its ON SELECT rule, while there
     739             :  * will be an implicit dependency in the other direction, we need to break
     740             :  * the loop.  If there are no other objects in the loop then we can remove
     741             :  * the implicit dependency and leave the ON SELECT rule non-separate.
     742             :  * This applies to matviews, as well.
     743             :  */
     744             : static void
     745       45688 : repairViewRuleLoop(DumpableObject *viewobj,
     746             :                    DumpableObject *ruleobj)
     747             : {
     748             :     /* remove rule's dependency on view */
     749       45688 :     removeObjectDependency(ruleobj, viewobj->dumpId);
     750             :     /* flags on the two objects are already set correctly for this case */
     751       45688 : }
     752             : 
     753             : /*
     754             :  * However, if there are other objects in the loop, we must break the loop
     755             :  * by making the ON SELECT rule a separately-dumped object.
     756             :  *
     757             :  * Because findLoop() finds shorter cycles before longer ones, it's likely
     758             :  * that we will have previously fired repairViewRuleLoop() and removed the
     759             :  * rule's dependency on the view.  Put it back to ensure the rule won't be
     760             :  * emitted before the view.
     761             :  *
     762             :  * Note: this approach does *not* work for matviews, at the moment.
     763             :  */
     764             : static void
     765          20 : repairViewRuleMultiLoop(DumpableObject *viewobj,
     766             :                         DumpableObject *ruleobj)
     767             : {
     768          20 :     TableInfo  *viewinfo = (TableInfo *) viewobj;
     769          20 :     RuleInfo   *ruleinfo = (RuleInfo *) ruleobj;
     770             : 
     771             :     /* remove view's dependency on rule */
     772          20 :     removeObjectDependency(viewobj, ruleobj->dumpId);
     773             :     /* mark view to be printed with a dummy definition */
     774          20 :     viewinfo->dummy_view = true;
     775             :     /* mark rule as needing its own dump */
     776          20 :     ruleinfo->separate = true;
     777             :     /* put back rule's dependency on view */
     778          20 :     addObjectDependency(ruleobj, viewobj->dumpId);
     779             :     /* now that rule is separate, it must be post-data */
     780          20 :     addObjectDependency(ruleobj, postDataBoundId);
     781          20 : }
     782             : 
     783             : /*
     784             :  * If a matview is involved in a multi-object loop, we can't currently fix
     785             :  * that by splitting off the rule.  As a stopgap, we try to fix it by
     786             :  * dropping the constraint that the matview be dumped in the pre-data section.
     787             :  * This is sufficient to handle cases where a matview depends on some unique
     788             :  * index, as can happen if it has a GROUP BY for example.
     789             :  *
     790             :  * Note that the "next object" is not necessarily the matview itself;
     791             :  * it could be the matview's rowtype, for example.  We may come through here
     792             :  * several times while removing all the pre-data linkages.  In particular,
     793             :  * if there are other matviews that depend on the one with the circularity
     794             :  * problem, we'll come through here for each such matview and mark them all
     795             :  * as postponed.  (This works because all MVs have pre-data dependencies
     796             :  * to begin with, so each of them will get visited.)
     797             :  */
     798             : static void
     799         216 : repairMatViewBoundaryMultiLoop(DumpableObject *boundaryobj,
     800             :                                DumpableObject *nextobj)
     801             : {
     802             :     /* remove boundary's dependency on object after it in loop */
     803         216 :     removeObjectDependency(boundaryobj, nextobj->dumpId);
     804             :     /* if that object is a matview, mark it as postponed into post-data */
     805         216 :     if (nextobj->objType == DO_TABLE)
     806             :     {
     807          72 :         TableInfo  *nextinfo = (TableInfo *) nextobj;
     808             : 
     809          72 :         if (nextinfo->relkind == RELKIND_MATVIEW)
     810          72 :             nextinfo->postponed_def = true;
     811             :     }
     812         216 : }
     813             : 
     814             : /*
     815             :  * If a function is involved in a multi-object loop, we can't currently fix
     816             :  * that by splitting it into two DumpableObjects.  As a stopgap, we try to fix
     817             :  * it by dropping the constraint that the function be dumped in the pre-data
     818             :  * section.  This is sufficient to handle cases where a function depends on
     819             :  * some unique index, as can happen if it has a GROUP BY for example.
     820             :  */
     821             : static void
     822          72 : repairFunctionBoundaryMultiLoop(DumpableObject *boundaryobj,
     823             :                                 DumpableObject *nextobj)
     824             : {
     825             :     /* remove boundary's dependency on object after it in loop */
     826          72 :     removeObjectDependency(boundaryobj, nextobj->dumpId);
     827             :     /* if that object is a function, mark it as postponed into post-data */
     828          72 :     if (nextobj->objType == DO_FUNC)
     829             :     {
     830          72 :         FuncInfo   *nextinfo = (FuncInfo *) nextobj;
     831             : 
     832          72 :         nextinfo->postponed_def = true;
     833             :     }
     834          72 : }
     835             : 
     836             : /*
     837             :  * Because we make tables depend on their CHECK constraints, while there
     838             :  * will be an automatic dependency in the other direction, we need to break
     839             :  * the loop.  If there are no other objects in the loop then we can remove
     840             :  * the automatic dependency and leave the CHECK constraint non-separate.
