LCOV - code coverage report
Current view: top level - src/backend/storage/ipc - shm_mq.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 328 380 86.3 %
Date: 2025-01-18 03:14:54 Functions: 20 21 95.2 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * shm_mq.c
       4             :  *    single-reader, single-writer shared memory message queue
       5             :  *
       6             :  * Both the sender and the receiver must have a PGPROC; their respective
       7             :  * process latches are used for synchronization.  Only the sender may send,
       8             :  * and only the receiver may receive.  This is intended to allow a user
       9             :  * backend to communicate with worker backends that it has registered.
      10             :  *
      11             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      12             :  * Portions Copyright (c) 1994, Regents of the University of California
      13             :  *
      14             :  * src/backend/storage/ipc/shm_mq.c
      15             :  *
      16             :  *-------------------------------------------------------------------------
      17             :  */
      18             : 
      19             : #include "postgres.h"
      20             : 
      21             : #include "miscadmin.h"
      22             : #include "pgstat.h"
      23             : #include "port/pg_bitutils.h"
      24             : #include "postmaster/bgworker.h"
      25             : #include "storage/shm_mq.h"
      26             : #include "storage/spin.h"
      27             : #include "utils/memutils.h"
      28             : 
      29             : /*
      30             :  * This structure represents the actual queue, stored in shared memory.
      31             :  *
      32             :  * Some notes on synchronization:
      33             :  *
      34             :  * mq_receiver and mq_bytes_read can only be changed by the receiver; and
      35             :  * mq_sender and mq_bytes_written can only be changed by the sender.
      36             :  * mq_receiver and mq_sender are protected by mq_mutex, although, importantly,
      37             :  * they cannot change once set, and thus may be read without a lock once this
      38             :  * is known to be the case.
      39             :  *
      40             :  * mq_bytes_read and mq_bytes_written are not protected by the mutex.  Instead,
      41             :  * they are written atomically using 8 byte loads and stores.  Memory barriers
      42             :  * must be carefully used to synchronize reads and writes of these values with
      43             :  * reads and writes of the actual data in mq_ring.
      44             :  *
      45             :  * mq_detached needs no locking.  It can be set by either the sender or the
      46             :  * receiver, but only ever from false to true, so redundant writes don't
      47             :  * matter.  It is important that if we set mq_detached and then set the
      48             :  * counterparty's latch, the counterparty must be certain to see the change
      49             :  * after waking up.  Since SetLatch begins with a memory barrier and ResetLatch
      50             :  * ends with one, this should be OK.
      51             :  *
      52             :  * mq_ring_size and mq_ring_offset never change after initialization, and
      53             :  * can therefore be read without the lock.
      54             :  *
      55             :  * Importantly, mq_ring can be safely read and written without a lock.
      56             :  * At any given time, the difference between mq_bytes_read and
      57             :  * mq_bytes_written defines the number of bytes within mq_ring that contain
      58             :  * unread data, and mq_bytes_read defines the position where those bytes
      59             :  * begin.  The sender can increase the number of unread bytes at any time,
      60             :  * but only the receiver can give license to overwrite those bytes, by
      61             :  * incrementing mq_bytes_read.  Therefore, it's safe for the receiver to read
      62             :  * the unread bytes it knows to be present without the lock.  Conversely,
      63             :  * the sender can write to the unused portion of the ring buffer without
      64             :  * the lock, because nobody else can be reading or writing those bytes.  The
      65             :  * receiver could be making more bytes unused by incrementing mq_bytes_read,
      66             :  * but that's OK.  Note that it would be unsafe for the receiver to read any
      67             :  * data it's already marked as read, or to write any data; and it would be
      68             :  * unsafe for the sender to reread any data after incrementing
      69             :  * mq_bytes_written, but fortunately there's no need for any of that.
      70             :  */
      71             : struct shm_mq
      72             : {
      73             :     slock_t     mq_mutex;
      74             :     PGPROC     *mq_receiver;
      75             :     PGPROC     *mq_sender;
      76             :     pg_atomic_uint64 mq_bytes_read;
      77             :     pg_atomic_uint64 mq_bytes_written;
      78             :     Size        mq_ring_size;
      79             :     bool        mq_detached;
      80             :     uint8       mq_ring_offset;
      81             :     char        mq_ring[FLEXIBLE_ARRAY_MEMBER];
      82             : };
      83             : 
      84             : /*
      85             :  * This structure is a backend-private handle for access to a queue.
      86             :  *
      87             :  * mqh_queue is a pointer to the queue we've attached, and mqh_segment is
      88             :  * an optional pointer to the dynamic shared memory segment that contains it.
      89             :  * (If mqh_segment is provided, we register an on_dsm_detach callback to
      90             :  * make sure we detach from the queue before detaching from DSM.)
      91             :  *
      92             :  * If this queue is intended to connect the current process with a background
      93             :  * worker that started it, the user can pass a pointer to the worker handle
      94             :  * to shm_mq_attach(), and we'll store it in mqh_handle.  The point of this
      95             :  * is to allow us to begin sending to or receiving from that queue before the
      96             :  * process we'll be communicating with has even been started.  If it fails
      97             :  * to start, the handle will allow us to notice that and fail cleanly, rather
      98             :  * than waiting forever; see shm_mq_wait_internal.  This is mostly useful in
      99             :  * simple cases - e.g. where there are just 2 processes communicating; in
     100             :  * more complex scenarios, every process may not have a BackgroundWorkerHandle
     101             :  * available, or may need to watch for the failure of more than one other
     102             :  * process at a time.
     103             :  *
     104             :  * When a message exists as a contiguous chunk of bytes in the queue - that is,
     105             :  * it is smaller than the size of the ring buffer and does not wrap around
     106             :  * the end - we return the message to the caller as a pointer into the buffer.
     107             :  * For messages that are larger or happen to wrap, we reassemble the message
     108             :  * locally by copying the chunks into a backend-local buffer.  mqh_buffer is
     109             :  * the buffer, and mqh_buflen is the number of bytes allocated for it.
