LCOV - code coverage report
Current view: top level - src/backend/utils/adt - rangetypes_spgist.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 278 327 85.0 %
Date: 2026-02-09 23:17:09 Functions: 9 9 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * rangetypes_spgist.c
       4             :  *    implementation of quad tree over ranges mapped to 2d-points for SP-GiST.
       5             :  *
       6             :  * Quad tree is a data structure similar to a binary tree, but is adapted to
       7             :  * 2d data. Each inner node of a quad tree contains a point (centroid) which
       8             :  * divides the 2d-space into 4 quadrants. Each quadrant is associated with a
       9             :  * child node.
      10             :  *
      11             :  * Ranges are mapped to 2d-points so that the lower bound is one dimension,
      12             :  * and the upper bound is another. By convention, we visualize the lower bound
      13             :  * to be the horizontal axis, and upper bound the vertical axis.
      14             :  *
      15             :  * One quirk with this mapping is the handling of empty ranges. An empty range
      16             :  * doesn't have lower and upper bounds, so it cannot be mapped to 2d space in
      17             :  * a straightforward way. To cope with that, the root node can have a 5th
      18             :  * quadrant, which is reserved for empty ranges. Furthermore, there can be
      19             :  * inner nodes in the tree with no centroid. They contain only two child nodes,
      20             :  * one for empty ranges and another for non-empty ones. Such a node can appear
      21             :  * as the root node, or in the tree under the 5th child of the root node (in
      22             :  * which case it will only contain empty nodes).
      23             :  *
      24             :  * The SP-GiST picksplit function uses medians along both axes as the centroid.
      25             :  * This implementation only uses the comparison function of the range element
      26             :  * datatype, therefore it works for any range type.
      27             :  *
      28             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
      29             :  * Portions Copyright (c) 1994, Regents of the University of California
      30             :  *
      31             :  * IDENTIFICATION
      32             :  *          src/backend/utils/adt/rangetypes_spgist.c
      33             :  *
      34             :  *-------------------------------------------------------------------------
      35             :  */
      36             : 
      37             : #include "postgres.h"
      38             : 
      39             : #include "access/spgist.h"
      40             : #include "access/stratnum.h"
      41             : #include "catalog/pg_type.h"
      42             : #include "utils/datum.h"
      43             : #include "utils/fmgrprotos.h"
      44             : #include "utils/rangetypes.h"
      45             : 
      46             : static int16 getQuadrant(TypeCacheEntry *typcache, const RangeType *centroid,
      47             :                          const RangeType *tst);
      48             : static int  bound_cmp(const void *a, const void *b, void *arg);
      49             : 
      50             : static int  adjacent_inner_consistent(TypeCacheEntry *typcache,
      51             :                                       const RangeBound *arg, const RangeBound *centroid,
      52             :                                       const RangeBound *prev);
      53             : static int  adjacent_cmp_bounds(TypeCacheEntry *typcache, const RangeBound *arg,
      54             :                                 const RangeBound *centroid);
      55             : 
      56             : /*
      57             :  * SP-GiST 'config' interface function.
      58             :  */
      59             : Datum
      60         110 : spg_range_quad_config(PG_FUNCTION_ARGS)
      61             : {
      62             : #ifdef NOT_USED
      63             :     spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0);
      64             : #endif
      65         110 :     spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
      66             : 
      67         110 :     cfg->prefixType = ANYRANGEOID;
      68         110 :     cfg->labelType = VOIDOID;    /* we don't need node labels */
      69         110 :     cfg->canReturnData = true;
      70         110 :     cfg->longValuesOK = false;
      71         110 :     PG_RETURN_VOID();
      72             : }
      73             : 
      74             : /*----------
      75             :  * Determine which quadrant a 2d-mapped range falls into, relative to the
      76             :  * centroid.
      77             :  *
      78             :  * Quadrants are numbered like this:
      79             :  *
      80             :  *   4  |  1
      81             :  *  ----+----
      82             :  *   3  |  2
      83             :  *
      84             :  * Where the lower bound of range is the horizontal axis and upper bound the
      85             :  * vertical axis.
      86             :  *
      87             :  * Ranges on one of the axes are taken to lie in the quadrant with higher value
      88             :  * along perpendicular axis. That is, a value on the horizontal axis is taken
      89             :  * to belong to quadrant 1 or 4, and a value on the vertical axis is taken to
      90             :  * belong to quadrant 1 or 2. A range equal to centroid is taken to lie in
      91             :  * quadrant 1.
      92             :  *
      93             :  * Empty ranges are taken to lie in the special quadrant 5.
      94             :  *----------
      95             :  */
      96             : static int16
      97      758736 : getQuadrant(TypeCacheEntry *typcache, const RangeType *centroid, const RangeType *tst)
      98             : {
      99             :     RangeBound  centroidLower,
     100             :                 centroidUpper;
     101             :     bool        centroidEmpty;
     102             :     RangeBound  lower,
     103             :                 upper;
     104             :     bool        empty;
     105             : 
     106      758736 :     range_deserialize(typcache, centroid, &centroidLower, &centroidUpper,
     107             :                       &centroidEmpty);
     108      758736 :     range_deserialize(typcache, tst, &lower, &upper, &empty);
     109             : 
     110      758736 :     if (empty)
     111       12000 :         return 5;
     112             : 
     113      746736 :     if (range_cmp_bounds(typcache, &lower, &centroidLower) >= 0)
     114             :     {
     115      680292 :         if (range_cmp_bounds(typcache, &upper, &centroidUpper) >= 0)
     116      679596 :             return 1;
     117             :         else
     118         696 :             return 2;
     119             :     }
     120             :     else
     121             :     {
     122       66444 :         if (range_cmp_bounds(typcache, &upper, &centroidUpper) >= 0)
     123       14612 :             return 4;
     124             :         else
     125       51832 :             return 3;
     126             :     }
     127             : }
     128             : 
     129             : /*
     130             :  * Choose SP-GiST function: choose path for addition of new range.
