LCOV - code coverage report
Current view: top level - src/backend/utils/adt - ri_triggers.c (source / functions) Hit Total Coverage
Test: PostgreSQL 17devel Lines: 795 865 91.9 %
Date: 2024-04-20 06:11:45 Functions: 42 42 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * ri_triggers.c
       4             :  *
       5             :  *  Generic trigger procedures for referential integrity constraint
       6             :  *  checks.
       7             :  *
       8             :  *  Note about memory management: the private hashtables kept here live
       9             :  *  across query and transaction boundaries, in fact they live as long as
      10             :  *  the backend does.  This works because the hashtable structures
      11             :  *  themselves are allocated by dynahash.c in its permanent DynaHashCxt,
      12             :  *  and the SPI plans they point to are saved using SPI_keepplan().
      13             :  *  There is not currently any provision for throwing away a no-longer-needed
      14             :  *  plan --- consider improving this someday.
      15             :  *
      16             :  *
      17             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
      18             :  *
      19             :  * src/backend/utils/adt/ri_triggers.c
      20             :  *
      21             :  *-------------------------------------------------------------------------
      22             :  */
      23             : 
      24             : #include "postgres.h"
      25             : 
      26             : #include "access/htup_details.h"
      27             : #include "access/sysattr.h"
      28             : #include "access/table.h"
      29             : #include "access/tableam.h"
      30             : #include "access/xact.h"
      31             : #include "catalog/pg_collation.h"
      32             : #include "catalog/pg_constraint.h"
      33             : #include "catalog/pg_proc.h"
      34             : #include "commands/trigger.h"
      35             : #include "executor/executor.h"
      36             : #include "executor/spi.h"
      37             : #include "lib/ilist.h"
      38             : #include "miscadmin.h"
      39             : #include "parser/parse_coerce.h"
      40             : #include "parser/parse_relation.h"
      41             : #include "utils/acl.h"
      42             : #include "utils/builtins.h"
      43             : #include "utils/datum.h"
      44             : #include "utils/fmgroids.h"
      45             : #include "utils/guc.h"
      46             : #include "utils/inval.h"
      47             : #include "utils/lsyscache.h"
      48             : #include "utils/memutils.h"
      49             : #include "utils/rangetypes.h"
      50             : #include "utils/rel.h"
      51             : #include "utils/rls.h"
      52             : #include "utils/ruleutils.h"
      53             : #include "utils/snapmgr.h"
      54             : #include "utils/syscache.h"
      55             : 
      56             : /*
      57             :  * Local definitions
      58             :  */
      59             : 
      60             : #define RI_MAX_NUMKEYS                  INDEX_MAX_KEYS
      61             : 
      62             : #define RI_INIT_CONSTRAINTHASHSIZE      64
      63             : #define RI_INIT_QUERYHASHSIZE           (RI_INIT_CONSTRAINTHASHSIZE * 4)
      64             : 
      65             : #define RI_KEYS_ALL_NULL                0
      66             : #define RI_KEYS_SOME_NULL               1
      67             : #define RI_KEYS_NONE_NULL               2
      68             : 
      69             : /* RI query type codes */
      70             : /* these queries are executed against the PK (referenced) table: */
      71             : #define RI_PLAN_CHECK_LOOKUPPK          1
      72             : #define RI_PLAN_CHECK_LOOKUPPK_FROM_PK  2
      73             : #define RI_PLAN_LAST_ON_PK              RI_PLAN_CHECK_LOOKUPPK_FROM_PK
      74             : /* these queries are executed against the FK (referencing) table: */
      75             : #define RI_PLAN_CASCADE_ONDELETE        3
      76             : #define RI_PLAN_CASCADE_ONUPDATE        4
      77             : /* For RESTRICT, the same plan can be used for both ON DELETE and ON UPDATE triggers. */
      78             : #define RI_PLAN_RESTRICT                5
      79             : #define RI_PLAN_SETNULL_ONDELETE        6
      80             : #define RI_PLAN_SETNULL_ONUPDATE        7
      81             : #define RI_PLAN_SETDEFAULT_ONDELETE     8
      82             : #define RI_PLAN_SETDEFAULT_ONUPDATE     9
      83             : 
      84             : #define MAX_QUOTED_NAME_LEN  (NAMEDATALEN*2+3)
      85             : #define MAX_QUOTED_REL_NAME_LEN  (MAX_QUOTED_NAME_LEN*2)
      86             : 
      87             : #define RIAttName(rel, attnum)  NameStr(*attnumAttName(rel, attnum))
      88             : #define RIAttType(rel, attnum)  attnumTypeId(rel, attnum)
      89             : #define RIAttCollation(rel, attnum) attnumCollationId(rel, attnum)
      90             : 
      91             : #define RI_TRIGTYPE_INSERT 1
      92             : #define RI_TRIGTYPE_UPDATE 2
      93             : #define RI_TRIGTYPE_DELETE 3
      94             : 
      95             : 
      96             : /*
      97             :  * RI_ConstraintInfo
      98             :  *
      99             :  * Information extracted from an FK pg_constraint entry.  This is cached in
     100             :  * ri_constraint_cache.
     101             :  *
     102             :  * Note that pf/pp/ff_eq_oprs may hold the overlaps operator instead of equals
     103             :  * for the PERIOD part of a temporal foreign key.
     104             :  */
     105             : typedef struct RI_ConstraintInfo
     106             : {
     107             :     Oid         constraint_id;  /* OID of pg_constraint entry (hash key) */
     108             :     bool        valid;          /* successfully initialized? */
     109             :     Oid         constraint_root_id; /* OID of topmost ancestor constraint;
     110             :                                      * same as constraint_id if not inherited */
     111             :     uint32      oidHashValue;   /* hash value of constraint_id */
     112             :     uint32      rootHashValue;  /* hash value of constraint_root_id */
     113             :     NameData    conname;        /* name of the FK constraint */
     114             :     Oid         pk_relid;       /* referenced relation */
     115             :     Oid         fk_relid;       /* referencing relation */
     116             :     char        confupdtype;    /* foreign key's ON UPDATE action */
     117             :     char        confdeltype;    /* foreign key's ON DELETE action */
     118             :     int         ndelsetcols;    /* number of columns referenced in ON DELETE
     119             :                                  * SET clause */
     120             :     int16       confdelsetcols[RI_MAX_NUMKEYS]; /* attnums of cols to set on
     121             :                                                  * delete */
     122             :     char        confmatchtype;  /* foreign key's match type */
     123             :     bool        hasperiod;      /* if the foreign key uses PERIOD */
     124             :     int         nkeys;          /* number of key columns */
     125             :     int16       pk_attnums[RI_MAX_NUMKEYS]; /* attnums of referenced cols */
     126             :     int16       fk_attnums[RI_MAX_NUMKEYS]; /* attnums of referencing cols */
     127             :     Oid         pf_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = FK) */
     128             :     Oid         pp_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = PK) */
     129             :     Oid         ff_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (FK = FK) */
     130             :     Oid         period_contained_by_oper;   /* anyrange <@ anyrange */
     131             :     Oid         agged_period_contained_by_oper; /* fkattr <@ range_agg(pkattr) */
     132             :     dlist_node  valid_link;     /* Link in list of valid entries */
     133             : } RI_ConstraintInfo;
     134             : 
     135             : /*
     136             :  * RI_QueryKey
     137             :  *
     138             :  * The key identifying a prepared SPI plan in our query hashtable
     139             :  */
     140             : typedef struct RI_QueryKey
     141             : {
     142             :     Oid         constr_id;      /* OID of pg_constraint entry */
     143             :     int32       constr_queryno; /* query type ID, see RI_PLAN_XXX above */
     144             : } RI_QueryKey;
     145             : 
     146             : /*
     147             :  * RI_QueryHashEntry
     148             :  */
     149             : typedef struct RI_QueryHashEntry
     150             : {
     151             :     RI_QueryKey key;
     152             :     SPIPlanPtr  plan;
     153             : } RI_QueryHashEntry;
     154             : 
     155             : /*
     156             :  * RI_CompareKey
     157             :  *
     158             :  * The key identifying an entry showing how to compare two values
     159             :  */
     160             : typedef struct RI_CompareKey
     161             : {
     162             :     Oid         eq_opr;         /* the equality operator to apply */
     163             :     Oid         typeid;         /* the data type to apply it to */
     164             : } RI_CompareKey;
     165             : 
     166             : /*
     167             :  * RI_CompareHashEntry
     168             :  */
     169             : typedef struct RI_CompareHashEntry
     170             : {
     171             :     RI_CompareKey key;
     172             :     bool        valid;          /* successfully initialized? */
     173             :     FmgrInfo    eq_opr_finfo;   /* call info for equality fn */
     174             :     FmgrInfo    cast_func_finfo;    /* in case we must coerce input */
     175             : } RI_CompareHashEntry;
     176             : 
     177             : 
     178             : /*
     179             :  * Local data
     180             :  */
     181             : static HTAB *ri_constraint_cache = NULL;
     182             : static HTAB *ri_query_cache = NULL;
     183             : static HTAB *ri_compare_cache = NULL;
     184             : static dclist_head ri_constraint_cache_valid_list;
     185             : 
     186             : 
     187             : /*
     188             :  * Local function prototypes
     189             :  */
     190             : static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
     191             :                               TupleTableSlot *oldslot,
     192             :                               const RI_ConstraintInfo *riinfo);
     193             : static Datum ri_restrict(TriggerData *trigdata, bool is_no_action);
     194             : static Datum ri_set(TriggerData *trigdata, bool is_set_null, int tgkind);
     195             : static void quoteOneName(char *buffer, const char *name);
     196             : static void quoteRelationName(char *buffer, Relation rel);
     197             : static void ri_GenerateQual(StringInfo buf,
     198             :                             const char *sep,
     199             :                             const char *leftop, Oid leftoptype,
     200             :                             Oid opoid,
     201             :                             const char *rightop, Oid rightoptype);
     202             : static void ri_GenerateQualCollation(StringInfo buf, Oid collation);
     203             : static int  ri_NullCheck(TupleDesc tupDesc, TupleTableSlot *slot,
     204             :                          const RI_ConstraintInfo *riinfo, bool rel_is_pk);
     205             : static void ri_BuildQueryKey(RI_QueryKey *key,
     206             :                              const RI_ConstraintInfo *riinfo,
     207             :                              int32 constr_queryno);
     208             : static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
     209             :                          const RI_ConstraintInfo *riinfo, bool rel_is_pk);
     210             : static bool ri_CompareWithCast(Oid eq_opr, Oid typeid,
     211             :                                Datum lhs, Datum rhs);
     212             : 
     213             : static void ri_InitHashTables(void);
     214             : static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue);
     215             : static SPIPlanPtr ri_FetchPreparedPlan(RI_QueryKey *key);
     216             : static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan);
     217             : static RI_CompareHashEntry *ri_HashCompareOp(Oid eq_opr, Oid typeid);
     218             : 
     219             : static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname,
     220             :                             int tgkind);
     221             : static const RI_ConstraintInfo *ri_FetchConstraintInfo(Trigger *trigger,
     222             :                                                        Relation trig_rel, bool rel_is_pk);
     223             : static const RI_ConstraintInfo *ri_LoadConstraintInfo(Oid constraintOid);
     224             : static Oid  get_ri_constraint_root(Oid constrOid);
     225             : static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
     226             :                                RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel);
     227             : static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo,
     228             :                             RI_QueryKey *qkey, SPIPlanPtr qplan,
     229             :                             Relation fk_rel, Relation pk_rel,
     230             :                             TupleTableSlot *oldslot, TupleTableSlot *newslot,
     231             :                             bool detectNewRows, int expect_OK);
     232             : static void ri_ExtractValues(Relation rel, TupleTableSlot *slot,
     233             :                              const RI_ConstraintInfo *riinfo, bool rel_is_pk,
     234             :                              Datum *vals, char *nulls);
     235             : static void ri_ReportViolation(const RI_ConstraintInfo *riinfo,
     236             :                                Relation pk_rel, Relation fk_rel,
     237             :                                TupleTableSlot *violatorslot, TupleDesc tupdesc,
     238             :                                int queryno, bool partgone) pg_attribute_noreturn();
     239             : 
     240             : 
     241             : /*
     242             :  * RI_FKey_check -
     243             :  *
     244             :  * Check foreign key existence (combined for INSERT and UPDATE).
     245             :  */
     246             : static Datum
     247        4462 : RI_FKey_check(TriggerData *trigdata)
     248             : {
     249             :     const RI_ConstraintInfo *riinfo;
     250             :     Relation    fk_rel;
     251             :     Relation    pk_rel;
     252             :     TupleTableSlot *newslot;
     253             :     RI_QueryKey qkey;
     254             :     SPIPlanPtr  qplan;
     255             : 
     256        4462 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     257             :                                     trigdata->tg_relation, false);
     258             : 
     259        4462 :     if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
     260         460 :         newslot = trigdata->tg_newslot;
     261             :     else
     262        4002 :         newslot = trigdata->tg_trigslot;
     263             : 
     264             :     /*
     265             :      * We should not even consider checking the row if it is no longer valid,
     266             :      * since it was either deleted (so the deferred check should be skipped)
     267             :      * or updated (in which case only the latest version of the row should be
     268             :      * checked).  Test its liveness according to SnapshotSelf.  We need pin
     269             :      * and lock on the buffer to call HeapTupleSatisfiesVisibility.  Caller
     270             :      * should be holding pin, but not lock.
     271             :      */
     272        4462 :     if (!table_tuple_satisfies_snapshot(trigdata->tg_relation, newslot, SnapshotSelf))
     273          60 :         return PointerGetDatum(NULL);
     274             : 
     275             :     /*
     276             :      * Get the relation descriptors of the FK and PK tables.
     277             :      *
     278             :      * pk_rel is opened in RowShareLock mode since that's what our eventual
     279             :      * SELECT FOR KEY SHARE will get on it.
     280             :      */
     281        4402 :     fk_rel = trigdata->tg_relation;
     282        4402 :     pk_rel = table_open(riinfo->pk_relid, RowShareLock);
     283             : 
     284        4402 :     switch (ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false))
     285             :     {
     286         132 :         case RI_KEYS_ALL_NULL:
     287             : 
     288             :             /*
     289             :              * No further check needed - an all-NULL key passes every type of
     290             :              * foreign key constraint.
     291             :              */
     292         132 :             table_close(pk_rel, RowShareLock);
     293         132 :             return PointerGetDatum(NULL);
     294             : 
     295         156 :         case RI_KEYS_SOME_NULL:
     296             : 
     297             :             /*
     298             :              * This is the only case that differs between the three kinds of
     299             :              * MATCH.
     300             :              */
     301         156 :             switch (riinfo->confmatchtype)
     302             :             {
     303          36 :                 case FKCONSTR_MATCH_FULL:
     304             : 
     305             :                     /*
     306             :                      * Not allowed - MATCH FULL says either all or none of the
     307             :                      * attributes can be NULLs
     308             :                      */
     309          36 :                     ereport(ERROR,
     310             :                             (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
     311             :                              errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
     312             :                                     RelationGetRelationName(fk_rel),
     313             :                                     NameStr(riinfo->conname)),
     314             :                              errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
     315             :                              errtableconstraint(fk_rel,
     316             :                                                 NameStr(riinfo->conname))));
     317             :                     table_close(pk_rel, RowShareLock);
     318             :                     return PointerGetDatum(NULL);
     319             : 
     320         120 :                 case FKCONSTR_MATCH_SIMPLE:
     321             : 
     322             :                     /*
     323             :                      * MATCH SIMPLE - if ANY column is null, the key passes
     324             :                      * the constraint.
     325             :                      */
     326         120 :                     table_close(pk_rel, RowShareLock);
     327         120 :                     return PointerGetDatum(NULL);
     328             : 
     329             : #ifdef NOT_USED
     330             :                 case FKCONSTR_MATCH_PARTIAL:
     331             : 
     332             :                     /*
     333             :                      * MATCH PARTIAL - all non-null columns must match. (not
     334             :                      * implemented, can be done by modifying the query below
     335             :                      * to only include non-null columns, or by writing a
     336             :                      * special version here)
     337             :                      */
     338             :                     break;
     339             : #endif
     340             :             }
     341             : 
     342             :         case RI_KEYS_NONE_NULL:
     343             : 
     344             :             /*
     345             :              * Have a full qualified key - continue below for all three kinds
     346             :              * of MATCH.
     347             :              */
     348        4114 :             break;
     349             :     }
     350             : 
     351        4114 :     if (SPI_connect() != SPI_OK_CONNECT)
     352           0 :         elog(ERROR, "SPI_connect failed");
     353             : 
     354             :     /* Fetch or prepare a saved plan for the real check */
     355        4114 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK);
     356             : 
     357        4114 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     358             :     {
     359             :         StringInfoData querybuf;
     360             :         char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
     361             :         char        attname[MAX_QUOTED_NAME_LEN];
     362             :         char        paramname[16];
     363             :         const char *querysep;
     364             :         Oid         queryoids[RI_MAX_NUMKEYS];
     365             :         const char *pk_only;
     366             : 
     367             :         /* ----------
     368             :          * The query string built is
     369             :          *  SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
     370             :          *         FOR KEY SHARE OF x
     371             :          * The type id's for the $ parameters are those of the
     372             :          * corresponding FK attributes.
     373             :          *
     374             :          * But for temporal FKs we need to make sure
     375             :          * the FK's range is completely covered.
     376             :          * So we use this query instead:
     377             :          *  SELECT 1
     378             :          *  FROM    (
     379             :          *      SELECT pkperiodatt AS r
     380             :          *      FROM   [ONLY] pktable x
     381             :          *      WHERE  pkatt1 = $1 [AND ...]
