LCOV - code coverage report
Current view: top level - src/backend/utils/adt - ri_triggers.c (source / functions) Hit Total Coverage
Test: PostgreSQL 16beta1 Lines: 770 841 91.6 %
Date: 2023-06-06 10:12:12 Functions: 42 42 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * ri_triggers.c
       4             :  *
       5             :  *  Generic trigger procedures for referential integrity constraint
       6             :  *  checks.
       7             :  *
       8             :  *  Note about memory management: the private hashtables kept here live
       9             :  *  across query and transaction boundaries, in fact they live as long as
      10             :  *  the backend does.  This works because the hashtable structures
      11             :  *  themselves are allocated by dynahash.c in its permanent DynaHashCxt,
      12             :  *  and the SPI plans they point to are saved using SPI_keepplan().
      13             :  *  There is not currently any provision for throwing away a no-longer-needed
      14             :  *  plan --- consider improving this someday.
      15             :  *
      16             :  *
      17             :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
      18             :  *
      19             :  * src/backend/utils/adt/ri_triggers.c
      20             :  *
      21             :  *-------------------------------------------------------------------------
      22             :  */
      23             : 
      24             : #include "postgres.h"
      25             : 
      26             : #include "access/htup_details.h"
      27             : #include "access/sysattr.h"
      28             : #include "access/table.h"
      29             : #include "access/tableam.h"
      30             : #include "access/xact.h"
      31             : #include "catalog/pg_collation.h"
      32             : #include "catalog/pg_constraint.h"
      33             : #include "catalog/pg_operator.h"
      34             : #include "catalog/pg_type.h"
      35             : #include "commands/trigger.h"
      36             : #include "executor/executor.h"
      37             : #include "executor/spi.h"
      38             : #include "lib/ilist.h"
      39             : #include "miscadmin.h"
      40             : #include "parser/parse_coerce.h"
      41             : #include "parser/parse_relation.h"
      42             : #include "storage/bufmgr.h"
      43             : #include "utils/acl.h"
      44             : #include "utils/builtins.h"
      45             : #include "utils/datum.h"
      46             : #include "utils/fmgroids.h"
      47             : #include "utils/guc.h"
      48             : #include "utils/inval.h"
      49             : #include "utils/lsyscache.h"
      50             : #include "utils/memutils.h"
      51             : #include "utils/rel.h"
      52             : #include "utils/rls.h"
      53             : #include "utils/ruleutils.h"
      54             : #include "utils/snapmgr.h"
      55             : #include "utils/syscache.h"
      56             : 
      57             : /*
      58             :  * Local definitions
      59             :  */
      60             : 
      61             : #define RI_MAX_NUMKEYS                  INDEX_MAX_KEYS
      62             : 
      63             : #define RI_INIT_CONSTRAINTHASHSIZE      64
      64             : #define RI_INIT_QUERYHASHSIZE           (RI_INIT_CONSTRAINTHASHSIZE * 4)
      65             : 
      66             : #define RI_KEYS_ALL_NULL                0
      67             : #define RI_KEYS_SOME_NULL               1
      68             : #define RI_KEYS_NONE_NULL               2
      69             : 
      70             : /* RI query type codes */
      71             : /* these queries are executed against the PK (referenced) table: */
      72             : #define RI_PLAN_CHECK_LOOKUPPK          1
      73             : #define RI_PLAN_CHECK_LOOKUPPK_FROM_PK  2
      74             : #define RI_PLAN_LAST_ON_PK              RI_PLAN_CHECK_LOOKUPPK_FROM_PK
      75             : /* these queries are executed against the FK (referencing) table: */
      76             : #define RI_PLAN_CASCADE_ONDELETE        3
      77             : #define RI_PLAN_CASCADE_ONUPDATE        4
      78             : /* For RESTRICT, the same plan can be used for both ON DELETE and ON UPDATE triggers. */
      79             : #define RI_PLAN_RESTRICT                5
      80             : #define RI_PLAN_SETNULL_ONDELETE        6
      81             : #define RI_PLAN_SETNULL_ONUPDATE        7
      82             : #define RI_PLAN_SETDEFAULT_ONDELETE     8
      83             : #define RI_PLAN_SETDEFAULT_ONUPDATE     9
      84             : 
      85             : #define MAX_QUOTED_NAME_LEN  (NAMEDATALEN*2+3)
      86             : #define MAX_QUOTED_REL_NAME_LEN  (MAX_QUOTED_NAME_LEN*2)
      87             : 
      88             : #define RIAttName(rel, attnum)  NameStr(*attnumAttName(rel, attnum))
      89             : #define RIAttType(rel, attnum)  attnumTypeId(rel, attnum)
      90             : #define RIAttCollation(rel, attnum) attnumCollationId(rel, attnum)
      91             : 
      92             : #define RI_TRIGTYPE_INSERT 1
      93             : #define RI_TRIGTYPE_UPDATE 2
      94             : #define RI_TRIGTYPE_DELETE 3
      95             : 
      96             : 
      97             : /*
      98             :  * RI_ConstraintInfo
      99             :  *
     100             :  * Information extracted from an FK pg_constraint entry.  This is cached in
     101             :  * ri_constraint_cache.
     102             :  */
     103             : typedef struct RI_ConstraintInfo
     104             : {
     105             :     Oid         constraint_id;  /* OID of pg_constraint entry (hash key) */
     106             :     bool        valid;          /* successfully initialized? */
     107             :     Oid         constraint_root_id; /* OID of topmost ancestor constraint;
     108             :                                      * same as constraint_id if not inherited */
     109             :     uint32      oidHashValue;   /* hash value of constraint_id */
     110             :     uint32      rootHashValue;  /* hash value of constraint_root_id */
     111             :     NameData    conname;        /* name of the FK constraint */
     112             :     Oid         pk_relid;       /* referenced relation */
     113             :     Oid         fk_relid;       /* referencing relation */
     114             :     char        confupdtype;    /* foreign key's ON UPDATE action */
     115             :     char        confdeltype;    /* foreign key's ON DELETE action */
     116             :     int         ndelsetcols;    /* number of columns referenced in ON DELETE
     117             :                                  * SET clause */
     118             :     int16       confdelsetcols[RI_MAX_NUMKEYS]; /* attnums of cols to set on
     119             :                                                  * delete */
     120             :     char        confmatchtype;  /* foreign key's match type */
     121             :     int         nkeys;          /* number of key columns */
     122             :     int16       pk_attnums[RI_MAX_NUMKEYS]; /* attnums of referenced cols */
     123             :     int16       fk_attnums[RI_MAX_NUMKEYS]; /* attnums of referencing cols */
     124             :     Oid         pf_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = FK) */
     125             :     Oid         pp_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = PK) */
     126             :     Oid         ff_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (FK = FK) */
     127             :     dlist_node  valid_link;     /* Link in list of valid entries */
     128             : } RI_ConstraintInfo;
     129             : 
     130             : /*
     131             :  * RI_QueryKey
     132             :  *
     133             :  * The key identifying a prepared SPI plan in our query hashtable
     134             :  */
     135             : typedef struct RI_QueryKey
     136             : {
     137             :     Oid         constr_id;      /* OID of pg_constraint entry */
     138             :     int32       constr_queryno; /* query type ID, see RI_PLAN_XXX above */
     139             : } RI_QueryKey;
     140             : 
     141             : /*
     142             :  * RI_QueryHashEntry
     143             :  */
     144             : typedef struct RI_QueryHashEntry
     145             : {
     146             :     RI_QueryKey key;
     147             :     SPIPlanPtr  plan;
     148             : } RI_QueryHashEntry;
     149             : 
     150             : /*
     151             :  * RI_CompareKey
     152             :  *
     153             :  * The key identifying an entry showing how to compare two values
     154             :  */
     155             : typedef struct RI_CompareKey
     156             : {
     157             :     Oid         eq_opr;         /* the equality operator to apply */
     158             :     Oid         typeid;         /* the data type to apply it to */
     159             : } RI_CompareKey;
     160             : 
     161             : /*
     162             :  * RI_CompareHashEntry
     163             :  */
     164             : typedef struct RI_CompareHashEntry
     165             : {
     166             :     RI_CompareKey key;
     167             :     bool        valid;          /* successfully initialized? */
     168             :     FmgrInfo    eq_opr_finfo;   /* call info for equality fn */
     169             :     FmgrInfo    cast_func_finfo;    /* in case we must coerce input */
     170             : } RI_CompareHashEntry;
     171             : 
     172             : 
     173             : /*
     174             :  * Local data
     175             :  */
     176             : static HTAB *ri_constraint_cache = NULL;
     177             : static HTAB *ri_query_cache = NULL;
     178             : static HTAB *ri_compare_cache = NULL;
     179             : static dclist_head ri_constraint_cache_valid_list;
     180             : 
     181             : 
     182             : /*
     183             :  * Local function prototypes
     184             :  */
     185             : static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
     186             :                               TupleTableSlot *oldslot,
     187             :                               const RI_ConstraintInfo *riinfo);
     188             : static Datum ri_restrict(TriggerData *trigdata, bool is_no_action);
     189             : static Datum ri_set(TriggerData *trigdata, bool is_set_null, int tgkind);
     190             : static void quoteOneName(char *buffer, const char *name);
     191             : static void quoteRelationName(char *buffer, Relation rel);
     192             : static void ri_GenerateQual(StringInfo buf,
     193             :                             const char *sep,
     194             :                             const char *leftop, Oid leftoptype,
     195             :                             Oid opoid,
     196             :                             const char *rightop, Oid rightoptype);
     197             : static void ri_GenerateQualCollation(StringInfo buf, Oid collation);
     198             : static int  ri_NullCheck(TupleDesc tupDesc, TupleTableSlot *slot,
     199             :                          const RI_ConstraintInfo *riinfo, bool rel_is_pk);
     200             : static void ri_BuildQueryKey(RI_QueryKey *key,
     201             :                              const RI_ConstraintInfo *riinfo,
     202             :                              int32 constr_queryno);
     203             : static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
     204             :                          const RI_ConstraintInfo *riinfo, bool rel_is_pk);
     205             : static bool ri_AttributesEqual(Oid eq_opr, Oid typeid,
     206             :                                Datum oldvalue, Datum newvalue);
     207             : 
     208             : static void ri_InitHashTables(void);
     209             : static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue);
     210             : static SPIPlanPtr ri_FetchPreparedPlan(RI_QueryKey *key);
     211             : static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan);
     212             : static RI_CompareHashEntry *ri_HashCompareOp(Oid eq_opr, Oid typeid);
     213             : 
     214             : static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname,
     215             :                             int tgkind);
     216             : static const RI_ConstraintInfo *ri_FetchConstraintInfo(Trigger *trigger,
     217             :                                                        Relation trig_rel, bool rel_is_pk);
     218             : static const RI_ConstraintInfo *ri_LoadConstraintInfo(Oid constraintOid);
     219             : static Oid  get_ri_constraint_root(Oid constrOid);
     220             : static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
     221             :                                RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel);
     222             : static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo,
     223             :                             RI_QueryKey *qkey, SPIPlanPtr qplan,
     224             :                             Relation fk_rel, Relation pk_rel,
     225             :                             TupleTableSlot *oldslot, TupleTableSlot *newslot,
     226             :                             bool detectNewRows, int expect_OK);
     227             : static void ri_ExtractValues(Relation rel, TupleTableSlot *slot,
     228             :                              const RI_ConstraintInfo *riinfo, bool rel_is_pk,
     229             :                              Datum *vals, char *nulls);
     230             : static void ri_ReportViolation(const RI_ConstraintInfo *riinfo,
     231             :                                Relation pk_rel, Relation fk_rel,
     232             :                                TupleTableSlot *violatorslot, TupleDesc tupdesc,
     233             :                                int queryno, bool partgone) pg_attribute_noreturn();
     234             : 
     235             : 
     236             : /*
     237             :  * RI_FKey_check -
     238             :  *
     239             :  * Check foreign key existence (combined for INSERT and UPDATE).
     240             :  */
     241             : static Datum
     242        4092 : RI_FKey_check(TriggerData *trigdata)
     243             : {
     244             :     const RI_ConstraintInfo *riinfo;
     245             :     Relation    fk_rel;
     246             :     Relation    pk_rel;
     247             :     TupleTableSlot *newslot;
     248             :     RI_QueryKey qkey;
     249             :     SPIPlanPtr  qplan;
     250             : 
     251        4092 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     252             :                                     trigdata->tg_relation, false);
     253             : 
     254        4092 :     if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
     255         424 :         newslot = trigdata->tg_newslot;
     256             :     else
     257        3668 :         newslot = trigdata->tg_trigslot;
     258             : 
     259             :     /*
     260             :      * We should not even consider checking the row if it is no longer valid,
     261             :      * since it was either deleted (so the deferred check should be skipped)
     262             :      * or updated (in which case only the latest version of the row should be
     263             :      * checked).  Test its liveness according to SnapshotSelf.  We need pin
     264             :      * and lock on the buffer to call HeapTupleSatisfiesVisibility.  Caller
     265             :      * should be holding pin, but not lock.
     266             :      */
     267        4092 :     if (!table_tuple_satisfies_snapshot(trigdata->tg_relation, newslot, SnapshotSelf))
     268          60 :         return PointerGetDatum(NULL);
     269             : 
     270             :     /*
     271             :      * Get the relation descriptors of the FK and PK tables.
     272             :      *
     273             :      * pk_rel is opened in RowShareLock mode since that's what our eventual
     274             :      * SELECT FOR KEY SHARE will get on it.
     275             :      */
     276        4032 :     fk_rel = trigdata->tg_relation;
     277        4032 :     pk_rel = table_open(riinfo->pk_relid, RowShareLock);
     278             : 
     279        4032 :     switch (ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false))
     280             :     {
     281         132 :         case RI_KEYS_ALL_NULL:
     282             : 
     283             :             /*
     284             :              * No further check needed - an all-NULL key passes every type of
     285             :              * foreign key constraint.
     286             :              */
     287         132 :             table_close(pk_rel, RowShareLock);
     288         132 :             return PointerGetDatum(NULL);
     289             : 
     290         156 :         case RI_KEYS_SOME_NULL:
     291             : 
     292             :             /*
     293             :              * This is the only case that differs between the three kinds of
     294             :              * MATCH.
     295             :              */
     296         156 :             switch (riinfo->confmatchtype)
     297             :             {
     298          36 :                 case FKCONSTR_MATCH_FULL:
     299             : 
     300             :                     /*
     301             :                      * Not allowed - MATCH FULL says either all or none of the
     302             :                      * attributes can be NULLs
     303             :                      */
     304          36 :                     ereport(ERROR,
     305             :                             (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
     306             :                              errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
     307             :                                     RelationGetRelationName(fk_rel),
     308             :                                     NameStr(riinfo->conname)),
     309             :                              errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
     310             :                              errtableconstraint(fk_rel,
     311             :                                                 NameStr(riinfo->conname))));
     312             :                     table_close(pk_rel, RowShareLock);
     313             :                     return PointerGetDatum(NULL);
     314             : 
     315         120 :                 case FKCONSTR_MATCH_SIMPLE:
     316             : 
     317             :                     /*
     318             :                      * MATCH SIMPLE - if ANY column is null, the key passes
     319             :                      * the constraint.
     320             :                      */
     321         120 :                     table_close(pk_rel, RowShareLock);
     322         120 :                     return PointerGetDatum(NULL);
     323             : 
     324             : #ifdef NOT_USED
     325             :                 case FKCONSTR_MATCH_PARTIAL:
     326             : 
     327             :                     /*
     328             :                      * MATCH PARTIAL - all non-null columns must match. (not
     329             :                      * implemented, can be done by modifying the query below
     330             :                      * to only include non-null columns, or by writing a
     331             :                      * special version here)
     332             :                      */
     333             :                     break;
     334             : #endif
     335             :             }
     336             : 
     337             :         case RI_KEYS_NONE_NULL:
     338             : 
     339             :             /*
     340             :              * Have a full qualified key - continue below for all three kinds
     341             :              * of MATCH.
     342             :              */
     343        3744 :             break;
     344             :     }
     345             : 
     346        3744 :     if (SPI_connect() != SPI_OK_CONNECT)
     347           0 :         elog(ERROR, "SPI_connect failed");
     348             : 
     349             :     /* Fetch or prepare a saved plan for the real check */
     350        3744 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK);
     351             : 
     352        3744 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     353             :     {
     354             :         StringInfoData querybuf;
     355             :         char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
     356             :         char        attname[MAX_QUOTED_NAME_LEN];
     357             :         char        paramname[16];
     358             :         const char *querysep;
     359             :         Oid         queryoids[RI_MAX_NUMKEYS];
     360             :         const char *pk_only;
     361             : 
     362             :         /* ----------
     363             :          * The query string built is
     364             :          *  SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
     365             :          *         FOR KEY SHARE OF x
     366             :          * The type id's for the $ parameters are those of the
     367             :          * corresponding FK attributes.
