Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * typcache.c
4 : * POSTGRES type cache code
5 : *
6 : * The type cache exists to speed lookup of certain information about data
7 : * types that is not directly available from a type's pg_type row. For
8 : * example, we use a type's default btree opclass, or the default hash
9 : * opclass if no btree opclass exists, to determine which operators should
10 : * be used for grouping and sorting the type (GROUP BY, ORDER BY ASC/DESC).
11 : *
12 : * Several seemingly-odd choices have been made to support use of the type
13 : * cache by generic array and record handling routines, such as array_eq(),
14 : * record_cmp(), and hash_array(). Because those routines are used as index
15 : * support operations, they cannot leak memory. To allow them to execute
16 : * efficiently, all information that they would like to re-use across calls
17 : * is kept in the type cache.
18 : *
19 : * Once created, a type cache entry lives as long as the backend does, so
20 : * there is no need for a call to release a cache entry. If the type is
21 : * dropped, the cache entry simply becomes wasted storage. This is not
22 : * expected to happen often, and assuming that typcache entries are good
23 : * permanently allows caching pointers to them in long-lived places.
24 : *
25 : * We have some provisions for updating cache entries if the stored data
26 : * becomes obsolete. Core data extracted from the pg_type row is updated
27 : * when we detect updates to pg_type. Information dependent on opclasses is
28 : * cleared if we detect updates to pg_opclass. We also support clearing the
29 : * tuple descriptor and operator/function parts of a rowtype's cache entry,
30 : * since those may need to change as a consequence of ALTER TABLE. Domain
31 : * constraint changes are also tracked properly.
32 : *
33 : *
34 : * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
35 : * Portions Copyright (c) 1994, Regents of the University of California
36 : *
37 : * IDENTIFICATION
38 : * src/backend/utils/cache/typcache.c
39 : *
40 : *-------------------------------------------------------------------------
41 : */
42 : #include "postgres.h"
43 :
44 : #include <limits.h>
45 :
46 : #include "access/hash.h"
47 : #include "access/htup_details.h"
48 : #include "access/nbtree.h"
49 : #include "access/parallel.h"
50 : #include "access/relation.h"
51 : #include "access/session.h"
52 : #include "access/table.h"
53 : #include "catalog/pg_am.h"
54 : #include "catalog/pg_constraint.h"
55 : #include "catalog/pg_enum.h"
56 : #include "catalog/pg_operator.h"
57 : #include "catalog/pg_range.h"
58 : #include "catalog/pg_type.h"
59 : #include "commands/defrem.h"
60 : #include "executor/executor.h"
61 : #include "lib/dshash.h"
62 : #include "optimizer/optimizer.h"
63 : #include "port/pg_bitutils.h"
64 : #include "storage/lwlock.h"
65 : #include "utils/builtins.h"
66 : #include "utils/catcache.h"
67 : #include "utils/fmgroids.h"
68 : #include "utils/inval.h"
69 : #include "utils/lsyscache.h"
70 : #include "utils/memutils.h"
71 : #include "utils/rel.h"
72 : #include "utils/snapmgr.h"
73 : #include "utils/syscache.h"
74 : #include "utils/typcache.h"
75 :
76 :
77 : /* The main type cache hashtable searched by lookup_type_cache */
78 : static HTAB *TypeCacheHash = NULL;
79 :
80 : /* List of type cache entries for domain types */
81 : static TypeCacheEntry *firstDomainTypeEntry = NULL;
82 :
83 : /* Private flag bits in the TypeCacheEntry.flags field */
84 : #define TCFLAGS_HAVE_PG_TYPE_DATA 0x000001
85 : #define TCFLAGS_CHECKED_BTREE_OPCLASS 0x000002
86 : #define TCFLAGS_CHECKED_HASH_OPCLASS 0x000004
87 : #define TCFLAGS_CHECKED_EQ_OPR 0x000008
88 : #define TCFLAGS_CHECKED_LT_OPR 0x000010
89 : #define TCFLAGS_CHECKED_GT_OPR 0x000020
90 : #define TCFLAGS_CHECKED_CMP_PROC 0x000040
91 : #define TCFLAGS_CHECKED_HASH_PROC 0x000080
92 : #define TCFLAGS_CHECKED_HASH_EXTENDED_PROC 0x000100
93 : #define TCFLAGS_CHECKED_ELEM_PROPERTIES 0x000200
94 : #define TCFLAGS_HAVE_ELEM_EQUALITY 0x000400
95 : #define TCFLAGS_HAVE_ELEM_COMPARE 0x000800
96 : #define TCFLAGS_HAVE_ELEM_HASHING 0x001000
97 : #define TCFLAGS_HAVE_ELEM_EXTENDED_HASHING 0x002000
98 : #define TCFLAGS_CHECKED_FIELD_PROPERTIES 0x004000
99 : #define TCFLAGS_HAVE_FIELD_EQUALITY 0x008000
100 : #define TCFLAGS_HAVE_FIELD_COMPARE 0x010000
101 : #define TCFLAGS_HAVE_FIELD_HASHING 0x020000
102 : #define TCFLAGS_HAVE_FIELD_EXTENDED_HASHING 0x040000
103 : #define TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS 0x080000
104 : #define TCFLAGS_DOMAIN_BASE_IS_COMPOSITE 0x100000
105 :
106 : /* The flags associated with equality/comparison/hashing are all but these: */
107 : #define TCFLAGS_OPERATOR_FLAGS \
108 : (~(TCFLAGS_HAVE_PG_TYPE_DATA | \
109 : TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS | \
110 : TCFLAGS_DOMAIN_BASE_IS_COMPOSITE))
111 :
112 : /*
113 : * Data stored about a domain type's constraints. Note that we do not create
114 : * this struct for the common case of a constraint-less domain; we just set
115 : * domainData to NULL to indicate that.
116 : *
117 : * Within a DomainConstraintCache, we store expression plan trees, but the
118 : * check_exprstate fields of the DomainConstraintState nodes are just NULL.
119 : * When needed, expression evaluation nodes are built by flat-copying the
120 : * DomainConstraintState nodes and applying ExecInitExpr to check_expr.
121 : * Such a node tree is not part of the DomainConstraintCache, but is
122 : * considered to belong to a DomainConstraintRef.
123 : */
124 : struct DomainConstraintCache
125 : {
126 : List *constraints; /* list of DomainConstraintState nodes */
127 : MemoryContext dccContext; /* memory context holding all associated data */
128 : long dccRefCount; /* number of references to this struct */
129 : };
130 :
131 : /* Private information to support comparisons of enum values */
132 : typedef struct
133 : {
134 : Oid enum_oid; /* OID of one enum value */
135 : float4 sort_order; /* its sort position */
136 : } EnumItem;
137 :
138 : typedef struct TypeCacheEnumData
139 : {
140 : Oid bitmap_base; /* OID corresponding to bit 0 of bitmapset */
141 : Bitmapset *sorted_values; /* Set of OIDs known to be in order */
142 : int num_values; /* total number of values in enum */
143 : EnumItem enum_values[FLEXIBLE_ARRAY_MEMBER];
144 : } TypeCacheEnumData;
145 :
146 : /*
147 : * We use a separate table for storing the definitions of non-anonymous
148 : * record types. Once defined, a record type will be remembered for the
149 : * life of the backend. Subsequent uses of the "same" record type (where
150 : * sameness means equalTupleDescs) will refer to the existing table entry.
151 : *
152 : * Stored record types are remembered in a linear array of TupleDescs,
153 : * which can be indexed quickly with the assigned typmod. There is also
154 : * a hash table to speed searches for matching TupleDescs.
155 : */
156 :
157 : typedef struct RecordCacheEntry
158 : {
159 : TupleDesc tupdesc;
160 : } RecordCacheEntry;
161 :
162 : /*
163 : * To deal with non-anonymous record types that are exchanged by backends
164 : * involved in a parallel query, we also need a shared version of the above.
165 : */
166 : struct SharedRecordTypmodRegistry
167 : {
168 : /* A hash table for finding a matching TupleDesc. */
169 : dshash_table_handle record_table_handle;
170 : /* A hash table for finding a TupleDesc by typmod. */
171 : dshash_table_handle typmod_table_handle;
172 : /* A source of new record typmod numbers. */
173 : pg_atomic_uint32 next_typmod;
174 : };
175 :
176 : /*
177 : * When using shared tuple descriptors as hash table keys we need a way to be
178 : * able to search for an equal shared TupleDesc using a backend-local
179 : * TupleDesc. So we use this type which can hold either, and hash and compare
180 : * functions that know how to handle both.
181 : */
182 : typedef struct SharedRecordTableKey
183 : {
184 : union
185 : {
186 : TupleDesc local_tupdesc;
187 : dsa_pointer shared_tupdesc;
188 : } u;
189 : bool shared;
190 : } SharedRecordTableKey;
191 :
192 : /*
193 : * The shared version of RecordCacheEntry. This lets us look up a typmod
194 : * using a TupleDesc which may be in local or shared memory.
195 : */
196 : typedef struct SharedRecordTableEntry
197 : {
198 : SharedRecordTableKey key;
199 : } SharedRecordTableEntry;
200 :
201 : /*
202 : * An entry in SharedRecordTypmodRegistry's typmod table. This lets us look
203 : * up a TupleDesc in shared memory using a typmod.
204 : */
205 : typedef struct SharedTypmodTableEntry
206 : {
207 : uint32 typmod;
208 : dsa_pointer shared_tupdesc;
209 : } SharedTypmodTableEntry;
210 :
211 : /*
212 : * A comparator function for SharedRecordTableKey.
213 : */
214 : static int
215 26 : shared_record_table_compare(const void *a, const void *b, size_t size,
216 : void *arg)
217 : {
218 26 : dsa_area *area = (dsa_area *) arg;
219 26 : SharedRecordTableKey *k1 = (SharedRecordTableKey *) a;
220 26 : SharedRecordTableKey *k2 = (SharedRecordTableKey *) b;
221 : TupleDesc t1;
222 : TupleDesc t2;
223 :
224 26 : if (k1->shared)
225 0 : t1 = (TupleDesc) dsa_get_address(area, k1->u.shared_tupdesc);
226 : else
227 26 : t1 = k1->u.local_tupdesc;
228 :
229 26 : if (k2->shared)
230 26 : t2 = (TupleDesc) dsa_get_address(area, k2->u.shared_tupdesc);
231 : else
232 0 : t2 = k2->u.local_tupdesc;
233 :
234 26 : return equalTupleDescs(t1, t2) ? 0 : 1;
235 : }
236 :
237 : /*
238 : * A hash function for SharedRecordTableKey.
239 : */
240 : static uint32
241 116 : shared_record_table_hash(const void *a, size_t size, void *arg)
242 : {
243 116 : dsa_area *area = (dsa_area *) arg;
244 116 : SharedRecordTableKey *k = (SharedRecordTableKey *) a;
245 : TupleDesc t;
246 :
247 116 : if (k->shared)
248 0 : t = (TupleDesc) dsa_get_address(area, k->u.shared_tupdesc);
249 : else
250 116 : t = k->u.local_tupdesc;
251 :
252 116 : return hashTupleDesc(t);
253 : }
254 :
255 : /* Parameters for SharedRecordTypmodRegistry's TupleDesc table. */
256 : static const dshash_parameters srtr_record_table_params = {
257 : sizeof(SharedRecordTableKey), /* unused */
258 : sizeof(SharedRecordTableEntry),
259 : shared_record_table_compare,
260 : shared_record_table_hash,
261 : LWTRANCHE_PER_SESSION_RECORD_TYPE
262 : };
263 :
264 : /* Parameters for SharedRecordTypmodRegistry's typmod hash table. */
265 : static const dshash_parameters srtr_typmod_table_params = {
266 : sizeof(uint32),
267 : sizeof(SharedTypmodTableEntry),
268 : dshash_memcmp,
269 : dshash_memhash,
270 : LWTRANCHE_PER_SESSION_RECORD_TYPMOD
271 : };
272 :
273 : /* hashtable for recognizing registered record types */
274 : static HTAB *RecordCacheHash = NULL;
275 :
276 : /* arrays of info about registered record types, indexed by assigned typmod */
277 : static TupleDesc *RecordCacheArray = NULL;
278 : static uint64 *RecordIdentifierArray = NULL;
279 : static int32 RecordCacheArrayLen = 0; /* allocated length of above arrays */
280 : static int32 NextRecordTypmod = 0; /* number of entries used */
281 :
282 : /*
283 : * Process-wide counter for generating unique tupledesc identifiers.
284 : * Zero and one (INVALID_TUPLEDESC_IDENTIFIER) aren't allowed to be chosen
285 : * as identifiers, so we start the counter at INVALID_TUPLEDESC_IDENTIFIER.
286 : */
287 : static uint64 tupledesc_id_counter = INVALID_TUPLEDESC_IDENTIFIER;
288 :
289 : static void load_typcache_tupdesc(TypeCacheEntry *typentry);
290 : static void load_rangetype_info(TypeCacheEntry *typentry);
291 : static void load_multirangetype_info(TypeCacheEntry *typentry);
292 : static void load_domaintype_info(TypeCacheEntry *typentry);
293 : static int dcs_cmp(const void *a, const void *b);
294 : static void decr_dcc_refcount(DomainConstraintCache *dcc);
295 : static void dccref_deletion_callback(void *arg);
296 : static List *prep_domain_constraints(List *constraints, MemoryContext execctx);
297 : static bool array_element_has_equality(TypeCacheEntry *typentry);
298 : static bool array_element_has_compare(TypeCacheEntry *typentry);
299 : static bool array_element_has_hashing(TypeCacheEntry *typentry);
300 : static bool array_element_has_extended_hashing(TypeCacheEntry *typentry);
301 : static void cache_array_element_properties(TypeCacheEntry *typentry);
302 : static bool record_fields_have_equality(TypeCacheEntry *typentry);
303 : static bool record_fields_have_compare(TypeCacheEntry *typentry);
304 : static bool record_fields_have_hashing(TypeCacheEntry *typentry);
305 : static bool record_fields_have_extended_hashing(TypeCacheEntry *typentry);
306 : static void cache_record_field_properties(TypeCacheEntry *typentry);
307 : static bool range_element_has_hashing(TypeCacheEntry *typentry);
308 : static bool range_element_has_extended_hashing(TypeCacheEntry *typentry);
309 : static void cache_range_element_properties(TypeCacheEntry *typentry);
310 : static bool multirange_element_has_hashing(TypeCacheEntry *typentry);
311 : static bool multirange_element_has_extended_hashing(TypeCacheEntry *typentry);
312 : static void cache_multirange_element_properties(TypeCacheEntry *typentry);
313 : static void TypeCacheRelCallback(Datum arg, Oid relid);
314 : static void TypeCacheTypCallback(Datum arg, int cacheid, uint32 hashvalue);
315 : static void TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue);
316 : static void TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue);
317 : static void load_enum_cache_data(TypeCacheEntry *tcache);
318 : static EnumItem *find_enumitem(TypeCacheEnumData *enumdata, Oid arg);
319 : static int enum_oid_cmp(const void *left, const void *right);
320 : static void shared_record_typmod_registry_detach(dsm_segment *segment,
321 : Datum datum);
322 : static TupleDesc find_or_make_matching_shared_tupledesc(TupleDesc tupdesc);
323 : static dsa_pointer share_tupledesc(dsa_area *area, TupleDesc tupdesc,
324 : uint32 typmod);
325 :
326 :
327 : /*
328 : * lookup_type_cache
329 : *
330 : * Fetch the type cache entry for the specified datatype, and make sure that
331 : * all the fields requested by bits in 'flags' are valid.
332 : *
333 : * The result is never NULL --- we will ereport() if the passed type OID is
334 : * invalid. Note however that we may fail to find one or more of the
335 : * values requested by 'flags'; the caller needs to check whether the fields
336 : * are InvalidOid or not.