     131             :  */
     132             : Datum
     133      714946 : spg_range_quad_choose(PG_FUNCTION_ARGS)
     134             : {
     135      714946 :     spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
     136      714946 :     spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
     137      714946 :     RangeType  *inRange = DatumGetRangeTypeP(in->datum),
     138             :                *centroid;
     139             :     int16       quadrant;
     140             :     TypeCacheEntry *typcache;
     141             : 
     142      714946 :     if (in->allTheSame)
     143             :     {
     144       13124 :         out->resultType = spgMatchNode;
     145             :         /* nodeN will be set by core */
     146       13124 :         out->result.matchNode.levelAdd = 0;
     147       13124 :         out->result.matchNode.restDatum = RangeTypePGetDatum(inRange);
     148       13124 :         PG_RETURN_VOID();
     149             :     }
     150             : 
     151      701822 :     typcache = range_get_typcache(fcinfo, RangeTypeGetOid(inRange));
     152             : 
     153             :     /*
     154             :      * A node with no centroid divides ranges purely on whether they're empty
     155             :      * or not. All empty ranges go to child node 0, all non-empty ranges go to
     156             :      * node 1.
     157             :      */
     158      701822 :     if (!in->hasPrefix)
     159             :     {
     160           0 :         out->resultType = spgMatchNode;
     161           0 :         if (RangeIsEmpty(inRange))
     162           0 :             out->result.matchNode.nodeN = 0;
     163             :         else
     164           0 :             out->result.matchNode.nodeN = 1;
     165           0 :         out->result.matchNode.levelAdd = 1;
     166           0 :         out->result.matchNode.restDatum = RangeTypePGetDatum(inRange);
     167           0 :         PG_RETURN_VOID();
     168             :     }
     169             : 
     170      701822 :     centroid = DatumGetRangeTypeP(in->prefixDatum);
     171      701822 :     quadrant = getQuadrant(typcache, centroid, inRange);
     172             : 
     173             :     Assert(quadrant <= in->nNodes);
     174             : 
     175             :     /* Select node matching to quadrant number */
     176      701822 :     out->resultType = spgMatchNode;
     177      701822 :     out->result.matchNode.nodeN = quadrant - 1;
     178      701822 :     out->result.matchNode.levelAdd = 1;
     179      701822 :     out->result.matchNode.restDatum = RangeTypePGetDatum(inRange);
     180             : 
     181      701822 :     PG_RETURN_VOID();
     182             : }
     183             : 
     184             : /*
     185             :  * Bound comparison for sorting.
     186             :  */
     187             : static int
     188      700570 : bound_cmp(const void *a, const void *b, void *arg)
     189             : {
     190      700570 :     const RangeBound *ba = a;
     191      700570 :     const RangeBound *bb = b;
     192      700570 :     TypeCacheEntry *typcache = arg;
     193             : 
     194      700570 :     return range_cmp_bounds(typcache, ba, bb);
     195             : }
     196             : 
     197             : /*
     198             :  * Picksplit SP-GiST function: split ranges into nodes. Select "centroid"
     199             :  * range and distribute ranges according to quadrants.
     200             :  */
     201             : Datum
     202         482 : spg_range_quad_picksplit(PG_FUNCTION_ARGS)
     203             : {
     204         482 :     spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
     205         482 :     spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
     206             :     int         i;
     207             :     int         j;
     208             :     int         nonEmptyCount;
     209             :     RangeType  *centroid;
     210             :     bool        empty;
     211             :     TypeCacheEntry *typcache;
     212             : 
     213             :     /* Use the median values of lower and upper bounds as the centroid range */
     214             :     RangeBound *lowerBounds,
     215             :                *upperBounds;
     216             : 
     217         482 :     typcache = range_get_typcache(fcinfo,
     218         482 :                                   RangeTypeGetOid(DatumGetRangeTypeP(in->datums[0])));
     219             : 
     220             :     /* Allocate memory for bounds */
     221         482 :     lowerBounds = palloc_array(RangeBound, in->nTuples);
     222         482 :     upperBounds = palloc_array(RangeBound, in->nTuples);
     223         482 :     j = 0;
     224             : 
     225             :     /* Deserialize bounds of ranges, count non-empty ranges */
     226       63882 :     for (i = 0; i < in->nTuples; i++)
     227             :     {
     228       63400 :         range_deserialize(typcache, DatumGetRangeTypeP(in->datums[i]),
     229       63400 :                           &lowerBounds[j], &upperBounds[j], &empty);
     230       63400 :         if (!empty)
     231       56890 :             j++;
     232             :     }
     233         482 :     nonEmptyCount = j;
     234             : 
     235             :     /*
     236             :      * All the ranges are empty. The best we can do is to construct an inner
     237             :      * node with no centroid, and put all ranges into node 0. If non-empty
     238             :      * ranges are added later, they will be routed to node 1.