     368             :          * ----------
     369             :          */
     370        2012 :         initStringInfo(&querybuf);
     371        4024 :         pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     372        2012 :             "" : "ONLY ";
     373        2012 :         quoteRelationName(pkrelname, pk_rel);
     374        2012 :         appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     375             :                          pk_only, pkrelname);
     376        2012 :         querysep = "WHERE";
     377        4244 :         for (int i = 0; i < riinfo->nkeys; i++)
     378             :         {
     379        2232 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     380        2232 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     381             : 
     382        2232 :             quoteOneName(attname,
     383        2232 :                          RIAttName(pk_rel, riinfo->pk_attnums[i]));
     384        2232 :             sprintf(paramname, "$%d", i + 1);
     385        2232 :             ri_GenerateQual(&querybuf, querysep,
     386             :                             attname, pk_type,
     387             :                             riinfo->pf_eq_oprs[i],
     388             :                             paramname, fk_type);
     389        2232 :             querysep = "AND";
     390        2232 :             queryoids[i] = fk_type;
     391             :         }
     392        2012 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     393             : 
     394             :         /* Prepare and save the plan */
     395        2012 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     396             :                              &qkey, fk_rel, pk_rel);
     397             :     }
     398             : 
     399             :     /*
     400             :      * Now check that foreign key exists in PK table
     401             :      *
     402             :      * XXX detectNewRows must be true when a partitioned table is on the
     403             :      * referenced side.  The reason is that our snapshot must be fresh in
     404             :      * order for the hack in find_inheritance_children() to work.
     405             :      */
     406        3744 :     ri_PerformCheck(riinfo, &qkey, qplan,
     407             :                     fk_rel, pk_rel,
     408             :                     NULL, newslot,
     409        3744 :                     pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE,
     410             :                     SPI_OK_SELECT);
     411             : 
     412        3256 :     if (SPI_finish() != SPI_OK_FINISH)
     413           0 :         elog(ERROR, "SPI_finish failed");
     414             : 
     415        3256 :     table_close(pk_rel, RowShareLock);
     416             : 
     417        3256 :     return PointerGetDatum(NULL);
     418             : }
     419             : 
     420             : 
     421             : /*
     422             :  * RI_FKey_check_ins -
     423             :  *
     424             :  * Check foreign key existence at insert event on FK table.
     425             :  */
     426             : Datum
     427        3668 : RI_FKey_check_ins(PG_FUNCTION_ARGS)
     428             : {
     429             :     /* Check that this is a valid trigger call on the right time and event. */
     430        3668 :     ri_CheckTrigger(fcinfo, "RI_FKey_check_ins", RI_TRIGTYPE_INSERT);
     431             : 
     432             :     /* Share code with UPDATE case. */
     433        3668 :     return RI_FKey_check((TriggerData *) fcinfo->context);
     434             : }
     435             : 
     436             : 
     437             : /*
     438             :  * RI_FKey_check_upd -
     439             :  *
     440             :  * Check foreign key existence at update event on FK table.
     441             :  */
     442             : Datum
     443         424 : RI_FKey_check_upd(PG_FUNCTION_ARGS)
     444             : {
     445             :     /* Check that this is a valid trigger call on the right time and event. */
     446         424 :     ri_CheckTrigger(fcinfo, "RI_FKey_check_upd", RI_TRIGTYPE_UPDATE);
     447             : 
     448             :     /* Share code with INSERT case. */
     449         424 :     return RI_FKey_check((TriggerData *) fcinfo->context);
     450             : }
     451             : 
     452             : 
     453             : /*
     454             :  * ri_Check_Pk_Match
     455             :  *
     456             :  * Check to see if another PK row has been created that provides the same
     457             :  * key values as the "oldslot" that's been modified or deleted in our trigger
     458             :  * event.  Returns true if a match is found in the PK table.
     459             :  *
     460             :  * We assume the caller checked that the oldslot contains no NULL key values,
     461             :  * since otherwise a match is impossible.
     462             :  */
     463             : static bool
     464         738 : ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
     465             :                   TupleTableSlot *oldslot,
     466             :                   const RI_ConstraintInfo *riinfo)
     467             : {
     468             :     SPIPlanPtr  qplan;
     469             :     RI_QueryKey qkey;
     470             :     bool        result;
     471             : 
     472             :     /* Only called for non-null rows */
     473             :     Assert(ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) == RI_KEYS_NONE_NULL);
     474             : 
     475         738 :     if (SPI_connect() != SPI_OK_CONNECT)
     476           0 :         elog(ERROR, "SPI_connect failed");
     477             : 
     478             :     /*
     479             :      * Fetch or prepare a saved plan for checking PK table with values coming
     480             :      * from a PK row
     481             :      */
     482         738 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK_FROM_PK);
     483             : 
     484         738 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     485             :     {
     486             :         StringInfoData querybuf;
     487             :         char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
     488             :         char        attname[MAX_QUOTED_NAME_LEN];
     489             :         char        paramname[16];
     490             :         const char *querysep;
     491             :         const char *pk_only;
     492             :         Oid         queryoids[RI_MAX_NUMKEYS];
     493             : 
     494             :         /* ----------
     495             :          * The query string built is
     496             :          *  SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
     497             :          *         FOR KEY SHARE OF x
     498             :          * The type id's for the $ parameters are those of the
     499             :          * PK attributes themselves.
     500             :          * ----------
     501             :          */
     502         320 :         initStringInfo(&querybuf);
     503         640 :         pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     504         320 :             "" : "ONLY ";
     505         320 :         quoteRelationName(pkrelname, pk_rel);
     506         320 :         appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     507             :                          pk_only, pkrelname);
     508         320 :         querysep = "WHERE";
     509         740 :         for (int i = 0; i < riinfo->nkeys; i++)
     510             :         {
     511         420 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     512             : 
     513         420 :             quoteOneName(attname,
     514         420 :                          RIAttName(pk_rel, riinfo->pk_attnums[i]));
     515         420 :             sprintf(paramname, "$%d", i + 1);
     516         420 :             ri_GenerateQual(&querybuf, querysep,
     517             :                             attname, pk_type,
     518             :                             riinfo->pp_eq_oprs[i],
     519             :                             paramname, pk_type);
     520         420 :             querysep = "AND";
     521         420 :             queryoids[i] = pk_type;
     522             :         }
     523         320 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     524             : 
     525             :         /* Prepare and save the plan */
     526         320 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     527             :                              &qkey, fk_rel, pk_rel);
     528             :     }
     529             : 
     530             :     /*
     531             :      * We have a plan now. Run it.
     532             :      */
     533         738 :     result = ri_PerformCheck(riinfo, &qkey, qplan,
     534             :                              fk_rel, pk_rel,
     535             :                              oldslot, NULL,
     536             :                              true,  /* treat like update */
     537             :                              SPI_OK_SELECT);
     538             : 
     539         738 :     if (SPI_finish() != SPI_OK_FINISH)
     540           0 :         elog(ERROR, "SPI_finish failed");
     541             : 
     542         738 :     return result;
     543             : }
     544             : 
     545             : 
     546             : /*
     547             :  * RI_FKey_noaction_del -
     548             :  *
     549             :  * Give an error and roll back the current transaction if the
     550             :  * delete has resulted in a violation of the given referential
     551             :  * integrity constraint.
     552             :  */
     553             : Datum
     554         306 : RI_FKey_noaction_del(PG_FUNCTION_ARGS)
     555             : {
     556             :     /* Check that this is a valid trigger call on the right time and event. */
     557         306 :     ri_CheckTrigger(fcinfo, "RI_FKey_noaction_del", RI_TRIGTYPE_DELETE);
     558             : 
     559             :     /* Share code with RESTRICT/UPDATE cases. */
     560         306 :     return ri_restrict((TriggerData *) fcinfo->context, true);
     561             : }
     562             : 
     563             : /*
     564             :  * RI_FKey_restrict_del -
     565             :  *
     566             :  * Restrict delete from PK table to rows unreferenced by foreign key.
     567             :  *
     568             :  * The SQL standard intends that this referential action occur exactly when
     569             :  * the delete is performed, rather than after.  This appears to be
     570             :  * the only difference between "NO ACTION" and "RESTRICT".  In Postgres
     571             :  * we still implement this as an AFTER trigger, but it's non-deferrable.
     572             :  */
     573             : Datum
     574          12 : RI_FKey_restrict_del(PG_FUNCTION_ARGS)
     575             : {
     576             :     /* Check that this is a valid trigger call on the right time and event. */
     577          12 :     ri_CheckTrigger(fcinfo, "RI_FKey_restrict_del", RI_TRIGTYPE_DELETE);
     578             : 
     579             :     /* Share code with NO ACTION/UPDATE cases. */
     580          12 :     return ri_restrict((TriggerData *) fcinfo->context, false);
     581             : }
     582             : 
     583             : /*
     584             :  * RI_FKey_noaction_upd -
     585             :  *
     586             :  * Give an error and roll back the current transaction if the
     587             :  * update has resulted in a violation of the given referential
     588             :  * integrity constraint.
     589             :  */
     590             : Datum
     591         300 : RI_FKey_noaction_upd(PG_FUNCTION_ARGS)
     592             : {
     593             :     /* Check that this is a valid trigger call on the right time and event. */
     594         300 :     ri_CheckTrigger(fcinfo, "RI_FKey_noaction_upd", RI_TRIGTYPE_UPDATE);
     595             : 
     596             :     /* Share code with RESTRICT/DELETE cases. */
     597         300 :     return ri_restrict((TriggerData *) fcinfo->context, true);
     598             : }
     599             : 
     600             : /*
     601             :  * RI_FKey_restrict_upd -
     602             :  *
     603             :  * Restrict update of PK to rows unreferenced by foreign key.
     604             :  *
     605             :  * The SQL standard intends that this referential action occur exactly when
     606             :  * the update is performed, rather than after.  This appears to be
     607             :  * the only difference between "NO ACTION" and "RESTRICT".  In Postgres
     608             :  * we still implement this as an AFTER trigger, but it's non-deferrable.
     609             :  */
     610             : Datum
     611          24 : RI_FKey_restrict_upd(PG_FUNCTION_ARGS)
     612             : {
     613             :     /* Check that this is a valid trigger call on the right time and event. */
     614          24 :     ri_CheckTrigger(fcinfo, "RI_FKey_restrict_upd", RI_TRIGTYPE_UPDATE);
     615             : 
     616             :     /* Share code with NO ACTION/DELETE cases. */
     617          24 :     return ri_restrict((TriggerData *) fcinfo->context, false);
     618             : }
     619             : 
     620             : /*
     621             :  * ri_restrict -
     622             :  *
     623             :  * Common code for ON DELETE RESTRICT, ON DELETE NO ACTION,
     624             :  * ON UPDATE RESTRICT, and ON UPDATE NO ACTION.
     625             :  */
     626             : static Datum
     627         774 : ri_restrict(TriggerData *trigdata, bool is_no_action)
     628             : {
     629             :     const RI_ConstraintInfo *riinfo;
     630             :     Relation    fk_rel;
     631             :     Relation    pk_rel;
     632             :     TupleTableSlot *oldslot;
     633             :     RI_QueryKey qkey;
     634             :     SPIPlanPtr  qplan;
     635             : 
     636         774 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     637             :                                     trigdata->tg_relation, true);
     638             : 
     639             :     /*
     640             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
     641             :      *
     642             :      * fk_rel is opened in RowShareLock mode since that's what our eventual
     643             :      * SELECT FOR KEY SHARE will get on it.
     644             :      */
     645         774 :     fk_rel = table_open(riinfo->fk_relid, RowShareLock);
     646         774 :     pk_rel = trigdata->tg_relation;
     647         774 :     oldslot = trigdata->tg_trigslot;
     648             : 
     649             :     /*
     650             :      * If another PK row now exists providing the old key values, we should
     651             :      * not do anything.  However, this check should only be made in the NO
     652             :      * ACTION case; in RESTRICT cases we don't wish to allow another row to be
     653             :      * substituted.
     654             :      */
     655        1512 :     if (is_no_action &&
     656         738 :         ri_Check_Pk_Match(pk_rel, fk_rel, oldslot, riinfo))
     657             :     {
     658          52 :         table_close(fk_rel, RowShareLock);
     659          52 :         return PointerGetDatum(NULL);
     660             :     }
     661             : 
     662         722 :     if (SPI_connect() != SPI_OK_CONNECT)
     663           0 :         elog(ERROR, "SPI_connect failed");
     664             : 
     665             :     /*
     666             :      * Fetch or prepare a saved plan for the restrict lookup (it's the same
     667             :      * query for delete and update cases)
     668             :      */
     669         722 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_RESTRICT);
     670             : 
     671         722 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     672             :     {
     673             :         StringInfoData querybuf;
     674             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     675             :         char        attname[MAX_QUOTED_NAME_LEN];
     676             :         char        paramname[16];
     677             :         const char *querysep;
     678             :         Oid         queryoids[RI_MAX_NUMKEYS];
     679             :         const char *fk_only;
     680             : 
     681             :         /* ----------
     682             :          * The query string built is
     683             :          *  SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = fkatt1 [AND ...]
     684             :          *         FOR KEY SHARE OF x
     685             :          * The type id's for the $ parameters are those of the
     686             :          * corresponding PK attributes.
     687             :          * ----------
     688             :          */
     689         280 :         initStringInfo(&querybuf);
     690         560 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     691         280 :             "" : "ONLY ";
     692         280 :         quoteRelationName(fkrelname, fk_rel);
     693         280 :         appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     694             :                          fk_only, fkrelname);
     695         280 :         querysep = "WHERE";
     696         660 :         for (int i = 0; i < riinfo->nkeys; i++)
     697             :         {
     698         380 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     699         380 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     700         380 :             Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
     701         380 :             Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
     702             : 
     703         380 :             quoteOneName(attname,
     704         380 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
     705         380 :             sprintf(paramname, "$%d", i + 1);
     706         380 :             ri_GenerateQual(&querybuf, querysep,
     707             :                             paramname, pk_type,
     708             :                             riinfo->pf_eq_oprs[i],
     709             :                             attname, fk_type);
     710         380 :             if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
     711           0 :                 ri_GenerateQualCollation(&querybuf, pk_coll);
     712         380 :             querysep = "AND";
     713         380 :             queryoids[i] = pk_type;
     714             :         }
     715         280 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     716             : 
     717             :         /* Prepare and save the plan */
     718         280 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     719             :                              &qkey, fk_rel, pk_rel);
     720             :     }
     721             : 
     722             :     /*
     723             :      * We have a plan now. Run it to check for existing references.
     724             :      */
     725         722 :     ri_PerformCheck(riinfo, &qkey, qplan,
     726             :                     fk_rel, pk_rel,
     727             :                     oldslot, NULL,
     728             :                     true,       /* must detect new rows */
     729             :                     SPI_OK_SELECT);
     730             : 
     731         412 :     if (SPI_finish() != SPI_OK_FINISH)
     732           0 :         elog(ERROR, "SPI_finish failed");
     733             : 
     734         412 :     table_close(fk_rel, RowShareLock);
     735             : 
     736         412 :     return PointerGetDatum(NULL);
     737             : }
     738             : 
     739             : 
     740             : /*
     741             :  * RI_FKey_cascade_del -
     742             :  *
     743             :  * Cascaded delete foreign key references at delete event on PK table.
     744             :  */
     745             : Datum
     746         156 : RI_FKey_cascade_del(PG_FUNCTION_ARGS)
     747             : {
     748         156 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
     749             :     const RI_ConstraintInfo *riinfo;
     750             :     Relation    fk_rel;
     751             :     Relation    pk_rel;
     752             :     TupleTableSlot *oldslot;
     753             :     RI_QueryKey qkey;
     754             :     SPIPlanPtr  qplan;
     755             : 
     756             :     /* Check that this is a valid trigger call on the right time and event. */
     757         156 :     ri_CheckTrigger(fcinfo, "RI_FKey_cascade_del", RI_TRIGTYPE_DELETE);
     758             : 
     759         156 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     760             :                                     trigdata->tg_relation, true);
     761             : 
     762             :     /*
     763             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
     764             :      *
     765             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
     766             :      * eventual DELETE will get on it.
     767             :      */
     768         156 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
     769         156 :     pk_rel = trigdata->tg_relation;
     770         156 :     oldslot = trigdata->tg_trigslot;
     771             : 
     772         156 :     if (SPI_connect() != SPI_OK_CONNECT)
     773           0 :         elog(ERROR, "SPI_connect failed");
     774             : 
     775             :     /* Fetch or prepare a saved plan for the cascaded delete */
     776         156 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_ONDELETE);
     777             : 
     778         156 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     779             :     {
     780             :         StringInfoData querybuf;
     781             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     782             :         char        attname[MAX_QUOTED_NAME_LEN];
     783             :         char        paramname[16];
     784             :         const char *querysep;
     785             :         Oid         queryoids[RI_MAX_NUMKEYS];
     786             :         const char *fk_only;
     787             : 
     788             :         /* ----------
     789             :          * The query string built is
     790             :          *  DELETE FROM [ONLY] <fktable> WHERE $1 = fkatt1 [AND ...]