     382             :          *      AND    pkperiodatt && $n
     383             :          *      FOR KEY SHARE OF x
     384             :          *  ) x1
     385             :          *  HAVING $n <@ range_agg(x1.r)
     386             :          * Note if FOR KEY SHARE ever allows GROUP BY and HAVING
     387             :          * we can make this a bit simpler.
     388             :          * ----------
     389             :          */
     390        2176 :         initStringInfo(&querybuf);
     391        4352 :         pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     392        2176 :             "" : "ONLY ";
     393        2176 :         quoteRelationName(pkrelname, pk_rel);
     394        2176 :         if (riinfo->hasperiod)
     395             :         {
     396         118 :             quoteOneName(attname,
     397         118 :                          RIAttName(pk_rel, riinfo->pk_attnums[riinfo->nkeys - 1]));
     398             : 
     399         118 :             appendStringInfo(&querybuf,
     400             :                              "SELECT 1 FROM (SELECT %s AS r FROM %s%s x",
     401             :                              attname, pk_only, pkrelname);
     402             :         }
     403             :         else
     404             :         {
     405        2058 :             appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     406             :                              pk_only, pkrelname);
     407             :         }
     408        2176 :         querysep = "WHERE";
     409        4692 :         for (int i = 0; i < riinfo->nkeys; i++)
     410             :         {
     411        2516 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     412        2516 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     413             : 
     414        2516 :             quoteOneName(attname,
     415        2516 :                          RIAttName(pk_rel, riinfo->pk_attnums[i]));
     416        2516 :             sprintf(paramname, "$%d", i + 1);
     417        2516 :             ri_GenerateQual(&querybuf, querysep,
     418             :                             attname, pk_type,
     419             :                             riinfo->pf_eq_oprs[i],
     420             :                             paramname, fk_type);
     421        2516 :             querysep = "AND";
     422        2516 :             queryoids[i] = fk_type;
     423             :         }
     424        2176 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     425        2176 :         if (riinfo->hasperiod)
     426             :         {
     427         118 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[riinfo->nkeys - 1]);
     428             : 
     429         118 :             appendStringInfoString(&querybuf, ") x1 HAVING ");
     430         118 :             sprintf(paramname, "$%d", riinfo->nkeys);
     431         118 :             ri_GenerateQual(&querybuf, "",
     432             :                             paramname, fk_type,
     433             :                             riinfo->agged_period_contained_by_oper,
     434             :                             "pg_catalog.range_agg", ANYMULTIRANGEOID);
     435         118 :             appendStringInfoString(&querybuf, "(x1.r)");
     436             :         }
     437             : 
     438             :         /* Prepare and save the plan */
     439        2176 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     440             :                              &qkey, fk_rel, pk_rel);
     441             :     }
     442             : 
     443             :     /*
     444             :      * Now check that foreign key exists in PK table
     445             :      *
     446             :      * XXX detectNewRows must be true when a partitioned table is on the
     447             :      * referenced side.  The reason is that our snapshot must be fresh in
     448             :      * order for the hack in find_inheritance_children() to work.
     449             :      */
     450        4114 :     ri_PerformCheck(riinfo, &qkey, qplan,
     451             :                     fk_rel, pk_rel,
     452             :                     NULL, newslot,
     453        4114 :                     pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE,
     454             :                     SPI_OK_SELECT);
     455             : 
     456        3548 :     if (SPI_finish() != SPI_OK_FINISH)
     457           0 :         elog(ERROR, "SPI_finish failed");
     458             : 
     459        3548 :     table_close(pk_rel, RowShareLock);
     460             : 
     461        3548 :     return PointerGetDatum(NULL);
     462             : }
     463             : 
     464             : 
     465             : /*
     466             :  * RI_FKey_check_ins -
     467             :  *
     468             :  * Check foreign key existence at insert event on FK table.
     469             :  */
     470             : Datum
     471        4002 : RI_FKey_check_ins(PG_FUNCTION_ARGS)
     472             : {
     473             :     /* Check that this is a valid trigger call on the right time and event. */
     474        4002 :     ri_CheckTrigger(fcinfo, "RI_FKey_check_ins", RI_TRIGTYPE_INSERT);
     475             : 
     476             :     /* Share code with UPDATE case. */
     477        4002 :     return RI_FKey_check((TriggerData *) fcinfo->context);
     478             : }
     479             : 
     480             : 
     481             : /*
     482             :  * RI_FKey_check_upd -
     483             :  *
     484             :  * Check foreign key existence at update event on FK table.
     485             :  */
     486             : Datum
     487         460 : RI_FKey_check_upd(PG_FUNCTION_ARGS)
     488             : {
     489             :     /* Check that this is a valid trigger call on the right time and event. */
     490         460 :     ri_CheckTrigger(fcinfo, "RI_FKey_check_upd", RI_TRIGTYPE_UPDATE);
     491             : 
     492             :     /* Share code with INSERT case. */
     493         460 :     return RI_FKey_check((TriggerData *) fcinfo->context);
     494             : }
     495             : 
     496             : 
     497             : /*
     498             :  * ri_Check_Pk_Match
     499             :  *
     500             :  * Check to see if another PK row has been created that provides the same
     501             :  * key values as the "oldslot" that's been modified or deleted in our trigger
     502             :  * event.  Returns true if a match is found in the PK table.
     503             :  *
     504             :  * We assume the caller checked that the oldslot contains no NULL key values,
     505             :  * since otherwise a match is impossible.
     506             :  */
     507             : static bool
     508         942 : ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
     509             :                   TupleTableSlot *oldslot,
     510             :                   const RI_ConstraintInfo *riinfo)
     511             : {
     512             :     SPIPlanPtr  qplan;
     513             :     RI_QueryKey qkey;
     514             :     bool        result;
     515             : 
     516             :     /* Only called for non-null rows */
     517             :     Assert(ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) == RI_KEYS_NONE_NULL);
     518             : 
     519         942 :     if (SPI_connect() != SPI_OK_CONNECT)
     520           0 :         elog(ERROR, "SPI_connect failed");
     521             : 
     522             :     /*
     523             :      * Fetch or prepare a saved plan for checking PK table with values coming
     524             :      * from a PK row
     525             :      */
     526         942 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK_FROM_PK);
     527             : 
     528         942 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     529             :     {
     530             :         StringInfoData querybuf;
     531             :         char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
     532             :         char        attname[MAX_QUOTED_NAME_LEN];
     533             :         char        paramname[16];
     534             :         const char *querysep;
     535             :         const char *pk_only;
     536             :         Oid         queryoids[RI_MAX_NUMKEYS];
     537             : 
     538             :         /* ----------
     539             :          * The query string built is
     540             :          *  SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
     541             :          *         FOR KEY SHARE OF x
     542             :          * The type id's for the $ parameters are those of the
     543             :          * PK attributes themselves.
     544             :          * But for temporal FKs we need to make sure
     545             :          * the FK's range is completely covered.
     546             :          * So we use this query instead:
     547             :          *  SELECT 1
     548             :          *  FROM    (
     549             :          *    SELECT pkperiodatt AS r
     550             :          *    FROM   [ONLY] pktable x
     551             :          *    WHERE  pkatt1 = $1 [AND ...]
     552             :          *    AND    pkperiodatt && $n
     553             :          *    FOR KEY SHARE OF x
     554             :          *  ) x1
     555             :          *  HAVING $n <@ range_agg(x1.r)
     556             :          * Note if FOR KEY SHARE ever allows GROUP BY and HAVING
     557             :          * we can make this a bit simpler.
     558             :          * ----------
     559             :          */
     560         438 :         initStringInfo(&querybuf);
     561         876 :         pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     562         438 :             "" : "ONLY ";
     563         438 :         quoteRelationName(pkrelname, pk_rel);
     564         438 :         if (riinfo->hasperiod)
     565             :         {
     566         108 :             quoteOneName(attname, RIAttName(pk_rel, riinfo->pk_attnums[riinfo->nkeys - 1]));
     567             : 
     568         108 :             appendStringInfo(&querybuf,
     569             :                              "SELECT 1 FROM (SELECT %s AS r FROM %s%s x",
     570             :                              attname, pk_only, pkrelname);
     571             :         }
     572             :         else
     573             :         {
     574         330 :             appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     575             :                              pk_only, pkrelname);
     576             :         }
     577         438 :         querysep = "WHERE";
     578        1094 :         for (int i = 0; i < riinfo->nkeys; i++)
     579             :         {
     580         656 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     581             : 
     582         656 :             quoteOneName(attname,
     583         656 :                          RIAttName(pk_rel, riinfo->pk_attnums[i]));
     584         656 :             sprintf(paramname, "$%d", i + 1);
     585         656 :             ri_GenerateQual(&querybuf, querysep,
     586             :                             attname, pk_type,
     587             :                             riinfo->pp_eq_oprs[i],
     588             :                             paramname, pk_type);
     589         656 :             querysep = "AND";
     590         656 :             queryoids[i] = pk_type;
     591             :         }
     592         438 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     593         438 :         if (riinfo->hasperiod)
     594             :         {
     595         108 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[riinfo->nkeys - 1]);
     596             : 
     597         108 :             appendStringInfoString(&querybuf, ") x1 HAVING ");
     598         108 :             sprintf(paramname, "$%d", riinfo->nkeys);
     599         108 :             ri_GenerateQual(&querybuf, "",
     600             :                             paramname, fk_type,
     601             :                             riinfo->agged_period_contained_by_oper,
     602             :                             "pg_catalog.range_agg", ANYMULTIRANGEOID);
     603         108 :             appendStringInfoString(&querybuf, "(x1.r)");
     604             :         }
     605             : 
     606             :         /* Prepare and save the plan */
     607         438 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     608             :                              &qkey, fk_rel, pk_rel);
     609             :     }
     610             : 
     611             :     /*
     612             :      * We have a plan now. Run it.
     613             :      */
     614         942 :     result = ri_PerformCheck(riinfo, &qkey, qplan,
     615             :                              fk_rel, pk_rel,
     616             :                              oldslot, NULL,
     617             :                              true,  /* treat like update */
     618             :                              SPI_OK_SELECT);
     619             : 
     620         942 :     if (SPI_finish() != SPI_OK_FINISH)
     621           0 :         elog(ERROR, "SPI_finish failed");
     622             : 
     623         942 :     return result;
     624             : }
     625             : 
     626             : 
     627             : /*
     628             :  * RI_FKey_noaction_del -
     629             :  *
     630             :  * Give an error and roll back the current transaction if the
     631             :  * delete has resulted in a violation of the given referential
     632             :  * integrity constraint.
     633             :  */
     634             : Datum
     635         408 : RI_FKey_noaction_del(PG_FUNCTION_ARGS)
     636             : {
     637             :     /* Check that this is a valid trigger call on the right time and event. */
     638         408 :     ri_CheckTrigger(fcinfo, "RI_FKey_noaction_del", RI_TRIGTYPE_DELETE);
     639             : 
     640             :     /* Share code with RESTRICT/UPDATE cases. */
     641         408 :     return ri_restrict((TriggerData *) fcinfo->context, true);
     642             : }
     643             : 
     644             : /*
     645             :  * RI_FKey_restrict_del -
     646             :  *
     647             :  * Restrict delete from PK table to rows unreferenced by foreign key.
     648             :  *
     649             :  * The SQL standard intends that this referential action occur exactly when
     650             :  * the delete is performed, rather than after.  This appears to be
     651             :  * the only difference between "NO ACTION" and "RESTRICT".  In Postgres
     652             :  * we still implement this as an AFTER trigger, but it's non-deferrable.
     653             :  */
     654             : Datum
     655          66 : RI_FKey_restrict_del(PG_FUNCTION_ARGS)
     656             : {
     657             :     /* Check that this is a valid trigger call on the right time and event. */
     658          66 :     ri_CheckTrigger(fcinfo, "RI_FKey_restrict_del", RI_TRIGTYPE_DELETE);
     659             : 
     660             :     /* Share code with NO ACTION/UPDATE cases. */
     661          66 :     return ri_restrict((TriggerData *) fcinfo->context, false);
     662             : }
     663             : 
     664             : /*
     665             :  * RI_FKey_noaction_upd -
     666             :  *
     667             :  * Give an error and roll back the current transaction if the
     668             :  * update has resulted in a violation of the given referential
     669             :  * integrity constraint.
     670             :  */
     671             : Datum
     672         402 : RI_FKey_noaction_upd(PG_FUNCTION_ARGS)
     673             : {
     674             :     /* Check that this is a valid trigger call on the right time and event. */
     675         402 :     ri_CheckTrigger(fcinfo, "RI_FKey_noaction_upd", RI_TRIGTYPE_UPDATE);
     676             : 
     677             :     /* Share code with RESTRICT/DELETE cases. */
     678         402 :     return ri_restrict((TriggerData *) fcinfo->context, true);
     679             : }
     680             : 
     681             : /*
     682             :  * RI_FKey_restrict_upd -
     683             :  *
     684             :  * Restrict update of PK to rows unreferenced by foreign key.
     685             :  *
     686             :  * The SQL standard intends that this referential action occur exactly when
     687             :  * the update is performed, rather than after.  This appears to be
     688             :  * the only difference between "NO ACTION" and "RESTRICT".  In Postgres
     689             :  * we still implement this as an AFTER trigger, but it's non-deferrable.
     690             :  */
     691             : Datum
     692          78 : RI_FKey_restrict_upd(PG_FUNCTION_ARGS)
     693             : {
     694             :     /* Check that this is a valid trigger call on the right time and event. */
     695          78 :     ri_CheckTrigger(fcinfo, "RI_FKey_restrict_upd", RI_TRIGTYPE_UPDATE);
     696             : 
     697             :     /* Share code with NO ACTION/DELETE cases. */
     698          78 :     return ri_restrict((TriggerData *) fcinfo->context, false);
     699             : }
     700             : 
     701             : /*
     702             :  * ri_restrict -
     703             :  *
     704             :  * Common code for ON DELETE RESTRICT, ON DELETE NO ACTION,
     705             :  * ON UPDATE RESTRICT, and ON UPDATE NO ACTION.
     706             :  */
     707             : static Datum
     708        1086 : ri_restrict(TriggerData *trigdata, bool is_no_action)
     709             : {
     710             :     const RI_ConstraintInfo *riinfo;
     711             :     Relation    fk_rel;
     712             :     Relation    pk_rel;
     713             :     TupleTableSlot *oldslot;
     714             :     RI_QueryKey qkey;
     715             :     SPIPlanPtr  qplan;
     716             : 
     717        1086 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     718             :                                     trigdata->tg_relation, true);
     719             : 
     720             :     /*
     721             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
     722             :      *
     723             :      * fk_rel is opened in RowShareLock mode since that's what our eventual
     724             :      * SELECT FOR KEY SHARE will get on it.
     725             :      */
     726        1086 :     fk_rel = table_open(riinfo->fk_relid, RowShareLock);
     727        1086 :     pk_rel = trigdata->tg_relation;
     728        1086 :     oldslot = trigdata->tg_trigslot;
     729             : 
     730             :     /*
     731             :      * If another PK row now exists providing the old key values, we should
     732             :      * not do anything.  However, this check should only be made in the NO
     733             :      * ACTION case; in RESTRICT cases we don't wish to allow another row to be
     734             :      * substituted.
     735             :      */
     736        2028 :     if (is_no_action &&
     737         942 :         ri_Check_Pk_Match(pk_rel, fk_rel, oldslot, riinfo))
     738             :     {
     739          52 :         table_close(fk_rel, RowShareLock);
     740          52 :         return PointerGetDatum(NULL);
     741             :     }
     742             : 
     743        1034 :     if (SPI_connect() != SPI_OK_CONNECT)
     744           0 :         elog(ERROR, "SPI_connect failed");
     745             : 
     746             :     /*
     747             :      * Fetch or prepare a saved plan for the restrict lookup (it's the same
     748             :      * query for delete and update cases)
     749             :      */
     750        1034 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_RESTRICT);
     751             : 
     752        1034 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     753             :     {
     754             :         StringInfoData querybuf;
     755             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     756             :         char        attname[MAX_QUOTED_NAME_LEN];
     757             :         char        paramname[16];
     758             :         const char *querysep;
     759             :         Oid         queryoids[RI_MAX_NUMKEYS];
     760             :         const char *fk_only;
     761             : 
     762             :         /* ----------
     763             :          * The query string built is
     764             :          *  SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = fkatt1 [AND ...]
     765             :          *         FOR KEY SHARE OF x
     766             :          * The type id's for the $ parameters are those of the
     767             :          * corresponding PK attributes.
     768             :          * ----------
     769             :          */
     770         450 :         initStringInfo(&querybuf);
     771         900 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     772         450 :             "" : "ONLY ";
     773         450 :         quoteRelationName(fkrelname, fk_rel);
     774         450 :         appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     775             :                          fk_only, fkrelname);
     776         450 :         querysep = "WHERE";
     777        1168 :         for (int i = 0; i < riinfo->nkeys; i++)
     778             :         {
     779         718 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     780         718 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     781         718 :             Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
     782         718 :             Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
     783             : 
     784         718 :             quoteOneName(attname,
     785         718 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
     786         718 :             sprintf(paramname, "$%d", i + 1);
     787         718 :             ri_GenerateQual(&querybuf, querysep,
     788             :                             paramname, pk_type,
     789             :                             riinfo->pf_eq_oprs[i],
     790             :                             attname, fk_type);
     791         718 :             if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
     792           0 :                 ri_GenerateQualCollation(&querybuf, pk_coll);
     793         718 :             querysep = "AND";
     794         718 :             queryoids[i] = pk_type;
     795             :         }
     796         450 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     797             : 
     798             :         /* Prepare and save the plan */
     799         450 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     800             :                              &qkey, fk_rel, pk_rel);
     801             :     }
     802             : 
     803             :     /*
     804             :      * We have a plan now. Run it to check for existing references.