     239             :      */
     240         482 :     if (nonEmptyCount == 0)
     241             :     {
     242          72 :         out->nNodes = 2;
     243          72 :         out->hasPrefix = false;
     244             :         /* Prefix is empty */
     245          72 :         out->prefixDatum = PointerGetDatum(NULL);
     246          72 :         out->nodeLabels = NULL;
     247             : 
     248          72 :         out->mapTuplesToNodes = palloc_array(int, in->nTuples);
     249          72 :         out->leafTupleDatums = palloc_array(Datum, in->nTuples);
     250             : 
     251             :         /* Place all ranges into node 0 */
     252        6582 :         for (i = 0; i < in->nTuples; i++)
     253             :         {
     254        6510 :             RangeType  *range = DatumGetRangeTypeP(in->datums[i]);
     255             : 
     256        6510 :             out->leafTupleDatums[i] = RangeTypePGetDatum(range);
     257        6510 :             out->mapTuplesToNodes[i] = 0;
     258             :         }
     259          72 :         PG_RETURN_VOID();
     260             :     }
     261             : 
     262             :     /* Sort range bounds in order to find medians */
     263         410 :     qsort_arg(lowerBounds, nonEmptyCount, sizeof(RangeBound),
     264             :               bound_cmp, typcache);
     265         410 :     qsort_arg(upperBounds, nonEmptyCount, sizeof(RangeBound),
     266             :               bound_cmp, typcache);
     267             : 
     268             :     /* Construct "centroid" range from medians of lower and upper bounds */
     269         410 :     centroid = range_serialize(typcache, &lowerBounds[nonEmptyCount / 2],
     270         410 :                                &upperBounds[nonEmptyCount / 2], false, NULL);
     271         410 :     out->hasPrefix = true;
     272         410 :     out->prefixDatum = RangeTypePGetDatum(centroid);
     273             : 
     274             :     /* Create node for empty ranges only if it is a root node */
     275         410 :     out->nNodes = (in->level == 0) ? 5 : 4;
     276         410 :     out->nodeLabels = NULL;      /* we don't need node labels */
     277             : 
     278         410 :     out->mapTuplesToNodes = palloc_array(int, in->nTuples);
     279         410 :     out->leafTupleDatums = palloc_array(Datum, in->nTuples);
     280             : 
     281             :     /*
     282             :      * Assign ranges to corresponding nodes according to quadrants relative to
     283             :      * "centroid" range.
     284             :      */
     285       57300 :     for (i = 0; i < in->nTuples; i++)
     286             :     {
     287       56890 :         RangeType  *range = DatumGetRangeTypeP(in->datums[i]);
     288       56890 :         int16       quadrant = getQuadrant(typcache, centroid, range);
     289             : 
     290       56890 :         out->leafTupleDatums[i] = RangeTypePGetDatum(range);
     291       56890 :         out->mapTuplesToNodes[i] = quadrant - 1;
     292             :     }
     293             : 
     294         410 :     PG_RETURN_VOID();
     295             : }
     296             : 
     297             : /*
     298             :  * SP-GiST consistent function for inner nodes: check which nodes are
     299             :  * consistent with given set of queries.
     300             :  */
     301             : Datum
     302        1794 : spg_range_quad_inner_consistent(PG_FUNCTION_ARGS)
     303             : {
     304        1794 :     spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
     305        1794 :     spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
     306             :     int         which;
     307             :     int         i;
     308             :     MemoryContext oldCtx;
     309             : 
     310             :     /*
     311             :      * For adjacent search we need also previous centroid (if any) to improve
     312             :      * the precision of the consistent check. In this case needPrevious flag
     313             :      * is set and centroid is passed into traversalValue.
     314             :      */
     315        1794 :     bool        needPrevious = false;
     316             : 
     317        1794 :     if (in->allTheSame)
     318             :     {
     319             :         /* Report that all nodes should be visited */
     320         144 :         out->nNodes = in->nNodes;
     321         144 :         out->nodeNumbers = palloc_array(int, in->nNodes);
     322        1296 :         for (i = 0; i < in->nNodes; i++)
     323        1152 :             out->nodeNumbers[i] = i;
     324         144 :         PG_RETURN_VOID();
     325             :     }
     326             : 
     327        1650 :     if (!in->hasPrefix)
     328             :     {
     329             :         /*
     330             :          * No centroid on this inner node. Such a node has two child nodes,
     331             :          * the first for empty ranges, and the second for non-empty ones.
     332             :          */
     333             :         Assert(in->nNodes == 2);
     334             : 
     335             :         /*
     336             :          * Nth bit of which variable means that (N - 1)th node should be
     337             :          * visited. Initially all bits are set. Bits of nodes which should be
     338             :          * skipped will be unset.
     339             :          */
     340           0 :         which = (1 << 1) | (1 << 2);
     341           0 :         for (i = 0; i < in->nkeys; i++)
     342             :         {
     343           0 :             StrategyNumber strategy = in->scankeys[i].sk_strategy;
     344             :             bool        empty;
     345             : 
     346             :             /*
     347             :              * The only strategy when second argument of operator is not range
     348             :              * is RANGESTRAT_CONTAINS_ELEM.
     349             :              */
     350           0 :             if (strategy != RANGESTRAT_CONTAINS_ELEM)
     351           0 :                 empty = RangeIsEmpty(DatumGetRangeTypeP(in->scankeys[i].sk_argument));
     352             :             else
     353           0 :                 empty = false;
     354             : 
     355           0 :             switch (strategy)
     356             :             {
     357           0 :                 case RANGESTRAT_BEFORE:
     358             :                 case RANGESTRAT_OVERLEFT:
     359             :                 case RANGESTRAT_OVERLAPS:
     360             :                 case RANGESTRAT_OVERRIGHT:
     361             :                 case RANGESTRAT_AFTER:
     362             :                 case RANGESTRAT_ADJACENT:
     363             :                     /* These strategies return false if any argument is empty */
     364           0 :                     if (empty)
     365           0 :                         which = 0;
     366             :                     else
     367           0 :                         which &= (1 << 2);
     368           0 :                     break;
     369             : 
     370           0 :                 case RANGESTRAT_CONTAINS:
     371             : 
     372             :                     /*
     373             :                      * All ranges contain an empty range. Only non-empty
     374             :                      * ranges can contain a non-empty range.
