Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * array_selfuncs.c
4 : * Functions for selectivity estimation of array operators
5 : *
6 : * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : *
10 : * IDENTIFICATION
11 : * src/backend/utils/adt/array_selfuncs.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include <math.h>
18 :
19 : #include "access/htup_details.h"
20 : #include "catalog/pg_operator.h"
21 : #include "catalog/pg_statistic.h"
22 : #include "utils/array.h"
23 : #include "utils/fmgrprotos.h"
24 : #include "utils/lsyscache.h"
25 : #include "utils/selfuncs.h"
26 : #include "utils/typcache.h"
27 :
28 :
29 : /* Default selectivity constant for "@>" and "<@" operators */
30 : #define DEFAULT_CONTAIN_SEL 0.005
31 :
32 : /* Default selectivity constant for "&&" operator */
33 : #define DEFAULT_OVERLAP_SEL 0.01
34 :
35 : /* Default selectivity for given operator */
36 : #define DEFAULT_SEL(operator) \
37 : ((operator) == OID_ARRAY_OVERLAP_OP ? \
38 : DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL)
39 :
40 : static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval,
41 : Oid elemtype, Oid operator);
42 : static Selectivity mcelem_array_selec(ArrayType *array,
43 : TypeCacheEntry *typentry,
44 : Datum *mcelem, int nmcelem,
45 : float4 *numbers, int nnumbers,
46 : float4 *hist, int nhist,
47 : Oid operator);
48 : static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
49 : float4 *numbers, int nnumbers,
50 : Datum *array_data, int nitems,
51 : Oid operator, TypeCacheEntry *typentry);
52 : static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
53 : float4 *numbers, int nnumbers,
54 : Datum *array_data, int nitems,
55 : float4 *hist, int nhist,
56 : Oid operator, TypeCacheEntry *typentry);
57 : static float *calc_hist(const float4 *hist, int nhist, int n);
58 : static float *calc_distr(const float *p, int n, int m, float rest);
59 : static int floor_log2(uint32 n);
60 : static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value,
61 : int *index, TypeCacheEntry *typentry);
62 : static int element_compare(const void *key1, const void *key2, void *arg);
63 : static int float_compare_desc(const void *key1, const void *key2);
64 :
65 :
66 : /*
67 : * scalararraysel_containment
68 : * Estimate selectivity of ScalarArrayOpExpr via array containment.
69 : *
70 : * If we have const =/<> ANY/ALL (array_var) then we can estimate the
71 : * selectivity as though this were an array containment operator,
72 : * array_var op ARRAY[const].
73 : *
74 : * scalararraysel() has already verified that the ScalarArrayOpExpr's operator
75 : * is the array element type's default equality or inequality operator, and
76 : * has aggressively simplified both inputs to constants.
77 : *
78 : * Returns selectivity (0..1), or -1 if we fail to estimate selectivity.
79 : */
80 : Selectivity
81 15954 : scalararraysel_containment(PlannerInfo *root,
82 : Node *leftop, Node *rightop,
83 : Oid elemtype, bool isEquality, bool useOr,
84 : int varRelid)
85 : {
86 : Selectivity selec;
87 : VariableStatData vardata;
88 : Datum constval;
89 : TypeCacheEntry *typentry;
90 : FmgrInfo *cmpfunc;
91 :
92 : /*
93 : * rightop must be a variable, else punt.
94 : */
95 15954 : examine_variable(root, rightop, varRelid, &vardata);
96 15954 : if (!vardata.rel)
97 : {
98 15548 : ReleaseVariableStats(vardata);
99 15548 : return -1.0;
100 : }
101 :
102 : /*
103 : * leftop must be a constant, else punt.
104 : */
105 406 : if (!IsA(leftop, Const))
106 : {
107 288 : ReleaseVariableStats(vardata);
108 288 : return -1.0;
109 : }
110 118 : if (((Const *) leftop)->constisnull)
111 : {
112 : /* qual can't succeed if null on left */
113 0 : ReleaseVariableStats(vardata);
114 0 : return (Selectivity) 0.0;
115 : }
116 118 : constval = ((Const *) leftop)->constvalue;
117 :
118 : /* Get element type's default comparison function */
119 118 : typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
120 118 : if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
121 : {
122 0 : ReleaseVariableStats(vardata);
123 0 : return -1.0;
124 : }
125 118 : cmpfunc = &typentry->cmp_proc_finfo;
126 :
127 : /*
128 : * If the operator is <>, swap ANY/ALL, then invert the result later.
129 : */
130 118 : if (!isEquality)
131 86 : useOr = !useOr;
132 :
133 : /* Get array element stats for var, if available */
134 130 : if (HeapTupleIsValid(vardata.statsTuple) &&
135 12 : statistic_proc_security_check(&vardata, cmpfunc->fn_oid))
136 12 : {
137 : Form_pg_statistic stats;
138 : AttStatsSlot sslot;
139 : AttStatsSlot hslot;
140 :
141 12 : stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
142 :
143 : /* MCELEM will be an array of same type as element */
144 12 : if (get_attstatsslot(&sslot, vardata.statsTuple,
145 : STATISTIC_KIND_MCELEM, InvalidOid,
146 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
147 : {
148 : /* For ALL case, also get histogram of distinct-element counts */
149 12 : if (useOr ||
150 0 : !get_attstatsslot(&hslot, vardata.statsTuple,
151 : STATISTIC_KIND_DECHIST, InvalidOid,
152 : ATTSTATSSLOT_NUMBERS))
153 12 : memset(&hslot, 0, sizeof(hslot));
154 :
155 : /*
156 : * For = ANY, estimate as var @> ARRAY[const].