     805             :      */
     806        1034 :     ri_PerformCheck(riinfo, &qkey, qplan,
     807             :                     fk_rel, pk_rel,
     808             :                     oldslot, NULL,
     809             :                     true,       /* must detect new rows */
     810             :                     SPI_OK_SELECT);
     811             : 
     812         592 :     if (SPI_finish() != SPI_OK_FINISH)
     813           0 :         elog(ERROR, "SPI_finish failed");
     814             : 
     815         592 :     table_close(fk_rel, RowShareLock);
     816             : 
     817         592 :     return PointerGetDatum(NULL);
     818             : }
     819             : 
     820             : 
     821             : /*
     822             :  * RI_FKey_cascade_del -
     823             :  *
     824             :  * Cascaded delete foreign key references at delete event on PK table.
     825             :  */
     826             : Datum
     827         160 : RI_FKey_cascade_del(PG_FUNCTION_ARGS)
     828             : {
     829         160 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
     830             :     const RI_ConstraintInfo *riinfo;
     831             :     Relation    fk_rel;
     832             :     Relation    pk_rel;
     833             :     TupleTableSlot *oldslot;
     834             :     RI_QueryKey qkey;
     835             :     SPIPlanPtr  qplan;
     836             : 
     837             :     /* Check that this is a valid trigger call on the right time and event. */
     838         160 :     ri_CheckTrigger(fcinfo, "RI_FKey_cascade_del", RI_TRIGTYPE_DELETE);
     839             : 
     840         160 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     841             :                                     trigdata->tg_relation, true);
     842             : 
     843             :     /*
     844             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
     845             :      *
     846             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
     847             :      * eventual DELETE will get on it.
     848             :      */
     849         160 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
     850         160 :     pk_rel = trigdata->tg_relation;
     851         160 :     oldslot = trigdata->tg_trigslot;
     852             : 
     853         160 :     if (SPI_connect() != SPI_OK_CONNECT)
     854           0 :         elog(ERROR, "SPI_connect failed");
     855             : 
     856             :     /* Fetch or prepare a saved plan for the cascaded delete */
     857         160 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_ONDELETE);
     858             : 
     859         160 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     860             :     {
     861             :         StringInfoData querybuf;
     862             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     863             :         char        attname[MAX_QUOTED_NAME_LEN];
     864             :         char        paramname[16];
     865             :         const char *querysep;
     866             :         Oid         queryoids[RI_MAX_NUMKEYS];
     867             :         const char *fk_only;
     868             : 
     869             :         /* ----------
     870             :          * The query string built is
     871             :          *  DELETE FROM [ONLY] <fktable> WHERE $1 = fkatt1 [AND ...]
     872             :          * The type id's for the $ parameters are those of the
     873             :          * corresponding PK attributes.
     874             :          * ----------
     875             :          */
     876         102 :         initStringInfo(&querybuf);
     877         204 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     878         102 :             "" : "ONLY ";
     879         102 :         quoteRelationName(fkrelname, fk_rel);
     880         102 :         appendStringInfo(&querybuf, "DELETE FROM %s%s",
     881             :                          fk_only, fkrelname);
     882         102 :         querysep = "WHERE";
     883         226 :         for (int i = 0; i < riinfo->nkeys; i++)
     884             :         {
     885         124 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     886         124 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     887         124 :             Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
     888         124 :             Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
     889             : 
     890         124 :             quoteOneName(attname,
     891         124 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
     892         124 :             sprintf(paramname, "$%d", i + 1);
     893         124 :             ri_GenerateQual(&querybuf, querysep,
     894             :                             paramname, pk_type,
     895             :                             riinfo->pf_eq_oprs[i],
     896             :                             attname, fk_type);
     897         124 :             if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
     898           6 :                 ri_GenerateQualCollation(&querybuf, pk_coll);
     899         124 :             querysep = "AND";
     900         124 :             queryoids[i] = pk_type;
     901             :         }
     902             : 
     903             :         /* Prepare and save the plan */
     904         102 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     905             :                              &qkey, fk_rel, pk_rel);
     906             :     }
     907             : 
     908             :     /*
     909             :      * We have a plan now. Build up the arguments from the key values in the
     910             :      * deleted PK tuple and delete the referencing rows
     911             :      */
     912         160 :     ri_PerformCheck(riinfo, &qkey, qplan,
     913             :                     fk_rel, pk_rel,
     914             :                     oldslot, NULL,
     915             :                     true,       /* must detect new rows */
     916             :                     SPI_OK_DELETE);
     917             : 
     918         158 :     if (SPI_finish() != SPI_OK_FINISH)
     919           0 :         elog(ERROR, "SPI_finish failed");
     920             : 
     921         158 :     table_close(fk_rel, RowExclusiveLock);
     922             : 
     923         158 :     return PointerGetDatum(NULL);
     924             : }
     925             : 
     926             : 
     927             : /*
     928             :  * RI_FKey_cascade_upd -
     929             :  *
     930             :  * Cascaded update foreign key references at update event on PK table.
     931             :  */
     932             : Datum
     933         204 : RI_FKey_cascade_upd(PG_FUNCTION_ARGS)
     934             : {
     935         204 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
     936             :     const RI_ConstraintInfo *riinfo;
     937             :     Relation    fk_rel;
     938             :     Relation    pk_rel;
     939             :     TupleTableSlot *newslot;
     940             :     TupleTableSlot *oldslot;
     941             :     RI_QueryKey qkey;
     942             :     SPIPlanPtr  qplan;
     943             : 
     944             :     /* Check that this is a valid trigger call on the right time and event. */
     945         204 :     ri_CheckTrigger(fcinfo, "RI_FKey_cascade_upd", RI_TRIGTYPE_UPDATE);
     946             : 
     947         204 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     948             :                                     trigdata->tg_relation, true);
     949             : 
     950             :     /*
     951             :      * Get the relation descriptors of the FK and PK tables and the new and
     952             :      * old tuple.
     953             :      *
     954             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
     955             :      * eventual UPDATE will get on it.
     956             :      */
     957         204 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
     958         204 :     pk_rel = trigdata->tg_relation;
     959         204 :     newslot = trigdata->tg_newslot;
     960         204 :     oldslot = trigdata->tg_trigslot;
     961             : 
     962         204 :     if (SPI_connect() != SPI_OK_CONNECT)
     963           0 :         elog(ERROR, "SPI_connect failed");
     964             : 
     965             :     /* Fetch or prepare a saved plan for the cascaded update */
     966         204 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_ONUPDATE);
     967             : 
     968         204 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     969             :     {
     970             :         StringInfoData querybuf;
     971             :         StringInfoData qualbuf;
     972             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     973             :         char        attname[MAX_QUOTED_NAME_LEN];
     974             :         char        paramname[16];
     975             :         const char *querysep;
     976             :         const char *qualsep;
     977             :         Oid         queryoids[RI_MAX_NUMKEYS * 2];
     978             :         const char *fk_only;
     979             : 
     980             :         /* ----------
     981             :          * The query string built is
     982             :          *  UPDATE [ONLY] <fktable> SET fkatt1 = $1 [, ...]
     983             :          *          WHERE $n = fkatt1 [AND ...]
     984             :          * The type id's for the $ parameters are those of the
     985             :          * corresponding PK attributes.  Note that we are assuming
     986             :          * there is an assignment cast from the PK to the FK type;
     987             :          * else the parser will fail.
     988             :          * ----------
     989             :          */
     990         114 :         initStringInfo(&querybuf);
     991         114 :         initStringInfo(&qualbuf);
     992         228 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     993         114 :             "" : "ONLY ";
     994         114 :         quoteRelationName(fkrelname, fk_rel);
     995         114 :         appendStringInfo(&querybuf, "UPDATE %s%s SET",
     996             :                          fk_only, fkrelname);
     997         114 :         querysep = "";
     998         114 :         qualsep = "WHERE";
     999         252 :         for (int i = 0, j = riinfo->nkeys; i < riinfo->nkeys; i++, j++)
    1000             :         {
    1001         138 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1002         138 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1003         138 :             Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1004         138 :             Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1005             : 
    1006         138 :             quoteOneName(attname,
    1007         138 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1008         138 :             appendStringInfo(&querybuf,
    1009             :                              "%s %s = $%d",
    1010             :                              querysep, attname, i + 1);
    1011         138 :             sprintf(paramname, "$%d", j + 1);
    1012         138 :             ri_GenerateQual(&qualbuf, qualsep,
    1013             :                             paramname, pk_type,
    1014             :                             riinfo->pf_eq_oprs[i],
    1015             :                             attname, fk_type);
    1016         138 :             if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
    1017           6 :                 ri_GenerateQualCollation(&querybuf, pk_coll);
    1018         138 :             querysep = ",";
    1019         138 :             qualsep = "AND";
    1020         138 :             queryoids[i] = pk_type;
    1021         138 :             queryoids[j] = pk_type;
    1022             :         }
    1023         114 :         appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
    1024             : 
    1025             :         /* Prepare and save the plan */
    1026         114 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys * 2, queryoids,
    1027             :                              &qkey, fk_rel, pk_rel);
    1028             :     }
    1029             : 
    1030             :     /*
    1031             :      * We have a plan now. Run it to update the existing references.
    1032             :      */
    1033         204 :     ri_PerformCheck(riinfo, &qkey, qplan,
    1034             :                     fk_rel, pk_rel,
    1035             :                     oldslot, newslot,
    1036             :                     true,       /* must detect new rows */
    1037             :                     SPI_OK_UPDATE);
    1038             : 
    1039         204 :     if (SPI_finish() != SPI_OK_FINISH)
    1040           0 :         elog(ERROR, "SPI_finish failed");
    1041             : 
    1042         204 :     table_close(fk_rel, RowExclusiveLock);
    1043             : 
    1044         204 :     return PointerGetDatum(NULL);
    1045             : }
    1046             : 
    1047             : 
    1048             : /*
    1049             :  * RI_FKey_setnull_del -
    1050             :  *
    1051             :  * Set foreign key references to NULL values at delete event on PK table.
    1052             :  */
    1053             : Datum
    1054          98 : RI_FKey_setnull_del(PG_FUNCTION_ARGS)
    1055             : {
    1056             :     /* Check that this is a valid trigger call on the right time and event. */
    1057          98 :     ri_CheckTrigger(fcinfo, "RI_FKey_setnull_del", RI_TRIGTYPE_DELETE);
    1058             : 
    1059             :     /* Share code with UPDATE case */
    1060          98 :     return ri_set((TriggerData *) fcinfo->context, true, RI_TRIGTYPE_DELETE);
    1061             : }
    1062             : 
    1063             : /*
    1064             :  * RI_FKey_setnull_upd -
    1065             :  *
    1066             :  * Set foreign key references to NULL at update event on PK table.
    1067             :  */
    1068             : Datum
    1069          30 : RI_FKey_setnull_upd(PG_FUNCTION_ARGS)
    1070             : {
    1071             :     /* Check that this is a valid trigger call on the right time and event. */
    1072          30 :     ri_CheckTrigger(fcinfo, "RI_FKey_setnull_upd", RI_TRIGTYPE_UPDATE);
    1073             : 
    1074             :     /* Share code with DELETE case */
    1075          30 :     return ri_set((TriggerData *) fcinfo->context, true, RI_TRIGTYPE_UPDATE);
    1076             : }
    1077             : 
    1078             : /*
    1079             :  * RI_FKey_setdefault_del -
    1080             :  *
    1081             :  * Set foreign key references to defaults at delete event on PK table.
    1082             :  */
    1083             : Datum
    1084          84 : RI_FKey_setdefault_del(PG_FUNCTION_ARGS)
    1085             : {
    1086             :     /* Check that this is a valid trigger call on the right time and event. */
    1087          84 :     ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_del", RI_TRIGTYPE_DELETE);
    1088             : 
    1089             :     /* Share code with UPDATE case */
    1090          84 :     return ri_set((TriggerData *) fcinfo->context, false, RI_TRIGTYPE_DELETE);
    1091             : }
    1092             : 
    1093             : /*
    1094             :  * RI_FKey_setdefault_upd -
    1095             :  *
    1096             :  * Set foreign key references to defaults at update event on PK table.
    1097             :  */
    1098             : Datum
    1099          48 : RI_FKey_setdefault_upd(PG_FUNCTION_ARGS)
    1100             : {
    1101             :     /* Check that this is a valid trigger call on the right time and event. */
    1102          48 :     ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_upd", RI_TRIGTYPE_UPDATE);
    1103             : 
    1104             :     /* Share code with DELETE case */
    1105          48 :     return ri_set((TriggerData *) fcinfo->context, false, RI_TRIGTYPE_UPDATE);
    1106             : }
    1107             : 
    1108             : /*
    1109             :  * ri_set -
    1110             :  *
    1111             :  * Common code for ON DELETE SET NULL, ON DELETE SET DEFAULT, ON UPDATE SET
    1112             :  * NULL, and ON UPDATE SET DEFAULT.
    1113             :  */
    1114             : static Datum
    1115         260 : ri_set(TriggerData *trigdata, bool is_set_null, int tgkind)
    1116             : {
    1117             :     const RI_ConstraintInfo *riinfo;
    1118             :     Relation    fk_rel;
    1119             :     Relation    pk_rel;
    1120             :     TupleTableSlot *oldslot;
    1121             :     RI_QueryKey qkey;
    1122             :     SPIPlanPtr  qplan;
    1123             :     int32       queryno;
    1124             : 
    1125         260 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
    1126             :                                     trigdata->tg_relation, true);
    1127             : 
    1128             :     /*
    1129             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
    1130             :      *
    1131             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
    1132             :      * eventual UPDATE will get on it.
    1133             :      */
    1134         260 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
    1135         260 :     pk_rel = trigdata->tg_relation;
    1136         260 :     oldslot = trigdata->tg_trigslot;
    1137             : 
    1138         260 :     if (SPI_connect() != SPI_OK_CONNECT)
    1139           0 :         elog(ERROR, "SPI_connect failed");
    1140             : 
    1141             :     /*
    1142             :      * Fetch or prepare a saved plan for the trigger.
    1143             :      */
    1144         260 :     switch (tgkind)
    1145             :     {
    1146          78 :         case RI_TRIGTYPE_UPDATE:
    1147          78 :             queryno = is_set_null
    1148             :                 ? RI_PLAN_SETNULL_ONUPDATE
    1149          78 :                 : RI_PLAN_SETDEFAULT_ONUPDATE;
    1150          78 :             break;
    1151         182 :         case RI_TRIGTYPE_DELETE:
    1152         182 :             queryno = is_set_null
    1153             :                 ? RI_PLAN_SETNULL_ONDELETE
    1154         182 :                 : RI_PLAN_SETDEFAULT_ONDELETE;
    1155         182 :             break;
    1156           0 :         default:
    1157           0 :             elog(ERROR, "invalid tgkind passed to ri_set");
    1158             :     }
    1159             : 
    1160         260 :     ri_BuildQueryKey(&qkey, riinfo, queryno);
    1161             : 
    1162         260 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
    1163             :     {
    1164             :         StringInfoData querybuf;
    1165             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1166             :         char        attname[MAX_QUOTED_NAME_LEN];
    1167             :         char        paramname[16];
    1168             :         const char *querysep;
    1169             :         const char *qualsep;
    1170             :         Oid         queryoids[RI_MAX_NUMKEYS];
    1171             :         const char *fk_only;
    1172             :         int         num_cols_to_set;
    1173             :         const int16 *set_cols;
    1174             : 
    1175         156 :         switch (tgkind)
    1176             :         {
    1177          50 :             case RI_TRIGTYPE_UPDATE:
    1178          50 :                 num_cols_to_set = riinfo->nkeys;
    1179          50 :                 set_cols = riinfo->fk_attnums;
    1180          50 :                 break;
    1181         106 :             case RI_TRIGTYPE_DELETE:
    1182             : 
    1183             :                 /*
    1184             :                  * If confdelsetcols are present, then we only update the
    1185             :                  * columns specified in that array, otherwise we update all
    1186             :                  * the referencing columns.
    1187             :                  */
    1188         106 :                 if (riinfo->ndelsetcols != 0)
    1189             :                 {
    1190          24 :                     num_cols_to_set = riinfo->ndelsetcols;
    1191          24 :                     set_cols = riinfo->confdelsetcols;
    1192             :                 }
    1193             :                 else
    1194             :                 {
    1195          82 :                     num_cols_to_set = riinfo->nkeys;
    1196          82 :                     set_cols = riinfo->fk_attnums;
    1197             :                 }
    1198         106 :                 break;
    1199           0 :             default:
    1200           0 :                 elog(ERROR, "invalid tgkind passed to ri_set");
    1201             :         }
    1202             : 
    1203             :         /* ----------
    1204             :          * The query string built is
    1205             :          *  UPDATE [ONLY] <fktable> SET fkatt1 = {NULL|DEFAULT} [, ...]
    1206             :          *          WHERE $1 = fkatt1 [AND ...]
    1207             :          * The type id's for the $ parameters are those of the
    1208             :          * corresponding PK attributes.