     375             :                      */
     376           0 :                     if (!empty)
     377           0 :                         which &= (1 << 2);
     378           0 :                     break;
     379             : 
     380           0 :                 case RANGESTRAT_CONTAINED_BY:
     381             : 
     382             :                     /*
     383             :                      * Only an empty range is contained by an empty range.
     384             :                      * Both empty and non-empty ranges can be contained by a
     385             :                      * non-empty range.
     386             :                      */
     387           0 :                     if (empty)
     388           0 :                         which &= (1 << 1);
     389           0 :                     break;
     390             : 
     391           0 :                 case RANGESTRAT_CONTAINS_ELEM:
     392           0 :                     which &= (1 << 2);
     393           0 :                     break;
     394             : 
     395           0 :                 case RANGESTRAT_EQ:
     396           0 :                     if (empty)
     397           0 :                         which &= (1 << 1);
     398             :                     else
     399           0 :                         which &= (1 << 2);
     400           0 :                     break;
     401             : 
     402           0 :                 default:
     403           0 :                     elog(ERROR, "unrecognized range strategy: %d", strategy);
     404             :                     break;
     405             :             }
     406           0 :             if (which == 0)
     407           0 :                 break;          /* no need to consider remaining conditions */
     408             :         }
     409             :     }
     410             :     else
     411             :     {
     412             :         RangeBound  centroidLower,
     413             :                     centroidUpper;
     414             :         bool        centroidEmpty;
     415             :         TypeCacheEntry *typcache;
     416             :         RangeType  *centroid;
     417             : 
     418             :         /* This node has a centroid. Fetch it. */
     419        1650 :         centroid = DatumGetRangeTypeP(in->prefixDatum);
     420        1650 :         typcache = range_get_typcache(fcinfo,
     421             :                                       RangeTypeGetOid(centroid));
     422        1650 :         range_deserialize(typcache, centroid, &centroidLower, &centroidUpper,
     423             :                           &centroidEmpty);
     424             : 
     425             :         Assert(in->nNodes == 4 || in->nNodes == 5);
     426             : 
     427             :         /*
     428             :          * Nth bit of which variable means that (N - 1)th node (Nth quadrant)
     429             :          * should be visited. Initially all bits are set. Bits of nodes which
     430             :          * can be skipped will be unset.
     431             :          */
     432        1650 :         which = (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4) | (1 << 5);
     433             : 
     434        3300 :         for (i = 0; i < in->nkeys; i++)
     435             :         {
     436             :             StrategyNumber strategy;
     437             :             RangeBound  lower,
     438             :                         upper;
     439             :             bool        empty;
     440        1650 :             RangeType  *range = NULL;
     441             : 
     442        1650 :             RangeType  *prevCentroid = NULL;
     443             :             RangeBound  prevLower,
     444             :                         prevUpper;
     445             :             bool        prevEmpty;
     446             : 
     447             :             /* Restrictions on range bounds according to scan strategy */
     448        1650 :             RangeBound *minLower = NULL,
     449        1650 :                        *maxLower = NULL,
     450        1650 :                        *minUpper = NULL,
     451        1650 :                        *maxUpper = NULL;
     452             : 
     453             :             /* Are the restrictions on range bounds inclusive? */
     454        1650 :             bool        inclusive = true;
     455        1650 :             bool        strictEmpty = true;
     456             :             int         cmp,
     457             :                         which1,
     458             :                         which2;
     459             : 
     460        1650 :             strategy = in->scankeys[i].sk_strategy;
     461             : 
     462             :             /*
     463             :              * RANGESTRAT_CONTAINS_ELEM is just like RANGESTRAT_CONTAINS, but
     464             :              * the argument is a single element. Expand the single element to
     465             :              * a range containing only the element, and treat it like
     466             :              * RANGESTRAT_CONTAINS.
     467             :              */
     468        1650 :             if (strategy == RANGESTRAT_CONTAINS_ELEM)
     469             :             {
     470          48 :                 lower.inclusive = true;
     471          48 :                 lower.infinite = false;
     472          48 :                 lower.lower = true;
     473          48 :                 lower.val = in->scankeys[i].sk_argument;
     474             : 
     475          48 :                 upper.inclusive = true;
     476          48 :                 upper.infinite = false;
     477          48 :                 upper.lower = false;
     478          48 :                 upper.val = in->scankeys[i].sk_argument;
     479             : 
     480          48 :                 empty = false;
     481             : 
     482          48 :                 strategy = RANGESTRAT_CONTAINS;
     483             :             }
     484             :             else
     485             :             {
     486        1602 :                 range = DatumGetRangeTypeP(in->scankeys[i].sk_argument);
     487        1602 :                 range_deserialize(typcache, range, &lower, &upper, &empty);
     488             :             }
     489             : 
     490             :             /*
     491             :              * Most strategies are handled by forming a bounding box from the
     492             :              * search key, defined by a minLower, maxLower, minUpper,
     493             :              * maxUpper. Some modify 'which' directly, to specify exactly
     494             :              * which quadrants need to be visited.
     495             :              *
     496             :              * For most strategies, nothing matches an empty search key, and
     497             :              * an empty range never matches a non-empty key. If a strategy
     498             :              * does not behave like that wrt. empty ranges, set strictEmpty to
     499             :              * false.
