LCOV - code coverage report
Current view: top level - src/backend/utils/adt - ri_triggers.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 781 841 92.9 %
Date: 2024-11-21 09:14:53 Functions: 42 42 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * ri_triggers.c
       4             :  *
       5             :  *  Generic trigger procedures for referential integrity constraint
       6             :  *  checks.
       7             :  *
       8             :  *  Note about memory management: the private hashtables kept here live
       9             :  *  across query and transaction boundaries, in fact they live as long as
      10             :  *  the backend does.  This works because the hashtable structures
      11             :  *  themselves are allocated by dynahash.c in its permanent DynaHashCxt,
      12             :  *  and the SPI plans they point to are saved using SPI_keepplan().
      13             :  *  There is not currently any provision for throwing away a no-longer-needed
      14             :  *  plan --- consider improving this someday.
      15             :  *
      16             :  *
      17             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
      18             :  *
      19             :  * src/backend/utils/adt/ri_triggers.c
      20             :  *
      21             :  *-------------------------------------------------------------------------
      22             :  */
      23             : 
      24             : #include "postgres.h"
      25             : 
      26             : #include "access/htup_details.h"
      27             : #include "access/sysattr.h"
      28             : #include "access/table.h"
      29             : #include "access/tableam.h"
      30             : #include "access/xact.h"
      31             : #include "catalog/pg_collation.h"
      32             : #include "catalog/pg_constraint.h"
      33             : #include "catalog/pg_proc.h"
      34             : #include "commands/trigger.h"
      35             : #include "executor/executor.h"
      36             : #include "executor/spi.h"
      37             : #include "lib/ilist.h"
      38             : #include "miscadmin.h"
      39             : #include "parser/parse_coerce.h"
      40             : #include "parser/parse_relation.h"
      41             : #include "utils/acl.h"
      42             : #include "utils/builtins.h"
      43             : #include "utils/datum.h"
      44             : #include "utils/fmgroids.h"
      45             : #include "utils/guc.h"
      46             : #include "utils/inval.h"
      47             : #include "utils/lsyscache.h"
      48             : #include "utils/memutils.h"
      49             : #include "utils/rangetypes.h"
      50             : #include "utils/rel.h"
      51             : #include "utils/rls.h"
      52             : #include "utils/ruleutils.h"
      53             : #include "utils/snapmgr.h"
      54             : #include "utils/syscache.h"
      55             : 
      56             : /*
      57             :  * Local definitions
      58             :  */
      59             : 
      60             : #define RI_MAX_NUMKEYS                  INDEX_MAX_KEYS
      61             : 
      62             : #define RI_INIT_CONSTRAINTHASHSIZE      64
      63             : #define RI_INIT_QUERYHASHSIZE           (RI_INIT_CONSTRAINTHASHSIZE * 4)
      64             : 
      65             : #define RI_KEYS_ALL_NULL                0
      66             : #define RI_KEYS_SOME_NULL               1
      67             : #define RI_KEYS_NONE_NULL               2
      68             : 
      69             : /* RI query type codes */
      70             : /* these queries are executed against the PK (referenced) table: */
      71             : #define RI_PLAN_CHECK_LOOKUPPK          1
      72             : #define RI_PLAN_CHECK_LOOKUPPK_FROM_PK  2
      73             : #define RI_PLAN_LAST_ON_PK              RI_PLAN_CHECK_LOOKUPPK_FROM_PK
      74             : /* these queries are executed against the FK (referencing) table: */
      75             : #define RI_PLAN_CASCADE_ONDELETE        3
      76             : #define RI_PLAN_CASCADE_ONUPDATE        4
      77             : /* For RESTRICT, the same plan can be used for both ON DELETE and ON UPDATE triggers. */
      78             : #define RI_PLAN_RESTRICT                5
      79             : #define RI_PLAN_SETNULL_ONDELETE        6
      80             : #define RI_PLAN_SETNULL_ONUPDATE        7
      81             : #define RI_PLAN_SETDEFAULT_ONDELETE     8
      82             : #define RI_PLAN_SETDEFAULT_ONUPDATE     9
      83             : 
      84             : #define MAX_QUOTED_NAME_LEN  (NAMEDATALEN*2+3)
      85             : #define MAX_QUOTED_REL_NAME_LEN  (MAX_QUOTED_NAME_LEN*2)
      86             : 
      87             : #define RIAttName(rel, attnum)  NameStr(*attnumAttName(rel, attnum))
      88             : #define RIAttType(rel, attnum)  attnumTypeId(rel, attnum)
      89             : #define RIAttCollation(rel, attnum) attnumCollationId(rel, attnum)
      90             : 
      91             : #define RI_TRIGTYPE_INSERT 1
      92             : #define RI_TRIGTYPE_UPDATE 2
      93             : #define RI_TRIGTYPE_DELETE 3
      94             : 
      95             : 
      96             : /*
      97             :  * RI_ConstraintInfo
      98             :  *
      99             :  * Information extracted from an FK pg_constraint entry.  This is cached in
     100             :  * ri_constraint_cache.
     101             :  *
     102             :  * Note that pf/pp/ff_eq_oprs may hold the overlaps operator instead of equals
     103             :  * for the PERIOD part of a temporal foreign key.
     104             :  */
     105             : typedef struct RI_ConstraintInfo
     106             : {
     107             :     Oid         constraint_id;  /* OID of pg_constraint entry (hash key) */
     108             :     bool        valid;          /* successfully initialized? */
     109             :     Oid         constraint_root_id; /* OID of topmost ancestor constraint;
     110             :                                      * same as constraint_id if not inherited */
     111             :     uint32      oidHashValue;   /* hash value of constraint_id */
     112             :     uint32      rootHashValue;  /* hash value of constraint_root_id */
     113             :     NameData    conname;        /* name of the FK constraint */
     114             :     Oid         pk_relid;       /* referenced relation */
     115             :     Oid         fk_relid;       /* referencing relation */
     116             :     char        confupdtype;    /* foreign key's ON UPDATE action */
     117             :     char        confdeltype;    /* foreign key's ON DELETE action */
     118             :     int         ndelsetcols;    /* number of columns referenced in ON DELETE
     119             :                                  * SET clause */
     120             :     int16       confdelsetcols[RI_MAX_NUMKEYS]; /* attnums of cols to set on
     121             :                                                  * delete */
     122             :     char        confmatchtype;  /* foreign key's match type */
     123             :     bool        hasperiod;      /* if the foreign key uses PERIOD */
     124             :     int         nkeys;          /* number of key columns */
     125             :     int16       pk_attnums[RI_MAX_NUMKEYS]; /* attnums of referenced cols */
     126             :     int16       fk_attnums[RI_MAX_NUMKEYS]; /* attnums of referencing cols */
     127             :     Oid         pf_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = FK) */
     128             :     Oid         pp_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = PK) */
     129             :     Oid         ff_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (FK = FK) */
     130             :     Oid         period_contained_by_oper;   /* anyrange <@ anyrange */
     131             :     Oid         agged_period_contained_by_oper; /* fkattr <@ range_agg(pkattr) */
     132             :     dlist_node  valid_link;     /* Link in list of valid entries */
     133             : } RI_ConstraintInfo;
     134             : 
     135             : /*
     136             :  * RI_QueryKey
     137             :  *
     138             :  * The key identifying a prepared SPI plan in our query hashtable
     139             :  */
     140             : typedef struct RI_QueryKey
     141             : {
     142             :     Oid         constr_id;      /* OID of pg_constraint entry */
     143             :     int32       constr_queryno; /* query type ID, see RI_PLAN_XXX above */
     144             : } RI_QueryKey;
     145             : 
     146             : /*
     147             :  * RI_QueryHashEntry
     148             :  */
     149             : typedef struct RI_QueryHashEntry
     150             : {
     151             :     RI_QueryKey key;
     152             :     SPIPlanPtr  plan;
     153             : } RI_QueryHashEntry;
     154             : 
     155             : /*
     156             :  * RI_CompareKey
     157             :  *
     158             :  * The key identifying an entry showing how to compare two values
     159             :  */
     160             : typedef struct RI_CompareKey
     161             : {
     162             :     Oid         eq_opr;         /* the equality operator to apply */
     163             :     Oid         typeid;         /* the data type to apply it to */
     164             : } RI_CompareKey;
     165             : 
     166             : /*
     167             :  * RI_CompareHashEntry
     168             :  */
     169             : typedef struct RI_CompareHashEntry
     170             : {
     171             :     RI_CompareKey key;
     172             :     bool        valid;          /* successfully initialized? */
     173             :     FmgrInfo    eq_opr_finfo;   /* call info for equality fn */
     174             :     FmgrInfo    cast_func_finfo;    /* in case we must coerce input */
     175             : } RI_CompareHashEntry;
     176             : 
     177             : 
     178             : /*
     179             :  * Local data
     180             :  */
     181             : static HTAB *ri_constraint_cache = NULL;
     182             : static HTAB *ri_query_cache = NULL;
     183             : static HTAB *ri_compare_cache = NULL;
     184             : static dclist_head ri_constraint_cache_valid_list;
     185             : 
     186             : 
     187             : /*
     188             :  * Local function prototypes
     189             :  */
     190             : static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
     191             :                               TupleTableSlot *oldslot,
     192             :                               const RI_ConstraintInfo *riinfo);
     193             : static Datum ri_restrict(TriggerData *trigdata, bool is_no_action);
     194             : static Datum ri_set(TriggerData *trigdata, bool is_set_null, int tgkind);
     195             : static void quoteOneName(char *buffer, const char *name);
     196             : static void quoteRelationName(char *buffer, Relation rel);
     197             : static void ri_GenerateQual(StringInfo buf,
     198             :                             const char *sep,
     199             :                             const char *leftop, Oid leftoptype,
     200             :                             Oid opoid,
     201             :                             const char *rightop, Oid rightoptype);
     202             : static void ri_GenerateQualCollation(StringInfo buf, Oid collation);
     203             : static int  ri_NullCheck(TupleDesc tupDesc, TupleTableSlot *slot,
     204             :                          const RI_ConstraintInfo *riinfo, bool rel_is_pk);
     205             : static void ri_BuildQueryKey(RI_QueryKey *key,
     206             :                              const RI_ConstraintInfo *riinfo,
     207             :                              int32 constr_queryno);
     208             : static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
     209             :                          const RI_ConstraintInfo *riinfo, bool rel_is_pk);
     210             : static bool ri_CompareWithCast(Oid eq_opr, Oid typeid, Oid collid,
     211             :                                Datum lhs, Datum rhs);
     212             : 
     213             : static void ri_InitHashTables(void);
     214             : static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue);
     215             : static SPIPlanPtr ri_FetchPreparedPlan(RI_QueryKey *key);
     216             : static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan);
     217             : static RI_CompareHashEntry *ri_HashCompareOp(Oid eq_opr, Oid typeid);
     218             : 
     219             : static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname,
     220             :                             int tgkind);
     221             : static const RI_ConstraintInfo *ri_FetchConstraintInfo(Trigger *trigger,
     222             :                                                        Relation trig_rel, bool rel_is_pk);
     223             : static const RI_ConstraintInfo *ri_LoadConstraintInfo(Oid constraintOid);
     224             : static Oid  get_ri_constraint_root(Oid constrOid);
     225             : static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
     226             :                                RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel);
     227             : static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo,
     228             :                             RI_QueryKey *qkey, SPIPlanPtr qplan,
     229             :                             Relation fk_rel, Relation pk_rel,
     230             :                             TupleTableSlot *oldslot, TupleTableSlot *newslot,
     231             :                             bool detectNewRows, int expect_OK);
     232             : static void ri_ExtractValues(Relation rel, TupleTableSlot *slot,
     233             :                              const RI_ConstraintInfo *riinfo, bool rel_is_pk,
     234             :                              Datum *vals, char *nulls);
     235             : static void ri_ReportViolation(const RI_ConstraintInfo *riinfo,
     236             :                                Relation pk_rel, Relation fk_rel,
     237             :                                TupleTableSlot *violatorslot, TupleDesc tupdesc,
     238             :                                int queryno, bool partgone) pg_attribute_noreturn();
     239             : 
     240             : 
     241             : /*
     242             :  * RI_FKey_check -
     243             :  *
     244             :  * Check foreign key existence (combined for INSERT and UPDATE).
     245             :  */
     246             : static Datum
     247        4462 : RI_FKey_check(TriggerData *trigdata)
     248             : {
     249             :     const RI_ConstraintInfo *riinfo;
     250             :     Relation    fk_rel;
     251             :     Relation    pk_rel;
     252             :     TupleTableSlot *newslot;
     253             :     RI_QueryKey qkey;
     254             :     SPIPlanPtr  qplan;
     255             : 
     256        4462 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     257             :                                     trigdata->tg_relation, false);
     258             : 
     259        4462 :     if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
     260         448 :         newslot = trigdata->tg_newslot;
     261             :     else
     262        4014 :         newslot = trigdata->tg_trigslot;
     263             : 
     264             :     /*
     265             :      * We should not even consider checking the row if it is no longer valid,
     266             :      * since it was either deleted (so the deferred check should be skipped)
     267             :      * or updated (in which case only the latest version of the row should be
     268             :      * checked).  Test its liveness according to SnapshotSelf.  We need pin
     269             :      * and lock on the buffer to call HeapTupleSatisfiesVisibility.  Caller
     270             :      * should be holding pin, but not lock.
     271             :      */
     272        4462 :     if (!table_tuple_satisfies_snapshot(trigdata->tg_relation, newslot, SnapshotSelf))
     273          60 :         return PointerGetDatum(NULL);
     274             : 
     275             :     /*
     276             :      * Get the relation descriptors of the FK and PK tables.
     277             :      *
     278             :      * pk_rel is opened in RowShareLock mode since that's what our eventual
     279             :      * SELECT FOR KEY SHARE will get on it.
     280             :      */
     281        4402 :     fk_rel = trigdata->tg_relation;
     282        4402 :     pk_rel = table_open(riinfo->pk_relid, RowShareLock);
     283             : 
     284        4402 :     switch (ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false))
     285             :     {
     286         132 :         case RI_KEYS_ALL_NULL:
     287             : 
     288             :             /*
     289             :              * No further check needed - an all-NULL key passes every type of
     290             :              * foreign key constraint.
     291             :              */
     292         132 :             table_close(pk_rel, RowShareLock);
     293         132 :             return PointerGetDatum(NULL);
     294             : 
     295         156 :         case RI_KEYS_SOME_NULL:
     296             : 
     297             :             /*
     298             :              * This is the only case that differs between the three kinds of
     299             :              * MATCH.
     300             :              */
     301         156 :             switch (riinfo->confmatchtype)
     302             :             {
     303          36 :                 case FKCONSTR_MATCH_FULL:
     304             : 
     305             :                     /*
     306             :                      * Not allowed - MATCH FULL says either all or none of the
     307             :                      * attributes can be NULLs
     308             :                      */
     309          36 :                     ereport(ERROR,
     310             :                             (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
     311             :                              errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
     312             :                                     RelationGetRelationName(fk_rel),
     313             :                                     NameStr(riinfo->conname)),
     314             :                              errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
     315             :                              errtableconstraint(fk_rel,
     316             :                                                 NameStr(riinfo->conname))));
     317             :                     table_close(pk_rel, RowShareLock);
     318             :                     return PointerGetDatum(NULL);
     319             : 
     320         120 :                 case FKCONSTR_MATCH_SIMPLE:
     321             : 
     322             :                     /*
     323             :                      * MATCH SIMPLE - if ANY column is null, the key passes
     324             :                      * the constraint.
     325             :                      */
     326         120 :                     table_close(pk_rel, RowShareLock);
     327         120 :                     return PointerGetDatum(NULL);
     328             : 
     329             : #ifdef NOT_USED
     330             :                 case FKCONSTR_MATCH_PARTIAL:
     331             : 
     332             :                     /*
     333             :                      * MATCH PARTIAL - all non-null columns must match. (not
     334             :                      * implemented, can be done by modifying the query below
     335             :                      * to only include non-null columns, or by writing a
     336             :                      * special version here)
     337             :                      */
     338             :                     break;
     339             : #endif
     340             :             }
     341             : 
     342             :         case RI_KEYS_NONE_NULL:
     343             : 
     344             :             /*
     345             :              * Have a full qualified key - continue below for all three kinds
     346             :              * of MATCH.
     347             :              */
     348        4114 :             break;
     349             :     }
     350             : 
     351        4114 :     SPI_connect();
     352             : 
     353             :     /* Fetch or prepare a saved plan for the real check */
     354        4114 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK);
     355             : 
     356        4114 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     357             :     {
     358             :         StringInfoData querybuf;
     359             :         char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
     360             :         char        attname[MAX_QUOTED_NAME_LEN];
     361             :         char        paramname[16];
     362             :         const char *querysep;
     363             :         Oid         queryoids[RI_MAX_NUMKEYS];
     364             :         const char *pk_only;
     365             : 
     366             :         /* ----------
     367             :          * The query string built is
     368             :          *  SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
     369             :          *         FOR KEY SHARE OF x
     370             :          * The type id's for the $ parameters are those of the
     371             :          * corresponding FK attributes.
     372             :          *
     373             :          * But for temporal FKs we need to make sure
     374             :          * the FK's range is completely covered.
     375             :          * So we use this query instead:
     376             :          *  SELECT 1
     377             :          *  FROM    (
     378             :          *      SELECT pkperiodatt AS r
     379             :          *      FROM   [ONLY] pktable x
     380             :          *      WHERE  pkatt1 = $1 [AND ...]
     381             :          *      AND    pkperiodatt && $n
     382             :          *      FOR KEY SHARE OF x
     383             :          *  ) x1
     384             :          *  HAVING $n <@ range_agg(x1.r)
     385             :          * Note if FOR KEY SHARE ever allows GROUP BY and HAVING
     386             :          * we can make this a bit simpler.
