Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * uuid.c
4 : * Functions for the built-in type "uuid".
5 : *
6 : * Copyright (c) 2007-2025, PostgreSQL Global Development Group
7 : *
8 : * IDENTIFICATION
9 : * src/backend/utils/adt/uuid.c
10 : *
11 : *-------------------------------------------------------------------------
12 : */
13 :
14 : #include "postgres.h"
15 :
16 : #include <time.h> /* for clock_gettime() */
17 :
18 : #include "common/hashfn.h"
19 : #include "lib/hyperloglog.h"
20 : #include "libpq/pqformat.h"
21 : #include "port/pg_bswap.h"
22 : #include "utils/fmgrprotos.h"
23 : #include "utils/guc.h"
24 : #include "utils/sortsupport.h"
25 : #include "utils/timestamp.h"
26 : #include "utils/uuid.h"
27 :
28 : /* helper macros */
29 : #define NS_PER_S INT64CONST(1000000000)
30 : #define NS_PER_MS INT64CONST(1000000)
31 : #define NS_PER_US INT64CONST(1000)
32 : #define US_PER_MS INT64CONST(1000)
33 :
34 : /*
35 : * UUID version 7 uses 12 bits in "rand_a" to store 1/4096 (or 2^12) fractions of
36 : * sub-millisecond. While most Unix-like platforms provide nanosecond-precision
37 : * timestamps, some systems only offer microsecond precision, limiting us to 10
38 : * bits of sub-millisecond information. For example, on macOS, real time is
39 : * truncated to microseconds. Additionally, MSVC uses the ported version of
40 : * gettimeofday() that returns microsecond precision.
41 : *
42 : * On systems with only 10 bits of sub-millisecond precision, we still use
43 : * 1/4096 parts of a millisecond, but fill lower 2 bits with random numbers
44 : * (see generate_uuidv7() for details).
45 : *
46 : * SUBMS_MINIMAL_STEP_NS defines the minimum number of nanoseconds that guarantees
47 : * an increase in the UUID's clock precision.
48 : */
49 : #if defined(__darwin__) || defined(_MSC_VER)
50 : #define SUBMS_MINIMAL_STEP_BITS 10
51 : #else
52 : #define SUBMS_MINIMAL_STEP_BITS 12
53 : #endif
54 : #define SUBMS_BITS 12
55 : #define SUBMS_MINIMAL_STEP_NS ((NS_PER_MS / (1 << SUBMS_MINIMAL_STEP_BITS)) + 1)
56 :
57 : /* sortsupport for uuid */
58 : typedef struct
59 : {
60 : int64 input_count; /* number of non-null values seen */
61 : bool estimating; /* true if estimating cardinality */
62 :
63 : hyperLogLogState abbr_card; /* cardinality estimator */
64 : } uuid_sortsupport_state;
65 :
66 : static void string_to_uuid(const char *source, pg_uuid_t *uuid, Node *escontext);
67 : static int uuid_internal_cmp(const pg_uuid_t *arg1, const pg_uuid_t *arg2);
68 : static int uuid_fast_cmp(Datum x, Datum y, SortSupport ssup);
69 : static bool uuid_abbrev_abort(int memtupcount, SortSupport ssup);
70 : static Datum uuid_abbrev_convert(Datum original, SortSupport ssup);
71 : static inline void uuid_set_version(pg_uuid_t *uuid, unsigned char version);
72 : static inline int64 get_real_time_ns_ascending();
73 : static pg_uuid_t *generate_uuidv7(uint64 unix_ts_ms, uint32 sub_ms);
74 :
75 : Datum
76 585920 : uuid_in(PG_FUNCTION_ARGS)
77 : {
78 585920 : char *uuid_str = PG_GETARG_CSTRING(0);
79 : pg_uuid_t *uuid;
80 :
81 585920 : uuid = (pg_uuid_t *) palloc(sizeof(*uuid));
82 585920 : string_to_uuid(uuid_str, uuid, fcinfo->context);
83 585884 : PG_RETURN_UUID_P(uuid);
84 : }
85 :
86 : Datum
87 4704 : uuid_out(PG_FUNCTION_ARGS)
88 : {
89 4704 : pg_uuid_t *uuid = PG_GETARG_UUID_P(0);
90 : static const char hex_chars[] = "0123456789abcdef";
91 : char *buf,
92 : *p;
93 : int i;
94 :
95 : /* counts for the four hyphens and the zero-terminator */
96 4704 : buf = palloc(2 * UUID_LEN + 5);
97 4704 : p = buf;
98 79968 : for (i = 0; i < UUID_LEN; i++)
99 : {
100 : int hi;
101 : int lo;
102 :
103 : /*
104 : * We print uuid values as a string of 8, 4, 4, 4, and then 12
105 : * hexadecimal characters, with each group is separated by a hyphen
106 : * ("-"). Therefore, add the hyphens at the appropriate places here.