     841             :  */
     842             : static void
     843        1046 : repairTableConstraintLoop(DumpableObject *tableobj,
     844             :                           DumpableObject *constraintobj)
     845             : {
     846             :     /* remove constraint's dependency on table */
     847        1046 :     removeObjectDependency(constraintobj, tableobj->dumpId);
     848        1046 : }
     849             : 
     850             : /*
     851             :  * However, if there are other objects in the loop, we must break the loop
     852             :  * by making the CHECK constraint a separately-dumped object.
     853             :  *
     854             :  * Because findLoop() finds shorter cycles before longer ones, it's likely
     855             :  * that we will have previously fired repairTableConstraintLoop() and
     856             :  * removed the constraint's dependency on the table.  Put it back to ensure
     857             :  * the constraint won't be emitted before the table...
     858             :  */
     859             : static void
     860          10 : repairTableConstraintMultiLoop(DumpableObject *tableobj,
     861             :                                DumpableObject *constraintobj)
     862             : {
     863             :     /* remove table's dependency on constraint */
     864          10 :     removeObjectDependency(tableobj, constraintobj->dumpId);
     865             :     /* mark constraint as needing its own dump */
     866          10 :     ((ConstraintInfo *) constraintobj)->separate = true;
     867             :     /* put back constraint's dependency on table */
     868          10 :     addObjectDependency(constraintobj, tableobj->dumpId);
     869             :     /* now that constraint is separate, it must be post-data */
     870          10 :     addObjectDependency(constraintobj, postDataBoundId);
     871          10 : }
     872             : 
     873             : /*
     874             :  * Attribute defaults behave exactly the same as CHECK constraints...
     875             :  */
     876             : static void
     877        1312 : repairTableAttrDefLoop(DumpableObject *tableobj,
     878             :                        DumpableObject *attrdefobj)
     879             : {
     880             :     /* remove attrdef's dependency on table */
     881        1312 :     removeObjectDependency(attrdefobj, tableobj->dumpId);
     882        1312 : }
     883             : 
     884             : static void
     885         220 : repairTableAttrDefMultiLoop(DumpableObject *tableobj,
     886             :                             DumpableObject *attrdefobj)
     887             : {
     888             :     /* remove table's dependency on attrdef */
     889         220 :     removeObjectDependency(tableobj, attrdefobj->dumpId);
     890             :     /* mark attrdef as needing its own dump */
     891         220 :     ((AttrDefInfo *) attrdefobj)->separate = true;
     892             :     /* put back attrdef's dependency on table */
     893         220 :     addObjectDependency(attrdefobj, tableobj->dumpId);
     894         220 : }
     895             : 
     896             : /*
     897             :  * CHECK constraints on domains work just like those on tables ...
     898             :  */
     899             : static void
     900         182 : repairDomainConstraintLoop(DumpableObject *domainobj,
     901             :                            DumpableObject *constraintobj)
     902             : {
     903             :     /* remove constraint's dependency on domain */
     904         182 :     removeObjectDependency(constraintobj, domainobj->dumpId);
     905         182 : }
     906             : 
     907             : static void
     908           0 : repairDomainConstraintMultiLoop(DumpableObject *domainobj,
     909             :                                 DumpableObject *constraintobj)
     910             : {
     911             :     /* remove domain's dependency on constraint */
     912           0 :     removeObjectDependency(domainobj, constraintobj->dumpId);
     913             :     /* mark constraint as needing its own dump */
     914           0 :     ((ConstraintInfo *) constraintobj)->separate = true;
     915             :     /* put back constraint's dependency on domain */
     916           0 :     addObjectDependency(constraintobj, domainobj->dumpId);
     917             :     /* now that constraint is separate, it must be post-data */
     918           0 :     addObjectDependency(constraintobj, postDataBoundId);
     919           0 : }
     920             : 
     921             : static void
     922           0 : repairIndexLoop(DumpableObject *partedindex,
     923             :                 DumpableObject *partindex)
     924             : {
     925           0 :     removeObjectDependency(partedindex, partindex->dumpId);
     926           0 : }
     927             : 
     928             : /*
     929             :  * Fix a dependency loop, or die trying ...
     930             :  *
     931             :  * This routine is mainly concerned with reducing the multiple ways that
     932             :  * a loop might appear to common cases, which it passes off to the
     933             :  * "fixer" routines above.