     791             :          * The type id's for the $ parameters are those of the
     792             :          * corresponding PK attributes.
     793             :          * ----------
     794             :          */
     795          96 :         initStringInfo(&querybuf);
     796         192 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     797          96 :             "" : "ONLY ";
     798          96 :         quoteRelationName(fkrelname, fk_rel);
     799          96 :         appendStringInfo(&querybuf, "DELETE FROM %s%s",
     800             :                          fk_only, fkrelname);
     801          96 :         querysep = "WHERE";
     802         210 :         for (int i = 0; i < riinfo->nkeys; i++)
     803             :         {
     804         114 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     805         114 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     806         114 :             Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
     807         114 :             Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
     808             : 
     809         114 :             quoteOneName(attname,
     810         114 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
     811         114 :             sprintf(paramname, "$%d", i + 1);
     812         114 :             ri_GenerateQual(&querybuf, querysep,
     813             :                             paramname, pk_type,
     814             :                             riinfo->pf_eq_oprs[i],
     815             :                             attname, fk_type);
     816         114 :             if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
     817           6 :                 ri_GenerateQualCollation(&querybuf, pk_coll);
     818         114 :             querysep = "AND";
     819         114 :             queryoids[i] = pk_type;
     820             :         }
     821             : 
     822             :         /* Prepare and save the plan */
     823          96 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     824             :                              &qkey, fk_rel, pk_rel);
     825             :     }
     826             : 
     827             :     /*
     828             :      * We have a plan now. Build up the arguments from the key values in the
     829             :      * deleted PK tuple and delete the referencing rows
     830             :      */
     831         156 :     ri_PerformCheck(riinfo, &qkey, qplan,
     832             :                     fk_rel, pk_rel,
     833             :                     oldslot, NULL,
     834             :                     true,       /* must detect new rows */
     835             :                     SPI_OK_DELETE);
     836             : 
     837         156 :     if (SPI_finish() != SPI_OK_FINISH)
     838           0 :         elog(ERROR, "SPI_finish failed");
     839             : 
     840         156 :     table_close(fk_rel, RowExclusiveLock);
     841             : 
     842         156 :     return PointerGetDatum(NULL);
     843             : }
     844             : 
     845             : 
     846             : /*
     847             :  * RI_FKey_cascade_upd -
     848             :  *
     849             :  * Cascaded update foreign key references at update event on PK table.
     850             :  */
     851             : Datum
     852         204 : RI_FKey_cascade_upd(PG_FUNCTION_ARGS)
     853             : {
     854         204 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
     855             :     const RI_ConstraintInfo *riinfo;
     856             :     Relation    fk_rel;
     857             :     Relation    pk_rel;
     858             :     TupleTableSlot *newslot;
     859             :     TupleTableSlot *oldslot;
     860             :     RI_QueryKey qkey;
     861             :     SPIPlanPtr  qplan;
     862             : 
     863             :     /* Check that this is a valid trigger call on the right time and event. */
     864         204 :     ri_CheckTrigger(fcinfo, "RI_FKey_cascade_upd", RI_TRIGTYPE_UPDATE);
     865             : 
     866         204 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     867             :                                     trigdata->tg_relation, true);
     868             : 
     869             :     /*
     870             :      * Get the relation descriptors of the FK and PK tables and the new and
     871             :      * old tuple.
     872             :      *
     873             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
     874             :      * eventual UPDATE will get on it.
     875             :      */
     876         204 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
     877         204 :     pk_rel = trigdata->tg_relation;
     878         204 :     newslot = trigdata->tg_newslot;
     879         204 :     oldslot = trigdata->tg_trigslot;
     880             : 
     881         204 :     if (SPI_connect() != SPI_OK_CONNECT)
     882           0 :         elog(ERROR, "SPI_connect failed");
     883             : 
     884             :     /* Fetch or prepare a saved plan for the cascaded update */
     885         204 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_ONUPDATE);
     886             : 
     887         204 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     888             :     {
     889             :         StringInfoData querybuf;
     890             :         StringInfoData qualbuf;
     891             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     892             :         char        attname[MAX_QUOTED_NAME_LEN];
     893             :         char        paramname[16];
     894             :         const char *querysep;
     895             :         const char *qualsep;
     896             :         Oid         queryoids[RI_MAX_NUMKEYS * 2];
     897             :         const char *fk_only;
     898             : 
     899             :         /* ----------
     900             :          * The query string built is
     901             :          *  UPDATE [ONLY] <fktable> SET fkatt1 = $1 [, ...]
     902             :          *          WHERE $n = fkatt1 [AND ...]
     903             :          * The type id's for the $ parameters are those of the
     904             :          * corresponding PK attributes.  Note that we are assuming
     905             :          * there is an assignment cast from the PK to the FK type;
     906             :          * else the parser will fail.
     907             :          * ----------
     908             :          */
     909         114 :         initStringInfo(&querybuf);
     910         114 :         initStringInfo(&qualbuf);
     911         228 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     912         114 :             "" : "ONLY ";
     913         114 :         quoteRelationName(fkrelname, fk_rel);
     914         114 :         appendStringInfo(&querybuf, "UPDATE %s%s SET",
     915             :                          fk_only, fkrelname);
     916         114 :         querysep = "";
     917         114 :         qualsep = "WHERE";
     918         252 :         for (int i = 0, j = riinfo->nkeys; i < riinfo->nkeys; i++, j++)
     919             :         {
     920         138 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     921         138 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     922         138 :             Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
     923         138 :             Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
     924             : 
     925         138 :             quoteOneName(attname,
     926         138 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
     927         138 :             appendStringInfo(&querybuf,
     928             :                              "%s %s = $%d",
     929             :                              querysep, attname, i + 1);
     930         138 :             sprintf(paramname, "$%d", j + 1);
     931         138 :             ri_GenerateQual(&qualbuf, qualsep,
     932             :                             paramname, pk_type,
     933             :                             riinfo->pf_eq_oprs[i],
     934             :                             attname, fk_type);
     935         138 :             if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
     936           6 :                 ri_GenerateQualCollation(&querybuf, pk_coll);
     937         138 :             querysep = ",";
     938         138 :             qualsep = "AND";
     939         138 :             queryoids[i] = pk_type;
     940         138 :             queryoids[j] = pk_type;
     941             :         }
     942         114 :         appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
     943             : 
     944             :         /* Prepare and save the plan */
     945         114 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys * 2, queryoids,
     946             :                              &qkey, fk_rel, pk_rel);
     947             :     }
     948             : 
     949             :     /*
     950             :      * We have a plan now. Run it to update the existing references.
     951             :      */
     952         204 :     ri_PerformCheck(riinfo, &qkey, qplan,
     953             :                     fk_rel, pk_rel,
     954             :                     oldslot, newslot,
     955             :                     true,       /* must detect new rows */
     956             :                     SPI_OK_UPDATE);
     957             : 
     958         204 :     if (SPI_finish() != SPI_OK_FINISH)
     959           0 :         elog(ERROR, "SPI_finish failed");
     960             : 
     961         204 :     table_close(fk_rel, RowExclusiveLock);
     962             : 
     963         204 :     return PointerGetDatum(NULL);
     964             : }
     965             : 
     966             : 
     967             : /*
     968             :  * RI_FKey_setnull_del -
     969             :  *
     970             :  * Set foreign key references to NULL values at delete event on PK table.
     971             :  */
     972             : Datum
     973          96 : RI_FKey_setnull_del(PG_FUNCTION_ARGS)
     974             : {
     975             :     /* Check that this is a valid trigger call on the right time and event. */
     976          96 :     ri_CheckTrigger(fcinfo, "RI_FKey_setnull_del", RI_TRIGTYPE_DELETE);
     977             : 
     978             :     /* Share code with UPDATE case */
     979          96 :     return ri_set((TriggerData *) fcinfo->context, true, RI_TRIGTYPE_DELETE);
     980             : }
     981             : 
     982             : /*
     983             :  * RI_FKey_setnull_upd -
     984             :  *
     985             :  * Set foreign key references to NULL at update event on PK table.
     986             :  */
     987             : Datum
     988          30 : RI_FKey_setnull_upd(PG_FUNCTION_ARGS)
     989             : {
     990             :     /* Check that this is a valid trigger call on the right time and event. */
     991          30 :     ri_CheckTrigger(fcinfo, "RI_FKey_setnull_upd", RI_TRIGTYPE_UPDATE);
     992             : 
     993             :     /* Share code with DELETE case */
     994          30 :     return ri_set((TriggerData *) fcinfo->context, true, RI_TRIGTYPE_UPDATE);
     995             : }
     996             : 
     997             : /*
     998             :  * RI_FKey_setdefault_del -
     999             :  *
    1000             :  * Set foreign key references to defaults at delete event on PK table.
    1001             :  */
    1002             : Datum
    1003          84 : RI_FKey_setdefault_del(PG_FUNCTION_ARGS)
    1004             : {
    1005             :     /* Check that this is a valid trigger call on the right time and event. */
    1006          84 :     ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_del", RI_TRIGTYPE_DELETE);
    1007             : 
    1008             :     /* Share code with UPDATE case */
    1009          84 :     return ri_set((TriggerData *) fcinfo->context, false, RI_TRIGTYPE_DELETE);
    1010             : }
    1011             : 
    1012             : /*
    1013             :  * RI_FKey_setdefault_upd -
    1014             :  *
    1015             :  * Set foreign key references to defaults at update event on PK table.
    1016             :  */
    1017             : Datum
    1018          48 : RI_FKey_setdefault_upd(PG_FUNCTION_ARGS)
    1019             : {
    1020             :     /* Check that this is a valid trigger call on the right time and event. */
    1021          48 :     ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_upd", RI_TRIGTYPE_UPDATE);
    1022             : 
    1023             :     /* Share code with DELETE case */
    1024          48 :     return ri_set((TriggerData *) fcinfo->context, false, RI_TRIGTYPE_UPDATE);
    1025             : }
    1026             : 
    1027             : /*
    1028             :  * ri_set -
    1029             :  *
    1030             :  * Common code for ON DELETE SET NULL, ON DELETE SET DEFAULT, ON UPDATE SET
    1031             :  * NULL, and ON UPDATE SET DEFAULT.
    1032             :  */
    1033             : static Datum
    1034         258 : ri_set(TriggerData *trigdata, bool is_set_null, int tgkind)
    1035             : {
    1036             :     const RI_ConstraintInfo *riinfo;
    1037             :     Relation    fk_rel;
    1038             :     Relation    pk_rel;
    1039             :     TupleTableSlot *oldslot;
    1040             :     RI_QueryKey qkey;
    1041             :     SPIPlanPtr  qplan;
    1042             :     int32       queryno;
    1043             : 
    1044         258 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
    1045             :                                     trigdata->tg_relation, true);
    1046             : 
    1047             :     /*
    1048             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
    1049             :      *
    1050             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
    1051             :      * eventual UPDATE will get on it.
    1052             :      */
    1053         258 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
    1054         258 :     pk_rel = trigdata->tg_relation;
    1055         258 :     oldslot = trigdata->tg_trigslot;
    1056             : 
    1057         258 :     if (SPI_connect() != SPI_OK_CONNECT)
    1058           0 :         elog(ERROR, "SPI_connect failed");
    1059             : 
    1060             :     /*
    1061             :      * Fetch or prepare a saved plan for the trigger.
    1062             :      */
    1063         258 :     switch (tgkind)
    1064             :     {
    1065          78 :         case RI_TRIGTYPE_UPDATE:
    1066          78 :             queryno = is_set_null
    1067             :                 ? RI_PLAN_SETNULL_ONUPDATE
    1068          78 :                 : RI_PLAN_SETDEFAULT_ONUPDATE;
    1069          78 :             break;
    1070         180 :         case RI_TRIGTYPE_DELETE:
    1071         180 :             queryno = is_set_null
    1072             :                 ? RI_PLAN_SETNULL_ONDELETE
    1073         180 :                 : RI_PLAN_SETDEFAULT_ONDELETE;
    1074         180 :             break;
    1075           0 :         default:
    1076           0 :             elog(ERROR, "invalid tgkind passed to ri_set");
    1077             :     }
    1078             : 
    1079         258 :     ri_BuildQueryKey(&qkey, riinfo, queryno);
    1080             : 
    1081         258 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
    1082             :     {
    1083             :         StringInfoData querybuf;
    1084             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1085             :         char        attname[MAX_QUOTED_NAME_LEN];
    1086             :         char        paramname[16];
    1087             :         const char *querysep;
    1088             :         const char *qualsep;
    1089             :         Oid         queryoids[RI_MAX_NUMKEYS];
    1090             :         const char *fk_only;
    1091             :         int         num_cols_to_set;
    1092             :         const int16 *set_cols;
    1093             : 
    1094         152 :         switch (tgkind)
    1095             :         {
    1096          48 :             case RI_TRIGTYPE_UPDATE:
    1097          48 :                 num_cols_to_set = riinfo->nkeys;
    1098          48 :                 set_cols = riinfo->fk_attnums;
    1099          48 :                 break;
    1100         104 :             case RI_TRIGTYPE_DELETE:
    1101             : 
    1102             :                 /*
    1103             :                  * If confdelsetcols are present, then we only update the
    1104             :                  * columns specified in that array, otherwise we update all
    1105             :                  * the referencing columns.
    1106             :                  */
    1107         104 :                 if (riinfo->ndelsetcols != 0)
    1108             :                 {
    1109          32 :                     num_cols_to_set = riinfo->ndelsetcols;
    1110          32 :                     set_cols = riinfo->confdelsetcols;
    1111             :                 }
    1112             :                 else
    1113             :                 {
    1114          72 :                     num_cols_to_set = riinfo->nkeys;
    1115          72 :                     set_cols = riinfo->fk_attnums;
    1116             :                 }
    1117         104 :                 break;
    1118           0 :             default:
    1119           0 :                 elog(ERROR, "invalid tgkind passed to ri_set");
    1120             :         }
    1121             : 
    1122             :         /* ----------
    1123             :          * The query string built is
    1124             :          *  UPDATE [ONLY] <fktable> SET fkatt1 = {NULL|DEFAULT} [, ...]
    1125             :          *          WHERE $1 = fkatt1 [AND ...]
    1126             :          * The type id's for the $ parameters are those of the
    1127             :          * corresponding PK attributes.
    1128             :          * ----------
    1129             :          */
    1130         152 :         initStringInfo(&querybuf);
    1131         304 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1132         152 :             "" : "ONLY ";
    1133         152 :         quoteRelationName(fkrelname, fk_rel);
    1134         152 :         appendStringInfo(&querybuf, "UPDATE %s%s SET",
    1135             :                          fk_only, fkrelname);
    1136             : 
    1137             :         /*
    1138             :          * Add assignment clauses
    1139             :          */
    1140         152 :         querysep = "";
    1141         394 :         for (int i = 0; i < num_cols_to_set; i++)
    1142             :         {
    1143         242 :             quoteOneName(attname, RIAttName(fk_rel, set_cols[i]));
    1144         242 :             appendStringInfo(&querybuf,
    1145             :                              "%s %s = %s",
    1146             :                              querysep, attname,
    1147             :                              is_set_null ? "NULL" : "DEFAULT");
    1148         242 :             querysep = ",";
    1149             :         }
    1150             : 
    1151             :         /*
    1152             :          * Add WHERE clause
    1153             :          */
    1154         152 :         qualsep = "WHERE";
    1155         426 :         for (int i = 0; i < riinfo->nkeys; i++)
    1156             :         {
    1157         274 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1158         274 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1159         274 :             Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1160         274 :             Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1161             : 
    1162         274 :             quoteOneName(attname,
    1163         274 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1164             : 
    1165         274 :             sprintf(paramname, "$%d", i + 1);
    1166         274 :             ri_GenerateQual(&querybuf, qualsep,
    1167             :                             paramname, pk_type,
    1168             :                             riinfo->pf_eq_oprs[i],
    1169             :                             attname, fk_type);
    1170         274 :             if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll))
    1171           0 :                 ri_GenerateQualCollation(&querybuf, pk_coll);
    1172         274 :             qualsep = "AND";
    1173         274 :             queryoids[i] = pk_type;
    1174             :         }
    1175             : 
    1176             :         /* Prepare and save the plan */
    1177         152 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
    1178             :                              &qkey, fk_rel, pk_rel);
    1179             :     }
    1180             : 
    1181             :     /*
    1182             :      * We have a plan now. Run it to update the existing references.
