LCOV - code coverage report
Current view: top level - src/backend/utils/adt - selfuncs.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 2063 2373 86.9 %
Date: 2025-01-18 05:15:39 Functions: 68 71 95.8 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * selfuncs.c
       4             :  *    Selectivity functions and index cost estimation functions for
       5             :  *    standard operators and index access methods.
       6             :  *
       7             :  *    Selectivity routines are registered in the pg_operator catalog
       8             :  *    in the "oprrest" and "oprjoin" attributes.
       9             :  *
      10             :  *    Index cost functions are located via the index AM's API struct,
      11             :  *    which is obtained from the handler function registered in pg_am.
      12             :  *
      13             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      14             :  * Portions Copyright (c) 1994, Regents of the University of California
      15             :  *
      16             :  *
      17             :  * IDENTIFICATION
      18             :  *    src/backend/utils/adt/selfuncs.c
      19             :  *
      20             :  *-------------------------------------------------------------------------
      21             :  */
      22             : 
      23             : /*----------
      24             :  * Operator selectivity estimation functions are called to estimate the
      25             :  * selectivity of WHERE clauses whose top-level operator is their operator.
      26             :  * We divide the problem into two cases:
      27             :  *      Restriction clause estimation: the clause involves vars of just
      28             :  *          one relation.
      29             :  *      Join clause estimation: the clause involves vars of multiple rels.
      30             :  * Join selectivity estimation is far more difficult and usually less accurate
      31             :  * than restriction estimation.
      32             :  *
      33             :  * When dealing with the inner scan of a nestloop join, we consider the
      34             :  * join's joinclauses as restriction clauses for the inner relation, and
      35             :  * treat vars of the outer relation as parameters (a/k/a constants of unknown
      36             :  * values).  So, restriction estimators need to be able to accept an argument
      37             :  * telling which relation is to be treated as the variable.
      38             :  *
      39             :  * The call convention for a restriction estimator (oprrest function) is
      40             :  *
      41             :  *      Selectivity oprrest (PlannerInfo *root,
      42             :  *                           Oid operator,
      43             :  *                           List *args,
      44             :  *                           int varRelid);
      45             :  *
      46             :  * root: general information about the query (rtable and RelOptInfo lists
      47             :  * are particularly important for the estimator).
      48             :  * operator: OID of the specific operator in question.
      49             :  * args: argument list from the operator clause.
      50             :  * varRelid: if not zero, the relid (rtable index) of the relation to
      51             :  * be treated as the variable relation.  May be zero if the args list
      52             :  * is known to contain vars of only one relation.
      53             :  *
      54             :  * This is represented at the SQL level (in pg_proc) as
      55             :  *
      56             :  *      float8 oprrest (internal, oid, internal, int4);
      57             :  *
      58             :  * The result is a selectivity, that is, a fraction (0 to 1) of the rows
      59             :  * of the relation that are expected to produce a TRUE result for the
      60             :  * given operator.
      61             :  *
      62             :  * The call convention for a join estimator (oprjoin function) is similar
      63             :  * except that varRelid is not needed, and instead join information is
      64             :  * supplied:
      65             :  *
      66             :  *      Selectivity oprjoin (PlannerInfo *root,
      67             :  *                           Oid operator,
      68             :  *                           List *args,
      69             :  *                           JoinType jointype,
      70             :  *                           SpecialJoinInfo *sjinfo);
      71             :  *
      72             :  *      float8 oprjoin (internal, oid, internal, int2, internal);
      73             :  *
      74             :  * (Before Postgres 8.4, join estimators had only the first four of these
      75             :  * parameters.  That signature is still allowed, but deprecated.)  The
      76             :  * relationship between jointype and sjinfo is explained in the comments for
      77             :  * clause_selectivity() --- the short version is that jointype is usually
      78             :  * best ignored in favor of examining sjinfo.
      79             :  *
      80             :  * Join selectivity for regular inner and outer joins is defined as the
      81             :  * fraction (0 to 1) of the cross product of the relations that is expected
      82             :  * to produce a TRUE result for the given operator.  For both semi and anti
      83             :  * joins, however, the selectivity is defined as the fraction of the left-hand
      84             :  * side relation's rows that are expected to have a match (ie, at least one
      85             :  * row with a TRUE result) in the right-hand side.
      86             :  *
      87             :  * For both oprrest and oprjoin functions, the operator's input collation OID
      88             :  * (if any) is passed using the standard fmgr mechanism, so that the estimator
      89             :  * function can fetch it with PG_GET_COLLATION().  Note, however, that all
      90             :  * statistics in pg_statistic are currently built using the relevant column's
      91             :  * collation.
      92             :  *----------
      93             :  */
      94             : 
      95             : #include "postgres.h"
      96             : 
      97             : #include <ctype.h>
      98             : #include <math.h>
      99             : 
     100             : #include "access/brin.h"
     101             : #include "access/brin_page.h"
     102             : #include "access/gin.h"
     103             : #include "access/table.h"
     104             : #include "access/tableam.h"
     105             : #include "access/visibilitymap.h"
     106             : #include "catalog/pg_am.h"
     107             : #include "catalog/pg_collation.h"
     108             : #include "catalog/pg_operator.h"
     109             : #include "catalog/pg_statistic.h"
     110             : #include "catalog/pg_statistic_ext.h"
     111             : #include "executor/nodeAgg.h"
     112             : #include "miscadmin.h"
     113             : #include "nodes/makefuncs.h"
     114             : #include "nodes/nodeFuncs.h"
     115             : #include "optimizer/clauses.h"
     116             : #include "optimizer/cost.h"
     117             : #include "optimizer/optimizer.h"
     118             : #include "optimizer/pathnode.h"
     119             : #include "optimizer/paths.h"
     120             : #include "optimizer/plancat.h"
     121             : #include "parser/parse_clause.h"
     122             : #include "parser/parse_relation.h"
     123             : #include "parser/parsetree.h"
     124             : #include "rewrite/rewriteManip.h"
     125             : #include "statistics/statistics.h"
     126             : #include "storage/bufmgr.h"
     127             : #include "utils/acl.h"
     128             : #include "utils/array.h"
     129             : #include "utils/builtins.h"
     130             : #include "utils/date.h"
     131             : #include "utils/datum.h"
     132             : #include "utils/fmgroids.h"
     133             : #include "utils/index_selfuncs.h"
     134             : #include "utils/lsyscache.h"
     135             : #include "utils/memutils.h"
     136             : #include "utils/pg_locale.h"
     137             : #include "utils/rel.h"
     138             : #include "utils/selfuncs.h"
     139             : #include "utils/snapmgr.h"
     140             : #include "utils/spccache.h"
     141             : #include "utils/syscache.h"
     142             : #include "utils/timestamp.h"
     143             : #include "utils/typcache.h"
     144             : 
     145             : #define DEFAULT_PAGE_CPU_MULTIPLIER 50.0
     146             : 
     147             : /* Hooks for plugins to get control when we ask for stats */
     148             : get_relation_stats_hook_type get_relation_stats_hook = NULL;
     149             : get_index_stats_hook_type get_index_stats_hook = NULL;
     150             : 
     151             : static double eqsel_internal(PG_FUNCTION_ARGS, bool negate);
     152             : static double eqjoinsel_inner(Oid opfuncoid, Oid collation,
     153             :                               VariableStatData *vardata1, VariableStatData *vardata2,
     154             :                               double nd1, double nd2,
     155             :                               bool isdefault1, bool isdefault2,
     156             :                               AttStatsSlot *sslot1, AttStatsSlot *sslot2,
     157             :                               Form_pg_statistic stats1, Form_pg_statistic stats2,
     158             :                               bool have_mcvs1, bool have_mcvs2);
     159             : static double eqjoinsel_semi(Oid opfuncoid, Oid collation,
     160             :                              VariableStatData *vardata1, VariableStatData *vardata2,
     161             :                              double nd1, double nd2,
     162             :                              bool isdefault1, bool isdefault2,
     163             :                              AttStatsSlot *sslot1, AttStatsSlot *sslot2,
     164             :                              Form_pg_statistic stats1, Form_pg_statistic stats2,
     165             :                              bool have_mcvs1, bool have_mcvs2,
     166             :                              RelOptInfo *inner_rel);
     167             : static bool estimate_multivariate_ndistinct(PlannerInfo *root,
     168             :                                             RelOptInfo *rel, List **varinfos, double *ndistinct);
     169             : static bool convert_to_scalar(Datum value, Oid valuetypid, Oid collid,
     170             :                               double *scaledvalue,
     171             :                               Datum lobound, Datum hibound, Oid boundstypid,
     172             :                               double *scaledlobound, double *scaledhibound);
     173             : static double convert_numeric_to_scalar(Datum value, Oid typid, bool *failure);
     174             : static void convert_string_to_scalar(char *value,
     175             :                                      double *scaledvalue,
     176             :                                      char *lobound,
     177             :                                      double *scaledlobound,
     178             :                                      char *hibound,
     179             :                                      double *scaledhibound);
     180             : static void convert_bytea_to_scalar(Datum value,
     181             :                                     double *scaledvalue,
     182             :                                     Datum lobound,
     183             :                                     double *scaledlobound,
     184             :                                     Datum hibound,
     185             :                                     double *scaledhibound);
     186             : static double convert_one_string_to_scalar(char *value,
     187             :                                            int rangelo, int rangehi);
     188             : static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
     189             :                                           int rangelo, int rangehi);
     190             : static char *convert_string_datum(Datum value, Oid typid, Oid collid,
     191             :                                   bool *failure);
     192             : static double convert_timevalue_to_scalar(Datum value, Oid typid,
     193             :                                           bool *failure);
     194             : static void examine_simple_variable(PlannerInfo *root, Var *var,
     195             :                                     VariableStatData *vardata);
     196             : static bool get_variable_range(PlannerInfo *root, VariableStatData *vardata,
     197             :                                Oid sortop, Oid collation,
     198             :                                Datum *min, Datum *max);
     199             : static void get_stats_slot_range(AttStatsSlot *sslot,
     200             :                                  Oid opfuncoid, FmgrInfo *opproc,
     201             :                                  Oid collation, int16 typLen, bool typByVal,
     202             :                                  Datum *min, Datum *max, bool *p_have_data);
     203             : static bool get_actual_variable_range(PlannerInfo *root,
     204             :                                       VariableStatData *vardata,
     205             :                                       Oid sortop, Oid collation,
     206             :                                       Datum *min, Datum *max);
     207             : static bool get_actual_variable_endpoint(Relation heapRel,
     208             :                                          Relation indexRel,
     209             :                                          ScanDirection indexscandir,
     210             :                                          ScanKey scankeys,
     211             :                                          int16 typLen,
     212             :                                          bool typByVal,
     213             :                                          TupleTableSlot *tableslot,
     214             :                                          MemoryContext outercontext,
     215             :                                          Datum *endpointDatum);
     216             : static RelOptInfo *find_join_input_rel(PlannerInfo *root, Relids relids);
     217             : 
     218             : 
     219             : /*
     220             :  *      eqsel           - Selectivity of "=" for any data types.
     221             :  *
     222             :  * Note: this routine is also used to estimate selectivity for some
     223             :  * operators that are not "=" but have comparable selectivity behavior,
     224             :  * such as "~=" (geometric approximate-match).  Even for "=", we must
     225             :  * keep in mind that the left and right datatypes may differ.
     226             :  */
     227             : Datum
     228      560520 : eqsel(PG_FUNCTION_ARGS)
     229             : {
     230      560520 :     PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, false));
     231             : }
     232             : 
     233             : /*
     234             :  * Common code for eqsel() and neqsel()
     235             :  */
     236             : static double
     237      607574 : eqsel_internal(PG_FUNCTION_ARGS, bool negate)
     238             : {
     239      607574 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
     240      607574 :     Oid         operator = PG_GETARG_OID(1);
     241      607574 :     List       *args = (List *) PG_GETARG_POINTER(2);
     242      607574 :     int         varRelid = PG_GETARG_INT32(3);
     243      607574 :     Oid         collation = PG_GET_COLLATION();
     244             :     VariableStatData vardata;
     245             :     Node       *other;
     246             :     bool        varonleft;
     247             :     double      selec;
     248             : 
     249             :     /*
     250             :      * When asked about <>, we do the estimation using the corresponding =
     251             :      * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac".
     252             :      */
     253      607574 :     if (negate)
     254             :     {
     255       47054 :         operator = get_negator(operator);
     256       47054 :         if (!OidIsValid(operator))
     257             :         {
     258             :             /* Use default selectivity (should we raise an error instead?) */
     259           0 :             return 1.0 - DEFAULT_EQ_SEL;
     260             :         }
     261             :     }
     262             : 
     263             :     /*
     264             :      * If expression is not variable = something or something = variable, then
     265             :      * punt and return a default estimate.
     266             :      */
     267      607574 :     if (!get_restriction_variable(root, args, varRelid,
     268             :                                   &vardata, &other, &varonleft))
     269        3996 :         return negate ? (1.0 - DEFAULT_EQ_SEL) : DEFAULT_EQ_SEL;
     270             : 
     271             :     /*
     272             :      * We can do a lot better if the something is a constant.  (Note: the
     273             :      * Const might result from estimation rather than being a simple constant
     274             :      * in the query.)
     275             :      */
     276      603578 :     if (IsA(other, Const))
     277      266312 :         selec = var_eq_const(&vardata, operator, collation,
     278      266312 :                              ((Const *) other)->constvalue,
     279      266312 :                              ((Const *) other)->constisnull,
     280             :                              varonleft, negate);
     281             :     else
     282      337266 :         selec = var_eq_non_const(&vardata, operator, collation, other,
     283             :                                  varonleft, negate);
     284             : 
     285      603578 :     ReleaseVariableStats(vardata);
     286             : 
     287      603578 :     return selec;
     288             : }
     289             : 
     290             : /*
     291             :  * var_eq_const --- eqsel for var = const case
     292             :  *
     293             :  * This is exported so that some other estimation functions can use it.
     294             :  */
     295             : double
     296      308950 : var_eq_const(VariableStatData *vardata, Oid oproid, Oid collation,
     297             :              Datum constval, bool constisnull,
     298             :              bool varonleft, bool negate)
     299             : {
     300             :     double      selec;
     301      308950 :     double      nullfrac = 0.0;
     302             :     bool        isdefault;
     303             :     Oid         opfuncoid;
     304             : 
     305             :     /*
     306             :      * If the constant is NULL, assume operator is strict and return zero, ie,
     307             :      * operator will never return TRUE.  (It's zero even for a negator op.)
     308             :      */
     309      308950 :     if (constisnull)
     310         344 :         return 0.0;
     311             : 
     312             :     /*
     313             :      * Grab the nullfrac for use below.  Note we allow use of nullfrac
     314             :      * regardless of security check.
     315             :      */
     316      308606 :     if (HeapTupleIsValid(vardata->statsTuple))
     317             :     {
     318             :         Form_pg_statistic stats;
     319             : 
     320      225682 :         stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
     321      225682 :         nullfrac = stats->stanullfrac;
     322             :     }
     323             : 
     324             :     /*
     325             :      * If we matched the var to a unique index or DISTINCT clause, assume
     326             :      * there is exactly one match regardless of anything else.  (This is
     327             :      * slightly bogus, since the index or clause's equality operator might be
     328             :      * different from ours, but it's much more likely to be right than
     329             :      * ignoring the information.)
     330             :      */
     331      308606 :     if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
     332             :     {
     333       77436 :         selec = 1.0 / vardata->rel->tuples;
     334             :     }
     335      395820 :     else if (HeapTupleIsValid(vardata->statsTuple) &&
     336      164650 :              statistic_proc_security_check(vardata,
     337      164650 :                                            (opfuncoid = get_opcode(oproid))))
     338      164650 :     {
     339             :         AttStatsSlot sslot;
     340      164650 :         bool        match = false;
     341             :         int         i;
     342             : 
     343             :         /*
     344             :          * Is the constant "=" to any of the column's most common values?
     345             :          * (Although the given operator may not really be "=", we will assume
     346             :          * that seeing whether it returns TRUE is an appropriate test.  If you
     347             :          * don't like this, maybe you shouldn't be using eqsel for your
     348             :          * operator...)
     349             :          */
     350      164650 :         if (get_attstatsslot(&sslot, vardata->statsTuple,
     351             :                              STATISTIC_KIND_MCV, InvalidOid,
     352             :                              ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
     353             :         {
     354      151164 :             LOCAL_FCINFO(fcinfo, 2);
     355             :             FmgrInfo    eqproc;
     356             : 
     357      151164 :             fmgr_info(opfuncoid, &eqproc);
     358             : 
     359             :             /*
     360             :              * Save a few cycles by setting up the fcinfo struct just once.
     361             :              * Using FunctionCallInvoke directly also avoids failure if the
     362             :              * eqproc returns NULL, though really equality functions should
     363             :              * never do that.
     364             :              */
     365      151164 :             InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
     366             :                                      NULL, NULL);
     367      151164 :             fcinfo->args[0].isnull = false;
     368      151164 :             fcinfo->args[1].isnull = false;
     369             :             /* be careful to apply operator right way 'round */
     370      151164 :             if (varonleft)
     371      151132 :                 fcinfo->args[1].value = constval;
     372             :             else
     373          32 :                 fcinfo->args[0].value = constval;
     374             : 
     375     2512924 :             for (i = 0; i < sslot.nvalues; i++)
     376             :             {
     377             :                 Datum       fresult;
     378             : 
     379     2436416 :                 if (varonleft)
     380     2436360 :                     fcinfo->args[0].value = sslot.values[i];
     381             :                 else
     382          56 :                     fcinfo->args[1].value = sslot.values[i];
     383     2436416 :                 fcinfo->isnull = false;
     384     2436416 :                 fresult = FunctionCallInvoke(fcinfo);
     385     2436416 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
     386             :                 {
     387       74656 :                     match = true;
     388       74656 :                     break;
     389             :                 }
     390             :             }
     391             :         }
     392             :         else
     393             :         {
     394             :             /* no most-common-value info available */
     395       13486 :             i = 0;              /* keep compiler quiet */
     396             :         }
     397             : 
     398      164650 :         if (match)
     399             :         {
     400             :             /*
     401             :              * Constant is "=" to this common value.  We know selectivity
     402             :              * exactly (or as exactly as ANALYZE could calculate it, anyway).
     403             :              */
     404       74656 :             selec = sslot.numbers[i];
     405             :         }
     406             :         else
     407             :         {
     408             :             /*
     409             :              * Comparison is against a constant that is neither NULL nor any
     410             :              * of the common values.  Its selectivity cannot be more than
     411             :              * this:
     412             :              */
     413       89994 :             double      sumcommon = 0.0;
     414             :             double      otherdistinct;
     415             : 
     416     2181162 :             for (i = 0; i < sslot.nnumbers; i++)
     417     2091168 :                 sumcommon += sslot.numbers[i];
     418       89994 :             selec = 1.0 - sumcommon - nullfrac;
     419       89994 :             CLAMP_PROBABILITY(selec);
     420             : 
     421             :             /*
     422             :              * and in fact it's probably a good deal less. We approximate that
     423             :              * all the not-common values share this remaining fraction
     424             :              * equally, so we divide by the number of other distinct values.
     425             :              */
     426       89994 :             otherdistinct = get_variable_numdistinct(vardata, &isdefault) -
     427       89994 :                 sslot.nnumbers;
     428       89994 :             if (otherdistinct > 1)
     429       39964 :                 selec /= otherdistinct;
     430             : 
     431             :             /*
     432             :              * Another cross-check: selectivity shouldn't be estimated as more
     433             :              * than the least common "most common value".
     434             :              */
     435       89994 :             if (sslot.nnumbers > 0 && selec > sslot.numbers[sslot.nnumbers - 1])
     436           0 :                 selec = sslot.numbers[sslot.nnumbers - 1];
     437             :         }
     438             : 
     439      164650 :         free_attstatsslot(&sslot);
     440             :     }
     441             :     else
     442             :     {
     443             :         /*
     444             :          * No ANALYZE stats available, so make a guess using estimated number
     445             :          * of distinct values and assuming they are equally common. (The guess
     446             :          * is unlikely to be very good, but we do know a few special cases.)
     447             :          */
     448       66520 :         selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
     449             :     }
     450             : 
     451             :     /* now adjust if we wanted <> rather than = */
     452      308606 :     if (negate)
     453       39498 :         selec = 1.0 - selec - nullfrac;
     454             : 
     455             :     /* result should be in range, but make sure... */
     456      308606 :     CLAMP_PROBABILITY(selec);
     457             : 
     458      308606 :     return selec;
     459             : }
     460             : 
     461             : /*
     462             :  * var_eq_non_const --- eqsel for var = something-other-than-const case
     463             :  *
     464             :  * This is exported so that some other estimation functions can use it.
     465             :  */
     466             : double
     467      337266 : var_eq_non_const(VariableStatData *vardata, Oid oproid, Oid collation,
     468             :                  Node *other,
     469             :                  bool varonleft, bool negate)
     470             : {
     471             :     double      selec;
     472      337266 :     double      nullfrac = 0.0;
     473             :     bool        isdefault;
     474             : 
     475             :     /*
     476             :      * Grab the nullfrac for use below.
     477             :      */
     478      337266 :     if (HeapTupleIsValid(vardata->statsTuple))
     479             :     {
     480             :         Form_pg_statistic stats;
     481             : 
     482      242634 :         stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
     483      242634 :         nullfrac = stats->stanullfrac;
     484             :     }
     485             : 
     486             :     /*
     487             :      * If we matched the var to a unique index or DISTINCT clause, assume
     488             :      * there is exactly one match regardless of anything else.  (This is
     489             :      * slightly bogus, since the index or clause's equality operator might be
     490             :      * different from ours, but it's much more likely to be right than
     491             :      * ignoring the information.)
     492             :      */
     493      337266 :     if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
     494             :     {
     495      136450 :         selec = 1.0 / vardata->rel->tuples;
     496             :     }
     497      200816 :     else if (HeapTupleIsValid(vardata->statsTuple))
     498             :     {
     499             :         double      ndistinct;
     500             :         AttStatsSlot sslot;
     501             : 
     502             :         /*
     503             :          * Search is for a value that we do not know a priori, but we will
     504             :          * assume it is not NULL.  Estimate the selectivity as non-null
     505             :          * fraction divided by number of distinct values, so that we get a
     506             :          * result averaged over all possible values whether common or
     507             :          * uncommon.  (Essentially, we are assuming that the not-yet-known
     508             :          * comparison value is equally likely to be any of the possible
     509             :          * values, regardless of their frequency in the table.  Is that a good
     510             :          * idea?)
     511             :          */
     512      119866 :         selec = 1.0 - nullfrac;
     513      119866 :         ndistinct = get_variable_numdistinct(vardata, &isdefault);
     514      119866 :         if (ndistinct > 1)
     515      115130 :             selec /= ndistinct;
     516             : 
     517             :         /*
     518             :          * Cross-check: selectivity should never be estimated as more than the
     519             :          * most common value's.
     520             :          */
     521      119866 :         if (get_attstatsslot(&sslot, vardata->statsTuple,
     522             :                              STATISTIC_KIND_MCV, InvalidOid,
     523             :                              ATTSTATSSLOT_NUMBERS))
     524             :         {
     525      101156 :             if (sslot.nnumbers > 0 && selec > sslot.numbers[0])
     526         666 :                 selec = sslot.numbers[0];
     527      101156 :             free_attstatsslot(&sslot);
     528             :         }
     529             :     }
     530             :     else
     531             :     {
     532             :         /*
     533             :          * No ANALYZE stats available, so make a guess using estimated number
     534             :          * of distinct values and assuming they are equally common. (The guess
     535             :          * is unlikely to be very good, but we do know a few special cases.)
     536             :          */
     537       80950 :         selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
     538             :     }
     539             : 
     540             :     /* now adjust if we wanted <> rather than = */
     541      337266 :     if (negate)
     542        5824 :         selec = 1.0 - selec - nullfrac;
     543             : 
     544             :     /* result should be in range, but make sure... */
     545      337266 :     CLAMP_PROBABILITY(selec);
     546             : 
     547      337266 :     return selec;
     548             : }
     549             : 
     550             : /*
     551             :  *      neqsel          - Selectivity of "!=" for any data types.
     552             :  *
     553             :  * This routine is also used for some operators that are not "!="
     554             :  * but have comparable selectivity behavior.  See above comments
     555             :  * for eqsel().
     556             :  */
     557             : Datum
     558       47054 : neqsel(PG_FUNCTION_ARGS)
     559             : {
     560       47054 :     PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, true));
     561             : }
     562             : 
     563             : /*
     564             :  *  scalarineqsel       - Selectivity of "<", "<=", ">", ">=" for scalars.
     565             :  *
     566             :  * This is the guts of scalarltsel/scalarlesel/scalargtsel/scalargesel.
     567             :  * The isgt and iseq flags distinguish which of the four cases apply.
     568             :  *
     569             :  * The caller has commuted the clause, if necessary, so that we can treat
     570             :  * the variable as being on the left.  The caller must also make sure that
     571             :  * the other side of the clause is a non-null Const, and dissect that into
     572             :  * a value and datatype.  (This definition simplifies some callers that
     573             :  * want to estimate against a computed value instead of a Const node.)
     574             :  *
     575             :  * This routine works for any datatype (or pair of datatypes) known to
     576             :  * convert_to_scalar().  If it is applied to some other datatype,
     577             :  * it will return an approximate estimate based on assuming that the constant
     578             :  * value falls in the middle of the bin identified by binary search.
     579             :  */
     580             : static double
     581      278776 : scalarineqsel(PlannerInfo *root, Oid operator, bool isgt, bool iseq,
     582             :               Oid collation,
     583             :               VariableStatData *vardata, Datum constval, Oid consttype)
     584             : {
     585             :     Form_pg_statistic stats;
     586             :     FmgrInfo    opproc;
     587             :     double      mcv_selec,
     588             :                 hist_selec,
     589             :                 sumcommon;
     590             :     double      selec;
     591             : 
     592      278776 :     if (!HeapTupleIsValid(vardata->statsTuple))
     593             :     {
     594             :         /*
     595             :          * No stats are available.  Typically this means we have to fall back
     596             :          * on the default estimate; but if the variable is CTID then we can
     597             :          * make an estimate based on comparing the constant to the table size.
     598             :          */
     599       19946 :         if (vardata->var && IsA(vardata->var, Var) &&
     600       15212 :             ((Var *) vardata->var)->varattno == SelfItemPointerAttributeNumber)
     601             :         {
     602             :             ItemPointer itemptr;
     603             :             double      block;
     604             :             double      density;
     605             : 
     606             :             /*
     607             :              * If the relation's empty, we're going to include all of it.
     608             :              * (This is mostly to avoid divide-by-zero below.)
     609             :              */
     610         214 :             if (vardata->rel->pages == 0)
     611           0 :                 return 1.0;
     612             : 
     613         214 :             itemptr = (ItemPointer) DatumGetPointer(constval);
     614         214 :             block = ItemPointerGetBlockNumberNoCheck(itemptr);
     615             : 
     616             :             /*
     617             :              * Determine the average number of tuples per page (density).
     618             :              *
     619             :              * Since the last page will, on average, be only half full, we can
     620             :              * estimate it to have half as many tuples as earlier pages.  So
     621             :              * give it half the weight of a regular page.
     622             :              */
     623         214 :             density = vardata->rel->tuples / (vardata->rel->pages - 0.5);
     624             : 
     625             :             /* If target is the last page, use half the density. */
     626         214 :             if (block >= vardata->rel->pages - 1)
     627          54 :                 density *= 0.5;
     628             : 
     629             :             /*
     630             :              * Using the average tuples per page, calculate how far into the
     631             :              * page the itemptr is likely to be and adjust block accordingly,
     632             :              * by adding that fraction of a whole block (but never more than a
     633             :              * whole block, no matter how high the itemptr's offset is).  Here
     634             :              * we are ignoring the possibility of dead-tuple line pointers,
     635             :              * which is fairly bogus, but we lack the info to do better.
     636             :              */
     637         214 :             if (density > 0.0)
     638             :             {
     639         214 :                 OffsetNumber offset = ItemPointerGetOffsetNumberNoCheck(itemptr);
     640             : 
     641         214 :                 block += Min(offset / density, 1.0);
     642             :             }
     643             : 
     644             :             /*
     645             :              * Convert relative block number to selectivity.  Again, the last
     646             :              * page has only half weight.
     647             :              */
     648         214 :             selec = block / (vardata->rel->pages - 0.5);
     649             : 
     650             :             /*
     651             :              * The calculation so far gave us a selectivity for the "<=" case.
     652             :              * We'll have one fewer tuple for "<" and one additional tuple for
     653             :              * ">=", the latter of which we'll reverse the selectivity for
     654             :              * below, so we can simply subtract one tuple for both cases.  The
     655             :              * cases that need this adjustment can be identified by iseq being
     656             :              * equal to isgt.
     657             :              */
     658         214 :             if (iseq == isgt && vardata->rel->tuples >= 1.0)
     659         102 :                 selec -= (1.0 / vardata->rel->tuples);
     660             : 
     661             :             /* Finally, reverse the selectivity for the ">", ">=" cases. */
     662         214 :             if (isgt)
     663         100 :                 selec = 1.0 - selec;
     664             : 
     665         214 :             CLAMP_PROBABILITY(selec);
     666         214 :             return selec;
     667             :         }
     668             : 
     669             :         /* no stats available, so default result */
     670       19732 :         return DEFAULT_INEQ_SEL;
     671             :     }
     672      258830 :     stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
     673             : 
     674      258830 :     fmgr_info(get_opcode(operator), &opproc);
     675             : 
     676             :     /*
     677             :      * If we have most-common-values info, add up the fractions of the MCV
     678             :      * entries that satisfy MCV OP CONST.  These fractions contribute directly
     679             :      * to the result selectivity.  Also add up the total fraction represented
     680             :      * by MCV entries.
     681             :      */
     682      258830 :     mcv_selec = mcv_selectivity(vardata, &opproc, collation, constval, true,
     683             :                                 &sumcommon);
     684             : 
     685             :     /*
     686             :      * If there is a histogram, determine which bin the constant falls in, and
     687             :      * compute the resulting contribution to selectivity.
     688             :      */
     689      258830 :     hist_selec = ineq_histogram_selectivity(root, vardata,
     690             :                                             operator, &opproc, isgt, iseq,
     691             :                                             collation,
     692             :                                             constval, consttype);
     693             : 
     694             :     /*
     695             :      * Now merge the results from the MCV and histogram calculations,
     696             :      * realizing that the histogram covers only the non-null values that are
     697             :      * not listed in MCV.
     698             :      */
     699      258830 :     selec = 1.0 - stats->stanullfrac - sumcommon;
     700             : 
     701      258830 :     if (hist_selec >= 0.0)
     702      191062 :         selec *= hist_selec;
     703             :     else
     704             :     {
     705             :         /*
     706             :          * If no histogram but there are values not accounted for by MCV,
     707             :          * arbitrarily assume half of them will match.
     708             :          */
     709       67768 :         selec *= 0.5;
     710             :     }
     711             : 
     712      258830 :     selec += mcv_selec;
     713             : 
     714             :     /* result should be in range, but make sure... */
     715      258830 :     CLAMP_PROBABILITY(selec);
     716             : 
     717      258830 :     return selec;
     718             : }
     719             : 
     720             : /*
     721             :  *  mcv_selectivity         - Examine the MCV list for selectivity estimates
     722             :  *
     723             :  * Determine the fraction of the variable's MCV population that satisfies
     724             :  * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.  Also
     725             :  * compute the fraction of the total column population represented by the MCV
     726             :  * list.  This code will work for any boolean-returning predicate operator.
     727             :  *
     728             :  * The function result is the MCV selectivity, and the fraction of the
     729             :  * total population is returned into *sumcommonp.  Zeroes are returned
     730             :  * if there is no MCV list.
     731             :  */
     732             : double
     733      263896 : mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc, Oid collation,
     734             :                 Datum constval, bool varonleft,
     735             :                 double *sumcommonp)
     736             : {
     737             :     double      mcv_selec,
     738             :                 sumcommon;
     739             :     AttStatsSlot sslot;
     740             :     int         i;
     741             : 
     742      263896 :     mcv_selec = 0.0;
     743      263896 :     sumcommon = 0.0;
     744             : 
     745      525452 :     if (HeapTupleIsValid(vardata->statsTuple) &&
     746      523058 :         statistic_proc_security_check(vardata, opproc->fn_oid) &&
     747      261502 :         get_attstatsslot(&sslot, vardata->statsTuple,
     748             :                          STATISTIC_KIND_MCV, InvalidOid,
     749             :                          ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
     750             :     {
     751      122874 :         LOCAL_FCINFO(fcinfo, 2);
     752             : 
     753             :         /*
     754             :          * We invoke the opproc "by hand" so that we won't fail on NULL
     755             :          * results.  Such cases won't arise for normal comparison functions,
     756             :          * but generic_restriction_selectivity could perhaps be used with
     757             :          * operators that can return NULL.  A small side benefit is to not
     758             :          * need to re-initialize the fcinfo struct from scratch each time.
     759             :          */
     760      122874 :         InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
     761             :                                  NULL, NULL);
     762      122874 :         fcinfo->args[0].isnull = false;
     763      122874 :         fcinfo->args[1].isnull = false;
     764             :         /* be careful to apply operator right way 'round */
     765      122874 :         if (varonleft)
     766      122874 :             fcinfo->args[1].value = constval;
     767             :         else
     768           0 :             fcinfo->args[0].value = constval;
     769             : 
     770     3645386 :         for (i = 0; i < sslot.nvalues; i++)
     771             :         {
     772             :             Datum       fresult;
     773             : 
     774     3522512 :             if (varonleft)
     775     3522512 :                 fcinfo->args[0].value = sslot.values[i];
     776             :             else
     777           0 :                 fcinfo->args[1].value = sslot.values[i];
     778     3522512 :             fcinfo->isnull = false;
     779     3522512 :             fresult = FunctionCallInvoke(fcinfo);
     780     3522512 :             if (!fcinfo->isnull && DatumGetBool(fresult))
     781     1260774 :                 mcv_selec += sslot.numbers[i];
     782     3522512 :             sumcommon += sslot.numbers[i];
     783             :         }
     784      122874 :         free_attstatsslot(&sslot);
     785             :     }
     786             : 
     787      263896 :     *sumcommonp = sumcommon;
     788      263896 :     return mcv_selec;
     789             : }
     790             : 
     791             : /*
     792             :  *  histogram_selectivity   - Examine the histogram for selectivity estimates
     793             :  *
     794             :  * Determine the fraction of the variable's histogram entries that satisfy
     795             :  * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.
     796             :  *
     797             :  * This code will work for any boolean-returning predicate operator, whether
     798             :  * or not it has anything to do with the histogram sort operator.  We are
     799             :  * essentially using the histogram just as a representative sample.  However,
     800             :  * small histograms are unlikely to be all that representative, so the caller
     801             :  * should be prepared to fall back on some other estimation approach when the
     802             :  * histogram is missing or very small.  It may also be prudent to combine this
     803             :  * approach with another one when the histogram is small.
     804             :  *
     805             :  * If the actual histogram size is not at least min_hist_size, we won't bother
     806             :  * to do the calculation at all.  Also, if the n_skip parameter is > 0, we
     807             :  * ignore the first and last n_skip histogram elements, on the grounds that
     808             :  * they are outliers and hence not very representative.  Typical values for
     809             :  * these parameters are 10 and 1.
     810             :  *
     811             :  * The function result is the selectivity, or -1 if there is no histogram
     812             :  * or it's smaller than min_hist_size.
     813             :  *
     814             :  * The output parameter *hist_size receives the actual histogram size,
     815             :  * or zero if no histogram.  Callers may use this number to decide how
     816             :  * much faith to put in the function result.
     817             :  *
     818             :  * Note that the result disregards both the most-common-values (if any) and
     819             :  * null entries.  The caller is expected to combine this result with
     820             :  * statistics for those portions of the column population.  It may also be
     821             :  * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs.
     822             :  */
     823             : double
     824        5066 : histogram_selectivity(VariableStatData *vardata,
     825             :                       FmgrInfo *opproc, Oid collation,
     826             :                       Datum constval, bool varonleft,
     827             :                       int min_hist_size, int n_skip,
     828             :                       int *hist_size)
     829             : {
     830             :     double      result;
     831             :     AttStatsSlot sslot;
     832             : 
     833             :     /* check sanity of parameters */
     834             :     Assert(n_skip >= 0);
     835             :     Assert(min_hist_size > 2 * n_skip);
     836             : 
     837        7792 :     if (HeapTupleIsValid(vardata->statsTuple) &&
     838        5446 :         statistic_proc_security_check(vardata, opproc->fn_oid) &&
     839        2720 :         get_attstatsslot(&sslot, vardata->statsTuple,
     840             :                          STATISTIC_KIND_HISTOGRAM, InvalidOid,
     841             :                          ATTSTATSSLOT_VALUES))
     842             :     {
     843        2626 :         *hist_size = sslot.nvalues;
     844        2626 :         if (sslot.nvalues >= min_hist_size)
     845             :         {
     846        1634 :             LOCAL_FCINFO(fcinfo, 2);
     847        1634 :             int         nmatch = 0;
     848             :             int         i;
     849             : 
     850             :             /*
     851             :              * We invoke the opproc "by hand" so that we won't fail on NULL
     852             :              * results.  Such cases won't arise for normal comparison
     853             :              * functions, but generic_restriction_selectivity could perhaps be
     854             :              * used with operators that can return NULL.  A small side benefit
     855             :              * is to not need to re-initialize the fcinfo struct from scratch
     856             :              * each time.
     857             :              */
     858        1634 :             InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
     859             :                                      NULL, NULL);
     860        1634 :             fcinfo->args[0].isnull = false;
     861        1634 :             fcinfo->args[1].isnull = false;
     862             :             /* be careful to apply operator right way 'round */
     863        1634 :             if (varonleft)
     864        1634 :                 fcinfo->args[1].value = constval;
     865             :             else
     866           0 :                 fcinfo->args[0].value = constval;
     867             : 
     868      142592 :             for (i = n_skip; i < sslot.nvalues - n_skip; i++)
     869             :             {
     870             :                 Datum       fresult;
     871             : 
     872      140958 :                 if (varonleft)
     873      140958 :                     fcinfo->args[0].value = sslot.values[i];
     874             :                 else
     875           0 :                     fcinfo->args[1].value = sslot.values[i];
     876      140958 :                 fcinfo->isnull = false;
     877      140958 :                 fresult = FunctionCallInvoke(fcinfo);
     878      140958 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
     879        7730 :                     nmatch++;
     880             :             }
     881        1634 :             result = ((double) nmatch) / ((double) (sslot.nvalues - 2 * n_skip));
     882             :         }
     883             :         else
     884         992 :             result = -1;
     885        2626 :         free_attstatsslot(&sslot);
     886             :     }
     887             :     else
     888             :     {
     889        2440 :         *hist_size = 0;
     890        2440 :         result = -1;
     891             :     }
     892             : 
     893        5066 :     return result;
     894             : }
     895             : 
     896             : /*
     897             :  *  generic_restriction_selectivity     - Selectivity for almost anything
     898             :  *
     899             :  * This function estimates selectivity for operators that we don't have any
     900             :  * special knowledge about, but are on data types that we collect standard
     901             :  * MCV and/or histogram statistics for.  (Additional assumptions are that
     902             :  * the operator is strict and immutable, or at least stable.)
     903             :  *
     904             :  * If we have "VAR OP CONST" or "CONST OP VAR", selectivity is estimated by
     905             :  * applying the operator to each element of the column's MCV and/or histogram
     906             :  * stats, and merging the results using the assumption that the histogram is
     907             :  * a reasonable random sample of the column's non-MCV population.  Note that
     908             :  * if the operator's semantics are related to the histogram ordering, this
     909             :  * might not be such a great assumption; other functions such as
     910             :  * scalarineqsel() are probably a better match in such cases.
     911             :  *
     912             :  * Otherwise, fall back to the default selectivity provided by the caller.
     913             :  */
     914             : double
     915        1106 : generic_restriction_selectivity(PlannerInfo *root, Oid oproid, Oid collation,
     916             :                                 List *args, int varRelid,
     917             :                                 double default_selectivity)
     918             : {
     919             :     double      selec;
     920             :     VariableStatData vardata;
     921             :     Node       *other;
     922             :     bool        varonleft;
     923             : 
     924             :     /*
     925             :      * If expression is not variable OP something or something OP variable,
     926             :      * then punt and return the default estimate.
     927             :      */
     928        1106 :     if (!get_restriction_variable(root, args, varRelid,
     929             :                                   &vardata, &other, &varonleft))
     930           0 :         return default_selectivity;
     931             : 
     932             :     /*
     933             :      * If the something is a NULL constant, assume operator is strict and
     934             :      * return zero, ie, operator will never return TRUE.
     935             :      */
     936        1106 :     if (IsA(other, Const) &&
     937        1106 :         ((Const *) other)->constisnull)
     938             :     {
     939           0 :         ReleaseVariableStats(vardata);
     940           0 :         return 0.0;
     941             :     }
     942             : 
     943        1106 :     if (IsA(other, Const))
     944             :     {
     945             :         /* Variable is being compared to a known non-null constant */
     946        1106 :         Datum       constval = ((Const *) other)->constvalue;
     947             :         FmgrInfo    opproc;
     948             :         double      mcvsum;
     949             :         double      mcvsel;
     950             :         double      nullfrac;
     951             :         int         hist_size;
     952             : 
     953        1106 :         fmgr_info(get_opcode(oproid), &opproc);
     954             : 
     955             :         /*
     956             :          * Calculate the selectivity for the column's most common values.
     957             :          */
     958        1106 :         mcvsel = mcv_selectivity(&vardata, &opproc, collation,
     959             :                                  constval, varonleft,
     960             :                                  &mcvsum);
     961             : 
     962             :         /*
     963             :          * If the histogram is large enough, see what fraction of it matches
     964             :          * the query, and assume that's representative of the non-MCV
     965             :          * population.  Otherwise use the default selectivity for the non-MCV
     966             :          * population.
     967             :          */
     968        1106 :         selec = histogram_selectivity(&vardata, &opproc, collation,
     969             :                                       constval, varonleft,
     970             :                                       10, 1, &hist_size);
     971        1106 :         if (selec < 0)
     972             :         {
     973             :             /* Nope, fall back on default */
     974        1106 :             selec = default_selectivity;
     975             :         }
     976           0 :         else if (hist_size < 100)
     977             :         {
     978             :             /*
     979             :              * For histogram sizes from 10 to 100, we combine the histogram
     980             :              * and default selectivities, putting increasingly more trust in
     981             :              * the histogram for larger sizes.
     982             :              */
     983           0 :             double      hist_weight = hist_size / 100.0;
     984             : 
     985           0 :             selec = selec * hist_weight +
     986           0 :                 default_selectivity * (1.0 - hist_weight);
     987             :         }
     988             : 
     989             :         /* In any case, don't believe extremely small or large estimates. */
     990        1106 :         if (selec < 0.0001)
     991           0 :             selec = 0.0001;
     992        1106 :         else if (selec > 0.9999)
     993           0 :             selec = 0.9999;
     994             : 
     995             :         /* Don't forget to account for nulls. */
     996        1106 :         if (HeapTupleIsValid(vardata.statsTuple))
     997          84 :             nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
     998             :         else
     999        1022 :             nullfrac = 0.0;
    1000             : 
    1001             :         /*
    1002             :          * Now merge the results from the MCV and histogram calculations,
    1003             :          * realizing that the histogram covers only the non-null values that
    1004             :          * are not listed in MCV.
    1005             :          */
    1006        1106 :         selec *= 1.0 - nullfrac - mcvsum;
    1007        1106 :         selec += mcvsel;
    1008             :     }
    1009             :     else
    1010             :     {
    1011             :         /* Comparison value is not constant, so we can't do anything */
    1012           0 :         selec = default_selectivity;
    1013             :     }
    1014             : 
    1015        1106 :     ReleaseVariableStats(vardata);
    1016             : 
    1017             :     /* result should be in range, but make sure... */
    1018        1106 :     CLAMP_PROBABILITY(selec);
    1019             : 
    1020        1106 :     return selec;
    1021             : }
    1022             : 
    1023             : /*
    1024             :  *  ineq_histogram_selectivity  - Examine the histogram for scalarineqsel
    1025             :  *
    1026             :  * Determine the fraction of the variable's histogram population that
    1027             :  * satisfies the inequality condition, ie, VAR < (or <=, >, >=) CONST.
    1028             :  * The isgt and iseq flags distinguish which of the four cases apply.
    1029             :  *
    1030             :  * While opproc could be looked up from the operator OID, common callers
    1031             :  * also need to call it separately, so we make the caller pass both.
    1032             :  *
    1033             :  * Returns -1 if there is no histogram (valid results will always be >= 0).
    1034             :  *
    1035             :  * Note that the result disregards both the most-common-values (if any) and
    1036             :  * null entries.  The caller is expected to combine this result with
    1037             :  * statistics for those portions of the column population.
    1038             :  *
    1039             :  * This is exported so that some other estimation functions can use it.
    1040             :  */
    1041             : double
    1042      261888 : ineq_histogram_selectivity(PlannerInfo *root,
    1043             :                            VariableStatData *vardata,
    1044             :                            Oid opoid, FmgrInfo *opproc, bool isgt, bool iseq,
    1045             :                            Oid collation,
    1046             :                            Datum constval, Oid consttype)
    1047             : {
    1048             :     double      hist_selec;
    1049             :     AttStatsSlot sslot;
    1050             : 
    1051      261888 :     hist_selec = -1.0;
    1052             : 
    1053             :     /*
    1054             :      * Someday, ANALYZE might store more than one histogram per rel/att,
    1055             :      * corresponding to more than one possible sort ordering defined for the
    1056             :      * column type.  Right now, we know there is only one, so just grab it and
    1057             :      * see if it matches the query.
    1058             :      *
    1059             :      * Note that we can't use opoid as search argument; the staop appearing in
    1060             :      * pg_statistic will be for the relevant '<' operator, but what we have
    1061             :      * might be some other inequality operator such as '>='.  (Even if opoid
    1062             :      * is a '<' operator, it could be cross-type.)  Hence we must use
    1063             :      * comparison_ops_are_compatible() to see if the operators match.
    1064             :      */
    1065      523144 :     if (HeapTupleIsValid(vardata->statsTuple) &&
    1066      522464 :         statistic_proc_security_check(vardata, opproc->fn_oid) &&
    1067      261208 :         get_attstatsslot(&sslot, vardata->statsTuple,
    1068             :                          STATISTIC_KIND_HISTOGRAM, InvalidOid,
    1069             :                          ATTSTATSSLOT_VALUES))
    1070             :     {
    1071      193486 :         if (sslot.nvalues > 1 &&
    1072      386896 :             sslot.stacoll == collation &&
    1073      193410 :             comparison_ops_are_compatible(sslot.staop, opoid))
    1074      193302 :         {
    1075             :             /*
    1076             :              * Use binary search to find the desired location, namely the
    1077             :              * right end of the histogram bin containing the comparison value,
    1078             :              * which is the leftmost entry for which the comparison operator
    1079             :              * succeeds (if isgt) or fails (if !isgt).