     500             :              */
     501        1650 :             switch (strategy)
     502             :             {
     503          24 :                 case RANGESTRAT_BEFORE:
     504             : 
     505             :                     /*
     506             :                      * Range A is before range B if upper bound of A is lower
     507             :                      * than lower bound of B.
     508             :                      */
     509          24 :                     maxUpper = &lower;
     510          24 :                     inclusive = false;
     511          24 :                     break;
     512             : 
     513         132 :                 case RANGESTRAT_OVERLEFT:
     514             : 
     515             :                     /*
     516             :                      * Range A is overleft to range B if upper bound of A is
     517             :                      * less than or equal to upper bound of B.
     518             :                      */
     519         132 :                     maxUpper = &upper;
     520         132 :                     break;
     521             : 
     522          48 :                 case RANGESTRAT_OVERLAPS:
     523             : 
     524             :                     /*
     525             :                      * Non-empty ranges overlap, if lower bound of each range
     526             :                      * is lower or equal to upper bound of the other range.
     527             :                      */
     528          48 :                     maxLower = &upper;
     529          48 :                     minUpper = &lower;
     530          48 :                     break;
     531             : 
     532         398 :                 case RANGESTRAT_OVERRIGHT:
     533             : 
     534             :                     /*
     535             :                      * Range A is overright to range B if lower bound of A is
     536             :                      * greater than or equal to lower bound of B.
     537             :                      */
     538         398 :                     minLower = &lower;
     539         398 :                     break;
     540             : 
     541         362 :                 case RANGESTRAT_AFTER:
     542             : 
     543             :                     /*
     544             :                      * Range A is after range B if lower bound of A is greater
     545             :                      * than upper bound of B.
     546             :                      */
     547         362 :                     minLower = &upper;
     548         362 :                     inclusive = false;
     549         362 :                     break;
     550             : 
     551         132 :                 case RANGESTRAT_ADJACENT:
     552         132 :                     if (empty)
     553           0 :                         break;  /* Skip to strictEmpty check. */
     554             : 
     555             :                     /*
     556             :                      * Previously selected quadrant could exclude possibility
     557             :                      * for lower or upper bounds to be adjacent. Deserialize
     558             :                      * previous centroid range if present for checking this.
     559             :                      */
     560         132 :                     if (in->traversalValue)
     561             :                     {
     562         114 :                         prevCentroid = in->traversalValue;
     563         114 :                         range_deserialize(typcache, prevCentroid,
     564             :                                           &prevLower, &prevUpper, &prevEmpty);
     565             :                     }
     566             : 
     567             :                     /*
     568             :                      * For a range's upper bound to be adjacent to the
     569             :                      * argument's lower bound, it will be found along the line
     570             :                      * adjacent to (and just below) Y=lower. Therefore, if the
     571             :                      * argument's lower bound is less than the centroid's
     572             :                      * upper bound, the line falls in quadrants 2 and 3; if
     573             :                      * greater, the line falls in quadrants 1 and 4. (see
     574             :                      * adjacent_cmp_bounds for description of edge cases).
     575             :                      */
     576         132 :                     cmp = adjacent_inner_consistent(typcache, &lower,
     577             :                                                     &centroidUpper,
     578             :                                                     prevCentroid ? &prevUpper : NULL);
     579         132 :                     if (cmp > 0)
     580          12 :                         which1 = (1 << 1) | (1 << 4);
     581         120 :                     else if (cmp < 0)
     582          30 :                         which1 = (1 << 2) | (1 << 3);
     583             :                     else
     584          90 :                         which1 = 0;
     585             : 
     586             :                     /*
     587             :                      * Also search for ranges's adjacent to argument's upper
     588             :                      * bound. They will be found along the line adjacent to
     589             :                      * (and just right of) X=upper, which falls in quadrants 3
     590             :                      * and 4, or 1 and 2.
     591             :                      */
     592         132 :                     cmp = adjacent_inner_consistent(typcache, &upper,
     593             :                                                     &centroidLower,
     594             :                                                     prevCentroid ? &prevLower : NULL);
     595         132 :                     if (cmp > 0)
     596          78 :                         which2 = (1 << 1) | (1 << 2);
     597          54 :                     else if (cmp < 0)
     598          42 :                         which2 = (1 << 3) | (1 << 4);
     599             :                     else
     600          12 :                         which2 = 0;
     601             : 
     602             :                     /* We must chase down ranges adjacent to either bound. */
     603         132 :                     which &= which1 | which2;
     604             : 
     605         132 :                     needPrevious = true;
     606         132 :                     break;
     607             : 
     608         506 :                 case RANGESTRAT_CONTAINS:
     609             : 
     610             :                     /*
     611             :                      * Non-empty range A contains non-empty range B if lower
     612             :                      * bound of A is lower or equal to lower bound of range B
     613             :                      * and upper bound of range A is greater than or equal to
     614             :                      * upper bound of range A.
     615             :                      *
     616             :                      * All non-empty ranges contain an empty range.
     617             :                      */
     618         506 :                     strictEmpty = false;
     619         506 :                     if (!empty)
     620             :                     {
     621          96 :                         which &= (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4);
     622          96 :                         maxLower = &lower;
     623          96 :                         minUpper = &upper;
     624             :                     }
     625         506 :                     break;
     626             : 
     627          24 :                 case RANGESTRAT_CONTAINED_BY:
     628             :                     /* The opposite of contains. */
     629          24 :                     strictEmpty = false;
     630          24 :                     if (empty)
     631             :                     {
     632             :                         /* An empty range is only contained by an empty range */
     633           0 :                         which &= (1 << 5);
     634             :                     }
     635             :                     else
     636             :                     {
     637          24 :                         minLower = &lower;
     638          24 :                         maxUpper = &upper;
     639             :                     }
     640          24 :                     break;
     641             : 
     642          24 :                 case RANGESTRAT_EQ:
     643             : 
     644             :                     /*
     645             :                      * Equal range can be only in the same quadrant where
     646             :                      * argument would be placed to.