     110             :  *
     111             :  * mqh_send_pending, is number of bytes that is written to the queue but not
     112             :  * yet updated in the shared memory.  We will not update it until the written
     113             :  * data is 1/4th of the ring size or the tuple queue is full.  This will
     114             :  * prevent frequent CPU cache misses, and it will also avoid frequent
     115             :  * SetLatch() calls, which are quite expensive.
     116             :  *
     117             :  * mqh_partial_bytes, mqh_expected_bytes, and mqh_length_word_complete
     118             :  * are used to track the state of non-blocking operations.  When the caller
     119             :  * attempts a non-blocking operation that returns SHM_MQ_WOULD_BLOCK, they
     120             :  * are expected to retry the call at a later time with the same argument;
     121             :  * we need to retain enough state to pick up where we left off.
     122             :  * mqh_length_word_complete tracks whether we are done sending or receiving
     123             :  * (whichever we're doing) the entire length word.  mqh_partial_bytes tracks
     124             :  * the number of bytes read or written for either the length word or the
     125             :  * message itself, and mqh_expected_bytes - which is used only for reads -
     126             :  * tracks the expected total size of the payload.
     127             :  *
     128             :  * mqh_counterparty_attached tracks whether we know the counterparty to have
     129             :  * attached to the queue at some previous point.  This lets us avoid some
     130             :  * mutex acquisitions.
     131             :  *
     132             :  * mqh_context is the memory context in effect at the time we attached to
     133             :  * the shm_mq.  The shm_mq_handle itself is allocated in this context, and
     134             :  * we make sure any other allocations we do happen in this context as well,
     135             :  * to avoid nasty surprises.
     136             :  */
     137             : struct shm_mq_handle
     138             : {
     139             :     shm_mq     *mqh_queue;
     140             :     dsm_segment *mqh_segment;
     141             :     BackgroundWorkerHandle *mqh_handle;
     142             :     char       *mqh_buffer;
     143             :     Size        mqh_buflen;
     144             :     Size        mqh_consume_pending;
     145             :     Size        mqh_send_pending;
     146             :     Size        mqh_partial_bytes;
     147             :     Size        mqh_expected_bytes;
     148             :     bool        mqh_length_word_complete;
     149             :     bool        mqh_counterparty_attached;
     150             :     MemoryContext mqh_context;
     151             : };
     152             : 
     153             : static void shm_mq_detach_internal(shm_mq *mq);
     154             : static shm_mq_result shm_mq_send_bytes(shm_mq_handle *mqh, Size nbytes,
     155             :                                        const void *data, bool nowait, Size *bytes_written);
     156             : static shm_mq_result shm_mq_receive_bytes(shm_mq_handle *mqh,
     157             :                                           Size bytes_needed, bool nowait, Size *nbytesp,
     158             :                                           void **datap);
     159             : static bool shm_mq_counterparty_gone(shm_mq *mq,
     160             :                                      BackgroundWorkerHandle *handle);
     161             : static bool shm_mq_wait_internal(shm_mq *mq, PGPROC **ptr,
     162             :                                  BackgroundWorkerHandle *handle);
     163             : static void shm_mq_inc_bytes_read(shm_mq *mq, Size n);
     164             : static void shm_mq_inc_bytes_written(shm_mq *mq, Size n);
     165             : static void shm_mq_detach_callback(dsm_segment *seg, Datum arg);
     166             : 
     167             : /* Minimum queue size is enough for header and at least one chunk of data. */
     168             : const Size  shm_mq_minimum_size =
     169             : MAXALIGN(offsetof(shm_mq, mq_ring)) + MAXIMUM_ALIGNOF;
     170             : 
     171             : #define MQH_INITIAL_BUFSIZE             8192
     172             : 
     173             : /*
     174             :  * Initialize a new shared message queue.
     175             :  */
     176             : shm_mq *
     177        5464 : shm_mq_create(void *address, Size size)
     178             : {
     179        5464 :     shm_mq     *mq = address;
     180        5464 :     Size        data_offset = MAXALIGN(offsetof(shm_mq, mq_ring));
     181             : 
     182             :     /* If the size isn't MAXALIGN'd, just discard the odd bytes. */
     183        5464 :     size = MAXALIGN_DOWN(size);
     184             : 
     185             :     /* Queue size must be large enough to hold some data. */
     186             :     Assert(size > data_offset);
     187             : 
     188             :     /* Initialize queue header. */
     189        5464 :     SpinLockInit(&mq->mq_mutex);
     190        5464 :     mq->mq_receiver = NULL;
     191        5464 :     mq->mq_sender = NULL;
     192        5464 :     pg_atomic_init_u64(&mq->mq_bytes_read, 0);
     193        5464 :     pg_atomic_init_u64(&mq->mq_bytes_written, 0);
     194        5464 :     mq->mq_ring_size = size - data_offset;
     195        5464 :     mq->mq_detached = false;
     196        5464 :     mq->mq_ring_offset = data_offset - offsetof(shm_mq, mq_ring);
     197             : 
     198        5464 :     return mq;
     199             : }
     200             : 
     201             : /*
     202             :  * Set the identity of the process that will receive from a shared message
     203             :  * queue.
     204             :  */
     205             : void
     206        5464 : shm_mq_set_receiver(shm_mq *mq, PGPROC *proc)
     207             : {
     208             :     PGPROC     *sender;
     209             : 
     210        5464 :     SpinLockAcquire(&mq->mq_mutex);
     211             :     Assert(mq->mq_receiver == NULL);
     212        5464 :     mq->mq_receiver = proc;
     213        5464 :     sender = mq->mq_sender;
     214        5464 :     SpinLockRelease(&mq->mq_mutex);
     215             : 
     216        5464 :     if (sender != NULL)
     217          34 :         SetLatch(&sender->procLatch);
     218        5464 : }
     219             : 
     220             : /*
     221             :  * Set the identity of the process that will send to a shared message queue.
     222             :  */
     223             : void
     224        5298 : shm_mq_set_sender(shm_mq *mq, PGPROC *proc)
     225             : {
     226             :     PGPROC     *receiver;
     227             : 
     228        5298 :     SpinLockAcquire(&mq->mq_mutex);
     229             :     Assert(mq->mq_sender == NULL);
     230        5298 :     mq->mq_sender = proc;
     231        5298 :     receiver = mq->mq_receiver;
     232        5298 :     SpinLockRelease(&mq->mq_mutex);
     233             : 
     234        5298 :     if (receiver != NULL)
     235        5264 :         SetLatch(&receiver->procLatch);
     236        5298 : }
     237             : 
     238             : /*
     239             :  * Get the configured receiver.