    1209             :          * ----------
    1210             :          */
    1211         156 :         initStringInfo(&querybuf);
    1212         312 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1213         156 :             "" : "ONLY ";
    1214         156 :         quoteRelationName(fkrelname, fk_rel);
    1215         156 :         appendStringInfo(&querybuf, "UPDATE %s%s SET",
    1216             :                          fk_only, fkrelname);
    1217             : 
    1218             :         /*
    1219             :          * Add assignment clauses
    1220             :          */
    1221         156 :         querysep = "";
    1222         420 :         for (int i = 0; i < num_cols_to_set; i++)
    1223             :         {
    1224         264 :             quoteOneName(attname, RIAttName(fk_rel, set_cols[i]));
    1225         264 :             appendStringInfo(&querybuf,
    1226             :                              "%s %s = %s",
    1227             :                              querysep, attname,
    1228             :                              is_set_null ? "NULL" : "DEFAULT");
    1229         264 :             querysep = ",";
    1230             :         }
    1231             : 
    1232             :         /*
    1233             :          * Add WHERE clause
    1234             :          */
    1235         156 :         qualsep = "WHERE";
    1236         444 :         for (int i = 0; i < riinfo->nkeys; i++)
    1237             :         {
    1238         288 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1239         288 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1240         288 :             Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1241         288 :             Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1242             : 
    1243         288 :             quoteOneName(attname,
    1244         288 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1245             : 
    1246         288 :             sprintf(paramname, "$%d", i + 1);
    1247         288 :             ri_GenerateQual(&querybuf, qualsep,
    1248             :                             paramname, pk_type,
    1249             :                             riinfo->pf_eq_oprs[i],
    1250             :                             attname, fk_type);
    1251         288 :             if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
    1252           0 :                 ri_GenerateQualCollation(&querybuf, pk_coll);
    1253         288 :             qualsep = "AND";
    1254         288 :             queryoids[i] = pk_type;
    1255             :         }
    1256             : 
    1257             :         /* Prepare and save the plan */
    1258         156 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
    1259             :                              &qkey, fk_rel, pk_rel);
    1260             :     }
    1261             : 
    1262             :     /*
    1263             :      * We have a plan now. Run it to update the existing references.
    1264             :      */
    1265         260 :     ri_PerformCheck(riinfo, &qkey, qplan,
    1266             :                     fk_rel, pk_rel,
    1267             :                     oldslot, NULL,
    1268             :                     true,       /* must detect new rows */
    1269             :                     SPI_OK_UPDATE);
    1270             : 
    1271         258 :     if (SPI_finish() != SPI_OK_FINISH)
    1272           0 :         elog(ERROR, "SPI_finish failed");
    1273             : 
    1274         258 :     table_close(fk_rel, RowExclusiveLock);
    1275             : 
    1276         258 :     if (is_set_null)
    1277         126 :         return PointerGetDatum(NULL);
    1278             :     else
    1279             :     {
    1280             :         /*
    1281             :          * If we just deleted or updated the PK row whose key was equal to the
    1282             :          * FK columns' default values, and a referencing row exists in the FK
    1283             :          * table, we would have updated that row to the same values it already
    1284             :          * had --- and RI_FKey_fk_upd_check_required would hence believe no
    1285             :          * check is necessary.  So we need to do another lookup now and in
    1286             :          * case a reference still exists, abort the operation.  That is
    1287             :          * already implemented in the NO ACTION trigger, so just run it. (This
    1288             :          * recheck is only needed in the SET DEFAULT case, since CASCADE would
    1289             :          * remove such rows in case of a DELETE operation or would change the
    1290             :          * FK key values in case of an UPDATE, while SET NULL is certain to
    1291             :          * result in rows that satisfy the FK constraint.)
    1292             :          */
    1293         132 :         return ri_restrict(trigdata, true);
    1294             :     }
    1295             : }
    1296             : 
    1297             : 
    1298             : /*
    1299             :  * RI_FKey_pk_upd_check_required -
    1300             :  *
    1301             :  * Check if we really need to fire the RI trigger for an update or delete to a PK
    1302             :  * relation.  This is called by the AFTER trigger queue manager to see if
    1303             :  * it can skip queuing an instance of an RI trigger.  Returns true if the
    1304             :  * trigger must be fired, false if we can prove the constraint will still
    1305             :  * be satisfied.
    1306             :  *
    1307             :  * newslot will be NULL if this is called for a delete.
    1308             :  */
    1309             : bool
    1310        2308 : RI_FKey_pk_upd_check_required(Trigger *trigger, Relation pk_rel,
    1311             :                               TupleTableSlot *oldslot, TupleTableSlot *newslot)
    1312             : {
    1313             :     const RI_ConstraintInfo *riinfo;
    1314             : 
    1315        2308 :     riinfo = ri_FetchConstraintInfo(trigger, pk_rel, true);
    1316             : 
    1317             :     /*
    1318             :      * If any old key value is NULL, the row could not have been referenced by
    1319             :      * an FK row, so no check is needed.
    1320             :      */
    1321        2308 :     if (ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) != RI_KEYS_NONE_NULL)
    1322           6 :         return false;
    1323             : 
    1324             :     /* If all old and new key values are equal, no check is needed */
    1325        2302 :     if (newslot && ri_KeysEqual(pk_rel, oldslot, newslot, riinfo, true))
    1326         536 :         return false;
    1327             : 
    1328             :     /* Else we need to fire the trigger. */
    1329        1766 :     return true;
    1330             : }
    1331             : 
    1332             : /*
    1333             :  * RI_FKey_fk_upd_check_required -
    1334             :  *
    1335             :  * Check if we really need to fire the RI trigger for an update to an FK
    1336             :  * relation.  This is called by the AFTER trigger queue manager to see if
    1337             :  * it can skip queuing an instance of an RI trigger.  Returns true if the
    1338             :  * trigger must be fired, false if we can prove the constraint will still
    1339             :  * be satisfied.
    1340             :  */
    1341             : bool
    1342        1068 : RI_FKey_fk_upd_check_required(Trigger *trigger, Relation fk_rel,
    1343             :                               TupleTableSlot *oldslot, TupleTableSlot *newslot)
    1344             : {
    1345             :     const RI_ConstraintInfo *riinfo;
    1346             :     int         ri_nullcheck;
    1347             : 
    1348             :     /*
    1349             :      * AfterTriggerSaveEvent() handles things such that this function is never
    1350             :      * called for partitioned tables.
    1351             :      */
    1352             :     Assert(fk_rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE);
    1353             : 
    1354        1068 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1355             : 
    1356        1068 :     ri_nullcheck = ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false);
    1357             : 
    1358             :     /*
    1359             :      * If all new key values are NULL, the row satisfies the constraint, so no
    1360             :      * check is needed.
    1361             :      */
    1362        1068 :     if (ri_nullcheck == RI_KEYS_ALL_NULL)
    1363         126 :         return false;
    1364             : 
    1365             :     /*
    1366             :      * If some new key values are NULL, the behavior depends on the match
    1367             :      * type.
    1368             :      */
    1369         942 :     else if (ri_nullcheck == RI_KEYS_SOME_NULL)
    1370             :     {
    1371          30 :         switch (riinfo->confmatchtype)
    1372             :         {
    1373          24 :             case FKCONSTR_MATCH_SIMPLE:
    1374             : 
    1375             :                 /*
    1376             :                  * If any new key value is NULL, the row must satisfy the
    1377             :                  * constraint, so no check is needed.
    1378             :                  */
    1379          24 :                 return false;
    1380             : 
    1381           0 :             case FKCONSTR_MATCH_PARTIAL:
    1382             : 
    1383             :                 /*
    1384             :                  * Don't know, must run full check.
    1385             :                  */
    1386           0 :                 break;
    1387             : 
    1388           6 :             case FKCONSTR_MATCH_FULL:
    1389             : 
    1390             :                 /*
    1391             :                  * If some new key values are NULL, the row fails the
    1392             :                  * constraint.  We must not throw error here, because the row
    1393             :                  * might get invalidated before the constraint is to be
    1394             :                  * checked, but we should queue the event to apply the check
    1395             :                  * later.
    1396             :                  */
    1397           6 :                 return true;
    1398             :         }
    1399         912 :     }
    1400             : 
    1401             :     /*
    1402             :      * Continues here for no new key values are NULL, or we couldn't decide
    1403             :      * yet.
    1404             :      */
    1405             : 
    1406             :     /*
    1407             :      * If the original row was inserted by our own transaction, we must fire
    1408             :      * the trigger whether or not the keys are equal.  This is because our
    1409             :      * UPDATE will invalidate the INSERT so that the INSERT RI trigger will
    1410             :      * not do anything; so we had better do the UPDATE check.  (We could skip
    1411             :      * this if we knew the INSERT trigger already fired, but there is no easy
    1412             :      * way to know that.)
    1413             :      */
    1414         912 :     if (slot_is_current_xact_tuple(oldslot))
    1415         124 :         return true;
    1416             : 
    1417             :     /* If all old and new key values are equal, no check is needed */
    1418         788 :     if (ri_KeysEqual(fk_rel, oldslot, newslot, riinfo, false))
    1419         446 :         return false;
    1420             : 
    1421             :     /* Else we need to fire the trigger. */
    1422         342 :     return true;
    1423             : }
    1424             : 
    1425             : /*
    1426             :  * RI_Initial_Check -
    1427             :  *
    1428             :  * Check an entire table for non-matching values using a single query.
    1429             :  * This is not a trigger procedure, but is called during ALTER TABLE
    1430             :  * ADD FOREIGN KEY to validate the initial table contents.
    1431             :  *
    1432             :  * We expect that the caller has made provision to prevent any problems
    1433             :  * caused by concurrent actions. This could be either by locking rel and
    1434             :  * pkrel at ShareRowExclusiveLock or higher, or by otherwise ensuring
    1435             :  * that triggers implementing the checks are already active.
    1436             :  * Hence, we do not need to lock individual rows for the check.
    1437             :  *
    1438             :  * If the check fails because the current user doesn't have permissions
    1439             :  * to read both tables, return false to let our caller know that they will
    1440             :  * need to do something else to check the constraint.
    1441             :  */
    1442             : bool
    1443         950 : RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
    1444             : {
    1445             :     const RI_ConstraintInfo *riinfo;
    1446             :     StringInfoData querybuf;
    1447             :     char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
    1448             :     char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1449             :     char        pkattname[MAX_QUOTED_NAME_LEN + 3];
    1450             :     char        fkattname[MAX_QUOTED_NAME_LEN + 3];
    1451             :     RangeTblEntry *rte;
    1452             :     RTEPermissionInfo *pk_perminfo;
    1453             :     RTEPermissionInfo *fk_perminfo;
    1454         950 :     List       *rtes = NIL;
    1455         950 :     List       *perminfos = NIL;
    1456             :     const char *sep;
    1457             :     const char *fk_only;
    1458             :     const char *pk_only;
    1459             :     int         save_nestlevel;
    1460             :     char        workmembuf[32];
    1461             :     int         spi_result;
    1462             :     SPIPlanPtr  qplan;
    1463             : 
    1464         950 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1465             : 
    1466             :     /*
    1467             :      * Check to make sure current user has enough permissions to do the test
    1468             :      * query.  (If not, caller can fall back to the trigger method, which
    1469             :      * works because it changes user IDs on the fly.)
    1470             :      *
    1471             :      * XXX are there any other show-stopper conditions to check?
    1472             :      */
    1473         950 :     pk_perminfo = makeNode(RTEPermissionInfo);
    1474         950 :     pk_perminfo->relid = RelationGetRelid(pk_rel);
    1475         950 :     pk_perminfo->requiredPerms = ACL_SELECT;
    1476         950 :     perminfos = lappend(perminfos, pk_perminfo);
    1477         950 :     rte = makeNode(RangeTblEntry);
    1478         950 :     rte->rtekind = RTE_RELATION;
    1479         950 :     rte->relid = RelationGetRelid(pk_rel);
    1480         950 :     rte->relkind = pk_rel->rd_rel->relkind;
    1481         950 :     rte->rellockmode = AccessShareLock;
    1482         950 :     rte->perminfoindex = list_length(perminfos);
    1483         950 :     rtes = lappend(rtes, rte);
    1484             : 
    1485         950 :     fk_perminfo = makeNode(RTEPermissionInfo);
    1486         950 :     fk_perminfo->relid = RelationGetRelid(fk_rel);
    1487         950 :     fk_perminfo->requiredPerms = ACL_SELECT;
    1488         950 :     perminfos = lappend(perminfos, fk_perminfo);
    1489         950 :     rte = makeNode(RangeTblEntry);
    1490         950 :     rte->rtekind = RTE_RELATION;
    1491         950 :     rte->relid = RelationGetRelid(fk_rel);
    1492         950 :     rte->relkind = fk_rel->rd_rel->relkind;
    1493         950 :     rte->rellockmode = AccessShareLock;
    1494         950 :     rte->perminfoindex = list_length(perminfos);
    1495         950 :     rtes = lappend(rtes, rte);
    1496             : 
    1497        2208 :     for (int i = 0; i < riinfo->nkeys; i++)
    1498             :     {
    1499             :         int         attno;
    1500             : 
    1501        1258 :         attno = riinfo->pk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
    1502        1258 :         pk_perminfo->selectedCols = bms_add_member(pk_perminfo->selectedCols, attno);
    1503             : 
    1504        1258 :         attno = riinfo->fk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
    1505        1258 :         fk_perminfo->selectedCols = bms_add_member(fk_perminfo->selectedCols, attno);
    1506             :     }
    1507             : 
    1508         950 :     if (!ExecCheckPermissions(rtes, perminfos, false))
    1509          12 :         return false;
    1510             : 
    1511             :     /*
    1512             :      * Also punt if RLS is enabled on either table unless this role has the
    1513             :      * bypassrls right or is the table owner of the table(s) involved which
    1514             :      * have RLS enabled.
    1515             :      */
    1516         938 :     if (!has_bypassrls_privilege(GetUserId()) &&
    1517           0 :         ((pk_rel->rd_rel->relrowsecurity &&
    1518           0 :           !object_ownercheck(RelationRelationId, RelationGetRelid(pk_rel),
    1519           0 :                              GetUserId())) ||
    1520           0 :          (fk_rel->rd_rel->relrowsecurity &&
    1521           0 :           !object_ownercheck(RelationRelationId, RelationGetRelid(fk_rel),
    1522             :                              GetUserId()))))
    1523           0 :         return false;
    1524             : 
    1525             :     /*----------
    1526             :      * The query string built is:
    1527             :      *  SELECT fk.keycols FROM [ONLY] relname fk
    1528             :      *   LEFT OUTER JOIN [ONLY] pkrelname pk
    1529             :      *   ON (pk.pkkeycol1=fk.keycol1 [AND ...])
    1530             :      *   WHERE pk.pkkeycol1 IS NULL AND
    1531             :      * For MATCH SIMPLE:
    1532             :      *   (fk.keycol1 IS NOT NULL [AND ...])
    1533             :      * For MATCH FULL:
    1534             :      *   (fk.keycol1 IS NOT NULL [OR ...])
    1535             :      *
    1536             :      * We attach COLLATE clauses to the operators when comparing columns
    1537             :      * that have different collations.
    1538             :      *----------
    1539             :      */
    1540         938 :     initStringInfo(&querybuf);
    1541         938 :     appendStringInfoString(&querybuf, "SELECT ");
    1542         938 :     sep = "";
    1543        2172 :     for (int i = 0; i < riinfo->nkeys; i++)
    1544             :     {
    1545        1234 :         quoteOneName(fkattname,
    1546        1234 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1547        1234 :         appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
    1548        1234 :         sep = ", ";
    1549             :     }
    1550             : 
    1551         938 :     quoteRelationName(pkrelname, pk_rel);
    1552         938 :     quoteRelationName(fkrelname, fk_rel);
    1553        1876 :     fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1554         938 :         "" : "ONLY ";
    1555        1876 :     pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1556         938 :         "" : "ONLY ";
    1557         938 :     appendStringInfo(&querybuf,
    1558             :                      " FROM %s%s fk LEFT OUTER JOIN %s%s pk ON",
    1559             :                      fk_only, fkrelname, pk_only, pkrelname);
    1560             : 
    1561         938 :     strcpy(pkattname, "pk.");
    1562         938 :     strcpy(fkattname, "fk.");
    1563         938 :     sep = "(";
    1564        2172 :     for (int i = 0; i < riinfo->nkeys; i++)
    1565             :     {
    1566        1234 :         Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1567        1234 :         Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1568        1234 :         Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1569        1234 :         Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1570             : 
    1571        1234 :         quoteOneName(pkattname + 3,
    1572        1234 :                      RIAttName(pk_rel, riinfo->pk_attnums[i]));
    1573        1234 :         quoteOneName(fkattname + 3,
    1574        1234 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1575        1234 :         ri_GenerateQual(&querybuf, sep,
    1576             :                         pkattname, pk_type,
    1577             :                         riinfo->pf_eq_oprs[i],
    1578             :                         fkattname, fk_type);
    1579        1234 :         if (pk_coll != fk_coll)
    1580          12 :             ri_GenerateQualCollation(&querybuf, pk_coll);
    1581        1234 :         sep = "AND";
    1582             :     }
    1583             : 
    1584             :     /*
    1585             :      * It's sufficient to test any one pk attribute for null to detect a join
    1586             :      * failure.
    1587             :      */
    1588         938 :     quoteOneName(pkattname, RIAttName(pk_rel, riinfo->pk_attnums[0]));
    1589         938 :     appendStringInfo(&querybuf, ") WHERE pk.%s IS NULL AND (", pkattname);
    1590             : 
    1591         938 :     sep = "";
    1592        2172 :     for (int i = 0; i < riinfo->nkeys; i++)
    1593             :     {
    1594        1234 :         quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1595        1234 :         appendStringInfo(&querybuf,
    1596             :                          "%sfk.%s IS NOT NULL",
    1597             :                          sep, fkattname);
    1598        1234 :         switch (riinfo->confmatchtype)
    1599             :         {
    1600        1134 :             case FKCONSTR_MATCH_SIMPLE:
    1601        1134 :                 sep = " AND ";
    1602        1134 :                 break;
    1603         100 :             case FKCONSTR_MATCH_FULL:
    1604         100 :                 sep = " OR ";
    1605         100 :                 break;
    1606             :         }
    1607        1234 :     }
    1608         938 :     appendStringInfoChar(&querybuf, ')');
    1609             : 
    1610             :     /*
    1611             :      * Temporarily increase work_mem so that the check query can be executed
    1612             :      * more efficiently.  It seems okay to do this because the query is simple
    1613             :      * enough to not use a multiple of work_mem, and one typically would not
    1614             :      * have many large foreign-key validations happening concurrently.  So
    1615             :      * this seems to meet the criteria for being considered a "maintenance"
    1616             :      * operation, and accordingly we use maintenance_work_mem.  However, we
    1617             :      * must also set hash_mem_multiplier to 1, since it is surely not okay to
    1618             :      * let that get applied to the maintenance_work_mem value.
