LCOV - code coverage report
Current view: top level - src/backend/utils/adt - selfuncs.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 2058 2368 86.9 %
Date: 2024-11-21 08:14:44 Functions: 68 71 95.8 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * selfuncs.c
       4             :  *    Selectivity functions and index cost estimation functions for
       5             :  *    standard operators and index access methods.
       6             :  *
       7             :  *    Selectivity routines are registered in the pg_operator catalog
       8             :  *    in the "oprrest" and "oprjoin" attributes.
       9             :  *
      10             :  *    Index cost functions are located via the index AM's API struct,
      11             :  *    which is obtained from the handler function registered in pg_am.
      12             :  *
      13             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
      14             :  * Portions Copyright (c) 1994, Regents of the University of California
      15             :  *
      16             :  *
      17             :  * IDENTIFICATION
      18             :  *    src/backend/utils/adt/selfuncs.c
      19             :  *
      20             :  *-------------------------------------------------------------------------
      21             :  */
      22             : 
      23             : /*----------
      24             :  * Operator selectivity estimation functions are called to estimate the
      25             :  * selectivity of WHERE clauses whose top-level operator is their operator.
      26             :  * We divide the problem into two cases:
      27             :  *      Restriction clause estimation: the clause involves vars of just
      28             :  *          one relation.
      29             :  *      Join clause estimation: the clause involves vars of multiple rels.
      30             :  * Join selectivity estimation is far more difficult and usually less accurate
      31             :  * than restriction estimation.
      32             :  *
      33             :  * When dealing with the inner scan of a nestloop join, we consider the
      34             :  * join's joinclauses as restriction clauses for the inner relation, and
      35             :  * treat vars of the outer relation as parameters (a/k/a constants of unknown
      36             :  * values).  So, restriction estimators need to be able to accept an argument
      37             :  * telling which relation is to be treated as the variable.
      38             :  *
      39             :  * The call convention for a restriction estimator (oprrest function) is
      40             :  *
      41             :  *      Selectivity oprrest (PlannerInfo *root,
      42             :  *                           Oid operator,
      43             :  *                           List *args,
      44             :  *                           int varRelid);
      45             :  *
      46             :  * root: general information about the query (rtable and RelOptInfo lists
      47             :  * are particularly important for the estimator).
      48             :  * operator: OID of the specific operator in question.
      49             :  * args: argument list from the operator clause.
      50             :  * varRelid: if not zero, the relid (rtable index) of the relation to
      51             :  * be treated as the variable relation.  May be zero if the args list
      52             :  * is known to contain vars of only one relation.
      53             :  *
      54             :  * This is represented at the SQL level (in pg_proc) as
      55             :  *
      56             :  *      float8 oprrest (internal, oid, internal, int4);
      57             :  *
      58             :  * The result is a selectivity, that is, a fraction (0 to 1) of the rows
      59             :  * of the relation that are expected to produce a TRUE result for the
      60             :  * given operator.
      61             :  *
      62             :  * The call convention for a join estimator (oprjoin function) is similar
      63             :  * except that varRelid is not needed, and instead join information is
      64             :  * supplied:
      65             :  *
      66             :  *      Selectivity oprjoin (PlannerInfo *root,
      67             :  *                           Oid operator,
      68             :  *                           List *args,
      69             :  *                           JoinType jointype,
      70             :  *                           SpecialJoinInfo *sjinfo);
      71             :  *
      72             :  *      float8 oprjoin (internal, oid, internal, int2, internal);
      73             :  *
      74             :  * (Before Postgres 8.4, join estimators had only the first four of these
      75             :  * parameters.  That signature is still allowed, but deprecated.)  The
      76             :  * relationship between jointype and sjinfo is explained in the comments for
      77             :  * clause_selectivity() --- the short version is that jointype is usually
      78             :  * best ignored in favor of examining sjinfo.
      79             :  *
      80             :  * Join selectivity for regular inner and outer joins is defined as the
      81             :  * fraction (0 to 1) of the cross product of the relations that is expected
      82             :  * to produce a TRUE result for the given operator.  For both semi and anti
      83             :  * joins, however, the selectivity is defined as the fraction of the left-hand
      84             :  * side relation's rows that are expected to have a match (ie, at least one
      85             :  * row with a TRUE result) in the right-hand side.
      86             :  *
      87             :  * For both oprrest and oprjoin functions, the operator's input collation OID
      88             :  * (if any) is passed using the standard fmgr mechanism, so that the estimator
      89             :  * function can fetch it with PG_GET_COLLATION().  Note, however, that all
      90             :  * statistics in pg_statistic are currently built using the relevant column's
      91             :  * collation.
      92             :  *----------
      93             :  */
      94             : 
      95             : #include "postgres.h"
      96             : 
      97             : #include <ctype.h>
      98             : #include <math.h>
      99             : 
     100             : #include "access/brin.h"
     101             : #include "access/brin_page.h"
     102             : #include "access/gin.h"
     103             : #include "access/table.h"
     104             : #include "access/tableam.h"
     105             : #include "access/visibilitymap.h"
     106             : #include "catalog/pg_am.h"
     107             : #include "catalog/pg_collation.h"
     108             : #include "catalog/pg_operator.h"
     109             : #include "catalog/pg_statistic.h"
     110             : #include "catalog/pg_statistic_ext.h"
     111             : #include "executor/nodeAgg.h"
     112             : #include "miscadmin.h"
     113             : #include "nodes/makefuncs.h"
     114             : #include "nodes/nodeFuncs.h"
     115             : #include "optimizer/clauses.h"
     116             : #include "optimizer/cost.h"
     117             : #include "optimizer/optimizer.h"
     118             : #include "optimizer/pathnode.h"
     119             : #include "optimizer/paths.h"
     120             : #include "optimizer/plancat.h"
     121             : #include "parser/parse_clause.h"
     122             : #include "parser/parse_relation.h"
     123             : #include "parser/parsetree.h"
     124             : #include "statistics/statistics.h"
     125             : #include "storage/bufmgr.h"
     126             : #include "utils/acl.h"
     127             : #include "utils/array.h"
     128             : #include "utils/builtins.h"
     129             : #include "utils/date.h"
     130             : #include "utils/datum.h"
     131             : #include "utils/fmgroids.h"
     132             : #include "utils/index_selfuncs.h"
     133             : #include "utils/lsyscache.h"
     134             : #include "utils/memutils.h"
     135             : #include "utils/pg_locale.h"
     136             : #include "utils/rel.h"
     137             : #include "utils/selfuncs.h"
     138             : #include "utils/snapmgr.h"
     139             : #include "utils/spccache.h"
     140             : #include "utils/syscache.h"
     141             : #include "utils/timestamp.h"
     142             : #include "utils/typcache.h"
     143             : 
     144             : #define DEFAULT_PAGE_CPU_MULTIPLIER 50.0
     145             : 
     146             : /* Hooks for plugins to get control when we ask for stats */
     147             : get_relation_stats_hook_type get_relation_stats_hook = NULL;
     148             : get_index_stats_hook_type get_index_stats_hook = NULL;
     149             : 
     150             : static double eqsel_internal(PG_FUNCTION_ARGS, bool negate);
     151             : static double eqjoinsel_inner(Oid opfuncoid, Oid collation,
     152             :                               VariableStatData *vardata1, VariableStatData *vardata2,
     153             :                               double nd1, double nd2,
     154             :                               bool isdefault1, bool isdefault2,
     155             :                               AttStatsSlot *sslot1, AttStatsSlot *sslot2,
     156             :                               Form_pg_statistic stats1, Form_pg_statistic stats2,
     157             :                               bool have_mcvs1, bool have_mcvs2);
     158             : static double eqjoinsel_semi(Oid opfuncoid, Oid collation,
     159             :                              VariableStatData *vardata1, VariableStatData *vardata2,
     160             :                              double nd1, double nd2,
     161             :                              bool isdefault1, bool isdefault2,
     162             :                              AttStatsSlot *sslot1, AttStatsSlot *sslot2,
     163             :                              Form_pg_statistic stats1, Form_pg_statistic stats2,
     164             :                              bool have_mcvs1, bool have_mcvs2,
     165             :                              RelOptInfo *inner_rel);
     166             : static bool estimate_multivariate_ndistinct(PlannerInfo *root,
     167             :                                             RelOptInfo *rel, List **varinfos, double *ndistinct);
     168             : static bool convert_to_scalar(Datum value, Oid valuetypid, Oid collid,
     169             :                               double *scaledvalue,
     170             :                               Datum lobound, Datum hibound, Oid boundstypid,
     171             :                               double *scaledlobound, double *scaledhibound);
     172             : static double convert_numeric_to_scalar(Datum value, Oid typid, bool *failure);
     173             : static void convert_string_to_scalar(char *value,
     174             :                                      double *scaledvalue,
     175             :                                      char *lobound,
     176             :                                      double *scaledlobound,
     177             :                                      char *hibound,
     178             :                                      double *scaledhibound);
     179             : static void convert_bytea_to_scalar(Datum value,
     180             :                                     double *scaledvalue,
     181             :                                     Datum lobound,
     182             :                                     double *scaledlobound,
     183             :                                     Datum hibound,
     184             :                                     double *scaledhibound);
     185             : static double convert_one_string_to_scalar(char *value,
     186             :                                            int rangelo, int rangehi);
     187             : static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
     188             :                                           int rangelo, int rangehi);
     189             : static char *convert_string_datum(Datum value, Oid typid, Oid collid,
     190             :                                   bool *failure);
     191             : static double convert_timevalue_to_scalar(Datum value, Oid typid,
     192             :                                           bool *failure);
     193             : static void examine_simple_variable(PlannerInfo *root, Var *var,
     194             :                                     VariableStatData *vardata);
     195             : static bool get_variable_range(PlannerInfo *root, VariableStatData *vardata,
     196             :                                Oid sortop, Oid collation,
     197             :                                Datum *min, Datum *max);
     198             : static void get_stats_slot_range(AttStatsSlot *sslot,
     199             :                                  Oid opfuncoid, FmgrInfo *opproc,
     200             :                                  Oid collation, int16 typLen, bool typByVal,
     201             :                                  Datum *min, Datum *max, bool *p_have_data);
     202             : static bool get_actual_variable_range(PlannerInfo *root,
     203             :                                       VariableStatData *vardata,
     204             :                                       Oid sortop, Oid collation,
     205             :                                       Datum *min, Datum *max);
     206             : static bool get_actual_variable_endpoint(Relation heapRel,
     207             :                                          Relation indexRel,
     208             :                                          ScanDirection indexscandir,
     209             :                                          ScanKey scankeys,
     210             :                                          int16 typLen,
     211             :                                          bool typByVal,
     212             :                                          TupleTableSlot *tableslot,
     213             :                                          MemoryContext outercontext,
     214             :                                          Datum *endpointDatum);
     215             : static RelOptInfo *find_join_input_rel(PlannerInfo *root, Relids relids);
     216             : 
     217             : 
     218             : /*
     219             :  *      eqsel           - Selectivity of "=" for any data types.
     220             :  *
     221             :  * Note: this routine is also used to estimate selectivity for some
     222             :  * operators that are not "=" but have comparable selectivity behavior,
     223             :  * such as "~=" (geometric approximate-match).  Even for "=", we must
     224             :  * keep in mind that the left and right datatypes may differ.
     225             :  */
     226             : Datum
     227      560514 : eqsel(PG_FUNCTION_ARGS)
     228             : {
     229      560514 :     PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, false));
     230             : }
     231             : 
     232             : /*
     233             :  * Common code for eqsel() and neqsel()
     234             :  */
     235             : static double
     236      607520 : eqsel_internal(PG_FUNCTION_ARGS, bool negate)
     237             : {
     238      607520 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
     239      607520 :     Oid         operator = PG_GETARG_OID(1);
     240      607520 :     List       *args = (List *) PG_GETARG_POINTER(2);
     241      607520 :     int         varRelid = PG_GETARG_INT32(3);
     242      607520 :     Oid         collation = PG_GET_COLLATION();
     243             :     VariableStatData vardata;
     244             :     Node       *other;
     245             :     bool        varonleft;
     246             :     double      selec;
     247             : 
     248             :     /*
     249             :      * When asked about <>, we do the estimation using the corresponding =
     250             :      * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac".
     251             :      */
     252      607520 :     if (negate)
     253             :     {
     254       47006 :         operator = get_negator(operator);
     255       47006 :         if (!OidIsValid(operator))
     256             :         {
     257             :             /* Use default selectivity (should we raise an error instead?) */
     258           0 :             return 1.0 - DEFAULT_EQ_SEL;
     259             :         }
     260             :     }
     261             : 
     262             :     /*
     263             :      * If expression is not variable = something or something = variable, then
     264             :      * punt and return a default estimate.
     265             :      */
     266      607520 :     if (!get_restriction_variable(root, args, varRelid,
     267             :                                   &vardata, &other, &varonleft))
     268        3852 :         return negate ? (1.0 - DEFAULT_EQ_SEL) : DEFAULT_EQ_SEL;
     269             : 
     270             :     /*
     271             :      * We can do a lot better if the something is a constant.  (Note: the
     272             :      * Const might result from estimation rather than being a simple constant
     273             :      * in the query.)
     274             :      */
     275      603668 :     if (IsA(other, Const))
     276      268140 :         selec = var_eq_const(&vardata, operator, collation,
     277      268140 :                              ((Const *) other)->constvalue,
     278      268140 :                              ((Const *) other)->constisnull,
     279             :                              varonleft, negate);
     280             :     else
     281      335528 :         selec = var_eq_non_const(&vardata, operator, collation, other,
     282             :                                  varonleft, negate);
     283             : 
     284      603668 :     ReleaseVariableStats(vardata);
     285             : 
     286      603668 :     return selec;
     287             : }
     288             : 
     289             : /*
     290             :  * var_eq_const --- eqsel for var = const case
     291             :  *
     292             :  * This is exported so that some other estimation functions can use it.
     293             :  */
     294             : double
     295      310626 : var_eq_const(VariableStatData *vardata, Oid oproid, Oid collation,
     296             :              Datum constval, bool constisnull,
     297             :              bool varonleft, bool negate)
     298             : {
     299             :     double      selec;
     300      310626 :     double      nullfrac = 0.0;
     301             :     bool        isdefault;
     302             :     Oid         opfuncoid;
     303             : 
     304             :     /*
     305             :      * If the constant is NULL, assume operator is strict and return zero, ie,
     306             :      * operator will never return TRUE.  (It's zero even for a negator op.)
     307             :      */
     308      310626 :     if (constisnull)
     309         328 :         return 0.0;
     310             : 
     311             :     /*
     312             :      * Grab the nullfrac for use below.  Note we allow use of nullfrac
     313             :      * regardless of security check.
     314             :      */
     315      310298 :     if (HeapTupleIsValid(vardata->statsTuple))
     316             :     {
     317             :         Form_pg_statistic stats;
     318             : 
     319      225912 :         stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
     320      225912 :         nullfrac = stats->stanullfrac;
     321             :     }
     322             : 
     323             :     /*
     324             :      * If we matched the var to a unique index or DISTINCT clause, assume
     325             :      * there is exactly one match regardless of anything else.  (This is
     326             :      * slightly bogus, since the index or clause's equality operator might be
     327             :      * different from ours, but it's much more likely to be right than
     328             :      * ignoring the information.)
     329             :      */
     330      310298 :     if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
     331             :     {
     332       78434 :         selec = 1.0 / vardata->rel->tuples;
     333             :     }
     334      395890 :     else if (HeapTupleIsValid(vardata->statsTuple) &&
     335      164026 :              statistic_proc_security_check(vardata,
     336      164026 :                                            (opfuncoid = get_opcode(oproid))))
     337      164026 :     {
     338             :         AttStatsSlot sslot;
     339      164026 :         bool        match = false;
     340             :         int         i;
     341             : 
     342             :         /*
     343             :          * Is the constant "=" to any of the column's most common values?
     344             :          * (Although the given operator may not really be "=", we will assume
     345             :          * that seeing whether it returns TRUE is an appropriate test.  If you
     346             :          * don't like this, maybe you shouldn't be using eqsel for your
     347             :          * operator...)
     348             :          */
     349      164026 :         if (get_attstatsslot(&sslot, vardata->statsTuple,
     350             :                              STATISTIC_KIND_MCV, InvalidOid,
     351             :                              ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
     352             :         {
     353      146654 :             LOCAL_FCINFO(fcinfo, 2);
     354             :             FmgrInfo    eqproc;
     355             : 
     356      146654 :             fmgr_info(opfuncoid, &eqproc);
     357             : 
     358             :             /*
     359             :              * Save a few cycles by setting up the fcinfo struct just once.
     360             :              * Using FunctionCallInvoke directly also avoids failure if the
     361             :              * eqproc returns NULL, though really equality functions should
     362             :              * never do that.
     363             :              */
     364      146654 :             InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
     365             :                                      NULL, NULL);
     366      146654 :             fcinfo->args[0].isnull = false;
     367      146654 :             fcinfo->args[1].isnull = false;
     368             :             /* be careful to apply operator right way 'round */
     369      146654 :             if (varonleft)
     370      146622 :                 fcinfo->args[1].value = constval;
     371             :             else
     372          32 :                 fcinfo->args[0].value = constval;
     373             : 
     374     2394666 :             for (i = 0; i < sslot.nvalues; i++)
     375             :             {
     376             :                 Datum       fresult;
     377             : 
     378     2316256 :                 if (varonleft)
     379     2316200 :                     fcinfo->args[0].value = sslot.values[i];
     380             :                 else
     381          56 :                     fcinfo->args[1].value = sslot.values[i];
     382     2316256 :                 fcinfo->isnull = false;
     383     2316256 :                 fresult = FunctionCallInvoke(fcinfo);
     384     2316256 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
     385             :                 {
     386       68244 :                     match = true;
     387       68244 :                     break;
     388             :                 }
     389             :             }
     390             :         }
     391             :         else
     392             :         {
     393             :             /* no most-common-value info available */
     394       17372 :             i = 0;              /* keep compiler quiet */
     395             :         }
     396             : 
     397      164026 :         if (match)
     398             :         {
     399             :             /*
     400             :              * Constant is "=" to this common value.  We know selectivity
     401             :              * exactly (or as exactly as ANALYZE could calculate it, anyway).
     402             :              */
     403       68244 :             selec = sslot.numbers[i];
     404             :         }
     405             :         else
     406             :         {
     407             :             /*
     408             :              * Comparison is against a constant that is neither NULL nor any
     409             :              * of the common values.  Its selectivity cannot be more than
     410             :              * this:
     411             :              */
     412       95782 :             double      sumcommon = 0.0;
     413             :             double      otherdistinct;
     414             : 
     415     2141962 :             for (i = 0; i < sslot.nnumbers; i++)
     416     2046180 :                 sumcommon += sslot.numbers[i];
     417       95782 :             selec = 1.0 - sumcommon - nullfrac;
     418       95782 :             CLAMP_PROBABILITY(selec);
     419             : 
     420             :             /*
     421             :              * and in fact it's probably a good deal less. We approximate that
     422             :              * all the not-common values share this remaining fraction
     423             :              * equally, so we divide by the number of other distinct values.
     424             :              */
     425       95782 :             otherdistinct = get_variable_numdistinct(vardata, &isdefault) -
     426       95782 :                 sslot.nnumbers;
     427       95782 :             if (otherdistinct > 1)
     428       42056 :                 selec /= otherdistinct;
     429             : 
     430             :             /*
     431             :              * Another cross-check: selectivity shouldn't be estimated as more
     432             :              * than the least common "most common value".
     433             :              */
     434       95782 :             if (sslot.nnumbers > 0 && selec > sslot.numbers[sslot.nnumbers - 1])
     435           0 :                 selec = sslot.numbers[sslot.nnumbers - 1];
     436             :         }
     437             : 
     438      164026 :         free_attstatsslot(&sslot);
     439             :     }
     440             :     else
     441             :     {
     442             :         /*
     443             :          * No ANALYZE stats available, so make a guess using estimated number
     444             :          * of distinct values and assuming they are equally common. (The guess
     445             :          * is unlikely to be very good, but we do know a few special cases.)
     446             :          */
     447       67838 :         selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
     448             :     }
     449             : 
     450             :     /* now adjust if we wanted <> rather than = */
     451      310298 :     if (negate)
     452       39396 :         selec = 1.0 - selec - nullfrac;
     453             : 
     454             :     /* result should be in range, but make sure... */
     455      310298 :     CLAMP_PROBABILITY(selec);
     456             : 
     457      310298 :     return selec;
     458             : }
     459             : 
     460             : /*
     461             :  * var_eq_non_const --- eqsel for var = something-other-than-const case
     462             :  *
     463             :  * This is exported so that some other estimation functions can use it.
     464             :  */
     465             : double
     466      335528 : var_eq_non_const(VariableStatData *vardata, Oid oproid, Oid collation,
     467             :                  Node *other,
     468             :                  bool varonleft, bool negate)
     469             : {
     470             :     double      selec;
     471      335528 :     double      nullfrac = 0.0;
     472             :     bool        isdefault;
     473             : 
     474             :     /*
     475             :      * Grab the nullfrac for use below.
     476             :      */
     477      335528 :     if (HeapTupleIsValid(vardata->statsTuple))
     478             :     {
     479             :         Form_pg_statistic stats;
     480             : 
     481      237414 :         stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
     482      237414 :         nullfrac = stats->stanullfrac;
     483             :     }
     484             : 
     485             :     /*
     486             :      * If we matched the var to a unique index or DISTINCT clause, assume
     487             :      * there is exactly one match regardless of anything else.  (This is
     488             :      * slightly bogus, since the index or clause's equality operator might be
     489             :      * different from ours, but it's much more likely to be right than
     490             :      * ignoring the information.)
     491             :      */
     492      335528 :     if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
     493             :     {
     494      136350 :         selec = 1.0 / vardata->rel->tuples;
     495             :     }
     496      199178 :     else if (HeapTupleIsValid(vardata->statsTuple))
     497             :     {
     498             :         double      ndistinct;
     499             :         AttStatsSlot sslot;
     500             : 
     501             :         /*
     502             :          * Search is for a value that we do not know a priori, but we will
     503             :          * assume it is not NULL.  Estimate the selectivity as non-null
     504             :          * fraction divided by number of distinct values, so that we get a
     505             :          * result averaged over all possible values whether common or
     506             :          * uncommon.  (Essentially, we are assuming that the not-yet-known
     507             :          * comparison value is equally likely to be any of the possible
     508             :          * values, regardless of their frequency in the table.  Is that a good
     509             :          * idea?)
     510             :          */
     511      115274 :         selec = 1.0 - nullfrac;
     512      115274 :         ndistinct = get_variable_numdistinct(vardata, &isdefault);
     513      115274 :         if (ndistinct > 1)
     514      110526 :             selec /= ndistinct;
     515             : 
     516             :         /*
     517             :          * Cross-check: selectivity should never be estimated as more than the
     518             :          * most common value's.
     519             :          */
     520      115274 :         if (get_attstatsslot(&sslot, vardata->statsTuple,
     521             :                              STATISTIC_KIND_MCV, InvalidOid,
     522             :                              ATTSTATSSLOT_NUMBERS))
     523             :         {
     524       96570 :             if (sslot.nnumbers > 0 && selec > sslot.numbers[0])
     525         648 :                 selec = sslot.numbers[0];
     526       96570 :             free_attstatsslot(&sslot);
     527             :         }
     528             :     }
     529             :     else
     530             :     {
     531             :         /*
     532             :          * No ANALYZE stats available, so make a guess using estimated number
     533             :          * of distinct values and assuming they are equally common. (The guess
     534             :          * is unlikely to be very good, but we do know a few special cases.)
     535             :          */
     536       83904 :         selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
     537             :     }
     538             : 
     539             :     /* now adjust if we wanted <> rather than = */
     540      335528 :     if (negate)
     541        5806 :         selec = 1.0 - selec - nullfrac;
     542             : 
     543             :     /* result should be in range, but make sure... */
     544      335528 :     CLAMP_PROBABILITY(selec);
     545             : 
     546      335528 :     return selec;
     547             : }
     548             : 
     549             : /*
     550             :  *      neqsel          - Selectivity of "!=" for any data types.
     551             :  *
     552             :  * This routine is also used for some operators that are not "!="
     553             :  * but have comparable selectivity behavior.  See above comments
     554             :  * for eqsel().
     555             :  */
     556             : Datum
     557       47006 : neqsel(PG_FUNCTION_ARGS)
     558             : {
     559       47006 :     PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, true));
     560             : }
     561             : 
     562             : /*
     563             :  *  scalarineqsel       - Selectivity of "<", "<=", ">", ">=" for scalars.
     564             :  *
     565             :  * This is the guts of scalarltsel/scalarlesel/scalargtsel/scalargesel.
     566             :  * The isgt and iseq flags distinguish which of the four cases apply.
     567             :  *
     568             :  * The caller has commuted the clause, if necessary, so that we can treat
     569             :  * the variable as being on the left.  The caller must also make sure that
     570             :  * the other side of the clause is a non-null Const, and dissect that into
     571             :  * a value and datatype.  (This definition simplifies some callers that
     572             :  * want to estimate against a computed value instead of a Const node.)
     573             :  *
     574             :  * This routine works for any datatype (or pair of datatypes) known to
     575             :  * convert_to_scalar().  If it is applied to some other datatype,
     576             :  * it will return an approximate estimate based on assuming that the constant
     577             :  * value falls in the middle of the bin identified by binary search.
     578             :  */
     579             : static double
     580      273686 : scalarineqsel(PlannerInfo *root, Oid operator, bool isgt, bool iseq,
     581             :               Oid collation,
     582             :               VariableStatData *vardata, Datum constval, Oid consttype)
     583             : {
     584             :     Form_pg_statistic stats;
     585             :     FmgrInfo    opproc;
     586             :     double      mcv_selec,
     587             :                 hist_selec,
     588             :                 sumcommon;
     589             :     double      selec;
     590             : 
     591      273686 :     if (!HeapTupleIsValid(vardata->statsTuple))
     592             :     {
     593             :         /*
     594             :          * No stats are available.  Typically this means we have to fall back
     595             :          * on the default estimate; but if the variable is CTID then we can
     596             :          * make an estimate based on comparing the constant to the table size.
     597             :          */
     598       19414 :         if (vardata->var && IsA(vardata->var, Var) &&
     599       15086 :             ((Var *) vardata->var)->varattno == SelfItemPointerAttributeNumber)
     600             :         {
     601             :             ItemPointer itemptr;
     602             :             double      block;
     603             :             double      density;
     604             : 
     605             :             /*
     606             :              * If the relation's empty, we're going to include all of it.
     607             :              * (This is mostly to avoid divide-by-zero below.)
     608             :              */
     609         214 :             if (vardata->rel->pages == 0)
     610           0 :                 return 1.0;
     611             : 
     612         214 :             itemptr = (ItemPointer) DatumGetPointer(constval);
     613         214 :             block = ItemPointerGetBlockNumberNoCheck(itemptr);
     614             : 
     615             :             /*
     616             :              * Determine the average number of tuples per page (density).
     617             :              *
     618             :              * Since the last page will, on average, be only half full, we can
     619             :              * estimate it to have half as many tuples as earlier pages.  So
     620             :              * give it half the weight of a regular page.
     621             :              */
     622         214 :             density = vardata->rel->tuples / (vardata->rel->pages - 0.5);
     623             : 
     624             :             /* If target is the last page, use half the density. */
     625         214 :             if (block >= vardata->rel->pages - 1)
     626          30 :                 density *= 0.5;
     627             : 
     628             :             /*
     629             :              * Using the average tuples per page, calculate how far into the
     630             :              * page the itemptr is likely to be and adjust block accordingly,
     631             :              * by adding that fraction of a whole block (but never more than a
     632             :              * whole block, no matter how high the itemptr's offset is).  Here
     633             :              * we are ignoring the possibility of dead-tuple line pointers,
     634             :              * which is fairly bogus, but we lack the info to do better.
     635             :              */
     636         214 :             if (density > 0.0)
     637             :             {
     638         214 :                 OffsetNumber offset = ItemPointerGetOffsetNumberNoCheck(itemptr);
     639             : 
     640         214 :                 block += Min(offset / density, 1.0);
     641             :             }
     642             : 
     643             :             /*
     644             :              * Convert relative block number to selectivity.  Again, the last
     645             :              * page has only half weight.
     646             :              */
     647         214 :             selec = block / (vardata->rel->pages - 0.5);
     648             : 
     649             :             /*
     650             :              * The calculation so far gave us a selectivity for the "<=" case.
     651             :              * We'll have one fewer tuple for "<" and one additional tuple for
     652             :              * ">=", the latter of which we'll reverse the selectivity for
     653             :              * below, so we can simply subtract one tuple for both cases.  The
     654             :              * cases that need this adjustment can be identified by iseq being
     655             :              * equal to isgt.
     656             :              */
     657         214 :             if (iseq == isgt && vardata->rel->tuples >= 1.0)
     658         102 :                 selec -= (1.0 / vardata->rel->tuples);
     659             : 
     660             :             /* Finally, reverse the selectivity for the ">", ">=" cases. */
     661         214 :             if (isgt)
     662         100 :                 selec = 1.0 - selec;
     663             : 
     664         214 :             CLAMP_PROBABILITY(selec);
     665         214 :             return selec;
     666             :         }
     667             : 
     668             :         /* no stats available, so default result */
     669       19200 :         return DEFAULT_INEQ_SEL;
     670             :     }
     671      254272 :     stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
     672             : 
     673      254272 :     fmgr_info(get_opcode(operator), &opproc);
     674             : 
     675             :     /*
     676             :      * If we have most-common-values info, add up the fractions of the MCV
     677             :      * entries that satisfy MCV OP CONST.  These fractions contribute directly
     678             :      * to the result selectivity.  Also add up the total fraction represented
     679             :      * by MCV entries.
     680             :      */
     681      254272 :     mcv_selec = mcv_selectivity(vardata, &opproc, collation, constval, true,
     682             :                                 &sumcommon);
     683             : 
     684             :     /*
     685             :      * If there is a histogram, determine which bin the constant falls in, and
     686             :      * compute the resulting contribution to selectivity.
     687             :      */
     688      254272 :     hist_selec = ineq_histogram_selectivity(root, vardata,
     689             :                                             operator, &opproc, isgt, iseq,
     690             :                                             collation,
     691             :                                             constval, consttype);
     692             : 
     693             :     /*
     694             :      * Now merge the results from the MCV and histogram calculations,
     695             :      * realizing that the histogram covers only the non-null values that are
     696             :      * not listed in MCV.
     697             :      */
     698      254272 :     selec = 1.0 - stats->stanullfrac - sumcommon;
     699             : 
     700      254272 :     if (hist_selec >= 0.0)
     701      185268 :         selec *= hist_selec;
     702             :     else
     703             :     {
     704             :         /*
     705             :          * If no histogram but there are values not accounted for by MCV,
     706             :          * arbitrarily assume half of them will match.
     707             :          */
     708       69004 :         selec *= 0.5;
     709             :     }
     710             : 
     711      254272 :     selec += mcv_selec;
     712             : 
     713             :     /* result should be in range, but make sure... */
     714      254272 :     CLAMP_PROBABILITY(selec);
     715             : 
     716      254272 :     return selec;
     717             : }
     718             : 
     719             : /*
     720             :  *  mcv_selectivity         - Examine the MCV list for selectivity estimates
     721             :  *
     722             :  * Determine the fraction of the variable's MCV population that satisfies
     723             :  * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.  Also
     724             :  * compute the fraction of the total column population represented by the MCV
     725             :  * list.  This code will work for any boolean-returning predicate operator.
     726             :  *
     727             :  * The function result is the MCV selectivity, and the fraction of the
     728             :  * total population is returned into *sumcommonp.  Zeroes are returned
     729             :  * if there is no MCV list.
     730             :  */
     731             : double
     732      259328 : mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc, Oid collation,
     733             :                 Datum constval, bool varonleft,
     734             :                 double *sumcommonp)
     735             : {
     736             :     double      mcv_selec,
     737             :                 sumcommon;
     738             :     AttStatsSlot sslot;
     739             :     int         i;
     740             : 
     741      259328 :     mcv_selec = 0.0;
     742      259328 :     sumcommon = 0.0;
     743             : 
     744      516312 :     if (HeapTupleIsValid(vardata->statsTuple) &&
     745      513926 :         statistic_proc_security_check(vardata, opproc->fn_oid) &&
     746      256942 :         get_attstatsslot(&sslot, vardata->statsTuple,
     747             :                          STATISTIC_KIND_MCV, InvalidOid,
     748             :                          ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
     749             :     {
     750      120034 :         LOCAL_FCINFO(fcinfo, 2);
     751             : 
     752             :         /*
     753             :          * We invoke the opproc "by hand" so that we won't fail on NULL
     754             :          * results.  Such cases won't arise for normal comparison functions,
     755             :          * but generic_restriction_selectivity could perhaps be used with
     756             :          * operators that can return NULL.  A small side benefit is to not
     757             :          * need to re-initialize the fcinfo struct from scratch each time.
     758             :          */
     759      120034 :         InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
     760             :                                  NULL, NULL);
     761      120034 :         fcinfo->args[0].isnull = false;
     762      120034 :         fcinfo->args[1].isnull = false;
     763             :         /* be careful to apply operator right way 'round */
     764      120034 :         if (varonleft)
     765      120034 :             fcinfo->args[1].value = constval;
     766             :         else
     767           0 :             fcinfo->args[0].value = constval;
     768             : 
     769     3471378 :         for (i = 0; i < sslot.nvalues; i++)
     770             :         {
     771             :             Datum       fresult;
     772             : 
     773     3351344 :             if (varonleft)
     774     3351344 :                 fcinfo->args[0].value = sslot.values[i];
     775             :             else
     776           0 :                 fcinfo->args[1].value = sslot.values[i];
     777     3351344 :             fcinfo->isnull = false;
     778     3351344 :             fresult = FunctionCallInvoke(fcinfo);
     779     3351344 :             if (!fcinfo->isnull && DatumGetBool(fresult))
     780     1164578 :                 mcv_selec += sslot.numbers[i];
     781     3351344 :             sumcommon += sslot.numbers[i];
     782             :         }
     783      120034 :         free_attstatsslot(&sslot);
     784             :     }
     785             : 
     786      259328 :     *sumcommonp = sumcommon;
     787      259328 :     return mcv_selec;
     788             : }
     789             : 
     790             : /*
     791             :  *  histogram_selectivity   - Examine the histogram for selectivity estimates
     792             :  *
     793             :  * Determine the fraction of the variable's histogram entries that satisfy
     794             :  * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.
     795             :  *
     796             :  * This code will work for any boolean-returning predicate operator, whether
     797             :  * or not it has anything to do with the histogram sort operator.  We are
     798             :  * essentially using the histogram just as a representative sample.  However,
     799             :  * small histograms are unlikely to be all that representative, so the caller
     800             :  * should be prepared to fall back on some other estimation approach when the
     801             :  * histogram is missing or very small.  It may also be prudent to combine this
     802             :  * approach with another one when the histogram is small.
     803             :  *
     804             :  * If the actual histogram size is not at least min_hist_size, we won't bother
     805             :  * to do the calculation at all.  Also, if the n_skip parameter is > 0, we
     806             :  * ignore the first and last n_skip histogram elements, on the grounds that
     807             :  * they are outliers and hence not very representative.  Typical values for
     808             :  * these parameters are 10 and 1.
     809             :  *
     810             :  * The function result is the selectivity, or -1 if there is no histogram
     811             :  * or it's smaller than min_hist_size.
     812             :  *
     813             :  * The output parameter *hist_size receives the actual histogram size,
     814             :  * or zero if no histogram.  Callers may use this number to decide how
     815             :  * much faith to put in the function result.
     816             :  *
     817             :  * Note that the result disregards both the most-common-values (if any) and
     818             :  * null entries.  The caller is expected to combine this result with
     819             :  * statistics for those portions of the column population.  It may also be
     820             :  * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs.
     821             :  */
     822             : double
     823        5056 : histogram_selectivity(VariableStatData *vardata,
     824             :                       FmgrInfo *opproc, Oid collation,
     825             :                       Datum constval, bool varonleft,
     826             :                       int min_hist_size, int n_skip,
     827             :                       int *hist_size)
     828             : {
     829             :     double      result;
     830             :     AttStatsSlot sslot;
     831             : 
     832             :     /* check sanity of parameters */
     833             :     Assert(n_skip >= 0);
     834             :     Assert(min_hist_size > 2 * n_skip);
     835             : 
     836        7768 :     if (HeapTupleIsValid(vardata->statsTuple) &&
     837        5418 :         statistic_proc_security_check(vardata, opproc->fn_oid) &&
     838        2706 :         get_attstatsslot(&sslot, vardata->statsTuple,
     839             :                          STATISTIC_KIND_HISTOGRAM, InvalidOid,
     840             :                          ATTSTATSSLOT_VALUES))
     841             :     {
     842        2612 :         *hist_size = sslot.nvalues;
     843        2612 :         if (sslot.nvalues >= min_hist_size)
     844             :         {
     845        1566 :             LOCAL_FCINFO(fcinfo, 2);
     846        1566 :             int         nmatch = 0;
     847             :             int         i;
     848             : 
     849             :             /*
     850             :              * We invoke the opproc "by hand" so that we won't fail on NULL
     851             :              * results.  Such cases won't arise for normal comparison
     852             :              * functions, but generic_restriction_selectivity could perhaps be
     853             :              * used with operators that can return NULL.  A small side benefit
     854             :              * is to not need to re-initialize the fcinfo struct from scratch
     855             :              * each time.
     856             :              */
     857        1566 :             InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
     858             :                                      NULL, NULL);
     859        1566 :             fcinfo->args[0].isnull = false;
     860        1566 :             fcinfo->args[1].isnull = false;
     861             :             /* be careful to apply operator right way 'round */
     862        1566 :             if (varonleft)
     863        1566 :                 fcinfo->args[1].value = constval;
     864             :             else
     865           0 :                 fcinfo->args[0].value = constval;
     866             : 
     867      135996 :             for (i = n_skip; i < sslot.nvalues - n_skip; i++)
     868             :             {
     869             :                 Datum       fresult;
     870             : 
     871      134430 :                 if (varonleft)
     872      134430 :                     fcinfo->args[0].value = sslot.values[i];
     873             :                 else
     874           0 :                     fcinfo->args[1].value = sslot.values[i];
     875      134430 :                 fcinfo->isnull = false;
     876      134430 :                 fresult = FunctionCallInvoke(fcinfo);
     877      134430 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
     878        5066 :                     nmatch++;
     879             :             }
     880        1566 :             result = ((double) nmatch) / ((double) (sslot.nvalues - 2 * n_skip));
     881             :         }
     882             :         else
     883        1046 :             result = -1;
     884        2612 :         free_attstatsslot(&sslot);
     885             :     }
     886             :     else
     887             :     {
     888        2444 :         *hist_size = 0;
     889        2444 :         result = -1;
     890             :     }
     891             : 
     892        5056 :     return result;
     893             : }
     894             : 
     895             : /*
     896             :  *  generic_restriction_selectivity     - Selectivity for almost anything
     897             :  *
     898             :  * This function estimates selectivity for operators that we don't have any
     899             :  * special knowledge about, but are on data types that we collect standard
     900             :  * MCV and/or histogram statistics for.  (Additional assumptions are that
     901             :  * the operator is strict and immutable, or at least stable.)
     902             :  *
     903             :  * If we have "VAR OP CONST" or "CONST OP VAR", selectivity is estimated by
     904             :  * applying the operator to each element of the column's MCV and/or histogram
     905             :  * stats, and merging the results using the assumption that the histogram is
     906             :  * a reasonable random sample of the column's non-MCV population.  Note that
     907             :  * if the operator's semantics are related to the histogram ordering, this
     908             :  * might not be such a great assumption; other functions such as
     909             :  * scalarineqsel() are probably a better match in such cases.
     910             :  *
     911             :  * Otherwise, fall back to the default selectivity provided by the caller.
     912             :  */
     913             : double
     914        1106 : generic_restriction_selectivity(PlannerInfo *root, Oid oproid, Oid collation,
     915             :                                 List *args, int varRelid,
     916             :                                 double default_selectivity)
     917             : {
     918             :     double      selec;
     919             :     VariableStatData vardata;
     920             :     Node       *other;
     921             :     bool        varonleft;
     922             : 
     923             :     /*
     924             :      * If expression is not variable OP something or something OP variable,
     925             :      * then punt and return the default estimate.
     926             :      */
     927        1106 :     if (!get_restriction_variable(root, args, varRelid,
     928             :                                   &vardata, &other, &varonleft))
     929           0 :         return default_selectivity;
     930             : 
     931             :     /*
     932             :      * If the something is a NULL constant, assume operator is strict and
     933             :      * return zero, ie, operator will never return TRUE.
     934             :      */
     935        1106 :     if (IsA(other, Const) &&
     936        1106 :         ((Const *) other)->constisnull)
     937             :     {
     938           0 :         ReleaseVariableStats(vardata);
     939           0 :         return 0.0;
     940             :     }
     941             : 
     942        1106 :     if (IsA(other, Const))
     943             :     {
     944             :         /* Variable is being compared to a known non-null constant */
     945        1106 :         Datum       constval = ((Const *) other)->constvalue;
     946             :         FmgrInfo    opproc;
     947             :         double      mcvsum;
     948             :         double      mcvsel;
     949             :         double      nullfrac;
     950             :         int         hist_size;
     951             : 
     952        1106 :         fmgr_info(get_opcode(oproid), &opproc);
     953             : 
     954             :         /*
     955             :          * Calculate the selectivity for the column's most common values.
     956             :          */
     957        1106 :         mcvsel = mcv_selectivity(&vardata, &opproc, collation,
     958             :                                  constval, varonleft,
     959             :                                  &mcvsum);
     960             : 
     961             :         /*
     962             :          * If the histogram is large enough, see what fraction of it matches
     963             :          * the query, and assume that's representative of the non-MCV
     964             :          * population.  Otherwise use the default selectivity for the non-MCV
     965             :          * population.
     966             :          */
     967        1106 :         selec = histogram_selectivity(&vardata, &opproc, collation,
     968             :                                       constval, varonleft,
     969             :                                       10, 1, &hist_size);
     970        1106 :         if (selec < 0)
     971             :         {
     972             :             /* Nope, fall back on default */
     973        1106 :             selec = default_selectivity;
     974             :         }
     975           0 :         else if (hist_size < 100)
     976             :         {
     977             :             /*
     978             :              * For histogram sizes from 10 to 100, we combine the histogram
     979             :              * and default selectivities, putting increasingly more trust in
     980             :              * the histogram for larger sizes.
     981             :              */
     982           0 :             double      hist_weight = hist_size / 100.0;
     983             : 
     984           0 :             selec = selec * hist_weight +
     985           0 :                 default_selectivity * (1.0 - hist_weight);
     986             :         }
     987             : 
     988             :         /* In any case, don't believe extremely small or large estimates. */
     989        1106 :         if (selec < 0.0001)
     990           0 :             selec = 0.0001;
     991        1106 :         else if (selec > 0.9999)
     992           0 :             selec = 0.9999;
     993             : 
     994             :         /* Don't forget to account for nulls. */
     995        1106 :         if (HeapTupleIsValid(vardata.statsTuple))
     996          84 :             nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
     997             :         else
     998        1022 :             nullfrac = 0.0;
     999             : 
    1000             :         /*
    1001             :          * Now merge the results from the MCV and histogram calculations,
    1002             :          * realizing that the histogram covers only the non-null values that
    1003             :          * are not listed in MCV.
    1004             :          */
    1005        1106 :         selec *= 1.0 - nullfrac - mcvsum;
    1006        1106 :         selec += mcvsel;
    1007             :     }
    1008             :     else
    1009             :     {
    1010             :         /* Comparison value is not constant, so we can't do anything */
    1011           0 :         selec = default_selectivity;
    1012             :     }
    1013             : 
    1014        1106 :     ReleaseVariableStats(vardata);
    1015             : 
    1016             :     /* result should be in range, but make sure... */
    1017        1106 :     CLAMP_PROBABILITY(selec);
    1018             : 
    1019        1106 :     return selec;
    1020             : }
    1021             : 
    1022             : /*
    1023             :  *  ineq_histogram_selectivity  - Examine the histogram for scalarineqsel
    1024             :  *
    1025             :  * Determine the fraction of the variable's histogram population that
    1026             :  * satisfies the inequality condition, ie, VAR < (or <=, >, >=) CONST.
    1027             :  * The isgt and iseq flags distinguish which of the four cases apply.
    1028             :  *
    1029             :  * While opproc could be looked up from the operator OID, common callers
    1030             :  * also need to call it separately, so we make the caller pass both.
    1031             :  *
    1032             :  * Returns -1 if there is no histogram (valid results will always be >= 0).
    1033             :  *
    1034             :  * Note that the result disregards both the most-common-values (if any) and
    1035             :  * null entries.  The caller is expected to combine this result with
    1036             :  * statistics for those portions of the column population.
    1037             :  *
    1038             :  * This is exported so that some other estimation functions can use it.
    1039             :  */
    1040             : double
    1041      257438 : ineq_histogram_selectivity(PlannerInfo *root,
    1042             :                            VariableStatData *vardata,
    1043             :                            Oid opoid, FmgrInfo *opproc, bool isgt, bool iseq,
    1044             :                            Oid collation,
    1045             :                            Datum constval, Oid consttype)
    1046             : {
    1047             :     double      hist_selec;
    1048             :     AttStatsSlot sslot;
    1049             : 
    1050      257438 :     hist_selec = -1.0;
    1051             : 
    1052             :     /*
    1053             :      * Someday, ANALYZE might store more than one histogram per rel/att,
    1054             :      * corresponding to more than one possible sort ordering defined for the
    1055             :      * column type.  Right now, we know there is only one, so just grab it and
    1056             :      * see if it matches the query.
    1057             :      *
    1058             :      * Note that we can't use opoid as search argument; the staop appearing in
    1059             :      * pg_statistic will be for the relevant '<' operator, but what we have
    1060             :      * might be some other inequality operator such as '>='.  (Even if opoid
    1061             :      * is a '<' operator, it could be cross-type.)  Hence we must use
    1062             :      * comparison_ops_are_compatible() to see if the operators match.
    1063             :      */
    1064      514244 :     if (HeapTupleIsValid(vardata->statsTuple) &&
    1065      513576 :         statistic_proc_security_check(vardata, opproc->fn_oid) &&
    1066      256770 :         get_attstatsslot(&sslot, vardata->statsTuple,
    1067             :                          STATISTIC_KIND_HISTOGRAM, InvalidOid,
    1068             :                          ATTSTATSSLOT_VALUES))
    1069             :     {
    1070      187800 :         if (sslot.nvalues > 1 &&
    1071      375524 :             sslot.stacoll == collation &&
    1072      187724 :             comparison_ops_are_compatible(sslot.staop, opoid))
    1073      187616 :         {
    1074             :             /*
    1075             :              * Use binary search to find the desired location, namely the
    1076             :              * right end of the histogram bin containing the comparison value,
    1077             :              * which is the leftmost entry for which the comparison operator
    1078             :              * succeeds (if isgt) or fails (if !isgt).