157 : *
158 : * For = ALL, estimate as var <@ ARRAY[const].
159 : */
160 12 : if (useOr)
161 12 : selec = mcelem_array_contain_overlap_selec(sslot.values,
162 : sslot.nvalues,
163 : sslot.numbers,
164 : sslot.nnumbers,
165 : &constval, 1,
166 : OID_ARRAY_CONTAINS_OP,
167 : typentry);
168 : else
169 0 : selec = mcelem_array_contained_selec(sslot.values,
170 : sslot.nvalues,
171 : sslot.numbers,
172 : sslot.nnumbers,
173 : &constval, 1,
174 : hslot.numbers,
175 : hslot.nnumbers,
176 : OID_ARRAY_CONTAINED_OP,
177 : typentry);
178 :
179 12 : free_attstatsslot(&hslot);
180 12 : free_attstatsslot(&sslot);
181 : }
182 : else
183 : {
184 : /* No most-common-elements info, so do without */
185 0 : if (useOr)
186 0 : selec = mcelem_array_contain_overlap_selec(NULL, 0,
187 : NULL, 0,
188 : &constval, 1,
189 : OID_ARRAY_CONTAINS_OP,
190 : typentry);
191 : else
192 0 : selec = mcelem_array_contained_selec(NULL, 0,
193 : NULL, 0,
194 : &constval, 1,
195 : NULL, 0,
196 : OID_ARRAY_CONTAINED_OP,
197 : typentry);
198 : }
199 :
200 : /*
201 : * MCE stats count only non-null rows, so adjust for null rows.
202 : */
203 12 : selec *= (1.0 - stats->stanullfrac);
204 : }
205 : else
206 : {
207 : /* No stats at all, so do without */
208 106 : if (useOr)
209 106 : selec = mcelem_array_contain_overlap_selec(NULL, 0,
210 : NULL, 0,
211 : &constval, 1,
212 : OID_ARRAY_CONTAINS_OP,
213 : typentry);
214 : else
215 0 : selec = mcelem_array_contained_selec(NULL, 0,
216 : NULL, 0,
217 : &constval, 1,
218 : NULL, 0,
219 : OID_ARRAY_CONTAINED_OP,
220 : typentry);
221 : /* we assume no nulls here, so no stanullfrac correction */
222 : }
223 :
224 118 : ReleaseVariableStats(vardata);
225 :
226 : /*
227 : * If the operator is <>, invert the results.
228 : */
229 118 : if (!isEquality)
230 86 : selec = 1.0 - selec;
231 :
232 118 : CLAMP_PROBABILITY(selec);
233 :
234 118 : return selec;
235 : }
236 :
237 : /*
238 : * arraycontsel -- restriction selectivity for array @>, &&, <@ operators
239 : */
240 : Datum
241 974 : arraycontsel(PG_FUNCTION_ARGS)
242 : {
243 974 : PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
244 974 : Oid operator = PG_GETARG_OID(1);
245 974 : List *args = (List *) PG_GETARG_POINTER(2);
246 974 : int varRelid = PG_GETARG_INT32(3);
247 : VariableStatData vardata;
248 : Node *other;
249 : bool varonleft;
250 : Selectivity selec;
251 : Oid element_typeid;
252 :
253 : /*
254 : * If expression is not (variable op something) or (something op
255 : * variable), then punt and return a default estimate.
256 : */
257 974 : if (!get_restriction_variable(root, args, varRelid,
258 : &vardata, &other, &varonleft))
259 0 : PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
260 :
261 : /*
262 : * Can't do anything useful if the something is not a constant, either.
263 : */
264 974 : if (!IsA(other, Const))
265 : {
266 0 : ReleaseVariableStats(vardata);
267 0 : PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
268 : }
269 :
270 : /*
271 : * The "&&", "@>" and "<@" operators are strict, so we can cope with a
272 : * NULL constant right away.
273 : */
274 974 : if (((Const *) other)->constisnull)
275 : {
276 0 : ReleaseVariableStats(vardata);
277 0 : PG_RETURN_FLOAT8(0.0);
278 : }
279 :
280 : /*
281 : * If var is on the right, commute the operator, so that we can assume the
282 : * var is on the left in what follows.
283 : */
284 974 : if (!varonleft)
285 : {
286 24 : if (operator == OID_ARRAY_CONTAINS_OP)
287 0 : operator = OID_ARRAY_CONTAINED_OP;
288 24 : else if (operator == OID_ARRAY_CONTAINED_OP)
289 24 : operator = OID_ARRAY_CONTAINS_OP;
290 : }
291 :
292 : /*
293 : * OK, there's a Var and a Const we're dealing with here. We need the
294 : * Const to be an array with same element type as column, else we can't do
295 : * anything useful. (Such cases will likely fail at runtime, but here
296 : * we'd rather just return a default estimate.)