     240             :  */
     241             : PGPROC *
     242           8 : shm_mq_get_receiver(shm_mq *mq)
     243             : {
     244             :     PGPROC     *receiver;
     245             : 
     246           8 :     SpinLockAcquire(&mq->mq_mutex);
     247           8 :     receiver = mq->mq_receiver;
     248           8 :     SpinLockRelease(&mq->mq_mutex);
     249             : 
     250           8 :     return receiver;
     251             : }
     252             : 
     253             : /*
     254             :  * Get the configured sender.
     255             :  */
     256             : PGPROC *
     257    15283704 : shm_mq_get_sender(shm_mq *mq)
     258             : {
     259             :     PGPROC     *sender;
     260             : 
     261    15283704 :     SpinLockAcquire(&mq->mq_mutex);
     262    15283704 :     sender = mq->mq_sender;
     263    15283704 :     SpinLockRelease(&mq->mq_mutex);
     264             : 
     265    15283704 :     return sender;
     266             : }
     267             : 
     268             : /*
     269             :  * Attach to a shared message queue so we can send or receive messages.
     270             :  *
     271             :  * The memory context in effect at the time this function is called should
     272             :  * be one which will last for at least as long as the message queue itself.
     273             :  * We'll allocate the handle in that context, and future allocations that
     274             :  * are needed to buffer incoming data will happen in that context as well.
     275             :  *
     276             :  * If seg != NULL, the queue will be automatically detached when that dynamic
     277             :  * shared memory segment is detached.
     278             :  *
     279             :  * If handle != NULL, the queue can be read or written even before the
     280             :  * other process has attached.  We'll wait for it to do so if needed.  The
     281             :  * handle must be for a background worker initialized with bgw_notify_pid
     282             :  * equal to our PID.
     283             :  *
     284             :  * shm_mq_detach() should be called when done.  This will free the
     285             :  * shm_mq_handle and mark the queue itself as detached, so that our
     286             :  * counterpart won't get stuck waiting for us to fill or drain the queue
     287             :  * after we've already lost interest.
     288             :  */
     289             : shm_mq_handle *
     290       10762 : shm_mq_attach(shm_mq *mq, dsm_segment *seg, BackgroundWorkerHandle *handle)
     291             : {
     292       10762 :     shm_mq_handle *mqh = palloc(sizeof(shm_mq_handle));
     293             : 
     294             :     Assert(mq->mq_receiver == MyProc || mq->mq_sender == MyProc);
     295       10762 :     mqh->mqh_queue = mq;
     296       10762 :     mqh->mqh_segment = seg;
     297       10762 :     mqh->mqh_handle = handle;
     298       10762 :     mqh->mqh_buffer = NULL;
     299       10762 :     mqh->mqh_buflen = 0;
     300       10762 :     mqh->mqh_consume_pending = 0;
     301       10762 :     mqh->mqh_send_pending = 0;
     302       10762 :     mqh->mqh_partial_bytes = 0;
     303       10762 :     mqh->mqh_expected_bytes = 0;
     304       10762 :     mqh->mqh_length_word_complete = false;
     305       10762 :     mqh->mqh_counterparty_attached = false;
     306       10762 :     mqh->mqh_context = CurrentMemoryContext;
     307             : 
     308       10762 :     if (seg != NULL)
     309       10762 :         on_dsm_detach(seg, shm_mq_detach_callback, PointerGetDatum(mq));
     310             : 
     311       10762 :     return mqh;
     312             : }
     313             : 
     314             : /*
     315             :  * Associate a BackgroundWorkerHandle with a shm_mq_handle just as if it had
     316             :  * been passed to shm_mq_attach.
     317             :  */
     318             : void
     319        5234 : shm_mq_set_handle(shm_mq_handle *mqh, BackgroundWorkerHandle *handle)
     320             : {
     321             :     Assert(mqh->mqh_handle == NULL);
     322        5234 :     mqh->mqh_handle = handle;
     323        5234 : }
     324             : 
     325             : /*
     326             :  * Write a message into a shared message queue.
     327             :  */
     328             : shm_mq_result
     329     1728314 : shm_mq_send(shm_mq_handle *mqh, Size nbytes, const void *data, bool nowait,
     330             :             bool force_flush)
     331             : {
     332             :     shm_mq_iovec iov;
     333             : 
     334     1728314 :     iov.data = data;
     335     1728314 :     iov.len = nbytes;
     336             : 
     337     1728314 :     return shm_mq_sendv(mqh, &iov, 1, nowait, force_flush);
     338             : }
     339             : 
     340             : /*
     341             :  * Write a message into a shared message queue, gathered from multiple
     342             :  * addresses.
     343             :  *
     344             :  * When nowait = false, we'll wait on our process latch when the ring buffer
     345             :  * fills up, and then continue writing once the receiver has drained some data.
     346             :  * The process latch is reset after each wait.
     347             :  *
     348             :  * When nowait = true, we do not manipulate the state of the process latch;
     349             :  * instead, if the buffer becomes full, we return SHM_MQ_WOULD_BLOCK.  In
     350             :  * this case, the caller should call this function again, with the same
     351             :  * arguments, each time the process latch is set.  (Once begun, the sending
     352             :  * of a message cannot be aborted except by detaching from the queue; changing
     353             :  * the length or payload will corrupt the queue.)
     354             :  *
     355             :  * When force_flush = true, we immediately update the shm_mq's mq_bytes_written
     356             :  * and notify the receiver (if it is already attached).  Otherwise, we don't
     357             :  * update it until we have written an amount of data greater than 1/4th of the
     358             :  * ring size.