     387             :          * ----------
     388             :          */
     389        2156 :         initStringInfo(&querybuf);
     390        4312 :         pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     391        2156 :             "" : "ONLY ";
     392        2156 :         quoteRelationName(pkrelname, pk_rel);
     393        2156 :         if (riinfo->hasperiod)
     394             :         {
     395         128 :             quoteOneName(attname,
     396         128 :                          RIAttName(pk_rel, riinfo->pk_attnums[riinfo->nkeys - 1]));
     397             : 
     398         128 :             appendStringInfo(&querybuf,
     399             :                              "SELECT 1 FROM (SELECT %s AS r FROM %s%s x",
     400             :                              attname, pk_only, pkrelname);
     401             :         }
     402             :         else
     403             :         {
     404        2028 :             appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     405             :                              pk_only, pkrelname);
     406             :         }
     407        2156 :         querysep = "WHERE";
     408        4674 :         for (int i = 0; i < riinfo->nkeys; i++)
     409             :         {
     410        2518 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     411        2518 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     412             : 
     413        2518 :             quoteOneName(attname,
     414        2518 :                          RIAttName(pk_rel, riinfo->pk_attnums[i]));
     415        2518 :             sprintf(paramname, "$%d", i + 1);
     416        2518 :             ri_GenerateQual(&querybuf, querysep,
     417             :                             attname, pk_type,
     418             :                             riinfo->pf_eq_oprs[i],
     419             :                             paramname, fk_type);
     420        2518 :             querysep = "AND";
     421        2518 :             queryoids[i] = fk_type;
     422             :         }
     423        2156 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     424        2156 :         if (riinfo->hasperiod)
     425             :         {
     426         128 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[riinfo->nkeys - 1]);
     427             : 
     428         128 :             appendStringInfo(&querybuf, ") x1 HAVING ");
     429         128 :             sprintf(paramname, "$%d", riinfo->nkeys);
     430         128 :             ri_GenerateQual(&querybuf, "",
     431             :                             paramname, fk_type,
     432             :                             riinfo->agged_period_contained_by_oper,
     433             :                             "pg_catalog.range_agg", ANYMULTIRANGEOID);
     434         128 :             appendStringInfo(&querybuf, "(x1.r)");
     435             :         }
     436             : 
     437             :         /* Prepare and save the plan */
     438        2156 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     439             :                              &qkey, fk_rel, pk_rel);
     440             :     }
     441             : 
     442             :     /*
     443             :      * Now check that foreign key exists in PK table
     444             :      *
     445             :      * XXX detectNewRows must be true when a partitioned table is on the
     446             :      * referenced side.  The reason is that our snapshot must be fresh in
     447             :      * order for the hack in find_inheritance_children() to work.
     448             :      */
     449        4114 :     ri_PerformCheck(riinfo, &qkey, qplan,
     450             :                     fk_rel, pk_rel,
     451             :                     NULL, newslot,
     452        4114 :                     pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE,
     453             :                     SPI_OK_SELECT);
     454             : 
     455        3560 :     if (SPI_finish() != SPI_OK_FINISH)
     456           0 :         elog(ERROR, "SPI_finish failed");
     457             : 
     458        3560 :     table_close(pk_rel, RowShareLock);
     459             : 
     460        3560 :     return PointerGetDatum(NULL);
     461             : }
     462             : 
     463             : 
     464             : /*
     465             :  * RI_FKey_check_ins -
     466             :  *
     467             :  * Check foreign key existence at insert event on FK table.
     468             :  */
     469             : Datum
     470        4014 : RI_FKey_check_ins(PG_FUNCTION_ARGS)
     471             : {
     472             :     /* Check that this is a valid trigger call on the right time and event. */
     473        4014 :     ri_CheckTrigger(fcinfo, "RI_FKey_check_ins", RI_TRIGTYPE_INSERT);
     474             : 
     475             :     /* Share code with UPDATE case. */
     476        4014 :     return RI_FKey_check((TriggerData *) fcinfo->context);
     477             : }
     478             : 
     479             : 
     480             : /*
     481             :  * RI_FKey_check_upd -
     482             :  *
     483             :  * Check foreign key existence at update event on FK table.
     484             :  */
     485             : Datum
     486         448 : RI_FKey_check_upd(PG_FUNCTION_ARGS)
     487             : {
     488             :     /* Check that this is a valid trigger call on the right time and event. */
     489         448 :     ri_CheckTrigger(fcinfo, "RI_FKey_check_upd", RI_TRIGTYPE_UPDATE);
     490             : 
     491             :     /* Share code with INSERT case. */
     492         448 :     return RI_FKey_check((TriggerData *) fcinfo->context);
     493             : }
     494             : 
     495             : 
     496             : /*
     497             :  * ri_Check_Pk_Match
     498             :  *
     499             :  * Check to see if another PK row has been created that provides the same
     500             :  * key values as the "oldslot" that's been modified or deleted in our trigger
     501             :  * event.  Returns true if a match is found in the PK table.
     502             :  *
     503             :  * We assume the caller checked that the oldslot contains no NULL key values,
     504             :  * since otherwise a match is impossible.
     505             :  */
     506             : static bool
     507        1032 : ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel,
     508             :                   TupleTableSlot *oldslot,
     509             :                   const RI_ConstraintInfo *riinfo)
     510             : {
     511             :     SPIPlanPtr  qplan;
     512             :     RI_QueryKey qkey;
     513             :     bool        result;
     514             : 
     515             :     /* Only called for non-null rows */
     516             :     Assert(ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) == RI_KEYS_NONE_NULL);
     517             : 
     518        1032 :     SPI_connect();
     519             : 
     520             :     /*
     521             :      * Fetch or prepare a saved plan for checking PK table with values coming
     522             :      * from a PK row
     523             :      */
     524        1032 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK_FROM_PK);
     525             : 
     526        1032 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     527             :     {
     528             :         StringInfoData querybuf;
     529             :         char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
     530             :         char        attname[MAX_QUOTED_NAME_LEN];
     531             :         char        paramname[16];
     532             :         const char *querysep;
     533             :         const char *pk_only;
     534             :         Oid         queryoids[RI_MAX_NUMKEYS];
     535             : 
     536             :         /* ----------
     537             :          * The query string built is
     538             :          *  SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...]
     539             :          *         FOR KEY SHARE OF x
     540             :          * The type id's for the $ parameters are those of the
     541             :          * PK attributes themselves.
     542             :          *
     543             :          * But for temporal FKs we need to make sure
     544             :          * the old PK's range is completely covered.
     545             :          * So we use this query instead:
     546             :          *  SELECT 1
     547             :          *  FROM    (
     548             :          *    SELECT pkperiodatt AS r
     549             :          *    FROM   [ONLY] pktable x
     550             :          *    WHERE  pkatt1 = $1 [AND ...]
     551             :          *    AND    pkperiodatt && $n
     552             :          *    FOR KEY SHARE OF x
     553             :          *  ) x1
     554             :          *  HAVING $n <@ range_agg(x1.r)
     555             :          * Note if FOR KEY SHARE ever allows GROUP BY and HAVING
     556             :          * we can make this a bit simpler.
     557             :          * ----------
     558             :          */
     559         470 :         initStringInfo(&querybuf);
     560         940 :         pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     561         470 :             "" : "ONLY ";
     562         470 :         quoteRelationName(pkrelname, pk_rel);
     563         470 :         if (riinfo->hasperiod)
     564             :         {
     565         126 :             quoteOneName(attname, RIAttName(pk_rel, riinfo->pk_attnums[riinfo->nkeys - 1]));
     566             : 
     567         126 :             appendStringInfo(&querybuf,
     568             :                              "SELECT 1 FROM (SELECT %s AS r FROM %s%s x",
     569             :                              attname, pk_only, pkrelname);
     570             :         }
     571             :         else
     572             :         {
     573         344 :             appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     574             :                              pk_only, pkrelname);
     575             :         }
     576         470 :         querysep = "WHERE";
     577        1194 :         for (int i = 0; i < riinfo->nkeys; i++)
     578             :         {
     579         724 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     580             : 
     581         724 :             quoteOneName(attname,
     582         724 :                          RIAttName(pk_rel, riinfo->pk_attnums[i]));
     583         724 :             sprintf(paramname, "$%d", i + 1);
     584         724 :             ri_GenerateQual(&querybuf, querysep,
     585             :                             attname, pk_type,
     586             :                             riinfo->pp_eq_oprs[i],
     587             :                             paramname, pk_type);
     588         724 :             querysep = "AND";
     589         724 :             queryoids[i] = pk_type;
     590             :         }
     591         470 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     592         470 :         if (riinfo->hasperiod)
     593             :         {
     594         126 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[riinfo->nkeys - 1]);
     595             : 
     596         126 :             appendStringInfo(&querybuf, ") x1 HAVING ");
     597         126 :             sprintf(paramname, "$%d", riinfo->nkeys);
     598         126 :             ri_GenerateQual(&querybuf, "",
     599             :                             paramname, fk_type,
     600             :                             riinfo->agged_period_contained_by_oper,
     601             :                             "pg_catalog.range_agg", ANYMULTIRANGEOID);
     602         126 :             appendStringInfo(&querybuf, "(x1.r)");
     603             :         }
     604             : 
     605             :         /* Prepare and save the plan */
     606         470 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     607             :                              &qkey, fk_rel, pk_rel);
     608             :     }
     609             : 
     610             :     /*
     611             :      * We have a plan now. Run it.
     612             :      */
     613        1032 :     result = ri_PerformCheck(riinfo, &qkey, qplan,
     614             :                              fk_rel, pk_rel,
     615             :                              oldslot, NULL,
     616             :                              true,  /* treat like update */
     617             :                              SPI_OK_SELECT);
     618             : 
     619        1032 :     if (SPI_finish() != SPI_OK_FINISH)
     620           0 :         elog(ERROR, "SPI_finish failed");
     621             : 
     622        1032 :     return result;
     623             : }
     624             : 
     625             : 
     626             : /*
     627             :  * RI_FKey_noaction_del -
     628             :  *
     629             :  * Give an error and roll back the current transaction if the
     630             :  * delete has resulted in a violation of the given referential
     631             :  * integrity constraint.
     632             :  */
     633             : Datum
     634         438 : RI_FKey_noaction_del(PG_FUNCTION_ARGS)
     635             : {
     636             :     /* Check that this is a valid trigger call on the right time and event. */
     637         438 :     ri_CheckTrigger(fcinfo, "RI_FKey_noaction_del", RI_TRIGTYPE_DELETE);
     638             : 
     639             :     /* Share code with RESTRICT/UPDATE cases. */
     640         438 :     return ri_restrict((TriggerData *) fcinfo->context, true);
     641             : }
     642             : 
     643             : /*
     644             :  * RI_FKey_restrict_del -
     645             :  *
     646             :  * Restrict delete from PK table to rows unreferenced by foreign key.
     647             :  *
     648             :  * The SQL standard intends that this referential action occur exactly when
     649             :  * the delete is performed, rather than after.  This appears to be
     650             :  * the only difference between "NO ACTION" and "RESTRICT".  In Postgres
     651             :  * we still implement this as an AFTER trigger, but it's non-deferrable.
     652             :  */
     653             : Datum
     654          78 : RI_FKey_restrict_del(PG_FUNCTION_ARGS)
     655             : {
     656             :     /* Check that this is a valid trigger call on the right time and event. */
     657          78 :     ri_CheckTrigger(fcinfo, "RI_FKey_restrict_del", RI_TRIGTYPE_DELETE);
     658             : 
     659             :     /* Share code with NO ACTION/UPDATE cases. */
     660          78 :     return ri_restrict((TriggerData *) fcinfo->context, false);
     661             : }
     662             : 
     663             : /*
     664             :  * RI_FKey_noaction_upd -
     665             :  *
     666             :  * Give an error and roll back the current transaction if the
     667             :  * update has resulted in a violation of the given referential
     668             :  * integrity constraint.
     669             :  */
     670             : Datum
     671         462 : RI_FKey_noaction_upd(PG_FUNCTION_ARGS)
     672             : {
     673             :     /* Check that this is a valid trigger call on the right time and event. */
     674         462 :     ri_CheckTrigger(fcinfo, "RI_FKey_noaction_upd", RI_TRIGTYPE_UPDATE);
     675             : 
     676             :     /* Share code with RESTRICT/DELETE cases. */
     677         462 :     return ri_restrict((TriggerData *) fcinfo->context, true);
     678             : }
     679             : 
     680             : /*
     681             :  * RI_FKey_restrict_upd -
     682             :  *
     683             :  * Restrict update of PK to rows unreferenced by foreign key.
     684             :  *
     685             :  * The SQL standard intends that this referential action occur exactly when
     686             :  * the update is performed, rather than after.  This appears to be
     687             :  * the only difference between "NO ACTION" and "RESTRICT".  In Postgres
     688             :  * we still implement this as an AFTER trigger, but it's non-deferrable.
     689             :  */
     690             : Datum
     691          90 : RI_FKey_restrict_upd(PG_FUNCTION_ARGS)
     692             : {
     693             :     /* Check that this is a valid trigger call on the right time and event. */
     694          90 :     ri_CheckTrigger(fcinfo, "RI_FKey_restrict_upd", RI_TRIGTYPE_UPDATE);
     695             : 
     696             :     /* Share code with NO ACTION/DELETE cases. */
     697          90 :     return ri_restrict((TriggerData *) fcinfo->context, false);
     698             : }
     699             : 
     700             : /*
     701             :  * ri_restrict -
     702             :  *
     703             :  * Common code for ON DELETE RESTRICT, ON DELETE NO ACTION,
     704             :  * ON UPDATE RESTRICT, and ON UPDATE NO ACTION.
     705             :  */
     706             : static Datum
     707        1200 : ri_restrict(TriggerData *trigdata, bool is_no_action)
     708             : {
     709             :     const RI_ConstraintInfo *riinfo;
     710             :     Relation    fk_rel;
     711             :     Relation    pk_rel;
     712             :     TupleTableSlot *oldslot;
     713             :     RI_QueryKey qkey;
     714             :     SPIPlanPtr  qplan;
     715             : 
     716        1200 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     717             :                                     trigdata->tg_relation, true);
     718             : 
     719             :     /*
     720             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
     721             :      *
     722             :      * fk_rel is opened in RowShareLock mode since that's what our eventual
     723             :      * SELECT FOR KEY SHARE will get on it.
     724             :      */
     725        1200 :     fk_rel = table_open(riinfo->fk_relid, RowShareLock);
     726        1200 :     pk_rel = trigdata->tg_relation;
     727        1200 :     oldslot = trigdata->tg_trigslot;
     728             : 
     729             :     /*
     730             :      * If another PK row now exists providing the old key values, we should
     731             :      * not do anything.  However, this check should only be made in the NO
     732             :      * ACTION case; in RESTRICT cases we don't wish to allow another row to be
     733             :      * substituted.
     734             :      */
     735        2232 :     if (is_no_action &&
     736        1032 :         ri_Check_Pk_Match(pk_rel, fk_rel, oldslot, riinfo))
     737             :     {
     738          76 :         table_close(fk_rel, RowShareLock);
     739          76 :         return PointerGetDatum(NULL);
     740             :     }
     741             : 
     742        1124 :     SPI_connect();
     743             : 
     744             :     /*
     745             :      * Fetch or prepare a saved plan for the restrict lookup (it's the same
     746             :      * query for delete and update cases)
     747             :      */
     748        1124 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_RESTRICT);
     749             : 
     750        1124 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     751             :     {
     752             :         StringInfoData querybuf;
     753             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     754             :         char        attname[MAX_QUOTED_NAME_LEN];
     755             :         char        paramname[16];
     756             :         const char *querysep;
     757             :         Oid         queryoids[RI_MAX_NUMKEYS];
     758             :         const char *fk_only;
     759             : 
     760             :         /* ----------
     761             :          * The query string built is
     762             :          *  SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = fkatt1 [AND ...]
     763             :          *         FOR KEY SHARE OF x
     764             :          * The type id's for the $ parameters are those of the
     765             :          * corresponding PK attributes.
     766             :          * ----------
     767             :          */
     768         470 :         initStringInfo(&querybuf);
     769         940 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     770         470 :             "" : "ONLY ";
     771         470 :         quoteRelationName(fkrelname, fk_rel);
     772         470 :         appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x",
     773             :                          fk_only, fkrelname);
     774         470 :         querysep = "WHERE";
     775        1236 :         for (int i = 0; i < riinfo->nkeys; i++)
     776             :         {
     777         766 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     778         766 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     779             : 
     780         766 :             quoteOneName(attname,
     781         766 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
     782         766 :             sprintf(paramname, "$%d", i + 1);
     783         766 :             ri_GenerateQual(&querybuf, querysep,
     784             :                             paramname, pk_type,
     785             :                             riinfo->pf_eq_oprs[i],
     786             :                             attname, fk_type);
     787         766 :             querysep = "AND";
     788         766 :             queryoids[i] = pk_type;
     789             :         }
     790         470 :         appendStringInfoString(&querybuf, " FOR KEY SHARE OF x");
     791             : 
     792             :         /* Prepare and save the plan */
     793         470 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     794             :                              &qkey, fk_rel, pk_rel);
     795             :     }
     796             : 
     797             :     /*
     798             :      * We have a plan now. Run it to check for existing references.
     799             :      */
     800        1124 :     ri_PerformCheck(riinfo, &qkey, qplan,
     801             :                     fk_rel, pk_rel,
     802             :                     oldslot, NULL,
     803             :                     true,       /* must detect new rows */
     804             :                     SPI_OK_SELECT);
     805             : 
     806         634 :     if (SPI_finish() != SPI_OK_FINISH)
     807           0 :         elog(ERROR, "SPI_finish failed");
     808             : 
     809         634 :     table_close(fk_rel, RowShareLock);
     810             : 
     811         634 :     return PointerGetDatum(NULL);
     812             : }
     813             : 
     814             : 
     815             : /*
     816             :  * RI_FKey_cascade_del -
     817             :  *
     818             :  * Cascaded delete foreign key references at delete event on PK table.