    1079             :              *
    1080             :              * In this loop, we pay no attention to whether the operator iseq
    1081             :              * or not; that detail will be mopped up below.  (We cannot tell,
    1082             :              * anyway, whether the operator thinks the values are equal.)
    1083             :              *
    1084             :              * If the binary search accesses the first or last histogram
    1085             :              * entry, we try to replace that endpoint with the true column min
    1086             :              * or max as found by get_actual_variable_range().  This
    1087             :              * ameliorates misestimates when the min or max is moving as a
    1088             :              * result of changes since the last ANALYZE.  Note that this could
    1089             :              * result in effectively including MCVs into the histogram that
    1090             :              * weren't there before, but we don't try to correct for that.
    1091             :              */
    1092             :             double      histfrac;
    1093      187616 :             int         lobound = 0;    /* first possible slot to search */
    1094      187616 :             int         hibound = sslot.nvalues;    /* last+1 slot to search */
    1095      187616 :             bool        have_end = false;
    1096             : 
    1097             :             /*
    1098             :              * If there are only two histogram entries, we'll want up-to-date
    1099             :              * values for both.  (If there are more than two, we need at most
    1100             :              * one of them to be updated, so we deal with that within the
    1101             :              * loop.)
    1102             :              */
    1103      187616 :             if (sslot.nvalues == 2)
    1104        1478 :                 have_end = get_actual_variable_range(root,
    1105             :                                                      vardata,
    1106             :                                                      sslot.staop,
    1107             :                                                      collation,
    1108             :                                                      &sslot.values[0],
    1109        1478 :                                                      &sslot.values[1]);
    1110             : 
    1111     1212196 :             while (lobound < hibound)
    1112             :             {
    1113     1024580 :                 int         probe = (lobound + hibound) / 2;
    1114             :                 bool        ltcmp;
    1115             : 
    1116             :                 /*
    1117             :                  * If we find ourselves about to compare to the first or last
    1118             :                  * histogram entry, first try to replace it with the actual
    1119             :                  * current min or max (unless we already did so above).
    1120             :                  */
    1121     1024580 :                 if (probe == 0 && sslot.nvalues > 2)
    1122       96686 :                     have_end = get_actual_variable_range(root,
    1123             :                                                          vardata,
    1124             :                                                          sslot.staop,
    1125             :                                                          collation,
    1126             :                                                          &sslot.values[0],
    1127             :                                                          NULL);
    1128      927894 :                 else if (probe == sslot.nvalues - 1 && sslot.nvalues > 2)
    1129       60550 :                     have_end = get_actual_variable_range(root,
    1130             :                                                          vardata,
    1131             :                                                          sslot.staop,
    1132             :                                                          collation,
    1133             :                                                          NULL,
    1134       60550 :                                                          &sslot.values[probe]);
    1135             : 
    1136     1024580 :                 ltcmp = DatumGetBool(FunctionCall2Coll(opproc,
    1137             :                                                        collation,
    1138     1024580 :                                                        sslot.values[probe],
    1139             :                                                        constval));
    1140     1024580 :                 if (isgt)
    1141       57000 :                     ltcmp = !ltcmp;
    1142     1024580 :                 if (ltcmp)
    1143      378830 :                     lobound = probe + 1;
    1144             :                 else
    1145      645750 :                     hibound = probe;
    1146             :             }
    1147             : 
    1148      187616 :             if (lobound <= 0)
    1149             :             {
    1150             :                 /*
    1151             :                  * Constant is below lower histogram boundary.  More
    1152             :                  * precisely, we have found that no entry in the histogram
    1153             :                  * satisfies the inequality clause (if !isgt) or they all do
    1154             :                  * (if isgt).  We estimate that that's true of the entire
    1155             :                  * table, so set histfrac to 0.0 (which we'll flip to 1.0
    1156             :                  * below, if isgt).
    1157             :                  */
    1158       83016 :                 histfrac = 0.0;
    1159             :             }
    1160      104600 :             else if (lobound >= sslot.nvalues)
    1161             :             {
    1162             :                 /*
    1163             :                  * Inverse case: constant is above upper histogram boundary.
    1164             :                  */
    1165       26478 :                 histfrac = 1.0;
    1166             :             }
    1167             :             else
    1168             :             {
    1169             :                 /* We have values[i-1] <= constant <= values[i]. */
    1170       78122 :                 int         i = lobound;
    1171       78122 :                 double      eq_selec = 0;
    1172             :                 double      val,
    1173             :                             high,
    1174             :                             low;
    1175             :                 double      binfrac;
    1176             : 
    1177             :                 /*
    1178             :                  * In the cases where we'll need it below, obtain an estimate
    1179             :                  * of the selectivity of "x = constval".  We use a calculation
    1180             :                  * similar to what var_eq_const() does for a non-MCV constant,
    1181             :                  * ie, estimate that all distinct non-MCV values occur equally
    1182             :                  * often.  But multiplication by "1.0 - sumcommon - nullfrac"
    1183             :                  * will be done by our caller, so we shouldn't do that here.
    1184             :                  * Therefore we can't try to clamp the estimate by reference
    1185             :                  * to the least common MCV; the result would be too small.
    1186             :                  *
    1187             :                  * Note: since this is effectively assuming that constval
    1188             :                  * isn't an MCV, it's logically dubious if constval in fact is
    1189             :                  * one.  But we have to apply *some* correction for equality,
    1190             :                  * and anyway we cannot tell if constval is an MCV, since we
    1191             :                  * don't have a suitable equality operator at hand.
    1192             :                  */
    1193       78122 :                 if (i == 1 || isgt == iseq)
    1194             :                 {
    1195             :                     double      otherdistinct;
    1196             :                     bool        isdefault;
    1197             :                     AttStatsSlot mcvslot;
    1198             : 
    1199             :                     /* Get estimated number of distinct values */
    1200       31282 :                     otherdistinct = get_variable_numdistinct(vardata,
    1201             :                                                              &isdefault);
    1202             : 
    1203             :                     /* Subtract off the number of known MCVs */
    1204       31282 :                     if (get_attstatsslot(&mcvslot, vardata->statsTuple,
    1205             :                                          STATISTIC_KIND_MCV, InvalidOid,
    1206             :                                          ATTSTATSSLOT_NUMBERS))
    1207             :                     {
    1208        2714 :                         otherdistinct -= mcvslot.nnumbers;
    1209        2714 :                         free_attstatsslot(&mcvslot);
    1210             :                     }
    1211             : 
    1212             :                     /* If result doesn't seem sane, leave eq_selec at 0 */
    1213       31282 :                     if (otherdistinct > 1)
    1214       31240 :                         eq_selec = 1.0 / otherdistinct;
    1215             :                 }
    1216             : 
    1217             :                 /*
    1218             :                  * Convert the constant and the two nearest bin boundary
    1219             :                  * values to a uniform comparison scale, and do a linear
    1220             :                  * interpolation within this bin.
    1221             :                  */
    1222       78122 :                 if (convert_to_scalar(constval, consttype, collation,
    1223             :                                       &val,
    1224       78122 :                                       sslot.values[i - 1], sslot.values[i],
    1225             :                                       vardata->vartype,
    1226             :                                       &low, &high))
    1227             :                 {
    1228       78122 :                     if (high <= low)
    1229             :                     {
    1230             :                         /* cope if bin boundaries appear identical */
    1231           0 :                         binfrac = 0.5;
    1232             :                     }
    1233       78122 :                     else if (val <= low)
    1234       21002 :                         binfrac = 0.0;
    1235       57120 :                     else if (val >= high)
    1236        3690 :                         binfrac = 1.0;
    1237             :                     else
    1238             :                     {
    1239       53430 :                         binfrac = (val - low) / (high - low);
    1240             : 
    1241             :                         /*
    1242             :                          * Watch out for the possibility that we got a NaN or
    1243             :                          * Infinity from the division.  This can happen
    1244             :                          * despite the previous checks, if for example "low"
    1245             :                          * is -Infinity.
    1246             :                          */
    1247       53430 :                         if (isnan(binfrac) ||
    1248       53430 :                             binfrac < 0.0 || binfrac > 1.0)
    1249           0 :                             binfrac = 0.5;
    1250             :                     }
    1251             :                 }
    1252             :                 else
    1253             :                 {
    1254             :                     /*
    1255             :                      * Ideally we'd produce an error here, on the grounds that
    1256             :                      * the given operator shouldn't have scalarXXsel
    1257             :                      * registered as its selectivity func unless we can deal
    1258             :                      * with its operand types.  But currently, all manner of
    1259             :                      * stuff is invoking scalarXXsel, so give a default
    1260             :                      * estimate until that can be fixed.
    1261             :                      */
    1262           0 :                     binfrac = 0.5;
    1263             :                 }
    1264             : 
    1265             :                 /*
    1266             :                  * Now, compute the overall selectivity across the values
    1267             :                  * represented by the histogram.  We have i-1 full bins and
    1268             :                  * binfrac partial bin below the constant.
    1269             :                  */
    1270       78122 :                 histfrac = (double) (i - 1) + binfrac;
    1271       78122 :                 histfrac /= (double) (sslot.nvalues - 1);
    1272             : 
    1273             :                 /*
    1274             :                  * At this point, histfrac is an estimate of the fraction of
    1275             :                  * the population represented by the histogram that satisfies
    1276             :                  * "x <= constval".  Somewhat remarkably, this statement is
    1277             :                  * true regardless of which operator we were doing the probes
    1278             :                  * with, so long as convert_to_scalar() delivers reasonable
    1279             :                  * results.  If the probe constant is equal to some histogram
    1280             :                  * entry, we would have considered the bin to the left of that
    1281             :                  * entry if probing with "<" or ">=", or the bin to the right
    1282             :                  * if probing with "<=" or ">"; but binfrac would have come
    1283             :                  * out as 1.0 in the first case and 0.0 in the second, leading
    1284             :                  * to the same histfrac in either case.  For probe constants
    1285             :                  * between histogram entries, we find the same bin and get the
    1286             :                  * same estimate with any operator.
    1287             :                  *
    1288             :                  * The fact that the estimate corresponds to "x <= constval"
    1289             :                  * and not "x < constval" is because of the way that ANALYZE
    1290             :                  * constructs the histogram: each entry is, effectively, the
    1291             :                  * rightmost value in its sample bucket.  So selectivity
    1292             :                  * values that are exact multiples of 1/(histogram_size-1)
    1293             :                  * should be understood as estimates including a histogram
    1294             :                  * entry plus everything to its left.
    1295             :                  *
    1296             :                  * However, that breaks down for the first histogram entry,
    1297             :                  * which necessarily is the leftmost value in its sample
    1298             :                  * bucket.  That means the first histogram bin is slightly
    1299             :                  * narrower than the rest, by an amount equal to eq_selec.
    1300             :                  * Another way to say that is that we want "x <= leftmost" to
    1301             :                  * be estimated as eq_selec not zero.  So, if we're dealing
    1302             :                  * with the first bin (i==1), rescale to make that true while
    1303             :                  * adjusting the rest of that bin linearly.
    1304             :                  */
    1305       78122 :                 if (i == 1)
    1306       14714 :                     histfrac += eq_selec * (1.0 - binfrac);
    1307             : 
    1308             :                 /*
    1309             :                  * "x <= constval" is good if we want an estimate for "<=" or
    1310             :                  * ">", but if we are estimating for "<" or ">=", we now need
    1311             :                  * to decrease the estimate by eq_selec.
    1312             :                  */
    1313       78122 :                 if (isgt == iseq)
    1314       22394 :                     histfrac -= eq_selec;
    1315             :             }
    1316             : 
    1317             :             /*
    1318             :              * Now the estimate is finished for "<" and "<=" cases.  If we are
    1319             :              * estimating for ">" or ">=", flip it.
    1320             :              */
    1321      187616 :             hist_selec = isgt ? (1.0 - histfrac) : histfrac;
    1322             : 
    1323             :             /*
    1324             :              * The histogram boundaries are only approximate to begin with,
    1325             :              * and may well be out of date anyway.  Therefore, don't believe
    1326             :              * extremely small or large selectivity estimates --- unless we
    1327             :              * got actual current endpoint values from the table, in which
    1328             :              * case just do the usual sanity clamp.  Somewhat arbitrarily, we
    1329             :              * set the cutoff for other cases at a hundredth of the histogram
    1330             :              * resolution.
    1331             :              */
    1332      187616 :             if (have_end)
    1333      103076 :                 CLAMP_PROBABILITY(hist_selec);
    1334             :             else
    1335             :             {
    1336       84540 :                 double      cutoff = 0.01 / (double) (sslot.nvalues - 1);
    1337             : 
    1338       84540 :                 if (hist_selec < cutoff)
    1339       31142 :                     hist_selec = cutoff;
    1340       53398 :                 else if (hist_selec > 1.0 - cutoff)
    1341       19666 :                     hist_selec = 1.0 - cutoff;
    1342             :             }
    1343             :         }
    1344         184 :         else if (sslot.nvalues > 1)
    1345             :         {
    1346             :             /*
    1347             :              * If we get here, we have a histogram but it's not sorted the way
    1348             :              * we want.  Do a brute-force search to see how many of the
    1349             :              * entries satisfy the comparison condition, and take that
    1350             :              * fraction as our estimate.  (This is identical to the inner loop
    1351             :              * of histogram_selectivity; maybe share code?)
    1352             :              */
    1353         184 :             LOCAL_FCINFO(fcinfo, 2);
    1354         184 :             int         nmatch = 0;
    1355             : 
    1356         184 :             InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
    1357             :                                      NULL, NULL);
    1358         184 :             fcinfo->args[0].isnull = false;
    1359         184 :             fcinfo->args[1].isnull = false;
    1360         184 :             fcinfo->args[1].value = constval;
    1361      962108 :             for (int i = 0; i < sslot.nvalues; i++)
    1362             :             {
    1363             :                 Datum       fresult;
    1364             : 
    1365      961924 :                 fcinfo->args[0].value = sslot.values[i];
    1366      961924 :                 fcinfo->isnull = false;
    1367      961924 :                 fresult = FunctionCallInvoke(fcinfo);
    1368      961924 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
    1369        1940 :                     nmatch++;
    1370             :             }
    1371         184 :             hist_selec = ((double) nmatch) / ((double) sslot.nvalues);
    1372             : 
    1373             :             /*
    1374             :              * As above, clamp to a hundredth of the histogram resolution.
    1375             :              * This case is surely even less trustworthy than the normal one,
    1376             :              * so we shouldn't believe exact 0 or 1 selectivity.  (Maybe the
    1377             :              * clamp should be more restrictive in this case?)
    1378             :              */
    1379             :             {
    1380         184 :                 double      cutoff = 0.01 / (double) (sslot.nvalues - 1);
    1381             : 
    1382         184 :                 if (hist_selec < cutoff)
    1383          12 :                     hist_selec = cutoff;
    1384         172 :                 else if (hist_selec > 1.0 - cutoff)
    1385          12 :                     hist_selec = 1.0 - cutoff;
    1386             :             }
    1387             :         }
    1388             : 
    1389      187800 :         free_attstatsslot(&sslot);
    1390             :     }
    1391             : 
    1392      257438 :     return hist_selec;
    1393             : }
    1394             : 
    1395             : /*
    1396             :  * Common wrapper function for the selectivity estimators that simply
    1397             :  * invoke scalarineqsel().
    1398             :  */
    1399             : static Datum
    1400       39676 : scalarineqsel_wrapper(PG_FUNCTION_ARGS, bool isgt, bool iseq)
    1401             : {
    1402       39676 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
    1403       39676 :     Oid         operator = PG_GETARG_OID(1);
    1404       39676 :     List       *args = (List *) PG_GETARG_POINTER(2);
    1405       39676 :     int         varRelid = PG_GETARG_INT32(3);
    1406       39676 :     Oid         collation = PG_GET_COLLATION();
    1407             :     VariableStatData vardata;
    1408             :     Node       *other;
    1409             :     bool        varonleft;
    1410             :     Datum       constval;
    1411             :     Oid         consttype;
    1412             :     double      selec;
    1413             : 
    1414             :     /*
    1415             :      * If expression is not variable op something or something op variable,
    1416             :      * then punt and return a default estimate.
    1417             :      */
    1418       39676 :     if (!get_restriction_variable(root, args, varRelid,
    1419             :                                   &vardata, &other, &varonleft))
    1420         956 :         PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    1421             : 
    1422             :     /*
    1423             :      * Can't do anything useful if the something is not a constant, either.
    1424             :      */
    1425       38720 :     if (!IsA(other, Const))
    1426             :     {
    1427        2644 :         ReleaseVariableStats(vardata);
    1428        2644 :         PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    1429             :     }
    1430             : 
    1431             :     /*
    1432             :      * If the constant is NULL, assume operator is strict and return zero, ie,
    1433             :      * operator will never return TRUE.
    1434             :      */
    1435       36076 :     if (((Const *) other)->constisnull)
    1436             :     {
    1437          54 :         ReleaseVariableStats(vardata);
    1438          54 :         PG_RETURN_FLOAT8(0.0);
    1439             :     }
    1440       36022 :     constval = ((Const *) other)->constvalue;
    1441       36022 :     consttype = ((Const *) other)->consttype;
    1442             : 
    1443             :     /*
    1444             :      * Force the var to be on the left to simplify logic in scalarineqsel.
    1445             :      */
    1446       36022 :     if (!varonleft)
    1447             :     {
    1448         342 :         operator = get_commutator(operator);
    1449         342 :         if (!operator)
    1450             :         {
    1451             :             /* Use default selectivity (should we raise an error instead?) */
    1452           0 :             ReleaseVariableStats(vardata);
    1453           0 :             PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    1454             :         }
    1455         342 :         isgt = !isgt;
    1456             :     }
    1457             : 
    1458             :     /* The rest of the work is done by scalarineqsel(). */
    1459       36022 :     selec = scalarineqsel(root, operator, isgt, iseq, collation,
    1460             :                           &vardata, constval, consttype);
    1461             : 
    1462       36022 :     ReleaseVariableStats(vardata);
    1463             : 
    1464       36022 :     PG_RETURN_FLOAT8((float8) selec);
    1465             : }
    1466             : 
    1467             : /*
    1468             :  *      scalarltsel     - Selectivity of "<" for scalars.
    1469             :  */
    1470             : Datum
    1471       13784 : scalarltsel(PG_FUNCTION_ARGS)
    1472             : {
    1473       13784 :     return scalarineqsel_wrapper(fcinfo, false, false);
    1474             : }
    1475             : 
    1476             : /*
    1477             :  *      scalarlesel     - Selectivity of "<=" for scalars.
    1478             :  */
    1479             : Datum
    1480        4314 : scalarlesel(PG_FUNCTION_ARGS)
    1481             : {
    1482        4314 :     return scalarineqsel_wrapper(fcinfo, false, true);
    1483             : }
    1484             : 
    1485             : /*
    1486             :  *      scalargtsel     - Selectivity of ">" for scalars.
    1487             :  */
    1488             : Datum
    1489       14258 : scalargtsel(PG_FUNCTION_ARGS)
    1490             : {
    1491       14258 :     return scalarineqsel_wrapper(fcinfo, true, false);
    1492             : }
    1493             : 
    1494             : /*
    1495             :  *      scalargesel     - Selectivity of ">=" for scalars.
    1496             :  */
    1497             : Datum
    1498        7320 : scalargesel(PG_FUNCTION_ARGS)
    1499             : {
    1500        7320 :     return scalarineqsel_wrapper(fcinfo, true, true);
    1501             : }
    1502             : 
    1503             : /*
    1504             :  *      boolvarsel      - Selectivity of Boolean variable.
    1505             :  *
    1506             :  * This can actually be called on any boolean-valued expression.  If it
    1507             :  * involves only Vars of the specified relation, and if there are statistics
    1508             :  * about the Var or expression (the latter is possible if it's indexed) then
    1509             :  * we'll produce a real estimate; otherwise it's just a default.
    1510             :  */
    1511             : Selectivity
    1512       42388 : boolvarsel(PlannerInfo *root, Node *arg, int varRelid)
    1513             : {
    1514             :     VariableStatData vardata;
    1515             :     double      selec;
    1516             : 
    1517       42388 :     examine_variable(root, arg, varRelid, &vardata);
    1518       42388 :     if (HeapTupleIsValid(vardata.statsTuple))
    1519             :     {
    1520             :         /*
    1521             :          * A boolean variable V is equivalent to the clause V = 't', so we
    1522             :          * compute the selectivity as if that is what we have.
    1523             :          */
    1524       35000 :         selec = var_eq_const(&vardata, BooleanEqualOperator, InvalidOid,
    1525             :                              BoolGetDatum(true), false, true, false);
    1526             :     }
    1527             :     else
    1528             :     {
    1529             :         /* Otherwise, the default estimate is 0.5 */
    1530        7388 :         selec = 0.5;
    1531             :     }
    1532       42388 :     ReleaseVariableStats(vardata);
    1533       42388 :     return selec;
    1534             : }
    1535             : 
    1536             : /*
    1537             :  *      booltestsel     - Selectivity of BooleanTest Node.
    1538             :  */
    1539             : Selectivity
    1540         838 : booltestsel(PlannerInfo *root, BoolTestType booltesttype, Node *arg,
    1541             :             int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
    1542             : {
    1543             :     VariableStatData vardata;
    1544             :     double      selec;
    1545             : 
    1546         838 :     examine_variable(root, arg, varRelid, &vardata);
    1547             : 
    1548         838 :     if (HeapTupleIsValid(vardata.statsTuple))
    1549             :     {
    1550             :         Form_pg_statistic stats;
    1551             :         double      freq_null;
    1552             :         AttStatsSlot sslot;
    1553             : 
    1554           0 :         stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
    1555           0 :         freq_null = stats->stanullfrac;
    1556             : 
    1557           0 :         if (get_attstatsslot(&sslot, vardata.statsTuple,
    1558             :                              STATISTIC_KIND_MCV, InvalidOid,
    1559             :                              ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)
    1560           0 :             && sslot.nnumbers > 0)
    1561           0 :         {
    1562             :             double      freq_true;
    1563             :             double      freq_false;
    1564             : 
    1565             :             /*
    1566             :              * Get first MCV frequency and derive frequency for true.
    1567             :              */
    1568           0 :             if (DatumGetBool(sslot.values[0]))
    1569           0 :                 freq_true = sslot.numbers[0];
    1570             :             else
    1571           0 :                 freq_true = 1.0 - sslot.numbers[0] - freq_null;
    1572             : 
    1573             :             /*
    1574             :              * Next derive frequency for false. Then use these as appropriate
    1575             :              * to derive frequency for each case.
    1576             :              */
    1577           0 :             freq_false = 1.0 - freq_true - freq_null;
    1578             : 
    1579           0 :             switch (booltesttype)
    1580             :             {
    1581           0 :                 case IS_UNKNOWN:
    1582             :                     /* select only NULL values */
    1583           0 :                     selec = freq_null;
    1584           0 :                     break;
    1585           0 :                 case IS_NOT_UNKNOWN:
    1586             :                     /* select non-NULL values */
    1587           0 :                     selec = 1.0 - freq_null;
    1588           0 :                     break;
    1589           0 :                 case IS_TRUE:
    1590             :                     /* select only TRUE values */
    1591           0 :                     selec = freq_true;
    1592           0 :                     break;
    1593           0 :                 case IS_NOT_TRUE:
    1594             :                     /* select non-TRUE values */
    1595           0 :                     selec = 1.0 - freq_true;
    1596           0 :                     break;
    1597           0 :                 case IS_FALSE:
    1598             :                     /* select only FALSE values */
    1599           0 :                     selec = freq_false;
    1600           0 :                     break;
    1601           0 :                 case IS_NOT_FALSE:
    1602             :                     /* select non-FALSE values */
    1603           0 :                     selec = 1.0 - freq_false;
    1604           0 :                     break;
    1605           0 :                 default:
    1606           0 :                     elog(ERROR, "unrecognized booltesttype: %d",
    1607             :                          (int) booltesttype);
    1608             :                     selec = 0.0;    /* Keep compiler quiet */
    1609             :                     break;
    1610             :             }
    1611             : 
    1612           0 :             free_attstatsslot(&sslot);
    1613             :         }
    1614             :         else
    1615             :         {
    1616             :             /*
    1617             :              * No most-common-value info available. Still have null fraction
    1618             :              * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust
    1619             :              * for null fraction and assume a 50-50 split of TRUE and FALSE.
    1620             :              */
    1621           0 :             switch (booltesttype)
    1622             :             {
    1623           0 :                 case IS_UNKNOWN:
    1624             :                     /* select only NULL values */
    1625           0 :                     selec = freq_null;
    1626           0 :                     break;
    1627           0 :                 case IS_NOT_UNKNOWN:
    1628             :                     /* select non-NULL values */
    1629           0 :                     selec = 1.0 - freq_null;
    1630           0 :                     break;
    1631           0 :                 case IS_TRUE:
    1632             :                 case IS_FALSE:
    1633             :                     /* Assume we select half of the non-NULL values */
    1634           0 :                     selec = (1.0 - freq_null) / 2.0;
    1635           0 :                     break;
    1636           0 :                 case IS_NOT_TRUE:
    1637             :                 case IS_NOT_FALSE:
    1638             :                     /* Assume we select NULLs plus half of the non-NULLs */
    1639             :                     /* equiv. to freq_null + (1.0 - freq_null) / 2.0 */
    1640           0 :                     selec = (freq_null + 1.0) / 2.0;
    1641           0 :                     break;
    1642           0 :                 default:
    1643           0 :                     elog(ERROR, "unrecognized booltesttype: %d",
    1644             :                          (int) booltesttype);
    1645             :                     selec = 0.0;    /* Keep compiler quiet */
    1646             :                     break;
    1647             :             }
    1648             :         }
    1649             :     }
    1650             :     else
    1651             :     {
    1652             :         /*
    1653             :          * If we can't get variable statistics for the argument, perhaps
    1654             :          * clause_selectivity can do something with it.  We ignore the
    1655             :          * possibility of a NULL value when using clause_selectivity, and just
    1656             :          * assume the value is either TRUE or FALSE.
    1657             :          */
    1658         838 :         switch (booltesttype)
    1659             :         {
    1660          48 :             case IS_UNKNOWN:
    1661          48 :                 selec = DEFAULT_UNK_SEL;
    1662          48 :                 break;
    1663         108 :             case IS_NOT_UNKNOWN:
    1664         108 :                 selec = DEFAULT_NOT_UNK_SEL;
    1665         108 :                 break;
    1666         252 :             case IS_TRUE:
    1667             :             case IS_NOT_FALSE:
    1668         252 :                 selec = (double) clause_selectivity(root, arg,
    1669             :                                                     varRelid,
    1670             :                                                     jointype, sjinfo);
    1671         252 :                 break;
    1672         430 :             case IS_FALSE:
    1673             :             case IS_NOT_TRUE:
    1674         430 :                 selec = 1.0 - (double) clause_selectivity(root, arg,
    1675             :                                                           varRelid,
    1676             :                                                           jointype, sjinfo);
    1677         430 :                 break;
    1678           0 :             default:
    1679           0 :                 elog(ERROR, "unrecognized booltesttype: %d",
    1680             :                      (int) booltesttype);
    1681             :                 selec = 0.0;    /* Keep compiler quiet */
    1682             :                 break;
    1683             :         }
    1684             :     }
    1685             : 
    1686         838 :     ReleaseVariableStats(vardata);
    1687             : 
    1688             :     /* result should be in range, but make sure... */
    1689         838 :     CLAMP_PROBABILITY(selec);
    1690             : 
    1691         838 :     return (Selectivity) selec;
    1692             : }
    1693             : 
    1694             : /*
    1695             :  *      nulltestsel     - Selectivity of NullTest Node.
    1696             :  */
    1697             : Selectivity
    1698       15774 : nulltestsel(PlannerInfo *root, NullTestType nulltesttype, Node *arg,
    1699             :             int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
    1700             : {
    1701             :     VariableStatData vardata;
    1702             :     double      selec;
    1703             : 
    1704       15774 :     examine_variable(root, arg, varRelid, &vardata);
    1705             : 
    1706       15774 :     if (HeapTupleIsValid(vardata.statsTuple))
    1707             :     {
    1708             :         Form_pg_statistic stats;
    1709             :         double      freq_null;
    1710             : 
    1711        8830 :         stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
    1712        8830 :         freq_null = stats->stanullfrac;
    1713             : 
    1714        8830 :         switch (nulltesttype)
    1715             :         {
    1716        6784 :             case IS_NULL:
    1717             : 
    1718             :                 /*
    1719             :                  * Use freq_null directly.
    1720             :                  */
    1721        6784 :                 selec = freq_null;
    1722        6784 :                 break;
    1723        2046 :             case IS_NOT_NULL:
    1724             : 
    1725             :                 /*
    1726             :                  * Select not unknown (not null) values. Calculate from
    1727             :                  * freq_null.
    1728             :                  */
    1729        2046 :                 selec = 1.0 - freq_null;
    1730        2046 :                 break;
    1731           0 :             default:
    1732           0 :                 elog(ERROR, "unrecognized nulltesttype: %d",
    1733             :                      (int) nulltesttype);
    1734             :                 return (Selectivity) 0; /* keep compiler quiet */
    1735             :         }
    1736             :     }
    1737        6944 :     else if (vardata.var && IsA(vardata.var, Var) &&
    1738        6374 :              ((Var *) vardata.var)->varattno < 0)
    1739             :     {
    1740             :         /*
    1741             :          * There are no stats for system columns, but we know they are never
    1742             :          * NULL.
    1743             :          */
    1744          60 :         selec = (nulltesttype == IS_NULL) ? 0.0 : 1.0;
    1745             :     }
    1746             :     else
    1747             :     {
    1748             :         /*
    1749             :          * No ANALYZE stats available, so make a guess
    1750             :          */
    1751        6884 :         switch (nulltesttype)
    1752             :         {
    1753        2062 :             case IS_NULL:
    1754        2062 :                 selec = DEFAULT_UNK_SEL;
    1755        2062 :                 break;
    1756        4822 :             case IS_NOT_NULL:
    1757        4822 :                 selec = DEFAULT_NOT_UNK_SEL;
    1758        4822 :                 break;
    1759           0 :             default:
    1760           0 :                 elog(ERROR, "unrecognized nulltesttype: %d",
    1761             :                      (int) nulltesttype);
    1762             :                 return (Selectivity) 0; /* keep compiler quiet */
    1763             :         }
    1764             :     }
    1765             : 
    1766       15774 :     ReleaseVariableStats(vardata);
    1767             : 
    1768             :     /* result should be in range, but make sure... */
    1769       15774 :     CLAMP_PROBABILITY(selec);
    1770             : 
    1771       15774 :     return (Selectivity) selec;
    1772             : }
    1773             : 
    1774             : /*
    1775             :  * strip_array_coercion - strip binary-compatible relabeling from an array expr
    1776             :  *
    1777             :  * For array values, the parser normally generates ArrayCoerceExpr conversions,
    1778             :  * but it seems possible that RelabelType might show up.  Also, the planner
    1779             :  * is not currently tense about collapsing stacked ArrayCoerceExpr nodes,
    1780             :  * so we need to be ready to deal with more than one level.
    1781             :  */
    1782             : static Node *
    1783      115260 : strip_array_coercion(Node *node)
    1784             : {
    1785             :     for (;;)
    1786             :     {
    1787      115260 :         if (node && IsA(node, ArrayCoerceExpr))
    1788          36 :         {
    1789        2696 :             ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
    1790             : 
    1791             :             /*
    1792             :              * If the per-element expression is just a RelabelType on top of
    1793             :              * CaseTestExpr, then we know it's a binary-compatible relabeling.
    1794             :              */
    1795        2696 :             if (IsA(acoerce->elemexpr, RelabelType) &&
    1796          36 :                 IsA(((RelabelType *) acoerce->elemexpr)->arg, CaseTestExpr))
    1797          36 :                 node = (Node *) acoerce->arg;
    1798             :             else
    1799             :                 break;
    1800             :         }
    1801      112564 :         else if (node && IsA(node, RelabelType))
    1802             :         {
    1803             :             /* We don't really expect this case, but may as well cope */
    1804           0 :             node = (Node *) ((RelabelType *) node)->arg;
    1805             :         }
    1806             :         else
    1807             :             break;
    1808             :     }
    1809      115224 :     return node;
    1810             : }
    1811             : 
    1812             : /*
    1813             :  *      scalararraysel      - Selectivity of ScalarArrayOpExpr Node.
    1814             :  */
    1815             : Selectivity
    1816       19782 : scalararraysel(PlannerInfo *root,
    1817             :                ScalarArrayOpExpr *clause,
    1818             :                bool is_join_clause,
    1819             :                int varRelid,
    1820             :                JoinType jointype,
    1821             :                SpecialJoinInfo *sjinfo)
    1822             : {
    1823       19782 :     Oid         operator = clause->opno;
    1824       19782 :     bool        useOr = clause->useOr;
    1825       19782 :     bool        isEquality = false;
    1826       19782 :     bool        isInequality = false;
    1827             :     Node       *leftop;
    1828             :     Node       *rightop;
    1829             :     Oid         nominal_element_type;
    1830             :     Oid         nominal_element_collation;
    1831             :     TypeCacheEntry *typentry;
    1832             :     RegProcedure oprsel;
    1833             :     FmgrInfo    oprselproc;
    1834             :     Selectivity s1;
    1835             :     Selectivity s1disjoint;
    1836             : 
    1837             :     /* First, deconstruct the expression */
    1838             :     Assert(list_length(clause->args) == 2);
    1839       19782 :     leftop = (Node *) linitial(clause->args);
    1840       19782 :     rightop = (Node *) lsecond(clause->args);
    1841             : 
    1842             :     /* aggressively reduce both sides to constants */
    1843       19782 :     leftop = estimate_expression_value(root, leftop);
    1844       19782 :     rightop = estimate_expression_value(root, rightop);
    1845             : 
    1846             :     /* get nominal (after relabeling) element type of rightop */
    1847       19782 :     nominal_element_type = get_base_element_type(exprType(rightop));
    1848       19782 :     if (!OidIsValid(nominal_element_type))
    1849           0 :         return (Selectivity) 0.5;   /* probably shouldn't happen */
    1850             :     /* get nominal collation, too, for generating constants */
    1851       19782 :     nominal_element_collation = exprCollation(rightop);
    1852             : 
    1853             :     /* look through any binary-compatible relabeling of rightop */
    1854       19782 :     rightop = strip_array_coercion(rightop);
    1855             : 
    1856             :     /*
    1857             :      * Detect whether the operator is the default equality or inequality
    1858             :      * operator of the array element type.
    1859             :      */
    1860       19782 :     typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR);
    1861       19782 :     if (OidIsValid(typentry->eq_opr))
    1862             :     {
    1863       19782 :         if (operator == typentry->eq_opr)
    1864       14650 :             isEquality = true;
    1865        5132 :         else if (get_negator(operator) == typentry->eq_opr)
    1866        4640 :             isInequality = true;
    1867             :     }
    1868             : 
    1869             :     /*
    1870             :      * If it is equality or inequality, we might be able to estimate this as a
    1871             :      * form of array containment; for instance "const = ANY(column)" can be
    1872             :      * treated as "ARRAY[const] <@ column".  scalararraysel_containment tries
    1873             :      * that, and returns the selectivity estimate if successful, or -1 if not.
    1874             :      */
    1875       19782 :     if ((isEquality || isInequality) && !is_join_clause)
    1876             :     {
    1877       19290 :         s1 = scalararraysel_containment(root, leftop, rightop,
    1878             :                                         nominal_element_type,
    1879             :                                         isEquality, useOr, varRelid);
    1880       19290 :         if (s1 >= 0.0)
    1881         118 :             return s1;
    1882             :     }
    1883             : 
    1884             :     /*
    1885             :      * Look up the underlying operator's selectivity estimator. Punt if it
    1886             :      * hasn't got one.
    1887             :      */
    1888       19664 :     if (is_join_clause)
    1889           0 :         oprsel = get_oprjoin(operator);
    1890             :     else
    1891       19664 :         oprsel = get_oprrest(operator);
    1892       19664 :     if (!oprsel)
    1893           0 :         return (Selectivity) 0.5;
    1894       19664 :     fmgr_info(oprsel, &oprselproc);
    1895             : 
    1896             :     /*
    1897             :      * In the array-containment check above, we must only believe that an
    1898             :      * operator is equality or inequality if it is the default btree equality
    1899             :      * operator (or its negator) for the element type, since those are the
    1900             :      * operators that array containment will use.  But in what follows, we can
    1901             :      * be a little laxer, and also believe that any operators using eqsel() or
    1902             :      * neqsel() as selectivity estimator act like equality or inequality.
    1903             :      */
    1904       19664 :     if (oprsel == F_EQSEL || oprsel == F_EQJOINSEL)
    1905       14708 :         isEquality = true;
    1906        4956 :     else if (oprsel == F_NEQSEL || oprsel == F_NEQJOINSEL)
    1907        4530 :         isInequality = true;
    1908             : 
    1909             :     /*
    1910             :      * We consider three cases:
    1911             :      *
    1912             :      * 1. rightop is an Array constant: deconstruct the array, apply the
    1913             :      * operator's selectivity function for each array element, and merge the
    1914             :      * results in the same way that clausesel.c does for AND/OR combinations.
    1915             :      *
    1916             :      * 2. rightop is an ARRAY[] construct: apply the operator's selectivity
    1917             :      * function for each element of the ARRAY[] construct, and merge.
    1918             :      *
    1919             :      * 3. otherwise, make a guess ...
    1920             :      */
    1921       19664 :     if (rightop && IsA(rightop, Const))
    1922       16022 :     {
    1923       16040 :         Datum       arraydatum = ((Const *) rightop)->constvalue;
    1924       16040 :         bool        arrayisnull = ((Const *) rightop)->constisnull;
    1925             :         ArrayType  *arrayval;
    1926             :         int16       elmlen;
    1927             :         bool        elmbyval;
    1928             :         char        elmalign;
    1929             :         int         num_elems;
    1930             :         Datum      *elem_values;
    1931             :         bool       *elem_nulls;
    1932             :         int         i;
    1933             : 
    1934       16040 :         if (arrayisnull)        /* qual can't succeed if null array */
    1935          18 :             return (Selectivity) 0.0;
    1936       16022 :         arrayval = DatumGetArrayTypeP(arraydatum);
    1937       16022 :         get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
    1938             :                              &elmlen, &elmbyval, &elmalign);
    1939       16022 :         deconstruct_array(arrayval,
    1940             :                           ARR_ELEMTYPE(arrayval),
    1941             :                           elmlen, elmbyval, elmalign,
    1942             :                           &elem_values, &elem_nulls, &num_elems);
    1943             : 
    1944             :         /*
    1945             :          * For generic operators, we assume the probability of success is
    1946             :          * independent for each array element.  But for "= ANY" or "<> ALL",
    1947             :          * if the array elements are distinct (which'd typically be the case)
    1948             :          * then the probabilities are disjoint, and we should just sum them.
    1949             :          *
    1950             :          * If we were being really tense we would try to confirm that the
    1951             :          * elements are all distinct, but that would be expensive and it
    1952             :          * doesn't seem to be worth the cycles; it would amount to penalizing
    1953             :          * well-written queries in favor of poorly-written ones.  However, we
    1954             :          * do protect ourselves a little bit by checking whether the
    1955             :          * disjointness assumption leads to an impossible (out of range)
    1956             :          * probability; if so, we fall back to the normal calculation.
    1957             :          */
    1958       16022 :         s1 = s1disjoint = (useOr ? 0.0 : 1.0);
    1959             : 
    1960       62208 :         for (i = 0; i < num_elems; i++)
    1961             :         {
    1962             :             List       *args;
    1963             :             Selectivity s2;
    1964             : 
    1965       46186 :             args = list_make2(leftop,
    1966             :                               makeConst(nominal_element_type,
    1967             :                                         -1,
    1968             :                                         nominal_element_collation,
    1969             :                                         elmlen,
    1970             :                                         elem_values[i],
    1971             :                                         elem_nulls[i],
    1972             :                                         elmbyval));
    1973       46186 :             if (is_join_clause)
    1974           0 :                 s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
    1975             :                                                       clause->inputcollid,
    1976             :                                                       PointerGetDatum(root),
    1977             :                                                       ObjectIdGetDatum(operator),
    1978             :                                                       PointerGetDatum(args),
    1979             :                                                       Int16GetDatum(jointype),
    1980             :                                                       PointerGetDatum(sjinfo)));
    1981             :             else
    1982       46186 :                 s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
    1983             :                                                       clause->inputcollid,
    1984             :                                                       PointerGetDatum(root),
    1985             :                                                       ObjectIdGetDatum(operator),
    1986             :                                                       PointerGetDatum(args),
    1987             :                                                       Int32GetDatum(varRelid)));
    1988             : 
    1989       46186 :             if (useOr)
    1990             :             {
    1991       34960 :                 s1 = s1 + s2 - s1 * s2;
    1992       34960 :                 if (isEquality)
    1993       34096 :                     s1disjoint += s2;
    1994             :             }
    1995             :             else
    1996             :             {
    1997       11226 :                 s1 = s1 * s2;
    1998       11226 :                 if (isInequality)
    1999       10914 :                     s1disjoint += s2 - 1.0;
    2000             :             }
    2001             :         }
    2002             : 
    2003             :         /* accept disjoint-probability estimate if in range */
    2004       16022 :         if ((useOr ? isEquality : isInequality) &&
    2005       15428 :             s1disjoint >= 0.0 && s1disjoint <= 1.0)
    2006       15398 :             s1 = s1disjoint;
    2007             :     }
    2008        3624 :     else if (rightop && IsA(rightop, ArrayExpr) &&
    2009         122 :              !((ArrayExpr *) rightop)->multidims)
    2010         122 :     {
    2011         122 :         ArrayExpr  *arrayexpr = (ArrayExpr *) rightop;
    2012             :         int16       elmlen;
    2013             :         bool        elmbyval;
    2014             :         ListCell   *l;
    2015             : 
    2016         122 :         get_typlenbyval(arrayexpr->element_typeid,
    2017             :                         &elmlen, &elmbyval);
    2018             : 
    2019             :         /*
    2020             :          * We use the assumption of disjoint probabilities here too, although
    2021             :          * the odds of equal array elements are rather higher if the elements
    2022             :          * are not all constants (which they won't be, else constant folding
    2023             :          * would have reduced the ArrayExpr to a Const).  In this path it's
    2024             :          * critical to have the sanity check on the s1disjoint estimate.
    2025             :          */
    2026         122 :         s1 = s1disjoint = (useOr ? 0.0 : 1.0);
    2027             : 
    2028         440 :         foreach(l, arrayexpr->elements)
    2029             :         {
    2030         318 :             Node       *elem = (Node *) lfirst(l);
    2031             :             List       *args;
    2032             :             Selectivity s2;
    2033             : 
    2034             :             /*
    2035             :              * Theoretically, if elem isn't of nominal_element_type we should
    2036             :              * insert a RelabelType, but it seems unlikely that any operator
    2037             :              * estimation function would really care ...
    2038             :              */
    2039         318 :             args = list_make2(leftop, elem);
    2040         318 :             if (is_join_clause)
    2041           0 :                 s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
    2042             :                                                       clause->inputcollid,
    2043             :                                                       PointerGetDatum(root),
    2044             :                                                       ObjectIdGetDatum(operator),
    2045             :                                                       PointerGetDatum(args),
    2046             :                                                       Int16GetDatum(jointype),
    2047             :                                                       PointerGetDatum(sjinfo)));
    2048             :             else
    2049         318 :                 s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
    2050             :                                                       clause->inputcollid,
    2051             :                                                       PointerGetDatum(root),
    2052             :                                                       ObjectIdGetDatum(operator),
    2053             :                                                       PointerGetDatum(args),
    2054             :                                                       Int32GetDatum(varRelid)));
    2055             : 
    2056         318 :             if (useOr)
    2057             :             {
    2058         318 :                 s1 = s1 + s2 - s1 * s2;
    2059         318 :                 if (isEquality)
    2060         318 :                     s1disjoint += s2;
    2061             :             }
    2062             :             else
    2063             :             {
    2064           0 :                 s1 = s1 * s2;
    2065           0 :                 if (isInequality)
    2066           0 :                     s1disjoint += s2 - 1.0;
    2067             :             }
    2068             :         }
    2069             : 
    2070             :         /* accept disjoint-probability estimate if in range */
    2071         122 :         if ((useOr ? isEquality : isInequality) &&
    2072         122 :             s1disjoint >= 0.0 && s1disjoint <= 1.0)
    2073         122 :             s1 = s1disjoint;
    2074             :     }
    2075             :     else
    2076             :     {
    2077             :         CaseTestExpr *dummyexpr;
    2078             :         List       *args;
    2079             :         Selectivity s2;
    2080             :         int         i;
    2081             : 
    2082             :         /*
    2083             :          * We need a dummy rightop to pass to the operator selectivity
    2084             :          * routine.  It can be pretty much anything that doesn't look like a
    2085             :          * constant; CaseTestExpr is a convenient choice.
    2086             :          */
    2087        3502 :         dummyexpr = makeNode(CaseTestExpr);
    2088        3502 :         dummyexpr->typeId = nominal_element_type;
    2089        3502 :         dummyexpr->typeMod = -1;
    2090        3502 :         dummyexpr->collation = clause->inputcollid;
    2091        3502 :         args = list_make2(leftop, dummyexpr);
    2092        3502 :         if (is_join_clause)
    2093           0 :             s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
    2094             :                                                   clause->inputcollid,
    2095             :                                                   PointerGetDatum(root),
    2096             :                                                   ObjectIdGetDatum(operator),
    2097             :                                                   PointerGetDatum(args),
    2098             :                                                   Int16GetDatum(jointype),
    2099             :                                                   PointerGetDatum(sjinfo)));
    2100             :         else
    2101        3502 :             s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
    2102             :                                                   clause->inputcollid,
    2103             :                                                   PointerGetDatum(root),
    2104             :                                                   ObjectIdGetDatum(operator),
    2105             :                                                   PointerGetDatum(args),
    2106             :                                                   Int32GetDatum(varRelid)));
    2107        3502 :         s1 = useOr ? 0.0 : 1.0;
    2108             : 
    2109             :         /*
    2110             :          * Arbitrarily assume 10 elements in the eventual array value (see
    2111             :          * also estimate_array_length).  We don't risk an assumption of
    2112             :          * disjoint probabilities here.