    1080             :              *
    1081             :              * In this loop, we pay no attention to whether the operator iseq
    1082             :              * or not; that detail will be mopped up below.  (We cannot tell,
    1083             :              * anyway, whether the operator thinks the values are equal.)
    1084             :              *
    1085             :              * If the binary search accesses the first or last histogram
    1086             :              * entry, we try to replace that endpoint with the true column min
    1087             :              * or max as found by get_actual_variable_range().  This
    1088             :              * ameliorates misestimates when the min or max is moving as a
    1089             :              * result of changes since the last ANALYZE.  Note that this could
    1090             :              * result in effectively including MCVs into the histogram that
    1091             :              * weren't there before, but we don't try to correct for that.
    1092             :              */
    1093             :             double      histfrac;
    1094      193302 :             int         lobound = 0;    /* first possible slot to search */
    1095      193302 :             int         hibound = sslot.nvalues;    /* last+1 slot to search */
    1096      193302 :             bool        have_end = false;
    1097             : 
    1098             :             /*
    1099             :              * If there are only two histogram entries, we'll want up-to-date
    1100             :              * values for both.  (If there are more than two, we need at most
    1101             :              * one of them to be updated, so we deal with that within the
    1102             :              * loop.)
    1103             :              */
    1104      193302 :             if (sslot.nvalues == 2)
    1105        2306 :                 have_end = get_actual_variable_range(root,
    1106             :                                                      vardata,
    1107             :                                                      sslot.staop,
    1108             :                                                      collation,
    1109             :                                                      &sslot.values[0],
    1110        2306 :                                                      &sslot.values[1]);
    1111             : 
    1112     1260148 :             while (lobound < hibound)
    1113             :             {
    1114     1066846 :                 int         probe = (lobound + hibound) / 2;
    1115             :                 bool        ltcmp;
    1116             : 
    1117             :                 /*
    1118             :                  * If we find ourselves about to compare to the first or last
    1119             :                  * histogram entry, first try to replace it with the actual
    1120             :                  * current min or max (unless we already did so above).
    1121             :                  */
    1122     1066846 :                 if (probe == 0 && sslot.nvalues > 2)
    1123       98542 :                     have_end = get_actual_variable_range(root,
    1124             :                                                          vardata,
    1125             :                                                          sslot.staop,
    1126             :                                                          collation,
    1127             :                                                          &sslot.values[0],
    1128             :                                                          NULL);
    1129      968304 :                 else if (probe == sslot.nvalues - 1 && sslot.nvalues > 2)
    1130       63214 :                     have_end = get_actual_variable_range(root,
    1131             :                                                          vardata,
    1132             :                                                          sslot.staop,
    1133             :                                                          collation,
    1134             :                                                          NULL,
    1135       63214 :                                                          &sslot.values[probe]);
    1136             : 
    1137     1066846 :                 ltcmp = DatumGetBool(FunctionCall2Coll(opproc,
    1138             :                                                        collation,
    1139     1066846 :                                                        sslot.values[probe],
    1140             :                                                        constval));
    1141     1066846 :                 if (isgt)
    1142       58272 :                     ltcmp = !ltcmp;
    1143     1066846 :                 if (ltcmp)
    1144      399602 :                     lobound = probe + 1;
    1145             :                 else
    1146      667244 :                     hibound = probe;
    1147             :             }
    1148             : 
    1149      193302 :             if (lobound <= 0)
    1150             :             {
    1151             :                 /*
    1152             :                  * Constant is below lower histogram boundary.  More
    1153             :                  * precisely, we have found that no entry in the histogram
    1154             :                  * satisfies the inequality clause (if !isgt) or they all do
    1155             :                  * (if isgt).  We estimate that that's true of the entire
    1156             :                  * table, so set histfrac to 0.0 (which we'll flip to 1.0
    1157             :                  * below, if isgt).
    1158             :                  */
    1159       84690 :                 histfrac = 0.0;
    1160             :             }
    1161      108612 :             else if (lobound >= sslot.nvalues)
    1162             :             {
    1163             :                 /*
    1164             :                  * Inverse case: constant is above upper histogram boundary.
    1165             :                  */
    1166       28062 :                 histfrac = 1.0;
    1167             :             }
    1168             :             else
    1169             :             {
    1170             :                 /* We have values[i-1] <= constant <= values[i]. */
    1171       80550 :                 int         i = lobound;
    1172       80550 :                 double      eq_selec = 0;
    1173             :                 double      val,
    1174             :                             high,
    1175             :                             low;
    1176             :                 double      binfrac;
    1177             : 
    1178             :                 /*
    1179             :                  * In the cases where we'll need it below, obtain an estimate
    1180             :                  * of the selectivity of "x = constval".  We use a calculation
    1181             :                  * similar to what var_eq_const() does for a non-MCV constant,
    1182             :                  * ie, estimate that all distinct non-MCV values occur equally
    1183             :                  * often.  But multiplication by "1.0 - sumcommon - nullfrac"
    1184             :                  * will be done by our caller, so we shouldn't do that here.
    1185             :                  * Therefore we can't try to clamp the estimate by reference
    1186             :                  * to the least common MCV; the result would be too small.
    1187             :                  *
    1188             :                  * Note: since this is effectively assuming that constval
    1189             :                  * isn't an MCV, it's logically dubious if constval in fact is
    1190             :                  * one.  But we have to apply *some* correction for equality,
    1191             :                  * and anyway we cannot tell if constval is an MCV, since we
    1192             :                  * don't have a suitable equality operator at hand.
    1193             :                  */
    1194       80550 :                 if (i == 1 || isgt == iseq)
    1195             :                 {
    1196             :                     double      otherdistinct;
    1197             :                     bool        isdefault;
    1198             :                     AttStatsSlot mcvslot;
    1199             : 
    1200             :                     /* Get estimated number of distinct values */
    1201       32558 :                     otherdistinct = get_variable_numdistinct(vardata,
    1202             :                                                              &isdefault);
    1203             : 
    1204             :                     /* Subtract off the number of known MCVs */
    1205       32558 :                     if (get_attstatsslot(&mcvslot, vardata->statsTuple,
    1206             :                                          STATISTIC_KIND_MCV, InvalidOid,
    1207             :                                          ATTSTATSSLOT_NUMBERS))
    1208             :                     {
    1209        3290 :                         otherdistinct -= mcvslot.nnumbers;
    1210        3290 :                         free_attstatsslot(&mcvslot);
    1211             :                     }
    1212             : 
    1213             :                     /* If result doesn't seem sane, leave eq_selec at 0 */
    1214       32558 :                     if (otherdistinct > 1)
    1215       32516 :                         eq_selec = 1.0 / otherdistinct;
    1216             :                 }
    1217             : 
    1218             :                 /*
    1219             :                  * Convert the constant and the two nearest bin boundary
    1220             :                  * values to a uniform comparison scale, and do a linear
    1221             :                  * interpolation within this bin.
    1222             :                  */
    1223       80550 :                 if (convert_to_scalar(constval, consttype, collation,
    1224             :                                       &val,
    1225       80550 :                                       sslot.values[i - 1], sslot.values[i],
    1226             :                                       vardata->vartype,
    1227             :                                       &low, &high))
    1228             :                 {
    1229       80550 :                     if (high <= low)
    1230             :                     {
    1231             :                         /* cope if bin boundaries appear identical */
    1232           0 :                         binfrac = 0.5;
    1233             :                     }
    1234       80550 :                     else if (val <= low)
    1235       20010 :                         binfrac = 0.0;
    1236       60540 :                     else if (val >= high)
    1237        3940 :                         binfrac = 1.0;
    1238             :                     else
    1239             :                     {
    1240       56600 :                         binfrac = (val - low) / (high - low);
    1241             : 
    1242             :                         /*
    1243             :                          * Watch out for the possibility that we got a NaN or
    1244             :                          * Infinity from the division.  This can happen
    1245             :                          * despite the previous checks, if for example "low"
    1246             :                          * is -Infinity.
    1247             :                          */
    1248       56600 :                         if (isnan(binfrac) ||
    1249       56600 :                             binfrac < 0.0 || binfrac > 1.0)
    1250           0 :                             binfrac = 0.5;
    1251             :                     }
    1252             :                 }
    1253             :                 else
    1254             :                 {
    1255             :                     /*
    1256             :                      * Ideally we'd produce an error here, on the grounds that
    1257             :                      * the given operator shouldn't have scalarXXsel
    1258             :                      * registered as its selectivity func unless we can deal
    1259             :                      * with its operand types.  But currently, all manner of
    1260             :                      * stuff is invoking scalarXXsel, so give a default
    1261             :                      * estimate until that can be fixed.
    1262             :                      */
    1263           0 :                     binfrac = 0.5;
    1264             :                 }
    1265             : 
    1266             :                 /*
    1267             :                  * Now, compute the overall selectivity across the values
    1268             :                  * represented by the histogram.  We have i-1 full bins and
    1269             :                  * binfrac partial bin below the constant.
    1270             :                  */
    1271       80550 :                 histfrac = (double) (i - 1) + binfrac;
    1272       80550 :                 histfrac /= (double) (sslot.nvalues - 1);
    1273             : 
    1274             :                 /*
    1275             :                  * At this point, histfrac is an estimate of the fraction of
    1276             :                  * the population represented by the histogram that satisfies
    1277             :                  * "x <= constval".  Somewhat remarkably, this statement is
    1278             :                  * true regardless of which operator we were doing the probes
    1279             :                  * with, so long as convert_to_scalar() delivers reasonable
    1280             :                  * results.  If the probe constant is equal to some histogram
    1281             :                  * entry, we would have considered the bin to the left of that
    1282             :                  * entry if probing with "<" or ">=", or the bin to the right
    1283             :                  * if probing with "<=" or ">"; but binfrac would have come
    1284             :                  * out as 1.0 in the first case and 0.0 in the second, leading
    1285             :                  * to the same histfrac in either case.  For probe constants
    1286             :                  * between histogram entries, we find the same bin and get the
    1287             :                  * same estimate with any operator.
    1288             :                  *
    1289             :                  * The fact that the estimate corresponds to "x <= constval"
    1290             :                  * and not "x < constval" is because of the way that ANALYZE
    1291             :                  * constructs the histogram: each entry is, effectively, the
    1292             :                  * rightmost value in its sample bucket.  So selectivity
    1293             :                  * values that are exact multiples of 1/(histogram_size-1)
    1294             :                  * should be understood as estimates including a histogram
    1295             :                  * entry plus everything to its left.
    1296             :                  *
    1297             :                  * However, that breaks down for the first histogram entry,
    1298             :                  * which necessarily is the leftmost value in its sample
    1299             :                  * bucket.  That means the first histogram bin is slightly
    1300             :                  * narrower than the rest, by an amount equal to eq_selec.
    1301             :                  * Another way to say that is that we want "x <= leftmost" to
    1302             :                  * be estimated as eq_selec not zero.  So, if we're dealing
    1303             :                  * with the first bin (i==1), rescale to make that true while
    1304             :                  * adjusting the rest of that bin linearly.
    1305             :                  */
    1306       80550 :                 if (i == 1)
    1307       15298 :                     histfrac += eq_selec * (1.0 - binfrac);
    1308             : 
    1309             :                 /*
    1310             :                  * "x <= constval" is good if we want an estimate for "<=" or
    1311             :                  * ">", but if we are estimating for "<" or ">=", we now need
    1312             :                  * to decrease the estimate by eq_selec.
    1313             :                  */
    1314       80550 :                 if (isgt == iseq)
    1315       23636 :                     histfrac -= eq_selec;
    1316             :             }
    1317             : 
    1318             :             /*
    1319             :              * Now the estimate is finished for "<" and "<=" cases.  If we are
    1320             :              * estimating for ">" or ">=", flip it.
    1321             :              */
    1322      193302 :             hist_selec = isgt ? (1.0 - histfrac) : histfrac;
    1323             : 
    1324             :             /*
    1325             :              * The histogram boundaries are only approximate to begin with,
    1326             :              * and may well be out of date anyway.  Therefore, don't believe
    1327             :              * extremely small or large selectivity estimates --- unless we
    1328             :              * got actual current endpoint values from the table, in which
    1329             :              * case just do the usual sanity clamp.  Somewhat arbitrarily, we
    1330             :              * set the cutoff for other cases at a hundredth of the histogram
    1331             :              * resolution.
    1332             :              */
    1333      193302 :             if (have_end)
    1334      107338 :                 CLAMP_PROBABILITY(hist_selec);
    1335             :             else
    1336             :             {
    1337       85964 :                 double      cutoff = 0.01 / (double) (sslot.nvalues - 1);
    1338             : 
    1339       85964 :                 if (hist_selec < cutoff)
    1340       31690 :                     hist_selec = cutoff;
    1341       54274 :                 else if (hist_selec > 1.0 - cutoff)
    1342       20176 :                     hist_selec = 1.0 - cutoff;
    1343             :             }
    1344             :         }
    1345         184 :         else if (sslot.nvalues > 1)
    1346             :         {
    1347             :             /*
    1348             :              * If we get here, we have a histogram but it's not sorted the way
    1349             :              * we want.  Do a brute-force search to see how many of the
    1350             :              * entries satisfy the comparison condition, and take that
    1351             :              * fraction as our estimate.  (This is identical to the inner loop
    1352             :              * of histogram_selectivity; maybe share code?)
    1353             :              */
    1354         184 :             LOCAL_FCINFO(fcinfo, 2);
    1355         184 :             int         nmatch = 0;
    1356             : 
    1357         184 :             InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
    1358             :                                      NULL, NULL);
    1359         184 :             fcinfo->args[0].isnull = false;
    1360         184 :             fcinfo->args[1].isnull = false;
    1361         184 :             fcinfo->args[1].value = constval;
    1362      962108 :             for (int i = 0; i < sslot.nvalues; i++)
    1363             :             {
    1364             :                 Datum       fresult;
    1365             : 
    1366      961924 :                 fcinfo->args[0].value = sslot.values[i];
    1367      961924 :                 fcinfo->isnull = false;
    1368      961924 :                 fresult = FunctionCallInvoke(fcinfo);
    1369      961924 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
    1370        1940 :                     nmatch++;
    1371             :             }
    1372         184 :             hist_selec = ((double) nmatch) / ((double) sslot.nvalues);
    1373             : 
    1374             :             /*
    1375             :              * As above, clamp to a hundredth of the histogram resolution.
    1376             :              * This case is surely even less trustworthy than the normal one,
    1377             :              * so we shouldn't believe exact 0 or 1 selectivity.  (Maybe the
    1378             :              * clamp should be more restrictive in this case?)
    1379             :              */
    1380             :             {
    1381         184 :                 double      cutoff = 0.01 / (double) (sslot.nvalues - 1);
    1382             : 
    1383         184 :                 if (hist_selec < cutoff)
    1384          12 :                     hist_selec = cutoff;
    1385         172 :                 else if (hist_selec > 1.0 - cutoff)
    1386          12 :                     hist_selec = 1.0 - cutoff;
    1387             :             }
    1388             :         }
    1389             : 
    1390      193486 :         free_attstatsslot(&sslot);
    1391             :     }
    1392             : 
    1393      261888 :     return hist_selec;
    1394             : }
    1395             : 
    1396             : /*
    1397             :  * Common wrapper function for the selectivity estimators that simply
    1398             :  * invoke scalarineqsel().
    1399             :  */
    1400             : static Datum
    1401       40116 : scalarineqsel_wrapper(PG_FUNCTION_ARGS, bool isgt, bool iseq)
    1402             : {
    1403       40116 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
    1404       40116 :     Oid         operator = PG_GETARG_OID(1);
    1405       40116 :     List       *args = (List *) PG_GETARG_POINTER(2);
    1406       40116 :     int         varRelid = PG_GETARG_INT32(3);
    1407       40116 :     Oid         collation = PG_GET_COLLATION();
    1408             :     VariableStatData vardata;
    1409             :     Node       *other;
    1410             :     bool        varonleft;
    1411             :     Datum       constval;
    1412             :     Oid         consttype;
    1413             :     double      selec;
    1414             : 
    1415             :     /*
    1416             :      * If expression is not variable op something or something op variable,
    1417             :      * then punt and return a default estimate.
    1418             :      */
    1419       40116 :     if (!get_restriction_variable(root, args, varRelid,
    1420             :                                   &vardata, &other, &varonleft))
    1421         532 :         PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    1422             : 
    1423             :     /*
    1424             :      * Can't do anything useful if the something is not a constant, either.
    1425             :      */
    1426       39584 :     if (!IsA(other, Const))
    1427             :     {
    1428        2686 :         ReleaseVariableStats(vardata);
    1429        2686 :         PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    1430             :     }
    1431             : 
    1432             :     /*
    1433             :      * If the constant is NULL, assume operator is strict and return zero, ie,
    1434             :      * operator will never return TRUE.
    1435             :      */
    1436       36898 :     if (((Const *) other)->constisnull)
    1437             :     {
    1438          66 :         ReleaseVariableStats(vardata);
    1439          66 :         PG_RETURN_FLOAT8(0.0);
    1440             :     }
    1441       36832 :     constval = ((Const *) other)->constvalue;
    1442       36832 :     consttype = ((Const *) other)->consttype;
    1443             : 
    1444             :     /*
    1445             :      * Force the var to be on the left to simplify logic in scalarineqsel.
    1446             :      */
    1447       36832 :     if (!varonleft)
    1448             :     {
    1449         366 :         operator = get_commutator(operator);
    1450         366 :         if (!operator)
    1451             :         {
    1452             :             /* Use default selectivity (should we raise an error instead?) */
    1453           0 :             ReleaseVariableStats(vardata);
    1454           0 :             PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    1455             :         }
    1456         366 :         isgt = !isgt;
    1457             :     }
    1458             : 
    1459             :     /* The rest of the work is done by scalarineqsel(). */
    1460       36832 :     selec = scalarineqsel(root, operator, isgt, iseq, collation,
    1461             :                           &vardata, constval, consttype);
    1462             : 
    1463       36832 :     ReleaseVariableStats(vardata);
    1464             : 
    1465       36832 :     PG_RETURN_FLOAT8((float8) selec);
    1466             : }
    1467             : 
    1468             : /*
    1469             :  *      scalarltsel     - Selectivity of "<" for scalars.
    1470             :  */
    1471             : Datum
    1472       13966 : scalarltsel(PG_FUNCTION_ARGS)
    1473             : {
    1474       13966 :     return scalarineqsel_wrapper(fcinfo, false, false);
    1475             : }
    1476             : 
    1477             : /*
    1478             :  *      scalarlesel     - Selectivity of "<=" for scalars.
    1479             :  */
    1480             : Datum
    1481        4404 : scalarlesel(PG_FUNCTION_ARGS)
    1482             : {
    1483        4404 :     return scalarineqsel_wrapper(fcinfo, false, true);
    1484             : }
    1485             : 
    1486             : /*
    1487             :  *      scalargtsel     - Selectivity of ">" for scalars.
    1488             :  */
    1489             : Datum
    1490       14450 : scalargtsel(PG_FUNCTION_ARGS)
    1491             : {
    1492       14450 :     return scalarineqsel_wrapper(fcinfo, true, false);
    1493             : }
    1494             : 
    1495             : /*
    1496             :  *      scalargesel     - Selectivity of ">=" for scalars.
    1497             :  */
    1498             : Datum
    1499        7296 : scalargesel(PG_FUNCTION_ARGS)
    1500             : {
    1501        7296 :     return scalarineqsel_wrapper(fcinfo, true, true);
    1502             : }
    1503             : 
    1504             : /*
    1505             :  *      boolvarsel      - Selectivity of Boolean variable.
    1506             :  *
    1507             :  * This can actually be called on any boolean-valued expression.  If it
    1508             :  * involves only Vars of the specified relation, and if there are statistics
    1509             :  * about the Var or expression (the latter is possible if it's indexed) then
    1510             :  * we'll produce a real estimate; otherwise it's just a default.
    1511             :  */
    1512             : Selectivity
    1513       42478 : boolvarsel(PlannerInfo *root, Node *arg, int varRelid)
    1514             : {
    1515             :     VariableStatData vardata;
    1516             :     double      selec;
    1517             : 
    1518       42478 :     examine_variable(root, arg, varRelid, &vardata);
    1519       42478 :     if (HeapTupleIsValid(vardata.statsTuple))
    1520             :     {
    1521             :         /*
    1522             :          * A boolean variable V is equivalent to the clause V = 't', so we
    1523             :          * compute the selectivity as if that is what we have.
    1524             :          */
    1525       35120 :         selec = var_eq_const(&vardata, BooleanEqualOperator, InvalidOid,
    1526             :                              BoolGetDatum(true), false, true, false);
    1527             :     }
    1528             :     else
    1529             :     {
    1530             :         /* Otherwise, the default estimate is 0.5 */
    1531        7358 :         selec = 0.5;
    1532             :     }
    1533       42478 :     ReleaseVariableStats(vardata);
    1534       42478 :     return selec;
    1535             : }
    1536             : 
    1537             : /*
    1538             :  *      booltestsel     - Selectivity of BooleanTest Node.
    1539             :  */
    1540             : Selectivity
    1541         838 : booltestsel(PlannerInfo *root, BoolTestType booltesttype, Node *arg,
    1542             :             int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
    1543             : {
    1544             :     VariableStatData vardata;
    1545             :     double      selec;
    1546             : 
    1547         838 :     examine_variable(root, arg, varRelid, &vardata);
    1548             : 
    1549         838 :     if (HeapTupleIsValid(vardata.statsTuple))
    1550             :     {
    1551             :         Form_pg_statistic stats;
    1552             :         double      freq_null;
    1553             :         AttStatsSlot sslot;
    1554             : 
    1555           0 :         stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
    1556           0 :         freq_null = stats->stanullfrac;
    1557             : 
    1558           0 :         if (get_attstatsslot(&sslot, vardata.statsTuple,
    1559             :                              STATISTIC_KIND_MCV, InvalidOid,
    1560             :                              ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)
    1561           0 :             && sslot.nnumbers > 0)
    1562           0 :         {
    1563             :             double      freq_true;
    1564             :             double      freq_false;
    1565             : 
    1566             :             /*
    1567             :              * Get first MCV frequency and derive frequency for true.
    1568             :              */
    1569           0 :             if (DatumGetBool(sslot.values[0]))
    1570           0 :                 freq_true = sslot.numbers[0];
    1571             :             else
    1572           0 :                 freq_true = 1.0 - sslot.numbers[0] - freq_null;
    1573             : 
    1574             :             /*
    1575             :              * Next derive frequency for false. Then use these as appropriate
    1576             :              * to derive frequency for each case.
    1577             :              */
    1578           0 :             freq_false = 1.0 - freq_true - freq_null;
    1579             : 
    1580           0 :             switch (booltesttype)
    1581             :             {
    1582           0 :                 case IS_UNKNOWN:
    1583             :                     /* select only NULL values */
    1584           0 :                     selec = freq_null;
    1585           0 :                     break;
    1586           0 :                 case IS_NOT_UNKNOWN:
    1587             :                     /* select non-NULL values */
    1588           0 :                     selec = 1.0 - freq_null;
    1589           0 :                     break;
    1590           0 :                 case IS_TRUE:
    1591             :                     /* select only TRUE values */
    1592           0 :                     selec = freq_true;
    1593           0 :                     break;
    1594           0 :                 case IS_NOT_TRUE:
    1595             :                     /* select non-TRUE values */
    1596           0 :                     selec = 1.0 - freq_true;
    1597           0 :                     break;
    1598           0 :                 case IS_FALSE:
    1599             :                     /* select only FALSE values */
    1600           0 :                     selec = freq_false;
    1601           0 :                     break;
    1602           0 :                 case IS_NOT_FALSE:
    1603             :                     /* select non-FALSE values */
    1604           0 :                     selec = 1.0 - freq_false;
    1605           0 :                     break;
    1606           0 :                 default:
    1607           0 :                     elog(ERROR, "unrecognized booltesttype: %d",
    1608             :                          (int) booltesttype);
    1609             :                     selec = 0.0;    /* Keep compiler quiet */
    1610             :                     break;
    1611             :             }
    1612             : 
    1613           0 :             free_attstatsslot(&sslot);
    1614             :         }
    1615             :         else
    1616             :         {
    1617             :             /*
    1618             :              * No most-common-value info available. Still have null fraction
    1619             :              * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust
    1620             :              * for null fraction and assume a 50-50 split of TRUE and FALSE.
    1621             :              */
    1622           0 :             switch (booltesttype)
    1623             :             {
    1624           0 :                 case IS_UNKNOWN:
    1625             :                     /* select only NULL values */
    1626           0 :                     selec = freq_null;
    1627           0 :                     break;
    1628           0 :                 case IS_NOT_UNKNOWN:
    1629             :                     /* select non-NULL values */
    1630           0 :                     selec = 1.0 - freq_null;
    1631           0 :                     break;
    1632           0 :                 case IS_TRUE:
    1633             :                 case IS_FALSE:
    1634             :                     /* Assume we select half of the non-NULL values */
    1635           0 :                     selec = (1.0 - freq_null) / 2.0;
    1636           0 :                     break;
    1637           0 :                 case IS_NOT_TRUE:
    1638             :                 case IS_NOT_FALSE:
    1639             :                     /* Assume we select NULLs plus half of the non-NULLs */
    1640             :                     /* equiv. to freq_null + (1.0 - freq_null) / 2.0 */
    1641           0 :                     selec = (freq_null + 1.0) / 2.0;
    1642           0 :                     break;
    1643           0 :                 default:
    1644           0 :                     elog(ERROR, "unrecognized booltesttype: %d",
    1645             :                          (int) booltesttype);
    1646             :                     selec = 0.0;    /* Keep compiler quiet */
    1647             :                     break;
    1648             :             }
    1649             :         }
    1650             :     }
    1651             :     else
    1652             :     {
    1653             :         /*
    1654             :          * If we can't get variable statistics for the argument, perhaps
    1655             :          * clause_selectivity can do something with it.  We ignore the
    1656             :          * possibility of a NULL value when using clause_selectivity, and just
    1657             :          * assume the value is either TRUE or FALSE.
    1658             :          */
    1659         838 :         switch (booltesttype)
    1660             :         {
    1661          48 :             case IS_UNKNOWN:
    1662          48 :                 selec = DEFAULT_UNK_SEL;
    1663          48 :                 break;
    1664         108 :             case IS_NOT_UNKNOWN:
    1665         108 :                 selec = DEFAULT_NOT_UNK_SEL;
    1666         108 :                 break;
    1667         252 :             case IS_TRUE:
    1668             :             case IS_NOT_FALSE:
    1669         252 :                 selec = (double) clause_selectivity(root, arg,
    1670             :                                                     varRelid,
    1671             :                                                     jointype, sjinfo);
    1672         252 :                 break;
    1673         430 :             case IS_FALSE:
    1674             :             case IS_NOT_TRUE:
    1675         430 :                 selec = 1.0 - (double) clause_selectivity(root, arg,
    1676             :                                                           varRelid,
    1677             :                                                           jointype, sjinfo);
    1678         430 :                 break;
    1679           0 :             default:
    1680           0 :                 elog(ERROR, "unrecognized booltesttype: %d",
    1681             :                      (int) booltesttype);
    1682             :                 selec = 0.0;    /* Keep compiler quiet */
    1683             :                 break;
    1684             :         }
    1685             :     }
    1686             : 
    1687         838 :     ReleaseVariableStats(vardata);
    1688             : 
    1689             :     /* result should be in range, but make sure... */
    1690         838 :     CLAMP_PROBABILITY(selec);
    1691             : 
    1692         838 :     return (Selectivity) selec;
    1693             : }
    1694             : 
    1695             : /*
    1696             :  *      nulltestsel     - Selectivity of NullTest Node.
    1697             :  */
    1698             : Selectivity
    1699       15750 : nulltestsel(PlannerInfo *root, NullTestType nulltesttype, Node *arg,
    1700             :             int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
    1701             : {
    1702             :     VariableStatData vardata;
    1703             :     double      selec;
    1704             : 
    1705       15750 :     examine_variable(root, arg, varRelid, &vardata);
    1706             : 
    1707       15750 :     if (HeapTupleIsValid(vardata.statsTuple))
    1708             :     {
    1709             :         Form_pg_statistic stats;
    1710             :         double      freq_null;
    1711             : 
    1712        8806 :         stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
    1713        8806 :         freq_null = stats->stanullfrac;
    1714             : 
    1715        8806 :         switch (nulltesttype)
    1716             :         {
    1717        6754 :             case IS_NULL:
    1718             : 
    1719             :                 /*
    1720             :                  * Use freq_null directly.
    1721             :                  */
    1722        6754 :                 selec = freq_null;
    1723        6754 :                 break;
    1724        2052 :             case IS_NOT_NULL:
    1725             : 
    1726             :                 /*
    1727             :                  * Select not unknown (not null) values. Calculate from
    1728             :                  * freq_null.
    1729             :                  */
    1730        2052 :                 selec = 1.0 - freq_null;
    1731        2052 :                 break;
    1732           0 :             default:
    1733           0 :                 elog(ERROR, "unrecognized nulltesttype: %d",
    1734             :                      (int) nulltesttype);
    1735             :                 return (Selectivity) 0; /* keep compiler quiet */
    1736             :         }
    1737             :     }
    1738        6944 :     else if (vardata.var && IsA(vardata.var, Var) &&
    1739        6374 :              ((Var *) vardata.var)->varattno < 0)
    1740             :     {
    1741             :         /*
    1742             :          * There are no stats for system columns, but we know they are never
    1743             :          * NULL.
    1744             :          */
    1745          60 :         selec = (nulltesttype == IS_NULL) ? 0.0 : 1.0;
    1746             :     }
    1747             :     else
    1748             :     {
    1749             :         /*
    1750             :          * No ANALYZE stats available, so make a guess
    1751             :          */
    1752        6884 :         switch (nulltesttype)
    1753             :         {
    1754        2062 :             case IS_NULL:
    1755        2062 :                 selec = DEFAULT_UNK_SEL;
    1756        2062 :                 break;
    1757        4822 :             case IS_NOT_NULL:
    1758        4822 :                 selec = DEFAULT_NOT_UNK_SEL;
    1759        4822 :                 break;
    1760           0 :             default:
    1761           0 :                 elog(ERROR, "unrecognized nulltesttype: %d",
    1762             :                      (int) nulltesttype);
    1763             :                 return (Selectivity) 0; /* keep compiler quiet */
    1764             :         }
    1765             :     }
    1766             : 
    1767       15750 :     ReleaseVariableStats(vardata);
    1768             : 
    1769             :     /* result should be in range, but make sure... */
    1770       15750 :     CLAMP_PROBABILITY(selec);
    1771             : 
    1772       15750 :     return (Selectivity) selec;
    1773             : }
    1774             : 
    1775             : /*
    1776             :  * strip_array_coercion - strip binary-compatible relabeling from an array expr
    1777             :  *
    1778             :  * For array values, the parser normally generates ArrayCoerceExpr conversions,
    1779             :  * but it seems possible that RelabelType might show up.  Also, the planner
    1780             :  * is not currently tense about collapsing stacked ArrayCoerceExpr nodes,
    1781             :  * so we need to be ready to deal with more than one level.
    1782             :  */
    1783             : static Node *
    1784      118208 : strip_array_coercion(Node *node)
    1785             : {
    1786             :     for (;;)
    1787             :     {
    1788      118208 :         if (node && IsA(node, ArrayCoerceExpr))
    1789          36 :         {
    1790        2800 :             ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
    1791             : 
    1792             :             /*
    1793             :              * If the per-element expression is just a RelabelType on top of
    1794             :              * CaseTestExpr, then we know it's a binary-compatible relabeling.
    1795             :              */
    1796        2800 :             if (IsA(acoerce->elemexpr, RelabelType) &&
    1797          36 :                 IsA(((RelabelType *) acoerce->elemexpr)->arg, CaseTestExpr))
    1798          36 :                 node = (Node *) acoerce->arg;
    1799             :             else
    1800             :                 break;
    1801             :         }
    1802      115408 :         else if (node && IsA(node, RelabelType))
    1803             :         {
    1804             :             /* We don't really expect this case, but may as well cope */
    1805           0 :             node = (Node *) ((RelabelType *) node)->arg;
    1806             :         }
    1807             :         else
    1808             :             break;
    1809             :     }
    1810      118172 :     return node;
    1811             : }
    1812             : 
    1813             : /*
    1814             :  *      scalararraysel      - Selectivity of ScalarArrayOpExpr Node.
    1815             :  */
    1816             : Selectivity
    1817       20930 : scalararraysel(PlannerInfo *root,
    1818             :                ScalarArrayOpExpr *clause,
    1819             :                bool is_join_clause,
    1820             :                int varRelid,
    1821             :                JoinType jointype,
    1822             :                SpecialJoinInfo *sjinfo)
    1823             : {
    1824       20930 :     Oid         operator = clause->opno;
    1825       20930 :     bool        useOr = clause->useOr;
    1826       20930 :     bool        isEquality = false;
    1827       20930 :     bool        isInequality = false;
    1828             :     Node       *leftop;
    1829             :     Node       *rightop;
    1830             :     Oid         nominal_element_type;
    1831             :     Oid         nominal_element_collation;
    1832             :     TypeCacheEntry *typentry;
    1833             :     RegProcedure oprsel;
    1834             :     FmgrInfo    oprselproc;
    1835             :     Selectivity s1;
    1836             :     Selectivity s1disjoint;
    1837             : 
    1838             :     /* First, deconstruct the expression */
    1839             :     Assert(list_length(clause->args) == 2);
    1840       20930 :     leftop = (Node *) linitial(clause->args);
    1841       20930 :     rightop = (Node *) lsecond(clause->args);
    1842             : 
    1843             :     /* aggressively reduce both sides to constants */
    1844       20930 :     leftop = estimate_expression_value(root, leftop);
    1845       20930 :     rightop = estimate_expression_value(root, rightop);
    1846             : 
    1847             :     /* get nominal (after relabeling) element type of rightop */
    1848       20930 :     nominal_element_type = get_base_element_type(exprType(rightop));
    1849       20930 :     if (!OidIsValid(nominal_element_type))
    1850           0 :         return (Selectivity) 0.5;   /* probably shouldn't happen */
    1851             :     /* get nominal collation, too, for generating constants */
    1852       20930 :     nominal_element_collation = exprCollation(rightop);
    1853             : 
    1854             :     /* look through any binary-compatible relabeling of rightop */
    1855       20930 :     rightop = strip_array_coercion(rightop);
    1856             : 
    1857             :     /*
    1858             :      * Detect whether the operator is the default equality or inequality
    1859             :      * operator of the array element type.
    1860             :      */
    1861       20930 :     typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR);
    1862       20930 :     if (OidIsValid(typentry->eq_opr))
    1863             :     {
    1864       20930 :         if (operator == typentry->eq_opr)
    1865       15756 :             isEquality = true;
    1866        5174 :         else if (get_negator(operator) == typentry->eq_opr)
    1867        4628 :             isInequality = true;
    1868             :     }
    1869             : 
    1870             :     /*
    1871             :      * If it is equality or inequality, we might be able to estimate this as a
    1872             :      * form of array containment; for instance "const = ANY(column)" can be
    1873             :      * treated as "ARRAY[const] <@ column".  scalararraysel_containment tries
    1874             :      * that, and returns the selectivity estimate if successful, or -1 if not.
    1875             :      */
    1876       20930 :     if ((isEquality || isInequality) && !is_join_clause)
    1877             :     {
    1878       20384 :         s1 = scalararraysel_containment(root, leftop, rightop,
    1879             :                                         nominal_element_type,
    1880             :                                         isEquality, useOr, varRelid);
    1881       20384 :         if (s1 >= 0.0)
    1882         118 :             return s1;
    1883             :     }
    1884             : 
    1885             :     /*
    1886             :      * Look up the underlying operator's selectivity estimator. Punt if it
    1887             :      * hasn't got one.
    1888             :      */
    1889       20812 :     if (is_join_clause)
    1890           0 :         oprsel = get_oprjoin(operator);
    1891             :     else
    1892       20812 :         oprsel = get_oprrest(operator);
    1893       20812 :     if (!oprsel)
    1894           0 :         return (Selectivity) 0.5;
    1895       20812 :     fmgr_info(oprsel, &oprselproc);
    1896             : 
    1897             :     /*
    1898             :      * In the array-containment check above, we must only believe that an
    1899             :      * operator is equality or inequality if it is the default btree equality
    1900             :      * operator (or its negator) for the element type, since those are the
    1901             :      * operators that array containment will use.  But in what follows, we can
    1902             :      * be a little laxer, and also believe that any operators using eqsel() or
    1903             :      * neqsel() as selectivity estimator act like equality or inequality.
    1904             :      */
    1905       20812 :     if (oprsel == F_EQSEL || oprsel == F_EQJOINSEL)
    1906       15820 :         isEquality = true;
    1907        4992 :     else if (oprsel == F_NEQSEL || oprsel == F_NEQJOINSEL)
    1908        4518 :         isInequality = true;
    1909             : 
    1910             :     /*
    1911             :      * We consider three cases:
    1912             :      *
    1913             :      * 1. rightop is an Array constant: deconstruct the array, apply the
    1914             :      * operator's selectivity function for each array element, and merge the
    1915             :      * results in the same way that clausesel.c does for AND/OR combinations.
    1916             :      *
    1917             :      * 2. rightop is an ARRAY[] construct: apply the operator's selectivity
    1918             :      * function for each element of the ARRAY[] construct, and merge.
    1919             :      *
    1920             :      * 3. otherwise, make a guess ...
    1921             :      */
    1922       20812 :     if (rightop && IsA(rightop, Const))
    1923       17086 :     {
    1924       17104 :         Datum       arraydatum = ((Const *) rightop)->constvalue;
    1925       17104 :         bool        arrayisnull = ((Const *) rightop)->constisnull;
    1926             :         ArrayType  *arrayval;
    1927             :         int16       elmlen;
    1928             :         bool        elmbyval;
    1929             :         char        elmalign;
    1930             :         int         num_elems;
    1931             :         Datum      *elem_values;
    1932             :         bool       *elem_nulls;
    1933             :         int         i;
    1934             : 
    1935       17104 :         if (arrayisnull)        /* qual can't succeed if null array */
    1936          18 :             return (Selectivity) 0.0;
    1937       17086 :         arrayval = DatumGetArrayTypeP(arraydatum);
    1938       17086 :         get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
    1939             :                              &elmlen, &elmbyval, &elmalign);
    1940       17086 :         deconstruct_array(arrayval,
    1941             :                           ARR_ELEMTYPE(arrayval),
    1942             :                           elmlen, elmbyval, elmalign,
    1943             :                           &elem_values, &elem_nulls, &num_elems);
    1944             : 
    1945             :         /*
    1946             :          * For generic operators, we assume the probability of success is
    1947             :          * independent for each array element.  But for "= ANY" or "<> ALL",
    1948             :          * if the array elements are distinct (which'd typically be the case)
    1949             :          * then the probabilities are disjoint, and we should just sum them.
    1950             :          *
    1951             :          * If we were being really tense we would try to confirm that the
    1952             :          * elements are all distinct, but that would be expensive and it
    1953             :          * doesn't seem to be worth the cycles; it would amount to penalizing
    1954             :          * well-written queries in favor of poorly-written ones.  However, we
    1955             :          * do protect ourselves a little bit by checking whether the
    1956             :          * disjointness assumption leads to an impossible (out of range)
    1957             :          * probability; if so, we fall back to the normal calculation.
    1958             :          */
    1959       17086 :         s1 = s1disjoint = (useOr ? 0.0 : 1.0);
    1960             : 
    1961       65922 :         for (i = 0; i < num_elems; i++)
    1962             :         {
    1963             :             List       *args;
    1964             :             Selectivity s2;
    1965             : 
    1966       48836 :             args = list_make2(leftop,
    1967             :                               makeConst(nominal_element_type,
    1968             :                                         -1,
    1969             :                                         nominal_element_collation,
    1970             :                                         elmlen,
    1971             :                                         elem_values[i],
    1972             :                                         elem_nulls[i],
    1973             :                                         elmbyval));
    1974       48836 :             if (is_join_clause)
    1975           0 :                 s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
    1976             :                                                       clause->inputcollid,
    1977             :                                                       PointerGetDatum(root),
    1978             :                                                       ObjectIdGetDatum(operator),
    1979             :                                                       PointerGetDatum(args),
    1980             :                                                       Int16GetDatum(jointype),
    1981             :                                                       PointerGetDatum(sjinfo)));
    1982             :             else
    1983       48836 :                 s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
    1984             :                                                       clause->inputcollid,
    1985             :                                                       PointerGetDatum(root),
    1986             :                                                       ObjectIdGetDatum(operator),
    1987             :                                                       PointerGetDatum(args),
    1988             :                                                       Int32GetDatum(varRelid)));
    1989             : 
    1990       48836 :             if (useOr)
    1991             :             {
    1992       37634 :                 s1 = s1 + s2 - s1 * s2;
    1993       37634 :                 if (isEquality)
    1994       36602 :                     s1disjoint += s2;
    1995             :             }
    1996             :             else
    1997             :             {
    1998       11202 :                 s1 = s1 * s2;
    1999       11202 :                 if (isInequality)
    2000       10890 :                     s1disjoint += s2 - 1.0;
    2001             :             }
    2002             :         }
    2003             : 
    2004             :         /* accept disjoint-probability estimate if in range */
    2005       17086 :         if ((useOr ? isEquality : isInequality) &&
    2006       16450 :             s1disjoint >= 0.0 && s1disjoint <= 1.0)
    2007       16420 :             s1 = s1disjoint;
    2008             :     }
    2009        3708 :     else if (rightop && IsA(rightop, ArrayExpr) &&
    2010         182 :              !((ArrayExpr *) rightop)->multidims)
    2011         182 :     {
    2012         182 :         ArrayExpr  *arrayexpr = (ArrayExpr *) rightop;
    2013             :         int16       elmlen;
    2014             :         bool        elmbyval;
    2015             :         ListCell   *l;
    2016             : 
    2017         182 :         get_typlenbyval(arrayexpr->element_typeid,
    2018             :                         &elmlen, &elmbyval);
    2019             : 
    2020             :         /*
    2021             :          * We use the assumption of disjoint probabilities here too, although
    2022             :          * the odds of equal array elements are rather higher if the elements
    2023             :          * are not all constants (which they won't be, else constant folding
    2024             :          * would have reduced the ArrayExpr to a Const).  In this path it's
    2025             :          * critical to have the sanity check on the s1disjoint estimate.
    2026             :          */
    2027         182 :         s1 = s1disjoint = (useOr ? 0.0 : 1.0);
    2028             : 
    2029         680 :         foreach(l, arrayexpr->elements)
    2030             :         {
    2031         498 :             Node       *elem = (Node *) lfirst(l);
    2032             :             List       *args;
    2033             :             Selectivity s2;
    2034             : 
    2035             :             /*
    2036             :              * Theoretically, if elem isn't of nominal_element_type we should
    2037             :              * insert a RelabelType, but it seems unlikely that any operator
    2038             :              * estimation function would really care ...
    2039             :              */
    2040         498 :             args = list_make2(leftop, elem);
    2041         498 :             if (is_join_clause)
    2042           0 :                 s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
    2043             :                                                       clause->inputcollid,
    2044             :                                                       PointerGetDatum(root),
    2045             :                                                       ObjectIdGetDatum(operator),
    2046             :                                                       PointerGetDatum(args),
    2047             :                                                       Int16GetDatum(jointype),
    2048             :                                                       PointerGetDatum(sjinfo)));
    2049             :             else
    2050         498 :                 s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
    2051             :                                                       clause->inputcollid,
    2052             :                                                       PointerGetDatum(root),
    2053             :                                                       ObjectIdGetDatum(operator),
    2054             :                                                       PointerGetDatum(args),
    2055             :                                                       Int32GetDatum(varRelid)));
    2056             : 
    2057         498 :             if (useOr)
    2058             :             {
    2059         498 :                 s1 = s1 + s2 - s1 * s2;
    2060         498 :                 if (isEquality)
    2061         498 :                     s1disjoint += s2;
    2062             :             }
    2063             :             else
    2064             :             {
    2065           0 :                 s1 = s1 * s2;
    2066           0 :                 if (isInequality)
    2067           0 :                     s1disjoint += s2 - 1.0;
    2068             :             }
    2069             :         }
    2070             : 
    2071             :         /* accept disjoint-probability estimate if in range */
    2072         182 :         if ((useOr ? isEquality : isInequality) &&
    2073         182 :             s1disjoint >= 0.0 && s1disjoint <= 1.0)
    2074         182 :             s1 = s1disjoint;
    2075             :     }
    2076             :     else
    2077             :     {
    2078             :         CaseTestExpr *dummyexpr;
    2079             :         List       *args;
    2080             :         Selectivity s2;
    2081             :         int         i;
    2082             : 
    2083             :         /*
    2084             :          * We need a dummy rightop to pass to the operator selectivity
    2085             :          * routine.  It can be pretty much anything that doesn't look like a
    2086             :          * constant; CaseTestExpr is a convenient choice.
    2087             :          */
    2088        3526 :         dummyexpr = makeNode(CaseTestExpr);
    2089        3526 :         dummyexpr->typeId = nominal_element_type;
    2090        3526 :         dummyexpr->typeMod = -1;
    2091        3526 :         dummyexpr->collation = clause->inputcollid;
    2092        3526 :         args = list_make2(leftop, dummyexpr);
    2093        3526 :         if (is_join_clause)
    2094           0 :             s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
    2095             :                                                   clause->inputcollid,
    2096             :                                                   PointerGetDatum(root),
    2097             :                                                   ObjectIdGetDatum(operator),
    2098             :                                                   PointerGetDatum(args),
    2099             :                                                   Int16GetDatum(jointype),
    2100             :                                                   PointerGetDatum(sjinfo)));
    2101             :         else
    2102        3526 :             s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
    2103             :                                                   clause->inputcollid,
    2104             :                                                   PointerGetDatum(root),
    2105             :                                                   ObjectIdGetDatum(operator),
    2106             :                                                   PointerGetDatum(args),
    2107             :                                                   Int32GetDatum(varRelid)));
    2108        3526 :         s1 = useOr ? 0.0 : 1.0;
    2109             : 
    2110             :         /*
    2111             :          * Arbitrarily assume 10 elements in the eventual array value (see
    2112             :          * also estimate_array_length).  We don't risk an assumption of
    2113             :          * disjoint probabilities here.