     819             :  */
     820             : Datum
     821         148 : RI_FKey_cascade_del(PG_FUNCTION_ARGS)
     822             : {
     823         148 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
     824             :     const RI_ConstraintInfo *riinfo;
     825             :     Relation    fk_rel;
     826             :     Relation    pk_rel;
     827             :     TupleTableSlot *oldslot;
     828             :     RI_QueryKey qkey;
     829             :     SPIPlanPtr  qplan;
     830             : 
     831             :     /* Check that this is a valid trigger call on the right time and event. */
     832         148 :     ri_CheckTrigger(fcinfo, "RI_FKey_cascade_del", RI_TRIGTYPE_DELETE);
     833             : 
     834         148 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     835             :                                     trigdata->tg_relation, true);
     836             : 
     837             :     /*
     838             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
     839             :      *
     840             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
     841             :      * eventual DELETE will get on it.
     842             :      */
     843         148 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
     844         148 :     pk_rel = trigdata->tg_relation;
     845         148 :     oldslot = trigdata->tg_trigslot;
     846             : 
     847         148 :     SPI_connect();
     848             : 
     849             :     /* Fetch or prepare a saved plan for the cascaded delete */
     850         148 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_ONDELETE);
     851             : 
     852         148 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     853             :     {
     854             :         StringInfoData querybuf;
     855             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     856             :         char        attname[MAX_QUOTED_NAME_LEN];
     857             :         char        paramname[16];
     858             :         const char *querysep;
     859             :         Oid         queryoids[RI_MAX_NUMKEYS];
     860             :         const char *fk_only;
     861             : 
     862             :         /* ----------
     863             :          * The query string built is
     864             :          *  DELETE FROM [ONLY] <fktable> WHERE $1 = fkatt1 [AND ...]
     865             :          * The type id's for the $ parameters are those of the
     866             :          * corresponding PK attributes.
     867             :          * ----------
     868             :          */
     869          88 :         initStringInfo(&querybuf);
     870         176 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     871          88 :             "" : "ONLY ";
     872          88 :         quoteRelationName(fkrelname, fk_rel);
     873          88 :         appendStringInfo(&querybuf, "DELETE FROM %s%s",
     874             :                          fk_only, fkrelname);
     875          88 :         querysep = "WHERE";
     876         194 :         for (int i = 0; i < riinfo->nkeys; i++)
     877             :         {
     878         106 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     879         106 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     880             : 
     881         106 :             quoteOneName(attname,
     882         106 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
     883         106 :             sprintf(paramname, "$%d", i + 1);
     884         106 :             ri_GenerateQual(&querybuf, querysep,
     885             :                             paramname, pk_type,
     886             :                             riinfo->pf_eq_oprs[i],
     887             :                             attname, fk_type);
     888         106 :             querysep = "AND";
     889         106 :             queryoids[i] = pk_type;
     890             :         }
     891             : 
     892             :         /* Prepare and save the plan */
     893          88 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
     894             :                              &qkey, fk_rel, pk_rel);
     895             :     }
     896             : 
     897             :     /*
     898             :      * We have a plan now. Build up the arguments from the key values in the
     899             :      * deleted PK tuple and delete the referencing rows
     900             :      */
     901         148 :     ri_PerformCheck(riinfo, &qkey, qplan,
     902             :                     fk_rel, pk_rel,
     903             :                     oldslot, NULL,
     904             :                     true,       /* must detect new rows */
     905             :                     SPI_OK_DELETE);
     906             : 
     907         146 :     if (SPI_finish() != SPI_OK_FINISH)
     908           0 :         elog(ERROR, "SPI_finish failed");
     909             : 
     910         146 :     table_close(fk_rel, RowExclusiveLock);
     911             : 
     912         146 :     return PointerGetDatum(NULL);
     913             : }
     914             : 
     915             : 
     916             : /*
     917             :  * RI_FKey_cascade_upd -
     918             :  *
     919             :  * Cascaded update foreign key references at update event on PK table.
     920             :  */
     921             : Datum
     922         198 : RI_FKey_cascade_upd(PG_FUNCTION_ARGS)
     923             : {
     924         198 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
     925             :     const RI_ConstraintInfo *riinfo;
     926             :     Relation    fk_rel;
     927             :     Relation    pk_rel;
     928             :     TupleTableSlot *newslot;
     929             :     TupleTableSlot *oldslot;
     930             :     RI_QueryKey qkey;
     931             :     SPIPlanPtr  qplan;
     932             : 
     933             :     /* Check that this is a valid trigger call on the right time and event. */
     934         198 :     ri_CheckTrigger(fcinfo, "RI_FKey_cascade_upd", RI_TRIGTYPE_UPDATE);
     935             : 
     936         198 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
     937             :                                     trigdata->tg_relation, true);
     938             : 
     939             :     /*
     940             :      * Get the relation descriptors of the FK and PK tables and the new and
     941             :      * old tuple.
     942             :      *
     943             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
     944             :      * eventual UPDATE will get on it.
     945             :      */
     946         198 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
     947         198 :     pk_rel = trigdata->tg_relation;
     948         198 :     newslot = trigdata->tg_newslot;
     949         198 :     oldslot = trigdata->tg_trigslot;
     950             : 
     951         198 :     SPI_connect();
     952             : 
     953             :     /* Fetch or prepare a saved plan for the cascaded update */
     954         198 :     ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_ONUPDATE);
     955             : 
     956         198 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
     957             :     {
     958             :         StringInfoData querybuf;
     959             :         StringInfoData qualbuf;
     960             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
     961             :         char        attname[MAX_QUOTED_NAME_LEN];
     962             :         char        paramname[16];
     963             :         const char *querysep;
     964             :         const char *qualsep;
     965             :         Oid         queryoids[RI_MAX_NUMKEYS * 2];
     966             :         const char *fk_only;
     967             : 
     968             :         /* ----------
     969             :          * The query string built is
     970             :          *  UPDATE [ONLY] <fktable> SET fkatt1 = $1 [, ...]
     971             :          *          WHERE $n = fkatt1 [AND ...]
     972             :          * The type id's for the $ parameters are those of the
     973             :          * corresponding PK attributes.  Note that we are assuming
     974             :          * there is an assignment cast from the PK to the FK type;
     975             :          * else the parser will fail.
     976             :          * ----------
     977             :          */
     978         110 :         initStringInfo(&querybuf);
     979         110 :         initStringInfo(&qualbuf);
     980         220 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
     981         110 :             "" : "ONLY ";
     982         110 :         quoteRelationName(fkrelname, fk_rel);
     983         110 :         appendStringInfo(&querybuf, "UPDATE %s%s SET",
     984             :                          fk_only, fkrelname);
     985         110 :         querysep = "";
     986         110 :         qualsep = "WHERE";
     987         248 :         for (int i = 0, j = riinfo->nkeys; i < riinfo->nkeys; i++, j++)
     988             :         {
     989         138 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
     990         138 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
     991             : 
     992         138 :             quoteOneName(attname,
     993         138 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
     994         138 :             appendStringInfo(&querybuf,
     995             :                              "%s %s = $%d",
     996             :                              querysep, attname, i + 1);
     997         138 :             sprintf(paramname, "$%d", j + 1);
     998         138 :             ri_GenerateQual(&qualbuf, qualsep,
     999             :                             paramname, pk_type,
    1000             :                             riinfo->pf_eq_oprs[i],
    1001             :                             attname, fk_type);
    1002         138 :             querysep = ",";
    1003         138 :             qualsep = "AND";
    1004         138 :             queryoids[i] = pk_type;
    1005         138 :             queryoids[j] = pk_type;
    1006             :         }
    1007         110 :         appendBinaryStringInfo(&querybuf, qualbuf.data, qualbuf.len);
    1008             : 
    1009             :         /* Prepare and save the plan */
    1010         110 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys * 2, queryoids,
    1011             :                              &qkey, fk_rel, pk_rel);
    1012             :     }
    1013             : 
    1014             :     /*
    1015             :      * We have a plan now. Run it to update the existing references.
    1016             :      */
    1017         198 :     ri_PerformCheck(riinfo, &qkey, qplan,
    1018             :                     fk_rel, pk_rel,
    1019             :                     oldslot, newslot,
    1020             :                     true,       /* must detect new rows */
    1021             :                     SPI_OK_UPDATE);
    1022             : 
    1023         198 :     if (SPI_finish() != SPI_OK_FINISH)
    1024           0 :         elog(ERROR, "SPI_finish failed");
    1025             : 
    1026         198 :     table_close(fk_rel, RowExclusiveLock);
    1027             : 
    1028         198 :     return PointerGetDatum(NULL);
    1029             : }
    1030             : 
    1031             : 
    1032             : /*
    1033             :  * RI_FKey_setnull_del -
    1034             :  *
    1035             :  * Set foreign key references to NULL values at delete event on PK table.
    1036             :  */
    1037             : Datum
    1038          98 : RI_FKey_setnull_del(PG_FUNCTION_ARGS)
    1039             : {
    1040             :     /* Check that this is a valid trigger call on the right time and event. */
    1041          98 :     ri_CheckTrigger(fcinfo, "RI_FKey_setnull_del", RI_TRIGTYPE_DELETE);
    1042             : 
    1043             :     /* Share code with UPDATE case */
    1044          98 :     return ri_set((TriggerData *) fcinfo->context, true, RI_TRIGTYPE_DELETE);
    1045             : }
    1046             : 
    1047             : /*
    1048             :  * RI_FKey_setnull_upd -
    1049             :  *
    1050             :  * Set foreign key references to NULL at update event on PK table.
    1051             :  */
    1052             : Datum
    1053          30 : RI_FKey_setnull_upd(PG_FUNCTION_ARGS)
    1054             : {
    1055             :     /* Check that this is a valid trigger call on the right time and event. */
    1056          30 :     ri_CheckTrigger(fcinfo, "RI_FKey_setnull_upd", RI_TRIGTYPE_UPDATE);
    1057             : 
    1058             :     /* Share code with DELETE case */
    1059          30 :     return ri_set((TriggerData *) fcinfo->context, true, RI_TRIGTYPE_UPDATE);
    1060             : }
    1061             : 
    1062             : /*
    1063             :  * RI_FKey_setdefault_del -
    1064             :  *
    1065             :  * Set foreign key references to defaults at delete event on PK table.
    1066             :  */
    1067             : Datum
    1068          84 : RI_FKey_setdefault_del(PG_FUNCTION_ARGS)
    1069             : {
    1070             :     /* Check that this is a valid trigger call on the right time and event. */
    1071          84 :     ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_del", RI_TRIGTYPE_DELETE);
    1072             : 
    1073             :     /* Share code with UPDATE case */
    1074          84 :     return ri_set((TriggerData *) fcinfo->context, false, RI_TRIGTYPE_DELETE);
    1075             : }
    1076             : 
    1077             : /*
    1078             :  * RI_FKey_setdefault_upd -
    1079             :  *
    1080             :  * Set foreign key references to defaults at update event on PK table.
    1081             :  */
    1082             : Datum
    1083          48 : RI_FKey_setdefault_upd(PG_FUNCTION_ARGS)
    1084             : {
    1085             :     /* Check that this is a valid trigger call on the right time and event. */
    1086          48 :     ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_upd", RI_TRIGTYPE_UPDATE);
    1087             : 
    1088             :     /* Share code with DELETE case */
    1089          48 :     return ri_set((TriggerData *) fcinfo->context, false, RI_TRIGTYPE_UPDATE);
    1090             : }
    1091             : 
    1092             : /*
    1093             :  * ri_set -
    1094             :  *
    1095             :  * Common code for ON DELETE SET NULL, ON DELETE SET DEFAULT, ON UPDATE SET
    1096             :  * NULL, and ON UPDATE SET DEFAULT.
    1097             :  */
    1098             : static Datum
    1099         260 : ri_set(TriggerData *trigdata, bool is_set_null, int tgkind)
    1100             : {
    1101             :     const RI_ConstraintInfo *riinfo;
    1102             :     Relation    fk_rel;
    1103             :     Relation    pk_rel;
    1104             :     TupleTableSlot *oldslot;
    1105             :     RI_QueryKey qkey;
    1106             :     SPIPlanPtr  qplan;
    1107             :     int32       queryno;
    1108             : 
    1109         260 :     riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger,
    1110             :                                     trigdata->tg_relation, true);
    1111             : 
    1112             :     /*
    1113             :      * Get the relation descriptors of the FK and PK tables and the old tuple.
    1114             :      *
    1115             :      * fk_rel is opened in RowExclusiveLock mode since that's what our
    1116             :      * eventual UPDATE will get on it.
    1117             :      */
    1118         260 :     fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock);
    1119         260 :     pk_rel = trigdata->tg_relation;
    1120         260 :     oldslot = trigdata->tg_trigslot;
    1121             : 
    1122         260 :     SPI_connect();
    1123             : 
    1124             :     /*
    1125             :      * Fetch or prepare a saved plan for the trigger.
    1126             :      */
    1127         260 :     switch (tgkind)
    1128             :     {
    1129          78 :         case RI_TRIGTYPE_UPDATE:
    1130          78 :             queryno = is_set_null
    1131             :                 ? RI_PLAN_SETNULL_ONUPDATE
    1132          78 :                 : RI_PLAN_SETDEFAULT_ONUPDATE;
    1133          78 :             break;
    1134         182 :         case RI_TRIGTYPE_DELETE:
    1135         182 :             queryno = is_set_null
    1136             :                 ? RI_PLAN_SETNULL_ONDELETE
    1137         182 :                 : RI_PLAN_SETDEFAULT_ONDELETE;
    1138         182 :             break;
    1139           0 :         default:
    1140           0 :             elog(ERROR, "invalid tgkind passed to ri_set");
    1141             :     }
    1142             : 
    1143         260 :     ri_BuildQueryKey(&qkey, riinfo, queryno);
    1144             : 
    1145         260 :     if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL)
    1146             :     {
    1147             :         StringInfoData querybuf;
    1148             :         char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1149             :         char        attname[MAX_QUOTED_NAME_LEN];
    1150             :         char        paramname[16];
    1151             :         const char *querysep;
    1152             :         const char *qualsep;
    1153             :         Oid         queryoids[RI_MAX_NUMKEYS];
    1154             :         const char *fk_only;
    1155             :         int         num_cols_to_set;
    1156             :         const int16 *set_cols;
    1157             : 
    1158         162 :         switch (tgkind)
    1159             :         {
    1160          56 :             case RI_TRIGTYPE_UPDATE:
    1161          56 :                 num_cols_to_set = riinfo->nkeys;
    1162          56 :                 set_cols = riinfo->fk_attnums;
    1163          56 :                 break;
    1164         106 :             case RI_TRIGTYPE_DELETE:
    1165             : 
    1166             :                 /*
    1167             :                  * If confdelsetcols are present, then we only update the
    1168             :                  * columns specified in that array, otherwise we update all
    1169             :                  * the referencing columns.
    1170             :                  */
    1171         106 :                 if (riinfo->ndelsetcols != 0)
    1172             :                 {
    1173          28 :                     num_cols_to_set = riinfo->ndelsetcols;
    1174          28 :                     set_cols = riinfo->confdelsetcols;
    1175             :                 }
    1176             :                 else
    1177             :                 {
    1178          78 :                     num_cols_to_set = riinfo->nkeys;
    1179          78 :                     set_cols = riinfo->fk_attnums;
    1180             :                 }
    1181         106 :                 break;
    1182           0 :             default:
    1183           0 :                 elog(ERROR, "invalid tgkind passed to ri_set");
    1184             :         }
    1185             : 
    1186             :         /* ----------
    1187             :          * The query string built is
    1188             :          *  UPDATE [ONLY] <fktable> SET fkatt1 = {NULL|DEFAULT} [, ...]
    1189             :          *          WHERE $1 = fkatt1 [AND ...]
    1190             :          * The type id's for the $ parameters are those of the
    1191             :          * corresponding PK attributes.
    1192             :          * ----------
    1193             :          */
    1194         162 :         initStringInfo(&querybuf);
    1195         324 :         fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1196         162 :             "" : "ONLY ";
    1197         162 :         quoteRelationName(fkrelname, fk_rel);
    1198         162 :         appendStringInfo(&querybuf, "UPDATE %s%s SET",
    1199             :                          fk_only, fkrelname);
    1200             : 
    1201             :         /*
    1202             :          * Add assignment clauses
    1203             :          */
    1204         162 :         querysep = "";
    1205         438 :         for (int i = 0; i < num_cols_to_set; i++)
    1206             :         {
    1207         276 :             quoteOneName(attname, RIAttName(fk_rel, set_cols[i]));
    1208         276 :             appendStringInfo(&querybuf,
    1209             :                              "%s %s = %s",
    1210             :                              querysep, attname,
    1211             :                              is_set_null ? "NULL" : "DEFAULT");
    1212         276 :             querysep = ",";
    1213             :         }
    1214             : 
    1215             :         /*
    1216             :          * Add WHERE clause
    1217             :          */
    1218         162 :         qualsep = "WHERE";
    1219         466 :         for (int i = 0; i < riinfo->nkeys; i++)
    1220             :         {
    1221         304 :             Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1222         304 :             Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1223             : 
    1224         304 :             quoteOneName(attname,
    1225         304 :                          RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1226             : 
    1227         304 :             sprintf(paramname, "$%d", i + 1);
    1228         304 :             ri_GenerateQual(&querybuf, qualsep,
    1229             :                             paramname, pk_type,
    1230             :                             riinfo->pf_eq_oprs[i],
    1231             :                             attname, fk_type);
    1232         304 :             qualsep = "AND";
    1233         304 :             queryoids[i] = pk_type;
    1234             :         }
    1235             : 
    1236             :         /* Prepare and save the plan */
    1237         162 :         qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids,
    1238             :                              &qkey, fk_rel, pk_rel);
    1239             :     }
    1240             : 
    1241             :     /*
    1242             :      * We have a plan now. Run it to update the existing references.