     647             :                      */
     648          24 :                     strictEmpty = false;
     649          24 :                     which &= (1 << getQuadrant(typcache, centroid, range));
     650          24 :                     break;
     651             : 
     652           0 :                 default:
     653           0 :                     elog(ERROR, "unrecognized range strategy: %d", strategy);
     654             :                     break;
     655             :             }
     656             : 
     657        1650 :             if (strictEmpty)
     658             :             {
     659        1096 :                 if (empty)
     660             :                 {
     661             :                     /* Scan key is empty, no branches are satisfying */
     662           0 :                     which = 0;
     663           0 :                     break;
     664             :                 }
     665             :                 else
     666             :                 {
     667             :                     /* Shouldn't visit tree branch with empty ranges */
     668        1096 :                     which &= (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4);
     669             :                 }
     670             :             }
     671             : 
     672             :             /*
     673             :              * Using the bounding box, see which quadrants we have to descend
     674             :              * into.
     675             :              */
     676        1650 :             if (minLower)
     677             :             {
     678             :                 /*
     679             :                  * If the centroid's lower bound is less than or equal to the
     680             :                  * minimum lower bound, anything in the 3rd and 4th quadrants
     681             :                  * will have an even smaller lower bound, and thus can't
     682             :                  * match.
     683             :                  */
     684         784 :                 if (range_cmp_bounds(typcache, &centroidLower, minLower) <= 0)
     685          96 :                     which &= (1 << 1) | (1 << 2) | (1 << 5);
     686             :             }
     687        1650 :             if (maxLower)
     688             :             {
     689             :                 /*
     690             :                  * If the centroid's lower bound is greater than the maximum
     691             :                  * lower bound, anything in the 1st and 2nd quadrants will
     692             :                  * also have a greater than or equal lower bound, and thus
     693             :                  * can't match. If the centroid's lower bound is equal to the
     694             :                  * maximum lower bound, we can still exclude the 1st and 2nd
     695             :                  * quadrants if we're looking for a value strictly greater
     696             :                  * than the maximum.
     697             :                  */
     698             : 
     699         144 :                 cmp = range_cmp_bounds(typcache, &centroidLower, maxLower);
     700         144 :                 if (cmp > 0 || (!inclusive && cmp == 0))
     701         108 :                     which &= (1 << 3) | (1 << 4) | (1 << 5);
     702             :             }
     703        1650 :             if (minUpper)
     704             :             {
     705             :                 /*
     706             :                  * If the centroid's upper bound is less than or equal to the
     707             :                  * minimum upper bound, anything in the 2nd and 3rd quadrants
     708             :                  * will have an even smaller upper bound, and thus can't
     709             :                  * match.
     710             :                  */
     711         144 :                 if (range_cmp_bounds(typcache, &centroidUpper, minUpper) <= 0)
     712           0 :                     which &= (1 << 1) | (1 << 4) | (1 << 5);
     713             :             }
     714        1650 :             if (maxUpper)
     715             :             {
     716             :                 /*
     717             :                  * If the centroid's upper bound is greater than the maximum
     718             :                  * upper bound, anything in the 1st and 4th quadrants will
     719             :                  * also have a greater than or equal upper bound, and thus
     720             :                  * can't match. If the centroid's upper bound is equal to the
     721             :                  * maximum upper bound, we can still exclude the 1st and 4th
     722             :                  * quadrants if we're looking for a value strictly greater
     723             :                  * than the maximum.
     724             :                  */
     725             : 
     726         180 :                 cmp = range_cmp_bounds(typcache, &centroidUpper, maxUpper);
     727         180 :                 if (cmp > 0 || (!inclusive && cmp == 0))
     728          84 :                     which &= (1 << 2) | (1 << 3) | (1 << 5);
     729             :             }
     730             : 
     731        1650 :             if (which == 0)
     732           0 :                 break;          /* no need to consider remaining conditions */
     733             :         }
     734             :     }
     735             : 
     736             :     /* We must descend into the quadrant(s) identified by 'which' */
     737        1650 :     out->nodeNumbers = palloc_array(int, in->nNodes);
     738        1650 :     if (needPrevious)
     739         132 :         out->traversalValues = palloc_array(void *, in->nNodes);
     740        1650 :     out->nNodes = 0;
     741             : 
     742             :     /*
     743             :      * Elements of traversalValues should be allocated in
     744             :      * traversalMemoryContext
     745             :      */
     746        1650 :     oldCtx = MemoryContextSwitchTo(in->traversalMemoryContext);
     747             : 
     748        8388 :     for (i = 1; i <= in->nNodes; i++)
     749             :     {
     750        6738 :         if (which & (1 << i))
     751             :         {
     752             :             /* Save previous prefix if needed */
     753        5742 :             if (needPrevious)
     754             :             {
     755             :                 Datum       previousCentroid;
     756             : 
     757             :                 /*
     758             :                  * We know, that in->prefixDatum in this place is varlena,
     759             :                  * because it's range
     760             :                  */
     761         294 :                 previousCentroid = datumCopy(in->prefixDatum, false, -1);
     762         294 :                 out->traversalValues[out->nNodes] = DatumGetPointer(previousCentroid);
     763             :             }
     764        5742 :             out->nodeNumbers[out->nNodes] = i - 1;
     765        5742 :             out->nNodes++;
     766             :         }
     767             :     }
     768             : 
     769        1650 :     MemoryContextSwitchTo(oldCtx);
     770             : 
     771        1650 :     PG_RETURN_VOID();
     772             : }
     773             : 
     774             : /*
     775             :  * adjacent_cmp_bounds
     776             :  *
     777             :  * Given an argument and centroid bound, this function determines if any
     778             :  * bounds that are adjacent to the argument are smaller than, or greater than
     779             :  * or equal to centroid. For brevity, we call the arg < centroid "left", and
     780             :  * arg >= centroid case "right". This corresponds to how the quadrants are
     781             :  * arranged, if you imagine that "left" is equivalent to "down" and "right"
     782             :  * is equivalent to "up".