    2114             :          */
    2115       38786 :         for (i = 0; i < 10; i++)
    2116             :         {
    2117       35260 :             if (useOr)
    2118       35260 :                 s1 = s1 + s2 - s1 * s2;
    2119             :             else
    2120           0 :                 s1 = s1 * s2;
    2121             :         }
    2122             :     }
    2123             : 
    2124             :     /* result should be in range, but make sure... */
    2125       20794 :     CLAMP_PROBABILITY(s1);
    2126             : 
    2127       20794 :     return s1;
    2128             : }
    2129             : 
    2130             : /*
    2131             :  * Estimate number of elements in the array yielded by an expression.
    2132             :  *
    2133             :  * Note: the result is integral, but we use "double" to avoid overflow
    2134             :  * concerns.  Most callers will use it in double-type expressions anyway.
    2135             :  *
    2136             :  * Note: in some code paths root can be passed as NULL, resulting in
    2137             :  * slightly worse estimates.
    2138             :  */
    2139             : double
    2140       97242 : estimate_array_length(PlannerInfo *root, Node *arrayexpr)
    2141             : {
    2142             :     /* look through any binary-compatible relabeling of arrayexpr */
    2143       97242 :     arrayexpr = strip_array_coercion(arrayexpr);
    2144             : 
    2145       97242 :     if (arrayexpr && IsA(arrayexpr, Const))
    2146             :     {
    2147       44016 :         Datum       arraydatum = ((Const *) arrayexpr)->constvalue;
    2148       44016 :         bool        arrayisnull = ((Const *) arrayexpr)->constisnull;
    2149             :         ArrayType  *arrayval;
    2150             : 
    2151       44016 :         if (arrayisnull)
    2152          42 :             return 0;
    2153       43974 :         arrayval = DatumGetArrayTypeP(arraydatum);
    2154       43974 :         return ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
    2155             :     }
    2156       53226 :     else if (arrayexpr && IsA(arrayexpr, ArrayExpr) &&
    2157         490 :              !((ArrayExpr *) arrayexpr)->multidims)
    2158             :     {
    2159         490 :         return list_length(((ArrayExpr *) arrayexpr)->elements);
    2160             :     }
    2161       52736 :     else if (arrayexpr && root)
    2162             :     {
    2163             :         /* See if we can find any statistics about it */
    2164             :         VariableStatData vardata;
    2165             :         AttStatsSlot sslot;
    2166       52736 :         double      nelem = 0;
    2167             : 
    2168       52736 :         examine_variable(root, arrayexpr, 0, &vardata);
    2169       52736 :         if (HeapTupleIsValid(vardata.statsTuple))
    2170             :         {
    2171             :             /*
    2172             :              * Found stats, so use the average element count, which is stored
    2173             :              * in the last stanumbers element of the DECHIST statistics.
    2174             :              * Actually that is the average count of *distinct* elements;
    2175             :              * perhaps we should scale it up somewhat?
    2176             :              */
    2177        7844 :             if (get_attstatsslot(&sslot, vardata.statsTuple,
    2178             :                                  STATISTIC_KIND_DECHIST, InvalidOid,
    2179             :                                  ATTSTATSSLOT_NUMBERS))
    2180             :             {
    2181        7730 :                 if (sslot.nnumbers > 0)
    2182        7730 :                     nelem = clamp_row_est(sslot.numbers[sslot.nnumbers - 1]);
    2183        7730 :                 free_attstatsslot(&sslot);
    2184             :             }
    2185             :         }
    2186       52736 :         ReleaseVariableStats(vardata);
    2187             : 
    2188       52736 :         if (nelem > 0)
    2189        7730 :             return nelem;
    2190             :     }
    2191             : 
    2192             :     /* Else use a default guess --- this should match scalararraysel */
    2193       45006 :     return 10;
    2194             : }
    2195             : 
    2196             : /*
    2197             :  *      rowcomparesel       - Selectivity of RowCompareExpr Node.
    2198             :  *
    2199             :  * We estimate RowCompare selectivity by considering just the first (high
    2200             :  * order) columns, which makes it equivalent to an ordinary OpExpr.  While
    2201             :  * this estimate could be refined by considering additional columns, it
    2202             :  * seems unlikely that we could do a lot better without multi-column
    2203             :  * statistics.
    2204             :  */
    2205             : Selectivity
    2206         216 : rowcomparesel(PlannerInfo *root,
    2207             :               RowCompareExpr *clause,
    2208             :               int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
    2209             : {
    2210             :     Selectivity s1;
    2211         216 :     Oid         opno = linitial_oid(clause->opnos);
    2212         216 :     Oid         inputcollid = linitial_oid(clause->inputcollids);
    2213             :     List       *opargs;
    2214             :     bool        is_join_clause;
    2215             : 
    2216             :     /* Build equivalent arg list for single operator */
    2217         216 :     opargs = list_make2(linitial(clause->largs), linitial(clause->rargs));
    2218             : 
    2219             :     /*
    2220             :      * Decide if it's a join clause.  This should match clausesel.c's
    2221             :      * treat_as_join_clause(), except that we intentionally consider only the
    2222             :      * leading columns and not the rest of the clause.
    2223             :      */
    2224         216 :     if (varRelid != 0)
    2225             :     {
    2226             :         /*
    2227             :          * Caller is forcing restriction mode (eg, because we are examining an
    2228             :          * inner indexscan qual).
    2229             :          */
    2230          54 :         is_join_clause = false;
    2231             :     }
    2232         162 :     else if (sjinfo == NULL)
    2233             :     {
    2234             :         /*
    2235             :          * It must be a restriction clause, since it's being evaluated at a
    2236             :          * scan node.
    2237             :          */
    2238         150 :         is_join_clause = false;
    2239             :     }
    2240             :     else
    2241             :     {
    2242             :         /*
    2243             :          * Otherwise, it's a join if there's more than one base relation used.
    2244             :          */
    2245          12 :         is_join_clause = (NumRelids(root, (Node *) opargs) > 1);
    2246             :     }
    2247             : 
    2248         216 :     if (is_join_clause)
    2249             :     {
    2250             :         /* Estimate selectivity for a join clause. */
    2251          12 :         s1 = join_selectivity(root, opno,
    2252             :                               opargs,
    2253             :                               inputcollid,
    2254             :                               jointype,
    2255             :                               sjinfo);
    2256             :     }
    2257             :     else
    2258             :     {
    2259             :         /* Estimate selectivity for a restriction clause. */
    2260         204 :         s1 = restriction_selectivity(root, opno,
    2261             :                                      opargs,
    2262             :                                      inputcollid,
    2263             :                                      varRelid);
    2264             :     }
    2265             : 
    2266         216 :     return s1;
    2267             : }
    2268             : 
    2269             : /*
    2270             :  *      eqjoinsel       - Join selectivity of "="
    2271             :  */
    2272             : Datum
    2273      197580 : eqjoinsel(PG_FUNCTION_ARGS)
    2274             : {
    2275      197580 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
    2276      197580 :     Oid         operator = PG_GETARG_OID(1);
    2277      197580 :     List       *args = (List *) PG_GETARG_POINTER(2);
    2278             : 
    2279             : #ifdef NOT_USED
    2280             :     JoinType    jointype = (JoinType) PG_GETARG_INT16(3);
    2281             : #endif
    2282      197580 :     SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
    2283      197580 :     Oid         collation = PG_GET_COLLATION();
    2284             :     double      selec;
    2285             :     double      selec_inner;
    2286             :     VariableStatData vardata1;
    2287             :     VariableStatData vardata2;
    2288             :     double      nd1;
    2289             :     double      nd2;
    2290             :     bool        isdefault1;
    2291             :     bool        isdefault2;
    2292             :     Oid         opfuncoid;
    2293             :     AttStatsSlot sslot1;
    2294             :     AttStatsSlot sslot2;
    2295      197580 :     Form_pg_statistic stats1 = NULL;
    2296      197580 :     Form_pg_statistic stats2 = NULL;
    2297      197580 :     bool        have_mcvs1 = false;
    2298      197580 :     bool        have_mcvs2 = false;
    2299             :     bool        get_mcv_stats;
    2300             :     bool        join_is_reversed;
    2301             :     RelOptInfo *inner_rel;
    2302             : 
    2303      197580 :     get_join_variables(root, args, sjinfo,
    2304             :                        &vardata1, &vardata2, &join_is_reversed);
    2305             : 
    2306      197580 :     nd1 = get_variable_numdistinct(&vardata1, &isdefault1);
    2307      197580 :     nd2 = get_variable_numdistinct(&vardata2, &isdefault2);
    2308             : 
    2309      197580 :     opfuncoid = get_opcode(operator);
    2310             : 
    2311      197580 :     memset(&sslot1, 0, sizeof(sslot1));
    2312      197580 :     memset(&sslot2, 0, sizeof(sslot2));
    2313             : 
    2314             :     /*
    2315             :      * There is no use in fetching one side's MCVs if we lack MCVs for the
    2316             :      * other side, so do a quick check to verify that both stats exist.
    2317             :      */
    2318      553116 :     get_mcv_stats = (HeapTupleIsValid(vardata1.statsTuple) &&
    2319      282086 :                      HeapTupleIsValid(vardata2.statsTuple) &&
    2320      124130 :                      get_attstatsslot(&sslot1, vardata1.statsTuple,
    2321             :                                       STATISTIC_KIND_MCV, InvalidOid,
    2322      355536 :                                       0) &&
    2323       48202 :                      get_attstatsslot(&sslot2, vardata2.statsTuple,
    2324             :                                       STATISTIC_KIND_MCV, InvalidOid,
    2325             :                                       0));
    2326             : 
    2327      197580 :     if (HeapTupleIsValid(vardata1.statsTuple))
    2328             :     {
    2329             :         /* note we allow use of nullfrac regardless of security check */
    2330      157956 :         stats1 = (Form_pg_statistic) GETSTRUCT(vardata1.statsTuple);
    2331      170538 :         if (get_mcv_stats &&
    2332       12582 :             statistic_proc_security_check(&vardata1, opfuncoid))
    2333       12582 :             have_mcvs1 = get_attstatsslot(&sslot1, vardata1.statsTuple,
    2334             :                                           STATISTIC_KIND_MCV, InvalidOid,
    2335             :                                           ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
    2336             :     }
    2337             : 
    2338      197580 :     if (HeapTupleIsValid(vardata2.statsTuple))
    2339             :     {
    2340             :         /* note we allow use of nullfrac regardless of security check */
    2341      134532 :         stats2 = (Form_pg_statistic) GETSTRUCT(vardata2.statsTuple);
    2342      147114 :         if (get_mcv_stats &&
    2343       12582 :             statistic_proc_security_check(&vardata2, opfuncoid))
    2344       12582 :             have_mcvs2 = get_attstatsslot(&sslot2, vardata2.statsTuple,
    2345             :                                           STATISTIC_KIND_MCV, InvalidOid,
    2346             :                                           ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
    2347             :     }
    2348             : 
    2349             :     /* We need to compute the inner-join selectivity in all cases */
    2350      197580 :     selec_inner = eqjoinsel_inner(opfuncoid, collation,
    2351             :                                   &vardata1, &vardata2,
    2352             :                                   nd1, nd2,
    2353             :                                   isdefault1, isdefault2,
    2354             :                                   &sslot1, &sslot2,
    2355             :                                   stats1, stats2,
    2356             :                                   have_mcvs1, have_mcvs2);
    2357             : 
    2358      197580 :     switch (sjinfo->jointype)
    2359             :     {
    2360      190482 :         case JOIN_INNER:
    2361             :         case JOIN_LEFT:
    2362             :         case JOIN_FULL:
    2363      190482 :             selec = selec_inner;
    2364      190482 :             break;
    2365        7098 :         case JOIN_SEMI:
    2366             :         case JOIN_ANTI:
    2367             : 
    2368             :             /*
    2369             :              * Look up the join's inner relation.  min_righthand is sufficient
    2370             :              * information because neither SEMI nor ANTI joins permit any
    2371             :              * reassociation into or out of their RHS, so the righthand will
    2372             :              * always be exactly that set of rels.
    2373             :              */
    2374        7098 :             inner_rel = find_join_input_rel(root, sjinfo->min_righthand);
    2375             : 
    2376        7098 :             if (!join_is_reversed)
    2377        3432 :                 selec = eqjoinsel_semi(opfuncoid, collation,
    2378             :                                        &vardata1, &vardata2,
    2379             :                                        nd1, nd2,
    2380             :                                        isdefault1, isdefault2,
    2381             :                                        &sslot1, &sslot2,
    2382             :                                        stats1, stats2,
    2383             :                                        have_mcvs1, have_mcvs2,
    2384             :                                        inner_rel);
    2385             :             else
    2386             :             {
    2387        3666 :                 Oid         commop = get_commutator(operator);
    2388        3666 :                 Oid         commopfuncoid = OidIsValid(commop) ? get_opcode(commop) : InvalidOid;
    2389             : 
    2390        3666 :                 selec = eqjoinsel_semi(commopfuncoid, collation,
    2391             :                                        &vardata2, &vardata1,
    2392             :                                        nd2, nd1,
    2393             :                                        isdefault2, isdefault1,
    2394             :                                        &sslot2, &sslot1,
    2395             :                                        stats2, stats1,
    2396             :                                        have_mcvs2, have_mcvs1,
    2397             :                                        inner_rel);
    2398             :             }
    2399             : 
    2400             :             /*
    2401             :              * We should never estimate the output of a semijoin to be more
    2402             :              * rows than we estimate for an inner join with the same input
    2403             :              * rels and join condition; it's obviously impossible for that to
    2404             :              * happen.  The former estimate is N1 * Ssemi while the latter is
    2405             :              * N1 * N2 * Sinner, so we may clamp Ssemi <= N2 * Sinner.  Doing
    2406             :              * this is worthwhile because of the shakier estimation rules we
    2407             :              * use in eqjoinsel_semi, particularly in cases where it has to
    2408             :              * punt entirely.
    2409             :              */
    2410        7098 :             selec = Min(selec, inner_rel->rows * selec_inner);
    2411        7098 :             break;
    2412           0 :         default:
    2413             :             /* other values not expected here */
    2414           0 :             elog(ERROR, "unrecognized join type: %d",
    2415             :                  (int) sjinfo->jointype);
    2416             :             selec = 0;          /* keep compiler quiet */
    2417             :             break;
    2418             :     }
    2419             : 
    2420      197580 :     free_attstatsslot(&sslot1);
    2421      197580 :     free_attstatsslot(&sslot2);
    2422             : 
    2423      197580 :     ReleaseVariableStats(vardata1);
    2424      197580 :     ReleaseVariableStats(vardata2);
    2425             : 
    2426      197580 :     CLAMP_PROBABILITY(selec);
    2427             : 
    2428      197580 :     PG_RETURN_FLOAT8((float8) selec);
    2429             : }
    2430             : 
    2431             : /*
    2432             :  * eqjoinsel_inner --- eqjoinsel for normal inner join
    2433             :  *
    2434             :  * We also use this for LEFT/FULL outer joins; it's not presently clear
    2435             :  * that it's worth trying to distinguish them here.
    2436             :  */
    2437             : static double
    2438      197580 : eqjoinsel_inner(Oid opfuncoid, Oid collation,
    2439             :                 VariableStatData *vardata1, VariableStatData *vardata2,
    2440             :                 double nd1, double nd2,
    2441             :                 bool isdefault1, bool isdefault2,
    2442             :                 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
    2443             :                 Form_pg_statistic stats1, Form_pg_statistic stats2,
    2444             :                 bool have_mcvs1, bool have_mcvs2)
    2445             : {
    2446             :     double      selec;
    2447             : 
    2448      197580 :     if (have_mcvs1 && have_mcvs2)
    2449       12582 :     {
    2450             :         /*
    2451             :          * We have most-common-value lists for both relations.  Run through
    2452             :          * the lists to see which MCVs actually join to each other with the
    2453             :          * given operator.  This allows us to determine the exact join
    2454             :          * selectivity for the portion of the relations represented by the MCV
    2455             :          * lists.  We still have to estimate for the remaining population, but
    2456             :          * in a skewed distribution this gives us a big leg up in accuracy.
    2457             :          * For motivation see the analysis in Y. Ioannidis and S.
    2458             :          * Christodoulakis, "On the propagation of errors in the size of join
    2459             :          * results", Technical Report 1018, Computer Science Dept., University
    2460             :          * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu).
    2461             :          */
    2462       12582 :         LOCAL_FCINFO(fcinfo, 2);
    2463             :         FmgrInfo    eqproc;
    2464             :         bool       *hasmatch1;
    2465             :         bool       *hasmatch2;
    2466       12582 :         double      nullfrac1 = stats1->stanullfrac;
    2467       12582 :         double      nullfrac2 = stats2->stanullfrac;
    2468             :         double      matchprodfreq,
    2469             :                     matchfreq1,
    2470             :                     matchfreq2,
    2471             :                     unmatchfreq1,
    2472             :                     unmatchfreq2,
    2473             :                     otherfreq1,
    2474             :                     otherfreq2,
    2475             :                     totalsel1,
    2476             :                     totalsel2;
    2477             :         int         i,
    2478             :                     nmatches;
    2479             : 
    2480       12582 :         fmgr_info(opfuncoid, &eqproc);
    2481             : 
    2482             :         /*
    2483             :          * Save a few cycles by setting up the fcinfo struct just once. Using
    2484             :          * FunctionCallInvoke directly also avoids failure if the eqproc
    2485             :          * returns NULL, though really equality functions should never do
    2486             :          * that.
    2487             :          */
    2488       12582 :         InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
    2489             :                                  NULL, NULL);
    2490       12582 :         fcinfo->args[0].isnull = false;
    2491       12582 :         fcinfo->args[1].isnull = false;
    2492             : 
    2493       12582 :         hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool));
    2494       12582 :         hasmatch2 = (bool *) palloc0(sslot2->nvalues * sizeof(bool));
    2495             : 
    2496             :         /*
    2497             :          * Note we assume that each MCV will match at most one member of the
    2498             :          * other MCV list.  If the operator isn't really equality, there could
    2499             :          * be multiple matches --- but we don't look for them, both for speed
    2500             :          * and because the math wouldn't add up...
    2501             :          */
    2502       12582 :         matchprodfreq = 0.0;
    2503       12582 :         nmatches = 0;
    2504      525260 :         for (i = 0; i < sslot1->nvalues; i++)
    2505             :         {
    2506             :             int         j;
    2507             : 
    2508      512678 :             fcinfo->args[0].value = sslot1->values[i];
    2509             : 
    2510    20039198 :             for (j = 0; j < sslot2->nvalues; j++)
    2511             :             {
    2512             :                 Datum       fresult;
    2513             : 
    2514    19702088 :                 if (hasmatch2[j])
    2515     5324998 :                     continue;
    2516    14377090 :                 fcinfo->args[1].value = sslot2->values[j];
    2517    14377090 :                 fcinfo->isnull = false;
    2518    14377090 :                 fresult = FunctionCallInvoke(fcinfo);
    2519    14377090 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
    2520             :                 {
    2521      175568 :                     hasmatch1[i] = hasmatch2[j] = true;
    2522      175568 :                     matchprodfreq += sslot1->numbers[i] * sslot2->numbers[j];
    2523      175568 :                     nmatches++;
    2524      175568 :                     break;
    2525             :                 }
    2526             :             }
    2527             :         }
    2528       12582 :         CLAMP_PROBABILITY(matchprodfreq);
    2529             :         /* Sum up frequencies of matched and unmatched MCVs */
    2530       12582 :         matchfreq1 = unmatchfreq1 = 0.0;
    2531      525260 :         for (i = 0; i < sslot1->nvalues; i++)
    2532             :         {
    2533      512678 :             if (hasmatch1[i])
    2534      175568 :                 matchfreq1 += sslot1->numbers[i];
    2535             :             else
    2536      337110 :                 unmatchfreq1 += sslot1->numbers[i];
    2537             :         }
    2538       12582 :         CLAMP_PROBABILITY(matchfreq1);
    2539       12582 :         CLAMP_PROBABILITY(unmatchfreq1);
    2540       12582 :         matchfreq2 = unmatchfreq2 = 0.0;
    2541      357184 :         for (i = 0; i < sslot2->nvalues; i++)
    2542             :         {
    2543      344602 :             if (hasmatch2[i])
    2544      175568 :                 matchfreq2 += sslot2->numbers[i];
    2545             :             else
    2546      169034 :                 unmatchfreq2 += sslot2->numbers[i];
    2547             :         }
    2548       12582 :         CLAMP_PROBABILITY(matchfreq2);
    2549       12582 :         CLAMP_PROBABILITY(unmatchfreq2);
    2550       12582 :         pfree(hasmatch1);
    2551       12582 :         pfree(hasmatch2);
    2552             : 
    2553             :         /*
    2554             :          * Compute total frequency of non-null values that are not in the MCV
    2555             :          * lists.
    2556             :          */
    2557       12582 :         otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1;
    2558       12582 :         otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2;
    2559       12582 :         CLAMP_PROBABILITY(otherfreq1);
    2560       12582 :         CLAMP_PROBABILITY(otherfreq2);
    2561             : 
    2562             :         /*
    2563             :          * We can estimate the total selectivity from the point of view of
    2564             :          * relation 1 as: the known selectivity for matched MCVs, plus
    2565             :          * unmatched MCVs that are assumed to match against random members of
    2566             :          * relation 2's non-MCV population, plus non-MCV values that are
    2567             :          * assumed to match against random members of relation 2's unmatched
    2568             :          * MCVs plus non-MCV values.
    2569             :          */
    2570       12582 :         totalsel1 = matchprodfreq;
    2571       12582 :         if (nd2 > sslot2->nvalues)
    2572        5254 :             totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - sslot2->nvalues);
    2573       12582 :         if (nd2 > nmatches)
    2574        9656 :             totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
    2575        9656 :                 (nd2 - nmatches);
    2576             :         /* Same estimate from the point of view of relation 2. */
    2577       12582 :         totalsel2 = matchprodfreq;
    2578       12582 :         if (nd1 > sslot1->nvalues)
    2579        6164 :             totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - sslot1->nvalues);
    2580       12582 :         if (nd1 > nmatches)
    2581        8564 :             totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
    2582        8564 :                 (nd1 - nmatches);
    2583             : 
    2584             :         /*
    2585             :          * Use the smaller of the two estimates.  This can be justified in
    2586             :          * essentially the same terms as given below for the no-stats case: to
    2587             :          * a first approximation, we are estimating from the point of view of
    2588             :          * the relation with smaller nd.
    2589             :          */
    2590       12582 :         selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2;
    2591             :     }
    2592             :     else
    2593             :     {
    2594             :         /*
    2595             :          * We do not have MCV lists for both sides.  Estimate the join
    2596             :          * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This
    2597             :          * is plausible if we assume that the join operator is strict and the
    2598             :          * non-null values are about equally distributed: a given non-null
    2599             :          * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows
    2600             :          * of rel2, so total join rows are at most
    2601             :          * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of
    2602             :          * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it
    2603             :          * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression
    2604             :          * with MIN() is an upper bound.  Using the MIN() means we estimate
    2605             :          * from the point of view of the relation with smaller nd (since the
    2606             :          * larger nd is determining the MIN).  It is reasonable to assume that
    2607             :          * most tuples in this rel will have join partners, so the bound is
    2608             :          * probably reasonably tight and should be taken as-is.
    2609             :          *
    2610             :          * XXX Can we be smarter if we have an MCV list for just one side? It
    2611             :          * seems that if we assume equal distribution for the other side, we
    2612             :          * end up with the same answer anyway.
    2613             :          */
    2614      184998 :         double      nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
    2615      184998 :         double      nullfrac2 = stats2 ? stats2->stanullfrac : 0.0;
    2616             : 
    2617      184998 :         selec = (1.0 - nullfrac1) * (1.0 - nullfrac2);
    2618      184998 :         if (nd1 > nd2)
    2619       94782 :             selec /= nd1;
    2620             :         else
    2621       90216 :             selec /= nd2;
    2622             :     }
    2623             : 
    2624      197580 :     return selec;
    2625             : }
    2626             : 
    2627             : /*
    2628             :  * eqjoinsel_semi --- eqjoinsel for semi join
    2629             :  *
    2630             :  * (Also used for anti join, which we are supposed to estimate the same way.)
    2631             :  * Caller has ensured that vardata1 is the LHS variable.
    2632             :  * Unlike eqjoinsel_inner, we have to cope with opfuncoid being InvalidOid.
    2633             :  */
    2634             : static double
    2635        7098 : eqjoinsel_semi(Oid opfuncoid, Oid collation,
    2636             :                VariableStatData *vardata1, VariableStatData *vardata2,
    2637             :                double nd1, double nd2,
    2638             :                bool isdefault1, bool isdefault2,
    2639             :                AttStatsSlot *sslot1, AttStatsSlot *sslot2,
    2640             :                Form_pg_statistic stats1, Form_pg_statistic stats2,
    2641             :                bool have_mcvs1, bool have_mcvs2,
    2642             :                RelOptInfo *inner_rel)
    2643             : {
    2644             :     double      selec;
    2645             : 
    2646             :     /*
    2647             :      * We clamp nd2 to be not more than what we estimate the inner relation's
    2648             :      * size to be.  This is intuitively somewhat reasonable since obviously
    2649             :      * there can't be more than that many distinct values coming from the
    2650             :      * inner rel.  The reason for the asymmetry (ie, that we don't clamp nd1
    2651             :      * likewise) is that this is the only pathway by which restriction clauses
    2652             :      * applied to the inner rel will affect the join result size estimate,
    2653             :      * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by
    2654             :      * only the outer rel's size.  If we clamped nd1 we'd be double-counting
    2655             :      * the selectivity of outer-rel restrictions.
    2656             :      *
    2657             :      * We can apply this clamping both with respect to the base relation from
    2658             :      * which the join variable comes (if there is just one), and to the
    2659             :      * immediate inner input relation of the current join.
    2660             :      *
    2661             :      * If we clamp, we can treat nd2 as being a non-default estimate; it's not
    2662             :      * great, maybe, but it didn't come out of nowhere either.  This is most
    2663             :      * helpful when the inner relation is empty and consequently has no stats.
    2664             :      */
    2665        7098 :     if (vardata2->rel)
    2666             :     {
    2667        7092 :         if (nd2 >= vardata2->rel->rows)
    2668             :         {
    2669        5420 :             nd2 = vardata2->rel->rows;
    2670        5420 :             isdefault2 = false;
    2671             :         }
    2672             :     }
    2673        7098 :     if (nd2 >= inner_rel->rows)
    2674             :     {
    2675        5404 :         nd2 = inner_rel->rows;
    2676        5404 :         isdefault2 = false;
    2677             :     }
    2678             : 
    2679        7098 :     if (have_mcvs1 && have_mcvs2 && OidIsValid(opfuncoid))
    2680         522 :     {
    2681             :         /*
    2682             :          * We have most-common-value lists for both relations.  Run through
    2683             :          * the lists to see which MCVs actually join to each other with the
    2684             :          * given operator.  This allows us to determine the exact join
    2685             :          * selectivity for the portion of the relations represented by the MCV
    2686             :          * lists.  We still have to estimate for the remaining population, but
    2687             :          * in a skewed distribution this gives us a big leg up in accuracy.
    2688             :          */
    2689         522 :         LOCAL_FCINFO(fcinfo, 2);
    2690             :         FmgrInfo    eqproc;
    2691             :         bool       *hasmatch1;
    2692             :         bool       *hasmatch2;
    2693         522 :         double      nullfrac1 = stats1->stanullfrac;
    2694             :         double      matchfreq1,
    2695             :                     uncertainfrac,
    2696             :                     uncertain;
    2697             :         int         i,
    2698             :                     nmatches,
    2699             :                     clamped_nvalues2;
    2700             : 
    2701             :         /*
    2702             :          * The clamping above could have resulted in nd2 being less than
    2703             :          * sslot2->nvalues; in which case, we assume that precisely the nd2
    2704             :          * most common values in the relation will appear in the join input,
    2705             :          * and so compare to only the first nd2 members of the MCV list.  Of
    2706             :          * course this is frequently wrong, but it's the best bet we can make.
    2707             :          */
    2708         522 :         clamped_nvalues2 = Min(sslot2->nvalues, nd2);
    2709             : 
    2710         522 :         fmgr_info(opfuncoid, &eqproc);
    2711             : 
    2712             :         /*
    2713             :          * Save a few cycles by setting up the fcinfo struct just once. Using
    2714             :          * FunctionCallInvoke directly also avoids failure if the eqproc
    2715             :          * returns NULL, though really equality functions should never do
    2716             :          * that.
    2717             :          */
    2718         522 :         InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
    2719             :                                  NULL, NULL);
    2720         522 :         fcinfo->args[0].isnull = false;
    2721         522 :         fcinfo->args[1].isnull = false;
    2722             : 
    2723         522 :         hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool));
    2724         522 :         hasmatch2 = (bool *) palloc0(clamped_nvalues2 * sizeof(bool));
    2725             : 
    2726             :         /*
    2727             :          * Note we assume that each MCV will match at most one member of the
    2728             :          * other MCV list.  If the operator isn't really equality, there could
    2729             :          * be multiple matches --- but we don't look for them, both for speed
    2730             :          * and because the math wouldn't add up...
    2731             :          */
    2732         522 :         nmatches = 0;
    2733       12448 :         for (i = 0; i < sslot1->nvalues; i++)
    2734             :         {
    2735             :             int         j;
    2736             : 
    2737       11926 :             fcinfo->args[0].value = sslot1->values[i];
    2738             : 
    2739      497154 :             for (j = 0; j < clamped_nvalues2; j++)
    2740             :             {
    2741             :                 Datum       fresult;
    2742             : 
    2743      495404 :                 if (hasmatch2[j])
    2744      381448 :                     continue;
    2745      113956 :                 fcinfo->args[1].value = sslot2->values[j];
    2746      113956 :                 fcinfo->isnull = false;
    2747      113956 :                 fresult = FunctionCallInvoke(fcinfo);
    2748      113956 :                 if (!fcinfo->isnull && DatumGetBool(fresult))
    2749             :                 {
    2750       10176 :                     hasmatch1[i] = hasmatch2[j] = true;
    2751       10176 :                     nmatches++;
    2752       10176 :                     break;
    2753             :                 }
    2754             :             }
    2755             :         }
    2756             :         /* Sum up frequencies of matched MCVs */
    2757         522 :         matchfreq1 = 0.0;
    2758       12448 :         for (i = 0; i < sslot1->nvalues; i++)
    2759             :         {
    2760       11926 :             if (hasmatch1[i])
    2761       10176 :                 matchfreq1 += sslot1->numbers[i];
    2762             :         }
    2763         522 :         CLAMP_PROBABILITY(matchfreq1);
    2764         522 :         pfree(hasmatch1);
    2765         522 :         pfree(hasmatch2);
    2766             : 
    2767             :         /*
    2768             :          * Now we need to estimate the fraction of relation 1 that has at
    2769             :          * least one join partner.  We know for certain that the matched MCVs
    2770             :          * do, so that gives us a lower bound, but we're really in the dark
    2771             :          * about everything else.  Our crude approach is: if nd1 <= nd2 then
    2772             :          * assume all non-null rel1 rows have join partners, else assume for
    2773             :          * the uncertain rows that a fraction nd2/nd1 have join partners. We
    2774             :          * can discount the known-matched MCVs from the distinct-values counts
    2775             :          * before doing the division.
    2776             :          *
    2777             :          * Crude as the above is, it's completely useless if we don't have
    2778             :          * reliable ndistinct values for both sides.  Hence, if either nd1 or
    2779             :          * nd2 is default, punt and assume half of the uncertain rows have
    2780             :          * join partners.
    2781             :          */
    2782         522 :         if (!isdefault1 && !isdefault2)
    2783             :         {
    2784         522 :             nd1 -= nmatches;
    2785         522 :             nd2 -= nmatches;
    2786         522 :             if (nd1 <= nd2 || nd2 < 0)
    2787         492 :                 uncertainfrac = 1.0;
    2788             :             else
    2789          30 :                 uncertainfrac = nd2 / nd1;
    2790             :         }
    2791             :         else
    2792           0 :             uncertainfrac = 0.5;
    2793         522 :         uncertain = 1.0 - matchfreq1 - nullfrac1;
    2794         522 :         CLAMP_PROBABILITY(uncertain);
    2795         522 :         selec = matchfreq1 + uncertainfrac * uncertain;
    2796             :     }
    2797             :     else
    2798             :     {
    2799             :         /*
    2800             :          * Without MCV lists for both sides, we can only use the heuristic
    2801             :          * about nd1 vs nd2.
    2802             :          */
    2803        6576 :         double      nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
    2804             : 
    2805        6576 :         if (!isdefault1 && !isdefault2)
    2806             :         {
    2807        4658 :             if (nd1 <= nd2 || nd2 < 0)
    2808        2462 :                 selec = 1.0 - nullfrac1;
    2809             :             else
    2810        2196 :                 selec = (nd2 / nd1) * (1.0 - nullfrac1);
    2811             :         }
    2812             :         else
    2813        1918 :             selec = 0.5 * (1.0 - nullfrac1);
    2814             :     }
    2815             : 
    2816        7098 :     return selec;
    2817             : }
    2818             : 
    2819             : /*
    2820             :  *      neqjoinsel      - Join selectivity of "!="
    2821             :  */
    2822             : Datum
    2823        3296 : neqjoinsel(PG_FUNCTION_ARGS)
    2824             : {
    2825        3296 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
    2826        3296 :     Oid         operator = PG_GETARG_OID(1);
    2827        3296 :     List       *args = (List *) PG_GETARG_POINTER(2);
    2828        3296 :     JoinType    jointype = (JoinType) PG_GETARG_INT16(3);
    2829        3296 :     SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
    2830        3296 :     Oid         collation = PG_GET_COLLATION();
    2831             :     float8      result;
    2832             : 
    2833        3296 :     if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
    2834        1086 :     {
    2835             :         /*
    2836             :          * For semi-joins, if there is more than one distinct value in the RHS
    2837             :          * relation then every non-null LHS row must find a row to join since
    2838             :          * it can only be equal to one of them.  We'll assume that there is
    2839             :          * always more than one distinct RHS value for the sake of stability,
    2840             :          * though in theory we could have special cases for empty RHS
    2841             :          * (selectivity = 0) and single-distinct-value RHS (selectivity =
    2842             :          * fraction of LHS that has the same value as the single RHS value).
    2843             :          *
    2844             :          * For anti-joins, if we use the same assumption that there is more
    2845             :          * than one distinct key in the RHS relation, then every non-null LHS
    2846             :          * row must be suppressed by the anti-join.
    2847             :          *
    2848             :          * So either way, the selectivity estimate should be 1 - nullfrac.
    2849             :          */
    2850             :         VariableStatData leftvar;
    2851             :         VariableStatData rightvar;
    2852             :         bool        reversed;
    2853             :         HeapTuple   statsTuple;
    2854             :         double      nullfrac;
    2855             : 
    2856        1086 :         get_join_variables(root, args, sjinfo, &leftvar, &rightvar, &reversed);
    2857        1086 :         statsTuple = reversed ? rightvar.statsTuple : leftvar.statsTuple;
    2858        1086 :         if (HeapTupleIsValid(statsTuple))
    2859         892 :             nullfrac = ((Form_pg_statistic) GETSTRUCT(statsTuple))->stanullfrac;
    2860             :         else
    2861         194 :             nullfrac = 0.0;
    2862        1086 :         ReleaseVariableStats(leftvar);
    2863        1086 :         ReleaseVariableStats(rightvar);
    2864             : 
    2865        1086 :         result = 1.0 - nullfrac;
    2866             :     }
    2867             :     else
    2868             :     {
    2869             :         /*
    2870             :          * We want 1 - eqjoinsel() where the equality operator is the one
    2871             :          * associated with this != operator, that is, its negator.
    2872             :          */
    2873        2210 :         Oid         eqop = get_negator(operator);
    2874             : 
    2875        2210 :         if (eqop)
    2876             :         {
    2877             :             result =
    2878        2210 :                 DatumGetFloat8(DirectFunctionCall5Coll(eqjoinsel,
    2879             :                                                        collation,
    2880             :                                                        PointerGetDatum(root),
    2881             :                                                        ObjectIdGetDatum(eqop),
    2882             :                                                        PointerGetDatum(args),
    2883             :                                                        Int16GetDatum(jointype),
    2884             :                                                        PointerGetDatum(sjinfo)));
    2885             :         }
    2886             :         else
    2887             :         {
    2888             :             /* Use default selectivity (should we raise an error instead?) */
    2889           0 :             result = DEFAULT_EQ_SEL;
    2890             :         }
    2891        2210 :         result = 1.0 - result;
    2892             :     }
    2893             : 
    2894        3296 :     PG_RETURN_FLOAT8(result);
    2895             : }
    2896             : 
    2897             : /*
    2898             :  *      scalarltjoinsel - Join selectivity of "<" for scalars
    2899             :  */
    2900             : Datum
    2901         318 : scalarltjoinsel(PG_FUNCTION_ARGS)
    2902             : {
    2903         318 :     PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    2904             : }
    2905             : 
    2906             : /*
    2907             :  *      scalarlejoinsel - Join selectivity of "<=" for scalars
    2908             :  */
    2909             : Datum
    2910         276 : scalarlejoinsel(PG_FUNCTION_ARGS)
    2911             : {
    2912         276 :     PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    2913             : }
    2914             : 
    2915             : /*
    2916             :  *      scalargtjoinsel - Join selectivity of ">" for scalars
    2917             :  */
    2918             : Datum
    2919         240 : scalargtjoinsel(PG_FUNCTION_ARGS)
    2920             : {
    2921         240 :     PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    2922             : }
    2923             : 
    2924             : /*
    2925             :  *      scalargejoinsel - Join selectivity of ">=" for scalars
    2926             :  */
    2927             : Datum
    2928         184 : scalargejoinsel(PG_FUNCTION_ARGS)
    2929             : {
    2930         184 :     PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
    2931             : }
    2932             : 
    2933             : 
    2934             : /*
    2935             :  * mergejoinscansel         - Scan selectivity of merge join.
    2936             :  *
    2937             :  * A merge join will stop as soon as it exhausts either input stream.
    2938             :  * Therefore, if we can estimate the ranges of both input variables,
    2939             :  * we can estimate how much of the input will actually be read.  This
    2940             :  * can have a considerable impact on the cost when using indexscans.
    2941             :  *
    2942             :  * Also, we can estimate how much of each input has to be read before the
    2943             :  * first join pair is found, which will affect the join's startup time.
    2944             :  *
    2945             :  * clause should be a clause already known to be mergejoinable.  opfamily,
    2946             :  * strategy, and nulls_first specify the sort ordering being used.
    2947             :  *
    2948             :  * The outputs are:
    2949             :  *      *leftstart is set to the fraction of the left-hand variable expected
    2950             :  *       to be scanned before the first join pair is found (0 to 1).
    2951             :  *      *leftend is set to the fraction of the left-hand variable expected
    2952             :  *       to be scanned before the join terminates (0 to 1).
    2953             :  *      *rightstart, *rightend similarly for the right-hand variable.
    2954             :  */
    2955             : void
    2956      100360 : mergejoinscansel(PlannerInfo *root, Node *clause,
    2957             :                  Oid opfamily, int strategy, bool nulls_first,
    2958             :                  Selectivity *leftstart, Selectivity *leftend,
    2959             :                  Selectivity *rightstart, Selectivity *rightend)
    2960             : {
    2961             :     Node       *left,
    2962             :                *right;
    2963             :     VariableStatData leftvar,
    2964             :                 rightvar;
    2965             :     int         op_strategy;
    2966             :     Oid         op_lefttype;
    2967             :     Oid         op_righttype;
    2968             :     Oid         opno,
    2969             :                 collation,
    2970             :                 lsortop,
    2971             :                 rsortop,
    2972             :                 lstatop,
    2973             :                 rstatop,
    2974             :                 ltop,
    2975             :                 leop,
    2976             :                 revltop,
    2977             :                 revleop;
    2978             :     bool        isgt;
    2979             :     Datum       leftmin,
    2980             :                 leftmax,
    2981             :                 rightmin,
    2982             :                 rightmax;
    2983             :     double      selec;
    2984             : 
    2985             :     /* Set default results if we can't figure anything out. */
    2986             :     /* XXX should default "start" fraction be a bit more than 0? */
    2987      100360 :     *leftstart = *rightstart = 0.0;
    2988      100360 :     *leftend = *rightend = 1.0;
    2989             : 
    2990             :     /* Deconstruct the merge clause */
    2991      100360 :     if (!is_opclause(clause))
    2992           0 :         return;                 /* shouldn't happen */
    2993      100360 :     opno = ((OpExpr *) clause)->opno;
    2994      100360 :     collation = ((OpExpr *) clause)->inputcollid;
    2995      100360 :     left = get_leftop((Expr *) clause);
    2996      100360 :     right = get_rightop((Expr *) clause);
    2997      100360 :     if (!right)
    2998           0 :         return;                 /* shouldn't happen */
    2999             : 
    3000             :     /* Look for stats for the inputs */
    3001      100360 :     examine_variable(root, left, 0, &leftvar);
    3002      100360 :     examine_variable(root, right, 0, &rightvar);
    3003             : 
    3004             :     /* Extract the operator's declared left/right datatypes */
    3005      100360 :     get_op_opfamily_properties(opno, opfamily, false,
    3006             :                                &op_strategy,
    3007             :                                &op_lefttype,
    3008             :                                &op_righttype);
    3009             :     Assert(op_strategy == BTEqualStrategyNumber);
    3010             : 
    3011             :     /*
    3012             :      * Look up the various operators we need.  If we don't find them all, it
    3013             :      * probably means the opfamily is broken, but we just fail silently.
    3014             :      *
    3015             :      * Note: we expect that pg_statistic histograms will be sorted by the '<'
    3016             :      * operator, regardless of which sort direction we are considering.
    3017             :      */
    3018      100360 :     switch (strategy)
    3019             :     {
    3020      100306 :         case BTLessStrategyNumber:
    3021      100306 :             isgt = false;
    3022      100306 :             if (op_lefttype == op_righttype)
    3023             :             {
    3024             :                 /* easy case */
    3025       99006 :                 ltop = get_opfamily_member(opfamily,
    3026             :                                            op_lefttype, op_righttype,
    3027             :                                            BTLessStrategyNumber);
    3028       99006 :                 leop = get_opfamily_member(opfamily,
    3029             :                                            op_lefttype, op_righttype,
    3030             :                                            BTLessEqualStrategyNumber);
    3031       99006 :                 lsortop = ltop;
    3032       99006 :                 rsortop = ltop;
    3033       99006 :                 lstatop = lsortop;
    3034       99006 :                 rstatop = rsortop;
    3035       99006 :                 revltop = ltop;
    3036       99006 :                 revleop = leop;
    3037             :             }
    3038             :             else
    3039             :             {
    3040        1300 :                 ltop = get_opfamily_member(opfamily,
    3041             :                                            op_lefttype, op_righttype,
    3042             :                                            BTLessStrategyNumber);
    3043        1300 :                 leop = get_opfamily_member(opfamily,
    3044             :                                            op_lefttype, op_righttype,
    3045             :                                            BTLessEqualStrategyNumber);
    3046        1300 :                 lsortop = get_opfamily_member(opfamily,
    3047             :                                               op_lefttype, op_lefttype,
    3048             :                                               BTLessStrategyNumber);
    3049        1300 :                 rsortop = get_opfamily_member(opfamily,
    3050             :                                               op_righttype, op_righttype,
    3051             :                                               BTLessStrategyNumber);
    3052        1300 :                 lstatop = lsortop;
    3053        1300 :                 rstatop = rsortop;
    3054        1300 :                 revltop = get_opfamily_member(opfamily,
    3055             :                                               op_righttype, op_lefttype,
    3056             :                                               BTLessStrategyNumber);
    3057        1300 :                 revleop = get_opfamily_member(opfamily,
    3058             :                                               op_righttype, op_lefttype,
    3059             :                                               BTLessEqualStrategyNumber);
    3060             :             }
    3061      100306 :             break;
    3062          54 :         case BTGreaterStrategyNumber:
    3063             :             /* descending-order case */
    3064          54 :             isgt = true;
    3065          54 :             if (op_lefttype == op_righttype)
    3066             :             {
    3067             :                 /* easy case */
    3068          54 :                 ltop = get_opfamily_member(opfamily,
    3069             :                                            op_lefttype, op_righttype,
    3070             :                                            BTGreaterStrategyNumber);
    3071          54 :                 leop = get_opfamily_member(opfamily,
    3072             :                                            op_lefttype, op_righttype,
    3073             :                                            BTGreaterEqualStrategyNumber);
    3074          54 :                 lsortop = ltop;
    3075          54 :                 rsortop = ltop;
    3076          54 :                 lstatop = get_opfamily_member(opfamily,
    3077             :                                               op_lefttype, op_lefttype,
    3078             :                                               BTLessStrategyNumber);
    3079          54 :                 rstatop = lstatop;
    3080          54 :                 revltop = ltop;
    3081          54 :                 revleop = leop;
    3082             :             }
    3083             :             else
    3084             :             {
    3085           0 :                 ltop = get_opfamily_member(opfamily,
    3086             :                                            op_lefttype, op_righttype,
    3087             :                                            BTGreaterStrategyNumber);
    3088           0 :                 leop = get_opfamily_member(opfamily,
    3089             :                                            op_lefttype, op_righttype,
    3090             :                                            BTGreaterEqualStrategyNumber);
    3091           0 :                 lsortop = get_opfamily_member(opfamily,
    3092             :                                               op_lefttype, op_lefttype,
    3093             :                                               BTGreaterStrategyNumber);
    3094           0 :                 rsortop = get_opfamily_member(opfamily,
    3095             :                                               op_righttype, op_righttype,
    3096             :                                               BTGreaterStrategyNumber);
    3097           0 :                 lstatop = get_opfamily_member(opfamily,
    3098             :                                               op_lefttype, op_lefttype,
    3099             :                                               BTLessStrategyNumber);
    3100           0 :                 rstatop = get_opfamily_member(opfamily,
    3101             :                                               op_righttype, op_righttype,
    3102             :                                               BTLessStrategyNumber);
    3103           0 :                 revltop = get_opfamily_member(opfamily,
    3104             :                                               op_righttype, op_lefttype,
    3105             :                                               BTGreaterStrategyNumber);
    3106           0 :                 revleop = get_opfamily_member(opfamily,
    3107             :                                               op_righttype, op_lefttype,
    3108             :                                               BTGreaterEqualStrategyNumber);
    3109             :             }
    3110          54 :             break;
    3111           0 :         default:
    3112           0 :             goto fail;          /* shouldn't get here */
    3113             :     }
    3114             : 
    3115      100360 :     if (!OidIsValid(lsortop) ||
    3116      100360 :         !OidIsValid(rsortop) ||
    3117      100360 :         !OidIsValid(lstatop) ||
    3118      100360 :         !OidIsValid(rstatop) ||
    3119      100348 :         !OidIsValid(ltop) ||
    3120      100348 :         !OidIsValid(leop) ||
    3121      100348 :         !OidIsValid(revltop) ||
    3122             :         !OidIsValid(revleop))
    3123          12 :         goto fail;              /* insufficient info in catalogs */
    3124             : 
    3125             :     /* Try to get ranges of both inputs */
    3126      100348 :     if (!isgt)
    3127             :     {
    3128      100294 :         if (!get_variable_range(root, &leftvar, lstatop, collation,
    3129             :                                 &leftmin, &leftmax))
    3130       21348 :             goto fail;          /* no range available from stats */
    3131       78946 :         if (!get_variable_range(root, &rightvar, rstatop, collation,
    3132             :                                 &rightmin, &rightmax))
    3133       18484 :             goto fail;          /* no range available from stats */
    3134             :     }
    3135             :     else
    3136             :     {
    3137             :         /* need to swap the max and min */
    3138          54 :         if (!get_variable_range(root, &leftvar, lstatop, collation,
    3139             :                                 &leftmax, &leftmin))
    3140          30 :             goto fail;          /* no range available from stats */
    3141          24 :         if (!get_variable_range(root, &rightvar, rstatop, collation,
    3142             :                                 &rightmax, &rightmin))
    3143           0 :             goto fail;          /* no range available from stats */
    3144             :     }
    3145             : 
    3146             :     /*
    3147             :      * Now, the fraction of the left variable that will be scanned is the
    3148             :      * fraction that's <= the right-side maximum value.  But only believe
    3149             :      * non-default estimates, else stick with our 1.0.