     359             :  */
     360             : shm_mq_result
     361     1731050 : shm_mq_sendv(shm_mq_handle *mqh, shm_mq_iovec *iov, int iovcnt, bool nowait,
     362             :              bool force_flush)
     363             : {
     364             :     shm_mq_result res;
     365     1731050 :     shm_mq     *mq = mqh->mqh_queue;
     366             :     PGPROC     *receiver;
     367     1731050 :     Size        nbytes = 0;
     368             :     Size        bytes_written;
     369             :     int         i;
     370     1731050 :     int         which_iov = 0;
     371             :     Size        offset;
     372             : 
     373             :     Assert(mq->mq_sender == MyProc);
     374             : 
     375             :     /* Compute total size of write. */
     376     3464836 :     for (i = 0; i < iovcnt; ++i)
     377     1733786 :         nbytes += iov[i].len;
     378             : 
     379             :     /* Prevent writing messages overwhelming the receiver. */
     380     1731050 :     if (nbytes > MaxAllocSize)
     381           0 :         ereport(ERROR,
     382             :                 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
     383             :                  errmsg("cannot send a message of size %zu via shared memory queue",
     384             :                         nbytes)));
     385             : 
     386             :     /* Try to write, or finish writing, the length word into the buffer. */
     387     3450514 :     while (!mqh->mqh_length_word_complete)
     388             :     {
     389             :         Assert(mqh->mqh_partial_bytes < sizeof(Size));
     390     1719470 :         res = shm_mq_send_bytes(mqh, sizeof(Size) - mqh->mqh_partial_bytes,
     391     1719470 :                                 ((char *) &nbytes) + mqh->mqh_partial_bytes,
     392             :                                 nowait, &bytes_written);
     393             : 
     394     1719470 :         if (res == SHM_MQ_DETACHED)
     395             :         {
     396             :             /* Reset state in case caller tries to send another message. */
     397           6 :             mqh->mqh_partial_bytes = 0;
     398           6 :             mqh->mqh_length_word_complete = false;
     399           6 :             return res;
     400             :         }
     401     1719464 :         mqh->mqh_partial_bytes += bytes_written;
     402             : 
     403     1719464 :         if (mqh->mqh_partial_bytes >= sizeof(Size))
     404             :         {
     405             :             Assert(mqh->mqh_partial_bytes == sizeof(Size));
     406             : 
     407     1719464 :             mqh->mqh_partial_bytes = 0;
     408     1719464 :             mqh->mqh_length_word_complete = true;
     409             :         }
     410             : 
     411     1719464 :         if (res != SHM_MQ_SUCCESS)
     412           0 :             return res;
     413             : 
     414             :         /* Length word can't be split unless bigger than required alignment. */
     415             :         Assert(mqh->mqh_length_word_complete || sizeof(Size) > MAXIMUM_ALIGNOF);
     416             :     }
     417             : 
     418             :     /* Write the actual data bytes into the buffer. */
     419             :     Assert(mqh->mqh_partial_bytes <= nbytes);
     420     1731044 :     offset = mqh->mqh_partial_bytes;
     421             :     do
     422             :     {
     423             :         Size        chunksize;
     424             : 
     425             :         /* Figure out which bytes need to be sent next. */
     426     1731072 :         if (offset >= iov[which_iov].len)
     427             :         {
     428        8012 :             offset -= iov[which_iov].len;
     429        8012 :             ++which_iov;
     430        8012 :             if (which_iov >= iovcnt)
     431        8000 :                 break;
     432          12 :             continue;
     433             :         }
     434             : 
     435             :         /*
     436             :          * We want to avoid copying the data if at all possible, but every
     437             :          * chunk of bytes we write into the queue has to be MAXALIGN'd, except
     438             :          * the last.  Thus, if a chunk other than the last one ends on a
     439             :          * non-MAXALIGN'd boundary, we have to combine the tail end of its
     440             :          * data with data from one or more following chunks until we either
     441             :          * reach the last chunk or accumulate a number of bytes which is
     442             :          * MAXALIGN'd.
     443             :          */
     444     1723060 :         if (which_iov + 1 < iovcnt &&
     445        2718 :             offset + MAXIMUM_ALIGNOF > iov[which_iov].len)
     446             :         {
     447             :             char        tmpbuf[MAXIMUM_ALIGNOF];
     448        2718 :             int         j = 0;
     449             : 
     450             :             for (;;)
     451             :             {
     452        8250 :                 if (offset < iov[which_iov].len)
     453             :                 {
     454        2830 :                     tmpbuf[j] = iov[which_iov].data[offset];
     455        2830 :                     j++;
     456        2830 :                     offset++;
     457        2830 :                     if (j == MAXIMUM_ALIGNOF)
     458          16 :                         break;
     459             :                 }
     460             :                 else
     461             :                 {
     462        5420 :                     offset -= iov[which_iov].len;
     463        5420 :                     which_iov++;
     464        5420 :                     if (which_iov >= iovcnt)
     465        2702 :                         break;
     466             :                 }
     467             :             }
     468             : 
     469        2718 :             res = shm_mq_send_bytes(mqh, j, tmpbuf, nowait, &bytes_written);
     470             : 
     471        2718 :             if (res == SHM_MQ_DETACHED)
     472             :             {
     473             :                 /* Reset state in case caller tries to send another message. */
     474           0 :                 mqh->mqh_partial_bytes = 0;
     475           0 :                 mqh->mqh_length_word_complete = false;
     476           0 :                 return res;
     477             :             }
     478             : 
     479        2718 :             mqh->mqh_partial_bytes += bytes_written;
     480        2718 :             if (res != SHM_MQ_SUCCESS)
     481           0 :                 return res;
     482        2718 :             continue;
     483             :         }
     484             : 
     485             :         /*
     486             :          * If this is the last chunk, we can write all the data, even if it
     487             :          * isn't a multiple of MAXIMUM_ALIGNOF.  Otherwise, we need to
     488             :          * MAXALIGN_DOWN the write size.