    2113             :          */
    2114       38522 :         for (i = 0; i < 10; i++)
    2115             :         {
    2116       35020 :             if (useOr)
    2117       35020 :                 s1 = s1 + s2 - s1 * s2;
    2118             :             else
    2119           0 :                 s1 = s1 * s2;
    2120             :         }
    2121             :     }
    2122             : 
    2123             :     /* result should be in range, but make sure... */
    2124       19646 :     CLAMP_PROBABILITY(s1);
    2125             : 
    2126       19646 :     return s1;
    2127             : }
    2128             : 
    2129             : /*
    2130             :  * Estimate number of elements in the array yielded by an expression.
    2131             :  *
    2132             :  * Note: the result is integral, but we use "double" to avoid overflow
    2133             :  * concerns.  Most callers will use it in double-type expressions anyway.
    2134             :  *
    2135             :  * Note: in some code paths root can be passed as NULL, resulting in
    2136             :  * slightly worse estimates.
    2137             :  */
    2138             : double
    2139       95442 : estimate_array_length(PlannerInfo *root, Node *arrayexpr)
    2140             : {
    2141             :     /* look through any binary-compatible relabeling of arrayexpr */
    2142       95442 :     arrayexpr = strip_array_coercion(arrayexpr);
    2143             : 
    2144       95442 :     if (arrayexpr && IsA(arrayexpr, Const))
    2145             :     {
    2146       42692 :         Datum       arraydatum = ((Const *) arrayexpr)->constvalue;
    2147       42692 :         bool        arrayisnull = ((Const *) arrayexpr)->constisnull;
    2148             :         ArrayType  *arrayval;
    2149             : 
    2150       42692 :         if (arrayisnull)
    2151          42 :             return 0;
    2152       42650 :         arrayval = DatumGetArrayTypeP(arraydatum);
    2153       42650 :         return ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
    2154             :     }
    2155       52750 :     else if (arrayexpr && IsA(arrayexpr, ArrayExpr) &&
    2156         436 :              !((ArrayExpr *) arrayexpr)->multidims)
    2157             :     {
    2158         436 :         return list_length(((ArrayExpr *) arrayexpr)->elements);
    2159             :     }
    2160       52314 :     else if (arrayexpr && root)
    2161             :     {
    2162             :         /* See if we can find any statistics about it */
    2163             :         VariableStatData vardata;
    2164             :         AttStatsSlot sslot;
    2165       52314 :         double      nelem = 0;
    2166             : 
    2167       52314 :         examine_variable(root, arrayexpr, 0, &vardata);
    2168       52314 :         if (HeapTupleIsValid(vardata.statsTuple))
    2169             :         {
    2170             :             /*
    2171             :              * Found stats, so use the average element count, which is stored
    2172             :              * in the last stanumbers element of the DECHIST statistics.
    2173             :              * Actually that is the average count of *distinct* elements;
    2174             :              * perhaps we should scale it up somewhat?
    2175             :              */
    2176        3284 :             if (get_attstatsslot(&sslot, vardata.statsTuple,
    2177             :                                  STATISTIC_KIND_DECHIST, InvalidOid,
    2178             :                                  ATTSTATSSLOT_NUMBERS))
    2179             :             {
    2180        3170 :                 if (sslot.nnumbers > 0)
    2181        3170 :                     nelem = clamp_row_est(sslot.numbers[sslot.nnumbers - 1]);
    2182        3170 :                 free_attstatsslot(&sslot);
    2183             :             }
    2184             :         }
    2185       52314 :         ReleaseVariableStats(vardata);
    2186             : 
    2187       52314 :         if (nelem > 0)
    2188        3170 :             return nelem;
    2189             :     }
    2190             : 
    2191             :     /* Else use a default guess --- this should match scalararraysel */
    2192       49144 :     return 10;
    2193             : }
    2194             : 
    2195             : /*
    2196             :  *      rowcomparesel       - Selectivity of RowCompareExpr Node.
    2197             :  *
    2198             :  * We estimate RowCompare selectivity by considering just the first (high
    2199             :  * order) columns, which makes it equivalent to an ordinary OpExpr.  While
    2200             :  * this estimate could be refined by considering additional columns, it
    2201             :  * seems unlikely that we could do a lot better without multi-column
    2202             :  * statistics.
    2203             :  */
    2204             : Selectivity
    2205         156 : rowcomparesel(PlannerInfo *root,
    2206             :               RowCompareExpr *clause,
    2207             :               int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
    2208             : {
    2209             :     Selectivity s1;
    2210         156 :     Oid         opno = linitial_oid(clause->opnos);
    2211         156 :     Oid         inputcollid = linitial_oid(clause->inputcollids);
    2212             :     List       *opargs;
    2213             :     bool        is_join_clause;
    2214             : 
    2215             :     /* Build equivalent arg list for single operator */
    2216         156 :     opargs = list_make2(linitial(clause->largs), linitial(clause->rargs));
    2217             : 
    2218             :     /*
    2219             :      * Decide if it's a join clause.  This should match clausesel.c's
    2220             :      * treat_as_join_clause(), except that we intentionally consider only the
    2221             :      * leading columns and not the rest of the clause.
    2222             :      */
    2223         156 :     if (varRelid != 0)
    2224             :     {
    2225             :         /*
    2226             :          * Caller is forcing restriction mode (eg, because we are examining an
    2227             :          * inner indexscan qual).
    2228             :          */
    2229          54 :         is_join_clause = false;
    2230             :     }
    2231         102 :     else if (sjinfo == NULL)
    2232             :     {
    2233             :         /*
    2234             :          * It must be a restriction clause, since it's being evaluated at a
    2235             :          * scan node.
    2236             :          */
    2237          90 :         is_join_clause = false;
    2238             :     }
    2239             :     else
    2240             :     {
    2241             :         /*
    2242             :          * Otherwise, it's a join if there's more than one base relation used.
    2243             :          */
    2244          12 :         is_join_clause = (NumRelids(root, (Node *) opargs) > 1);
    2245             :     }
    2246             : 
    2247         156 :     if (is_join_clause)
    2248             :     {
    2249             :         /* Estimate selectivity for a join clause. */
    2250          12 :         s1 = join_selectivity(root, opno,
    2251             :                               opargs,
    2252             :                               inputcollid,
    2253             :                               jointype,
    2254             :                               sjinfo);
    2255             :     }
    2256             :     else
    2257             :     {
    2258             :         /* Estimate selectivity for a restriction clause. */
    2259         144 :         s1 = restriction_selectivity(root, opno,
    2260             :                                      opargs,
    2261             :                                      inputcollid,
    2262             :                                      varRelid);
    2263             :     }
    2264             : 
    2265         156 :     return s1;
    2266             : }
    2267             : 
    2268             : /*
    2269             :  *      eqjoinsel       - Join selectivity of "="
    2270             :  */
    2271             : Datum
    2272      196308 : eqjoinsel(PG_FUNCTION_ARGS)
    2273             : {
    2274      196308 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
    2275      196308 :     Oid         operator = PG_GETARG_OID(1);
    2276      196308 :     List       *args = (List *) PG_GETARG_POINTER(2);
    2277             : 
    2278             : #ifdef NOT_USED
    2279             :     JoinType    jointype = (JoinType) PG_GETARG_INT16(3);
    2280             : #endif
    2281      196308 :     SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
    2282      196308 :     Oid         collation = PG_GET_COLLATION();
    2283             :     double      selec;
    2284             :     double      selec_inner;
    2285             :     VariableStatData vardata1;
    2286             :     VariableStatData vardata2;
    2287             :     double      nd1;
    2288             :     double      nd2;
    2289             :     bool        isdefault1;
    2290             :     bool        isdefault2;
    2291             :     Oid         opfuncoid;
    2292             :     AttStatsSlot sslot1;
    2293             :     AttStatsSlot sslot2;
    2294      196308 :     Form_pg_statistic stats1 = NULL;
    2295      196308 :     Form_pg_statistic stats2 = NULL;
    2296      196308 :     bool        have_mcvs1 = false;
    2297      196308 :     bool        have_mcvs2 = false;
    2298             :     bool        get_mcv_stats;
    2299             :     bool        join_is_reversed;
    2300             :     RelOptInfo *inner_rel;
    2301             : 
    2302      196308 :     get_join_variables(root, args, sjinfo,
    2303             :                        &vardata1, &vardata2, &join_is_reversed);
    2304             : 
    2305      196308 :     nd1 = get_variable_numdistinct(&vardata1, &isdefault1);
    2306      196308 :     nd2 = get_variable_numdistinct(&vardata2, &isdefault2);
    2307             : 
    2308      196308 :     opfuncoid = get_opcode(operator);
    2309             : 
    2310      196308 :     memset(&sslot1, 0, sizeof(sslot1));
    2311      196308 :     memset(&sslot2, 0, sizeof(sslot2));
    2312             : 
    2313             :     /*
    2314             :      * There is no use in fetching one side's MCVs if we lack MCVs for the
    2315             :      * other side, so do a quick check to verify that both stats exist.
    2316             :      */
    2317      549758 :     get_mcv_stats = (HeapTupleIsValid(vardata1.statsTuple) &&
    2318      278440 :                      HeapTupleIsValid(vardata2.statsTuple) &&
    2319      121298 :                      get_attstatsslot(&sslot1, vardata1.statsTuple,
    2320             :                                       STATISTIC_KIND_MCV, InvalidOid,
    2321      353450 :                                       0) &&
    2322       47866 :                      get_attstatsslot(&sslot2, vardata2.statsTuple,
    2323             :                                       STATISTIC_KIND_MCV, InvalidOid,
    2324             :                                       0));
    2325             : 
    2326      196308 :     if (HeapTupleIsValid(vardata1.statsTuple))
    2327             :     {
    2328             :         /* note we allow use of nullfrac regardless of security check */
    2329      157142 :         stats1 = (Form_pg_statistic) GETSTRUCT(vardata1.statsTuple);
    2330      169684 :         if (get_mcv_stats &&
    2331       12542 :             statistic_proc_security_check(&vardata1, opfuncoid))
    2332       12542 :             have_mcvs1 = get_attstatsslot(&sslot1, vardata1.statsTuple,
    2333             :                                           STATISTIC_KIND_MCV, InvalidOid,
    2334             :                                           ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
    2335             :     }
    2336             : 
    2337      196308 :     if (HeapTupleIsValid(vardata2.statsTuple))
    2338             :     {
    2339             :         /* note we allow use of nullfrac regardless of security check */
    2340      131688 :         stats2 = (Form_pg_statistic) GETSTRUCT(vardata2.statsTuple);
    2341      144230 :         if (get_mcv_stats &&
    2342       12542 :             statistic_proc_security_check(&vardata2, opfuncoid))
    2343       12542 :             have_mcvs2 = get_attstatsslot(&sslot2, vardata2.statsTuple,
    2344             :                                           STATISTIC_KIND_MCV, InvalidOid,
    2345             :                                           ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
    2346             :     }
    2347             : 
    2348             :     /* We need to compute the inner-join selectivity in all cases */
    2349      196308 :     selec_inner = eqjoinsel_inner(opfuncoid, collation,
    2350             :                                   &vardata1, &vardata2,
    2351             :                                   nd1, nd2,
    2352             :                                   isdefault1, isdefault2,
    2353             :                                   &sslot1, &sslot2,
    2354             :                                   stats1, stats2,
    2355             :                                   have_mcvs1, have_mcvs2);
    2356             : 
    2357      196308 :     switch (sjinfo->jointype)
    2358             :     {
    2359      189240 :         case JOIN_INNER:
    2360             :         case JOIN_LEFT:
    2361             :         case JOIN_FULL:
    2362      189240 :             selec = selec_inner;
    2363      189240 :             break;
    2364        7068 :         case JOIN_SEMI:
    2365             :         case JOIN_ANTI:
    2366             : 
    2367             :             /*
    2368             :              * Look up the join's inner relation.  min_righthand is sufficient
    2369             :              * information because neither SEMI nor ANTI joins permit any
    2370             :              * reassociation into or out of their RHS, so the righthand will
    2371             :              * always be exactly that set of rels.
    2372             :              */
    2373        7068 :             inner_rel = find_join_input_rel(root, sjinfo->min_righthand);
    2374             : 
    2375        7068 :             if (!join_is_reversed)
    2376        3420 :                 selec = eqjoinsel_semi(opfuncoid, collation,
    2377             :                                        &vardata1, &vardata2,
    2378             :                                        nd1, nd2,
    2379             :                                        isdefault1, isdefault2,
    2380             :                                        &sslot1, &sslot2,
    2381             :                                        stats1, stats2,
    2382             :                                        have_mcvs1, have_mcvs2,
    2383             :                                        inner_rel);
    2384             :             else
    2385             :             {
    2386        3648 :                 Oid         commop = get_commutator(operator);
    2387        3648 :                 Oid         commopfuncoid = OidIsValid(commop) ? get_opcode(commop) : InvalidOid;
    2388             : 
    2389        3648 :                 selec = eqjoinsel_semi(commopfuncoid, collation,
    2390             :                                        &vardata2, &vardata1,
    2391             :                                        nd2, nd1,
    2392             :                                        isdefault2, isdefault1,
    2393             :                                        &sslot2, &sslot1,
    2394             :                                        stats2, stats1,
    2395             :                                        have_mcvs2, have_mcvs1,
    2396             :                                        inner_rel);
    2397             :             }
    2398             : 
    2399             :             /*
    2400             :              * We should never estimate the output of a semijoin to be more
    2401             :              * rows than we estimate for an inner join with the same input
    2402             :              * rels and join condition; it's obviously impossible for that to
    2403             :              * happen.  The former estimate is N1 * Ssemi while the latter is
    2404             :              * N1 * N2 * Sinner, so we may clamp Ssemi <= N2 * Sinner.  Doing
    2405             :              * this is worthwhile because of the shakier estimation rules we
    2406             :              * use in eqjoinsel_semi, particularly in cases where it has to
    2407             :              * punt entirely.
    2408             :              */
    2409        7068 :             selec = Min(selec, inner_rel->rows * selec_inner);
    2410        7068 :             break;
    2411           0 :         default:
    2412             :             /* other values not expected here */
    2413           0 :             elog(ERROR, "unrecognized join type: %d",
    2414             :                  (int) sjinfo->jointype);
    2415             :             selec = 0;          /* keep compiler quiet */
    2416             :             break;
    2417             :     }
    2418             : 
    2419      196308 :     free_attstatsslot(&sslot1);
    2420      196308 :     free_attstatsslot(&sslot2);
    2421             : 
    2422      196308 :     ReleaseVariableStats(vardata1);
    2423      196308 :     ReleaseVariableStats(vardata2);
    2424             : 
    2425      196308 :     CLAMP_PROBABILITY(selec);
    2426             : 
    2427      196308 :     PG_RETURN_FLOAT8((float8) selec);
    2428             : }
    2429             : 
    2430             : /*
    2431             :  * eqjoinsel_inner --- eqjoinsel for normal inner join
    2432             :  *
    2433             :  * We also use this for LEFT/FULL outer joins; it's not presently clear
    2434             :  * that it's worth trying to distinguish them here.
    2435             :  */
    2436             : static double
    2437      196308 : eqjoinsel_inner(Oid opfuncoid, Oid collation,
    2438             :                 VariableStatData *vardata1, VariableStatData *vardata2,
    2439             :                 double nd1, double nd2,
    2440             :                 bool isdefault1, bool isdefault2,
    2441             :                 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
    2442             :                 Form_pg_statistic stats1, Form_pg_statistic stats2,
    2443             :                 bool have_mcvs1, bool have_mcvs2)
    2444             : {
    2445             :     double      selec;
    2446             : 
    2447      196308 :     if (have_mcvs1 && have_mcvs2)
    2448       12542 :     {
    2449             :         /*
    2450             :          * We have most-common-value lists for both relations.  Run through
    2451             :          * the lists to see which MCVs actually join to each other with the
    2452             :          * given operator.  This allows us to determine the exact join
    2453             :          * selectivity for the portion of the relations represented by the MCV
    2454             :          * lists.  We still have to estimate for the remaining population, but
    2455             :          * in a skewed distribution this gives us a big leg up in accuracy.
    2456             :          * For motivation see the analysis in Y. Ioannidis and S.
    2457             :          * Christodoulakis, "On the propagation of errors in the size of join
    2458             :          * results", Technical Report 1018, Computer Science Dept., University
    2459             :          * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu).
    2460             :          */
    2461       12542 :         LOCAL_FCINFO(fcinfo, 2);
    2462             :         FmgrInfo    eqproc;
    2463             :         bool       *hasmatch1;
    2464             :         bool       *hasmatch2;
    2465       12542 :         double      nullfrac1 = stats1->stanullfrac;
    2466       12542 :         double      nullfrac2 = stats2->stanullfrac;
    2467             :         double      matchprodfreq,
    2468             :                     matchfreq1,
    2469             :                     matchfreq2,
    2470             :                     unmatchfreq1,
    2471             :                     unmatchfreq2,
    2472             :                     otherfreq1,
    2473             :                     otherfreq2,
    2474             :                     totalsel1,
    2475             :                     totalsel2;
    2476             :         int         i,
    2477             :                     nmatches;
    2478             : 
    2479       12542 :         fmgr_info(opfuncoid, &eqproc);
    2480             : 
    2481             :         /*
    2482             :          * Save a few cycles by setting up the fcinfo struct just once. Using
    2483             :          * FunctionCallInvoke directly also avoids failure if the eqproc
    2484             :          * returns NULL, though really equality functions should never do
    2485             :          * that.
    2486             :          */
    2487       12542 :         InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
    2488             :                                  NULL, NULL);
    2489       12542 :         fcinfo->args[0].isnull = false;
    2490       12542 :         fcinfo->args[1].isnull = false;
    2491             : 
    2492       12542 :         hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool));
    2493       12542 :         hasmatch2 = (bool *) palloc0(sslot2->nvalues * sizeof(bool));
    2494             : 
    2495             :         /*
    2496             :          * Note we assume that each MCV will match at most one member of the
    2497             :          * other MCV list.  If the operator isn't really equality, there could
    2498             :          * be multiple matches --- but we don't look for them, both for speed
    2499             :          * and because the math wouldn't add up...
    2500             :          */
    2501       12542 :         matchprodfreq = 0.0;
    2502       12542 :         nmatches = 0;
    2503      519952 :         for (i = 0; i < sslot1->nvalues; i++)
    2504             :         {
    2505             :             int         j;
    2506             : 
    2507      507410 :             fcinfo->args[0].value = sslot1->values[i];
    2508             : 
    2509    19759264 :             for (j = 0; j < sslot2->nvalues; j++)
    2510             :             {
    2511             :                 Datum       fresult;
    2512             : 
    2513    19426928 :                 if (hasmatch2[j])
    2514     5274712 :                     continue;
    2515    14152216 :                 fcinfo->args[1].value = sslot2->values[j];
    2516    14152216 :                 fcinfo->isnull = false;
    2517    14152216 :                 fresult = FunctionCallInvoke(fcinfo);
    2518    14152216 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
    2519             :                 {
    2520      175074 :                     hasmatch1[i] = hasmatch2[j] = true;
    2521      175074 :                     matchprodfreq += sslot1->numbers[i] * sslot2->numbers[j];
    2522      175074 :                     nmatches++;
    2523      175074 :                     break;
    2524             :                 }
    2525             :             }
    2526             :         }
    2527       12542 :         CLAMP_PROBABILITY(matchprodfreq);
    2528             :         /* Sum up frequencies of matched and unmatched MCVs */
    2529       12542 :         matchfreq1 = unmatchfreq1 = 0.0;
    2530      519952 :         for (i = 0; i < sslot1->nvalues; i++)
    2531             :         {
    2532      507410 :             if (hasmatch1[i])
    2533      175074 :                 matchfreq1 += sslot1->numbers[i];
    2534             :             else
    2535      332336 :                 unmatchfreq1 += sslot1->numbers[i];
    2536             :         }
    2537       12542 :         CLAMP_PROBABILITY(matchfreq1);
    2538       12542 :         CLAMP_PROBABILITY(unmatchfreq1);
    2539       12542 :         matchfreq2 = unmatchfreq2 = 0.0;
    2540      353076 :         for (i = 0; i < sslot2->nvalues; i++)
    2541             :         {
    2542      340534 :             if (hasmatch2[i])
    2543      175074 :                 matchfreq2 += sslot2->numbers[i];
    2544             :             else
    2545      165460 :                 unmatchfreq2 += sslot2->numbers[i];
    2546             :         }
    2547       12542 :         CLAMP_PROBABILITY(matchfreq2);
    2548       12542 :         CLAMP_PROBABILITY(unmatchfreq2);
    2549       12542 :         pfree(hasmatch1);
    2550       12542 :         pfree(hasmatch2);
    2551             : 
    2552             :         /*
    2553             :          * Compute total frequency of non-null values that are not in the MCV
    2554             :          * lists.
    2555             :          */
    2556       12542 :         otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1;
    2557       12542 :         otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2;
    2558       12542 :         CLAMP_PROBABILITY(otherfreq1);
    2559       12542 :         CLAMP_PROBABILITY(otherfreq2);
    2560             : 
    2561             :         /*
    2562             :          * We can estimate the total selectivity from the point of view of
    2563             :          * relation 1 as: the known selectivity for matched MCVs, plus
    2564             :          * unmatched MCVs that are assumed to match against random members of
    2565             :          * relation 2's non-MCV population, plus non-MCV values that are
    2566             :          * assumed to match against random members of relation 2's unmatched
    2567             :          * MCVs plus non-MCV values.
    2568             :          */
    2569       12542 :         totalsel1 = matchprodfreq;
    2570       12542 :         if (nd2 > sslot2->nvalues)
    2571        5214 :             totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - sslot2->nvalues);
    2572       12542 :         if (nd2 > nmatches)
    2573        9628 :             totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
    2574        9628 :                 (nd2 - nmatches);
    2575             :         /* Same estimate from the point of view of relation 2. */
    2576       12542 :         totalsel2 = matchprodfreq;
    2577       12542 :         if (nd1 > sslot1->nvalues)
    2578        6136 :             totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - sslot1->nvalues);
    2579       12542 :         if (nd1 > nmatches)
    2580        8536 :             totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
    2581        8536 :                 (nd1 - nmatches);
    2582             : 
    2583             :         /*
    2584             :          * Use the smaller of the two estimates.  This can be justified in
    2585             :          * essentially the same terms as given below for the no-stats case: to
    2586             :          * a first approximation, we are estimating from the point of view of
    2587             :          * the relation with smaller nd.
    2588             :          */
    2589       12542 :         selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2;
    2590             :     }
    2591             :     else
    2592             :     {
    2593             :         /*
    2594             :          * We do not have MCV lists for both sides.  Estimate the join
    2595             :          * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This
    2596             :          * is plausible if we assume that the join operator is strict and the
    2597             :          * non-null values are about equally distributed: a given non-null
    2598             :          * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows
    2599             :          * of rel2, so total join rows are at most
    2600             :          * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of
    2601             :          * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it
    2602             :          * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression
    2603             :          * with MIN() is an upper bound.  Using the MIN() means we estimate
    2604             :          * from the point of view of the relation with smaller nd (since the
    2605             :          * larger nd is determining the MIN).  It is reasonable to assume that
    2606             :          * most tuples in this rel will have join partners, so the bound is
    2607             :          * probably reasonably tight and should be taken as-is.
    2608             :          *
    2609             :          * XXX Can we be smarter if we have an MCV list for just one side? It
    2610             :          * seems that if we assume equal distribution for the other side, we
    2611             :          * end up with the same answer anyway.
    2612             :          */
    2613      183766 :         double      nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
    2614      183766 :         double      nullfrac2 = stats2 ? stats2->stanullfrac : 0.0;
    2615             : 
    2616      183766 :         selec = (1.0 - nullfrac1) * (1.0 - nullfrac2);
    2617      183766 :         if (nd1 > nd2)
    2618       92850 :             selec /= nd1;
    2619             :         else
    2620       90916 :             selec /= nd2;
    2621             :     }
    2622             : 
    2623      196308 :     return selec;
    2624             : }
    2625             : 
    2626             : /*
    2627             :  * eqjoinsel_semi --- eqjoinsel for semi join
    2628             :  *
    2629             :  * (Also used for anti join, which we are supposed to estimate the same way.)
    2630             :  * Caller has ensured that vardata1 is the LHS variable.
    2631             :  * Unlike eqjoinsel_inner, we have to cope with opfuncoid being InvalidOid.
    2632             :  */
    2633             : static double
    2634        7068 : eqjoinsel_semi(Oid opfuncoid, Oid collation,
    2635             :                VariableStatData *vardata1, VariableStatData *vardata2,
    2636             :                double nd1, double nd2,
    2637             :                bool isdefault1, bool isdefault2,
    2638             :                AttStatsSlot *sslot1, AttStatsSlot *sslot2,
    2639             :                Form_pg_statistic stats1, Form_pg_statistic stats2,
    2640             :                bool have_mcvs1, bool have_mcvs2,
    2641             :                RelOptInfo *inner_rel)
    2642             : {
    2643             :     double      selec;
    2644             : 
    2645             :     /*
    2646             :      * We clamp nd2 to be not more than what we estimate the inner relation's
    2647             :      * size to be.  This is intuitively somewhat reasonable since obviously
    2648             :      * there can't be more than that many distinct values coming from the
    2649             :      * inner rel.  The reason for the asymmetry (ie, that we don't clamp nd1
    2650             :      * likewise) is that this is the only pathway by which restriction clauses
    2651             :      * applied to the inner rel will affect the join result size estimate,
    2652             :      * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by
    2653             :      * only the outer rel's size.  If we clamped nd1 we'd be double-counting
    2654             :      * the selectivity of outer-rel restrictions.
    2655             :      *
    2656             :      * We can apply this clamping both with respect to the base relation from
    2657             :      * which the join variable comes (if there is just one), and to the
    2658             :      * immediate inner input relation of the current join.
    2659             :      *
    2660             :      * If we clamp, we can treat nd2 as being a non-default estimate; it's not
    2661             :      * great, maybe, but it didn't come out of nowhere either.  This is most
    2662             :      * helpful when the inner relation is empty and consequently has no stats.
    2663             :      */
    2664        7068 :     if (vardata2->rel)
    2665             :     {
    2666        7062 :         if (nd2 >= vardata2->rel->rows)
    2667             :         {
    2668        5390 :             nd2 = vardata2->rel->rows;
    2669        5390 :             isdefault2 = false;
    2670             :         }
    2671             :     }
    2672        7068 :     if (nd2 >= inner_rel->rows)
    2673             :     {
    2674        5372 :         nd2 = inner_rel->rows;
    2675        5372 :         isdefault2 = false;
    2676             :     }
    2677             : 
    2678        7068 :     if (have_mcvs1 && have_mcvs2 && OidIsValid(opfuncoid))
    2679         510 :     {
    2680             :         /*
    2681             :          * We have most-common-value lists for both relations.  Run through
    2682             :          * the lists to see which MCVs actually join to each other with the
    2683             :          * given operator.  This allows us to determine the exact join
    2684             :          * selectivity for the portion of the relations represented by the MCV
    2685             :          * lists.  We still have to estimate for the remaining population, but
    2686             :          * in a skewed distribution this gives us a big leg up in accuracy.
    2687             :          */
    2688         510 :         LOCAL_FCINFO(fcinfo, 2);
    2689             :         FmgrInfo    eqproc;
    2690             :         bool       *hasmatch1;
    2691             :         bool       *hasmatch2;
    2692         510 :         double      nullfrac1 = stats1->stanullfrac;
    2693             :         double      matchfreq1,
    2694             :                     uncertainfrac,
    2695             :                     uncertain;
    2696             :         int         i,
    2697             :                     nmatches,
    2698             :                     clamped_nvalues2;
    2699             : 
    2700             :         /*
    2701             :          * The clamping above could have resulted in nd2 being less than
    2702             :          * sslot2->nvalues; in which case, we assume that precisely the nd2
    2703             :          * most common values in the relation will appear in the join input,
    2704             :          * and so compare to only the first nd2 members of the MCV list.  Of
    2705             :          * course this is frequently wrong, but it's the best bet we can make.
    2706             :          */
    2707         510 :         clamped_nvalues2 = Min(sslot2->nvalues, nd2);
    2708             : 
    2709         510 :         fmgr_info(opfuncoid, &eqproc);
    2710             : 
    2711             :         /*
    2712             :          * Save a few cycles by setting up the fcinfo struct just once. Using
    2713             :          * FunctionCallInvoke directly also avoids failure if the eqproc
    2714             :          * returns NULL, though really equality functions should never do
    2715             :          * that.
    2716             :          */
    2717         510 :         InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
    2718             :                                  NULL, NULL);
    2719         510 :         fcinfo->args[0].isnull = false;
    2720         510 :         fcinfo->args[1].isnull = false;
    2721             : 
    2722         510 :         hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool));
    2723         510 :         hasmatch2 = (bool *) palloc0(clamped_nvalues2 * sizeof(bool));
    2724             : 
    2725             :         /*
    2726             :          * Note we assume that each MCV will match at most one member of the
    2727             :          * other MCV list.  If the operator isn't really equality, there could
    2728             :          * be multiple matches --- but we don't look for them, both for speed
    2729             :          * and because the math wouldn't add up...
    2730             :          */
    2731         510 :         nmatches = 0;
    2732       11832 :         for (i = 0; i < sslot1->nvalues; i++)
    2733             :         {
    2734             :             int         j;
    2735             : 
    2736       11322 :             fcinfo->args[0].value = sslot1->values[i];
    2737             : 
    2738      432222 :             for (j = 0; j < clamped_nvalues2; j++)
    2739             :             {
    2740             :                 Datum       fresult;
    2741             : 
    2742      431178 :                 if (hasmatch2[j])
    2743      376962 :                     continue;
    2744       54216 :                 fcinfo->args[1].value = sslot2->values[j];
    2745       54216 :                 fcinfo->isnull = false;
    2746       54216 :                 fresult = FunctionCallInvoke(fcinfo);
    2747       54216 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
    2748             :                 {
    2749       10278 :                     hasmatch1[i] = hasmatch2[j] = true;
    2750       10278 :                     nmatches++;
    2751       10278 :                     break;
    2752             :                 }
    2753             :             }
    2754             :         }
    2755             :         /* Sum up frequencies of matched MCVs */
    2756         510 :         matchfreq1 = 0.0;
    2757       11832 :         for (i = 0; i < sslot1->nvalues; i++)
    2758             :         {
    2759       11322 :             if (hasmatch1[i])
    2760       10278 :                 matchfreq1 += sslot1->numbers[i];
    2761             :         }
    2762         510 :         CLAMP_PROBABILITY(matchfreq1);
    2763         510 :         pfree(hasmatch1);
    2764         510 :         pfree(hasmatch2);
    2765             : 
    2766             :         /*
    2767             :          * Now we need to estimate the fraction of relation 1 that has at
    2768             :          * least one join partner.  We know for certain that the matched MCVs
    2769             :          * do, so that gives us a lower bound, but we're really in the dark
    2770             :          * about everything else.  Our crude approach is: if nd1 <= nd2 then
    2771             :          * assume all non-null rel1 rows have join partners, else assume for
    2772             :          * the uncertain rows that a fraction nd2/nd1 have join partners. We
    2773             :          * can discount the known-matched MCVs from the distinct-values counts
    2774             :          * before doing the division.
    2775             :          *
    2776             :          * Crude as the above is, it's completely useless if we don't have
    2777             :          * reliable ndistinct values for both sides.  Hence, if either nd1 or
    2778             :          * nd2 is default, punt and assume half of the uncertain rows have
    2779             :          * join partners.
    2780             :          */
    2781         510 :         if (!isdefault1 && !isdefault2)
    2782             :         {
    2783         510 :             nd1 -= nmatches;
    2784         510 :             nd2 -= nmatches;
    2785         510 :             if (nd1 <= nd2 || nd2 < 0)
    2786         480 :                 uncertainfrac = 1.0;
    2787             :             else
    2788          30 :                 uncertainfrac = nd2 / nd1;
    2789             :         }
    2790             :         else
    2791           0 :             uncertainfrac = 0.5;
    2792         510 :         uncertain = 1.0 - matchfreq1 - nullfrac1;
    2793         510 :         CLAMP_PROBABILITY(uncertain);
    2794         510 :         selec = matchfreq1 + uncertainfrac * uncertain;
    2795             :     }
    2796             :     else
    2797             :     {
    2798             :         /*
    2799             :          * Without MCV lists for both sides, we can only use the heuristic
    2800             :          * about nd1 vs nd2.
    2801             :          */
    2802        6558 :         double      nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
    2803             : 
    2804        6558 :         if (!isdefault1 && !isdefault2)
    2805             :         {
    2806        4648 :             if (nd1 <= nd2 || nd2 < 0)
    2807        2518 :                 selec = 1.0 - nullfrac1;
    2808             :             else
    2809        2130 :                 selec = (nd2 / nd1) * (1.0 - nullfrac1);
    2810             :         }
    2811             :         else
    2812        1910 :             selec = 0.5 * (1.0 - nullfrac1);
    2813             :     }
    2814             : 
    2815        7068 :     return selec;
    2816             : }
    2817             : 
    2818             : /*
    2819             :  *      neqjoinsel      - Join selectivity of "!="
    2820             :  */
    2821             : Datum
    2822        3296 : neqjoinsel(PG_FUNCTION_ARGS)
    2823             : {
    2824        3296 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
    2825        3296 :     Oid         operator = PG_GETARG_OID(1);
    2826        3296 :     List       *args = (List *) PG_GETARG_POINTER(2);
    2827        3296 :     JoinType    jointype = (JoinType) PG_GETARG_INT16(3);
    2828        3296 :     SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
    2829        3296 :     Oid         collation = PG_GET_COLLATION();
    2830             :     float8      result;
    2831             : 
    2832        3296 :     if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
    2833        1086 :     {
    2834             :         /*
    2835             :          * For semi-joins, if there is more than one distinct value in the RHS
    2836             :          * relation then every non-null LHS row must find a row to join since
    2837             :          * it can only be equal to one of them.  We'll assume that there is
    2838             :          * always more than one distinct RHS value for the sake of stability,
    2839             :          * though in theory we could have special cases for empty RHS
    2840             :          * (selectivity = 0) and single-distinct-value RHS (selectivity =
    2841             :          * fraction of LHS that has the same value as the single RHS value).
    2842             :          *
    2843             :          * For anti-joins, if we use the same assumption that there is more
    2844             :          * than one distinct key in the RHS relation, then every non-null LHS
    2845             :          * row must be suppressed by the anti-join.
    2846             :          *
    2847             :          * So either way, the selectivity estimate should be 1 - nullfrac.
    2848             :          */
    2849             :         VariableStatData leftvar;
    2850             :         VariableStatData rightvar;
    2851             :         bool        reversed;
    2852             :         HeapTuple   statsTuple;
    2853             :         double      nullfrac;
    2854             : 
    2855        1086 :         get_join_variables(root, args, sjinfo, &leftvar, &rightvar, &reversed);
    2856        1086 :         statsTuple = reversed ? rightvar.statsTuple : leftvar.statsTuple;
    2857        1086 :         if (HeapTupleIsValid(statsTuple))
    2858         892 :             nullfrac = ((Form_pg_statistic) GETSTRUCT(statsTuple))->stanullfrac;
    2859             :         else
    2860         194 :             nullfrac = 0.0;
    2861        1086 :         ReleaseVariableStats(leftvar);
    2862        1086 :         ReleaseVariableStats(rightvar);
    2863             : 
    2864        1086 :         result = 1.0 - nullfrac;
    2865             :     }
    2866             :     else
    2867             :     {
    2868             :         /*
    2869             :          * We want 1 - eqjoinsel() where the equality operator is the one
    2870             :          * associated with this != operator, that is, its negator.
    2871             :          */
    2872        2210 :         Oid         eqop = get_negator(operator);
    2873             : 
    2874        2210 :         if (eqop)
    2875             :         {
    2876             :             result =
    2877        2210 :                 DatumGetFloat8(DirectFunctionCall5Coll(eqjoinsel,
    2878             :                                                        collation,
    2879             :                                                        PointerGetDatum(root),
    2880             :                                                        ObjectIdGetDatum(eqop),
    2881             :                                                        PointerGetDatum(args),
    2882             :                                                        Int16GetDatum(jointype),
    2883             :                                                        PointerGetDatum(sjinfo)));
    2884             :         }
    2885             :         else
    2886             :         {
    2887             :             /* Use default selectivity (should we raise an error instead?) */
    2888           0 :             result = DEFAULT_EQ_SEL;
    2889             :         }
    2890        2210 :         result = 1.0 - result;
    2891             :     }
    2892             : 
    2893        3296 :     PG_RETURN_FLOAT8(result);
    2894             : }
    2895             : 
    2896             : /*
    2897             :  *      scalarltjoinsel - Join selectivity of "<" for scalars
    2898             :  */
    2899             : Datum
    2900         318 : scalarltjoinsel(PG_FUNCTION_ARGS)
    2901             : {
    2902         318 :     PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    2903             : }
    2904             : 
    2905             : /*
    2906             :  *      scalarlejoinsel - Join selectivity of "<=" for scalars
    2907             :  */
    2908             : Datum
    2909         276 : scalarlejoinsel(PG_FUNCTION_ARGS)
    2910             : {
    2911         276 :     PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    2912             : }
    2913             : 
    2914             : /*
    2915             :  *      scalargtjoinsel - Join selectivity of ">" for scalars
    2916             :  */
    2917             : Datum
    2918         234 : scalargtjoinsel(PG_FUNCTION_ARGS)
    2919             : {
    2920         234 :     PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    2921             : }
    2922             : 
    2923             : /*
    2924             :  *      scalargejoinsel - Join selectivity of ">=" for scalars
    2925             :  */
    2926             : Datum
    2927         184 : scalargejoinsel(PG_FUNCTION_ARGS)
    2928             : {
    2929         184 :     PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    2930             : }
    2931             : 
    2932             : 
    2933             : /*
    2934             :  * mergejoinscansel         - Scan selectivity of merge join.
    2935             :  *
    2936             :  * A merge join will stop as soon as it exhausts either input stream.
    2937             :  * Therefore, if we can estimate the ranges of both input variables,
    2938             :  * we can estimate how much of the input will actually be read.  This
    2939             :  * can have a considerable impact on the cost when using indexscans.
    2940             :  *
    2941             :  * Also, we can estimate how much of each input has to be read before the
    2942             :  * first join pair is found, which will affect the join's startup time.
    2943             :  *
    2944             :  * clause should be a clause already known to be mergejoinable.  opfamily,
    2945             :  * strategy, and nulls_first specify the sort ordering being used.
    2946             :  *
    2947             :  * The outputs are:
    2948             :  *      *leftstart is set to the fraction of the left-hand variable expected
    2949             :  *       to be scanned before the first join pair is found (0 to 1).
    2950             :  *      *leftend is set to the fraction of the left-hand variable expected
    2951             :  *       to be scanned before the join terminates (0 to 1).
    2952             :  *      *rightstart, *rightend similarly for the right-hand variable.
    2953             :  */
    2954             : void
    2955       99666 : mergejoinscansel(PlannerInfo *root, Node *clause,
    2956             :                  Oid opfamily, int strategy, bool nulls_first,
    2957             :                  Selectivity *leftstart, Selectivity *leftend,
    2958             :                  Selectivity *rightstart, Selectivity *rightend)
    2959             : {
    2960             :     Node       *left,
    2961             :                *right;
    2962             :     VariableStatData leftvar,
    2963             :                 rightvar;
    2964             :     int         op_strategy;
    2965             :     Oid         op_lefttype;
    2966             :     Oid         op_righttype;
    2967             :     Oid         opno,
    2968             :                 collation,
    2969             :                 lsortop,
    2970             :                 rsortop,
    2971             :                 lstatop,
    2972             :                 rstatop,
    2973             :                 ltop,
    2974             :                 leop,
    2975             :                 revltop,
    2976             :                 revleop;
    2977             :     bool        isgt;
    2978             :     Datum       leftmin,
    2979             :                 leftmax,
    2980             :                 rightmin,
    2981             :                 rightmax;
    2982             :     double      selec;
    2983             : 
    2984             :     /* Set default results if we can't figure anything out. */
    2985             :     /* XXX should default "start" fraction be a bit more than 0? */
    2986       99666 :     *leftstart = *rightstart = 0.0;
    2987       99666 :     *leftend = *rightend = 1.0;
    2988             : 
    2989             :     /* Deconstruct the merge clause */
    2990       99666 :     if (!is_opclause(clause))
    2991           0 :         return;                 /* shouldn't happen */
    2992       99666 :     opno = ((OpExpr *) clause)->opno;
    2993       99666 :     collation = ((OpExpr *) clause)->inputcollid;
    2994       99666 :     left = get_leftop((Expr *) clause);
    2995       99666 :     right = get_rightop((Expr *) clause);
    2996       99666 :     if (!right)
    2997           0 :         return;                 /* shouldn't happen */
    2998             : 
    2999             :     /* Look for stats for the inputs */
    3000       99666 :     examine_variable(root, left, 0, &leftvar);
    3001       99666 :     examine_variable(root, right, 0, &rightvar);
    3002             : 
    3003             :     /* Extract the operator's declared left/right datatypes */
    3004       99666 :     get_op_opfamily_properties(opno, opfamily, false,
    3005             :                                &op_strategy,
    3006             :                                &op_lefttype,
    3007             :                                &op_righttype);
    3008             :     Assert(op_strategy == BTEqualStrategyNumber);
    3009             : 
    3010             :     /*
    3011             :      * Look up the various operators we need.  If we don't find them all, it
    3012             :      * probably means the opfamily is broken, but we just fail silently.
    3013             :      *
    3014             :      * Note: we expect that pg_statistic histograms will be sorted by the '<'
    3015             :      * operator, regardless of which sort direction we are considering.
    3016             :      */
    3017       99666 :     switch (strategy)
    3018             :     {
    3019       99612 :         case BTLessStrategyNumber:
    3020       99612 :             isgt = false;
    3021       99612 :             if (op_lefttype == op_righttype)
    3022             :             {
    3023             :                 /* easy case */
    3024       98312 :                 ltop = get_opfamily_member(opfamily,
    3025             :                                            op_lefttype, op_righttype,
    3026             :                                            BTLessStrategyNumber);
    3027       98312 :                 leop = get_opfamily_member(opfamily,
    3028             :                                            op_lefttype, op_righttype,
    3029             :                                            BTLessEqualStrategyNumber);
    3030       98312 :                 lsortop = ltop;
    3031       98312 :                 rsortop = ltop;
    3032       98312 :                 lstatop = lsortop;
    3033       98312 :                 rstatop = rsortop;
    3034       98312 :                 revltop = ltop;
    3035       98312 :                 revleop = leop;
    3036             :             }
    3037             :             else
    3038             :             {
    3039        1300 :                 ltop = get_opfamily_member(opfamily,
    3040             :                                            op_lefttype, op_righttype,
    3041             :                                            BTLessStrategyNumber);
    3042        1300 :                 leop = get_opfamily_member(opfamily,
    3043             :                                            op_lefttype, op_righttype,
    3044             :                                            BTLessEqualStrategyNumber);
    3045        1300 :                 lsortop = get_opfamily_member(opfamily,
    3046             :                                               op_lefttype, op_lefttype,
    3047             :                                               BTLessStrategyNumber);
    3048        1300 :                 rsortop = get_opfamily_member(opfamily,
    3049             :                                               op_righttype, op_righttype,
    3050             :                                               BTLessStrategyNumber);
    3051        1300 :                 lstatop = lsortop;
    3052        1300 :                 rstatop = rsortop;
    3053        1300 :                 revltop = get_opfamily_member(opfamily,
    3054             :                                               op_righttype, op_lefttype,
    3055             :                                               BTLessStrategyNumber);
    3056        1300 :                 revleop = get_opfamily_member(opfamily,
    3057             :                                               op_righttype, op_lefttype,
    3058             :                                               BTLessEqualStrategyNumber);
    3059             :             }
    3060       99612 :             break;
    3061          54 :         case BTGreaterStrategyNumber:
    3062             :             /* descending-order case */
    3063          54 :             isgt = true;
    3064          54 :             if (op_lefttype == op_righttype)
    3065             :             {
    3066             :                 /* easy case */
    3067          54 :                 ltop = get_opfamily_member(opfamily,
    3068             :                                            op_lefttype, op_righttype,
    3069             :                                            BTGreaterStrategyNumber);
    3070          54 :                 leop = get_opfamily_member(opfamily,
    3071             :                                            op_lefttype, op_righttype,
    3072             :                                            BTGreaterEqualStrategyNumber);
    3073          54 :                 lsortop = ltop;
    3074          54 :                 rsortop = ltop;
    3075          54 :                 lstatop = get_opfamily_member(opfamily,
    3076             :                                               op_lefttype, op_lefttype,
    3077             :                                               BTLessStrategyNumber);
    3078          54 :                 rstatop = lstatop;
    3079          54 :                 revltop = ltop;
    3080          54 :                 revleop = leop;
    3081             :             }
    3082             :             else
    3083             :             {
    3084           0 :                 ltop = get_opfamily_member(opfamily,
    3085             :                                            op_lefttype, op_righttype,
    3086             :                                            BTGreaterStrategyNumber);
    3087           0 :                 leop = get_opfamily_member(opfamily,
    3088             :                                            op_lefttype, op_righttype,
    3089             :                                            BTGreaterEqualStrategyNumber);
    3090           0 :                 lsortop = get_opfamily_member(opfamily,
    3091             :                                               op_lefttype, op_lefttype,
    3092             :                                               BTGreaterStrategyNumber);
    3093           0 :                 rsortop = get_opfamily_member(opfamily,
    3094             :                                               op_righttype, op_righttype,
    3095             :                                               BTGreaterStrategyNumber);
    3096           0 :                 lstatop = get_opfamily_member(opfamily,
    3097             :                                               op_lefttype, op_lefttype,
    3098             :                                               BTLessStrategyNumber);
    3099           0 :                 rstatop = get_opfamily_member(opfamily,
    3100             :                                               op_righttype, op_righttype,
    3101             :                                               BTLessStrategyNumber);
    3102           0 :                 revltop = get_opfamily_member(opfamily,
    3103             :                                               op_righttype, op_lefttype,
    3104             :                                               BTGreaterStrategyNumber);
    3105           0 :                 revleop = get_opfamily_member(opfamily,
    3106             :                                               op_righttype, op_lefttype,
    3107             :                                               BTGreaterEqualStrategyNumber);
    3108             :             }
    3109          54 :             break;
    3110           0 :         default:
    3111           0 :             goto fail;          /* shouldn't get here */
    3112             :     }
    3113             : 
    3114       99666 :     if (!OidIsValid(lsortop) ||
    3115       99666 :         !OidIsValid(rsortop) ||
    3116       99666 :         !OidIsValid(lstatop) ||
    3117       99666 :         !OidIsValid(rstatop) ||
    3118       99654 :         !OidIsValid(ltop) ||
    3119       99654 :         !OidIsValid(leop) ||
    3120       99654 :         !OidIsValid(revltop) ||
    3121             :         !OidIsValid(revleop))
    3122          12 :         goto fail;              /* insufficient info in catalogs */
    3123             : 
    3124             :     /* Try to get ranges of both inputs */
    3125       99654 :     if (!isgt)
    3126             :     {
    3127       99600 :         if (!get_variable_range(root, &leftvar, lstatop, collation,
    3128             :                                 &leftmin, &leftmax))
    3129       20926 :             goto fail;          /* no range available from stats */
    3130       78674 :         if (!get_variable_range(root, &rightvar, rstatop, collation,
    3131             :                                 &rightmin, &rightmax))
    3132       19282 :             goto fail;          /* no range available from stats */
    3133             :     }
    3134             :     else
    3135             :     {
    3136             :         /* need to swap the max and min */
    3137          54 :         if (!get_variable_range(root, &leftvar, lstatop, collation,
    3138             :                                 &leftmax, &leftmin))
    3139          30 :             goto fail;          /* no range available from stats */
    3140          24 :         if (!get_variable_range(root, &rightvar, rstatop, collation,
    3141             :                                 &rightmax, &rightmin))
    3142           0 :             goto fail;          /* no range available from stats */
    3143             :     }
    3144             : 
    3145             :     /*
    3146             :      * Now, the fraction of the left variable that will be scanned is the
    3147             :      * fraction that's <= the right-side maximum value.  But only believe
    3148             :      * non-default estimates, else stick with our 1.0.