    1619             :      *
    1620             :      * We use the equivalent of a function SET option to allow the setting to
    1621             :      * persist for exactly the duration of the check query.  guc.c also takes
    1622             :      * care of undoing the setting on error.
    1623             :      */
    1624         938 :     save_nestlevel = NewGUCNestLevel();
    1625             : 
    1626         938 :     snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
    1627         938 :     (void) set_config_option("work_mem", workmembuf,
    1628             :                              PGC_USERSET, PGC_S_SESSION,
    1629             :                              GUC_ACTION_SAVE, true, 0, false);
    1630         938 :     (void) set_config_option("hash_mem_multiplier", "1",
    1631             :                              PGC_USERSET, PGC_S_SESSION,
    1632             :                              GUC_ACTION_SAVE, true, 0, false);
    1633             : 
    1634         938 :     if (SPI_connect() != SPI_OK_CONNECT)
    1635           0 :         elog(ERROR, "SPI_connect failed");
    1636             : 
    1637             :     /*
    1638             :      * Generate the plan.  We don't need to cache it, and there are no
    1639             :      * arguments to the plan.
    1640             :      */
    1641         938 :     qplan = SPI_prepare(querybuf.data, 0, NULL);
    1642             : 
    1643         938 :     if (qplan == NULL)
    1644           0 :         elog(ERROR, "SPI_prepare returned %s for %s",
    1645             :              SPI_result_code_string(SPI_result), querybuf.data);
    1646             : 
    1647             :     /*
    1648             :      * Run the plan.  For safety we force a current snapshot to be used. (In
    1649             :      * transaction-snapshot mode, this arguably violates transaction isolation
    1650             :      * rules, but we really haven't got much choice.) We don't need to
    1651             :      * register the snapshot, because SPI_execute_snapshot will see to it. We
    1652             :      * need at most one tuple returned, so pass limit = 1.
    1653             :      */
    1654         938 :     spi_result = SPI_execute_snapshot(qplan,
    1655             :                                       NULL, NULL,
    1656             :                                       GetLatestSnapshot(),
    1657             :                                       InvalidSnapshot,
    1658             :                                       true, false, 1);
    1659             : 
    1660             :     /* Check result */
    1661         938 :     if (spi_result != SPI_OK_SELECT)
    1662           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    1663             : 
    1664             :     /* Did we find a tuple violating the constraint? */
    1665         938 :     if (SPI_processed > 0)
    1666             :     {
    1667             :         TupleTableSlot *slot;
    1668          62 :         HeapTuple   tuple = SPI_tuptable->vals[0];
    1669          62 :         TupleDesc   tupdesc = SPI_tuptable->tupdesc;
    1670             :         RI_ConstraintInfo fake_riinfo;
    1671             : 
    1672          62 :         slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
    1673             : 
    1674          62 :         heap_deform_tuple(tuple, tupdesc,
    1675             :                           slot->tts_values, slot->tts_isnull);
    1676          62 :         ExecStoreVirtualTuple(slot);
    1677             : 
    1678             :         /*
    1679             :          * The columns to look at in the result tuple are 1..N, not whatever
    1680             :          * they are in the fk_rel.  Hack up riinfo so that the subroutines
    1681             :          * called here will behave properly.
    1682             :          *
    1683             :          * In addition to this, we have to pass the correct tupdesc to
    1684             :          * ri_ReportViolation, overriding its normal habit of using the pk_rel
    1685             :          * or fk_rel's tupdesc.
    1686             :          */
    1687          62 :         memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
    1688         142 :         for (int i = 0; i < fake_riinfo.nkeys; i++)
    1689          80 :             fake_riinfo.fk_attnums[i] = i + 1;
    1690             : 
    1691             :         /*
    1692             :          * If it's MATCH FULL, and there are any nulls in the FK keys,
    1693             :          * complain about that rather than the lack of a match.  MATCH FULL
    1694             :          * disallows partially-null FK rows.
    1695             :          */
    1696          86 :         if (fake_riinfo.confmatchtype == FKCONSTR_MATCH_FULL &&
    1697          24 :             ri_NullCheck(tupdesc, slot, &fake_riinfo, false) != RI_KEYS_NONE_NULL)
    1698          12 :             ereport(ERROR,
    1699             :                     (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    1700             :                      errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
    1701             :                             RelationGetRelationName(fk_rel),
    1702             :                             NameStr(fake_riinfo.conname)),
    1703             :                      errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
    1704             :                      errtableconstraint(fk_rel,
    1705             :                                         NameStr(fake_riinfo.conname))));
    1706             : 
    1707             :         /*
    1708             :          * We tell ri_ReportViolation we were doing the RI_PLAN_CHECK_LOOKUPPK
    1709             :          * query, which isn't true, but will cause it to use
    1710             :          * fake_riinfo.fk_attnums as we need.
    1711             :          */
    1712          50 :         ri_ReportViolation(&fake_riinfo,
    1713             :                            pk_rel, fk_rel,
    1714             :                            slot, tupdesc,
    1715             :                            RI_PLAN_CHECK_LOOKUPPK, false);
    1716             : 
    1717             :         ExecDropSingleTupleTableSlot(slot);
    1718             :     }
    1719             : 
    1720         876 :     if (SPI_finish() != SPI_OK_FINISH)
    1721           0 :         elog(ERROR, "SPI_finish failed");
    1722             : 
    1723             :     /*
    1724             :      * Restore work_mem and hash_mem_multiplier.
    1725             :      */
    1726         876 :     AtEOXact_GUC(true, save_nestlevel);
    1727             : 
    1728         876 :     return true;
    1729             : }
    1730             : 
    1731             : /*
    1732             :  * RI_PartitionRemove_Check -
    1733             :  *
    1734             :  * Verify no referencing values exist, when a partition is detached on
    1735             :  * the referenced side of a foreign key constraint.
    1736             :  */
    1737             : void
    1738          86 : RI_PartitionRemove_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
    1739             : {
    1740             :     const RI_ConstraintInfo *riinfo;
    1741             :     StringInfoData querybuf;
    1742             :     char       *constraintDef;
    1743             :     char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
    1744             :     char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1745             :     char        pkattname[MAX_QUOTED_NAME_LEN + 3];
    1746             :     char        fkattname[MAX_QUOTED_NAME_LEN + 3];
    1747             :     const char *sep;
    1748             :     const char *fk_only;
    1749             :     int         save_nestlevel;
    1750             :     char        workmembuf[32];
    1751             :     int         spi_result;
    1752             :     SPIPlanPtr  qplan;
    1753             :     int         i;
    1754             : 
    1755          86 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1756             : 
    1757             :     /*
    1758             :      * We don't check permissions before displaying the error message, on the
    1759             :      * assumption that the user detaching the partition must have enough
    1760             :      * privileges to examine the table contents anyhow.
    1761             :      */
    1762             : 
    1763             :     /*----------
    1764             :      * The query string built is:
    1765             :      *  SELECT fk.keycols FROM [ONLY] relname fk
    1766             :      *    JOIN pkrelname pk
    1767             :      *    ON (pk.pkkeycol1=fk.keycol1 [AND ...])
    1768             :      *    WHERE (<partition constraint>) AND
    1769             :      * For MATCH SIMPLE:
    1770             :      *   (fk.keycol1 IS NOT NULL [AND ...])
    1771             :      * For MATCH FULL:
    1772             :      *   (fk.keycol1 IS NOT NULL [OR ...])
    1773             :      *
    1774             :      * We attach COLLATE clauses to the operators when comparing columns
    1775             :      * that have different collations.
    1776             :      *----------
    1777             :      */
    1778          86 :     initStringInfo(&querybuf);
    1779          86 :     appendStringInfoString(&querybuf, "SELECT ");
    1780          86 :     sep = "";
    1781         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1782             :     {
    1783          86 :         quoteOneName(fkattname,
    1784          86 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1785          86 :         appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
    1786          86 :         sep = ", ";
    1787             :     }
    1788             : 
    1789          86 :     quoteRelationName(pkrelname, pk_rel);
    1790          86 :     quoteRelationName(fkrelname, fk_rel);
    1791         172 :     fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1792          86 :         "" : "ONLY ";
    1793          86 :     appendStringInfo(&querybuf,
    1794             :                      " FROM %s%s fk JOIN %s pk ON",
    1795             :                      fk_only, fkrelname, pkrelname);
    1796          86 :     strcpy(pkattname, "pk.");
    1797          86 :     strcpy(fkattname, "fk.");
    1798          86 :     sep = "(";
    1799         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1800             :     {
    1801          86 :         Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1802          86 :         Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1803          86 :         Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1804          86 :         Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1805             : 
    1806          86 :         quoteOneName(pkattname + 3,
    1807          86 :                      RIAttName(pk_rel, riinfo->pk_attnums[i]));
    1808          86 :         quoteOneName(fkattname + 3,
    1809          86 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1810          86 :         ri_GenerateQual(&querybuf, sep,
    1811             :                         pkattname, pk_type,
    1812             :                         riinfo->pf_eq_oprs[i],
    1813             :                         fkattname, fk_type);
    1814          86 :         if (pk_coll != fk_coll)
    1815           0 :             ri_GenerateQualCollation(&querybuf, pk_coll);
    1816          86 :         sep = "AND";
    1817             :     }
    1818             : 
    1819             :     /*
    1820             :      * Start the WHERE clause with the partition constraint (except if this is
    1821             :      * the default partition and there's no other partition, because the
    1822             :      * partition constraint is the empty string in that case.)
    1823             :      */
    1824          86 :     constraintDef = pg_get_partconstrdef_string(RelationGetRelid(pk_rel), "pk");
    1825          86 :     if (constraintDef && constraintDef[0] != '\0')
    1826          86 :         appendStringInfo(&querybuf, ") WHERE %s AND (",
    1827             :                          constraintDef);
    1828             :     else
    1829           0 :         appendStringInfoString(&querybuf, ") WHERE (");
    1830             : 
    1831          86 :     sep = "";
    1832         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1833             :     {
    1834          86 :         quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1835          86 :         appendStringInfo(&querybuf,
    1836             :                          "%sfk.%s IS NOT NULL",
    1837             :                          sep, fkattname);
    1838          86 :         switch (riinfo->confmatchtype)
    1839             :         {
    1840          86 :             case FKCONSTR_MATCH_SIMPLE:
    1841          86 :                 sep = " AND ";
    1842          86 :                 break;
    1843           0 :             case FKCONSTR_MATCH_FULL:
    1844           0 :                 sep = " OR ";
    1845           0 :                 break;
    1846             :         }
    1847          86 :     }
    1848          86 :     appendStringInfoChar(&querybuf, ')');
    1849             : 
    1850             :     /*
    1851             :      * Temporarily increase work_mem so that the check query can be executed
    1852             :      * more efficiently.  It seems okay to do this because the query is simple
    1853             :      * enough to not use a multiple of work_mem, and one typically would not
    1854             :      * have many large foreign-key validations happening concurrently.  So
    1855             :      * this seems to meet the criteria for being considered a "maintenance"
    1856             :      * operation, and accordingly we use maintenance_work_mem.  However, we
    1857             :      * must also set hash_mem_multiplier to 1, since it is surely not okay to
    1858             :      * let that get applied to the maintenance_work_mem value.
    1859             :      *
    1860             :      * We use the equivalent of a function SET option to allow the setting to
    1861             :      * persist for exactly the duration of the check query.  guc.c also takes
    1862             :      * care of undoing the setting on error.
    1863             :      */
    1864          86 :     save_nestlevel = NewGUCNestLevel();
    1865             : 
    1866          86 :     snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
    1867          86 :     (void) set_config_option("work_mem", workmembuf,
    1868             :                              PGC_USERSET, PGC_S_SESSION,
    1869             :                              GUC_ACTION_SAVE, true, 0, false);
    1870          86 :     (void) set_config_option("hash_mem_multiplier", "1",
    1871             :                              PGC_USERSET, PGC_S_SESSION,
    1872             :                              GUC_ACTION_SAVE, true, 0, false);
    1873             : 
    1874          86 :     if (SPI_connect() != SPI_OK_CONNECT)
    1875           0 :         elog(ERROR, "SPI_connect failed");
    1876             : 
    1877             :     /*
    1878             :      * Generate the plan.  We don't need to cache it, and there are no
    1879             :      * arguments to the plan.
    1880             :      */
    1881          86 :     qplan = SPI_prepare(querybuf.data, 0, NULL);
    1882             : 
    1883          86 :     if (qplan == NULL)
    1884           0 :         elog(ERROR, "SPI_prepare returned %s for %s",
    1885             :              SPI_result_code_string(SPI_result), querybuf.data);
    1886             : 
    1887             :     /*
    1888             :      * Run the plan.  For safety we force a current snapshot to be used. (In
    1889             :      * transaction-snapshot mode, this arguably violates transaction isolation
    1890             :      * rules, but we really haven't got much choice.) We don't need to
    1891             :      * register the snapshot, because SPI_execute_snapshot will see to it. We
    1892             :      * need at most one tuple returned, so pass limit = 1.
    1893             :      */
    1894          86 :     spi_result = SPI_execute_snapshot(qplan,
    1895             :                                       NULL, NULL,
    1896             :                                       GetLatestSnapshot(),
    1897             :                                       InvalidSnapshot,
    1898             :                                       true, false, 1);
    1899             : 
    1900             :     /* Check result */
    1901          86 :     if (spi_result != SPI_OK_SELECT)
    1902           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    1903             : 
    1904             :     /* Did we find a tuple that would violate the constraint? */
    1905          86 :     if (SPI_processed > 0)
    1906             :     {
    1907             :         TupleTableSlot *slot;
    1908          34 :         HeapTuple   tuple = SPI_tuptable->vals[0];
    1909          34 :         TupleDesc   tupdesc = SPI_tuptable->tupdesc;
    1910             :         RI_ConstraintInfo fake_riinfo;
    1911             : 
    1912          34 :         slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
    1913             : 
    1914          34 :         heap_deform_tuple(tuple, tupdesc,
    1915             :                           slot->tts_values, slot->tts_isnull);
    1916          34 :         ExecStoreVirtualTuple(slot);
    1917             : 
    1918             :         /*
    1919             :          * The columns to look at in the result tuple are 1..N, not whatever
    1920             :          * they are in the fk_rel.  Hack up riinfo so that ri_ReportViolation
    1921             :          * will behave properly.
    1922             :          *
    1923             :          * In addition to this, we have to pass the correct tupdesc to
    1924             :          * ri_ReportViolation, overriding its normal habit of using the pk_rel
    1925             :          * or fk_rel's tupdesc.
    1926             :          */
    1927          34 :         memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
    1928          68 :         for (i = 0; i < fake_riinfo.nkeys; i++)
    1929          34 :             fake_riinfo.pk_attnums[i] = i + 1;
    1930             : 
    1931          34 :         ri_ReportViolation(&fake_riinfo, pk_rel, fk_rel,
    1932             :                            slot, tupdesc, 0, true);
    1933             :     }
    1934             : 
    1935          52 :     if (SPI_finish() != SPI_OK_FINISH)
    1936           0 :         elog(ERROR, "SPI_finish failed");
    1937             : 
    1938             :     /*
    1939             :      * Restore work_mem and hash_mem_multiplier.
    1940             :      */
    1941          52 :     AtEOXact_GUC(true, save_nestlevel);
    1942          52 : }
    1943             : 
    1944             : 
    1945             : /* ----------
    1946             :  * Local functions below
    1947             :  * ----------
    1948             :  */
    1949             : 
    1950             : 
    1951             : /*
    1952             :  * quoteOneName --- safely quote a single SQL name
    1953             :  *
    1954             :  * buffer must be MAX_QUOTED_NAME_LEN long (includes room for \0)
    1955             :  */
    1956             : static void
    1957       22164 : quoteOneName(char *buffer, const char *name)
    1958             : {
    1959             :     /* Rather than trying to be smart, just always quote it. */
    1960       22164 :     *buffer++ = '"';
    1961      140246 :     while (*name)
    1962             :     {
    1963      118082 :         if (*name == '"')
    1964           0 :             *buffer++ = '"';
    1965      118082 :         *buffer++ = *name++;
    1966             :     }
    1967       22164 :     *buffer++ = '"';
    1968       22164 :     *buffer = '\0';
    1969       22164 : }
    1970             : 
    1971             : /*
    1972             :  * quoteRelationName --- safely quote a fully qualified relation name
    1973             :  *
    1974             :  * buffer must be MAX_QUOTED_REL_NAME_LEN long (includes room for \0)
    1975             :  */
    1976             : static void
    1977        5484 : quoteRelationName(char *buffer, Relation rel)
    1978             : {
    1979        5484 :     quoteOneName(buffer, get_namespace_name(RelationGetNamespace(rel)));
    1980        5484 :     buffer += strlen(buffer);
    1981        5484 :     *buffer++ = '.';
    1982        5484 :     quoteOneName(buffer, RelationGetRelationName(rel));
    1983        5484 : }
    1984             : 
    1985             : /*
    1986             :  * ri_GenerateQual --- generate a WHERE clause equating two variables
    1987             :  *
    1988             :  * This basically appends " sep leftop op rightop" to buf, adding casts
    1989             :  * and schema qualification as needed to ensure that the parser will select
    1990             :  * the operator we specify.  leftop and rightop should be parenthesized
    1991             :  * if they aren't variables or parameters.