     489             :          */
     490     1720342 :         chunksize = iov[which_iov].len - offset;
     491     1720342 :         if (which_iov + 1 < iovcnt)
     492           0 :             chunksize = MAXALIGN_DOWN(chunksize);
     493     1720342 :         res = shm_mq_send_bytes(mqh, chunksize, &iov[which_iov].data[offset],
     494             :                                 nowait, &bytes_written);
     495             : 
     496     1720342 :         if (res == SHM_MQ_DETACHED)
     497             :         {
     498             :             /* Reset state in case caller tries to send another message. */
     499           0 :             mqh->mqh_length_word_complete = false;
     500           0 :             mqh->mqh_partial_bytes = 0;
     501           0 :             return res;
     502             :         }
     503             : 
     504     1720342 :         mqh->mqh_partial_bytes += bytes_written;
     505     1720342 :         offset += bytes_written;
     506     1720342 :         if (res != SHM_MQ_SUCCESS)
     507       11580 :             return res;
     508     1711492 :     } while (mqh->mqh_partial_bytes < nbytes);
     509             : 
     510             :     /* Reset for next message. */
     511     1719464 :     mqh->mqh_partial_bytes = 0;
     512     1719464 :     mqh->mqh_length_word_complete = false;
     513             : 
     514             :     /* If queue has been detached, let caller know. */
     515     1719464 :     if (mq->mq_detached)
     516           0 :         return SHM_MQ_DETACHED;
     517             : 
     518             :     /*
     519             :      * If the counterparty is known to have attached, we can read mq_receiver
     520             :      * without acquiring the spinlock.  Otherwise, more caution is needed.
     521             :      */
     522     1719464 :     if (mqh->mqh_counterparty_attached)
     523     1715456 :         receiver = mq->mq_receiver;
     524             :     else
     525             :     {
     526        4008 :         SpinLockAcquire(&mq->mq_mutex);
     527        4008 :         receiver = mq->mq_receiver;
     528        4008 :         SpinLockRelease(&mq->mq_mutex);
     529        4008 :         if (receiver != NULL)
     530        4008 :             mqh->mqh_counterparty_attached = true;
     531             :     }
     532             : 
     533             :     /*
     534             :      * If the caller has requested force flush or we have written more than
     535             :      * 1/4 of the ring size, mark it as written in shared memory and notify
     536             :      * the receiver.
     537             :      */
     538     1719464 :     if (force_flush || mqh->mqh_send_pending > (mq->mq_ring_size >> 2))
     539             :     {
     540      240714 :         shm_mq_inc_bytes_written(mq, mqh->mqh_send_pending);
     541      240714 :         if (receiver != NULL)
     542      240714 :             SetLatch(&receiver->procLatch);
     543      240714 :         mqh->mqh_send_pending = 0;
     544             :     }
     545             : 
     546     1719464 :     return SHM_MQ_SUCCESS;
     547             : }
     548             : 
     549             : /*
     550             :  * Receive a message from a shared message queue.
     551             :  *
     552             :  * We set *nbytes to the message length and *data to point to the message
     553             :  * payload.  If the entire message exists in the queue as a single,
     554             :  * contiguous chunk, *data will point directly into shared memory; otherwise,
     555             :  * it will point to a temporary buffer.  This mostly avoids data copying in
     556             :  * the hoped-for case where messages are short compared to the buffer size,
     557             :  * while still allowing longer messages.  In either case, the return value
     558             :  * remains valid until the next receive operation is performed on the queue.
     559             :  *
     560             :  * When nowait = false, we'll wait on our process latch when the ring buffer
     561             :  * is empty and we have not yet received a full message.  The sender will
     562             :  * set our process latch after more data has been written, and we'll resume
     563             :  * processing.  Each call will therefore return a complete message
     564             :  * (unless the sender detaches the queue).
     565             :  *
     566             :  * When nowait = true, we do not manipulate the state of the process latch;
     567             :  * instead, whenever the buffer is empty and we need to read from it, we
     568             :  * return SHM_MQ_WOULD_BLOCK.  In this case, the caller should call this
     569             :  * function again after the process latch has been set.
     570             :  */
     571             : shm_mq_result
     572     6995794 : shm_mq_receive(shm_mq_handle *mqh, Size *nbytesp, void **datap, bool nowait)
     573             : {
     574     6995794 :     shm_mq     *mq = mqh->mqh_queue;
     575             :     shm_mq_result res;
     576     6995794 :     Size        rb = 0;
     577             :     Size        nbytes;
     578             :     void       *rawdata;
     579             : 
     580             :     Assert(mq->mq_receiver == MyProc);
     581             : 
     582             :     /* We can't receive data until the sender has attached. */
     583     6995794 :     if (!mqh->mqh_counterparty_attached)
     584             :     {
     585     5159862 :         if (nowait)
     586             :         {
     587             :             int         counterparty_gone;
     588             : 
     589             :             /*
     590             :              * We shouldn't return at this point at all unless the sender
     591             :              * hasn't attached yet.  However, the correct return value depends
     592             :              * on whether the sender is still attached.  If we first test
     593             :              * whether the sender has ever attached and then test whether the
     594             :              * sender has detached, there's a race condition: a sender that
     595             :              * attaches and detaches very quickly might fool us into thinking
     596             :              * the sender never attached at all.  So, test whether our
     597             :              * counterparty is definitively gone first, and only afterwards
     598             :              * check whether the sender ever attached in the first place.
     599             :              */
     600     5159444 :             counterparty_gone = shm_mq_counterparty_gone(mq, mqh->mqh_handle);
     601     5159444 :             if (shm_mq_get_sender(mq) == NULL)
     602             :             {
     603     5154580 :                 if (counterparty_gone)
     604           0 :                     return SHM_MQ_DETACHED;
     605             :                 else
     606     5154580 :                     return SHM_MQ_WOULD_BLOCK;
     607             :             }
     608             :         }
     609         418 :         else if (!shm_mq_wait_internal(mq, &mq->mq_sender, mqh->mqh_handle)
     610         232 :                  && shm_mq_get_sender(mq) == NULL)
     611             :         {
     612           0 :             mq->mq_detached = true;
     613           0 :             return SHM_MQ_DETACHED;
     614             :         }
     615        5282 :         mqh->mqh_counterparty_attached = true;
     616             :     }
     617             : 
     618             :     /*
     619             :      * If we've consumed an amount of data greater than 1/4th of the ring
     620             :      * size, mark it consumed in shared memory.  We try to avoid doing this
     621             :      * unnecessarily when only a small amount of data has been consumed,
     622             :      * because SetLatch() is fairly expensive and we don't want to do it too
     623             :      * often.