337 : */
338 : TypeCacheEntry *
339 1166700 : lookup_type_cache(Oid type_id, int flags)
340 : {
341 : TypeCacheEntry *typentry;
342 : bool found;
343 :
344 1166700 : if (TypeCacheHash == NULL)
345 : {
346 : /* First time through: initialize the hash table */
347 : HASHCTL ctl;
348 :
349 6020 : ctl.keysize = sizeof(Oid);
350 6020 : ctl.entrysize = sizeof(TypeCacheEntry);
351 6020 : TypeCacheHash = hash_create("Type information cache", 64,
352 : &ctl, HASH_ELEM | HASH_BLOBS);
353 :
354 : /* Also set up callbacks for SI invalidations */
355 6020 : CacheRegisterRelcacheCallback(TypeCacheRelCallback, (Datum) 0);
356 6020 : CacheRegisterSyscacheCallback(TYPEOID, TypeCacheTypCallback, (Datum) 0);
357 6020 : CacheRegisterSyscacheCallback(CLAOID, TypeCacheOpcCallback, (Datum) 0);
358 6020 : CacheRegisterSyscacheCallback(CONSTROID, TypeCacheConstrCallback, (Datum) 0);
359 :
360 : /* Also make sure CacheMemoryContext exists */
361 6020 : if (!CacheMemoryContext)
362 0 : CreateCacheMemoryContext();
363 : }
364 :
365 : /* Try to look up an existing entry */
366 1166700 : typentry = (TypeCacheEntry *) hash_search(TypeCacheHash,
367 : &type_id,
368 : HASH_FIND, NULL);
369 1166700 : if (typentry == NULL)
370 : {
371 : /*
372 : * If we didn't find one, we want to make one. But first look up the
373 : * pg_type row, just to make sure we don't make a cache entry for an
374 : * invalid type OID. If the type OID is not valid, present a
375 : * user-facing error, since some code paths such as domain_in() allow
376 : * this function to be reached with a user-supplied OID.
377 : */
378 : HeapTuple tp;
379 : Form_pg_type typtup;
380 :
381 43464 : tp = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type_id));
382 43464 : if (!HeapTupleIsValid(tp))
383 0 : ereport(ERROR,
384 : (errcode(ERRCODE_UNDEFINED_OBJECT),
385 : errmsg("type with OID %u does not exist", type_id)));
386 43464 : typtup = (Form_pg_type) GETSTRUCT(tp);
387 43464 : if (!typtup->typisdefined)
388 0 : ereport(ERROR,
389 : (errcode(ERRCODE_UNDEFINED_OBJECT),
390 : errmsg("type \"%s\" is only a shell",
391 : NameStr(typtup->typname))));
392 :
393 : /* Now make the typcache entry */
394 43464 : typentry = (TypeCacheEntry *) hash_search(TypeCacheHash,
395 : &type_id,
396 : HASH_ENTER, &found);
397 : Assert(!found); /* it wasn't there a moment ago */
398 :
399 2694768 : MemSet(typentry, 0, sizeof(TypeCacheEntry));
400 :
401 : /* These fields can never change, by definition */
402 43464 : typentry->type_id = type_id;
403 43464 : typentry->type_id_hash = GetSysCacheHashValue1(TYPEOID,
404 : ObjectIdGetDatum(type_id));
405 :
406 : /* Keep this part in sync with the code below */
407 43464 : typentry->typlen = typtup->typlen;
408 43464 : typentry->typbyval = typtup->typbyval;
409 43464 : typentry->typalign = typtup->typalign;
410 43464 : typentry->typstorage = typtup->typstorage;
411 43464 : typentry->typtype = typtup->typtype;
412 43464 : typentry->typrelid = typtup->typrelid;
413 43464 : typentry->typsubscript = typtup->typsubscript;
414 43464 : typentry->typelem = typtup->typelem;
415 43464 : typentry->typcollation = typtup->typcollation;
416 43464 : typentry->flags |= TCFLAGS_HAVE_PG_TYPE_DATA;
417 :
418 : /* If it's a domain, immediately thread it into the domain cache list */
419 43464 : if (typentry->typtype == TYPTYPE_DOMAIN)
420 : {
421 3276 : typentry->nextDomain = firstDomainTypeEntry;
422 3276 : firstDomainTypeEntry = typentry;
423 : }
424 :
425 43464 : ReleaseSysCache(tp);
426 : }
427 1123236 : else if (!(typentry->flags & TCFLAGS_HAVE_PG_TYPE_DATA))
428 : {
429 : /*
430 : * We have an entry, but its pg_type row got changed, so reload the
431 : * data obtained directly from pg_type.
432 : */
433 : HeapTuple tp;
434 : Form_pg_type typtup;
435 :
436 454 : tp = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type_id));
437 454 : if (!HeapTupleIsValid(tp))
438 0 : ereport(ERROR,
439 : (errcode(ERRCODE_UNDEFINED_OBJECT),
440 : errmsg("type with OID %u does not exist", type_id)));
441 454 : typtup = (Form_pg_type) GETSTRUCT(tp);
442 454 : if (!typtup->typisdefined)
443 0 : ereport(ERROR,
444 : (errcode(ERRCODE_UNDEFINED_OBJECT),
445 : errmsg("type \"%s\" is only a shell",
446 : NameStr(typtup->typname))));
447 :
448 : /*
449 : * Keep this part in sync with the code above. Many of these fields
450 : * shouldn't ever change, particularly typtype, but copy 'em anyway.
451 : */
452 454 : typentry->typlen = typtup->typlen;
453 454 : typentry->typbyval = typtup->typbyval;
454 454 : typentry->typalign = typtup->typalign;
455 454 : typentry->typstorage = typtup->typstorage;
456 454 : typentry->typtype = typtup->typtype;
457 454 : typentry->typrelid = typtup->typrelid;
458 454 : typentry->typsubscript = typtup->typsubscript;
459 454 : typentry->typelem = typtup->typelem;
460 454 : typentry->typcollation = typtup->typcollation;
461 454 : typentry->flags |= TCFLAGS_HAVE_PG_TYPE_DATA;
462 :
463 454 : ReleaseSysCache(tp);
464 : }
465 :
466 : /*
467 : * Look up opclasses if we haven't already and any dependent info is
468 : * requested.
469 : */
470 1166700 : if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_LT_OPR | TYPECACHE_GT_OPR |
471 : TYPECACHE_CMP_PROC |
472 : TYPECACHE_EQ_OPR_FINFO | TYPECACHE_CMP_PROC_FINFO |
473 753572 : TYPECACHE_BTREE_OPFAMILY)) &&
474 753572 : !(typentry->flags & TCFLAGS_CHECKED_BTREE_OPCLASS))
475 : {
476 : Oid opclass;
477 :
478 38600 : opclass = GetDefaultOpClass(type_id, BTREE_AM_OID);
479 38600 : if (OidIsValid(opclass))
480 : {
481 36882 : typentry->btree_opf = get_opclass_family(opclass);
482 36882 : typentry->btree_opintype = get_opclass_input_type(opclass);
483 : }
484 : else
485 : {
486 1718 : typentry->btree_opf = typentry->btree_opintype = InvalidOid;
487 : }
488 :
489 : /*
490 : * Reset information derived from btree opclass. Note in particular
491 : * that we'll redetermine the eq_opr even if we previously found one;
492 : * this matters in case a btree opclass has been added to a type that
493 : * previously had only a hash opclass.
494 : */
495 38600 : typentry->flags &= ~(TCFLAGS_CHECKED_EQ_OPR |
496 : TCFLAGS_CHECKED_LT_OPR |
497 : TCFLAGS_CHECKED_GT_OPR |
498 : TCFLAGS_CHECKED_CMP_PROC);
499 38600 : typentry->flags |= TCFLAGS_CHECKED_BTREE_OPCLASS;
500 : }
501 :
502 : /*
503 : * If we need to look up equality operator, and there's no btree opclass,
504 : * force lookup of hash opclass.
505 : */
506 1166700 : if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_EQ_OPR_FINFO)) &&
507 730334 : !(typentry->flags & TCFLAGS_CHECKED_EQ_OPR) &&
508 38410 : typentry->btree_opf == InvalidOid)
509 1718 : flags |= TYPECACHE_HASH_OPFAMILY;
510 :
511 1166700 : if ((flags & (TYPECACHE_HASH_PROC | TYPECACHE_HASH_PROC_FINFO |
512 : TYPECACHE_HASH_EXTENDED_PROC |
513 : TYPECACHE_HASH_EXTENDED_PROC_FINFO |
514 318512 : TYPECACHE_HASH_OPFAMILY)) &&
515 318512 : !(typentry->flags & TCFLAGS_CHECKED_HASH_OPCLASS))
516 : {
517 : Oid opclass;
518 :
519 23358 : opclass = GetDefaultOpClass(type_id, HASH_AM_OID);
520 23358 : if (OidIsValid(opclass))
521 : {
522 23126 : typentry->hash_opf = get_opclass_family(opclass);
523 23126 : typentry->hash_opintype = get_opclass_input_type(opclass);
524 : }
525 : else
526 : {
527 232 : typentry->hash_opf = typentry->hash_opintype = InvalidOid;
528 : }
529 :
530 : /*
531 : * Reset information derived from hash opclass. We do *not* reset the
532 : * eq_opr; if we already found one from the btree opclass, that
533 : * decision is still good.
534 : */
535 23358 : typentry->flags &= ~(TCFLAGS_CHECKED_HASH_PROC |
536 : TCFLAGS_CHECKED_HASH_EXTENDED_PROC);
537 23358 : typentry->flags |= TCFLAGS_CHECKED_HASH_OPCLASS;
538 : }
539 :
540 : /*
541 : * Look for requested operators and functions, if we haven't already.
542 : */
543 1166700 : if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_EQ_OPR_FINFO)) &&
544 730334 : !(typentry->flags & TCFLAGS_CHECKED_EQ_OPR))
545 : {
546 38410 : Oid eq_opr = InvalidOid;
547 :
548 38410 : if (typentry->btree_opf != InvalidOid)
549 36692 : eq_opr = get_opfamily_member(typentry->btree_opf,
550 : typentry->btree_opintype,
551 : typentry->btree_opintype,
552 : BTEqualStrategyNumber);
553 38410 : if (eq_opr == InvalidOid &&
554 1718 : typentry->hash_opf != InvalidOid)
555 1554 : eq_opr = get_opfamily_member(typentry->hash_opf,
556 : typentry->hash_opintype,
557 : typentry->hash_opintype,
558 : HTEqualStrategyNumber);
559 :
560 : /*
561 : * If the proposed equality operator is array_eq or record_eq, check
562 : * to see if the element type or column types support equality. If
563 : * not, array_eq or record_eq would fail at runtime, so we don't want
564 : * to report that the type has equality. (We can omit similar
565 : * checking for ranges and multiranges because ranges can't be created
566 : * in the first place unless their subtypes support equality.)
567 : */
568 38410 : if (eq_opr == ARRAY_EQ_OP &&
569 6534 : !array_element_has_equality(typentry))
570 1298 : eq_opr = InvalidOid;
571 37112 : else if (eq_opr == RECORD_EQ_OP &&
572 878 : !record_fields_have_equality(typentry))
573 664 : eq_opr = InvalidOid;
574 :
575 : /* Force update of eq_opr_finfo only if we're changing state */
576 38410 : if (typentry->eq_opr != eq_opr)
577 35572 : typentry->eq_opr_finfo.fn_oid = InvalidOid;
578 :
579 38410 : typentry->eq_opr = eq_opr;
580 :
581 : /*
582 : * Reset info about hash functions whenever we pick up new info about
583 : * equality operator. This is so we can ensure that the hash
584 : * functions match the operator.
585 : */
586 38410 : typentry->flags &= ~(TCFLAGS_CHECKED_HASH_PROC |
587 : TCFLAGS_CHECKED_HASH_EXTENDED_PROC);
588 38410 : typentry->flags |= TCFLAGS_CHECKED_EQ_OPR;
589 : }
590 1166700 : if ((flags & TYPECACHE_LT_OPR) &&
591 571550 : !(typentry->flags & TCFLAGS_CHECKED_LT_OPR))
592 : {
593 29526 : Oid lt_opr = InvalidOid;
594 :
595 29526 : if (typentry->btree_opf != InvalidOid)
596 28192 : lt_opr = get_opfamily_member(typentry->btree_opf,
597 : typentry->btree_opintype,
598 : typentry->btree_opintype,
599 : BTLessStrategyNumber);
600 :
601 : /*
602 : * As above, make sure array_cmp or record_cmp will succeed; but again
603 : * we need no special check for ranges or multiranges.
604 : */
605 29526 : if (lt_opr == ARRAY_LT_OP &&
606 5834 : !array_element_has_compare(typentry))
607 1948 : lt_opr = InvalidOid;
608 27578 : else if (lt_opr == RECORD_LT_OP &&
609 114 : !record_fields_have_compare(typentry))
610 12 : lt_opr = InvalidOid;
611 :
612 29526 : typentry->lt_opr = lt_opr;
613 29526 : typentry->flags |= TCFLAGS_CHECKED_LT_OPR;
614 : }
615 1166700 : if ((flags & TYPECACHE_GT_OPR) &&
616 566848 : !(typentry->flags & TCFLAGS_CHECKED_GT_OPR))
617 : {
618 29492 : Oid gt_opr = InvalidOid;
619 :
620 29492 : if (typentry->btree_opf != InvalidOid)
621 28158 : gt_opr = get_opfamily_member(typentry->btree_opf,
622 : typentry->btree_opintype,
623 : typentry->btree_opintype,
624 : BTGreaterStrategyNumber);
625 :
626 : /*
627 : * As above, make sure array_cmp or record_cmp will succeed; but again
628 : * we need no special check for ranges or multiranges.
629 : */
630 29492 : if (gt_opr == ARRAY_GT_OP &&
631 5828 : !array_element_has_compare(typentry))
632 1948 : gt_opr = InvalidOid;
633 27544 : else if (gt_opr == RECORD_GT_OP &&
634 114 : !record_fields_have_compare(typentry))
635 12 : gt_opr = InvalidOid;
636 :
637 29492 : typentry->gt_opr = gt_opr;
638 29492 : typentry->flags |= TCFLAGS_CHECKED_GT_OPR;
639 : }
640 1166700 : if ((flags & (TYPECACHE_CMP_PROC | TYPECACHE_CMP_PROC_FINFO)) &&
641 62068 : !(typentry->flags & TCFLAGS_CHECKED_CMP_PROC))
642 : {
643 8322 : Oid cmp_proc = InvalidOid;
644 :
645 8322 : if (typentry->btree_opf != InvalidOid)
646 7658 : cmp_proc = get_opfamily_proc(typentry->btree_opf,
647 : typentry->btree_opintype,
648 : typentry->btree_opintype,
649 : BTORDER_PROC);
650 :
651 : /*
652 : * As above, make sure array_cmp or record_cmp will succeed; but again
653 : * we need no special check for ranges or multiranges.
654 : */
655 8322 : if (cmp_proc == F_BTARRAYCMP &&
656 1364 : !array_element_has_compare(typentry))
657 646 : cmp_proc = InvalidOid;
658 7676 : else if (cmp_proc == F_BTRECORDCMP &&
659 714 : !record_fields_have_compare(typentry))
660 646 : cmp_proc = InvalidOid;
661 :
662 : /* Force update of cmp_proc_finfo only if we're changing state */
663 8322 : if (typentry->cmp_proc != cmp_proc)
664 6350 : typentry->cmp_proc_finfo.fn_oid = InvalidOid;
665 :
666 8322 : typentry->cmp_proc = cmp_proc;
667 8322 : typentry->flags |= TCFLAGS_CHECKED_CMP_PROC;
668 : }
669 1166700 : if ((flags & (TYPECACHE_HASH_PROC | TYPECACHE_HASH_PROC_FINFO)) &&
670 317442 : !(typentry->flags & TCFLAGS_CHECKED_HASH_PROC))
671 : {
672 22432 : Oid hash_proc = InvalidOid;
673 :
674 : /*
675 : * We insist that the eq_opr, if one has been determined, match the
676 : * hash opclass; else report there is no hash function.