    1183             :      */
    1184         258 :     ri_PerformCheck(riinfo, &qkey, qplan,
    1185             :                     fk_rel, pk_rel,
    1186             :                     oldslot, NULL,
    1187             :                     true,       /* must detect new rows */
    1188             :                     SPI_OK_UPDATE);
    1189             : 
    1190         258 :     if (SPI_finish() != SPI_OK_FINISH)
    1191           0 :         elog(ERROR, "SPI_finish failed");
    1192             : 
    1193         258 :     table_close(fk_rel, RowExclusiveLock);
    1194             : 
    1195         258 :     if (is_set_null)
    1196         126 :         return PointerGetDatum(NULL);
    1197             :     else
    1198             :     {
    1199             :         /*
    1200             :          * If we just deleted or updated the PK row whose key was equal to the
    1201             :          * FK columns' default values, and a referencing row exists in the FK
    1202             :          * table, we would have updated that row to the same values it already
    1203             :          * had --- and RI_FKey_fk_upd_check_required would hence believe no
    1204             :          * check is necessary.  So we need to do another lookup now and in
    1205             :          * case a reference still exists, abort the operation.  That is
    1206             :          * already implemented in the NO ACTION trigger, so just run it. (This
    1207             :          * recheck is only needed in the SET DEFAULT case, since CASCADE would
    1208             :          * remove such rows in case of a DELETE operation or would change the
    1209             :          * FK key values in case of an UPDATE, while SET NULL is certain to
    1210             :          * result in rows that satisfy the FK constraint.)
    1211             :          */
    1212         132 :         return ri_restrict(trigdata, true);
    1213             :     }
    1214             : }
    1215             : 
    1216             : 
    1217             : /*
    1218             :  * RI_FKey_pk_upd_check_required -
    1219             :  *
    1220             :  * Check if we really need to fire the RI trigger for an update or delete to a PK
    1221             :  * relation.  This is called by the AFTER trigger queue manager to see if
    1222             :  * it can skip queuing an instance of an RI trigger.  Returns true if the
    1223             :  * trigger must be fired, false if we can prove the constraint will still
    1224             :  * be satisfied.
    1225             :  *
    1226             :  * newslot will be NULL if this is called for a delete.
    1227             :  */
    1228             : bool
    1229        1976 : RI_FKey_pk_upd_check_required(Trigger *trigger, Relation pk_rel,
    1230             :                               TupleTableSlot *oldslot, TupleTableSlot *newslot)
    1231             : {
    1232             :     const RI_ConstraintInfo *riinfo;
    1233             : 
    1234        1976 :     riinfo = ri_FetchConstraintInfo(trigger, pk_rel, true);
    1235             : 
    1236             :     /*
    1237             :      * If any old key value is NULL, the row could not have been referenced by
    1238             :      * an FK row, so no check is needed.
    1239             :      */
    1240        1976 :     if (ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) != RI_KEYS_NONE_NULL)
    1241           6 :         return false;
    1242             : 
    1243             :     /* If all old and new key values are equal, no check is needed */
    1244        1970 :     if (newslot && ri_KeysEqual(pk_rel, oldslot, newslot, riinfo, true))
    1245         536 :         return false;
    1246             : 
    1247             :     /* Else we need to fire the trigger. */
    1248        1434 :     return true;
    1249             : }
    1250             : 
    1251             : /*
    1252             :  * RI_FKey_fk_upd_check_required -
    1253             :  *
    1254             :  * Check if we really need to fire the RI trigger for an update to an FK
    1255             :  * relation.  This is called by the AFTER trigger queue manager to see if
    1256             :  * it can skip queuing an instance of an RI trigger.  Returns true if the
    1257             :  * trigger must be fired, false if we can prove the constraint will still
    1258             :  * be satisfied.
    1259             :  */
    1260             : bool
    1261        1014 : RI_FKey_fk_upd_check_required(Trigger *trigger, Relation fk_rel,
    1262             :                               TupleTableSlot *oldslot, TupleTableSlot *newslot)
    1263             : {
    1264             :     const RI_ConstraintInfo *riinfo;
    1265             :     int         ri_nullcheck;
    1266             :     Datum       xminDatum;
    1267             :     TransactionId xmin;
    1268             :     bool        isnull;
    1269             : 
    1270             :     /*
    1271             :      * AfterTriggerSaveEvent() handles things such that this function is never
    1272             :      * called for partitioned tables.
    1273             :      */
    1274             :     Assert(fk_rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE);
    1275             : 
    1276        1014 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1277             : 
    1278        1014 :     ri_nullcheck = ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false);
    1279             : 
    1280             :     /*
    1281             :      * If all new key values are NULL, the row satisfies the constraint, so no
    1282             :      * check is needed.
    1283             :      */
    1284        1014 :     if (ri_nullcheck == RI_KEYS_ALL_NULL)
    1285         126 :         return false;
    1286             : 
    1287             :     /*
    1288             :      * If some new key values are NULL, the behavior depends on the match
    1289             :      * type.
    1290             :      */
    1291         888 :     else if (ri_nullcheck == RI_KEYS_SOME_NULL)
    1292             :     {
    1293          30 :         switch (riinfo->confmatchtype)
    1294             :         {
    1295          24 :             case FKCONSTR_MATCH_SIMPLE:
    1296             : 
    1297             :                 /*
    1298             :                  * If any new key value is NULL, the row must satisfy the
    1299             :                  * constraint, so no check is needed.
    1300             :                  */
    1301          24 :                 return false;
    1302             : 
    1303           0 :             case FKCONSTR_MATCH_PARTIAL:
    1304             : 
    1305             :                 /*
    1306             :                  * Don't know, must run full check.
    1307             :                  */
    1308           0 :                 break;
    1309             : 
    1310           6 :             case FKCONSTR_MATCH_FULL:
    1311             : 
    1312             :                 /*
    1313             :                  * If some new key values are NULL, the row fails the
    1314             :                  * constraint.  We must not throw error here, because the row
    1315             :                  * might get invalidated before the constraint is to be
    1316             :                  * checked, but we should queue the event to apply the check
    1317             :                  * later.
    1318             :                  */
    1319           6 :                 return true;
    1320             :         }
    1321         858 :     }
    1322             : 
    1323             :     /*
    1324             :      * Continues here for no new key values are NULL, or we couldn't decide
    1325             :      * yet.
    1326             :      */
    1327             : 
    1328             :     /*
    1329             :      * If the original row was inserted by our own transaction, we must fire
    1330             :      * the trigger whether or not the keys are equal.  This is because our
    1331             :      * UPDATE will invalidate the INSERT so that the INSERT RI trigger will
    1332             :      * not do anything; so we had better do the UPDATE check.  (We could skip
    1333             :      * this if we knew the INSERT trigger already fired, but there is no easy
    1334             :      * way to know that.)
    1335             :      */
    1336         858 :     xminDatum = slot_getsysattr(oldslot, MinTransactionIdAttributeNumber, &isnull);
    1337             :     Assert(!isnull);
    1338         858 :     xmin = DatumGetTransactionId(xminDatum);
    1339         858 :     if (TransactionIdIsCurrentTransactionId(xmin))
    1340         124 :         return true;
    1341             : 
    1342             :     /* If all old and new key values are equal, no check is needed */
    1343         734 :     if (ri_KeysEqual(fk_rel, oldslot, newslot, riinfo, false))
    1344         434 :         return false;
    1345             : 
    1346             :     /* Else we need to fire the trigger. */
    1347         300 :     return true;
    1348             : }
    1349             : 
    1350             : /*
    1351             :  * RI_Initial_Check -
    1352             :  *
    1353             :  * Check an entire table for non-matching values using a single query.
    1354             :  * This is not a trigger procedure, but is called during ALTER TABLE
    1355             :  * ADD FOREIGN KEY to validate the initial table contents.
    1356             :  *
    1357             :  * We expect that the caller has made provision to prevent any problems
    1358             :  * caused by concurrent actions. This could be either by locking rel and
    1359             :  * pkrel at ShareRowExclusiveLock or higher, or by otherwise ensuring
    1360             :  * that triggers implementing the checks are already active.
    1361             :  * Hence, we do not need to lock individual rows for the check.
    1362             :  *
    1363             :  * If the check fails because the current user doesn't have permissions
    1364             :  * to read both tables, return false to let our caller know that they will
    1365             :  * need to do something else to check the constraint.
    1366             :  */
    1367             : bool
    1368         932 : RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
    1369             : {
    1370             :     const RI_ConstraintInfo *riinfo;
    1371             :     StringInfoData querybuf;
    1372             :     char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
    1373             :     char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1374             :     char        pkattname[MAX_QUOTED_NAME_LEN + 3];
    1375             :     char        fkattname[MAX_QUOTED_NAME_LEN + 3];
    1376             :     RangeTblEntry *rte;
    1377             :     RTEPermissionInfo *pk_perminfo;
    1378             :     RTEPermissionInfo *fk_perminfo;
    1379         932 :     List       *rtes = NIL;
    1380         932 :     List       *perminfos = NIL;
    1381             :     const char *sep;
    1382             :     const char *fk_only;
    1383             :     const char *pk_only;
    1384             :     int         save_nestlevel;
    1385             :     char        workmembuf[32];
    1386             :     int         spi_result;
    1387             :     SPIPlanPtr  qplan;
    1388             : 
    1389         932 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1390             : 
    1391             :     /*
    1392             :      * Check to make sure current user has enough permissions to do the test
    1393             :      * query.  (If not, caller can fall back to the trigger method, which
    1394             :      * works because it changes user IDs on the fly.)
    1395             :      *
    1396             :      * XXX are there any other show-stopper conditions to check?
    1397             :      */
    1398         932 :     pk_perminfo = makeNode(RTEPermissionInfo);
    1399         932 :     pk_perminfo->relid = RelationGetRelid(pk_rel);
    1400         932 :     pk_perminfo->requiredPerms = ACL_SELECT;
    1401         932 :     perminfos = lappend(perminfos, pk_perminfo);
    1402         932 :     rte = makeNode(RangeTblEntry);
    1403         932 :     rte->rtekind = RTE_RELATION;
    1404         932 :     rte->relid = RelationGetRelid(pk_rel);
    1405         932 :     rte->relkind = pk_rel->rd_rel->relkind;
    1406         932 :     rte->rellockmode = AccessShareLock;
    1407         932 :     rte->perminfoindex = list_length(perminfos);
    1408         932 :     rtes = lappend(rtes, rte);
    1409             : 
    1410         932 :     fk_perminfo = makeNode(RTEPermissionInfo);
    1411         932 :     fk_perminfo->relid = RelationGetRelid(fk_rel);
    1412         932 :     fk_perminfo->requiredPerms = ACL_SELECT;
    1413         932 :     perminfos = lappend(perminfos, fk_perminfo);
    1414         932 :     rte = makeNode(RangeTblEntry);
    1415         932 :     rte->rtekind = RTE_RELATION;
    1416         932 :     rte->relid = RelationGetRelid(fk_rel);
    1417         932 :     rte->relkind = fk_rel->rd_rel->relkind;
    1418         932 :     rte->rellockmode = AccessShareLock;
    1419         932 :     rte->perminfoindex = list_length(perminfos);
    1420         932 :     rtes = lappend(rtes, rte);
    1421             : 
    1422        2172 :     for (int i = 0; i < riinfo->nkeys; i++)
    1423             :     {
    1424             :         int         attno;
    1425             : 
    1426        1240 :         attno = riinfo->pk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
    1427        1240 :         pk_perminfo->selectedCols = bms_add_member(pk_perminfo->selectedCols, attno);
    1428             : 
    1429        1240 :         attno = riinfo->fk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
    1430        1240 :         fk_perminfo->selectedCols = bms_add_member(fk_perminfo->selectedCols, attno);
    1431             :     }
    1432             : 
    1433         932 :     if (!ExecCheckPermissions(rtes, perminfos, false))
    1434          12 :         return false;
    1435             : 
    1436             :     /*
    1437             :      * Also punt if RLS is enabled on either table unless this role has the
    1438             :      * bypassrls right or is the table owner of the table(s) involved which
    1439             :      * have RLS enabled.
    1440             :      */
    1441         920 :     if (!has_bypassrls_privilege(GetUserId()) &&
    1442           0 :         ((pk_rel->rd_rel->relrowsecurity &&
    1443           0 :           !object_ownercheck(RelationRelationId, RelationGetRelid(pk_rel),
    1444           0 :                              GetUserId())) ||
    1445           0 :          (fk_rel->rd_rel->relrowsecurity &&
    1446           0 :           !object_ownercheck(RelationRelationId, RelationGetRelid(fk_rel),
    1447             :                              GetUserId()))))
    1448           0 :         return false;
    1449             : 
    1450             :     /*----------
    1451             :      * The query string built is:
    1452             :      *  SELECT fk.keycols FROM [ONLY] relname fk
    1453             :      *   LEFT OUTER JOIN [ONLY] pkrelname pk
    1454             :      *   ON (pk.pkkeycol1=fk.keycol1 [AND ...])
    1455             :      *   WHERE pk.pkkeycol1 IS NULL AND
    1456             :      * For MATCH SIMPLE:
    1457             :      *   (fk.keycol1 IS NOT NULL [AND ...])
    1458             :      * For MATCH FULL:
    1459             :      *   (fk.keycol1 IS NOT NULL [OR ...])
    1460             :      *
    1461             :      * We attach COLLATE clauses to the operators when comparing columns
    1462             :      * that have different collations.
    1463             :      *----------
    1464             :      */
    1465         920 :     initStringInfo(&querybuf);
    1466         920 :     appendStringInfoString(&querybuf, "SELECT ");
    1467         920 :     sep = "";
    1468        2136 :     for (int i = 0; i < riinfo->nkeys; i++)
    1469             :     {
    1470        1216 :         quoteOneName(fkattname,
    1471        1216 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1472        1216 :         appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
    1473        1216 :         sep = ", ";
    1474             :     }
    1475             : 
    1476         920 :     quoteRelationName(pkrelname, pk_rel);
    1477         920 :     quoteRelationName(fkrelname, fk_rel);
    1478        1840 :     fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1479         920 :         "" : "ONLY ";
    1480        1840 :     pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1481         920 :         "" : "ONLY ";
    1482         920 :     appendStringInfo(&querybuf,
    1483             :                      " FROM %s%s fk LEFT OUTER JOIN %s%s pk ON",
    1484             :                      fk_only, fkrelname, pk_only, pkrelname);
    1485             : 
    1486         920 :     strcpy(pkattname, "pk.");
    1487         920 :     strcpy(fkattname, "fk.");
    1488         920 :     sep = "(";
    1489        2136 :     for (int i = 0; i < riinfo->nkeys; i++)
    1490             :     {
    1491        1216 :         Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1492        1216 :         Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1493        1216 :         Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1494        1216 :         Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1495             : 
    1496        1216 :         quoteOneName(pkattname + 3,
    1497        1216 :                      RIAttName(pk_rel, riinfo->pk_attnums[i]));
    1498        1216 :         quoteOneName(fkattname + 3,
    1499        1216 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1500        1216 :         ri_GenerateQual(&querybuf, sep,
    1501             :                         pkattname, pk_type,
    1502             :                         riinfo->pf_eq_oprs[i],
    1503             :                         fkattname, fk_type);
    1504        1216 :         if (pk_coll != fk_coll)
    1505          12 :             ri_GenerateQualCollation(&querybuf, pk_coll);
    1506        1216 :         sep = "AND";
    1507             :     }
    1508             : 
    1509             :     /*
    1510             :      * It's sufficient to test any one pk attribute for null to detect a join
    1511             :      * failure.
    1512             :      */
    1513         920 :     quoteOneName(pkattname, RIAttName(pk_rel, riinfo->pk_attnums[0]));
    1514         920 :     appendStringInfo(&querybuf, ") WHERE pk.%s IS NULL AND (", pkattname);
    1515             : 
    1516         920 :     sep = "";
    1517        2136 :     for (int i = 0; i < riinfo->nkeys; i++)
    1518             :     {
    1519        1216 :         quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1520        1216 :         appendStringInfo(&querybuf,
    1521             :                          "%sfk.%s IS NOT NULL",
    1522             :                          sep, fkattname);
    1523        1216 :         switch (riinfo->confmatchtype)
    1524             :         {
    1525        1116 :             case FKCONSTR_MATCH_SIMPLE:
    1526        1116 :                 sep = " AND ";
    1527        1116 :                 break;
    1528         100 :             case FKCONSTR_MATCH_FULL:
    1529         100 :                 sep = " OR ";
    1530         100 :                 break;
    1531             :         }
    1532        1216 :     }
    1533         920 :     appendStringInfoChar(&querybuf, ')');
    1534             : 
    1535             :     /*
    1536             :      * Temporarily increase work_mem so that the check query can be executed
    1537             :      * more efficiently.  It seems okay to do this because the query is simple
    1538             :      * enough to not use a multiple of work_mem, and one typically would not
    1539             :      * have many large foreign-key validations happening concurrently.  So
    1540             :      * this seems to meet the criteria for being considered a "maintenance"
    1541             :      * operation, and accordingly we use maintenance_work_mem.  However, we
    1542             :      * must also set hash_mem_multiplier to 1, since it is surely not okay to
    1543             :      * let that get applied to the maintenance_work_mem value.
    1544             :      *
    1545             :      * We use the equivalent of a function SET option to allow the setting to
    1546             :      * persist for exactly the duration of the check query.  guc.c also takes
    1547             :      * care of undoing the setting on error.