107 : */
108 75264 : if (i == 4 || i == 6 || i == 8 || i == 10)
109 18816 : *p++ = '-';
110 :
111 75264 : hi = uuid->data[i] >> 4;
112 75264 : lo = uuid->data[i] & 0x0F;
113 :
114 75264 : *p++ = hex_chars[hi];
115 75264 : *p++ = hex_chars[lo];
116 : }
117 4704 : *p = '\0';
118 :
119 4704 : PG_RETURN_CSTRING(buf);
120 : }
121 :
122 : /*
123 : * We allow UUIDs as a series of 32 hexadecimal digits with an optional dash
124 : * after each group of 4 hexadecimal digits, and optionally surrounded by {}.
125 : * (The canonical format 8x-4x-4x-4x-12x, where "nx" means n hexadecimal
126 : * digits, is the only one used for output.)
127 : */
128 : static void
129 585920 : string_to_uuid(const char *source, pg_uuid_t *uuid, Node *escontext)
130 : {
131 585920 : const char *src = source;
132 585920 : bool braces = false;
133 : int i;
134 :
135 585920 : if (src[0] == '{')
136 : {
137 24 : src++;
138 24 : braces = true;
139 : }
140 :
141 9960226 : for (i = 0; i < UUID_LEN; i++)
142 : {
143 : char str_buf[3];
144 :
145 9374342 : if (src[0] == '\0' || src[1] == '\0')
146 36 : goto syntax_error;
147 9374330 : memcpy(str_buf, src, 2);
148 9374330 : if (!isxdigit((unsigned char) str_buf[0]) ||
149 9374318 : !isxdigit((unsigned char) str_buf[1]))
150 24 : goto syntax_error;
151 :
152 9374306 : str_buf[2] = '\0';
153 9374306 : uuid->data[i] = (unsigned char) strtoul(str_buf, NULL, 16);
154 9374306 : src += 2;
155 9374306 : if (src[0] == '-' && (i % 2) == 1 && i < UUID_LEN - 1)
156 1935434 : src++;
157 : }
158 :
159 585884 : if (braces)
160 : {
161 18 : if (*src != '}')
162 6 : goto syntax_error;
163 12 : src++;
164 : }
165 :
166 585878 : if (*src != '\0')
167 6 : goto syntax_error;
168 :
169 585872 : return;
170 :
171 48 : syntax_error:
172 48 : ereturn(escontext,,
173 : (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
174 : errmsg("invalid input syntax for type %s: \"%s\"",
175 : "uuid", source)));
176 : }
177 :
178 : Datum
179 0 : uuid_recv(PG_FUNCTION_ARGS)
180 : {
181 0 : StringInfo buffer = (StringInfo) PG_GETARG_POINTER(0);
182 : pg_uuid_t *uuid;
183 :
184 0 : uuid = (pg_uuid_t *) palloc(UUID_LEN);
185 0 : memcpy(uuid->data, pq_getmsgbytes(buffer, UUID_LEN), UUID_LEN);
186 0 : PG_RETURN_POINTER(uuid);
187 : }
188 :
189 : Datum
190 0 : uuid_send(PG_FUNCTION_ARGS)
191 : {
192 0 : pg_uuid_t *uuid = PG_GETARG_UUID_P(0);
193 : StringInfoData buffer;
194 :
195 0 : pq_begintypsend(&buffer);
196 0 : pq_sendbytes(&buffer, uuid->data, UUID_LEN);
197 0 : PG_RETURN_BYTEA_P(pq_endtypsend(&buffer));
198 : }
199 :
200 : /* internal uuid compare function */
201 : static int
202 41775396 : uuid_internal_cmp(const pg_uuid_t *arg1, const pg_uuid_t *arg2)
203 : {
204 41775396 : return memcmp(arg1->data, arg2->data, UUID_LEN);
205 : }
206 :
207 : Datum
208 84398 : uuid_lt(PG_FUNCTION_ARGS)
209 : {
210 84398 : pg_uuid_t *arg1 = PG_GETARG_UUID_P(0);
211 84398 : pg_uuid_t *arg2 = PG_GETARG_UUID_P(1);
212 :
213 84398 : PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) < 0);