    1243             :      */
    1244         260 :     ri_PerformCheck(riinfo, &qkey, qplan,
    1245             :                     fk_rel, pk_rel,
    1246             :                     oldslot, NULL,
    1247             :                     true,       /* must detect new rows */
    1248             :                     SPI_OK_UPDATE);
    1249             : 
    1250         258 :     if (SPI_finish() != SPI_OK_FINISH)
    1251           0 :         elog(ERROR, "SPI_finish failed");
    1252             : 
    1253         258 :     table_close(fk_rel, RowExclusiveLock);
    1254             : 
    1255         258 :     if (is_set_null)
    1256         126 :         return PointerGetDatum(NULL);
    1257             :     else
    1258             :     {
    1259             :         /*
    1260             :          * If we just deleted or updated the PK row whose key was equal to the
    1261             :          * FK columns' default values, and a referencing row exists in the FK
    1262             :          * table, we would have updated that row to the same values it already
    1263             :          * had --- and RI_FKey_fk_upd_check_required would hence believe no
    1264             :          * check is necessary.  So we need to do another lookup now and in
    1265             :          * case a reference still exists, abort the operation.  That is
    1266             :          * already implemented in the NO ACTION trigger, so just run it. (This
    1267             :          * recheck is only needed in the SET DEFAULT case, since CASCADE would
    1268             :          * remove such rows in case of a DELETE operation or would change the
    1269             :          * FK key values in case of an UPDATE, while SET NULL is certain to
    1270             :          * result in rows that satisfy the FK constraint.)
    1271             :          */
    1272         132 :         return ri_restrict(trigdata, true);
    1273             :     }
    1274             : }
    1275             : 
    1276             : 
    1277             : /*
    1278             :  * RI_FKey_pk_upd_check_required -
    1279             :  *
    1280             :  * Check if we really need to fire the RI trigger for an update or delete to a PK
    1281             :  * relation.  This is called by the AFTER trigger queue manager to see if
    1282             :  * it can skip queuing an instance of an RI trigger.  Returns true if the
    1283             :  * trigger must be fired, false if we can prove the constraint will still
    1284             :  * be satisfied.
    1285             :  *
    1286             :  * newslot will be NULL if this is called for a delete.
    1287             :  */
    1288             : bool
    1289        2422 : RI_FKey_pk_upd_check_required(Trigger *trigger, Relation pk_rel,
    1290             :                               TupleTableSlot *oldslot, TupleTableSlot *newslot)
    1291             : {
    1292             :     const RI_ConstraintInfo *riinfo;
    1293             : 
    1294        2422 :     riinfo = ri_FetchConstraintInfo(trigger, pk_rel, true);
    1295             : 
    1296             :     /*
    1297             :      * If any old key value is NULL, the row could not have been referenced by
    1298             :      * an FK row, so no check is needed.
    1299             :      */
    1300        2422 :     if (ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) != RI_KEYS_NONE_NULL)
    1301           6 :         return false;
    1302             : 
    1303             :     /* If all old and new key values are equal, no check is needed */
    1304        2416 :     if (newslot && ri_KeysEqual(pk_rel, oldslot, newslot, riinfo, true))
    1305         536 :         return false;
    1306             : 
    1307             :     /* Else we need to fire the trigger. */
    1308        1880 :     return true;
    1309             : }
    1310             : 
    1311             : /*
    1312             :  * RI_FKey_fk_upd_check_required -
    1313             :  *
    1314             :  * Check if we really need to fire the RI trigger for an update to an FK
    1315             :  * relation.  This is called by the AFTER trigger queue manager to see if
    1316             :  * it can skip queuing an instance of an RI trigger.  Returns true if the
    1317             :  * trigger must be fired, false if we can prove the constraint will still
    1318             :  * be satisfied.
    1319             :  */
    1320             : bool
    1321        1068 : RI_FKey_fk_upd_check_required(Trigger *trigger, Relation fk_rel,
    1322             :                               TupleTableSlot *oldslot, TupleTableSlot *newslot)
    1323             : {
    1324             :     const RI_ConstraintInfo *riinfo;
    1325             :     int         ri_nullcheck;
    1326             : 
    1327             :     /*
    1328             :      * AfterTriggerSaveEvent() handles things such that this function is never
    1329             :      * called for partitioned tables.
    1330             :      */
    1331             :     Assert(fk_rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE);
    1332             : 
    1333        1068 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1334             : 
    1335        1068 :     ri_nullcheck = ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false);
    1336             : 
    1337             :     /*
    1338             :      * If all new key values are NULL, the row satisfies the constraint, so no
    1339             :      * check is needed.
    1340             :      */
    1341        1068 :     if (ri_nullcheck == RI_KEYS_ALL_NULL)
    1342         126 :         return false;
    1343             : 
    1344             :     /*
    1345             :      * If some new key values are NULL, the behavior depends on the match
    1346             :      * type.
    1347             :      */
    1348         942 :     else if (ri_nullcheck == RI_KEYS_SOME_NULL)
    1349             :     {
    1350          30 :         switch (riinfo->confmatchtype)
    1351             :         {
    1352          24 :             case FKCONSTR_MATCH_SIMPLE:
    1353             : 
    1354             :                 /*
    1355             :                  * If any new key value is NULL, the row must satisfy the
    1356             :                  * constraint, so no check is needed.
    1357             :                  */
    1358          24 :                 return false;
    1359             : 
    1360           0 :             case FKCONSTR_MATCH_PARTIAL:
    1361             : 
    1362             :                 /*
    1363             :                  * Don't know, must run full check.
    1364             :                  */
    1365           0 :                 break;
    1366             : 
    1367           6 :             case FKCONSTR_MATCH_FULL:
    1368             : 
    1369             :                 /*
    1370             :                  * If some new key values are NULL, the row fails the
    1371             :                  * constraint.  We must not throw error here, because the row
    1372             :                  * might get invalidated before the constraint is to be
    1373             :                  * checked, but we should queue the event to apply the check
    1374             :                  * later.
    1375             :                  */
    1376           6 :                 return true;
    1377             :         }
    1378         912 :     }
    1379             : 
    1380             :     /*
    1381             :      * Continues here for no new key values are NULL, or we couldn't decide
    1382             :      * yet.
    1383             :      */
    1384             : 
    1385             :     /*
    1386             :      * If the original row was inserted by our own transaction, we must fire
    1387             :      * the trigger whether or not the keys are equal.  This is because our
    1388             :      * UPDATE will invalidate the INSERT so that the INSERT RI trigger will
    1389             :      * not do anything; so we had better do the UPDATE check.  (We could skip
    1390             :      * this if we knew the INSERT trigger already fired, but there is no easy
    1391             :      * way to know that.)
    1392             :      */
    1393         912 :     if (slot_is_current_xact_tuple(oldslot))
    1394         124 :         return true;
    1395             : 
    1396             :     /* If all old and new key values are equal, no check is needed */
    1397         788 :     if (ri_KeysEqual(fk_rel, oldslot, newslot, riinfo, false))
    1398         452 :         return false;
    1399             : 
    1400             :     /* Else we need to fire the trigger. */
    1401         336 :     return true;
    1402             : }
    1403             : 
    1404             : /*
    1405             :  * RI_Initial_Check -
    1406             :  *
    1407             :  * Check an entire table for non-matching values using a single query.
    1408             :  * This is not a trigger procedure, but is called during ALTER TABLE
    1409             :  * ADD FOREIGN KEY to validate the initial table contents.
    1410             :  *
    1411             :  * We expect that the caller has made provision to prevent any problems
    1412             :  * caused by concurrent actions. This could be either by locking rel and
    1413             :  * pkrel at ShareRowExclusiveLock or higher, or by otherwise ensuring
    1414             :  * that triggers implementing the checks are already active.
    1415             :  * Hence, we do not need to lock individual rows for the check.
    1416             :  *
    1417             :  * If the check fails because the current user doesn't have permissions
    1418             :  * to read both tables, return false to let our caller know that they will
    1419             :  * need to do something else to check the constraint.
    1420             :  */
    1421             : bool
    1422         962 : RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
    1423             : {
    1424             :     const RI_ConstraintInfo *riinfo;
    1425             :     StringInfoData querybuf;
    1426             :     char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
    1427             :     char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1428             :     char        pkattname[MAX_QUOTED_NAME_LEN + 3];
    1429             :     char        fkattname[MAX_QUOTED_NAME_LEN + 3];
    1430             :     RangeTblEntry *rte;
    1431             :     RTEPermissionInfo *pk_perminfo;
    1432             :     RTEPermissionInfo *fk_perminfo;
    1433         962 :     List       *rtes = NIL;
    1434         962 :     List       *perminfos = NIL;
    1435             :     const char *sep;
    1436             :     const char *fk_only;
    1437             :     const char *pk_only;
    1438             :     int         save_nestlevel;
    1439             :     char        workmembuf[32];
    1440             :     int         spi_result;
    1441             :     SPIPlanPtr  qplan;
    1442             : 
    1443         962 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1444             : 
    1445             :     /*
    1446             :      * Check to make sure current user has enough permissions to do the test
    1447             :      * query.  (If not, caller can fall back to the trigger method, which
    1448             :      * works because it changes user IDs on the fly.)
    1449             :      *
    1450             :      * XXX are there any other show-stopper conditions to check?
    1451             :      */
    1452         962 :     pk_perminfo = makeNode(RTEPermissionInfo);
    1453         962 :     pk_perminfo->relid = RelationGetRelid(pk_rel);
    1454         962 :     pk_perminfo->requiredPerms = ACL_SELECT;
    1455         962 :     perminfos = lappend(perminfos, pk_perminfo);
    1456         962 :     rte = makeNode(RangeTblEntry);
    1457         962 :     rte->rtekind = RTE_RELATION;
    1458         962 :     rte->relid = RelationGetRelid(pk_rel);
    1459         962 :     rte->relkind = pk_rel->rd_rel->relkind;
    1460         962 :     rte->rellockmode = AccessShareLock;
    1461         962 :     rte->perminfoindex = list_length(perminfos);
    1462         962 :     rtes = lappend(rtes, rte);
    1463             : 
    1464         962 :     fk_perminfo = makeNode(RTEPermissionInfo);
    1465         962 :     fk_perminfo->relid = RelationGetRelid(fk_rel);
    1466         962 :     fk_perminfo->requiredPerms = ACL_SELECT;
    1467         962 :     perminfos = lappend(perminfos, fk_perminfo);
    1468         962 :     rte = makeNode(RangeTblEntry);
    1469         962 :     rte->rtekind = RTE_RELATION;
    1470         962 :     rte->relid = RelationGetRelid(fk_rel);
    1471         962 :     rte->relkind = fk_rel->rd_rel->relkind;
    1472         962 :     rte->rellockmode = AccessShareLock;
    1473         962 :     rte->perminfoindex = list_length(perminfos);
    1474         962 :     rtes = lappend(rtes, rte);
    1475             : 
    1476        2244 :     for (int i = 0; i < riinfo->nkeys; i++)
    1477             :     {
    1478             :         int         attno;
    1479             : 
    1480        1282 :         attno = riinfo->pk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
    1481        1282 :         pk_perminfo->selectedCols = bms_add_member(pk_perminfo->selectedCols, attno);
    1482             : 
    1483        1282 :         attno = riinfo->fk_attnums[i] - FirstLowInvalidHeapAttributeNumber;
    1484        1282 :         fk_perminfo->selectedCols = bms_add_member(fk_perminfo->selectedCols, attno);
    1485             :     }
    1486             : 
    1487         962 :     if (!ExecCheckPermissions(rtes, perminfos, false))
    1488          12 :         return false;
    1489             : 
    1490             :     /*
    1491             :      * Also punt if RLS is enabled on either table unless this role has the
    1492             :      * bypassrls right or is the table owner of the table(s) involved which
    1493             :      * have RLS enabled.
    1494             :      */
    1495         950 :     if (!has_bypassrls_privilege(GetUserId()) &&
    1496           0 :         ((pk_rel->rd_rel->relrowsecurity &&
    1497           0 :           !object_ownercheck(RelationRelationId, RelationGetRelid(pk_rel),
    1498           0 :                              GetUserId())) ||
    1499           0 :          (fk_rel->rd_rel->relrowsecurity &&
    1500           0 :           !object_ownercheck(RelationRelationId, RelationGetRelid(fk_rel),
    1501             :                              GetUserId()))))
    1502           0 :         return false;
    1503             : 
    1504             :     /*----------
    1505             :      * The query string built is:
    1506             :      *  SELECT fk.keycols FROM [ONLY] relname fk
    1507             :      *   LEFT OUTER JOIN [ONLY] pkrelname pk
    1508             :      *   ON (pk.pkkeycol1=fk.keycol1 [AND ...])
    1509             :      *   WHERE pk.pkkeycol1 IS NULL AND
    1510             :      * For MATCH SIMPLE:
    1511             :      *   (fk.keycol1 IS NOT NULL [AND ...])
    1512             :      * For MATCH FULL:
    1513             :      *   (fk.keycol1 IS NOT NULL [OR ...])
    1514             :      *
    1515             :      * We attach COLLATE clauses to the operators when comparing columns
    1516             :      * that have different collations.
    1517             :      *----------
    1518             :      */
    1519         950 :     initStringInfo(&querybuf);
    1520         950 :     appendStringInfoString(&querybuf, "SELECT ");
    1521         950 :     sep = "";
    1522        2208 :     for (int i = 0; i < riinfo->nkeys; i++)
    1523             :     {
    1524        1258 :         quoteOneName(fkattname,
    1525        1258 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1526        1258 :         appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
    1527        1258 :         sep = ", ";
    1528             :     }
    1529             : 
    1530         950 :     quoteRelationName(pkrelname, pk_rel);
    1531         950 :     quoteRelationName(fkrelname, fk_rel);
    1532        1900 :     fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1533         950 :         "" : "ONLY ";
    1534        1900 :     pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1535         950 :         "" : "ONLY ";
    1536         950 :     appendStringInfo(&querybuf,
    1537             :                      " FROM %s%s fk LEFT OUTER JOIN %s%s pk ON",
    1538             :                      fk_only, fkrelname, pk_only, pkrelname);
    1539             : 
    1540         950 :     strcpy(pkattname, "pk.");
    1541         950 :     strcpy(fkattname, "fk.");
    1542         950 :     sep = "(";
    1543        2208 :     for (int i = 0; i < riinfo->nkeys; i++)
    1544             :     {
    1545        1258 :         Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1546        1258 :         Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1547        1258 :         Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1548        1258 :         Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1549             : 
    1550        1258 :         quoteOneName(pkattname + 3,
    1551        1258 :                      RIAttName(pk_rel, riinfo->pk_attnums[i]));
    1552        1258 :         quoteOneName(fkattname + 3,
    1553        1258 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1554        1258 :         ri_GenerateQual(&querybuf, sep,
    1555             :                         pkattname, pk_type,
    1556             :                         riinfo->pf_eq_oprs[i],
    1557             :                         fkattname, fk_type);
    1558        1258 :         if (pk_coll != fk_coll)
    1559          12 :             ri_GenerateQualCollation(&querybuf, pk_coll);
    1560        1258 :         sep = "AND";
    1561             :     }
    1562             : 
    1563             :     /*
    1564             :      * It's sufficient to test any one pk attribute for null to detect a join
    1565             :      * failure.
    1566             :      */
    1567         950 :     quoteOneName(pkattname, RIAttName(pk_rel, riinfo->pk_attnums[0]));
    1568         950 :     appendStringInfo(&querybuf, ") WHERE pk.%s IS NULL AND (", pkattname);
    1569             : 
    1570         950 :     sep = "";
    1571        2208 :     for (int i = 0; i < riinfo->nkeys; i++)
    1572             :     {
    1573        1258 :         quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1574        1258 :         appendStringInfo(&querybuf,
    1575             :                          "%sfk.%s IS NOT NULL",
    1576             :                          sep, fkattname);
    1577        1258 :         switch (riinfo->confmatchtype)
    1578             :         {
    1579        1158 :             case FKCONSTR_MATCH_SIMPLE:
    1580        1158 :                 sep = " AND ";
    1581        1158 :                 break;
    1582         100 :             case FKCONSTR_MATCH_FULL:
    1583         100 :                 sep = " OR ";
    1584         100 :                 break;
    1585             :         }
    1586        1258 :     }
    1587         950 :     appendStringInfoChar(&querybuf, ')');
    1588             : 
    1589             :     /*
    1590             :      * Temporarily increase work_mem so that the check query can be executed
    1591             :      * more efficiently.  It seems okay to do this because the query is simple
    1592             :      * enough to not use a multiple of work_mem, and one typically would not
    1593             :      * have many large foreign-key validations happening concurrently.  So
    1594             :      * this seems to meet the criteria for being considered a "maintenance"
    1595             :      * operation, and accordingly we use maintenance_work_mem.  However, we
    1596             :      * must also set hash_mem_multiplier to 1, since it is surely not okay to
    1597             :      * let that get applied to the maintenance_work_mem value.
    1598             :      *
    1599             :      * We use the equivalent of a function SET option to allow the setting to
    1600             :      * persist for exactly the duration of the check query.  guc.c also takes
    1601             :      * care of undoing the setting on error.