    1548             :      */
    1549         920 :     save_nestlevel = NewGUCNestLevel();
    1550             : 
    1551         920 :     snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
    1552         920 :     (void) set_config_option("work_mem", workmembuf,
    1553             :                              PGC_USERSET, PGC_S_SESSION,
    1554             :                              GUC_ACTION_SAVE, true, 0, false);
    1555         920 :     (void) set_config_option("hash_mem_multiplier", "1",
    1556             :                              PGC_USERSET, PGC_S_SESSION,
    1557             :                              GUC_ACTION_SAVE, true, 0, false);
    1558             : 
    1559         920 :     if (SPI_connect() != SPI_OK_CONNECT)
    1560           0 :         elog(ERROR, "SPI_connect failed");
    1561             : 
    1562             :     /*
    1563             :      * Generate the plan.  We don't need to cache it, and there are no
    1564             :      * arguments to the plan.
    1565             :      */
    1566         920 :     qplan = SPI_prepare(querybuf.data, 0, NULL);
    1567             : 
    1568         920 :     if (qplan == NULL)
    1569           0 :         elog(ERROR, "SPI_prepare returned %s for %s",
    1570             :              SPI_result_code_string(SPI_result), querybuf.data);
    1571             : 
    1572             :     /*
    1573             :      * Run the plan.  For safety we force a current snapshot to be used. (In
    1574             :      * transaction-snapshot mode, this arguably violates transaction isolation
    1575             :      * rules, but we really haven't got much choice.) We don't need to
    1576             :      * register the snapshot, because SPI_execute_snapshot will see to it. We
    1577             :      * need at most one tuple returned, so pass limit = 1.
    1578             :      */
    1579         920 :     spi_result = SPI_execute_snapshot(qplan,
    1580             :                                       NULL, NULL,
    1581             :                                       GetLatestSnapshot(),
    1582             :                                       InvalidSnapshot,
    1583             :                                       true, false, 1);
    1584             : 
    1585             :     /* Check result */
    1586         920 :     if (spi_result != SPI_OK_SELECT)
    1587           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    1588             : 
    1589             :     /* Did we find a tuple violating the constraint? */
    1590         920 :     if (SPI_processed > 0)
    1591             :     {
    1592             :         TupleTableSlot *slot;
    1593          56 :         HeapTuple   tuple = SPI_tuptable->vals[0];
    1594          56 :         TupleDesc   tupdesc = SPI_tuptable->tupdesc;
    1595             :         RI_ConstraintInfo fake_riinfo;
    1596             : 
    1597          56 :         slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
    1598             : 
    1599          56 :         heap_deform_tuple(tuple, tupdesc,
    1600             :                           slot->tts_values, slot->tts_isnull);
    1601          56 :         ExecStoreVirtualTuple(slot);
    1602             : 
    1603             :         /*
    1604             :          * The columns to look at in the result tuple are 1..N, not whatever
    1605             :          * they are in the fk_rel.  Hack up riinfo so that the subroutines
    1606             :          * called here will behave properly.
    1607             :          *
    1608             :          * In addition to this, we have to pass the correct tupdesc to
    1609             :          * ri_ReportViolation, overriding its normal habit of using the pk_rel
    1610             :          * or fk_rel's tupdesc.
    1611             :          */
    1612          56 :         memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
    1613         130 :         for (int i = 0; i < fake_riinfo.nkeys; i++)
    1614          74 :             fake_riinfo.fk_attnums[i] = i + 1;
    1615             : 
    1616             :         /*
    1617             :          * If it's MATCH FULL, and there are any nulls in the FK keys,
    1618             :          * complain about that rather than the lack of a match.  MATCH FULL
    1619             :          * disallows partially-null FK rows.
    1620             :          */
    1621          80 :         if (fake_riinfo.confmatchtype == FKCONSTR_MATCH_FULL &&
    1622          24 :             ri_NullCheck(tupdesc, slot, &fake_riinfo, false) != RI_KEYS_NONE_NULL)
    1623          12 :             ereport(ERROR,
    1624             :                     (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    1625             :                      errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
    1626             :                             RelationGetRelationName(fk_rel),
    1627             :                             NameStr(fake_riinfo.conname)),
    1628             :                      errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
    1629             :                      errtableconstraint(fk_rel,
    1630             :                                         NameStr(fake_riinfo.conname))));
    1631             : 
    1632             :         /*
    1633             :          * We tell ri_ReportViolation we were doing the RI_PLAN_CHECK_LOOKUPPK
    1634             :          * query, which isn't true, but will cause it to use
    1635             :          * fake_riinfo.fk_attnums as we need.
    1636             :          */
    1637          44 :         ri_ReportViolation(&fake_riinfo,
    1638             :                            pk_rel, fk_rel,
    1639             :                            slot, tupdesc,
    1640             :                            RI_PLAN_CHECK_LOOKUPPK, false);
    1641             : 
    1642             :         ExecDropSingleTupleTableSlot(slot);
    1643             :     }
    1644             : 
    1645         864 :     if (SPI_finish() != SPI_OK_FINISH)
    1646           0 :         elog(ERROR, "SPI_finish failed");
    1647             : 
    1648             :     /*
    1649             :      * Restore work_mem and hash_mem_multiplier.
    1650             :      */
    1651         864 :     AtEOXact_GUC(true, save_nestlevel);
    1652             : 
    1653         864 :     return true;
    1654             : }
    1655             : 
    1656             : /*
    1657             :  * RI_PartitionRemove_Check -
    1658             :  *
    1659             :  * Verify no referencing values exist, when a partition is detached on
    1660             :  * the referenced side of a foreign key constraint.
    1661             :  */
    1662             : void
    1663          86 : RI_PartitionRemove_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
    1664             : {
    1665             :     const RI_ConstraintInfo *riinfo;
    1666             :     StringInfoData querybuf;
    1667             :     char       *constraintDef;
    1668             :     char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
    1669             :     char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1670             :     char        pkattname[MAX_QUOTED_NAME_LEN + 3];
    1671             :     char        fkattname[MAX_QUOTED_NAME_LEN + 3];
    1672             :     const char *sep;
    1673             :     const char *fk_only;
    1674             :     int         save_nestlevel;
    1675             :     char        workmembuf[32];
    1676             :     int         spi_result;
    1677             :     SPIPlanPtr  qplan;
    1678             :     int         i;
    1679             : 
    1680          86 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1681             : 
    1682             :     /*
    1683             :      * We don't check permissions before displaying the error message, on the
    1684             :      * assumption that the user detaching the partition must have enough
    1685             :      * privileges to examine the table contents anyhow.
    1686             :      */
    1687             : 
    1688             :     /*----------
    1689             :      * The query string built is:
    1690             :      *  SELECT fk.keycols FROM [ONLY] relname fk
    1691             :      *    JOIN pkrelname pk
    1692             :      *    ON (pk.pkkeycol1=fk.keycol1 [AND ...])
    1693             :      *    WHERE (<partition constraint>) AND
    1694             :      * For MATCH SIMPLE:
    1695             :      *   (fk.keycol1 IS NOT NULL [AND ...])
    1696             :      * For MATCH FULL:
    1697             :      *   (fk.keycol1 IS NOT NULL [OR ...])
    1698             :      *
    1699             :      * We attach COLLATE clauses to the operators when comparing columns
    1700             :      * that have different collations.
    1701             :      *----------
    1702             :      */
    1703          86 :     initStringInfo(&querybuf);
    1704          86 :     appendStringInfoString(&querybuf, "SELECT ");
    1705          86 :     sep = "";
    1706         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1707             :     {
    1708          86 :         quoteOneName(fkattname,
    1709          86 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1710          86 :         appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
    1711          86 :         sep = ", ";
    1712             :     }
    1713             : 
    1714          86 :     quoteRelationName(pkrelname, pk_rel);
    1715          86 :     quoteRelationName(fkrelname, fk_rel);
    1716         172 :     fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1717          86 :         "" : "ONLY ";
    1718          86 :     appendStringInfo(&querybuf,
    1719             :                      " FROM %s%s fk JOIN %s pk ON",
    1720             :                      fk_only, fkrelname, pkrelname);
    1721          86 :     strcpy(pkattname, "pk.");
    1722          86 :     strcpy(fkattname, "fk.");
    1723          86 :     sep = "(";
    1724         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1725             :     {
    1726          86 :         Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1727          86 :         Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1728          86 :         Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1729          86 :         Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1730             : 
    1731          86 :         quoteOneName(pkattname + 3,
    1732          86 :                      RIAttName(pk_rel, riinfo->pk_attnums[i]));
    1733          86 :         quoteOneName(fkattname + 3,
    1734          86 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1735          86 :         ri_GenerateQual(&querybuf, sep,
    1736             :                         pkattname, pk_type,
    1737             :                         riinfo->pf_eq_oprs[i],
    1738             :                         fkattname, fk_type);
    1739          86 :         if (pk_coll != fk_coll)
    1740           0 :             ri_GenerateQualCollation(&querybuf, pk_coll);
    1741          86 :         sep = "AND";
    1742             :     }
    1743             : 
    1744             :     /*
    1745             :      * Start the WHERE clause with the partition constraint (except if this is
    1746             :      * the default partition and there's no other partition, because the
    1747             :      * partition constraint is the empty string in that case.)
    1748             :      */
    1749          86 :     constraintDef = pg_get_partconstrdef_string(RelationGetRelid(pk_rel), "pk");
    1750          86 :     if (constraintDef && constraintDef[0] != '\0')
    1751          86 :         appendStringInfo(&querybuf, ") WHERE %s AND (",
    1752             :                          constraintDef);
    1753             :     else
    1754           0 :         appendStringInfoString(&querybuf, ") WHERE (");
    1755             : 
    1756          86 :     sep = "";
    1757         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1758             :     {
    1759          86 :         quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1760          86 :         appendStringInfo(&querybuf,
    1761             :                          "%sfk.%s IS NOT NULL",
    1762             :                          sep, fkattname);
    1763          86 :         switch (riinfo->confmatchtype)
    1764             :         {
    1765          86 :             case FKCONSTR_MATCH_SIMPLE:
    1766          86 :                 sep = " AND ";
    1767          86 :                 break;
    1768           0 :             case FKCONSTR_MATCH_FULL:
    1769           0 :                 sep = " OR ";
    1770           0 :                 break;
    1771             :         }
    1772          86 :     }
    1773          86 :     appendStringInfoChar(&querybuf, ')');
    1774             : 
    1775             :     /*
    1776             :      * Temporarily increase work_mem so that the check query can be executed
    1777             :      * more efficiently.  It seems okay to do this because the query is simple
    1778             :      * enough to not use a multiple of work_mem, and one typically would not
    1779             :      * have many large foreign-key validations happening concurrently.  So
    1780             :      * this seems to meet the criteria for being considered a "maintenance"
    1781             :      * operation, and accordingly we use maintenance_work_mem.  However, we
    1782             :      * must also set hash_mem_multiplier to 1, since it is surely not okay to
    1783             :      * let that get applied to the maintenance_work_mem value.
    1784             :      *
    1785             :      * We use the equivalent of a function SET option to allow the setting to
    1786             :      * persist for exactly the duration of the check query.  guc.c also takes
    1787             :      * care of undoing the setting on error.
    1788             :      */
    1789          86 :     save_nestlevel = NewGUCNestLevel();
    1790             : 
    1791          86 :     snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
    1792          86 :     (void) set_config_option("work_mem", workmembuf,
    1793             :                              PGC_USERSET, PGC_S_SESSION,
    1794             :                              GUC_ACTION_SAVE, true, 0, false);
    1795          86 :     (void) set_config_option("hash_mem_multiplier", "1",
    1796             :                              PGC_USERSET, PGC_S_SESSION,
    1797             :                              GUC_ACTION_SAVE, true, 0, false);
    1798             : 
    1799          86 :     if (SPI_connect() != SPI_OK_CONNECT)
    1800           0 :         elog(ERROR, "SPI_connect failed");
    1801             : 
    1802             :     /*
    1803             :      * Generate the plan.  We don't need to cache it, and there are no
    1804             :      * arguments to the plan.
    1805             :      */
    1806          86 :     qplan = SPI_prepare(querybuf.data, 0, NULL);
    1807             : 
    1808          86 :     if (qplan == NULL)
    1809           0 :         elog(ERROR, "SPI_prepare returned %s for %s",
    1810             :              SPI_result_code_string(SPI_result), querybuf.data);
    1811             : 
    1812             :     /*
    1813             :      * Run the plan.  For safety we force a current snapshot to be used. (In
    1814             :      * transaction-snapshot mode, this arguably violates transaction isolation
    1815             :      * rules, but we really haven't got much choice.) We don't need to
    1816             :      * register the snapshot, because SPI_execute_snapshot will see to it. We
    1817             :      * need at most one tuple returned, so pass limit = 1.
    1818             :      */
    1819          86 :     spi_result = SPI_execute_snapshot(qplan,
    1820             :                                       NULL, NULL,
    1821             :                                       GetLatestSnapshot(),
    1822             :                                       InvalidSnapshot,
    1823             :                                       true, false, 1);
    1824             : 
    1825             :     /* Check result */
    1826          86 :     if (spi_result != SPI_OK_SELECT)
    1827           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    1828             : 
    1829             :     /* Did we find a tuple that would violate the constraint? */
    1830          86 :     if (SPI_processed > 0)
    1831             :     {
    1832             :         TupleTableSlot *slot;
    1833          34 :         HeapTuple   tuple = SPI_tuptable->vals[0];
    1834          34 :         TupleDesc   tupdesc = SPI_tuptable->tupdesc;
    1835             :         RI_ConstraintInfo fake_riinfo;
    1836             : 
    1837          34 :         slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
    1838             : 
    1839          34 :         heap_deform_tuple(tuple, tupdesc,
    1840             :                           slot->tts_values, slot->tts_isnull);
    1841          34 :         ExecStoreVirtualTuple(slot);
    1842             : 
    1843             :         /*
    1844             :          * The columns to look at in the result tuple are 1..N, not whatever
    1845             :          * they are in the fk_rel.  Hack up riinfo so that ri_ReportViolation
    1846             :          * will behave properly.
    1847             :          *
    1848             :          * In addition to this, we have to pass the correct tupdesc to
    1849             :          * ri_ReportViolation, overriding its normal habit of using the pk_rel
    1850             :          * or fk_rel's tupdesc.
    1851             :          */
    1852          34 :         memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
    1853          68 :         for (i = 0; i < fake_riinfo.nkeys; i++)
    1854          34 :             fake_riinfo.pk_attnums[i] = i + 1;
    1855             : 
    1856          34 :         ri_ReportViolation(&fake_riinfo, pk_rel, fk_rel,
    1857             :                            slot, tupdesc, 0, true);
    1858             :     }
    1859             : 
    1860          52 :     if (SPI_finish() != SPI_OK_FINISH)
    1861           0 :         elog(ERROR, "SPI_finish failed");
    1862             : 
    1863             :     /*
    1864             :      * Restore work_mem and hash_mem_multiplier.
    1865             :      */
    1866          52 :     AtEOXact_GUC(true, save_nestlevel);
    1867          52 : }
    1868             : 
    1869             : 
    1870             : /* ----------
    1871             :  * Local functions below
    1872             :  * ----------
    1873             :  */
    1874             : 
    1875             : 
    1876             : /*
    1877             :  * quoteOneName --- safely quote a single SQL name
    1878             :  *
    1879             :  * buffer must be MAX_QUOTED_NAME_LEN long (includes room for \0)
    1880             :  */
    1881             : static void
    1882       19948 : quoteOneName(char *buffer, const char *name)
    1883             : {
    1884             :     /* Rather than trying to be smart, just always quote it. */
    1885       19948 :     *buffer++ = '"';
    1886      119632 :     while (*name)
    1887             :     {
    1888       99684 :         if (*name == '"')
    1889           0 :             *buffer++ = '"';
    1890       99684 :         *buffer++ = *name++;
    1891             :     }
    1892       19948 :     *buffer++ = '"';
    1893       19948 :     *buffer = '\0';
    1894       19948 : }
    1895             : 
    1896             : /*
    1897             :  * quoteRelationName --- safely quote a fully qualified relation name
    1898             :  *
    1899             :  * buffer must be MAX_QUOTED_REL_NAME_LEN long (includes room for \0)
    1900             :  */
    1901             : static void
    1902        4986 : quoteRelationName(char *buffer, Relation rel)
    1903             : {
    1904        4986 :     quoteOneName(buffer, get_namespace_name(RelationGetNamespace(rel)));
    1905        4986 :     buffer += strlen(buffer);
    1906        4986 :     *buffer++ = '.';
    1907        4986 :     quoteOneName(buffer, RelationGetRelationName(rel));
    1908        4986 : }
    1909             : 
    1910             : /*
    1911             :  * ri_GenerateQual --- generate a WHERE clause equating two variables
    1912             :  *
    1913             :  * This basically appends " sep leftop op rightop" to buf, adding casts
    1914             :  * and schema qualification as needed to ensure that the parser will select
    1915             :  * the operator we specify.  leftop and rightop should be parenthesized
    1916             :  * if they aren't variables or parameters.