214 : }
215 :
216 : Datum
217 17046 : uuid_le(PG_FUNCTION_ARGS)
218 : {
219 17046 : pg_uuid_t *arg1 = PG_GETARG_UUID_P(0);
220 17046 : pg_uuid_t *arg2 = PG_GETARG_UUID_P(1);
221 :
222 17046 : PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) <= 0);
223 : }
224 :
225 : Datum
226 154458 : uuid_eq(PG_FUNCTION_ARGS)
227 : {
228 154458 : pg_uuid_t *arg1 = PG_GETARG_UUID_P(0);
229 154458 : pg_uuid_t *arg2 = PG_GETARG_UUID_P(1);
230 :
231 154458 : PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) == 0);
232 : }
233 :
234 : Datum
235 12378 : uuid_ge(PG_FUNCTION_ARGS)
236 : {
237 12378 : pg_uuid_t *arg1 = PG_GETARG_UUID_P(0);
238 12378 : pg_uuid_t *arg2 = PG_GETARG_UUID_P(1);
239 :
240 12378 : PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) >= 0);
241 : }
242 :
243 : Datum
244 16290 : uuid_gt(PG_FUNCTION_ARGS)
245 : {
246 16290 : pg_uuid_t *arg1 = PG_GETARG_UUID_P(0);
247 16290 : pg_uuid_t *arg2 = PG_GETARG_UUID_P(1);
248 :
249 16290 : PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) > 0);
250 : }
251 :
252 : Datum
253 18 : uuid_ne(PG_FUNCTION_ARGS)
254 : {
255 18 : pg_uuid_t *arg1 = PG_GETARG_UUID_P(0);
256 18 : pg_uuid_t *arg2 = PG_GETARG_UUID_P(1);
257 :
258 18 : PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) != 0);
259 : }
260 :
261 : /* handler for btree index operator */
262 : Datum
263 9308 : uuid_cmp(PG_FUNCTION_ARGS)
264 : {
265 9308 : pg_uuid_t *arg1 = PG_GETARG_UUID_P(0);
266 9308 : pg_uuid_t *arg2 = PG_GETARG_UUID_P(1);
267 :
268 9308 : PG_RETURN_INT32(uuid_internal_cmp(arg1, arg2));
269 : }
270 :
271 : /*
272 : * Sort support strategy routine
273 : */
274 : Datum
275 384 : uuid_sortsupport(PG_FUNCTION_ARGS)
276 : {
277 384 : SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
278 :
279 384 : ssup->comparator = uuid_fast_cmp;
280 384 : ssup->ssup_extra = NULL;
281 :
282 384 : if (ssup->abbreviate)
283 : {
284 : uuid_sortsupport_state *uss;
285 : MemoryContext oldcontext;
286 :
287 308 : oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt);
288 :
289 308 : uss = palloc(sizeof(uuid_sortsupport_state));
290 308 : uss->input_count = 0;
291 308 : uss->estimating = true;
292 308 : initHyperLogLog(&uss->abbr_card, 10);
293 :
294 308 : ssup->ssup_extra = uss;
295 :
296 308 : ssup->comparator = ssup_datum_unsigned_cmp;
297 308 : ssup->abbrev_converter = uuid_abbrev_convert;
298 308 : ssup->abbrev_abort = uuid_abbrev_abort;
299 308 : ssup->abbrev_full_comparator = uuid_fast_cmp;
300 :
301 308 : MemoryContextSwitchTo(oldcontext);
302 : }
303 :
304 384 : PG_RETURN_VOID();
305 : }
306 :
307 : /*
308 : * SortSupport comparison func
309 : */
310 : static int
311 41481500 : uuid_fast_cmp(Datum x, Datum y, SortSupport ssup)
312 : {
313 41481500 : pg_uuid_t *arg1 = DatumGetUUIDP(x);
314 41481500 : pg_uuid_t *arg2 = DatumGetUUIDP(y);
315 :
316 41481500 : return uuid_internal_cmp(arg1, arg2);
317 : }
318 :
319 : /*
320 : * Callback for estimating effectiveness of abbreviated key optimization.