     934             :  */
     935             : static void
     936       50562 : repairDependencyLoop(DumpableObject **loop,
     937             :                      int nLoop)
     938             : {
     939             :     int         i,
     940             :                 j;
     941             : 
     942             :     /* Datatype and one of its I/O or canonicalize functions */
     943       50562 :     if (nLoop == 2 &&
     944       48596 :         loop[0]->objType == DO_TYPE &&
     945         182 :         loop[1]->objType == DO_FUNC)
     946             :     {
     947           0 :         repairTypeFuncLoop(loop[0], loop[1]);
     948           0 :         return;
     949             :     }
     950       50562 :     if (nLoop == 2 &&
     951       48596 :         loop[1]->objType == DO_TYPE &&
     952         368 :         loop[0]->objType == DO_FUNC)
     953             :     {
     954         368 :         repairTypeFuncLoop(loop[1], loop[0]);
     955         368 :         return;
     956             :     }
     957             : 
     958             :     /* View (including matview) and its ON SELECT rule */
     959       50194 :     if (nLoop == 2 &&
     960       48228 :         loop[0]->objType == DO_TABLE &&
     961       48046 :         loop[1]->objType == DO_RULE &&
     962       45688 :         (((TableInfo *) loop[0])->relkind == RELKIND_VIEW ||
     963         886 :          ((TableInfo *) loop[0])->relkind == RELKIND_MATVIEW) &&
     964       45688 :         ((RuleInfo *) loop[1])->ev_type == '1' &&
     965       45688 :         ((RuleInfo *) loop[1])->is_instead &&
     966       45688 :         ((RuleInfo *) loop[1])->ruletable == (TableInfo *) loop[0])
     967             :     {
     968       45688 :         repairViewRuleLoop(loop[0], loop[1]);
     969       45688 :         return;
     970             :     }
     971        4506 :     if (nLoop == 2 &&
     972        2540 :         loop[1]->objType == DO_TABLE &&
     973           0 :         loop[0]->objType == DO_RULE &&
     974           0 :         (((TableInfo *) loop[1])->relkind == RELKIND_VIEW ||
     975           0 :          ((TableInfo *) loop[1])->relkind == RELKIND_MATVIEW) &&
     976           0 :         ((RuleInfo *) loop[0])->ev_type == '1' &&
     977           0 :         ((RuleInfo *) loop[0])->is_instead &&
     978           0 :         ((RuleInfo *) loop[0])->ruletable == (TableInfo *) loop[1])
     979             :     {
     980           0 :         repairViewRuleLoop(loop[1], loop[0]);
     981           0 :         return;
     982             :     }
     983             : 
     984             :     /* Indirect loop involving view (but not matview) and ON SELECT rule */
     985        4506 :     if (nLoop > 2)
     986             :     {
     987        3102 :         for (i = 0; i < nLoop; i++)
     988             :         {
     989        2584 :             if (loop[i]->objType == DO_TABLE &&
     990         686 :                 ((TableInfo *) loop[i])->relkind == RELKIND_VIEW)
     991             :             {
     992          40 :                 for (j = 0; j < nLoop; j++)
     993             :                 {
     994          40 :                     if (loop[j]->objType == DO_RULE &&
     995          20 :                         ((RuleInfo *) loop[j])->ev_type == '1' &&
     996          20 :                         ((RuleInfo *) loop[j])->is_instead &&
     997          20 :                         ((RuleInfo *) loop[j])->ruletable == (TableInfo *) loop[i])
     998             :                     {
     999          20 :                         repairViewRuleMultiLoop(loop[i], loop[j]);
    1000          20 :                         return;
    1001             :                     }
    1002             :                 }
    1003             :             }
    1004             :         }
    1005             :     }
    1006             : 
    1007             :     /* Indirect loop involving matview and data boundary */
    1008        4486 :     if (nLoop > 2)
    1009             :     {
    1010        1576 :         for (i = 0; i < nLoop; i++)
    1011             :         {
    1012        1274 :             if (loop[i]->objType == DO_TABLE &&
    1013         666 :                 ((TableInfo *) loop[i])->relkind == RELKIND_MATVIEW)
    1014             :             {
    1015        1290 :                 for (j = 0; j < nLoop; j++)
    1016             :                 {
    1017        1290 :                     if (loop[j]->objType == DO_PRE_DATA_BOUNDARY)
    1018             :                     {
    1019             :                         DumpableObject *nextobj;
    1020             : 
    1021         216 :                         nextobj = (j < nLoop - 1) ? loop[j + 1] : loop[0];
    1022         216 :                         repairMatViewBoundaryMultiLoop(loop[j], nextobj);
    1023         216 :                         return;
    1024             :                     }
    1025             :                 }
    1026             :             }
    1027             :         }
    1028             :     }
    1029             : 
    1030             :     /* Indirect loop involving function and data boundary */
    1031        4270 :     if (nLoop > 2)
    1032             :     {
    1033        1002 :         for (i = 0; i < nLoop; i++)
    1034             :         {
    1035         772 :             if (loop[i]->objType == DO_FUNC)
    1036             :             {
    1037         408 :                 for (j = 0; j < nLoop; j++)
    1038             :                 {
    1039         398 :                     if (loop[j]->objType == DO_PRE_DATA_BOUNDARY)
    1040             :                     {
    1041             :                         DumpableObject *nextobj;
    1042             : 