     624             :      */
     625     1841214 :     if (mqh->mqh_consume_pending > mq->mq_ring_size / 4)
     626             :     {
     627       37780 :         shm_mq_inc_bytes_read(mq, mqh->mqh_consume_pending);
     628       37780 :         mqh->mqh_consume_pending = 0;
     629             :     }
     630             : 
     631             :     /* Try to read, or finish reading, the length word from the buffer. */
     632     1884370 :     while (!mqh->mqh_length_word_complete)
     633             :     {
     634             :         /* Try to receive the message length word. */
     635             :         Assert(mqh->mqh_partial_bytes < sizeof(Size));
     636     1829562 :         res = shm_mq_receive_bytes(mqh, sizeof(Size) - mqh->mqh_partial_bytes,
     637             :                                    nowait, &rb, &rawdata);
     638     1829562 :         if (res != SHM_MQ_SUCCESS)
     639      119082 :             return res;
     640             : 
     641             :         /*
     642             :          * Hopefully, we'll receive the entire message length word at once.
     643             :          * But if sizeof(Size) > MAXIMUM_ALIGNOF, then it might be split over
     644             :          * multiple reads.
     645             :          */
     646     1710480 :         if (mqh->mqh_partial_bytes == 0 && rb >= sizeof(Size))
     647       43156 :         {
     648             :             Size        needed;
     649             : 
     650     1710480 :             nbytes = *(Size *) rawdata;
     651             : 
     652             :             /* If we've already got the whole message, we're done. */
     653     1710480 :             needed = MAXALIGN(sizeof(Size)) + MAXALIGN(nbytes);
     654     1710480 :             if (rb >= needed)
     655             :             {
     656     1667324 :                 mqh->mqh_consume_pending += needed;
     657     1667324 :                 *nbytesp = nbytes;
     658     1667324 :                 *datap = ((char *) rawdata) + MAXALIGN(sizeof(Size));
     659     1667324 :                 return SHM_MQ_SUCCESS;
     660             :             }
     661             : 
     662             :             /*
     663             :              * We don't have the whole message, but we at least have the whole
     664             :              * length word.
     665             :              */
     666       43156 :             mqh->mqh_expected_bytes = nbytes;
     667       43156 :             mqh->mqh_length_word_complete = true;
     668       43156 :             mqh->mqh_consume_pending += MAXALIGN(sizeof(Size));
     669       43156 :             rb -= MAXALIGN(sizeof(Size));
     670             :         }
     671             :         else
     672             :         {
     673             :             Size        lengthbytes;
     674             : 
     675             :             /* Can't be split unless bigger than required alignment. */
     676             :             Assert(sizeof(Size) > MAXIMUM_ALIGNOF);
     677             : 
     678             :             /* Message word is split; need buffer to reassemble. */
     679           0 :             if (mqh->mqh_buffer == NULL)
     680             :             {
     681           0 :                 mqh->mqh_buffer = MemoryContextAlloc(mqh->mqh_context,
     682             :                                                      MQH_INITIAL_BUFSIZE);
     683           0 :                 mqh->mqh_buflen = MQH_INITIAL_BUFSIZE;
     684             :             }
     685             :             Assert(mqh->mqh_buflen >= sizeof(Size));
     686             : 
     687             :             /* Copy partial length word; remember to consume it. */
     688           0 :             if (mqh->mqh_partial_bytes + rb > sizeof(Size))
     689           0 :                 lengthbytes = sizeof(Size) - mqh->mqh_partial_bytes;
     690             :             else
     691           0 :                 lengthbytes = rb;
     692           0 :             memcpy(&mqh->mqh_buffer[mqh->mqh_partial_bytes], rawdata,
     693             :                    lengthbytes);
     694           0 :             mqh->mqh_partial_bytes += lengthbytes;
     695           0 :             mqh->mqh_consume_pending += MAXALIGN(lengthbytes);
     696           0 :             rb -= lengthbytes;
     697             : 
     698             :             /* If we now have the whole word, we're ready to read payload. */
     699           0 :             if (mqh->mqh_partial_bytes >= sizeof(Size))
     700             :             {
     701             :                 Assert(mqh->mqh_partial_bytes == sizeof(Size));
     702           0 :                 mqh->mqh_expected_bytes = *(Size *) mqh->mqh_buffer;
     703           0 :                 mqh->mqh_length_word_complete = true;
     704           0 :                 mqh->mqh_partial_bytes = 0;
     705             :             }
     706             :         }
     707             :     }
     708       54808 :     nbytes = mqh->mqh_expected_bytes;
     709             : 
     710             :     /*
     711             :      * Should be disallowed on the sending side already, but better check and
     712             :      * error out on the receiver side as well rather than trying to read a
     713             :      * prohibitively large message.
     714             :      */
     715       54808 :     if (nbytes > MaxAllocSize)
     716           0 :         ereport(ERROR,
     717             :                 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
     718             :                  errmsg("invalid message size %zu in shared memory queue",
     719             :                         nbytes)));
     720             : 
     721       54808 :     if (mqh->mqh_partial_bytes == 0)
     722             :     {
     723             :         /*
     724             :          * Try to obtain the whole message in a single chunk.  If this works,
     725             :          * we need not copy the data and can return a pointer directly into
     726             :          * shared memory.
     727             :          */
     728       43356 :         res = shm_mq_receive_bytes(mqh, nbytes, nowait, &rb, &rawdata);
     729       43356 :         if (res != SHM_MQ_SUCCESS)
     730         200 :             return res;
     731       43156 :         if (rb >= nbytes)
     732             :         {
     733         332 :             mqh->mqh_length_word_complete = false;
     734         332 :             mqh->mqh_consume_pending += MAXALIGN(nbytes);
     735         332 :             *nbytesp = nbytes;
     736         332 :             *datap = rawdata;
     737         332 :             return SHM_MQ_SUCCESS;
     738             :         }
     739             : 
     740             :         /*
     741             :          * The message has wrapped the buffer.  We'll need to copy it in order
     742             :          * to return it to the client in one chunk.  First, make sure we have
     743             :          * a large enough buffer available.