    1602             :      */
    1603         950 :     save_nestlevel = NewGUCNestLevel();
    1604             : 
    1605         950 :     snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
    1606         950 :     (void) set_config_option("work_mem", workmembuf,
    1607             :                              PGC_USERSET, PGC_S_SESSION,
    1608             :                              GUC_ACTION_SAVE, true, 0, false);
    1609         950 :     (void) set_config_option("hash_mem_multiplier", "1",
    1610             :                              PGC_USERSET, PGC_S_SESSION,
    1611             :                              GUC_ACTION_SAVE, true, 0, false);
    1612             : 
    1613         950 :     SPI_connect();
    1614             : 
    1615             :     /*
    1616             :      * Generate the plan.  We don't need to cache it, and there are no
    1617             :      * arguments to the plan.
    1618             :      */
    1619         950 :     qplan = SPI_prepare(querybuf.data, 0, NULL);
    1620             : 
    1621         950 :     if (qplan == NULL)
    1622           0 :         elog(ERROR, "SPI_prepare returned %s for %s",
    1623             :              SPI_result_code_string(SPI_result), querybuf.data);
    1624             : 
    1625             :     /*
    1626             :      * Run the plan.  For safety we force a current snapshot to be used. (In
    1627             :      * transaction-snapshot mode, this arguably violates transaction isolation
    1628             :      * rules, but we really haven't got much choice.) We don't need to
    1629             :      * register the snapshot, because SPI_execute_snapshot will see to it. We
    1630             :      * need at most one tuple returned, so pass limit = 1.
    1631             :      */
    1632         950 :     spi_result = SPI_execute_snapshot(qplan,
    1633             :                                       NULL, NULL,
    1634             :                                       GetLatestSnapshot(),
    1635             :                                       InvalidSnapshot,
    1636             :                                       true, false, 1);
    1637             : 
    1638             :     /* Check result */
    1639         950 :     if (spi_result != SPI_OK_SELECT)
    1640           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    1641             : 
    1642             :     /* Did we find a tuple violating the constraint? */
    1643         950 :     if (SPI_processed > 0)
    1644             :     {
    1645             :         TupleTableSlot *slot;
    1646          62 :         HeapTuple   tuple = SPI_tuptable->vals[0];
    1647          62 :         TupleDesc   tupdesc = SPI_tuptable->tupdesc;
    1648             :         RI_ConstraintInfo fake_riinfo;
    1649             : 
    1650          62 :         slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
    1651             : 
    1652          62 :         heap_deform_tuple(tuple, tupdesc,
    1653             :                           slot->tts_values, slot->tts_isnull);
    1654          62 :         ExecStoreVirtualTuple(slot);
    1655             : 
    1656             :         /*
    1657             :          * The columns to look at in the result tuple are 1..N, not whatever
    1658             :          * they are in the fk_rel.  Hack up riinfo so that the subroutines
    1659             :          * called here will behave properly.
    1660             :          *
    1661             :          * In addition to this, we have to pass the correct tupdesc to
    1662             :          * ri_ReportViolation, overriding its normal habit of using the pk_rel
    1663             :          * or fk_rel's tupdesc.
    1664             :          */
    1665          62 :         memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
    1666         142 :         for (int i = 0; i < fake_riinfo.nkeys; i++)
    1667          80 :             fake_riinfo.fk_attnums[i] = i + 1;
    1668             : 
    1669             :         /*
    1670             :          * If it's MATCH FULL, and there are any nulls in the FK keys,
    1671             :          * complain about that rather than the lack of a match.  MATCH FULL
    1672             :          * disallows partially-null FK rows.
    1673             :          */
    1674          86 :         if (fake_riinfo.confmatchtype == FKCONSTR_MATCH_FULL &&
    1675          24 :             ri_NullCheck(tupdesc, slot, &fake_riinfo, false) != RI_KEYS_NONE_NULL)
    1676          12 :             ereport(ERROR,
    1677             :                     (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    1678             :                      errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
    1679             :                             RelationGetRelationName(fk_rel),
    1680             :                             NameStr(fake_riinfo.conname)),
    1681             :                      errdetail("MATCH FULL does not allow mixing of null and nonnull key values."),
    1682             :                      errtableconstraint(fk_rel,
    1683             :                                         NameStr(fake_riinfo.conname))));
    1684             : 
    1685             :         /*
    1686             :          * We tell ri_ReportViolation we were doing the RI_PLAN_CHECK_LOOKUPPK
    1687             :          * query, which isn't true, but will cause it to use
    1688             :          * fake_riinfo.fk_attnums as we need.
    1689             :          */
    1690          50 :         ri_ReportViolation(&fake_riinfo,
    1691             :                            pk_rel, fk_rel,
    1692             :                            slot, tupdesc,
    1693             :                            RI_PLAN_CHECK_LOOKUPPK, false);
    1694             : 
    1695             :         ExecDropSingleTupleTableSlot(slot);
    1696             :     }
    1697             : 
    1698         888 :     if (SPI_finish() != SPI_OK_FINISH)
    1699           0 :         elog(ERROR, "SPI_finish failed");
    1700             : 
    1701             :     /*
    1702             :      * Restore work_mem and hash_mem_multiplier.
    1703             :      */
    1704         888 :     AtEOXact_GUC(true, save_nestlevel);
    1705             : 
    1706         888 :     return true;
    1707             : }
    1708             : 
    1709             : /*
    1710             :  * RI_PartitionRemove_Check -
    1711             :  *
    1712             :  * Verify no referencing values exist, when a partition is detached on
    1713             :  * the referenced side of a foreign key constraint.
    1714             :  */
    1715             : void
    1716          86 : RI_PartitionRemove_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel)
    1717             : {
    1718             :     const RI_ConstraintInfo *riinfo;
    1719             :     StringInfoData querybuf;
    1720             :     char       *constraintDef;
    1721             :     char        pkrelname[MAX_QUOTED_REL_NAME_LEN];
    1722             :     char        fkrelname[MAX_QUOTED_REL_NAME_LEN];
    1723             :     char        pkattname[MAX_QUOTED_NAME_LEN + 3];
    1724             :     char        fkattname[MAX_QUOTED_NAME_LEN + 3];
    1725             :     const char *sep;
    1726             :     const char *fk_only;
    1727             :     int         save_nestlevel;
    1728             :     char        workmembuf[32];
    1729             :     int         spi_result;
    1730             :     SPIPlanPtr  qplan;
    1731             :     int         i;
    1732             : 
    1733          86 :     riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false);
    1734             : 
    1735             :     /*
    1736             :      * We don't check permissions before displaying the error message, on the
    1737             :      * assumption that the user detaching the partition must have enough
    1738             :      * privileges to examine the table contents anyhow.
    1739             :      */
    1740             : 
    1741             :     /*----------
    1742             :      * The query string built is:
    1743             :      *  SELECT fk.keycols FROM [ONLY] relname fk
    1744             :      *    JOIN pkrelname pk
    1745             :      *    ON (pk.pkkeycol1=fk.keycol1 [AND ...])
    1746             :      *    WHERE (<partition constraint>) AND
    1747             :      * For MATCH SIMPLE:
    1748             :      *   (fk.keycol1 IS NOT NULL [AND ...])
    1749             :      * For MATCH FULL:
    1750             :      *   (fk.keycol1 IS NOT NULL [OR ...])
    1751             :      *
    1752             :      * We attach COLLATE clauses to the operators when comparing columns
    1753             :      * that have different collations.
    1754             :      *----------
    1755             :      */
    1756          86 :     initStringInfo(&querybuf);
    1757          86 :     appendStringInfoString(&querybuf, "SELECT ");
    1758          86 :     sep = "";
    1759         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1760             :     {
    1761          86 :         quoteOneName(fkattname,
    1762          86 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1763          86 :         appendStringInfo(&querybuf, "%sfk.%s", sep, fkattname);
    1764          86 :         sep = ", ";
    1765             :     }
    1766             : 
    1767          86 :     quoteRelationName(pkrelname, pk_rel);
    1768          86 :     quoteRelationName(fkrelname, fk_rel);
    1769         172 :     fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ?
    1770          86 :         "" : "ONLY ";
    1771          86 :     appendStringInfo(&querybuf,
    1772             :                      " FROM %s%s fk JOIN %s pk ON",
    1773             :                      fk_only, fkrelname, pkrelname);
    1774          86 :     strcpy(pkattname, "pk.");
    1775          86 :     strcpy(fkattname, "fk.");
    1776          86 :     sep = "(";
    1777         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1778             :     {
    1779          86 :         Oid         pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]);
    1780          86 :         Oid         fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]);
    1781          86 :         Oid         pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]);
    1782          86 :         Oid         fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]);
    1783             : 
    1784          86 :         quoteOneName(pkattname + 3,
    1785          86 :                      RIAttName(pk_rel, riinfo->pk_attnums[i]));
    1786          86 :         quoteOneName(fkattname + 3,
    1787          86 :                      RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1788          86 :         ri_GenerateQual(&querybuf, sep,
    1789             :                         pkattname, pk_type,
    1790             :                         riinfo->pf_eq_oprs[i],
    1791             :                         fkattname, fk_type);
    1792          86 :         if (pk_coll != fk_coll)
    1793           0 :             ri_GenerateQualCollation(&querybuf, pk_coll);
    1794          86 :         sep = "AND";
    1795             :     }
    1796             : 
    1797             :     /*
    1798             :      * Start the WHERE clause with the partition constraint (except if this is
    1799             :      * the default partition and there's no other partition, because the
    1800             :      * partition constraint is the empty string in that case.)
    1801             :      */
    1802          86 :     constraintDef = pg_get_partconstrdef_string(RelationGetRelid(pk_rel), "pk");
    1803          86 :     if (constraintDef && constraintDef[0] != '\0')
    1804          86 :         appendStringInfo(&querybuf, ") WHERE %s AND (",
    1805             :                          constraintDef);
    1806             :     else
    1807           0 :         appendStringInfoString(&querybuf, ") WHERE (");
    1808             : 
    1809          86 :     sep = "";
    1810         172 :     for (i = 0; i < riinfo->nkeys; i++)
    1811             :     {
    1812          86 :         quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i]));
    1813          86 :         appendStringInfo(&querybuf,
    1814             :                          "%sfk.%s IS NOT NULL",
    1815             :                          sep, fkattname);
    1816          86 :         switch (riinfo->confmatchtype)
    1817             :         {
    1818          86 :             case FKCONSTR_MATCH_SIMPLE:
    1819          86 :                 sep = " AND ";
    1820          86 :                 break;
    1821           0 :             case FKCONSTR_MATCH_FULL:
    1822           0 :                 sep = " OR ";
    1823           0 :                 break;
    1824             :         }
    1825          86 :     }
    1826          86 :     appendStringInfoChar(&querybuf, ')');
    1827             : 
    1828             :     /*
    1829             :      * Temporarily increase work_mem so that the check query can be executed
    1830             :      * more efficiently.  It seems okay to do this because the query is simple
    1831             :      * enough to not use a multiple of work_mem, and one typically would not
    1832             :      * have many large foreign-key validations happening concurrently.  So
    1833             :      * this seems to meet the criteria for being considered a "maintenance"
    1834             :      * operation, and accordingly we use maintenance_work_mem.  However, we
    1835             :      * must also set hash_mem_multiplier to 1, since it is surely not okay to
    1836             :      * let that get applied to the maintenance_work_mem value.
    1837             :      *
    1838             :      * We use the equivalent of a function SET option to allow the setting to
    1839             :      * persist for exactly the duration of the check query.  guc.c also takes
    1840             :      * care of undoing the setting on error.
    1841             :      */
    1842          86 :     save_nestlevel = NewGUCNestLevel();
    1843             : 
    1844          86 :     snprintf(workmembuf, sizeof(workmembuf), "%d", maintenance_work_mem);
    1845          86 :     (void) set_config_option("work_mem", workmembuf,
    1846             :                              PGC_USERSET, PGC_S_SESSION,
    1847             :                              GUC_ACTION_SAVE, true, 0, false);
    1848          86 :     (void) set_config_option("hash_mem_multiplier", "1",
    1849             :                              PGC_USERSET, PGC_S_SESSION,
    1850             :                              GUC_ACTION_SAVE, true, 0, false);
    1851             : 
    1852          86 :     SPI_connect();
    1853             : 
    1854             :     /*
    1855             :      * Generate the plan.  We don't need to cache it, and there are no
    1856             :      * arguments to the plan.
    1857             :      */
    1858          86 :     qplan = SPI_prepare(querybuf.data, 0, NULL);
    1859             : 
    1860          86 :     if (qplan == NULL)
    1861           0 :         elog(ERROR, "SPI_prepare returned %s for %s",
    1862             :              SPI_result_code_string(SPI_result), querybuf.data);
    1863             : 
    1864             :     /*
    1865             :      * Run the plan.  For safety we force a current snapshot to be used. (In
    1866             :      * transaction-snapshot mode, this arguably violates transaction isolation
    1867             :      * rules, but we really haven't got much choice.) We don't need to
    1868             :      * register the snapshot, because SPI_execute_snapshot will see to it. We
    1869             :      * need at most one tuple returned, so pass limit = 1.
    1870             :      */
    1871          86 :     spi_result = SPI_execute_snapshot(qplan,
    1872             :                                       NULL, NULL,
    1873             :                                       GetLatestSnapshot(),
    1874             :                                       InvalidSnapshot,
    1875             :                                       true, false, 1);
    1876             : 
    1877             :     /* Check result */
    1878          86 :     if (spi_result != SPI_OK_SELECT)
    1879           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    1880             : 
    1881             :     /* Did we find a tuple that would violate the constraint? */
    1882          86 :     if (SPI_processed > 0)
    1883             :     {
    1884             :         TupleTableSlot *slot;
    1885          34 :         HeapTuple   tuple = SPI_tuptable->vals[0];
    1886          34 :         TupleDesc   tupdesc = SPI_tuptable->tupdesc;
    1887             :         RI_ConstraintInfo fake_riinfo;
    1888             : 
    1889          34 :         slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual);
    1890             : 
    1891          34 :         heap_deform_tuple(tuple, tupdesc,
    1892             :                           slot->tts_values, slot->tts_isnull);
    1893          34 :         ExecStoreVirtualTuple(slot);
    1894             : 
    1895             :         /*
    1896             :          * The columns to look at in the result tuple are 1..N, not whatever
    1897             :          * they are in the fk_rel.  Hack up riinfo so that ri_ReportViolation
    1898             :          * will behave properly.
    1899             :          *
    1900             :          * In addition to this, we have to pass the correct tupdesc to
    1901             :          * ri_ReportViolation, overriding its normal habit of using the pk_rel
    1902             :          * or fk_rel's tupdesc.
    1903             :          */
    1904          34 :         memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo));
    1905          68 :         for (i = 0; i < fake_riinfo.nkeys; i++)
    1906          34 :             fake_riinfo.pk_attnums[i] = i + 1;
    1907             : 
    1908          34 :         ri_ReportViolation(&fake_riinfo, pk_rel, fk_rel,
    1909             :                            slot, tupdesc, 0, true);
    1910             :     }
    1911             : 
    1912          52 :     if (SPI_finish() != SPI_OK_FINISH)
    1913           0 :         elog(ERROR, "SPI_finish failed");
    1914             : 
    1915             :     /*
    1916             :      * Restore work_mem and hash_mem_multiplier.
    1917             :      */
    1918          52 :     AtEOXact_GUC(true, save_nestlevel);
    1919          52 : }
    1920             : 
    1921             : 
    1922             : /* ----------
    1923             :  * Local functions below
    1924             :  * ----------
    1925             :  */
    1926             : 
    1927             : 
    1928             : /*
    1929             :  * quoteOneName --- safely quote a single SQL name
    1930             :  *
    1931             :  * buffer must be MAX_QUOTED_NAME_LEN long (includes room for \0)
    1932             :  */
    1933             : static void
    1934       22492 : quoteOneName(char *buffer, const char *name)
    1935             : {
    1936             :     /* Rather than trying to be smart, just always quote it. */
    1937       22492 :     *buffer++ = '"';
    1938      142750 :     while (*name)
    1939             :     {
    1940      120258 :         if (*name == '"')
    1941           0 :             *buffer++ = '"';
    1942      120258 :         *buffer++ = *name++;
    1943             :     }
    1944       22492 :     *buffer++ = '"';
    1945       22492 :     *buffer = '\0';
    1946       22492 : }
    1947             : 
    1948             : /*
    1949             :  * quoteRelationName --- safely quote a fully qualified relation name
    1950             :  *
    1951             :  * buffer must be MAX_QUOTED_REL_NAME_LEN long (includes room for \0)
    1952             :  */
    1953             : static void
    1954        5528 : quoteRelationName(char *buffer, Relation rel)
    1955             : {
    1956        5528 :     quoteOneName(buffer, get_namespace_name(RelationGetNamespace(rel)));
    1957        5528 :     buffer += strlen(buffer);
    1958        5528 :     *buffer++ = '.';
    1959        5528 :     quoteOneName(buffer, RelationGetRelationName(rel));
    1960        5528 : }
    1961             : 
    1962             : /*
    1963             :  * ri_GenerateQual --- generate a WHERE clause equating two variables
    1964             :  *
    1965             :  * This basically appends " sep leftop op rightop" to buf, adding casts
    1966             :  * and schema qualification as needed to ensure that the parser will select
    1967             :  * the operator we specify.  leftop and rightop should be parenthesized
    1968             :  * if they aren't variables or parameters.