    1043          72 :                         nextobj = (j < nLoop - 1) ? loop[j + 1] : loop[0];
    1044          72 :                         repairFunctionBoundaryMultiLoop(loop[j], nextobj);
    1045          72 :                         return;
    1046             :                     }
    1047             :                 }
    1048             :             }
    1049             :         }
    1050             :     }
    1051             : 
    1052             :     /* Table and CHECK constraint */
    1053        4198 :     if (nLoop == 2 &&
    1054        2540 :         loop[0]->objType == DO_TABLE &&
    1055        2358 :         loop[1]->objType == DO_CONSTRAINT &&
    1056        1046 :         ((ConstraintInfo *) loop[1])->contype == 'c' &&
    1057        1046 :         ((ConstraintInfo *) loop[1])->contable == (TableInfo *) loop[0])
    1058             :     {
    1059        1046 :         repairTableConstraintLoop(loop[0], loop[1]);
    1060        1046 :         return;
    1061             :     }
    1062        3152 :     if (nLoop == 2 &&
    1063        1494 :         loop[1]->objType == DO_TABLE &&
    1064           0 :         loop[0]->objType == DO_CONSTRAINT &&
    1065           0 :         ((ConstraintInfo *) loop[0])->contype == 'c' &&
    1066           0 :         ((ConstraintInfo *) loop[0])->contable == (TableInfo *) loop[1])
    1067             :     {
    1068           0 :         repairTableConstraintLoop(loop[1], loop[0]);
    1069           0 :         return;
    1070             :     }
    1071             : 
    1072             :     /* Indirect loop involving table and CHECK constraint */
    1073        3152 :     if (nLoop > 2)
    1074             :     {
    1075         890 :         for (i = 0; i < nLoop; i++)
    1076             :         {
    1077         670 :             if (loop[i]->objType == DO_TABLE)
    1078             :             {
    1079        1780 :                 for (j = 0; j < nLoop; j++)
    1080             :                 {
    1081        1340 :                     if (loop[j]->objType == DO_CONSTRAINT &&
    1082          10 :                         ((ConstraintInfo *) loop[j])->contype == 'c' &&
    1083          10 :                         ((ConstraintInfo *) loop[j])->contable == (TableInfo *) loop[i])
    1084             :                     {
    1085          10 :                         repairTableConstraintMultiLoop(loop[i], loop[j]);
    1086          10 :                         return;
    1087             :                     }
    1088             :                 }
    1089             :             }
    1090             :         }
    1091             :     }
    1092             : 
    1093             :     /* Table and attribute default */
    1094        3142 :     if (nLoop == 2 &&
    1095        1494 :         loop[0]->objType == DO_TABLE &&
    1096        1312 :         loop[1]->objType == DO_ATTRDEF &&
    1097        1312 :         ((AttrDefInfo *) loop[1])->adtable == (TableInfo *) loop[0])
    1098             :     {
    1099        1312 :         repairTableAttrDefLoop(loop[0], loop[1]);
    1100        1312 :         return;
    1101             :     }
    1102        1830 :     if (nLoop == 2 &&
    1103         182 :         loop[1]->objType == DO_TABLE &&
    1104           0 :         loop[0]->objType == DO_ATTRDEF &&
    1105           0 :         ((AttrDefInfo *) loop[0])->adtable == (TableInfo *) loop[1])
    1106             :     {
    1107           0 :         repairTableAttrDefLoop(loop[1], loop[0]);
    1108           0 :         return;
    1109             :     }
    1110             : 
    1111             :     /* index on partitioned table and corresponding index on partition */
    1112        1830 :     if (nLoop == 2 &&
    1113         182 :         loop[0]->objType == DO_INDEX &&
    1114           0 :         loop[1]->objType == DO_INDEX)
    1115             :     {
    1116           0 :         if (((IndxInfo *) loop[0])->parentidx == loop[1]->catId.oid)
    1117             :         {
    1118           0 :             repairIndexLoop(loop[0], loop[1]);
    1119           0 :             return;
    1120             :         }
    1121           0 :         else if (((IndxInfo *) loop[1])->parentidx == loop[0]->catId.oid)
    1122             :         {
    1123           0 :             repairIndexLoop(loop[1], loop[0]);
    1124           0 :             return;
    1125             :         }
    1126             :     }
    1127             : 
    1128             :     /* Indirect loop involving table and attribute default */
    1129        1830 :     if (nLoop > 2)
    1130             :     {
    1131         440 :         for (i = 0; i < nLoop; i++)
    1132             :         {
    1133         440 :             if (loop[i]->objType == DO_TABLE)
    1134             :             {
    1135        1540 :                 for (j = 0; j < nLoop; j++)
    1136             :                 {
    1137        1320 :                     if (loop[j]->objType == DO_ATTRDEF &&
    1138         440 :                         ((AttrDefInfo *) loop[j])->adtable == (TableInfo *) loop[i])
    1139             :                     {
    1140         220 :                         repairTableAttrDefMultiLoop(loop[i], loop[j]);
    1141         220 :                         return;
    1142             :                     }
    1143             :                 }
    1144             :             }
    1145             :         }
    1146             :     }
    1147             : 
    1148             :     /* Domain and CHECK constraint */
    1149        1610 :     if (nLoop == 2 &&
    1150         182 :         loop[0]->objType == DO_TYPE &&
    1151         182 :         loop[1]->objType == DO_CONSTRAINT &&
    1152         182 :         ((ConstraintInfo *) loop[1])->contype == 'c' &&