    3150             :      */
    3151       60486 :     selec = scalarineqsel(root, leop, isgt, true, collation, &leftvar,
    3152             :                           rightmax, op_righttype);
    3153       60486 :     if (selec != DEFAULT_INEQ_SEL)
    3154       60480 :         *leftend = selec;
    3155             : 
    3156             :     /* And similarly for the right variable. */
    3157       60486 :     selec = scalarineqsel(root, revleop, isgt, true, collation, &rightvar,
    3158             :                           leftmax, op_lefttype);
    3159       60486 :     if (selec != DEFAULT_INEQ_SEL)
    3160       60486 :         *rightend = selec;
    3161             : 
    3162             :     /*
    3163             :      * Only one of the two "end" fractions can really be less than 1.0;
    3164             :      * believe the smaller estimate and reset the other one to exactly 1.0. If
    3165             :      * we get exactly equal estimates (as can easily happen with self-joins),
    3166             :      * believe neither.
    3167             :      */
    3168       60486 :     if (*leftend > *rightend)
    3169       23570 :         *leftend = 1.0;
    3170       36916 :     else if (*leftend < *rightend)
    3171       30694 :         *rightend = 1.0;
    3172             :     else
    3173        6222 :         *leftend = *rightend = 1.0;
    3174             : 
    3175             :     /*
    3176             :      * Also, the fraction of the left variable that will be scanned before the
    3177             :      * first join pair is found is the fraction that's < the right-side
    3178             :      * minimum value.  But only believe non-default estimates, else stick with
    3179             :      * our own default.
    3180             :      */
    3181       60486 :     selec = scalarineqsel(root, ltop, isgt, false, collation, &leftvar,
    3182             :                           rightmin, op_righttype);
    3183       60486 :     if (selec != DEFAULT_INEQ_SEL)
    3184       60486 :         *leftstart = selec;
    3185             : 
    3186             :     /* And similarly for the right variable. */
    3187       60486 :     selec = scalarineqsel(root, revltop, isgt, false, collation, &rightvar,
    3188             :                           leftmin, op_lefttype);
    3189       60486 :     if (selec != DEFAULT_INEQ_SEL)
    3190       60486 :         *rightstart = selec;
    3191             : 
    3192             :     /*
    3193             :      * Only one of the two "start" fractions can really be more than zero;
    3194             :      * believe the larger estimate and reset the other one to exactly 0.0. If
    3195             :      * we get exactly equal estimates (as can easily happen with self-joins),
    3196             :      * believe neither.
    3197             :      */
    3198       60486 :     if (*leftstart < *rightstart)
    3199       18762 :         *leftstart = 0.0;
    3200       41724 :     else if (*leftstart > *rightstart)
    3201       23318 :         *rightstart = 0.0;
    3202             :     else
    3203       18406 :         *leftstart = *rightstart = 0.0;
    3204             : 
    3205             :     /*
    3206             :      * If the sort order is nulls-first, we're going to have to skip over any
    3207             :      * nulls too.  These would not have been counted by scalarineqsel, and we
    3208             :      * can safely add in this fraction regardless of whether we believe
    3209             :      * scalarineqsel's results or not.  But be sure to clamp the sum to 1.0!
    3210             :      */
    3211       60486 :     if (nulls_first)
    3212             :     {
    3213             :         Form_pg_statistic stats;
    3214             : 
    3215          24 :         if (HeapTupleIsValid(leftvar.statsTuple))
    3216             :         {
    3217          24 :             stats = (Form_pg_statistic) GETSTRUCT(leftvar.statsTuple);
    3218          24 :             *leftstart += stats->stanullfrac;
    3219          24 :             CLAMP_PROBABILITY(*leftstart);
    3220          24 :             *leftend += stats->stanullfrac;
    3221          24 :             CLAMP_PROBABILITY(*leftend);
    3222             :         }
    3223          24 :         if (HeapTupleIsValid(rightvar.statsTuple))
    3224             :         {
    3225          24 :             stats = (Form_pg_statistic) GETSTRUCT(rightvar.statsTuple);
    3226          24 :             *rightstart += stats->stanullfrac;
    3227          24 :             CLAMP_PROBABILITY(*rightstart);
    3228          24 :             *rightend += stats->stanullfrac;
    3229          24 :             CLAMP_PROBABILITY(*rightend);
    3230             :         }
    3231             :     }
    3232             : 
    3233             :     /* Disbelieve start >= end, just in case that can happen */
    3234       60486 :     if (*leftstart >= *leftend)
    3235             :     {
    3236         204 :         *leftstart = 0.0;
    3237         204 :         *leftend = 1.0;
    3238             :     }
    3239       60486 :     if (*rightstart >= *rightend)
    3240             :     {
    3241         954 :         *rightstart = 0.0;
    3242         954 :         *rightend = 1.0;
    3243             :     }
    3244             : 
    3245       59532 : fail:
    3246      100360 :     ReleaseVariableStats(leftvar);
    3247      100360 :     ReleaseVariableStats(rightvar);
    3248             : }
    3249             : 
    3250             : 
    3251             : /*
    3252             :  *  matchingsel -- generic matching-operator selectivity support
    3253             :  *
    3254             :  * Use these for any operators that (a) are on data types for which we collect
    3255             :  * standard statistics, and (b) have behavior for which the default estimate
    3256             :  * (twice DEFAULT_EQ_SEL) is sane.  Typically that is good for match-like
    3257             :  * operators.
    3258             :  */
    3259             : 
    3260             : Datum
    3261        1106 : matchingsel(PG_FUNCTION_ARGS)
    3262             : {
    3263        1106 :     PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
    3264        1106 :     Oid         operator = PG_GETARG_OID(1);
    3265        1106 :     List       *args = (List *) PG_GETARG_POINTER(2);
    3266        1106 :     int         varRelid = PG_GETARG_INT32(3);
    3267        1106 :     Oid         collation = PG_GET_COLLATION();
    3268             :     double      selec;
    3269             : 
    3270             :     /* Use generic restriction selectivity logic. */
    3271        1106 :     selec = generic_restriction_selectivity(root, operator, collation,
    3272             :                                             args, varRelid,
    3273             :                                             DEFAULT_MATCHING_SEL);
    3274             : 
    3275        1106 :     PG_RETURN_FLOAT8((float8) selec);
    3276             : }
    3277             : 
    3278             : Datum
    3279           6 : matchingjoinsel(PG_FUNCTION_ARGS)
    3280             : {
    3281             :     /* Just punt, for the moment. */
    3282           6 :     PG_RETURN_FLOAT8(DEFAULT_MATCHING_SEL);
    3283             : }
    3284             : 
    3285             : 
    3286             : /*
    3287             :  * Helper routine for estimate_num_groups: add an item to a list of
    3288             :  * GroupVarInfos, but only if it's not known equal to any of the existing
    3289             :  * entries.
    3290             :  */
    3291             : typedef struct
    3292             : {
    3293             :     Node       *var;            /* might be an expression, not just a Var */
    3294             :     RelOptInfo *rel;            /* relation it belongs to */
    3295             :     double      ndistinct;      /* # distinct values */
    3296             :     bool        isdefault;      /* true if DEFAULT_NUM_DISTINCT was used */
    3297             : } GroupVarInfo;
    3298             : 
    3299             : static List *
    3300      299738 : add_unique_group_var(PlannerInfo *root, List *varinfos,
    3301             :                      Node *var, VariableStatData *vardata)
    3302             : {
    3303             :     GroupVarInfo *varinfo;
    3304             :     double      ndistinct;
    3305             :     bool        isdefault;
    3306             :     ListCell   *lc;
    3307             : 
    3308      299738 :     ndistinct = get_variable_numdistinct(vardata, &isdefault);
    3309             : 
    3310             :     /*
    3311             :      * The nullingrels bits within the var could cause the same var to be
    3312             :      * counted multiple times if it's marked with different nullingrels.  They
    3313             :      * could also prevent us from matching the var to the expressions in
    3314             :      * extended statistics (see estimate_multivariate_ndistinct).  So strip
    3315             :      * them out first.
    3316             :      */
    3317      299738 :     var = remove_nulling_relids(var, root->outer_join_rels, NULL);
    3318             : 
    3319      384522 :     foreach(lc, varinfos)
    3320             :     {
    3321       85586 :         varinfo = (GroupVarInfo *) lfirst(lc);
    3322             : 
    3323             :         /* Drop exact duplicates */
    3324       85586 :         if (equal(var, varinfo->var))
    3325         802 :             return varinfos;
    3326             : 
    3327             :         /*
    3328             :          * Drop known-equal vars, but only if they belong to different
    3329             :          * relations (see comments for estimate_num_groups).  We aren't too
    3330             :          * fussy about the semantics of "equal" here.
    3331             :          */
    3332       90792 :         if (vardata->rel != varinfo->rel &&
    3333        5888 :             exprs_known_equal(root, var, varinfo->var, InvalidOid))
    3334             :         {
    3335         120 :             if (varinfo->ndistinct <= ndistinct)
    3336             :             {
    3337             :                 /* Keep older item, forget new one */
    3338         120 :                 return varinfos;
    3339             :             }
    3340             :             else
    3341             :             {
    3342             :                 /* Delete the older item */
    3343           0 :                 varinfos = foreach_delete_current(varinfos, lc);
    3344             :             }
    3345             :         }
    3346             :     }
    3347             : 
    3348      298936 :     varinfo = (GroupVarInfo *) palloc(sizeof(GroupVarInfo));
    3349             : 
    3350      298936 :     varinfo->var = var;
    3351      298936 :     varinfo->rel = vardata->rel;
    3352      298936 :     varinfo->ndistinct = ndistinct;
    3353      298936 :     varinfo->isdefault = isdefault;
    3354      298936 :     varinfos = lappend(varinfos, varinfo);
    3355      298936 :     return varinfos;
    3356             : }
    3357             : 
    3358             : /*
    3359             :  * estimate_num_groups      - Estimate number of groups in a grouped query
    3360             :  *
    3361             :  * Given a query having a GROUP BY clause, estimate how many groups there
    3362             :  * will be --- ie, the number of distinct combinations of the GROUP BY
    3363             :  * expressions.
    3364             :  *
    3365             :  * This routine is also used to estimate the number of rows emitted by
    3366             :  * a DISTINCT filtering step; that is an isomorphic problem.  (Note:
    3367             :  * actually, we only use it for DISTINCT when there's no grouping or
    3368             :  * aggregation ahead of the DISTINCT.)
    3369             :  *
    3370             :  * Inputs:
    3371             :  *  root - the query
    3372             :  *  groupExprs - list of expressions being grouped by
    3373             :  *  input_rows - number of rows estimated to arrive at the group/unique
    3374             :  *      filter step
    3375             :  *  pgset - NULL, or a List** pointing to a grouping set to filter the
    3376             :  *      groupExprs against
    3377             :  *
    3378             :  * Outputs:
    3379             :  *  estinfo - When passed as non-NULL, the function will set bits in the
    3380             :  *      "flags" field in order to provide callers with additional information
    3381             :  *      about the estimation.  Currently, we only set the SELFLAG_USED_DEFAULT
    3382             :  *      bit if we used any default values in the estimation.
    3383             :  *
    3384             :  * Given the lack of any cross-correlation statistics in the system, it's
    3385             :  * impossible to do anything really trustworthy with GROUP BY conditions
    3386             :  * involving multiple Vars.  We should however avoid assuming the worst
    3387             :  * case (all possible cross-product terms actually appear as groups) since
    3388             :  * very often the grouped-by Vars are highly correlated.  Our current approach
    3389             :  * is as follows:
    3390             :  *  1.  Expressions yielding boolean are assumed to contribute two groups,
    3391             :  *      independently of their content, and are ignored in the subsequent
    3392             :  *      steps.  This is mainly because tests like "col IS NULL" break the
    3393             :  *      heuristic used in step 2 especially badly.
    3394             :  *  2.  Reduce the given expressions to a list of unique Vars used.  For
    3395             :  *      example, GROUP BY a, a + b is treated the same as GROUP BY a, b.
    3396             :  *      It is clearly correct not to count the same Var more than once.
    3397             :  *      It is also reasonable to treat f(x) the same as x: f() cannot
    3398             :  *      increase the number of distinct values (unless it is volatile,
    3399             :  *      which we consider unlikely for grouping), but it probably won't
    3400             :  *      reduce the number of distinct values much either.
    3401             :  *      As a special case, if a GROUP BY expression can be matched to an
    3402             :  *      expressional index for which we have statistics, then we treat the
    3403             :  *      whole expression as though it were just a Var.
    3404             :  *  3.  If the list contains Vars of different relations that are known equal
    3405             :  *      due to equivalence classes, then drop all but one of the Vars from each
    3406             :  *      known-equal set, keeping the one with smallest estimated # of values
    3407             :  *      (since the extra values of the others can't appear in joined rows).
    3408             :  *      Note the reason we only consider Vars of different relations is that
    3409             :  *      if we considered ones of the same rel, we'd be double-counting the
    3410             :  *      restriction selectivity of the equality in the next step.
    3411             :  *  4.  For Vars within a single source rel, we multiply together the numbers
    3412             :  *      of values, clamp to the number of rows in the rel (divided by 10 if
    3413             :  *      more than one Var), and then multiply by a factor based on the
    3414             :  *      selectivity of the restriction clauses for that rel.  When there's
    3415             :  *      more than one Var, the initial product is probably too high (it's the
    3416             :  *      worst case) but clamping to a fraction of the rel's rows seems to be a
    3417             :  *      helpful heuristic for not letting the estimate get out of hand.  (The
    3418             :  *      factor of 10 is derived from pre-Postgres-7.4 practice.)  The factor
    3419             :  *      we multiply by to adjust for the restriction selectivity assumes that
    3420             :  *      the restriction clauses are independent of the grouping, which may not
    3421             :  *      be a valid assumption, but it's hard to do better.
    3422             :  *  5.  If there are Vars from multiple rels, we repeat step 4 for each such
    3423             :  *      rel, and multiply the results together.
    3424             :  * Note that rels not containing grouped Vars are ignored completely, as are
    3425             :  * join clauses.  Such rels cannot increase the number of groups, and we
    3426             :  * assume such clauses do not reduce the number either (somewhat bogus,
    3427             :  * but we don't have the info to do better).
    3428             :  */
    3429             : double
    3430      263228 : estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
    3431             :                     List **pgset, EstimationInfo *estinfo)
    3432             : {
    3433      263228 :     List       *varinfos = NIL;
    3434      263228 :     double      srf_multiplier = 1.0;
    3435             :     double      numdistinct;
    3436             :     ListCell   *l;
    3437             :     int         i;
    3438             : 
    3439             :     /* Zero the estinfo output parameter, if non-NULL */
    3440      263228 :     if (estinfo != NULL)
    3441      233274 :         memset(estinfo, 0, sizeof(EstimationInfo));
    3442             : 
    3443             :     /*
    3444             :      * We don't ever want to return an estimate of zero groups, as that tends
    3445             :      * to lead to division-by-zero and other unpleasantness.  The input_rows
    3446             :      * estimate is usually already at least 1, but clamp it just in case it
    3447             :      * isn't.
    3448             :      */
    3449      263228 :     input_rows = clamp_row_est(input_rows);
    3450             : 
    3451             :     /*
    3452             :      * If no grouping columns, there's exactly one group.  (This can't happen
    3453             :      * for normal cases with GROUP BY or DISTINCT, but it is possible for
    3454             :      * corner cases with set operations.)
    3455             :      */
    3456      263228 :     if (groupExprs == NIL || (pgset && *pgset == NIL))
    3457        1002 :         return 1.0;
    3458             : 
    3459             :     /*
    3460             :      * Count groups derived from boolean grouping expressions.  For other
    3461             :      * expressions, find the unique Vars used, treating an expression as a Var
    3462             :      * if we can find stats for it.  For each one, record the statistical
    3463             :      * estimate of number of distinct values (total in its table, without
    3464             :      * regard for filtering).
    3465             :      */
    3466      262226 :     numdistinct = 1.0;
    3467             : 
    3468      262226 :     i = 0;
    3469      560522 :     foreach(l, groupExprs)
    3470             :     {
    3471      298344 :         Node       *groupexpr = (Node *) lfirst(l);
    3472             :         double      this_srf_multiplier;
    3473             :         VariableStatData vardata;
    3474             :         List       *varshere;
    3475             :         ListCell   *l2;
    3476             : 
    3477             :         /* is expression in this grouping set? */
    3478      298344 :         if (pgset && !list_member_int(*pgset, i++))
    3479      251836 :             continue;
    3480             : 
    3481             :         /*
    3482             :          * Set-returning functions in grouping columns are a bit problematic.
    3483             :          * The code below will effectively ignore their SRF nature and come up
    3484             :          * with a numdistinct estimate as though they were scalar functions.
    3485             :          * We compensate by scaling up the end result by the largest SRF
    3486             :          * rowcount estimate.  (This will be an overestimate if the SRF
    3487             :          * produces multiple copies of any output value, but it seems best to
    3488             :          * assume the SRF's outputs are distinct.  In any case, it's probably
    3489             :          * pointless to worry too much about this without much better
    3490             :          * estimates for SRF output rowcounts than we have today.)
    3491             :          */
    3492      297556 :         this_srf_multiplier = expression_returns_set_rows(root, groupexpr);
    3493      297556 :         if (srf_multiplier < this_srf_multiplier)
    3494         132 :             srf_multiplier = this_srf_multiplier;
    3495             : 
    3496             :         /* Short-circuit for expressions returning boolean */
    3497      297556 :         if (exprType(groupexpr) == BOOLOID)
    3498             :         {
    3499         240 :             numdistinct *= 2.0;
    3500         240 :             continue;
    3501             :         }
    3502             : 
    3503             :         /*
    3504             :          * If examine_variable is able to deduce anything about the GROUP BY
    3505             :          * expression, treat it as a single variable even if it's really more
    3506             :          * complicated.
    3507             :          *
    3508             :          * XXX This has the consequence that if there's a statistics object on
    3509             :          * the expression, we don't split it into individual Vars. This
    3510             :          * affects our selection of statistics in
    3511             :          * estimate_multivariate_ndistinct, because it's probably better to
    3512             :          * use more accurate estimate for each expression and treat them as
    3513             :          * independent, than to combine estimates for the extracted variables
    3514             :          * when we don't know how that relates to the expressions.
    3515             :          */
    3516      297316 :         examine_variable(root, groupexpr, 0, &vardata);
    3517      297316 :         if (HeapTupleIsValid(vardata.statsTuple) || vardata.isunique)
    3518             :         {
    3519      250184 :             varinfos = add_unique_group_var(root, varinfos,
    3520             :                                             groupexpr, &vardata);
    3521      250184 :             ReleaseVariableStats(vardata);
    3522      250184 :             continue;
    3523             :         }
    3524       47132 :         ReleaseVariableStats(vardata);
    3525             : 
    3526             :         /*
    3527             :          * Else pull out the component Vars.  Handle PlaceHolderVars by
    3528             :          * recursing into their arguments (effectively assuming that the
    3529             :          * PlaceHolderVar doesn't change the number of groups, which boils
    3530             :          * down to ignoring the possible addition of nulls to the result set).
    3531             :          */
    3532       47132 :         varshere = pull_var_clause(groupexpr,
    3533             :                                    PVC_RECURSE_AGGREGATES |
    3534             :                                    PVC_RECURSE_WINDOWFUNCS |
    3535             :                                    PVC_RECURSE_PLACEHOLDERS);
    3536             : 
    3537             :         /*
    3538             :          * If we find any variable-free GROUP BY item, then either it is a
    3539             :          * constant (and we can ignore it) or it contains a volatile function;
    3540             :          * in the latter case we punt and assume that each input row will
    3541             :          * yield a distinct group.
    3542             :          */
    3543       47132 :         if (varshere == NIL)
    3544             :         {
    3545         672 :             if (contain_volatile_functions(groupexpr))
    3546          48 :                 return input_rows;
    3547         624 :             continue;
    3548             :         }
    3549             : 
    3550             :         /*
    3551             :          * Else add variables to varinfos list
    3552             :          */
    3553       96014 :         foreach(l2, varshere)
    3554             :         {
    3555       49554 :             Node       *var = (Node *) lfirst(l2);
    3556             : 
    3557       49554 :             examine_variable(root, var, 0, &vardata);
    3558       49554 :             varinfos = add_unique_group_var(root, varinfos, var, &vardata);
    3559       49554 :             ReleaseVariableStats(vardata);
    3560             :         }
    3561             :     }
    3562             : 
    3563             :     /*
    3564             :      * If now no Vars, we must have an all-constant or all-boolean GROUP BY
    3565             :      * list.
    3566             :      */
    3567      262178 :     if (varinfos == NIL)
    3568             :     {
    3569             :         /* Apply SRF multiplier as we would do in the long path */
    3570         334 :         numdistinct *= srf_multiplier;
    3571             :         /* Round off */
    3572         334 :         numdistinct = ceil(numdistinct);
    3573             :         /* Guard against out-of-range answers */
    3574         334 :         if (numdistinct > input_rows)
    3575          38 :             numdistinct = input_rows;
    3576         334 :         if (numdistinct < 1.0)
    3577           0 :             numdistinct = 1.0;
    3578         334 :         return numdistinct;
    3579             :     }
    3580             : 
    3581             :     /*
    3582             :      * Group Vars by relation and estimate total numdistinct.
    3583             :      *
    3584             :      * For each iteration of the outer loop, we process the frontmost Var in
    3585             :      * varinfos, plus all other Vars in the same relation.  We remove these
    3586             :      * Vars from the newvarinfos list for the next iteration. This is the
    3587             :      * easiest way to group Vars of same rel together.
    3588             :      */
    3589             :     do
    3590             :     {
    3591      263762 :         GroupVarInfo *varinfo1 = (GroupVarInfo *) linitial(varinfos);
    3592      263762 :         RelOptInfo *rel = varinfo1->rel;
    3593      263762 :         double      reldistinct = 1;
    3594      263762 :         double      relmaxndistinct = reldistinct;
    3595      263762 :         int         relvarcount = 0;
    3596      263762 :         List       *newvarinfos = NIL;
    3597      263762 :         List       *relvarinfos = NIL;
    3598             : 
    3599             :         /*
    3600             :          * Split the list of varinfos in two - one for the current rel, one
    3601             :          * for remaining Vars on other rels.
    3602             :          */
    3603      263762 :         relvarinfos = lappend(relvarinfos, varinfo1);
    3604      304062 :         for_each_from(l, varinfos, 1)
    3605             :         {
    3606       40300 :             GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
    3607             : 
    3608       40300 :             if (varinfo2->rel == varinfo1->rel)
    3609             :             {
    3610             :                 /* varinfos on current rel */
    3611       35174 :                 relvarinfos = lappend(relvarinfos, varinfo2);
    3612             :             }
    3613             :             else
    3614             :             {
    3615             :                 /* not time to process varinfo2 yet */
    3616        5126 :                 newvarinfos = lappend(newvarinfos, varinfo2);
    3617             :             }
    3618             :         }
    3619             : 
    3620             :         /*
    3621             :          * Get the numdistinct estimate for the Vars of this rel.  We
    3622             :          * iteratively search for multivariate n-distinct with maximum number
    3623             :          * of vars; assuming that each var group is independent of the others,
    3624             :          * we multiply them together.  Any remaining relvarinfos after no more
    3625             :          * multivariate matches are found are assumed independent too, so
    3626             :          * their individual ndistinct estimates are multiplied also.
    3627             :          *
    3628             :          * While iterating, count how many separate numdistinct values we
    3629             :          * apply.  We apply a fudge factor below, but only if we multiplied
    3630             :          * more than one such values.
    3631             :          */
    3632      527650 :         while (relvarinfos)
    3633             :         {
    3634             :             double      mvndistinct;
    3635             : 
    3636      263888 :             if (estimate_multivariate_ndistinct(root, rel, &relvarinfos,
    3637             :                                                 &mvndistinct))
    3638             :             {
    3639         402 :                 reldistinct *= mvndistinct;
    3640         402 :                 if (relmaxndistinct < mvndistinct)
    3641         390 :                     relmaxndistinct = mvndistinct;
    3642         402 :                 relvarcount++;
    3643             :             }
    3644             :             else
    3645             :             {
    3646      561570 :                 foreach(l, relvarinfos)
    3647             :                 {
    3648      298084 :                     GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
    3649             : 
    3650      298084 :                     reldistinct *= varinfo2->ndistinct;
    3651      298084 :                     if (relmaxndistinct < varinfo2->ndistinct)
    3652      261684 :                         relmaxndistinct = varinfo2->ndistinct;
    3653      298084 :                     relvarcount++;
    3654             : 
    3655             :                     /*
    3656             :                      * When varinfo2's isdefault is set then we'd better set
    3657             :                      * the SELFLAG_USED_DEFAULT bit in the EstimationInfo.
    3658             :                      */
    3659      298084 :                     if (estinfo != NULL && varinfo2->isdefault)
    3660       13412 :                         estinfo->flags |= SELFLAG_USED_DEFAULT;
    3661             :                 }
    3662             : 
    3663             :                 /* we're done with this relation */
    3664      263486 :                 relvarinfos = NIL;
    3665             :             }
    3666             :         }
    3667             : 
    3668             :         /*
    3669             :          * Sanity check --- don't divide by zero if empty relation.
    3670             :          */
    3671             :         Assert(IS_SIMPLE_REL(rel));
    3672      263762 :         if (rel->tuples > 0)
    3673             :         {
    3674             :             /*
    3675             :              * Clamp to size of rel, or size of rel / 10 if multiple Vars. The
    3676             :              * fudge factor is because the Vars are probably correlated but we
    3677             :              * don't know by how much.  We should never clamp to less than the
    3678             :              * largest ndistinct value for any of the Vars, though, since
    3679             :              * there will surely be at least that many groups.
    3680             :              */
    3681      262570 :             double      clamp = rel->tuples;
    3682             : 
    3683      262570 :             if (relvarcount > 1)
    3684             :             {
    3685       29352 :                 clamp *= 0.1;
    3686       29352 :                 if (clamp < relmaxndistinct)
    3687             :                 {
    3688       27740 :                     clamp = relmaxndistinct;
    3689             :                     /* for sanity in case some ndistinct is too large: */
    3690       27740 :                     if (clamp > rel->tuples)
    3691          78 :                         clamp = rel->tuples;
    3692             :                 }
    3693             :             }
    3694      262570 :             if (reldistinct > clamp)
    3695       27460 :                 reldistinct = clamp;
    3696             : 
    3697             :             /*
    3698             :              * Update the estimate based on the restriction selectivity,
    3699             :              * guarding against division by zero when reldistinct is zero.
    3700             :              * Also skip this if we know that we are returning all rows.
    3701             :              */
    3702      262570 :             if (reldistinct > 0 && rel->rows < rel->tuples)
    3703             :             {
    3704             :                 /*
    3705             :                  * Given a table containing N rows with n distinct values in a
    3706             :                  * uniform distribution, if we select p rows at random then
    3707             :                  * the expected number of distinct values selected is
    3708             :                  *
    3709             :                  * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1))
    3710             :                  *
    3711             :                  * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!)
    3712             :                  *
    3713             :                  * See "Approximating block accesses in database
    3714             :                  * organizations", S. B. Yao, Communications of the ACM,
    3715             :                  * Volume 20 Issue 4, April 1977 Pages 260-261.
    3716             :                  *
    3717             :                  * Alternatively, re-arranging the terms from the factorials,
    3718             :                  * this may be written as
    3719             :                  *
    3720             :                  * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1))
    3721             :                  *
    3722             :                  * This form of the formula is more efficient to compute in
    3723             :                  * the common case where p is larger than N/n.  Additionally,
    3724             :                  * as pointed out by Dell'Era, if i << N for all terms in the
    3725             :                  * product, it can be approximated by
    3726             :                  *
    3727             :                  * n * (1 - ((N-p)/N)^(N/n))
    3728             :                  *
    3729             :                  * See "Expected distinct values when selecting from a bag
    3730             :                  * without replacement", Alberto Dell'Era,
    3731             :                  * http://www.adellera.it/investigations/distinct_balls/.
    3732             :                  *
    3733             :                  * The condition i << N is equivalent to n >> 1, so this is a
    3734             :                  * good approximation when the number of distinct values in
    3735             :                  * the table is large.  It turns out that this formula also
    3736             :                  * works well even when n is small.
    3737             :                  */
    3738       76214 :                 reldistinct *=
    3739       76214 :                     (1 - pow((rel->tuples - rel->rows) / rel->tuples,
    3740       76214 :                              rel->tuples / reldistinct));
    3741             :             }
    3742      262570 :             reldistinct = clamp_row_est(reldistinct);
    3743             : 
    3744             :             /*
    3745             :              * Update estimate of total distinct groups.
    3746             :              */
    3747      262570 :             numdistinct *= reldistinct;
    3748             :         }
    3749             : 
    3750      263762 :         varinfos = newvarinfos;
    3751      263762 :     } while (varinfos != NIL);
    3752             : 
    3753             :     /* Now we can account for the effects of any SRFs */
    3754      261844 :     numdistinct *= srf_multiplier;
    3755             : 
    3756             :     /* Round off */
    3757      261844 :     numdistinct = ceil(numdistinct);
    3758             : 
    3759             :     /* Guard against out-of-range answers */
    3760      261844 :     if (numdistinct > input_rows)
    3761       52078 :         numdistinct = input_rows;
    3762      261844 :     if (numdistinct < 1.0)
    3763           0 :         numdistinct = 1.0;
    3764             : 
    3765      261844 :     return numdistinct;
    3766             : }
    3767             : 
    3768             : /*
    3769             :  * Estimate hash bucket statistics when the specified expression is used
    3770             :  * as a hash key for the given number of buckets.
    3771             :  *
    3772             :  * This attempts to determine two values:
    3773             :  *
    3774             :  * 1. The frequency of the most common value of the expression (returns
    3775             :  * zero into *mcv_freq if we can't get that).
    3776             :  *
    3777             :  * 2. The "bucketsize fraction", ie, average number of entries in a bucket
    3778             :  * divided by total tuples in relation.
    3779             :  *
    3780             :  * XXX This is really pretty bogus since we're effectively assuming that the
    3781             :  * distribution of hash keys will be the same after applying restriction
    3782             :  * clauses as it was in the underlying relation.  However, we are not nearly
    3783             :  * smart enough to figure out how the restrict clauses might change the
    3784             :  * distribution, so this will have to do for now.
    3785             :  *
    3786             :  * We are passed the number of buckets the executor will use for the given
    3787             :  * input relation.  If the data were perfectly distributed, with the same
    3788             :  * number of tuples going into each available bucket, then the bucketsize
    3789             :  * fraction would be 1/nbuckets.  But this happy state of affairs will occur
    3790             :  * only if (a) there are at least nbuckets distinct data values, and (b)
    3791             :  * we have a not-too-skewed data distribution.  Otherwise the buckets will
    3792             :  * be nonuniformly occupied.  If the other relation in the join has a key
    3793             :  * distribution similar to this one's, then the most-loaded buckets are
    3794             :  * exactly those that will be probed most often.  Therefore, the "average"
    3795             :  * bucket size for costing purposes should really be taken as something close
    3796             :  * to the "worst case" bucket size.  We try to estimate this by adjusting the
    3797             :  * fraction if there are too few distinct data values, and then scaling up
    3798             :  * by the ratio of the most common value's frequency to the average frequency.
    3799             :  *
    3800             :  * If no statistics are available, use a default estimate of 0.1.  This will
    3801             :  * discourage use of a hash rather strongly if the inner relation is large,
    3802             :  * which is what we want.  We do not want to hash unless we know that the
    3803             :  * inner rel is well-dispersed (or the alternatives seem much worse).
    3804             :  *
    3805             :  * The caller should also check that the mcv_freq is not so large that the
    3806             :  * most common value would by itself require an impractically large bucket.
    3807             :  * In a hash join, the executor can split buckets if they get too big, but
    3808             :  * obviously that doesn't help for a bucket that contains many duplicates of
    3809             :  * the same value.
    3810             :  */
    3811             : void
    3812      141160 : estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets,
    3813             :                            Selectivity *mcv_freq,
    3814             :                            Selectivity *bucketsize_frac)
    3815             : {
    3816             :     VariableStatData vardata;
    3817             :     double      estfract,
    3818             :                 ndistinct,
    3819             :                 stanullfrac,
    3820             :                 avgfreq;
    3821             :     bool        isdefault;
    3822             :     AttStatsSlot sslot;
    3823             : 
    3824      141160 :     examine_variable(root, hashkey, 0, &vardata);
    3825             : 
    3826             :     /* Look up the frequency of the most common value, if available */
    3827      141160 :     *mcv_freq = 0.0;
    3828             : 
    3829      141160 :     if (HeapTupleIsValid(vardata.statsTuple))
    3830             :     {
    3831       98798 :         if (get_attstatsslot(&sslot, vardata.statsTuple,
    3832             :                              STATISTIC_KIND_MCV, InvalidOid,
    3833             :                              ATTSTATSSLOT_NUMBERS))
    3834             :         {
    3835             :             /*
    3836             :              * The first MCV stat is for the most common value.
    3837             :              */
    3838       46658 :             if (sslot.nnumbers > 0)
    3839       46658 :                 *mcv_freq = sslot.numbers[0];
    3840       46658 :             free_attstatsslot(&sslot);
    3841             :         }
    3842             :     }
    3843             : 
    3844             :     /* Get number of distinct values */
    3845      141160 :     ndistinct = get_variable_numdistinct(&vardata, &isdefault);
    3846             : 
    3847             :     /*
    3848             :      * If ndistinct isn't real, punt.  We normally return 0.1, but if the
    3849             :      * mcv_freq is known to be even higher than that, use it instead.
    3850             :      */
    3851      141160 :     if (isdefault)
    3852             :     {
    3853       19788 :         *bucketsize_frac = (Selectivity) Max(0.1, *mcv_freq);
    3854       19788 :         ReleaseVariableStats(vardata);
    3855       19788 :         return;
    3856             :     }
    3857             : 
    3858             :     /* Get fraction that are null */
    3859      121372 :     if (HeapTupleIsValid(vardata.statsTuple))
    3860             :     {
    3861             :         Form_pg_statistic stats;
    3862             : 
    3863       98780 :         stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
    3864       98780 :         stanullfrac = stats->stanullfrac;
    3865             :     }
    3866             :     else
    3867       22592 :         stanullfrac = 0.0;
    3868             : 
    3869             :     /* Compute avg freq of all distinct data values in raw relation */
    3870      121372 :     avgfreq = (1.0 - stanullfrac) / ndistinct;
    3871             : 
    3872             :     /*
    3873             :      * Adjust ndistinct to account for restriction clauses.  Observe we are
    3874             :      * assuming that the data distribution is affected uniformly by the
    3875             :      * restriction clauses!
    3876             :      *
    3877             :      * XXX Possibly better way, but much more expensive: multiply by
    3878             :      * selectivity of rel's restriction clauses that mention the target Var.
    3879             :      */
    3880      121372 :     if (vardata.rel && vardata.rel->tuples > 0)
    3881             :     {
    3882      121358 :         ndistinct *= vardata.rel->rows / vardata.rel->tuples;
    3883      121358 :         ndistinct = clamp_row_est(ndistinct);
    3884             :     }
    3885             : 
    3886             :     /*
    3887             :      * Initial estimate of bucketsize fraction is 1/nbuckets as long as the
    3888             :      * number of buckets is less than the expected number of distinct values;
    3889             :      * otherwise it is 1/ndistinct.
    3890             :      */
    3891      121372 :     if (ndistinct > nbuckets)
    3892          84 :         estfract = 1.0 / nbuckets;
    3893             :     else
    3894      121288 :         estfract = 1.0 / ndistinct;
    3895             : 
    3896             :     /*
    3897             :      * Adjust estimated bucketsize upward to account for skewed distribution.
    3898             :      */
    3899      121372 :     if (avgfreq > 0.0 && *mcv_freq > avgfreq)
    3900       41628 :         estfract *= *mcv_freq / avgfreq;
    3901             : 
    3902             :     /*
    3903             :      * Clamp bucketsize to sane range (the above adjustment could easily
    3904             :      * produce an out-of-range result).  We set the lower bound a little above
    3905             :      * zero, since zero isn't a very sane result.
    3906             :      */
    3907      121372 :     if (estfract < 1.0e-6)
    3908           0 :         estfract = 1.0e-6;
    3909      121372 :     else if (estfract > 1.0)
    3910       30256 :         estfract = 1.0;
    3911             : 
    3912      121372 :     *bucketsize_frac = (Selectivity) estfract;
    3913             : 
    3914      121372 :     ReleaseVariableStats(vardata);
    3915             : }
    3916             : 
    3917             : /*
    3918             :  * estimate_hashagg_tablesize
    3919             :  *    estimate the number of bytes that a hash aggregate hashtable will
    3920             :  *    require based on the agg_costs, path width and number of groups.
    3921             :  *
    3922             :  * We return the result as "double" to forestall any possible overflow
    3923             :  * problem in the multiplication by dNumGroups.
    3924             :  *
    3925             :  * XXX this may be over-estimating the size now that hashagg knows to omit
    3926             :  * unneeded columns from the hashtable.  Also for mixed-mode grouping sets,
    3927             :  * grouping columns not in the hashed set are counted here even though hashagg
    3928             :  * won't store them.  Is this a problem?
    3929             :  */
    3930             : double
    3931        2242 : estimate_hashagg_tablesize(PlannerInfo *root, Path *path,
    3932             :                            const AggClauseCosts *agg_costs, double dNumGroups)
    3933             : {
    3934             :     Size        hashentrysize;
    3935             : 
    3936        2242 :     hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
    3937        2242 :                                         path->pathtarget->width,
    3938             :                                         agg_costs->transitionSpace);
    3939             : 
    3940             :     /*
    3941             :      * Note that this disregards the effect of fill-factor and growth policy
    3942             :      * of the hash table.  That's probably ok, given that the default
    3943             :      * fill-factor is relatively high.  It'd be hard to meaningfully factor in
    3944             :      * "double-in-size" growth policies here.
    3945             :      */
    3946        2242 :     return hashentrysize * dNumGroups;
    3947             : }
    3948             : 
    3949             : 
    3950             : /*-------------------------------------------------------------------------
    3951             :  *
    3952             :  * Support routines
    3953             :  *
    3954             :  *-------------------------------------------------------------------------
    3955             :  */
    3956             : 
    3957             : /*
    3958             :  * Find applicable ndistinct statistics for the given list of VarInfos (which
    3959             :  * must all belong to the given rel), and update *ndistinct to the estimate of
    3960             :  * the MVNDistinctItem that best matches.  If a match it found, *varinfos is
    3961             :  * updated to remove the list of matched varinfos.
    3962             :  *
    3963             :  * Varinfos that aren't for simple Vars are ignored.
    3964             :  *
    3965             :  * Return true if we're able to find a match, false otherwise.
    3966             :  */
    3967             : static bool
    3968      263888 : estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel,
    3969             :                                 List **varinfos, double *ndistinct)
    3970             : {
    3971             :     ListCell   *lc;
    3972             :     int         nmatches_vars;
    3973             :     int         nmatches_exprs;
    3974      263888 :     Oid         statOid = InvalidOid;
    3975             :     MVNDistinct *stats;
    3976      263888 :     StatisticExtInfo *matched_info = NULL;
    3977      263888 :     RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
    3978             : 
    3979             :     /* bail out immediately if the table has no extended statistics */
    3980      263888 :     if (!rel->statlist)
    3981      263360 :         return false;
    3982             : 
    3983             :     /* look for the ndistinct statistics object matching the most vars */
    3984         528 :     nmatches_vars = 0;          /* we require at least two matches */
    3985         528 :     nmatches_exprs = 0;
    3986        2124 :     foreach(lc, rel->statlist)
    3987             :     {
    3988             :         ListCell   *lc2;
    3989        1596 :         StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
    3990        1596 :         int         nshared_vars = 0;
    3991        1596 :         int         nshared_exprs = 0;
    3992             : 
    3993             :         /* skip statistics of other kinds */
    3994        1596 :         if (info->kind != STATS_EXT_NDISTINCT)
    3995         750 :             continue;
    3996             : 
    3997             :         /* skip statistics with mismatching stxdinherit value */
    3998         846 :         if (info->inherit != rte->inh)
    3999          24 :             continue;
    4000             : 
    4001             :         /*
    4002             :          * Determine how many expressions (and variables in non-matched
    4003             :          * expressions) match. We'll then use these numbers to pick the
    4004             :          * statistics object that best matches the clauses.
    4005             :          */
    4006        2628 :         foreach(lc2, *varinfos)
    4007             :         {
    4008             :             ListCell   *lc3;
    4009        1806 :             GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
    4010             :             AttrNumber  attnum;
    4011             : 
    4012             :             Assert(varinfo->rel == rel);
    4013             : 
    4014             :             /* simple Var, search in statistics keys directly */
    4015        1806 :             if (IsA(varinfo->var, Var))
    4016             :             {
    4017        1440 :                 attnum = ((Var *) varinfo->var)->varattno;
    4018             : 
    4019             :                 /*
    4020             :                  * Ignore system attributes - we don't support statistics on
    4021             :                  * them, so can't match them (and it'd fail as the values are
    4022             :                  * negative).
    4023             :                  */
    4024        1440 :                 if (!AttrNumberIsForUserDefinedAttr(attnum))
    4025          12 :                     continue;
    4026             : 
    4027        1428 :                 if (bms_is_member(attnum, info->keys))
    4028         822 :                     nshared_vars++;
    4029             : 
    4030        1428 :                 continue;
    4031             :             }
    4032             : 
    4033             :             /* expression - see if it's in the statistics object */
    4034         660 :             foreach(lc3, info->exprs)
    4035             :             {
    4036         528 :                 Node       *expr = (Node *) lfirst(lc3);
    4037             : 
    4038         528 :                 if (equal(varinfo->var, expr))
    4039             :                 {
    4040         234 :                     nshared_exprs++;
    4041         234 :                     break;
    4042             :                 }
    4043             :             }
    4044             :         }
    4045             : 
    4046         822 :         if (nshared_vars + nshared_exprs < 2)
    4047         384 :             continue;
    4048             : 
    4049             :         /*
    4050             :          * Does this statistics object match more columns than the currently
    4051             :          * best object?  If so, use this one instead.
    4052             :          *
    4053             :          * XXX This should break ties using name of the object, or something
    4054             :          * like that, to make the outcome stable.
    4055             :          */
    4056         438 :         if ((nshared_exprs > nmatches_exprs) ||
    4057         330 :             (((nshared_exprs == nmatches_exprs)) && (nshared_vars > nmatches_vars)))
    4058             :         {
    4059         414 :             statOid = info->statOid;
    4060         414 :             nmatches_vars = nshared_vars;
    4061         414 :             nmatches_exprs = nshared_exprs;
    4062         414 :             matched_info = info;
    4063             :         }
    4064             :     }
    4065             : 
    4066             :     /* No match? */
    4067         528 :     if (statOid == InvalidOid)
    4068         126 :         return false;
    4069             : 
    4070             :     Assert(nmatches_vars + nmatches_exprs > 1);
    4071             : 
    4072         402 :     stats = statext_ndistinct_load(statOid, rte->inh);
    4073             : 
    4074             :     /*
    4075             :      * If we have a match, search it for the specific item that matches (there
    4076             :      * must be one), and construct the output values.
    4077             :      */
    4078         402 :     if (stats)
    4079             :     {
    4080             :         int         i;
    4081         402 :         List       *newlist = NIL;
    4082         402 :         MVNDistinctItem *item = NULL;
    4083             :         ListCell   *lc2;
    4084         402 :         Bitmapset  *matched = NULL;
    4085             :         AttrNumber  attnum_offset;
    4086             : 
    4087             :         /*
    4088             :          * How much we need to offset the attnums? If there are no
    4089             :          * expressions, no offset is needed. Otherwise offset enough to move
    4090             :          * the lowest one (which is equal to number of expressions) to 1.
    4091             :          */
    4092         402 :         if (matched_info->exprs)
    4093         144 :             attnum_offset = (list_length(matched_info->exprs) + 1);
    4094             :         else
    4095         258 :             attnum_offset = 0;
    4096             : 
    4097             :         /* see what actually matched */
    4098        1410 :         foreach(lc2, *varinfos)
    4099             :         {
    4100             :             ListCell   *lc3;
    4101             :             int         idx;
    4102        1008 :             bool        found = false;
    4103             : 
    4104        1008 :             GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
    4105             : 
    4106             :             /*
    4107             :              * Process a simple Var expression, by matching it to keys
    4108             :              * directly. If there's a matching expression, we'll try matching
    4109             :              * it later.
    4110             :              */
    4111        1008 :             if (IsA(varinfo->var, Var))
    4112             :             {
    4113         822 :                 AttrNumber  attnum = ((Var *) varinfo->var)->varattno;
    4114             : 
    4115             :                 /*
    4116             :                  * Ignore expressions on system attributes. Can't rely on the
    4117             :                  * bms check for negative values.
    4118             :                  */
    4119         822 :                 if (!AttrNumberIsForUserDefinedAttr(attnum))
    4120           6 :                     continue;
    4121             : 
    4122             :                 /* Is the variable covered by the statistics object? */
    4123         816 :                 if (!bms_is_member(attnum, matched_info->keys))
    4124         120 :                     continue;
    4125             : 
    4126         696 :                 attnum = attnum + attnum_offset;
    4127             : 
    4128             :                 /* ensure sufficient offset */
    4129             :                 Assert(AttrNumberIsForUserDefinedAttr(attnum));
    4130             : 
    4131         696 :                 matched = bms_add_member(matched, attnum);
    4132             : 
    4133         696 :                 found = true;
    4134             :             }
    4135             : 
    4136             :             /*
    4137             :              * XXX Maybe we should allow searching the expressions even if we
    4138             :              * found an attribute matching the expression? That would handle
    4139             :              * trivial expressions like "(a)" but it seems fairly useless.