297 : */
298 974 : element_typeid = get_base_element_type(((Const *) other)->consttype);
299 1948 : if (element_typeid != InvalidOid &&
300 974 : element_typeid == get_base_element_type(vardata.vartype))
301 : {
302 974 : selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue,
303 : element_typeid, operator);
304 : }
305 : else
306 : {
307 0 : selec = DEFAULT_SEL(operator);
308 : }
309 :
310 974 : ReleaseVariableStats(vardata);
311 :
312 974 : CLAMP_PROBABILITY(selec);
313 :
314 974 : PG_RETURN_FLOAT8((float8) selec);
315 : }
316 :
317 : /*
318 : * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators
319 : */
320 : Datum
321 0 : arraycontjoinsel(PG_FUNCTION_ARGS)
322 : {
323 : /* For the moment this is just a stub */
324 0 : Oid operator = PG_GETARG_OID(1);
325 :
326 0 : PG_RETURN_FLOAT8(DEFAULT_SEL(operator));
327 : }
328 :
329 : /*
330 : * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const"
331 : * or "arraycolumn <@ const" based on the statistics
332 : *
333 : * This function is mainly responsible for extracting the pg_statistic data
334 : * to be used; we then pass the problem on to mcelem_array_selec().
335 : */
336 : static Selectivity
337 974 : calc_arraycontsel(VariableStatData *vardata, Datum constval,
338 : Oid elemtype, Oid operator)
339 : {
340 : Selectivity selec;
341 : TypeCacheEntry *typentry;
342 : FmgrInfo *cmpfunc;
343 : ArrayType *array;
344 :
345 : /* Get element type's default comparison function */
346 974 : typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO);
347 974 : if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
348 0 : return DEFAULT_SEL(operator);
349 974 : cmpfunc = &typentry->cmp_proc_finfo;
350 :
351 : /*
352 : * The caller made sure the const is an array with same element type, so
353 : * get it now
354 : */
355 974 : array = DatumGetArrayTypeP(constval);
356 :
357 1442 : if (HeapTupleIsValid(vardata->statsTuple) &&
358 468 : statistic_proc_security_check(vardata, cmpfunc->fn_oid))
359 468 : {
360 : Form_pg_statistic stats;
361 : AttStatsSlot sslot;
362 : AttStatsSlot hslot;
363 :
364 468 : stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
365 :
366 : /* MCELEM will be an array of same type as column */
367 468 : if (get_attstatsslot(&sslot, vardata->statsTuple,
368 : STATISTIC_KIND_MCELEM, InvalidOid,
369 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
370 : {
371 : /*
372 : * For "array <@ const" case we also need histogram of distinct
373 : * element counts.
374 : */
375 468 : if (operator != OID_ARRAY_CONTAINED_OP ||
376 72 : !get_attstatsslot(&hslot, vardata->statsTuple,
377 : STATISTIC_KIND_DECHIST, InvalidOid,
378 : ATTSTATSSLOT_NUMBERS))
379 396 : memset(&hslot, 0, sizeof(hslot));
380 :
381 : /* Use the most-common-elements slot for the array Var. */
382 468 : selec = mcelem_array_selec(array, typentry,
383 : sslot.values, sslot.nvalues,
384 : sslot.numbers, sslot.nnumbers,
385 : hslot.numbers, hslot.nnumbers,
386 : operator);
387 :
388 468 : free_attstatsslot(&hslot);
389 468 : free_attstatsslot(&sslot);
390 : }
391 : else
392 : {
393 : /* No most-common-elements info, so do without */
394 0 : selec = mcelem_array_selec(array, typentry,
395 : NULL, 0, NULL, 0, NULL, 0,
396 : operator);
397 : }
398 :
399 : /*
400 : * MCE stats count only non-null rows, so adjust for null rows.
401 : */
402 468 : selec *= (1.0 - stats->stanullfrac);
403 : }
404 : else
405 : {
406 : /* No stats at all, so do without */
407 506 : selec = mcelem_array_selec(array, typentry,
408 : NULL, 0, NULL, 0, NULL, 0,
409 : operator);
410 : /* we assume no nulls here, so no stanullfrac correction */
411 : }
412 :
413 : /* If constant was toasted, release the copy we made */
414 974 : if (PointerGetDatum(array) != constval)
415 0 : pfree(array);
416 :
417 974 : return selec;
418 : }
419 :
420 : /*
421 : * Array selectivity estimation based on most common elements statistics
422 : *
423 : * This function just deconstructs and sorts the array constant's contents,
424 : * and then passes the problem on to mcelem_array_contain_overlap_selec or
425 : * mcelem_array_contained_selec depending on the operator.
426 : */
427 : static Selectivity
428 974 : mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry,
429 : Datum *mcelem, int nmcelem,
430 : float4 *numbers, int nnumbers,
431 : float4 *hist, int nhist,
432 : Oid operator)
433 : {
434 : Selectivity selec;
435 : int num_elems;
436 : Datum *elem_values;
437 : bool *elem_nulls;
438 : bool null_present;
439 : int nonnull_nitems;
440 : int i;
441 :
442 : /*
443 : * Prepare constant array data for sorting. Sorting lets us find unique
444 : * elements and efficiently merge with the MCELEM array.