    3149             :      */
    3150       59416 :     selec = scalarineqsel(root, leop, isgt, true, collation, &leftvar,
    3151             :                           rightmax, op_righttype);
    3152       59416 :     if (selec != DEFAULT_INEQ_SEL)
    3153       59410 :         *leftend = selec;
    3154             : 
    3155             :     /* And similarly for the right variable. */
    3156       59416 :     selec = scalarineqsel(root, revleop, isgt, true, collation, &rightvar,
    3157             :                           leftmax, op_lefttype);
    3158       59416 :     if (selec != DEFAULT_INEQ_SEL)
    3159       59416 :         *rightend = selec;
    3160             : 
    3161             :     /*
    3162             :      * Only one of the two "end" fractions can really be less than 1.0;
    3163             :      * believe the smaller estimate and reset the other one to exactly 1.0. If
    3164             :      * we get exactly equal estimates (as can easily happen with self-joins),
    3165             :      * believe neither.
    3166             :      */
    3167       59416 :     if (*leftend > *rightend)
    3168       23826 :         *leftend = 1.0;
    3169       35590 :     else if (*leftend < *rightend)
    3170       29418 :         *rightend = 1.0;
    3171             :     else
    3172        6172 :         *leftend = *rightend = 1.0;
    3173             : 
    3174             :     /*
    3175             :      * Also, the fraction of the left variable that will be scanned before the
    3176             :      * first join pair is found is the fraction that's < the right-side
    3177             :      * minimum value.  But only believe non-default estimates, else stick with
    3178             :      * our own default.
    3179             :      */
    3180       59416 :     selec = scalarineqsel(root, ltop, isgt, false, collation, &leftvar,
    3181             :                           rightmin, op_righttype);
    3182       59416 :     if (selec != DEFAULT_INEQ_SEL)
    3183       59416 :         *leftstart = selec;
    3184             : 
    3185             :     /* And similarly for the right variable. */
    3186       59416 :     selec = scalarineqsel(root, revltop, isgt, false, collation, &rightvar,
    3187             :                           leftmin, op_lefttype);
    3188       59416 :     if (selec != DEFAULT_INEQ_SEL)
    3189       59416 :         *rightstart = selec;
    3190             : 
    3191             :     /*
    3192             :      * Only one of the two "start" fractions can really be more than zero;
    3193             :      * believe the larger estimate and reset the other one to exactly 0.0. If
    3194             :      * we get exactly equal estimates (as can easily happen with self-joins),
    3195             :      * believe neither.
    3196             :      */
    3197       59416 :     if (*leftstart < *rightstart)
    3198       19134 :         *leftstart = 0.0;
    3199       40282 :     else if (*leftstart > *rightstart)
    3200       22320 :         *rightstart = 0.0;
    3201             :     else
    3202       17962 :         *leftstart = *rightstart = 0.0;
    3203             : 
    3204             :     /*
    3205             :      * If the sort order is nulls-first, we're going to have to skip over any
    3206             :      * nulls too.  These would not have been counted by scalarineqsel, and we
    3207             :      * can safely add in this fraction regardless of whether we believe
    3208             :      * scalarineqsel's results or not.  But be sure to clamp the sum to 1.0!
    3209             :      */
    3210       59416 :     if (nulls_first)
    3211             :     {
    3212             :         Form_pg_statistic stats;
    3213             : 
    3214          24 :         if (HeapTupleIsValid(leftvar.statsTuple))
    3215             :         {
    3216          24 :             stats = (Form_pg_statistic) GETSTRUCT(leftvar.statsTuple);
    3217          24 :             *leftstart += stats->stanullfrac;
    3218          24 :             CLAMP_PROBABILITY(*leftstart);
    3219          24 :             *leftend += stats->stanullfrac;
    3220          24 :             CLAMP_PROBABILITY(*leftend);
    3221             :         }
    3222          24 :         if (HeapTupleIsValid(rightvar.statsTuple))
    3223             :         {
    3224          24 :             stats = (Form_pg_statistic) GETSTRUCT(rightvar.statsTuple);
    3225          24 :             *rightstart += stats->stanullfrac;
    3226          24 :             CLAMP_PROBABILITY(*rightstart);
    3227          24 :             *rightend += stats->stanullfrac;
    3228          24 :             CLAMP_PROBABILITY(*rightend);
    3229             :         }
    3230             :     }
    3231             : 
    3232             :     /* Disbelieve start >= end, just in case that can happen */
    3233       59416 :     if (*leftstart >= *leftend)
    3234             :     {
    3235         218 :         *leftstart = 0.0;
    3236         218 :         *leftend = 1.0;
    3237             :     }
    3238       59416 :     if (*rightstart >= *rightend)
    3239             :     {
    3240         918 :         *rightstart = 0.0;
    3241         918 :         *rightend = 1.0;
    3242             :     }
    3243             : 
    3244       58498 : fail:
    3245       99666 :     ReleaseVariableStats(leftvar);
    3246       99666 :     ReleaseVariableStats(rightvar);
    3247             : }
    3248             : 
    3249             : 
    3250             : /*
    3251             :  *  matchingsel -- generic matching-operator selectivity support
    3252             :  *
    3253             :  * Use these for any operators that (a) are on data types for which we collect
    3254             :  * standard statistics, and (b) have behavior for which the default estimate
    3255             :  * (twice DEFAULT_EQ_SEL) is sane.  Typically that is good for match-like
    3256             :  * operators.
    3257             :  */
    3258             : 
    3259             : Datum
    3260        1106 : matchingsel(PG_FUNCTION_ARGS)
    3261             : {
    3262        1106 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
    3263        1106 :     Oid         operator = PG_GETARG_OID(1);
    3264        1106 :     List       *args = (List *) PG_GETARG_POINTER(2);
    3265        1106 :     int         varRelid = PG_GETARG_INT32(3);
    3266        1106 :     Oid         collation = PG_GET_COLLATION();
    3267             :     double      selec;
    3268             : 
    3269             :     /* Use generic restriction selectivity logic. */
    3270        1106 :     selec = generic_restriction_selectivity(root, operator, collation,
    3271             :                                             args, varRelid,
    3272             :                                             DEFAULT_MATCHING_SEL);
    3273             : 
    3274        1106 :     PG_RETURN_FLOAT8((float8) selec);
    3275             : }
    3276             : 
    3277             : Datum
    3278           6 : matchingjoinsel(PG_FUNCTION_ARGS)
    3279             : {
    3280             :     /* Just punt, for the moment. */
    3281           6 :     PG_RETURN_FLOAT8(DEFAULT_MATCHING_SEL);
    3282             : }
    3283             : 
    3284             : 
    3285             : /*
    3286             :  * Helper routine for estimate_num_groups: add an item to a list of
    3287             :  * GroupVarInfos, but only if it's not known equal to any of the existing
    3288             :  * entries.
    3289             :  */
    3290             : typedef struct
    3291             : {
    3292             :     Node       *var;            /* might be an expression, not just a Var */
    3293             :     RelOptInfo *rel;            /* relation it belongs to */
    3294             :     double      ndistinct;      /* # distinct values */
    3295             :     bool        isdefault;      /* true if DEFAULT_NUM_DISTINCT was used */
    3296             : } GroupVarInfo;
    3297             : 
    3298             : static List *
    3299      296610 : add_unique_group_var(PlannerInfo *root, List *varinfos,
    3300             :                      Node *var, VariableStatData *vardata)
    3301             : {
    3302             :     GroupVarInfo *varinfo;
    3303             :     double      ndistinct;
    3304             :     bool        isdefault;
    3305             :     ListCell   *lc;
    3306             : 
    3307      296610 :     ndistinct = get_variable_numdistinct(vardata, &isdefault);
    3308             : 
    3309      378020 :     foreach(lc, varinfos)
    3310             :     {
    3311       82174 :         varinfo = (GroupVarInfo *) lfirst(lc);
    3312             : 
    3313             :         /* Drop exact duplicates */
    3314       82174 :         if (equal(var, varinfo->var))
    3315         764 :             return varinfos;
    3316             : 
    3317             :         /*
    3318             :          * Drop known-equal vars, but only if they belong to different
    3319             :          * relations (see comments for estimate_num_groups).  We aren't too
    3320             :          * fussy about the semantics of "equal" here.
    3321             :          */
    3322       87362 :         if (vardata->rel != varinfo->rel &&
    3323        5832 :             exprs_known_equal(root, var, varinfo->var, InvalidOid))
    3324             :         {
    3325         120 :             if (varinfo->ndistinct <= ndistinct)
    3326             :             {
    3327             :                 /* Keep older item, forget new one */
    3328         120 :                 return varinfos;
    3329             :             }
    3330             :             else
    3331             :             {
    3332             :                 /* Delete the older item */
    3333           0 :                 varinfos = foreach_delete_current(varinfos, lc);
    3334             :             }
    3335             :         }
    3336             :     }
    3337             : 
    3338      295846 :     varinfo = (GroupVarInfo *) palloc(sizeof(GroupVarInfo));
    3339             : 
    3340      295846 :     varinfo->var = var;
    3341      295846 :     varinfo->rel = vardata->rel;
    3342      295846 :     varinfo->ndistinct = ndistinct;
    3343      295846 :     varinfo->isdefault = isdefault;
    3344      295846 :     varinfos = lappend(varinfos, varinfo);
    3345      295846 :     return varinfos;
    3346             : }
    3347             : 
    3348             : /*
    3349             :  * estimate_num_groups      - Estimate number of groups in a grouped query
    3350             :  *
    3351             :  * Given a query having a GROUP BY clause, estimate how many groups there
    3352             :  * will be --- ie, the number of distinct combinations of the GROUP BY
    3353             :  * expressions.
    3354             :  *
    3355             :  * This routine is also used to estimate the number of rows emitted by
    3356             :  * a DISTINCT filtering step; that is an isomorphic problem.  (Note:
    3357             :  * actually, we only use it for DISTINCT when there's no grouping or
    3358             :  * aggregation ahead of the DISTINCT.)
    3359             :  *
    3360             :  * Inputs:
    3361             :  *  root - the query
    3362             :  *  groupExprs - list of expressions being grouped by
    3363             :  *  input_rows - number of rows estimated to arrive at the group/unique
    3364             :  *      filter step
    3365             :  *  pgset - NULL, or a List** pointing to a grouping set to filter the
    3366             :  *      groupExprs against
    3367             :  *
    3368             :  * Outputs:
    3369             :  *  estinfo - When passed as non-NULL, the function will set bits in the
    3370             :  *      "flags" field in order to provide callers with additional information
    3371             :  *      about the estimation.  Currently, we only set the SELFLAG_USED_DEFAULT
    3372             :  *      bit if we used any default values in the estimation.
    3373             :  *
    3374             :  * Given the lack of any cross-correlation statistics in the system, it's
    3375             :  * impossible to do anything really trustworthy with GROUP BY conditions
    3376             :  * involving multiple Vars.  We should however avoid assuming the worst
    3377             :  * case (all possible cross-product terms actually appear as groups) since
    3378             :  * very often the grouped-by Vars are highly correlated.  Our current approach
    3379             :  * is as follows:
    3380             :  *  1.  Expressions yielding boolean are assumed to contribute two groups,
    3381             :  *      independently of their content, and are ignored in the subsequent
    3382             :  *      steps.  This is mainly because tests like "col IS NULL" break the
    3383             :  *      heuristic used in step 2 especially badly.
    3384             :  *  2.  Reduce the given expressions to a list of unique Vars used.  For
    3385             :  *      example, GROUP BY a, a + b is treated the same as GROUP BY a, b.
    3386             :  *      It is clearly correct not to count the same Var more than once.
    3387             :  *      It is also reasonable to treat f(x) the same as x: f() cannot
    3388             :  *      increase the number of distinct values (unless it is volatile,
    3389             :  *      which we consider unlikely for grouping), but it probably won't
    3390             :  *      reduce the number of distinct values much either.
    3391             :  *      As a special case, if a GROUP BY expression can be matched to an
    3392             :  *      expressional index for which we have statistics, then we treat the
    3393             :  *      whole expression as though it were just a Var.
    3394             :  *  3.  If the list contains Vars of different relations that are known equal
    3395             :  *      due to equivalence classes, then drop all but one of the Vars from each
    3396             :  *      known-equal set, keeping the one with smallest estimated # of values
    3397             :  *      (since the extra values of the others can't appear in joined rows).
    3398             :  *      Note the reason we only consider Vars of different relations is that
    3399             :  *      if we considered ones of the same rel, we'd be double-counting the
    3400             :  *      restriction selectivity of the equality in the next step.
    3401             :  *  4.  For Vars within a single source rel, we multiply together the numbers
    3402             :  *      of values, clamp to the number of rows in the rel (divided by 10 if
    3403             :  *      more than one Var), and then multiply by a factor based on the
    3404             :  *      selectivity of the restriction clauses for that rel.  When there's
    3405             :  *      more than one Var, the initial product is probably too high (it's the
    3406             :  *      worst case) but clamping to a fraction of the rel's rows seems to be a
    3407             :  *      helpful heuristic for not letting the estimate get out of hand.  (The
    3408             :  *      factor of 10 is derived from pre-Postgres-7.4 practice.)  The factor
    3409             :  *      we multiply by to adjust for the restriction selectivity assumes that
    3410             :  *      the restriction clauses are independent of the grouping, which may not
    3411             :  *      be a valid assumption, but it's hard to do better.
    3412             :  *  5.  If there are Vars from multiple rels, we repeat step 4 for each such
    3413             :  *      rel, and multiply the results together.
    3414             :  * Note that rels not containing grouped Vars are ignored completely, as are
    3415             :  * join clauses.  Such rels cannot increase the number of groups, and we
    3416             :  * assume such clauses do not reduce the number either (somewhat bogus,
    3417             :  * but we don't have the info to do better).
    3418             :  */
    3419             : double
    3420      260980 : estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
    3421             :                     List **pgset, EstimationInfo *estinfo)
    3422             : {
    3423      260980 :     List       *varinfos = NIL;
    3424      260980 :     double      srf_multiplier = 1.0;
    3425             :     double      numdistinct;
    3426             :     ListCell   *l;
    3427             :     int         i;
    3428             : 
    3429             :     /* Zero the estinfo output parameter, if non-NULL */
    3430      260980 :     if (estinfo != NULL)
    3431      231830 :         memset(estinfo, 0, sizeof(EstimationInfo));
    3432             : 
    3433             :     /*
    3434             :      * We don't ever want to return an estimate of zero groups, as that tends
    3435             :      * to lead to division-by-zero and other unpleasantness.  The input_rows
    3436             :      * estimate is usually already at least 1, but clamp it just in case it
    3437             :      * isn't.
    3438             :      */
    3439      260980 :     input_rows = clamp_row_est(input_rows);
    3440             : 
    3441             :     /*
    3442             :      * If no grouping columns, there's exactly one group.  (This can't happen
    3443             :      * for normal cases with GROUP BY or DISTINCT, but it is possible for
    3444             :      * corner cases with set operations.)
    3445             :      */
    3446      260980 :     if (groupExprs == NIL || (pgset && *pgset == NIL))
    3447         998 :         return 1.0;
    3448             : 
    3449             :     /*
    3450             :      * Count groups derived from boolean grouping expressions.  For other
    3451             :      * expressions, find the unique Vars used, treating an expression as a Var
    3452             :      * if we can find stats for it.  For each one, record the statistical
    3453             :      * estimate of number of distinct values (total in its table, without
    3454             :      * regard for filtering).
    3455             :      */
    3456      259982 :     numdistinct = 1.0;
    3457             : 
    3458      259982 :     i = 0;
    3459      555236 :     foreach(l, groupExprs)
    3460             :     {
    3461      295302 :         Node       *groupexpr = (Node *) lfirst(l);
    3462             :         double      this_srf_multiplier;
    3463             :         VariableStatData vardata;
    3464             :         List       *varshere;
    3465             :         ListCell   *l2;
    3466             : 
    3467             :         /* is expression in this grouping set? */
    3468      295302 :         if (pgset && !list_member_int(*pgset, i++))
    3469      248560 :             continue;
    3470             : 
    3471             :         /*
    3472             :          * Set-returning functions in grouping columns are a bit problematic.
    3473             :          * The code below will effectively ignore their SRF nature and come up
    3474             :          * with a numdistinct estimate as though they were scalar functions.
    3475             :          * We compensate by scaling up the end result by the largest SRF
    3476             :          * rowcount estimate.  (This will be an overestimate if the SRF
    3477             :          * produces multiple copies of any output value, but it seems best to
    3478             :          * assume the SRF's outputs are distinct.  In any case, it's probably
    3479             :          * pointless to worry too much about this without much better
    3480             :          * estimates for SRF output rowcounts than we have today.)
    3481             :          */
    3482      294514 :         this_srf_multiplier = expression_returns_set_rows(root, groupexpr);
    3483      294514 :         if (srf_multiplier < this_srf_multiplier)
    3484         132 :             srf_multiplier = this_srf_multiplier;
    3485             : 
    3486             :         /* Short-circuit for expressions returning boolean */
    3487      294514 :         if (exprType(groupexpr) == BOOLOID)
    3488             :         {
    3489         242 :             numdistinct *= 2.0;
    3490         242 :             continue;
    3491             :         }
    3492             : 
    3493             :         /*
    3494             :          * If examine_variable is able to deduce anything about the GROUP BY
    3495             :          * expression, treat it as a single variable even if it's really more
    3496             :          * complicated.
    3497             :          *
    3498             :          * XXX This has the consequence that if there's a statistics object on
    3499             :          * the expression, we don't split it into individual Vars. This
    3500             :          * affects our selection of statistics in
    3501             :          * estimate_multivariate_ndistinct, because it's probably better to
    3502             :          * use more accurate estimate for each expression and treat them as
    3503             :          * independent, than to combine estimates for the extracted variables
    3504             :          * when we don't know how that relates to the expressions.
    3505             :          */
    3506      294272 :         examine_variable(root, groupexpr, 0, &vardata);
    3507      294272 :         if (HeapTupleIsValid(vardata.statsTuple) || vardata.isunique)
    3508             :         {
    3509      246906 :             varinfos = add_unique_group_var(root, varinfos,
    3510             :                                             groupexpr, &vardata);
    3511      246906 :             ReleaseVariableStats(vardata);
    3512      246906 :             continue;
    3513             :         }
    3514       47366 :         ReleaseVariableStats(vardata);
    3515             : 
    3516             :         /*
    3517             :          * Else pull out the component Vars.  Handle PlaceHolderVars by
    3518             :          * recursing into their arguments (effectively assuming that the
    3519             :          * PlaceHolderVar doesn't change the number of groups, which boils
    3520             :          * down to ignoring the possible addition of nulls to the result set).
    3521             :          */
    3522       47366 :         varshere = pull_var_clause(groupexpr,
    3523             :                                    PVC_RECURSE_AGGREGATES |
    3524             :                                    PVC_RECURSE_WINDOWFUNCS |
    3525             :                                    PVC_RECURSE_PLACEHOLDERS);
    3526             : 
    3527             :         /*
    3528             :          * If we find any variable-free GROUP BY item, then either it is a
    3529             :          * constant (and we can ignore it) or it contains a volatile function;
    3530             :          * in the latter case we punt and assume that each input row will
    3531             :          * yield a distinct group.
    3532             :          */
    3533       47366 :         if (varshere == NIL)
    3534             :         {
    3535         672 :             if (contain_volatile_functions(groupexpr))
    3536          48 :                 return input_rows;
    3537         624 :             continue;
    3538             :         }
    3539             : 
    3540             :         /*
    3541             :          * Else add variables to varinfos list
    3542             :          */
    3543       96398 :         foreach(l2, varshere)
    3544             :         {
    3545       49704 :             Node       *var = (Node *) lfirst(l2);
    3546             : 
    3547       49704 :             examine_variable(root, var, 0, &vardata);
    3548       49704 :             varinfos = add_unique_group_var(root, varinfos, var, &vardata);
    3549       49704 :             ReleaseVariableStats(vardata);
    3550             :         }
    3551             :     }
    3552             : 
    3553             :     /*
    3554             :      * If now no Vars, we must have an all-constant or all-boolean GROUP BY
    3555             :      * list.
    3556             :      */
    3557      259934 :     if (varinfos == NIL)
    3558             :     {
    3559             :         /* Apply SRF multiplier as we would do in the long path */
    3560         336 :         numdistinct *= srf_multiplier;
    3561             :         /* Round off */
    3562         336 :         numdistinct = ceil(numdistinct);
    3563             :         /* Guard against out-of-range answers */
    3564         336 :         if (numdistinct > input_rows)
    3565          38 :             numdistinct = input_rows;
    3566         336 :         if (numdistinct < 1.0)
    3567           0 :             numdistinct = 1.0;
    3568         336 :         return numdistinct;
    3569             :     }
    3570             : 
    3571             :     /*
    3572             :      * Group Vars by relation and estimate total numdistinct.
    3573             :      *
    3574             :      * For each iteration of the outer loop, we process the frontmost Var in
    3575             :      * varinfos, plus all other Vars in the same relation.  We remove these
    3576             :      * Vars from the newvarinfos list for the next iteration. This is the
    3577             :      * easiest way to group Vars of same rel together.
    3578             :      */
    3579             :     do
    3580             :     {
    3581      261470 :         GroupVarInfo *varinfo1 = (GroupVarInfo *) linitial(varinfos);
    3582      261470 :         RelOptInfo *rel = varinfo1->rel;
    3583      261470 :         double      reldistinct = 1;
    3584      261470 :         double      relmaxndistinct = reldistinct;
    3585      261470 :         int         relvarcount = 0;
    3586      261470 :         List       *newvarinfos = NIL;
    3587      261470 :         List       *relvarinfos = NIL;
    3588             : 
    3589             :         /*
    3590             :          * Split the list of varinfos in two - one for the current rel, one
    3591             :          * for remaining Vars on other rels.
    3592             :          */
    3593      261470 :         relvarinfos = lappend(relvarinfos, varinfo1);
    3594      300916 :         for_each_from(l, varinfos, 1)
    3595             :         {
    3596       39446 :             GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
    3597             : 
    3598       39446 :             if (varinfo2->rel == varinfo1->rel)
    3599             :             {
    3600             :                 /* varinfos on current rel */
    3601       34376 :                 relvarinfos = lappend(relvarinfos, varinfo2);
    3602             :             }
    3603             :             else
    3604             :             {
    3605             :                 /* not time to process varinfo2 yet */
    3606        5070 :                 newvarinfos = lappend(newvarinfos, varinfo2);
    3607             :             }
    3608             :         }
    3609             : 
    3610             :         /*
    3611             :          * Get the numdistinct estimate for the Vars of this rel.  We
    3612             :          * iteratively search for multivariate n-distinct with maximum number
    3613             :          * of vars; assuming that each var group is independent of the others,
    3614             :          * we multiply them together.  Any remaining relvarinfos after no more
    3615             :          * multivariate matches are found are assumed independent too, so
    3616             :          * their individual ndistinct estimates are multiplied also.
    3617             :          *
    3618             :          * While iterating, count how many separate numdistinct values we
    3619             :          * apply.  We apply a fudge factor below, but only if we multiplied
    3620             :          * more than one such values.
    3621             :          */
    3622      523066 :         while (relvarinfos)
    3623             :         {
    3624             :             double      mvndistinct;
    3625             : 
    3626      261596 :             if (estimate_multivariate_ndistinct(root, rel, &relvarinfos,
    3627             :                                                 &mvndistinct))
    3628             :             {
    3629         402 :                 reldistinct *= mvndistinct;
    3630         402 :                 if (relmaxndistinct < mvndistinct)
    3631         390 :                     relmaxndistinct = mvndistinct;
    3632         402 :                 relvarcount++;
    3633             :             }
    3634             :             else
    3635             :             {
    3636      556188 :                 foreach(l, relvarinfos)
    3637             :                 {
    3638      294994 :                     GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
    3639             : 
    3640      294994 :                     reldistinct *= varinfo2->ndistinct;
    3641      294994 :                     if (relmaxndistinct < varinfo2->ndistinct)
    3642      259552 :                         relmaxndistinct = varinfo2->ndistinct;
    3643      294994 :                     relvarcount++;
    3644             : 
    3645             :                     /*
    3646             :                      * When varinfo2's isdefault is set then we'd better set
    3647             :                      * the SELFLAG_USED_DEFAULT bit in the EstimationInfo.
    3648             :                      */
    3649      294994 :                     if (estinfo != NULL && varinfo2->isdefault)
    3650       13874 :                         estinfo->flags |= SELFLAG_USED_DEFAULT;
    3651             :                 }
    3652             : 
    3653             :                 /* we're done with this relation */
    3654      261194 :                 relvarinfos = NIL;
    3655             :             }
    3656             :         }
    3657             : 
    3658             :         /*
    3659             :          * Sanity check --- don't divide by zero if empty relation.
    3660             :          */
    3661             :         Assert(IS_SIMPLE_REL(rel));
    3662      261470 :         if (rel->tuples > 0)
    3663             :         {
    3664             :             /*
    3665             :              * Clamp to size of rel, or size of rel / 10 if multiple Vars. The
    3666             :              * fudge factor is because the Vars are probably correlated but we
    3667             :              * don't know by how much.  We should never clamp to less than the
    3668             :              * largest ndistinct value for any of the Vars, though, since
    3669             :              * there will surely be at least that many groups.
    3670             :              */
    3671      260396 :             double      clamp = rel->tuples;
    3672             : 
    3673      260396 :             if (relvarcount > 1)
    3674             :             {
    3675       28890 :                 clamp *= 0.1;
    3676       28890 :                 if (clamp < relmaxndistinct)
    3677             :                 {
    3678       27404 :                     clamp = relmaxndistinct;
    3679             :                     /* for sanity in case some ndistinct is too large: */
    3680       27404 :                     if (clamp > rel->tuples)
    3681          78 :                         clamp = rel->tuples;
    3682             :                 }
    3683             :             }
    3684      260396 :             if (reldistinct > clamp)
    3685       27118 :                 reldistinct = clamp;
    3686             : 
    3687             :             /*
    3688             :              * Update the estimate based on the restriction selectivity,
    3689             :              * guarding against division by zero when reldistinct is zero.
    3690             :              * Also skip this if we know that we are returning all rows.
    3691             :              */
    3692      260396 :             if (reldistinct > 0 && rel->rows < rel->tuples)
    3693             :             {
    3694             :                 /*
    3695             :                  * Given a table containing N rows with n distinct values in a
    3696             :                  * uniform distribution, if we select p rows at random then
    3697             :                  * the expected number of distinct values selected is
    3698             :                  *
    3699             :                  * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1))
    3700             :                  *
    3701             :                  * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!)
    3702             :                  *
    3703             :                  * See "Approximating block accesses in database
    3704             :                  * organizations", S. B. Yao, Communications of the ACM,
    3705             :                  * Volume 20 Issue 4, April 1977 Pages 260-261.
    3706             :                  *
    3707             :                  * Alternatively, re-arranging the terms from the factorials,
    3708             :                  * this may be written as
    3709             :                  *
    3710             :                  * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1))
    3711             :                  *
    3712             :                  * This form of the formula is more efficient to compute in
    3713             :                  * the common case where p is larger than N/n.  Additionally,
    3714             :                  * as pointed out by Dell'Era, if i << N for all terms in the
    3715             :                  * product, it can be approximated by
    3716             :                  *
    3717             :                  * n * (1 - ((N-p)/N)^(N/n))
    3718             :                  *
    3719             :                  * See "Expected distinct values when selecting from a bag
    3720             :                  * without replacement", Alberto Dell'Era,
    3721             :                  * http://www.adellera.it/investigations/distinct_balls/.
    3722             :                  *
    3723             :                  * The condition i << N is equivalent to n >> 1, so this is a
    3724             :                  * good approximation when the number of distinct values in
    3725             :                  * the table is large.  It turns out that this formula also
    3726             :                  * works well even when n is small.
    3727             :                  */
    3728       74398 :                 reldistinct *=
    3729       74398 :                     (1 - pow((rel->tuples - rel->rows) / rel->tuples,
    3730       74398 :                              rel->tuples / reldistinct));
    3731             :             }
    3732      260396 :             reldistinct = clamp_row_est(reldistinct);
    3733             : 
    3734             :             /*
    3735             :              * Update estimate of total distinct groups.
    3736             :              */
    3737      260396 :             numdistinct *= reldistinct;
    3738             :         }
    3739             : 
    3740      261470 :         varinfos = newvarinfos;
    3741      261470 :     } while (varinfos != NIL);
    3742             : 
    3743             :     /* Now we can account for the effects of any SRFs */
    3744      259598 :     numdistinct *= srf_multiplier;
    3745             : 
    3746             :     /* Round off */
    3747      259598 :     numdistinct = ceil(numdistinct);
    3748             : 
    3749             :     /* Guard against out-of-range answers */
    3750      259598 :     if (numdistinct > input_rows)
    3751       51548 :         numdistinct = input_rows;
    3752      259598 :     if (numdistinct < 1.0)
    3753           0 :         numdistinct = 1.0;
    3754             : 
    3755      259598 :     return numdistinct;
    3756             : }
    3757             : 
    3758             : /*
    3759             :  * Estimate hash bucket statistics when the specified expression is used
    3760             :  * as a hash key for the given number of buckets.
    3761             :  *
    3762             :  * This attempts to determine two values:
    3763             :  *
    3764             :  * 1. The frequency of the most common value of the expression (returns
    3765             :  * zero into *mcv_freq if we can't get that).
    3766             :  *
    3767             :  * 2. The "bucketsize fraction", ie, average number of entries in a bucket
    3768             :  * divided by total tuples in relation.
    3769             :  *
    3770             :  * XXX This is really pretty bogus since we're effectively assuming that the
    3771             :  * distribution of hash keys will be the same after applying restriction
    3772             :  * clauses as it was in the underlying relation.  However, we are not nearly
    3773             :  * smart enough to figure out how the restrict clauses might change the
    3774             :  * distribution, so this will have to do for now.
    3775             :  *
    3776             :  * We are passed the number of buckets the executor will use for the given
    3777             :  * input relation.  If the data were perfectly distributed, with the same
    3778             :  * number of tuples going into each available bucket, then the bucketsize
    3779             :  * fraction would be 1/nbuckets.  But this happy state of affairs will occur
    3780             :  * only if (a) there are at least nbuckets distinct data values, and (b)
    3781             :  * we have a not-too-skewed data distribution.  Otherwise the buckets will
    3782             :  * be nonuniformly occupied.  If the other relation in the join has a key
    3783             :  * distribution similar to this one's, then the most-loaded buckets are
    3784             :  * exactly those that will be probed most often.  Therefore, the "average"
    3785             :  * bucket size for costing purposes should really be taken as something close
    3786             :  * to the "worst case" bucket size.  We try to estimate this by adjusting the
    3787             :  * fraction if there are too few distinct data values, and then scaling up
    3788             :  * by the ratio of the most common value's frequency to the average frequency.
    3789             :  *
    3790             :  * If no statistics are available, use a default estimate of 0.1.  This will
    3791             :  * discourage use of a hash rather strongly if the inner relation is large,
    3792             :  * which is what we want.  We do not want to hash unless we know that the
    3793             :  * inner rel is well-dispersed (or the alternatives seem much worse).
    3794             :  *
    3795             :  * The caller should also check that the mcv_freq is not so large that the
    3796             :  * most common value would by itself require an impractically large bucket.
    3797             :  * In a hash join, the executor can split buckets if they get too big, but
    3798             :  * obviously that doesn't help for a bucket that contains many duplicates of
    3799             :  * the same value.
    3800             :  */
    3801             : void
    3802      138874 : estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets,
    3803             :                            Selectivity *mcv_freq,
    3804             :                            Selectivity *bucketsize_frac)
    3805             : {
    3806             :     VariableStatData vardata;
    3807             :     double      estfract,
    3808             :                 ndistinct,
    3809             :                 stanullfrac,
    3810             :                 avgfreq;
    3811             :     bool        isdefault;
    3812             :     AttStatsSlot sslot;
    3813             : 
    3814      138874 :     examine_variable(root, hashkey, 0, &vardata);
    3815             : 
    3816             :     /* Look up the frequency of the most common value, if available */
    3817      138874 :     *mcv_freq = 0.0;
    3818             : 
    3819      138874 :     if (HeapTupleIsValid(vardata.statsTuple))
    3820             :     {
    3821       96280 :         if (get_attstatsslot(&sslot, vardata.statsTuple,
    3822             :                              STATISTIC_KIND_MCV, InvalidOid,
    3823             :                              ATTSTATSSLOT_NUMBERS))
    3824             :         {
    3825             :             /*
    3826             :              * The first MCV stat is for the most common value.
    3827             :              */
    3828       45382 :             if (sslot.nnumbers > 0)
    3829       45382 :                 *mcv_freq = sslot.numbers[0];
    3830       45382 :             free_attstatsslot(&sslot);
    3831             :         }
    3832             :     }
    3833             : 
    3834             :     /* Get number of distinct values */
    3835      138874 :     ndistinct = get_variable_numdistinct(&vardata, &isdefault);
    3836             : 
    3837             :     /*
    3838             :      * If ndistinct isn't real, punt.  We normally return 0.1, but if the
    3839             :      * mcv_freq is known to be even higher than that, use it instead.
    3840             :      */
    3841      138874 :     if (isdefault)
    3842             :     {
    3843       18982 :         *bucketsize_frac = (Selectivity) Max(0.1, *mcv_freq);
    3844       18982 :         ReleaseVariableStats(vardata);
    3845       18982 :         return;
    3846             :     }
    3847             : 
    3848             :     /* Get fraction that are null */
    3849      119892 :     if (HeapTupleIsValid(vardata.statsTuple))
    3850             :     {
    3851             :         Form_pg_statistic stats;
    3852             : 
    3853       96262 :         stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
    3854       96262 :         stanullfrac = stats->stanullfrac;
    3855             :     }
    3856             :     else
    3857       23630 :         stanullfrac = 0.0;
    3858             : 
    3859             :     /* Compute avg freq of all distinct data values in raw relation */
    3860      119892 :     avgfreq = (1.0 - stanullfrac) / ndistinct;
    3861             : 
    3862             :     /*
    3863             :      * Adjust ndistinct to account for restriction clauses.  Observe we are
    3864             :      * assuming that the data distribution is affected uniformly by the
    3865             :      * restriction clauses!
    3866             :      *
    3867             :      * XXX Possibly better way, but much more expensive: multiply by
    3868             :      * selectivity of rel's restriction clauses that mention the target Var.
    3869             :      */
    3870      119892 :     if (vardata.rel && vardata.rel->tuples > 0)
    3871             :     {
    3872      119878 :         ndistinct *= vardata.rel->rows / vardata.rel->tuples;
    3873      119878 :         ndistinct = clamp_row_est(ndistinct);
    3874             :     }
    3875             : 
    3876             :     /*
    3877             :      * Initial estimate of bucketsize fraction is 1/nbuckets as long as the
    3878             :      * number of buckets is less than the expected number of distinct values;
    3879             :      * otherwise it is 1/ndistinct.
    3880             :      */
    3881      119892 :     if (ndistinct > nbuckets)
    3882          86 :         estfract = 1.0 / nbuckets;
    3883             :     else
    3884      119806 :         estfract = 1.0 / ndistinct;
    3885             : 
    3886             :     /*
    3887             :      * Adjust estimated bucketsize upward to account for skewed distribution.
    3888             :      */
    3889      119892 :     if (avgfreq > 0.0 && *mcv_freq > avgfreq)
    3890       40272 :         estfract *= *mcv_freq / avgfreq;
    3891             : 
    3892             :     /*
    3893             :      * Clamp bucketsize to sane range (the above adjustment could easily
    3894             :      * produce an out-of-range result).  We set the lower bound a little above
    3895             :      * zero, since zero isn't a very sane result.
    3896             :      */
    3897      119892 :     if (estfract < 1.0e-6)
    3898           0 :         estfract = 1.0e-6;
    3899      119892 :     else if (estfract > 1.0)
    3900       29144 :         estfract = 1.0;
    3901             : 
    3902      119892 :     *bucketsize_frac = (Selectivity) estfract;
    3903             : 
    3904      119892 :     ReleaseVariableStats(vardata);
    3905             : }
    3906             : 
    3907             : /*
    3908             :  * estimate_hashagg_tablesize
    3909             :  *    estimate the number of bytes that a hash aggregate hashtable will
    3910             :  *    require based on the agg_costs, path width and number of groups.
    3911             :  *
    3912             :  * We return the result as "double" to forestall any possible overflow
    3913             :  * problem in the multiplication by dNumGroups.
    3914             :  *
    3915             :  * XXX this may be over-estimating the size now that hashagg knows to omit
    3916             :  * unneeded columns from the hashtable.  Also for mixed-mode grouping sets,
    3917             :  * grouping columns not in the hashed set are counted here even though hashagg
    3918             :  * won't store them.  Is this a problem?
    3919             :  */
    3920             : double
    3921        2242 : estimate_hashagg_tablesize(PlannerInfo *root, Path *path,
    3922             :                            const AggClauseCosts *agg_costs, double dNumGroups)
    3923             : {
    3924             :     Size        hashentrysize;
    3925             : 
    3926        2242 :     hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
    3927        2242 :                                         path->pathtarget->width,
    3928             :                                         agg_costs->transitionSpace);
    3929             : 
    3930             :     /*
    3931             :      * Note that this disregards the effect of fill-factor and growth policy
    3932             :      * of the hash table.  That's probably ok, given that the default
    3933             :      * fill-factor is relatively high.  It'd be hard to meaningfully factor in
    3934             :      * "double-in-size" growth policies here.
    3935             :      */
    3936        2242 :     return hashentrysize * dNumGroups;
    3937             : }
    3938             : 
    3939             : 
    3940             : /*-------------------------------------------------------------------------
    3941             :  *
    3942             :  * Support routines
    3943             :  *
    3944             :  *-------------------------------------------------------------------------
    3945             :  */
    3946             : 
    3947             : /*
    3948             :  * Find applicable ndistinct statistics for the given list of VarInfos (which
    3949             :  * must all belong to the given rel), and update *ndistinct to the estimate of
    3950             :  * the MVNDistinctItem that best matches.  If a match it found, *varinfos is
    3951             :  * updated to remove the list of matched varinfos.
    3952             :  *
    3953             :  * Varinfos that aren't for simple Vars are ignored.
    3954             :  *
    3955             :  * Return true if we're able to find a match, false otherwise.
    3956             :  */
    3957             : static bool
    3958      261596 : estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel,
    3959             :                                 List **varinfos, double *ndistinct)
    3960             : {
    3961             :     ListCell   *lc;
    3962             :     int         nmatches_vars;
    3963             :     int         nmatches_exprs;
    3964      261596 :     Oid         statOid = InvalidOid;
    3965             :     MVNDistinct *stats;
    3966      261596 :     StatisticExtInfo *matched_info = NULL;
    3967      261596 :     RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
    3968             : 
    3969             :     /* bail out immediately if the table has no extended statistics */
    3970      261596 :     if (!rel->statlist)
    3971      261074 :         return false;
    3972             : 
    3973             :     /* look for the ndistinct statistics object matching the most vars */
    3974         522 :     nmatches_vars = 0;          /* we require at least two matches */
    3975         522 :     nmatches_exprs = 0;
    3976        2112 :     foreach(lc, rel->statlist)
    3977             :     {
    3978             :         ListCell   *lc2;
    3979        1590 :         StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
    3980        1590 :         int         nshared_vars = 0;
    3981        1590 :         int         nshared_exprs = 0;
    3982             : 
    3983             :         /* skip statistics of other kinds */
    3984        1590 :         if (info->kind != STATS_EXT_NDISTINCT)
    3985         750 :             continue;
    3986             : 
    3987             :         /* skip statistics with mismatching stxdinherit value */
    3988         840 :         if (info->inherit != rte->inh)
    3989          24 :             continue;
    3990             : 
    3991             :         /*
    3992             :          * Determine how many expressions (and variables in non-matched
    3993             :          * expressions) match. We'll then use these numbers to pick the
    3994             :          * statistics object that best matches the clauses.
    3995             :          */
    3996        2616 :         foreach(lc2, *varinfos)
    3997             :         {
    3998             :             ListCell   *lc3;
    3999        1800 :             GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
    4000             :             AttrNumber  attnum;
    4001             : 
    4002             :             Assert(varinfo->rel == rel);
    4003             : 
    4004             :             /* simple Var, search in statistics keys directly */
    4005        1800 :             if (IsA(varinfo->var, Var))
    4006             :             {
    4007        1434 :                 attnum = ((Var *) varinfo->var)->varattno;
    4008             : 
    4009             :                 /*
    4010             :                  * Ignore system attributes - we don't support statistics on
    4011             :                  * them, so can't match them (and it'd fail as the values are
    4012             :                  * negative).
    4013             :                  */
    4014        1434 :                 if (!AttrNumberIsForUserDefinedAttr(attnum))
    4015          12 :                     continue;
    4016             : 
    4017        1422 :                 if (bms_is_member(attnum, info->keys))
    4018         816 :                     nshared_vars++;
    4019             : 
    4020        1422 :                 continue;
    4021             :             }
    4022             : 
    4023             :             /* expression - see if it's in the statistics object */
    4024         660 :             foreach(lc3, info->exprs)
    4025             :             {
    4026         528 :                 Node       *expr = (Node *) lfirst(lc3);
    4027             : 
    4028         528 :                 if (equal(varinfo->var, expr))
    4029             :                 {
    4030         234 :                     nshared_exprs++;
    4031         234 :                     break;
    4032             :                 }
    4033             :             }
    4034             :         }
    4035             : 
    4036         816 :         if (nshared_vars + nshared_exprs < 2)
    4037         378 :             continue;
    4038             : 
    4039             :         /*
    4040             :          * Does this statistics object match more columns than the currently
    4041             :          * best object?  If so, use this one instead.
    4042             :          *
    4043             :          * XXX This should break ties using name of the object, or something
    4044             :          * like that, to make the outcome stable.
    4045             :          */
    4046         438 :         if ((nshared_exprs > nmatches_exprs) ||
    4047         330 :             (((nshared_exprs == nmatches_exprs)) && (nshared_vars > nmatches_vars)))
    4048             :         {
    4049         414 :             statOid = info->statOid;
    4050         414 :             nmatches_vars = nshared_vars;
    4051         414 :             nmatches_exprs = nshared_exprs;
    4052         414 :             matched_info = info;
    4053             :         }
    4054             :     }
    4055             : 
    4056             :     /* No match? */
    4057         522 :     if (statOid == InvalidOid)
    4058         120 :         return false;
    4059             : 
    4060             :     Assert(nmatches_vars + nmatches_exprs > 1);
    4061             : 
    4062         402 :     stats = statext_ndistinct_load(statOid, rte->inh);
    4063             : 
    4064             :     /*
    4065             :      * If we have a match, search it for the specific item that matches (there
    4066             :      * must be one), and construct the output values.
    4067             :      */
    4068         402 :     if (stats)
    4069             :     {
    4070             :         int         i;
    4071         402 :         List       *newlist = NIL;
    4072         402 :         MVNDistinctItem *item = NULL;
    4073             :         ListCell   *lc2;
    4074         402 :         Bitmapset  *matched = NULL;
    4075             :         AttrNumber  attnum_offset;
    4076             : 
    4077             :         /*
    4078             :          * How much we need to offset the attnums? If there are no
    4079             :          * expressions, no offset is needed. Otherwise offset enough to move
    4080             :          * the lowest one (which is equal to number of expressions) to 1.
    4081             :          */
    4082         402 :         if (matched_info->exprs)
    4083         144 :             attnum_offset = (list_length(matched_info->exprs) + 1);
    4084             :         else
    4085         258 :             attnum_offset = 0;
    4086             : 
    4087             :         /* see what actually matched */
    4088        1410 :         foreach(lc2, *varinfos)
    4089             :         {
    4090             :             ListCell   *lc3;
    4091             :             int         idx;
    4092        1008 :             bool        found = false;
    4093             : 
    4094        1008 :             GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
    4095             : 
    4096             :             /*
    4097             :              * Process a simple Var expression, by matching it to keys
    4098             :              * directly. If there's a matching expression, we'll try matching
    4099             :              * it later.
    4100             :              */
    4101        1008 :             if (IsA(varinfo->var, Var))
    4102             :             {
    4103         822 :                 AttrNumber  attnum = ((Var *) varinfo->var)->varattno;
    4104             : 
    4105             :                 /*
    4106             :                  * Ignore expressions on system attributes. Can't rely on the
    4107             :                  * bms check for negative values.