    1153         182 :         ((ConstraintInfo *) loop[1])->condomain == (TypeInfo *) loop[0])
    1154             :     {
    1155         182 :         repairDomainConstraintLoop(loop[0], loop[1]);
    1156         182 :         return;
    1157             :     }
    1158        1428 :     if (nLoop == 2 &&
    1159           0 :         loop[1]->objType == DO_TYPE &&
    1160           0 :         loop[0]->objType == DO_CONSTRAINT &&
    1161           0 :         ((ConstraintInfo *) loop[0])->contype == 'c' &&
    1162           0 :         ((ConstraintInfo *) loop[0])->condomain == (TypeInfo *) loop[1])
    1163             :     {
    1164           0 :         repairDomainConstraintLoop(loop[1], loop[0]);
    1165           0 :         return;
    1166             :     }
    1167             : 
    1168             :     /* Indirect loop involving domain and CHECK constraint */
    1169        1428 :     if (nLoop > 2)
    1170             :     {
    1171           0 :         for (i = 0; i < nLoop; i++)
    1172             :         {
    1173           0 :             if (loop[i]->objType == DO_TYPE)
    1174             :             {
    1175           0 :                 for (j = 0; j < nLoop; j++)
    1176             :                 {
    1177           0 :                     if (loop[j]->objType == DO_CONSTRAINT &&
    1178           0 :                         ((ConstraintInfo *) loop[j])->contype == 'c' &&
    1179           0 :                         ((ConstraintInfo *) loop[j])->condomain == (TypeInfo *) loop[i])
    1180             :                     {
    1181           0 :                         repairDomainConstraintMultiLoop(loop[i], loop[j]);
    1182           0 :                         return;
    1183             :                     }
    1184             :                 }
    1185             :             }
    1186             :         }
    1187             :     }
    1188             : 
    1189             :     /*
    1190             :      * Loop of table with itself --- just ignore it.
    1191             :      *
    1192             :      * (Actually, what this arises from is a dependency of a table column on
    1193             :      * another column, which happened with generated columns before v15; or a
    1194             :      * dependency of a table column on the whole table, which happens with
    1195             :      * partitioning.  But we didn't pay attention to sub-object IDs while
    1196             :      * collecting the dependency data, so we can't see that here.)
    1197             :      */
    1198        1428 :     if (nLoop == 1)
    1199             :     {
    1200        1428 :         if (loop[0]->objType == DO_TABLE)
    1201             :         {
    1202        1428 :             removeObjectDependency(loop[0], loop[0]->dumpId);
    1203        1428 :             return;
    1204             :         }
    1205             :     }
    1206             : 
    1207             :     /*
    1208             :      * If all the objects are TABLE_DATA items, what we must have is a
    1209             :      * circular set of foreign key constraints (or a single self-referential
    1210             :      * table).  Print an appropriate complaint and break the loop arbitrarily.
    1211             :      */
    1212           0 :     for (i = 0; i < nLoop; i++)
    1213             :     {
    1214           0 :         if (loop[i]->objType != DO_TABLE_DATA)
    1215           0 :             break;
    1216             :     }
    1217           0 :     if (i >= nLoop)
    1218             :     {
    1219           0 :         pg_log_warning(ngettext("there are circular foreign-key constraints on this table:",
    1220             :                                 "there are circular foreign-key constraints among these tables:",
    1221             :                                 nLoop));
    1222           0 :         for (i = 0; i < nLoop; i++)
    1223           0 :             pg_log_warning_detail("%s", loop[i]->name);
    1224           0 :         pg_log_warning_hint("You might not be able to restore the dump without using --disable-triggers or temporarily dropping the constraints.");
    1225           0 :         pg_log_warning_hint("Consider using a full dump instead of a --data-only dump to avoid this problem.");
    1226           0 :         if (nLoop > 1)
    1227           0 :             removeObjectDependency(loop[0], loop[1]->dumpId);
    1228             :         else                    /* must be a self-dependency */
    1229           0 :             removeObjectDependency(loop[0], loop[0]->dumpId);
    1230           0 :         return;
    1231             :     }
    1232             : 
    1233             :     /*
    1234             :      * If we can't find a principled way to break the loop, complain and break
    1235             :      * it in an arbitrary fashion.
    1236             :      */
    1237           0 :     pg_log_warning("could not resolve dependency loop among these items:");
    1238           0 :     for (i = 0; i < nLoop; i++)
    1239             :     {
    1240             :         char        buf[1024];
    1241             : 
    1242           0 :         describeDumpableObject(loop[i], buf, sizeof(buf));
    1243           0 :         pg_log_warning_detail("%s", buf);
    1244             :     }
    1245             : 
    1246           0 :     if (nLoop > 1)
    1247           0 :         removeObjectDependency(loop[0], loop[1]->dumpId);
    1248             :     else                        /* must be a self-dependency */
    1249           0 :         removeObjectDependency(loop[0], loop[0]->dumpId);
    1250             : }
    1251             : 
    1252             : /*
    1253             :  * Describe a dumpable object usefully for errors
    1254             :  *
    1255             :  * This should probably go somewhere else...