445 : */
446 974 : deconstruct_array(array,
447 : typentry->type_id,
448 974 : typentry->typlen,
449 974 : typentry->typbyval,
450 974 : typentry->typalign,
451 : &elem_values, &elem_nulls, &num_elems);
452 :
453 : /* Collapse out any null elements */
454 974 : nonnull_nitems = 0;
455 974 : null_present = false;
456 1914 : for (i = 0; i < num_elems; i++)
457 : {
458 940 : if (elem_nulls[i])
459 36 : null_present = true;
460 : else
461 904 : elem_values[nonnull_nitems++] = elem_values[i];
462 : }
463 :
464 : /*
465 : * Query "column @> '{anything, null}'" matches nothing. For the other
466 : * two operators, presence of a null in the constant can be ignored.
467 : */
468 974 : if (null_present && operator == OID_ARRAY_CONTAINS_OP)
469 : {
470 12 : pfree(elem_values);
471 12 : pfree(elem_nulls);
472 12 : return (Selectivity) 0.0;
473 : }
474 :
475 : /* Sort extracted elements using their default comparison function. */
476 962 : qsort_arg(elem_values, nonnull_nitems, sizeof(Datum),
477 : element_compare, typentry);
478 :
479 : /* Separate cases according to operator */
480 962 : if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP)
481 888 : selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem,
482 : numbers, nnumbers,
483 : elem_values, nonnull_nitems,
484 : operator, typentry);
485 74 : else if (operator == OID_ARRAY_CONTAINED_OP)
486 74 : selec = mcelem_array_contained_selec(mcelem, nmcelem,
487 : numbers, nnumbers,
488 : elem_values, nonnull_nitems,
489 : hist, nhist,
490 : operator, typentry);
491 : else
492 : {
493 0 : elog(ERROR, "arraycontsel called for unrecognized operator %u",
494 : operator);
495 : selec = 0.0; /* keep compiler quiet */
496 : }
497 :
498 962 : pfree(elem_values);
499 962 : pfree(elem_nulls);
500 962 : return selec;
501 : }
502 :
503 : /*
504 : * Estimate selectivity of "column @> const" and "column && const" based on
505 : * most common element statistics. This estimation assumes element
506 : * occurrences are independent.
507 : *
508 : * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
509 : * the array column's MCELEM statistics slot, or are NULL/0 if stats are
510 : * not available. array_data (of length nitems) is the constant's elements.
511 : *
512 : * Both the mcelem and array_data arrays are assumed presorted according
513 : * to the element type's cmpfunc. Null elements are not present.
514 : *
515 : * TODO: this estimate probably could be improved by using the distinct
516 : * elements count histogram. For example, excepting the special case of
517 : * "column @> '{}'", we can multiply the calculated selectivity by the
518 : * fraction of nonempty arrays in the column.
519 : */
520 : static Selectivity
521 1006 : mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem,
522 : float4 *numbers, int nnumbers,
523 : Datum *array_data, int nitems,
524 : Oid operator, TypeCacheEntry *typentry)
525 : {
526 : Selectivity selec,
527 : elem_selec;
528 : int mcelem_index,
529 : i;
530 : bool use_bsearch;
531 : float4 minfreq;
532 :
533 : /*
534 : * There should be three more Numbers than Values, because the last three
535 : * cells should hold minimal and maximal frequency among the non-null
536 : * elements, and then the frequency of null elements. Ignore the Numbers
537 : * if not right.
538 : */
539 1006 : if (nnumbers != nmcelem + 3)
540 : {
541 610 : numbers = NULL;
542 610 : nnumbers = 0;
543 : }
544 :
545 1006 : if (numbers)
546 : {
547 : /* Grab the lowest observed frequency */
548 396 : minfreq = numbers[nmcelem];
549 : }
550 : else
551 : {
552 : /* Without statistics make some default assumptions */
553 610 : minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL;
554 : }
555 :
556 : /* Decide whether it is faster to use binary search or not. */
557 1006 : if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems)
558 808 : use_bsearch = true;
559 : else
560 198 : use_bsearch = false;
561 :
562 1006 : if (operator == OID_ARRAY_CONTAINS_OP)
563 : {
564 : /*
565 : * Initial selectivity for "column @> const" query is 1.0, and it will
566 : * be decreased with each element of constant array.
567 : */
568 860 : selec = 1.0;
569 : }
570 : else
571 : {
572 : /*
573 : * Initial selectivity for "column && const" query is 0.0, and it will
574 : * be increased with each element of constant array.
575 : */
576 146 : selec = 0.0;
577 : }
578 :
579 : /* Scan mcelem and array in parallel. */
580 1006 : mcelem_index = 0;
581 1866 : for (i = 0; i < nitems; i++)
582 : {
583 860 : bool match = false;
584 :
585 : /* Ignore any duplicates in the array data. */
586 990 : if (i > 0 &&
587 130 : element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
588 0 : continue;
589 :
590 : /* Find the smallest MCELEM >= this array item. */
591 860 : if (use_bsearch)
592 : {
593 860 : match = find_next_mcelem(mcelem, nmcelem, array_data[i],
594 : &mcelem_index, typentry);
595 : }
596 : else
597 : {
598 0 : while (mcelem_index < nmcelem)
599 : {
600 0 : int cmp = element_compare(&mcelem[mcelem_index],
601 0 : &array_data[i],
602 : typentry);
603 :
604 0 : if (cmp < 0)
605 0 : mcelem_index++;
606 : else
607 : {
608 0 : if (cmp == 0)
609 0 : match = true; /* mcelem is found */
610 0 : break;
611 : }
612 : }
613 : }
614 :
615 860 : if (match && numbers)
616 : {
617 : /* MCELEM matches the array item; use its frequency. */
618 408 : elem_selec = numbers[mcelem_index];
619 408 : mcelem_index++;
620 : }
621 : else
622 : {
623 : /*
624 : * The element is not in MCELEM. Punt, but assume that the
625 : * selectivity cannot be more than minfreq / 2.