    1969             :  */
    1970             : static void
    1971        6154 : ri_GenerateQual(StringInfo buf,
    1972             :                 const char *sep,
    1973             :                 const char *leftop, Oid leftoptype,
    1974             :                 Oid opoid,
    1975             :                 const char *rightop, Oid rightoptype)
    1976             : {
    1977        6154 :     appendStringInfo(buf, " %s ", sep);
    1978        6154 :     generate_operator_clause(buf, leftop, leftoptype, opoid,
    1979             :                              rightop, rightoptype);
    1980        6154 : }
    1981             : 
    1982             : /*
    1983             :  * ri_GenerateQualCollation --- add a COLLATE spec to a WHERE clause
    1984             :  *
    1985             :  * We only have to use this function when directly comparing the referencing
    1986             :  * and referenced columns, if they are of different collations; else the
    1987             :  * parser will fail to resolve the collation to use.  We don't need to use
    1988             :  * this function for RI queries that compare a variable to a $n parameter.
    1989             :  * Since parameter symbols always have default collation, the effect will be
    1990             :  * to use the variable's collation.
    1991             :  *
    1992             :  * Note that we require that the collations of the referencing and the
    1993             :  * referenced column have the same notion of equality: Either they have to
    1994             :  * both be deterministic or else they both have to be the same.  (See also
    1995             :  * ATAddForeignKeyConstraint().)
    1996             :  */
    1997             : static void
    1998          12 : ri_GenerateQualCollation(StringInfo buf, Oid collation)
    1999             : {
    2000             :     HeapTuple   tp;
    2001             :     Form_pg_collation colltup;
    2002             :     char       *collname;
    2003             :     char        onename[MAX_QUOTED_NAME_LEN];
    2004             : 
    2005             :     /* Nothing to do if it's a noncollatable data type */
    2006          12 :     if (!OidIsValid(collation))
    2007           0 :         return;
    2008             : 
    2009          12 :     tp = SearchSysCache1(COLLOID, ObjectIdGetDatum(collation));
    2010          12 :     if (!HeapTupleIsValid(tp))
    2011           0 :         elog(ERROR, "cache lookup failed for collation %u", collation);
    2012          12 :     colltup = (Form_pg_collation) GETSTRUCT(tp);
    2013          12 :     collname = NameStr(colltup->collname);
    2014             : 
    2015             :     /*
    2016             :      * We qualify the name always, for simplicity and to ensure the query is
    2017             :      * not search-path-dependent.
    2018             :      */
    2019          12 :     quoteOneName(onename, get_namespace_name(colltup->collnamespace));
    2020          12 :     appendStringInfo(buf, " COLLATE %s", onename);
    2021          12 :     quoteOneName(onename, collname);
    2022          12 :     appendStringInfo(buf, ".%s", onename);
    2023             : 
    2024          12 :     ReleaseSysCache(tp);
    2025             : }
    2026             : 
    2027             : /* ----------
    2028             :  * ri_BuildQueryKey -
    2029             :  *
    2030             :  *  Construct a hashtable key for a prepared SPI plan of an FK constraint.
    2031             :  *
    2032             :  *      key: output argument, *key is filled in based on the other arguments
    2033             :  *      riinfo: info derived from pg_constraint entry
    2034             :  *      constr_queryno: an internal number identifying the query type
    2035             :  *          (see RI_PLAN_XXX constants at head of file)
    2036             :  * ----------
    2037             :  */
    2038             : static void
    2039        6876 : ri_BuildQueryKey(RI_QueryKey *key, const RI_ConstraintInfo *riinfo,
    2040             :                  int32 constr_queryno)
    2041             : {
    2042             :     /*
    2043             :      * Inherited constraints with a common ancestor can share ri_query_cache
    2044             :      * entries for all query types except RI_PLAN_CHECK_LOOKUPPK_FROM_PK.
    2045             :      * Except in that case, the query processes the other table involved in
    2046             :      * the FK constraint (i.e., not the table on which the trigger has been
    2047             :      * fired), and so it will be the same for all members of the inheritance
    2048             :      * tree.  So we may use the root constraint's OID in the hash key, rather
    2049             :      * than the constraint's own OID.  This avoids creating duplicate SPI
    2050             :      * plans, saving lots of work and memory when there are many partitions
    2051             :      * with similar FK constraints.
    2052             :      *
    2053             :      * (Note that we must still have a separate RI_ConstraintInfo for each
    2054             :      * constraint, because partitions can have different column orders,
    2055             :      * resulting in different pk_attnums[] or fk_attnums[] array contents.)
    2056             :      *
    2057             :      * We assume struct RI_QueryKey contains no padding bytes, else we'd need
    2058             :      * to use memset to clear them.
    2059             :      */
    2060        6876 :     if (constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK)
    2061        5844 :         key->constr_id = riinfo->constraint_root_id;
    2062             :     else
    2063        1032 :         key->constr_id = riinfo->constraint_id;
    2064        6876 :     key->constr_queryno = constr_queryno;
    2065        6876 : }
    2066             : 
    2067             : /*
    2068             :  * Check that RI trigger function was called in expected context
    2069             :  */
    2070             : static void
    2071        6136 : ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind)
    2072             : {
    2073        6136 :     TriggerData *trigdata = (TriggerData *) fcinfo->context;
    2074             : 
    2075        6136 :     if (!CALLED_AS_TRIGGER(fcinfo))
    2076           0 :         ereport(ERROR,
    2077             :                 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2078             :                  errmsg("function \"%s\" was not called by trigger manager", funcname)));
    2079             : 
    2080             :     /*
    2081             :      * Check proper event
    2082             :      */
    2083        6136 :     if (!TRIGGER_FIRED_AFTER(trigdata->tg_event) ||
    2084        6136 :         !TRIGGER_FIRED_FOR_ROW(trigdata->tg_event))
    2085           0 :         ereport(ERROR,
    2086             :                 (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2087             :                  errmsg("function \"%s\" must be fired AFTER ROW", funcname)));
    2088             : 
    2089        6136 :     switch (tgkind)
    2090             :     {
    2091        4014 :         case RI_TRIGTYPE_INSERT:
    2092        4014 :             if (!TRIGGER_FIRED_BY_INSERT(trigdata->tg_event))
    2093           0 :                 ereport(ERROR,
    2094             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2095             :                          errmsg("function \"%s\" must be fired for INSERT", funcname)));
    2096        4014 :             break;
    2097        1276 :         case RI_TRIGTYPE_UPDATE:
    2098        1276 :             if (!TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
    2099           0 :                 ereport(ERROR,
    2100             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2101             :                          errmsg("function \"%s\" must be fired for UPDATE", funcname)));
    2102        1276 :             break;
    2103         846 :         case RI_TRIGTYPE_DELETE:
    2104         846 :             if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event))
    2105           0 :                 ereport(ERROR,
    2106             :                         (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
    2107             :                          errmsg("function \"%s\" must be fired for DELETE", funcname)));
    2108         846 :             break;
    2109             :     }
    2110        6136 : }
    2111             : 
    2112             : 
    2113             : /*
    2114             :  * Fetch the RI_ConstraintInfo struct for the trigger's FK constraint.
    2115             :  */
    2116             : static const RI_ConstraintInfo *
    2117       10806 : ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk)
    2118             : {
    2119       10806 :     Oid         constraintOid = trigger->tgconstraint;
    2120             :     const RI_ConstraintInfo *riinfo;
    2121             : 
    2122             :     /*
    2123             :      * Check that the FK constraint's OID is available; it might not be if
    2124             :      * we've been invoked via an ordinary trigger or an old-style "constraint
    2125             :      * trigger".
    2126             :      */
    2127       10806 :     if (!OidIsValid(constraintOid))
    2128           0 :         ereport(ERROR,
    2129             :                 (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    2130             :                  errmsg("no pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2131             :                         trigger->tgname, RelationGetRelationName(trig_rel)),
    2132             :                  errhint("Remove this referential integrity trigger and its mates, then do ALTER TABLE ADD CONSTRAINT.")));
    2133             : 
    2134             :     /* Find or create a hashtable entry for the constraint */
    2135       10806 :     riinfo = ri_LoadConstraintInfo(constraintOid);
    2136             : 
    2137             :     /* Do some easy cross-checks against the trigger call data */
    2138       10806 :     if (rel_is_pk)
    2139             :     {
    2140        4228 :         if (riinfo->fk_relid != trigger->tgconstrrelid ||
    2141        4228 :             riinfo->pk_relid != RelationGetRelid(trig_rel))
    2142           0 :             elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2143             :                  trigger->tgname, RelationGetRelationName(trig_rel));
    2144             :     }
    2145             :     else
    2146             :     {
    2147        6578 :         if (riinfo->fk_relid != RelationGetRelid(trig_rel) ||
    2148        6578 :             riinfo->pk_relid != trigger->tgconstrrelid)
    2149           0 :             elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"",
    2150             :                  trigger->tgname, RelationGetRelationName(trig_rel));
    2151             :     }
    2152             : 
    2153       10806 :     if (riinfo->confmatchtype != FKCONSTR_MATCH_FULL &&
    2154       10342 :         riinfo->confmatchtype != FKCONSTR_MATCH_PARTIAL &&
    2155       10342 :         riinfo->confmatchtype != FKCONSTR_MATCH_SIMPLE)
    2156           0 :         elog(ERROR, "unrecognized confmatchtype: %d",
    2157             :              riinfo->confmatchtype);
    2158             : 
    2159       10806 :     if (riinfo->confmatchtype == FKCONSTR_MATCH_PARTIAL)
    2160           0 :         ereport(ERROR,
    2161             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    2162             :                  errmsg("MATCH PARTIAL not yet implemented")));
    2163             : 
    2164       10806 :     return riinfo;
    2165             : }
    2166             : 
    2167             : /*
    2168             :  * Fetch or create the RI_ConstraintInfo struct for an FK constraint.
    2169             :  */
    2170             : static const RI_ConstraintInfo *
    2171       10806 : ri_LoadConstraintInfo(Oid constraintOid)
    2172             : {
    2173             :     RI_ConstraintInfo *riinfo;
    2174             :     bool        found;
    2175             :     HeapTuple   tup;
    2176             :     Form_pg_constraint conForm;
    2177             : 
    2178             :     /*
    2179             :      * On the first call initialize the hashtable
    2180             :      */
    2181       10806 :     if (!ri_constraint_cache)
    2182         416 :         ri_InitHashTables();
    2183             : 
    2184             :     /*
    2185             :      * Find or create a hash entry.  If we find a valid one, just return it.
    2186             :      */
    2187       10806 :     riinfo = (RI_ConstraintInfo *) hash_search(ri_constraint_cache,
    2188             :                                                &constraintOid,
    2189             :                                                HASH_ENTER, &found);
    2190       10806 :     if (!found)
    2191        3826 :         riinfo->valid = false;
    2192        6980 :     else if (riinfo->valid)
    2193        6668 :         return riinfo;
    2194             : 
    2195             :     /*
    2196             :      * Fetch the pg_constraint row so we can fill in the entry.
    2197             :      */
    2198        4138 :     tup = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constraintOid));
    2199        4138 :     if (!HeapTupleIsValid(tup)) /* should not happen */
    2200           0 :         elog(ERROR, "cache lookup failed for constraint %u", constraintOid);
    2201        4138 :     conForm = (Form_pg_constraint) GETSTRUCT(tup);
    2202             : 
    2203        4138 :     if (conForm->contype != CONSTRAINT_FOREIGN) /* should not happen */
    2204           0 :         elog(ERROR, "constraint %u is not a foreign key constraint",
    2205             :              constraintOid);
    2206             : 
    2207             :     /* And extract data */
    2208             :     Assert(riinfo->constraint_id == constraintOid);
    2209        4138 :     if (OidIsValid(conForm->conparentid))
    2210        1434 :         riinfo->constraint_root_id =
    2211        1434 :             get_ri_constraint_root(conForm->conparentid);
    2212             :     else
    2213        2704 :         riinfo->constraint_root_id = constraintOid;
    2214        4138 :     riinfo->oidHashValue = GetSysCacheHashValue1(CONSTROID,
    2215             :                                                  ObjectIdGetDatum(constraintOid));
    2216        4138 :     riinfo->rootHashValue = GetSysCacheHashValue1(CONSTROID,
    2217             :                                                   ObjectIdGetDatum(riinfo->constraint_root_id));
    2218        4138 :     memcpy(&riinfo->conname, &conForm->conname, sizeof(NameData));
    2219        4138 :     riinfo->pk_relid = conForm->confrelid;
    2220        4138 :     riinfo->fk_relid = conForm->conrelid;
    2221        4138 :     riinfo->confupdtype = conForm->confupdtype;
    2222        4138 :     riinfo->confdeltype = conForm->confdeltype;
    2223        4138 :     riinfo->confmatchtype = conForm->confmatchtype;
    2224        4138 :     riinfo->hasperiod = conForm->conperiod;
    2225             : 
    2226        4138 :     DeconstructFkConstraintRow(tup,
    2227             :                                &riinfo->nkeys,
    2228        4138 :                                riinfo->fk_attnums,
    2229        4138 :                                riinfo->pk_attnums,
    2230        4138 :                                riinfo->pf_eq_oprs,
    2231        4138 :                                riinfo->pp_eq_oprs,
    2232        4138 :                                riinfo->ff_eq_oprs,
    2233             :                                &riinfo->ndelsetcols,
    2234        4138 :                                riinfo->confdelsetcols);
    2235             : 
    2236             :     /*
    2237             :      * For temporal FKs, get the operators and functions we need. We ask the
    2238             :      * opclass of the PK element for these. This all gets cached (as does the
    2239             :      * generated plan), so there's no performance issue.
    2240             :      */
    2241        4138 :     if (riinfo->hasperiod)
    2242             :     {
    2243         254 :         Oid         opclass = get_index_column_opclass(conForm->conindid, riinfo->nkeys);
    2244             : 
    2245         254 :         FindFKPeriodOpers(opclass,
    2246             :                           &riinfo->period_contained_by_oper,
    2247             :                           &riinfo->agged_period_contained_by_oper);
    2248             :     }
    2249             : 
    2250        4138 :     ReleaseSysCache(tup);
    2251             : 
    2252             :     /*
    2253             :      * For efficient processing of invalidation messages below, we keep a
    2254             :      * doubly-linked count list of all currently valid entries.
    2255             :      */
    2256        4138 :     dclist_push_tail(&ri_constraint_cache_valid_list, &riinfo->valid_link);
    2257             : 
    2258        4138 :     riinfo->valid = true;
    2259             : 
    2260        4138 :     return riinfo;
    2261             : }
    2262             : 
    2263             : /*
    2264             :  * get_ri_constraint_root
    2265             :  *      Returns the OID of the constraint's root parent
    2266             :  */
    2267             : static Oid
    2268        1756 : get_ri_constraint_root(Oid constrOid)
    2269             : {
    2270             :     for (;;)
    2271         322 :     {
    2272             :         HeapTuple   tuple;
    2273             :         Oid         constrParentOid;
    2274             : 
    2275        1756 :         tuple = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constrOid));
    2276        1756 :         if (!HeapTupleIsValid(tuple))
    2277           0 :             elog(ERROR, "cache lookup failed for constraint %u", constrOid);
    2278        1756 :         constrParentOid = ((Form_pg_constraint) GETSTRUCT(tuple))->conparentid;
    2279        1756 :         ReleaseSysCache(tuple);
    2280        1756 :         if (!OidIsValid(constrParentOid))
    2281        1434 :             break;              /* we reached the root constraint */
    2282         322 :         constrOid = constrParentOid;
    2283             :     }
    2284        1434 :     return constrOid;
    2285             : }
    2286             : 
    2287             : /*
    2288             :  * Callback for pg_constraint inval events
    2289             :  *
    2290             :  * While most syscache callbacks just flush all their entries, pg_constraint
    2291             :  * gets enough update traffic that it's probably worth being smarter.
    2292             :  * Invalidate any ri_constraint_cache entry associated with the syscache
    2293             :  * entry with the specified hash value, or all entries if hashvalue == 0.
    2294             :  *
    2295             :  * Note: at the time a cache invalidation message is processed there may be
    2296             :  * active references to the cache.  Because of this we never remove entries
    2297             :  * from the cache, but only mark them invalid, which is harmless to active
    2298             :  * uses.  (Any query using an entry should hold a lock sufficient to keep that
    2299             :  * data from changing under it --- but we may get cache flushes anyway.)
    2300             :  */
    2301             : static void
    2302       68532 : InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue)
    2303             : {
    2304             :     dlist_mutable_iter iter;
    2305             : 
    2306             :     Assert(ri_constraint_cache != NULL);
    2307             : 
    2308             :     /*
    2309             :      * If the list of currently valid entries gets excessively large, we mark
    2310             :      * them all invalid so we can empty the list.  This arrangement avoids
    2311             :      * O(N^2) behavior in situations where a session touches many foreign keys
    2312             :      * and also does many ALTER TABLEs, such as a restore from pg_dump.
    2313             :      */
    2314       68532 :     if (dclist_count(&ri_constraint_cache_valid_list) > 1000)
    2315           0 :         hashvalue = 0;          /* pretend it's a cache reset */
    2316             : 
    2317      255870 :     dclist_foreach_modify(iter, &ri_constraint_cache_valid_list)
    2318             :     {
    2319      187338 :         RI_ConstraintInfo *riinfo = dclist_container(RI_ConstraintInfo,
    2320             :                                                      valid_link, iter.cur);
    2321             : 
    2322             :         /*
    2323             :          * We must invalidate not only entries directly matching the given
    2324             :          * hash value, but also child entries, in case the invalidation
    2325             :          * affects a root constraint.
