LCOV - code coverage report
Current view: top level - src/backend/storage/ipc - sinvaladt.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 152 162 93.8 %
Date: 2025-01-18 03:14:54 Functions: 8 8 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * sinvaladt.c
       4             :  *    POSTGRES shared cache invalidation data manager.
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/storage/ipc/sinvaladt.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include <signal.h>
      18             : #include <unistd.h>
      19             : 
      20             : #include "miscadmin.h"
      21             : #include "storage/ipc.h"
      22             : #include "storage/proc.h"
      23             : #include "storage/procnumber.h"
      24             : #include "storage/procsignal.h"
      25             : #include "storage/shmem.h"
      26             : #include "storage/sinvaladt.h"
      27             : #include "storage/spin.h"
      28             : 
      29             : /*
      30             :  * Conceptually, the shared cache invalidation messages are stored in an
      31             :  * infinite array, where maxMsgNum is the next array subscript to store a
      32             :  * submitted message in, minMsgNum is the smallest array subscript containing
      33             :  * a message not yet read by all backends, and we always have maxMsgNum >=
      34             :  * minMsgNum.  (They are equal when there are no messages pending.)  For each
      35             :  * active backend, there is a nextMsgNum pointer indicating the next message it
      36             :  * needs to read; we have maxMsgNum >= nextMsgNum >= minMsgNum for every
      37             :  * backend.
      38             :  *
      39             :  * (In the current implementation, minMsgNum is a lower bound for the
      40             :  * per-process nextMsgNum values, but it isn't rigorously kept equal to the
      41             :  * smallest nextMsgNum --- it may lag behind.  We only update it when
      42             :  * SICleanupQueue is called, and we try not to do that often.)
      43             :  *
      44             :  * In reality, the messages are stored in a circular buffer of MAXNUMMESSAGES
      45             :  * entries.  We translate MsgNum values into circular-buffer indexes by
      46             :  * computing MsgNum % MAXNUMMESSAGES (this should be fast as long as
      47             :  * MAXNUMMESSAGES is a constant and a power of 2).  As long as maxMsgNum
      48             :  * doesn't exceed minMsgNum by more than MAXNUMMESSAGES, we have enough space
      49             :  * in the buffer.  If the buffer does overflow, we recover by setting the
      50             :  * "reset" flag for each backend that has fallen too far behind.  A backend
      51             :  * that is in "reset" state is ignored while determining minMsgNum.  When
      52             :  * it does finally attempt to receive inval messages, it must discard all
      53             :  * its invalidatable state, since it won't know what it missed.
      54             :  *
      55             :  * To reduce the probability of needing resets, we send a "catchup" interrupt
      56             :  * to any backend that seems to be falling unreasonably far behind.  The
      57             :  * normal behavior is that at most one such interrupt is in flight at a time;
      58             :  * when a backend completes processing a catchup interrupt, it executes
      59             :  * SICleanupQueue, which will signal the next-furthest-behind backend if
      60             :  * needed.  This avoids undue contention from multiple backends all trying
      61             :  * to catch up at once.  However, the furthest-back backend might be stuck
      62             :  * in a state where it can't catch up.  Eventually it will get reset, so it
      63             :  * won't cause any more problems for anyone but itself.  But we don't want
      64             :  * to find that a bunch of other backends are now too close to the reset
      65             :  * threshold to be saved.  So SICleanupQueue is designed to occasionally
      66             :  * send extra catchup interrupts as the queue gets fuller, to backends that
      67             :  * are far behind and haven't gotten one yet.  As long as there aren't a lot
      68             :  * of "stuck" backends, we won't need a lot of extra interrupts, since ones
      69             :  * that aren't stuck will propagate their interrupts to the next guy.
      70             :  *
      71             :  * We would have problems if the MsgNum values overflow an integer, so
      72             :  * whenever minMsgNum exceeds MSGNUMWRAPAROUND, we subtract MSGNUMWRAPAROUND
      73             :  * from all the MsgNum variables simultaneously.  MSGNUMWRAPAROUND can be
      74             :  * large so that we don't need to do this often.  It must be a multiple of
      75             :  * MAXNUMMESSAGES so that the existing circular-buffer entries don't need
      76             :  * to be moved when we do it.