    4108             :                  */
    4109         822 :                 if (!AttrNumberIsForUserDefinedAttr(attnum))
    4110           6 :                     continue;
    4111             : 
    4112             :                 /* Is the variable covered by the statistics object? */
    4113         816 :                 if (!bms_is_member(attnum, matched_info->keys))
    4114         120 :                     continue;
    4115             : 
    4116         696 :                 attnum = attnum + attnum_offset;
    4117             : 
    4118             :                 /* ensure sufficient offset */
    4119             :                 Assert(AttrNumberIsForUserDefinedAttr(attnum));
    4120             : 
    4121         696 :                 matched = bms_add_member(matched, attnum);
    4122             : 
    4123         696 :                 found = true;
    4124             :             }
    4125             : 
    4126             :             /*
    4127             :              * XXX Maybe we should allow searching the expressions even if we
    4128             :              * found an attribute matching the expression? That would handle
    4129             :              * trivial expressions like "(a)" but it seems fairly useless.
    4130             :              */
    4131         882 :             if (found)
    4132         696 :                 continue;
    4133             : 
    4134             :             /* expression - see if it's in the statistics object */
    4135         186 :             idx = 0;
    4136         306 :             foreach(lc3, matched_info->exprs)
    4137             :             {
    4138         276 :                 Node       *expr = (Node *) lfirst(lc3);
    4139             : 
    4140         276 :                 if (equal(varinfo->var, expr))
    4141             :                 {
    4142         156 :                     AttrNumber  attnum = -(idx + 1);
    4143             : 
    4144         156 :                     attnum = attnum + attnum_offset;
    4145             : 
    4146             :                     /* ensure sufficient offset */
    4147             :                     Assert(AttrNumberIsForUserDefinedAttr(attnum));
    4148             : 
    4149         156 :                     matched = bms_add_member(matched, attnum);
    4150             : 
    4151             :                     /* there should be just one matching expression */
    4152         156 :                     break;
    4153             :                 }
    4154             : 
    4155         120 :                 idx++;
    4156             :             }
    4157             :         }
    4158             : 
    4159             :         /* Find the specific item that exactly matches the combination */
    4160         822 :         for (i = 0; i < stats->nitems; i++)
    4161             :         {
    4162             :             int         j;
    4163         822 :             MVNDistinctItem *tmpitem = &stats->items[i];
    4164             : 
    4165         822 :             if (tmpitem->nattributes != bms_num_members(matched))
    4166         144 :                 continue;
    4167             : 
    4168             :             /* assume it's the right item */
    4169         678 :             item = tmpitem;
    4170             : 
    4171             :             /* check that all item attributes/expressions fit the match */
    4172        1614 :             for (j = 0; j < tmpitem->nattributes; j++)
    4173             :             {
    4174        1212 :                 AttrNumber  attnum = tmpitem->attributes[j];
    4175             : 
    4176             :                 /*
    4177             :                  * Thanks to how we constructed the matched bitmap above, we
    4178             :                  * can just offset all attnums the same way.
    4179             :                  */
    4180        1212 :                 attnum = attnum + attnum_offset;
    4181             : 
    4182        1212 :                 if (!bms_is_member(attnum, matched))
    4183             :                 {
    4184             :                     /* nah, it's not this item */
    4185         276 :                     item = NULL;
    4186         276 :                     break;
    4187             :                 }
    4188             :             }
    4189             : 
    4190             :             /*
    4191             :              * If the item has all the matched attributes, we know it's the
    4192             :              * right one - there can't be a better one. matching more.
    4193             :              */
    4194         678 :             if (item)
    4195         402 :                 break;
    4196             :         }
    4197             : 
    4198             :         /*
    4199             :          * Make sure we found an item. There has to be one, because ndistinct
    4200             :          * statistics includes all combinations of attributes.
    4201             :          */
    4202         402 :         if (!item)
    4203           0 :             elog(ERROR, "corrupt MVNDistinct entry");
    4204             : 
    4205             :         /* Form the output varinfo list, keeping only unmatched ones */
    4206        1410 :         foreach(lc, *varinfos)
    4207             :         {
    4208        1008 :             GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc);
    4209             :             ListCell   *lc3;
    4210        1008 :             bool        found = false;
    4211             : 
    4212             :             /*
    4213             :              * Let's look at plain variables first, because it's the most
    4214             :              * common case and the check is quite cheap. We can simply get the
    4215             :              * attnum and check (with an offset) matched bitmap.
    4216             :              */
    4217        1008 :             if (IsA(varinfo->var, Var))
    4218             :             {
    4219         822 :                 AttrNumber  attnum = ((Var *) varinfo->var)->varattno;
    4220             : 
    4221             :                 /*
    4222             :                  * If it's a system attribute, we're done. We don't support
    4223             :                  * extended statistics on system attributes, so it's clearly
    4224             :                  * not matched. Just keep the expression and continue.
    4225             :                  */
    4226         822 :                 if (!AttrNumberIsForUserDefinedAttr(attnum))
    4227             :                 {
    4228           6 :                     newlist = lappend(newlist, varinfo);
    4229           6 :                     continue;
    4230             :                 }
    4231             : 
    4232             :                 /* apply the same offset as above */
    4233         816 :                 attnum += attnum_offset;
    4234             : 
    4235             :                 /* if it's not matched, keep the varinfo */
    4236         816 :                 if (!bms_is_member(attnum, matched))
    4237         120 :                     newlist = lappend(newlist, varinfo);
    4238             : 
    4239             :                 /* The rest of the loop deals with complex expressions. */
    4240         816 :                 continue;
    4241             :             }
    4242             : 
    4243             :             /*
    4244             :              * Process complex expressions, not just simple Vars.
    4245             :              *
    4246             :              * First, we search for an exact match of an expression. If we
    4247             :              * find one, we can just discard the whole GroupVarInfo, with all
    4248             :              * the variables we extracted from it.
    4249             :              *
    4250             :              * Otherwise we inspect the individual vars, and try matching it
    4251             :              * to variables in the item.
    4252             :              */
    4253         306 :             foreach(lc3, matched_info->exprs)
    4254             :             {
    4255         276 :                 Node       *expr = (Node *) lfirst(lc3);
    4256             : 
    4257         276 :                 if (equal(varinfo->var, expr))
    4258             :                 {
    4259         156 :                     found = true;
    4260         156 :                     break;
    4261             :                 }
    4262             :             }
    4263             : 
    4264             :             /* found exact match, skip */
    4265         186 :             if (found)
    4266         156 :                 continue;
    4267             : 
    4268          30 :             newlist = lappend(newlist, varinfo);
    4269             :         }
    4270             : 
    4271         402 :         *varinfos = newlist;
    4272         402 :         *ndistinct = item->ndistinct;
    4273         402 :         return true;
    4274             :     }
    4275             : 
    4276           0 :     return false;
    4277             : }
    4278             : 
    4279             : /*
    4280             :  * convert_to_scalar
    4281             :  *    Convert non-NULL values of the indicated types to the comparison
    4282             :  *    scale needed by scalarineqsel().
    4283             :  *    Returns "true" if successful.
    4284             :  *
    4285             :  * XXX this routine is a hack: ideally we should look up the conversion
    4286             :  * subroutines in pg_type.
    4287             :  *
    4288             :  * All numeric datatypes are simply converted to their equivalent
    4289             :  * "double" values.  (NUMERIC values that are outside the range of "double"
    4290             :  * are clamped to +/- HUGE_VAL.)
    4291             :  *
    4292             :  * String datatypes are converted by convert_string_to_scalar(),
    4293             :  * which is explained below.  The reason why this routine deals with
    4294             :  * three values at a time, not just one, is that we need it for strings.
    4295             :  *
    4296             :  * The bytea datatype is just enough different from strings that it has
    4297             :  * to be treated separately.
    4298             :  *
    4299             :  * The several datatypes representing absolute times are all converted
    4300             :  * to Timestamp, which is actually an int64, and then we promote that to
    4301             :  * a double.  Note this will give correct results even for the "special"
    4302             :  * values of Timestamp, since those are chosen to compare correctly;
    4303             :  * see timestamp_cmp.
    4304             :  *
    4305             :  * The several datatypes representing relative times (intervals) are all
    4306             :  * converted to measurements expressed in seconds.
    4307             :  */
    4308             : static bool
    4309       78122 : convert_to_scalar(Datum value, Oid valuetypid, Oid collid, double *scaledvalue,
    4310             :                   Datum lobound, Datum hibound, Oid boundstypid,
    4311             :                   double *scaledlobound, double *scaledhibound)
    4312             : {
    4313       78122 :     bool        failure = false;
    4314             : 
    4315             :     /*
    4316             :      * Both the valuetypid and the boundstypid should exactly match the
    4317             :      * declared input type(s) of the operator we are invoked for.  However,
    4318             :      * extensions might try to use scalarineqsel as estimator for operators
    4319             :      * with input type(s) we don't handle here; in such cases, we want to
    4320             :      * return false, not fail.  In any case, we mustn't assume that valuetypid
    4321             :      * and boundstypid are identical.
    4322             :      *
    4323             :      * XXX The histogram we are interpolating between points of could belong
    4324             :      * to a column that's only binary-compatible with the declared type. In
    4325             :      * essence we are assuming that the semantics of binary-compatible types
    4326             :      * are enough alike that we can use a histogram generated with one type's
    4327             :      * operators to estimate selectivity for the other's.  This is outright
    4328             :      * wrong in some cases --- in particular signed versus unsigned
    4329             :      * interpretation could trip us up.  But it's useful enough in the
    4330             :      * majority of cases that we do it anyway.  Should think about more
    4331             :      * rigorous ways to do it.
    4332             :      */
    4333       78122 :     switch (valuetypid)
    4334             :     {
    4335             :             /*
    4336             :              * Built-in numeric types
    4337             :              */
    4338       73204 :         case BOOLOID:
    4339             :         case INT2OID:
    4340             :         case INT4OID:
    4341             :         case INT8OID:
    4342             :         case FLOAT4OID:
    4343             :         case FLOAT8OID:
    4344             :         case NUMERICOID:
    4345             :         case OIDOID:
    4346             :         case REGPROCOID:
    4347             :         case REGPROCEDUREOID:
    4348             :         case REGOPEROID:
    4349             :         case REGOPERATOROID:
    4350             :         case REGCLASSOID:
    4351             :         case REGTYPEOID:
    4352             :         case REGCOLLATIONOID:
    4353             :         case REGCONFIGOID:
    4354             :         case REGDICTIONARYOID:
    4355             :         case REGROLEOID:
    4356             :         case REGNAMESPACEOID:
    4357       73204 :             *scaledvalue = convert_numeric_to_scalar(value, valuetypid,
    4358             :                                                      &failure);
    4359       73204 :             *scaledlobound = convert_numeric_to_scalar(lobound, boundstypid,
    4360             :                                                        &failure);
    4361       73204 :             *scaledhibound = convert_numeric_to_scalar(hibound, boundstypid,
    4362             :                                                        &failure);
    4363       73204 :             return !failure;
    4364             : 
    4365             :             /*
    4366             :              * Built-in string types
    4367             :              */
    4368        4918 :         case CHAROID:
    4369             :         case BPCHAROID:
    4370             :         case VARCHAROID:
    4371             :         case TEXTOID:
    4372             :         case NAMEOID:
    4373             :             {
    4374        4918 :                 char       *valstr = convert_string_datum(value, valuetypid,
    4375             :                                                           collid, &failure);
    4376        4918 :                 char       *lostr = convert_string_datum(lobound, boundstypid,
    4377             :                                                          collid, &failure);
    4378        4918 :                 char       *histr = convert_string_datum(hibound, boundstypid,
    4379             :                                                          collid, &failure);
    4380             : 
    4381             :                 /*
    4382             :                  * Bail out if any of the values is not of string type.  We
    4383             :                  * might leak converted strings for the other value(s), but
    4384             :                  * that's not worth troubling over.
    4385             :                  */
    4386        4918 :                 if (failure)
    4387           0 :                     return false;
    4388             : 
    4389        4918 :                 convert_string_to_scalar(valstr, scaledvalue,
    4390             :                                          lostr, scaledlobound,
    4391             :                                          histr, scaledhibound);
    4392        4918 :                 pfree(valstr);
    4393        4918 :                 pfree(lostr);
    4394        4918 :                 pfree(histr);
    4395        4918 :                 return true;
    4396             :             }
    4397             : 
    4398             :             /*
    4399             :              * Built-in bytea type
    4400             :              */
    4401           0 :         case BYTEAOID:
    4402             :             {
    4403             :                 /* We only support bytea vs bytea comparison */
    4404           0 :                 if (boundstypid != BYTEAOID)
    4405           0 :                     return false;
    4406           0 :                 convert_bytea_to_scalar(value, scaledvalue,
    4407             :                                         lobound, scaledlobound,
    4408             :                                         hibound, scaledhibound);
    4409           0 :                 return true;
    4410             :             }
    4411             : 
    4412             :             /*
    4413             :              * Built-in time types
    4414             :              */
    4415           0 :         case TIMESTAMPOID:
    4416             :         case TIMESTAMPTZOID:
    4417             :         case DATEOID:
    4418             :         case INTERVALOID:
    4419             :         case TIMEOID:
    4420             :         case TIMETZOID:
    4421           0 :             *scaledvalue = convert_timevalue_to_scalar(value, valuetypid,
    4422             :                                                        &failure);
    4423           0 :             *scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid,
    4424             :                                                          &failure);
    4425           0 :             *scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid,
    4426             :                                                          &failure);
    4427           0 :             return !failure;
    4428             : 
    4429             :             /*
    4430             :              * Built-in network types
    4431             :              */
    4432           0 :         case INETOID:
    4433             :         case CIDROID:
    4434             :         case MACADDROID:
    4435             :         case MACADDR8OID:
    4436           0 :             *scaledvalue = convert_network_to_scalar(value, valuetypid,
    4437             :                                                      &failure);
    4438           0 :             *scaledlobound = convert_network_to_scalar(lobound, boundstypid,
    4439             :                                                        &failure);
    4440           0 :             *scaledhibound = convert_network_to_scalar(hibound, boundstypid,
    4441             :                                                        &failure);
    4442           0 :             return !failure;
    4443             :     }
    4444             :     /* Don't know how to convert */
    4445           0 :     *scaledvalue = *scaledlobound = *scaledhibound = 0;
    4446           0 :     return false;
    4447             : }
    4448             : 
    4449             : /*
    4450             :  * Do convert_to_scalar()'s work for any numeric data type.
    4451             :  *
    4452             :  * On failure (e.g., unsupported typid), set *failure to true;
    4453             :  * otherwise, that variable is not changed.
    4454             :  */
    4455             : static double
    4456      219612 : convert_numeric_to_scalar(Datum value, Oid typid, bool *failure)
    4457             : {
    4458      219612 :     switch (typid)
    4459             :     {
    4460           0 :         case BOOLOID:
    4461           0 :             return (double) DatumGetBool(value);
    4462          12 :         case INT2OID:
    4463          12 :             return (double) DatumGetInt16(value);
    4464       29784 :         case INT4OID:
    4465       29784 :             return (double) DatumGetInt32(value);
    4466           0 :         case INT8OID:
    4467           0 :             return (double) DatumGetInt64(value);
    4468           0 :         case FLOAT4OID:
    4469           0 :             return (double) DatumGetFloat4(value);
    4470          36 :         case FLOAT8OID:
    4471          36 :             return (double) DatumGetFloat8(value);
    4472           0 :         case NUMERICOID:
    4473             :             /* Note: out-of-range values will be clamped to +-HUGE_VAL */
    4474           0 :             return (double)
    4475           0 :                 DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow,
    4476             :                                                    value));
    4477      189780 :         case OIDOID:
    4478             :         case REGPROCOID:
    4479             :         case REGPROCEDUREOID:
    4480             :         case REGOPEROID:
    4481             :         case REGOPERATOROID:
    4482             :         case REGCLASSOID:
    4483             :         case REGTYPEOID:
    4484             :         case REGCOLLATIONOID:
    4485             :         case REGCONFIGOID:
    4486             :         case REGDICTIONARYOID:
    4487             :         case REGROLEOID:
    4488             :         case REGNAMESPACEOID:
    4489             :             /* we can treat OIDs as integers... */
    4490      189780 :             return (double) DatumGetObjectId(value);
    4491             :     }
    4492             : 
    4493           0 :     *failure = true;
    4494           0 :     return 0;
    4495             : }
    4496             : 
    4497             : /*
    4498             :  * Do convert_to_scalar()'s work for any character-string data type.
    4499             :  *
    4500             :  * String datatypes are converted to a scale that ranges from 0 to 1,
    4501             :  * where we visualize the bytes of the string as fractional digits.
    4502             :  *
    4503             :  * We do not want the base to be 256, however, since that tends to
    4504             :  * generate inflated selectivity estimates; few databases will have
    4505             :  * occurrences of all 256 possible byte values at each position.
    4506             :  * Instead, use the smallest and largest byte values seen in the bounds
    4507             :  * as the estimated range for each byte, after some fudging to deal with
    4508             :  * the fact that we probably aren't going to see the full range that way.
    4509             :  *
    4510             :  * An additional refinement is that we discard any common prefix of the
    4511             :  * three strings before computing the scaled values.  This allows us to
    4512             :  * "zoom in" when we encounter a narrow data range.  An example is a phone
    4513             :  * number database where all the values begin with the same area code.
    4514             :  * (Actually, the bounds will be adjacent histogram-bin-boundary values,
    4515             :  * so this is more likely to happen than you might think.)
    4516             :  */
    4517             : static void
    4518        4918 : convert_string_to_scalar(char *value,
    4519             :                          double *scaledvalue,
    4520             :                          char *lobound,
    4521             :                          double *scaledlobound,
    4522             :                          char *hibound,
    4523             :                          double *scaledhibound)
    4524             : {
    4525             :     int         rangelo,
    4526             :                 rangehi;
    4527             :     char       *sptr;
    4528             : 
    4529        4918 :     rangelo = rangehi = (unsigned char) hibound[0];
    4530       65458 :     for (sptr = lobound; *sptr; sptr++)
    4531             :     {
    4532       60540 :         if (rangelo > (unsigned char) *sptr)
    4533       12226 :             rangelo = (unsigned char) *sptr;
    4534       60540 :         if (rangehi < (unsigned char) *sptr)
    4535        6552 :             rangehi = (unsigned char) *sptr;
    4536             :     }
    4537       69588 :     for (sptr = hibound; *sptr; sptr++)
    4538             :     {
    4539       64670 :         if (rangelo > (unsigned char) *sptr)
    4540         936 :             rangelo = (unsigned char) *sptr;
    4541       64670 :         if (rangehi < (unsigned char) *sptr)
    4542        2380 :             rangehi = (unsigned char) *sptr;
    4543             :     }
    4544             :     /* If range includes any upper-case ASCII chars, make it include all */
    4545        4918 :     if (rangelo <= 'Z' && rangehi >= 'A')
    4546             :     {
    4547         842 :         if (rangelo > 'A')
    4548          90 :             rangelo = 'A';
    4549         842 :         if (rangehi < 'Z')
    4550         480 :             rangehi = 'Z';
    4551             :     }
    4552             :     /* Ditto lower-case */
    4553        4918 :     if (rangelo <= 'z' && rangehi >= 'a')
    4554             :     {
    4555        4416 :         if (rangelo > 'a')
    4556          24 :             rangelo = 'a';
    4557        4416 :         if (rangehi < 'z')
    4558        4366 :             rangehi = 'z';
    4559             :     }
    4560             :     /* Ditto digits */
    4561        4918 :     if (rangelo <= '9' && rangehi >= '0')
    4562             :     {
    4563         294 :         if (rangelo > '0')
    4564         200 :             rangelo = '0';
    4565         294 :         if (rangehi < '9')
    4566          14 :             rangehi = '9';
    4567             :     }
    4568             : 
    4569             :     /*
    4570             :      * If range includes less than 10 chars, assume we have not got enough
    4571             :      * data, and make it include regular ASCII set.
    4572             :      */
    4573        4918 :     if (rangehi - rangelo < 9)
    4574             :     {
    4575           0 :         rangelo = ' ';
    4576           0 :         rangehi = 127;
    4577             :     }
    4578             : 
    4579             :     /*
    4580             :      * Now strip any common prefix of the three strings.
    4581             :      */
    4582        8808 :     while (*lobound)
    4583             :     {
    4584        8808 :         if (*lobound != *hibound || *lobound != *value)
    4585             :             break;
    4586        3890 :         lobound++, hibound++, value++;
    4587             :     }
    4588             : 
    4589             :     /*
    4590             :      * Now we can do the conversions.
    4591             :      */
    4592        4918 :     *scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
    4593        4918 :     *scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
    4594        4918 :     *scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
    4595        4918 : }
    4596             : 
    4597             : static double
    4598       14754 : convert_one_string_to_scalar(char *value, int rangelo, int rangehi)
    4599             : {
    4600       14754 :     int         slen = strlen(value);
    4601             :     double      num,
    4602             :                 denom,
    4603             :                 base;
    4604             : 
    4605       14754 :     if (slen <= 0)
    4606           0 :         return 0.0;             /* empty string has scalar value 0 */
    4607             : 
    4608             :     /*
    4609             :      * There seems little point in considering more than a dozen bytes from
    4610             :      * the string.  Since base is at least 10, that will give us nominal
    4611             :      * resolution of at least 12 decimal digits, which is surely far more
    4612             :      * precision than this estimation technique has got anyway (especially in
    4613             :      * non-C locales).  Also, even with the maximum possible base of 256, this
    4614             :      * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not
    4615             :      * overflow on any known machine.
    4616             :      */
    4617       14754 :     if (slen > 12)
    4618        4406 :         slen = 12;
    4619             : 
    4620             :     /* Convert initial characters to fraction */
    4621       14754 :     base = rangehi - rangelo + 1;
    4622       14754 :     num = 0.0;
    4623       14754 :     denom = base;
    4624      125870 :     while (slen-- > 0)
    4625             :     {
    4626      111116 :         int         ch = (unsigned char) *value++;
    4627             : 
    4628      111116 :         if (ch < rangelo)
    4629         232 :             ch = rangelo - 1;
    4630      110884 :         else if (ch > rangehi)
    4631           0 :             ch = rangehi + 1;
    4632      111116 :         num += ((double) (ch - rangelo)) / denom;
    4633      111116 :         denom *= base;
    4634             :     }
    4635             : 
    4636       14754 :     return num;
    4637             : }
    4638             : 
    4639             : /*
    4640             :  * Convert a string-type Datum into a palloc'd, null-terminated string.
    4641             :  *
    4642             :  * On failure (e.g., unsupported typid), set *failure to true;
    4643             :  * otherwise, that variable is not changed.  (We'll return NULL on failure.)
    4644             :  *
    4645             :  * When using a non-C locale, we must pass the string through pg_strxfrm()
    4646             :  * before continuing, so as to generate correct locale-specific results.
    4647             :  */
    4648             : static char *
    4649       14754 : convert_string_datum(Datum value, Oid typid, Oid collid, bool *failure)
    4650             : {
    4651             :     char       *val;
    4652             :     pg_locale_t mylocale;
    4653             : 
    4654       14754 :     switch (typid)
    4655             :     {
    4656           0 :         case CHAROID:
    4657           0 :             val = (char *) palloc(2);
    4658           0 :             val[0] = DatumGetChar(value);
    4659           0 :             val[1] = '\0';
    4660           0 :             break;
    4661        4514 :         case BPCHAROID:
    4662             :         case VARCHAROID:
    4663             :         case TEXTOID:
    4664        4514 :             val = TextDatumGetCString(value);
    4665        4514 :             break;
    4666       10240 :         case NAMEOID:
    4667             :             {
    4668       10240 :                 NameData   *nm = (NameData *) DatumGetPointer(value);
    4669             : 
    4670       10240 :                 val = pstrdup(NameStr(*nm));
    4671       10240 :                 break;
    4672             :             }
    4673           0 :         default:
    4674           0 :             *failure = true;
    4675           0 :             return NULL;
    4676             :     }
    4677             : 
    4678       14754 :     mylocale = pg_newlocale_from_collation(collid);
    4679             : 
    4680       14754 :     if (!mylocale->collate_is_c)
    4681             :     {
    4682             :         char       *xfrmstr;
    4683             :         size_t      xfrmlen;
    4684             :         size_t      xfrmlen2 PG_USED_FOR_ASSERTS_ONLY;
    4685             : 
    4686             :         /*
    4687             :          * XXX: We could guess at a suitable output buffer size and only call
    4688             :          * pg_strxfrm() twice if our guess is too small.
    4689             :          *
    4690             :          * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return
    4691             :          * bogus data or set an error. This is not really a problem unless it
    4692             :          * crashes since it will only give an estimation error and nothing
    4693             :          * fatal.
    4694             :          *
    4695             :          * XXX: we do not check pg_strxfrm_enabled(). On some platforms and in
    4696             :          * some cases, libc strxfrm() may return the wrong results, but that
    4697             :          * will only lead to an estimation error.
    4698             :          */
    4699          72 :         xfrmlen = pg_strxfrm(NULL, val, 0, mylocale);
    4700             : #ifdef WIN32
    4701             : 
    4702             :         /*
    4703             :          * On Windows, strxfrm returns INT_MAX when an error occurs. Instead
    4704             :          * of trying to allocate this much memory (and fail), just return the
    4705             :          * original string unmodified as if we were in the C locale.
    4706             :          */
    4707             :         if (xfrmlen == INT_MAX)
    4708             :             return val;
    4709             : #endif
    4710          72 :         xfrmstr = (char *) palloc(xfrmlen + 1);
    4711          72 :         xfrmlen2 = pg_strxfrm(xfrmstr, val, xfrmlen + 1, mylocale);
    4712             : 
    4713             :         /*
    4714             :          * Some systems (e.g., glibc) can return a smaller value from the
    4715             :          * second call than the first; thus the Assert must be <= not ==.
    4716             :          */
    4717             :         Assert(xfrmlen2 <= xfrmlen);
    4718          72 :         pfree(val);
    4719          72 :         val = xfrmstr;
    4720             :     }
    4721             : 
    4722       14754 :     return val;
    4723             : }
    4724             : 
    4725             : /*
    4726             :  * Do convert_to_scalar()'s work for any bytea data type.
    4727             :  *
    4728             :  * Very similar to convert_string_to_scalar except we can't assume
    4729             :  * null-termination and therefore pass explicit lengths around.
    4730             :  *
    4731             :  * Also, assumptions about likely "normal" ranges of characters have been
    4732             :  * removed - a data range of 0..255 is always used, for now.  (Perhaps
    4733             :  * someday we will add information about actual byte data range to
    4734             :  * pg_statistic.)
    4735             :  */
    4736             : static void
    4737           0 : convert_bytea_to_scalar(Datum value,
    4738             :                         double *scaledvalue,
    4739             :                         Datum lobound,
    4740             :                         double *scaledlobound,
    4741             :                         Datum hibound,
    4742             :                         double *scaledhibound)
    4743             : {
    4744           0 :     bytea      *valuep = DatumGetByteaPP(value);
    4745           0 :     bytea      *loboundp = DatumGetByteaPP(lobound);
    4746           0 :     bytea      *hiboundp = DatumGetByteaPP(hibound);
    4747             :     int         rangelo,
    4748             :                 rangehi,
    4749           0 :                 valuelen = VARSIZE_ANY_EXHDR(valuep),
    4750           0 :                 loboundlen = VARSIZE_ANY_EXHDR(loboundp),
    4751           0 :                 hiboundlen = VARSIZE_ANY_EXHDR(hiboundp),
    4752             :                 i,
    4753             :                 minlen;
    4754           0 :     unsigned char *valstr = (unsigned char *) VARDATA_ANY(valuep);
    4755           0 :     unsigned char *lostr = (unsigned char *) VARDATA_ANY(loboundp);
    4756           0 :     unsigned char *histr = (unsigned char *) VARDATA_ANY(hiboundp);
    4757             : 
    4758             :     /*
    4759             :      * Assume bytea data is uniformly distributed across all byte values.
    4760             :      */
    4761           0 :     rangelo = 0;
    4762           0 :     rangehi = 255;
    4763             : 
    4764             :     /*
    4765             :      * Now strip any common prefix of the three strings.
    4766             :      */
    4767           0 :     minlen = Min(Min(valuelen, loboundlen), hiboundlen);
    4768           0 :     for (i = 0; i < minlen; i++)
    4769             :     {
    4770           0 :         if (*lostr != *histr || *lostr != *valstr)
    4771             :             break;
    4772           0 :         lostr++, histr++, valstr++;
    4773           0 :         loboundlen--, hiboundlen--, valuelen--;
    4774             :     }
    4775             : 
    4776             :     /*
    4777             :      * Now we can do the conversions.
    4778             :      */
    4779           0 :     *scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi);
    4780           0 :     *scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi);
    4781           0 :     *scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi);
    4782           0 : }
    4783             : 
    4784             : static double
    4785           0 : convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
    4786             :                             int rangelo, int rangehi)
    4787             : {
    4788             :     double      num,
    4789             :                 denom,
    4790             :                 base;
    4791             : 
    4792           0 :     if (valuelen <= 0)
    4793           0 :         return 0.0;             /* empty string has scalar value 0 */
    4794             : 
    4795             :     /*
    4796             :      * Since base is 256, need not consider more than about 10 chars (even
    4797             :      * this many seems like overkill)
    4798             :      */
    4799           0 :     if (valuelen > 10)
    4800           0 :         valuelen = 10;
    4801             : 
    4802             :     /* Convert initial characters to fraction */
    4803           0 :     base = rangehi - rangelo + 1;
    4804           0 :     num = 0.0;
    4805           0 :     denom = base;
    4806           0 :     while (valuelen-- > 0)
    4807             :     {
    4808           0 :         int         ch = *value++;
    4809             : 
    4810           0 :         if (ch < rangelo)
    4811           0 :             ch = rangelo - 1;
    4812           0 :         else if (ch > rangehi)
    4813           0 :             ch = rangehi + 1;
    4814           0 :         num += ((double) (ch - rangelo)) / denom;
    4815           0 :         denom *= base;
    4816             :     }
    4817             : 
    4818           0 :     return num;
    4819             : }
    4820             : 
    4821             : /*
    4822             :  * Do convert_to_scalar()'s work for any timevalue data type.
    4823             :  *
    4824             :  * On failure (e.g., unsupported typid), set *failure to true;
    4825             :  * otherwise, that variable is not changed.
    4826             :  */
    4827             : static double
    4828           0 : convert_timevalue_to_scalar(Datum value, Oid typid, bool *failure)
    4829             : {
    4830           0 :     switch (typid)
    4831             :     {
    4832           0 :         case TIMESTAMPOID:
    4833           0 :             return DatumGetTimestamp(value);
    4834           0 :         case TIMESTAMPTZOID:
    4835           0 :             return DatumGetTimestampTz(value);
    4836           0 :         case DATEOID:
    4837           0 :             return date2timestamp_no_overflow(DatumGetDateADT(value));
    4838           0 :         case INTERVALOID:
    4839             :             {
    4840           0 :                 Interval   *interval = DatumGetIntervalP(value);
    4841             : 
    4842             :                 /*
    4843             :                  * Convert the month part of Interval to days using assumed
    4844             :                  * average month length of 365.25/12.0 days.  Not too
    4845             :                  * accurate, but plenty good enough for our purposes.
    4846             :                  *
    4847             :                  * This also works for infinite intervals, which just have all
    4848             :                  * fields set to INT_MIN/INT_MAX, and so will produce a result
    4849             :                  * smaller/larger than any finite interval.
    4850             :                  */
    4851           0 :                 return interval->time + interval->day * (double) USECS_PER_DAY +
    4852           0 :                     interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY);
    4853             :             }
    4854           0 :         case TIMEOID:
    4855           0 :             return DatumGetTimeADT(value);
    4856           0 :         case TIMETZOID:
    4857             :             {
    4858           0 :                 TimeTzADT  *timetz = DatumGetTimeTzADTP(value);
    4859             : 
    4860             :                 /* use GMT-equivalent time */
    4861           0 :                 return (double) (timetz->time + (timetz->zone * 1000000.0));
    4862             :             }
    4863             :     }
    4864             : 
    4865           0 :     *failure = true;
    4866           0 :     return 0;
    4867             : }
    4868             : 
    4869             : 
    4870             : /*
    4871             :  * get_restriction_variable
    4872             :  *      Examine the args of a restriction clause to see if it's of the
    4873             :  *      form (variable op pseudoconstant) or (pseudoconstant op variable),
    4874             :  *      where "variable" could be either a Var or an expression in vars of a
    4875             :  *      single relation.  If so, extract information about the variable,
    4876             :  *      and also indicate which side it was on and the other argument.
    4877             :  *
    4878             :  * Inputs:
    4879             :  *  root: the planner info
    4880             :  *  args: clause argument list
    4881             :  *  varRelid: see specs for restriction selectivity functions
    4882             :  *
    4883             :  * Outputs: (these are valid only if true is returned)
    4884             :  *  *vardata: gets information about variable (see examine_variable)
    4885             :  *  *other: gets other clause argument, aggressively reduced to a constant
    4886             :  *  *varonleft: set true if variable is on the left, false if on the right
    4887             :  *
    4888             :  * Returns true if a variable is identified, otherwise false.
    4889             :  *
    4890             :  * Note: if there are Vars on both sides of the clause, we must fail, because
    4891             :  * callers are expecting that the other side will act like a pseudoconstant.
    4892             :  */
    4893             : bool
    4894      665142 : get_restriction_variable(PlannerInfo *root, List *args, int varRelid,
    4895             :                          VariableStatData *vardata, Node **other,
    4896             :                          bool *varonleft)
    4897             : {
    4898             :     Node       *left,
    4899             :                *right;
    4900             :     VariableStatData rdata;
    4901             : 
    4902             :     /* Fail if not a binary opclause (probably shouldn't happen) */
    4903      665142 :     if (list_length(args) != 2)
    4904           0 :         return false;
    4905             : 
    4906      665142 :     left = (Node *) linitial(args);
    4907      665142 :     right = (Node *) lsecond(args);
    4908             : 
    4909             :     /*
    4910             :      * Examine both sides.  Note that when varRelid is nonzero, Vars of other
    4911             :      * relations will be treated as pseudoconstants.
    4912             :      */
    4913      665142 :     examine_variable(root, left, varRelid, vardata);
    4914      665142 :     examine_variable(root, right, varRelid, &rdata);
    4915             : 
    4916             :     /*
    4917             :      * If one side is a variable and the other not, we win.
    4918             :      */
    4919      665142 :     if (vardata->rel && rdata.rel == NULL)
    4920             :     {
    4921      597940 :         *varonleft = true;
    4922      597940 :         *other = estimate_expression_value(root, rdata.var);
    4923             :         /* Assume we need no ReleaseVariableStats(rdata) here */
    4924      597940 :         return true;
    4925             :     }
    4926             : 
    4927       67202 :     if (vardata->rel == NULL && rdata.rel)
    4928             :     {
    4929       62162 :         *varonleft = false;
    4930       62162 :         *other = estimate_expression_value(root, vardata->var);
    4931             :         /* Assume we need no ReleaseVariableStats(*vardata) here */
    4932       62162 :         *vardata = rdata;
    4933       62162 :         return true;
    4934             :     }
    4935             : 
    4936             :     /* Oops, clause has wrong structure (probably var op var) */
    4937        5040 :     ReleaseVariableStats(*vardata);
    4938        5040 :     ReleaseVariableStats(rdata);
    4939             : 
    4940        5040 :     return false;
    4941             : }
    4942             : 
    4943             : /*
    4944             :  * get_join_variables
    4945             :  *      Apply examine_variable() to each side of a join clause.
    4946             :  *      Also, attempt to identify whether the join clause has the same
    4947             :  *      or reversed sense compared to the SpecialJoinInfo.
    4948             :  *
    4949             :  * We consider the join clause "normal" if it is "lhs_var OP rhs_var",
    4950             :  * or "reversed" if it is "rhs_var OP lhs_var".  In complicated cases
    4951             :  * where we can't tell for sure, we default to assuming it's normal.
    4952             :  */
    4953             : void
    4954      197394 : get_join_variables(PlannerInfo *root, List *args, SpecialJoinInfo *sjinfo,
    4955             :                    VariableStatData *vardata1, VariableStatData *vardata2,
    4956             :                    bool *join_is_reversed)
    4957             : {
    4958             :     Node       *left,
    4959             :                *right;
    4960             : 
    4961      197394 :     if (list_length(args) != 2)
    4962           0 :         elog(ERROR, "join operator should take two arguments");
    4963             : 
    4964      197394 :     left = (Node *) linitial(args);
    4965      197394 :     right = (Node *) lsecond(args);
    4966             : 
    4967      197394 :     examine_variable(root, left, 0, vardata1);
    4968      197394 :     examine_variable(root, right, 0, vardata2);
    4969             : 
    4970      394612 :     if (vardata1->rel &&
    4971      197218 :         bms_is_subset(vardata1->rel->relids, sjinfo->syn_righthand))
    4972       74394 :         *join_is_reversed = true;   /* var1 is on RHS */
    4973      245830 :     else if (vardata2->rel &&
    4974      122830 :              bms_is_subset(vardata2->rel->relids, sjinfo->syn_lefthand))
    4975         134 :         *join_is_reversed = true;   /* var2 is on LHS */
    4976             :     else
    4977      122866 :         *join_is_reversed = false;
    4978      197394 : }
    4979             : 
    4980             : /* statext_expressions_load copies the tuple, so just pfree it. */
    4981             : static void
    4982        1644 : ReleaseDummy(HeapTuple tuple)
    4983             : {
    4984        1644 :     pfree(tuple);
    4985        1644 : }
    4986             : 
    4987             : /*
    4988             :  * examine_variable
    4989             :  *      Try to look up statistical data about an expression.
    4990             :  *      Fill in a VariableStatData struct to describe the expression.
    4991             :  *
    4992             :  * Inputs:
    4993             :  *  root: the planner info
    4994             :  *  node: the expression tree to examine
    4995             :  *  varRelid: see specs for restriction selectivity functions
    4996             :  *
    4997             :  * Outputs: *vardata is filled as follows:
    4998             :  *  var: the input expression (with any binary relabeling stripped, if
    4999             :  *      it is or contains a variable; but otherwise the type is preserved)
    5000             :  *  rel: RelOptInfo for relation containing variable; NULL if expression
    5001             :  *      contains no Vars (NOTE this could point to a RelOptInfo of a
    5002             :  *      subquery, not one in the current query).
    5003             :  *  statsTuple: the pg_statistic entry for the variable, if one exists;
    5004             :  *      otherwise NULL.
    5005             :  *  freefunc: pointer to a function to release statsTuple with.
    5006             :  *  vartype: exposed type of the expression; this should always match
    5007             :  *      the declared input type of the operator we are estimating for.
    5008             :  *  atttype, atttypmod: actual type/typmod of the "var" expression.  This is
    5009             :  *      commonly the same as the exposed type of the variable argument,
    5010             :  *      but can be different in binary-compatible-type cases.
    5011             :  *  isunique: true if we were able to match the var to a unique index or a
    5012             :  *      single-column DISTINCT clause, implying its values are unique for
    5013             :  *      this query.  (Caution: this should be trusted for statistical
    5014             :  *      purposes only, since we do not check indimmediate nor verify that
    5015             :  *      the exact same definition of equality applies.)
    5016             :  *  acl_ok: true if current user has permission to read the column(s)
    5017             :  *      underlying the pg_statistic entry.  This is consulted by
    5018             :  *      statistic_proc_security_check().
    5019             :  *
    5020             :  * Caller is responsible for doing ReleaseVariableStats() before exiting.
    5021             :  */
    5022             : void
    5023     2537858 : examine_variable(PlannerInfo *root, Node *node, int varRelid,
    5024             :                  VariableStatData *vardata)
    5025             : {
    5026             :     Node       *basenode;
    5027             :     Relids      varnos;
    5028             :     RelOptInfo *onerel;
    5029             : 
    5030             :     /* Make sure we don't return dangling pointers in vardata */
    5031    17765006 :     MemSet(vardata, 0, sizeof(VariableStatData));
    5032             : 
    5033             :     /* Save the exposed type of the expression */
    5034     2537858 :     vardata->vartype = exprType(node);
    5035             : 
    5036             :     /* Look inside any binary-compatible relabeling */
    5037             : 
    5038     2537858 :     if (IsA(node, RelabelType))
    5039       24302 :         basenode = (Node *) ((RelabelType *) node)->arg;
    5040             :     else
    5041     2513556 :         basenode = node;
    5042             : 
    5043             :     /* Fast path for a simple Var */
    5044             : 
    5045     2537858 :     if (IsA(basenode, Var) &&
    5046      596878 :         (varRelid == 0 || varRelid == ((Var *) basenode)->varno))
    5047             :     {
    5048     1783352 :         Var        *var = (Var *) basenode;
    5049             : 
    5050             :         /* Set up result fields other than the stats tuple */
    5051     1783352 :         vardata->var = basenode; /* return Var without relabeling */
    5052     1783352 :         vardata->rel = find_base_rel(root, var->varno);
    5053     1783352 :         vardata->atttype = var->vartype;
    5054     1783352 :         vardata->atttypmod = var->vartypmod;
    5055     1783352 :         vardata->isunique = has_unique_index(vardata->rel, var->varattno);
    5056             : 
    5057             :         /* Try to locate some stats */
    5058     1783352 :         examine_simple_variable(root, var, vardata);
    5059             : 
    5060     1783352 :         return;
    5061             :     }
    5062             : 
    5063             :     /*
    5064             :      * Okay, it's a more complicated expression.  Determine variable
    5065             :      * membership.  Note that when varRelid isn't zero, only vars of that
    5066             :      * relation are considered "real" vars.
    5067             :      */
    5068      754506 :     varnos = pull_varnos(root, basenode);
    5069             : 
    5070      754506 :     onerel = NULL;
    5071             : 
    5072      754506 :     if (bms_is_empty(varnos))
    5073             :     {
    5074             :         /* No Vars at all ... must be pseudo-constant clause */
    5075             :     }
    5076             :     else
    5077             :     {
    5078             :         int         relid;
    5079             : 
    5080      354784 :         if (bms_get_singleton_member(varnos, &relid))
    5081             :         {
    5082      348888 :             if (varRelid == 0 || varRelid == relid)
    5083             :             {
    5084       51932 :                 onerel = find_base_rel(root, relid);
    5085       51932 :                 vardata->rel = onerel;
    5086       51932 :                 node = basenode;    /* strip any relabeling */
    5087             :             }
    5088             :             /* else treat it as a constant */
    5089             :         }
    5090             :         else
    5091             :         {
    5092             :             /* varnos has multiple relids */
    5093        5896 :             if (varRelid == 0)
    5094             :             {
    5095             :                 /* treat it as a variable of a join relation */
    5096        5418 :                 vardata->rel = find_join_rel(root, varnos);
    5097        5418 :                 node = basenode;    /* strip any relabeling */
    5098             :             }
    5099         478 :             else if (bms_is_member(varRelid, varnos))
    5100             :             {
    5101             :                 /* ignore the vars belonging to other relations */
    5102          68 :                 vardata->rel = find_base_rel(root, varRelid);
    5103          68 :                 node = basenode;    /* strip any relabeling */
    5104             :                 /* note: no point in expressional-index search here */
    5105             :             }
    5106             :             /* else treat it as a constant */
    5107             :         }
    5108             :     }
    5109             : 
    5110      754506 :     bms_free(varnos);
    5111             : 
    5112      754506 :     vardata->var = node;
    5113      754506 :     vardata->atttype = exprType(node);
    5114      754506 :     vardata->atttypmod = exprTypmod(node);
    5115             : 
    5116      754506 :     if (onerel)
    5117             :     {
    5118             :         /*
    5119             :          * We have an expression in vars of a single relation.  Try to match
    5120             :          * it to expressional index columns, in hopes of finding some
    5121             :          * statistics.
    5122             :          *
    5123             :          * Note that we consider all index columns including INCLUDE columns,
    5124             :          * since there could be stats for such columns.  But the test for
    5125             :          * uniqueness needs to be warier.
    5126             :          *
    5127             :          * XXX it's conceivable that there are multiple matches with different
    5128             :          * index opfamilies; if so, we need to pick one that matches the
    5129             :          * operator we are estimating for.  FIXME later.
    5130             :          */
    5131             :         ListCell   *ilist;
    5132             :         ListCell   *slist;
    5133             :         Oid         userid;
    5134             : 
    5135             :         /*
    5136             :          * Determine the user ID to use for privilege checks: either
    5137             :          * onerel->userid if it's set (e.g., in case we're accessing the table
    5138             :          * via a view), or the current user otherwise.
    5139             :          *
    5140             :          * If we drill down to child relations, we keep using the same userid:
    5141             :          * it's going to be the same anyway, due to how we set up the relation
    5142             :          * tree (q.v. build_simple_rel).
    5143             :          */
    5144       51932 :         userid = OidIsValid(onerel->userid) ? onerel->userid : GetUserId();
    5145             : 
    5146      101318 :         foreach(ilist, onerel->indexlist)
    5147             :         {
    5148       52164 :             IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
    5149             :             ListCell   *indexpr_item;
    5150             :             int         pos;
    5151             : 
    5152       52164 :             indexpr_item = list_head(index->indexprs);
    5153       52164 :             if (indexpr_item == NULL)
    5154       47568 :                 continue;       /* no expressions here... */
    5155             : 
    5156        6486 :             for (pos = 0; pos < index->ncolumns; pos++)
    5157             :             {
    5158        4668 :                 if (index->indexkeys[pos] == 0)
    5159             :                 {
    5160             :                     Node       *indexkey;
    5161             : 
    5162        4596 :                     if (indexpr_item == NULL)
    5163           0 :                         elog(ERROR, "too few entries in indexprs list");
    5164        4596 :                     indexkey = (Node *) lfirst(indexpr_item);
    5165        4596 :                     if (indexkey && IsA(indexkey, RelabelType))
    5166           0 :                         indexkey = (Node *) ((RelabelType *) indexkey)->arg;
    5167        4596 :                     if (equal(node, indexkey))
    5168             :                     {
    5169             :                         /*
    5170             :                          * Found a match ... is it a unique index? Tests here
    5171             :                          * should match has_unique_index().
    5172             :                          */
    5173        3366 :                         if (index->unique &&
    5174         390 :                             index->nkeycolumns == 1 &&
    5175         390 :                             pos == 0 &&
    5176         390 :                             (index->indpred == NIL || index->predOK))
    5177         390 :                             vardata->isunique = true;
    5178             : 
    5179             :                         /*
    5180             :                          * Has it got stats?  We only consider stats for
    5181             :                          * non-partial indexes, since partial indexes probably
    5182             :                          * don't reflect whole-relation statistics; the above
    5183             :                          * check for uniqueness is the only info we take from
    5184             :                          * a partial index.
    5185             :                          *
    5186             :                          * An index stats hook, however, must make its own
    5187             :                          * decisions about what to do with partial indexes.