     783             :  *
     784             :  * For the "left" case, returns -1, and for the "right" case, returns 1.
     785             :  */
     786             : static int
     787         390 : adjacent_cmp_bounds(TypeCacheEntry *typcache, const RangeBound *arg,
     788             :                     const RangeBound *centroid)
     789             : {
     790             :     int         cmp;
     791             : 
     792             :     Assert(arg->lower != centroid->lower);
     793             : 
     794         390 :     cmp = range_cmp_bounds(typcache, arg, centroid);
     795             : 
     796         390 :     if (centroid->lower)
     797             :     {
     798             :         /*------
     799             :          * The argument is an upper bound, we are searching for adjacent lower
     800             :          * bounds. A matching adjacent lower bound must be *larger* than the
     801             :          * argument, but only just.
     802             :          *
     803             :          * The following table illustrates the desired result with a fixed
     804             :          * argument bound, and different centroids. The CMP column shows
     805             :          * the value of 'cmp' variable, and ADJ shows whether the argument
     806             :          * and centroid are adjacent, per bounds_adjacent(). (N) means we
     807             :          * don't need to check for that case, because it's implied by CMP.
     808             :          * With the argument range [..., 500), the adjacent range we're
     809             :          * searching for is [500, ...):
     810             :          *
     811             :          *  ARGUMENT   CENTROID     CMP   ADJ
     812             :          *  [..., 500) [498, ...)    >     (N)   [500, ...) is to the right
     813             :          *  [..., 500) [499, ...)    =    (N)   [500, ...) is to the right
     814             :          *  [..., 500) [500, ...)    <      Y    [500, ...) is to the right
     815             :          *  [..., 500) [501, ...)    <      N    [500, ...) is to the left
     816             :          *
     817             :          * So, we must search left when the argument is smaller than, and not
     818             :          * adjacent, to the centroid. Otherwise search right.
     819             :          *------
     820             :          */
     821         234 :         if (cmp < 0 && !bounds_adjacent(typcache, *arg, *centroid))
     822          72 :             return -1;
     823             :         else
     824         162 :             return 1;
     825             :     }
     826             :     else
     827             :     {
     828             :         /*------
     829             :          * The argument is a lower bound, we are searching for adjacent upper
     830             :          * bounds. A matching adjacent upper bound must be *smaller* than the
     831             :          * argument, but only just.
     832             :          *
     833             :          *  ARGUMENT   CENTROID     CMP   ADJ
     834             :          *  [500, ...) [..., 499)    >     (N)   [..., 500) is to the right
     835             :          *  [500, ...) [..., 500)    >     (Y)   [..., 500) is to the right
     836             :          *  [500, ...) [..., 501)    =    (N)   [..., 500) is to the left
     837             :          *  [500, ...) [..., 502)    <     (N)   [..., 500) is to the left
     838             :          *
     839             :          * We must search left when the argument is smaller than or equal to
     840             :          * the centroid. Otherwise search right. We don't need to check
     841             :          * whether the argument is adjacent with the centroid, because it
     842             :          * doesn't matter.
     843             :          *------
     844             :          */
     845         156 :         if (cmp <= 0)
     846         144 :             return -1;
     847             :         else
     848          12 :             return 1;
     849             :     }
     850             : }
     851             : 
     852             : /*----------
     853             :  * adjacent_inner_consistent
     854             :  *
     855             :  * Like adjacent_cmp_bounds, but also takes into account the previous
     856             :  * level's centroid. We might've traversed left (or right) at the previous
     857             :  * node, in search for ranges adjacent to the other bound, even though we
     858             :  * already ruled out the possibility for any matches in that direction for
     859             :  * this bound. By comparing the argument with the previous centroid, and
     860             :  * the previous centroid with the current centroid, we can determine which
     861             :  * direction we should've moved in at previous level, and which direction we
     862             :  * actually moved.
     863             :  *
     864             :  * If there can be any matches to the left, returns -1. If to the right,
     865             :  * returns 1. If there can be no matches below this centroid, because we
     866             :  * already ruled them out at the previous level, returns 0.
     867             :  *
     868             :  * XXX: Comparing just the previous and current level isn't foolproof; we
     869             :  * might still search some branches unnecessarily. For example, imagine that
     870             :  * we are searching for value 15, and we traverse the following centroids
     871             :  * (only considering one bound for the moment):
     872             :  *
     873             :  * Level 1: 20
     874             :  * Level 2: 50
     875             :  * Level 3: 25
     876             :  *
     877             :  * At this point, previous centroid is 50, current centroid is 25, and the
     878             :  * target value is to the left. But because we already moved right from
     879             :  * centroid 20 to 50 in the first level, there cannot be any values < 20 in
     880             :  * the current branch. But we don't know that just by looking at the previous
     881             :  * and current centroid, so we traverse left, unnecessarily. The reason we are
     882             :  * down this branch is that we're searching for matches with the *other*
     883             :  * bound. If we kept track of which bound we are searching for explicitly,
     884             :  * instead of deducing that from the previous and current centroid, we could
     885             :  * avoid some unnecessary work.