321 : *
322 : * We pay no attention to the cardinality of the non-abbreviated data, because
323 : * there is no equality fast-path within authoritative uuid comparator.
324 : */
325 : static bool
326 2322 : uuid_abbrev_abort(int memtupcount, SortSupport ssup)
327 : {
328 2322 : uuid_sortsupport_state *uss = ssup->ssup_extra;
329 : double abbr_card;
330 :
331 2322 : if (memtupcount < 10000 || uss->input_count < 10000 || !uss->estimating)
332 2130 : return false;
333 :
334 192 : abbr_card = estimateHyperLogLog(&uss->abbr_card);
335 :
336 : /*
337 : * If we have >100k distinct values, then even if we were sorting many
338 : * billion rows we'd likely still break even, and the penalty of undoing
339 : * that many rows of abbrevs would probably not be worth it. Stop even
340 : * counting at that point.
341 : */
342 192 : if (abbr_card > 100000.0)
343 : {
344 0 : if (trace_sort)
345 0 : elog(LOG,
346 : "uuid_abbrev: estimation ends at cardinality %f"
347 : " after " INT64_FORMAT " values (%d rows)",
348 : abbr_card, uss->input_count, memtupcount);
349 0 : uss->estimating = false;
350 0 : return false;
351 : }
352 :
353 : /*
354 : * Target minimum cardinality is 1 per ~2k of non-null inputs. 0.5 row
355 : * fudge factor allows us to abort earlier on genuinely pathological data
356 : * where we've had exactly one abbreviated value in the first 2k
357 : * (non-null) rows.
358 : */
359 192 : if (abbr_card < uss->input_count / 2000.0 + 0.5)
360 : {
361 96 : if (trace_sort)
362 0 : elog(LOG,
363 : "uuid_abbrev: aborting abbreviation at cardinality %f"
364 : " below threshold %f after " INT64_FORMAT " values (%d rows)",
365 : abbr_card, uss->input_count / 2000.0 + 0.5, uss->input_count,
366 : memtupcount);
367 96 : return true;
368 : }
369 :
370 96 : if (trace_sort)
371 0 : elog(LOG,
372 : "uuid_abbrev: cardinality %f after " INT64_FORMAT
373 : " values (%d rows)", abbr_card, uss->input_count, memtupcount);
374 :
375 96 : return false;
376 : }
377 :
378 : /*
379 : * Conversion routine for sortsupport. Converts original uuid representation
380 : * to abbreviated key representation. Our encoding strategy is simple -- pack
381 : * the first `sizeof(Datum)` bytes of uuid data into a Datum (on little-endian
382 : * machines, the bytes are stored in reverse order), and treat it as an
383 : * unsigned integer.
384 : */
385 : static Datum
386 3384150 : uuid_abbrev_convert(Datum original, SortSupport ssup)
387 : {
388 3384150 : uuid_sortsupport_state *uss = ssup->ssup_extra;
389 3384150 : pg_uuid_t *authoritative = DatumGetUUIDP(original);
390 : Datum res;
391 :
392 3384150 : memcpy(&res, authoritative->data, sizeof(Datum));
393 3384150 : uss->input_count += 1;
394 :
395 3384150 : if (uss->estimating)
396 : {
397 : uint32 tmp;
398 :
399 : #if SIZEOF_DATUM == 8
400 3384150 : tmp = (uint32) res ^ (uint32) ((uint64) res >> 32);
401 : #else /* SIZEOF_DATUM != 8 */
402 : tmp = (uint32) res;
403 : #endif
404 :
405 3384150 : addHyperLogLog(&uss->abbr_card, DatumGetUInt32(hash_uint32(tmp)));
406 : }
407 :
408 : /*
409 : * Byteswap on little-endian machines.
410 : *
411 : * This is needed so that ssup_datum_unsigned_cmp() (an unsigned integer
412 : * 3-way comparator) works correctly on all platforms. If we didn't do
413 : * this, the comparator would have to call memcmp() with a pair of
414 : * pointers to the first byte of each abbreviated key, which is slower.