    4140             :              */
    4141         882 :             if (found)
    4142         696 :                 continue;
    4143             : 
    4144             :             /* expression - see if it's in the statistics object */
    4145         186 :             idx = 0;
    4146         306 :             foreach(lc3, matched_info->exprs)
    4147             :             {
    4148         276 :                 Node       *expr = (Node *) lfirst(lc3);
    4149             : 
    4150         276 :                 if (equal(varinfo->var, expr))
    4151             :                 {
    4152         156 :                     AttrNumber  attnum = -(idx + 1);
    4153             : 
    4154         156 :                     attnum = attnum + attnum_offset;
    4155             : 
    4156             :                     /* ensure sufficient offset */
    4157             :                     Assert(AttrNumberIsForUserDefinedAttr(attnum));
    4158             : 
    4159         156 :                     matched = bms_add_member(matched, attnum);
    4160             : 
    4161             :                     /* there should be just one matching expression */
    4162         156 :                     break;
    4163             :                 }
    4164             : 
    4165         120 :                 idx++;
    4166             :             }
    4167             :         }
    4168             : 
    4169             :         /* Find the specific item that exactly matches the combination */
    4170         822 :         for (i = 0; i < stats->nitems; i++)
    4171             :         {
    4172             :             int         j;
    4173         822 :             MVNDistinctItem *tmpitem = &stats->items[i];
    4174             : 
    4175         822 :             if (tmpitem->nattributes != bms_num_members(matched))
    4176         144 :                 continue;
    4177             : 
    4178             :             /* assume it's the right item */
    4179         678 :             item = tmpitem;
    4180             : 
    4181             :             /* check that all item attributes/expressions fit the match */
    4182        1614 :             for (j = 0; j < tmpitem->nattributes; j++)
    4183             :             {
    4184        1212 :                 AttrNumber  attnum = tmpitem->attributes[j];
    4185             : 
    4186             :                 /*
    4187             :                  * Thanks to how we constructed the matched bitmap above, we
    4188             :                  * can just offset all attnums the same way.
    4189             :                  */
    4190        1212 :                 attnum = attnum + attnum_offset;
    4191             : 
    4192        1212 :                 if (!bms_is_member(attnum, matched))
    4193             :                 {
    4194             :                     /* nah, it's not this item */
    4195         276 :                     item = NULL;
    4196         276 :                     break;
    4197             :                 }
    4198             :             }
    4199             : 
    4200             :             /*
    4201             :              * If the item has all the matched attributes, we know it's the
    4202             :              * right one - there can't be a better one. matching more.
    4203             :              */
    4204         678 :             if (item)
    4205         402 :                 break;
    4206             :         }
    4207             : 
    4208             :         /*
    4209             :          * Make sure we found an item. There has to be one, because ndistinct
    4210             :          * statistics includes all combinations of attributes.
    4211             :          */
    4212         402 :         if (!item)
    4213           0 :             elog(ERROR, "corrupt MVNDistinct entry");
    4214             : 
    4215             :         /* Form the output varinfo list, keeping only unmatched ones */
    4216        1410 :         foreach(lc, *varinfos)
    4217             :         {
    4218        1008 :             GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc);
    4219             :             ListCell   *lc3;
    4220        1008 :             bool        found = false;
    4221             : 
    4222             :             /*
    4223             :              * Let's look at plain variables first, because it's the most
    4224             :              * common case and the check is quite cheap. We can simply get the
    4225             :              * attnum and check (with an offset) matched bitmap.
    4226             :              */
    4227        1008 :             if (IsA(varinfo->var, Var))
    4228             :             {
    4229         822 :                 AttrNumber  attnum = ((Var *) varinfo->var)->varattno;
    4230             : 
    4231             :                 /*
    4232             :                  * If it's a system attribute, we're done. We don't support
    4233             :                  * extended statistics on system attributes, so it's clearly
    4234             :                  * not matched. Just keep the expression and continue.
    4235             :                  */
    4236         822 :                 if (!AttrNumberIsForUserDefinedAttr(attnum))
    4237             :                 {
    4238           6 :                     newlist = lappend(newlist, varinfo);
    4239           6 :                     continue;
    4240             :                 }
    4241             : 
    4242             :                 /* apply the same offset as above */
    4243         816 :                 attnum += attnum_offset;
    4244             : 
    4245             :                 /* if it's not matched, keep the varinfo */
    4246         816 :                 if (!bms_is_member(attnum, matched))
    4247         120 :                     newlist = lappend(newlist, varinfo);
    4248             : 
    4249             :                 /* The rest of the loop deals with complex expressions. */
    4250         816 :                 continue;
    4251             :             }
    4252             : 
    4253             :             /*
    4254             :              * Process complex expressions, not just simple Vars.
    4255             :              *
    4256             :              * First, we search for an exact match of an expression. If we
    4257             :              * find one, we can just discard the whole GroupVarInfo, with all
    4258             :              * the variables we extracted from it.
    4259             :              *
    4260             :              * Otherwise we inspect the individual vars, and try matching it
    4261             :              * to variables in the item.
    4262             :              */
    4263         306 :             foreach(lc3, matched_info->exprs)
    4264             :             {
    4265         276 :                 Node       *expr = (Node *) lfirst(lc3);
    4266             : 
    4267         276 :                 if (equal(varinfo->var, expr))
    4268             :                 {
    4269         156 :                     found = true;
    4270         156 :                     break;
    4271             :                 }
    4272             :             }
    4273             : 
    4274             :             /* found exact match, skip */
    4275         186 :             if (found)
    4276         156 :                 continue;
    4277             : 
    4278          30 :             newlist = lappend(newlist, varinfo);
    4279             :         }
    4280             : 
    4281         402 :         *varinfos = newlist;
    4282         402 :         *ndistinct = item->ndistinct;
    4283         402 :         return true;
    4284             :     }
    4285             : 
    4286           0 :     return false;
    4287             : }
    4288             : 
    4289             : /*
    4290             :  * convert_to_scalar
    4291             :  *    Convert non-NULL values of the indicated types to the comparison
    4292             :  *    scale needed by scalarineqsel().
    4293             :  *    Returns "true" if successful.
    4294             :  *
    4295             :  * XXX this routine is a hack: ideally we should look up the conversion
    4296             :  * subroutines in pg_type.
    4297             :  *
    4298             :  * All numeric datatypes are simply converted to their equivalent
    4299             :  * "double" values.  (NUMERIC values that are outside the range of "double"
    4300             :  * are clamped to +/- HUGE_VAL.)
    4301             :  *
    4302             :  * String datatypes are converted by convert_string_to_scalar(),
    4303             :  * which is explained below.  The reason why this routine deals with
    4304             :  * three values at a time, not just one, is that we need it for strings.
    4305             :  *
    4306             :  * The bytea datatype is just enough different from strings that it has
    4307             :  * to be treated separately.
    4308             :  *
    4309             :  * The several datatypes representing absolute times are all converted
    4310             :  * to Timestamp, which is actually an int64, and then we promote that to
    4311             :  * a double.  Note this will give correct results even for the "special"
    4312             :  * values of Timestamp, since those are chosen to compare correctly;
    4313             :  * see timestamp_cmp.
    4314             :  *
    4315             :  * The several datatypes representing relative times (intervals) are all
    4316             :  * converted to measurements expressed in seconds.
    4317             :  */
    4318             : static bool
    4319       80550 : convert_to_scalar(Datum value, Oid valuetypid, Oid collid, double *scaledvalue,
    4320             :                   Datum lobound, Datum hibound, Oid boundstypid,
    4321             :                   double *scaledlobound, double *scaledhibound)
    4322             : {
    4323       80550 :     bool        failure = false;
    4324             : 
    4325             :     /*
    4326             :      * Both the valuetypid and the boundstypid should exactly match the
    4327             :      * declared input type(s) of the operator we are invoked for.  However,
    4328             :      * extensions might try to use scalarineqsel as estimator for operators
    4329             :      * with input type(s) we don't handle here; in such cases, we want to
    4330             :      * return false, not fail.  In any case, we mustn't assume that valuetypid
    4331             :      * and boundstypid are identical.
    4332             :      *
    4333             :      * XXX The histogram we are interpolating between points of could belong
    4334             :      * to a column that's only binary-compatible with the declared type. In
    4335             :      * essence we are assuming that the semantics of binary-compatible types
    4336             :      * are enough alike that we can use a histogram generated with one type's
    4337             :      * operators to estimate selectivity for the other's.  This is outright
    4338             :      * wrong in some cases --- in particular signed versus unsigned
    4339             :      * interpretation could trip us up.  But it's useful enough in the
    4340             :      * majority of cases that we do it anyway.  Should think about more
    4341             :      * rigorous ways to do it.
    4342             :      */
    4343       80550 :     switch (valuetypid)
    4344             :     {
    4345             :             /*
    4346             :              * Built-in numeric types
    4347             :              */
    4348       75744 :         case BOOLOID:
    4349             :         case INT2OID:
    4350             :         case INT4OID:
    4351             :         case INT8OID:
    4352             :         case FLOAT4OID:
    4353             :         case FLOAT8OID:
    4354             :         case NUMERICOID:
    4355             :         case OIDOID:
    4356             :         case REGPROCOID:
    4357             :         case REGPROCEDUREOID:
    4358             :         case REGOPEROID:
    4359             :         case REGOPERATOROID:
    4360             :         case REGCLASSOID:
    4361             :         case REGTYPEOID:
    4362             :         case REGCOLLATIONOID:
    4363             :         case REGCONFIGOID:
    4364             :         case REGDICTIONARYOID:
    4365             :         case REGROLEOID:
    4366             :         case REGNAMESPACEOID:
    4367       75744 :             *scaledvalue = convert_numeric_to_scalar(value, valuetypid,
    4368             :                                                      &failure);
    4369       75744 :             *scaledlobound = convert_numeric_to_scalar(lobound, boundstypid,
    4370             :                                                        &failure);
    4371       75744 :             *scaledhibound = convert_numeric_to_scalar(hibound, boundstypid,
    4372             :                                                        &failure);
    4373       75744 :             return !failure;
    4374             : 
    4375             :             /*
    4376             :              * Built-in string types
    4377             :              */
    4378        4806 :         case CHAROID:
    4379             :         case BPCHAROID:
    4380             :         case VARCHAROID:
    4381             :         case TEXTOID:
    4382             :         case NAMEOID:
    4383             :             {
    4384        4806 :                 char       *valstr = convert_string_datum(value, valuetypid,
    4385             :                                                           collid, &failure);
    4386        4806 :                 char       *lostr = convert_string_datum(lobound, boundstypid,
    4387             :                                                          collid, &failure);
    4388        4806 :                 char       *histr = convert_string_datum(hibound, boundstypid,
    4389             :                                                          collid, &failure);
    4390             : 
    4391             :                 /*
    4392             :                  * Bail out if any of the values is not of string type.  We
    4393             :                  * might leak converted strings for the other value(s), but
    4394             :                  * that's not worth troubling over.
    4395             :                  */
    4396        4806 :                 if (failure)
    4397           0 :                     return false;
    4398             : 
    4399        4806 :                 convert_string_to_scalar(valstr, scaledvalue,
    4400             :                                          lostr, scaledlobound,
    4401             :                                          histr, scaledhibound);
    4402        4806 :                 pfree(valstr);
    4403        4806 :                 pfree(lostr);
    4404        4806 :                 pfree(histr);
    4405        4806 :                 return true;
    4406             :             }
    4407             : 
    4408             :             /*
    4409             :              * Built-in bytea type
    4410             :              */
    4411           0 :         case BYTEAOID:
    4412             :             {
    4413             :                 /* We only support bytea vs bytea comparison */
    4414           0 :                 if (boundstypid != BYTEAOID)
    4415           0 :                     return false;
    4416           0 :                 convert_bytea_to_scalar(value, scaledvalue,
    4417             :                                         lobound, scaledlobound,
    4418             :                                         hibound, scaledhibound);
    4419           0 :                 return true;
    4420             :             }
    4421             : 
    4422             :             /*
    4423             :              * Built-in time types
    4424             :              */
    4425           0 :         case TIMESTAMPOID:
    4426             :         case TIMESTAMPTZOID:
    4427             :         case DATEOID:
    4428             :         case INTERVALOID:
    4429             :         case TIMEOID:
    4430             :         case TIMETZOID:
    4431           0 :             *scaledvalue = convert_timevalue_to_scalar(value, valuetypid,
    4432             :                                                        &failure);
    4433           0 :             *scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid,
    4434             :                                                          &failure);
    4435           0 :             *scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid,
    4436             :                                                          &failure);
    4437           0 :             return !failure;
    4438             : 
    4439             :             /*
    4440             :              * Built-in network types
    4441             :              */
    4442           0 :         case INETOID:
    4443             :         case CIDROID:
    4444             :         case MACADDROID:
    4445             :         case MACADDR8OID:
    4446           0 :             *scaledvalue = convert_network_to_scalar(value, valuetypid,
    4447             :                                                      &failure);
    4448           0 :             *scaledlobound = convert_network_to_scalar(lobound, boundstypid,
    4449             :                                                        &failure);
    4450           0 :             *scaledhibound = convert_network_to_scalar(hibound, boundstypid,
    4451             :                                                        &failure);
    4452           0 :             return !failure;
    4453             :     }
    4454             :     /* Don't know how to convert */
    4455           0 :     *scaledvalue = *scaledlobound = *scaledhibound = 0;
    4456           0 :     return false;
    4457             : }
    4458             : 
    4459             : /*
    4460             :  * Do convert_to_scalar()'s work for any numeric data type.
    4461             :  *
    4462             :  * On failure (e.g., unsupported typid), set *failure to true;
    4463             :  * otherwise, that variable is not changed.
    4464             :  */
    4465             : static double
    4466      227232 : convert_numeric_to_scalar(Datum value, Oid typid, bool *failure)
    4467             : {
    4468      227232 :     switch (typid)
    4469             :     {
    4470           0 :         case BOOLOID:
    4471           0 :             return (double) DatumGetBool(value);
    4472          12 :         case INT2OID:
    4473          12 :             return (double) DatumGetInt16(value);
    4474       30714 :         case INT4OID:
    4475       30714 :             return (double) DatumGetInt32(value);
    4476           0 :         case INT8OID:
    4477           0 :             return (double) DatumGetInt64(value);
    4478           0 :         case FLOAT4OID:
    4479           0 :             return (double) DatumGetFloat4(value);
    4480          36 :         case FLOAT8OID:
    4481          36 :             return (double) DatumGetFloat8(value);
    4482           0 :         case NUMERICOID:
    4483             :             /* Note: out-of-range values will be clamped to +-HUGE_VAL */
    4484           0 :             return (double)
    4485           0 :                 DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow,
    4486             :                                                    value));
    4487      196470 :         case OIDOID:
    4488             :         case REGPROCOID:
    4489             :         case REGPROCEDUREOID:
    4490             :         case REGOPEROID:
    4491             :         case REGOPERATOROID:
    4492             :         case REGCLASSOID:
    4493             :         case REGTYPEOID:
    4494             :         case REGCOLLATIONOID:
    4495             :         case REGCONFIGOID:
    4496             :         case REGDICTIONARYOID:
    4497             :         case REGROLEOID:
    4498             :         case REGNAMESPACEOID:
    4499             :             /* we can treat OIDs as integers... */
    4500      196470 :             return (double) DatumGetObjectId(value);
    4501             :     }
    4502             : 
    4503           0 :     *failure = true;
    4504           0 :     return 0;
    4505             : }
    4506             : 
    4507             : /*
    4508             :  * Do convert_to_scalar()'s work for any character-string data type.
    4509             :  *
    4510             :  * String datatypes are converted to a scale that ranges from 0 to 1,
    4511             :  * where we visualize the bytes of the string as fractional digits.
    4512             :  *
    4513             :  * We do not want the base to be 256, however, since that tends to
    4514             :  * generate inflated selectivity estimates; few databases will have
    4515             :  * occurrences of all 256 possible byte values at each position.
    4516             :  * Instead, use the smallest and largest byte values seen in the bounds
    4517             :  * as the estimated range for each byte, after some fudging to deal with
    4518             :  * the fact that we probably aren't going to see the full range that way.
    4519             :  *
    4520             :  * An additional refinement is that we discard any common prefix of the
    4521             :  * three strings before computing the scaled values.  This allows us to
    4522             :  * "zoom in" when we encounter a narrow data range.  An example is a phone
    4523             :  * number database where all the values begin with the same area code.
    4524             :  * (Actually, the bounds will be adjacent histogram-bin-boundary values,
    4525             :  * so this is more likely to happen than you might think.)
    4526             :  */
    4527             : static void
    4528        4806 : convert_string_to_scalar(char *value,
    4529             :                          double *scaledvalue,
    4530             :                          char *lobound,
    4531             :                          double *scaledlobound,
    4532             :                          char *hibound,
    4533             :                          double *scaledhibound)
    4534             : {
    4535             :     int         rangelo,
    4536             :                 rangehi;
    4537             :     char       *sptr;
    4538             : 
    4539        4806 :     rangelo = rangehi = (unsigned char) hibound[0];
    4540       64316 :     for (sptr = lobound; *sptr; sptr++)
    4541             :     {
    4542       59510 :         if (rangelo > (unsigned char) *sptr)
    4543       12036 :             rangelo = (unsigned char) *sptr;
    4544       59510 :         if (rangehi < (unsigned char) *sptr)
    4545        6348 :             rangehi = (unsigned char) *sptr;
    4546             :     }
    4547       63466 :     for (sptr = hibound; *sptr; sptr++)
    4548             :     {
    4549       58660 :         if (rangelo > (unsigned char) *sptr)
    4550         788 :             rangelo = (unsigned char) *sptr;
    4551       58660 :         if (rangehi < (unsigned char) *sptr)
    4552        2232 :             rangehi = (unsigned char) *sptr;
    4553             :     }
    4554             :     /* If range includes any upper-case ASCII chars, make it include all */
    4555        4806 :     if (rangelo <= 'Z' && rangehi >= 'A')
    4556             :     {
    4557        1104 :         if (rangelo > 'A')
    4558         138 :             rangelo = 'A';
    4559        1104 :         if (rangehi < 'Z')
    4560         480 :             rangehi = 'Z';
    4561             :     }
    4562             :     /* Ditto lower-case */
    4563        4806 :     if (rangelo <= 'z' && rangehi >= 'a')
    4564             :     {
    4565        4304 :         if (rangelo > 'a')
    4566           6 :             rangelo = 'a';
    4567        4304 :         if (rangehi < 'z')
    4568        4250 :             rangehi = 'z';
    4569             :     }
    4570             :     /* Ditto digits */
    4571        4806 :     if (rangelo <= '9' && rangehi >= '0')
    4572             :     {
    4573         508 :         if (rangelo > '0')
    4574         414 :             rangelo = '0';
    4575         508 :         if (rangehi < '9')
    4576          14 :             rangehi = '9';
    4577             :     }
    4578             : 
    4579             :     /*
    4580             :      * If range includes less than 10 chars, assume we have not got enough
    4581             :      * data, and make it include regular ASCII set.
    4582             :      */
    4583        4806 :     if (rangehi - rangelo < 9)
    4584             :     {
    4585           0 :         rangelo = ' ';
    4586           0 :         rangehi = 127;
    4587             :     }
    4588             : 
    4589             :     /*
    4590             :      * Now strip any common prefix of the three strings.
    4591             :      */
    4592        8666 :     while (*lobound)
    4593             :     {
    4594        8666 :         if (*lobound != *hibound || *lobound != *value)
    4595             :             break;
    4596        3860 :         lobound++, hibound++, value++;
    4597             :     }
    4598             : 
    4599             :     /*
    4600             :      * Now we can do the conversions.
    4601             :      */
    4602        4806 :     *scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
    4603        4806 :     *scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
    4604        4806 :     *scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
    4605        4806 : }
    4606             : 
    4607             : static double
    4608       14418 : convert_one_string_to_scalar(char *value, int rangelo, int rangehi)
    4609             : {
    4610       14418 :     int         slen = strlen(value);
    4611             :     double      num,
    4612             :                 denom,
    4613             :                 base;
    4614             : 
    4615       14418 :     if (slen <= 0)
    4616           0 :         return 0.0;             /* empty string has scalar value 0 */
    4617             : 
    4618             :     /*
    4619             :      * There seems little point in considering more than a dozen bytes from
    4620             :      * the string.  Since base is at least 10, that will give us nominal
    4621             :      * resolution of at least 12 decimal digits, which is surely far more
    4622             :      * precision than this estimation technique has got anyway (especially in
    4623             :      * non-C locales).  Also, even with the maximum possible base of 256, this
    4624             :      * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not
    4625             :      * overflow on any known machine.
    4626             :      */
    4627       14418 :     if (slen > 12)
    4628        4064 :         slen = 12;
    4629             : 
    4630             :     /* Convert initial characters to fraction */
    4631       14418 :     base = rangehi - rangelo + 1;
    4632       14418 :     num = 0.0;
    4633       14418 :     denom = base;
    4634      122432 :     while (slen-- > 0)
    4635             :     {
    4636      108014 :         int         ch = (unsigned char) *value++;
    4637             : 
    4638      108014 :         if (ch < rangelo)
    4639         160 :             ch = rangelo - 1;
    4640      107854 :         else if (ch > rangehi)
    4641           0 :             ch = rangehi + 1;
    4642      108014 :         num += ((double) (ch - rangelo)) / denom;
    4643      108014 :         denom *= base;
    4644             :     }
    4645             : 
    4646       14418 :     return num;
    4647             : }
    4648             : 
    4649             : /*
    4650             :  * Convert a string-type Datum into a palloc'd, null-terminated string.
    4651             :  *
    4652             :  * On failure (e.g., unsupported typid), set *failure to true;
    4653             :  * otherwise, that variable is not changed.  (We'll return NULL on failure.)
    4654             :  *
    4655             :  * When using a non-C locale, we must pass the string through pg_strxfrm()
    4656             :  * before continuing, so as to generate correct locale-specific results.
    4657             :  */
    4658             : static char *
    4659       14418 : convert_string_datum(Datum value, Oid typid, Oid collid, bool *failure)
    4660             : {
    4661             :     char       *val;
    4662             :     pg_locale_t mylocale;
    4663             : 
    4664       14418 :     switch (typid)
    4665             :     {
    4666           0 :         case CHAROID:
    4667           0 :             val = (char *) palloc(2);
    4668           0 :             val[0] = DatumGetChar(value);
    4669           0 :             val[1] = '\0';
    4670           0 :             break;
    4671        4354 :         case BPCHAROID:
    4672             :         case VARCHAROID:
    4673             :         case TEXTOID:
    4674        4354 :             val = TextDatumGetCString(value);
    4675        4354 :             break;
    4676       10064 :         case NAMEOID:
    4677             :             {
    4678       10064 :                 NameData   *nm = (NameData *) DatumGetPointer(value);
    4679             : 
    4680       10064 :                 val = pstrdup(NameStr(*nm));
    4681       10064 :                 break;
    4682             :             }
    4683           0 :         default:
    4684           0 :             *failure = true;
    4685           0 :             return NULL;
    4686             :     }
    4687             : 
    4688       14418 :     mylocale = pg_newlocale_from_collation(collid);
    4689             : 
    4690       14418 :     if (!mylocale->collate_is_c)
    4691             :     {
    4692             :         char       *xfrmstr;
    4693             :         size_t      xfrmlen;
    4694             :         size_t      xfrmlen2 PG_USED_FOR_ASSERTS_ONLY;
    4695             : 
    4696             :         /*
    4697             :          * XXX: We could guess at a suitable output buffer size and only call
    4698             :          * pg_strxfrm() twice if our guess is too small.
    4699             :          *
    4700             :          * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return
    4701             :          * bogus data or set an error. This is not really a problem unless it
    4702             :          * crashes since it will only give an estimation error and nothing
    4703             :          * fatal.
    4704             :          *
    4705             :          * XXX: we do not check pg_strxfrm_enabled(). On some platforms and in
    4706             :          * some cases, libc strxfrm() may return the wrong results, but that
    4707             :          * will only lead to an estimation error.
    4708             :          */
    4709          72 :         xfrmlen = pg_strxfrm(NULL, val, 0, mylocale);
    4710             : #ifdef WIN32
    4711             : 
    4712             :         /*
    4713             :          * On Windows, strxfrm returns INT_MAX when an error occurs. Instead
    4714             :          * of trying to allocate this much memory (and fail), just return the
    4715             :          * original string unmodified as if we were in the C locale.
    4716             :          */
    4717             :         if (xfrmlen == INT_MAX)
    4718             :             return val;
    4719             : #endif
    4720          72 :         xfrmstr = (char *) palloc(xfrmlen + 1);
    4721          72 :         xfrmlen2 = pg_strxfrm(xfrmstr, val, xfrmlen + 1, mylocale);
    4722             : 
    4723             :         /*
    4724             :          * Some systems (e.g., glibc) can return a smaller value from the
    4725             :          * second call than the first; thus the Assert must be <= not ==.
    4726             :          */
    4727             :         Assert(xfrmlen2 <= xfrmlen);
    4728          72 :         pfree(val);
    4729          72 :         val = xfrmstr;
    4730             :     }
    4731             : 
    4732       14418 :     return val;
    4733             : }
    4734             : 
    4735             : /*
    4736             :  * Do convert_to_scalar()'s work for any bytea data type.
    4737             :  *
    4738             :  * Very similar to convert_string_to_scalar except we can't assume
    4739             :  * null-termination and therefore pass explicit lengths around.
    4740             :  *
    4741             :  * Also, assumptions about likely "normal" ranges of characters have been
    4742             :  * removed - a data range of 0..255 is always used, for now.  (Perhaps
    4743             :  * someday we will add information about actual byte data range to
    4744             :  * pg_statistic.)
    4745             :  */
    4746             : static void
    4747           0 : convert_bytea_to_scalar(Datum value,
    4748             :                         double *scaledvalue,
    4749             :                         Datum lobound,
    4750             :                         double *scaledlobound,
    4751             :                         Datum hibound,
    4752             :                         double *scaledhibound)
    4753             : {
    4754           0 :     bytea      *valuep = DatumGetByteaPP(value);
    4755           0 :     bytea      *loboundp = DatumGetByteaPP(lobound);
    4756           0 :     bytea      *hiboundp = DatumGetByteaPP(hibound);
    4757             :     int         rangelo,
    4758             :                 rangehi,
    4759           0 :                 valuelen = VARSIZE_ANY_EXHDR(valuep),
    4760           0 :                 loboundlen = VARSIZE_ANY_EXHDR(loboundp),
    4761           0 :                 hiboundlen = VARSIZE_ANY_EXHDR(hiboundp),
    4762             :                 i,
    4763             :                 minlen;
    4764           0 :     unsigned char *valstr = (unsigned char *) VARDATA_ANY(valuep);
    4765           0 :     unsigned char *lostr = (unsigned char *) VARDATA_ANY(loboundp);
    4766           0 :     unsigned char *histr = (unsigned char *) VARDATA_ANY(hiboundp);
    4767             : 
    4768             :     /*
    4769             :      * Assume bytea data is uniformly distributed across all byte values.
    4770             :      */
    4771           0 :     rangelo = 0;
    4772           0 :     rangehi = 255;
    4773             : 
    4774             :     /*
    4775             :      * Now strip any common prefix of the three strings.
    4776             :      */
    4777           0 :     minlen = Min(Min(valuelen, loboundlen), hiboundlen);
    4778           0 :     for (i = 0; i < minlen; i++)
    4779             :     {
    4780           0 :         if (*lostr != *histr || *lostr != *valstr)
    4781             :             break;
    4782           0 :         lostr++, histr++, valstr++;
    4783           0 :         loboundlen--, hiboundlen--, valuelen--;
    4784             :     }
    4785             : 
    4786             :     /*
    4787             :      * Now we can do the conversions.
    4788             :      */
    4789           0 :     *scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi);
    4790           0 :     *scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi);
    4791           0 :     *scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi);
    4792           0 : }
    4793             : 
    4794             : static double
    4795           0 : convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
    4796             :                             int rangelo, int rangehi)
    4797             : {
    4798             :     double      num,
    4799             :                 denom,
    4800             :                 base;
    4801             : 
    4802           0 :     if (valuelen <= 0)
    4803           0 :         return 0.0;             /* empty string has scalar value 0 */
    4804             : 
    4805             :     /*
    4806             :      * Since base is 256, need not consider more than about 10 chars (even
    4807             :      * this many seems like overkill)
    4808             :      */
    4809           0 :     if (valuelen > 10)
    4810           0 :         valuelen = 10;
    4811             : 
    4812             :     /* Convert initial characters to fraction */
    4813           0 :     base = rangehi - rangelo + 1;
    4814           0 :     num = 0.0;
    4815           0 :     denom = base;
    4816           0 :     while (valuelen-- > 0)
    4817             :     {
    4818           0 :         int         ch = *value++;
    4819             : 
    4820           0 :         if (ch < rangelo)
    4821           0 :             ch = rangelo - 1;
    4822           0 :         else if (ch > rangehi)
    4823           0 :             ch = rangehi + 1;
    4824           0 :         num += ((double) (ch - rangelo)) / denom;
    4825           0 :         denom *= base;
    4826             :     }
    4827             : 
    4828           0 :     return num;
    4829             : }
    4830             : 
    4831             : /*
    4832             :  * Do convert_to_scalar()'s work for any timevalue data type.
    4833             :  *
    4834             :  * On failure (e.g., unsupported typid), set *failure to true;
    4835             :  * otherwise, that variable is not changed.
    4836             :  */
    4837             : static double
    4838           0 : convert_timevalue_to_scalar(Datum value, Oid typid, bool *failure)
    4839             : {
    4840           0 :     switch (typid)
    4841             :     {
    4842           0 :         case TIMESTAMPOID:
    4843           0 :             return DatumGetTimestamp(value);
    4844           0 :         case TIMESTAMPTZOID:
    4845           0 :             return DatumGetTimestampTz(value);
    4846           0 :         case DATEOID:
    4847           0 :             return date2timestamp_no_overflow(DatumGetDateADT(value));
    4848           0 :         case INTERVALOID:
    4849             :             {
    4850           0 :                 Interval   *interval = DatumGetIntervalP(value);
    4851             : 
    4852             :                 /*
    4853             :                  * Convert the month part of Interval to days using assumed
    4854             :                  * average month length of 365.25/12.0 days.  Not too
    4855             :                  * accurate, but plenty good enough for our purposes.
    4856             :                  *
    4857             :                  * This also works for infinite intervals, which just have all
    4858             :                  * fields set to INT_MIN/INT_MAX, and so will produce a result
    4859             :                  * smaller/larger than any finite interval.
    4860             :                  */
    4861           0 :                 return interval->time + interval->day * (double) USECS_PER_DAY +
    4862           0 :                     interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY);
    4863             :             }
    4864           0 :         case TIMEOID:
    4865           0 :             return DatumGetTimeADT(value);
    4866           0 :         case TIMETZOID:
    4867             :             {
    4868           0 :                 TimeTzADT  *timetz = DatumGetTimeTzADTP(value);
    4869             : 
    4870             :                 /* use GMT-equivalent time */
    4871           0 :                 return (double) (timetz->time + (timetz->zone * 1000000.0));
    4872             :             }
    4873             :     }
    4874             : 
    4875           0 :     *failure = true;
    4876           0 :     return 0;
    4877             : }
    4878             : 
    4879             : 
    4880             : /*
    4881             :  * get_restriction_variable
    4882             :  *      Examine the args of a restriction clause to see if it's of the
    4883             :  *      form (variable op pseudoconstant) or (pseudoconstant op variable),
    4884             :  *      where "variable" could be either a Var or an expression in vars of a
    4885             :  *      single relation.  If so, extract information about the variable,
    4886             :  *      and also indicate which side it was on and the other argument.
    4887             :  *
    4888             :  * Inputs:
    4889             :  *  root: the planner info
    4890             :  *  args: clause argument list
    4891             :  *  varRelid: see specs for restriction selectivity functions
    4892             :  *
    4893             :  * Outputs: (these are valid only if true is returned)
    4894             :  *  *vardata: gets information about variable (see examine_variable)
    4895             :  *  *other: gets other clause argument, aggressively reduced to a constant
    4896             :  *  *varonleft: set true if variable is on the left, false if on the right
    4897             :  *
    4898             :  * Returns true if a variable is identified, otherwise false.
    4899             :  *
    4900             :  * Note: if there are Vars on both sides of the clause, we must fail, because
    4901             :  * callers are expecting that the other side will act like a pseudoconstant.
    4902             :  */
    4903             : bool
    4904      665696 : get_restriction_variable(PlannerInfo *root, List *args, int varRelid,
    4905             :                          VariableStatData *vardata, Node **other,
    4906             :                          bool *varonleft)
    4907             : {
    4908             :     Node       *left,
    4909             :                *right;
    4910             :     VariableStatData rdata;
    4911             : 
    4912             :     /* Fail if not a binary opclause (probably shouldn't happen) */
    4913      665696 :     if (list_length(args) != 2)
    4914           0 :         return false;
    4915             : 
    4916      665696 :     left = (Node *) linitial(args);
    4917      665696 :     right = (Node *) lsecond(args);
    4918             : 
    4919             :     /*
    4920             :      * Examine both sides.  Note that when varRelid is nonzero, Vars of other
    4921             :      * relations will be treated as pseudoconstants.
    4922             :      */
    4923      665696 :     examine_variable(root, left, varRelid, vardata);
    4924      665696 :     examine_variable(root, right, varRelid, &rdata);
    4925             : 
    4926             :     /*
    4927             :      * If one side is a variable and the other not, we win.
    4928             :      */
    4929      665696 :     if (vardata->rel && rdata.rel == NULL)
    4930             :     {
    4931      598724 :         *varonleft = true;
    4932      598724 :         *other = estimate_expression_value(root, rdata.var);
    4933             :         /* Assume we need no ReleaseVariableStats(rdata) here */
    4934      598724 :         return true;
    4935             :     }
    4936             : 
    4937       66972 :     if (vardata->rel == NULL && rdata.rel)
    4938             :     {
    4939       62248 :         *varonleft = false;
    4940       62248 :         *other = estimate_expression_value(root, vardata->var);
    4941             :         /* Assume we need no ReleaseVariableStats(*vardata) here */
    4942       62248 :         *vardata = rdata;
    4943       62248 :         return true;
    4944             :     }
    4945             : 
    4946             :     /* Oops, clause has wrong structure (probably var op var) */
    4947        4724 :     ReleaseVariableStats(*vardata);
    4948        4724 :     ReleaseVariableStats(rdata);
    4949             : 
    4950        4724 :     return false;
    4951             : }
    4952             : 
    4953             : /*
    4954             :  * get_join_variables
    4955             :  *      Apply examine_variable() to each side of a join clause.
    4956             :  *      Also, attempt to identify whether the join clause has the same
    4957             :  *      or reversed sense compared to the SpecialJoinInfo.
    4958             :  *
    4959             :  * We consider the join clause "normal" if it is "lhs_var OP rhs_var",
    4960             :  * or "reversed" if it is "rhs_var OP lhs_var".  In complicated cases
    4961             :  * where we can't tell for sure, we default to assuming it's normal.
    4962             :  */
    4963             : void
    4964      198666 : get_join_variables(PlannerInfo *root, List *args, SpecialJoinInfo *sjinfo,
    4965             :                    VariableStatData *vardata1, VariableStatData *vardata2,
    4966             :                    bool *join_is_reversed)
    4967             : {
    4968             :     Node       *left,
    4969             :                *right;
    4970             : 
    4971      198666 :     if (list_length(args) != 2)
    4972           0 :         elog(ERROR, "join operator should take two arguments");
    4973             : 
    4974      198666 :     left = (Node *) linitial(args);
    4975      198666 :     right = (Node *) lsecond(args);
    4976             : 
    4977      198666 :     examine_variable(root, left, 0, vardata1);
    4978      198666 :     examine_variable(root, right, 0, vardata2);
    4979             : 
    4980      397174 :     if (vardata1->rel &&
    4981      198508 :         bms_is_subset(vardata1->rel->relids, sjinfo->syn_righthand))
    4982       74764 :         *join_is_reversed = true;   /* var1 is on RHS */
    4983      247700 :     else if (vardata2->rel &&
    4984      123798 :              bms_is_subset(vardata2->rel->relids, sjinfo->syn_lefthand))
    4985         128 :         *join_is_reversed = true;   /* var2 is on LHS */
    4986             :     else
    4987      123774 :         *join_is_reversed = false;
    4988      198666 : }
    4989             : 
    4990             : /* statext_expressions_load copies the tuple, so just pfree it. */
    4991             : static void
    4992        1644 : ReleaseDummy(HeapTuple tuple)
    4993             : {
    4994        1644 :     pfree(tuple);
    4995        1644 : }
    4996             : 
    4997             : /*
    4998             :  * examine_variable
    4999             :  *      Try to look up statistical data about an expression.
    5000             :  *      Fill in a VariableStatData struct to describe the expression.
    5001             :  *
    5002             :  * Inputs:
    5003             :  *  root: the planner info
    5004             :  *  node: the expression tree to examine
    5005             :  *  varRelid: see specs for restriction selectivity functions
    5006             :  *
    5007             :  * Outputs: *vardata is filled as follows:
    5008             :  *  var: the input expression (with any binary relabeling stripped, if
    5009             :  *      it is or contains a variable; but otherwise the type is preserved)
    5010             :  *  rel: RelOptInfo for relation containing variable; NULL if expression
    5011             :  *      contains no Vars (NOTE this could point to a RelOptInfo of a
    5012             :  *      subquery, not one in the current query).
    5013             :  *  statsTuple: the pg_statistic entry for the variable, if one exists;
    5014             :  *      otherwise NULL.
    5015             :  *  freefunc: pointer to a function to release statsTuple with.
    5016             :  *  vartype: exposed type of the expression; this should always match
    5017             :  *      the declared input type of the operator we are estimating for.
    5018             :  *  atttype, atttypmod: actual type/typmod of the "var" expression.  This is
    5019             :  *      commonly the same as the exposed type of the variable argument,
    5020             :  *      but can be different in binary-compatible-type cases.
    5021             :  *  isunique: true if we were able to match the var to a unique index or a
    5022             :  *      single-column DISTINCT clause, implying its values are unique for
    5023             :  *      this query.  (Caution: this should be trusted for statistical
    5024             :  *      purposes only, since we do not check indimmediate nor verify that
    5025             :  *      the exact same definition of equality applies.)
    5026             :  *  acl_ok: true if current user has permission to read the column(s)
    5027             :  *      underlying the pg_statistic entry.  This is consulted by
    5028             :  *      statistic_proc_security_check().
    5029             :  *
    5030             :  * Caller is responsible for doing ReleaseVariableStats() before exiting.
    5031             :  */
    5032             : void
    5033     2549660 : examine_variable(PlannerInfo *root, Node *node, int varRelid,
    5034             :                  VariableStatData *vardata)
    5035             : {
    5036             :     Node       *basenode;
    5037             :     Relids      varnos;
    5038             :     Relids      basevarnos;
    5039             :     RelOptInfo *onerel;
    5040             : 
    5041             :     /* Make sure we don't return dangling pointers in vardata */
    5042    17847620 :     MemSet(vardata, 0, sizeof(VariableStatData));
    5043             : 
    5044             :     /* Save the exposed type of the expression */
    5045     2549660 :     vardata->vartype = exprType(node);
    5046             : 
    5047             :     /* Look inside any binary-compatible relabeling */
    5048             : 
    5049     2549660 :     if (IsA(node, RelabelType))
    5050       24580 :         basenode = (Node *) ((RelabelType *) node)->arg;
    5051             :     else
    5052     2525080 :         basenode = node;
    5053             : 
    5054             :     /* Fast path for a simple Var */
    5055             : 
    5056     2549660 :     if (IsA(basenode, Var) &&
    5057      596250 :         (varRelid == 0 || varRelid == ((Var *) basenode)->varno))
    5058             :     {
    5059     1793064 :         Var        *var = (Var *) basenode;
    5060             : 
    5061             :         /* Set up result fields other than the stats tuple */
    5062     1793064 :         vardata->var = basenode; /* return Var without relabeling */
    5063     1793064 :         vardata->rel = find_base_rel(root, var->varno);
    5064     1793064 :         vardata->atttype = var->vartype;
    5065     1793064 :         vardata->atttypmod = var->vartypmod;
    5066     1793064 :         vardata->isunique = has_unique_index(vardata->rel, var->varattno);
    5067             : 
    5068             :         /* Try to locate some stats */
    5069     1793064 :         examine_simple_variable(root, var, vardata);
    5070             : 
    5071     1793064 :         return;
    5072             :     }
    5073             : 
    5074             :     /*
    5075             :      * Okay, it's a more complicated expression.  Determine variable
    5076             :      * membership.  Note that when varRelid isn't zero, only vars of that
    5077             :      * relation are considered "real" vars.
    5078             :      */
    5079      756596 :     varnos = pull_varnos(root, basenode);
    5080      756596 :     basevarnos = bms_difference(varnos, root->outer_join_rels);
    5081             : 
    5082      756596 :     onerel = NULL;
    5083             : 
    5084      756596 :     if (bms_is_empty(basevarnos))
    5085             :     {
    5086             :         /* No Vars at all ... must be pseudo-constant clause */
    5087             :     }
    5088             :     else
    5089             :     {
    5090             :         int         relid;
    5091             : 
    5092             :         /* Check if the expression is in vars of a single base relation */
    5093      356610 :         if (bms_get_singleton_member(basevarnos, &relid))
    5094             :         {
    5095      353790 :             if (varRelid == 0 || varRelid == relid)
    5096             :             {
    5097       55100 :                 onerel = find_base_rel(root, relid);
    5098       55100 :                 vardata->rel = onerel;
    5099       55100 :                 node = basenode;    /* strip any relabeling */
    5100             :             }
    5101             :             /* else treat it as a constant */
    5102             :         }
    5103             :         else
    5104             :         {
    5105             :             /* varnos has multiple relids */
    5106        2820 :             if (varRelid == 0)
    5107             :             {
    5108             :                 /* treat it as a variable of a join relation */
    5109        2614 :                 vardata->rel = find_join_rel(root, varnos);
    5110        2614 :                 node = basenode;    /* strip any relabeling */
    5111             :             }
    5112         206 :             else if (bms_is_member(varRelid, varnos))
    5113             :             {
    5114             :                 /* ignore the vars belonging to other relations */
    5115          68 :                 vardata->rel = find_base_rel(root, varRelid);
    5116          68 :                 node = basenode;    /* strip any relabeling */
    5117             :                 /* note: no point in expressional-index search here */
    5118             :             }
    5119             :             /* else treat it as a constant */
    5120             :         }
    5121             :     }
    5122             : 
    5123      756596 :     bms_free(basevarnos);
    5124             : 
    5125      756596 :     vardata->var = node;
    5126      756596 :     vardata->atttype = exprType(node);
    5127      756596 :     vardata->atttypmod = exprTypmod(node);
    5128             : 
    5129      756596 :     if (onerel)
    5130             :     {
    5131             :         /*
    5132             :          * We have an expression in vars of a single relation.  Try to match
    5133             :          * it to expressional index columns, in hopes of finding some
    5134             :          * statistics.
    5135             :          *
    5136             :          * Note that we consider all index columns including INCLUDE columns,
    5137             :          * since there could be stats for such columns.  But the test for
    5138             :          * uniqueness needs to be warier.
    5139             :          *
    5140             :          * XXX it's conceivable that there are multiple matches with different
    5141             :          * index opfamilies; if so, we need to pick one that matches the
    5142             :          * operator we are estimating for.  FIXME later.
    5143             :          */
    5144             :         ListCell   *ilist;
    5145             :         ListCell   *slist;
    5146             :         Oid         userid;
    5147             : 
    5148             :         /*
    5149             :          * The nullingrels bits within the expression could prevent us from
    5150             :          * matching it to expressional index columns or to the expressions in
    5151             :          * extended statistics.  So strip them out first.
    5152             :          */
    5153       55100 :         if (bms_overlap(varnos, root->outer_join_rels))
    5154        2964 :             node = remove_nulling_relids(node, root->outer_join_rels, NULL);
    5155             : 
    5156             :         /*
    5157             :          * Determine the user ID to use for privilege checks: either
    5158             :          * onerel->userid if it's set (e.g., in case we're accessing the table
    5159             :          * via a view), or the current user otherwise.
    5160             :          *
    5161             :          * If we drill down to child relations, we keep using the same userid:
    5162             :          * it's going to be the same anyway, due to how we set up the relation
    5163             :          * tree (q.v. build_simple_rel).
    5164             :          */
    5165       55100 :         userid = OidIsValid(onerel->userid) ? onerel->userid : GetUserId();
    5166             : 
    5167      108264 :         foreach(ilist, onerel->indexlist)
    5168             :         {
    5169       55978 :             IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
    5170             :             ListCell   *indexpr_item;
    5171             :             int         pos;
    5172             : 
    5173       55978 :             indexpr_item = list_head(index->indexprs);
    5174       55978 :             if (indexpr_item == NULL)
    5175       51310 :                 continue;       /* no expressions here... */
    5176             : 
    5177        6594 :             for (pos = 0; pos < index->ncolumns; pos++)
    5178             :             {
    5179        4740 :                 if (index->indexkeys[pos] == 0)
    5180             :                 {
    5181             :                     Node       *indexkey;
    5182             : 
    5183        4668 :                     if (indexpr_item == NULL)
    5184           0 :                         elog(ERROR, "too few entries in indexprs list");
    5185        4668 :                     indexkey = (Node *) lfirst(indexpr_item);
    5186        4668 :                     if (indexkey && IsA(indexkey, RelabelType))
    5187           0 :                         indexkey = (Node *) ((RelabelType *) indexkey)->arg;
    5188        4668 :                     if (equal(node, indexkey))
    5189             :                     {
    5190             :                         /*
    5191             :                          * Found a match ... is it a unique index? Tests here
    5192             :                          * should match has_unique_index().
    5193             :                          */
    5194        3402 :                         if (index->unique &&
    5195         390 :                             index->nkeycolumns == 1 &&
    5196         390 :                             pos == 0 &&
    5197         390 :                             (index->indpred == NIL || index->predOK))
    5198         390 :                             vardata->isunique = true;
    5199             : 
    5200             :                         /*
    5201             :                          * Has it got stats?  We only consider stats for
    5202             :                          * non-partial indexes, since partial indexes probably
    5203             :                          * don't reflect whole-relation statistics; the above
    5204             :                          * check for uniqueness is the only info we take from
    5205             :                          * a partial index.