     886             :  *----------
     887             :  */
     888             : static int
     889         264 : adjacent_inner_consistent(TypeCacheEntry *typcache, const RangeBound *arg,
     890             :                           const RangeBound *centroid, const RangeBound *prev)
     891             : {
     892         264 :     if (prev)
     893             :     {
     894             :         int         prevcmp;
     895             :         int         cmp;
     896             : 
     897             :         /*
     898             :          * Which direction were we supposed to traverse at previous level,
     899             :          * left or right?
     900             :          */
     901         228 :         prevcmp = adjacent_cmp_bounds(typcache, arg, prev);
     902             : 
     903             :         /* and which direction did we actually go? */
     904         228 :         cmp = range_cmp_bounds(typcache, centroid, prev);
     905             : 
     906             :         /* if the two don't agree, there's nothing to see here */
     907         228 :         if ((prevcmp < 0 && cmp >= 0) || (prevcmp > 0 && cmp < 0))
     908         102 :             return 0;
     909             :     }
     910             : 
     911         162 :     return adjacent_cmp_bounds(typcache, arg, centroid);
     912             : }
     913             : 
     914             : /*
     915             :  * SP-GiST consistent function for leaf nodes: check leaf value against query
     916             :  * using corresponding function.
     917             :  */
     918             : Datum
     919      227748 : spg_range_quad_leaf_consistent(PG_FUNCTION_ARGS)
     920             : {
     921      227748 :     spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
     922      227748 :     spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
     923      227748 :     RangeType  *leafRange = DatumGetRangeTypeP(in->leafDatum);
     924             :     TypeCacheEntry *typcache;
     925             :     bool        res;
     926             :     int         i;
     927             : 
     928             :     /* all tests are exact */
     929      227748 :     out->recheck = false;
     930             : 
     931             :     /* leafDatum is what it is... */
     932      227748 :     out->leafValue = in->leafDatum;
     933             : 
     934      227748 :     typcache = range_get_typcache(fcinfo, RangeTypeGetOid(leafRange));
     935             : 
     936             :     /* Perform the required comparison(s) */
     937      227748 :     res = true;
     938      434640 :     for (i = 0; i < in->nkeys; i++)
     939             :     {
     940      227748 :         Datum       keyDatum = in->scankeys[i].sk_argument;
     941             : 
     942             :         /* Call the function corresponding to the scan strategy */
     943      227748 :         switch (in->scankeys[i].sk_strategy)
     944             :         {
     945        2856 :             case RANGESTRAT_BEFORE:
     946        2856 :                 res = range_before_internal(typcache, leafRange,
     947        2856 :                                             DatumGetRangeTypeP(keyDatum));
     948        2856 :                 break;
     949       18228 :             case RANGESTRAT_OVERLEFT:
     950       18228 :                 res = range_overleft_internal(typcache, leafRange,
     951       18228 :                                               DatumGetRangeTypeP(keyDatum));
     952       18228 :                 break;
     953        2940 :             case RANGESTRAT_OVERLAPS:
     954        2940 :                 res = range_overlaps_internal(typcache, leafRange,
     955        2940 :                                               DatumGetRangeTypeP(keyDatum));
     956        2940 :                 break;
     957       59460 :             case RANGESTRAT_OVERRIGHT:
     958       59460 :                 res = range_overright_internal(typcache, leafRange,
     959       59460 :                                                DatumGetRangeTypeP(keyDatum));
     960       59460 :                 break;
     961       43428 :             case RANGESTRAT_AFTER:
     962       43428 :                 res = range_after_internal(typcache, leafRange,
     963       43428 :                                            DatumGetRangeTypeP(keyDatum));
     964       43428 :                 break;
     965        5340 :             case RANGESTRAT_ADJACENT:
     966        5340 :                 res = range_adjacent_internal(typcache, leafRange,
     967        5340 :                                               DatumGetRangeTypeP(keyDatum));
     968        5340 :                 break;
     969       77340 :             case RANGESTRAT_CONTAINS:
     970       77340 :                 res = range_contains_internal(typcache, leafRange,
     971       77340 :                                               DatumGetRangeTypeP(keyDatum));
     972       77340 :                 break;
     973       13944 :             case RANGESTRAT_CONTAINED_BY:
     974       13944 :                 res = range_contained_by_internal(typcache, leafRange,
     975       13944 :                                                   DatumGetRangeTypeP(keyDatum));
     976       13944 :                 break;
     977        2940 :             case RANGESTRAT_CONTAINS_ELEM:
     978        2940 :                 res = range_contains_elem_internal(typcache, leafRange,
     979             :                                                    keyDatum);
     980        2940 :                 break;
     981        1272 :             case RANGESTRAT_EQ:
     982        1272 :                 res = range_eq_internal(typcache, leafRange,
     983        1272 :                                         DatumGetRangeTypeP(keyDatum));
     984        1272 :                 break;
     985           0 :             default:
     986           0 :                 elog(ERROR, "unrecognized range strategy: %d",
     987             :                      in->scankeys[i].sk_strategy);
     988             :                 break;
     989             :         }
     990             : 
     991             :         /*
     992             :          * If leaf datum doesn't match to a query key, no need to check
     993             :          * subsequent keys.
     994             :          */
     995      227748 :         if (!res)
     996       20856 :             break;
     997             :     }
     998             : 
     999      227748 :     PG_RETURN_BOOL(res);
    1000             : }

Generated by: LCOV version 1.16