    5188             :                          */
    5189        3366 :                         if (get_index_stats_hook &&
    5190           0 :                             (*get_index_stats_hook) (root, index->indexoid,
    5191           0 :                                                      pos + 1, vardata))
    5192             :                         {
    5193             :                             /*
    5194             :                              * The hook took control of acquiring a stats
    5195             :                              * tuple.  If it did supply a tuple, it'd better
    5196             :                              * have supplied a freefunc.
    5197             :                              */
    5198           0 :                             if (HeapTupleIsValid(vardata->statsTuple) &&
    5199           0 :                                 !vardata->freefunc)
    5200           0 :                                 elog(ERROR, "no function provided to release variable stats with");
    5201             :                         }
    5202        3366 :                         else if (index->indpred == NIL)
    5203             :                         {
    5204        3366 :                             vardata->statsTuple =
    5205        6732 :                                 SearchSysCache3(STATRELATTINH,
    5206             :                                                 ObjectIdGetDatum(index->indexoid),
    5207        3366 :                                                 Int16GetDatum(pos + 1),
    5208             :                                                 BoolGetDatum(false));
    5209        3366 :                             vardata->freefunc = ReleaseSysCache;
    5210             : 
    5211        3366 :                             if (HeapTupleIsValid(vardata->statsTuple))
    5212             :                             {
    5213             :                                 /* Get index's table for permission check */
    5214             :                                 RangeTblEntry *rte;
    5215             : 
    5216        2778 :                                 rte = planner_rt_fetch(index->rel->relid, root);
    5217             :                                 Assert(rte->rtekind == RTE_RELATION);
    5218             : 
    5219             :                                 /*
    5220             :                                  * For simplicity, we insist on the whole
    5221             :                                  * table being selectable, rather than trying
    5222             :                                  * to identify which column(s) the index
    5223             :                                  * depends on.  Also require all rows to be
    5224             :                                  * selectable --- there must be no
    5225             :                                  * securityQuals from security barrier views
    5226             :                                  * or RLS policies.
    5227             :                                  */
    5228        2778 :                                 vardata->acl_ok =
    5229        5556 :                                     rte->securityQuals == NIL &&
    5230        2778 :                                     (pg_class_aclcheck(rte->relid, userid,
    5231             :                                                        ACL_SELECT) == ACLCHECK_OK);
    5232             : 
    5233             :                                 /*
    5234             :                                  * If the user doesn't have permissions to
    5235             :                                  * access an inheritance child relation, check
    5236             :                                  * the permissions of the table actually
    5237             :                                  * mentioned in the query, since most likely
    5238             :                                  * the user does have that permission.  Note
    5239             :                                  * that whole-table select privilege on the
    5240             :                                  * parent doesn't quite guarantee that the
    5241             :                                  * user could read all columns of the child.
    5242             :                                  * But in practice it's unlikely that any
    5243             :                                  * interesting security violation could result
    5244             :                                  * from allowing access to the expression
    5245             :                                  * index's stats, so we allow it anyway.  See
    5246             :                                  * similar code in examine_simple_variable()
    5247             :                                  * for additional comments.
    5248             :                                  */
    5249        2778 :                                 if (!vardata->acl_ok &&
    5250          18 :                                     root->append_rel_array != NULL)
    5251             :                                 {
    5252             :                                     AppendRelInfo *appinfo;
    5253          12 :                                     Index       varno = index->rel->relid;
    5254             : 
    5255          12 :                                     appinfo = root->append_rel_array[varno];
    5256          36 :                                     while (appinfo &&
    5257          24 :                                            planner_rt_fetch(appinfo->parent_relid,
    5258          24 :                                                             root)->rtekind == RTE_RELATION)
    5259             :                                     {
    5260          24 :                                         varno = appinfo->parent_relid;
    5261          24 :                                         appinfo = root->append_rel_array[varno];
    5262             :                                     }
    5263          12 :                                     if (varno != index->rel->relid)
    5264             :                                     {
    5265             :                                         /* Repeat access check on this rel */
    5266          12 :                                         rte = planner_rt_fetch(varno, root);
    5267             :                                         Assert(rte->rtekind == RTE_RELATION);
    5268             : 
    5269          12 :                                         vardata->acl_ok =
    5270          24 :                                             rte->securityQuals == NIL &&
    5271          12 :                                             (pg_class_aclcheck(rte->relid,
    5272             :                                                                userid,
    5273             :                                                                ACL_SELECT) == ACLCHECK_OK);
    5274             :                                     }
    5275             :                                 }
    5276             :                             }
    5277             :                             else
    5278             :                             {
    5279             :                                 /* suppress leakproofness checks later */
    5280         588 :                                 vardata->acl_ok = true;
    5281             :                             }
    5282             :                         }
    5283        3366 :                         if (vardata->statsTuple)
    5284        2778 :                             break;
    5285             :                     }
    5286        1818 :                     indexpr_item = lnext(index->indexprs, indexpr_item);
    5287             :                 }
    5288             :             }
    5289        4596 :             if (vardata->statsTuple)
    5290        2778 :                 break;
    5291             :         }
    5292             : 
    5293             :         /*
    5294             :          * Search extended statistics for one with a matching expression.
    5295             :          * There might be multiple ones, so just grab the first one. In the
    5296             :          * future, we might consider the statistics target (and pick the most
    5297             :          * accurate statistics) and maybe some other parameters.
    5298             :          */
    5299       55952 :         foreach(slist, onerel->statlist)
    5300             :         {
    5301        4308 :             StatisticExtInfo *info = (StatisticExtInfo *) lfirst(slist);
    5302        4308 :             RangeTblEntry *rte = planner_rt_fetch(onerel->relid, root);
    5303             :             ListCell   *expr_item;
    5304             :             int         pos;
    5305             : 
    5306             :             /*
    5307             :              * Stop once we've found statistics for the expression (either
    5308             :              * from extended stats, or for an index in the preceding loop).
    5309             :              */
    5310        4308 :             if (vardata->statsTuple)
    5311         288 :                 break;
    5312             : 
    5313             :             /* skip stats without per-expression stats */
    5314        4020 :             if (info->kind != STATS_EXT_EXPRESSIONS)
    5315        2016 :                 continue;
    5316             : 
    5317             :             /* skip stats with mismatching stxdinherit value */
    5318        2004 :             if (info->inherit != rte->inh)
    5319           6 :                 continue;
    5320             : 
    5321        1998 :             pos = 0;
    5322        3300 :             foreach(expr_item, info->exprs)
    5323             :             {
    5324        2946 :                 Node       *expr = (Node *) lfirst(expr_item);
    5325             : 
    5326             :                 Assert(expr);
    5327             : 
    5328             :                 /* strip RelabelType before comparing it */
    5329        2946 :                 if (expr && IsA(expr, RelabelType))
    5330           0 :                     expr = (Node *) ((RelabelType *) expr)->arg;
    5331             : 
    5332             :                 /* found a match, see if we can extract pg_statistic row */
    5333        2946 :                 if (equal(node, expr))
    5334             :                 {
    5335             :                     /*
    5336             :                      * XXX Not sure if we should cache the tuple somewhere.
    5337             :                      * Now we just create a new copy every time.
    5338             :                      */
    5339        1644 :                     vardata->statsTuple =
    5340        1644 :                         statext_expressions_load(info->statOid, rte->inh, pos);
    5341             : 
    5342        1644 :                     vardata->freefunc = ReleaseDummy;
    5343             : 
    5344             :                     /*
    5345             :                      * For simplicity, we insist on the whole table being
    5346             :                      * selectable, rather than trying to identify which
    5347             :                      * column(s) the statistics object depends on.  Also
    5348             :                      * require all rows to be selectable --- there must be no
    5349             :                      * securityQuals from security barrier views or RLS
    5350             :                      * policies.
    5351             :                      */
    5352        1644 :                     vardata->acl_ok =
    5353        3288 :                         rte->securityQuals == NIL &&
    5354        1644 :                         (pg_class_aclcheck(rte->relid, userid,
    5355             :                                            ACL_SELECT) == ACLCHECK_OK);
    5356             : 
    5357             :                     /*
    5358             :                      * If the user doesn't have permissions to access an
    5359             :                      * inheritance child relation, check the permissions of
    5360             :                      * the table actually mentioned in the query, since most
    5361             :                      * likely the user does have that permission.  Note that
    5362             :                      * whole-table select privilege on the parent doesn't
    5363             :                      * quite guarantee that the user could read all columns of
    5364             :                      * the child. But in practice it's unlikely that any
    5365             :                      * interesting security violation could result from
    5366             :                      * allowing access to the expression stats, so we allow it
    5367             :                      * anyway.  See similar code in examine_simple_variable()
    5368             :                      * for additional comments.
    5369             :                      */
    5370        1644 :                     if (!vardata->acl_ok &&
    5371           0 :                         root->append_rel_array != NULL)
    5372             :                     {
    5373             :                         AppendRelInfo *appinfo;
    5374           0 :                         Index       varno = onerel->relid;
    5375             : 
    5376           0 :                         appinfo = root->append_rel_array[varno];
    5377           0 :                         while (appinfo &&
    5378           0 :                                planner_rt_fetch(appinfo->parent_relid,
    5379           0 :                                                 root)->rtekind == RTE_RELATION)
    5380             :                         {
    5381           0 :                             varno = appinfo->parent_relid;
    5382           0 :                             appinfo = root->append_rel_array[varno];
    5383             :                         }
    5384           0 :                         if (varno != onerel->relid)
    5385             :                         {
    5386             :                             /* Repeat access check on this rel */
    5387           0 :                             rte = planner_rt_fetch(varno, root);
    5388             :                             Assert(rte->rtekind == RTE_RELATION);
    5389             : 
    5390           0 :                             vardata->acl_ok =
    5391           0 :                                 rte->securityQuals == NIL &&
    5392           0 :                                 (pg_class_aclcheck(rte->relid,
    5393             :                                                    userid,
    5394             :                                                    ACL_SELECT) == ACLCHECK_OK);
    5395             :                         }
    5396             :                     }
    5397             : 
    5398        1644 :                     break;
    5399             :                 }
    5400             : 
    5401        1302 :                 pos++;
    5402             :             }
    5403             :         }
    5404             :     }
    5405             : }
    5406             : 
    5407             : /*
    5408             :  * examine_simple_variable
    5409             :  *      Handle a simple Var for examine_variable
    5410             :  *
    5411             :  * This is split out as a subroutine so that we can recurse to deal with
    5412             :  * Vars referencing subqueries (either sub-SELECT-in-FROM or CTE style).
    5413             :  *
    5414             :  * We already filled in all the fields of *vardata except for the stats tuple.
    5415             :  */
    5416             : static void
    5417     1787578 : examine_simple_variable(PlannerInfo *root, Var *var,
    5418             :                         VariableStatData *vardata)
    5419             : {
    5420     1787578 :     RangeTblEntry *rte = root->simple_rte_array[var->varno];
    5421             : 
    5422             :     Assert(IsA(rte, RangeTblEntry));
    5423             : 
    5424     1787578 :     if (get_relation_stats_hook &&
    5425           0 :         (*get_relation_stats_hook) (root, rte, var->varattno, vardata))
    5426             :     {
    5427             :         /*
    5428             :          * The hook took control of acquiring a stats tuple.  If it did supply
    5429             :          * a tuple, it'd better have supplied a freefunc.
    5430             :          */
    5431           0 :         if (HeapTupleIsValid(vardata->statsTuple) &&
    5432           0 :             !vardata->freefunc)
    5433           0 :             elog(ERROR, "no function provided to release variable stats with");
    5434             :     }
    5435     1787578 :     else if (rte->rtekind == RTE_RELATION)
    5436             :     {
    5437             :         /*
    5438             :          * Plain table or parent of an inheritance appendrel, so look up the
    5439             :          * column in pg_statistic
    5440             :          */
    5441     1717496 :         vardata->statsTuple = SearchSysCache3(STATRELATTINH,
    5442             :                                               ObjectIdGetDatum(rte->relid),
    5443     1717496 :                                               Int16GetDatum(var->varattno),
    5444     1717496 :                                               BoolGetDatum(rte->inh));
    5445     1717496 :         vardata->freefunc = ReleaseSysCache;
    5446             : 
    5447     1717496 :         if (HeapTupleIsValid(vardata->statsTuple))
    5448             :         {
    5449     1263156 :             RelOptInfo *onerel = find_base_rel_noerr(root, var->varno);
    5450             :             Oid         userid;
    5451             : 
    5452             :             /*
    5453             :              * Check if user has permission to read this column.  We require
    5454             :              * all rows to be accessible, so there must be no securityQuals
    5455             :              * from security barrier views or RLS policies.
    5456             :              *
    5457             :              * Normally the Var will have an associated RelOptInfo from which
    5458             :              * we can find out which userid to do the check as; but it might
    5459             :              * not if it's a RETURNING Var for an INSERT target relation.  In
    5460             :              * that case use the RTEPermissionInfo associated with the RTE.
    5461             :              */
    5462     1263156 :             if (onerel)
    5463     1263114 :                 userid = onerel->userid;
    5464             :             else
    5465             :             {
    5466             :                 RTEPermissionInfo *perminfo;
    5467             : 
    5468          42 :                 perminfo = getRTEPermissionInfo(root->parse->rteperminfos, rte);
    5469          42 :                 userid = perminfo->checkAsUser;
    5470             :             }
    5471     1263156 :             if (!OidIsValid(userid))
    5472     1182122 :                 userid = GetUserId();
    5473             : 
    5474     1263156 :             vardata->acl_ok =
    5475     2526560 :                 rte->securityQuals == NIL &&
    5476     1263156 :                 ((pg_class_aclcheck(rte->relid, userid,
    5477         248 :                                     ACL_SELECT) == ACLCHECK_OK) ||
    5478         248 :                  (pg_attribute_aclcheck(rte->relid, var->varattno, userid,
    5479             :                                         ACL_SELECT) == ACLCHECK_OK));
    5480             : 
    5481             :             /*
    5482             :              * If the user doesn't have permissions to access an inheritance
    5483             :              * child relation or specifically this attribute, check the
    5484             :              * permissions of the table/column actually mentioned in the
    5485             :              * query, since most likely the user does have that permission
    5486             :              * (else the query will fail at runtime), and if the user can read
    5487             :              * the column there then he can get the values of the child table
    5488             :              * too.  To do that, we must find out which of the root parent's
    5489             :              * attributes the child relation's attribute corresponds to.
    5490             :              */
    5491     1263156 :             if (!vardata->acl_ok && var->varattno > 0 &&
    5492          48 :                 root->append_rel_array != NULL)
    5493             :             {
    5494             :                 AppendRelInfo *appinfo;
    5495          12 :                 Index       varno = var->varno;
    5496          12 :                 int         varattno = var->varattno;
    5497          12 :                 bool        found = false;
    5498             : 
    5499          12 :                 appinfo = root->append_rel_array[varno];
    5500             : 
    5501             :                 /*
    5502             :                  * Partitions are mapped to their immediate parent, not the
    5503             :                  * root parent, so must be ready to walk up multiple
    5504             :                  * AppendRelInfos.  But stop if we hit a parent that is not
    5505             :                  * RTE_RELATION --- that's a flattened UNION ALL subquery, not
    5506             :                  * an inheritance parent.
    5507             :                  */
    5508          36 :                 while (appinfo &&
    5509          24 :                        planner_rt_fetch(appinfo->parent_relid,
    5510          24 :                                         root)->rtekind == RTE_RELATION)
    5511             :                 {
    5512             :                     int         parent_varattno;
    5513             : 
    5514          24 :                     found = false;
    5515          24 :                     if (varattno <= 0 || varattno > appinfo->num_child_cols)
    5516             :                         break;  /* safety check */
    5517          24 :                     parent_varattno = appinfo->parent_colnos[varattno - 1];
    5518          24 :                     if (parent_varattno == 0)
    5519           0 :                         break;  /* Var is local to child */
    5520             : 
    5521          24 :                     varno = appinfo->parent_relid;
    5522          24 :                     varattno = parent_varattno;
    5523          24 :                     found = true;
    5524             : 
    5525             :                     /* If the parent is itself a child, continue up. */
    5526          24 :                     appinfo = root->append_rel_array[varno];
    5527             :                 }
    5528             : 
    5529             :                 /*
    5530             :                  * In rare cases, the Var may be local to the child table, in
    5531             :                  * which case, we've got to live with having no access to this
    5532             :                  * column's stats.
    5533             :                  */
    5534          12 :                 if (!found)
    5535           0 :                     return;
    5536             : 
    5537             :                 /* Repeat the access check on this parent rel & column */
    5538          12 :                 rte = planner_rt_fetch(varno, root);
    5539             :                 Assert(rte->rtekind == RTE_RELATION);
    5540             : 
    5541             :                 /*
    5542             :                  * Fine to use the same userid as it's the same in all
    5543             :                  * relations of a given inheritance tree.
    5544             :                  */
    5545          12 :                 vardata->acl_ok =
    5546          30 :                     rte->securityQuals == NIL &&
    5547          12 :                     ((pg_class_aclcheck(rte->relid, userid,
    5548           6 :                                         ACL_SELECT) == ACLCHECK_OK) ||
    5549           6 :                      (pg_attribute_aclcheck(rte->relid, varattno, userid,
    5550             :                                             ACL_SELECT) == ACLCHECK_OK));
    5551             :             }
    5552             :         }
    5553             :         else
    5554             :         {
    5555             :             /* suppress any possible leakproofness checks later */
    5556      454340 :             vardata->acl_ok = true;
    5557             :         }
    5558             :     }
    5559       70082 :     else if ((rte->rtekind == RTE_SUBQUERY && !rte->inh) ||
    5560       62714 :              (rte->rtekind == RTE_CTE && !rte->self_reference))
    5561             :     {
    5562             :         /*
    5563             :          * Plain subquery (not one that was converted to an appendrel) or
    5564             :          * non-recursive CTE.  In either case, we can try to find out what the
    5565             :          * Var refers to within the subquery.  We skip this for appendrel and
    5566             :          * recursive-CTE cases because any column stats we did find would
    5567             :          * likely not be very relevant.
    5568             :          */
    5569             :         PlannerInfo *subroot;
    5570             :         Query      *subquery;
    5571             :         List       *subtlist;
    5572             :         TargetEntry *ste;
    5573             : 
    5574             :         /*
    5575             :          * Punt if it's a whole-row var rather than a plain column reference.
    5576             :          */
    5577       12278 :         if (var->varattno == InvalidAttrNumber)
    5578           0 :             return;
    5579             : 
    5580             :         /*
    5581             :          * Otherwise, find the subquery's planner subroot.
    5582             :          */
    5583       12278 :         if (rte->rtekind == RTE_SUBQUERY)
    5584             :         {
    5585             :             RelOptInfo *rel;
    5586             : 
    5587             :             /*
    5588             :              * Fetch RelOptInfo for subquery.  Note that we don't change the
    5589             :              * rel returned in vardata, since caller expects it to be a rel of
    5590             :              * the caller's query level.  Because we might already be
    5591             :              * recursing, we can't use that rel pointer either, but have to
    5592             :              * look up the Var's rel afresh.
    5593             :              */
    5594        7368 :             rel = find_base_rel(root, var->varno);
    5595             : 
    5596        7368 :             subroot = rel->subroot;
    5597             :         }
    5598             :         else
    5599             :         {
    5600             :             /* CTE case is more difficult */
    5601             :             PlannerInfo *cteroot;
    5602             :             Index       levelsup;
    5603             :             int         ndx;
    5604             :             int         plan_id;
    5605             :             ListCell   *lc;
    5606             : 
    5607             :             /*
    5608             :              * Find the referenced CTE, and locate the subroot previously made
    5609             :              * for it.
    5610             :              */
    5611        4910 :             levelsup = rte->ctelevelsup;
    5612        4910 :             cteroot = root;
    5613        9524 :             while (levelsup-- > 0)
    5614             :             {
    5615        4614 :                 cteroot = cteroot->parent_root;
    5616        4614 :                 if (!cteroot)   /* shouldn't happen */
    5617           0 :                     elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
    5618             :             }
    5619             : 
    5620             :             /*
    5621             :              * Note: cte_plan_ids can be shorter than cteList, if we are still
    5622             :              * working on planning the CTEs (ie, this is a side-reference from
    5623             :              * another CTE).  So we mustn't use forboth here.
    5624             :              */
    5625        4910 :             ndx = 0;
    5626        7164 :             foreach(lc, cteroot->parse->cteList)
    5627             :             {
    5628        7164 :                 CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
    5629             : 
    5630        7164 :                 if (strcmp(cte->ctename, rte->ctename) == 0)
    5631        4910 :                     break;
    5632        2254 :                 ndx++;
    5633             :             }
    5634        4910 :             if (lc == NULL)     /* shouldn't happen */
    5635           0 :                 elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
    5636        4910 :             if (ndx >= list_length(cteroot->cte_plan_ids))
    5637           0 :                 elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
    5638        4910 :             plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
    5639        4910 :             if (plan_id <= 0)
    5640           0 :                 elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
    5641        4910 :             subroot = list_nth(root->glob->subroots, plan_id - 1);
    5642             :         }
    5643             : 
    5644             :         /* If the subquery hasn't been planned yet, we have to punt */
    5645       12278 :         if (subroot == NULL)
    5646           0 :             return;
    5647             :         Assert(IsA(subroot, PlannerInfo));
    5648             : 
    5649             :         /*
    5650             :          * We must use the subquery parsetree as mangled by the planner, not
    5651             :          * the raw version from the RTE, because we need a Var that will refer
    5652             :          * to the subroot's live RelOptInfos.  For instance, if any subquery
    5653             :          * pullup happened during planning, Vars in the targetlist might have
    5654             :          * gotten replaced, and we need to see the replacement expressions.
    5655             :          */
    5656       12278 :         subquery = subroot->parse;
    5657             :         Assert(IsA(subquery, Query));
    5658             : 
    5659             :         /*
    5660             :          * Punt if subquery uses set operations or GROUP BY, as these will
    5661             :          * mash underlying columns' stats beyond recognition.  (Set ops are
    5662             :          * particularly nasty; if we forged ahead, we would return stats
    5663             :          * relevant to only the leftmost subselect...)  DISTINCT is also
    5664             :          * problematic, but we check that later because there is a possibility
    5665             :          * of learning something even with it.
    5666             :          */
    5667       12278 :         if (subquery->setOperations ||
    5668       10998 :             subquery->groupClause ||
    5669       10378 :             subquery->groupingSets)
    5670        1900 :             return;
    5671             : 
    5672             :         /* Get the subquery output expression referenced by the upper Var */
    5673       10378 :         if (subquery->returningList)
    5674         206 :             subtlist = subquery->returningList;
    5675             :         else
    5676       10172 :             subtlist = subquery->targetList;
    5677       10378 :         ste = get_tle_by_resno(subtlist, var->varattno);
    5678       10378 :         if (ste == NULL || ste->resjunk)
    5679           0 :             elog(ERROR, "subquery %s does not have attribute %d",
    5680             :                  rte->eref->aliasname, var->varattno);
    5681       10378 :         var = (Var *) ste->expr;
    5682             : 
    5683             :         /*
    5684             :          * If subquery uses DISTINCT, we can't make use of any stats for the
    5685             :          * variable ... but, if it's the only DISTINCT column, we are entitled
    5686             :          * to consider it unique.  We do the test this way so that it works
    5687             :          * for cases involving DISTINCT ON.
    5688             :          */
    5689       10378 :         if (subquery->distinctClause)
    5690             :         {
    5691        1794 :             if (list_length(subquery->distinctClause) == 1 &&
    5692         606 :                 targetIsInSortList(ste, InvalidOid, subquery->distinctClause))
    5693         280 :                 vardata->isunique = true;
    5694             :             /* cannot go further */
    5695        1188 :             return;
    5696             :         }
    5697             : 
    5698             :         /*
    5699             :          * If the sub-query originated from a view with the security_barrier
    5700             :          * attribute, we must not look at the variable's statistics, though it
    5701             :          * seems all right to notice the existence of a DISTINCT clause. So
    5702             :          * stop here.
    5703             :          *
    5704             :          * This is probably a harsher restriction than necessary; it's
    5705             :          * certainly OK for the selectivity estimator (which is a C function,
    5706             :          * and therefore omnipotent anyway) to look at the statistics.  But
    5707             :          * many selectivity estimators will happily *invoke the operator
    5708             :          * function* to try to work out a good estimate - and that's not OK.
    5709             :          * So for now, don't dig down for stats.
    5710             :          */
    5711        9190 :         if (rte->security_barrier)
    5712         228 :             return;
    5713             : 
    5714             :         /* Can only handle a simple Var of subquery's query level */
    5715        8962 :         if (var && IsA(var, Var) &&
    5716        4226 :             var->varlevelsup == 0)
    5717             :         {
    5718             :             /*
    5719             :              * OK, recurse into the subquery.  Note that the original setting
    5720             :              * of vardata->isunique (which will surely be false) is left
    5721             :              * unchanged in this situation.  That's what we want, since even
    5722             :              * if the underlying column is unique, the subquery may have
    5723             :              * joined to other tables in a way that creates duplicates.
    5724             :              */
    5725        4226 :             examine_simple_variable(subroot, var, vardata);
    5726             :         }
    5727             :     }
    5728             :     else
    5729             :     {
    5730             :         /*
    5731             :          * Otherwise, the Var comes from a FUNCTION or VALUES RTE.  (We won't
    5732             :          * see RTE_JOIN here because join alias Vars have already been
    5733             :          * flattened.)  There's not much we can do with function outputs, but
    5734             :          * maybe someday try to be smarter about VALUES.
    5735             :          */
    5736             :     }
    5737             : }
    5738             : 
    5739             : /*
    5740             :  * Check whether it is permitted to call func_oid passing some of the
    5741             :  * pg_statistic data in vardata.  We allow this either if the user has SELECT
    5742             :  * privileges on the table or column underlying the pg_statistic data or if
    5743             :  * the function is marked leak-proof.
    5744             :  */
    5745             : bool
    5746      850880 : statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
    5747             : {
    5748      850880 :     if (vardata->acl_ok)
    5749      849702 :         return true;
    5750             : 
    5751        1178 :     if (!OidIsValid(func_oid))
    5752           0 :         return false;
    5753             : 
    5754        1178 :     if (get_func_leakproof(func_oid))
    5755         550 :         return true;
    5756             : 
    5757         628 :     ereport(DEBUG2,
    5758             :             (errmsg_internal("not using statistics because function \"%s\" is not leak-proof",
    5759             :                              get_func_name(func_oid))));
    5760         628 :     return false;
    5761             : }
    5762             : 
    5763             : /*
    5764             :  * get_variable_numdistinct
    5765             :  *    Estimate the number of distinct values of a variable.
    5766             :  *
    5767             :  * vardata: results of examine_variable
    5768             :  * *isdefault: set to true if the result is a default rather than based on
    5769             :  * anything meaningful.
    5770             :  *
    5771             :  * NB: be careful to produce a positive integral result, since callers may
    5772             :  * compare the result to exact integer counts, or might divide by it.
    5773             :  */
    5774             : double
    5775     1222180 : get_variable_numdistinct(VariableStatData *vardata, bool *isdefault)
    5776             : {
    5777             :     double      stadistinct;
    5778     1222180 :     double      stanullfrac = 0.0;
    5779             :     double      ntuples;
    5780             : 
    5781     1222180 :     *isdefault = false;
    5782             : 
    5783             :     /*
    5784             :      * Determine the stadistinct value to use.  There are cases where we can
    5785             :      * get an estimate even without a pg_statistic entry, or can get a better
    5786             :      * value than is in pg_statistic.  Grab stanullfrac too if we can find it
    5787             :      * (otherwise, assume no nulls, for lack of any better idea).
    5788             :      */
    5789     1222180 :     if (HeapTupleIsValid(vardata->statsTuple))
    5790             :     {
    5791             :         /* Use the pg_statistic entry */
    5792             :         Form_pg_statistic stats;
    5793             : 
    5794      865354 :         stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
    5795      865354 :         stadistinct = stats->stadistinct;
    5796      865354 :         stanullfrac = stats->stanullfrac;
    5797             :     }
    5798      356826 :     else if (vardata->vartype == BOOLOID)
    5799             :     {
    5800             :         /*
    5801             :          * Special-case boolean columns: presumably, two distinct values.
    5802             :          *
    5803             :          * Are there any other datatypes we should wire in special estimates
    5804             :          * for?
    5805             :          */
    5806         468 :         stadistinct = 2.0;
    5807             :     }
    5808      356358 :     else if (vardata->rel && vardata->rel->rtekind == RTE_VALUES)
    5809             :     {
    5810             :         /*
    5811             :          * If the Var represents a column of a VALUES RTE, assume it's unique.
    5812             :          * This could of course be very wrong, but it should tend to be true
    5813             :          * in well-written queries.  We could consider examining the VALUES'
    5814             :          * contents to get some real statistics; but that only works if the
    5815             :          * entries are all constants, and it would be pretty expensive anyway.
    5816             :          */
    5817        3258 :         stadistinct = -1.0;     /* unique (and all non null) */
    5818             :     }
    5819             :     else
    5820             :     {
    5821             :         /*
    5822             :          * We don't keep statistics for system columns, but in some cases we
    5823             :          * can infer distinctness anyway.
    5824             :          */
    5825      353100 :         if (vardata->var && IsA(vardata->var, Var))
    5826             :         {
    5827      331330 :             switch (((Var *) vardata->var)->varattno)
    5828             :             {
    5829        1118 :                 case SelfItemPointerAttributeNumber:
    5830        1118 :                     stadistinct = -1.0; /* unique (and all non null) */
    5831        1118 :                     break;
    5832        2518 :                 case TableOidAttributeNumber:
    5833        2518 :                     stadistinct = 1.0;  /* only 1 value */
    5834        2518 :                     break;
    5835      327694 :                 default:
    5836      327694 :                     stadistinct = 0.0;  /* means "unknown" */
    5837      327694 :                     break;
    5838             :             }
    5839             :         }
    5840             :         else
    5841       21770 :             stadistinct = 0.0;  /* means "unknown" */
    5842             : 
    5843             :         /*
    5844             :          * XXX consider using estimate_num_groups on expressions?
    5845             :          */
    5846             :     }
    5847             : 
    5848             :     /*
    5849             :      * If there is a unique index or DISTINCT clause for the variable, assume
    5850             :      * it is unique no matter what pg_statistic says; the statistics could be
    5851             :      * out of date, or we might have found a partial unique index that proves
    5852             :      * the var is unique for this query.  However, we'd better still believe
    5853             :      * the null-fraction statistic.
    5854             :      */
    5855     1222180 :     if (vardata->isunique)
    5856      330726 :         stadistinct = -1.0 * (1.0 - stanullfrac);
    5857             : 
    5858             :     /*
    5859             :      * If we had an absolute estimate, use that.
    5860             :      */
    5861     1222180 :     if (stadistinct > 0.0)
    5862      287900 :         return clamp_row_est(stadistinct);
    5863             : 
    5864             :     /*
    5865             :      * Otherwise we need to get the relation size; punt if not available.
    5866             :      */
    5867      934280 :     if (vardata->rel == NULL)
    5868             :     {
    5869         406 :         *isdefault = true;
    5870         406 :         return DEFAULT_NUM_DISTINCT;
    5871             :     }
    5872      933874 :     ntuples = vardata->rel->tuples;
    5873      933874 :     if (ntuples <= 0.0)
    5874             :     {
    5875       47506 :         *isdefault = true;
    5876       47506 :         return DEFAULT_NUM_DISTINCT;
    5877             :     }
    5878             : 
    5879             :     /*
    5880             :      * If we had a relative estimate, use that.
    5881             :      */
    5882      886368 :     if (stadistinct < 0.0)
    5883      618610 :         return clamp_row_est(-stadistinct * ntuples);
    5884             : 
    5885             :     /*
    5886             :      * With no data, estimate ndistinct = ntuples if the table is small, else
    5887             :      * use default.  We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so
    5888             :      * that the behavior isn't discontinuous.
    5889             :      */
    5890      267758 :     if (ntuples < DEFAULT_NUM_DISTINCT)
    5891      129184 :         return clamp_row_est(ntuples);
    5892             : 
    5893      138574 :     *isdefault = true;
    5894      138574 :     return DEFAULT_NUM_DISTINCT;
    5895             : }
    5896             : 
    5897             : /*
    5898             :  * get_variable_range
    5899             :  *      Estimate the minimum and maximum value of the specified variable.
    5900             :  *      If successful, store values in *min and *max, and return true.
    5901             :  *      If no data available, return false.
    5902             :  *
    5903             :  * sortop is the "<" comparison operator to use.  This should generally
    5904             :  * be "<" not ">", as only the former is likely to be found in pg_statistic.
    5905             :  * The collation must be specified too.
    5906             :  */
    5907             : static bool
    5908      178352 : get_variable_range(PlannerInfo *root, VariableStatData *vardata,
    5909             :                    Oid sortop, Oid collation,
    5910             :                    Datum *min, Datum *max)
    5911             : {
    5912      178352 :     Datum       tmin = 0;
    5913      178352 :     Datum       tmax = 0;
    5914      178352 :     bool        have_data = false;
    5915             :     int16       typLen;
    5916             :     bool        typByVal;
    5917             :     Oid         opfuncoid;
    5918             :     FmgrInfo    opproc;
    5919             :     AttStatsSlot sslot;
    5920             : 
    5921             :     /*
    5922             :      * XXX It's very tempting to try to use the actual column min and max, if
    5923             :      * we can get them relatively-cheaply with an index probe.  However, since
    5924             :      * this function is called many times during join planning, that could
    5925             :      * have unpleasant effects on planning speed.  Need more investigation
    5926             :      * before enabling this.
    5927             :      */
    5928             : #ifdef NOT_USED
    5929             :     if (get_actual_variable_range(root, vardata, sortop, collation, min, max))
    5930             :         return true;
    5931             : #endif
    5932             : 
    5933      178352 :     if (!HeapTupleIsValid(vardata->statsTuple))
    5934             :     {
    5935             :         /* no stats available, so default result */
    5936       38820 :         return false;
    5937             :     }
    5938             : 
    5939             :     /*
    5940             :      * If we can't apply the sortop to the stats data, just fail.  In
    5941             :      * principle, if there's a histogram and no MCVs, we could return the
    5942             :      * histogram endpoints without ever applying the sortop ... but it's
    5943             :      * probably not worth trying, because whatever the caller wants to do with
    5944             :      * the endpoints would likely fail the security check too.
    5945             :      */
    5946      139532 :     if (!statistic_proc_security_check(vardata,
    5947      139532 :                                        (opfuncoid = get_opcode(sortop))))
    5948           0 :         return false;
    5949             : 
    5950      139532 :     opproc.fn_oid = InvalidOid; /* mark this as not looked up yet */
    5951             : 
    5952      139532 :     get_typlenbyval(vardata->atttype, &typLen, &typByVal);
    5953             : 
    5954             :     /*
    5955             :      * If there is a histogram with the ordering we want, grab the first and
    5956             :      * last values.
    5957             :      */
    5958      139532 :     if (get_attstatsslot(&sslot, vardata->statsTuple,
    5959             :                          STATISTIC_KIND_HISTOGRAM, sortop,
    5960             :                          ATTSTATSSLOT_VALUES))
    5961             :     {
    5962      103220 :         if (sslot.stacoll == collation && sslot.nvalues > 0)
    5963             :         {
    5964      103220 :             tmin = datumCopy(sslot.values[0], typByVal, typLen);
    5965      103220 :             tmax = datumCopy(sslot.values[sslot.nvalues - 1], typByVal, typLen);
    5966      103220 :             have_data = true;
    5967             :         }
    5968      103220 :         free_attstatsslot(&sslot);
    5969             :     }
    5970             : 
    5971             :     /*
    5972             :      * Otherwise, if there is a histogram with some other ordering, scan it
    5973             :      * and get the min and max values according to the ordering we want.  This
    5974             :      * of course may not find values that are really extremal according to our
    5975             :      * ordering, but it beats ignoring available data.
    5976             :      */
    5977      175844 :     if (!have_data &&
    5978       36312 :         get_attstatsslot(&sslot, vardata->statsTuple,
    5979             :                          STATISTIC_KIND_HISTOGRAM, InvalidOid,
    5980             :                          ATTSTATSSLOT_VALUES))
    5981             :     {
    5982           0 :         get_stats_slot_range(&sslot, opfuncoid, &opproc,
    5983             :                              collation, typLen, typByVal,
    5984             :                              &tmin, &tmax, &have_data);
    5985           0 :         free_attstatsslot(&sslot);
    5986             :     }
    5987             : 
    5988             :     /*
    5989             :      * If we have most-common-values info, look for extreme MCVs.  This is
    5990             :      * needed even if we also have a histogram, since the histogram excludes
    5991             :      * the MCVs.  However, if we *only* have MCVs and no histogram, we should
    5992             :      * be pretty wary of deciding that that is a full representation of the
    5993             :      * data.  Proceed only if the MCVs represent the whole table (to within
    5994             :      * roundoff error).
    5995             :      */
    5996      139532 :     if (get_attstatsslot(&sslot, vardata->statsTuple,
    5997             :                          STATISTIC_KIND_MCV, InvalidOid,
    5998      139532 :                          have_data ? ATTSTATSSLOT_VALUES :
    5999             :                          (ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)))
    6000             :     {
    6001       65038 :         bool        use_mcvs = have_data;
    6002             : 
    6003       65038 :         if (!have_data)
    6004             :         {
    6005       35090 :             double      sumcommon = 0.0;
    6006             :             double      nullfrac;
    6007             :             int         i;
    6008             : 
    6009      249474 :             for (i = 0; i < sslot.nnumbers; i++)
    6010      214384 :                 sumcommon += sslot.numbers[i];
    6011       35090 :             nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata->statsTuple))->stanullfrac;
    6012       35090 :             if (sumcommon + nullfrac > 0.99999)
    6013       34894 :                 use_mcvs = true;
    6014             :         }
    6015             : 
    6016       65038 :         if (use_mcvs)
    6017       64842 :             get_stats_slot_range(&sslot, opfuncoid, &opproc,
    6018             :                                  collation, typLen, typByVal,
    6019             :                                  &tmin, &tmax, &have_data);
    6020       65038 :         free_attstatsslot(&sslot);
    6021             :     }
    6022             : 
    6023      139532 :     *min = tmin;
    6024      139532 :     *max = tmax;
    6025      139532 :     return have_data;
    6026             : }
    6027             : 
    6028             : /*
    6029             :  * get_stats_slot_range: scan sslot for min/max values
    6030             :  *
    6031             :  * Subroutine for get_variable_range: update min/max/have_data according
    6032             :  * to what we find in the statistics array.
    6033             :  */
    6034             : static void
    6035       64842 : get_stats_slot_range(AttStatsSlot *sslot, Oid opfuncoid, FmgrInfo *opproc,
    6036             :                      Oid collation, int16 typLen, bool typByVal,
    6037             :                      Datum *min, Datum *max, bool *p_have_data)
    6038             : {
    6039       64842 :     Datum       tmin = *min;
    6040       64842 :     Datum       tmax = *max;
    6041       64842 :     bool        have_data = *p_have_data;
    6042       64842 :     bool        found_tmin = false;
    6043       64842 :     bool        found_tmax = false;
    6044             : 
    6045             :     /* Look up the comparison function, if we didn't already do so */
    6046       64842 :     if (opproc->fn_oid != opfuncoid)
    6047       64842 :         fmgr_info(opfuncoid, opproc);
    6048             : 
    6049             :     /* Scan all the slot's values */
    6050     1921158 :     for (int i = 0; i < sslot->nvalues; i++)
    6051             :     {
    6052     1856316 :         if (!have_data)
    6053             :         {
    6054       34894 :             tmin = tmax = sslot->values[i];
    6055       34894 :             found_tmin = found_tmax = true;
    6056       34894 :             *p_have_data = have_data = true;
    6057       34894 :             continue;
    6058             :         }
    6059     1821422 :         if (DatumGetBool(FunctionCall2Coll(opproc,
    6060             :                                            collation,
    6061     1821422 :                                            sslot->values[i], tmin)))
    6062             :         {
    6063       42256 :             tmin = sslot->values[i];
    6064       42256 :             found_tmin = true;
    6065             :         }
    6066     1821422 :         if (DatumGetBool(FunctionCall2Coll(opproc,
    6067             :                                            collation,
    6068     1821422 :                                            tmax, sslot->values[i])))
    6069             :         {
    6070       80870 :             tmax = sslot->values[i];
    6071       80870 :             found_tmax = true;
    6072             :         }
    6073             :     }
    6074             : 
    6075             :     /*
    6076             :      * Copy the slot's values, if we found new extreme values.
    6077             :      */
    6078       64842 :     if (found_tmin)
    6079       52178 :         *min = datumCopy(tmin, typByVal, typLen);
    6080       64842 :     if (found_tmax)
    6081       36194 :         *max = datumCopy(tmax, typByVal, typLen);
    6082       64842 : }
    6083             : 
    6084             : 
    6085             : /*
    6086             :  * get_actual_variable_range
    6087             :  *      Attempt to identify the current *actual* minimum and/or maximum
    6088             :  *      of the specified variable, by looking for a suitable btree index
    6089             :  *      and fetching its low and/or high values.
    6090             :  *      If successful, store values in *min and *max, and return true.
    6091             :  *      (Either pointer can be NULL if that endpoint isn't needed.)
    6092             :  *      If unsuccessful, return false.
    6093             :  *
    6094             :  * sortop is the "<" comparison operator to use.
    6095             :  * collation is the required collation.
    6096             :  */
    6097             : static bool
    6098      158714 : get_actual_variable_range(PlannerInfo *root, VariableStatData *vardata,
    6099             :                           Oid sortop, Oid collation,
    6100             :                           Datum *min, Datum *max)
    6101             : {
    6102      158714 :     bool        have_data = false;
    6103      158714 :     RelOptInfo *rel = vardata->rel;
    6104             :     RangeTblEntry *rte;
    6105             :     ListCell   *lc;
    6106             : 
    6107             :     /* No hope if no relation or it doesn't have indexes */
    6108      158714 :     if (rel == NULL || rel->indexlist == NIL)
    6109       12916 :         return false;
    6110             :     /* If it has indexes it must be a plain relation */
    6111      145798 :     rte = root->simple_rte_array[rel->relid];
    6112             :     Assert(rte->rtekind == RTE_RELATION);
    6113             : 
    6114             :     /* ignore partitioned tables.  Any indexes here are not real indexes */
    6115      145798 :     if (rte->relkind == RELKIND_PARTITIONED_TABLE)
    6116         828 :         return false;
    6117             : 
    6118             :     /* Search through the indexes to see if any match our problem */
    6119      276010 :     foreach(lc, rel->indexlist)
    6120             :     {
    6121      234116 :         IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
    6122             :         ScanDirection indexscandir;
    6123             : 
    6124             :         /* Ignore non-btree indexes */
    6125      234116 :         if (index->relam != BTREE_AM_OID)
    6126           0 :             continue;
    6127             : 
    6128             :         /*
    6129             :          * Ignore partial indexes --- we only want stats that cover the entire
    6130             :          * relation.
    6131             :          */
    6132      234116 :         if (index->indpred != NIL)
    6133         288 :             continue;
    6134             : 
    6135             :         /*
    6136             :          * The index list might include hypothetical indexes inserted by a
    6137             :          * get_relation_info hook --- don't try to access them.
    6138             :          */
    6139      233828 :         if (index->hypothetical)
    6140           0 :             continue;
    6141             : 
    6142             :         /*
    6143             :          * The first index column must match the desired variable, sortop, and
    6144             :          * collation --- but we can use a descending-order index.
    6145             :          */
    6146      233828 :         if (collation != index->indexcollations[0])
    6147       27072 :             continue;           /* test first 'cause it's cheapest */
    6148      206756 :         if (!match_index_to_operand(vardata->var, 0, index))
    6149      103680 :             continue;
    6150      103076 :         switch (get_op_opfamily_strategy(sortop, index->sortopfamily[0]))
    6151             :         {
    6152      103076 :             case BTLessStrategyNumber:
    6153      103076 :                 if (index->reverse_sort[0])
    6154           0 :                     indexscandir = BackwardScanDirection;
    6155             :                 else
    6156      103076 :                     indexscandir = ForwardScanDirection;
    6157      103076 :                 break;
    6158           0 :             case BTGreaterStrategyNumber:
    6159           0 :                 if (index->reverse_sort[0])
    6160           0 :                     indexscandir = ForwardScanDirection;
    6161             :                 else
    6162           0 :                     indexscandir = BackwardScanDirection;
    6163           0 :                 break;
    6164           0 :             default:
    6165             :                 /* index doesn't match the sortop */
    6166           0 :                 continue;
    6167             :         }
    6168             : 
    6169             :         /*
    6170             :          * Found a suitable index to extract data from.  Set up some data that
    6171             :          * can be used by both invocations of get_actual_variable_endpoint.
    6172             :          */
    6173             :         {
    6174             :             MemoryContext tmpcontext;
    6175             :             MemoryContext oldcontext;
    6176             :             Relation    heapRel;
    6177             :             Relation    indexRel;
    6178             :             TupleTableSlot *slot;
    6179             :             int16       typLen;
    6180             :             bool        typByVal;
    6181             :             ScanKeyData scankeys[1];
    6182             : 
    6183             :             /* Make sure any cruft gets recycled when we're done */
    6184      103076 :             tmpcontext = AllocSetContextCreate(CurrentMemoryContext,
    6185             :                                                "get_actual_variable_range workspace",
    6186             :                                                ALLOCSET_DEFAULT_SIZES);
    6187      103076 :             oldcontext = MemoryContextSwitchTo(tmpcontext);
    6188             : 
    6189             :             /*
    6190             :              * Open the table and index so we can read from them.  We should
    6191             :              * already have some type of lock on each.