    1256             :  */
    1257             : static void
    1258           0 : describeDumpableObject(DumpableObject *obj, char *buf, int bufsize)
    1259             : {
    1260           0 :     switch (obj->objType)
    1261             :     {
    1262           0 :         case DO_NAMESPACE:
    1263           0 :             snprintf(buf, bufsize,
    1264             :                      "SCHEMA %s  (ID %d OID %u)",
    1265             :                      obj->name, obj->dumpId, obj->catId.oid);
    1266           0 :             return;
    1267           0 :         case DO_EXTENSION:
    1268           0 :             snprintf(buf, bufsize,
    1269             :                      "EXTENSION %s  (ID %d OID %u)",
    1270             :                      obj->name, obj->dumpId, obj->catId.oid);
    1271           0 :             return;
    1272           0 :         case DO_TYPE:
    1273           0 :             snprintf(buf, bufsize,
    1274             :                      "TYPE %s  (ID %d OID %u)",
    1275             :                      obj->name, obj->dumpId, obj->catId.oid);
    1276           0 :             return;
    1277           0 :         case DO_SHELL_TYPE:
    1278           0 :             snprintf(buf, bufsize,
    1279             :                      "SHELL TYPE %s  (ID %d OID %u)",
    1280             :                      obj->name, obj->dumpId, obj->catId.oid);
    1281           0 :             return;
    1282           0 :         case DO_FUNC:
    1283           0 :             snprintf(buf, bufsize,
    1284             :                      "FUNCTION %s  (ID %d OID %u)",
    1285             :                      obj->name, obj->dumpId, obj->catId.oid);
    1286           0 :             return;
    1287           0 :         case DO_AGG:
    1288           0 :             snprintf(buf, bufsize,
    1289             :                      "AGGREGATE %s  (ID %d OID %u)",
    1290             :                      obj->name, obj->dumpId, obj->catId.oid);
    1291           0 :             return;
    1292           0 :         case DO_OPERATOR:
    1293           0 :             snprintf(buf, bufsize,
    1294             :                      "OPERATOR %s  (ID %d OID %u)",
    1295             :                      obj->name, obj->dumpId, obj->catId.oid);
    1296           0 :             return;
    1297           0 :         case DO_ACCESS_METHOD:
    1298           0 :             snprintf(buf, bufsize,
    1299             :                      "ACCESS METHOD %s  (ID %d OID %u)",
    1300             :                      obj->name, obj->dumpId, obj->catId.oid);
    1301           0 :             return;
    1302           0 :         case DO_OPCLASS:
    1303           0 :             snprintf(buf, bufsize,
    1304             :                      "OPERATOR CLASS %s  (ID %d OID %u)",
    1305             :                      obj->name, obj->dumpId, obj->catId.oid);
    1306           0 :             return;
    1307           0 :         case DO_OPFAMILY:
    1308           0 :             snprintf(buf, bufsize,
    1309             :                      "OPERATOR FAMILY %s  (ID %d OID %u)",
    1310             :                      obj->name, obj->dumpId, obj->catId.oid);
    1311           0 :             return;
    1312           0 :         case DO_COLLATION:
    1313           0 :             snprintf(buf, bufsize,
    1314             :                      "COLLATION %s  (ID %d OID %u)",
    1315             :                      obj->name, obj->dumpId, obj->catId.oid);
    1316           0 :             return;
    1317           0 :         case DO_CONVERSION:
    1318           0 :             snprintf(buf, bufsize,
    1319             :                      "CONVERSION %s  (ID %d OID %u)",
    1320             :                      obj->name, obj->dumpId, obj->catId.oid);
    1321           0 :             return;
    1322           0 :         case DO_TABLE:
    1323           0 :             snprintf(buf, bufsize,
    1324             :                      "TABLE %s  (ID %d OID %u)",
    1325             :                      obj->name, obj->dumpId, obj->catId.oid);
    1326           0 :             return;
    1327           0 :         case DO_TABLE_ATTACH:
    1328           0 :             snprintf(buf, bufsize,
    1329             :                      "TABLE ATTACH %s  (ID %d)",
    1330             :                      obj->name, obj->dumpId);
    1331           0 :             return;
    1332           0 :         case DO_ATTRDEF:
    1333           0 :             snprintf(buf, bufsize,
    1334             :                      "ATTRDEF %s.%s  (ID %d OID %u)",
    1335           0 :                      ((AttrDefInfo *) obj)->adtable->dobj.name,
    1336           0 :                      ((AttrDefInfo *) obj)->adtable->attnames[((AttrDefInfo *) obj)->adnum - 1],
    1337             :                      obj->dumpId, obj->catId.oid);
    1338           0 :             return;
    1339           0 :         case DO_INDEX:
    1340           0 :             snprintf(buf, bufsize,
    1341             :                      "INDEX %s  (ID %d OID %u)",
    1342             :                      obj->name, obj->dumpId, obj->catId.oid);
    1343           0 :             return;