    2326             :          */
    2327      187338 :         if (hashvalue == 0 ||
    2328      187280 :             riinfo->oidHashValue == hashvalue ||
    2329      184774 :             riinfo->rootHashValue == hashvalue)
    2330             :         {
    2331        2810 :             riinfo->valid = false;
    2332             :             /* Remove invalidated entries from the list, too */
    2333        2810 :             dclist_delete_from(&ri_constraint_cache_valid_list, iter.cur);
    2334             :         }
    2335             :     }
    2336       68532 : }
    2337             : 
    2338             : 
    2339             : /*
    2340             :  * Prepare execution plan for a query to enforce an RI restriction
    2341             :  */
    2342             : static SPIPlanPtr
    2343        3456 : ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes,
    2344             :              RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel)
    2345             : {
    2346             :     SPIPlanPtr  qplan;
    2347             :     Relation    query_rel;
    2348             :     Oid         save_userid;
    2349             :     int         save_sec_context;
    2350             : 
    2351             :     /*
    2352             :      * Use the query type code to determine whether the query is run against
    2353             :      * the PK or FK table; we'll do the check as that table's owner
    2354             :      */
    2355        3456 :     if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
    2356        2626 :         query_rel = pk_rel;
    2357             :     else
    2358         830 :         query_rel = fk_rel;
    2359             : 
    2360             :     /* Switch to proper UID to perform check as */
    2361        3456 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
    2362        3456 :     SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
    2363             :                            save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
    2364             :                            SECURITY_NOFORCE_RLS);
    2365             : 
    2366             :     /* Create the plan */
    2367        3456 :     qplan = SPI_prepare(querystr, nargs, argtypes);
    2368             : 
    2369        3456 :     if (qplan == NULL)
    2370           0 :         elog(ERROR, "SPI_prepare returned %s for %s", SPI_result_code_string(SPI_result), querystr);
    2371             : 
    2372             :     /* Restore UID and security context */
    2373        3456 :     SetUserIdAndSecContext(save_userid, save_sec_context);
    2374             : 
    2375             :     /* Save the plan */
    2376        3456 :     SPI_keepplan(qplan);
    2377        3456 :     ri_HashPreparedPlan(qkey, qplan);
    2378             : 
    2379        3456 :     return qplan;
    2380             : }
    2381             : 
    2382             : /*
    2383             :  * Perform a query to enforce an RI restriction
    2384             :  */
    2385             : static bool
    2386        6876 : ri_PerformCheck(const RI_ConstraintInfo *riinfo,
    2387             :                 RI_QueryKey *qkey, SPIPlanPtr qplan,
    2388             :                 Relation fk_rel, Relation pk_rel,
    2389             :                 TupleTableSlot *oldslot, TupleTableSlot *newslot,
    2390             :                 bool detectNewRows, int expect_OK)
    2391             : {
    2392             :     Relation    query_rel,
    2393             :                 source_rel;
    2394             :     bool        source_is_pk;
    2395             :     Snapshot    test_snapshot;
    2396             :     Snapshot    crosscheck_snapshot;
    2397             :     int         limit;
    2398             :     int         spi_result;
    2399             :     Oid         save_userid;
    2400             :     int         save_sec_context;
    2401             :     Datum       vals[RI_MAX_NUMKEYS * 2];
    2402             :     char        nulls[RI_MAX_NUMKEYS * 2];
    2403             : 
    2404             :     /*
    2405             :      * Use the query type code to determine whether the query is run against
    2406             :      * the PK or FK table; we'll do the check as that table's owner
    2407             :      */
    2408        6876 :     if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK)
    2409        5146 :         query_rel = pk_rel;
    2410             :     else
    2411        1730 :         query_rel = fk_rel;
    2412             : 
    2413             :     /*
    2414             :      * The values for the query are taken from the table on which the trigger
    2415             :      * is called - it is normally the other one with respect to query_rel. An
    2416             :      * exception is ri_Check_Pk_Match(), which uses the PK table for both (and
    2417             :      * sets queryno to RI_PLAN_CHECK_LOOKUPPK_FROM_PK).  We might eventually
    2418             :      * need some less klugy way to determine this.
    2419             :      */
    2420        6876 :     if (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK)
    2421             :     {
    2422        4114 :         source_rel = fk_rel;
    2423        4114 :         source_is_pk = false;
    2424             :     }
    2425             :     else
    2426             :     {
    2427        2762 :         source_rel = pk_rel;
    2428        2762 :         source_is_pk = true;
    2429             :     }
    2430             : 
    2431             :     /* Extract the parameters to be passed into the query */
    2432        6876 :     if (newslot)
    2433             :     {
    2434        4312 :         ri_ExtractValues(source_rel, newslot, riinfo, source_is_pk,
    2435             :                          vals, nulls);
    2436        4312 :         if (oldslot)
    2437         198 :             ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
    2438         198 :                              vals + riinfo->nkeys, nulls + riinfo->nkeys);
    2439             :     }
    2440             :     else
    2441             :     {
    2442        2564 :         ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk,
    2443             :                          vals, nulls);
    2444             :     }
    2445             : 
    2446             :     /*
    2447             :      * In READ COMMITTED mode, we just need to use an up-to-date regular
    2448             :      * snapshot, and we will see all rows that could be interesting. But in
    2449             :      * transaction-snapshot mode, we can't change the transaction snapshot. If
    2450             :      * the caller passes detectNewRows == false then it's okay to do the query
    2451             :      * with the transaction snapshot; otherwise we use a current snapshot, and
    2452             :      * tell the executor to error out if it finds any rows under the current
    2453             :      * snapshot that wouldn't be visible per the transaction snapshot.  Note
    2454             :      * that SPI_execute_snapshot will register the snapshots, so we don't need
    2455             :      * to bother here.
    2456             :      */
    2457        6876 :     if (IsolationUsesXactSnapshot() && detectNewRows)
    2458             :     {
    2459          32 :         CommandCounterIncrement();  /* be sure all my own work is visible */
    2460          32 :         test_snapshot = GetLatestSnapshot();
    2461          32 :         crosscheck_snapshot = GetTransactionSnapshot();
    2462             :     }
    2463             :     else
    2464             :     {
    2465             :         /* the default SPI behavior is okay */
    2466        6844 :         test_snapshot = InvalidSnapshot;
    2467        6844 :         crosscheck_snapshot = InvalidSnapshot;
    2468             :     }
    2469             : 
    2470             :     /*
    2471             :      * If this is a select query (e.g., for a 'no action' or 'restrict'
    2472             :      * trigger), we only need to see if there is a single row in the table,
    2473             :      * matching the key.  Otherwise, limit = 0 - because we want the query to
    2474             :      * affect ALL the matching rows.
    2475             :      */
    2476        6876 :     limit = (expect_OK == SPI_OK_SELECT) ? 1 : 0;
    2477             : 
    2478             :     /* Switch to proper UID to perform check as */
    2479        6876 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
    2480        6876 :     SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner,
    2481             :                            save_sec_context | SECURITY_LOCAL_USERID_CHANGE |
    2482             :                            SECURITY_NOFORCE_RLS);
    2483             : 
    2484             :     /* Finally we can run the query. */
    2485        6876 :     spi_result = SPI_execute_snapshot(qplan,
    2486             :                                       vals, nulls,
    2487             :                                       test_snapshot, crosscheck_snapshot,
    2488             :                                       false, false, limit);
    2489             : 
    2490             :     /* Restore UID and security context */
    2491        6862 :     SetUserIdAndSecContext(save_userid, save_sec_context);
    2492             : 
    2493             :     /* Check result */
    2494        6862 :     if (spi_result < 0)
    2495           0 :         elog(ERROR, "SPI_execute_snapshot returned %s", SPI_result_code_string(spi_result));
    2496             : 
    2497        6862 :     if (expect_OK >= 0 && spi_result != expect_OK)
    2498           0 :         ereport(ERROR,
    2499             :                 (errcode(ERRCODE_INTERNAL_ERROR),
    2500             :                  errmsg("referential integrity query on \"%s\" from constraint \"%s\" on \"%s\" gave unexpected result",
    2501             :                         RelationGetRelationName(pk_rel),
    2502             :                         NameStr(riinfo->conname),
    2503             :                         RelationGetRelationName(fk_rel)),
    2504             :                  errhint("This is most likely due to a rule having rewritten the query.")));
    2505             : 
    2506             :     /* XXX wouldn't it be clearer to do this part at the caller? */
    2507        6862 :     if (qkey->constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK &&
    2508        5228 :         expect_OK == SPI_OK_SELECT &&
    2509        5228 :         (SPI_processed == 0) == (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK))
    2510        1034 :         ri_ReportViolation(riinfo,
    2511             :                            pk_rel, fk_rel,
    2512             :                            newslot ? newslot : oldslot,
    2513             :                            NULL,
    2514             :                            qkey->constr_queryno, false);
    2515             : 
    2516        5828 :     return SPI_processed != 0;
    2517             : }
    2518             : 
    2519             : /*
    2520             :  * Extract fields from a tuple into Datum/nulls arrays
    2521             :  */
    2522             : static void
    2523        7074 : ri_ExtractValues(Relation rel, TupleTableSlot *slot,
    2524             :                  const RI_ConstraintInfo *riinfo, bool rel_is_pk,
    2525             :                  Datum *vals, char *nulls)
    2526             : {
    2527             :     const int16 *attnums;
    2528             :     bool        isnull;
    2529             : 
    2530        7074 :     if (rel_is_pk)
    2531        2960 :         attnums = riinfo->pk_attnums;
    2532             :     else
    2533        4114 :         attnums = riinfo->fk_attnums;
    2534             : 
    2535       16840 :     for (int i = 0; i < riinfo->nkeys; i++)
    2536             :     {
    2537        9766 :         vals[i] = slot_getattr(slot, attnums[i], &isnull);
    2538        9766 :         nulls[i] = isnull ? 'n' : ' ';
    2539             :     }
    2540        7074 : }
    2541             : 
    2542             : /*
    2543             :  * Produce an error report
    2544             :  *
    2545             :  * If the failed constraint was on insert/update to the FK table,
    2546             :  * we want the key names and values extracted from there, and the error
    2547             :  * message to look like 'key blah is not present in PK'.
    2548             :  * Otherwise, the attr names and values come from the PK table and the
    2549             :  * message looks like 'key blah is still referenced from FK'.
    2550             :  */
    2551             : static void
    2552        1118 : ri_ReportViolation(const RI_ConstraintInfo *riinfo,
    2553             :                    Relation pk_rel, Relation fk_rel,
    2554             :                    TupleTableSlot *violatorslot, TupleDesc tupdesc,
    2555             :                    int queryno, bool partgone)
    2556             : {
    2557             :     StringInfoData key_names;
    2558             :     StringInfoData key_values;
    2559             :     bool        onfk;
    2560             :     const int16 *attnums;
    2561             :     Oid         rel_oid;
    2562             :     AclResult   aclresult;
    2563        1118 :     bool        has_perm = true;
    2564             : 
    2565             :     /*
    2566             :      * Determine which relation to complain about.  If tupdesc wasn't passed
    2567             :      * by caller, assume the violator tuple came from there.
    2568             :      */
    2569        1118 :     onfk = (queryno == RI_PLAN_CHECK_LOOKUPPK);
    2570        1118 :     if (onfk)
    2571             :     {
    2572         594 :         attnums = riinfo->fk_attnums;
    2573         594 :         rel_oid = fk_rel->rd_id;
    2574         594 :         if (tupdesc == NULL)
    2575         544 :             tupdesc = fk_rel->rd_att;
    2576             :     }
    2577             :     else
    2578             :     {
    2579         524 :         attnums = riinfo->pk_attnums;
    2580         524 :         rel_oid = pk_rel->rd_id;
    2581         524 :         if (tupdesc == NULL)
    2582         490 :             tupdesc = pk_rel->rd_att;
    2583             :     }
    2584             : 
    2585             :     /*
    2586             :      * Check permissions- if the user does not have access to view the data in
    2587             :      * any of the key columns then we don't include the errdetail() below.
    2588             :      *
    2589             :      * Check if RLS is enabled on the relation first.  If so, we don't return
    2590             :      * any specifics to avoid leaking data.
    2591             :      *
    2592             :      * Check table-level permissions next and, failing that, column-level
    2593             :      * privileges.
    2594             :      *
    2595             :      * When a partition at the referenced side is being detached/dropped, we
    2596             :      * needn't check, since the user must be the table owner anyway.
    2597             :      */
    2598        1118 :     if (partgone)
    2599          34 :         has_perm = true;
    2600        1084 :     else if (check_enable_rls(rel_oid, InvalidOid, true) != RLS_ENABLED)
    2601             :     {
    2602        1078 :         aclresult = pg_class_aclcheck(rel_oid, GetUserId(), ACL_SELECT);
    2603        1078 :         if (aclresult != ACLCHECK_OK)
    2604             :         {
    2605             :             /* Try for column-level permissions */
    2606           0 :             for (int idx = 0; idx < riinfo->nkeys; idx++)
    2607             :             {
    2608           0 :                 aclresult = pg_attribute_aclcheck(rel_oid, attnums[idx],
    2609             :                                                   GetUserId(),
    2610             :                                                   ACL_SELECT);
    2611             : 
    2612             :                 /* No access to the key */
    2613           0 :                 if (aclresult != ACLCHECK_OK)
    2614             :                 {
    2615           0 :                     has_perm = false;
    2616           0 :                     break;
    2617             :                 }
    2618             :             }
    2619             :         }
    2620             :     }
    2621             :     else
    2622           6 :         has_perm = false;
    2623             : 
    2624        1118 :     if (has_perm)
    2625             :     {
    2626             :         /* Get printable versions of the keys involved */
    2627        1112 :         initStringInfo(&key_names);
    2628        1112 :         initStringInfo(&key_values);
    2629        2788 :         for (int idx = 0; idx < riinfo->nkeys; idx++)
    2630             :         {
    2631        1676 :             int         fnum = attnums[idx];
    2632        1676 :             Form_pg_attribute att = TupleDescAttr(tupdesc, fnum - 1);
    2633             :             char       *name,
    2634             :                        *val;
    2635             :             Datum       datum;
    2636             :             bool        isnull;
    2637             : 
    2638        1676 :             name = NameStr(att->attname);
    2639             : 
    2640        1676 :             datum = slot_getattr(violatorslot, fnum, &isnull);
    2641        1676 :             if (!isnull)
    2642             :             {
    2643             :                 Oid         foutoid;
    2644             :                 bool        typisvarlena;
    2645             : 
    2646        1676 :                 getTypeOutputInfo(att->atttypid, &foutoid, &typisvarlena);
    2647        1676 :                 val = OidOutputFunctionCall(foutoid, datum);
    2648             :             }
    2649             :             else
    2650           0 :                 val = "null";
    2651             : 
    2652        1676 :             if (idx > 0)
    2653             :             {
    2654         564 :                 appendStringInfoString(&key_names, ", ");
    2655         564 :                 appendStringInfoString(&key_values, ", ");
    2656             :             }
    2657        1676 :             appendStringInfoString(&key_names, name);
    2658        1676 :             appendStringInfoString(&key_values, val);
    2659             :         }
    2660             :     }
    2661             : 
    2662        1118 :     if (partgone)
    2663          34 :         ereport(ERROR,
    2664             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2665             :                  errmsg("removing partition \"%s\" violates foreign key constraint \"%s\"",
    2666             :                         RelationGetRelationName(pk_rel),
    2667             :                         NameStr(riinfo->conname)),
    2668             :                  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
    2669             :                            key_names.data, key_values.data,
    2670             :                            RelationGetRelationName(fk_rel)),
    2671             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2672        1084 :     else if (onfk)
    2673         594 :         ereport(ERROR,
    2674             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2675             :                  errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"",
    2676             :                         RelationGetRelationName(fk_rel),
    2677             :                         NameStr(riinfo->conname)),
    2678             :                  has_perm ?
    2679             :                  errdetail("Key (%s)=(%s) is not present in table \"%s\".",
    2680             :                            key_names.data, key_values.data,
    2681             :                            RelationGetRelationName(pk_rel)) :
    2682             :                  errdetail("Key is not present in table \"%s\".",
    2683             :                            RelationGetRelationName(pk_rel)),
    2684             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2685             :     else
    2686         490 :         ereport(ERROR,
    2687             :                 (errcode(ERRCODE_FOREIGN_KEY_VIOLATION),
    2688             :                  errmsg("update or delete on table \"%s\" violates foreign key constraint \"%s\" on table \"%s\"",
    2689             :                         RelationGetRelationName(pk_rel),
    2690             :                         NameStr(riinfo->conname),
    2691             :                         RelationGetRelationName(fk_rel)),
    2692             :                  has_perm ?
    2693             :                  errdetail("Key (%s)=(%s) is still referenced from table \"%s\".",
    2694             :                            key_names.data, key_values.data,
    2695             :                            RelationGetRelationName(fk_rel)) :
    2696             :                  errdetail("Key is still referenced from table \"%s\".",
    2697             :                            RelationGetRelationName(fk_rel)),
    2698             :                  errtableconstraint(fk_rel, NameStr(riinfo->conname))));
    2699             : }
    2700             : 
    2701             : 
    2702             : /*
    2703             :  * ri_NullCheck -
    2704             :  *
    2705             :  * Determine the NULL state of all key values in a tuple
    2706             :  *
    2707             :  * Returns one of RI_KEYS_ALL_NULL, RI_KEYS_NONE_NULL or RI_KEYS_SOME_NULL.
    2708             :  */
    2709             : static int
    2710        7916 : ri_NullCheck(TupleDesc tupDesc,
    2711             :              TupleTableSlot *slot,
    2712             :              const RI_ConstraintInfo *riinfo, bool rel_is_pk)
    2713             : {
    2714             :     const int16 *attnums;
    2715        7916 :     bool        allnull = true;
    2716        7916 :     bool        nonenull = true;
    2717             : 
    2718        7916 :     if (rel_is_pk)
    2719        2422 :         attnums = riinfo->pk_attnums;
    2720             :     else
    2721        5494 :         attnums = riinfo->fk_attnums;
    2722             : 
    2723       18422 :     for (int i = 0; i < riinfo->nkeys; i++)
    2724             :     {
    2725       10506 :         if (slot_attisnull(slot, attnums[i]))
    2726         534 :             nonenull = false;
    2727             :         else
    2728        9972 :             allnull = false;
    2729             :     }
    2730             : 
    2731        7916 :     if (allnull)
    2732         258 :         return RI_KEYS_ALL_NULL;
    2733             : 
    2734        7658 :     if (nonenull)
    2735        7454 :         return RI_KEYS_NONE_NULL;
    2736             : 
    2737         204 :     return RI_KEYS_SOME_NULL;
    2738             : }
    2739             : 
    2740             : 
    2741             : /*
    2742             :  * ri_InitHashTables -
    2743             :  *
    2744             :  * Initialize our internal hash tables.