    1992             :  */
    1993             : static void
    1994        5986 : ri_GenerateQual(StringInfo buf,
    1995             :                 const char *sep,
    1996             :                 const char *leftop, Oid leftoptype,
    1997             :                 Oid opoid,
    1998             :                 const char *rightop, Oid rightoptype)
    1999             : {
    2000        5986 :     appendStringInfo(buf, " %s ", sep);
    2001        5986 :     generate_operator_clause(buf, leftop, leftoptype, opoid,
    2002             :                              rightop, rightoptype);
    2003        5986 : }
    2004             : 
    2005             : /*
    2006             :  * ri_GenerateQualCollation --- add a COLLATE spec to a WHERE clause
    2007             :  *
    2008             :  * At present, we intentionally do not use this function for RI queries that
    2009             :  * compare a variable to a $n parameter.  Since parameter symbols always have
    2010             :  * default collation, the effect will be to use the variable's collation.
    2011             :  * Now that is only strictly correct when testing the referenced column, since
    2012             :  * the SQL standard specifies that RI comparisons should use the referenced
    2013             :  * column's collation.  However, so long as all collations have the same
    2014             :  * notion of equality (which they do, because texteq reduces to bitwise
    2015             :  * equality), there's no visible semantic impact from using the referencing
    2016             :  * column's collation when testing it, and this is a good thing to do because
    2017             :  * it lets us use a normal index on the referencing column.  However, we do
    2018             :  * have to use this function when directly comparing the referencing and
    2019             :  * referenced columns, if they are of different collations; else the parser
    2020             :  * will fail to resolve the collation to use.
    2021             :  */
    2022             : static void
    2023          24 : ri_GenerateQualCollation(StringInfo buf, Oid collation)
    2024             : {
    2025             :     HeapTuple   tp;
    2026             :     Form_pg_collation colltup;
    2027             :     char       *collname;
    2028             :     char        onename[MAX_QUOTED_NAME_LEN];
    2029             : 
    2030             :     /* Nothing to do if it's a noncollatable data type */
    2031          24 :     if (!OidIsValid(collation))
    2032           0 :         return;
    2033             : 
    2034          24 :     tp = SearchSysCache1(COLLOID, ObjectIdGetDatum(collation));
    2035          24 :     if (!HeapTupleIsValid(tp))
    2036           0 :         elog(ERROR, "cache lookup failed for collation %u", collation);
    2037          24 :     colltup = (Form_pg_collation) GETSTRUCT(tp);
    2038          24 :     collname = NameStr(colltup->collname);
    2039             : 
    2040             :     /*
    2041             :      * We qualify the name always, for simplicity and to ensure the query is
    2042             :      * not search-path-dependent.
    2043             :      */
    2044          24 :     quoteOneName(onename, get_namespace_name(colltup->collnamespace));
    2045          24 :     appendStringInfo(buf, " COLLATE %s", onename);
    2046          24 :     quoteOneName(onename, collname);
    2047          24 :     appendStringInfo(buf, ".%s", onename);
    2048             : 
    2049          24 :     ReleaseSysCache(tp);
    2050             : }
    2051             : 
    2052             : /* ----------
    2053             :  * ri_BuildQueryKey -
    2054             :  *
    2055             :  *  Construct a hashtable key for a prepared SPI plan of an FK constraint.
    2056             :  *
    2057             :  *      key: output argument, *key is filled in based on the other arguments
    2058             :  *      riinfo: info derived from pg_constraint entry
    2059             :  *      constr_queryno: an internal number identifying the query type
    2060             :  *          (see RI_PLAN_XXX constants at head of file)
    2061             :  * ----------
    2062             :  */
    2063             : static void
    2064        6714 : ri_BuildQueryKey(RI_QueryKey *key, const RI_ConstraintInfo *riinfo,
    2065             :                  int32 constr_queryno)
    2066             : {
    2067             :     /*
    2068             :      * Inherited constraints with a common ancestor can share ri_query_cache
    2069             :      * entries for all query types except RI_PLAN_CHECK_LOOKUPPK_FROM_PK.
    2070             :      * Except in that case, the query processes the other table involved in
    2071             :      * the FK constraint (i.e., not the table on which the trigger has been
    2072             :      * fired), and so it will be the same for all members of the inheritance
    2073             :      * tree.  So we may use the root constraint's OID in the hash key, rather
    2074             :      * than the constraint's own OID.  This avoids creating duplicate SPI
    2075             :      * plans, saving lots of work and memory when there are many partitions
    2076             :      * with similar FK constraints.
    2077             :      *
    2078             :      * (Note that we must still have a separate RI_ConstraintInfo for each
    2079             :      * constraint, because partitions can have different column orders,
    2080             :      * resulting in different pk_attnums[] or fk_attnums[] array contents.)
    2081             :      *
    2082             :      * We assume struct RI_QueryKey contains no padding bytes, else we'd need
    2083             :      * to use memset to clear them.
    2084             :      */
    2085        6714 :     if (constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK)
    2086        5772 :         key->constr_id = riinfo->constraint_root_id;
    2087             :     else
    2088         942 :         key->constr_id = riinfo->constraint_id;
    2089        6714 :     key->constr_queryno = constr_queryno;
    2090        6714 : }
    2091             : 
    2092             : /*
    2093             :  * Check that RI trigger function was called in expected context
    2094             :  */
    2095             : static void
    2096        6040 : ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind)
    2097             : {
    2098        6040 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
    2099             : 
    2100        6040 :     if (!CALLED_AS_TRIGGER(fcinfo))
    2101           0 :         ereport(ERROR,
    2102             :                 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2103             :                  errmsg("function \"%s\" was not called by trigger manager", funcname)));
    2104             : 
    2105             :     /*
    2106             :      * Check proper event
    2107             :      */
    2108        6040 :     if (!TRIGGER_FIRED_AFTER(trigdata->tg_event) ||
    2109        6040 :         !TRIGGER_FIRED_FOR_ROW(trigdata->tg_event))
    2110           0 :         ereport(ERROR,
    2111             :                 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2112             :                  errmsg("function \"%s\" must be fired AFTER ROW", funcname)));
    2113             : 
    2114        6040 :     switch (tgkind)
    2115             :     {
    2116        4002 :         case RI_TRIGTYPE_INSERT:
    2117        4002 :             if (!TRIGGER_FIRED_BY_INSERT(trigdata->tg_event))
    2118           0 :                 ereport(ERROR,
    2119             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2120             :                          errmsg("function \"%s\" must be fired for INSERT", funcname)));
    2121        4002 :             break;
    2122        1222 :         case RI_TRIGTYPE_UPDATE:
    2123        1222 :             if (!TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
    2124           0 :                 ereport(ERROR,
    2125             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2126             :                          errmsg("function \"%s\" must be fired for UPDATE", funcname)));
    2127        1222 :             break;
    2128         816 :         case RI_TRIGTYPE_DELETE:
    2129         816 :             if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event))
    2130           0 :                 ereport(ERROR,
    2131             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2132             :                          errmsg("function \"%s\" must be fired for DELETE", funcname)));
    2133         816 :             break;
    2134             :     }
    2135        6040 : }
    2136             : 
    2137             : 
    2138             : /*
    2139             :  * Fetch the RI_ConstraintInfo struct for the trigger's FK constraint.
    2140             :  */
    2141             : static const RI_ConstraintInfo *
    2142       10584 : ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk)
    2143             : {
    2144       10584 :     Oid         constraintOid = trigger->tgconstraint;
    2145             :     const RI_ConstraintInfo *riinfo;
    2146             : 
    2147             :     /*
    2148             :      * Check that the FK constraint's OID is available; it might not be if
    2149             :      * we've been invoked via an ordinary trigger or an old-style "constraint
    2150             :      * trigger".
    2151             :      */
    2152       10584 :     if (!OidIsValid(constraintOid))
    2153           0 :         ereport(ERROR,
    2154             :                 (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    2155             :                  errmsg("no pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2156             :                         trigger->tgname, RelationGetRelationName(trig_rel)),
    2157             :                  errhint("Remove this referential integrity trigger and its mates, then do ALTER TABLE ADD CONSTRAINT.")));
    2158             : 
    2159             :     /* Find or create a hashtable entry for the constraint */
    2160       10584 :     riinfo = ri_LoadConstraintInfo(constraintOid);
    2161             : 
    2162             :     /* Do some easy cross-checks against the trigger call data */
    2163       10584 :     if (rel_is_pk)
    2164             :     {
    2165        4018 :         if (riinfo->fk_relid != trigger->tgconstrrelid ||
    2166        4018 :             riinfo->pk_relid != RelationGetRelid(trig_rel))
    2167           0 :             elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2168             :                  trigger->tgname, RelationGetRelationName(trig_rel));
    2169             :     }
    2170             :     else
    2171             :     {
    2172        6566 :         if (riinfo->fk_relid != RelationGetRelid(trig_rel) ||
    2173        6566 :             riinfo->pk_relid != trigger->tgconstrrelid)
    2174           0 :             elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2175             :                  trigger->tgname, RelationGetRelationName(trig_rel));
    2176             :     }
    2177             : 
    2178       10584 :     if (riinfo->confmatchtype != FKCONSTR_MATCH_FULL &&
    2179       10120 :         riinfo->confmatchtype != FKCONSTR_MATCH_PARTIAL &&
    2180       10120 :         riinfo->confmatchtype != FKCONSTR_MATCH_SIMPLE)
    2181           0 :         elog(ERROR, "unrecognized confmatchtype: %d",
    2182             :              riinfo->confmatchtype);
    2183             : 
    2184       10584 :     if (riinfo->confmatchtype == FKCONSTR_MATCH_PARTIAL)
    2185           0 :         ereport(ERROR,
    2186             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    2187             :                  errmsg("MATCH PARTIAL not yet implemented")));
    2188             : 
    2189       10584 :     return riinfo;
    2190             : }
    2191             : 
    2192             : /*
    2193             :  * Fetch or create the RI_ConstraintInfo struct for an FK constraint.
    2194             :  */
    2195             : static const RI_ConstraintInfo *
    2196       10584 : ri_LoadConstraintInfo(Oid constraintOid)
    2197             : {
    2198             :     RI_ConstraintInfo *riinfo;
    2199             :     bool        found;
    2200             :     HeapTuple   tup;
    2201             :     Form_pg_constraint conForm;
    2202             : 
    2203             :     /*
    2204             :      * On the first call initialize the hashtable
    2205             :      */
    2206       10584 :     if (!ri_constraint_cache)
    2207         428 :         ri_InitHashTables();
    2208             : 
    2209             :     /*
    2210             :      * Find or create a hash entry.  If we find a valid one, just return it.
    2211             :      */
    2212       10584 :     riinfo = (RI_ConstraintInfo *) hash_search(ri_constraint_cache,
    2213             :                                                &constraintOid,
    2214             :                                                HASH_ENTER, &found);
    2215       10584 :     if (!found)
    2216        3790 :         riinfo->valid = false;
    2217        6794 :     else if (riinfo->valid)
    2218        6500 :         return riinfo;
    2219             : 
    2220             :     /*
    2221             :      * Fetch the pg_constraint row so we can fill in the entry.
    2222             :      */
    2223        4084 :     tup = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constraintOid));
    2224        4084 :     if (!HeapTupleIsValid(tup)) /* should not happen */
    2225           0 :         elog(ERROR, "cache lookup failed for constraint %u", constraintOid);
    2226        4084 :     conForm = (Form_pg_constraint) GETSTRUCT(tup);
    2227             : 
    2228        4084 :     if (conForm->contype != CONSTRAINT_FOREIGN) /* should not happen */
    2229           0 :         elog(ERROR, "constraint %u is not a foreign key constraint",
    2230             :              constraintOid);
    2231             : 
    2232             :     /* And extract data */
    2233             :     Assert(riinfo->constraint_id == constraintOid);
    2234        4084 :     if (OidIsValid(conForm->conparentid))
    2235        1368 :         riinfo->constraint_root_id =
    2236        1368 :             get_ri_constraint_root(conForm->conparentid);
    2237             :     else
    2238        2716 :         riinfo->constraint_root_id = constraintOid;
    2239        4084 :     riinfo->oidHashValue = GetSysCacheHashValue1(CONSTROID,
    2240             :                                                  ObjectIdGetDatum(constraintOid));
    2241        4084 :     riinfo->rootHashValue = GetSysCacheHashValue1(CONSTROID,
    2242             :                                                   ObjectIdGetDatum(riinfo->constraint_root_id));
    2243        4084 :     memcpy(&riinfo->conname, &conForm->conname, sizeof(NameData));
    2244        4084 :     riinfo->pk_relid = conForm->confrelid;
    2245        4084 :     riinfo->fk_relid = conForm->conrelid;
    2246        4084 :     riinfo->confupdtype = conForm->confupdtype;
    2247        4084 :     riinfo->confdeltype = conForm->confdeltype;
    2248        4084 :     riinfo->confmatchtype = conForm->confmatchtype;
    2249        4084 :     riinfo->hasperiod = conForm->conperiod;
    2250             : 
    2251        4084 :     DeconstructFkConstraintRow(tup,
    2252             :                                &riinfo->nkeys,
    2253        4084 :                                riinfo->fk_attnums,
    2254        4084 :                                riinfo->pk_attnums,
    2255        4084 :                                riinfo->pf_eq_oprs,
    2256        4084 :                                riinfo->pp_eq_oprs,
    2257        4084 :                                riinfo->ff_eq_oprs,
    2258             :                                &riinfo->ndelsetcols,
    2259        4084 :                                riinfo->confdelsetcols);
    2260             : 
    2261             :     /*
    2262             :      * For temporal FKs, get the operators and functions we need. We ask the
    2263             :      * opclass of the PK element for these. This all gets cached (as does the
    2264             :      * generated plan), so there's no performance issue.
    2265             :      */
    2266        4084 :     if (riinfo->hasperiod)
    2267             :     {
    2268         224 :         Oid         opclass = get_index_column_opclass(conForm->conindid, riinfo->nkeys);
    2269             : 
    2270         224 :         FindFKPeriodOpers(opclass,
    2271             :                           &riinfo->period_contained_by_oper,
    2272             :                           &riinfo->agged_period_contained_by_oper);
    2273             :     }
    2274             : 
    2275        4084 :     ReleaseSysCache(tup);
    2276             : 
    2277             :     /*
    2278             :      * For efficient processing of invalidation messages below, we keep a
    2279             :      * doubly-linked count list of all currently valid entries.
    2280             :      */
    2281        4084 :     dclist_push_tail(&ri_constraint_cache_valid_list, &riinfo->valid_link);
    2282             : 
    2283        4084 :     riinfo->valid = true;
    2284             : 
    2285        4084 :     return riinfo;
    2286             : }
    2287             : 
    2288             : /*
    2289             :  * get_ri_constraint_root
    2290             :  *      Returns the OID of the constraint's root parent
    2291             :  */
    2292             : static Oid
    2293        1660 : get_ri_constraint_root(Oid constrOid)
    2294             : {
    2295             :     for (;;)
    2296         292 :     {
    2297             :         HeapTuple   tuple;
    2298             :         Oid         constrParentOid;
    2299             : 
    2300        1660 :         tuple = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constrOid));
    2301        1660 :         if (!HeapTupleIsValid(tuple))
    2302           0 :             elog(ERROR, "cache lookup failed for constraint %u", constrOid);
    2303        1660 :         constrParentOid = ((Form_pg_constraint) GETSTRUCT(tuple))->conparentid;
    2304        1660 :         ReleaseSysCache(tuple);
    2305        1660 :         if (!OidIsValid(constrParentOid))
    2306        1368 :             break;              /* we reached the root constraint */
    2307         292 :         constrOid = constrParentOid;
    2308             :     }
    2309        1368 :     return constrOid;
    2310             : }
    2311             : 
    2312             : /*
    2313             :  * Callback for pg_constraint inval events
    2314             :  *
    2315             :  * While most syscache callbacks just flush all their entries, pg_constraint
    2316             :  * gets enough update traffic that it's probably worth being smarter.
    2317             :  * Invalidate any ri_constraint_cache entry associated with the syscache
    2318             :  * entry with the specified hash value, or all entries if hashvalue == 0.
    2319             :  *
    2320             :  * Note: at the time a cache invalidation message is processed there may be
    2321             :  * active references to the cache.  Because of this we never remove entries
    2322             :  * from the cache, but only mark them invalid, which is harmless to active
    2323             :  * uses.  (Any query using an entry should hold a lock sufficient to keep that
    2324             :  * data from changing under it --- but we may get cache flushes anyway.)
    2325             :  */
    2326             : static void
    2327       52380 : InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue)
    2328             : {
    2329             :     dlist_mutable_iter iter;
    2330             : 
    2331             :     Assert(ri_constraint_cache != NULL);
    2332             : 
    2333             :     /*
    2334             :      * If the list of currently valid entries gets excessively large, we mark
    2335             :      * them all invalid so we can empty the list.  This arrangement avoids
    2336             :      * O(N^2) behavior in situations where a session touches many foreign keys
    2337             :      * and also does many ALTER TABLEs, such as a restore from pg_dump.
    2338             :      */
    2339       52380 :     if (dclist_count(&ri_constraint_cache_valid_list) > 1000)
    2340           0 :         hashvalue = 0;          /* pretend it's a cache reset */
    2341             : 
    2342      173182 :     dclist_foreach_modify(iter, &ri_constraint_cache_valid_list)
    2343             :     {
    2344      120802 :         RI_ConstraintInfo *riinfo = dclist_container(RI_ConstraintInfo,
    2345             :                                                      valid_link, iter.cur);
    2346             : 
    2347             :         /*
    2348             :          * We must invalidate not only entries directly matching the given
    2349             :          * hash value, but also child entries, in case the invalidation
    2350             :          * affects a root constraint.