677 : */
678 22432 : if (typentry->hash_opf != InvalidOid &&
679 43148 : (!OidIsValid(typentry->eq_opr) ||
680 20892 : typentry->eq_opr == get_opfamily_member(typentry->hash_opf,
681 : typentry->hash_opintype,
682 : typentry->hash_opintype,
683 : HTEqualStrategyNumber)))
684 22256 : hash_proc = get_opfamily_proc(typentry->hash_opf,
685 : typentry->hash_opintype,
686 : typentry->hash_opintype,
687 : HASHSTANDARD_PROC);
688 :
689 : /*
690 : * As above, make sure hash_array, hash_record, or hash_range will
691 : * succeed.
692 : */
693 22432 : if (hash_proc == F_HASH_ARRAY &&
694 1930 : !array_element_has_hashing(typentry))
695 658 : hash_proc = InvalidOid;
696 21774 : else if (hash_proc == F_HASH_RECORD &&
697 868 : !record_fields_have_hashing(typentry))
698 690 : hash_proc = InvalidOid;
699 21084 : else if (hash_proc == F_HASH_RANGE &&
700 18 : !range_element_has_hashing(typentry))
701 6 : hash_proc = InvalidOid;
702 :
703 : /*
704 : * Likewise for hash_multirange.
705 : */
706 22432 : if (hash_proc == F_HASH_MULTIRANGE &&
707 12 : !multirange_element_has_hashing(typentry))
708 6 : hash_proc = InvalidOid;
709 :
710 : /* Force update of hash_proc_finfo only if we're changing state */
711 22432 : if (typentry->hash_proc != hash_proc)
712 20242 : typentry->hash_proc_finfo.fn_oid = InvalidOid;
713 :
714 22432 : typentry->hash_proc = hash_proc;
715 22432 : typentry->flags |= TCFLAGS_CHECKED_HASH_PROC;
716 : }
717 1166700 : if ((flags & (TYPECACHE_HASH_EXTENDED_PROC |
718 24048 : TYPECACHE_HASH_EXTENDED_PROC_FINFO)) &&
719 24048 : !(typentry->flags & TCFLAGS_CHECKED_HASH_EXTENDED_PROC))
720 : {
721 8032 : Oid hash_extended_proc = InvalidOid;
722 :
723 : /*
724 : * We insist that the eq_opr, if one has been determined, match the
725 : * hash opclass; else report there is no hash function.
726 : */
727 8032 : if (typentry->hash_opf != InvalidOid &&
728 14670 : (!OidIsValid(typentry->eq_opr) ||
729 6674 : typentry->eq_opr == get_opfamily_member(typentry->hash_opf,
730 : typentry->hash_opintype,
731 : typentry->hash_opintype,
732 : HTEqualStrategyNumber)))
733 7996 : hash_extended_proc = get_opfamily_proc(typentry->hash_opf,
734 : typentry->hash_opintype,
735 : typentry->hash_opintype,
736 : HASHEXTENDED_PROC);
737 :
738 : /*
739 : * As above, make sure hash_array_extended, hash_record_extended, or
740 : * hash_range_extended will succeed.
741 : */
742 8032 : if (hash_extended_proc == F_HASH_ARRAY_EXTENDED &&
743 1304 : !array_element_has_extended_hashing(typentry))
744 646 : hash_extended_proc = InvalidOid;
745 7386 : else if (hash_extended_proc == F_HASH_RECORD_EXTENDED &&
746 660 : !record_fields_have_extended_hashing(typentry))
747 652 : hash_extended_proc = InvalidOid;
748 6734 : else if (hash_extended_proc == F_HASH_RANGE_EXTENDED &&
749 0 : !range_element_has_extended_hashing(typentry))
750 0 : hash_extended_proc = InvalidOid;
751 :
752 : /*
753 : * Likewise for hash_multirange_extended.
754 : */
755 8032 : if (hash_extended_proc == F_HASH_MULTIRANGE_EXTENDED &&
756 0 : !multirange_element_has_extended_hashing(typentry))
757 0 : hash_extended_proc = InvalidOid;
758 :
759 : /* Force update of proc finfo only if we're changing state */
760 8032 : if (typentry->hash_extended_proc != hash_extended_proc)
761 6696 : typentry->hash_extended_proc_finfo.fn_oid = InvalidOid;
762 :
763 8032 : typentry->hash_extended_proc = hash_extended_proc;
764 8032 : typentry->flags |= TCFLAGS_CHECKED_HASH_EXTENDED_PROC;
765 : }
766 :
767 : /*
768 : * Set up fmgr lookup info as requested
769 : *
770 : * Note: we tell fmgr the finfo structures live in CacheMemoryContext,
771 : * which is not quite right (they're really in the hash table's private
772 : * memory context) but this will do for our purposes.
773 : *
774 : * Note: the code above avoids invalidating the finfo structs unless the
775 : * referenced operator/function OID actually changes. This is to prevent
776 : * unnecessary leakage of any subsidiary data attached to an finfo, since
777 : * that would cause session-lifespan memory leaks.
778 : */
779 1166700 : if ((flags & TYPECACHE_EQ_OPR_FINFO) &&
780 6722 : typentry->eq_opr_finfo.fn_oid == InvalidOid &&
781 1564 : typentry->eq_opr != InvalidOid)
782 : {
783 : Oid eq_opr_func;
784 :
785 1558 : eq_opr_func = get_opcode(typentry->eq_opr);
786 1558 : if (eq_opr_func != InvalidOid)
787 1558 : fmgr_info_cxt(eq_opr_func, &typentry->eq_opr_finfo,
788 : CacheMemoryContext);
789 : }
790 1166700 : if ((flags & TYPECACHE_CMP_PROC_FINFO) &&
791 35518 : typentry->cmp_proc_finfo.fn_oid == InvalidOid &&
792 12604 : typentry->cmp_proc != InvalidOid)
793 : {
794 2916 : fmgr_info_cxt(typentry->cmp_proc, &typentry->cmp_proc_finfo,
795 : CacheMemoryContext);
796 : }
797 1166700 : if ((flags & TYPECACHE_HASH_PROC_FINFO) &&
798 27688 : typentry->hash_proc_finfo.fn_oid == InvalidOid &&
799 4246 : typentry->hash_proc != InvalidOid)
800 : {
801 3570 : fmgr_info_cxt(typentry->hash_proc, &typentry->hash_proc_finfo,
802 : CacheMemoryContext);
803 : }
804 1166700 : if ((flags & TYPECACHE_HASH_EXTENDED_PROC_FINFO) &&
805 114 : typentry->hash_extended_proc_finfo.fn_oid == InvalidOid &&
806 36 : typentry->hash_extended_proc != InvalidOid)
807 : {
808 24 : fmgr_info_cxt(typentry->hash_extended_proc,
809 : &typentry->hash_extended_proc_finfo,
810 : CacheMemoryContext);
811 : }
812 :
813 : /*
814 : * If it's a composite type (row type), get tupdesc if requested
815 : */
816 1166700 : if ((flags & TYPECACHE_TUPDESC) &&
817 119154 : typentry->tupDesc == NULL &&
818 4866 : typentry->typtype == TYPTYPE_COMPOSITE)
819 : {
820 4740 : load_typcache_tupdesc(typentry);
821 : }
822 :
823 : /*
824 : * If requested, get information about a range type
825 : *
826 : * This includes making sure that the basic info about the range element
827 : * type is up-to-date.
828 : */
829 1166700 : if ((flags & TYPECACHE_RANGE_INFO) &&
830 13340 : typentry->typtype == TYPTYPE_RANGE)
831 : {
832 13340 : if (typentry->rngelemtype == NULL)
833 440 : load_rangetype_info(typentry);
834 12900 : else if (!(typentry->rngelemtype->flags & TCFLAGS_HAVE_PG_TYPE_DATA))
835 0 : (void) lookup_type_cache(typentry->rngelemtype->type_id, 0);
836 : }
837 :
838 : /*
839 : * If requested, get information about a multirange type
840 : */
841 1166700 : if ((flags & TYPECACHE_MULTIRANGE_INFO) &&
842 7838 : typentry->rngtype == NULL &&
843 192 : typentry->typtype == TYPTYPE_MULTIRANGE)
844 : {
845 192 : load_multirangetype_info(typentry);
846 : }
847 :
848 : /*
849 : * If requested, get information about a domain type
850 : */
851 1166700 : if ((flags & TYPECACHE_DOMAIN_BASE_INFO) &&
852 10636 : typentry->domainBaseType == InvalidOid &&
853 5832 : typentry->typtype == TYPTYPE_DOMAIN)
854 : {
855 1420 : typentry->domainBaseTypmod = -1;
856 1420 : typentry->domainBaseType =
857 1420 : getBaseTypeAndTypmod(type_id, &typentry->domainBaseTypmod);
858 : }
859 1166700 : if ((flags & TYPECACHE_DOMAIN_CONSTR_INFO) &&
860 187510 : (typentry->flags & TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS) == 0 &&
861 7410 : typentry->typtype == TYPTYPE_DOMAIN)
862 : {
863 4276 : load_domaintype_info(typentry);
864 : }
865 :
866 1166700 : return typentry;
867 : }
868 :
869 : /*
870 : * load_typcache_tupdesc --- helper routine to set up composite type's tupDesc
871 : */
872 : static void
873 4936 : load_typcache_tupdesc(TypeCacheEntry *typentry)
874 : {
875 : Relation rel;
876 :
877 4936 : if (!OidIsValid(typentry->typrelid)) /* should not happen */
878 0 : elog(ERROR, "invalid typrelid for composite type %u",
879 : typentry->type_id);
880 4936 : rel = relation_open(typentry->typrelid, AccessShareLock);
881 : Assert(rel->rd_rel->reltype == typentry->type_id);
882 :
883 : /*
884 : * Link to the tupdesc and increment its refcount (we assert it's a
885 : * refcounted descriptor). We don't use IncrTupleDescRefCount() for this,
886 : * because the reference mustn't be entered in the current resource owner;
887 : * it can outlive the current query.
888 : */
889 4936 : typentry->tupDesc = RelationGetDescr(rel);
890 :
891 : Assert(typentry->tupDesc->tdrefcount > 0);
892 4936 : typentry->tupDesc->tdrefcount++;
893 :
894 : /*
895 : * In future, we could take some pains to not change tupDesc_identifier if
896 : * the tupdesc didn't really change; but for now it's not worth it.
897 : */
898 4936 : typentry->tupDesc_identifier = ++tupledesc_id_counter;
899 :
900 4936 : relation_close(rel, AccessShareLock);
901 4936 : }
902 :
903 : /*
904 : * load_rangetype_info --- helper routine to set up range type information
905 : */
906 : static void
907 440 : load_rangetype_info(TypeCacheEntry *typentry)
908 : {
909 : Form_pg_range pg_range;
910 : HeapTuple tup;
911 : Oid subtypeOid;
912 : Oid opclassOid;
913 : Oid canonicalOid;
914 : Oid subdiffOid;
915 : Oid opfamilyOid;
916 : Oid opcintype;
917 : Oid cmpFnOid;
918 :
919 : /* get information from pg_range */
920 440 : tup = SearchSysCache1(RANGETYPE, ObjectIdGetDatum(typentry->type_id));
921 : /* should not fail, since we already checked typtype ... */
922 440 : if (!HeapTupleIsValid(tup))
923 0 : elog(ERROR, "cache lookup failed for range type %u",
924 : typentry->type_id);
925 440 : pg_range = (Form_pg_range) GETSTRUCT(tup);
926 :
927 440 : subtypeOid = pg_range->rngsubtype;
928 440 : typentry->rng_collation = pg_range->rngcollation;
929 440 : opclassOid = pg_range->rngsubopc;
930 440 : canonicalOid = pg_range->rngcanonical;
931 440 : subdiffOid = pg_range->rngsubdiff;
932 :
933 440 : ReleaseSysCache(tup);
934 :
935 : /* get opclass properties and look up the comparison function */
936 440 : opfamilyOid = get_opclass_family(opclassOid);
937 440 : opcintype = get_opclass_input_type(opclassOid);
938 :
939 440 : cmpFnOid = get_opfamily_proc(opfamilyOid, opcintype, opcintype,
940 : BTORDER_PROC);
941 440 : if (!RegProcedureIsValid(cmpFnOid))
942 0 : elog(ERROR, "missing support function %d(%u,%u) in opfamily %u",
943 : BTORDER_PROC, opcintype, opcintype, opfamilyOid);
944 :
945 : /* set up cached fmgrinfo structs */
946 440 : fmgr_info_cxt(cmpFnOid, &typentry->rng_cmp_proc_finfo,
947 : CacheMemoryContext);
948 440 : if (OidIsValid(canonicalOid))
949 188 : fmgr_info_cxt(canonicalOid, &typentry->rng_canonical_finfo,
950 : CacheMemoryContext);
951 440 : if (OidIsValid(subdiffOid))
952 312 : fmgr_info_cxt(subdiffOid, &typentry->rng_subdiff_finfo,
953 : CacheMemoryContext);
954 :
955 : /* Lastly, set up link to the element type --- this marks data valid */
956 440 : typentry->rngelemtype = lookup_type_cache(subtypeOid, 0);
957 440 : }
958 :
959 : /*
960 : * load_multirangetype_info --- helper routine to set up multirange type
961 : * information
962 : */
963 : static void
964 192 : load_multirangetype_info(TypeCacheEntry *typentry)
965 : {
966 : Oid rangetypeOid;
967 :
968 192 : rangetypeOid = get_multirange_range(typentry->type_id);
969 192 : if (!OidIsValid(rangetypeOid))
970 0 : elog(ERROR, "cache lookup failed for multirange type %u",
971 : typentry->type_id);
972 :
973 192 : typentry->rngtype = lookup_type_cache(rangetypeOid, TYPECACHE_RANGE_INFO);
974 192 : }
975 :
976 : /*
977 : * load_domaintype_info --- helper routine to set up domain constraint info
978 : *
979 : * Note: we assume we're called in a relatively short-lived context, so it's
980 : * okay to leak data into the current context while scanning pg_constraint.
981 : * We build the new DomainConstraintCache data in a context underneath
982 : * CurrentMemoryContext, and reparent it under CacheMemoryContext when
983 : * complete.
984 : */
985 : static void
986 4276 : load_domaintype_info(TypeCacheEntry *typentry)
987 : {
988 4276 : Oid typeOid = typentry->type_id;
989 : DomainConstraintCache *dcc;
990 4276 : bool notNull = false;
991 : DomainConstraintState **ccons;
992 : int cconslen;
993 : Relation conRel;
994 : MemoryContext oldcxt;
995 :
996 : /*
997 : * If we're here, any existing constraint info is stale, so release it.
998 : * For safety, be sure to null the link before trying to delete the data.
999 : */
1000 4276 : if (typentry->domainData)
1001 : {
1002 548 : dcc = typentry->domainData;
1003 548 : typentry->domainData = NULL;
1004 548 : decr_dcc_refcount(dcc);
1005 : }
1006 :
1007 : /*
1008 : * We try to optimize the common case of no domain constraints, so don't
1009 : * create the dcc object and context until we find a constraint. Likewise
1010 : * for the temp sorting array.
1011 : */
1012 4276 : dcc = NULL;
1013 4276 : ccons = NULL;
1014 4276 : cconslen = 0;
1015 :
1016 : /*
1017 : * Scan pg_constraint for relevant constraints. We want to find
1018 : * constraints for not just this domain, but any ancestor domains, so the
1019 : * outer loop crawls up the domain stack.