    5206             :                          *
    5207             :                          * An index stats hook, however, must make its own
    5208             :                          * decisions about what to do with partial indexes.
    5209             :                          */
    5210        3402 :                         if (get_index_stats_hook &&
    5211           0 :                             (*get_index_stats_hook) (root, index->indexoid,
    5212           0 :                                                      pos + 1, vardata))
    5213             :                         {
    5214             :                             /*
    5215             :                              * The hook took control of acquiring a stats
    5216             :                              * tuple.  If it did supply a tuple, it'd better
    5217             :                              * have supplied a freefunc.
    5218             :                              */
    5219           0 :                             if (HeapTupleIsValid(vardata->statsTuple) &&
    5220           0 :                                 !vardata->freefunc)
    5221           0 :                                 elog(ERROR, "no function provided to release variable stats with");
    5222             :                         }
    5223        3402 :                         else if (index->indpred == NIL)
    5224             :                         {
    5225        3402 :                             vardata->statsTuple =
    5226        6804 :                                 SearchSysCache3(STATRELATTINH,
    5227             :                                                 ObjectIdGetDatum(index->indexoid),
    5228        3402 :                                                 Int16GetDatum(pos + 1),
    5229             :                                                 BoolGetDatum(false));
    5230        3402 :                             vardata->freefunc = ReleaseSysCache;
    5231             : 
    5232        3402 :                             if (HeapTupleIsValid(vardata->statsTuple))
    5233             :                             {
    5234             :                                 /* Get index's table for permission check */
    5235             :                                 RangeTblEntry *rte;
    5236             : 
    5237        2814 :                                 rte = planner_rt_fetch(index->rel->relid, root);
    5238             :                                 Assert(rte->rtekind == RTE_RELATION);
    5239             : 
    5240             :                                 /*
    5241             :                                  * For simplicity, we insist on the whole
    5242             :                                  * table being selectable, rather than trying
    5243             :                                  * to identify which column(s) the index
    5244             :                                  * depends on.  Also require all rows to be
    5245             :                                  * selectable --- there must be no
    5246             :                                  * securityQuals from security barrier views
    5247             :                                  * or RLS policies.
    5248             :                                  */
    5249        2814 :                                 vardata->acl_ok =
    5250        5628 :                                     rte->securityQuals == NIL &&
    5251        2814 :                                     (pg_class_aclcheck(rte->relid, userid,
    5252             :                                                        ACL_SELECT) == ACLCHECK_OK);
    5253             : 
    5254             :                                 /*
    5255             :                                  * If the user doesn't have permissions to
    5256             :                                  * access an inheritance child relation, check
    5257             :                                  * the permissions of the table actually
    5258             :                                  * mentioned in the query, since most likely
    5259             :                                  * the user does have that permission.  Note
    5260             :                                  * that whole-table select privilege on the
    5261             :                                  * parent doesn't quite guarantee that the
    5262             :                                  * user could read all columns of the child.
    5263             :                                  * But in practice it's unlikely that any
    5264             :                                  * interesting security violation could result
    5265             :                                  * from allowing access to the expression
    5266             :                                  * index's stats, so we allow it anyway.  See
    5267             :                                  * similar code in examine_simple_variable()
    5268             :                                  * for additional comments.
    5269             :                                  */
    5270        2814 :                                 if (!vardata->acl_ok &&
    5271          18 :                                     root->append_rel_array != NULL)
    5272             :                                 {
    5273             :                                     AppendRelInfo *appinfo;
    5274          12 :                                     Index       varno = index->rel->relid;
    5275             : 
    5276          12 :                                     appinfo = root->append_rel_array[varno];
    5277          36 :                                     while (appinfo &&
    5278          24 :                                            planner_rt_fetch(appinfo->parent_relid,
    5279          24 :                                                             root)->rtekind == RTE_RELATION)
    5280             :                                     {
    5281          24 :                                         varno = appinfo->parent_relid;
    5282          24 :                                         appinfo = root->append_rel_array[varno];
    5283             :                                     }
    5284          12 :                                     if (varno != index->rel->relid)
    5285             :                                     {
    5286             :                                         /* Repeat access check on this rel */
    5287          12 :                                         rte = planner_rt_fetch(varno, root);
    5288             :                                         Assert(rte->rtekind == RTE_RELATION);
    5289             : 
    5290          12 :                                         vardata->acl_ok =
    5291          24 :                                             rte->securityQuals == NIL &&
    5292          12 :                                             (pg_class_aclcheck(rte->relid,
    5293             :                                                                userid,
    5294             :                                                                ACL_SELECT) == ACLCHECK_OK);
    5295             :                                     }
    5296             :                                 }
    5297             :                             }
    5298             :                             else
    5299             :                             {
    5300             :                                 /* suppress leakproofness checks later */
    5301         588 :                                 vardata->acl_ok = true;
    5302             :                             }
    5303             :                         }
    5304        3402 :                         if (vardata->statsTuple)
    5305        2814 :                             break;
    5306             :                     }
    5307        1854 :                     indexpr_item = lnext(index->indexprs, indexpr_item);
    5308             :                 }
    5309             :             }
    5310        4668 :             if (vardata->statsTuple)
    5311        2814 :                 break;
    5312             :         }
    5313             : 
    5314             :         /*
    5315             :          * Search extended statistics for one with a matching expression.
    5316             :          * There might be multiple ones, so just grab the first one. In the
    5317             :          * future, we might consider the statistics target (and pick the most
    5318             :          * accurate statistics) and maybe some other parameters.
    5319             :          */
    5320       59126 :         foreach(slist, onerel->statlist)
    5321             :         {
    5322        4314 :             StatisticExtInfo *info = (StatisticExtInfo *) lfirst(slist);
    5323        4314 :             RangeTblEntry *rte = planner_rt_fetch(onerel->relid, root);
    5324             :             ListCell   *expr_item;
    5325             :             int         pos;
    5326             : 
    5327             :             /*
    5328             :              * Stop once we've found statistics for the expression (either
    5329             :              * from extended stats, or for an index in the preceding loop).
    5330             :              */
    5331        4314 :             if (vardata->statsTuple)
    5332         288 :                 break;
    5333             : 
    5334             :             /* skip stats without per-expression stats */
    5335        4026 :             if (info->kind != STATS_EXT_EXPRESSIONS)
    5336        2022 :                 continue;
    5337             : 
    5338             :             /* skip stats with mismatching stxdinherit value */
    5339        2004 :             if (info->inherit != rte->inh)
    5340           6 :                 continue;
    5341             : 
    5342        1998 :             pos = 0;
    5343        3300 :             foreach(expr_item, info->exprs)
    5344             :             {
    5345        2946 :                 Node       *expr = (Node *) lfirst(expr_item);
    5346             : 
    5347             :                 Assert(expr);
    5348             : 
    5349             :                 /* strip RelabelType before comparing it */
    5350        2946 :                 if (expr && IsA(expr, RelabelType))
    5351           0 :                     expr = (Node *) ((RelabelType *) expr)->arg;
    5352             : 
    5353             :                 /* found a match, see if we can extract pg_statistic row */
    5354        2946 :                 if (equal(node, expr))
    5355             :                 {
    5356             :                     /*
    5357             :                      * XXX Not sure if we should cache the tuple somewhere.
    5358             :                      * Now we just create a new copy every time.
    5359             :                      */
    5360        1644 :                     vardata->statsTuple =
    5361        1644 :                         statext_expressions_load(info->statOid, rte->inh, pos);
    5362             : 
    5363        1644 :                     vardata->freefunc = ReleaseDummy;
    5364             : 
    5365             :                     /*
    5366             :                      * For simplicity, we insist on the whole table being
    5367             :                      * selectable, rather than trying to identify which
    5368             :                      * column(s) the statistics object depends on.  Also
    5369             :                      * require all rows to be selectable --- there must be no
    5370             :                      * securityQuals from security barrier views or RLS
    5371             :                      * policies.
    5372             :                      */
    5373        1644 :                     vardata->acl_ok =
    5374        3288 :                         rte->securityQuals == NIL &&
    5375        1644 :                         (pg_class_aclcheck(rte->relid, userid,
    5376             :                                            ACL_SELECT) == ACLCHECK_OK);
    5377             : 
    5378             :                     /*
    5379             :                      * If the user doesn't have permissions to access an
    5380             :                      * inheritance child relation, check the permissions of
    5381             :                      * the table actually mentioned in the query, since most
    5382             :                      * likely the user does have that permission.  Note that
    5383             :                      * whole-table select privilege on the parent doesn't
    5384             :                      * quite guarantee that the user could read all columns of
    5385             :                      * the child. But in practice it's unlikely that any
    5386             :                      * interesting security violation could result from
    5387             :                      * allowing access to the expression stats, so we allow it
    5388             :                      * anyway.  See similar code in examine_simple_variable()
    5389             :                      * for additional comments.
    5390             :                      */
    5391        1644 :                     if (!vardata->acl_ok &&
    5392           0 :                         root->append_rel_array != NULL)
    5393             :                     {
    5394             :                         AppendRelInfo *appinfo;
    5395           0 :                         Index       varno = onerel->relid;
    5396             : 
    5397           0 :                         appinfo = root->append_rel_array[varno];
    5398           0 :                         while (appinfo &&
    5399           0 :                                planner_rt_fetch(appinfo->parent_relid,
    5400           0 :                                                 root)->rtekind == RTE_RELATION)
    5401             :                         {
    5402           0 :                             varno = appinfo->parent_relid;
    5403           0 :                             appinfo = root->append_rel_array[varno];
    5404             :                         }
    5405           0 :                         if (varno != onerel->relid)
    5406             :                         {
    5407             :                             /* Repeat access check on this rel */
    5408           0 :                             rte = planner_rt_fetch(varno, root);
    5409             :                             Assert(rte->rtekind == RTE_RELATION);
    5410             : 
    5411           0 :                             vardata->acl_ok =
    5412           0 :                                 rte->securityQuals == NIL &&
    5413           0 :                                 (pg_class_aclcheck(rte->relid,
    5414             :                                                    userid,
    5415             :                                                    ACL_SELECT) == ACLCHECK_OK);
    5416             :                         }
    5417             :                     }
    5418             : 
    5419        1644 :                     break;
    5420             :                 }
    5421             : 
    5422        1302 :                 pos++;
    5423             :             }
    5424             :         }
    5425             :     }
    5426             : 
    5427      756596 :     bms_free(varnos);
    5428             : }
    5429             : 
    5430             : /*
    5431             :  * examine_simple_variable
    5432             :  *      Handle a simple Var for examine_variable
    5433             :  *
    5434             :  * This is split out as a subroutine so that we can recurse to deal with
    5435             :  * Vars referencing subqueries (either sub-SELECT-in-FROM or CTE style).
    5436             :  *
    5437             :  * We already filled in all the fields of *vardata except for the stats tuple.
    5438             :  */
    5439             : static void
    5440     1797410 : examine_simple_variable(PlannerInfo *root, Var *var,
    5441             :                         VariableStatData *vardata)
    5442             : {
    5443     1797410 :     RangeTblEntry *rte = root->simple_rte_array[var->varno];
    5444             : 
    5445             :     Assert(IsA(rte, RangeTblEntry));
    5446             : 
    5447     1797410 :     if (get_relation_stats_hook &&
    5448           0 :         (*get_relation_stats_hook) (root, rte, var->varattno, vardata))
    5449             :     {
    5450             :         /*
    5451             :          * The hook took control of acquiring a stats tuple.  If it did supply
    5452             :          * a tuple, it'd better have supplied a freefunc.
    5453             :          */
    5454           0 :         if (HeapTupleIsValid(vardata->statsTuple) &&
    5455           0 :             !vardata->freefunc)
    5456           0 :             elog(ERROR, "no function provided to release variable stats with");
    5457             :     }
    5458     1797410 :     else if (rte->rtekind == RTE_RELATION)
    5459             :     {
    5460             :         /*
    5461             :          * Plain table or parent of an inheritance appendrel, so look up the
    5462             :          * column in pg_statistic
    5463             :          */
    5464     1726656 :         vardata->statsTuple = SearchSysCache3(STATRELATTINH,
    5465             :                                               ObjectIdGetDatum(rte->relid),
    5466     1726656 :                                               Int16GetDatum(var->varattno),
    5467     1726656 :                                               BoolGetDatum(rte->inh));
    5468     1726656 :         vardata->freefunc = ReleaseSysCache;
    5469             : 
    5470     1726656 :         if (HeapTupleIsValid(vardata->statsTuple))
    5471             :         {
    5472     1285274 :             RelOptInfo *onerel = find_base_rel_noerr(root, var->varno);
    5473             :             Oid         userid;
    5474             : 
    5475             :             /*
    5476             :              * Check if user has permission to read this column.  We require
    5477             :              * all rows to be accessible, so there must be no securityQuals
    5478             :              * from security barrier views or RLS policies.
    5479             :              *
    5480             :              * Normally the Var will have an associated RelOptInfo from which
    5481             :              * we can find out which userid to do the check as; but it might
    5482             :              * not if it's a RETURNING Var for an INSERT target relation.  In
    5483             :              * that case use the RTEPermissionInfo associated with the RTE.
    5484             :              */
    5485     1285274 :             if (onerel)
    5486     1285232 :                 userid = onerel->userid;
    5487             :             else
    5488             :             {
    5489             :                 RTEPermissionInfo *perminfo;
    5490             : 
    5491          42 :                 perminfo = getRTEPermissionInfo(root->parse->rteperminfos, rte);
    5492          42 :                 userid = perminfo->checkAsUser;
    5493             :             }
    5494     1285274 :             if (!OidIsValid(userid))
    5495     1203540 :                 userid = GetUserId();
    5496             : 
    5497     1285274 :             vardata->acl_ok =
    5498     2570808 :                 rte->securityQuals == NIL &&
    5499     1285274 :                 ((pg_class_aclcheck(rte->relid, userid,
    5500         260 :                                     ACL_SELECT) == ACLCHECK_OK) ||
    5501         260 :                  (pg_attribute_aclcheck(rte->relid, var->varattno, userid,
    5502             :                                         ACL_SELECT) == ACLCHECK_OK));
    5503             : 
    5504             :             /*
    5505             :              * If the user doesn't have permissions to access an inheritance
    5506             :              * child relation or specifically this attribute, check the
    5507             :              * permissions of the table/column actually mentioned in the
    5508             :              * query, since most likely the user does have that permission
    5509             :              * (else the query will fail at runtime), and if the user can read
    5510             :              * the column there then he can get the values of the child table
    5511             :              * too.  To do that, we must find out which of the root parent's
    5512             :              * attributes the child relation's attribute corresponds to.
    5513             :              */
    5514     1285274 :             if (!vardata->acl_ok && var->varattno > 0 &&
    5515          60 :                 root->append_rel_array != NULL)
    5516             :             {
    5517             :                 AppendRelInfo *appinfo;
    5518          12 :                 Index       varno = var->varno;
    5519          12 :                 int         varattno = var->varattno;
    5520          12 :                 bool        found = false;
    5521             : 
    5522          12 :                 appinfo = root->append_rel_array[varno];
    5523             : 
    5524             :                 /*
    5525             :                  * Partitions are mapped to their immediate parent, not the
    5526             :                  * root parent, so must be ready to walk up multiple
    5527             :                  * AppendRelInfos.  But stop if we hit a parent that is not
    5528             :                  * RTE_RELATION --- that's a flattened UNION ALL subquery, not
    5529             :                  * an inheritance parent.
    5530             :                  */
    5531          36 :                 while (appinfo &&
    5532          24 :                        planner_rt_fetch(appinfo->parent_relid,
    5533          24 :                                         root)->rtekind == RTE_RELATION)
    5534             :                 {
    5535             :                     int         parent_varattno;
    5536             : 
    5537          24 :                     found = false;
    5538          24 :                     if (varattno <= 0 || varattno > appinfo->num_child_cols)
    5539             :                         break;  /* safety check */
    5540          24 :                     parent_varattno = appinfo->parent_colnos[varattno - 1];
    5541          24 :                     if (parent_varattno == 0)
    5542           0 :                         break;  /* Var is local to child */
    5543             : 
    5544          24 :                     varno = appinfo->parent_relid;
    5545          24 :                     varattno = parent_varattno;
    5546          24 :                     found = true;
    5547             : 
    5548             :                     /* If the parent is itself a child, continue up. */
    5549          24 :                     appinfo = root->append_rel_array[varno];
    5550             :                 }
    5551             : 
    5552             :                 /*
    5553             :                  * In rare cases, the Var may be local to the child table, in
    5554             :                  * which case, we've got to live with having no access to this
    5555             :                  * column's stats.
    5556             :                  */
    5557          12 :                 if (!found)
    5558           0 :                     return;
    5559             : 
    5560             :                 /* Repeat the access check on this parent rel & column */
    5561          12 :                 rte = planner_rt_fetch(varno, root);
    5562             :                 Assert(rte->rtekind == RTE_RELATION);
    5563             : 
    5564             :                 /*
    5565             :                  * Fine to use the same userid as it's the same in all
    5566             :                  * relations of a given inheritance tree.
    5567             :                  */
    5568          12 :                 vardata->acl_ok =
    5569          30 :                     rte->securityQuals == NIL &&
    5570          12 :                     ((pg_class_aclcheck(rte->relid, userid,
    5571           6 :                                         ACL_SELECT) == ACLCHECK_OK) ||
    5572           6 :                      (pg_attribute_aclcheck(rte->relid, varattno, userid,
    5573             :                                             ACL_SELECT) == ACLCHECK_OK));
    5574             :             }
    5575             :         }
    5576             :         else
    5577             :         {
    5578             :             /* suppress any possible leakproofness checks later */
    5579      441382 :             vardata->acl_ok = true;
    5580             :         }
    5581             :     }
    5582       70754 :     else if ((rte->rtekind == RTE_SUBQUERY && !rte->inh) ||
    5583       63138 :              (rte->rtekind == RTE_CTE && !rte->self_reference))
    5584             :     {
    5585             :         /*
    5586             :          * Plain subquery (not one that was converted to an appendrel) or
    5587             :          * non-recursive CTE.  In either case, we can try to find out what the
    5588             :          * Var refers to within the subquery.  We skip this for appendrel and
    5589             :          * recursive-CTE cases because any column stats we did find would
    5590             :          * likely not be very relevant.
    5591             :          */
    5592             :         PlannerInfo *subroot;
    5593             :         Query      *subquery;
    5594             :         List       *subtlist;
    5595             :         TargetEntry *ste;
    5596             : 
    5597             :         /*
    5598             :          * Punt if it's a whole-row var rather than a plain column reference.
    5599             :          */
    5600       12514 :         if (var->varattno == InvalidAttrNumber)
    5601           0 :             return;
    5602             : 
    5603             :         /*
    5604             :          * Otherwise, find the subquery's planner subroot.
    5605             :          */
    5606       12514 :         if (rte->rtekind == RTE_SUBQUERY)
    5607             :         {
    5608             :             RelOptInfo *rel;
    5609             : 
    5610             :             /*
    5611             :              * Fetch RelOptInfo for subquery.  Note that we don't change the
    5612             :              * rel returned in vardata, since caller expects it to be a rel of
    5613             :              * the caller's query level.  Because we might already be
    5614             :              * recursing, we can't use that rel pointer either, but have to
    5615             :              * look up the Var's rel afresh.
    5616             :              */
    5617        7616 :             rel = find_base_rel(root, var->varno);
    5618             : 
    5619        7616 :             subroot = rel->subroot;
    5620             :         }
    5621             :         else
    5622             :         {
    5623             :             /* CTE case is more difficult */
    5624             :             PlannerInfo *cteroot;
    5625             :             Index       levelsup;
    5626             :             int         ndx;
    5627             :             int         plan_id;
    5628             :             ListCell   *lc;
    5629             : 
    5630             :             /*
    5631             :              * Find the referenced CTE, and locate the subroot previously made
    5632             :              * for it.
    5633             :              */
    5634        4898 :             levelsup = rte->ctelevelsup;
    5635        4898 :             cteroot = root;
    5636        9484 :             while (levelsup-- > 0)
    5637             :             {
    5638        4586 :                 cteroot = cteroot->parent_root;
    5639        4586 :                 if (!cteroot)   /* shouldn't happen */
    5640           0 :                     elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
    5641             :             }
    5642             : 
    5643             :             /*
    5644             :              * Note: cte_plan_ids can be shorter than cteList, if we are still
    5645             :              * working on planning the CTEs (ie, this is a side-reference from
    5646             :              * another CTE).  So we mustn't use forboth here.
    5647             :              */
    5648        4898 :             ndx = 0;
    5649        7128 :             foreach(lc, cteroot->parse->cteList)
    5650             :             {
    5651        7128 :                 CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
    5652             : 
    5653        7128 :                 if (strcmp(cte->ctename, rte->ctename) == 0)
    5654        4898 :                     break;
    5655        2230 :                 ndx++;
    5656             :             }
    5657        4898 :             if (lc == NULL)     /* shouldn't happen */
    5658           0 :                 elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
    5659        4898 :             if (ndx >= list_length(cteroot->cte_plan_ids))
    5660           0 :                 elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
    5661        4898 :             plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
    5662        4898 :             if (plan_id <= 0)
    5663           0 :                 elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
    5664        4898 :             subroot = list_nth(root->glob->subroots, plan_id - 1);
    5665             :         }
    5666             : 
    5667             :         /* If the subquery hasn't been planned yet, we have to punt */
    5668       12514 :         if (subroot == NULL)
    5669           0 :             return;
    5670             :         Assert(IsA(subroot, PlannerInfo));
    5671             : 
    5672             :         /*
    5673             :          * We must use the subquery parsetree as mangled by the planner, not
    5674             :          * the raw version from the RTE, because we need a Var that will refer
    5675             :          * to the subroot's live RelOptInfos.  For instance, if any subquery
    5676             :          * pullup happened during planning, Vars in the targetlist might have
    5677             :          * gotten replaced, and we need to see the replacement expressions.
    5678             :          */
    5679       12514 :         subquery = subroot->parse;
    5680             :         Assert(IsA(subquery, Query));
    5681             : 
    5682             :         /*
    5683             :          * Punt if subquery uses set operations or GROUP BY, as these will
    5684             :          * mash underlying columns' stats beyond recognition.  (Set ops are
    5685             :          * particularly nasty; if we forged ahead, we would return stats
    5686             :          * relevant to only the leftmost subselect...)  DISTINCT is also
    5687             :          * problematic, but we check that later because there is a possibility
    5688             :          * of learning something even with it.
    5689             :          */
    5690       12514 :         if (subquery->setOperations ||
    5691       11234 :             subquery->groupClause ||
    5692       10614 :             subquery->groupingSets)
    5693        1900 :             return;
    5694             : 
    5695             :         /* Get the subquery output expression referenced by the upper Var */
    5696       10614 :         if (subquery->returningList)
    5697         206 :             subtlist = subquery->returningList;
    5698             :         else
    5699       10408 :             subtlist = subquery->targetList;
    5700       10614 :         ste = get_tle_by_resno(subtlist, var->varattno);
    5701       10614 :         if (ste == NULL || ste->resjunk)
    5702           0 :             elog(ERROR, "subquery %s does not have attribute %d",
    5703             :                  rte->eref->aliasname, var->varattno);
    5704       10614 :         var = (Var *) ste->expr;
    5705             : 
    5706             :         /*
    5707             :          * If subquery uses DISTINCT, we can't make use of any stats for the
    5708             :          * variable ... but, if it's the only DISTINCT column, we are entitled
    5709             :          * to consider it unique.  We do the test this way so that it works
    5710             :          * for cases involving DISTINCT ON.
    5711             :          */
    5712       10614 :         if (subquery->distinctClause)
    5713             :         {
    5714        1810 :             if (list_length(subquery->distinctClause) == 1 &&
    5715         602 :                 targetIsInSortList(ste, InvalidOid, subquery->distinctClause))
    5716         280 :                 vardata->isunique = true;
    5717             :             /* cannot go further */
    5718        1208 :             return;
    5719             :         }
    5720             : 
    5721             :         /*
    5722             :          * If the sub-query originated from a view with the security_barrier
    5723             :          * attribute, we must not look at the variable's statistics, though it
    5724             :          * seems all right to notice the existence of a DISTINCT clause. So
    5725             :          * stop here.
    5726             :          *
    5727             :          * This is probably a harsher restriction than necessary; it's
    5728             :          * certainly OK for the selectivity estimator (which is a C function,
    5729             :          * and therefore omnipotent anyway) to look at the statistics.  But
    5730             :          * many selectivity estimators will happily *invoke the operator
    5731             :          * function* to try to work out a good estimate - and that's not OK.
    5732             :          * So for now, don't dig down for stats.
    5733             :          */
    5734        9406 :         if (rte->security_barrier)
    5735         228 :             return;
    5736             : 
    5737             :         /* Can only handle a simple Var of subquery's query level */
    5738        9178 :         if (var && IsA(var, Var) &&
    5739        4346 :             var->varlevelsup == 0)
    5740             :         {
    5741             :             /*
    5742             :              * OK, recurse into the subquery.  Note that the original setting
    5743             :              * of vardata->isunique (which will surely be false) is left
    5744             :              * unchanged in this situation.  That's what we want, since even
    5745             :              * if the underlying column is unique, the subquery may have
    5746             :              * joined to other tables in a way that creates duplicates.
    5747             :              */
    5748        4346 :             examine_simple_variable(subroot, var, vardata);
    5749             :         }
    5750             :     }
    5751             :     else
    5752             :     {
    5753             :         /*
    5754             :          * Otherwise, the Var comes from a FUNCTION or VALUES RTE.  (We won't
    5755             :          * see RTE_JOIN here because join alias Vars have already been
    5756             :          * flattened.)  There's not much we can do with function outputs, but
    5757             :          * maybe someday try to be smarter about VALUES.
    5758             :          */
    5759             :     }
    5760             : }
    5761             : 
    5762             : /*
    5763             :  * Check whether it is permitted to call func_oid passing some of the
    5764             :  * pg_statistic data in vardata.  We allow this either if the user has SELECT
    5765             :  * privileges on the table or column underlying the pg_statistic data or if
    5766             :  * the function is marked leakproof.
    5767             :  */
    5768             : bool
    5769      862316 : statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
    5770             : {
    5771      862316 :     if (vardata->acl_ok)
    5772      861114 :         return true;
    5773             : 
    5774        1202 :     if (!OidIsValid(func_oid))
    5775           0 :         return false;
    5776             : 
    5777        1202 :     if (get_func_leakproof(func_oid))
    5778         550 :         return true;
    5779             : 
    5780         652 :     ereport(DEBUG2,
    5781             :             (errmsg_internal("not using statistics because function \"%s\" is not leakproof",
    5782             :                              get_func_name(func_oid))));
    5783         652 :     return false;
    5784             : }
    5785             : 
    5786             : /*
    5787             :  * get_variable_numdistinct
    5788             :  *    Estimate the number of distinct values of a variable.
    5789             :  *
    5790             :  * vardata: results of examine_variable
    5791             :  * *isdefault: set to true if the result is a default rather than based on
    5792             :  * anything meaningful.
    5793             :  *
    5794             :  * NB: be careful to produce a positive integral result, since callers may
    5795             :  * compare the result to exact integer counts, or might divide by it.
    5796             :  */
    5797             : double
    5798     1225946 : get_variable_numdistinct(VariableStatData *vardata, bool *isdefault)
    5799             : {
    5800             :     double      stadistinct;
    5801     1225946 :     double      stanullfrac = 0.0;
    5802             :     double      ntuples;
    5803             : 
    5804     1225946 :     *isdefault = false;
    5805             : 
    5806             :     /*
    5807             :      * Determine the stadistinct value to use.  There are cases where we can
    5808             :      * get an estimate even without a pg_statistic entry, or can get a better
    5809             :      * value than is in pg_statistic.  Grab stanullfrac too if we can find it
    5810             :      * (otherwise, assume no nulls, for lack of any better idea).
    5811             :      */
    5812     1225946 :     if (HeapTupleIsValid(vardata->statsTuple))
    5813             :     {
    5814             :         /* Use the pg_statistic entry */
    5815             :         Form_pg_statistic stats;
    5816             : 
    5817      875460 :         stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
    5818      875460 :         stadistinct = stats->stadistinct;
    5819      875460 :         stanullfrac = stats->stanullfrac;
    5820             :     }
    5821      350486 :     else if (vardata->vartype == BOOLOID)
    5822             :     {
    5823             :         /*
    5824             :          * Special-case boolean columns: presumably, two distinct values.
    5825             :          *
    5826             :          * Are there any other datatypes we should wire in special estimates
    5827             :          * for?
    5828             :          */
    5829         468 :         stadistinct = 2.0;
    5830             :     }
    5831      350018 :     else if (vardata->rel && vardata->rel->rtekind == RTE_VALUES)
    5832             :     {
    5833             :         /*
    5834             :          * If the Var represents a column of a VALUES RTE, assume it's unique.
    5835             :          * This could of course be very wrong, but it should tend to be true
    5836             :          * in well-written queries.  We could consider examining the VALUES'
    5837             :          * contents to get some real statistics; but that only works if the
    5838             :          * entries are all constants, and it would be pretty expensive anyway.
    5839             :          */
    5840        3258 :         stadistinct = -1.0;     /* unique (and all non null) */
    5841             :     }
    5842             :     else
    5843             :     {
    5844             :         /*
    5845             :          * We don't keep statistics for system columns, but in some cases we
    5846             :          * can infer distinctness anyway.
    5847             :          */
    5848      346760 :         if (vardata->var && IsA(vardata->var, Var))
    5849             :         {
    5850      324618 :             switch (((Var *) vardata->var)->varattno)
    5851             :             {
    5852        1146 :                 case SelfItemPointerAttributeNumber:
    5853        1146 :                     stadistinct = -1.0; /* unique (and all non null) */
    5854        1146 :                     break;
    5855        2518 :                 case TableOidAttributeNumber:
    5856        2518 :                     stadistinct = 1.0;  /* only 1 value */
    5857        2518 :                     break;
    5858      320954 :                 default:
    5859      320954 :                     stadistinct = 0.0;  /* means "unknown" */
    5860      320954 :                     break;
    5861             :             }
    5862             :         }
    5863             :         else
    5864       22142 :             stadistinct = 0.0;  /* means "unknown" */
    5865             : 
    5866             :         /*
    5867             :          * XXX consider using estimate_num_groups on expressions?
    5868             :          */
    5869             :     }
    5870             : 
    5871             :     /*
    5872             :      * If there is a unique index or DISTINCT clause for the variable, assume
    5873             :      * it is unique no matter what pg_statistic says; the statistics could be
    5874             :      * out of date, or we might have found a partial unique index that proves
    5875             :      * the var is unique for this query.  However, we'd better still believe
    5876             :      * the null-fraction statistic.
    5877             :      */
    5878     1225946 :     if (vardata->isunique)
    5879      333852 :         stadistinct = -1.0 * (1.0 - stanullfrac);
    5880             : 
    5881             :     /*
    5882             :      * If we had an absolute estimate, use that.
    5883             :      */
    5884     1225946 :     if (stadistinct > 0.0)
    5885      285682 :         return clamp_row_est(stadistinct);
    5886             : 
    5887             :     /*
    5888             :      * Otherwise we need to get the relation size; punt if not available.
    5889             :      */
    5890      940264 :     if (vardata->rel == NULL)
    5891             :     {
    5892         298 :         *isdefault = true;
    5893         298 :         return DEFAULT_NUM_DISTINCT;
    5894             :     }
    5895      939966 :     ntuples = vardata->rel->tuples;
    5896      939966 :     if (ntuples <= 0.0)
    5897             :     {
    5898       53764 :         *isdefault = true;
    5899       53764 :         return DEFAULT_NUM_DISTINCT;
    5900             :     }
    5901             : 
    5902             :     /*
    5903             :      * If we had a relative estimate, use that.
    5904             :      */
    5905      886202 :     if (stadistinct < 0.0)
    5906      629512 :         return clamp_row_est(-stadistinct * ntuples);
    5907             : 
    5908             :     /*
    5909             :      * With no data, estimate ndistinct = ntuples if the table is small, else
    5910             :      * use default.  We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so
    5911             :      * that the behavior isn't discontinuous.
    5912             :      */
    5913      256690 :     if (ntuples < DEFAULT_NUM_DISTINCT)
    5914      121912 :         return clamp_row_est(ntuples);
    5915             : 
    5916      134778 :     *isdefault = true;
    5917      134778 :     return DEFAULT_NUM_DISTINCT;
    5918             : }
    5919             : 
    5920             : /*
    5921             :  * get_variable_range
    5922             :  *      Estimate the minimum and maximum value of the specified variable.
    5923             :  *      If successful, store values in *min and *max, and return true.
    5924             :  *      If no data available, return false.
    5925             :  *
    5926             :  * sortop is the "<" comparison operator to use.  This should generally
    5927             :  * be "<" not ">", as only the former is likely to be found in pg_statistic.
    5928             :  * The collation must be specified too.
    5929             :  */
    5930             : static bool
    5931      179318 : get_variable_range(PlannerInfo *root, VariableStatData *vardata,
    5932             :                    Oid sortop, Oid collation,
    5933             :                    Datum *min, Datum *max)
    5934             : {
    5935      179318 :     Datum       tmin = 0;
    5936      179318 :     Datum       tmax = 0;
    5937      179318 :     bool        have_data = false;
    5938             :     int16       typLen;
    5939             :     bool        typByVal;
    5940             :     Oid         opfuncoid;
    5941             :     FmgrInfo    opproc;
    5942             :     AttStatsSlot sslot;
    5943             : 
    5944             :     /*
    5945             :      * XXX It's very tempting to try to use the actual column min and max, if
    5946             :      * we can get them relatively-cheaply with an index probe.  However, since
    5947             :      * this function is called many times during join planning, that could
    5948             :      * have unpleasant effects on planning speed.  Need more investigation
    5949             :      * before enabling this.
    5950             :      */
    5951             : #ifdef NOT_USED
    5952             :     if (get_actual_variable_range(root, vardata, sortop, collation, min, max))
    5953             :         return true;
    5954             : #endif
    5955             : 
    5956      179318 :     if (!HeapTupleIsValid(vardata->statsTuple))
    5957             :     {
    5958             :         /* no stats available, so default result */
    5959       38090 :         return false;
    5960             :     }
    5961             : 
    5962             :     /*
    5963             :      * If we can't apply the sortop to the stats data, just fail.  In
    5964             :      * principle, if there's a histogram and no MCVs, we could return the
    5965             :      * histogram endpoints without ever applying the sortop ... but it's
    5966             :      * probably not worth trying, because whatever the caller wants to do with
    5967             :      * the endpoints would likely fail the security check too.
    5968             :      */
    5969      141228 :     if (!statistic_proc_security_check(vardata,
    5970      141228 :                                        (opfuncoid = get_opcode(sortop))))
    5971           0 :         return false;
    5972             : 
    5973      141228 :     opproc.fn_oid = InvalidOid; /* mark this as not looked up yet */
    5974             : 
    5975      141228 :     get_typlenbyval(vardata->atttype, &typLen, &typByVal);
    5976             : 
    5977             :     /*
    5978             :      * If there is a histogram with the ordering we want, grab the first and
    5979             :      * last values.
    5980             :      */
    5981      141228 :     if (get_attstatsslot(&sslot, vardata->statsTuple,
    5982             :                          STATISTIC_KIND_HISTOGRAM, sortop,
    5983             :                          ATTSTATSSLOT_VALUES))
    5984             :     {
    5985      105326 :         if (sslot.stacoll == collation && sslot.nvalues > 0)
    5986             :         {
    5987      105326 :             tmin = datumCopy(sslot.values[0], typByVal, typLen);
    5988      105326 :             tmax = datumCopy(sslot.values[sslot.nvalues - 1], typByVal, typLen);
    5989      105326 :             have_data = true;
    5990             :         }
    5991      105326 :         free_attstatsslot(&sslot);
    5992             :     }
    5993             : 
    5994             :     /*
    5995             :      * Otherwise, if there is a histogram with some other ordering, scan it
    5996             :      * and get the min and max values according to the ordering we want.  This
    5997             :      * of course may not find values that are really extremal according to our
    5998             :      * ordering, but it beats ignoring available data.
    5999             :      */
    6000      177130 :     if (!have_data &&
    6001       35902 :         get_attstatsslot(&sslot, vardata->statsTuple,
    6002             :                          STATISTIC_KIND_HISTOGRAM, InvalidOid,
    6003             :                          ATTSTATSSLOT_VALUES))
    6004             :     {
    6005           0 :         get_stats_slot_range(&sslot, opfuncoid, &opproc,
    6006             :                              collation, typLen, typByVal,
    6007             :                              &tmin, &tmax, &have_data);
    6008           0 :         free_attstatsslot(&sslot);
    6009             :     }
    6010             : 
    6011             :     /*
    6012             :      * If we have most-common-values info, look for extreme MCVs.  This is
    6013             :      * needed even if we also have a histogram, since the histogram excludes
    6014             :      * the MCVs.  However, if we *only* have MCVs and no histogram, we should
    6015             :      * be pretty wary of deciding that that is a full representation of the
    6016             :      * data.  Proceed only if the MCVs represent the whole table (to within
    6017             :      * roundoff error).
    6018             :      */
    6019      141228 :     if (get_attstatsslot(&sslot, vardata->statsTuple,
    6020             :                          STATISTIC_KIND_MCV, InvalidOid,
    6021      141228 :                          have_data ? ATTSTATSSLOT_VALUES :
    6022             :                          (ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)))
    6023             :     {
    6024       66486 :         bool        use_mcvs = have_data;
    6025             : 
    6026       66486 :         if (!have_data)
    6027             :         {
    6028       34680 :             double      sumcommon = 0.0;
    6029             :             double      nullfrac;
    6030             :             int         i;
    6031             : 
    6032      252542 :             for (i = 0; i < sslot.nnumbers; i++)
    6033      217862 :                 sumcommon += sslot.numbers[i];
    6034       34680 :             nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata->statsTuple))->stanullfrac;
    6035       34680 :             if (sumcommon + nullfrac > 0.99999)
    6036       34130 :                 use_mcvs = true;
    6037             :         }
    6038             : 
    6039       66486 :         if (use_mcvs)
    6040       65936 :             get_stats_slot_range(&sslot, opfuncoid, &opproc,
    6041             :                                  collation, typLen, typByVal,
    6042             :                                  &tmin, &tmax, &have_data);
    6043       66486 :         free_attstatsslot(&sslot);
    6044             :     }
    6045             : 
    6046      141228 :     *min = tmin;
    6047      141228 :     *max = tmax;
    6048      141228 :     return have_data;
    6049             : }
    6050             : 
    6051             : /*
    6052             :  * get_stats_slot_range: scan sslot for min/max values
    6053             :  *
    6054             :  * Subroutine for get_variable_range: update min/max/have_data according
    6055             :  * to what we find in the statistics array.
    6056             :  */
    6057             : static void
    6058       65936 : get_stats_slot_range(AttStatsSlot *sslot, Oid opfuncoid, FmgrInfo *opproc,
    6059             :                      Oid collation, int16 typLen, bool typByVal,
    6060             :                      Datum *min, Datum *max, bool *p_have_data)
    6061             : {
    6062       65936 :     Datum       tmin = *min;
    6063       65936 :     Datum       tmax = *max;
    6064       65936 :     bool        have_data = *p_have_data;
    6065       65936 :     bool        found_tmin = false;
    6066       65936 :     bool        found_tmax = false;
    6067             : 
    6068             :     /* Look up the comparison function, if we didn't already do so */
    6069       65936 :     if (opproc->fn_oid != opfuncoid)
    6070       65936 :         fmgr_info(opfuncoid, opproc);
    6071             : 
    6072             :     /* Scan all the slot's values */
    6073     2004478 :     for (int i = 0; i < sslot->nvalues; i++)
    6074             :     {
    6075     1938542 :         if (!have_data)
    6076             :         {
    6077       34130 :             tmin = tmax = sslot->values[i];
    6078       34130 :             found_tmin = found_tmax = true;
    6079       34130 :             *p_have_data = have_data = true;
    6080       34130 :             continue;
    6081             :         }
    6082     1904412 :         if (DatumGetBool(FunctionCall2Coll(opproc,
    6083             :                                            collation,
    6084     1904412 :                                            sslot->values[i], tmin)))
    6085             :         {
    6086       44074 :             tmin = sslot->values[i];
    6087       44074 :             found_tmin = true;
    6088             :         }
    6089     1904412 :         if (DatumGetBool(FunctionCall2Coll(opproc,
    6090             :                                            collation,
    6091     1904412 :                                            tmax, sslot->values[i])))
    6092             :         {
    6093       88432 :             tmax = sslot->values[i];
    6094       88432 :             found_tmax = true;
    6095             :         }
    6096             :     }
    6097             : 
    6098             :     /*
    6099             :      * Copy the slot's values, if we found new extreme values.
    6100             :      */
    6101       65936 :     if (found_tmin)
    6102       52646 :         *min = datumCopy(tmin, typByVal, typLen);
    6103       65936 :     if (found_tmax)
    6104       36148 :         *max = datumCopy(tmax, typByVal, typLen);
    6105       65936 : }
    6106             : 
    6107             : 
    6108             : /*
    6109             :  * get_actual_variable_range
    6110             :  *      Attempt to identify the current *actual* minimum and/or maximum
    6111             :  *      of the specified variable, by looking for a suitable btree index
    6112             :  *      and fetching its low and/or high values.
    6113             :  *      If successful, store values in *min and *max, and return true.
    6114             :  *      (Either pointer can be NULL if that endpoint isn't needed.)
    6115             :  *      If unsuccessful, return false.
    6116             :  *
    6117             :  * sortop is the "<" comparison operator to use.
    6118             :  * collation is the required collation.
    6119             :  */
    6120             : static bool
    6121      164062 : get_actual_variable_range(PlannerInfo *root, VariableStatData *vardata,
    6122             :                           Oid sortop, Oid collation,
    6123             :                           Datum *min, Datum *max)
    6124             : {
    6125      164062 :     bool        have_data = false;
    6126      164062 :     RelOptInfo *rel = vardata->rel;
    6127             :     RangeTblEntry *rte;
    6128             :     ListCell   *lc;
    6129             : 
    6130             :     /* No hope if no relation or it doesn't have indexes */
    6131      164062 :     if (rel == NULL || rel->indexlist == NIL)
    6132       12978 :         return false;
    6133             :     /* If it has indexes it must be a plain relation */
    6134      151084 :     rte = root->simple_rte_array[rel->relid];
    6135             :     Assert(rte->rtekind == RTE_RELATION);
    6136             : 
    6137             :     /* ignore partitioned tables.  Any indexes here are not real indexes */
    6138      151084 :     if (rte->relkind == RELKIND_PARTITIONED_TABLE)
    6139         828 :         return false;
    6140             : 
    6141             :     /* Search through the indexes to see if any match our problem */
    6142      287936 :     foreach(lc, rel->indexlist)
    6143             :     {
    6144      245018 :         IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
    6145             :         ScanDirection indexscandir;
    6146             : 
    6147             :         /* Ignore non-btree indexes */
    6148      245018 :         if (index->relam != BTREE_AM_OID)
    6149           0 :             continue;
    6150             : 
    6151             :         /*
    6152             :          * Ignore partial indexes --- we only want stats that cover the entire
    6153             :          * relation.
    6154             :          */
    6155      245018 :         if (index->indpred != NIL)
    6156         288 :             continue;
    6157             : 
    6158             :         /*
    6159             :          * The index list might include hypothetical indexes inserted by a
    6160             :          * get_relation_info hook --- don't try to access them.
    6161             :          */
    6162      244730 :         if (index->hypothetical)
    6163           0 :             continue;
    6164             : 
    6165             :         /*
    6166             :          * The first index column must match the desired variable, sortop, and
    6167             :          * collation --- but we can use a descending-order index.
    6168             :          */
    6169      244730 :         if (collation != index->indexcollations[0])
    6170       29114 :             continue;           /* test first 'cause it's cheapest */
    6171      215616 :         if (!match_index_to_operand(vardata->var, 0, index))
    6172      108278 :             continue;
    6173      107338 :         switch (get_op_opfamily_strategy(sortop, index->sortopfamily[0]))
    6174             :         {
    6175      107338 :             case BTLessStrategyNumber:
    6176      107338 :                 if (index->reverse_sort[0])
    6177           0 :                     indexscandir = BackwardScanDirection;
    6178             :                 else
    6179      107338 :                     indexscandir = ForwardScanDirection;
    6180      107338 :                 break;
    6181           0 :             case BTGreaterStrategyNumber:
    6182           0 :                 if (index->reverse_sort[0])
    6183           0 :                     indexscandir = ForwardScanDirection;
    6184             :                 else
    6185           0 :                     indexscandir = BackwardScanDirection;
    6186           0 :                 break;
    6187           0 :             default:
    6188             :                 /* index doesn't match the sortop */
    6189           0 :                 continue;
    6190             :         }
    6191             : 
    6192             :         /*
    6193             :          * Found a suitable index to extract data from.  Set up some data that
    6194             :          * can be used by both invocations of get_actual_variable_endpoint.
    6195             :          */
    6196             :         {
    6197             :             MemoryContext tmpcontext;
    6198             :             MemoryContext oldcontext;
    6199             :             Relation    heapRel;
    6200             :             Relation    indexRel;
    6201             :             TupleTableSlot *slot;
    6202             :             int16       typLen;
    6203             :             bool        typByVal;
    6204             :             ScanKeyData scankeys[1];
    6205             : 
    6206             :             /* Make sure any cruft gets recycled when we're done */
    6207      107338 :             tmpcontext = AllocSetContextCreate(CurrentMemoryContext,
    6208             :                                                "get_actual_variable_range workspace",
    6209             :                                                ALLOCSET_DEFAULT_SIZES);
    6210      107338 :             oldcontext = MemoryContextSwitchTo(tmpcontext);
    6211             : 
    6212             :             /*
    6213             :              * Open the table and index so we can read from them.  We should
    6214             :              * already have some type of lock on each.