    6192             :              */
    6193      103076 :             heapRel = table_open(rte->relid, NoLock);
    6194      103076 :             indexRel = index_open(index->indexoid, NoLock);
    6195             : 
    6196             :             /* build some stuff needed for indexscan execution */
    6197      103076 :             slot = table_slot_create(heapRel, NULL);
    6198      103076 :             get_typlenbyval(vardata->atttype, &typLen, &typByVal);
    6199             : 
    6200             :             /* set up an IS NOT NULL scan key so that we ignore nulls */
    6201      103076 :             ScanKeyEntryInitialize(&scankeys[0],
    6202             :                                    SK_ISNULL | SK_SEARCHNOTNULL,
    6203             :                                    1,   /* index col to scan */
    6204             :                                    InvalidStrategy, /* no strategy */
    6205             :                                    InvalidOid,  /* no strategy subtype */
    6206             :                                    InvalidOid,  /* no collation */
    6207             :                                    InvalidOid,  /* no reg proc for this */
    6208             :                                    (Datum) 0);  /* constant */
    6209             : 
    6210             :             /* If min is requested ... */
    6211      103076 :             if (min)
    6212             :             {
    6213       61168 :                 have_data = get_actual_variable_endpoint(heapRel,
    6214             :                                                          indexRel,
    6215             :                                                          indexscandir,
    6216             :                                                          scankeys,
    6217             :                                                          typLen,
    6218             :                                                          typByVal,
    6219             :                                                          slot,
    6220             :                                                          oldcontext,
    6221             :                                                          min);
    6222             :             }
    6223             :             else
    6224             :             {
    6225             :                 /* If min not requested, still want to fetch max */
    6226       41908 :                 have_data = true;
    6227             :             }
    6228             : 
    6229             :             /* If max is requested, and we didn't already fail ... */
    6230      103076 :             if (max && have_data)
    6231             :             {
    6232             :                 /* scan in the opposite direction; all else is the same */
    6233       43068 :                 have_data = get_actual_variable_endpoint(heapRel,
    6234             :                                                          indexRel,
    6235       43068 :                                                          -indexscandir,
    6236             :                                                          scankeys,
    6237             :                                                          typLen,
    6238             :                                                          typByVal,
    6239             :                                                          slot,
    6240             :                                                          oldcontext,
    6241             :                                                          max);
    6242             :             }
    6243             : 
    6244             :             /* Clean everything up */
    6245      103076 :             ExecDropSingleTupleTableSlot(slot);
    6246             : 
    6247      103076 :             index_close(indexRel, NoLock);
    6248      103076 :             table_close(heapRel, NoLock);
    6249             : 
    6250      103076 :             MemoryContextSwitchTo(oldcontext);
    6251      103076 :             MemoryContextDelete(tmpcontext);
    6252             : 
    6253             :             /* And we're done */
    6254      103076 :             break;
    6255             :         }
    6256             :     }
    6257             : 
    6258      144970 :     return have_data;
    6259             : }
    6260             : 
    6261             : /*
    6262             :  * Get one endpoint datum (min or max depending on indexscandir) from the
    6263             :  * specified index.  Return true if successful, false if not.
    6264             :  * On success, endpoint value is stored to *endpointDatum (and copied into
    6265             :  * outercontext).
    6266             :  *
    6267             :  * scankeys is a 1-element scankey array set up to reject nulls.
    6268             :  * typLen/typByVal describe the datatype of the index's first column.
    6269             :  * tableslot is a slot suitable to hold table tuples, in case we need
    6270             :  * to probe the heap.
    6271             :  * (We could compute these values locally, but that would mean computing them
    6272             :  * twice when get_actual_variable_range needs both the min and the max.)
    6273             :  *
    6274             :  * Failure occurs either when the index is empty, or we decide that it's
    6275             :  * taking too long to find a suitable tuple.
    6276             :  */
    6277             : static bool
    6278      104236 : get_actual_variable_endpoint(Relation heapRel,
    6279             :                              Relation indexRel,
    6280             :                              ScanDirection indexscandir,
    6281             :                              ScanKey scankeys,
    6282             :                              int16 typLen,
    6283             :                              bool typByVal,
    6284             :                              TupleTableSlot *tableslot,
    6285             :                              MemoryContext outercontext,
    6286             :                              Datum *endpointDatum)
    6287             : {
    6288      104236 :     bool        have_data = false;
    6289             :     SnapshotData SnapshotNonVacuumable;
    6290             :     IndexScanDesc index_scan;
    6291      104236 :     Buffer      vmbuffer = InvalidBuffer;
    6292      104236 :     BlockNumber last_heap_block = InvalidBlockNumber;
    6293      104236 :     int         n_visited_heap_pages = 0;
    6294             :     ItemPointer tid;
    6295             :     Datum       values[INDEX_MAX_KEYS];
    6296             :     bool        isnull[INDEX_MAX_KEYS];
    6297             :     MemoryContext oldcontext;
    6298             : 
    6299             :     /*
    6300             :      * We use the index-only-scan machinery for this.  With mostly-static
    6301             :      * tables that's a win because it avoids a heap visit.  It's also a win
    6302             :      * for dynamic data, but the reason is less obvious; read on for details.
    6303             :      *
    6304             :      * In principle, we should scan the index with our current active
    6305             :      * snapshot, which is the best approximation we've got to what the query
    6306             :      * will see when executed.  But that won't be exact if a new snap is taken
    6307             :      * before running the query, and it can be very expensive if a lot of
    6308             :      * recently-dead or uncommitted rows exist at the beginning or end of the
    6309             :      * index (because we'll laboriously fetch each one and reject it).
    6310             :      * Instead, we use SnapshotNonVacuumable.  That will accept recently-dead
    6311             :      * and uncommitted rows as well as normal visible rows.  On the other
    6312             :      * hand, it will reject known-dead rows, and thus not give a bogus answer
    6313             :      * when the extreme value has been deleted (unless the deletion was quite
    6314             :      * recent); that case motivates not using SnapshotAny here.
    6315             :      *
    6316             :      * A crucial point here is that SnapshotNonVacuumable, with
    6317             :      * GlobalVisTestFor(heapRel) as horizon, yields the inverse of the
    6318             :      * condition that the indexscan will use to decide that index entries are
    6319             :      * killable (see heap_hot_search_buffer()).  Therefore, if the snapshot
    6320             :      * rejects a tuple (or more precisely, all tuples of a HOT chain) and we
    6321             :      * have to continue scanning past it, we know that the indexscan will mark
    6322             :      * that index entry killed.  That means that the next
    6323             :      * get_actual_variable_endpoint() call will not have to re-consider that
    6324             :      * index entry.  In this way we avoid repetitive work when this function
    6325             :      * is used a lot during planning.
    6326             :      *
    6327             :      * But using SnapshotNonVacuumable creates a hazard of its own.  In a
    6328             :      * recently-created index, some index entries may point at "broken" HOT
    6329             :      * chains in which not all the tuple versions contain data matching the
    6330             :      * index entry.  The live tuple version(s) certainly do match the index,
    6331             :      * but SnapshotNonVacuumable can accept recently-dead tuple versions that
    6332             :      * don't match.  Hence, if we took data from the selected heap tuple, we
    6333             :      * might get a bogus answer that's not close to the index extremal value,
    6334             :      * or could even be NULL.  We avoid this hazard because we take the data
    6335             :      * from the index entry not the heap.
    6336             :      *
    6337             :      * Despite all this care, there are situations where we might find many
    6338             :      * non-visible tuples near the end of the index.  We don't want to expend
    6339             :      * a huge amount of time here, so we give up once we've read too many heap
    6340             :      * pages.  When we fail for that reason, the caller will end up using
    6341             :      * whatever extremal value is recorded in pg_statistic.
    6342             :      */
    6343      104236 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable,
    6344             :                               GlobalVisTestFor(heapRel));
    6345             : 
    6346      104236 :     index_scan = index_beginscan(heapRel, indexRel,
    6347             :                                  &SnapshotNonVacuumable,
    6348             :                                  1, 0);
    6349             :     /* Set it up for index-only scan */
    6350      104236 :     index_scan->xs_want_itup = true;
    6351      104236 :     index_rescan(index_scan, scankeys, 1, NULL, 0);
    6352             : 
    6353             :     /* Fetch first/next tuple in specified direction */
    6354      133638 :     while ((tid = index_getnext_tid(index_scan, indexscandir)) != NULL)
    6355             :     {
    6356      133638 :         BlockNumber block = ItemPointerGetBlockNumber(tid);
    6357             : 
    6358      133638 :         if (!VM_ALL_VISIBLE(heapRel,
    6359             :                             block,
    6360             :                             &vmbuffer))
    6361             :         {
    6362             :             /* Rats, we have to visit the heap to check visibility */
    6363      101094 :             if (!index_fetch_heap(index_scan, tableslot))
    6364             :             {
    6365             :                 /*
    6366             :                  * No visible tuple for this index entry, so we need to
    6367             :                  * advance to the next entry.  Before doing so, count heap
    6368             :                  * page fetches and give up if we've done too many.
    6369             :                  *
    6370             :                  * We don't charge a page fetch if this is the same heap page
    6371             :                  * as the previous tuple.  This is on the conservative side,
    6372             :                  * since other recently-accessed pages are probably still in
    6373             :                  * buffers too; but it's good enough for this heuristic.
    6374             :                  */
    6375             : #define VISITED_PAGES_LIMIT 100
    6376             : 
    6377       29402 :                 if (block != last_heap_block)
    6378             :                 {
    6379        2834 :                     last_heap_block = block;
    6380        2834 :                     n_visited_heap_pages++;
    6381        2834 :                     if (n_visited_heap_pages > VISITED_PAGES_LIMIT)
    6382           0 :                         break;
    6383             :                 }
    6384             : 
    6385       29402 :                 continue;       /* no visible tuple, try next index entry */
    6386             :             }
    6387             : 
    6388             :             /* We don't actually need the heap tuple for anything */
    6389       71692 :             ExecClearTuple(tableslot);
    6390             : 
    6391             :             /*
    6392             :              * We don't care whether there's more than one visible tuple in
    6393             :              * the HOT chain; if any are visible, that's good enough.
    6394             :              */
    6395             :         }
    6396             : 
    6397             :         /*
    6398             :          * We expect that btree will return data in IndexTuple not HeapTuple
    6399             :          * format.  It's not lossy either.
    6400             :          */
    6401      104236 :         if (!index_scan->xs_itup)
    6402           0 :             elog(ERROR, "no data returned for index-only scan");
    6403      104236 :         if (index_scan->xs_recheck)
    6404           0 :             elog(ERROR, "unexpected recheck indication from btree");
    6405             : 
    6406             :         /* OK to deconstruct the index tuple */
    6407      104236 :         index_deform_tuple(index_scan->xs_itup,
    6408             :                            index_scan->xs_itupdesc,
    6409             :                            values, isnull);
    6410             : 
    6411             :         /* Shouldn't have got a null, but be careful */
    6412      104236 :         if (isnull[0])
    6413           0 :             elog(ERROR, "found unexpected null value in index \"%s\"",
    6414             :                  RelationGetRelationName(indexRel));
    6415             : 
    6416             :         /* Copy the index column value out to caller's context */
    6417      104236 :         oldcontext = MemoryContextSwitchTo(outercontext);
    6418      104236 :         *endpointDatum = datumCopy(values[0], typByVal, typLen);
    6419      104236 :         MemoryContextSwitchTo(oldcontext);
    6420      104236 :         have_data = true;
    6421      104236 :         break;
    6422             :     }
    6423             : 
    6424      104236 :     if (vmbuffer != InvalidBuffer)
    6425       91602 :         ReleaseBuffer(vmbuffer);
    6426      104236 :     index_endscan(index_scan);
    6427             : 
    6428      104236 :     return have_data;
    6429             : }
    6430             : 
    6431             : /*
    6432             :  * find_join_input_rel
    6433             :  *      Look up the input relation for a join.
    6434             :  *
    6435             :  * We assume that the input relation's RelOptInfo must have been constructed
    6436             :  * already.
    6437             :  */
    6438             : static RelOptInfo *
    6439        7068 : find_join_input_rel(PlannerInfo *root, Relids relids)
    6440             : {
    6441        7068 :     RelOptInfo *rel = NULL;
    6442             : 
    6443        7068 :     if (!bms_is_empty(relids))
    6444             :     {
    6445             :         int         relid;
    6446             : 
    6447        7068 :         if (bms_get_singleton_member(relids, &relid))
    6448        6806 :             rel = find_base_rel(root, relid);
    6449             :         else
    6450         262 :             rel = find_join_rel(root, relids);
    6451             :     }
    6452             : 
    6453        7068 :     if (rel == NULL)
    6454           0 :         elog(ERROR, "could not find RelOptInfo for given relids");
    6455             : 
    6456        7068 :     return rel;
    6457             : }
    6458             : 
    6459             : 
    6460             : /*-------------------------------------------------------------------------
    6461             :  *
    6462             :  * Index cost estimation functions
    6463             :  *
    6464             :  *-------------------------------------------------------------------------
    6465             :  */
    6466             : 
    6467             : /*
    6468             :  * Extract the actual indexquals (as RestrictInfos) from an IndexClause list
    6469             :  */
    6470             : List *
    6471      685656 : get_quals_from_indexclauses(List *indexclauses)
    6472             : {
    6473      685656 :     List       *result = NIL;
    6474             :     ListCell   *lc;
    6475             : 
    6476     1224334 :     foreach(lc, indexclauses)
    6477             :     {
    6478      538678 :         IndexClause *iclause = lfirst_node(IndexClause, lc);
    6479             :         ListCell   *lc2;
    6480             : 
    6481     1080236 :         foreach(lc2, iclause->indexquals)
    6482             :         {
    6483      541558 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
    6484             : 
    6485      541558 :             result = lappend(result, rinfo);
    6486             :         }
    6487             :     }
    6488      685656 :     return result;
    6489             : }
    6490             : 
    6491             : /*
    6492             :  * Compute the total evaluation cost of the comparison operands in a list
    6493             :  * of index qual expressions.  Since we know these will be evaluated just
    6494             :  * once per scan, there's no need to distinguish startup from per-row cost.
    6495             :  *
    6496             :  * This can be used either on the result of get_quals_from_indexclauses(),
    6497             :  * or directly on an indexorderbys list.  In both cases, we expect that the
    6498             :  * index key expression is on the left side of binary clauses.
    6499             :  */
    6500             : Cost
    6501     1358702 : index_other_operands_eval_cost(PlannerInfo *root, List *indexquals)
    6502             : {
    6503     1358702 :     Cost        qual_arg_cost = 0;
    6504             :     ListCell   *lc;
    6505             : 
    6506     1900722 :     foreach(lc, indexquals)
    6507             :     {
    6508      542020 :         Expr       *clause = (Expr *) lfirst(lc);
    6509             :         Node       *other_operand;
    6510             :         QualCost    index_qual_cost;
    6511             : 
    6512             :         /*
    6513             :          * Index quals will have RestrictInfos, indexorderbys won't.  Look
    6514             :          * through RestrictInfo if present.
    6515             :          */
    6516      542020 :         if (IsA(clause, RestrictInfo))
    6517      541546 :             clause = ((RestrictInfo *) clause)->clause;
    6518             : 
    6519      542020 :         if (IsA(clause, OpExpr))
    6520             :         {
    6521      531306 :             OpExpr     *op = (OpExpr *) clause;
    6522             : 
    6523      531306 :             other_operand = (Node *) lsecond(op->args);
    6524             :         }
    6525       10714 :         else if (IsA(clause, RowCompareExpr))
    6526             :         {
    6527         132 :             RowCompareExpr *rc = (RowCompareExpr *) clause;
    6528             : 
    6529         132 :             other_operand = (Node *) rc->rargs;
    6530             :         }
    6531       10582 :         else if (IsA(clause, ScalarArrayOpExpr))
    6532             :         {
    6533        8184 :             ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
    6534             : 
    6535        8184 :             other_operand = (Node *) lsecond(saop->args);
    6536             :         }
    6537        2398 :         else if (IsA(clause, NullTest))
    6538             :         {
    6539        2398 :             other_operand = NULL;
    6540             :         }
    6541             :         else
    6542             :         {
    6543           0 :             elog(ERROR, "unsupported indexqual type: %d",
    6544             :                  (int) nodeTag(clause));
    6545             :             other_operand = NULL;   /* keep compiler quiet */
    6546             :         }
    6547             : 
    6548      542020 :         cost_qual_eval_node(&index_qual_cost, other_operand, root);
    6549      542020 :         qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple;
    6550             :     }
    6551     1358702 :     return qual_arg_cost;
    6552             : }
    6553             : 
    6554             : void
    6555      673058 : genericcostestimate(PlannerInfo *root,
    6556             :                     IndexPath *path,
    6557             :                     double loop_count,
    6558             :                     GenericCosts *costs)
    6559             : {
    6560      673058 :     IndexOptInfo *index = path->indexinfo;
    6561      673058 :     List       *indexQuals = get_quals_from_indexclauses(path->indexclauses);
    6562      673058 :     List       *indexOrderBys = path->indexorderbys;
    6563             :     Cost        indexStartupCost;
    6564             :     Cost        indexTotalCost;
    6565             :     Selectivity indexSelectivity;
    6566             :     double      indexCorrelation;
    6567             :     double      numIndexPages;
    6568             :     double      numIndexTuples;
    6569             :     double      spc_random_page_cost;
    6570             :     double      num_sa_scans;
    6571             :     double      num_outer_scans;
    6572             :     double      num_scans;
    6573             :     double      qual_op_cost;
    6574             :     double      qual_arg_cost;
    6575             :     List       *selectivityQuals;
    6576             :     ListCell   *l;
    6577             : 
    6578             :     /*
    6579             :      * If the index is partial, AND the index predicate with the explicitly
    6580             :      * given indexquals to produce a more accurate idea of the index
    6581             :      * selectivity.
    6582             :      */
    6583      673058 :     selectivityQuals = add_predicate_to_index_quals(index, indexQuals);
    6584             : 
    6585             :     /*
    6586             :      * If caller didn't give us an estimate for ScalarArrayOpExpr index scans,
    6587             :      * just assume that the number of index descents is the number of distinct
    6588             :      * combinations of array elements from all of the scan's SAOP clauses.
    6589             :      */
    6590      673058 :     num_sa_scans = costs->num_sa_scans;
    6591      673058 :     if (num_sa_scans < 1)
    6592             :     {
    6593        8154 :         num_sa_scans = 1;
    6594       17182 :         foreach(l, indexQuals)
    6595             :         {
    6596        9028 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
    6597             : 
    6598        9028 :             if (IsA(rinfo->clause, ScalarArrayOpExpr))
    6599             :             {
    6600          26 :                 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause;
    6601          26 :                 double      alength = estimate_array_length(root, lsecond(saop->args));
    6602             : 
    6603          26 :                 if (alength > 1)
    6604          26 :                     num_sa_scans *= alength;
    6605             :             }
    6606             :         }
    6607             :     }
    6608             : 
    6609             :     /* Estimate the fraction of main-table tuples that will be visited */
    6610      673058 :     indexSelectivity = clauselist_selectivity(root, selectivityQuals,
    6611      673058 :                                               index->rel->relid,
    6612             :                                               JOIN_INNER,
    6613             :                                               NULL);
    6614             : 
    6615             :     /*
    6616             :      * If caller didn't give us an estimate, estimate the number of index
    6617             :      * tuples that will be visited.  We do it in this rather peculiar-looking
    6618             :      * way in order to get the right answer for partial indexes.
    6619             :      */
    6620      673058 :     numIndexTuples = costs->numIndexTuples;
    6621      673058 :     if (numIndexTuples <= 0.0)
    6622             :     {
    6623       75648 :         numIndexTuples = indexSelectivity * index->rel->tuples;
    6624             : 
    6625             :         /*
    6626             :          * The above calculation counts all the tuples visited across all
    6627             :          * scans induced by ScalarArrayOpExpr nodes.  We want to consider the
    6628             :          * average per-indexscan number, so adjust.  This is a handy place to
    6629             :          * round to integer, too.  (If caller supplied tuple estimate, it's
    6630             :          * responsible for handling these considerations.)
    6631             :          */
    6632       75648 :         numIndexTuples = rint(numIndexTuples / num_sa_scans);
    6633             :     }
    6634             : 
    6635             :     /*
    6636             :      * We can bound the number of tuples by the index size in any case. Also,
    6637             :      * always estimate at least one tuple is touched, even when
    6638             :      * indexSelectivity estimate is tiny.
    6639             :      */
    6640      673058 :     if (numIndexTuples > index->tuples)
    6641        5370 :         numIndexTuples = index->tuples;
    6642      673058 :     if (numIndexTuples < 1.0)
    6643       75012 :         numIndexTuples = 1.0;
    6644             : 
    6645             :     /*
    6646             :      * Estimate the number of index pages that will be retrieved.
    6647             :      *
    6648             :      * We use the simplistic method of taking a pro-rata fraction of the total
    6649             :      * number of index pages.  In effect, this counts only leaf pages and not
    6650             :      * any overhead such as index metapage or upper tree levels.
    6651             :      *
    6652             :      * In practice access to upper index levels is often nearly free because
    6653             :      * those tend to stay in cache under load; moreover, the cost involved is
    6654             :      * highly dependent on index type.  We therefore ignore such costs here
    6655             :      * and leave it to the caller to add a suitable charge if needed.
    6656             :      */
    6657      673058 :     if (index->pages > 1 && index->tuples > 1)
    6658      627630 :         numIndexPages = ceil(numIndexTuples * index->pages / index->tuples);
    6659             :     else
    6660       45428 :         numIndexPages = 1.0;
    6661             : 
    6662             :     /* fetch estimated page cost for tablespace containing index */
    6663      673058 :     get_tablespace_page_costs(index->reltablespace,
    6664             :                               &spc_random_page_cost,
    6665             :                               NULL);
    6666             : 
    6667             :     /*
    6668             :      * Now compute the disk access costs.
    6669             :      *
    6670             :      * The above calculations are all per-index-scan.  However, if we are in a
    6671             :      * nestloop inner scan, we can expect the scan to be repeated (with
    6672             :      * different search keys) for each row of the outer relation.  Likewise,
    6673             :      * ScalarArrayOpExpr quals result in multiple index scans.  This creates
    6674             :      * the potential for cache effects to reduce the number of disk page
    6675             :      * fetches needed.  We want to estimate the average per-scan I/O cost in
    6676             :      * the presence of caching.
    6677             :      *
    6678             :      * We use the Mackert-Lohman formula (see costsize.c for details) to
    6679             :      * estimate the total number of page fetches that occur.  While this
    6680             :      * wasn't what it was designed for, it seems a reasonable model anyway.
    6681             :      * Note that we are counting pages not tuples anymore, so we take N = T =
    6682             :      * index size, as if there were one "tuple" per page.
    6683             :      */
    6684      673058 :     num_outer_scans = loop_count;
    6685      673058 :     num_scans = num_sa_scans * num_outer_scans;
    6686             : 
    6687      673058 :     if (num_scans > 1)
    6688             :     {
    6689             :         double      pages_fetched;
    6690             : 
    6691             :         /* total page fetches ignoring cache effects */
    6692       72218 :         pages_fetched = numIndexPages * num_scans;
    6693             : 
    6694             :         /* use Mackert and Lohman formula to adjust for cache effects */
    6695       72218 :         pages_fetched = index_pages_fetched(pages_fetched,
    6696             :                                             index->pages,
    6697       72218 :                                             (double) index->pages,
    6698             :                                             root);
    6699             : 
    6700             :         /*
    6701             :          * Now compute the total disk access cost, and then report a pro-rated
    6702             :          * share for each outer scan.  (Don't pro-rate for ScalarArrayOpExpr,
    6703             :          * since that's internal to the indexscan.)
    6704             :          */
    6705       72218 :         indexTotalCost = (pages_fetched * spc_random_page_cost)
    6706             :             / num_outer_scans;
    6707             :     }
    6708             :     else
    6709             :     {
    6710             :         /*
    6711             :          * For a single index scan, we just charge spc_random_page_cost per
    6712             :          * page touched.
    6713             :          */
    6714      600840 :         indexTotalCost = numIndexPages * spc_random_page_cost;
    6715             :     }
    6716             : 
    6717             :     /*
    6718             :      * CPU cost: any complex expressions in the indexquals will need to be
    6719             :      * evaluated once at the start of the scan to reduce them to runtime keys
    6720             :      * to pass to the index AM (see nodeIndexscan.c).  We model the per-tuple
    6721             :      * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per
    6722             :      * indexqual operator.  Because we have numIndexTuples as a per-scan
    6723             :      * number, we have to multiply by num_sa_scans to get the correct result
    6724             :      * for ScalarArrayOpExpr cases.  Similarly add in costs for any index
    6725             :      * ORDER BY expressions.
    6726             :      *
    6727             :      * Note: this neglects the possible costs of rechecking lossy operators.
    6728             :      * Detecting that that might be needed seems more expensive than it's
    6729             :      * worth, though, considering all the other inaccuracies here ...
    6730             :      */
    6731      673058 :     qual_arg_cost = index_other_operands_eval_cost(root, indexQuals) +
    6732      673058 :         index_other_operands_eval_cost(root, indexOrderBys);
    6733      673058 :     qual_op_cost = cpu_operator_cost *
    6734      673058 :         (list_length(indexQuals) + list_length(indexOrderBys));
    6735             : 
    6736      673058 :     indexStartupCost = qual_arg_cost;
    6737      673058 :     indexTotalCost += qual_arg_cost;
    6738      673058 :     indexTotalCost += numIndexTuples * num_sa_scans * (cpu_index_tuple_cost + qual_op_cost);
    6739             : 
    6740             :     /*
    6741             :      * Generic assumption about index correlation: there isn't any.
    6742             :      */
    6743      673058 :     indexCorrelation = 0.0;
    6744             : 
    6745             :     /*
    6746             :      * Return everything to caller.
    6747             :      */
    6748      673058 :     costs->indexStartupCost = indexStartupCost;
    6749      673058 :     costs->indexTotalCost = indexTotalCost;
    6750      673058 :     costs->indexSelectivity = indexSelectivity;
    6751      673058 :     costs->indexCorrelation = indexCorrelation;
    6752      673058 :     costs->numIndexPages = numIndexPages;
    6753      673058 :     costs->numIndexTuples = numIndexTuples;
    6754      673058 :     costs->spc_random_page_cost = spc_random_page_cost;
    6755      673058 :     costs->num_sa_scans = num_sa_scans;
    6756      673058 : }
    6757             : 
    6758             : /*
    6759             :  * If the index is partial, add its predicate to the given qual list.
    6760             :  *
    6761             :  * ANDing the index predicate with the explicitly given indexquals produces
    6762             :  * a more accurate idea of the index's selectivity.  However, we need to be
    6763             :  * careful not to insert redundant clauses, because clauselist_selectivity()
    6764             :  * is easily fooled into computing a too-low selectivity estimate.  Our
    6765             :  * approach is to add only the predicate clause(s) that cannot be proven to
    6766             :  * be implied by the given indexquals.  This successfully handles cases such
    6767             :  * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50".
    6768             :  * There are many other cases where we won't detect redundancy, leading to a
    6769             :  * too-low selectivity estimate, which will bias the system in favor of using
    6770             :  * partial indexes where possible.  That is not necessarily bad though.
    6771             :  *
    6772             :  * Note that indexQuals contains RestrictInfo nodes while the indpred
    6773             :  * does not, so the output list will be mixed.  This is OK for both
    6774             :  * predicate_implied_by() and clauselist_selectivity(), but might be
    6775             :  * problematic if the result were passed to other things.
    6776             :  */
    6777             : List *
    6778     1113266 : add_predicate_to_index_quals(IndexOptInfo *index, List *indexQuals)
    6779             : {
    6780     1113266 :     List       *predExtraQuals = NIL;
    6781             :     ListCell   *lc;
    6782             : 
    6783     1113266 :     if (index->indpred == NIL)
    6784     1111264 :         return indexQuals;
    6785             : 
    6786        4016 :     foreach(lc, index->indpred)
    6787             :     {
    6788        2014 :         Node       *predQual = (Node *) lfirst(lc);
    6789        2014 :         List       *oneQual = list_make1(predQual);
    6790             : 
    6791        2014 :         if (!predicate_implied_by(oneQual, indexQuals, false))
    6792        1812 :             predExtraQuals = list_concat(predExtraQuals, oneQual);
    6793             :     }
    6794        2002 :     return list_concat(predExtraQuals, indexQuals);
    6795             : }
    6796             : 
    6797             : 
    6798             : void
    6799      664904 : btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    6800             :                Cost *indexStartupCost, Cost *indexTotalCost,
    6801             :                Selectivity *indexSelectivity, double *indexCorrelation,
    6802             :                double *indexPages)
    6803             : {
    6804      664904 :     IndexOptInfo *index = path->indexinfo;
    6805      664904 :     GenericCosts costs = {0};
    6806             :     Oid         relid;
    6807             :     AttrNumber  colnum;
    6808      664904 :     VariableStatData vardata = {0};
    6809             :     double      numIndexTuples;
    6810             :     Cost        descentCost;
    6811             :     List       *indexBoundQuals;
    6812             :     int         indexcol;
    6813             :     bool        eqQualHere;
    6814             :     bool        found_saop;
    6815             :     bool        found_is_null_op;
    6816             :     double      num_sa_scans;
    6817             :     ListCell   *lc;
    6818             : 
    6819             :     /*
    6820             :      * For a btree scan, only leading '=' quals plus inequality quals for the
    6821             :      * immediately next attribute contribute to index selectivity (these are
    6822             :      * the "boundary quals" that determine the starting and stopping points of
    6823             :      * the index scan).  Additional quals can suppress visits to the heap, so
    6824             :      * it's OK to count them in indexSelectivity, but they should not count
    6825             :      * for estimating numIndexTuples.  So we must examine the given indexquals
    6826             :      * to find out which ones count as boundary quals.  We rely on the
    6827             :      * knowledge that they are given in index column order.
    6828             :      *
    6829             :      * For a RowCompareExpr, we consider only the first column, just as
    6830             :      * rowcomparesel() does.
    6831             :      *
    6832             :      * If there's a ScalarArrayOpExpr in the quals, we'll actually perform up
    6833             :      * to N index descents (not just one), but the ScalarArrayOpExpr's
    6834             :      * operator can be considered to act the same as it normally does.
    6835             :      */
    6836      664904 :     indexBoundQuals = NIL;
    6837      664904 :     indexcol = 0;
    6838      664904 :     eqQualHere = false;
    6839      664904 :     found_saop = false;
    6840      664904 :     found_is_null_op = false;
    6841      664904 :     num_sa_scans = 1;
    6842     1152756 :     foreach(lc, path->indexclauses)
    6843             :     {
    6844      514824 :         IndexClause *iclause = lfirst_node(IndexClause, lc);
    6845             :         ListCell   *lc2;
    6846             : 
    6847      514824 :         if (indexcol != iclause->indexcol)
    6848             :         {
    6849             :             /* Beginning of a new column's quals */
    6850       92546 :             if (!eqQualHere)
    6851       25636 :                 break;          /* done if no '=' qual for indexcol */
    6852       66910 :             eqQualHere = false;
    6853       66910 :             indexcol++;
    6854       66910 :             if (indexcol != iclause->indexcol)
    6855        1336 :                 break;          /* no quals at all for indexcol */
    6856             :         }
    6857             : 
    6858             :         /* Examine each indexqual associated with this index clause */
    6859      978406 :         foreach(lc2, iclause->indexquals)
    6860             :         {
    6861      490554 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
    6862      490554 :             Expr       *clause = rinfo->clause;
    6863      490554 :             Oid         clause_op = InvalidOid;
    6864             :             int         op_strategy;
    6865             : 
    6866      490554 :             if (IsA(clause, OpExpr))
    6867             :             {
    6868      480708 :                 OpExpr     *op = (OpExpr *) clause;
    6869             : 
    6870      480708 :                 clause_op = op->opno;
    6871             :             }
    6872        9846 :             else if (IsA(clause, RowCompareExpr))
    6873             :             {
    6874         132 :                 RowCompareExpr *rc = (RowCompareExpr *) clause;
    6875             : 
    6876         132 :                 clause_op = linitial_oid(rc->opnos);
    6877             :             }
    6878        9714 :             else if (IsA(clause, ScalarArrayOpExpr))
    6879             :             {
    6880        7934 :                 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
    6881        7934 :                 Node       *other_operand = (Node *) lsecond(saop->args);
    6882        7934 :                 double      alength = estimate_array_length(root, other_operand);
    6883             : 
    6884        7934 :                 clause_op = saop->opno;
    6885        7934 :                 found_saop = true;
    6886             :                 /* estimate SA descents by indexBoundQuals only */
    6887        7934 :                 if (alength > 1)
    6888        7838 :                     num_sa_scans *= alength;
    6889             :             }
    6890        1780 :             else if (IsA(clause, NullTest))
    6891             :             {
    6892        1780 :                 NullTest   *nt = (NullTest *) clause;
    6893             : 
    6894        1780 :                 if (nt->nulltesttype == IS_NULL)
    6895             :                 {
    6896         198 :                     found_is_null_op = true;
    6897             :                     /* IS NULL is like = for selectivity purposes */
    6898         198 :                     eqQualHere = true;
    6899             :                 }
    6900             :             }
    6901             :             else
    6902           0 :                 elog(ERROR, "unsupported indexqual type: %d",
    6903             :                      (int) nodeTag(clause));
    6904             : 
    6905             :             /* check for equality operator */
    6906      490554 :             if (OidIsValid(clause_op))
    6907             :             {
    6908      488774 :                 op_strategy = get_op_opfamily_strategy(clause_op,
    6909      488774 :                                                        index->opfamily[indexcol]);
    6910             :                 Assert(op_strategy != 0);   /* not a member of opfamily?? */
    6911      488774 :                 if (op_strategy == BTEqualStrategyNumber)
    6912      464710 :                     eqQualHere = true;
    6913             :             }
    6914             : 
    6915      490554 :             indexBoundQuals = lappend(indexBoundQuals, rinfo);
    6916             :         }
    6917             :     }
    6918             : 
    6919             :     /*
    6920             :      * If index is unique and we found an '=' clause for each column, we can
    6921             :      * just assume numIndexTuples = 1 and skip the expensive
    6922             :      * clauselist_selectivity calculations.  However, a ScalarArrayOp or
    6923             :      * NullTest invalidates that theory, even though it sets eqQualHere.
    6924             :      */
    6925      664904 :     if (index->unique &&
    6926      549728 :         indexcol == index->nkeycolumns - 1 &&
    6927      231516 :         eqQualHere &&
    6928      231516 :         !found_saop &&
    6929      226630 :         !found_is_null_op)
    6930      226564 :         numIndexTuples = 1.0;
    6931             :     else
    6932             :     {
    6933             :         List       *selectivityQuals;
    6934             :         Selectivity btreeSelectivity;
    6935             : 
    6936             :         /*
    6937             :          * If the index is partial, AND the index predicate with the
    6938             :          * index-bound quals to produce a more accurate idea of the number of
    6939             :          * rows covered by the bound conditions.
    6940             :          */
    6941      438340 :         selectivityQuals = add_predicate_to_index_quals(index, indexBoundQuals);
    6942             : 
    6943      438340 :         btreeSelectivity = clauselist_selectivity(root, selectivityQuals,
    6944      438340 :                                                   index->rel->relid,
    6945             :                                                   JOIN_INNER,
    6946             :                                                   NULL);
    6947      438340 :         numIndexTuples = btreeSelectivity * index->rel->tuples;
    6948             : 
    6949             :         /*
    6950             :          * btree automatically combines individual ScalarArrayOpExpr primitive
    6951             :          * index scans whenever the tuples covered by the next set of array
    6952             :          * keys are close to tuples covered by the current set.  That puts a
    6953             :          * natural ceiling on the worst case number of descents -- there
    6954             :          * cannot possibly be more than one descent per leaf page scanned.
    6955             :          *
    6956             :          * Clamp the number of descents to at most 1/3 the number of index
    6957             :          * pages.  This avoids implausibly high estimates with low selectivity
    6958             :          * paths, where scans usually require only one or two descents.  This
    6959             :          * is most likely to help when there are several SAOP clauses, where
    6960             :          * naively accepting the total number of distinct combinations of
    6961             :          * array elements as the number of descents would frequently lead to
    6962             :          * wild overestimates.
    6963             :          *
    6964             :          * We somewhat arbitrarily don't just make the cutoff the total number
    6965             :          * of leaf pages (we make it 1/3 the total number of pages instead) to
    6966             :          * give the btree code credit for its ability to continue on the leaf
    6967             :          * level with low selectivity scans.
    6968             :          */
    6969      438340 :         num_sa_scans = Min(num_sa_scans, ceil(index->pages * 0.3333333));
    6970      438340 :         num_sa_scans = Max(num_sa_scans, 1);
    6971             : 
    6972             :         /*
    6973             :          * As in genericcostestimate(), we have to adjust for any
    6974             :          * ScalarArrayOpExpr quals included in indexBoundQuals, and then round
    6975             :          * to integer.
    6976             :          *
    6977             :          * It is tempting to make genericcostestimate behave as if SAOP
    6978             :          * clauses work in almost the same way as scalar operators during
    6979             :          * btree scans, making the top-level scan look like a continuous scan
    6980             :          * (as opposed to num_sa_scans-many primitive index scans).  After
    6981             :          * all, btree scans mostly work like that at runtime.  However, such a
    6982             :          * scheme would badly bias genericcostestimate's simplistic approach
    6983             :          * to calculating numIndexPages through prorating.
    6984             :          *
    6985             :          * Stick with the approach taken by non-native SAOP scans for now.
    6986             :          * genericcostestimate will use the Mackert-Lohman formula to
    6987             :          * compensate for repeat page fetches, even though that definitely
    6988             :          * won't happen during btree scans (not for leaf pages, at least).
    6989             :          * We're usually very pessimistic about the number of primitive index
    6990             :          * scans that will be required, but it's not clear how to do better.
    6991             :          */
    6992      438340 :         numIndexTuples = rint(numIndexTuples / num_sa_scans);
    6993             :     }
    6994             : 
    6995             :     /*
    6996             :      * Now do generic index cost estimation.
    6997             :      */
    6998      664904 :     costs.numIndexTuples = numIndexTuples;
    6999      664904 :     costs.num_sa_scans = num_sa_scans;
    7000             : 
    7001      664904 :     genericcostestimate(root, path, loop_count, &costs);
    7002             : 
    7003             :     /*
    7004             :      * Add a CPU-cost component to represent the costs of initial btree
    7005             :      * descent.  We don't charge any I/O cost for touching upper btree levels,
    7006             :      * since they tend to stay in cache, but we still have to do about log2(N)
    7007             :      * comparisons to descend a btree of N leaf tuples.  We charge one
    7008             :      * cpu_operator_cost per comparison.
    7009             :      *
    7010             :      * If there are ScalarArrayOpExprs, charge this once per estimated SA
    7011             :      * index descent.  The ones after the first one are not startup cost so
    7012             :      * far as the overall plan goes, so just add them to "total" cost.
    7013             :      */
    7014      664904 :     if (index->tuples > 1)        /* avoid computing log(0) */
    7015             :     {
    7016      627816 :         descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost;
    7017      627816 :         costs.indexStartupCost += descentCost;
    7018      627816 :         costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7019             :     }
    7020             : 
    7021             :     /*
    7022             :      * Even though we're not charging I/O cost for touching upper btree pages,
    7023             :      * it's still reasonable to charge some CPU cost per page descended
    7024             :      * through.  Moreover, if we had no such charge at all, bloated indexes
    7025             :      * would appear to have the same search cost as unbloated ones, at least
    7026             :      * in cases where only a single leaf page is expected to be visited.  This
    7027             :      * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page
    7028             :      * touched.  The number of such pages is btree tree height plus one (ie,
    7029             :      * we charge for the leaf page too).  As above, charge once per estimated
    7030             :      * SA index descent.
    7031             :      */
    7032      664904 :     descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7033      664904 :     costs.indexStartupCost += descentCost;
    7034      664904 :     costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7035             : 
    7036             :     /*
    7037             :      * If we can get an estimate of the first column's ordering correlation C
    7038             :      * from pg_statistic, estimate the index correlation as C for a
    7039             :      * single-column index, or C * 0.75 for multiple columns. (The idea here
    7040             :      * is that multiple columns dilute the importance of the first column's
    7041             :      * ordering, but don't negate it entirely.  Before 8.0 we divided the
    7042             :      * correlation by the number of columns, but that seems too strong.)
    7043             :      */
    7044      664904 :     if (index->indexkeys[0] != 0)
    7045             :     {
    7046             :         /* Simple variable --- look to stats for the underlying table */
    7047      662882 :         RangeTblEntry *rte = planner_rt_fetch(index->rel->relid, root);
    7048             : 
    7049             :         Assert(rte->rtekind == RTE_RELATION);
    7050      662882 :         relid = rte->relid;
    7051             :         Assert(relid != InvalidOid);
    7052      662882 :         colnum = index->indexkeys[0];
    7053             : 
    7054      662882 :         if (get_relation_stats_hook &&
    7055           0 :             (*get_relation_stats_hook) (root, rte, colnum, &vardata))
    7056             :         {
    7057             :             /*
    7058             :              * The hook took control of acquiring a stats tuple.  If it did
    7059             :              * supply a tuple, it'd better have supplied a freefunc.
    7060             :              */
    7061           0 :             if (HeapTupleIsValid(vardata.statsTuple) &&
    7062           0 :                 !vardata.freefunc)
    7063           0 :                 elog(ERROR, "no function provided to release variable stats with");
    7064             :         }
    7065             :         else
    7066             :         {
    7067      662882 :             vardata.statsTuple = SearchSysCache3(STATRELATTINH,
    7068             :                                                  ObjectIdGetDatum(relid),
    7069             :                                                  Int16GetDatum(colnum),
    7070      662882 :                                                  BoolGetDatum(rte->inh));
    7071      662882 :             vardata.freefunc = ReleaseSysCache;
    7072             :         }
    7073             :     }
    7074             :     else
    7075             :     {
    7076             :         /* Expression --- maybe there are stats for the index itself */
    7077        2022 :         relid = index->indexoid;
    7078        2022 :         colnum = 1;
    7079             : 
    7080        2022 :         if (get_index_stats_hook &&
    7081           0 :             (*get_index_stats_hook) (root, relid, colnum, &vardata))
    7082             :         {
    7083             :             /*
    7084             :              * The hook took control of acquiring a stats tuple.  If it did
    7085             :              * supply a tuple, it'd better have supplied a freefunc.
    7086             :              */
    7087           0 :             if (HeapTupleIsValid(vardata.statsTuple) &&
    7088           0 :                 !vardata.freefunc)
    7089           0 :                 elog(ERROR, "no function provided to release variable stats with");
    7090             :         }
    7091             :         else
    7092             :         {
    7093        2022 :             vardata.statsTuple = SearchSysCache3(STATRELATTINH,
    7094             :                                                  ObjectIdGetDatum(relid),
    7095             :                                                  Int16GetDatum(colnum),
    7096             :                                                  BoolGetDatum(false));
    7097        2022 :             vardata.freefunc = ReleaseSysCache;
    7098             :         }
    7099             :     }
    7100             : 
    7101      664904 :     if (HeapTupleIsValid(vardata.statsTuple))
    7102             :     {
    7103             :         Oid         sortop;
    7104             :         AttStatsSlot sslot;
    7105             : 
    7106      489442 :         sortop = get_opfamily_member(index->opfamily[0],
    7107      489442 :                                      index->opcintype[0],
    7108      489442 :                                      index->opcintype[0],
    7109             :                                      BTLessStrategyNumber);
    7110      978884 :         if (OidIsValid(sortop) &&
    7111      489442 :             get_attstatsslot(&sslot, vardata.statsTuple,
    7112             :                              STATISTIC_KIND_CORRELATION, sortop,
    7113             :                              ATTSTATSSLOT_NUMBERS))
    7114             :         {
    7115             :             double      varCorrelation;
    7116             : 
    7117             :             Assert(sslot.nnumbers == 1);
    7118      484086 :             varCorrelation = sslot.numbers[0];
    7119             : 
    7120      484086 :             if (index->reverse_sort[0])
    7121           0 :                 varCorrelation = -varCorrelation;
    7122             : 
    7123      484086 :             if (index->nkeycolumns > 1)
    7124      164012 :                 costs.indexCorrelation = varCorrelation * 0.75;
    7125             :             else
    7126      320074 :                 costs.indexCorrelation = varCorrelation;
    7127             : 
    7128      484086 :             free_attstatsslot(&sslot);
    7129             :         }
    7130             :     }
    7131             : 
    7132      664904 :     ReleaseVariableStats(vardata);
    7133             : 
    7134      664904 :     *indexStartupCost = costs.indexStartupCost;
    7135      664904 :     *indexTotalCost = costs.indexTotalCost;
    7136      664904 :     *indexSelectivity = costs.indexSelectivity;
    7137      664904 :     *indexCorrelation = costs.indexCorrelation;
    7138      664904 :     *indexPages = costs.numIndexPages;
    7139      664904 : }
    7140             : 
    7141             : void
    7142         398 : hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7143             :                  Cost *indexStartupCost, Cost *indexTotalCost,
    7144             :                  Selectivity *indexSelectivity, double *indexCorrelation,
    7145             :                  double *indexPages)
    7146             : {
    7147         398 :     GenericCosts costs = {0};
    7148             : 
    7149         398 :     genericcostestimate(root, path, loop_count, &costs);
    7150             : 
    7151             :     /*
    7152             :      * A hash index has no descent costs as such, since the index AM can go
    7153             :      * directly to the target bucket after computing the hash value.  There
    7154             :      * are a couple of other hash-specific costs that we could conceivably add
    7155             :      * here, though:
    7156             :      *
    7157             :      * Ideally we'd charge spc_random_page_cost for each page in the target
    7158             :      * bucket, not just the numIndexPages pages that genericcostestimate
    7159             :      * thought we'd visit.  However in most cases we don't know which bucket
    7160             :      * that will be.  There's no point in considering the average bucket size
    7161             :      * because the hash AM makes sure that's always one page.
    7162             :      *
    7163             :      * Likewise, we could consider charging some CPU for each index tuple in
    7164             :      * the bucket, if we knew how many there were.  But the per-tuple cost is
    7165             :      * just a hash value comparison, not a general datatype-dependent
    7166             :      * comparison, so any such charge ought to be quite a bit less than
    7167             :      * cpu_operator_cost; which makes it probably not worth worrying about.
    7168             :      *
    7169             :      * A bigger issue is that chance hash-value collisions will result in
    7170             :      * wasted probes into the heap.  We don't currently attempt to model this
    7171             :      * cost on the grounds that it's rare, but maybe it's not rare enough.
    7172             :      * (Any fix for this ought to consider the generic lossy-operator problem,
    7173             :      * though; it's not entirely hash-specific.)
    7174             :      */
    7175             : 
    7176         398 :     *indexStartupCost = costs.indexStartupCost;
    7177         398 :     *indexTotalCost = costs.indexTotalCost;
    7178         398 :     *indexSelectivity = costs.indexSelectivity;
    7179         398 :     *indexCorrelation = costs.indexCorrelation;
    7180         398 :     *indexPages = costs.numIndexPages;
    7181         398 : }
    7182             : 
    7183             : void
    7184        5160 : gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7185             :                  Cost *indexStartupCost, Cost *indexTotalCost,
    7186             :                  Selectivity *indexSelectivity, double *indexCorrelation,
    7187             :                  double *indexPages)
    7188             : {
    7189        5160 :     IndexOptInfo *index = path->indexinfo;
    7190        5160 :     GenericCosts costs = {0};
    7191             :     Cost        descentCost;
    7192             : 
    7193        5160 :     genericcostestimate(root, path, loop_count, &costs);
    7194             : 
    7195             :     /*
    7196             :      * We model index descent costs similarly to those for btree, but to do
    7197             :      * that we first need an idea of the tree height.  We somewhat arbitrarily
    7198             :      * assume that the fanout is 100, meaning the tree height is at most
    7199             :      * log100(index->pages).