    1917             :  */
    1918             : static void
    1919        4860 : ri_GenerateQual(StringInfo buf,
    1920             :                 const char *sep,
    1921             :                 const char *leftop, Oid leftoptype,
    1922             :                 Oid opoid,
    1923             :                 const char *rightop, Oid rightoptype)
    1924             : {
    1925        4860 :     appendStringInfo(buf, " %s ", sep);
    1926        4860 :     generate_operator_clause(buf, leftop, leftoptype, opoid,
    1927             :                              rightop, rightoptype);
    1928        4860 : }
    1929             : 
    1930             : /*
    1931             :  * ri_GenerateQualCollation --- add a COLLATE spec to a WHERE clause
    1932             :  *
    1933             :  * At present, we intentionally do not use this function for RI queries that
    1934             :  * compare a variable to a $n parameter.  Since parameter symbols always have
    1935             :  * default collation, the effect will be to use the variable's collation.
    1936             :  * Now that is only strictly correct when testing the referenced column, since
    1937             :  * the SQL standard specifies that RI comparisons should use the referenced
    1938             :  * column's collation.  However, so long as all collations have the same
    1939             :  * notion of equality (which they do, because texteq reduces to bitwise
    1940             :  * equality), there's no visible semantic impact from using the referencing
    1941             :  * column's collation when testing it, and this is a good thing to do because
    1942             :  * it lets us use a normal index on the referencing column.  However, we do
    1943             :  * have to use this function when directly comparing the referencing and
    1944             :  * referenced columns, if they are of different collations; else the parser
    1945             :  * will fail to resolve the collation to use.
    1946             :  */
    1947             : static void
    1948          24 : ri_GenerateQualCollation(StringInfo buf, Oid collation)
    1949             : {
    1950             :     HeapTuple   tp;
    1951             :     Form_pg_collation colltup;
    1952             :     char       *collname;
    1953             :     char        onename[MAX_QUOTED_NAME_LEN];
    1954             : 
    1955             :     /* Nothing to do if it's a noncollatable data type */
    1956          24 :     if (!OidIsValid(collation))
    1957           0 :         return;
    1958             : 
    1959          24 :     tp = SearchSysCache1(COLLOID, ObjectIdGetDatum(collation));
    1960          24 :     if (!HeapTupleIsValid(tp))
    1961           0 :         elog(ERROR, "cache lookup failed for collation %u", collation);
    1962          24 :     colltup = (Form_pg_collation) GETSTRUCT(tp);
    1963          24 :     collname = NameStr(colltup->collname);
    1964             : 
    1965             :     /*
    1966             :      * We qualify the name always, for simplicity and to ensure the query is
    1967             :      * not search-path-dependent.
    1968             :      */
    1969          24 :     quoteOneName(onename, get_namespace_name(colltup->collnamespace));
    1970          24 :     appendStringInfo(buf, " COLLATE %s", onename);
    1971          24 :     quoteOneName(onename, collname);
    1972          24 :     appendStringInfo(buf, ".%s", onename);
    1973             : 
    1974          24 :     ReleaseSysCache(tp);
    1975             : }
    1976             : 
    1977             : /* ----------
    1978             :  * ri_BuildQueryKey -
    1979             :  *
    1980             :  *  Construct a hashtable key for a prepared SPI plan of an FK constraint.
    1981             :  *
    1982             :  *      key: output argument, *key is filled in based on the other arguments
    1983             :  *      riinfo: info derived from pg_constraint entry
    1984             :  *      constr_queryno: an internal number identifying the query type
    1985             :  *          (see RI_PLAN_XXX constants at head of file)
    1986             :  * ----------
    1987             :  */
    1988             : static void
    1989        5822 : ri_BuildQueryKey(RI_QueryKey *key, const RI_ConstraintInfo *riinfo,
    1990             :                  int32 constr_queryno)
    1991             : {
    1992             :     /*
    1993             :      * Inherited constraints with a common ancestor can share ri_query_cache
    1994             :      * entries for all query types except RI_PLAN_CHECK_LOOKUPPK_FROM_PK.
    1995             :      * Except in that case, the query processes the other table involved in
    1996             :      * the FK constraint (i.e., not the table on which the trigger has been
    1997             :      * fired), and so it will be the same for all members of the inheritance
    1998             :      * tree.  So we may use the root constraint's OID in the hash key, rather
    1999             :      * than the constraint's own OID.  This avoids creating duplicate SPI
    2000             :      * plans, saving lots of work and memory when there are many partitions
    2001             :      * with similar FK constraints.
    2002             :      *
    2003             :      * (Note that we must still have a separate RI_ConstraintInfo for each
    2004             :      * constraint, because partitions can have different column orders,
    2005             :      * resulting in different pk_attnums[] or fk_attnums[] array contents.)
    2006             :      *
    2007             :      * We assume struct RI_QueryKey contains no padding bytes, else we'd need
    2008             :      * to use memset to clear them.
    2009             :      */
    2010        5822 :     if (constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK)
    2011        5084 :         key->constr_id = riinfo->constraint_root_id;
    2012             :     else
    2013         738 :         key->constr_id = riinfo->constraint_id;
    2014        5822 :     key->constr_queryno = constr_queryno;
    2015        5822 : }
    2016             : 
    2017             : /*
    2018             :  * Check that RI trigger function was called in expected context
    2019             :  */
    2020             : static void
    2021        5352 : ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind)
    2022             : {
    2023        5352 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
    2024             : 
    2025        5352 :     if (!CALLED_AS_TRIGGER(fcinfo))
    2026           0 :         ereport(ERROR,
    2027             :                 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2028             :                  errmsg("function \"%s\" was not called by trigger manager", funcname)));
    2029             : 
    2030             :     /*
    2031             :      * Check proper event
    2032             :      */
    2033        5352 :     if (!TRIGGER_FIRED_AFTER(trigdata->tg_event) ||
    2034        5352 :         !TRIGGER_FIRED_FOR_ROW(trigdata->tg_event))
    2035           0 :         ereport(ERROR,
    2036             :                 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2037             :                  errmsg("function \"%s\" must be fired AFTER ROW", funcname)));
    2038             : 
    2039        5352 :     switch (tgkind)
    2040             :     {
    2041        3668 :         case RI_TRIGTYPE_INSERT:
    2042        3668 :             if (!TRIGGER_FIRED_BY_INSERT(trigdata->tg_event))
    2043           0 :                 ereport(ERROR,
    2044             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2045             :                          errmsg("function \"%s\" must be fired for INSERT", funcname)));
    2046        3668 :             break;
    2047        1030 :         case RI_TRIGTYPE_UPDATE:
    2048        1030 :             if (!TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
    2049           0 :                 ereport(ERROR,
    2050             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2051             :                          errmsg("function \"%s\" must be fired for UPDATE", funcname)));
    2052        1030 :             break;
    2053         654 :         case RI_TRIGTYPE_DELETE:
    2054         654 :             if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event))
    2055           0 :                 ereport(ERROR,
    2056             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2057             :                          errmsg("function \"%s\" must be fired for DELETE", funcname)));
    2058         654 :             break;
    2059             :     }
    2060        5352 : }
    2061             : 
    2062             : 
    2063             : /*
    2064             :  * Fetch the RI_ConstraintInfo struct for the trigger's FK constraint.
    2065             :  */
    2066             : static const RI_ConstraintInfo *
    2067        9492 : ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk)
    2068             : {
    2069        9492 :     Oid         constraintOid = trigger->tgconstraint;
    2070             :     const RI_ConstraintInfo *riinfo;
    2071             : 
    2072             :     /*
    2073             :      * Check that the FK constraint's OID is available; it might not be if
    2074             :      * we've been invoked via an ordinary trigger or an old-style "constraint
    2075             :      * trigger".
    2076             :      */
    2077        9492 :     if (!OidIsValid(constraintOid))
    2078           0 :         ereport(ERROR,
    2079             :                 (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    2080             :                  errmsg("no pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2081             :                         trigger->tgname, RelationGetRelationName(trig_rel)),
    2082             :                  errhint("Remove this referential integrity trigger and its mates, then do ALTER TABLE ADD CONSTRAINT.")));
    2083             : 
    2084             :     /* Find or create a hashtable entry for the constraint */
    2085        9492 :     riinfo = ri_LoadConstraintInfo(constraintOid);
    2086             : 
    2087             :     /* Do some easy cross-checks against the trigger call data */
    2088        9492 :     if (rel_is_pk)
    2089             :     {
    2090        3368 :         if (riinfo->fk_relid != trigger->tgconstrrelid ||
    2091        3368 :             riinfo->pk_relid != RelationGetRelid(trig_rel))
    2092           0 :             elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2093             :                  trigger->tgname, RelationGetRelationName(trig_rel));
    2094             :     }
    2095             :     else
    2096             :     {
    2097        6124 :         if (riinfo->fk_relid != RelationGetRelid(trig_rel) ||
    2098        6124 :             riinfo->pk_relid != trigger->tgconstrrelid)
    2099           0 :             elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2100             :                  trigger->tgname, RelationGetRelationName(trig_rel));
    2101             :     }
    2102             : 
    2103        9492 :     if (riinfo->confmatchtype != FKCONSTR_MATCH_FULL &&
    2104        9028 :         riinfo->confmatchtype != FKCONSTR_MATCH_PARTIAL &&
    2105        9028 :         riinfo->confmatchtype != FKCONSTR_MATCH_SIMPLE)
    2106           0 :         elog(ERROR, "unrecognized confmatchtype: %d",
    2107             :              riinfo->confmatchtype);
    2108             : 
    2109        9492 :     if (riinfo->confmatchtype == FKCONSTR_MATCH_PARTIAL)
    2110           0 :         ereport(ERROR,
    2111             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    2112             :                  errmsg("MATCH PARTIAL not yet implemented")));
    2113             : 
    2114        9492 :     return riinfo;
    2115             : }
    2116             : 
    2117             : /*
    2118             :  * Fetch or create the RI_ConstraintInfo struct for an FK constraint.
    2119             :  */
    2120             : static const RI_ConstraintInfo *
    2121        9492 : ri_LoadConstraintInfo(Oid constraintOid)
    2122             : {
    2123             :     RI_ConstraintInfo *riinfo;
    2124             :     bool        found;
    2125             :     HeapTuple   tup;
    2126             :     Form_pg_constraint conForm;
    2127             : 
    2128             :     /*
    2129             :      * On the first call initialize the hashtable
    2130             :      */
    2131        9492 :     if (!ri_constraint_cache)
    2132         414 :         ri_InitHashTables();
    2133             : 
    2134             :     /*
    2135             :      * Find or create a hash entry.  If we find a valid one, just return it.
    2136             :      */
    2137        9492 :     riinfo = (RI_ConstraintInfo *) hash_search(ri_constraint_cache,
    2138             :                                                &constraintOid,
    2139             :                                                HASH_ENTER, &found);
    2140        9492 :     if (!found)
    2141        3624 :         riinfo->valid = false;
    2142        5868 :     else if (riinfo->valid)
    2143        5682 :         return riinfo;
    2144             : 
    2145             :     /*
    2146             :      * Fetch the pg_constraint row so we can fill in the entry.
    2147             :      */
    2148        3810 :     tup = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constraintOid));
    2149        3810 :     if (!HeapTupleIsValid(tup)) /* should not happen */
    2150           0 :         elog(ERROR, "cache lookup failed for constraint %u", constraintOid);
    2151        3810 :     conForm = (Form_pg_constraint) GETSTRUCT(tup);
    2152             : 
    2153        3810 :     if (conForm->contype != CONSTRAINT_FOREIGN) /* should not happen */
    2154           0 :         elog(ERROR, "constraint %u is not a foreign key constraint",
    2155             :              constraintOid);
    2156             : 
    2157             :     /* And extract data */
    2158             :     Assert(riinfo->constraint_id == constraintOid);
    2159        3810 :     if (OidIsValid(conForm->conparentid))
    2160        1326 :         riinfo->constraint_root_id =
    2161        1326 :             get_ri_constraint_root(conForm->conparentid);
    2162             :     else
    2163        2484 :         riinfo->constraint_root_id = constraintOid;
    2164        3810 :     riinfo->oidHashValue = GetSysCacheHashValue1(CONSTROID,
    2165             :                                                  ObjectIdGetDatum(constraintOid));
    2166        3810 :     riinfo->rootHashValue = GetSysCacheHashValue1(CONSTROID,
    2167             :                                                   ObjectIdGetDatum(riinfo->constraint_root_id));
    2168        3810 :     memcpy(&riinfo->conname, &conForm->conname, sizeof(NameData));
    2169        3810 :     riinfo->pk_relid = conForm->confrelid;
    2170        3810 :     riinfo->fk_relid = conForm->conrelid;
    2171        3810 :     riinfo->confupdtype = conForm->confupdtype;
    2172        3810 :     riinfo->confdeltype = conForm->confdeltype;
    2173        3810 :     riinfo->confmatchtype = conForm->confmatchtype;
    2174             : 
    2175        3810 :     DeconstructFkConstraintRow(tup,
    2176             :                                &riinfo->nkeys,
    2177        3810 :                                riinfo->fk_attnums,
    2178        3810 :                                riinfo->pk_attnums,
    2179        3810 :                                riinfo->pf_eq_oprs,
    2180        3810 :                                riinfo->pp_eq_oprs,
    2181        3810 :                                riinfo->ff_eq_oprs,
    2182             :                                &riinfo->ndelsetcols,
    2183        3810 :                                riinfo->confdelsetcols);
    2184             : 
    2185        3810 :     ReleaseSysCache(tup);
    2186             : 
    2187             :     /*
    2188             :      * For efficient processing of invalidation messages below, we keep a
    2189             :      * doubly-linked count list of all currently valid entries.
    2190             :      */
    2191        3810 :     dclist_push_tail(&ri_constraint_cache_valid_list, &riinfo->valid_link);
    2192             : 
    2193        3810 :     riinfo->valid = true;
    2194             : 
    2195        3810 :     return riinfo;
    2196             : }
    2197             : 
    2198             : /*
    2199             :  * get_ri_constraint_root
    2200             :  *      Returns the OID of the constraint's root parent
    2201             :  */
    2202             : static Oid
    2203        1618 : get_ri_constraint_root(Oid constrOid)
    2204             : {
    2205             :     for (;;)
    2206         292 :     {
    2207             :         HeapTuple   tuple;
    2208             :         Oid         constrParentOid;
    2209             : 
    2210        1618 :         tuple = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constrOid));
    2211        1618 :         if (!HeapTupleIsValid(tuple))
    2212           0 :             elog(ERROR, "cache lookup failed for constraint %u", constrOid);
    2213        1618 :         constrParentOid = ((Form_pg_constraint) GETSTRUCT(tuple))->conparentid;
    2214        1618 :         ReleaseSysCache(tuple);
    2215        1618 :         if (!OidIsValid(constrParentOid))
    2216        1326 :             break;              /* we reached the root constraint */
    2217         292 :         constrOid = constrParentOid;
    2218             :     }
    2219        1326 :     return constrOid;
    2220             : }
    2221             : 
    2222             : /*
    2223             :  * Callback for pg_constraint inval events
    2224             :  *
    2225             :  * While most syscache callbacks just flush all their entries, pg_constraint
    2226             :  * gets enough update traffic that it's probably worth being smarter.
    2227             :  * Invalidate any ri_constraint_cache entry associated with the syscache
    2228             :  * entry with the specified hash value, or all entries if hashvalue == 0.
    2229             :  *
    2230             :  * Note: at the time a cache invalidation message is processed there may be
    2231             :  * active references to the cache.  Because of this we never remove entries
    2232             :  * from the cache, but only mark them invalid, which is harmless to active
    2233             :  * uses.  (Any query using an entry should hold a lock sufficient to keep that
    2234             :  * data from changing under it --- but we may get cache flushes anyway.)
    2235             :  */
    2236             : static void
    2237       34956 : InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue)
    2238             : {
    2239             :     dlist_mutable_iter iter;
    2240             : 
    2241             :     Assert(ri_constraint_cache != NULL);
    2242             : 
    2243             :     /*
    2244             :      * If the list of currently valid entries gets excessively large, we mark
    2245             :      * them all invalid so we can empty the list.  This arrangement avoids
    2246             :      * O(N^2) behavior in situations where a session touches many foreign keys
    2247             :      * and also does many ALTER TABLEs, such as a restore from pg_dump.
    2248             :      */
    2249       34956 :     if (dclist_count(&ri_constraint_cache_valid_list) > 1000)
    2250           0 :         hashvalue = 0;          /* pretend it's a cache reset */
    2251             : 
    2252      144030 :     dclist_foreach_modify(iter, &ri_constraint_cache_valid_list)
    2253             :     {
    2254      109074 :         RI_ConstraintInfo *riinfo = dclist_container(RI_ConstraintInfo,
    2255             :                                                      valid_link, iter.cur);
    2256             : 
    2257             :         /*
    2258             :          * We must invalidate not only entries directly matching the given
    2259             :          * hash value, but also child entries, in case the invalidation
    2260             :          * affects a root constraint.