    2351             :          */
    2352      120802 :         if (hashvalue == 0 ||
    2353      120744 :             riinfo->oidHashValue == hashvalue ||
    2354      118280 :             riinfo->rootHashValue == hashvalue)
    2355             :         {
    2356        2756 :             riinfo->valid = false;
    2357             :             /* Remove invalidated entries from the list, too */
    2358        2756 :             dclist_delete_from(&ri_constraint_cache_valid_list, iter.cur);
    2359             :         }
    2360             :     }
    2361       52380 : }
    2362             : 
    2363             : 
    2364             : /*
    2365             :  * Prepare execution plan for a query to enforce an RI restriction
    2366             :  */
    2367             : static SPIPlanPtr
    2368        3436 : ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
    2369             :              RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel)
    2370             : {
    2371             :     SPIPlanPtr  qplan;
    2372             :     Relation    query_rel;
    2373             :     Oid         save_userid;
    2374             :     int         save_sec_context;
    2375             : 
    2376             :     /*
    2377             :      * Use the query type code to determine whether the query is run against
    2378             :      * the PK or FK table; we'll do the check as that table's owner
    2379             :      */
    2380        3436 :     if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
    2381        2614 :         query_rel = pk_rel;
    2382             :     else
    2383         822 :         query_rel = fk_rel;
    2384             : 
    2385             :     /* Switch to proper UID to perform check as */
    2386        3436 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
    2387        3436 :     SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
    2388             :                            save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
    2389             :                            SECURITY_NOFORCE_RLS);
    2390             : 
    2391             :     /* Create the plan */
    2392        3436 :     qplan = SPI_prepare(querystr, nargs, argtypes);
    2393             : 
    2394        3436 :     if (qplan == NULL)
    2395           0 :         elog(ERROR, "SPI_prepare returned %s for %s", SPI_result_code_string(SPI_result), querystr);
    2396             : 
    2397             :     /* Restore UID and security context */
    2398        3436 :     SetUserIdAndSecContext(save_userid, save_sec_context);
    2399             : 
    2400             :     /* Save the plan */
    2401        3436 :     SPI_keepplan(qplan);
    2402        3436 :     ri_HashPreparedPlan(qkey, qplan);
    2403             : 
    2404        3436 :     return qplan;
    2405             : }
    2406             : 
    2407             : /*
    2408             :  * Perform a query to enforce an RI restriction
    2409             :  */
    2410             : static bool
    2411        6714 : ri_PerformCheck(const RI_ConstraintInfo *riinfo,
    2412             :                 RI_QueryKey *qkey, SPIPlanPtr qplan,
    2413             :                 Relation fk_rel, Relation pk_rel,
    2414             :                 TupleTableSlot *oldslot, TupleTableSlot *newslot,
    2415             :                 bool detectNewRows, int expect_OK)
    2416             : {
    2417             :     Relation    query_rel,
    2418             :                 source_rel;
    2419             :     bool        source_is_pk;
    2420             :     Snapshot    test_snapshot;
    2421             :     Snapshot    crosscheck_snapshot;
    2422             :     int         limit;
    2423             :     int         spi_result;
    2424             :     Oid         save_userid;
    2425             :     int         save_sec_context;
    2426             :     Datum       vals[RI_MAX_NUMKEYS * 2];
    2427             :     char        nulls[RI_MAX_NUMKEYS * 2];
    2428             : 
    2429             :     /*
    2430             :      * Use the query type code to determine whether the query is run against
    2431             :      * the PK or FK table; we'll do the check as that table's owner
    2432             :      */
    2433        6714 :     if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
    2434        5056 :         query_rel = pk_rel;
    2435             :     else
    2436        1658 :         query_rel = fk_rel;
    2437             : 
    2438             :     /*
    2439             :      * The values for the query are taken from the table on which the trigger
    2440             :      * is called - it is normally the other one with respect to query_rel. An
    2441             :      * exception is ri_Check_Pk_Match(), which uses the PK table for both (and
    2442             :      * sets queryno to RI_PLAN_CHECK_LOOKUPPK_FROM_PK).  We might eventually
    2443             :      * need some less klugy way to determine this.
    2444             :      */
    2445        6714 :     if (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK)
    2446             :     {
    2447        4114 :         source_rel = fk_rel;
    2448        4114 :         source_is_pk = false;
    2449             :     }
    2450             :     else
    2451             :     {
    2452        2600 :         source_rel = pk_rel;
    2453        2600 :         source_is_pk = true;
    2454             :     }
    2455             : 
    2456             :     /* Extract the parameters to be passed into the query */
    2457        6714 :     if (newslot)
    2458             :     {
    2459        4318 :         ri_ExtractValues(source_rel, newslot, riinfo, source_is_pk,
    2460             :                          vals, nulls);
    2461        4318 :         if (oldslot)
    2462         204 :             ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
    2463         204 :                              vals + riinfo->nkeys, nulls + riinfo->nkeys);
    2464             :     }
    2465             :     else
    2466             :     {
    2467        2396 :         ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
    2468             :                          vals, nulls);
    2469             :     }
    2470             : 
    2471             :     /*
    2472             :      * In READ COMMITTED mode, we just need to use an up-to-date regular
    2473             :      * snapshot, and we will see all rows that could be interesting. But in
    2474             :      * transaction-snapshot mode, we can't change the transaction snapshot. If
    2475             :      * the caller passes detectNewRows == false then it's okay to do the query
    2476             :      * with the transaction snapshot; otherwise we use a current snapshot, and
    2477             :      * tell the executor to error out if it finds any rows under the current
    2478             :      * snapshot that wouldn't be visible per the transaction snapshot.  Note
    2479             :      * that SPI_execute_snapshot will register the snapshots, so we don't need
    2480             :      * to bother here.
    2481             :      */
    2482        6714 :     if (IsolationUsesXactSnapshot() && detectNewRows)
    2483             :     {
    2484          32 :         CommandCounterIncrement();  /* be sure all my own work is visible */
    2485          32 :         test_snapshot = GetLatestSnapshot();
    2486          32 :         crosscheck_snapshot = GetTransactionSnapshot();
    2487             :     }
    2488             :     else
    2489             :     {
    2490             :         /* the default SPI behavior is okay */
    2491        6682 :         test_snapshot = InvalidSnapshot;
    2492        6682 :         crosscheck_snapshot = InvalidSnapshot;
    2493             :     }
    2494             : 
    2495             :     /*
    2496             :      * If this is a select query (e.g., for a 'no action' or 'restrict'
    2497             :      * trigger), we only need to see if there is a single row in the table,
    2498             :      * matching the key.  Otherwise, limit = 0 - because we want the query to
    2499             :      * affect ALL the matching rows.
    2500             :      */
    2501        6714 :     limit = (expect_OK == SPI_OK_SELECT) ? 1 : 0;
    2502             : 
    2503             :     /* Switch to proper UID to perform check as */
    2504        6714 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
    2505        6714 :     SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
    2506             :                            save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
    2507             :                            SECURITY_NOFORCE_RLS);
    2508             : 
    2509             :     /* Finally we can run the query. */
    2510        6714 :     spi_result = SPI_execute_snapshot(qplan,
    2511             :                                       vals, nulls,
    2512             :                                       test_snapshot, crosscheck_snapshot,
    2513             :                                       false, false, limit);
    2514             : 
    2515             :     /* Restore UID and security context */
    2516        6700 :     SetUserIdAndSecContext(save_userid, save_sec_context);
    2517             : 
    2518             :     /* Check result */
    2519        6700 :     if (spi_result < 0)
    2520           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    2521             : 
    2522        6700 :     if (expect_OK >= 0 && spi_result != expect_OK)
    2523           0 :         ereport(ERROR,
    2524             :                 (errcode(ERRCODE_INTERNAL_ERROR),
    2525             :                  errmsg("referential integrity query on \"%s\" from constraint \"%s\" on \"%s\" gave unexpected result",
    2526             :                         RelationGetRelationName(pk_rel),
    2527             :                         NameStr(riinfo->conname),
    2528             :                         RelationGetRelationName(fk_rel)),
    2529             :                  errhint("This is most likely due to a rule having rewritten the query.")));
    2530             : 
    2531             :     /* XXX wouldn't it be clearer to do this part at the caller? */
    2532        6700 :     if (qkey->constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK &&
    2533        5138 :         expect_OK == SPI_OK_SELECT &&
    2534        5138 :         (SPI_processed == 0) == (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK))
    2535         998 :         ri_ReportViolation(riinfo,
    2536             :                            pk_rel, fk_rel,
    2537             :                            newslot ? newslot : oldslot,
    2538             :                            NULL,
    2539             :                            qkey->constr_queryno, false);
    2540             : 
    2541        5702 :     return SPI_processed != 0;
    2542             : }
    2543             : 
    2544             : /*
    2545             :  * Extract fields from a tuple into Datum/nulls arrays
    2546             :  */
    2547             : static void
    2548        6918 : ri_ExtractValues(Relation rel, TupleTableSlot *slot,
    2549             :                  const RI_ConstraintInfo *riinfo, bool rel_is_pk,
    2550             :                  Datum *vals, char *nulls)
    2551             : {
    2552             :     const int16 *attnums;
    2553             :     bool        isnull;
    2554             : 
    2555        6918 :     if (rel_is_pk)
    2556        2804 :         attnums = riinfo->pk_attnums;
    2557             :     else
    2558        4114 :         attnums = riinfo->fk_attnums;
    2559             : 
    2560       16228 :     for (int i = 0; i < riinfo->nkeys; i++)
    2561             :     {
    2562        9310 :         vals[i] = slot_getattr(slot, attnums[i], &isnull);
    2563        9310 :         nulls[i] = isnull ? 'n' : ' ';
    2564             :     }
    2565        6918 : }
    2566             : 
    2567             : /*
    2568             :  * Produce an error report
    2569             :  *
    2570             :  * If the failed constraint was on insert/update to the FK table,
    2571             :  * we want the key names and values extracted from there, and the error
    2572             :  * message to look like 'key blah is not present in PK'.
    2573             :  * Otherwise, the attr names and values come from the PK table and the
    2574             :  * message looks like 'key blah is still referenced from FK'.
    2575             :  */
    2576             : static void
    2577        1082 : ri_ReportViolation(const RI_ConstraintInfo *riinfo,
    2578             :                    Relation pk_rel, Relation fk_rel,
    2579             :                    TupleTableSlot *violatorslot, TupleDesc tupdesc,
    2580             :                    int queryno, bool partgone)
    2581             : {
    2582             :     StringInfoData key_names;
    2583             :     StringInfoData key_values;
    2584             :     bool        onfk;
    2585             :     const int16 *attnums;
    2586             :     Oid         rel_oid;
    2587             :     AclResult   aclresult;
    2588        1082 :     bool        has_perm = true;
    2589             : 
    2590             :     /*
    2591             :      * Determine which relation to complain about.  If tupdesc wasn't passed
    2592             :      * by caller, assume the violator tuple came from there.
    2593             :      */
    2594        1082 :     onfk = (queryno == RI_PLAN_CHECK_LOOKUPPK);
    2595        1082 :     if (onfk)
    2596             :     {
    2597         606 :         attnums = riinfo->fk_attnums;
    2598         606 :         rel_oid = fk_rel->rd_id;
    2599         606 :         if (tupdesc == NULL)
    2600         556 :             tupdesc = fk_rel->rd_att;
    2601             :     }
    2602             :     else
    2603             :     {
    2604         476 :         attnums = riinfo->pk_attnums;
    2605         476 :         rel_oid = pk_rel->rd_id;
    2606         476 :         if (tupdesc == NULL)
    2607         442 :             tupdesc = pk_rel->rd_att;
    2608             :     }
    2609             : 
    2610             :     /*
    2611             :      * Check permissions- if the user does not have access to view the data in
    2612             :      * any of the key columns then we don't include the errdetail() below.
    2613             :      *
    2614             :      * Check if RLS is enabled on the relation first.  If so, we don't return
    2615             :      * any specifics to avoid leaking data.
    2616             :      *
    2617             :      * Check table-level permissions next and, failing that, column-level
    2618             :      * privileges.
    2619             :      *
    2620             :      * When a partition at the referenced side is being detached/dropped, we
    2621             :      * needn't check, since the user must be the table owner anyway.
    2622             :      */
    2623        1082 :     if (partgone)
    2624          34 :         has_perm = true;
    2625        1048 :     else if (check_enable_rls(rel_oid, InvalidOid, true) != RLS_ENABLED)
    2626             :     {
    2627        1042 :         aclresult = pg_class_aclcheck(rel_oid, GetUserId(), ACL_SELECT);
    2628        1042 :         if (aclresult != ACLCHECK_OK)
    2629             :         {
    2630             :             /* Try for column-level permissions */
    2631           0 :             for (int idx = 0; idx < riinfo->nkeys; idx++)
    2632             :             {
    2633           0 :                 aclresult = pg_attribute_aclcheck(rel_oid, attnums[idx],
    2634             :                                                   GetUserId(),
    2635             :                                                   ACL_SELECT);
    2636             : 
    2637             :                 /* No access to the key */
    2638           0 :                 if (aclresult != ACLCHECK_OK)
    2639             :                 {
    2640           0 :                     has_perm = false;
    2641           0 :                     break;
    2642             :                 }
    2643             :             }
    2644             :         }
    2645             :     }
    2646             :     else
    2647           6 :         has_perm = false;
    2648             : 
    2649        1082 :     if (has_perm)
    2650             :     {
    2651             :         /* Get printable versions of the keys involved */
    2652        1076 :         initStringInfo(&key_names);
    2653        1076 :         initStringInfo(&key_values);
    2654        2644 :         for (int idx = 0; idx < riinfo->nkeys; idx++)
    2655             :         {
    2656        1568 :             int         fnum = attnums[idx];
    2657        1568 :             Form_pg_attribute att = TupleDescAttr(tupdesc, fnum - 1);
    2658             :             char       *name,
    2659             :                        *val;
    2660             :             Datum       datum;
    2661             :             bool        isnull;
    2662             : 
    2663        1568 :             name = NameStr(att->attname);
    2664             : 
    2665        1568 :             datum = slot_getattr(violatorslot, fnum, &isnull);
    2666        1568 :             if (!isnull)
    2667             :             {
    2668             :                 Oid         foutoid;
    2669             :                 bool        typisvarlena;
    2670             : 
    2671        1568 :                 getTypeOutputInfo(att->atttypid, &foutoid, &typisvarlena);
    2672        1568 :                 val = OidOutputFunctionCall(foutoid, datum);
    2673             :             }
    2674             :             else
    2675           0 :                 val = "null";
    2676             : 
    2677        1568 :             if (idx > 0)
    2678             :             {
    2679         492 :                 appendStringInfoString(&key_names, ", ");
    2680         492 :                 appendStringInfoString(&key_values, ", ");
    2681             :             }
    2682        1568 :             appendStringInfoString(&key_names, name);
    2683        1568 :             appendStringInfoString(&key_values, val);
    2684             :         }
    2685             :     }
    2686             : 
    2687        1082 :     if (partgone)
    2688          34 :         ereport(ERROR,
    2689             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2690             :                  errmsg("removing partition \"%s\" violates foreign key constraint \"%s\"",
    2691             :                         RelationGetRelationName(pk_rel),
    2692             :                         NameStr(riinfo->conname)),
    2693             :                  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
    2694             :                            key_names.data, key_values.data,
    2695             :                            RelationGetRelationName(fk_rel)),
    2696             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2697        1048 :     else if (onfk)
    2698         606 :         ereport(ERROR,
    2699             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2700             :                  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
    2701             :                         RelationGetRelationName(fk_rel),
    2702             :                         NameStr(riinfo->conname)),
    2703             :                  has_perm ?
    2704             :                  errdetail("Key (%s)=(%s) is not present in table \"%s\".",
    2705             :                            key_names.data, key_values.data,
    2706             :                            RelationGetRelationName(pk_rel)) :
    2707             :                  errdetail("Key is not present in table \"%s\".",
    2708             :                            RelationGetRelationName(pk_rel)),
    2709             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2710             :     else
    2711         442 :         ereport(ERROR,
    2712             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2713             :                  errmsg("update or delete on table \"%s\" violates foreign key constraint \"%s\" on table \"%s\"",
    2714             :                         RelationGetRelationName(pk_rel),
    2715             :                         NameStr(riinfo->conname),
    2716             :                         RelationGetRelationName(fk_rel)),
    2717             :                  has_perm ?
    2718             :                  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
    2719             :                            key_names.data, key_values.data,
    2720             :                            RelationGetRelationName(fk_rel)) :
    2721             :                  errdetail("Key is still referenced from table \"%s\".",
    2722             :                            RelationGetRelationName(fk_rel)),
    2723             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2724             : }
    2725             : 
    2726             : 
    2727             : /*
    2728             :  * ri_NullCheck -
    2729             :  *
    2730             :  * Determine the NULL state of all key values in a tuple
    2731             :  *
    2732             :  * Returns one of RI_KEYS_ALL_NULL, RI_KEYS_NONE_NULL or RI_KEYS_SOME_NULL.