    1344           0 :         case DO_INDEX_ATTACH:
    1345           0 :             snprintf(buf, bufsize,
    1346             :                      "INDEX ATTACH %s  (ID %d)",
    1347             :                      obj->name, obj->dumpId);
    1348           0 :             return;
    1349           0 :         case DO_STATSEXT:
    1350           0 :             snprintf(buf, bufsize,
    1351             :                      "STATISTICS %s  (ID %d OID %u)",
    1352             :                      obj->name, obj->dumpId, obj->catId.oid);
    1353           0 :             return;
    1354           0 :         case DO_REFRESH_MATVIEW:
    1355           0 :             snprintf(buf, bufsize,
    1356             :                      "REFRESH MATERIALIZED VIEW %s  (ID %d OID %u)",
    1357             :                      obj->name, obj->dumpId, obj->catId.oid);
    1358           0 :             return;
    1359           0 :         case DO_RULE:
    1360           0 :             snprintf(buf, bufsize,
    1361             :                      "RULE %s  (ID %d OID %u)",
    1362             :                      obj->name, obj->dumpId, obj->catId.oid);
    1363           0 :             return;
    1364           0 :         case DO_TRIGGER:
    1365           0 :             snprintf(buf, bufsize,
    1366             :                      "TRIGGER %s  (ID %d OID %u)",
    1367             :                      obj->name, obj->dumpId, obj->catId.oid);
    1368           0 :             return;
    1369           0 :         case DO_EVENT_TRIGGER:
    1370           0 :             snprintf(buf, bufsize,
    1371             :                      "EVENT TRIGGER %s (ID %d OID %u)",
    1372             :                      obj->name, obj->dumpId, obj->catId.oid);
    1373           0 :             return;
    1374           0 :         case DO_CONSTRAINT:
    1375           0 :             snprintf(buf, bufsize,
    1376             :                      "CONSTRAINT %s  (ID %d OID %u)",
    1377             :                      obj->name, obj->dumpId, obj->catId.oid);
    1378           0 :             return;
    1379           0 :         case DO_FK_CONSTRAINT:
    1380           0 :             snprintf(buf, bufsize,
    1381             :                      "FK CONSTRAINT %s  (ID %d OID %u)",
    1382             :                      obj->name, obj->dumpId, obj->catId.oid);
    1383           0 :             return;
    1384           0 :         case DO_PROCLANG:
    1385           0 :             snprintf(buf, bufsize,
    1386             :                      "PROCEDURAL LANGUAGE %s  (ID %d OID %u)",
    1387             :                      obj->name, obj->dumpId, obj->catId.oid);
    1388           0 :             return;
    1389           0 :         case DO_CAST:
    1390           0 :             snprintf(buf, bufsize,
    1391             :                      "CAST %u to %u  (ID %d OID %u)",
    1392             :                      ((CastInfo *) obj)->castsource,
    1393             :                      ((CastInfo *) obj)->casttarget,
    1394             :                      obj->dumpId, obj->catId.oid);
    1395           0 :             return;
    1396           0 :         case DO_TRANSFORM:
    1397           0 :             snprintf(buf, bufsize,
    1398             :                      "TRANSFORM %u lang %u  (ID %d OID %u)",
    1399             :                      ((TransformInfo *) obj)->trftype,
    1400             :                      ((TransformInfo *) obj)->trflang,
    1401             :                      obj->dumpId, obj->catId.oid);
    1402           0 :             return;
    1403           0 :         case DO_TABLE_DATA:
    1404           0 :             snprintf(buf, bufsize,
    1405             :                      "TABLE DATA %s  (ID %d OID %u)",
    1406             :                      obj->name, obj->dumpId, obj->catId.oid);
    1407           0 :             return;
    1408           0 :         case DO_SEQUENCE_SET:
    1409           0 :             snprintf(buf, bufsize,
    1410             :                      "SEQUENCE SET %s  (ID %d OID %u)",
    1411             :                      obj->name, obj->dumpId, obj->catId.oid);
    1412           0 :             return;
    1413           0 :         case DO_DUMMY_TYPE:
    1414           0 :             snprintf(buf, bufsize,
    1415             :                      "DUMMY TYPE %s  (ID %d OID %u)",
    1416             :                      obj->name, obj->dumpId, obj->catId.oid);
    1417           0 :             return;
    1418           0 :         case DO_TSPARSER:
    1419           0 :             snprintf(buf, bufsize,
    1420             :                      "TEXT SEARCH PARSER %s  (ID %d OID %u)",
    1421             :                      obj->name, obj->dumpId, obj->catId.oid);
    1422           0 :             return;
    1423           0 :         case DO_TSDICT:
    1424           0 :             snprintf(buf, bufsize,
    1425             :                      "TEXT SEARCH DICTIONARY %s  (ID %d OID %u)",
    1426             :                      obj->name, obj->dumpId, obj->catId.oid);
    1427           0 :             return;
    1428           0 :         case DO_TSTEMPLATE:
    1429           0 :             snprintf(buf, bufsize,
    1430             :                      "TEXT SEARCH TEMPLATE %s  (ID %d OID %u)",
    1431             :                      obj->name, obj->dumpId, obj->catId.oid);
    1432           0 :             return;
    1433           0 :         case DO_TSCONFIG:
    1434           0 :             snprintf(buf, bufsize,
    1435             :                      "TEXT SEARCH CONFIGURATION %s  (ID %d OID %u)",
    1436             :                      obj->name, obj->dumpId, obj->catId.oid);
    1437           0 :             return;
    1438           0 :         case DO_FDW:
    1439           0 :             snprintf(buf, bufsize,
    1440             :                      "FOREIGN DATA WRAPPER %s  (ID %d OID %u)",
    1441             :                      obj->name, obj->dumpId, obj->catId.oid);
    1442           0 :             return;
    1443           0 :         case DO_FOREIGN_SERVER:
    1444           0 :             snprintf(buf, bufsize,
    1445             :                      "FOREIGN SERVER %s  (ID %d OID %u)",
    1446             :                      obj->name, obj->dumpId, obj->catId.oid);
    1447           0 :             return;
    1448           0 :         case DO_DEFAULT_ACL:
    1449           0 :             snprintf(buf, bufsize,
    1450             :                      "DEFAULT ACL %s  (ID %d OID %u)",
    1451             :                      obj->name, obj->dumpId, obj->catId.oid);
    1452           0 :             return;
    1453           0 :         case DO_LARGE_OBJECT:
    1454           0 :             snprintf(buf, bufsize,
    1455             :                      "LARGE OBJECT  (ID %d OID %u)",
    1456             :                      obj->dumpId, obj->catId.oid);
    1457           0 :             return;
    1458           0 :         case DO_LARGE_OBJECT_DATA:
    1459           0 :             snprintf(buf, bufsize,
    1460             :                      "LARGE OBJECT DATA  (ID %d)",
    1461             :                      obj->dumpId);
    1462           0 :             return;
    1463           0 :         case DO_POLICY:
    1464           0 :             snprintf(buf, bufsize,
    1465             :                      "POLICY (ID %d OID %u)",
    1466             :                      obj->dumpId, obj->catId.oid);
    1467           0 :             return;
    1468           0 :         case DO_PUBLICATION:
    1469           0 :             snprintf(buf, bufsize,
    1470             :                      "PUBLICATION (ID %d OID %u)",
    1471             :                      obj->dumpId, obj->catId.oid);
    1472           0 :             return;
    1473           0 :         case DO_PUBLICATION_REL:
    1474           0 :             snprintf(buf, bufsize,
    1475             :                      "PUBLICATION TABLE (ID %d OID %u)",
    1476             :                      obj->dumpId, obj->catId.oid);
    1477           0 :             return;
    1478           0 :         case DO_PUBLICATION_TABLE_IN_SCHEMA:
    1479           0 :             snprintf(buf, bufsize,
    1480             :                      "PUBLICATION TABLES IN SCHEMA (ID %d OID %u)",
    1481             :                      obj->dumpId, obj->catId.oid);
    1482           0 :             return;
    1483           0 :         case DO_SUBSCRIPTION:
    1484           0 :             snprintf(buf, bufsize,
    1485             :                      "SUBSCRIPTION (ID %d OID %u)",
    1486             :                      obj->dumpId, obj->catId.oid);
    1487           0 :             return;
    1488           0 :         case DO_SUBSCRIPTION_REL:
    1489           0 :             snprintf(buf, bufsize,
    1490             :                      "SUBSCRIPTION TABLE (ID %d OID %u)",
    1491             :                      obj->dumpId, obj->catId.oid);
    1492           0 :             return;
    1493           0 :         case DO_PRE_DATA_BOUNDARY:
    1494           0 :             snprintf(buf, bufsize,
    1495             :                      "PRE-DATA BOUNDARY  (ID %d)",
    1496             :                      obj->dumpId);
    1497           0 :             return;
    1498           0 :         case DO_POST_DATA_BOUNDARY:
    1499           0 :             snprintf(buf, bufsize,
    1500             :                      "POST-DATA BOUNDARY  (ID %d)",
    1501             :                      obj->dumpId);
    1502           0 :             return;
    1503             :     }
    1504             :     /* shouldn't get here */
    1505           0 :     snprintf(buf, bufsize,
    1506             :              "object type %d  (ID %d OID %u)",
    1507           0 :              (int) obj->objType,
    1508             :              obj->dumpId, obj->catId.oid);
    1509             : }
    1510             : 
    1511             : /* binaryheap comparator that compares "a" and "b" as integers */
    1512             : static int
    1513    45158568 : int_cmp(void *a, void *b, void *arg)
    1514             : {
    1515    45158568 :     int         ai = (int) (intptr_t) a;
    1516    45158568 :     int         bi = (int) (intptr_t) b;
    1517             : 
    1518    45158568 :     return pg_cmp_s32(ai, bi);
    1519             : }

Generated by: LCOV version 1.14