626 : */
627 452 : elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2);
628 : }
629 :
630 : /*
631 : * Update overall selectivity using the current element's selectivity
632 : * and an assumption of element occurrence independence.
633 : */
634 860 : if (operator == OID_ARRAY_CONTAINS_OP)
635 712 : selec *= elem_selec;
636 : else
637 148 : selec = selec + elem_selec - selec * elem_selec;
638 :
639 : /* Clamp intermediate results to stay sane despite roundoff error */
640 860 : CLAMP_PROBABILITY(selec);
641 : }
642 :
643 1006 : return selec;
644 : }
645 :
646 : /*
647 : * Estimate selectivity of "column <@ const" based on most common element
648 : * statistics.
649 : *
650 : * mcelem (of length nmcelem) and numbers (of length nnumbers) are from
651 : * the array column's MCELEM statistics slot, or are NULL/0 if stats are
652 : * not available. array_data (of length nitems) is the constant's elements.
653 : * hist (of length nhist) is from the array column's DECHIST statistics slot,
654 : * or is NULL/0 if those stats are not available.
655 : *
656 : * Both the mcelem and array_data arrays are assumed presorted according
657 : * to the element type's cmpfunc. Null elements are not present.
658 : *
659 : * Independent element occurrence would imply a particular distribution of
660 : * distinct element counts among matching rows. Real data usually falsifies
661 : * that assumption. For example, in a set of 11-element integer arrays having
662 : * elements in the range [0..10], element occurrences are typically not
663 : * independent. If they were, a sufficiently-large set would include all
664 : * distinct element counts 0 through 11. We correct for this using the
665 : * histogram of distinct element counts.
666 : *
667 : * In the "column @> const" and "column && const" cases, we usually have a
668 : * "const" with low number of elements (otherwise we have selectivity close
669 : * to 0 or 1 respectively). That's why the effect of dependence related
670 : * to distinct element count distribution is negligible there. In the
671 : * "column <@ const" case, number of elements is usually high (otherwise we
672 : * have selectivity close to 0). That's why we should do a correction with
673 : * the array distinct element count distribution here.
674 : *
675 : * Using the histogram of distinct element counts produces a different
676 : * distribution law than independent occurrences of elements. This
677 : * distribution law can be described as follows:
678 : *
679 : * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 *
680 : * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m]
681 : *
682 : * where:
683 : * o1, o2, ..., on - occurrences of elements 1, 2, ..., n
684 : * (1 - occurrence, 0 - no occurrence) in row
685 : * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n
686 : * (scalar values in [0..1]) according to collected statistics
687 : * m = o1 + o2 + ... + on = total number of distinct elements in row
688 : * hist[m] - histogram data for occurrence of m elements.
689 : * ind[m] - probability of m occurrences from n events assuming their
690 : * probabilities to be equal to frequencies of array elements.
691 : *
692 : * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) *
693 : * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m
694 : */
695 : static Selectivity
696 74 : mcelem_array_contained_selec(Datum *mcelem, int nmcelem,
697 : float4 *numbers, int nnumbers,
698 : Datum *array_data, int nitems,
699 : float4 *hist, int nhist,
700 : Oid operator, TypeCacheEntry *typentry)
701 : {
702 : int mcelem_index,
703 : i,
704 74 : unique_nitems = 0;
705 : float selec,
706 : minfreq,
707 : nullelem_freq;
708 : float *dist,
709 : *mcelem_dist,
710 : *hist_part;
711 : float avg_count,
712 : mult,
713 : rest;
714 : float *elem_selec;
715 :
716 : /*
717 : * There should be three more Numbers than Values in the MCELEM slot,
718 : * because the last three cells should hold minimal and maximal frequency
719 : * among the non-null elements, and then the frequency of null elements.
720 : * Punt if not right, because we can't do much without the element freqs.
721 : */
722 74 : if (numbers == NULL || nnumbers != nmcelem + 3)
723 2 : return DEFAULT_CONTAIN_SEL;
724 :
725 : /* Can't do much without a count histogram, either */
726 72 : if (hist == NULL || nhist < 3)
727 0 : return DEFAULT_CONTAIN_SEL;
728 :
729 : /*
730 : * Grab some of the summary statistics that compute_array_stats() stores:
731 : * lowest frequency, frequency of null elements, and average distinct
732 : * element count.