      77             :  *
      78             :  * Access to the shared sinval array is protected by two locks, SInvalReadLock
      79             :  * and SInvalWriteLock.  Readers take SInvalReadLock in shared mode; this
      80             :  * authorizes them to modify their own ProcState but not to modify or even
      81             :  * look at anyone else's.  When we need to perform array-wide updates,
      82             :  * such as in SICleanupQueue, we take SInvalReadLock in exclusive mode to
      83             :  * lock out all readers.  Writers take SInvalWriteLock (always in exclusive
      84             :  * mode) to serialize adding messages to the queue.  Note that a writer
      85             :  * can operate in parallel with one or more readers, because the writer
      86             :  * has no need to touch anyone's ProcState, except in the infrequent cases
      87             :  * when SICleanupQueue is needed.  The only point of overlap is that
      88             :  * the writer wants to change maxMsgNum while readers need to read it.
      89             :  * We deal with that by having a spinlock that readers must take for just
      90             :  * long enough to read maxMsgNum, while writers take it for just long enough
      91             :  * to write maxMsgNum.  (The exact rule is that you need the spinlock to
      92             :  * read maxMsgNum if you are not holding SInvalWriteLock, and you need the
      93             :  * spinlock to write maxMsgNum unless you are holding both locks.)
      94             :  *
      95             :  * Note: since maxMsgNum is an int and hence presumably atomically readable/
      96             :  * writable, the spinlock might seem unnecessary.  The reason it is needed
      97             :  * is to provide a memory barrier: we need to be sure that messages written
      98             :  * to the array are actually there before maxMsgNum is increased, and that
      99             :  * readers will see that data after fetching maxMsgNum.  Multiprocessors
     100             :  * that have weak memory-ordering guarantees can fail without the memory
     101             :  * barrier instructions that are included in the spinlock sequences.
     102             :  */
     103             : 
     104             : 
     105             : /*
     106             :  * Configurable parameters.
     107             :  *
     108             :  * MAXNUMMESSAGES: max number of shared-inval messages we can buffer.
     109             :  * Must be a power of 2 for speed.
     110             :  *
     111             :  * MSGNUMWRAPAROUND: how often to reduce MsgNum variables to avoid overflow.
     112             :  * Must be a multiple of MAXNUMMESSAGES.  Should be large.
     113             :  *
     114             :  * CLEANUP_MIN: the minimum number of messages that must be in the buffer
     115             :  * before we bother to call SICleanupQueue.
     116             :  *
     117             :  * CLEANUP_QUANTUM: how often (in messages) to call SICleanupQueue once
     118             :  * we exceed CLEANUP_MIN.  Should be a power of 2 for speed.
     119             :  *
     120             :  * SIG_THRESHOLD: the minimum number of messages a backend must have fallen
     121             :  * behind before we'll send it PROCSIG_CATCHUP_INTERRUPT.
     122             :  *
     123             :  * WRITE_QUANTUM: the max number of messages to push into the buffer per
     124             :  * iteration of SIInsertDataEntries.  Noncritical but should be less than
     125             :  * CLEANUP_QUANTUM, because we only consider calling SICleanupQueue once
     126             :  * per iteration.
     127             :  */
     128             : 
     129             : #define MAXNUMMESSAGES 4096
     130             : #define MSGNUMWRAPAROUND (MAXNUMMESSAGES * 262144)
     131             : #define CLEANUP_MIN (MAXNUMMESSAGES / 2)
     132             : #define CLEANUP_QUANTUM (MAXNUMMESSAGES / 16)
     133             : #define SIG_THRESHOLD (MAXNUMMESSAGES / 2)
     134             : #define WRITE_QUANTUM 64
     135             : 
     136             : /* Per-backend state in shared invalidation structure */
     137             : typedef struct ProcState
     138             : {
     139             :     /* procPid is zero in an inactive ProcState array entry. */
     140             :     pid_t       procPid;        /* PID of backend, for signaling */
     141             :     /* nextMsgNum is meaningless if procPid == 0 or resetState is true. */
     142             :     int         nextMsgNum;     /* next message number to read */
     143             :     bool        resetState;     /* backend needs to reset its state */
     144             :     bool        signaled;       /* backend has been sent catchup signal */
     145             :     bool        hasMessages;    /* backend has unread messages */
     146             : 
     147             :     /*
     148             :      * Backend only sends invalidations, never receives them. This only makes
     149             :      * sense for Startup process during recovery because it doesn't maintain a
     150             :      * relcache, yet it fires inval messages to allow query backends to see
     151             :      * schema changes.