415 : */
416 3384150 : res = DatumBigEndianToNative(res);
417 :
418 3384150 : return res;
419 : }
420 :
421 : /* hash index support */
422 : Datum
423 2422 : uuid_hash(PG_FUNCTION_ARGS)
424 : {
425 2422 : pg_uuid_t *key = PG_GETARG_UUID_P(0);
426 :
427 2422 : return hash_any(key->data, UUID_LEN);
428 : }
429 :
430 : Datum
431 60 : uuid_hash_extended(PG_FUNCTION_ARGS)
432 : {
433 60 : pg_uuid_t *key = PG_GETARG_UUID_P(0);
434 :
435 60 : return hash_any_extended(key->data, UUID_LEN, PG_GETARG_INT64(1));
436 : }
437 :
438 : /*
439 : * Set the given UUID version and the variant bits
440 : */
441 : static inline void
442 53640 : uuid_set_version(pg_uuid_t *uuid, unsigned char version)
443 : {
444 : /* set version field, top four bits */
445 53640 : uuid->data[6] = (uuid->data[6] & 0x0f) | (version << 4);
446 :
447 : /* set variant field, top two bits are 1, 0 */
448 53640 : uuid->data[8] = (uuid->data[8] & 0x3f) | 0x80;
449 53640 : }
450 :
451 : /*
452 : * Generate UUID version 4.
453 : *
454 : * All UUID bytes are filled with strong random numbers except version and
455 : * variant bits.
456 : */
457 : Datum
458 42 : gen_random_uuid(PG_FUNCTION_ARGS)
459 : {
460 42 : pg_uuid_t *uuid = palloc(UUID_LEN);
461 :
462 42 : if (!pg_strong_random(uuid, UUID_LEN))
463 0 : ereport(ERROR,
464 : (errcode(ERRCODE_INTERNAL_ERROR),
465 : errmsg("could not generate random values")));
466 :
467 : /*
468 : * Set magic numbers for a "version 4" (pseudorandom) UUID and variant,
469 : * see https://datatracker.ietf.org/doc/html/rfc9562#name-uuid-version-4
470 : */
471 42 : uuid_set_version(uuid, 4);
472 :
473 42 : PG_RETURN_UUID_P(uuid);
474 : }
475 :
476 : /*
477 : * Get the current timestamp with nanosecond precision for UUID generation.
478 : * The returned timestamp is ensured to be at least SUBMS_MINIMAL_STEP greater
479 : * than the previous returned timestamp (on this backend).
480 : */
481 : static inline int64
482 53598 : get_real_time_ns_ascending()
483 : {
484 : static int64 previous_ns = 0;
485 : int64 ns;
486 :
487 : /* Get the current real timestamp */
488 :
489 : #ifdef _MSC_VER
490 : struct timeval tmp;
491 :
492 : gettimeofday(&tmp, NULL);
493 : ns = tmp.tv_sec * NS_PER_S + tmp.tv_usec * NS_PER_US;
494 : #else
495 : struct timespec tmp;
496 :
497 : /*
498 : * We don't use gettimeofday(), instead use clock_gettime() with
499 : * CLOCK_REALTIME where available in order to get a high-precision
500 : * (nanoseconds) real timestamp.
501 : *
502 : * Note while a timestamp returned by clock_gettime() with CLOCK_REALTIME
503 : * is nanosecond-precision on most Unix-like platforms, on some platforms
504 : * such as macOS it's restricted to microsecond-precision.
505 : */
506 53598 : clock_gettime(CLOCK_REALTIME, &tmp);
507 53598 : ns = tmp.tv_sec * NS_PER_S + tmp.tv_nsec;
508 : #endif
509 :
510 : /* Guarantee the minimal step advancement of the timestamp */
511 53598 : if (previous_ns + SUBMS_MINIMAL_STEP_NS >= ns)
512 0 : ns = previous_ns + SUBMS_MINIMAL_STEP_NS;
513 53598 : previous_ns = ns;
514 :
515 53598 : return ns;
516 : }
517 :
518 : /*
519 : * Generate UUID version 7 per RFC 9562, with the given timestamp.
520 : *
521 : * UUID version 7 consists of a Unix timestamp in milliseconds (48 bits) and
522 : * 74 random bits, excluding the required version and variant bits. To ensure
523 : * monotonicity in scenarios of high-frequency UUID generation, we employ the
524 : * method "Replace Leftmost Random Bits with Increased Clock Precision (Method 3)",
525 : * described in the RFC. This method utilizes 12 bits from the "rand_a" bits
526 : * to store a 1/4096 (or 2^12) fraction of sub-millisecond precision.