733 : */
734 72 : minfreq = numbers[nmcelem];
735 72 : nullelem_freq = numbers[nmcelem + 2];
736 72 : avg_count = hist[nhist - 1];
737 :
738 : /*
739 : * "rest" will be the sum of the frequencies of all elements not
740 : * represented in MCELEM. The average distinct element count is the sum
741 : * of the frequencies of *all* elements. Begin with that; we will proceed
742 : * to subtract the MCELEM frequencies.
743 : */
744 72 : rest = avg_count;
745 :
746 : /*
747 : * mult is a multiplier representing estimate of probability that each
748 : * mcelem that is not present in constant doesn't occur.
749 : */
750 72 : mult = 1.0f;
751 :
752 : /*
753 : * elem_selec is array of estimated frequencies for elements in the
754 : * constant.
755 : */
756 72 : elem_selec = (float *) palloc(sizeof(float) * nitems);
757 :
758 : /* Scan mcelem and array in parallel. */
759 72 : mcelem_index = 0;
760 228 : for (i = 0; i < nitems; i++)
761 : {
762 156 : bool match = false;
763 :
764 : /* Ignore any duplicates in the array data. */
765 276 : if (i > 0 &&
766 120 : element_compare(&array_data[i - 1], &array_data[i], typentry) == 0)
767 0 : continue;
768 :
769 : /*
770 : * Iterate over MCELEM until we find an entry greater than or equal to
771 : * this element of the constant. Update "rest" and "mult" for mcelem
772 : * entries skipped over.
773 : */
774 4128 : while (mcelem_index < nmcelem)
775 : {
776 4128 : int cmp = element_compare(&mcelem[mcelem_index],
777 4128 : &array_data[i],
778 : typentry);
779 :
780 4128 : if (cmp < 0)
781 : {
782 3972 : mult *= (1.0f - numbers[mcelem_index]);
783 3972 : rest -= numbers[mcelem_index];
784 3972 : mcelem_index++;
785 : }
786 : else
787 : {
788 156 : if (cmp == 0)
789 156 : match = true; /* mcelem is found */
790 156 : break;
791 : }
792 : }
793 :
794 156 : if (match)
795 : {
796 : /* MCELEM matches the array item. */
797 156 : elem_selec[unique_nitems] = numbers[mcelem_index];
798 : /* "rest" is decremented for all mcelems, matched or not */
799 156 : rest -= numbers[mcelem_index];
800 156 : mcelem_index++;
801 : }
802 : else
803 : {
804 : /*
805 : * The element is not in MCELEM. Punt, but assume that the
806 : * selectivity cannot be more than minfreq / 2.
807 : */
808 0 : elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL,
809 : minfreq / 2);
810 : }
811 :
812 156 : unique_nitems++;
813 : }
814 :
815 : /*
816 : * If we handled all constant elements without exhausting the MCELEM
817 : * array, finish walking it to complete calculation of "rest" and "mult".
818 : */
819 7668 : while (mcelem_index < nmcelem)
820 : {
821 7596 : mult *= (1.0f - numbers[mcelem_index]);
822 7596 : rest -= numbers[mcelem_index];
823 7596 : mcelem_index++;
824 : }
825 :
826 : /*
827 : * The presence of many distinct rare elements materially decreases
828 : * selectivity. Use the Poisson distribution to estimate the probability
829 : * of a column value having zero occurrences of such elements. See above
830 : * for the definition of "rest".
831 : */
832 72 : mult *= exp(-rest);
833 :
834 : /*----------
835 : * Using the distinct element count histogram requires
836 : * O(unique_nitems * (nmcelem + unique_nitems))
837 : * operations. Beyond a certain computational cost threshold, it's
838 : * reasonable to sacrifice accuracy for decreased planning time. We limit
839 : * the number of operations to EFFORT * nmcelem; since nmcelem is limited
840 : * by the column's statistics target, the work done is user-controllable.
841 : *
842 : * If the number of operations would be too large, we can reduce it
843 : * without losing all accuracy by reducing unique_nitems and considering
844 : * only the most-common elements of the constant array. To make the
845 : * results exactly match what we would have gotten with only those
846 : * elements to start with, we'd have to remove any discarded elements'
847 : * frequencies from "mult", but since this is only an approximation
848 : * anyway, we don't bother with that. Therefore it's sufficient to qsort
849 : * elem_selec[] and take the largest elements. (They will no longer match
850 : * up with the elements of array_data[], but we don't care.)
851 : *----------
852 : */
853 : #define EFFORT 100
854 :
855 72 : if ((nmcelem + unique_nitems) > 0 &&
856 72 : unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems))
857 : {
858 : /*
859 : * Use the quadratic formula to solve for largest allowable N. We
860 : * have A = 1, B = nmcelem, C = - EFFORT * nmcelem.
861 : */
862 0 : double b = (double) nmcelem;
863 : int n;
864 :
865 0 : n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2);
866 :
867 : /* Sort, then take just the first n elements */
868 0 : qsort(elem_selec, unique_nitems, sizeof(float),
869 : float_compare_desc);
870 0 : unique_nitems = n;
871 : }
872 :
873 : /*
874 : * Calculate probabilities of each distinct element count for both mcelems
875 : * and constant elements. At this point, assume independent element
876 : * occurrence.