    2745             :  */
    2746             : static void
    2747         416 : ri_InitHashTables(void)
    2748             : {
    2749             :     HASHCTL     ctl;
    2750             : 
    2751         416 :     ctl.keysize = sizeof(Oid);
    2752         416 :     ctl.entrysize = sizeof(RI_ConstraintInfo);
    2753         416 :     ri_constraint_cache = hash_create("RI constraint cache",
    2754             :                                       RI_INIT_CONSTRAINTHASHSIZE,
    2755             :                                       &ctl, HASH_ELEM | HASH_BLOBS);
    2756             : 
    2757             :     /* Arrange to flush cache on pg_constraint changes */
    2758         416 :     CacheRegisterSyscacheCallback(CONSTROID,
    2759             :                                   InvalidateConstraintCacheCallBack,
    2760             :                                   (Datum) 0);
    2761             : 
    2762         416 :     ctl.keysize = sizeof(RI_QueryKey);
    2763         416 :     ctl.entrysize = sizeof(RI_QueryHashEntry);
    2764         416 :     ri_query_cache = hash_create("RI query cache",
    2765             :                                  RI_INIT_QUERYHASHSIZE,
    2766             :                                  &ctl, HASH_ELEM | HASH_BLOBS);
    2767             : 
    2768         416 :     ctl.keysize = sizeof(RI_CompareKey);
    2769         416 :     ctl.entrysize = sizeof(RI_CompareHashEntry);
    2770         416 :     ri_compare_cache = hash_create("RI compare cache",
    2771             :                                    RI_INIT_QUERYHASHSIZE,
    2772             :                                    &ctl, HASH_ELEM | HASH_BLOBS);
    2773         416 : }
    2774             : 
    2775             : 
    2776             : /*
    2777             :  * ri_FetchPreparedPlan -
    2778             :  *
    2779             :  * Lookup for a query key in our private hash table of prepared
    2780             :  * and saved SPI execution plans. Return the plan if found or NULL.
    2781             :  */
    2782             : static SPIPlanPtr
    2783        6876 : ri_FetchPreparedPlan(RI_QueryKey *key)
    2784             : {
    2785             :     RI_QueryHashEntry *entry;
    2786             :     SPIPlanPtr  plan;
    2787             : 
    2788             :     /*
    2789             :      * On the first call initialize the hashtable
    2790             :      */
    2791        6876 :     if (!ri_query_cache)
    2792           0 :         ri_InitHashTables();
    2793             : 
    2794             :     /*
    2795             :      * Lookup for the key
    2796             :      */
    2797        6876 :     entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
    2798             :                                               key,
    2799             :                                               HASH_FIND, NULL);
    2800        6876 :     if (entry == NULL)
    2801        3038 :         return NULL;
    2802             : 
    2803             :     /*
    2804             :      * Check whether the plan is still valid.  If it isn't, we don't want to
    2805             :      * simply rely on plancache.c to regenerate it; rather we should start
    2806             :      * from scratch and rebuild the query text too.  This is to cover cases
    2807             :      * such as table/column renames.  We depend on the plancache machinery to
    2808             :      * detect possible invalidations, though.
    2809             :      *
    2810             :      * CAUTION: this check is only trustworthy if the caller has already
    2811             :      * locked both FK and PK rels.
    2812             :      */
    2813        3838 :     plan = entry->plan;
    2814        3838 :     if (plan && SPI_plan_is_valid(plan))
    2815        3420 :         return plan;
    2816             : 
    2817             :     /*
    2818             :      * Otherwise we might as well flush the cached plan now, to free a little
    2819             :      * memory space before we make a new one.
    2820             :      */
    2821         418 :     entry->plan = NULL;
    2822         418 :     if (plan)
    2823         418 :         SPI_freeplan(plan);
    2824             : 
    2825         418 :     return NULL;
    2826             : }
    2827             : 
    2828             : 
    2829             : /*
    2830             :  * ri_HashPreparedPlan -
    2831             :  *
    2832             :  * Add another plan to our private SPI query plan hashtable.
    2833             :  */
    2834             : static void
    2835        3456 : ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan)
    2836             : {
    2837             :     RI_QueryHashEntry *entry;
    2838             :     bool        found;
    2839             : 
    2840             :     /*
    2841             :      * On the first call initialize the hashtable
    2842             :      */
    2843        3456 :     if (!ri_query_cache)
    2844           0 :         ri_InitHashTables();
    2845             : 
    2846             :     /*
    2847             :      * Add the new plan.  We might be overwriting an entry previously found
    2848             :      * invalid by ri_FetchPreparedPlan.
    2849             :      */
    2850        3456 :     entry = (RI_QueryHashEntry *) hash_search(ri_query_cache,
    2851             :                                               key,
    2852             :                                               HASH_ENTER, &found);
    2853             :     Assert(!found || entry->plan == NULL);
    2854        3456 :     entry->plan = plan;
    2855        3456 : }
    2856             : 
    2857             : 
    2858             : /*
    2859             :  * ri_KeysEqual -
    2860             :  *
    2861             :  * Check if all key values in OLD and NEW are "equivalent":
    2862             :  * For normal FKs we check for equality.
    2863             :  * For temporal FKs we check that the PK side is a superset of its old value,
    2864             :  * or the FK side is a subset of its old value.
    2865             :  *
    2866             :  * Note: at some point we might wish to redefine this as checking for
    2867             :  * "IS NOT DISTINCT" rather than "=", that is, allow two nulls to be
    2868             :  * considered equal.  Currently there is no need since all callers have
    2869             :  * previously found at least one of the rows to contain no nulls.
    2870             :  */
    2871             : static bool
    2872        2278 : ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot,
    2873             :              const RI_ConstraintInfo *riinfo, bool rel_is_pk)
    2874             : {
    2875             :     const int16 *attnums;
    2876             : 
    2877        2278 :     if (rel_is_pk)
    2878        1490 :         attnums = riinfo->pk_attnums;
    2879             :     else
    2880         788 :         attnums = riinfo->fk_attnums;
    2881             : 
    2882             :     /* XXX: could be worthwhile to fetch all necessary attrs at once */
    2883        3650 :     for (int i = 0; i < riinfo->nkeys; i++)
    2884             :     {
    2885             :         Datum       oldvalue;
    2886             :         Datum       newvalue;
    2887             :         bool        isnull;
    2888             : 
    2889             :         /*
    2890             :          * Get one attribute's oldvalue. If it is NULL - they're not equal.
    2891             :          */
    2892        2662 :         oldvalue = slot_getattr(oldslot, attnums[i], &isnull);
    2893        2662 :         if (isnull)
    2894        1290 :             return false;
    2895             : 
    2896             :         /*
    2897             :          * Get one attribute's newvalue. If it is NULL - they're not equal.
    2898             :          */
    2899        2632 :         newvalue = slot_getattr(newslot, attnums[i], &isnull);
    2900        2632 :         if (isnull)
    2901           0 :             return false;
    2902             : 
    2903        2632 :         if (rel_is_pk)
    2904             :         {
    2905             :             /*
    2906             :              * If we are looking at the PK table, then do a bytewise
    2907             :              * comparison.  We must propagate PK changes if the value is
    2908             :              * changed to one that "looks" different but would compare as
    2909             :              * equal using the equality operator.  This only makes a
    2910             :              * difference for ON UPDATE CASCADE, but for consistency we treat
    2911             :              * all changes to the PK the same.
    2912             :              */
    2913        1790 :             Form_pg_attribute att = TupleDescAttr(oldslot->tts_tupleDescriptor, attnums[i] - 1);
    2914             : 
    2915        1790 :             if (!datum_image_eq(oldvalue, newvalue, att->attbyval, att->attlen))
    2916         954 :                 return false;
    2917             :         }
    2918             :         else
    2919             :         {
    2920             :             Oid         eq_opr;
    2921             : 
    2922             :             /*
    2923             :              * When comparing the PERIOD columns we can skip the check
    2924             :              * whenever the referencing column stayed equal or shrank, so test
    2925             :              * with the contained-by operator instead.
    2926             :              */
    2927         842 :             if (riinfo->hasperiod && i == riinfo->nkeys - 1)
    2928          48 :                 eq_opr = riinfo->period_contained_by_oper;
    2929             :             else
    2930         794 :                 eq_opr = riinfo->ff_eq_oprs[i];
    2931             : 
    2932             :             /*
    2933             :              * For the FK table, compare with the appropriate equality
    2934             :              * operator.  Changes that compare equal will still satisfy the
    2935             :              * constraint after the update.
    2936             :              */
    2937         842 :             if (!ri_CompareWithCast(eq_opr, RIAttType(rel, attnums[i]), RIAttCollation(rel, attnums[i]),
    2938             :                                     newvalue, oldvalue))
    2939         306 :                 return false;
    2940             :         }
    2941             :     }
    2942             : 
    2943         988 :     return true;
    2944             : }
    2945             : 
    2946             : 
    2947             : /*
    2948             :  * ri_CompareWithCast -
    2949             :  *
    2950             :  * Call the appropriate comparison operator for two values.
    2951             :  * Normally this is equality, but for the PERIOD part of foreign keys
    2952             :  * it is ContainedBy, so the order of lhs vs rhs is significant.
    2953             :  * See below for how the collation is applied.
    2954             :  *
    2955             :  * NB: we have already checked that neither value is null.
    2956             :  */
    2957             : static bool
    2958         842 : ri_CompareWithCast(Oid eq_opr, Oid typeid, Oid collid,
    2959             :                    Datum lhs, Datum rhs)
    2960             : {
    2961         842 :     RI_CompareHashEntry *entry = ri_HashCompareOp(eq_opr, typeid);
    2962             : 
    2963             :     /* Do we need to cast the values? */
    2964         842 :     if (OidIsValid(entry->cast_func_finfo.fn_oid))
    2965             :     {
    2966          12 :         lhs = FunctionCall3(&entry->cast_func_finfo,
    2967             :                             lhs,
    2968             :                             Int32GetDatum(-1),  /* typmod */
    2969             :                             BoolGetDatum(false));   /* implicit coercion */
    2970          12 :         rhs = FunctionCall3(&entry->cast_func_finfo,
    2971             :                             rhs,
    2972             :                             Int32GetDatum(-1),  /* typmod */
    2973             :                             BoolGetDatum(false));   /* implicit coercion */
    2974             :     }
    2975             : 
    2976             :     /*
    2977             :      * Apply the comparison operator.
    2978             :      *
    2979             :      * Note: This function is part of a call stack that determines whether an
    2980             :      * update to a row is significant enough that it needs checking or action
    2981             :      * on the other side of a foreign-key constraint.  Therefore, the
    2982             :      * comparison here would need to be done with the collation of the *other*
    2983             :      * table.  For simplicity (e.g., we might not even have the other table
    2984             :      * open), we'll use our own collation.  This is fine because we require
    2985             :      * that both collations have the same notion of equality (either they are
    2986             :      * both deterministic or else they are both the same).
    2987             :      *
    2988             :      * With range/multirangetypes, the collation of the base type is stored as
    2989             :      * part of the rangetype (pg_range.rngcollation), and always used, so
    2990             :      * there is no danger of inconsistency even using a non-equals operator.
    2991             :      * But if we support arbitrary types with PERIOD, we should perhaps just
    2992             :      * always force a re-check.
    2993             :      */
    2994         842 :     return DatumGetBool(FunctionCall2Coll(&entry->eq_opr_finfo, collid, lhs, rhs));
    2995             : }
    2996             : 
    2997             : /*
    2998             :  * ri_HashCompareOp -
    2999             :  *
    3000             :  * See if we know how to compare two values, and create a new hash entry
    3001             :  * if not.
    3002             :  */
    3003             : static RI_CompareHashEntry *
    3004         842 : ri_HashCompareOp(Oid eq_opr, Oid typeid)
    3005             : {
    3006             :     RI_CompareKey key;
    3007             :     RI_CompareHashEntry *entry;
    3008             :     bool        found;
    3009             : 
    3010             :     /*
    3011             :      * On the first call initialize the hashtable
    3012             :      */
    3013         842 :     if (!ri_compare_cache)
    3014           0 :         ri_InitHashTables();
    3015             : 
    3016             :     /*
    3017             :      * Find or create a hash entry.  Note we're assuming RI_CompareKey
    3018             :      * contains no struct padding.
    3019             :      */
    3020         842 :     key.eq_opr = eq_opr;
    3021         842 :     key.typeid = typeid;
    3022         842 :     entry = (RI_CompareHashEntry *) hash_search(ri_compare_cache,
    3023             :                                                 &key,
    3024             :                                                 HASH_ENTER, &found);
    3025         842 :     if (!found)
    3026         286 :         entry->valid = false;
    3027             : 
    3028             :     /*
    3029             :      * If not already initialized, do so.  Since we'll keep this hash entry
    3030             :      * for the life of the backend, put any subsidiary info for the function
    3031             :      * cache structs into TopMemoryContext.
    3032             :      */
    3033         842 :     if (!entry->valid)
    3034             :     {
    3035             :         Oid         lefttype,
    3036             :                     righttype,
    3037             :                     castfunc;
    3038             :         CoercionPathType pathtype;
    3039             : 
    3040             :         /* We always need to know how to call the equality operator */
    3041         286 :         fmgr_info_cxt(get_opcode(eq_opr), &entry->eq_opr_finfo,
    3042             :                       TopMemoryContext);
    3043             : 
    3044             :         /*
    3045             :          * If we chose to use a cast from FK to PK type, we may have to apply
    3046             :          * the cast function to get to the operator's input type.
    3047             :          *
    3048             :          * XXX eventually it would be good to support array-coercion cases
    3049             :          * here and in ri_CompareWithCast().  At the moment there is no point
    3050             :          * because cases involving nonidentical array types will be rejected
    3051             :          * at constraint creation time.
    3052             :          *
    3053             :          * XXX perhaps also consider supporting CoerceViaIO?  No need at the
    3054             :          * moment since that will never be generated for implicit coercions.
    3055             :          */
    3056         286 :         op_input_types(eq_opr, &lefttype, &righttype);
    3057             :         Assert(lefttype == righttype);
    3058         286 :         if (typeid == lefttype)
    3059         262 :             castfunc = InvalidOid;  /* simplest case */
    3060             :         else
    3061             :         {
    3062          24 :             pathtype = find_coercion_pathway(lefttype, typeid,
    3063             :                                              COERCION_IMPLICIT,
    3064             :                                              &castfunc);
    3065          24 :             if (pathtype != COERCION_PATH_FUNC &&
    3066             :                 pathtype != COERCION_PATH_RELABELTYPE)
    3067             :             {
    3068             :                 /*
    3069             :                  * The declared input type of the eq_opr might be a
    3070             :                  * polymorphic type such as ANYARRAY or ANYENUM, or other
    3071             :                  * special cases such as RECORD; find_coercion_pathway
    3072             :                  * currently doesn't subsume these special cases.
    3073             :                  */
    3074          18 :                 if (!IsBinaryCoercible(typeid, lefttype))
    3075           0 :                     elog(ERROR, "no conversion function from %s to %s",
    3076             :                          format_type_be(typeid),
    3077             :                          format_type_be(lefttype));
    3078             :             }
    3079             :         }
    3080         286 :         if (OidIsValid(castfunc))
    3081           6 :             fmgr_info_cxt(castfunc, &entry->cast_func_finfo,
    3082             :                           TopMemoryContext);
    3083             :         else
    3084         280 :             entry->cast_func_finfo.fn_oid = InvalidOid;
    3085         286 :         entry->valid = true;
    3086             :     }
    3087             : 
    3088         842 :     return entry;
    3089             : }
    3090             : 
    3091             : 
    3092             : /*
    3093             :  * Given a trigger function OID, determine whether it is an RI trigger,
    3094             :  * and if so whether it is attached to PK or FK relation.
    3095             :  */
    3096             : int
    3097        8222 : RI_FKey_trigger_type(Oid tgfoid)
    3098             : {
    3099        8222 :     switch (tgfoid)
    3100             :     {
    3101        3010 :         case F_RI_FKEY_CASCADE_DEL:
    3102             :         case F_RI_FKEY_CASCADE_UPD:
    3103             :         case F_RI_FKEY_RESTRICT_DEL:
    3104             :         case F_RI_FKEY_RESTRICT_UPD:
    3105             :         case F_RI_FKEY_SETNULL_DEL:
    3106             :         case F_RI_FKEY_SETNULL_UPD:
    3107             :         case F_RI_FKEY_SETDEFAULT_DEL:
    3108             :         case F_RI_FKEY_SETDEFAULT_UPD:
    3109             :         case F_RI_FKEY_NOACTION_DEL:
    3110             :         case F_RI_FKEY_NOACTION_UPD:
    3111        3010 :             return RI_TRIGGER_PK;
    3112             : 
    3113        2462 :         case F_RI_FKEY_CHECK_INS:
    3114             :         case F_RI_FKEY_CHECK_UPD:
    3115        2462 :             return RI_TRIGGER_FK;
    3116             :     }
    3117             : 
    3118        2750 :     return RI_TRIGGER_NONE;
    3119             : }

Generated by: LCOV version 1.14