     152             :      */
     153             :     bool        sendOnly;       /* backend only sends, never receives */
     154             : 
     155             :     /*
     156             :      * Next LocalTransactionId to use for each idle backend slot.  We keep
     157             :      * this here because it is indexed by ProcNumber and it is convenient to
     158             :      * copy the value to and from local memory when MyProcNumber is set. It's
     159             :      * meaningless in an active ProcState entry.
     160             :      */
     161             :     LocalTransactionId nextLXID;
     162             : } ProcState;
     163             : 
     164             : /* Shared cache invalidation memory segment */
     165             : typedef struct SISeg
     166             : {
     167             :     /*
     168             :      * General state information
     169             :      */
     170             :     int         minMsgNum;      /* oldest message still needed */
     171             :     int         maxMsgNum;      /* next message number to be assigned */
     172             :     int         nextThreshold;  /* # of messages to call SICleanupQueue */
     173             : 
     174             :     slock_t     msgnumLock;     /* spinlock protecting maxMsgNum */
     175             : 
     176             :     /*
     177             :      * Circular buffer holding shared-inval messages
     178             :      */
     179             :     SharedInvalidationMessage buffer[MAXNUMMESSAGES];
     180             : 
     181             :     /*
     182             :      * Per-backend invalidation state info.
     183             :      *
     184             :      * 'procState' has NumProcStateSlots entries, and is indexed by pgprocno.
     185             :      * 'numProcs' is the number of slots currently in use, and 'pgprocnos' is
     186             :      * a dense array of their indexes, to speed up scanning all in-use slots.
     187             :      *
     188             :      * 'pgprocnos' is largely redundant with ProcArrayStruct->pgprocnos, but
     189             :      * having our separate copy avoids contention on ProcArrayLock, and allows
     190             :      * us to track only the processes that participate in shared cache
     191             :      * invalidations.
     192             :      */
     193             :     int         numProcs;
     194             :     int        *pgprocnos;
     195             :     ProcState   procState[FLEXIBLE_ARRAY_MEMBER];
     196             : } SISeg;
     197             : 
     198             : /*
     199             :  * We reserve a slot for each possible ProcNumber, plus one for each
     200             :  * possible auxiliary process type.  (This scheme assumes there is not
     201             :  * more than one of any auxiliary process type at a time.)
     202             :  */
     203             : #define NumProcStateSlots   (MaxBackends + NUM_AUXILIARY_PROCS)
     204             : 
     205             : static SISeg *shmInvalBuffer;   /* pointer to the shared inval buffer */
     206             : 
     207             : 
     208             : static LocalTransactionId nextLocalTransactionId;
     209             : 
     210             : static void CleanupInvalidationState(int status, Datum arg);
     211             : 
     212             : 
     213             : /*
     214             :  * SharedInvalShmemSize --- return shared-memory space needed
     215             :  */
     216             : Size
     217        5484 : SharedInvalShmemSize(void)
     218             : {
     219             :     Size        size;
     220             : 
     221        5484 :     size = offsetof(SISeg, procState);
     222        5484 :     size = add_size(size, mul_size(sizeof(ProcState), NumProcStateSlots));  /* procState */
     223        5484 :     size = add_size(size, mul_size(sizeof(int), NumProcStateSlots));    /* pgprocnos */
     224             : 
     225        5484 :     return size;
     226             : }
     227             : 
     228             : /*
     229             :  * SharedInvalShmemInit
     230             :  *      Create and initialize the SI message buffer
     231             :  */
     232             : void
     233        1918 : SharedInvalShmemInit(void)
     234             : {
     235             :     int         i;
     236             :     bool        found;
     237             : 
     238             :     /* Allocate space in shared memory */
     239        1918 :     shmInvalBuffer = (SISeg *)
     240        1918 :         ShmemInitStruct("shmInvalBuffer", SharedInvalShmemSize(), &found);