    6215             :              */
    6216      107338 :             heapRel = table_open(rte->relid, NoLock);
    6217      107338 :             indexRel = index_open(index->indexoid, NoLock);
    6218             : 
    6219             :             /* build some stuff needed for indexscan execution */
    6220      107338 :             slot = table_slot_create(heapRel, NULL);
    6221      107338 :             get_typlenbyval(vardata->atttype, &typLen, &typByVal);
    6222             : 
    6223             :             /* set up an IS NOT NULL scan key so that we ignore nulls */
    6224      107338 :             ScanKeyEntryInitialize(&scankeys[0],
    6225             :                                    SK_ISNULL | SK_SEARCHNOTNULL,
    6226             :                                    1,   /* index col to scan */
    6227             :                                    InvalidStrategy, /* no strategy */
    6228             :                                    InvalidOid,  /* no strategy subtype */
    6229             :                                    InvalidOid,  /* no collation */
    6230             :                                    InvalidOid,  /* no reg proc for this */
    6231             :                                    (Datum) 0);  /* constant */
    6232             : 
    6233             :             /* If min is requested ... */
    6234      107338 :             if (min)
    6235             :             {
    6236       62808 :                 have_data = get_actual_variable_endpoint(heapRel,
    6237             :                                                          indexRel,
    6238             :                                                          indexscandir,
    6239             :                                                          scankeys,
    6240             :                                                          typLen,
    6241             :                                                          typByVal,
    6242             :                                                          slot,
    6243             :                                                          oldcontext,
    6244             :                                                          min);
    6245             :             }
    6246             :             else
    6247             :             {
    6248             :                 /* If min not requested, still want to fetch max */
    6249       44530 :                 have_data = true;
    6250             :             }
    6251             : 
    6252             :             /* If max is requested, and we didn't already fail ... */
    6253      107338 :             if (max && have_data)
    6254             :             {
    6255             :                 /* scan in the opposite direction; all else is the same */
    6256       45666 :                 have_data = get_actual_variable_endpoint(heapRel,
    6257             :                                                          indexRel,
    6258       45666 :                                                          -indexscandir,
    6259             :                                                          scankeys,
    6260             :                                                          typLen,
    6261             :                                                          typByVal,
    6262             :                                                          slot,
    6263             :                                                          oldcontext,
    6264             :                                                          max);
    6265             :             }
    6266             : 
    6267             :             /* Clean everything up */
    6268      107338 :             ExecDropSingleTupleTableSlot(slot);
    6269             : 
    6270      107338 :             index_close(indexRel, NoLock);
    6271      107338 :             table_close(heapRel, NoLock);
    6272             : 
    6273      107338 :             MemoryContextSwitchTo(oldcontext);
    6274      107338 :             MemoryContextDelete(tmpcontext);
    6275             : 
    6276             :             /* And we're done */
    6277      107338 :             break;
    6278             :         }
    6279             :     }
    6280             : 
    6281      150256 :     return have_data;
    6282             : }
    6283             : 
    6284             : /*
    6285             :  * Get one endpoint datum (min or max depending on indexscandir) from the
    6286             :  * specified index.  Return true if successful, false if not.
    6287             :  * On success, endpoint value is stored to *endpointDatum (and copied into
    6288             :  * outercontext).
    6289             :  *
    6290             :  * scankeys is a 1-element scankey array set up to reject nulls.
    6291             :  * typLen/typByVal describe the datatype of the index's first column.
    6292             :  * tableslot is a slot suitable to hold table tuples, in case we need
    6293             :  * to probe the heap.
    6294             :  * (We could compute these values locally, but that would mean computing them
    6295             :  * twice when get_actual_variable_range needs both the min and the max.)
    6296             :  *
    6297             :  * Failure occurs either when the index is empty, or we decide that it's
    6298             :  * taking too long to find a suitable tuple.
    6299             :  */
    6300             : static bool
    6301      108474 : get_actual_variable_endpoint(Relation heapRel,
    6302             :                              Relation indexRel,
    6303             :                              ScanDirection indexscandir,
    6304             :                              ScanKey scankeys,
    6305             :                              int16 typLen,
    6306             :                              bool typByVal,
    6307             :                              TupleTableSlot *tableslot,
    6308             :                              MemoryContext outercontext,
    6309             :                              Datum *endpointDatum)
    6310             : {
    6311      108474 :     bool        have_data = false;
    6312             :     SnapshotData SnapshotNonVacuumable;
    6313             :     IndexScanDesc index_scan;
    6314      108474 :     Buffer      vmbuffer = InvalidBuffer;
    6315      108474 :     BlockNumber last_heap_block = InvalidBlockNumber;
    6316      108474 :     int         n_visited_heap_pages = 0;
    6317             :     ItemPointer tid;
    6318             :     Datum       values[INDEX_MAX_KEYS];
    6319             :     bool        isnull[INDEX_MAX_KEYS];
    6320             :     MemoryContext oldcontext;
    6321             : 
    6322             :     /*
    6323             :      * We use the index-only-scan machinery for this.  With mostly-static
    6324             :      * tables that's a win because it avoids a heap visit.  It's also a win
    6325             :      * for dynamic data, but the reason is less obvious; read on for details.
    6326             :      *
    6327             :      * In principle, we should scan the index with our current active
    6328             :      * snapshot, which is the best approximation we've got to what the query
    6329             :      * will see when executed.  But that won't be exact if a new snap is taken
    6330             :      * before running the query, and it can be very expensive if a lot of
    6331             :      * recently-dead or uncommitted rows exist at the beginning or end of the
    6332             :      * index (because we'll laboriously fetch each one and reject it).
    6333             :      * Instead, we use SnapshotNonVacuumable.  That will accept recently-dead
    6334             :      * and uncommitted rows as well as normal visible rows.  On the other
    6335             :      * hand, it will reject known-dead rows, and thus not give a bogus answer
    6336             :      * when the extreme value has been deleted (unless the deletion was quite
    6337             :      * recent); that case motivates not using SnapshotAny here.
    6338             :      *
    6339             :      * A crucial point here is that SnapshotNonVacuumable, with
    6340             :      * GlobalVisTestFor(heapRel) as horizon, yields the inverse of the
    6341             :      * condition that the indexscan will use to decide that index entries are
    6342             :      * killable (see heap_hot_search_buffer()).  Therefore, if the snapshot
    6343             :      * rejects a tuple (or more precisely, all tuples of a HOT chain) and we
    6344             :      * have to continue scanning past it, we know that the indexscan will mark
    6345             :      * that index entry killed.  That means that the next
    6346             :      * get_actual_variable_endpoint() call will not have to re-consider that
    6347             :      * index entry.  In this way we avoid repetitive work when this function
    6348             :      * is used a lot during planning.
    6349             :      *
    6350             :      * But using SnapshotNonVacuumable creates a hazard of its own.  In a
    6351             :      * recently-created index, some index entries may point at "broken" HOT
    6352             :      * chains in which not all the tuple versions contain data matching the
    6353             :      * index entry.  The live tuple version(s) certainly do match the index,
    6354             :      * but SnapshotNonVacuumable can accept recently-dead tuple versions that
    6355             :      * don't match.  Hence, if we took data from the selected heap tuple, we
    6356             :      * might get a bogus answer that's not close to the index extremal value,
    6357             :      * or could even be NULL.  We avoid this hazard because we take the data
    6358             :      * from the index entry not the heap.
    6359             :      *
    6360             :      * Despite all this care, there are situations where we might find many
    6361             :      * non-visible tuples near the end of the index.  We don't want to expend
    6362             :      * a huge amount of time here, so we give up once we've read too many heap
    6363             :      * pages.  When we fail for that reason, the caller will end up using
    6364             :      * whatever extremal value is recorded in pg_statistic.
    6365             :      */
    6366      108474 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable,
    6367             :                               GlobalVisTestFor(heapRel));
    6368             : 
    6369      108474 :     index_scan = index_beginscan(heapRel, indexRel,
    6370             :                                  &SnapshotNonVacuumable,
    6371             :                                  1, 0);
    6372             :     /* Set it up for index-only scan */
    6373      108474 :     index_scan->xs_want_itup = true;
    6374      108474 :     index_rescan(index_scan, scankeys, 1, NULL, 0);
    6375             : 
    6376             :     /* Fetch first/next tuple in specified direction */
    6377      136720 :     while ((tid = index_getnext_tid(index_scan, indexscandir)) != NULL)
    6378             :     {
    6379      136720 :         BlockNumber block = ItemPointerGetBlockNumber(tid);
    6380             : 
    6381      136720 :         if (!VM_ALL_VISIBLE(heapRel,
    6382             :                             block,
    6383             :                             &vmbuffer))
    6384             :         {
    6385             :             /* Rats, we have to visit the heap to check visibility */
    6386      103432 :             if (!index_fetch_heap(index_scan, tableslot))
    6387             :             {
    6388             :                 /*
    6389             :                  * No visible tuple for this index entry, so we need to
    6390             :                  * advance to the next entry.  Before doing so, count heap
    6391             :                  * page fetches and give up if we've done too many.
    6392             :                  *
    6393             :                  * We don't charge a page fetch if this is the same heap page
    6394             :                  * as the previous tuple.  This is on the conservative side,
    6395             :                  * since other recently-accessed pages are probably still in
    6396             :                  * buffers too; but it's good enough for this heuristic.
    6397             :                  */
    6398             : #define VISITED_PAGES_LIMIT 100
    6399             : 
    6400       28246 :                 if (block != last_heap_block)
    6401             :                 {
    6402        2924 :                     last_heap_block = block;
    6403        2924 :                     n_visited_heap_pages++;
    6404        2924 :                     if (n_visited_heap_pages > VISITED_PAGES_LIMIT)
    6405           0 :                         break;
    6406             :                 }
    6407             : 
    6408       28246 :                 continue;       /* no visible tuple, try next index entry */
    6409             :             }
    6410             : 
    6411             :             /* We don't actually need the heap tuple for anything */
    6412       75186 :             ExecClearTuple(tableslot);
    6413             : 
    6414             :             /*
    6415             :              * We don't care whether there's more than one visible tuple in
    6416             :              * the HOT chain; if any are visible, that's good enough.
    6417             :              */
    6418             :         }
    6419             : 
    6420             :         /*
    6421             :          * We expect that btree will return data in IndexTuple not HeapTuple
    6422             :          * format.  It's not lossy either.
    6423             :          */
    6424      108474 :         if (!index_scan->xs_itup)
    6425           0 :             elog(ERROR, "no data returned for index-only scan");
    6426      108474 :         if (index_scan->xs_recheck)
    6427           0 :             elog(ERROR, "unexpected recheck indication from btree");
    6428             : 
    6429             :         /* OK to deconstruct the index tuple */
    6430      108474 :         index_deform_tuple(index_scan->xs_itup,
    6431             :                            index_scan->xs_itupdesc,
    6432             :                            values, isnull);
    6433             : 
    6434             :         /* Shouldn't have got a null, but be careful */
    6435      108474 :         if (isnull[0])
    6436           0 :             elog(ERROR, "found unexpected null value in index \"%s\"",
    6437             :                  RelationGetRelationName(indexRel));
    6438             : 
    6439             :         /* Copy the index column value out to caller's context */
    6440      108474 :         oldcontext = MemoryContextSwitchTo(outercontext);
    6441      108474 :         *endpointDatum = datumCopy(values[0], typByVal, typLen);
    6442      108474 :         MemoryContextSwitchTo(oldcontext);
    6443      108474 :         have_data = true;
    6444      108474 :         break;
    6445             :     }
    6446             : 
    6447      108474 :     if (vmbuffer != InvalidBuffer)
    6448       95808 :         ReleaseBuffer(vmbuffer);
    6449      108474 :     index_endscan(index_scan);
    6450             : 
    6451      108474 :     return have_data;
    6452             : }
    6453             : 
    6454             : /*
    6455             :  * find_join_input_rel
    6456             :  *      Look up the input relation for a join.
    6457             :  *
    6458             :  * We assume that the input relation's RelOptInfo must have been constructed
    6459             :  * already.
    6460             :  */
    6461             : static RelOptInfo *
    6462        7098 : find_join_input_rel(PlannerInfo *root, Relids relids)
    6463             : {
    6464        7098 :     RelOptInfo *rel = NULL;
    6465             : 
    6466        7098 :     if (!bms_is_empty(relids))
    6467             :     {
    6468             :         int         relid;
    6469             : 
    6470        7098 :         if (bms_get_singleton_member(relids, &relid))
    6471        6836 :             rel = find_base_rel(root, relid);
    6472             :         else
    6473         262 :             rel = find_join_rel(root, relids);
    6474             :     }
    6475             : 
    6476        7098 :     if (rel == NULL)
    6477           0 :         elog(ERROR, "could not find RelOptInfo for given relids");
    6478             : 
    6479        7098 :     return rel;
    6480             : }
    6481             : 
    6482             : 
    6483             : /*-------------------------------------------------------------------------
    6484             :  *
    6485             :  * Index cost estimation functions
    6486             :  *
    6487             :  *-------------------------------------------------------------------------
    6488             :  */
    6489             : 
    6490             : /*
    6491             :  * Extract the actual indexquals (as RestrictInfos) from an IndexClause list
    6492             :  */
    6493             : List *
    6494      682122 : get_quals_from_indexclauses(List *indexclauses)
    6495             : {
    6496      682122 :     List       *result = NIL;
    6497             :     ListCell   *lc;
    6498             : 
    6499     1212666 :     foreach(lc, indexclauses)
    6500             :     {
    6501      530544 :         IndexClause *iclause = lfirst_node(IndexClause, lc);
    6502             :         ListCell   *lc2;
    6503             : 
    6504     1063938 :         foreach(lc2, iclause->indexquals)
    6505             :         {
    6506      533394 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
    6507             : 
    6508      533394 :             result = lappend(result, rinfo);
    6509             :         }
    6510             :     }
    6511      682122 :     return result;
    6512             : }
    6513             : 
    6514             : /*
    6515             :  * Compute the total evaluation cost of the comparison operands in a list
    6516             :  * of index qual expressions.  Since we know these will be evaluated just
    6517             :  * once per scan, there's no need to distinguish startup from per-row cost.
    6518             :  *
    6519             :  * This can be used either on the result of get_quals_from_indexclauses(),
    6520             :  * or directly on an indexorderbys list.  In both cases, we expect that the
    6521             :  * index key expression is on the left side of binary clauses.
    6522             :  */
    6523             : Cost
    6524     1351634 : index_other_operands_eval_cost(PlannerInfo *root, List *indexquals)
    6525             : {
    6526     1351634 :     Cost        qual_arg_cost = 0;
    6527             :     ListCell   *lc;
    6528             : 
    6529     1885490 :     foreach(lc, indexquals)
    6530             :     {
    6531      533856 :         Expr       *clause = (Expr *) lfirst(lc);
    6532             :         Node       *other_operand;
    6533             :         QualCost    index_qual_cost;
    6534             : 
    6535             :         /*
    6536             :          * Index quals will have RestrictInfos, indexorderbys won't.  Look
    6537             :          * through RestrictInfo if present.
    6538             :          */
    6539      533856 :         if (IsA(clause, RestrictInfo))
    6540      533382 :             clause = ((RestrictInfo *) clause)->clause;
    6541             : 
    6542      533856 :         if (IsA(clause, OpExpr))
    6543             :         {
    6544      521588 :             OpExpr     *op = (OpExpr *) clause;
    6545             : 
    6546      521588 :             other_operand = (Node *) lsecond(op->args);
    6547             :         }
    6548       12268 :         else if (IsA(clause, RowCompareExpr))
    6549             :         {
    6550         300 :             RowCompareExpr *rc = (RowCompareExpr *) clause;
    6551             : 
    6552         300 :             other_operand = (Node *) rc->rargs;
    6553             :         }
    6554       11968 :         else if (IsA(clause, ScalarArrayOpExpr))
    6555             :         {
    6556        9564 :             ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
    6557             : 
    6558        9564 :             other_operand = (Node *) lsecond(saop->args);
    6559             :         }
    6560        2404 :         else if (IsA(clause, NullTest))
    6561             :         {
    6562        2404 :             other_operand = NULL;
    6563             :         }
    6564             :         else
    6565             :         {
    6566           0 :             elog(ERROR, "unsupported indexqual type: %d",
    6567             :                  (int) nodeTag(clause));
    6568             :             other_operand = NULL;   /* keep compiler quiet */
    6569             :         }
    6570             : 
    6571      533856 :         cost_qual_eval_node(&index_qual_cost, other_operand, root);
    6572      533856 :         qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple;
    6573             :     }
    6574     1351634 :     return qual_arg_cost;
    6575             : }
    6576             : 
    6577             : void
    6578      669524 : genericcostestimate(PlannerInfo *root,
    6579             :                     IndexPath *path,
    6580             :                     double loop_count,
    6581             :                     GenericCosts *costs)
    6582             : {
    6583      669524 :     IndexOptInfo *index = path->indexinfo;
    6584      669524 :     List       *indexQuals = get_quals_from_indexclauses(path->indexclauses);
    6585      669524 :     List       *indexOrderBys = path->indexorderbys;
    6586             :     Cost        indexStartupCost;
    6587             :     Cost        indexTotalCost;
    6588             :     Selectivity indexSelectivity;
    6589             :     double      indexCorrelation;
    6590             :     double      numIndexPages;
    6591             :     double      numIndexTuples;
    6592             :     double      spc_random_page_cost;
    6593             :     double      num_sa_scans;
    6594             :     double      num_outer_scans;
    6595             :     double      num_scans;
    6596             :     double      qual_op_cost;
    6597             :     double      qual_arg_cost;
    6598             :     List       *selectivityQuals;
    6599             :     ListCell   *l;
    6600             : 
    6601             :     /*
    6602             :      * If the index is partial, AND the index predicate with the explicitly
    6603             :      * given indexquals to produce a more accurate idea of the index
    6604             :      * selectivity.
    6605             :      */
    6606      669524 :     selectivityQuals = add_predicate_to_index_quals(index, indexQuals);
    6607             : 
    6608             :     /*
    6609             :      * If caller didn't give us an estimate for ScalarArrayOpExpr index scans,
    6610             :      * just assume that the number of index descents is the number of distinct
    6611             :      * combinations of array elements from all of the scan's SAOP clauses.
    6612             :      */
    6613      669524 :     num_sa_scans = costs->num_sa_scans;
    6614      669524 :     if (num_sa_scans < 1)
    6615             :     {
    6616        8190 :         num_sa_scans = 1;
    6617       17254 :         foreach(l, indexQuals)
    6618             :         {
    6619        9064 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
    6620             : 
    6621        9064 :             if (IsA(rinfo->clause, ScalarArrayOpExpr))
    6622             :             {
    6623          26 :                 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause;
    6624          26 :                 double      alength = estimate_array_length(root, lsecond(saop->args));
    6625             : 
    6626          26 :                 if (alength > 1)
    6627          26 :                     num_sa_scans *= alength;
    6628             :             }
    6629             :         }
    6630             :     }
    6631             : 
    6632             :     /* Estimate the fraction of main-table tuples that will be visited */
    6633      669524 :     indexSelectivity = clauselist_selectivity(root, selectivityQuals,
    6634      669524 :                                               index->rel->relid,
    6635             :                                               JOIN_INNER,
    6636             :                                               NULL);
    6637             : 
    6638             :     /*
    6639             :      * If caller didn't give us an estimate, estimate the number of index
    6640             :      * tuples that will be visited.  We do it in this rather peculiar-looking
    6641             :      * way in order to get the right answer for partial indexes.
    6642             :      */
    6643      669524 :     numIndexTuples = costs->numIndexTuples;
    6644      669524 :     if (numIndexTuples <= 0.0)
    6645             :     {
    6646       76420 :         numIndexTuples = indexSelectivity * index->rel->tuples;
    6647             : 
    6648             :         /*
    6649             :          * The above calculation counts all the tuples visited across all
    6650             :          * scans induced by ScalarArrayOpExpr nodes.  We want to consider the
    6651             :          * average per-indexscan number, so adjust.  This is a handy place to
    6652             :          * round to integer, too.  (If caller supplied tuple estimate, it's
    6653             :          * responsible for handling these considerations.)
    6654             :          */
    6655       76420 :         numIndexTuples = rint(numIndexTuples / num_sa_scans);
    6656             :     }
    6657             : 
    6658             :     /*
    6659             :      * We can bound the number of tuples by the index size in any case. Also,
    6660             :      * always estimate at least one tuple is touched, even when
    6661             :      * indexSelectivity estimate is tiny.
    6662             :      */
    6663      669524 :     if (numIndexTuples > index->tuples)
    6664        6034 :         numIndexTuples = index->tuples;
    6665      669524 :     if (numIndexTuples < 1.0)
    6666       76404 :         numIndexTuples = 1.0;
    6667             : 
    6668             :     /*
    6669             :      * Estimate the number of index pages that will be retrieved.
    6670             :      *
    6671             :      * We use the simplistic method of taking a pro-rata fraction of the total
    6672             :      * number of index pages.  In effect, this counts only leaf pages and not
    6673             :      * any overhead such as index metapage or upper tree levels.
    6674             :      *
    6675             :      * In practice access to upper index levels is often nearly free because
    6676             :      * those tend to stay in cache under load; moreover, the cost involved is
    6677             :      * highly dependent on index type.  We therefore ignore such costs here
    6678             :      * and leave it to the caller to add a suitable charge if needed.
    6679             :      */
    6680      669524 :     if (index->pages > 1 && index->tuples > 1)
    6681      621732 :         numIndexPages = ceil(numIndexTuples * index->pages / index->tuples);
    6682             :     else
    6683       47792 :         numIndexPages = 1.0;
    6684             : 
    6685             :     /* fetch estimated page cost for tablespace containing index */
    6686      669524 :     get_tablespace_page_costs(index->reltablespace,
    6687             :                               &spc_random_page_cost,
    6688             :                               NULL);
    6689             : 
    6690             :     /*
    6691             :      * Now compute the disk access costs.
    6692             :      *
    6693             :      * The above calculations are all per-index-scan.  However, if we are in a
    6694             :      * nestloop inner scan, we can expect the scan to be repeated (with
    6695             :      * different search keys) for each row of the outer relation.  Likewise,
    6696             :      * ScalarArrayOpExpr quals result in multiple index scans.  This creates
    6697             :      * the potential for cache effects to reduce the number of disk page
    6698             :      * fetches needed.  We want to estimate the average per-scan I/O cost in
    6699             :      * the presence of caching.
    6700             :      *
    6701             :      * We use the Mackert-Lohman formula (see costsize.c for details) to
    6702             :      * estimate the total number of page fetches that occur.  While this
    6703             :      * wasn't what it was designed for, it seems a reasonable model anyway.
    6704             :      * Note that we are counting pages not tuples anymore, so we take N = T =
    6705             :      * index size, as if there were one "tuple" per page.
    6706             :      */
    6707      669524 :     num_outer_scans = loop_count;
    6708      669524 :     num_scans = num_sa_scans * num_outer_scans;
    6709             : 
    6710      669524 :     if (num_scans > 1)
    6711             :     {
    6712             :         double      pages_fetched;
    6713             : 
    6714             :         /* total page fetches ignoring cache effects */
    6715       72646 :         pages_fetched = numIndexPages * num_scans;
    6716             : 
    6717             :         /* use Mackert and Lohman formula to adjust for cache effects */
    6718       72646 :         pages_fetched = index_pages_fetched(pages_fetched,
    6719             :                                             index->pages,
    6720       72646 :                                             (double) index->pages,
    6721             :                                             root);
    6722             : 
    6723             :         /*
    6724             :          * Now compute the total disk access cost, and then report a pro-rated
    6725             :          * share for each outer scan.  (Don't pro-rate for ScalarArrayOpExpr,
    6726             :          * since that's internal to the indexscan.)
    6727             :          */
    6728       72646 :         indexTotalCost = (pages_fetched * spc_random_page_cost)
    6729             :             / num_outer_scans;
    6730             :     }
    6731             :     else
    6732             :     {
    6733             :         /*
    6734             :          * For a single index scan, we just charge spc_random_page_cost per
    6735             :          * page touched.
    6736             :          */
    6737      596878 :         indexTotalCost = numIndexPages * spc_random_page_cost;
    6738             :     }
    6739             : 
    6740             :     /*
    6741             :      * CPU cost: any complex expressions in the indexquals will need to be
    6742             :      * evaluated once at the start of the scan to reduce them to runtime keys
    6743             :      * to pass to the index AM (see nodeIndexscan.c).  We model the per-tuple
    6744             :      * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per
    6745             :      * indexqual operator.  Because we have numIndexTuples as a per-scan
    6746             :      * number, we have to multiply by num_sa_scans to get the correct result
    6747             :      * for ScalarArrayOpExpr cases.  Similarly add in costs for any index
    6748             :      * ORDER BY expressions.
    6749             :      *
    6750             :      * Note: this neglects the possible costs of rechecking lossy operators.
    6751             :      * Detecting that that might be needed seems more expensive than it's
    6752             :      * worth, though, considering all the other inaccuracies here ...
    6753             :      */
    6754      669524 :     qual_arg_cost = index_other_operands_eval_cost(root, indexQuals) +
    6755      669524 :         index_other_operands_eval_cost(root, indexOrderBys);
    6756      669524 :     qual_op_cost = cpu_operator_cost *
    6757      669524 :         (list_length(indexQuals) + list_length(indexOrderBys));
    6758             : 
    6759      669524 :     indexStartupCost = qual_arg_cost;
    6760      669524 :     indexTotalCost += qual_arg_cost;
    6761      669524 :     indexTotalCost += numIndexTuples * num_sa_scans * (cpu_index_tuple_cost + qual_op_cost);
    6762             : 
    6763             :     /*
    6764             :      * Generic assumption about index correlation: there isn't any.
    6765             :      */
    6766      669524 :     indexCorrelation = 0.0;
    6767             : 
    6768             :     /*
    6769             :      * Return everything to caller.
    6770             :      */
    6771      669524 :     costs->indexStartupCost = indexStartupCost;
    6772      669524 :     costs->indexTotalCost = indexTotalCost;
    6773      669524 :     costs->indexSelectivity = indexSelectivity;
    6774      669524 :     costs->indexCorrelation = indexCorrelation;
    6775      669524 :     costs->numIndexPages = numIndexPages;
    6776      669524 :     costs->numIndexTuples = numIndexTuples;
    6777      669524 :     costs->spc_random_page_cost = spc_random_page_cost;
    6778      669524 :     costs->num_sa_scans = num_sa_scans;
    6779      669524 : }
    6780             : 
    6781             : /*
    6782             :  * If the index is partial, add its predicate to the given qual list.
    6783             :  *
    6784             :  * ANDing the index predicate with the explicitly given indexquals produces
    6785             :  * a more accurate idea of the index's selectivity.  However, we need to be
    6786             :  * careful not to insert redundant clauses, because clauselist_selectivity()
    6787             :  * is easily fooled into computing a too-low selectivity estimate.  Our
    6788             :  * approach is to add only the predicate clause(s) that cannot be proven to
    6789             :  * be implied by the given indexquals.  This successfully handles cases such
    6790             :  * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50".
    6791             :  * There are many other cases where we won't detect redundancy, leading to a
    6792             :  * too-low selectivity estimate, which will bias the system in favor of using
    6793             :  * partial indexes where possible.  That is not necessarily bad though.
    6794             :  *
    6795             :  * Note that indexQuals contains RestrictInfo nodes while the indpred
    6796             :  * does not, so the output list will be mixed.  This is OK for both
    6797             :  * predicate_implied_by() and clauselist_selectivity(), but might be
    6798             :  * problematic if the result were passed to other things.
    6799             :  */
    6800             : List *
    6801     1108718 : add_predicate_to_index_quals(IndexOptInfo *index, List *indexQuals)
    6802             : {
    6803     1108718 :     List       *predExtraQuals = NIL;
    6804             :     ListCell   *lc;
    6805             : 
    6806     1108718 :     if (index->indpred == NIL)
    6807     1106692 :         return indexQuals;
    6808             : 
    6809        4064 :     foreach(lc, index->indpred)
    6810             :     {
    6811        2038 :         Node       *predQual = (Node *) lfirst(lc);
    6812        2038 :         List       *oneQual = list_make1(predQual);
    6813             : 
    6814        2038 :         if (!predicate_implied_by(oneQual, indexQuals, false))
    6815        1836 :             predExtraQuals = list_concat(predExtraQuals, oneQual);
    6816             :     }
    6817        2026 :     return list_concat(predExtraQuals, indexQuals);
    6818             : }
    6819             : 
    6820             : 
    6821             : void
    6822      661334 : btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    6823             :                Cost *indexStartupCost, Cost *indexTotalCost,
    6824             :                Selectivity *indexSelectivity, double *indexCorrelation,
    6825             :                double *indexPages)
    6826             : {
    6827      661334 :     IndexOptInfo *index = path->indexinfo;
    6828      661334 :     GenericCosts costs = {0};
    6829             :     Oid         relid;
    6830             :     AttrNumber  colnum;
    6831      661334 :     VariableStatData vardata = {0};
    6832             :     double      numIndexTuples;
    6833             :     Cost        descentCost;
    6834             :     List       *indexBoundQuals;
    6835             :     int         indexcol;
    6836             :     bool        eqQualHere;
    6837             :     bool        found_saop;
    6838             :     bool        found_is_null_op;
    6839             :     double      num_sa_scans;
    6840             :     ListCell   *lc;
    6841             : 
    6842             :     /*
    6843             :      * For a btree scan, only leading '=' quals plus inequality quals for the
    6844             :      * immediately next attribute contribute to index selectivity (these are
    6845             :      * the "boundary quals" that determine the starting and stopping points of
    6846             :      * the index scan).  Additional quals can suppress visits to the heap, so
    6847             :      * it's OK to count them in indexSelectivity, but they should not count
    6848             :      * for estimating numIndexTuples.  So we must examine the given indexquals
    6849             :      * to find out which ones count as boundary quals.  We rely on the
    6850             :      * knowledge that they are given in index column order.
    6851             :      *
    6852             :      * For a RowCompareExpr, we consider only the first column, just as
    6853             :      * rowcomparesel() does.
    6854             :      *
    6855             :      * If there's a ScalarArrayOpExpr in the quals, we'll actually perform up
    6856             :      * to N index descents (not just one), but the ScalarArrayOpExpr's
    6857             :      * operator can be considered to act the same as it normally does.
    6858             :      */
    6859      661334 :     indexBoundQuals = NIL;
    6860      661334 :     indexcol = 0;
    6861      661334 :     eqQualHere = false;
    6862      661334 :     found_saop = false;
    6863      661334 :     found_is_null_op = false;
    6864      661334 :     num_sa_scans = 1;
    6865     1140772 :     foreach(lc, path->indexclauses)
    6866             :     {
    6867      506690 :         IndexClause *iclause = lfirst_node(IndexClause, lc);
    6868             :         ListCell   *lc2;
    6869             : 
    6870      506690 :         if (indexcol != iclause->indexcol)
    6871             :         {
    6872             :             /* Beginning of a new column's quals */
    6873       93102 :             if (!eqQualHere)
    6874       25940 :                 break;          /* done if no '=' qual for indexcol */
    6875       67162 :             eqQualHere = false;
    6876       67162 :             indexcol++;
    6877       67162 :             if (indexcol != iclause->indexcol)
    6878        1312 :                 break;          /* no quals at all for indexcol */
    6879             :         }
    6880             : 
    6881             :         /* Examine each indexqual associated with this index clause */
    6882      961548 :         foreach(lc2, iclause->indexquals)
    6883             :         {
    6884      482110 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
    6885      482110 :             Expr       *clause = rinfo->clause;
    6886      482110 :             Oid         clause_op = InvalidOid;
    6887             :             int         op_strategy;
    6888             : 
    6889      482110 :             if (IsA(clause, OpExpr))
    6890             :             {
    6891      470776 :                 OpExpr     *op = (OpExpr *) clause;
    6892             : 
    6893      470776 :                 clause_op = op->opno;
    6894             :             }
    6895       11334 :             else if (IsA(clause, RowCompareExpr))
    6896             :             {
    6897         300 :                 RowCompareExpr *rc = (RowCompareExpr *) clause;
    6898             : 
    6899         300 :                 clause_op = linitial_oid(rc->opnos);
    6900             :             }
    6901       11034 :             else if (IsA(clause, ScalarArrayOpExpr))
    6902             :             {
    6903        9248 :                 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
    6904        9248 :                 Node       *other_operand = (Node *) lsecond(saop->args);
    6905        9248 :                 double      alength = estimate_array_length(root, other_operand);
    6906             : 
    6907        9248 :                 clause_op = saop->opno;
    6908        9248 :                 found_saop = true;
    6909             :                 /* estimate SA descents by indexBoundQuals only */
    6910        9248 :                 if (alength > 1)
    6911        9152 :                     num_sa_scans *= alength;
    6912             :             }
    6913        1786 :             else if (IsA(clause, NullTest))
    6914             :             {
    6915        1786 :                 NullTest   *nt = (NullTest *) clause;
    6916             : 
    6917        1786 :                 if (nt->nulltesttype == IS_NULL)
    6918             :                 {
    6919         204 :                     found_is_null_op = true;
    6920             :                     /* IS NULL is like = for selectivity purposes */
    6921         204 :                     eqQualHere = true;
    6922             :                 }
    6923             :             }
    6924             :             else
    6925           0 :                 elog(ERROR, "unsupported indexqual type: %d",
    6926             :                      (int) nodeTag(clause));
    6927             : 
    6928             :             /* check for equality operator */
    6929      482110 :             if (OidIsValid(clause_op))
    6930             :             {
    6931      480324 :                 op_strategy = get_op_opfamily_strategy(clause_op,
    6932      480324 :                                                        index->opfamily[indexcol]);
    6933             :                 Assert(op_strategy != 0);   /* not a member of opfamily?? */
    6934      480324 :                 if (op_strategy == BTEqualStrategyNumber)
    6935      455906 :                     eqQualHere = true;
    6936             :             }
    6937             : 
    6938      482110 :             indexBoundQuals = lappend(indexBoundQuals, rinfo);
    6939             :         }
    6940             :     }
    6941             : 
    6942             :     /*
    6943             :      * If index is unique and we found an '=' clause for each column, we can
    6944             :      * just assume numIndexTuples = 1 and skip the expensive
    6945             :      * clauselist_selectivity calculations.  However, a ScalarArrayOp or
    6946             :      * NullTest invalidates that theory, even though it sets eqQualHere.
    6947             :      */
    6948      661334 :     if (index->unique &&
    6949      544040 :         indexcol == index->nkeycolumns - 1 &&
    6950      229020 :         eqQualHere &&
    6951      229020 :         !found_saop &&
    6952      224074 :         !found_is_null_op)
    6953      224008 :         numIndexTuples = 1.0;
    6954             :     else
    6955             :     {
    6956             :         List       *selectivityQuals;
    6957             :         Selectivity btreeSelectivity;
    6958             : 
    6959             :         /*
    6960             :          * If the index is partial, AND the index predicate with the
    6961             :          * index-bound quals to produce a more accurate idea of the number of
    6962             :          * rows covered by the bound conditions.
    6963             :          */
    6964      437326 :         selectivityQuals = add_predicate_to_index_quals(index, indexBoundQuals);
    6965             : 
    6966      437326 :         btreeSelectivity = clauselist_selectivity(root, selectivityQuals,
    6967      437326 :                                                   index->rel->relid,
    6968             :                                                   JOIN_INNER,
    6969             :                                                   NULL);
    6970      437326 :         numIndexTuples = btreeSelectivity * index->rel->tuples;
    6971             : 
    6972             :         /*
    6973             :          * btree automatically combines individual ScalarArrayOpExpr primitive
    6974             :          * index scans whenever the tuples covered by the next set of array
    6975             :          * keys are close to tuples covered by the current set.  That puts a
    6976             :          * natural ceiling on the worst case number of descents -- there
    6977             :          * cannot possibly be more than one descent per leaf page scanned.
    6978             :          *
    6979             :          * Clamp the number of descents to at most 1/3 the number of index
    6980             :          * pages.  This avoids implausibly high estimates with low selectivity
    6981             :          * paths, where scans usually require only one or two descents.  This
    6982             :          * is most likely to help when there are several SAOP clauses, where
    6983             :          * naively accepting the total number of distinct combinations of
    6984             :          * array elements as the number of descents would frequently lead to
    6985             :          * wild overestimates.
    6986             :          *
    6987             :          * We somewhat arbitrarily don't just make the cutoff the total number
    6988             :          * of leaf pages (we make it 1/3 the total number of pages instead) to
    6989             :          * give the btree code credit for its ability to continue on the leaf
    6990             :          * level with low selectivity scans.
    6991             :          */
    6992      437326 :         num_sa_scans = Min(num_sa_scans, ceil(index->pages * 0.3333333));
    6993      437326 :         num_sa_scans = Max(num_sa_scans, 1);
    6994             : 
    6995             :         /*
    6996             :          * As in genericcostestimate(), we have to adjust for any
    6997             :          * ScalarArrayOpExpr quals included in indexBoundQuals, and then round
    6998             :          * to integer.
    6999             :          *
    7000             :          * It is tempting to make genericcostestimate behave as if SAOP
    7001             :          * clauses work in almost the same way as scalar operators during
    7002             :          * btree scans, making the top-level scan look like a continuous scan
    7003             :          * (as opposed to num_sa_scans-many primitive index scans).  After
    7004             :          * all, btree scans mostly work like that at runtime.  However, such a
    7005             :          * scheme would badly bias genericcostestimate's simplistic approach
    7006             :          * to calculating numIndexPages through prorating.
    7007             :          *
    7008             :          * Stick with the approach taken by non-native SAOP scans for now.
    7009             :          * genericcostestimate will use the Mackert-Lohman formula to
    7010             :          * compensate for repeat page fetches, even though that definitely
    7011             :          * won't happen during btree scans (not for leaf pages, at least).
    7012             :          * We're usually very pessimistic about the number of primitive index
    7013             :          * scans that will be required, but it's not clear how to do better.
    7014             :          */
    7015      437326 :         numIndexTuples = rint(numIndexTuples / num_sa_scans);
    7016             :     }
    7017             : 
    7018             :     /*
    7019             :      * Now do generic index cost estimation.
    7020             :      */
    7021      661334 :     costs.numIndexTuples = numIndexTuples;
    7022      661334 :     costs.num_sa_scans = num_sa_scans;
    7023             : 
    7024      661334 :     genericcostestimate(root, path, loop_count, &costs);
    7025             : 
    7026             :     /*
    7027             :      * Add a CPU-cost component to represent the costs of initial btree
    7028             :      * descent.  We don't charge any I/O cost for touching upper btree levels,
    7029             :      * since they tend to stay in cache, but we still have to do about log2(N)
    7030             :      * comparisons to descend a btree of N leaf tuples.  We charge one
    7031             :      * cpu_operator_cost per comparison.
    7032             :      *
    7033             :      * If there are ScalarArrayOpExprs, charge this once per estimated SA
    7034             :      * index descent.  The ones after the first one are not startup cost so
    7035             :      * far as the overall plan goes, so just add them to "total" cost.
    7036             :      */
    7037      661334 :     if (index->tuples > 1)        /* avoid computing log(0) */
    7038             :     {
    7039      621964 :         descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost;
    7040      621964 :         costs.indexStartupCost += descentCost;
    7041      621964 :         costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7042             :     }
    7043             : 
    7044             :     /*
    7045             :      * Even though we're not charging I/O cost for touching upper btree pages,
    7046             :      * it's still reasonable to charge some CPU cost per page descended
    7047             :      * through.  Moreover, if we had no such charge at all, bloated indexes
    7048             :      * would appear to have the same search cost as unbloated ones, at least
    7049             :      * in cases where only a single leaf page is expected to be visited.  This
    7050             :      * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page
    7051             :      * touched.  The number of such pages is btree tree height plus one (ie,
    7052             :      * we charge for the leaf page too).  As above, charge once per estimated
    7053             :      * SA index descent.
    7054             :      */
    7055      661334 :     descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7056      661334 :     costs.indexStartupCost += descentCost;
    7057      661334 :     costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7058             : 
    7059             :     /*
    7060             :      * If we can get an estimate of the first column's ordering correlation C
    7061             :      * from pg_statistic, estimate the index correlation as C for a
    7062             :      * single-column index, or C * 0.75 for multiple columns. (The idea here
    7063             :      * is that multiple columns dilute the importance of the first column's
    7064             :      * ordering, but don't negate it entirely.  Before 8.0 we divided the
    7065             :      * correlation by the number of columns, but that seems too strong.)
    7066             :      */
    7067      661334 :     if (index->indexkeys[0] != 0)
    7068             :     {
    7069             :         /* Simple variable --- look to stats for the underlying table */
    7070      659312 :         RangeTblEntry *rte = planner_rt_fetch(index->rel->relid, root);
    7071             : 
    7072             :         Assert(rte->rtekind == RTE_RELATION);
    7073      659312 :         relid = rte->relid;
    7074             :         Assert(relid != InvalidOid);
    7075      659312 :         colnum = index->indexkeys[0];
    7076             : 
    7077      659312 :         if (get_relation_stats_hook &&
    7078           0 :             (*get_relation_stats_hook) (root, rte, colnum, &vardata))
    7079             :         {
    7080             :             /*
    7081             :              * The hook took control of acquiring a stats tuple.  If it did
    7082             :              * supply a tuple, it'd better have supplied a freefunc.
    7083             :              */
    7084           0 :             if (HeapTupleIsValid(vardata.statsTuple) &&
    7085           0 :                 !vardata.freefunc)
    7086           0 :                 elog(ERROR, "no function provided to release variable stats with");
    7087             :         }
    7088             :         else
    7089             :         {
    7090      659312 :             vardata.statsTuple = SearchSysCache3(STATRELATTINH,
    7091             :                                                  ObjectIdGetDatum(relid),
    7092             :                                                  Int16GetDatum(colnum),
    7093      659312 :                                                  BoolGetDatum(rte->inh));
    7094      659312 :             vardata.freefunc = ReleaseSysCache;
    7095             :         }
    7096             :     }
    7097             :     else
    7098             :     {
    7099             :         /* Expression --- maybe there are stats for the index itself */
    7100        2022 :         relid = index->indexoid;
    7101        2022 :         colnum = 1;
    7102             : 
    7103        2022 :         if (get_index_stats_hook &&
    7104           0 :             (*get_index_stats_hook) (root, relid, colnum, &vardata))
    7105             :         {
    7106             :             /*
    7107             :              * The hook took control of acquiring a stats tuple.  If it did
    7108             :              * supply a tuple, it'd better have supplied a freefunc.
    7109             :              */
    7110           0 :             if (HeapTupleIsValid(vardata.statsTuple) &&
    7111           0 :                 !vardata.freefunc)
    7112           0 :                 elog(ERROR, "no function provided to release variable stats with");
    7113             :         }
    7114             :         else
    7115             :         {
    7116        2022 :             vardata.statsTuple = SearchSysCache3(STATRELATTINH,
    7117             :                                                  ObjectIdGetDatum(relid),
    7118             :                                                  Int16GetDatum(colnum),
    7119             :                                                  BoolGetDatum(false));
    7120        2022 :             vardata.freefunc = ReleaseSysCache;
    7121             :         }
    7122             :     }
    7123             : 
    7124      661334 :     if (HeapTupleIsValid(vardata.statsTuple))
    7125             :     {
    7126             :         Oid         sortop;
    7127             :         AttStatsSlot sslot;
    7128             : 
    7129      492314 :         sortop = get_opfamily_member(index->opfamily[0],
    7130      492314 :                                      index->opcintype[0],
    7131      492314 :                                      index->opcintype[0],
    7132             :                                      BTLessStrategyNumber);
    7133      984628 :         if (OidIsValid(sortop) &&
    7134      492314 :             get_attstatsslot(&sslot, vardata.statsTuple,
    7135             :                              STATISTIC_KIND_CORRELATION, sortop,
    7136             :                              ATTSTATSSLOT_NUMBERS))
    7137             :         {
    7138             :             double      varCorrelation;
    7139             : 
    7140             :             Assert(sslot.nnumbers == 1);
    7141      487024 :             varCorrelation = sslot.numbers[0];
    7142             : 
    7143      487024 :             if (index->reverse_sort[0])
    7144           0 :                 varCorrelation = -varCorrelation;
    7145             : 
    7146      487024 :             if (index->nkeycolumns > 1)
    7147      162016 :                 costs.indexCorrelation = varCorrelation * 0.75;
    7148             :             else
    7149      325008 :                 costs.indexCorrelation = varCorrelation;
    7150             : 
    7151      487024 :             free_attstatsslot(&sslot);
    7152             :         }
    7153             :     }
    7154             : 
    7155      661334 :     ReleaseVariableStats(vardata);
    7156             : 
    7157      661334 :     *indexStartupCost = costs.indexStartupCost;
    7158      661334 :     *indexTotalCost = costs.indexTotalCost;
    7159      661334 :     *indexSelectivity = costs.indexSelectivity;
    7160      661334 :     *indexCorrelation = costs.indexCorrelation;
    7161      661334 :     *indexPages = costs.numIndexPages;
    7162      661334 : }
    7163             : 
    7164             : void
    7165         410 : hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7166             :                  Cost *indexStartupCost, Cost *indexTotalCost,
    7167             :                  Selectivity *indexSelectivity, double *indexCorrelation,
    7168             :                  double *indexPages)
    7169             : {
    7170         410 :     GenericCosts costs = {0};
    7171             : 
    7172         410 :     genericcostestimate(root, path, loop_count, &costs);
    7173             : 
    7174             :     /*
    7175             :      * A hash index has no descent costs as such, since the index AM can go
    7176             :      * directly to the target bucket after computing the hash value.  There
    7177             :      * are a couple of other hash-specific costs that we could conceivably add
    7178             :      * here, though:
    7179             :      *
    7180             :      * Ideally we'd charge spc_random_page_cost for each page in the target
    7181             :      * bucket, not just the numIndexPages pages that genericcostestimate
    7182             :      * thought we'd visit.  However in most cases we don't know which bucket
    7183             :      * that will be.  There's no point in considering the average bucket size
    7184             :      * because the hash AM makes sure that's always one page.
    7185             :      *
    7186             :      * Likewise, we could consider charging some CPU for each index tuple in
    7187             :      * the bucket, if we knew how many there were.  But the per-tuple cost is
    7188             :      * just a hash value comparison, not a general datatype-dependent
    7189             :      * comparison, so any such charge ought to be quite a bit less than
    7190             :      * cpu_operator_cost; which makes it probably not worth worrying about.
    7191             :      *
    7192             :      * A bigger issue is that chance hash-value collisions will result in
    7193             :      * wasted probes into the heap.  We don't currently attempt to model this
    7194             :      * cost on the grounds that it's rare, but maybe it's not rare enough.
    7195             :      * (Any fix for this ought to consider the generic lossy-operator problem,
    7196             :      * though; it's not entirely hash-specific.)
    7197             :      */
    7198             : 
    7199         410 :     *indexStartupCost = costs.indexStartupCost;
    7200         410 :     *indexTotalCost = costs.indexTotalCost;
    7201         410 :     *indexSelectivity = costs.indexSelectivity;
    7202         410 :     *indexCorrelation = costs.indexCorrelation;
    7203         410 :     *indexPages = costs.numIndexPages;
    7204         410 : }
    7205             : 
    7206             : void
    7207        5184 : gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7208             :                  Cost *indexStartupCost, Cost *indexTotalCost,
    7209             :                  Selectivity *indexSelectivity, double *indexCorrelation,
    7210             :                  double *indexPages)
    7211             : {
    7212        5184 :     IndexOptInfo *index = path->indexinfo;
    7213        5184 :     GenericCosts costs = {0};
    7214             :     Cost        descentCost;
    7215             : 
    7216        5184 :     genericcostestimate(root, path, loop_count, &costs);
    7217             : 
    7218             :     /*
    7219             :      * We model index descent costs similarly to those for btree, but to do
    7220             :      * that we first need an idea of the tree height.  We somewhat arbitrarily
    7221             :      * assume that the fanout is 100, meaning the tree height is at most
    7222             :      * log100(index->pages).