     744             :          */
     745       42824 :         if (mqh->mqh_buflen < nbytes)
     746             :         {
     747             :             Size        newbuflen;
     748             : 
     749             :             /*
     750             :              * Increase size to the next power of 2 that's >= nbytes, but
     751             :              * limit to MaxAllocSize.
     752             :              */
     753         232 :             newbuflen = pg_nextpower2_size_t(nbytes);
     754         232 :             newbuflen = Min(newbuflen, MaxAllocSize);
     755             : 
     756         232 :             if (mqh->mqh_buffer != NULL)
     757             :             {
     758           0 :                 pfree(mqh->mqh_buffer);
     759           0 :                 mqh->mqh_buffer = NULL;
     760           0 :                 mqh->mqh_buflen = 0;
     761             :             }
     762         232 :             mqh->mqh_buffer = MemoryContextAlloc(mqh->mqh_context, newbuflen);
     763         232 :             mqh->mqh_buflen = newbuflen;
     764             :         }
     765             :     }
     766             : 
     767             :     /* Loop until we've copied the entire message. */
     768             :     for (;;)
     769      203680 :     {
     770             :         Size        still_needed;
     771             : 
     772             :         /* Copy as much as we can. */
     773             :         Assert(mqh->mqh_partial_bytes + rb <= nbytes);
     774      257956 :         if (rb > 0)
     775             :         {
     776      246504 :             memcpy(&mqh->mqh_buffer[mqh->mqh_partial_bytes], rawdata, rb);
     777      246504 :             mqh->mqh_partial_bytes += rb;
     778             :         }
     779             : 
     780             :         /*
     781             :          * Update count of bytes that can be consumed, accounting for
     782             :          * alignment padding.  Note that this will never actually insert any
     783             :          * padding except at the end of a message, because the buffer size is
     784             :          * a multiple of MAXIMUM_ALIGNOF, and each read and write is as well.
     785             :          */
     786             :         Assert(mqh->mqh_partial_bytes == nbytes || rb == MAXALIGN(rb));
     787      257956 :         mqh->mqh_consume_pending += MAXALIGN(rb);
     788             : 
     789             :         /* If we got all the data, exit the loop. */
     790      257956 :         if (mqh->mqh_partial_bytes >= nbytes)
     791       42824 :             break;
     792             : 
     793             :         /* Wait for some more data. */
     794      215132 :         still_needed = nbytes - mqh->mqh_partial_bytes;
     795      215132 :         res = shm_mq_receive_bytes(mqh, still_needed, nowait, &rb, &rawdata);
     796      215132 :         if (res != SHM_MQ_SUCCESS)
     797       11452 :             return res;
     798      203680 :         if (rb > still_needed)
     799       41632 :             rb = still_needed;
     800             :     }
     801             : 
     802             :     /* Return the complete message, and reset for next message. */
     803       42824 :     *nbytesp = nbytes;
     804       42824 :     *datap = mqh->mqh_buffer;
     805       42824 :     mqh->mqh_length_word_complete = false;
     806       42824 :     mqh->mqh_partial_bytes = 0;
     807       42824 :     return SHM_MQ_SUCCESS;
     808             : }
     809             : 
     810             : /*
     811             :  * Wait for the other process that's supposed to use this queue to attach
     812             :  * to it.
     813             :  *
     814             :  * The return value is SHM_MQ_DETACHED if the worker has already detached or
     815             :  * if it dies; it is SHM_MQ_SUCCESS if we detect that the worker has attached.
     816             :  * Note that we will only be able to detect that the worker has died before
     817             :  * attaching if a background worker handle was passed to shm_mq_attach().
     818             :  */
     819             : shm_mq_result
     820           0 : shm_mq_wait_for_attach(shm_mq_handle *mqh)
     821             : {
     822           0 :     shm_mq     *mq = mqh->mqh_queue;
     823             :     PGPROC    **victim;
     824             : 
     825           0 :     if (shm_mq_get_receiver(mq) == MyProc)
     826           0 :         victim = &mq->mq_sender;
     827             :     else
     828             :     {
     829             :         Assert(shm_mq_get_sender(mq) == MyProc);
     830           0 :         victim = &mq->mq_receiver;
     831             :     }
     832             : 
     833           0 :     if (shm_mq_wait_internal(mq, victim, mqh->mqh_handle))
     834           0 :         return SHM_MQ_SUCCESS;
     835             :     else
     836           0 :         return SHM_MQ_DETACHED;
     837             : }
     838             : 
     839             : /*
     840             :  * Detach from a shared message queue, and destroy the shm_mq_handle.
     841             :  */
     842             : void
     843        7846 : shm_mq_detach(shm_mq_handle *mqh)
     844             : {
     845             :     /* Before detaching, notify the receiver about any already-written data. */
     846        7846 :     if (mqh->mqh_send_pending > 0)
     847             :     {
     848        1266 :         shm_mq_inc_bytes_written(mqh->mqh_queue, mqh->mqh_send_pending);
     849        1266 :         mqh->mqh_send_pending = 0;
     850             :     }
     851             : 
     852             :     /* Notify counterparty that we're outta here. */
     853        7846 :     shm_mq_detach_internal(mqh->mqh_queue);
     854             : 
     855             :     /* Cancel on_dsm_detach callback, if any. */
     856        7846 :     if (mqh->mqh_segment)
     857        7846 :         cancel_on_dsm_detach(mqh->mqh_segment,
     858             :                              shm_mq_detach_callback,
     859        7846 :                              PointerGetDatum(mqh->mqh_queue));
     860             : 
     861             :     /* Release local memory associated with handle. */
     862        7846 :     if (mqh->mqh_buffer != NULL)
     863         216 :         pfree(mqh->mqh_buffer);
     864        7846 :     pfree(mqh);
     865        7846 : }
     866             : 
     867             : /*
     868             :  * Notify counterparty that we're detaching from shared message queue.
     869             :  *
     870             :  * The purpose of this function is to make sure that the process
     871             :  * with which we're communicating doesn't block forever waiting for us to
     872             :  * fill or drain the queue once we've lost interest.  When the sender
     873             :  * detaches, the receiver can read any messages remaining in the queue;
     874             :  * further reads will return SHM_MQ_DETACHED.  If the receiver detaches,
     875             :  * further attempts to send messages will likewise return SHM_MQ_DETACHED.