    2261             :          */
    2262      109074 :         if (hashvalue == 0 ||
    2263      109070 :             riinfo->oidHashValue == hashvalue ||
    2264      106858 :             riinfo->rootHashValue == hashvalue)
    2265             :         {
    2266        2484 :             riinfo->valid = false;
    2267             :             /* Remove invalidated entries from the list, too */
    2268        2484 :             dclist_delete_from(&ri_constraint_cache_valid_list, iter.cur);
    2269             :         }
    2270             :     }
    2271       34956 : }
    2272             : 
    2273             : 
    2274             : /*
    2275             :  * Prepare execution plan for a query to enforce an RI restriction
    2276             :  */
    2277             : static SPIPlanPtr
    2278        2974 : ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
    2279             :              RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel)
    2280             : {
    2281             :     SPIPlanPtr  qplan;
    2282             :     Relation    query_rel;
    2283             :     Oid         save_userid;
    2284             :     int         save_sec_context;
    2285             : 
    2286             :     /*
    2287             :      * Use the query type code to determine whether the query is run against
    2288             :      * the PK or FK table; we'll do the check as that table's owner
    2289             :      */
    2290        2974 :     if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
    2291        2332 :         query_rel = pk_rel;
    2292             :     else
    2293         642 :         query_rel = fk_rel;
    2294             : 
    2295             :     /* Switch to proper UID to perform check as */
    2296        2974 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
    2297        2974 :     SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
    2298             :                            save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
    2299             :                            SECURITY_NOFORCE_RLS);
    2300             : 
    2301             :     /* Create the plan */
    2302        2974 :     qplan = SPI_prepare(querystr, nargs, argtypes);
    2303             : 
    2304        2974 :     if (qplan == NULL)
    2305           0 :         elog(ERROR, "SPI_prepare returned %s for %s", SPI_result_code_string(SPI_result), querystr);
    2306             : 
    2307             :     /* Restore UID and security context */
    2308        2974 :     SetUserIdAndSecContext(save_userid, save_sec_context);
    2309             : 
    2310             :     /* Save the plan */
    2311        2974 :     SPI_keepplan(qplan);
    2312        2974 :     ri_HashPreparedPlan(qkey, qplan);
    2313             : 
    2314        2974 :     return qplan;
    2315             : }
    2316             : 
    2317             : /*
    2318             :  * Perform a query to enforce an RI restriction
    2319             :  */
    2320             : static bool
    2321        5822 : ri_PerformCheck(const RI_ConstraintInfo *riinfo,
    2322             :                 RI_QueryKey *qkey, SPIPlanPtr qplan,
    2323             :                 Relation fk_rel, Relation pk_rel,
    2324             :                 TupleTableSlot *oldslot, TupleTableSlot *newslot,
    2325             :                 bool detectNewRows, int expect_OK)
    2326             : {
    2327             :     Relation    query_rel,
    2328             :                 source_rel;
    2329             :     bool        source_is_pk;
    2330             :     Snapshot    test_snapshot;
    2331             :     Snapshot    crosscheck_snapshot;
    2332             :     int         limit;
    2333             :     int         spi_result;
    2334             :     Oid         save_userid;
    2335             :     int         save_sec_context;
    2336             :     Datum       vals[RI_MAX_NUMKEYS * 2];
    2337             :     char        nulls[RI_MAX_NUMKEYS * 2];
    2338             : 
    2339             :     /*
    2340             :      * Use the query type code to determine whether the query is run against
    2341             :      * the PK or FK table; we'll do the check as that table's owner
    2342             :      */
    2343        5822 :     if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
    2344        4482 :         query_rel = pk_rel;
    2345             :     else
    2346        1340 :         query_rel = fk_rel;
    2347             : 
    2348             :     /*
    2349             :      * The values for the query are taken from the table on which the trigger
    2350             :      * is called - it is normally the other one with respect to query_rel. An
    2351             :      * exception is ri_Check_Pk_Match(), which uses the PK table for both (and
    2352             :      * sets queryno to RI_PLAN_CHECK_LOOKUPPK_FROM_PK).  We might eventually
    2353             :      * need some less klugy way to determine this.
    2354             :      */
    2355        5822 :     if (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK)
    2356             :     {
    2357        3744 :         source_rel = fk_rel;
    2358        3744 :         source_is_pk = false;
    2359             :     }
    2360             :     else
    2361             :     {
    2362        2078 :         source_rel = pk_rel;
    2363        2078 :         source_is_pk = true;
    2364             :     }
    2365             : 
    2366             :     /* Extract the parameters to be passed into the query */
    2367        5822 :     if (newslot)
    2368             :     {
    2369        3948 :         ri_ExtractValues(source_rel, newslot, riinfo, source_is_pk,
    2370             :                          vals, nulls);
    2371        3948 :         if (oldslot)
    2372         204 :             ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
    2373         204 :                              vals + riinfo->nkeys, nulls + riinfo->nkeys);
    2374             :     }
    2375             :     else
    2376             :     {
    2377        1874 :         ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
    2378             :                          vals, nulls);
    2379             :     }
    2380             : 
    2381             :     /*
    2382             :      * In READ COMMITTED mode, we just need to use an up-to-date regular
    2383             :      * snapshot, and we will see all rows that could be interesting. But in
    2384             :      * transaction-snapshot mode, we can't change the transaction snapshot. If
    2385             :      * the caller passes detectNewRows == false then it's okay to do the query
    2386             :      * with the transaction snapshot; otherwise we use a current snapshot, and
    2387             :      * tell the executor to error out if it finds any rows under the current
    2388             :      * snapshot that wouldn't be visible per the transaction snapshot.  Note
    2389             :      * that SPI_execute_snapshot will register the snapshots, so we don't need
    2390             :      * to bother here.
    2391             :      */
    2392        5822 :     if (IsolationUsesXactSnapshot() && detectNewRows)
    2393             :     {
    2394          26 :         CommandCounterIncrement();  /* be sure all my own work is visible */
    2395          26 :         test_snapshot = GetLatestSnapshot();
    2396          26 :         crosscheck_snapshot = GetTransactionSnapshot();
    2397             :     }
    2398             :     else
    2399             :     {
    2400             :         /* the default SPI behavior is okay */
    2401        5796 :         test_snapshot = InvalidSnapshot;
    2402        5796 :         crosscheck_snapshot = InvalidSnapshot;
    2403             :     }
    2404             : 
    2405             :     /*
    2406             :      * If this is a select query (e.g., for a 'no action' or 'restrict'
    2407             :      * trigger), we only need to see if there is a single row in the table,
    2408             :      * matching the key.  Otherwise, limit = 0 - because we want the query to
    2409             :      * affect ALL the matching rows.
    2410             :      */
    2411        5822 :     limit = (expect_OK == SPI_OK_SELECT) ? 1 : 0;
    2412             : 
    2413             :     /* Switch to proper UID to perform check as */
    2414        5822 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
    2415        5822 :     SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
    2416             :                            save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
    2417             :                            SECURITY_NOFORCE_RLS);
    2418             : 
    2419             :     /* Finally we can run the query. */
    2420        5822 :     spi_result = SPI_execute_snapshot(qplan,
    2421             :                                       vals, nulls,
    2422             :                                       test_snapshot, crosscheck_snapshot,
    2423             :                                       false, false, limit);
    2424             : 
    2425             :     /* Restore UID and security context */
    2426        5812 :     SetUserIdAndSecContext(save_userid, save_sec_context);
    2427             : 
    2428             :     /* Check result */
    2429        5812 :     if (spi_result < 0)
    2430           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    2431             : 
    2432        5812 :     if (expect_OK >= 0 && spi_result != expect_OK)
    2433           0 :         ereport(ERROR,
    2434             :                 (errcode(ERRCODE_INTERNAL_ERROR),
    2435             :                  errmsg("referential integrity query on \"%s\" from constraint \"%s\" on \"%s\" gave unexpected result",
    2436             :                         RelationGetRelationName(pk_rel),
    2437             :                         NameStr(riinfo->conname),
    2438             :                         RelationGetRelationName(fk_rel)),
    2439             :                  errhint("This is most likely due to a rule having rewritten the query.")));
    2440             : 
    2441             :     /* XXX wouldn't it be clearer to do this part at the caller? */
    2442        5812 :     if (qkey->constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK &&
    2443        4456 :         expect_OK == SPI_OK_SELECT &&
    2444        4456 :         (SPI_processed == 0) == (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK))
    2445         788 :         ri_ReportViolation(riinfo,
    2446             :                            pk_rel, fk_rel,
    2447             :                            newslot ? newslot : oldslot,
    2448             :                            NULL,
    2449             :                            qkey->constr_queryno, false);
    2450             : 
    2451        5024 :     return SPI_processed != 0;
    2452             : }
    2453             : 
    2454             : /*
    2455             :  * Extract fields from a tuple into Datum/nulls arrays
    2456             :  */
    2457             : static void
    2458        6026 : ri_ExtractValues(Relation rel, TupleTableSlot *slot,
    2459             :                  const RI_ConstraintInfo *riinfo, bool rel_is_pk,
    2460             :                  Datum *vals, char *nulls)
    2461             : {
    2462             :     const int16 *attnums;
    2463             :     bool        isnull;
    2464             : 
    2465        6026 :     if (rel_is_pk)
    2466        2282 :         attnums = riinfo->pk_attnums;
    2467             :     else
    2468        3744 :         attnums = riinfo->fk_attnums;
    2469             : 
    2470       13654 :     for (int i = 0; i < riinfo->nkeys; i++)
    2471             :     {
    2472        7628 :         vals[i] = slot_getattr(slot, attnums[i], &isnull);
    2473        7628 :         nulls[i] = isnull ? 'n' : ' ';
    2474             :     }
    2475        6026 : }
    2476             : 
    2477             : /*
    2478             :  * Produce an error report
    2479             :  *
    2480             :  * If the failed constraint was on insert/update to the FK table,
    2481             :  * we want the key names and values extracted from there, and the error
    2482             :  * message to look like 'key blah is not present in PK'.
    2483             :  * Otherwise, the attr names and values come from the PK table and the
    2484             :  * message looks like 'key blah is still referenced from FK'.
    2485             :  */
    2486             : static void
    2487         866 : ri_ReportViolation(const RI_ConstraintInfo *riinfo,
    2488             :                    Relation pk_rel, Relation fk_rel,
    2489             :                    TupleTableSlot *violatorslot, TupleDesc tupdesc,
    2490             :                    int queryno, bool partgone)
    2491             : {
    2492             :     StringInfoData key_names;
    2493             :     StringInfoData key_values;
    2494             :     bool        onfk;
    2495             :     const int16 *attnums;
    2496             :     Oid         rel_oid;
    2497             :     AclResult   aclresult;
    2498         866 :     bool        has_perm = true;
    2499             : 
    2500             :     /*
    2501             :      * Determine which relation to complain about.  If tupdesc wasn't passed
    2502             :      * by caller, assume the violator tuple came from there.
    2503             :      */
    2504         866 :     onfk = (queryno == RI_PLAN_CHECK_LOOKUPPK);
    2505         866 :     if (onfk)
    2506             :     {
    2507         522 :         attnums = riinfo->fk_attnums;
    2508         522 :         rel_oid = fk_rel->rd_id;
    2509         522 :         if (tupdesc == NULL)
    2510         478 :             tupdesc = fk_rel->rd_att;
    2511             :     }
    2512             :     else
    2513             :     {
    2514         344 :         attnums = riinfo->pk_attnums;
    2515         344 :         rel_oid = pk_rel->rd_id;
    2516         344 :         if (tupdesc == NULL)
    2517         310 :             tupdesc = pk_rel->rd_att;
    2518             :     }
    2519             : 
    2520             :     /*
    2521             :      * Check permissions- if the user does not have access to view the data in
    2522             :      * any of the key columns then we don't include the errdetail() below.
    2523             :      *
    2524             :      * Check if RLS is enabled on the relation first.  If so, we don't return
    2525             :      * any specifics to avoid leaking data.
    2526             :      *
    2527             :      * Check table-level permissions next and, failing that, column-level
    2528             :      * privileges.
    2529             :      *
    2530             :      * When a partition at the referenced side is being detached/dropped, we
    2531             :      * needn't check, since the user must be the table owner anyway.
    2532             :      */
    2533         866 :     if (partgone)
    2534          34 :         has_perm = true;
    2535         832 :     else if (check_enable_rls(rel_oid, InvalidOid, true) != RLS_ENABLED)
    2536             :     {
    2537         826 :         aclresult = pg_class_aclcheck(rel_oid, GetUserId(), ACL_SELECT);
    2538         826 :         if (aclresult != ACLCHECK_OK)
    2539             :         {
    2540             :             /* Try for column-level permissions */
    2541           0 :             for (int idx = 0; idx < riinfo->nkeys; idx++)
    2542             :             {
    2543           0 :                 aclresult = pg_attribute_aclcheck(rel_oid, attnums[idx],
    2544             :                                                   GetUserId(),
    2545             :                                                   ACL_SELECT);
    2546             : 
    2547             :                 /* No access to the key */
    2548           0 :                 if (aclresult != ACLCHECK_OK)
    2549             :                 {
    2550           0 :                     has_perm = false;
    2551           0 :                     break;
    2552             :                 }
    2553             :             }
    2554             :         }
    2555             :     }
    2556             :     else
    2557           6 :         has_perm = false;
    2558             : 
    2559         866 :     if (has_perm)
    2560             :     {
    2561             :         /* Get printable versions of the keys involved */
    2562         860 :         initStringInfo(&key_names);
    2563         860 :         initStringInfo(&key_values);
    2564        2014 :         for (int idx = 0; idx < riinfo->nkeys; idx++)
    2565             :         {
    2566        1154 :             int         fnum = attnums[idx];
    2567        1154 :             Form_pg_attribute att = TupleDescAttr(tupdesc, fnum - 1);
    2568             :             char       *name,
    2569             :                        *val;
    2570             :             Datum       datum;
    2571             :             bool        isnull;
    2572             : 
    2573        1154 :             name = NameStr(att->attname);
    2574             : 
    2575        1154 :             datum = slot_getattr(violatorslot, fnum, &isnull);
    2576        1154 :             if (!isnull)
    2577             :             {
    2578             :                 Oid         foutoid;
    2579             :                 bool        typisvarlena;
    2580             : 
    2581        1154 :                 getTypeOutputInfo(att->atttypid, &foutoid, &typisvarlena);
    2582        1154 :                 val = OidOutputFunctionCall(foutoid, datum);
    2583             :             }
    2584             :             else
    2585           0 :                 val = "null";
    2586             : 
    2587        1154 :             if (idx > 0)
    2588             :             {
    2589         294 :                 appendStringInfoString(&key_names, ", ");
    2590         294 :                 appendStringInfoString(&key_values, ", ");
    2591             :             }
    2592        1154 :             appendStringInfoString(&key_names, name);
    2593        1154 :             appendStringInfoString(&key_values, val);
    2594             :         }
    2595             :     }
    2596             : 
    2597         866 :     if (partgone)
    2598          34 :         ereport(ERROR,
    2599             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2600             :                  errmsg("removing partition \"%s\" violates foreign key constraint \"%s\"",
    2601             :                         RelationGetRelationName(pk_rel),
    2602             :                         NameStr(riinfo->conname)),
    2603             :                  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
    2604             :                            key_names.data, key_values.data,
    2605             :                            RelationGetRelationName(fk_rel)),
    2606             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2607         832 :     else if (onfk)
    2608         522 :         ereport(ERROR,
    2609             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2610             :                  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
    2611             :                         RelationGetRelationName(fk_rel),
    2612             :                         NameStr(riinfo->conname)),
    2613             :                  has_perm ?
    2614             :                  errdetail("Key (%s)=(%s) is not present in table \"%s\".",
    2615             :                            key_names.data, key_values.data,
    2616             :                            RelationGetRelationName(pk_rel)) :
    2617             :                  errdetail("Key is not present in table \"%s\".",
    2618             :                            RelationGetRelationName(pk_rel)),
    2619             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2620             :     else
    2621         310 :         ereport(ERROR,
    2622             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2623             :                  errmsg("update or delete on table \"%s\" violates foreign key constraint \"%s\" on table \"%s\"",
    2624             :                         RelationGetRelationName(pk_rel),
    2625             :                         NameStr(riinfo->conname),
    2626             :                         RelationGetRelationName(fk_rel)),
    2627             :                  has_perm ?
    2628             :                  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
    2629             :                            key_names.data, key_values.data,
    2630             :                            RelationGetRelationName(fk_rel)) :
    2631             :                  errdetail("Key is still referenced from table \"%s\".",
    2632             :                            RelationGetRelationName(fk_rel)),
    2633             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2634             : }
    2635             : 
    2636             : 
    2637             : /*
    2638             :  * ri_NullCheck -
    2639             :  *
    2640             :  * Determine the NULL state of all key values in a tuple
    2641             :  *
    2642             :  * Returns one of RI_KEYS_ALL_NULL, RI_KEYS_NONE_NULL or RI_KEYS_SOME_NULL.