527 : *
528 : * unix_ts_ms is a number of milliseconds since start of the UNIX epoch,
529 : * and sub_ms is a number of nanoseconds within millisecond. These values are
530 : * used for time-dependent bits of UUID.
531 : *
532 : * NB: all numbers here are unsigned, unix_ts_ms cannot be negative per RFC.
533 : */
534 : static pg_uuid_t *
535 53598 : generate_uuidv7(uint64 unix_ts_ms, uint32 sub_ms)
536 : {
537 53598 : pg_uuid_t *uuid = palloc(UUID_LEN);
538 : uint32 increased_clock_precision;
539 :
540 : /* Fill in time part */
541 53598 : uuid->data[0] = (unsigned char) (unix_ts_ms >> 40);
542 53598 : uuid->data[1] = (unsigned char) (unix_ts_ms >> 32);
543 53598 : uuid->data[2] = (unsigned char) (unix_ts_ms >> 24);
544 53598 : uuid->data[3] = (unsigned char) (unix_ts_ms >> 16);
545 53598 : uuid->data[4] = (unsigned char) (unix_ts_ms >> 8);
546 53598 : uuid->data[5] = (unsigned char) unix_ts_ms;
547 :
548 : /*
549 : * sub-millisecond timestamp fraction (SUBMS_BITS bits, not
550 : * SUBMS_MINIMAL_STEP_BITS)
551 : */
552 53598 : increased_clock_precision = (sub_ms * (1 << SUBMS_BITS)) / NS_PER_MS;
553 :
554 : /* Fill the increased clock precision to "rand_a" bits */
555 53598 : uuid->data[6] = (unsigned char) (increased_clock_precision >> 8);
556 53598 : uuid->data[7] = (unsigned char) (increased_clock_precision);
557 :
558 : /* fill everything after the increased clock precision with random bytes */
559 53598 : if (!pg_strong_random(&uuid->data[8], UUID_LEN - 8))
560 0 : ereport(ERROR,
561 : (errcode(ERRCODE_INTERNAL_ERROR),
562 : errmsg("could not generate random values")));
563 :
564 : #if SUBMS_MINIMAL_STEP_BITS == 10
565 :
566 : /*
567 : * On systems that have only 10 bits of sub-ms precision, 2 least
568 : * significant are dependent on other time-specific bits, and they do not
569 : * contribute to uniqueness. To make these bit random we mix in two bits
570 : * from CSPRNG. SUBMS_MINIMAL_STEP is chosen so that we still guarantee
571 : * monotonicity despite altering these bits.
572 : */
573 : uuid->data[7] = uuid->data[7] ^ (uuid->data[8] >> 6);
574 : #endif
575 :
576 : /*
577 : * Set magic numbers for a "version 7" (pseudorandom) UUID and variant,
578 : * see https://www.rfc-editor.org/rfc/rfc9562#name-version-field
579 : */
580 53598 : uuid_set_version(uuid, 7);
581 :
582 53598 : return uuid;
583 : }
584 :
585 : /*
586 : * Generate UUID version 7 with the current timestamp.
587 : */
588 : Datum
589 78 : uuidv7(PG_FUNCTION_ARGS)
590 : {
591 78 : int64 ns = get_real_time_ns_ascending();
592 78 : pg_uuid_t *uuid = generate_uuidv7(ns / NS_PER_MS, ns % NS_PER_MS);
593 :
594 78 : PG_RETURN_UUID_P(uuid);
595 : }
596 :
597 : /*
598 : * Similar to uuidv7() but with the timestamp adjusted by the given interval.
599 : */
600 : Datum
601 53520 : uuidv7_interval(PG_FUNCTION_ARGS)
602 : {
603 53520 : Interval *shift = PG_GETARG_INTERVAL_P(0);
604 : TimestampTz ts;
605 : pg_uuid_t *uuid;
606 53520 : int64 ns = get_real_time_ns_ascending();
607 : int64 us;
608 :
609 : /*
610 : * Shift the current timestamp by the given interval. To calculate time
611 : * shift correctly, we convert the UNIX epoch to TimestampTz and use
612 : * timestamptz_pl_interval(). This calculation is done with microsecond
613 : * precision.