     241        1918 :     if (found)
     242           0 :         return;
     243             : 
     244             :     /* Clear message counters, save size of procState array, init spinlock */
     245        1918 :     shmInvalBuffer->minMsgNum = 0;
     246        1918 :     shmInvalBuffer->maxMsgNum = 0;
     247        1918 :     shmInvalBuffer->nextThreshold = CLEANUP_MIN;
     248        1918 :     SpinLockInit(&shmInvalBuffer->msgnumLock);
     249             : 
     250             :     /* The buffer[] array is initially all unused, so we need not fill it */
     251             : 
     252             :     /* Mark all backends inactive, and initialize nextLXID */
     253      190142 :     for (i = 0; i < NumProcStateSlots; i++)
     254             :     {
     255      188224 :         shmInvalBuffer->procState[i].procPid = 0;    /* inactive */
     256      188224 :         shmInvalBuffer->procState[i].nextMsgNum = 0; /* meaningless */
     257      188224 :         shmInvalBuffer->procState[i].resetState = false;
     258      188224 :         shmInvalBuffer->procState[i].signaled = false;
     259      188224 :         shmInvalBuffer->procState[i].hasMessages = false;
     260      188224 :         shmInvalBuffer->procState[i].nextLXID = InvalidLocalTransactionId;
     261             :     }
     262        1918 :     shmInvalBuffer->numProcs = 0;
     263        1918 :     shmInvalBuffer->pgprocnos = (int *) &shmInvalBuffer->procState[i];
     264             : }
     265             : 
     266             : /*
     267             :  * SharedInvalBackendInit
     268             :  *      Initialize a new backend to operate on the sinval buffer
     269             :  */
     270             : void
     271       32980 : SharedInvalBackendInit(bool sendOnly)
     272             : {
     273             :     ProcState  *stateP;
     274             :     pid_t       oldPid;
     275       32980 :     SISeg      *segP = shmInvalBuffer;
     276             : 
     277       32980 :     if (MyProcNumber < 0)
     278           0 :         elog(ERROR, "MyProcNumber not set");
     279       32980 :     if (MyProcNumber >= NumProcStateSlots)
     280           0 :         elog(PANIC, "unexpected MyProcNumber %d in SharedInvalBackendInit (max %d)",
     281             :              MyProcNumber, NumProcStateSlots);
     282       32980 :     stateP = &segP->procState[MyProcNumber];
     283             : 
     284             :     /*
     285             :      * This can run in parallel with read operations, but not with write
     286             :      * operations, since SIInsertDataEntries relies on the pgprocnos array to
     287             :      * set hasMessages appropriately.
     288             :      */
     289       32980 :     LWLockAcquire(SInvalWriteLock, LW_EXCLUSIVE);
     290             : 
     291       32980 :     oldPid = stateP->procPid;
     292       32980 :     if (oldPid != 0)
     293             :     {
     294           0 :         LWLockRelease(SInvalWriteLock);
     295           0 :         elog(ERROR, "sinval slot for backend %d is already in use by process %d",
     296             :              MyProcNumber, (int) oldPid);
     297             :     }
     298             : 
     299       32980 :     shmInvalBuffer->pgprocnos[shmInvalBuffer->numProcs++] = MyProcNumber;
     300             : 
     301             :     /* Fetch next local transaction ID into local memory */
     302       32980 :     nextLocalTransactionId = stateP->nextLXID;
     303             : 
     304             :     /* mark myself active, with all extant messages already read */
     305       32980 :     stateP->procPid = MyProcPid;
     306       32980 :     stateP->nextMsgNum = segP->maxMsgNum;
     307       32980 :     stateP->resetState = false;
     308       32980 :     stateP->signaled = false;
     309       32980 :     stateP->hasMessages = false;
     310       32980 :     stateP->sendOnly = sendOnly;
     311             : 
     312       32980 :     LWLockRelease(SInvalWriteLock);
     313             : 
     314             :     /* register exit routine to mark my entry inactive at exit */
     315       32980 :     on_shmem_exit(CleanupInvalidationState, PointerGetDatum(segP));
     316       32980 : }
     317             : 
     318             : /*
     319             :  * CleanupInvalidationState
     320             :  *      Mark the current backend as no longer active.
     321             :  *
     322             :  * This function is called via on_shmem_exit() during backend shutdown.
     323             :  *
     324             :  * arg is really of type "SISeg*".