1020 : */
1021 4276 : conRel = table_open(ConstraintRelationId, AccessShareLock);
1022 :
1023 : for (;;)
1024 4314 : {
1025 : HeapTuple tup;
1026 : HeapTuple conTup;
1027 : Form_pg_type typTup;
1028 8590 : int nccons = 0;
1029 : ScanKeyData key[1];
1030 : SysScanDesc scan;
1031 :
1032 8590 : tup = SearchSysCache1(TYPEOID, ObjectIdGetDatum(typeOid));
1033 8590 : if (!HeapTupleIsValid(tup))
1034 0 : elog(ERROR, "cache lookup failed for type %u", typeOid);
1035 8590 : typTup = (Form_pg_type) GETSTRUCT(tup);
1036 :
1037 8590 : if (typTup->typtype != TYPTYPE_DOMAIN)
1038 : {
1039 : /* Not a domain, so done */
1040 4276 : ReleaseSysCache(tup);
1041 4276 : break;
1042 : }
1043 :
1044 : /* Test for NOT NULL Constraint */
1045 4314 : if (typTup->typnotnull)
1046 98 : notNull = true;
1047 :
1048 : /* Look for CHECK Constraints on this domain */
1049 4314 : ScanKeyInit(&key[0],
1050 : Anum_pg_constraint_contypid,
1051 : BTEqualStrategyNumber, F_OIDEQ,
1052 : ObjectIdGetDatum(typeOid));
1053 :
1054 4314 : scan = systable_beginscan(conRel, ConstraintTypidIndexId, true,
1055 : NULL, 1, key);
1056 :
1057 6354 : while (HeapTupleIsValid(conTup = systable_getnext(scan)))
1058 : {
1059 2040 : Form_pg_constraint c = (Form_pg_constraint) GETSTRUCT(conTup);
1060 : Datum val;
1061 : bool isNull;
1062 : char *constring;
1063 : Expr *check_expr;
1064 : DomainConstraintState *r;
1065 :
1066 : /* Ignore non-CHECK constraints (presently, shouldn't be any) */
1067 2040 : if (c->contype != CONSTRAINT_CHECK)
1068 0 : continue;
1069 :
1070 : /* Not expecting conbin to be NULL, but we'll test for it anyway */
1071 2040 : val = fastgetattr(conTup, Anum_pg_constraint_conbin,
1072 : conRel->rd_att, &isNull);
1073 2040 : if (isNull)
1074 0 : elog(ERROR, "domain \"%s\" constraint \"%s\" has NULL conbin",
1075 : NameStr(typTup->typname), NameStr(c->conname));
1076 :
1077 : /* Convert conbin to C string in caller context */
1078 2040 : constring = TextDatumGetCString(val);
1079 :
1080 : /* Create the DomainConstraintCache object and context if needed */
1081 2040 : if (dcc == NULL)
1082 : {
1083 : MemoryContext cxt;
1084 :
1085 2010 : cxt = AllocSetContextCreate(CurrentMemoryContext,
1086 : "Domain constraints",
1087 : ALLOCSET_SMALL_SIZES);
1088 : dcc = (DomainConstraintCache *)
1089 2010 : MemoryContextAlloc(cxt, sizeof(DomainConstraintCache));
1090 2010 : dcc->constraints = NIL;
1091 2010 : dcc->dccContext = cxt;
1092 2010 : dcc->dccRefCount = 0;
1093 : }
1094 :
1095 : /* Create node trees in DomainConstraintCache's context */
1096 2040 : oldcxt = MemoryContextSwitchTo(dcc->dccContext);
1097 :
1098 2040 : check_expr = (Expr *) stringToNode(constring);
1099 :
1100 : /*
1101 : * Plan the expression, since ExecInitExpr will expect that.
1102 : *
1103 : * Note: caching the result of expression_planner() is not very
1104 : * good practice. Ideally we'd use a CachedExpression here so
1105 : * that we would react promptly to, eg, changes in inlined
1106 : * functions. However, because we don't support mutable domain
1107 : * CHECK constraints, it's not really clear that it's worth the
1108 : * extra overhead to do that.
1109 : */
1110 2040 : check_expr = expression_planner(check_expr);
1111 :
1112 2040 : r = makeNode(DomainConstraintState);
1113 2040 : r->constrainttype = DOM_CONSTRAINT_CHECK;
1114 2040 : r->name = pstrdup(NameStr(c->conname));
1115 2040 : r->check_expr = check_expr;
1116 2040 : r->check_exprstate = NULL;
1117 :
1118 2040 : MemoryContextSwitchTo(oldcxt);
1119 :
1120 : /* Accumulate constraints in an array, for sorting below */
1121 2040 : if (ccons == NULL)
1122 : {
1123 2010 : cconslen = 8;
1124 : ccons = (DomainConstraintState **)
1125 2010 : palloc(cconslen * sizeof(DomainConstraintState *));
1126 : }
1127 30 : else if (nccons >= cconslen)
1128 : {
1129 0 : cconslen *= 2;
1130 : ccons = (DomainConstraintState **)
1131 0 : repalloc(ccons, cconslen * sizeof(DomainConstraintState *));
1132 : }
1133 2040 : ccons[nccons++] = r;
1134 : }
1135 :
1136 4314 : systable_endscan(scan);
1137 :
1138 4314 : if (nccons > 0)
1139 : {
1140 : /*
1141 : * Sort the items for this domain, so that CHECKs are applied in a
1142 : * deterministic order.
1143 : */
1144 2030 : if (nccons > 1)
1145 8 : qsort(ccons, nccons, sizeof(DomainConstraintState *), dcs_cmp);
1146 :
1147 : /*
1148 : * Now attach them to the overall list. Use lcons() here because
1149 : * constraints of parent domains should be applied earlier.
1150 : */
1151 2030 : oldcxt = MemoryContextSwitchTo(dcc->dccContext);
1152 4070 : while (nccons > 0)
1153 2040 : dcc->constraints = lcons(ccons[--nccons], dcc->constraints);
1154 2030 : MemoryContextSwitchTo(oldcxt);
1155 : }
1156 :
1157 : /* loop to next domain in stack */
1158 4314 : typeOid = typTup->typbasetype;
1159 4314 : ReleaseSysCache(tup);
1160 : }
1161 :
1162 4276 : table_close(conRel, AccessShareLock);
1163 :
1164 : /*
1165 : * Only need to add one NOT NULL check regardless of how many domains in
1166 : * the stack request it.
1167 : */
1168 4276 : if (notNull)
1169 : {
1170 : DomainConstraintState *r;
1171 :
1172 : /* Create the DomainConstraintCache object and context if needed */
1173 98 : if (dcc == NULL)
1174 : {
1175 : MemoryContext cxt;
1176 :
1177 74 : cxt = AllocSetContextCreate(CurrentMemoryContext,
1178 : "Domain constraints",
1179 : ALLOCSET_SMALL_SIZES);
1180 : dcc = (DomainConstraintCache *)
1181 74 : MemoryContextAlloc(cxt, sizeof(DomainConstraintCache));
1182 74 : dcc->constraints = NIL;
1183 74 : dcc->dccContext = cxt;
1184 74 : dcc->dccRefCount = 0;
1185 : }
1186 :
1187 : /* Create node trees in DomainConstraintCache's context */
1188 98 : oldcxt = MemoryContextSwitchTo(dcc->dccContext);
1189 :
1190 98 : r = makeNode(DomainConstraintState);
1191 :
1192 98 : r->constrainttype = DOM_CONSTRAINT_NOTNULL;
1193 98 : r->name = pstrdup("NOT NULL");
1194 98 : r->check_expr = NULL;
1195 98 : r->check_exprstate = NULL;
1196 :
1197 : /* lcons to apply the nullness check FIRST */
1198 98 : dcc->constraints = lcons(r, dcc->constraints);
1199 :
1200 98 : MemoryContextSwitchTo(oldcxt);
1201 : }
1202 :
1203 : /*
1204 : * If we made a constraint object, move it into CacheMemoryContext and
1205 : * attach it to the typcache entry.
1206 : */
1207 4276 : if (dcc)
1208 : {
1209 2084 : MemoryContextSetParent(dcc->dccContext, CacheMemoryContext);
1210 2084 : typentry->domainData = dcc;
1211 2084 : dcc->dccRefCount++; /* count the typcache's reference */
1212 : }
1213 :
1214 : /* Either way, the typcache entry's domain data is now valid. */
1215 4276 : typentry->flags |= TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS;
1216 4276 : }
1217 :
1218 : /*
1219 : * qsort comparator to sort DomainConstraintState pointers by name
1220 : */
1221 : static int
1222 10 : dcs_cmp(const void *a, const void *b)
1223 : {
1224 10 : const DomainConstraintState *const *ca = (const DomainConstraintState *const *) a;
1225 10 : const DomainConstraintState *const *cb = (const DomainConstraintState *const *) b;
1226 :
1227 10 : return strcmp((*ca)->name, (*cb)->name);
1228 : }
1229 :
1230 : /*
1231 : * decr_dcc_refcount --- decrement a DomainConstraintCache's refcount,
1232 : * and free it if no references remain
1233 : */
1234 : static void
1235 48030 : decr_dcc_refcount(DomainConstraintCache *dcc)
1236 : {
1237 : Assert(dcc->dccRefCount > 0);
1238 48030 : if (--(dcc->dccRefCount) <= 0)
1239 544 : MemoryContextDelete(dcc->dccContext);
1240 48030 : }
1241 :
1242 : /*
1243 : * Context reset/delete callback for a DomainConstraintRef
1244 : */
1245 : static void
1246 50708 : dccref_deletion_callback(void *arg)
1247 : {
1248 50708 : DomainConstraintRef *ref = (DomainConstraintRef *) arg;
1249 50708 : DomainConstraintCache *dcc = ref->dcc;
1250 :
1251 : /* Paranoia --- be sure link is nulled before trying to release */
1252 50708 : if (dcc)
1253 : {
1254 47482 : ref->constraints = NIL;
1255 47482 : ref->dcc = NULL;
1256 47482 : decr_dcc_refcount(dcc);
1257 : }
1258 50708 : }
1259 :
1260 : /*
1261 : * prep_domain_constraints --- prepare domain constraints for execution
1262 : *
1263 : * The expression trees stored in the DomainConstraintCache's list are
1264 : * converted to executable expression state trees stored in execctx.
1265 : */
1266 : static List *
1267 2874 : prep_domain_constraints(List *constraints, MemoryContext execctx)
1268 : {
1269 2874 : List *result = NIL;
1270 : MemoryContext oldcxt;
1271 : ListCell *lc;
1272 :
1273 2874 : oldcxt = MemoryContextSwitchTo(execctx);
1274 :
1275 5772 : foreach(lc, constraints)
1276 : {
1277 2898 : DomainConstraintState *r = (DomainConstraintState *) lfirst(lc);
1278 : DomainConstraintState *newr;
1279 :
1280 2898 : newr = makeNode(DomainConstraintState);
1281 2898 : newr->constrainttype = r->constrainttype;
1282 2898 : newr->name = r->name;
1283 2898 : newr->check_expr = r->check_expr;
1284 2898 : newr->check_exprstate = ExecInitExpr(r->check_expr, NULL);
1285 :
1286 2898 : result = lappend(result, newr);
1287 : }
1288 :
1289 2874 : MemoryContextSwitchTo(oldcxt);
1290 :
1291 2874 : return result;
1292 : }
1293 :
1294 : /*
1295 : * InitDomainConstraintRef --- initialize a DomainConstraintRef struct
1296 : *
1297 : * Caller must tell us the MemoryContext in which the DomainConstraintRef
1298 : * lives. The ref will be cleaned up when that context is reset/deleted.
1299 : *
1300 : * Caller must also tell us whether it wants check_exprstate fields to be
1301 : * computed in the DomainConstraintState nodes attached to this ref.
1302 : * If it doesn't, we need not make a copy of the DomainConstraintState list.
1303 : */
1304 : void
1305 50736 : InitDomainConstraintRef(Oid type_id, DomainConstraintRef *ref,
1306 : MemoryContext refctx, bool need_exprstate)
1307 : {
1308 : /* Look up the typcache entry --- we assume it survives indefinitely */
1309 50736 : ref->tcache = lookup_type_cache(type_id, TYPECACHE_DOMAIN_CONSTR_INFO);
1310 50736 : ref->need_exprstate = need_exprstate;
1311 : /* For safety, establish the callback before acquiring a refcount */
1312 50736 : ref->refctx = refctx;
1313 50736 : ref->dcc = NULL;
1314 50736 : ref->callback.func = dccref_deletion_callback;
1315 50736 : ref->callback.arg = (void *) ref;
1316 50736 : MemoryContextRegisterResetCallback(refctx, &ref->callback);
1317 : /* Acquire refcount if there are constraints, and set up exported list */
1318 50736 : if (ref->tcache->domainData)
1319 : {
1320 47510 : ref->dcc = ref->tcache->domainData;
1321 47510 : ref->dcc->dccRefCount++;
1322 47510 : if (ref->need_exprstate)
1323 2874 : ref->constraints = prep_domain_constraints(ref->dcc->constraints,
1324 : ref->refctx);
1325 : else
1326 44636 : ref->constraints = ref->dcc->constraints;
1327 : }
1328 : else
1329 3226 : ref->constraints = NIL;
1330 50736 : }
1331 :
1332 : /*
1333 : * UpdateDomainConstraintRef --- recheck validity of domain constraint info
1334 : *
1335 : * If the domain's constraint set changed, ref->constraints is updated to
1336 : * point at a new list of cached constraints.
1337 : *
1338 : * In the normal case where nothing happened to the domain, this is cheap
1339 : * enough that it's reasonable (and expected) to check before *each* use
1340 : * of the constraint info.
1341 : */
1342 : void
1343 2734064 : UpdateDomainConstraintRef(DomainConstraintRef *ref)
1344 : {
1345 2734064 : TypeCacheEntry *typentry = ref->tcache;
1346 :
1347 : /* Make sure typcache entry's data is up to date */
1348 2734064 : if ((typentry->flags & TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS) == 0 &&
1349 0 : typentry->typtype == TYPTYPE_DOMAIN)
1350 0 : load_domaintype_info(typentry);
1351 :
1352 : /* Transfer to ref object if there's new info, adjusting refcounts */
1353 2734064 : if (ref->dcc != typentry->domainData)
1354 : {
1355 : /* Paranoia --- be sure link is nulled before trying to release */
1356 0 : DomainConstraintCache *dcc = ref->dcc;
1357 :
1358 0 : if (dcc)
1359 : {
1360 : /*
1361 : * Note: we just leak the previous list of executable domain
1362 : * constraints. Alternatively, we could keep those in a child
1363 : * context of ref->refctx and free that context at this point.
1364 : * However, in practice this code path will be taken so seldom
1365 : * that the extra bookkeeping for a child context doesn't seem
1366 : * worthwhile; we'll just allow a leak for the lifespan of refctx.
1367 : */
1368 0 : ref->constraints = NIL;
1369 0 : ref->dcc = NULL;
1370 0 : decr_dcc_refcount(dcc);
1371 : }
1372 0 : dcc = typentry->domainData;
1373 0 : if (dcc)
1374 : {
1375 0 : ref->dcc = dcc;
1376 0 : dcc->dccRefCount++;
1377 0 : if (ref->need_exprstate)
1378 0 : ref->constraints = prep_domain_constraints(dcc->constraints,
1379 : ref->refctx);
1380 : else
1381 0 : ref->constraints = dcc->constraints;
1382 : }
1383 : }
1384 2734064 : }
1385 :
1386 : /*
1387 : * DomainHasConstraints --- utility routine to check if a domain has constraints
1388 : *
1389 : * This is defined to return false, not fail, if type is not a domain.
1390 : */
1391 : bool
1392 136774 : DomainHasConstraints(Oid type_id)
1393 : {
1394 : TypeCacheEntry *typentry;
1395 :
1396 : /*
1397 : * Note: a side effect is to cause the typcache's domain data to become
1398 : * valid. This is fine since we'll likely need it soon if there is any.