614 : */
615 :
616 53520 : ts = (TimestampTz) (ns / NS_PER_US) -
617 : (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY * USECS_PER_SEC;
618 :
619 : /* Compute time shift */
620 53520 : ts = DatumGetTimestampTz(DirectFunctionCall2(timestamptz_pl_interval,
621 : TimestampTzGetDatum(ts),
622 : IntervalPGetDatum(shift)));
623 :
624 : /* Convert a TimestampTz value back to an UNIX epoch timestamp */
625 53520 : us = ts + (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY * USECS_PER_SEC;
626 :
627 : /* Generate an UUIDv7 */
628 53520 : uuid = generate_uuidv7(us / US_PER_MS, (us % US_PER_MS) * NS_PER_US + ns % NS_PER_US);
629 :
630 53520 : PG_RETURN_UUID_P(uuid);
631 : }
632 :
633 : /*
634 : * Start of a Gregorian epoch == date2j(1582,10,15)
635 : * We cast it to 64-bit because it's used in overflow-prone computations
636 : */
637 : #define GREGORIAN_EPOCH_JDATE INT64CONST(2299161)
638 :
639 : /*
640 : * Extract timestamp from UUID.
641 : *
642 : * Returns null if not RFC 9562 variant or not a version that has a timestamp.
643 : */
644 : Datum
645 53538 : uuid_extract_timestamp(PG_FUNCTION_ARGS)
646 : {
647 53538 : pg_uuid_t *uuid = PG_GETARG_UUID_P(0);
648 : int version;
649 : uint64 tms;
650 : TimestampTz ts;
651 :
652 : /* check if RFC 9562 variant */
653 53538 : if ((uuid->data[8] & 0xc0) != 0x80)
654 6 : PG_RETURN_NULL();
655 :
656 53532 : version = uuid->data[6] >> 4;
657 :
658 53532 : if (version == 1)
659 : {
660 6 : tms = ((uint64) uuid->data[0] << 24)
661 6 : + ((uint64) uuid->data[1] << 16)
662 6 : + ((uint64) uuid->data[2] << 8)
663 6 : + ((uint64) uuid->data[3])
664 6 : + ((uint64) uuid->data[4] << 40)
665 6 : + ((uint64) uuid->data[5] << 32)
666 6 : + (((uint64) uuid->data[6] & 0xf) << 56)
667 6 : + ((uint64) uuid->data[7] << 48);
668 :
669 : /* convert 100-ns intervals to us, then adjust */
670 6 : ts = (TimestampTz) (tms / 10) -
671 : ((uint64) POSTGRES_EPOCH_JDATE - GREGORIAN_EPOCH_JDATE) * SECS_PER_DAY * USECS_PER_SEC;
672 6 : PG_RETURN_TIMESTAMPTZ(ts);
673 : }
674 :
675 53526 : if (version == 7)
676 : {
677 53520 : tms = (uuid->data[5])
678 53520 : + (((uint64) uuid->data[4]) << 8)
679 53520 : + (((uint64) uuid->data[3]) << 16)
680 53520 : + (((uint64) uuid->data[2]) << 24)
681 53520 : + (((uint64) uuid->data[1]) << 32)
682 53520 : + (((uint64) uuid->data[0]) << 40);
683 :
684 : /* convert ms to us, then adjust */
685 53520 : ts = (TimestampTz) (tms * NS_PER_US) -
686 : (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY * USECS_PER_SEC;
687 :
688 53520 : PG_RETURN_TIMESTAMPTZ(ts);
689 : }
690 :
691 : /* not a timestamp-containing UUID version */
692 6 : PG_RETURN_NULL();
693 : }
694 :
695 : /*
696 : * Extract UUID version.
697 : *
698 : * Returns null if not RFC 9562 variant.
699 : */
700 : Datum
701 30 : uuid_extract_version(PG_FUNCTION_ARGS)
702 : {
703 30 : pg_uuid_t *uuid = PG_GETARG_UUID_P(0);
704 : uint16 version;
705 :
706 : /* check if RFC 9562 variant */
707 30 : if ((uuid->data[8] & 0xc0) != 0x80)
708 6 : PG_RETURN_NULL();
709 :
710 24 : version = uuid->data[6] >> 4;
711 :
712 24 : PG_RETURN_UINT16(version);
713 : }
|