     325             :  */
     326             : static void
     327       32980 : CleanupInvalidationState(int status, Datum arg)
     328             : {
     329       32980 :     SISeg      *segP = (SISeg *) DatumGetPointer(arg);
     330             :     ProcState  *stateP;
     331             :     int         i;
     332             : 
     333             :     Assert(PointerIsValid(segP));
     334             : 
     335       32980 :     LWLockAcquire(SInvalWriteLock, LW_EXCLUSIVE);
     336             : 
     337       32980 :     stateP = &segP->procState[MyProcNumber];
     338             : 
     339             :     /* Update next local transaction ID for next holder of this proc number */
     340       32980 :     stateP->nextLXID = nextLocalTransactionId;
     341             : 
     342             :     /* Mark myself inactive */
     343       32980 :     stateP->procPid = 0;
     344       32980 :     stateP->nextMsgNum = 0;
     345       32980 :     stateP->resetState = false;
     346       32980 :     stateP->signaled = false;
     347             : 
     348       40758 :     for (i = segP->numProcs - 1; i >= 0; i--)
     349             :     {
     350       40758 :         if (segP->pgprocnos[i] == MyProcNumber)
     351             :         {
     352       32980 :             if (i != segP->numProcs - 1)
     353        4286 :                 segP->pgprocnos[i] = segP->pgprocnos[segP->numProcs - 1];
     354       32980 :             break;
     355             :         }
     356             :     }
     357       32980 :     if (i < 0)
     358           0 :         elog(PANIC, "could not find entry in sinval array");
     359       32980 :     segP->numProcs--;
     360             : 
     361       32980 :     LWLockRelease(SInvalWriteLock);
     362       32980 : }
     363             : 
     364             : /*
     365             :  * SIInsertDataEntries
     366             :  *      Add new invalidation message(s) to the buffer.
     367             :  */
     368             : void
     369      802864 : SIInsertDataEntries(const SharedInvalidationMessage *data, int n)
     370             : {
     371      802864 :     SISeg      *segP = shmInvalBuffer;
     372             : 
     373             :     /*
     374             :      * N can be arbitrarily large.  We divide the work into groups of no more
     375             :      * than WRITE_QUANTUM messages, to be sure that we don't hold the lock for
     376             :      * an unreasonably long time.  (This is not so much because we care about
     377             :      * letting in other writers, as that some just-caught-up backend might be
     378             :      * trying to do SICleanupQueue to pass on its signal, and we don't want it
     379             :      * to have to wait a long time.)  Also, we need to consider calling
     380             :      * SICleanupQueue every so often.
     381             :      */
     382     1651220 :     while (n > 0)
     383             :     {
     384      848356 :         int         nthistime = Min(n, WRITE_QUANTUM);
     385             :         int         numMsgs;
     386             :         int         max;
     387             :         int         i;
     388             : 
     389      848356 :         n -= nthistime;
     390             : 
     391      848356 :         LWLockAcquire(SInvalWriteLock, LW_EXCLUSIVE);
     392             : 
     393             :         /*
     394             :          * If the buffer is full, we *must* acquire some space.  Clean the
     395             :          * queue and reset anyone who is preventing space from being freed.
     396             :          * Otherwise, clean the queue only when it's exceeded the next
     397             :          * fullness threshold.  We have to loop and recheck the buffer state
     398             :          * after any call of SICleanupQueue.
     399             :          */
     400             :         for (;;)
     401             :         {
     402      858090 :             numMsgs = segP->maxMsgNum - segP->minMsgNum;
     403      858090 :             if (numMsgs + nthistime > MAXNUMMESSAGES ||
     404      857712 :                 numMsgs >= segP->nextThreshold)
     405        9734 :                 SICleanupQueue(true, nthistime);
     406             :             else
     407             :                 break;
     408             :         }
     409             : 
     410             :         /*
     411             :          * Insert new message(s) into proper slot of circular buffer
     412             :          */
     413      848356 :         max = segP->maxMsgNum;
     414     8072892 :         while (nthistime-- > 0)
     415             :         {
     416     7224536 :             segP->buffer[max % MAXNUMMESSAGES] = *data++;
     417     7224536 :             max++;
     418             :         }
     419             : 
     420             :         /* Update current value of maxMsgNum using spinlock */
     421      848356 :         SpinLockAcquire(&segP->msgnumLock);
     422      848356 :         segP->maxMsgNum = max;
     423      848356 :         SpinLockRelease(&segP->msgnumLock);
     424             : 
     425             :         /*
     426             :          * Now that the maxMsgNum change is globally visible, we give everyone
     427             :          * a swift kick to make sure they read the newly added messages.
     428             :          * Releasing SInvalWriteLock will enforce a full memory barrier, so
     429             :          * these (unlocked) changes will be committed to memory before we exit
     430             :          * the function.