    7200             :      *
    7201             :      * Although this computation isn't really expensive enough to require
    7202             :      * caching, we might as well use index->tree_height to cache it.
    7203             :      */
    7204        5160 :     if (index->tree_height < 0) /* unknown? */
    7205             :     {
    7206        5146 :         if (index->pages > 1) /* avoid computing log(0) */
    7207        2704 :             index->tree_height = (int) (log(index->pages) / log(100.0));
    7208             :         else
    7209        2442 :             index->tree_height = 0;
    7210             :     }
    7211             : 
    7212             :     /*
    7213             :      * Add a CPU-cost component to represent the costs of initial descent. We
    7214             :      * just use log(N) here not log2(N) since the branching factor isn't
    7215             :      * necessarily two anyway.  As for btree, charge once per SA scan.
    7216             :      */
    7217        5160 :     if (index->tuples > 1)        /* avoid computing log(0) */
    7218             :     {
    7219        5160 :         descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
    7220        5160 :         costs.indexStartupCost += descentCost;
    7221        5160 :         costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7222             :     }
    7223             : 
    7224             :     /*
    7225             :      * Likewise add a per-page charge, calculated the same as for btrees.
    7226             :      */
    7227        5160 :     descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7228        5160 :     costs.indexStartupCost += descentCost;
    7229        5160 :     costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7230             : 
    7231        5160 :     *indexStartupCost = costs.indexStartupCost;
    7232        5160 :     *indexTotalCost = costs.indexTotalCost;
    7233        5160 :     *indexSelectivity = costs.indexSelectivity;
    7234        5160 :     *indexCorrelation = costs.indexCorrelation;
    7235        5160 :     *indexPages = costs.numIndexPages;
    7236        5160 : }
    7237             : 
    7238             : void
    7239        1784 : spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7240             :                 Cost *indexStartupCost, Cost *indexTotalCost,
    7241             :                 Selectivity *indexSelectivity, double *indexCorrelation,
    7242             :                 double *indexPages)
    7243             : {
    7244        1784 :     IndexOptInfo *index = path->indexinfo;
    7245        1784 :     GenericCosts costs = {0};
    7246             :     Cost        descentCost;
    7247             : 
    7248        1784 :     genericcostestimate(root, path, loop_count, &costs);
    7249             : 
    7250             :     /*
    7251             :      * We model index descent costs similarly to those for btree, but to do
    7252             :      * that we first need an idea of the tree height.  We somewhat arbitrarily
    7253             :      * assume that the fanout is 100, meaning the tree height is at most
    7254             :      * log100(index->pages).
    7255             :      *
    7256             :      * Although this computation isn't really expensive enough to require
    7257             :      * caching, we might as well use index->tree_height to cache it.
    7258             :      */
    7259        1784 :     if (index->tree_height < 0) /* unknown? */
    7260             :     {
    7261        1778 :         if (index->pages > 1) /* avoid computing log(0) */
    7262        1778 :             index->tree_height = (int) (log(index->pages) / log(100.0));
    7263             :         else
    7264           0 :             index->tree_height = 0;
    7265             :     }
    7266             : 
    7267             :     /*
    7268             :      * Add a CPU-cost component to represent the costs of initial descent. We
    7269             :      * just use log(N) here not log2(N) since the branching factor isn't
    7270             :      * necessarily two anyway.  As for btree, charge once per SA scan.
    7271             :      */
    7272        1784 :     if (index->tuples > 1)        /* avoid computing log(0) */
    7273             :     {
    7274        1784 :         descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
    7275        1784 :         costs.indexStartupCost += descentCost;
    7276        1784 :         costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7277             :     }
    7278             : 
    7279             :     /*
    7280             :      * Likewise add a per-page charge, calculated the same as for btrees.
    7281             :      */
    7282        1784 :     descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7283        1784 :     costs.indexStartupCost += descentCost;
    7284        1784 :     costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7285             : 
    7286        1784 :     *indexStartupCost = costs.indexStartupCost;
    7287        1784 :     *indexTotalCost = costs.indexTotalCost;
    7288        1784 :     *indexSelectivity = costs.indexSelectivity;
    7289        1784 :     *indexCorrelation = costs.indexCorrelation;
    7290        1784 :     *indexPages = costs.numIndexPages;
    7291        1784 : }
    7292             : 
    7293             : 
    7294             : /*
    7295             :  * Support routines for gincostestimate
    7296             :  */
    7297             : 
    7298             : typedef struct
    7299             : {
    7300             :     bool        attHasFullScan[INDEX_MAX_KEYS];
    7301             :     bool        attHasNormalScan[INDEX_MAX_KEYS];
    7302             :     double      partialEntries;
    7303             :     double      exactEntries;
    7304             :     double      searchEntries;
    7305             :     double      arrayScans;
    7306             : } GinQualCounts;
    7307             : 
    7308             : /*
    7309             :  * Estimate the number of index terms that need to be searched for while
    7310             :  * testing the given GIN query, and increment the counts in *counts
    7311             :  * appropriately.  If the query is unsatisfiable, return false.
    7312             :  */
    7313             : static bool
    7314        2072 : gincost_pattern(IndexOptInfo *index, int indexcol,
    7315             :                 Oid clause_op, Datum query,
    7316             :                 GinQualCounts *counts)
    7317             : {
    7318             :     FmgrInfo    flinfo;
    7319             :     Oid         extractProcOid;
    7320             :     Oid         collation;
    7321             :     int         strategy_op;
    7322             :     Oid         lefttype,
    7323             :                 righttype;
    7324        2072 :     int32       nentries = 0;
    7325        2072 :     bool       *partial_matches = NULL;
    7326        2072 :     Pointer    *extra_data = NULL;
    7327        2072 :     bool       *nullFlags = NULL;
    7328        2072 :     int32       searchMode = GIN_SEARCH_MODE_DEFAULT;
    7329             :     int32       i;
    7330             : 
    7331             :     Assert(indexcol < index->nkeycolumns);
    7332             : 
    7333             :     /*
    7334             :      * Get the operator's strategy number and declared input data types within
    7335             :      * the index opfamily.  (We don't need the latter, but we use
    7336             :      * get_op_opfamily_properties because it will throw error if it fails to
    7337             :      * find a matching pg_amop entry.)
    7338             :      */
    7339        2072 :     get_op_opfamily_properties(clause_op, index->opfamily[indexcol], false,
    7340             :                                &strategy_op, &lefttype, &righttype);
    7341             : 
    7342             :     /*
    7343             :      * GIN always uses the "default" support functions, which are those with
    7344             :      * lefttype == righttype == the opclass' opcintype (see
    7345             :      * IndexSupportInitialize in relcache.c).
    7346             :      */
    7347        2072 :     extractProcOid = get_opfamily_proc(index->opfamily[indexcol],
    7348        2072 :                                        index->opcintype[indexcol],
    7349        2072 :                                        index->opcintype[indexcol],
    7350             :                                        GIN_EXTRACTQUERY_PROC);
    7351             : 
    7352        2072 :     if (!OidIsValid(extractProcOid))
    7353             :     {
    7354             :         /* should not happen; throw same error as index_getprocinfo */
    7355           0 :         elog(ERROR, "missing support function %d for attribute %d of index \"%s\"",
    7356             :              GIN_EXTRACTQUERY_PROC, indexcol + 1,
    7357             :              get_rel_name(index->indexoid));
    7358             :     }
    7359             : 
    7360             :     /*
    7361             :      * Choose collation to pass to extractProc (should match initGinState).
    7362             :      */
    7363        2072 :     if (OidIsValid(index->indexcollations[indexcol]))
    7364         364 :         collation = index->indexcollations[indexcol];
    7365             :     else
    7366        1708 :         collation = DEFAULT_COLLATION_OID;
    7367             : 
    7368        2072 :     fmgr_info(extractProcOid, &flinfo);
    7369             : 
    7370        2072 :     set_fn_opclass_options(&flinfo, index->opclassoptions[indexcol]);
    7371             : 
    7372        2072 :     FunctionCall7Coll(&flinfo,
    7373             :                       collation,
    7374             :                       query,
    7375             :                       PointerGetDatum(&nentries),
    7376             :                       UInt16GetDatum(strategy_op),
    7377             :                       PointerGetDatum(&partial_matches),
    7378             :                       PointerGetDatum(&extra_data),
    7379             :                       PointerGetDatum(&nullFlags),
    7380             :                       PointerGetDatum(&searchMode));
    7381             : 
    7382        2072 :     if (nentries <= 0 && searchMode == GIN_SEARCH_MODE_DEFAULT)
    7383             :     {
    7384             :         /* No match is possible */
    7385          12 :         return false;
    7386             :     }
    7387             : 
    7388        8796 :     for (i = 0; i < nentries; i++)
    7389             :     {
    7390             :         /*
    7391             :          * For partial match we haven't any information to estimate number of
    7392             :          * matched entries in index, so, we just estimate it as 100
    7393             :          */
    7394        6736 :         if (partial_matches && partial_matches[i])
    7395         316 :             counts->partialEntries += 100;
    7396             :         else
    7397        6420 :             counts->exactEntries++;
    7398             : 
    7399        6736 :         counts->searchEntries++;
    7400             :     }
    7401             : 
    7402        2060 :     if (searchMode == GIN_SEARCH_MODE_DEFAULT)
    7403             :     {
    7404        1588 :         counts->attHasNormalScan[indexcol] = true;
    7405             :     }
    7406         472 :     else if (searchMode == GIN_SEARCH_MODE_INCLUDE_EMPTY)
    7407             :     {
    7408             :         /* Treat "include empty" like an exact-match item */
    7409          44 :         counts->attHasNormalScan[indexcol] = true;
    7410          44 :         counts->exactEntries++;
    7411          44 :         counts->searchEntries++;
    7412             :     }
    7413             :     else
    7414             :     {
    7415             :         /* It's GIN_SEARCH_MODE_ALL */
    7416         428 :         counts->attHasFullScan[indexcol] = true;
    7417             :     }
    7418             : 
    7419        2060 :     return true;
    7420             : }
    7421             : 
    7422             : /*
    7423             :  * Estimate the number of index terms that need to be searched for while
    7424             :  * testing the given GIN index clause, and increment the counts in *counts
    7425             :  * appropriately.  If the query is unsatisfiable, return false.
    7426             :  */
    7427             : static bool
    7428        2060 : gincost_opexpr(PlannerInfo *root,
    7429             :                IndexOptInfo *index,
    7430             :                int indexcol,
    7431             :                OpExpr *clause,
    7432             :                GinQualCounts *counts)
    7433             : {
    7434        2060 :     Oid         clause_op = clause->opno;
    7435        2060 :     Node       *operand = (Node *) lsecond(clause->args);
    7436             : 
    7437             :     /* aggressively reduce to a constant, and look through relabeling */
    7438        2060 :     operand = estimate_expression_value(root, operand);
    7439             : 
    7440        2060 :     if (IsA(operand, RelabelType))
    7441           0 :         operand = (Node *) ((RelabelType *) operand)->arg;
    7442             : 
    7443             :     /*
    7444             :      * It's impossible to call extractQuery method for unknown operand. So
    7445             :      * unless operand is a Const we can't do much; just assume there will be
    7446             :      * one ordinary search entry from the operand at runtime.
    7447             :      */
    7448        2060 :     if (!IsA(operand, Const))
    7449             :     {
    7450           0 :         counts->exactEntries++;
    7451           0 :         counts->searchEntries++;
    7452           0 :         return true;
    7453             :     }
    7454             : 
    7455             :     /* If Const is null, there can be no matches */
    7456        2060 :     if (((Const *) operand)->constisnull)
    7457           0 :         return false;
    7458             : 
    7459             :     /* Otherwise, apply extractQuery and get the actual term counts */
    7460        2060 :     return gincost_pattern(index, indexcol, clause_op,
    7461             :                            ((Const *) operand)->constvalue,
    7462             :                            counts);
    7463             : }
    7464             : 
    7465             : /*
    7466             :  * Estimate the number of index terms that need to be searched for while
    7467             :  * testing the given GIN index clause, and increment the counts in *counts
    7468             :  * appropriately.  If the query is unsatisfiable, return false.
    7469             :  *
    7470             :  * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime,
    7471             :  * each of which involves one value from the RHS array, plus all the
    7472             :  * non-array quals (if any).  To model this, we average the counts across
    7473             :  * the RHS elements, and add the averages to the counts in *counts (which
    7474             :  * correspond to per-indexscan costs).  We also multiply counts->arrayScans
    7475             :  * by N, causing gincostestimate to scale up its estimates accordingly.
    7476             :  */
    7477             : static bool
    7478           6 : gincost_scalararrayopexpr(PlannerInfo *root,
    7479             :                           IndexOptInfo *index,
    7480             :                           int indexcol,
    7481             :                           ScalarArrayOpExpr *clause,
    7482             :                           double numIndexEntries,
    7483             :                           GinQualCounts *counts)
    7484             : {
    7485           6 :     Oid         clause_op = clause->opno;
    7486           6 :     Node       *rightop = (Node *) lsecond(clause->args);
    7487             :     ArrayType  *arrayval;
    7488             :     int16       elmlen;
    7489             :     bool        elmbyval;
    7490             :     char        elmalign;
    7491             :     int         numElems;
    7492             :     Datum      *elemValues;
    7493             :     bool       *elemNulls;
    7494             :     GinQualCounts arraycounts;
    7495           6 :     int         numPossible = 0;
    7496             :     int         i;
    7497             : 
    7498             :     Assert(clause->useOr);
    7499             : 
    7500             :     /* aggressively reduce to a constant, and look through relabeling */
    7501           6 :     rightop = estimate_expression_value(root, rightop);
    7502             : 
    7503           6 :     if (IsA(rightop, RelabelType))
    7504           0 :         rightop = (Node *) ((RelabelType *) rightop)->arg;
    7505             : 
    7506             :     /*
    7507             :      * It's impossible to call extractQuery method for unknown operand. So
    7508             :      * unless operand is a Const we can't do much; just assume there will be
    7509             :      * one ordinary search entry from each array entry at runtime, and fall
    7510             :      * back on a probably-bad estimate of the number of array entries.
    7511             :      */
    7512           6 :     if (!IsA(rightop, Const))
    7513             :     {
    7514           0 :         counts->exactEntries++;
    7515           0 :         counts->searchEntries++;
    7516           0 :         counts->arrayScans *= estimate_array_length(root, rightop);
    7517           0 :         return true;
    7518             :     }
    7519             : 
    7520             :     /* If Const is null, there can be no matches */
    7521           6 :     if (((Const *) rightop)->constisnull)
    7522           0 :         return false;
    7523             : 
    7524             :     /* Otherwise, extract the array elements and iterate over them */
    7525           6 :     arrayval = DatumGetArrayTypeP(((Const *) rightop)->constvalue);
    7526           6 :     get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
    7527             :                          &elmlen, &elmbyval, &elmalign);
    7528           6 :     deconstruct_array(arrayval,
    7529             :                       ARR_ELEMTYPE(arrayval),
    7530             :                       elmlen, elmbyval, elmalign,
    7531             :                       &elemValues, &elemNulls, &numElems);
    7532             : 
    7533           6 :     memset(&arraycounts, 0, sizeof(arraycounts));
    7534             : 
    7535          18 :     for (i = 0; i < numElems; i++)
    7536             :     {
    7537             :         GinQualCounts elemcounts;
    7538             : 
    7539             :         /* NULL can't match anything, so ignore, as the executor will */
    7540          12 :         if (elemNulls[i])
    7541           0 :             continue;
    7542             : 
    7543             :         /* Otherwise, apply extractQuery and get the actual term counts */
    7544          12 :         memset(&elemcounts, 0, sizeof(elemcounts));
    7545             : 
    7546          12 :         if (gincost_pattern(index, indexcol, clause_op, elemValues[i],
    7547             :                             &elemcounts))
    7548             :         {
    7549             :             /* We ignore array elements that are unsatisfiable patterns */
    7550          12 :             numPossible++;
    7551             : 
    7552          12 :             if (elemcounts.attHasFullScan[indexcol] &&
    7553           0 :                 !elemcounts.attHasNormalScan[indexcol])
    7554             :             {
    7555             :                 /*
    7556             :                  * Full index scan will be required.  We treat this as if
    7557             :                  * every key in the index had been listed in the query; is
    7558             :                  * that reasonable?
    7559             :                  */
    7560           0 :                 elemcounts.partialEntries = 0;
    7561           0 :                 elemcounts.exactEntries = numIndexEntries;
    7562           0 :                 elemcounts.searchEntries = numIndexEntries;
    7563             :             }
    7564          12 :             arraycounts.partialEntries += elemcounts.partialEntries;
    7565          12 :             arraycounts.exactEntries += elemcounts.exactEntries;
    7566          12 :             arraycounts.searchEntries += elemcounts.searchEntries;
    7567             :         }
    7568             :     }
    7569             : 
    7570           6 :     if (numPossible == 0)
    7571             :     {
    7572             :         /* No satisfiable patterns in the array */
    7573           0 :         return false;
    7574             :     }
    7575             : 
    7576             :     /*
    7577             :      * Now add the averages to the global counts.  This will give us an
    7578             :      * estimate of the average number of terms searched for in each indexscan,
    7579             :      * including contributions from both array and non-array quals.
    7580             :      */
    7581           6 :     counts->partialEntries += arraycounts.partialEntries / numPossible;
    7582           6 :     counts->exactEntries += arraycounts.exactEntries / numPossible;
    7583           6 :     counts->searchEntries += arraycounts.searchEntries / numPossible;
    7584             : 
    7585           6 :     counts->arrayScans *= numPossible;
    7586             : 
    7587           6 :     return true;
    7588             : }
    7589             : 
    7590             : /*
    7591             :  * GIN has search behavior completely different from other index types
    7592             :  */
    7593             : void
    7594        1868 : gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7595             :                 Cost *indexStartupCost, Cost *indexTotalCost,
    7596             :                 Selectivity *indexSelectivity, double *indexCorrelation,
    7597             :                 double *indexPages)
    7598             : {
    7599        1868 :     IndexOptInfo *index = path->indexinfo;
    7600        1868 :     List       *indexQuals = get_quals_from_indexclauses(path->indexclauses);
    7601             :     List       *selectivityQuals;
    7602        1868 :     double      numPages = index->pages,
    7603        1868 :                 numTuples = index->tuples;
    7604             :     double      numEntryPages,
    7605             :                 numDataPages,
    7606             :                 numPendingPages,
    7607             :                 numEntries;
    7608             :     GinQualCounts counts;
    7609             :     bool        matchPossible;
    7610             :     bool        fullIndexScan;
    7611             :     double      partialScale;
    7612             :     double      entryPagesFetched,
    7613             :                 dataPagesFetched,
    7614             :                 dataPagesFetchedBySel;
    7615             :     double      qual_op_cost,
    7616             :                 qual_arg_cost,
    7617             :                 spc_random_page_cost,
    7618             :                 outer_scans;
    7619             :     Cost        descentCost;
    7620             :     Relation    indexRel;
    7621             :     GinStatsData ginStats;
    7622             :     ListCell   *lc;
    7623             :     int         i;
    7624             : 
    7625             :     /*
    7626             :      * Obtain statistical information from the meta page, if possible.  Else
    7627             :      * set ginStats to zeroes, and we'll cope below.
    7628             :      */
    7629        1868 :     if (!index->hypothetical)
    7630             :     {
    7631             :         /* Lock should have already been obtained in plancat.c */
    7632        1868 :         indexRel = index_open(index->indexoid, NoLock);
    7633        1868 :         ginGetStats(indexRel, &ginStats);
    7634        1868 :         index_close(indexRel, NoLock);
    7635             :     }
    7636             :     else
    7637             :     {
    7638           0 :         memset(&ginStats, 0, sizeof(ginStats));
    7639             :     }
    7640             : 
    7641             :     /*
    7642             :      * Assuming we got valid (nonzero) stats at all, nPendingPages can be
    7643             :      * trusted, but the other fields are data as of the last VACUUM.  We can
    7644             :      * scale them up to account for growth since then, but that method only
    7645             :      * goes so far; in the worst case, the stats might be for a completely
    7646             :      * empty index, and scaling them will produce pretty bogus numbers.
    7647             :      * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if
    7648             :      * it's grown more than that, fall back to estimating things only from the
    7649             :      * assumed-accurate index size.  But we'll trust nPendingPages in any case
    7650             :      * so long as it's not clearly insane, ie, more than the index size.
    7651             :      */
    7652        1868 :     if (ginStats.nPendingPages < numPages)
    7653        1868 :         numPendingPages = ginStats.nPendingPages;
    7654             :     else
    7655           0 :         numPendingPages = 0;
    7656             : 
    7657        1868 :     if (numPages > 0 && ginStats.nTotalPages <= numPages &&
    7658        1868 :         ginStats.nTotalPages > numPages / 4 &&
    7659        1816 :         ginStats.nEntryPages > 0 && ginStats.nEntries > 0)
    7660        1558 :     {
    7661             :         /*
    7662             :          * OK, the stats seem close enough to sane to be trusted.  But we
    7663             :          * still need to scale them by the ratio numPages / nTotalPages to
    7664             :          * account for growth since the last VACUUM.
    7665             :          */
    7666        1558 :         double      scale = numPages / ginStats.nTotalPages;
    7667             : 
    7668        1558 :         numEntryPages = ceil(ginStats.nEntryPages * scale);
    7669        1558 :         numDataPages = ceil(ginStats.nDataPages * scale);
    7670        1558 :         numEntries = ceil(ginStats.nEntries * scale);
    7671             :         /* ensure we didn't round up too much */
    7672        1558 :         numEntryPages = Min(numEntryPages, numPages - numPendingPages);
    7673        1558 :         numDataPages = Min(numDataPages,
    7674             :                            numPages - numPendingPages - numEntryPages);
    7675             :     }
    7676             :     else
    7677             :     {
    7678             :         /*
    7679             :          * We might get here because it's a hypothetical index, or an index
    7680             :          * created pre-9.1 and never vacuumed since upgrading (in which case
    7681             :          * its stats would read as zeroes), or just because it's grown too
    7682             :          * much since the last VACUUM for us to put our faith in scaling.
    7683             :          *
    7684             :          * Invent some plausible internal statistics based on the index page
    7685             :          * count (and clamp that to at least 10 pages, just in case).  We
    7686             :          * estimate that 90% of the index is entry pages, and the rest is data
    7687             :          * pages.  Estimate 100 entries per entry page; this is rather bogus
    7688             :          * since it'll depend on the size of the keys, but it's more robust
    7689             :          * than trying to predict the number of entries per heap tuple.
    7690             :          */
    7691         310 :         numPages = Max(numPages, 10);
    7692         310 :         numEntryPages = floor((numPages - numPendingPages) * 0.90);
    7693         310 :         numDataPages = numPages - numPendingPages - numEntryPages;
    7694         310 :         numEntries = floor(numEntryPages * 100);
    7695             :     }
    7696             : 
    7697             :     /* In an empty index, numEntries could be zero.  Avoid divide-by-zero */
    7698        1868 :     if (numEntries < 1)
    7699           0 :         numEntries = 1;
    7700             : 
    7701             :     /*
    7702             :      * If the index is partial, AND the index predicate with the index-bound
    7703             :      * quals to produce a more accurate idea of the number of rows covered by
    7704             :      * the bound conditions.
    7705             :      */
    7706        1868 :     selectivityQuals = add_predicate_to_index_quals(index, indexQuals);
    7707             : 
    7708             :     /* Estimate the fraction of main-table tuples that will be visited */
    7709        3736 :     *indexSelectivity = clauselist_selectivity(root, selectivityQuals,
    7710        1868 :                                                index->rel->relid,
    7711             :                                                JOIN_INNER,
    7712             :                                                NULL);
    7713             : 
    7714             :     /* fetch estimated page cost for tablespace containing index */
    7715        1868 :     get_tablespace_page_costs(index->reltablespace,
    7716             :                               &spc_random_page_cost,
    7717             :                               NULL);
    7718             : 
    7719             :     /*
    7720             :      * Generic assumption about index correlation: there isn't any.
    7721             :      */
    7722        1868 :     *indexCorrelation = 0.0;
    7723             : 
    7724             :     /*
    7725             :      * Examine quals to estimate number of search entries & partial matches
    7726             :      */
    7727        1868 :     memset(&counts, 0, sizeof(counts));
    7728        1868 :     counts.arrayScans = 1;
    7729        1868 :     matchPossible = true;
    7730             : 
    7731        3934 :     foreach(lc, path->indexclauses)
    7732             :     {
    7733        2066 :         IndexClause *iclause = lfirst_node(IndexClause, lc);
    7734             :         ListCell   *lc2;
    7735             : 
    7736        4120 :         foreach(lc2, iclause->indexquals)
    7737             :         {
    7738        2066 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
    7739        2066 :             Expr       *clause = rinfo->clause;
    7740             : 
    7741        2066 :             if (IsA(clause, OpExpr))
    7742             :             {
    7743        2060 :                 matchPossible = gincost_opexpr(root,
    7744             :                                                index,
    7745        2060 :                                                iclause->indexcol,
    7746             :                                                (OpExpr *) clause,
    7747             :                                                &counts);
    7748        2060 :                 if (!matchPossible)
    7749          12 :                     break;
    7750             :             }
    7751           6 :             else if (IsA(clause, ScalarArrayOpExpr))
    7752             :             {
    7753           6 :                 matchPossible = gincost_scalararrayopexpr(root,
    7754             :                                                           index,
    7755           6 :                                                           iclause->indexcol,
    7756             :                                                           (ScalarArrayOpExpr *) clause,
    7757             :                                                           numEntries,
    7758             :                                                           &counts);
    7759           6 :                 if (!matchPossible)
    7760           0 :                     break;
    7761             :             }
    7762             :             else
    7763             :             {
    7764             :                 /* shouldn't be anything else for a GIN index */
    7765           0 :                 elog(ERROR, "unsupported GIN indexqual type: %d",
    7766             :                      (int) nodeTag(clause));
    7767             :             }
    7768             :         }
    7769             :     }
    7770             : 
    7771             :     /* Fall out if there were any provably-unsatisfiable quals */
    7772        1868 :     if (!matchPossible)
    7773             :     {
    7774          12 :         *indexStartupCost = 0;
    7775          12 :         *indexTotalCost = 0;
    7776          12 :         *indexSelectivity = 0;
    7777          12 :         return;
    7778             :     }
    7779             : 
    7780             :     /*
    7781             :      * If attribute has a full scan and at the same time doesn't have normal
    7782             :      * scan, then we'll have to scan all non-null entries of that attribute.
    7783             :      * Currently, we don't have per-attribute statistics for GIN.  Thus, we
    7784             :      * must assume the whole GIN index has to be scanned in this case.
    7785             :      */
    7786        1856 :     fullIndexScan = false;
    7787        3602 :     for (i = 0; i < index->nkeycolumns; i++)
    7788             :     {
    7789        2084 :         if (counts.attHasFullScan[i] && !counts.attHasNormalScan[i])
    7790             :         {
    7791         338 :             fullIndexScan = true;
    7792         338 :             break;
    7793             :         }
    7794             :     }
    7795             : 
    7796        1856 :     if (fullIndexScan || indexQuals == NIL)
    7797             :     {
    7798             :         /*
    7799             :          * Full index scan will be required.  We treat this as if every key in
    7800             :          * the index had been listed in the query; is that reasonable?
    7801             :          */
    7802         338 :         counts.partialEntries = 0;
    7803         338 :         counts.exactEntries = numEntries;
    7804         338 :         counts.searchEntries = numEntries;
    7805             :     }
    7806             : 
    7807             :     /* Will we have more than one iteration of a nestloop scan? */
    7808        1856 :     outer_scans = loop_count;
    7809             : 
    7810             :     /*
    7811             :      * Compute cost to begin scan, first of all, pay attention to pending
    7812             :      * list.
    7813             :      */
    7814        1856 :     entryPagesFetched = numPendingPages;
    7815             : 
    7816             :     /*
    7817             :      * Estimate number of entry pages read.  We need to do
    7818             :      * counts.searchEntries searches.  Use a power function as it should be,
    7819             :      * but tuples on leaf pages usually is much greater. Here we include all
    7820             :      * searches in entry tree, including search of first entry in partial
    7821             :      * match algorithm
    7822             :      */
    7823        1856 :     entryPagesFetched += ceil(counts.searchEntries * rint(pow(numEntryPages, 0.15)));
    7824             : 
    7825             :     /*
    7826             :      * Add an estimate of entry pages read by partial match algorithm. It's a
    7827             :      * scan over leaf pages in entry tree.  We haven't any useful stats here,
    7828             :      * so estimate it as proportion.  Because counts.partialEntries is really
    7829             :      * pretty bogus (see code above), it's possible that it is more than
    7830             :      * numEntries; clamp the proportion to ensure sanity.
    7831             :      */
    7832        1856 :     partialScale = counts.partialEntries / numEntries;
    7833        1856 :     partialScale = Min(partialScale, 1.0);
    7834             : 
    7835        1856 :     entryPagesFetched += ceil(numEntryPages * partialScale);
    7836             : 
    7837             :     /*
    7838             :      * Partial match algorithm reads all data pages before doing actual scan,
    7839             :      * so it's a startup cost.  Again, we haven't any useful stats here, so
    7840             :      * estimate it as proportion.
    7841             :      */
    7842        1856 :     dataPagesFetched = ceil(numDataPages * partialScale);
    7843             : 
    7844        1856 :     *indexStartupCost = 0;
    7845        1856 :     *indexTotalCost = 0;
    7846             : 
    7847             :     /*
    7848             :      * Add a CPU-cost component to represent the costs of initial entry btree
    7849             :      * descent.  We don't charge any I/O cost for touching upper btree levels,
    7850             :      * since they tend to stay in cache, but we still have to do about log2(N)
    7851             :      * comparisons to descend a btree of N leaf tuples.  We charge one
    7852             :      * cpu_operator_cost per comparison.
    7853             :      *
    7854             :      * If there are ScalarArrayOpExprs, charge this once per SA scan.  The
    7855             :      * ones after the first one are not startup cost so far as the overall
    7856             :      * plan is concerned, so add them only to "total" cost.
    7857             :      */
    7858        1856 :     if (numEntries > 1)          /* avoid computing log(0) */
    7859             :     {
    7860        1856 :         descentCost = ceil(log(numEntries) / log(2.0)) * cpu_operator_cost;
    7861        1856 :         *indexStartupCost += descentCost * counts.searchEntries;
    7862        1856 :         *indexTotalCost += counts.arrayScans * descentCost * counts.searchEntries;
    7863             :     }
    7864             : 
    7865             :     /*
    7866             :      * Add a cpu cost per entry-page fetched. This is not amortized over a
    7867             :      * loop.
    7868             :      */
    7869        1856 :     *indexStartupCost += entryPagesFetched * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7870        1856 :     *indexTotalCost += entryPagesFetched * counts.arrayScans * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7871             : 
    7872             :     /*
    7873             :      * Add a cpu cost per data-page fetched. This is also not amortized over a
    7874             :      * loop. Since those are the data pages from the partial match algorithm,
    7875             :      * charge them as startup cost.
    7876             :      */
    7877        1856 :     *indexStartupCost += DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost * dataPagesFetched;
    7878             : 
    7879             :     /*
    7880             :      * Since we add the startup cost to the total cost later on, remove the
    7881             :      * initial arrayscan from the total.
    7882             :      */
    7883        1856 :     *indexTotalCost += dataPagesFetched * (counts.arrayScans - 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7884             : 
    7885             :     /*
    7886             :      * Calculate cache effects if more than one scan due to nestloops or array
    7887             :      * quals.  The result is pro-rated per nestloop scan, but the array qual
    7888             :      * factor shouldn't be pro-rated (compare genericcostestimate).
    7889             :      */
    7890        1856 :     if (outer_scans > 1 || counts.arrayScans > 1)
    7891             :     {
    7892           6 :         entryPagesFetched *= outer_scans * counts.arrayScans;
    7893           6 :         entryPagesFetched = index_pages_fetched(entryPagesFetched,
    7894             :                                                 (BlockNumber) numEntryPages,
    7895             :                                                 numEntryPages, root);
    7896           6 :         entryPagesFetched /= outer_scans;
    7897           6 :         dataPagesFetched *= outer_scans * counts.arrayScans;
    7898           6 :         dataPagesFetched = index_pages_fetched(dataPagesFetched,
    7899             :                                                (BlockNumber) numDataPages,
    7900             :                                                numDataPages, root);
    7901           6 :         dataPagesFetched /= outer_scans;
    7902             :     }
    7903             : 
    7904             :     /*
    7905             :      * Here we use random page cost because logically-close pages could be far
    7906             :      * apart on disk.
    7907             :      */
    7908        1856 :     *indexStartupCost += (entryPagesFetched + dataPagesFetched) * spc_random_page_cost;
    7909             : 
    7910             :     /*
    7911             :      * Now compute the number of data pages fetched during the scan.
    7912             :      *
    7913             :      * We assume every entry to have the same number of items, and that there
    7914             :      * is no overlap between them. (XXX: tsvector and array opclasses collect
    7915             :      * statistics on the frequency of individual keys; it would be nice to use
    7916             :      * those here.)
    7917             :      */
    7918        1856 :     dataPagesFetched = ceil(numDataPages * counts.exactEntries / numEntries);
    7919             : 
    7920             :     /*
    7921             :      * If there is a lot of overlap among the entries, in particular if one of
    7922             :      * the entries is very frequent, the above calculation can grossly
    7923             :      * under-estimate.  As a simple cross-check, calculate a lower bound based
    7924             :      * on the overall selectivity of the quals.  At a minimum, we must read
    7925             :      * one item pointer for each matching entry.
    7926             :      *
    7927             :      * The width of each item pointer varies, based on the level of
    7928             :      * compression.  We don't have statistics on that, but an average of
    7929             :      * around 3 bytes per item is fairly typical.
    7930             :      */
    7931        1856 :     dataPagesFetchedBySel = ceil(*indexSelectivity *
    7932        1856 :                                  (numTuples / (BLCKSZ / 3)));
    7933        1856 :     if (dataPagesFetchedBySel > dataPagesFetched)
    7934        1476 :         dataPagesFetched = dataPagesFetchedBySel;
    7935             : 
    7936             :     /* Add one page cpu-cost to the startup cost */
    7937        1856 :     *indexStartupCost += DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost * counts.searchEntries;
    7938             : 
    7939             :     /*
    7940             :      * Add once again a CPU-cost for those data pages, before amortizing for
    7941             :      * cache.
    7942             :      */
    7943        1856 :     *indexTotalCost += dataPagesFetched * counts.arrayScans * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7944             : 
    7945             :     /* Account for cache effects, the same as above */
    7946        1856 :     if (outer_scans > 1 || counts.arrayScans > 1)
    7947             :     {
    7948           6 :         dataPagesFetched *= outer_scans * counts.arrayScans;
    7949           6 :         dataPagesFetched = index_pages_fetched(dataPagesFetched,
    7950             :                                                (BlockNumber) numDataPages,
    7951             :                                                numDataPages, root);
    7952           6 :         dataPagesFetched /= outer_scans;
    7953             :     }
    7954             : 
    7955             :     /* And apply random_page_cost as the cost per page */
    7956        1856 :     *indexTotalCost += *indexStartupCost +
    7957        1856 :         dataPagesFetched * spc_random_page_cost;
    7958             : 
    7959             :     /*
    7960             :      * Add on index qual eval costs, much as in genericcostestimate. We charge
    7961             :      * cpu but we can disregard indexorderbys, since GIN doesn't support
    7962             :      * those.
    7963             :      */
    7964        1856 :     qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
    7965        1856 :     qual_op_cost = cpu_operator_cost * list_length(indexQuals);
    7966             : 
    7967        1856 :     *indexStartupCost += qual_arg_cost;
    7968        1856 :     *indexTotalCost += qual_arg_cost;
    7969             : 
    7970             :     /*
    7971             :      * Add a cpu cost per search entry, corresponding to the actual visited
    7972             :      * entries.
    7973             :      */
    7974        1856 :     *indexTotalCost += (counts.searchEntries * counts.arrayScans) * (qual_op_cost);
    7975             :     /* Now add a cpu cost per tuple in the posting lists / trees */
    7976        1856 :     *indexTotalCost += (numTuples * *indexSelectivity) * (cpu_index_tuple_cost);
    7977        1856 :     *indexPages = dataPagesFetched;
    7978             : }
    7979             : 
    7980             : /*
    7981             :  * BRIN has search behavior completely different from other index types
    7982             :  */
    7983             : void
    7984       10730 : brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7985             :                  Cost *indexStartupCost, Cost *indexTotalCost,
    7986             :                  Selectivity *indexSelectivity, double *indexCorrelation,
    7987             :                  double *indexPages)
    7988             : {
    7989       10730 :     IndexOptInfo *index = path->indexinfo;
    7990       10730 :     List       *indexQuals = get_quals_from_indexclauses(path->indexclauses);
    7991       10730 :     double      numPages = index->pages;
    7992       10730 :     RelOptInfo *baserel = index->rel;
    7993       10730 :     RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root);
    7994             :     Cost        spc_seq_page_cost;
    7995             :     Cost        spc_random_page_cost;
    7996             :     double      qual_arg_cost;
    7997             :     double      qualSelectivity;
    7998             :     BrinStatsData statsData;
    7999             :     double      indexRanges;
    8000             :     double      minimalRanges;
    8001             :     double      estimatedRanges;
    8002             :     double      selec;
    8003             :     Relation    indexRel;
    8004             :     ListCell   *l;
    8005             :     VariableStatData vardata;
    8006             : 
    8007             :     Assert(rte->rtekind == RTE_RELATION);
    8008             : 
    8009             :     /* fetch estimated page cost for the tablespace containing the index */
    8010       10730 :     get_tablespace_page_costs(index->reltablespace,
    8011             :                               &spc_random_page_cost,
    8012             :                               &spc_seq_page_cost);
    8013             : 
    8014             :     /*
    8015             :      * Obtain some data from the index itself, if possible.  Otherwise invent
    8016             :      * some plausible internal statistics based on the relation page count.
    8017             :      */
    8018       10730 :     if (!index->hypothetical)
    8019             :     {
    8020             :         /*
    8021             :          * A lock should have already been obtained on the index in plancat.c.
    8022             :          */
    8023       10730 :         indexRel = index_open(index->indexoid, NoLock);
    8024       10730 :         brinGetStats(indexRel, &statsData);
    8025       10730 :         index_close(indexRel, NoLock);
    8026             : 
    8027             :         /* work out the actual number of ranges in the index */
    8028       10730 :         indexRanges = Max(ceil((double) baserel->pages /
    8029             :                                statsData.pagesPerRange), 1.0);
    8030             :     }
    8031             :     else
    8032             :     {
    8033             :         /*
    8034             :          * Assume default number of pages per range, and estimate the number
    8035             :          * of ranges based on that.
    8036             :          */
    8037           0 :         indexRanges = Max(ceil((double) baserel->pages /
    8038             :                                BRIN_DEFAULT_PAGES_PER_RANGE), 1.0);
    8039             : 
    8040           0 :         statsData.pagesPerRange = BRIN_DEFAULT_PAGES_PER_RANGE;
    8041           0 :         statsData.revmapNumPages = (indexRanges / REVMAP_PAGE_MAXITEMS) + 1;
    8042             :     }
    8043             : 
    8044             :     /*
    8045             :      * Compute index correlation
    8046             :      *
    8047             :      * Because we can use all index quals equally when scanning, we can use
    8048             :      * the largest correlation (in absolute value) among columns used by the
    8049             :      * query.  Start at zero, the worst possible case.  If we cannot find any
    8050             :      * correlation statistics, we will keep it as 0.
    8051             :      */
    8052       10730 :     *indexCorrelation = 0;
    8053             : 
    8054       21462 :     foreach(l, path->indexclauses)
    8055             :     {
    8056       10732 :         IndexClause *iclause = lfirst_node(IndexClause, l);
    8057       10732 :         AttrNumber  attnum = index->indexkeys[iclause->indexcol];
    8058             : 
    8059             :         /* attempt to lookup stats in relation for this index column */
    8060       10732 :         if (attnum != 0)
    8061             :         {
    8062             :             /* Simple variable -- look to stats for the underlying table */
    8063       10732 :             if (get_relation_stats_hook &&
    8064           0 :                 (*get_relation_stats_hook) (root, rte, attnum, &vardata))
    8065             :             {
    8066             :                 /*
    8067             :                  * The hook took control of acquiring a stats tuple.  If it
    8068             :                  * did supply a tuple, it'd better have supplied a freefunc.
    8069             :                  */
    8070           0 :                 if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc)
    8071           0 :                     elog(ERROR,
    8072             :                          "no function provided to release variable stats with");
    8073             :             }
    8074             :             else
    8075             :             {
    8076       10732 :                 vardata.statsTuple =
    8077       10732 :                     SearchSysCache3(STATRELATTINH,
    8078             :                                     ObjectIdGetDatum(rte->relid),
    8079             :                                     Int16GetDatum(attnum),
    8080             :                                     BoolGetDatum(false));
    8081       10732 :                 vardata.freefunc = ReleaseSysCache;
    8082             :             }
    8083             :         }
    8084             :         else
    8085             :         {
    8086             :             /*
    8087             :              * Looks like we've found an expression column in the index. Let's
    8088             :              * see if there's any stats for it.
    8089             :              */
    8090             : 
    8091             :             /* get the attnum from the 0-based index. */
    8092           0 :             attnum = iclause->indexcol + 1;
    8093             : 
    8094           0 :             if (get_index_stats_hook &&
    8095           0 :                 (*get_index_stats_hook) (root, index->indexoid, attnum, &vardata))
    8096             :             {
    8097             :                 /*
    8098             :                  * The hook took control of acquiring a stats tuple.  If it
    8099             :                  * did supply a tuple, it'd better have supplied a freefunc.
    8100             :                  */
    8101           0 :                 if (HeapTupleIsValid(vardata.statsTuple) &&
    8102           0 :                     !vardata.freefunc)
    8103           0 :                     elog(ERROR, "no function provided to release variable stats with");
    8104             :             }
    8105             :             else
    8106             :             {
    8107           0 :                 vardata.statsTuple = SearchSysCache3(STATRELATTINH,
    8108             :                                                      ObjectIdGetDatum(index->indexoid),
    8109             :                                                      Int16GetDatum(attnum),
    8110             :                                                      BoolGetDatum(false));
    8111           0 :                 vardata.freefunc = ReleaseSysCache;
    8112             :             }
    8113             :         }
    8114             : 
    8115       10732 :         if (HeapTupleIsValid(vardata.statsTuple))
    8116             :         {
    8117             :             AttStatsSlot sslot;
    8118             : 
    8119          36 :             if (get_attstatsslot(&sslot, vardata.statsTuple,
    8120             :                                  STATISTIC_KIND_CORRELATION, InvalidOid,
    8121             :                                  ATTSTATSSLOT_NUMBERS))
    8122             :             {
    8123          36 :                 double      varCorrelation = 0.0;
    8124             : 
    8125          36 :                 if (sslot.nnumbers > 0)
    8126          36 :                     varCorrelation = fabs(sslot.numbers[0]);
    8127             : 
    8128          36 :                 if (varCorrelation > *indexCorrelation)
    8129          36 :                     *indexCorrelation = varCorrelation;
    8130             : 
    8131          36 :                 free_attstatsslot(&sslot);
    8132             :             }
    8133             :         }
    8134             : 
    8135       10732 :         ReleaseVariableStats(vardata);
    8136             :     }
    8137             : 
    8138       10730 :     qualSelectivity = clauselist_selectivity(root, indexQuals,
    8139       10730 :                                              baserel->relid,
    8140             :                                              JOIN_INNER, NULL);
    8141             : 
    8142             :     /*
    8143             :      * Now calculate the minimum possible ranges we could match with if all of
    8144             :      * the rows were in the perfect order in the table's heap.
    8145             :      */
    8146       10730 :     minimalRanges = ceil(indexRanges * qualSelectivity);
    8147             : 
    8148             :     /*
    8149             :      * Now estimate the number of ranges that we'll touch by using the
    8150             :      * indexCorrelation from the stats. Careful not to divide by zero (note
    8151             :      * we're using the absolute value of the correlation).
    8152             :      */
    8153       10730 :     if (*indexCorrelation < 1.0e-10)
    8154       10694 :         estimatedRanges = indexRanges;
    8155             :     else
    8156          36 :         estimatedRanges = Min(minimalRanges / *indexCorrelation, indexRanges);
    8157             : 
    8158             :     /* we expect to visit this portion of the table */
    8159       10730 :     selec = estimatedRanges / indexRanges;
    8160             : 
    8161       10730 :     CLAMP_PROBABILITY(selec);
    8162             : 
    8163       10730 :     *indexSelectivity = selec;
    8164             : 
    8165             :     /*
    8166             :      * Compute the index qual costs, much as in genericcostestimate, to add to
    8167             :      * the index costs.  We can disregard indexorderbys, since BRIN doesn't
    8168             :      * support those.
    8169             :      */
    8170       10730 :     qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
    8171             : 
    8172             :     /*
    8173             :      * Compute the startup cost as the cost to read the whole revmap
    8174             :      * sequentially, including the cost to execute the index quals.
    8175             :      */
    8176       10730 :     *indexStartupCost =
    8177       10730 :         spc_seq_page_cost * statsData.revmapNumPages * loop_count;
    8178       10730 :     *indexStartupCost += qual_arg_cost;
    8179             : 
    8180             :     /*
    8181             :      * To read a BRIN index there might be a bit of back and forth over
    8182             :      * regular pages, as revmap might point to them out of sequential order;
    8183             :      * calculate the total cost as reading the whole index in random order.
    8184             :      */
    8185       10730 :     *indexTotalCost = *indexStartupCost +
    8186       10730 :         spc_random_page_cost * (numPages - statsData.revmapNumPages) * loop_count;
    8187             : 
    8188             :     /*
    8189             :      * Charge a small amount per range tuple which we expect to match to. This
    8190             :      * is meant to reflect the costs of manipulating the bitmap. The BRIN scan
    8191             :      * will set a bit for each page in the range when we find a matching
    8192             :      * range, so we must multiply the charge by the number of pages in the
    8193             :      * range.
    8194             :      */
    8195       10730 :     *indexTotalCost += 0.1 * cpu_operator_cost * estimatedRanges *
    8196       10730 :         statsData.pagesPerRange;
    8197             : 
    8198       10730 :     *indexPages = index->pages;
    8199       10730 : }

Generated by: LCOV version 1.14