    2733             :  */
    2734             : static int
    2735        7802 : ri_NullCheck(TupleDesc tupDesc,
    2736             :              TupleTableSlot *slot,
    2737             :              const RI_ConstraintInfo *riinfo, bool rel_is_pk)
    2738             : {
    2739             :     const int16 *attnums;
    2740        7802 :     bool        allnull = true;
    2741        7802 :     bool        nonenull = true;
    2742             : 
    2743        7802 :     if (rel_is_pk)
    2744        2308 :         attnums = riinfo->pk_attnums;
    2745             :     else
    2746        5494 :         attnums = riinfo->fk_attnums;
    2747             : 
    2748       17930 :     for (int i = 0; i < riinfo->nkeys; i++)
    2749             :     {
    2750       10128 :         if (slot_attisnull(slot, attnums[i]))
    2751         534 :             nonenull = false;
    2752             :         else
    2753        9594 :             allnull = false;
    2754             :     }
    2755             : 
    2756        7802 :     if (allnull)
    2757         258 :         return RI_KEYS_ALL_NULL;
    2758             : 
    2759        7544 :     if (nonenull)
    2760        7340 :         return RI_KEYS_NONE_NULL;
    2761             : 
    2762         204 :     return RI_KEYS_SOME_NULL;
    2763             : }
    2764             : 
    2765             : 
    2766             : /*
    2767             :  * ri_InitHashTables -
    2768             :  *
    2769             :  * Initialize our internal hash tables.
    2770             :  */
    2771             : static void
    2772         428 : ri_InitHashTables(void)
    2773             : {
    2774             :     HASHCTL     ctl;
    2775             : 
    2776         428 :     ctl.keysize = sizeof(Oid);
    2777         428 :     ctl.entrysize = sizeof(RI_ConstraintInfo);
    2778         428 :     ri_constraint_cache = hash_create("RI constraint cache",
    2779             :                                       RI_INIT_CONSTRAINTHASHSIZE,
    2780             :                                       &ctl, HASH_ELEM | HASH_BLOBS);
    2781             : 
    2782             :     /* Arrange to flush cache on pg_constraint changes */
    2783         428 :     CacheRegisterSyscacheCallback(CONSTROID,
    2784             :                                   InvalidateConstraintCacheCallBack,
    2785             :                                   (Datum) 0);
    2786             : 
    2787         428 :     ctl.keysize = sizeof(RI_QueryKey);
    2788         428 :     ctl.entrysize = sizeof(RI_QueryHashEntry);
    2789         428 :     ri_query_cache = hash_create("RI query cache",
    2790             :                                  RI_INIT_QUERYHASHSIZE,
    2791             :                                  &ctl, HASH_ELEM | HASH_BLOBS);
    2792             : 
    2793         428 :     ctl.keysize = sizeof(RI_CompareKey);
    2794         428 :     ctl.entrysize = sizeof(RI_CompareHashEntry);
    2795         428 :     ri_compare_cache = hash_create("RI compare cache",
    2796             :                                    RI_INIT_QUERYHASHSIZE,
    2797             :                                    &ctl, HASH_ELEM | HASH_BLOBS);
    2798         428 : }
    2799             : 
    2800             : 
    2801             : /*
    2802             :  * ri_FetchPreparedPlan -
    2803             :  *
    2804             :  * Lookup for a query key in our private hash table of prepared
    2805             :  * and saved SPI execution plans. Return the plan if found or NULL.
    2806             :  */
    2807             : static SPIPlanPtr
    2808        6714 : ri_FetchPreparedPlan(RI_QueryKey *key)
    2809             : {
    2810             :     RI_QueryHashEntry *entry;
    2811             :     SPIPlanPtr  plan;
    2812             : 
    2813             :     /*
    2814             :      * On the first call initialize the hashtable
    2815             :      */
    2816        6714 :     if (!ri_query_cache)
    2817           0 :         ri_InitHashTables();
    2818             : 
    2819             :     /*
    2820             :      * Lookup for the key
    2821             :      */
    2822        6714 :     entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
    2823             :                                               key,
    2824             :                                               HASH_FIND, NULL);
    2825        6714 :     if (entry == NULL)
    2826        3008 :         return NULL;
    2827             : 
    2828             :     /*
    2829             :      * Check whether the plan is still valid.  If it isn't, we don't want to
    2830             :      * simply rely on plancache.c to regenerate it; rather we should start
    2831             :      * from scratch and rebuild the query text too.  This is to cover cases
    2832             :      * such as table/column renames.  We depend on the plancache machinery to
    2833             :      * detect possible invalidations, though.
    2834             :      *
    2835             :      * CAUTION: this check is only trustworthy if the caller has already
    2836             :      * locked both FK and PK rels.
    2837             :      */
    2838        3706 :     plan = entry->plan;
    2839        3706 :     if (plan && SPI_plan_is_valid(plan))
    2840        3278 :         return plan;
    2841             : 
    2842             :     /*
    2843             :      * Otherwise we might as well flush the cached plan now, to free a little
    2844             :      * memory space before we make a new one.
    2845             :      */
    2846         428 :     entry->plan = NULL;
    2847         428 :     if (plan)
    2848         428 :         SPI_freeplan(plan);
    2849             : 
    2850         428 :     return NULL;
    2851             : }
    2852             : 
    2853             : 
    2854             : /*
    2855             :  * ri_HashPreparedPlan -
    2856             :  *
    2857             :  * Add another plan to our private SPI query plan hashtable.
    2858             :  */
    2859             : static void
    2860        3436 : ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan)
    2861             : {
    2862             :     RI_QueryHashEntry *entry;
    2863             :     bool        found;
    2864             : 
    2865             :     /*
    2866             :      * On the first call initialize the hashtable
    2867             :      */
    2868        3436 :     if (!ri_query_cache)
    2869           0 :         ri_InitHashTables();
    2870             : 
    2871             :     /*
    2872             :      * Add the new plan.  We might be overwriting an entry previously found
    2873             :      * invalid by ri_FetchPreparedPlan.
    2874             :      */
    2875        3436 :     entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
    2876             :                                               key,
    2877             :                                               HASH_ENTER, &found);
    2878             :     Assert(!found || entry->plan == NULL);
    2879        3436 :     entry->plan = plan;
    2880        3436 : }
    2881             : 
    2882             : 
    2883             : /*
    2884             :  * ri_KeysEqual -
    2885             :  *
    2886             :  * Check if all key values in OLD and NEW are "equivalent":
    2887             :  * For normal FKs we check for equality.
    2888             :  * For temporal FKs we check that the PK side is a superset of its old value,
    2889             :  * or the FK side is a subset of its old value.
    2890             :  *
    2891             :  * Note: at some point we might wish to redefine this as checking for
    2892             :  * "IS NOT DISTINCT" rather than "=", that is, allow two nulls to be
    2893             :  * considered equal.  Currently there is no need since all callers have
    2894             :  * previously found at least one of the rows to contain no nulls.
    2895             :  */
    2896             : static bool
    2897        2200 : ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
    2898             :              const RI_ConstraintInfo *riinfo, bool rel_is_pk)
    2899             : {
    2900             :     const int16 *attnums;
    2901             : 
    2902        2200 :     if (rel_is_pk)
    2903        1412 :         attnums = riinfo->pk_attnums;
    2904             :     else
    2905         788 :         attnums = riinfo->fk_attnums;
    2906             : 
    2907             :     /* XXX: could be worthwhile to fetch all necessary attrs at once */
    2908        3470 :     for (int i = 0; i < riinfo->nkeys; i++)
    2909             :     {
    2910             :         Datum       oldvalue;
    2911             :         Datum       newvalue;
    2912             :         bool        isnull;
    2913             : 
    2914             :         /*
    2915             :          * Get one attribute's oldvalue. If it is NULL - they're not equal.
    2916             :          */
    2917        2488 :         oldvalue = slot_getattr(oldslot, attnums[i], &isnull);
    2918        2488 :         if (isnull)
    2919        1218 :             return false;
    2920             : 
    2921             :         /*
    2922             :          * Get one attribute's newvalue. If it is NULL - they're not equal.
    2923             :          */
    2924        2458 :         newvalue = slot_getattr(newslot, attnums[i], &isnull);
    2925        2458 :         if (isnull)
    2926           0 :             return false;
    2927             : 
    2928        2458 :         if (rel_is_pk)
    2929             :         {
    2930             :             /*
    2931             :              * If we are looking at the PK table, then do a bytewise
    2932             :              * comparison.  We must propagate PK changes if the value is
    2933             :              * changed to one that "looks" different but would compare as
    2934             :              * equal using the equality operator.  This only makes a
    2935             :              * difference for ON UPDATE CASCADE, but for consistency we treat
    2936             :              * all changes to the PK the same.
    2937             :              */
    2938        1628 :             Form_pg_attribute att = TupleDescAttr(oldslot->tts_tupleDescriptor, attnums[i] - 1);
    2939             : 
    2940        1628 :             if (!datum_image_eq(oldvalue, newvalue, att->attbyval, att->attlen))
    2941         876 :                 return false;
    2942             :         }
    2943             :         else
    2944             :         {
    2945             :             Oid         eq_opr;
    2946             : 
    2947             :             /*
    2948             :              * When comparing the PERIOD columns we can skip the check
    2949             :              * whenever the referencing column stayed equal or shrank, so test
    2950             :              * with the contained-by operator instead.
    2951             :              */
    2952         830 :             if (riinfo->hasperiod && i == riinfo->nkeys - 1)
    2953          36 :                 eq_opr = riinfo->period_contained_by_oper;
    2954             :             else
    2955         794 :                 eq_opr = riinfo->ff_eq_oprs[i];
    2956             : 
    2957             :             /*
    2958             :              * For the FK table, compare with the appropriate equality
    2959             :              * operator.  Changes that compare equal will still satisfy the
    2960             :              * constraint after the update.
    2961             :              */
    2962         830 :             if (!ri_CompareWithCast(eq_opr, RIAttType(rel, attnums[i]),
    2963             :                                     newvalue, oldvalue))
    2964         312 :                 return false;
    2965             :         }
    2966             :     }
    2967             : 
    2968         982 :     return true;
    2969             : }
    2970             : 
    2971             : 
    2972             : /*
    2973             :  * ri_CompareWithCast -
    2974             :  *
    2975             :  * Call the appropriate comparison operator for two values.
    2976             :  * Normally this is equality, but for the PERIOD part of foreign keys
    2977             :  * it is ContainedBy, so the order of lhs vs rhs is significant.
    2978             :  *
    2979             :  * NB: we have already checked that neither value is null.
    2980             :  */
    2981             : static bool
    2982         830 : ri_CompareWithCast(Oid eq_opr, Oid typeid,
    2983             :                    Datum lhs, Datum rhs)
    2984             : {
    2985         830 :     RI_CompareHashEntry *entry = ri_HashCompareOp(eq_opr, typeid);
    2986             : 
    2987             :     /* Do we need to cast the values? */
    2988         830 :     if (OidIsValid(entry->cast_func_finfo.fn_oid))
    2989             :     {
    2990          12 :         lhs = FunctionCall3(&entry->cast_func_finfo,
    2991             :                             lhs,
    2992             :                             Int32GetDatum(-1),  /* typmod */
    2993             :                             BoolGetDatum(false));   /* implicit coercion */
    2994          12 :         rhs = FunctionCall3(&entry->cast_func_finfo,
    2995             :                             rhs,
    2996             :                             Int32GetDatum(-1),  /* typmod */
    2997             :                             BoolGetDatum(false));   /* implicit coercion */
    2998             :     }
    2999             : 
    3000             :     /*
    3001             :      * Apply the comparison operator.
    3002             :      *
    3003             :      * Note: This function is part of a call stack that determines whether an
    3004             :      * update to a row is significant enough that it needs checking or action
    3005             :      * on the other side of a foreign-key constraint.  Therefore, the
    3006             :      * comparison here would need to be done with the collation of the *other*
    3007             :      * table.  For simplicity (e.g., we might not even have the other table
    3008             :      * open), we'll just use the default collation here, which could lead to
    3009             :      * some false negatives.  All this would break if we ever allow
    3010             :      * database-wide collations to be nondeterministic.
    3011             :      *
    3012             :      * With range/multirangetypes, the collation of the base type is stored as
    3013             :      * part of the rangetype (pg_range.rngcollation), and always used, so
    3014             :      * there is no danger of inconsistency even using a non-equals operator.
    3015             :      * But if we support arbitrary types with PERIOD, we should perhaps just
    3016             :      * always force a re-check.
    3017             :      */
    3018         830 :     return DatumGetBool(FunctionCall2Coll(&entry->eq_opr_finfo,
    3019             :                                           DEFAULT_COLLATION_OID,
    3020             :                                           lhs, rhs));
    3021             : }
    3022             : 
    3023             : /*
    3024             :  * ri_HashCompareOp -
    3025             :  *
    3026             :  * See if we know how to compare two values, and create a new hash entry
    3027             :  * if not.
    3028             :  */
    3029             : static RI_CompareHashEntry *
    3030         830 : ri_HashCompareOp(Oid eq_opr, Oid typeid)
    3031             : {
    3032             :     RI_CompareKey key;
    3033             :     RI_CompareHashEntry *entry;
    3034             :     bool        found;
    3035             : 
    3036             :     /*
    3037             :      * On the first call initialize the hashtable
    3038             :      */
    3039         830 :     if (!ri_compare_cache)
    3040           0 :         ri_InitHashTables();
    3041             : 
    3042             :     /*
    3043             :      * Find or create a hash entry.  Note we're assuming RI_CompareKey
    3044             :      * contains no struct padding.
    3045             :      */
    3046         830 :     key.eq_opr = eq_opr;
    3047         830 :     key.typeid = typeid;
    3048         830 :     entry = (RI_CompareHashEntry *) hash_search(ri_compare_cache,
    3049             :                                                 &key,
    3050             :                                                 HASH_ENTER, &found);
    3051         830 :     if (!found)
    3052         292 :         entry->valid = false;
    3053             : 
    3054             :     /*
    3055             :      * If not already initialized, do so.  Since we'll keep this hash entry
    3056             :      * for the life of the backend, put any subsidiary info for the function
    3057             :      * cache structs into TopMemoryContext.
    3058             :      */
    3059         830 :     if (!entry->valid)
    3060             :     {
    3061             :         Oid         lefttype,
    3062             :                     righttype,
    3063             :                     castfunc;
    3064             :         CoercionPathType pathtype;
    3065             : 
    3066             :         /* We always need to know how to call the equality operator */
    3067         292 :         fmgr_info_cxt(get_opcode(eq_opr), &entry->eq_opr_finfo,
    3068             :                       TopMemoryContext);
    3069             : 
    3070             :         /*
    3071             :          * If we chose to use a cast from FK to PK type, we may have to apply
    3072             :          * the cast function to get to the operator's input type.
    3073             :          *
    3074             :          * XXX eventually it would be good to support array-coercion cases
    3075             :          * here and in ri_CompareWithCast().  At the moment there is no point
    3076             :          * because cases involving nonidentical array types will be rejected
    3077             :          * at constraint creation time.
    3078             :          *
    3079             :          * XXX perhaps also consider supporting CoerceViaIO?  No need at the
    3080             :          * moment since that will never be generated for implicit coercions.
    3081             :          */
    3082         292 :         op_input_types(eq_opr, &lefttype, &righttype);
    3083             :         Assert(lefttype == righttype);
    3084         292 :         if (typeid == lefttype)
    3085         268 :             castfunc = InvalidOid;  /* simplest case */
    3086             :         else
    3087             :         {
    3088          24 :             pathtype = find_coercion_pathway(lefttype, typeid,
    3089             :                                              COERCION_IMPLICIT,
    3090             :                                              &castfunc);
    3091          24 :             if (pathtype != COERCION_PATH_FUNC &&
    3092             :                 pathtype != COERCION_PATH_RELABELTYPE)
    3093             :             {
    3094             :                 /*
    3095             :                  * The declared input type of the eq_opr might be a
    3096             :                  * polymorphic type such as ANYARRAY or ANYENUM, or other
    3097             :                  * special cases such as RECORD; find_coercion_pathway
    3098             :                  * currently doesn't subsume these special cases.
    3099             :                  */
    3100          18 :                 if (!IsBinaryCoercible(typeid, lefttype))
    3101           0 :                     elog(ERROR, "no conversion function from %s to %s",
    3102             :                          format_type_be(typeid),
    3103             :                          format_type_be(lefttype));
    3104             :             }
    3105             :         }
    3106         292 :         if (OidIsValid(castfunc))
    3107           6 :             fmgr_info_cxt(castfunc, &entry->cast_func_finfo,
    3108             :                           TopMemoryContext);
    3109             :         else
    3110         286 :             entry->cast_func_finfo.fn_oid = InvalidOid;
    3111         292 :         entry->valid = true;
    3112             :     }
    3113             : 
    3114         830 :     return entry;
    3115             : }
    3116             : 
    3117             : 
    3118             : /*
    3119             :  * Given a trigger function OID, determine whether it is an RI trigger,
    3120             :  * and if so whether it is attached to PK or FK relation.
    3121             :  */
    3122             : int
    3123        8082 : RI_FKey_trigger_type(Oid tgfoid)
    3124             : {
    3125        8082 :     switch (tgfoid)
    3126             :     {
    3127        2944 :         case F_RI_FKEY_CASCADE_DEL:
    3128             :         case F_RI_FKEY_CASCADE_UPD:
    3129             :         case F_RI_FKEY_RESTRICT_DEL:
    3130             :         case F_RI_FKEY_RESTRICT_UPD:
    3131             :         case F_RI_FKEY_SETNULL_DEL:
    3132             :         case F_RI_FKEY_SETNULL_UPD:
    3133             :         case F_RI_FKEY_SETDEFAULT_DEL:
    3134             :         case F_RI_FKEY_SETDEFAULT_UPD:
    3135             :         case F_RI_FKEY_NOACTION_DEL:
    3136             :         case F_RI_FKEY_NOACTION_UPD:
    3137        2944 :             return RI_TRIGGER_PK;
    3138             : 
    3139        2390 :         case F_RI_FKEY_CHECK_INS:
    3140             :         case F_RI_FKEY_CHECK_UPD:
    3141        2390 :             return RI_TRIGGER_FK;
    3142             :     }
    3143             : 
    3144        2748 :     return RI_TRIGGER_NONE;
    3145             : }

Generated by: LCOV version 1.14