     431             :          */
     432     4521848 :         for (i = 0; i < segP->numProcs; i++)
     433             :         {
     434     3673492 :             ProcState  *stateP = &segP->procState[segP->pgprocnos[i]];
     435             : 
     436     3673492 :             stateP->hasMessages = true;
     437             :         }
     438             : 
     439      848356 :         LWLockRelease(SInvalWriteLock);
     440             :     }
     441      802864 : }
     442             : 
     443             : /*
     444             :  * SIGetDataEntries
     445             :  *      get next SI message(s) for current backend, if there are any
     446             :  *
     447             :  * Possible return values:
     448             :  *  0:   no SI message available
     449             :  *  n>0: next n SI messages have been extracted into data[]
     450             :  * -1:   SI reset message extracted
     451             :  *
     452             :  * If the return value is less than the array size "datasize", the caller
     453             :  * can assume that there are no more SI messages after the one(s) returned.
     454             :  * Otherwise, another call is needed to collect more messages.
     455             :  *
     456             :  * NB: this can run in parallel with other instances of SIGetDataEntries
     457             :  * executing on behalf of other backends, since each instance will modify only
     458             :  * fields of its own backend's ProcState, and no instance will look at fields
     459             :  * of other backends' ProcStates.  We express this by grabbing SInvalReadLock
     460             :  * in shared mode.  Note that this is not exactly the normal (read-only)
     461             :  * interpretation of a shared lock! Look closely at the interactions before
     462             :  * allowing SInvalReadLock to be grabbed in shared mode for any other reason!
     463             :  *
     464             :  * NB: this can also run in parallel with SIInsertDataEntries.  It is not
     465             :  * guaranteed that we will return any messages added after the routine is
     466             :  * entered.
     467             :  *
     468             :  * Note: we assume that "datasize" is not so large that it might be important
     469             :  * to break our hold on SInvalReadLock into segments.
     470             :  */
     471             : int
     472    33480206 : SIGetDataEntries(SharedInvalidationMessage *data, int datasize)
     473             : {
     474             :     SISeg      *segP;
     475             :     ProcState  *stateP;
     476             :     int         max;
     477             :     int         n;
     478             : 
     479    33480206 :     segP = shmInvalBuffer;
     480    33480206 :     stateP = &segP->procState[MyProcNumber];
     481             : 
     482             :     /*
     483             :      * Before starting to take locks, do a quick, unlocked test to see whether
     484             :      * there can possibly be anything to read.  On a multiprocessor system,
     485             :      * it's possible that this load could migrate backwards and occur before
     486             :      * we actually enter this function, so we might miss a sinval message that
     487             :      * was just added by some other processor.  But they can't migrate
     488             :      * backwards over a preceding lock acquisition, so it should be OK.  If we
     489             :      * haven't acquired a lock preventing against further relevant
     490             :      * invalidations, any such occurrence is not much different than if the
     491             :      * invalidation had arrived slightly later in the first place.
     492             :      */
     493    33480206 :     if (!stateP->hasMessages)
     494    32207242 :         return 0;
     495             : 
     496     1272964 :     LWLockAcquire(SInvalReadLock, LW_SHARED);
     497             : 
     498             :     /*
     499             :      * We must reset hasMessages before determining how many messages we're
     500             :      * going to read.  That way, if new messages arrive after we have
     501             :      * determined how many we're reading, the flag will get reset and we'll
     502             :      * notice those messages part-way through.
     503             :      *
     504             :      * Note that, if we don't end up reading all of the messages, we had
     505             :      * better be certain to reset this flag before exiting!
     506             :      */
     507     1272964 :     stateP->hasMessages = false;
     508             : 
     509             :     /* Fetch current value of maxMsgNum using spinlock */
     510     1272964 :     SpinLockAcquire(&segP->msgnumLock);
     511     1272964 :     max = segP->maxMsgNum;
     512     1272964 :     SpinLockRelease(&segP->msgnumLock);
     513             : 
     514     1272964 :     if (stateP->resetState)
     515             :     {
     516             :         /*
     517             :          * Force reset.  We can say we have dealt with any messages added
     518             :          * since the reset, as well; and that means we should clear the
     519             :          * signaled flag, too.
     520             :          */
     521         476 :         stateP->nextMsgNum = max;
     522         476 :         stateP->resetState = false;
     523         476 :         stateP->signaled = false;
     524         476 :         LWLockRelease(SInvalReadLock);
     525         476 :         return -1;
     526             :     }
     527             : 
     528             :     /*
     529             :      * Retrieve messages and advance backend's counter, until data array is
     530             :      * full or there are no more messages.