    7223             :      *
    7224             :      * Although this computation isn't really expensive enough to require
    7225             :      * caching, we might as well use index->tree_height to cache it.
    7226             :      */
    7227        5184 :     if (index->tree_height < 0) /* unknown? */
    7228             :     {
    7229        5170 :         if (index->pages > 1) /* avoid computing log(0) */
    7230        2704 :             index->tree_height = (int) (log(index->pages) / log(100.0));
    7231             :         else
    7232        2466 :             index->tree_height = 0;
    7233             :     }
    7234             : 
    7235             :     /*
    7236             :      * Add a CPU-cost component to represent the costs of initial descent. We
    7237             :      * just use log(N) here not log2(N) since the branching factor isn't
    7238             :      * necessarily two anyway.  As for btree, charge once per SA scan.
    7239             :      */
    7240        5184 :     if (index->tuples > 1)        /* avoid computing log(0) */
    7241             :     {
    7242        5184 :         descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
    7243        5184 :         costs.indexStartupCost += descentCost;
    7244        5184 :         costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7245             :     }
    7246             : 
    7247             :     /*
    7248             :      * Likewise add a per-page charge, calculated the same as for btrees.
    7249             :      */
    7250        5184 :     descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7251        5184 :     costs.indexStartupCost += descentCost;
    7252        5184 :     costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7253             : 
    7254        5184 :     *indexStartupCost = costs.indexStartupCost;
    7255        5184 :     *indexTotalCost = costs.indexTotalCost;
    7256        5184 :     *indexSelectivity = costs.indexSelectivity;
    7257        5184 :     *indexCorrelation = costs.indexCorrelation;
    7258        5184 :     *indexPages = costs.numIndexPages;
    7259        5184 : }
    7260             : 
    7261             : void
    7262        1784 : spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7263             :                 Cost *indexStartupCost, Cost *indexTotalCost,
    7264             :                 Selectivity *indexSelectivity, double *indexCorrelation,
    7265             :                 double *indexPages)
    7266             : {
    7267        1784 :     IndexOptInfo *index = path->indexinfo;
    7268        1784 :     GenericCosts costs = {0};
    7269             :     Cost        descentCost;
    7270             : 
    7271        1784 :     genericcostestimate(root, path, loop_count, &costs);
    7272             : 
    7273             :     /*
    7274             :      * We model index descent costs similarly to those for btree, but to do
    7275             :      * that we first need an idea of the tree height.  We somewhat arbitrarily
    7276             :      * assume that the fanout is 100, meaning the tree height is at most
    7277             :      * log100(index->pages).
    7278             :      *
    7279             :      * Although this computation isn't really expensive enough to require
    7280             :      * caching, we might as well use index->tree_height to cache it.
    7281             :      */
    7282        1784 :     if (index->tree_height < 0) /* unknown? */
    7283             :     {
    7284        1778 :         if (index->pages > 1) /* avoid computing log(0) */
    7285        1778 :             index->tree_height = (int) (log(index->pages) / log(100.0));
    7286             :         else
    7287           0 :             index->tree_height = 0;
    7288             :     }
    7289             : 
    7290             :     /*
    7291             :      * Add a CPU-cost component to represent the costs of initial descent. We
    7292             :      * just use log(N) here not log2(N) since the branching factor isn't
    7293             :      * necessarily two anyway.  As for btree, charge once per SA scan.
    7294             :      */
    7295        1784 :     if (index->tuples > 1)        /* avoid computing log(0) */
    7296             :     {
    7297        1784 :         descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
    7298        1784 :         costs.indexStartupCost += descentCost;
    7299        1784 :         costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7300             :     }
    7301             : 
    7302             :     /*
    7303             :      * Likewise add a per-page charge, calculated the same as for btrees.
    7304             :      */
    7305        1784 :     descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7306        1784 :     costs.indexStartupCost += descentCost;
    7307        1784 :     costs.indexTotalCost += costs.num_sa_scans * descentCost;
    7308             : 
    7309        1784 :     *indexStartupCost = costs.indexStartupCost;
    7310        1784 :     *indexTotalCost = costs.indexTotalCost;
    7311        1784 :     *indexSelectivity = costs.indexSelectivity;
    7312        1784 :     *indexCorrelation = costs.indexCorrelation;
    7313        1784 :     *indexPages = costs.numIndexPages;
    7314        1784 : }
    7315             : 
    7316             : 
    7317             : /*
    7318             :  * Support routines for gincostestimate
    7319             :  */
    7320             : 
    7321             : typedef struct
    7322             : {
    7323             :     bool        attHasFullScan[INDEX_MAX_KEYS];
    7324             :     bool        attHasNormalScan[INDEX_MAX_KEYS];
    7325             :     double      partialEntries;
    7326             :     double      exactEntries;
    7327             :     double      searchEntries;
    7328             :     double      arrayScans;
    7329             : } GinQualCounts;
    7330             : 
    7331             : /*
    7332             :  * Estimate the number of index terms that need to be searched for while
    7333             :  * testing the given GIN query, and increment the counts in *counts
    7334             :  * appropriately.  If the query is unsatisfiable, return false.
    7335             :  */
    7336             : static bool
    7337        2072 : gincost_pattern(IndexOptInfo *index, int indexcol,
    7338             :                 Oid clause_op, Datum query,
    7339             :                 GinQualCounts *counts)
    7340             : {
    7341             :     FmgrInfo    flinfo;
    7342             :     Oid         extractProcOid;
    7343             :     Oid         collation;
    7344             :     int         strategy_op;
    7345             :     Oid         lefttype,
    7346             :                 righttype;
    7347        2072 :     int32       nentries = 0;
    7348        2072 :     bool       *partial_matches = NULL;
    7349        2072 :     Pointer    *extra_data = NULL;
    7350        2072 :     bool       *nullFlags = NULL;
    7351        2072 :     int32       searchMode = GIN_SEARCH_MODE_DEFAULT;
    7352             :     int32       i;
    7353             : 
    7354             :     Assert(indexcol < index->nkeycolumns);
    7355             : 
    7356             :     /*
    7357             :      * Get the operator's strategy number and declared input data types within
    7358             :      * the index opfamily.  (We don't need the latter, but we use
    7359             :      * get_op_opfamily_properties because it will throw error if it fails to
    7360             :      * find a matching pg_amop entry.)
    7361             :      */
    7362        2072 :     get_op_opfamily_properties(clause_op, index->opfamily[indexcol], false,
    7363             :                                &strategy_op, &lefttype, &righttype);
    7364             : 
    7365             :     /*
    7366             :      * GIN always uses the "default" support functions, which are those with
    7367             :      * lefttype == righttype == the opclass' opcintype (see
    7368             :      * IndexSupportInitialize in relcache.c).
    7369             :      */
    7370        2072 :     extractProcOid = get_opfamily_proc(index->opfamily[indexcol],
    7371        2072 :                                        index->opcintype[indexcol],
    7372        2072 :                                        index->opcintype[indexcol],
    7373             :                                        GIN_EXTRACTQUERY_PROC);
    7374             : 
    7375        2072 :     if (!OidIsValid(extractProcOid))
    7376             :     {
    7377             :         /* should not happen; throw same error as index_getprocinfo */
    7378           0 :         elog(ERROR, "missing support function %d for attribute %d of index \"%s\"",
    7379             :              GIN_EXTRACTQUERY_PROC, indexcol + 1,
    7380             :              get_rel_name(index->indexoid));
    7381             :     }
    7382             : 
    7383             :     /*
    7384             :      * Choose collation to pass to extractProc (should match initGinState).
    7385             :      */
    7386        2072 :     if (OidIsValid(index->indexcollations[indexcol]))
    7387         364 :         collation = index->indexcollations[indexcol];
    7388             :     else
    7389        1708 :         collation = DEFAULT_COLLATION_OID;
    7390             : 
    7391        2072 :     fmgr_info(extractProcOid, &flinfo);
    7392             : 
    7393        2072 :     set_fn_opclass_options(&flinfo, index->opclassoptions[indexcol]);
    7394             : 
    7395        2072 :     FunctionCall7Coll(&flinfo,
    7396             :                       collation,
    7397             :                       query,
    7398             :                       PointerGetDatum(&nentries),
    7399             :                       UInt16GetDatum(strategy_op),
    7400             :                       PointerGetDatum(&partial_matches),
    7401             :                       PointerGetDatum(&extra_data),
    7402             :                       PointerGetDatum(&nullFlags),
    7403             :                       PointerGetDatum(&searchMode));
    7404             : 
    7405        2072 :     if (nentries <= 0 && searchMode == GIN_SEARCH_MODE_DEFAULT)
    7406             :     {
    7407             :         /* No match is possible */
    7408          12 :         return false;
    7409             :     }
    7410             : 
    7411        8796 :     for (i = 0; i < nentries; i++)
    7412             :     {
    7413             :         /*
    7414             :          * For partial match we haven't any information to estimate number of
    7415             :          * matched entries in index, so, we just estimate it as 100
    7416             :          */
    7417        6736 :         if (partial_matches && partial_matches[i])
    7418         316 :             counts->partialEntries += 100;
    7419             :         else
    7420        6420 :             counts->exactEntries++;
    7421             : 
    7422        6736 :         counts->searchEntries++;
    7423             :     }
    7424             : 
    7425        2060 :     if (searchMode == GIN_SEARCH_MODE_DEFAULT)
    7426             :     {
    7427        1588 :         counts->attHasNormalScan[indexcol] = true;
    7428             :     }
    7429         472 :     else if (searchMode == GIN_SEARCH_MODE_INCLUDE_EMPTY)
    7430             :     {
    7431             :         /* Treat "include empty" like an exact-match item */
    7432          44 :         counts->attHasNormalScan[indexcol] = true;
    7433          44 :         counts->exactEntries++;
    7434          44 :         counts->searchEntries++;
    7435             :     }
    7436             :     else
    7437             :     {
    7438             :         /* It's GIN_SEARCH_MODE_ALL */
    7439         428 :         counts->attHasFullScan[indexcol] = true;
    7440             :     }
    7441             : 
    7442        2060 :     return true;
    7443             : }
    7444             : 
    7445             : /*
    7446             :  * Estimate the number of index terms that need to be searched for while
    7447             :  * testing the given GIN index clause, and increment the counts in *counts
    7448             :  * appropriately.  If the query is unsatisfiable, return false.
    7449             :  */
    7450             : static bool
    7451        2060 : gincost_opexpr(PlannerInfo *root,
    7452             :                IndexOptInfo *index,
    7453             :                int indexcol,
    7454             :                OpExpr *clause,
    7455             :                GinQualCounts *counts)
    7456             : {
    7457        2060 :     Oid         clause_op = clause->opno;
    7458        2060 :     Node       *operand = (Node *) lsecond(clause->args);
    7459             : 
    7460             :     /* aggressively reduce to a constant, and look through relabeling */
    7461        2060 :     operand = estimate_expression_value(root, operand);
    7462             : 
    7463        2060 :     if (IsA(operand, RelabelType))
    7464           0 :         operand = (Node *) ((RelabelType *) operand)->arg;
    7465             : 
    7466             :     /*
    7467             :      * It's impossible to call extractQuery method for unknown operand. So
    7468             :      * unless operand is a Const we can't do much; just assume there will be
    7469             :      * one ordinary search entry from the operand at runtime.
    7470             :      */
    7471        2060 :     if (!IsA(operand, Const))
    7472             :     {
    7473           0 :         counts->exactEntries++;
    7474           0 :         counts->searchEntries++;
    7475           0 :         return true;
    7476             :     }
    7477             : 
    7478             :     /* If Const is null, there can be no matches */
    7479        2060 :     if (((Const *) operand)->constisnull)
    7480           0 :         return false;
    7481             : 
    7482             :     /* Otherwise, apply extractQuery and get the actual term counts */
    7483        2060 :     return gincost_pattern(index, indexcol, clause_op,
    7484             :                            ((Const *) operand)->constvalue,
    7485             :                            counts);
    7486             : }
    7487             : 
    7488             : /*
    7489             :  * Estimate the number of index terms that need to be searched for while
    7490             :  * testing the given GIN index clause, and increment the counts in *counts
    7491             :  * appropriately.  If the query is unsatisfiable, return false.
    7492             :  *
    7493             :  * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime,
    7494             :  * each of which involves one value from the RHS array, plus all the
    7495             :  * non-array quals (if any).  To model this, we average the counts across
    7496             :  * the RHS elements, and add the averages to the counts in *counts (which
    7497             :  * correspond to per-indexscan costs).  We also multiply counts->arrayScans
    7498             :  * by N, causing gincostestimate to scale up its estimates accordingly.
    7499             :  */
    7500             : static bool
    7501           6 : gincost_scalararrayopexpr(PlannerInfo *root,
    7502             :                           IndexOptInfo *index,
    7503             :                           int indexcol,
    7504             :                           ScalarArrayOpExpr *clause,
    7505             :                           double numIndexEntries,
    7506             :                           GinQualCounts *counts)
    7507             : {
    7508           6 :     Oid         clause_op = clause->opno;
    7509           6 :     Node       *rightop = (Node *) lsecond(clause->args);
    7510             :     ArrayType  *arrayval;
    7511             :     int16       elmlen;
    7512             :     bool        elmbyval;
    7513             :     char        elmalign;
    7514             :     int         numElems;
    7515             :     Datum      *elemValues;
    7516             :     bool       *elemNulls;
    7517             :     GinQualCounts arraycounts;
    7518           6 :     int         numPossible = 0;
    7519             :     int         i;
    7520             : 
    7521             :     Assert(clause->useOr);
    7522             : 
    7523             :     /* aggressively reduce to a constant, and look through relabeling */
    7524           6 :     rightop = estimate_expression_value(root, rightop);
    7525             : 
    7526           6 :     if (IsA(rightop, RelabelType))
    7527           0 :         rightop = (Node *) ((RelabelType *) rightop)->arg;
    7528             : 
    7529             :     /*
    7530             :      * It's impossible to call extractQuery method for unknown operand. So
    7531             :      * unless operand is a Const we can't do much; just assume there will be
    7532             :      * one ordinary search entry from each array entry at runtime, and fall
    7533             :      * back on a probably-bad estimate of the number of array entries.
    7534             :      */
    7535           6 :     if (!IsA(rightop, Const))
    7536             :     {
    7537           0 :         counts->exactEntries++;
    7538           0 :         counts->searchEntries++;
    7539           0 :         counts->arrayScans *= estimate_array_length(root, rightop);
    7540           0 :         return true;
    7541             :     }
    7542             : 
    7543             :     /* If Const is null, there can be no matches */
    7544           6 :     if (((Const *) rightop)->constisnull)
    7545           0 :         return false;
    7546             : 
    7547             :     /* Otherwise, extract the array elements and iterate over them */
    7548           6 :     arrayval = DatumGetArrayTypeP(((Const *) rightop)->constvalue);
    7549           6 :     get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
    7550             :                          &elmlen, &elmbyval, &elmalign);
    7551           6 :     deconstruct_array(arrayval,
    7552             :                       ARR_ELEMTYPE(arrayval),
    7553             :                       elmlen, elmbyval, elmalign,
    7554             :                       &elemValues, &elemNulls, &numElems);
    7555             : 
    7556           6 :     memset(&arraycounts, 0, sizeof(arraycounts));
    7557             : 
    7558          18 :     for (i = 0; i < numElems; i++)
    7559             :     {
    7560             :         GinQualCounts elemcounts;
    7561             : 
    7562             :         /* NULL can't match anything, so ignore, as the executor will */
    7563          12 :         if (elemNulls[i])
    7564           0 :             continue;
    7565             : 
    7566             :         /* Otherwise, apply extractQuery and get the actual term counts */
    7567          12 :         memset(&elemcounts, 0, sizeof(elemcounts));
    7568             : 
    7569          12 :         if (gincost_pattern(index, indexcol, clause_op, elemValues[i],
    7570             :                             &elemcounts))
    7571             :         {
    7572             :             /* We ignore array elements that are unsatisfiable patterns */
    7573          12 :             numPossible++;
    7574             : 
    7575          12 :             if (elemcounts.attHasFullScan[indexcol] &&
    7576           0 :                 !elemcounts.attHasNormalScan[indexcol])
    7577             :             {
    7578             :                 /*
    7579             :                  * Full index scan will be required.  We treat this as if
    7580             :                  * every key in the index had been listed in the query; is
    7581             :                  * that reasonable?
    7582             :                  */
    7583           0 :                 elemcounts.partialEntries = 0;
    7584           0 :                 elemcounts.exactEntries = numIndexEntries;
    7585           0 :                 elemcounts.searchEntries = numIndexEntries;
    7586             :             }
    7587          12 :             arraycounts.partialEntries += elemcounts.partialEntries;
    7588          12 :             arraycounts.exactEntries += elemcounts.exactEntries;
    7589          12 :             arraycounts.searchEntries += elemcounts.searchEntries;
    7590             :         }
    7591             :     }
    7592             : 
    7593           6 :     if (numPossible == 0)
    7594             :     {
    7595             :         /* No satisfiable patterns in the array */
    7596           0 :         return false;
    7597             :     }
    7598             : 
    7599             :     /*
    7600             :      * Now add the averages to the global counts.  This will give us an
    7601             :      * estimate of the average number of terms searched for in each indexscan,
    7602             :      * including contributions from both array and non-array quals.
    7603             :      */
    7604           6 :     counts->partialEntries += arraycounts.partialEntries / numPossible;
    7605           6 :     counts->exactEntries += arraycounts.exactEntries / numPossible;
    7606           6 :     counts->searchEntries += arraycounts.searchEntries / numPossible;
    7607             : 
    7608           6 :     counts->arrayScans *= numPossible;
    7609             : 
    7610           6 :     return true;
    7611             : }
    7612             : 
    7613             : /*
    7614             :  * GIN has search behavior completely different from other index types
    7615             :  */
    7616             : void
    7617        1868 : gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    7618             :                 Cost *indexStartupCost, Cost *indexTotalCost,
    7619             :                 Selectivity *indexSelectivity, double *indexCorrelation,
    7620             :                 double *indexPages)
    7621             : {
    7622        1868 :     IndexOptInfo *index = path->indexinfo;
    7623        1868 :     List       *indexQuals = get_quals_from_indexclauses(path->indexclauses);
    7624             :     List       *selectivityQuals;
    7625        1868 :     double      numPages = index->pages,
    7626        1868 :                 numTuples = index->tuples;
    7627             :     double      numEntryPages,
    7628             :                 numDataPages,
    7629             :                 numPendingPages,
    7630             :                 numEntries;
    7631             :     GinQualCounts counts;
    7632             :     bool        matchPossible;
    7633             :     bool        fullIndexScan;
    7634             :     double      partialScale;
    7635             :     double      entryPagesFetched,
    7636             :                 dataPagesFetched,
    7637             :                 dataPagesFetchedBySel;
    7638             :     double      qual_op_cost,
    7639             :                 qual_arg_cost,
    7640             :                 spc_random_page_cost,
    7641             :                 outer_scans;
    7642             :     Cost        descentCost;
    7643             :     Relation    indexRel;
    7644             :     GinStatsData ginStats;
    7645             :     ListCell   *lc;
    7646             :     int         i;
    7647             : 
    7648             :     /*
    7649             :      * Obtain statistical information from the meta page, if possible.  Else
    7650             :      * set ginStats to zeroes, and we'll cope below.
    7651             :      */
    7652        1868 :     if (!index->hypothetical)
    7653             :     {
    7654             :         /* Lock should have already been obtained in plancat.c */
    7655        1868 :         indexRel = index_open(index->indexoid, NoLock);
    7656        1868 :         ginGetStats(indexRel, &ginStats);
    7657        1868 :         index_close(indexRel, NoLock);
    7658             :     }
    7659             :     else
    7660             :     {
    7661           0 :         memset(&ginStats, 0, sizeof(ginStats));
    7662             :     }
    7663             : 
    7664             :     /*
    7665             :      * Assuming we got valid (nonzero) stats at all, nPendingPages can be
    7666             :      * trusted, but the other fields are data as of the last VACUUM.  We can
    7667             :      * scale them up to account for growth since then, but that method only
    7668             :      * goes so far; in the worst case, the stats might be for a completely
    7669             :      * empty index, and scaling them will produce pretty bogus numbers.
    7670             :      * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if
    7671             :      * it's grown more than that, fall back to estimating things only from the
    7672             :      * assumed-accurate index size.  But we'll trust nPendingPages in any case
    7673             :      * so long as it's not clearly insane, ie, more than the index size.
    7674             :      */
    7675        1868 :     if (ginStats.nPendingPages < numPages)
    7676        1868 :         numPendingPages = ginStats.nPendingPages;
    7677             :     else
    7678           0 :         numPendingPages = 0;
    7679             : 
    7680        1868 :     if (numPages > 0 && ginStats.nTotalPages <= numPages &&
    7681        1868 :         ginStats.nTotalPages > numPages / 4 &&
    7682        1816 :         ginStats.nEntryPages > 0 && ginStats.nEntries > 0)
    7683        1558 :     {
    7684             :         /*
    7685             :          * OK, the stats seem close enough to sane to be trusted.  But we
    7686             :          * still need to scale them by the ratio numPages / nTotalPages to
    7687             :          * account for growth since the last VACUUM.
    7688             :          */
    7689        1558 :         double      scale = numPages / ginStats.nTotalPages;
    7690             : 
    7691        1558 :         numEntryPages = ceil(ginStats.nEntryPages * scale);
    7692        1558 :         numDataPages = ceil(ginStats.nDataPages * scale);
    7693        1558 :         numEntries = ceil(ginStats.nEntries * scale);
    7694             :         /* ensure we didn't round up too much */
    7695        1558 :         numEntryPages = Min(numEntryPages, numPages - numPendingPages);
    7696        1558 :         numDataPages = Min(numDataPages,
    7697             :                            numPages - numPendingPages - numEntryPages);
    7698             :     }
    7699             :     else
    7700             :     {
    7701             :         /*
    7702             :          * We might get here because it's a hypothetical index, or an index
    7703             :          * created pre-9.1 and never vacuumed since upgrading (in which case
    7704             :          * its stats would read as zeroes), or just because it's grown too
    7705             :          * much since the last VACUUM for us to put our faith in scaling.
    7706             :          *
    7707             :          * Invent some plausible internal statistics based on the index page
    7708             :          * count (and clamp that to at least 10 pages, just in case).  We
    7709             :          * estimate that 90% of the index is entry pages, and the rest is data
    7710             :          * pages.  Estimate 100 entries per entry page; this is rather bogus
    7711             :          * since it'll depend on the size of the keys, but it's more robust
    7712             :          * than trying to predict the number of entries per heap tuple.
    7713             :          */
    7714         310 :         numPages = Max(numPages, 10);
    7715         310 :         numEntryPages = floor((numPages - numPendingPages) * 0.90);
    7716         310 :         numDataPages = numPages - numPendingPages - numEntryPages;
    7717         310 :         numEntries = floor(numEntryPages * 100);
    7718             :     }
    7719             : 
    7720             :     /* In an empty index, numEntries could be zero.  Avoid divide-by-zero */
    7721        1868 :     if (numEntries < 1)
    7722           0 :         numEntries = 1;
    7723             : 
    7724             :     /*
    7725             :      * If the index is partial, AND the index predicate with the index-bound
    7726             :      * quals to produce a more accurate idea of the number of rows covered by
    7727             :      * the bound conditions.
    7728             :      */
    7729        1868 :     selectivityQuals = add_predicate_to_index_quals(index, indexQuals);
    7730             : 
    7731             :     /* Estimate the fraction of main-table tuples that will be visited */
    7732        3736 :     *indexSelectivity = clauselist_selectivity(root, selectivityQuals,
    7733        1868 :                                                index->rel->relid,
    7734             :                                                JOIN_INNER,
    7735             :                                                NULL);
    7736             : 
    7737             :     /* fetch estimated page cost for tablespace containing index */
    7738        1868 :     get_tablespace_page_costs(index->reltablespace,
    7739             :                               &spc_random_page_cost,
    7740             :                               NULL);
    7741             : 
    7742             :     /*
    7743             :      * Generic assumption about index correlation: there isn't any.
    7744             :      */
    7745        1868 :     *indexCorrelation = 0.0;
    7746             : 
    7747             :     /*
    7748             :      * Examine quals to estimate number of search entries & partial matches
    7749             :      */
    7750        1868 :     memset(&counts, 0, sizeof(counts));
    7751        1868 :     counts.arrayScans = 1;
    7752        1868 :     matchPossible = true;
    7753             : 
    7754        3934 :     foreach(lc, path->indexclauses)
    7755             :     {
    7756        2066 :         IndexClause *iclause = lfirst_node(IndexClause, lc);
    7757             :         ListCell   *lc2;
    7758             : 
    7759        4120 :         foreach(lc2, iclause->indexquals)
    7760             :         {
    7761        2066 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
    7762        2066 :             Expr       *clause = rinfo->clause;
    7763             : 
    7764        2066 :             if (IsA(clause, OpExpr))
    7765             :             {
    7766        2060 :                 matchPossible = gincost_opexpr(root,
    7767             :                                                index,
    7768        2060 :                                                iclause->indexcol,
    7769             :                                                (OpExpr *) clause,
    7770             :                                                &counts);
    7771        2060 :                 if (!matchPossible)
    7772          12 :                     break;
    7773             :             }
    7774           6 :             else if (IsA(clause, ScalarArrayOpExpr))
    7775             :             {
    7776           6 :                 matchPossible = gincost_scalararrayopexpr(root,
    7777             :                                                           index,
    7778           6 :                                                           iclause->indexcol,
    7779             :                                                           (ScalarArrayOpExpr *) clause,
    7780             :                                                           numEntries,
    7781             :                                                           &counts);
    7782           6 :                 if (!matchPossible)
    7783           0 :                     break;
    7784             :             }
    7785             :             else
    7786             :             {
    7787             :                 /* shouldn't be anything else for a GIN index */
    7788           0 :                 elog(ERROR, "unsupported GIN indexqual type: %d",
    7789             :                      (int) nodeTag(clause));
    7790             :             }
    7791             :         }
    7792             :     }
    7793             : 
    7794             :     /* Fall out if there were any provably-unsatisfiable quals */
    7795        1868 :     if (!matchPossible)
    7796             :     {
    7797          12 :         *indexStartupCost = 0;
    7798          12 :         *indexTotalCost = 0;
    7799          12 :         *indexSelectivity = 0;
    7800          12 :         return;
    7801             :     }
    7802             : 
    7803             :     /*
    7804             :      * If attribute has a full scan and at the same time doesn't have normal
    7805             :      * scan, then we'll have to scan all non-null entries of that attribute.
    7806             :      * Currently, we don't have per-attribute statistics for GIN.  Thus, we
    7807             :      * must assume the whole GIN index has to be scanned in this case.
    7808             :      */
    7809        1856 :     fullIndexScan = false;
    7810        3602 :     for (i = 0; i < index->nkeycolumns; i++)
    7811             :     {
    7812        2084 :         if (counts.attHasFullScan[i] && !counts.attHasNormalScan[i])
    7813             :         {
    7814         338 :             fullIndexScan = true;
    7815         338 :             break;
    7816             :         }
    7817             :     }
    7818             : 
    7819        1856 :     if (fullIndexScan || indexQuals == NIL)
    7820             :     {
    7821             :         /*
    7822             :          * Full index scan will be required.  We treat this as if every key in
    7823             :          * the index had been listed in the query; is that reasonable?
    7824             :          */
    7825         338 :         counts.partialEntries = 0;
    7826         338 :         counts.exactEntries = numEntries;
    7827         338 :         counts.searchEntries = numEntries;
    7828             :     }
    7829             : 
    7830             :     /* Will we have more than one iteration of a nestloop scan? */
    7831        1856 :     outer_scans = loop_count;
    7832             : 
    7833             :     /*
    7834             :      * Compute cost to begin scan, first of all, pay attention to pending
    7835             :      * list.
    7836             :      */
    7837        1856 :     entryPagesFetched = numPendingPages;
    7838             : 
    7839             :     /*
    7840             :      * Estimate number of entry pages read.  We need to do
    7841             :      * counts.searchEntries searches.  Use a power function as it should be,
    7842             :      * but tuples on leaf pages usually is much greater. Here we include all
    7843             :      * searches in entry tree, including search of first entry in partial
    7844             :      * match algorithm
    7845             :      */
    7846        1856 :     entryPagesFetched += ceil(counts.searchEntries * rint(pow(numEntryPages, 0.15)));
    7847             : 
    7848             :     /*
    7849             :      * Add an estimate of entry pages read by partial match algorithm. It's a
    7850             :      * scan over leaf pages in entry tree.  We haven't any useful stats here,
    7851             :      * so estimate it as proportion.  Because counts.partialEntries is really
    7852             :      * pretty bogus (see code above), it's possible that it is more than
    7853             :      * numEntries; clamp the proportion to ensure sanity.
    7854             :      */
    7855        1856 :     partialScale = counts.partialEntries / numEntries;
    7856        1856 :     partialScale = Min(partialScale, 1.0);
    7857             : 
    7858        1856 :     entryPagesFetched += ceil(numEntryPages * partialScale);
    7859             : 
    7860             :     /*
    7861             :      * Partial match algorithm reads all data pages before doing actual scan,
    7862             :      * so it's a startup cost.  Again, we haven't any useful stats here, so
    7863             :      * estimate it as proportion.
    7864             :      */
    7865        1856 :     dataPagesFetched = ceil(numDataPages * partialScale);
    7866             : 
    7867        1856 :     *indexStartupCost = 0;
    7868        1856 :     *indexTotalCost = 0;
    7869             : 
    7870             :     /*
    7871             :      * Add a CPU-cost component to represent the costs of initial entry btree
    7872             :      * descent.  We don't charge any I/O cost for touching upper btree levels,
    7873             :      * since they tend to stay in cache, but we still have to do about log2(N)
    7874             :      * comparisons to descend a btree of N leaf tuples.  We charge one
    7875             :      * cpu_operator_cost per comparison.
    7876             :      *
    7877             :      * If there are ScalarArrayOpExprs, charge this once per SA scan.  The
    7878             :      * ones after the first one are not startup cost so far as the overall
    7879             :      * plan is concerned, so add them only to "total" cost.
    7880             :      */
    7881        1856 :     if (numEntries > 1)          /* avoid computing log(0) */
    7882             :     {
    7883        1856 :         descentCost = ceil(log(numEntries) / log(2.0)) * cpu_operator_cost;
    7884        1856 :         *indexStartupCost += descentCost * counts.searchEntries;
    7885        1856 :         *indexTotalCost += counts.arrayScans * descentCost * counts.searchEntries;
    7886             :     }
    7887             : 
    7888             :     /*
    7889             :      * Add a cpu cost per entry-page fetched. This is not amortized over a
    7890             :      * loop.
    7891             :      */
    7892        1856 :     *indexStartupCost += entryPagesFetched * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7893        1856 :     *indexTotalCost += entryPagesFetched * counts.arrayScans * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7894             : 
    7895             :     /*
    7896             :      * Add a cpu cost per data-page fetched. This is also not amortized over a
    7897             :      * loop. Since those are the data pages from the partial match algorithm,
    7898             :      * charge them as startup cost.
    7899             :      */
    7900        1856 :     *indexStartupCost += DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost * dataPagesFetched;
    7901             : 
    7902             :     /*
    7903             :      * Since we add the startup cost to the total cost later on, remove the
    7904             :      * initial arrayscan from the total.
    7905             :      */
    7906        1856 :     *indexTotalCost += dataPagesFetched * (counts.arrayScans - 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7907             : 
    7908             :     /*
    7909             :      * Calculate cache effects if more than one scan due to nestloops or array
    7910             :      * quals.  The result is pro-rated per nestloop scan, but the array qual
    7911             :      * factor shouldn't be pro-rated (compare genericcostestimate).
    7912             :      */
    7913        1856 :     if (outer_scans > 1 || counts.arrayScans > 1)
    7914             :     {
    7915           6 :         entryPagesFetched *= outer_scans * counts.arrayScans;
    7916           6 :         entryPagesFetched = index_pages_fetched(entryPagesFetched,
    7917             :                                                 (BlockNumber) numEntryPages,
    7918             :                                                 numEntryPages, root);
    7919           6 :         entryPagesFetched /= outer_scans;
    7920           6 :         dataPagesFetched *= outer_scans * counts.arrayScans;
    7921           6 :         dataPagesFetched = index_pages_fetched(dataPagesFetched,
    7922             :                                                (BlockNumber) numDataPages,
    7923             :                                                numDataPages, root);
    7924           6 :         dataPagesFetched /= outer_scans;
    7925             :     }
    7926             : 
    7927             :     /*
    7928             :      * Here we use random page cost because logically-close pages could be far
    7929             :      * apart on disk.
    7930             :      */
    7931        1856 :     *indexStartupCost += (entryPagesFetched + dataPagesFetched) * spc_random_page_cost;
    7932             : 
    7933             :     /*
    7934             :      * Now compute the number of data pages fetched during the scan.
    7935             :      *
    7936             :      * We assume every entry to have the same number of items, and that there
    7937             :      * is no overlap between them. (XXX: tsvector and array opclasses collect
    7938             :      * statistics on the frequency of individual keys; it would be nice to use
    7939             :      * those here.)
    7940             :      */
    7941        1856 :     dataPagesFetched = ceil(numDataPages * counts.exactEntries / numEntries);
    7942             : 
    7943             :     /*
    7944             :      * If there is a lot of overlap among the entries, in particular if one of
    7945             :      * the entries is very frequent, the above calculation can grossly
    7946             :      * under-estimate.  As a simple cross-check, calculate a lower bound based
    7947             :      * on the overall selectivity of the quals.  At a minimum, we must read
    7948             :      * one item pointer for each matching entry.
    7949             :      *
    7950             :      * The width of each item pointer varies, based on the level of
    7951             :      * compression.  We don't have statistics on that, but an average of
    7952             :      * around 3 bytes per item is fairly typical.
    7953             :      */
    7954        1856 :     dataPagesFetchedBySel = ceil(*indexSelectivity *
    7955        1856 :                                  (numTuples / (BLCKSZ / 3)));
    7956        1856 :     if (dataPagesFetchedBySel > dataPagesFetched)
    7957        1476 :         dataPagesFetched = dataPagesFetchedBySel;
    7958             : 
    7959             :     /* Add one page cpu-cost to the startup cost */
    7960        1856 :     *indexStartupCost += DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost * counts.searchEntries;
    7961             : 
    7962             :     /*
    7963             :      * Add once again a CPU-cost for those data pages, before amortizing for
    7964             :      * cache.
    7965             :      */
    7966        1856 :     *indexTotalCost += dataPagesFetched * counts.arrayScans * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
    7967             : 
    7968             :     /* Account for cache effects, the same as above */
    7969        1856 :     if (outer_scans > 1 || counts.arrayScans > 1)
    7970             :     {
    7971           6 :         dataPagesFetched *= outer_scans * counts.arrayScans;
    7972           6 :         dataPagesFetched = index_pages_fetched(dataPagesFetched,
    7973             :                                                (BlockNumber) numDataPages,
    7974             :                                                numDataPages, root);
    7975           6 :         dataPagesFetched /= outer_scans;
    7976             :     }
    7977             : 
    7978             :     /* And apply random_page_cost as the cost per page */
    7979        1856 :     *indexTotalCost += *indexStartupCost +
    7980        1856 :         dataPagesFetched * spc_random_page_cost;
    7981             : 
    7982             :     /*
    7983             :      * Add on index qual eval costs, much as in genericcostestimate. We charge
    7984             :      * cpu but we can disregard indexorderbys, since GIN doesn't support
    7985             :      * those.
    7986             :      */
    7987        1856 :     qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
    7988        1856 :     qual_op_cost = cpu_operator_cost * list_length(indexQuals);
    7989             : 
    7990        1856 :     *indexStartupCost += qual_arg_cost;
    7991        1856 :     *indexTotalCost += qual_arg_cost;
    7992             : 
    7993             :     /*
    7994             :      * Add a cpu cost per search entry, corresponding to the actual visited
    7995             :      * entries.
    7996             :      */
    7997        1856 :     *indexTotalCost += (counts.searchEntries * counts.arrayScans) * (qual_op_cost);
    7998             :     /* Now add a cpu cost per tuple in the posting lists / trees */
    7999        1856 :     *indexTotalCost += (numTuples * *indexSelectivity) * (cpu_index_tuple_cost);
    8000        1856 :     *indexPages = dataPagesFetched;
    8001             : }
    8002             : 
    8003             : /*
    8004             :  * BRIN has search behavior completely different from other index types
    8005             :  */
    8006             : void
    8007       10730 : brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
    8008             :                  Cost *indexStartupCost, Cost *indexTotalCost,
    8009             :                  Selectivity *indexSelectivity, double *indexCorrelation,
    8010             :                  double *indexPages)
    8011             : {
    8012       10730 :     IndexOptInfo *index = path->indexinfo;
    8013       10730 :     List       *indexQuals = get_quals_from_indexclauses(path->indexclauses);
    8014       10730 :     double      numPages = index->pages;
    8015       10730 :     RelOptInfo *baserel = index->rel;
    8016       10730 :     RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root);
    8017             :     Cost        spc_seq_page_cost;
    8018             :     Cost        spc_random_page_cost;
    8019             :     double      qual_arg_cost;
    8020             :     double      qualSelectivity;
    8021             :     BrinStatsData statsData;
    8022             :     double      indexRanges;
    8023             :     double      minimalRanges;
    8024             :     double      estimatedRanges;
    8025             :     double      selec;
    8026             :     Relation    indexRel;
    8027             :     ListCell   *l;
    8028             :     VariableStatData vardata;
    8029             : 
    8030             :     Assert(rte->rtekind == RTE_RELATION);
    8031             : 
    8032             :     /* fetch estimated page cost for the tablespace containing the index */
    8033       10730 :     get_tablespace_page_costs(index->reltablespace,
    8034             :                               &spc_random_page_cost,
    8035             :                               &spc_seq_page_cost);
    8036             : 
    8037             :     /*
    8038             :      * Obtain some data from the index itself, if possible.  Otherwise invent
    8039             :      * some plausible internal statistics based on the relation page count.
    8040             :      */
    8041       10730 :     if (!index->hypothetical)
    8042             :     {
    8043             :         /*
    8044             :          * A lock should have already been obtained on the index in plancat.c.
    8045             :          */
    8046       10730 :         indexRel = index_open(index->indexoid, NoLock);
    8047       10730 :         brinGetStats(indexRel, &statsData);
    8048       10730 :         index_close(indexRel, NoLock);
    8049             : 
    8050             :         /* work out the actual number of ranges in the index */
    8051       10730 :         indexRanges = Max(ceil((double) baserel->pages /
    8052             :                                statsData.pagesPerRange), 1.0);
    8053             :     }
    8054             :     else
    8055             :     {
    8056             :         /*
    8057             :          * Assume default number of pages per range, and estimate the number
    8058             :          * of ranges based on that.
    8059             :          */
    8060           0 :         indexRanges = Max(ceil((double) baserel->pages /
    8061             :                                BRIN_DEFAULT_PAGES_PER_RANGE), 1.0);
    8062             : 
    8063           0 :         statsData.pagesPerRange = BRIN_DEFAULT_PAGES_PER_RANGE;
    8064           0 :         statsData.revmapNumPages = (indexRanges / REVMAP_PAGE_MAXITEMS) + 1;
    8065             :     }
    8066             : 
    8067             :     /*
    8068             :      * Compute index correlation
    8069             :      *
    8070             :      * Because we can use all index quals equally when scanning, we can use
    8071             :      * the largest correlation (in absolute value) among columns used by the
    8072             :      * query.  Start at zero, the worst possible case.  If we cannot find any
    8073             :      * correlation statistics, we will keep it as 0.
    8074             :      */
    8075       10730 :     *indexCorrelation = 0;
    8076             : 
    8077       21462 :     foreach(l, path->indexclauses)
    8078             :     {
    8079       10732 :         IndexClause *iclause = lfirst_node(IndexClause, l);
    8080       10732 :         AttrNumber  attnum = index->indexkeys[iclause->indexcol];
    8081             : 
    8082             :         /* attempt to lookup stats in relation for this index column */
    8083       10732 :         if (attnum != 0)
    8084             :         {
    8085             :             /* Simple variable -- look to stats for the underlying table */
    8086       10732 :             if (get_relation_stats_hook &&
    8087           0 :                 (*get_relation_stats_hook) (root, rte, attnum, &vardata))
    8088             :             {
    8089             :                 /*
    8090             :                  * The hook took control of acquiring a stats tuple.  If it
    8091             :                  * did supply a tuple, it'd better have supplied a freefunc.
    8092             :                  */
    8093           0 :                 if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc)
    8094           0 :                     elog(ERROR,
    8095             :                          "no function provided to release variable stats with");
    8096             :             }
    8097             :             else
    8098             :             {
    8099       10732 :                 vardata.statsTuple =
    8100       10732 :                     SearchSysCache3(STATRELATTINH,
    8101             :                                     ObjectIdGetDatum(rte->relid),
    8102             :                                     Int16GetDatum(attnum),
    8103             :                                     BoolGetDatum(false));
    8104       10732 :                 vardata.freefunc = ReleaseSysCache;
    8105             :             }
    8106             :         }
    8107             :         else
    8108             :         {
    8109             :             /*
    8110             :              * Looks like we've found an expression column in the index. Let's
    8111             :              * see if there's any stats for it.
    8112             :              */
    8113             : 
    8114             :             /* get the attnum from the 0-based index. */
    8115           0 :             attnum = iclause->indexcol + 1;
    8116             : 
    8117           0 :             if (get_index_stats_hook &&
    8118           0 :                 (*get_index_stats_hook) (root, index->indexoid, attnum, &vardata))
    8119             :             {
    8120             :                 /*
    8121             :                  * The hook took control of acquiring a stats tuple.  If it
    8122             :                  * did supply a tuple, it'd better have supplied a freefunc.
    8123             :                  */
    8124           0 :                 if (HeapTupleIsValid(vardata.statsTuple) &&
    8125           0 :                     !vardata.freefunc)
    8126           0 :                     elog(ERROR, "no function provided to release variable stats with");
    8127             :             }
    8128             :             else
    8129             :             {
    8130           0 :                 vardata.statsTuple = SearchSysCache3(STATRELATTINH,
    8131             :                                                      ObjectIdGetDatum(index->indexoid),
    8132             :                                                      Int16GetDatum(attnum),
    8133             :                                                      BoolGetDatum(false));
    8134           0 :                 vardata.freefunc = ReleaseSysCache;
    8135             :             }
    8136             :         }
    8137             : 
    8138       10732 :         if (HeapTupleIsValid(vardata.statsTuple))
    8139             :         {
    8140             :             AttStatsSlot sslot;
    8141             : 
    8142          36 :             if (get_attstatsslot(&sslot, vardata.statsTuple,
    8143             :                                  STATISTIC_KIND_CORRELATION, InvalidOid,
    8144             :                                  ATTSTATSSLOT_NUMBERS))
    8145             :             {
    8146          36 :                 double      varCorrelation = 0.0;
    8147             : 
    8148          36 :                 if (sslot.nnumbers > 0)
    8149          36 :                     varCorrelation = fabs(sslot.numbers[0]);
    8150             : 
    8151          36 :                 if (varCorrelation > *indexCorrelation)
    8152          36 :                     *indexCorrelation = varCorrelation;
    8153             : 
    8154          36 :                 free_attstatsslot(&sslot);
    8155             :             }
    8156             :         }
    8157             : 
    8158       10732 :         ReleaseVariableStats(vardata);
    8159             :     }
    8160             : 
    8161       10730 :     qualSelectivity = clauselist_selectivity(root, indexQuals,
    8162       10730 :                                              baserel->relid,
    8163             :                                              JOIN_INNER, NULL);
    8164             : 
    8165             :     /*
    8166             :      * Now calculate the minimum possible ranges we could match with if all of
    8167             :      * the rows were in the perfect order in the table's heap.
    8168             :      */
    8169       10730 :     minimalRanges = ceil(indexRanges * qualSelectivity);
    8170             : 
    8171             :     /*
    8172             :      * Now estimate the number of ranges that we'll touch by using the
    8173             :      * indexCorrelation from the stats. Careful not to divide by zero (note
    8174             :      * we're using the absolute value of the correlation).
    8175             :      */
    8176       10730 :     if (*indexCorrelation < 1.0e-10)
    8177       10694 :         estimatedRanges = indexRanges;
    8178             :     else
    8179          36 :         estimatedRanges = Min(minimalRanges / *indexCorrelation, indexRanges);
    8180             : 
    8181             :     /* we expect to visit this portion of the table */
    8182       10730 :     selec = estimatedRanges / indexRanges;
    8183             : 
    8184       10730 :     CLAMP_PROBABILITY(selec);
    8185             : 
    8186       10730 :     *indexSelectivity = selec;
    8187             : 
    8188             :     /*
    8189             :      * Compute the index qual costs, much as in genericcostestimate, to add to
    8190             :      * the index costs.  We can disregard indexorderbys, since BRIN doesn't
    8191             :      * support those.
    8192             :      */
    8193       10730 :     qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
    8194             : 
    8195             :     /*
    8196             :      * Compute the startup cost as the cost to read the whole revmap
    8197             :      * sequentially, including the cost to execute the index quals.
    8198             :      */
    8199       10730 :     *indexStartupCost =
    8200       10730 :         spc_seq_page_cost * statsData.revmapNumPages * loop_count;
    8201       10730 :     *indexStartupCost += qual_arg_cost;
    8202             : 
    8203             :     /*
    8204             :      * To read a BRIN index there might be a bit of back and forth over
    8205             :      * regular pages, as revmap might point to them out of sequential order;
    8206             :      * calculate the total cost as reading the whole index in random order.
    8207             :      */
    8208       10730 :     *indexTotalCost = *indexStartupCost +
    8209       10730 :         spc_random_page_cost * (numPages - statsData.revmapNumPages) * loop_count;
    8210             : 
    8211             :     /*
    8212             :      * Charge a small amount per range tuple which we expect to match to. This
    8213             :      * is meant to reflect the costs of manipulating the bitmap. The BRIN scan
    8214             :      * will set a bit for each page in the range when we find a matching
    8215             :      * range, so we must multiply the charge by the number of pages in the
    8216             :      * range.
    8217             :      */
    8218       10730 :     *indexTotalCost += 0.1 * cpu_operator_cost * estimatedRanges *
    8219       10730 :         statsData.pagesPerRange;
    8220             : 
    8221       10730 :     *indexPages = index->pages;
    8222       10730 : }

Generated by: LCOV version 1.14