1399 : */
1400 136774 : typentry = lookup_type_cache(type_id, TYPECACHE_DOMAIN_CONSTR_INFO);
1401 :
1402 136774 : return (typentry->domainData != NULL);
1403 : }
1404 :
1405 :
1406 : /*
1407 : * array_element_has_equality and friends are helper routines to check
1408 : * whether we should believe that array_eq and related functions will work
1409 : * on the given array type or composite type.
1410 : *
1411 : * The logic above may call these repeatedly on the same type entry, so we
1412 : * make use of the typentry->flags field to cache the results once known.
1413 : * Also, we assume that we'll probably want all these facts about the type
1414 : * if we want any, so we cache them all using only one lookup of the
1415 : * component datatype(s).
1416 : */
1417 :
1418 : static bool
1419 6534 : array_element_has_equality(TypeCacheEntry *typentry)
1420 : {
1421 6534 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1422 6518 : cache_array_element_properties(typentry);
1423 6534 : return (typentry->flags & TCFLAGS_HAVE_ELEM_EQUALITY) != 0;
1424 : }
1425 :
1426 : static bool
1427 13026 : array_element_has_compare(TypeCacheEntry *typentry)
1428 : {
1429 13026 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1430 52 : cache_array_element_properties(typentry);
1431 13026 : return (typentry->flags & TCFLAGS_HAVE_ELEM_COMPARE) != 0;
1432 : }
1433 :
1434 : static bool
1435 1930 : array_element_has_hashing(TypeCacheEntry *typentry)
1436 : {
1437 1930 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1438 0 : cache_array_element_properties(typentry);
1439 1930 : return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0;
1440 : }
1441 :
1442 : static bool
1443 1304 : array_element_has_extended_hashing(TypeCacheEntry *typentry)
1444 : {
1445 1304 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1446 0 : cache_array_element_properties(typentry);
1447 1304 : return (typentry->flags & TCFLAGS_HAVE_ELEM_EXTENDED_HASHING) != 0;
1448 : }
1449 :
1450 : static void
1451 6570 : cache_array_element_properties(TypeCacheEntry *typentry)
1452 : {
1453 6570 : Oid elem_type = get_base_element_type(typentry->type_id);
1454 :
1455 6570 : if (OidIsValid(elem_type))
1456 : {
1457 : TypeCacheEntry *elementry;
1458 :
1459 5918 : elementry = lookup_type_cache(elem_type,
1460 : TYPECACHE_EQ_OPR |
1461 : TYPECACHE_CMP_PROC |
1462 : TYPECACHE_HASH_PROC |
1463 : TYPECACHE_HASH_EXTENDED_PROC);
1464 5918 : if (OidIsValid(elementry->eq_opr))
1465 5272 : typentry->flags |= TCFLAGS_HAVE_ELEM_EQUALITY;
1466 5918 : if (OidIsValid(elementry->cmp_proc))
1467 4620 : typentry->flags |= TCFLAGS_HAVE_ELEM_COMPARE;
1468 5918 : if (OidIsValid(elementry->hash_proc))
1469 5260 : typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING;
1470 5918 : if (OidIsValid(elementry->hash_extended_proc))
1471 5260 : typentry->flags |= TCFLAGS_HAVE_ELEM_EXTENDED_HASHING;
1472 : }
1473 6570 : typentry->flags |= TCFLAGS_CHECKED_ELEM_PROPERTIES;
1474 6570 : }
1475 :
1476 : /*
1477 : * Likewise, some helper functions for composite types.
1478 : */
1479 :
1480 : static bool
1481 878 : record_fields_have_equality(TypeCacheEntry *typentry)
1482 : {
1483 878 : if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1484 850 : cache_record_field_properties(typentry);
1485 878 : return (typentry->flags & TCFLAGS_HAVE_FIELD_EQUALITY) != 0;
1486 : }
1487 :
1488 : static bool
1489 942 : record_fields_have_compare(TypeCacheEntry *typentry)
1490 : {
1491 942 : if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1492 54 : cache_record_field_properties(typentry);
1493 942 : return (typentry->flags & TCFLAGS_HAVE_FIELD_COMPARE) != 0;
1494 : }
1495 :
1496 : static bool
1497 868 : record_fields_have_hashing(TypeCacheEntry *typentry)
1498 : {
1499 868 : if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1500 6 : cache_record_field_properties(typentry);
1501 868 : return (typentry->flags & TCFLAGS_HAVE_FIELD_HASHING) != 0;
1502 : }
1503 :
1504 : static bool
1505 660 : record_fields_have_extended_hashing(TypeCacheEntry *typentry)
1506 : {
1507 660 : if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1508 0 : cache_record_field_properties(typentry);
1509 660 : return (typentry->flags & TCFLAGS_HAVE_FIELD_EXTENDED_HASHING) != 0;
1510 : }
1511 :
1512 : static void
1513 910 : cache_record_field_properties(TypeCacheEntry *typentry)
1514 : {
1515 : /*
1516 : * For type RECORD, we can't really tell what will work, since we don't
1517 : * have access here to the specific anonymous type. Just assume that
1518 : * equality and comparison will (we may get a failure at runtime). We
1519 : * could also claim that hashing works, but then if code that has the
1520 : * option between a comparison-based (sort-based) and a hash-based plan
1521 : * chooses hashing, stuff could fail that would otherwise work if it chose
1522 : * a comparison-based plan. In practice more types support comparison
1523 : * than hashing.
1524 : */
1525 910 : if (typentry->type_id == RECORDOID)
1526 : {
1527 38 : typentry->flags |= (TCFLAGS_HAVE_FIELD_EQUALITY |
1528 : TCFLAGS_HAVE_FIELD_COMPARE);
1529 : }
1530 872 : else if (typentry->typtype == TYPTYPE_COMPOSITE)
1531 : {
1532 : TupleDesc tupdesc;
1533 : int newflags;
1534 : int i;
1535 :
1536 : /* Fetch composite type's tupdesc if we don't have it already */
1537 872 : if (typentry->tupDesc == NULL)
1538 196 : load_typcache_tupdesc(typentry);
1539 872 : tupdesc = typentry->tupDesc;
1540 :
1541 : /* Must bump the refcount while we do additional catalog lookups */
1542 872 : IncrTupleDescRefCount(tupdesc);
1543 :
1544 : /* Have each property if all non-dropped fields have the property */
1545 872 : newflags = (TCFLAGS_HAVE_FIELD_EQUALITY |
1546 : TCFLAGS_HAVE_FIELD_COMPARE |
1547 : TCFLAGS_HAVE_FIELD_HASHING |
1548 : TCFLAGS_HAVE_FIELD_EXTENDED_HASHING);
1549 18194 : for (i = 0; i < tupdesc->natts; i++)
1550 : {
1551 : TypeCacheEntry *fieldentry;
1552 17986 : Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
1553 :
1554 17986 : if (attr->attisdropped)
1555 0 : continue;
1556 :
1557 17986 : fieldentry = lookup_type_cache(attr->atttypid,
1558 : TYPECACHE_EQ_OPR |
1559 : TYPECACHE_CMP_PROC |
1560 : TYPECACHE_HASH_PROC |
1561 : TYPECACHE_HASH_EXTENDED_PROC);
1562 17986 : if (!OidIsValid(fieldentry->eq_opr))
1563 664 : newflags &= ~TCFLAGS_HAVE_FIELD_EQUALITY;
1564 17986 : if (!OidIsValid(fieldentry->cmp_proc))
1565 664 : newflags &= ~TCFLAGS_HAVE_FIELD_COMPARE;
1566 17986 : if (!OidIsValid(fieldentry->hash_proc))
1567 670 : newflags &= ~TCFLAGS_HAVE_FIELD_HASHING;
1568 17986 : if (!OidIsValid(fieldentry->hash_extended_proc))
1569 670 : newflags &= ~TCFLAGS_HAVE_FIELD_EXTENDED_HASHING;
1570 :
1571 : /* We can drop out of the loop once we disprove all bits */
1572 17986 : if (newflags == 0)
1573 664 : break;
1574 : }
1575 872 : typentry->flags |= newflags;
1576 :
1577 872 : DecrTupleDescRefCount(tupdesc);
1578 : }
1579 0 : else if (typentry->typtype == TYPTYPE_DOMAIN)
1580 : {
1581 : /* If it's domain over composite, copy base type's properties */
1582 : TypeCacheEntry *baseentry;
1583 :
1584 : /* load up basetype info if we didn't already */
1585 0 : if (typentry->domainBaseType == InvalidOid)
1586 : {
1587 0 : typentry->domainBaseTypmod = -1;
1588 0 : typentry->domainBaseType =
1589 0 : getBaseTypeAndTypmod(typentry->type_id,
1590 : &typentry->domainBaseTypmod);
1591 : }
1592 0 : baseentry = lookup_type_cache(typentry->domainBaseType,
1593 : TYPECACHE_EQ_OPR |
1594 : TYPECACHE_CMP_PROC |
1595 : TYPECACHE_HASH_PROC |
1596 : TYPECACHE_HASH_EXTENDED_PROC);
1597 0 : if (baseentry->typtype == TYPTYPE_COMPOSITE)
1598 : {
1599 0 : typentry->flags |= TCFLAGS_DOMAIN_BASE_IS_COMPOSITE;
1600 0 : typentry->flags |= baseentry->flags & (TCFLAGS_HAVE_FIELD_EQUALITY |
1601 : TCFLAGS_HAVE_FIELD_COMPARE |
1602 : TCFLAGS_HAVE_FIELD_HASHING |
1603 : TCFLAGS_HAVE_FIELD_EXTENDED_HASHING);
1604 : }
1605 : }
1606 910 : typentry->flags |= TCFLAGS_CHECKED_FIELD_PROPERTIES;
1607 910 : }
1608 :
1609 : /*
1610 : * Likewise, some helper functions for range and multirange types.
1611 : *
1612 : * We can borrow the flag bits for array element properties to use for range
1613 : * element properties, since those flag bits otherwise have no use in a
1614 : * range or multirange type's typcache entry.
1615 : */
1616 :
1617 : static bool
1618 18 : range_element_has_hashing(TypeCacheEntry *typentry)
1619 : {
1620 18 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1621 18 : cache_range_element_properties(typentry);
1622 18 : return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0;
1623 : }
1624 :
1625 : static bool
1626 0 : range_element_has_extended_hashing(TypeCacheEntry *typentry)
1627 : {
1628 0 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1629 0 : cache_range_element_properties(typentry);
1630 0 : return (typentry->flags & TCFLAGS_HAVE_ELEM_EXTENDED_HASHING) != 0;
1631 : }
1632 :
1633 : static void
1634 18 : cache_range_element_properties(TypeCacheEntry *typentry)
1635 : {
1636 : /* load up subtype link if we didn't already */
1637 18 : if (typentry->rngelemtype == NULL &&
1638 0 : typentry->typtype == TYPTYPE_RANGE)
1639 0 : load_rangetype_info(typentry);
1640 :
1641 18 : if (typentry->rngelemtype != NULL)
1642 : {
1643 : TypeCacheEntry *elementry;
1644 :
1645 : /* might need to calculate subtype's hash function properties */
1646 18 : elementry = lookup_type_cache(typentry->rngelemtype->type_id,
1647 : TYPECACHE_HASH_PROC |
1648 : TYPECACHE_HASH_EXTENDED_PROC);
1649 18 : if (OidIsValid(elementry->hash_proc))
1650 12 : typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING;
1651 18 : if (OidIsValid(elementry->hash_extended_proc))
1652 12 : typentry->flags |= TCFLAGS_HAVE_ELEM_EXTENDED_HASHING;
1653 : }
1654 18 : typentry->flags |= TCFLAGS_CHECKED_ELEM_PROPERTIES;
1655 18 : }
1656 :
1657 : static bool
1658 12 : multirange_element_has_hashing(TypeCacheEntry *typentry)
1659 : {
1660 12 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1661 12 : cache_multirange_element_properties(typentry);
1662 12 : return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0;
1663 : }
1664 :
1665 : static bool
1666 0 : multirange_element_has_extended_hashing(TypeCacheEntry *typentry)
1667 : {
1668 0 : if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1669 0 : cache_multirange_element_properties(typentry);
1670 0 : return (typentry->flags & TCFLAGS_HAVE_ELEM_EXTENDED_HASHING) != 0;
1671 : }
1672 :
1673 : static void
1674 12 : cache_multirange_element_properties(TypeCacheEntry *typentry)
1675 : {
1676 : /* load up range link if we didn't already */
1677 12 : if (typentry->rngtype == NULL &&
1678 0 : typentry->typtype == TYPTYPE_MULTIRANGE)
1679 0 : load_multirangetype_info(typentry);
1680 :
1681 12 : if (typentry->rngtype != NULL && typentry->rngtype->rngelemtype != NULL)
1682 : {
1683 : TypeCacheEntry *elementry;
1684 :
1685 : /* might need to calculate subtype's hash function properties */
1686 12 : elementry = lookup_type_cache(typentry->rngtype->rngelemtype->type_id,
1687 : TYPECACHE_HASH_PROC |
1688 : TYPECACHE_HASH_EXTENDED_PROC);
1689 12 : if (OidIsValid(elementry->hash_proc))
1690 6 : typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING;
1691 12 : if (OidIsValid(elementry->hash_extended_proc))
1692 6 : typentry->flags |= TCFLAGS_HAVE_ELEM_EXTENDED_HASHING;
1693 : }
1694 12 : typentry->flags |= TCFLAGS_CHECKED_ELEM_PROPERTIES;
1695 12 : }
1696 :
1697 : /*
1698 : * Make sure that RecordCacheArray and RecordIdentifierArray are large enough
1699 : * to store 'typmod'.
1700 : */
1701 : static void
1702 31770 : ensure_record_cache_typmod_slot_exists(int32 typmod)
1703 : {
1704 31770 : if (RecordCacheArray == NULL)
1705 : {
1706 5234 : RecordCacheArray = (TupleDesc *)
1707 5234 : MemoryContextAllocZero(CacheMemoryContext, 64 * sizeof(TupleDesc));
1708 5234 : RecordIdentifierArray = (uint64 *)
1709 5234 : MemoryContextAllocZero(CacheMemoryContext, 64 * sizeof(uint64));
1710 5234 : RecordCacheArrayLen = 64;
1711 : }
1712 :
1713 31770 : if (typmod >= RecordCacheArrayLen)
1714 : {
1715 0 : int32 newlen = pg_nextpower2_32(typmod + 1);
1716 :
1717 0 : RecordCacheArray = repalloc0_array(RecordCacheArray, TupleDesc, RecordCacheArrayLen, newlen);
1718 0 : RecordIdentifierArray = repalloc0_array(RecordIdentifierArray, uint64, RecordCacheArrayLen, newlen);
1719 0 : RecordCacheArrayLen = newlen;
1720 : }
1721 31770 : }
1722 :
1723 : /*
1724 : * lookup_rowtype_tupdesc_internal --- internal routine to lookup a rowtype
1725 : *
1726 : * Same API as lookup_rowtype_tupdesc_noerror, but the returned tupdesc
1727 : * hasn't had its refcount bumped.
1728 : */
1729 : static TupleDesc
1730 156376 : lookup_rowtype_tupdesc_internal(Oid type_id, int32 typmod, bool noError)
1731 : {
1732 156376 : if (type_id != RECORDOID)
1733 : {
1734 : /*
1735 : * It's a named composite type, so use the regular typcache.
1736 : */
1737 : TypeCacheEntry *typentry;
1738 :
1739 95434 : typentry = lookup_type_cache(type_id, TYPECACHE_TUPDESC);
1740 95434 : if (typentry->tupDesc == NULL && !noError)
1741 0 : ereport(ERROR,
1742 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1743 : errmsg("type %s is not composite",
1744 : format_type_be(type_id))));
1745 95434 : return typentry->tupDesc;
1746 : }
1747 : else
1748 : {
1749 : /*
1750 : * It's a transient record type, so look in our record-type table.