    2643             :  */
    2644             : static int
    2645        7046 : ri_NullCheck(TupleDesc tupDesc,
    2646             :              TupleTableSlot *slot,
    2647             :              const RI_ConstraintInfo *riinfo, bool rel_is_pk)
    2648             : {
    2649             :     const int16 *attnums;
    2650        7046 :     bool        allnull = true;
    2651        7046 :     bool        nonenull = true;
    2652             : 
    2653        7046 :     if (rel_is_pk)
    2654        1976 :         attnums = riinfo->pk_attnums;
    2655             :     else
    2656        5070 :         attnums = riinfo->fk_attnums;
    2657             : 
    2658       15772 :     for (int i = 0; i < riinfo->nkeys; i++)
    2659             :     {
    2660        8726 :         if (slot_attisnull(slot, attnums[i]))
    2661         534 :             nonenull = false;
    2662             :         else
    2663        8192 :             allnull = false;
    2664             :     }
    2665             : 
    2666        7046 :     if (allnull)
    2667         258 :         return RI_KEYS_ALL_NULL;
    2668             : 
    2669        6788 :     if (nonenull)
    2670        6584 :         return RI_KEYS_NONE_NULL;
    2671             : 
    2672         204 :     return RI_KEYS_SOME_NULL;
    2673             : }
    2674             : 
    2675             : 
    2676             : /*
    2677             :  * ri_InitHashTables -
    2678             :  *
    2679             :  * Initialize our internal hash tables.
    2680             :  */
    2681             : static void
    2682         414 : ri_InitHashTables(void)
    2683             : {
    2684             :     HASHCTL     ctl;
    2685             : 
    2686         414 :     ctl.keysize = sizeof(Oid);
    2687         414 :     ctl.entrysize = sizeof(RI_ConstraintInfo);
    2688         414 :     ri_constraint_cache = hash_create("RI constraint cache",
    2689             :                                       RI_INIT_CONSTRAINTHASHSIZE,
    2690             :                                       &ctl, HASH_ELEM | HASH_BLOBS);
    2691             : 
    2692             :     /* Arrange to flush cache on pg_constraint changes */
    2693         414 :     CacheRegisterSyscacheCallback(CONSTROID,
    2694             :                                   InvalidateConstraintCacheCallBack,
    2695             :                                   (Datum) 0);
    2696             : 
    2697         414 :     ctl.keysize = sizeof(RI_QueryKey);
    2698         414 :     ctl.entrysize = sizeof(RI_QueryHashEntry);
    2699         414 :     ri_query_cache = hash_create("RI query cache",
    2700             :                                  RI_INIT_QUERYHASHSIZE,
    2701             :                                  &ctl, HASH_ELEM | HASH_BLOBS);
    2702             : 
    2703         414 :     ctl.keysize = sizeof(RI_CompareKey);
    2704         414 :     ctl.entrysize = sizeof(RI_CompareHashEntry);
    2705         414 :     ri_compare_cache = hash_create("RI compare cache",
    2706             :                                    RI_INIT_QUERYHASHSIZE,
    2707             :                                    &ctl, HASH_ELEM | HASH_BLOBS);
    2708         414 : }
    2709             : 
    2710             : 
    2711             : /*
    2712             :  * ri_FetchPreparedPlan -
    2713             :  *
    2714             :  * Lookup for a query key in our private hash table of prepared
    2715             :  * and saved SPI execution plans. Return the plan if found or NULL.
    2716             :  */
    2717             : static SPIPlanPtr
    2718        5822 : ri_FetchPreparedPlan(RI_QueryKey *key)
    2719             : {
    2720             :     RI_QueryHashEntry *entry;
    2721             :     SPIPlanPtr  plan;
    2722             : 
    2723             :     /*
    2724             :      * On the first call initialize the hashtable
    2725             :      */
    2726        5822 :     if (!ri_query_cache)
    2727           0 :         ri_InitHashTables();
    2728             : 
    2729             :     /*
    2730             :      * Lookup for the key
    2731             :      */
    2732        5822 :     entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
    2733             :                                               key,
    2734             :                                               HASH_FIND, NULL);
    2735        5822 :     if (entry == NULL)
    2736        2748 :         return NULL;
    2737             : 
    2738             :     /*
    2739             :      * Check whether the plan is still valid.  If it isn't, we don't want to
    2740             :      * simply rely on plancache.c to regenerate it; rather we should start
    2741             :      * from scratch and rebuild the query text too.  This is to cover cases
    2742             :      * such as table/column renames.  We depend on the plancache machinery to
    2743             :      * detect possible invalidations, though.
    2744             :      *
    2745             :      * CAUTION: this check is only trustworthy if the caller has already
    2746             :      * locked both FK and PK rels.
    2747             :      */
    2748        3074 :     plan = entry->plan;
    2749        3074 :     if (plan && SPI_plan_is_valid(plan))
    2750        2848 :         return plan;
    2751             : 
    2752             :     /*
    2753             :      * Otherwise we might as well flush the cached plan now, to free a little
    2754             :      * memory space before we make a new one.
    2755             :      */
    2756         226 :     entry->plan = NULL;
    2757         226 :     if (plan)
    2758         226 :         SPI_freeplan(plan);
    2759             : 
    2760         226 :     return NULL;
    2761             : }
    2762             : 
    2763             : 
    2764             : /*
    2765             :  * ri_HashPreparedPlan -
    2766             :  *
    2767             :  * Add another plan to our private SPI query plan hashtable.
    2768             :  */
    2769             : static void
    2770        2974 : ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan)
    2771             : {
    2772             :     RI_QueryHashEntry *entry;
    2773             :     bool        found;
    2774             : 
    2775             :     /*
    2776             :      * On the first call initialize the hashtable
    2777             :      */
    2778        2974 :     if (!ri_query_cache)
    2779           0 :         ri_InitHashTables();
    2780             : 
    2781             :     /*
    2782             :      * Add the new plan.  We might be overwriting an entry previously found
    2783             :      * invalid by ri_FetchPreparedPlan.
    2784             :      */
    2785        2974 :     entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
    2786             :                                               key,
    2787             :                                               HASH_ENTER, &found);
    2788             :     Assert(!found || entry->plan == NULL);
    2789        2974 :     entry->plan = plan;
    2790        2974 : }
    2791             : 
    2792             : 
    2793             : /*
    2794             :  * ri_KeysEqual -
    2795             :  *
    2796             :  * Check if all key values in OLD and NEW are equal.
    2797             :  *
    2798             :  * Note: at some point we might wish to redefine this as checking for
    2799             :  * "IS NOT DISTINCT" rather than "=", that is, allow two nulls to be
    2800             :  * considered equal.  Currently there is no need since all callers have
    2801             :  * previously found at least one of the rows to contain no nulls.
    2802             :  */
    2803             : static bool
    2804        1990 : ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
    2805             :              const RI_ConstraintInfo *riinfo, bool rel_is_pk)
    2806             : {
    2807             :     const int16 *attnums;
    2808             : 
    2809        1990 :     if (rel_is_pk)
    2810        1256 :         attnums = riinfo->pk_attnums;
    2811             :     else
    2812         734 :         attnums = riinfo->fk_attnums;
    2813             : 
    2814             :     /* XXX: could be worthwhile to fetch all necessary attrs at once */
    2815        3080 :     for (int i = 0; i < riinfo->nkeys; i++)
    2816             :     {
    2817             :         Datum       oldvalue;
    2818             :         Datum       newvalue;
    2819             :         bool        isnull;
    2820             : 
    2821             :         /*
    2822             :          * Get one attribute's oldvalue. If it is NULL - they're not equal.
    2823             :          */
    2824        2110 :         oldvalue = slot_getattr(oldslot, attnums[i], &isnull);
    2825        2110 :         if (isnull)
    2826        1020 :             return false;
    2827             : 
    2828             :         /*
    2829             :          * Get one attribute's newvalue. If it is NULL - they're not equal.
    2830             :          */
    2831        2080 :         newvalue = slot_getattr(newslot, attnums[i], &isnull);
    2832        2080 :         if (isnull)
    2833           0 :             return false;
    2834             : 
    2835        2080 :         if (rel_is_pk)
    2836             :         {
    2837             :             /*
    2838             :              * If we are looking at the PK table, then do a bytewise
    2839             :              * comparison.  We must propagate PK changes if the value is
    2840             :              * changed to one that "looks" different but would compare as
    2841             :              * equal using the equality operator.  This only makes a
    2842             :              * difference for ON UPDATE CASCADE, but for consistency we treat
    2843             :              * all changes to the PK the same.
    2844             :              */
    2845        1340 :             Form_pg_attribute att = TupleDescAttr(oldslot->tts_tupleDescriptor, attnums[i] - 1);
    2846             : 
    2847        1340 :             if (!datum_image_eq(oldvalue, newvalue, att->attbyval, att->attlen))
    2848         720 :                 return false;
    2849             :         }
    2850             :         else
    2851             :         {
    2852             :             /*
    2853             :              * For the FK table, compare with the appropriate equality
    2854             :              * operator.  Changes that compare equal will still satisfy the
    2855             :              * constraint after the update.
    2856             :              */
    2857         740 :             if (!ri_AttributesEqual(riinfo->ff_eq_oprs[i], RIAttType(rel, attnums[i]),
    2858             :                                     oldvalue, newvalue))
    2859         270 :                 return false;
    2860             :         }
    2861             :     }
    2862             : 
    2863         970 :     return true;
    2864             : }
    2865             : 
    2866             : 
    2867             : /*
    2868             :  * ri_AttributesEqual -
    2869             :  *
    2870             :  * Call the appropriate equality comparison operator for two values.
    2871             :  *
    2872             :  * NB: we have already checked that neither value is null.
    2873             :  */
    2874             : static bool
    2875         740 : ri_AttributesEqual(Oid eq_opr, Oid typeid,
    2876             :                    Datum oldvalue, Datum newvalue)
    2877             : {
    2878         740 :     RI_CompareHashEntry *entry = ri_HashCompareOp(eq_opr, typeid);
    2879             : 
    2880             :     /* Do we need to cast the values? */
    2881         740 :     if (OidIsValid(entry->cast_func_finfo.fn_oid))
    2882             :     {
    2883          12 :         oldvalue = FunctionCall3(&entry->cast_func_finfo,
    2884             :                                  oldvalue,
    2885             :                                  Int32GetDatum(-1), /* typmod */
    2886             :                                  BoolGetDatum(false));  /* implicit coercion */
    2887          12 :         newvalue = FunctionCall3(&entry->cast_func_finfo,
    2888             :                                  newvalue,
    2889             :                                  Int32GetDatum(-1), /* typmod */
    2890             :                                  BoolGetDatum(false));  /* implicit coercion */
    2891             :     }
    2892             : 
    2893             :     /*
    2894             :      * Apply the comparison operator.
    2895             :      *
    2896             :      * Note: This function is part of a call stack that determines whether an
    2897             :      * update to a row is significant enough that it needs checking or action
    2898             :      * on the other side of a foreign-key constraint.  Therefore, the
    2899             :      * comparison here would need to be done with the collation of the *other*
    2900             :      * table.  For simplicity (e.g., we might not even have the other table
    2901             :      * open), we'll just use the default collation here, which could lead to
    2902             :      * some false negatives.  All this would break if we ever allow
    2903             :      * database-wide collations to be nondeterministic.
    2904             :      */
    2905         740 :     return DatumGetBool(FunctionCall2Coll(&entry->eq_opr_finfo,
    2906             :                                           DEFAULT_COLLATION_OID,
    2907             :                                           oldvalue, newvalue));
    2908             : }
    2909             : 
    2910             : /*
    2911             :  * ri_HashCompareOp -
    2912             :  *
    2913             :  * See if we know how to compare two values, and create a new hash entry
    2914             :  * if not.
    2915             :  */
    2916             : static RI_CompareHashEntry *
    2917         740 : ri_HashCompareOp(Oid eq_opr, Oid typeid)
    2918             : {
    2919             :     RI_CompareKey key;
    2920             :     RI_CompareHashEntry *entry;
    2921             :     bool        found;
    2922             : 
    2923             :     /*
    2924             :      * On the first call initialize the hashtable
    2925             :      */
    2926         740 :     if (!ri_compare_cache)
    2927           0 :         ri_InitHashTables();
    2928             : 
    2929             :     /*
    2930             :      * Find or create a hash entry.  Note we're assuming RI_CompareKey
    2931             :      * contains no struct padding.
    2932             :      */
    2933         740 :     key.eq_opr = eq_opr;
    2934         740 :     key.typeid = typeid;
    2935         740 :     entry = (RI_CompareHashEntry *) hash_search(ri_compare_cache,
    2936             :                                                 &key,
    2937             :                                                 HASH_ENTER, &found);
    2938         740 :     if (!found)
    2939         274 :         entry->valid = false;
    2940             : 
    2941             :     /*
    2942             :      * If not already initialized, do so.  Since we'll keep this hash entry
    2943             :      * for the life of the backend, put any subsidiary info for the function
    2944             :      * cache structs into TopMemoryContext.
    2945             :      */
    2946         740 :     if (!entry->valid)
    2947             :     {
    2948             :         Oid         lefttype,
    2949             :                     righttype,
    2950             :                     castfunc;
    2951             :         CoercionPathType pathtype;
    2952             : 
    2953             :         /* We always need to know how to call the equality operator */
    2954         274 :         fmgr_info_cxt(get_opcode(eq_opr), &entry->eq_opr_finfo,
    2955             :                       TopMemoryContext);
    2956             : 
    2957             :         /*
    2958             :          * If we chose to use a cast from FK to PK type, we may have to apply
    2959             :          * the cast function to get to the operator's input type.
    2960             :          *
    2961             :          * XXX eventually it would be good to support array-coercion cases
    2962             :          * here and in ri_AttributesEqual().  At the moment there is no point
    2963             :          * because cases involving nonidentical array types will be rejected
    2964             :          * at constraint creation time.
    2965             :          *
    2966             :          * XXX perhaps also consider supporting CoerceViaIO?  No need at the
    2967             :          * moment since that will never be generated for implicit coercions.
    2968             :          */
    2969         274 :         op_input_types(eq_opr, &lefttype, &righttype);
    2970             :         Assert(lefttype == righttype);
    2971         274 :         if (typeid == lefttype)
    2972         268 :             castfunc = InvalidOid;  /* simplest case */
    2973             :         else
    2974             :         {
    2975           6 :             pathtype = find_coercion_pathway(lefttype, typeid,
    2976             :                                              COERCION_IMPLICIT,
    2977             :                                              &castfunc);
    2978           6 :             if (pathtype != COERCION_PATH_FUNC &&
    2979             :                 pathtype != COERCION_PATH_RELABELTYPE)
    2980             :             {
    2981             :                 /*
    2982             :                  * The declared input type of the eq_opr might be a
    2983             :                  * polymorphic type such as ANYARRAY or ANYENUM, or other
    2984             :                  * special cases such as RECORD; find_coercion_pathway
    2985             :                  * currently doesn't subsume these special cases.
    2986             :                  */
    2987           0 :                 if (!IsBinaryCoercible(typeid, lefttype))
    2988           0 :                     elog(ERROR, "no conversion function from %s to %s",
    2989             :                          format_type_be(typeid),
    2990             :                          format_type_be(lefttype));
    2991             :             }
    2992             :         }
    2993         274 :         if (OidIsValid(castfunc))
    2994           6 :             fmgr_info_cxt(castfunc, &entry->cast_func_finfo,
    2995             :                           TopMemoryContext);
    2996             :         else
    2997         268 :             entry->cast_func_finfo.fn_oid = InvalidOid;
    2998         274 :         entry->valid = true;
    2999             :     }
    3000             : 
    3001         740 :     return entry;
    3002             : }
    3003             : 
    3004             : 
    3005             : /*
    3006             :  * Given a trigger function OID, determine whether it is an RI trigger,
    3007             :  * and if so whether it is attached to PK or FK relation.
    3008             :  */
    3009             : int
    3010        7410 : RI_FKey_trigger_type(Oid tgfoid)
    3011             : {
    3012        7410 :     switch (tgfoid)
    3013             :     {
    3014        2552 :         case F_RI_FKEY_CASCADE_DEL:
    3015             :         case F_RI_FKEY_CASCADE_UPD:
    3016             :         case F_RI_FKEY_RESTRICT_DEL:
    3017             :         case F_RI_FKEY_RESTRICT_UPD:
    3018             :         case F_RI_FKEY_SETNULL_DEL:
    3019             :         case F_RI_FKEY_SETNULL_UPD:
    3020             :         case F_RI_FKEY_SETDEFAULT_DEL:
    3021             :         case F_RI_FKEY_SETDEFAULT_UPD:
    3022             :         case F_RI_FKEY_NOACTION_DEL:
    3023             :         case F_RI_FKEY_NOACTION_UPD:
    3024        2552 :             return RI_TRIGGER_PK;
    3025             : 
    3026        2188 :         case F_RI_FKEY_CHECK_INS:
    3027             :         case F_RI_FKEY_CHECK_UPD:
    3028        2188 :             return RI_TRIGGER_FK;
    3029             :     }
    3030             : 
    3031        2670 :     return RI_TRIGGER_NONE;
    3032             : }

Generated by: LCOV version 1.14