877 : */
878 72 : dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f);
879 72 : mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest);
880 :
881 : /* ignore hist[nhist-1], which is the average not a histogram member */
882 72 : hist_part = calc_hist(hist, nhist - 1, unique_nitems);
883 :
884 72 : selec = 0.0f;
885 300 : for (i = 0; i <= unique_nitems; i++)
886 : {
887 : /*
888 : * mult * dist[i] / mcelem_dist[i] gives us probability of qual
889 : * matching from assumption of independent element occurrence with the
890 : * condition that distinct element count = i.
891 : */
892 228 : if (mcelem_dist[i] > 0)
893 228 : selec += hist_part[i] * mult * dist[i] / mcelem_dist[i];
894 : }
895 :
896 72 : pfree(dist);
897 72 : pfree(mcelem_dist);
898 72 : pfree(hist_part);
899 72 : pfree(elem_selec);
900 :
901 : /* Take into account occurrence of NULL element. */
902 72 : selec *= (1.0f - nullelem_freq);
903 :
904 72 : CLAMP_PROBABILITY(selec);
905 :
906 72 : return selec;
907 : }
908 :
909 : /*
910 : * Calculate the first n distinct element count probabilities from a
911 : * histogram of distinct element counts.
912 : *
913 : * Returns a palloc'd array of n+1 entries, with array[k] being the
914 : * probability of element count k, k in [0..n].
915 : *
916 : * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) *
917 : * (nhist - 1)) probability to each value in (a,b) and an additional half of
918 : * that to a and b themselves.
919 : */
920 : static float *
921 72 : calc_hist(const float4 *hist, int nhist, int n)
922 : {
923 : float *hist_part;
924 : int k,
925 72 : i = 0;
926 72 : float prev_interval = 0,
927 : next_interval;
928 : float frac;
929 :
930 72 : hist_part = (float *) palloc((n + 1) * sizeof(float));
931 :
932 : /*
933 : * frac is a probability contribution for each interval between histogram
934 : * values. We have nhist - 1 intervals, so contribution of each one will
935 : * be 1 / (nhist - 1).
936 : */
937 72 : frac = 1.0f / ((float) (nhist - 1));
938 :
939 300 : for (k = 0; k <= n; k++)
940 : {
941 228 : int count = 0;
942 :
943 : /*
944 : * Count the histogram boundaries equal to k. (Although the histogram
945 : * should theoretically contain only exact integers, entries are
946 : * floats so there could be roundoff error in large values. Treat any
947 : * fractional value as equal to the next larger k.)
948 : */
949 2016 : while (i < nhist && hist[i] <= k)
950 : {
951 1788 : count++;
952 1788 : i++;
953 : }
954 :
955 228 : if (count > 0)
956 : {
957 : /* k is an exact bound for at least one histogram box. */
958 : float val;
959 :
960 : /* Find length between current histogram value and the next one */
961 216 : if (i < nhist)
962 216 : next_interval = hist[i] - hist[i - 1];
963 : else
964 0 : next_interval = 0;
965 :
966 : /*
967 : * count - 1 histogram boxes contain k exclusively. They
968 : * contribute a total of (count - 1) * frac probability. Also
969 : * factor in the partial histogram boxes on either side.
970 : */
971 216 : val = (float) (count - 1);
972 216 : if (next_interval > 0)
973 216 : val += 0.5f / next_interval;
974 216 : if (prev_interval > 0)
975 144 : val += 0.5f / prev_interval;
976 216 : hist_part[k] = frac * val;
977 :
978 216 : prev_interval = next_interval;
979 : }
980 : else
981 : {
982 : /* k does not appear as an exact histogram bound. */
983 12 : if (prev_interval > 0)
984 12 : hist_part[k] = frac / prev_interval;
985 : else
986 0 : hist_part[k] = 0.0f;
987 : }
988 : }
989 :
990 72 : return hist_part;
991 : }
992 :
993 : /*
994 : * Consider n independent events with probabilities p[]. This function
995 : * calculates probabilities of exact k of events occurrence for k in [0..m].
996 : * Returns a palloc'd array of size m+1.
997 : *
998 : * "rest" is the sum of the probabilities of all low-probability events not
999 : * included in p.
1000 : *
1001 : * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the
1002 : * probability that exactly j of first i events occur. Obviously M[0,0] = 1.
1003 : * For any constant j, each increment of i increases the probability iff the
1004 : * event occurs. So, by the law of total probability:
1005 : * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i]
1006 : * for i > 0, j > 0.
1007 : * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0.
1008 : */
1009 : static float *
1010 144 : calc_distr(const float *p, int n, int m, float rest)
1011 : {
1012 : float *row,
1013 : *prev_row,
1014 : *tmp;
1015 : int i,
1016 : j;
1017 :
1018 : /*
1019 : * Since we return only the last row of the matrix and need only the
1020 : * current and previous row for calculations, allocate two rows.