1751 : */
1752 60942 : if (typmod >= 0)
1753 : {
1754 : /* It is already in our local cache? */
1755 60926 : if (typmod < RecordCacheArrayLen &&
1756 60920 : RecordCacheArray[typmod] != NULL)
1757 60896 : return RecordCacheArray[typmod];
1758 :
1759 : /* Are we attached to a shared record typmod registry? */
1760 30 : if (CurrentSession->shared_typmod_registry != NULL)
1761 : {
1762 : SharedTypmodTableEntry *entry;
1763 :
1764 : /* Try to find it in the shared typmod index. */
1765 30 : entry = dshash_find(CurrentSession->shared_typmod_table,
1766 : &typmod, false);
1767 30 : if (entry != NULL)
1768 : {
1769 : TupleDesc tupdesc;
1770 :
1771 : tupdesc = (TupleDesc)
1772 30 : dsa_get_address(CurrentSession->area,
1773 : entry->shared_tupdesc);
1774 : Assert(typmod == tupdesc->tdtypmod);
1775 :
1776 : /* We may need to extend the local RecordCacheArray. */
1777 30 : ensure_record_cache_typmod_slot_exists(typmod);
1778 :
1779 : /*
1780 : * Our local array can now point directly to the TupleDesc
1781 : * in shared memory, which is non-reference-counted.
1782 : */
1783 30 : RecordCacheArray[typmod] = tupdesc;
1784 : Assert(tupdesc->tdrefcount == -1);
1785 :
1786 : /*
1787 : * We don't share tupdesc identifiers across processes, so
1788 : * assign one locally.
1789 : */
1790 30 : RecordIdentifierArray[typmod] = ++tupledesc_id_counter;
1791 :
1792 30 : dshash_release_lock(CurrentSession->shared_typmod_table,
1793 : entry);
1794 :
1795 30 : return RecordCacheArray[typmod];
1796 : }
1797 : }
1798 : }
1799 :
1800 16 : if (!noError)
1801 0 : ereport(ERROR,
1802 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1803 : errmsg("record type has not been registered")));
1804 16 : return NULL;
1805 : }
1806 : }
1807 :
1808 : /*
1809 : * lookup_rowtype_tupdesc
1810 : *
1811 : * Given a typeid/typmod that should describe a known composite type,
1812 : * return the tuple descriptor for the type. Will ereport on failure.
1813 : * (Use ereport because this is reachable with user-specified OIDs,
1814 : * for example from record_in().)
1815 : *
1816 : * Note: on success, we increment the refcount of the returned TupleDesc,
1817 : * and log the reference in CurrentResourceOwner. Caller must call
1818 : * ReleaseTupleDesc when done using the tupdesc. (There are some
1819 : * cases in which the returned tupdesc is not refcounted, in which
1820 : * case PinTupleDesc/ReleaseTupleDesc are no-ops; but in these cases
1821 : * the tupdesc is guaranteed to live till process exit.)
1822 : */
1823 : TupleDesc
1824 70578 : lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
1825 : {
1826 : TupleDesc tupDesc;
1827 :
1828 70578 : tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, false);
1829 70578 : PinTupleDesc(tupDesc);
1830 70578 : return tupDesc;
1831 : }
1832 :
1833 : /*
1834 : * lookup_rowtype_tupdesc_noerror
1835 : *
1836 : * As above, but if the type is not a known composite type and noError
1837 : * is true, returns NULL instead of ereport'ing. (Note that if a bogus
1838 : * type_id is passed, you'll get an ereport anyway.)
1839 : */
1840 : TupleDesc
1841 20 : lookup_rowtype_tupdesc_noerror(Oid type_id, int32 typmod, bool noError)
1842 : {
1843 : TupleDesc tupDesc;
1844 :
1845 20 : tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, noError);
1846 20 : if (tupDesc != NULL)
1847 20 : PinTupleDesc(tupDesc);
1848 20 : return tupDesc;
1849 : }
1850 :
1851 : /*
1852 : * lookup_rowtype_tupdesc_copy
1853 : *
1854 : * Like lookup_rowtype_tupdesc(), but the returned TupleDesc has been
1855 : * copied into the CurrentMemoryContext and is not reference-counted.
1856 : */
1857 : TupleDesc
1858 85760 : lookup_rowtype_tupdesc_copy(Oid type_id, int32 typmod)
1859 : {
1860 : TupleDesc tmp;
1861 :
1862 85760 : tmp = lookup_rowtype_tupdesc_internal(type_id, typmod, false);
1863 85760 : return CreateTupleDescCopyConstr(tmp);
1864 : }
1865 :
1866 : /*
1867 : * lookup_rowtype_tupdesc_domain
1868 : *
1869 : * Same as lookup_rowtype_tupdesc_noerror(), except that the type can also be
1870 : * a domain over a named composite type; so this is effectively equivalent to
1871 : * lookup_rowtype_tupdesc_noerror(getBaseType(type_id), typmod, noError)
1872 : * except for being a tad faster.
1873 : *
1874 : * Note: the reason we don't fold the look-through-domain behavior into plain
1875 : * lookup_rowtype_tupdesc() is that we want callers to know they might be
1876 : * dealing with a domain. Otherwise they might construct a tuple that should
1877 : * be of the domain type, but not apply domain constraints.
1878 : */
1879 : TupleDesc
1880 2062 : lookup_rowtype_tupdesc_domain(Oid type_id, int32 typmod, bool noError)
1881 : {
1882 : TupleDesc tupDesc;
1883 :
1884 2062 : if (type_id != RECORDOID)
1885 : {
1886 : /*
1887 : * Check for domain or named composite type. We might as well load
1888 : * whichever data is needed.
1889 : */
1890 : TypeCacheEntry *typentry;
1891 :
1892 2044 : typentry = lookup_type_cache(type_id,
1893 : TYPECACHE_TUPDESC |
1894 : TYPECACHE_DOMAIN_BASE_INFO);
1895 2044 : if (typentry->typtype == TYPTYPE_DOMAIN)
1896 20 : return lookup_rowtype_tupdesc_noerror(typentry->domainBaseType,
1897 : typentry->domainBaseTypmod,
1898 : noError);
1899 2024 : if (typentry->tupDesc == NULL && !noError)
1900 0 : ereport(ERROR,
1901 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1902 : errmsg("type %s is not composite",
1903 : format_type_be(type_id))));
1904 2024 : tupDesc = typentry->tupDesc;
1905 : }
1906 : else
1907 18 : tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, noError);
1908 2042 : if (tupDesc != NULL)
1909 2026 : PinTupleDesc(tupDesc);
1910 2042 : return tupDesc;
1911 : }
1912 :
1913 : /*
1914 : * Hash function for the hash table of RecordCacheEntry.
1915 : */
1916 : static uint32
1917 546706 : record_type_typmod_hash(const void *data, size_t size)
1918 : {
1919 546706 : RecordCacheEntry *entry = (RecordCacheEntry *) data;
1920 :
1921 546706 : return hashTupleDesc(entry->tupdesc);
1922 : }
1923 :
1924 : /*
1925 : * Match function for the hash table of RecordCacheEntry.
1926 : */
1927 : static int
1928 492630 : record_type_typmod_compare(const void *a, const void *b, size_t size)
1929 : {
1930 492630 : RecordCacheEntry *left = (RecordCacheEntry *) a;
1931 492630 : RecordCacheEntry *right = (RecordCacheEntry *) b;
1932 :
1933 492630 : return equalTupleDescs(left->tupdesc, right->tupdesc) ? 0 : 1;
1934 : }
1935 :
1936 : /*
1937 : * assign_record_type_typmod
1938 : *
1939 : * Given a tuple descriptor for a RECORD type, find or create a cache entry
1940 : * for the type, and set the tupdesc's tdtypmod field to a value that will
1941 : * identify this cache entry to lookup_rowtype_tupdesc.
1942 : */
1943 : void
1944 514966 : assign_record_type_typmod(TupleDesc tupDesc)
1945 : {
1946 : RecordCacheEntry *recentry;
1947 : TupleDesc entDesc;
1948 : bool found;
1949 : MemoryContext oldcxt;
1950 :
1951 : Assert(tupDesc->tdtypeid == RECORDOID);
1952 :
1953 514966 : if (RecordCacheHash == NULL)
1954 : {
1955 : /* First time through: initialize the hash table */
1956 : HASHCTL ctl;
1957 :
1958 5234 : ctl.keysize = sizeof(TupleDesc); /* just the pointer */
1959 5234 : ctl.entrysize = sizeof(RecordCacheEntry);
1960 5234 : ctl.hash = record_type_typmod_hash;
1961 5234 : ctl.match = record_type_typmod_compare;
1962 5234 : RecordCacheHash = hash_create("Record information cache", 64,
1963 : &ctl,
1964 : HASH_ELEM | HASH_FUNCTION | HASH_COMPARE);
1965 :
1966 : /* Also make sure CacheMemoryContext exists */
1967 5234 : if (!CacheMemoryContext)
1968 0 : CreateCacheMemoryContext();
1969 : }
1970 :
1971 : /*
1972 : * Find a hashtable entry for this tuple descriptor. We don't use
1973 : * HASH_ENTER yet, because if it's missing, we need to make sure that all
1974 : * the allocations succeed before we create the new entry.
1975 : */
1976 514966 : recentry = (RecordCacheEntry *) hash_search(RecordCacheHash,
1977 : &tupDesc,
1978 : HASH_FIND, &found);
1979 514966 : if (found && recentry->tupdesc != NULL)
1980 : {
1981 483226 : tupDesc->tdtypmod = recentry->tupdesc->tdtypmod;
1982 483226 : return;
1983 : }
1984 :
1985 : /* Not present, so need to manufacture an entry */
1986 31740 : oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
1987 :
1988 : /* Look in the SharedRecordTypmodRegistry, if attached */
1989 31740 : entDesc = find_or_make_matching_shared_tupledesc(tupDesc);
1990 31740 : if (entDesc == NULL)
1991 : {
1992 : /*
1993 : * Make sure we have room before we CreateTupleDescCopy() or advance
1994 : * NextRecordTypmod.
1995 : */
1996 31684 : ensure_record_cache_typmod_slot_exists(NextRecordTypmod);
1997 :
1998 : /* Reference-counted local cache only. */
1999 31684 : entDesc = CreateTupleDescCopy(tupDesc);
2000 31684 : entDesc->tdrefcount = 1;
2001 31684 : entDesc->tdtypmod = NextRecordTypmod++;
2002 : }
2003 : else
2004 : {
2005 56 : ensure_record_cache_typmod_slot_exists(entDesc->tdtypmod);
2006 : }
2007 :
2008 31740 : RecordCacheArray[entDesc->tdtypmod] = entDesc;
2009 :
2010 : /* Assign a unique tupdesc identifier, too. */
2011 31740 : RecordIdentifierArray[entDesc->tdtypmod] = ++tupledesc_id_counter;
2012 :
2013 : /* Fully initialized; create the hash table entry */
2014 31740 : recentry = (RecordCacheEntry *) hash_search(RecordCacheHash,
2015 : &tupDesc,
2016 : HASH_ENTER, NULL);
2017 31740 : recentry->tupdesc = entDesc;
2018 :
2019 : /* Update the caller's tuple descriptor. */
2020 31740 : tupDesc->tdtypmod = entDesc->tdtypmod;
2021 :
2022 31740 : MemoryContextSwitchTo(oldcxt);
2023 : }
2024 :
2025 : /*
2026 : * assign_record_type_identifier
2027 : *
2028 : * Get an identifier, which will be unique over the lifespan of this backend
2029 : * process, for the current tuple descriptor of the specified composite type.
2030 : * For named composite types, the value is guaranteed to change if the type's
2031 : * definition does. For registered RECORD types, the value will not change
2032 : * once assigned, since the registered type won't either. If an anonymous
2033 : * RECORD type is specified, we return a new identifier on each call.
2034 : */
2035 : uint64
2036 5306 : assign_record_type_identifier(Oid type_id, int32 typmod)
2037 : {
2038 5306 : if (type_id != RECORDOID)
2039 : {
2040 : /*
2041 : * It's a named composite type, so use the regular typcache.
2042 : */
2043 : TypeCacheEntry *typentry;
2044 :
2045 0 : typentry = lookup_type_cache(type_id, TYPECACHE_TUPDESC);
2046 0 : if (typentry->tupDesc == NULL)
2047 0 : ereport(ERROR,
2048 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
2049 : errmsg("type %s is not composite",
2050 : format_type_be(type_id))));
2051 : Assert(typentry->tupDesc_identifier != 0);
2052 0 : return typentry->tupDesc_identifier;
2053 : }
2054 : else
2055 : {
2056 : /*
2057 : * It's a transient record type, so look in our record-type table.
2058 : */
2059 5306 : if (typmod >= 0 && typmod < RecordCacheArrayLen &&
2060 56 : RecordCacheArray[typmod] != NULL)
2061 : {
2062 : Assert(RecordIdentifierArray[typmod] != 0);
2063 56 : return RecordIdentifierArray[typmod];
2064 : }
2065 :
2066 : /* For anonymous or unrecognized record type, generate a new ID */
2067 5250 : return ++tupledesc_id_counter;
2068 : }
2069 : }
2070 :
2071 : /*
2072 : * Return the amount of shmem required to hold a SharedRecordTypmodRegistry.
2073 : * This exists only to avoid exposing private innards of
2074 : * SharedRecordTypmodRegistry in a header.
2075 : */
2076 : size_t
2077 108 : SharedRecordTypmodRegistryEstimate(void)
2078 : {
2079 108 : return sizeof(SharedRecordTypmodRegistry);
2080 : }
2081 :
2082 : /*
2083 : * Initialize 'registry' in a pre-existing shared memory region, which must be
2084 : * maximally aligned and have space for SharedRecordTypmodRegistryEstimate()
2085 : * bytes.
2086 : *
2087 : * 'area' will be used to allocate shared memory space as required for the
2088 : * typemod registration. The current process, expected to be a leader process
2089 : * in a parallel query, will be attached automatically and its current record
2090 : * types will be loaded into *registry. While attached, all calls to
2091 : * assign_record_type_typmod will use the shared registry. Worker backends
2092 : * will need to attach explicitly.
2093 : *
2094 : * Note that this function takes 'area' and 'segment' as arguments rather than
2095 : * accessing them via CurrentSession, because they aren't installed there
2096 : * until after this function runs.
2097 : */
2098 : void
2099 108 : SharedRecordTypmodRegistryInit(SharedRecordTypmodRegistry *registry,
2100 : dsm_segment *segment,
2101 : dsa_area *area)
2102 : {
2103 : MemoryContext old_context;
2104 : dshash_table *record_table;
2105 : dshash_table *typmod_table;
2106 : int32 typmod;
2107 :
2108 : Assert(!IsParallelWorker());
2109 :
2110 : /* We can't already be attached to a shared registry. */
2111 : Assert(CurrentSession->shared_typmod_registry == NULL);
2112 : Assert(CurrentSession->shared_record_table == NULL);
2113 : Assert(CurrentSession->shared_typmod_table == NULL);
2114 :
2115 108 : old_context = MemoryContextSwitchTo(TopMemoryContext);
2116 :
2117 : /* Create the hash table of tuple descriptors indexed by themselves. */
2118 108 : record_table = dshash_create(area, &srtr_record_table_params, area);
2119 :
2120 : /* Create the hash table of tuple descriptors indexed by typmod. */
2121 108 : typmod_table = dshash_create(area, &srtr_typmod_table_params, NULL);
2122 :
2123 108 : MemoryContextSwitchTo(old_context);
2124 :
2125 : /* Initialize the SharedRecordTypmodRegistry. */
2126 108 : registry->record_table_handle = dshash_get_hash_table_handle(record_table);
2127 108 : registry->typmod_table_handle = dshash_get_hash_table_handle(typmod_table);
2128 108 : pg_atomic_init_u32(®istry->next_typmod, NextRecordTypmod);
2129 :
2130 : /*
2131 : * Copy all entries from this backend's private registry into the shared
2132 : * registry.