     531             :      *
     532             :      * There may be other backends that haven't read the message(s), so we
     533             :      * cannot delete them here.  SICleanupQueue() will eventually remove them
     534             :      * from the queue.
     535             :      */
     536     1272488 :     n = 0;
     537    29121184 :     while (n < datasize && stateP->nextMsgNum < max)
     538             :     {
     539    27848696 :         data[n++] = segP->buffer[stateP->nextMsgNum % MAXNUMMESSAGES];
     540    27848696 :         stateP->nextMsgNum++;
     541             :     }
     542             : 
     543             :     /*
     544             :      * If we have caught up completely, reset our "signaled" flag so that
     545             :      * we'll get another signal if we fall behind again.
     546             :      *
     547             :      * If we haven't caught up completely, reset the hasMessages flag so that
     548             :      * we see the remaining messages next time.
     549             :      */
     550     1272488 :     if (stateP->nextMsgNum >= max)
     551      532306 :         stateP->signaled = false;
     552             :     else
     553      740182 :         stateP->hasMessages = true;
     554             : 
     555     1272488 :     LWLockRelease(SInvalReadLock);
     556     1272488 :     return n;
     557             : }
     558             : 
     559             : /*
     560             :  * SICleanupQueue
     561             :  *      Remove messages that have been consumed by all active backends
     562             :  *
     563             :  * callerHasWriteLock is true if caller is holding SInvalWriteLock.
     564             :  * minFree is the minimum number of message slots to make free.
     565             :  *
     566             :  * Possible side effects of this routine include marking one or more
     567             :  * backends as "reset" in the array, and sending PROCSIG_CATCHUP_INTERRUPT
     568             :  * to some backend that seems to be getting too far behind.  We signal at
     569             :  * most one backend at a time, for reasons explained at the top of the file.
     570             :  *
     571             :  * Caution: because we transiently release write lock when we have to signal
     572             :  * some other backend, it is NOT guaranteed that there are still minFree
     573             :  * free message slots at exit.  Caller must recheck and perhaps retry.
     574             :  */
     575             : void
     576       15032 : SICleanupQueue(bool callerHasWriteLock, int minFree)
     577             : {
     578       15032 :     SISeg      *segP = shmInvalBuffer;
     579             :     int         min,
     580             :                 minsig,
     581             :                 lowbound,
     582             :                 numMsgs,
     583             :                 i;
     584       15032 :     ProcState  *needSig = NULL;
     585             : 
     586             :     /* Lock out all writers and readers */
     587       15032 :     if (!callerHasWriteLock)
     588        5298 :         LWLockAcquire(SInvalWriteLock, LW_EXCLUSIVE);
     589       15032 :     LWLockAcquire(SInvalReadLock, LW_EXCLUSIVE);
     590             : 
     591             :     /*
     592             :      * Recompute minMsgNum = minimum of all backends' nextMsgNum, identify the
     593             :      * furthest-back backend that needs signaling (if any), and reset any
     594             :      * backends that are too far back.  Note that because we ignore sendOnly
     595             :      * backends here it is possible for them to keep sending messages without
     596             :      * a problem even when they are the only active backend.
     597             :      */
     598       15032 :     min = segP->maxMsgNum;
     599       15032 :     minsig = min - SIG_THRESHOLD;
     600       15032 :     lowbound = min - MAXNUMMESSAGES + minFree;
     601             : 
     602      113760 :     for (i = 0; i < segP->numProcs; i++)
     603             :     {
     604       98728 :         ProcState  *stateP = &segP->procState[segP->pgprocnos[i]];
     605       98728 :         int         n = stateP->nextMsgNum;
     606             : 
     607             :         /* Ignore if already in reset state */
     608             :         Assert(stateP->procPid != 0);
     609       98728 :         if (stateP->resetState || stateP->sendOnly)
     610       10092 :             continue;
     611             : 
     612             :         /*
     613             :          * If we must free some space and this backend is preventing it, force
     614             :          * him into reset state and then ignore until he catches up.