1021 : */
1022 144 : row = (float *) palloc((m + 1) * sizeof(float));
1023 144 : prev_row = (float *) palloc((m + 1) * sizeof(float));
1024 :
1025 : /* M[0,0] = 1 */
1026 144 : row[0] = 1.0f;
1027 12024 : for (i = 1; i <= n; i++)
1028 : {
1029 11880 : float t = p[i - 1];
1030 :
1031 : /* Swap rows */
1032 11880 : tmp = row;
1033 11880 : row = prev_row;
1034 11880 : prev_row = tmp;
1035 :
1036 : /* Calculate next row */
1037 53148 : for (j = 0; j <= i && j <= m; j++)
1038 : {
1039 41268 : float val = 0.0f;
1040 :
1041 41268 : if (j < i)
1042 40956 : val += prev_row[j] * (1.0f - t);
1043 41268 : if (j > 0)
1044 29388 : val += prev_row[j - 1] * t;
1045 41268 : row[j] = val;
1046 : }
1047 : }
1048 :
1049 : /*
1050 : * The presence of many distinct rare (not in "p") elements materially
1051 : * decreases selectivity. Model their collective occurrence with the
1052 : * Poisson distribution.
1053 : */
1054 144 : if (rest > DEFAULT_CONTAIN_SEL)
1055 : {
1056 : float t;
1057 :
1058 : /* Swap rows */
1059 0 : tmp = row;
1060 0 : row = prev_row;
1061 0 : prev_row = tmp;
1062 :
1063 0 : for (i = 0; i <= m; i++)
1064 0 : row[i] = 0.0f;
1065 :
1066 : /* Value of Poisson distribution for 0 occurrences */
1067 0 : t = exp(-rest);
1068 :
1069 : /*
1070 : * Calculate convolution of previously computed distribution and the
1071 : * Poisson distribution.
1072 : */
1073 0 : for (i = 0; i <= m; i++)
1074 : {
1075 0 : for (j = 0; j <= m - i; j++)
1076 0 : row[j + i] += prev_row[j] * t;
1077 :
1078 : /* Get Poisson distribution value for (i + 1) occurrences */
1079 0 : t *= rest / (float) (i + 1);
1080 : }
1081 : }
1082 :
1083 144 : pfree(prev_row);
1084 144 : return row;
1085 : }
1086 :
1087 : /* Fast function for floor value of 2 based logarithm calculation. */
1088 : static int
1089 1006 : floor_log2(uint32 n)
1090 : {
1091 1006 : int logval = 0;
1092 :
1093 1006 : if (n == 0)
1094 610 : return -1;
1095 396 : if (n >= (1 << 16))
1096 : {
1097 0 : n >>= 16;
1098 0 : logval += 16;
1099 : }
1100 396 : if (n >= (1 << 8))
1101 : {
1102 120 : n >>= 8;
1103 120 : logval += 8;
1104 : }
1105 396 : if (n >= (1 << 4))
1106 : {
1107 276 : n >>= 4;
1108 276 : logval += 4;
1109 : }
1110 396 : if (n >= (1 << 2))
1111 : {
1112 264 : n >>= 2;
1113 264 : logval += 2;
1114 : }
1115 396 : if (n >= (1 << 1))
1116 : {
1117 186 : logval += 1;
1118 : }
1119 396 : return logval;
1120 : }
1121 :
1122 : /*
1123 : * find_next_mcelem binary-searches a most common elements array, starting
1124 : * from *index, for the first member >= value. It saves the position of the
1125 : * match into *index and returns true if it's an exact match. (Note: we
1126 : * assume the mcelem elements are distinct so there can't be more than one
1127 : * exact match.)
1128 : */
1129 : static bool
1130 860 : find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index,
1131 : TypeCacheEntry *typentry)
1132 : {
1133 860 : int l = *index,
1134 860 : r = nmcelem - 1,
1135 : i,
1136 : res;
1137 :
1138 3344 : while (l <= r)
1139 : {
1140 2892 : i = (l + r) / 2;
1141 2892 : res = element_compare(&mcelem[i], &value, typentry);
1142 2892 : if (res == 0)
1143 : {
1144 408 : *index = i;
1145 408 : return true;
1146 : }
1147 2484 : else if (res < 0)
1148 882 : l = i + 1;
1149 : else
1150 1602 : r = i - 1;
1151 : }
1152 452 : *index = l;
1153 452 : return false;
1154 : }
1155 :
1156 : /*
1157 : * Comparison function for elements.
1158 : *
1159 : * We use the element type's default btree opclass, and its default collation
1160 : * if the type is collation-sensitive.
1161 : *
1162 : * XXX consider using SortSupport infrastructure
1163 : */
1164 : static int
1165 7634 : element_compare(const void *key1, const void *key2, void *arg)
1166 : {
1167 7634 : Datum d1 = *((const Datum *) key1);
1168 7634 : Datum d2 = *((const Datum *) key2);
1169 7634 : TypeCacheEntry *typentry = (TypeCacheEntry *) arg;
1170 7634 : FmgrInfo *cmpfunc = &typentry->cmp_proc_finfo;
1171 : Datum c;
1172 :
1173 7634 : c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2);
1174 7634 : return DatumGetInt32(c);
1175 : }
1176 :
1177 : /*
1178 : * Comparison function for sorting floats into descending order.
1179 : */
1180 : static int
1181 0 : float_compare_desc(const void *key1, const void *key2)
1182 : {
1183 0 : float d1 = *((const float *) key1);
1184 0 : float d2 = *((const float *) key2);
1185 :
1186 0 : if (d1 > d2)
1187 0 : return -1;
1188 0 : else if (d1 < d2)
1189 0 : return 1;
1190 : else
1191 0 : return 0;
1192 : }
|