2133 : */
2134 120 : for (typmod = 0; typmod < NextRecordTypmod; ++typmod)
2135 : {
2136 : SharedTypmodTableEntry *typmod_table_entry;
2137 : SharedRecordTableEntry *record_table_entry;
2138 : SharedRecordTableKey record_table_key;
2139 : dsa_pointer shared_dp;
2140 : TupleDesc tupdesc;
2141 : bool found;
2142 :
2143 12 : tupdesc = RecordCacheArray[typmod];
2144 12 : if (tupdesc == NULL)
2145 0 : continue;
2146 :
2147 : /* Copy the TupleDesc into shared memory. */
2148 12 : shared_dp = share_tupledesc(area, tupdesc, typmod);
2149 :
2150 : /* Insert into the typmod table. */
2151 12 : typmod_table_entry = dshash_find_or_insert(typmod_table,
2152 12 : &tupdesc->tdtypmod,
2153 : &found);
2154 12 : if (found)
2155 0 : elog(ERROR, "cannot create duplicate shared record typmod");
2156 12 : typmod_table_entry->typmod = tupdesc->tdtypmod;
2157 12 : typmod_table_entry->shared_tupdesc = shared_dp;
2158 12 : dshash_release_lock(typmod_table, typmod_table_entry);
2159 :
2160 : /* Insert into the record table. */
2161 12 : record_table_key.shared = false;
2162 12 : record_table_key.u.local_tupdesc = tupdesc;
2163 12 : record_table_entry = dshash_find_or_insert(record_table,
2164 : &record_table_key,
2165 : &found);
2166 12 : if (!found)
2167 : {
2168 12 : record_table_entry->key.shared = true;
2169 12 : record_table_entry->key.u.shared_tupdesc = shared_dp;
2170 : }
2171 12 : dshash_release_lock(record_table, record_table_entry);
2172 : }
2173 :
2174 : /*
2175 : * Set up the global state that will tell assign_record_type_typmod and
2176 : * lookup_rowtype_tupdesc_internal about the shared registry.
2177 : */
2178 108 : CurrentSession->shared_record_table = record_table;
2179 108 : CurrentSession->shared_typmod_table = typmod_table;
2180 108 : CurrentSession->shared_typmod_registry = registry;
2181 :
2182 : /*
2183 : * We install a detach hook in the leader, but only to handle cleanup on
2184 : * failure during GetSessionDsmHandle(). Once GetSessionDsmHandle() pins
2185 : * the memory, the leader process will use a shared registry until it
2186 : * exits.
2187 : */
2188 108 : on_dsm_detach(segment, shared_record_typmod_registry_detach, (Datum) 0);
2189 108 : }
2190 :
2191 : /*
2192 : * Attach to 'registry', which must have been initialized already by another
2193 : * backend. Future calls to assign_record_type_typmod and
2194 : * lookup_rowtype_tupdesc_internal will use the shared registry until the
2195 : * current session is detached.
2196 : */
2197 : void
2198 2604 : SharedRecordTypmodRegistryAttach(SharedRecordTypmodRegistry *registry)
2199 : {
2200 : MemoryContext old_context;
2201 : dshash_table *record_table;
2202 : dshash_table *typmod_table;
2203 :
2204 : Assert(IsParallelWorker());
2205 :
2206 : /* We can't already be attached to a shared registry. */
2207 : Assert(CurrentSession != NULL);
2208 : Assert(CurrentSession->segment != NULL);
2209 : Assert(CurrentSession->area != NULL);
2210 : Assert(CurrentSession->shared_typmod_registry == NULL);
2211 : Assert(CurrentSession->shared_record_table == NULL);
2212 : Assert(CurrentSession->shared_typmod_table == NULL);
2213 :
2214 : /*
2215 : * We can't already have typmods in our local cache, because they'd clash
2216 : * with those imported by SharedRecordTypmodRegistryInit. This should be
2217 : * a freshly started parallel worker. If we ever support worker
2218 : * recycling, a worker would need to zap its local cache in between
2219 : * servicing different queries, in order to be able to call this and
2220 : * synchronize typmods with a new leader; but that's problematic because
2221 : * we can't be very sure that record-typmod-related state hasn't escaped
2222 : * to anywhere else in the process.
2223 : */
2224 : Assert(NextRecordTypmod == 0);
2225 :
2226 2604 : old_context = MemoryContextSwitchTo(TopMemoryContext);
2227 :
2228 : /* Attach to the two hash tables. */
2229 2604 : record_table = dshash_attach(CurrentSession->area,
2230 : &srtr_record_table_params,
2231 : registry->record_table_handle,
2232 2604 : CurrentSession->area);
2233 2604 : typmod_table = dshash_attach(CurrentSession->area,
2234 : &srtr_typmod_table_params,
2235 : registry->typmod_table_handle,
2236 : NULL);
2237 :
2238 2604 : MemoryContextSwitchTo(old_context);
2239 :
2240 : /*
2241 : * Set up detach hook to run at worker exit. Currently this is the same
2242 : * as the leader's detach hook, but in future they might need to be
2243 : * different.
2244 : */
2245 2604 : on_dsm_detach(CurrentSession->segment,
2246 : shared_record_typmod_registry_detach,
2247 : PointerGetDatum(registry));
2248 :
2249 : /*
2250 : * Set up the session state that will tell assign_record_type_typmod and
2251 : * lookup_rowtype_tupdesc_internal about the shared registry.
2252 : */
2253 2604 : CurrentSession->shared_typmod_registry = registry;
2254 2604 : CurrentSession->shared_record_table = record_table;
2255 2604 : CurrentSession->shared_typmod_table = typmod_table;
2256 2604 : }
2257 :
2258 : /*
2259 : * TypeCacheRelCallback
2260 : * Relcache inval callback function
2261 : *
2262 : * Delete the cached tuple descriptor (if any) for the given rel's composite
2263 : * type, or for all composite types if relid == InvalidOid. Also reset
2264 : * whatever info we have cached about the composite type's comparability.
2265 : *
2266 : * This is called when a relcache invalidation event occurs for the given
2267 : * relid. We must scan the whole typcache hash since we don't know the
2268 : * type OID corresponding to the relid. We could do a direct search if this
2269 : * were a syscache-flush callback on pg_type, but then we would need all
2270 : * ALTER-TABLE-like commands that could modify a rowtype to issue syscache
2271 : * invals against the rel's pg_type OID. The extra SI signaling could very
2272 : * well cost more than we'd save, since in most usages there are not very
2273 : * many entries in a backend's typcache. The risk of bugs-of-omission seems
2274 : * high, too.
2275 : *
2276 : * Another possibility, with only localized impact, is to maintain a second
2277 : * hashtable that indexes composite-type typcache entries by their typrelid.
2278 : * But it's still not clear it's worth the trouble.
2279 : */
2280 : static void
2281 1970548 : TypeCacheRelCallback(Datum arg, Oid relid)
2282 : {
2283 : HASH_SEQ_STATUS status;
2284 : TypeCacheEntry *typentry;
2285 :
2286 : /* TypeCacheHash must exist, else this callback wouldn't be registered */
2287 1970548 : hash_seq_init(&status, TypeCacheHash);
2288 24197994 : while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL)
2289 : {
2290 22227446 : if (typentry->typtype == TYPTYPE_COMPOSITE)
2291 : {
2292 : /* Skip if no match, unless we're zapping all composite types */
2293 4989732 : if (relid != typentry->typrelid && relid != InvalidOid)
2294 4972912 : continue;
2295 :
2296 : /* Delete tupdesc if we have it */
2297 16820 : if (typentry->tupDesc != NULL)
2298 : {
2299 : /*
2300 : * Release our refcount, and free the tupdesc if none remain.
2301 : * (Can't use DecrTupleDescRefCount because this reference is
2302 : * not logged in current resource owner.)
2303 : */
2304 : Assert(typentry->tupDesc->tdrefcount > 0);
2305 4328 : if (--typentry->tupDesc->tdrefcount == 0)
2306 2860 : FreeTupleDesc(typentry->tupDesc);
2307 4328 : typentry->tupDesc = NULL;
2308 :
2309 : /*
2310 : * Also clear tupDesc_identifier, so that anything watching
2311 : * that will realize that the tupdesc has possibly changed.
2312 : * (Alternatively, we could specify that to detect possible
2313 : * tupdesc change, one must check for tupDesc != NULL as well
2314 : * as tupDesc_identifier being the same as what was previously
2315 : * seen. That seems error-prone.)
2316 : */
2317 4328 : typentry->tupDesc_identifier = 0;
2318 : }
2319 :
2320 : /* Reset equality/comparison/hashing validity information */
2321 16820 : typentry->flags &= ~TCFLAGS_OPERATOR_FLAGS;
2322 : }
2323 17237714 : else if (typentry->typtype == TYPTYPE_DOMAIN)
2324 : {
2325 : /*
2326 : * If it's domain over composite, reset flags. (We don't bother
2327 : * trying to determine whether the specific base type needs a
2328 : * reset.) Note that if we haven't determined whether the base
2329 : * type is composite, we don't need to reset anything.
2330 : */
2331 2004416 : if (typentry->flags & TCFLAGS_DOMAIN_BASE_IS_COMPOSITE)
2332 0 : typentry->flags &= ~TCFLAGS_OPERATOR_FLAGS;
2333 : }
2334 : }
2335 1970548 : }
2336 :
2337 : /*
2338 : * TypeCacheTypCallback
2339 : * Syscache inval callback function
2340 : *
2341 : * This is called when a syscache invalidation event occurs for any
2342 : * pg_type row. If we have information cached about that type, mark
2343 : * it as needing to be reloaded.
2344 : */
2345 : static void
2346 833130 : TypeCacheTypCallback(Datum arg, int cacheid, uint32 hashvalue)
2347 : {
2348 : HASH_SEQ_STATUS status;
2349 : TypeCacheEntry *typentry;
2350 :
2351 : /* TypeCacheHash must exist, else this callback wouldn't be registered */
2352 833130 : hash_seq_init(&status, TypeCacheHash);
2353 8848276 : while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL)
2354 : {
2355 : /* Is this the targeted type row (or it's a total cache flush)? */
2356 8015146 : if (hashvalue == 0 || typentry->type_id_hash == hashvalue)
2357 : {
2358 : /*
2359 : * Mark the data obtained directly from pg_type as invalid. Also,
2360 : * if it's a domain, typnotnull might've changed, so we'll need to
2361 : * recalculate its constraints.
2362 : */
2363 5708 : typentry->flags &= ~(TCFLAGS_HAVE_PG_TYPE_DATA |
2364 : TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS);
2365 : }
2366 : }
2367 833130 : }
2368 :
2369 : /*
2370 : * TypeCacheOpcCallback
2371 : * Syscache inval callback function
2372 : *
2373 : * This is called when a syscache invalidation event occurs for any pg_opclass
2374 : * row. In principle we could probably just invalidate data dependent on the
2375 : * particular opclass, but since updates on pg_opclass are rare in production
2376 : * it doesn't seem worth a lot of complication: we just mark all cached data
2377 : * invalid.
2378 : *
2379 : * Note that we don't bother watching for updates on pg_amop or pg_amproc.
2380 : * This should be safe because ALTER OPERATOR FAMILY ADD/DROP OPERATOR/FUNCTION
2381 : * is not allowed to be used to add/drop the primary operators and functions
2382 : * of an opclass, only cross-type members of a family; and the latter sorts
2383 : * of members are not going to get cached here.
2384 : */
2385 : static void
2386 1266 : TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue)
2387 : {
2388 : HASH_SEQ_STATUS status;
2389 : TypeCacheEntry *typentry;
2390 :
2391 : /* TypeCacheHash must exist, else this callback wouldn't be registered */
2392 1266 : hash_seq_init(&status, TypeCacheHash);
2393 7810 : while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL)
2394 : {
2395 : /* Reset equality/comparison/hashing validity information */
2396 6544 : typentry->flags &= ~TCFLAGS_OPERATOR_FLAGS;
2397 : }
2398 1266 : }
2399 :
2400 : /*
2401 : * TypeCacheConstrCallback
2402 : * Syscache inval callback function
2403 : *
2404 : * This is called when a syscache invalidation event occurs for any
2405 : * pg_constraint row. We flush information about domain constraints
2406 : * when this happens.
2407 : *
2408 : * It's slightly annoying that we can't tell whether the inval event was for
2409 : * a domain constraint record or not; there's usually more update traffic
2410 : * for table constraints than domain constraints, so we'll do a lot of
2411 : * useless flushes. Still, this is better than the old no-caching-at-all
2412 : * approach to domain constraints.
2413 : */
2414 : static void
2415 79990 : TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue)
2416 : {
2417 : TypeCacheEntry *typentry;
2418 :
2419 : /*
2420 : * Because this is called very frequently, and typically very few of the
2421 : * typcache entries are for domains, we don't use hash_seq_search here.
2422 : * Instead we thread all the domain-type entries together so that we can
2423 : * visit them cheaply.
2424 : */
2425 156630 : for (typentry = firstDomainTypeEntry;
2426 : typentry != NULL;
2427 76640 : typentry = typentry->nextDomain)
2428 : {
2429 : /* Reset domain constraint validity information */
2430 76640 : typentry->flags &= ~TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS;
2431 : }
2432 79990 : }
2433 :
2434 :
2435 : /*
2436 : * Check if given OID is part of the subset that's sortable by comparisons
2437 : */
2438 : static inline bool
2439 300114 : enum_known_sorted(TypeCacheEnumData *enumdata, Oid arg)
2440 : {
2441 : Oid offset;
2442 :
2443 300114 : if (arg < enumdata->bitmap_base)
2444 0 : return false;
2445 300114 : offset = arg - enumdata->bitmap_base;
2446 300114 : if (offset > (Oid) INT_MAX)
2447 0 : return false;
2448 300114 : return bms_is_member((int) offset, enumdata->sorted_values);
2449 : }
2450 :
2451 :
2452 : /*
2453 : * compare_values_of_enum
2454 : * Compare two members of an enum type.
2455 : * Return <0, 0, or >0 according as arg1 <, =, or > arg2.
2456 : *
2457 : * Note: currently, the enumData cache is refreshed only if we are asked
2458 : * to compare an enum value that is not already in the cache. This is okay
2459 : * because there is no support for re-ordering existing values, so comparisons
2460 : * of previously cached values will return the right answer even if other
2461 : * values have been added since we last loaded the cache.
2462 : *
2463 : * Note: the enum logic has a special-case rule about even-numbered versus
2464 : * odd-numbered OIDs, but we take no account of that rule here; this
2465 : * routine shouldn't even get called when that rule applies.
2466 : */
2467 : int
2468 150074 : compare_values_of_enum(TypeCacheEntry *tcache, Oid arg1, Oid arg2)
2469 : {
2470 : TypeCacheEnumData *enumdata;
2471 : EnumItem *item1;
2472 : EnumItem *item2;
2473 :
2474 : /*
2475 : * Equal OIDs are certainly equal --- this case was probably handled by
2476 : * our caller, but we may as well check.
2477 : */
2478 150074 : if (arg1 == arg2)
2479 0 : return 0;
2480 :
2481 : /* Load up the cache if first time through */
2482 150074 : if (tcache->enumData == NULL)
2483 8 : load_enum_cache_data(tcache);
2484 150074 : enumdata = tcache->enumData;
2485 :
2486 : /*
2487 : * If both OIDs are known-sorted, we can just compare them directly.
2488 : */
2489 300114 : if (enum_known_sorted(enumdata, arg1) &&
2490 150040 : enum_known_sorted(enumdata, arg2))
2491 : {
2492 0 : if (arg1 < arg2)
2493 0 : return -1;
2494 : else
2495 0 : return 1;
2496 : }
2497 :
2498 : /*
2499 : * Slow path: we have to identify their actual sort-order positions.