     615             :          */
     616       88636 :         if (n < lowbound)
     617             :         {
     618         478 :             stateP->resetState = true;
     619             :             /* no point in signaling him ... */
     620         478 :             continue;
     621             :         }
     622             : 
     623             :         /* Track the global minimum nextMsgNum */
     624       88158 :         if (n < min)
     625       22910 :             min = n;
     626             : 
     627             :         /* Also see who's furthest back of the unsignaled backends */
     628       88158 :         if (n < minsig && !stateP->signaled)
     629             :         {
     630        5398 :             minsig = n;
     631        5398 :             needSig = stateP;
     632             :         }
     633             :     }
     634       15032 :     segP->minMsgNum = min;
     635             : 
     636             :     /*
     637             :      * When minMsgNum gets really large, decrement all message counters so as
     638             :      * to forestall overflow of the counters.  This happens seldom enough that
     639             :      * folding it into the previous loop would be a loser.
     640             :      */
     641       15032 :     if (min >= MSGNUMWRAPAROUND)
     642             :     {
     643           0 :         segP->minMsgNum -= MSGNUMWRAPAROUND;
     644           0 :         segP->maxMsgNum -= MSGNUMWRAPAROUND;
     645           0 :         for (i = 0; i < segP->numProcs; i++)
     646           0 :             segP->procState[segP->pgprocnos[i]].nextMsgNum -= MSGNUMWRAPAROUND;
     647             :     }
     648             : 
     649             :     /*
     650             :      * Determine how many messages are still in the queue, and set the
     651             :      * threshold at which we should repeat SICleanupQueue().
     652             :      */
     653       15032 :     numMsgs = segP->maxMsgNum - segP->minMsgNum;
     654       15032 :     if (numMsgs < CLEANUP_MIN)
     655        4990 :         segP->nextThreshold = CLEANUP_MIN;
     656             :     else
     657       10042 :         segP->nextThreshold = (numMsgs / CLEANUP_QUANTUM + 1) * CLEANUP_QUANTUM;
     658             : 
     659             :     /*
     660             :      * Lastly, signal anyone who needs a catchup interrupt.  Since
     661             :      * SendProcSignal() might not be fast, we don't want to hold locks while
     662             :      * executing it.
     663             :      */
     664       15032 :     if (needSig)
     665             :     {
     666        5330 :         pid_t       his_pid = needSig->procPid;
     667        5330 :         ProcNumber  his_procNumber = (needSig - &segP->procState[0]);
     668             : 
     669        5330 :         needSig->signaled = true;
     670        5330 :         LWLockRelease(SInvalReadLock);
     671        5330 :         LWLockRelease(SInvalWriteLock);
     672        5330 :         elog(DEBUG4, "sending sinval catchup signal to PID %d", (int) his_pid);
     673        5330 :         SendProcSignal(his_pid, PROCSIG_CATCHUP_INTERRUPT, his_procNumber);
     674        5330 :         if (callerHasWriteLock)
     675        4080 :             LWLockAcquire(SInvalWriteLock, LW_EXCLUSIVE);
     676             :     }
     677             :     else
     678             :     {
     679        9702 :         LWLockRelease(SInvalReadLock);
     680        9702 :         if (!callerHasWriteLock)
     681        4048 :             LWLockRelease(SInvalWriteLock);
     682             :     }
     683       15032 : }
     684             : 
     685             : 
     686             : /*
     687             :  * GetNextLocalTransactionId --- allocate a new LocalTransactionId
     688             :  *
     689             :  * We split VirtualTransactionIds into two parts so that it is possible
     690             :  * to allocate a new one without any contention for shared memory, except
     691             :  * for a bit of additional overhead during backend startup/shutdown.
     692             :  * The high-order part of a VirtualTransactionId is a ProcNumber, and the
     693             :  * low-order part is a LocalTransactionId, which we assign from a local
     694             :  * counter.  To avoid the risk of a VirtualTransactionId being reused
     695             :  * within a short interval, successive procs occupying the same PGPROC slot
     696             :  * should use a consecutive sequence of local IDs, which is implemented
     697             :  * by copying nextLocalTransactionId as seen above.
     698             :  */
     699             : LocalTransactionId
     700      808482 : GetNextLocalTransactionId(void)
     701             : {
     702             :     LocalTransactionId result;
     703             : 
     704             :     /* loop to avoid returning InvalidLocalTransactionId at wraparound */
     705             :     do
     706             :     {
     707      808482 :         result = nextLocalTransactionId++;
     708      808482 :     } while (!LocalTransactionIdIsValid(result));
     709             : 
     710      791308 :     return result;
     711             : }

Generated by: LCOV version 1.14