2500 : */
2501 150074 : item1 = find_enumitem(enumdata, arg1);
2502 150074 : item2 = find_enumitem(enumdata, arg2);
2503 :
2504 150074 : if (item1 == NULL || item2 == NULL)
2505 : {
2506 : /*
2507 : * We couldn't find one or both values. That means the enum has
2508 : * changed under us, so re-initialize the cache and try again. We
2509 : * don't bother retrying the known-sorted case in this path.
2510 : */
2511 0 : load_enum_cache_data(tcache);
2512 0 : enumdata = tcache->enumData;
2513 :
2514 0 : item1 = find_enumitem(enumdata, arg1);
2515 0 : item2 = find_enumitem(enumdata, arg2);
2516 :
2517 : /*
2518 : * If we still can't find the values, complain: we must have corrupt
2519 : * data.
2520 : */
2521 0 : if (item1 == NULL)
2522 0 : elog(ERROR, "enum value %u not found in cache for enum %s",
2523 : arg1, format_type_be(tcache->type_id));
2524 0 : if (item2 == NULL)
2525 0 : elog(ERROR, "enum value %u not found in cache for enum %s",
2526 : arg2, format_type_be(tcache->type_id));
2527 : }
2528 :
2529 150074 : if (item1->sort_order < item2->sort_order)
2530 50024 : return -1;
2531 100050 : else if (item1->sort_order > item2->sort_order)
2532 100050 : return 1;
2533 : else
2534 0 : return 0;
2535 : }
2536 :
2537 : /*
2538 : * Load (or re-load) the enumData member of the typcache entry.
2539 : */
2540 : static void
2541 8 : load_enum_cache_data(TypeCacheEntry *tcache)
2542 : {
2543 : TypeCacheEnumData *enumdata;
2544 : Relation enum_rel;
2545 : SysScanDesc enum_scan;
2546 : HeapTuple enum_tuple;
2547 : ScanKeyData skey;
2548 : EnumItem *items;
2549 : int numitems;
2550 : int maxitems;
2551 : Oid bitmap_base;
2552 : Bitmapset *bitmap;
2553 : MemoryContext oldcxt;
2554 : int bm_size,
2555 : start_pos;
2556 :
2557 : /* Check that this is actually an enum */
2558 8 : if (tcache->typtype != TYPTYPE_ENUM)
2559 0 : ereport(ERROR,
2560 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
2561 : errmsg("%s is not an enum",
2562 : format_type_be(tcache->type_id))));
2563 :
2564 : /*
2565 : * Read all the information for members of the enum type. We collect the
2566 : * info in working memory in the caller's context, and then transfer it to
2567 : * permanent memory in CacheMemoryContext. This minimizes the risk of
2568 : * leaking memory from CacheMemoryContext in the event of an error partway
2569 : * through.
2570 : */
2571 8 : maxitems = 64;
2572 8 : items = (EnumItem *) palloc(sizeof(EnumItem) * maxitems);
2573 8 : numitems = 0;
2574 :
2575 : /* Scan pg_enum for the members of the target enum type. */
2576 8 : ScanKeyInit(&skey,
2577 : Anum_pg_enum_enumtypid,
2578 : BTEqualStrategyNumber, F_OIDEQ,
2579 : ObjectIdGetDatum(tcache->type_id));
2580 :
2581 8 : enum_rel = table_open(EnumRelationId, AccessShareLock);
2582 8 : enum_scan = systable_beginscan(enum_rel,
2583 : EnumTypIdLabelIndexId,
2584 : true, NULL,
2585 : 1, &skey);
2586 :
2587 64 : while (HeapTupleIsValid(enum_tuple = systable_getnext(enum_scan)))
2588 : {
2589 56 : Form_pg_enum en = (Form_pg_enum) GETSTRUCT(enum_tuple);
2590 :
2591 56 : if (numitems >= maxitems)
2592 : {
2593 0 : maxitems *= 2;
2594 0 : items = (EnumItem *) repalloc(items, sizeof(EnumItem) * maxitems);
2595 : }
2596 56 : items[numitems].enum_oid = en->oid;
2597 56 : items[numitems].sort_order = en->enumsortorder;
2598 56 : numitems++;
2599 : }
2600 :
2601 8 : systable_endscan(enum_scan);
2602 8 : table_close(enum_rel, AccessShareLock);
2603 :
2604 : /* Sort the items into OID order */
2605 8 : qsort(items, numitems, sizeof(EnumItem), enum_oid_cmp);
2606 :
2607 : /*
2608 : * Here, we create a bitmap listing a subset of the enum's OIDs that are
2609 : * known to be in order and can thus be compared with just OID comparison.
2610 : *
2611 : * The point of this is that the enum's initial OIDs were certainly in
2612 : * order, so there is some subset that can be compared via OID comparison;
2613 : * and we'd rather not do binary searches unnecessarily.
2614 : *
2615 : * This is somewhat heuristic, and might identify a subset of OIDs that
2616 : * isn't exactly what the type started with. That's okay as long as the
2617 : * subset is correctly sorted.
2618 : */
2619 8 : bitmap_base = InvalidOid;
2620 8 : bitmap = NULL;
2621 8 : bm_size = 1; /* only save sets of at least 2 OIDs */
2622 :
2623 20 : for (start_pos = 0; start_pos < numitems - 1; start_pos++)
2624 : {
2625 : /*
2626 : * Identify longest sorted subsequence starting at start_pos
2627 : */
2628 20 : Bitmapset *this_bitmap = bms_make_singleton(0);
2629 20 : int this_bm_size = 1;
2630 20 : Oid start_oid = items[start_pos].enum_oid;
2631 20 : float4 prev_order = items[start_pos].sort_order;
2632 : int i;
2633 :
2634 134 : for (i = start_pos + 1; i < numitems; i++)
2635 : {
2636 : Oid offset;
2637 :
2638 114 : offset = items[i].enum_oid - start_oid;
2639 : /* quit if bitmap would be too large; cutoff is arbitrary */
2640 114 : if (offset >= 8192)
2641 0 : break;
2642 : /* include the item if it's in-order */
2643 114 : if (items[i].sort_order > prev_order)
2644 : {
2645 58 : prev_order = items[i].sort_order;
2646 58 : this_bitmap = bms_add_member(this_bitmap, (int) offset);
2647 58 : this_bm_size++;
2648 : }
2649 : }
2650 :
2651 : /* Remember it if larger than previous best */
2652 20 : if (this_bm_size > bm_size)
2653 : {
2654 8 : bms_free(bitmap);
2655 8 : bitmap_base = start_oid;
2656 8 : bitmap = this_bitmap;
2657 8 : bm_size = this_bm_size;
2658 : }
2659 : else
2660 12 : bms_free(this_bitmap);
2661 :
2662 : /*
2663 : * Done if it's not possible to find a longer sequence in the rest of
2664 : * the list. In typical cases this will happen on the first
2665 : * iteration, which is why we create the bitmaps on the fly instead of
2666 : * doing a second pass over the list.
2667 : */
2668 20 : if (bm_size >= (numitems - start_pos - 1))
2669 8 : break;
2670 : }
2671 :
2672 : /* OK, copy the data into CacheMemoryContext */
2673 8 : oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
2674 : enumdata = (TypeCacheEnumData *)
2675 8 : palloc(offsetof(TypeCacheEnumData, enum_values) +
2676 8 : numitems * sizeof(EnumItem));
2677 8 : enumdata->bitmap_base = bitmap_base;
2678 8 : enumdata->sorted_values = bms_copy(bitmap);
2679 8 : enumdata->num_values = numitems;
2680 8 : memcpy(enumdata->enum_values, items, numitems * sizeof(EnumItem));
2681 8 : MemoryContextSwitchTo(oldcxt);
2682 :
2683 8 : pfree(items);
2684 8 : bms_free(bitmap);
2685 :
2686 : /* And link the finished cache struct into the typcache */
2687 8 : if (tcache->enumData != NULL)
2688 0 : pfree(tcache->enumData);
2689 8 : tcache->enumData = enumdata;
2690 8 : }
2691 :
2692 : /*
2693 : * Locate the EnumItem with the given OID, if present
2694 : */
2695 : static EnumItem *
2696 300148 : find_enumitem(TypeCacheEnumData *enumdata, Oid arg)
2697 : {
2698 : EnumItem srch;
2699 :
2700 : /* On some versions of Solaris, bsearch of zero items dumps core */
2701 300148 : if (enumdata->num_values <= 0)
2702 0 : return NULL;
2703 :
2704 300148 : srch.enum_oid = arg;
2705 300148 : return bsearch(&srch, enumdata->enum_values, enumdata->num_values,
2706 : sizeof(EnumItem), enum_oid_cmp);
2707 : }
2708 :
2709 : /*
2710 : * qsort comparison function for OID-ordered EnumItems
2711 : */
2712 : static int
2713 600518 : enum_oid_cmp(const void *left, const void *right)
2714 : {
2715 600518 : const EnumItem *l = (const EnumItem *) left;
2716 600518 : const EnumItem *r = (const EnumItem *) right;
2717 :
2718 600518 : if (l->enum_oid < r->enum_oid)
2719 150190 : return -1;
2720 450328 : else if (l->enum_oid > r->enum_oid)
2721 150180 : return 1;
2722 : else
2723 300148 : return 0;
2724 : }
2725 :
2726 : /*
2727 : * Copy 'tupdesc' into newly allocated shared memory in 'area', set its typmod
2728 : * to the given value and return a dsa_pointer.
2729 : */
2730 : static dsa_pointer
2731 60 : share_tupledesc(dsa_area *area, TupleDesc tupdesc, uint32 typmod)
2732 : {
2733 : dsa_pointer shared_dp;
2734 : TupleDesc shared;
2735 :
2736 60 : shared_dp = dsa_allocate(area, TupleDescSize(tupdesc));
2737 60 : shared = (TupleDesc) dsa_get_address(area, shared_dp);
2738 60 : TupleDescCopy(shared, tupdesc);
2739 60 : shared->tdtypmod = typmod;
2740 :
2741 60 : return shared_dp;
2742 : }
2743 :
2744 : /*
2745 : * If we are attached to a SharedRecordTypmodRegistry, use it to find or
2746 : * create a shared TupleDesc that matches 'tupdesc'. Otherwise return NULL.
2747 : * Tuple descriptors returned by this function are not reference counted, and
2748 : * will exist at least as long as the current backend remained attached to the
2749 : * current session.
2750 : */
2751 : static TupleDesc
2752 31740 : find_or_make_matching_shared_tupledesc(TupleDesc tupdesc)
2753 : {
2754 : TupleDesc result;
2755 : SharedRecordTableKey key;
2756 : SharedRecordTableEntry *record_table_entry;
2757 : SharedTypmodTableEntry *typmod_table_entry;
2758 : dsa_pointer shared_dp;
2759 : bool found;
2760 : uint32 typmod;
2761 :
2762 : /* If not even attached, nothing to do. */
2763 31740 : if (CurrentSession->shared_typmod_registry == NULL)
2764 31684 : return NULL;
2765 :
2766 : /* Try to find a matching tuple descriptor in the record table. */
2767 56 : key.shared = false;
2768 56 : key.u.local_tupdesc = tupdesc;
2769 : record_table_entry = (SharedRecordTableEntry *)
2770 56 : dshash_find(CurrentSession->shared_record_table, &key, false);
2771 56 : if (record_table_entry)
2772 : {
2773 : Assert(record_table_entry->key.shared);
2774 8 : dshash_release_lock(CurrentSession->shared_record_table,
2775 : record_table_entry);
2776 : result = (TupleDesc)
2777 8 : dsa_get_address(CurrentSession->area,
2778 : record_table_entry->key.u.shared_tupdesc);
2779 : Assert(result->tdrefcount == -1);
2780 :
2781 8 : return result;
2782 : }
2783 :
2784 : /* Allocate a new typmod number. This will be wasted if we error out. */
2785 48 : typmod = (int)
2786 48 : pg_atomic_fetch_add_u32(&CurrentSession->shared_typmod_registry->next_typmod,
2787 : 1);
2788 :
2789 : /* Copy the TupleDesc into shared memory. */
2790 48 : shared_dp = share_tupledesc(CurrentSession->area, tupdesc, typmod);
2791 :
2792 : /*
2793 : * Create an entry in the typmod table so that others will understand this
2794 : * typmod number.
2795 : */
2796 48 : PG_TRY();
2797 : {
2798 : typmod_table_entry = (SharedTypmodTableEntry *)
2799 48 : dshash_find_or_insert(CurrentSession->shared_typmod_table,
2800 : &typmod, &found);
2801 48 : if (found)
2802 0 : elog(ERROR, "cannot create duplicate shared record typmod");
2803 : }
2804 0 : PG_CATCH();
2805 : {
2806 0 : dsa_free(CurrentSession->area, shared_dp);
2807 0 : PG_RE_THROW();
2808 : }
2809 48 : PG_END_TRY();
2810 48 : typmod_table_entry->typmod = typmod;
2811 48 : typmod_table_entry->shared_tupdesc = shared_dp;
2812 48 : dshash_release_lock(CurrentSession->shared_typmod_table,
2813 : typmod_table_entry);
2814 :
2815 : /*
2816 : * Finally create an entry in the record table so others with matching
2817 : * tuple descriptors can reuse the typmod.
2818 : */
2819 : record_table_entry = (SharedRecordTableEntry *)
2820 48 : dshash_find_or_insert(CurrentSession->shared_record_table, &key,
2821 : &found);
2822 48 : if (found)
2823 : {
2824 : /*
2825 : * Someone concurrently inserted a matching tuple descriptor since the
2826 : * first time we checked. Use that one instead.
2827 : */
2828 0 : dshash_release_lock(CurrentSession->shared_record_table,
2829 : record_table_entry);
2830 :
2831 : /* Might as well free up the space used by the one we created. */
2832 0 : found = dshash_delete_key(CurrentSession->shared_typmod_table,
2833 : &typmod);
2834 : Assert(found);
2835 0 : dsa_free(CurrentSession->area, shared_dp);
2836 :
2837 : /* Return the one we found. */
2838 : Assert(record_table_entry->key.shared);
2839 : result = (TupleDesc)
2840 0 : dsa_get_address(CurrentSession->area,
2841 : record_table_entry->key.u.shared_tupdesc);
2842 : Assert(result->tdrefcount == -1);
2843 :
2844 0 : return result;
2845 : }
2846 :
2847 : /* Store it and return it. */
2848 48 : record_table_entry->key.shared = true;
2849 48 : record_table_entry->key.u.shared_tupdesc = shared_dp;
2850 48 : dshash_release_lock(CurrentSession->shared_record_table,
2851 : record_table_entry);
2852 : result = (TupleDesc)
2853 48 : dsa_get_address(CurrentSession->area, shared_dp);
2854 : Assert(result->tdrefcount == -1);
2855 :
2856 48 : return result;
2857 : }
2858 :
2859 : /*
2860 : * On-DSM-detach hook to forget about the current shared record typmod
2861 : * infrastructure. This is currently used by both leader and workers.
2862 : */
2863 : static void
2864 2712 : shared_record_typmod_registry_detach(dsm_segment *segment, Datum datum)
2865 : {
2866 : /* Be cautious here: maybe we didn't finish initializing. */
2867 2712 : if (CurrentSession->shared_record_table != NULL)
2868 : {
2869 2712 : dshash_detach(CurrentSession->shared_record_table);
2870 2712 : CurrentSession->shared_record_table = NULL;
2871 : }
2872 2712 : if (CurrentSession->shared_typmod_table != NULL)
2873 : {
2874 2712 : dshash_detach(CurrentSession->shared_typmod_table);
2875 2712 : CurrentSession->shared_typmod_table = NULL;
2876 : }
2877 2712 : CurrentSession->shared_typmod_registry = NULL;
2878 2712 : }
|