     876             :  *
     877             :  * This is separated out from shm_mq_detach() because if the on_dsm_detach
     878             :  * callback fires, we only want to do this much.  We do not try to touch
     879             :  * the local shm_mq_handle, as it may have been pfree'd already.
     880             :  */
     881             : static void
     882       10762 : shm_mq_detach_internal(shm_mq *mq)
     883             : {
     884             :     PGPROC     *victim;
     885             : 
     886       10762 :     SpinLockAcquire(&mq->mq_mutex);
     887       10762 :     if (mq->mq_sender == MyProc)
     888        5298 :         victim = mq->mq_receiver;
     889             :     else
     890             :     {
     891             :         Assert(mq->mq_receiver == MyProc);
     892        5464 :         victim = mq->mq_sender;
     893             :     }
     894       10762 :     mq->mq_detached = true;
     895       10762 :     SpinLockRelease(&mq->mq_mutex);
     896             : 
     897       10762 :     if (victim != NULL)
     898       10602 :         SetLatch(&victim->procLatch);
     899       10762 : }
     900             : 
     901             : /*
     902             :  * Get the shm_mq from handle.
     903             :  */
     904             : shm_mq *
     905    10124028 : shm_mq_get_queue(shm_mq_handle *mqh)
     906             : {
     907    10124028 :     return mqh->mqh_queue;
     908             : }
     909             : 
     910             : /*
     911             :  * Write bytes into a shared message queue.
     912             :  */
     913             : static shm_mq_result
     914     3442530 : shm_mq_send_bytes(shm_mq_handle *mqh, Size nbytes, const void *data,
     915             :                   bool nowait, Size *bytes_written)
     916             : {
     917     3442530 :     shm_mq     *mq = mqh->mqh_queue;
     918     3442530 :     Size        sent = 0;
     919             :     uint64      used;
     920     3442530 :     Size        ringsize = mq->mq_ring_size;
     921             :     Size        available;
     922             : 
     923     7320354 :     while (sent < nbytes)
     924             :     {
     925             :         uint64      rb;
     926             :         uint64      wb;
     927             : 
     928             :         /* Compute number of ring buffer bytes used and available. */
     929     3889410 :         rb = pg_atomic_read_u64(&mq->mq_bytes_read);
     930     3889410 :         wb = pg_atomic_read_u64(&mq->mq_bytes_written) + mqh->mqh_send_pending;
     931             :         Assert(wb >= rb);
     932     3889410 :         used = wb - rb;
     933             :         Assert(used <= ringsize);
     934     3889410 :         available = Min(ringsize - used, nbytes - sent);
     935             : 
     936             :         /*
     937             :          * Bail out if the queue has been detached.  Note that we would be in
     938             :          * trouble if the compiler decided to cache the value of
     939             :          * mq->mq_detached in a register or on the stack across loop
     940             :          * iterations.  It probably shouldn't do that anyway since we'll
     941             :          * always return, call an external function that performs a system
     942             :          * call, or reach a memory barrier at some point later in the loop,
     943             :          * but just to be sure, insert a compiler barrier here.
     944             :          */
     945     3889410 :         pg_compiler_barrier();
     946     3889410 :         if (mq->mq_detached)
     947             :         {
     948           6 :             *bytes_written = sent;
     949           6 :             return SHM_MQ_DETACHED;
     950             :         }
     951             : 
     952     3889404 :         if (available == 0 && !mqh->mqh_counterparty_attached)
     953             :         {
     954             :             /*
     955             :              * The queue is full, so if the receiver isn't yet known to be
     956             :              * attached, we must wait for that to happen.
     957             :              */
     958          18 :             if (nowait)
     959             :             {
     960           8 :                 if (shm_mq_counterparty_gone(mq, mqh->mqh_handle))
     961             :                 {
     962           0 :                     *bytes_written = sent;
     963           0 :                     return SHM_MQ_DETACHED;
     964             :                 }
     965           8 :                 if (shm_mq_get_receiver(mq) == NULL)
     966             :                 {
     967           0 :                     *bytes_written = sent;
     968           0 :                     return SHM_MQ_WOULD_BLOCK;
     969             :                 }
     970             :             }
     971          10 :             else if (!shm_mq_wait_internal(mq, &mq->mq_receiver,
     972             :                                            mqh->mqh_handle))
     973             :             {
     974           0 :                 mq->mq_detached = true;
     975           0 :                 *bytes_written = sent;
     976           0 :                 return SHM_MQ_DETACHED;
     977             :             }
     978          18 :             mqh->mqh_counterparty_attached = true;
     979             : 
     980             :             /*
     981             :              * The receiver may have read some data after attaching, so we
     982             :              * must not wait without rechecking the queue state.
     983             :              */
     984             :         }
     985     3889386 :         else if (available == 0)
     986             :         {
     987             :             /* Update the pending send bytes in the shared memory. */
     988      224380 :             shm_mq_inc_bytes_written(mq, mqh->mqh_send_pending);
     989             : 
     990             :             /*
     991             :              * Since mq->mqh_counterparty_attached is known to be true at this
     992             :              * point, mq_receiver has been set, and it can't change once set.
     993             :              * Therefore, we can read it without acquiring the spinlock.
     994             :              */
     995             :             Assert(mqh->mqh_counterparty_attached);
     996      224380 :             SetLatch(&mq->mq_receiver->procLatch);
     997             : 
     998             :             /*
     999             :              * We have just updated the mqh_send_pending bytes in the shared
    1000             :              * memory so reset it.
    1001             :              */
    1002      224380 :             mqh->mqh_send_pending = 0;
    1003             : 
    1004             :             /* Skip manipulation of our latch if nowait = true. */
    1005      224380 :             if (nowait)
    1006             :             {
    1007       11580 :                 *bytes_written = sent;
    1008       11580 :                 return SHM_MQ_WOULD_BLOCK;
    1009             :             }
    1010             : 
    1011             :             /*
    1012             :              * Wait for our latch to be set.  It might already be set for some
    1013             :              * unrelated reason, but that'll just result in one extra trip
    1014             :              * through the loop.  It's worth it to avoid resetting the latch
    1015             :              * at top of loop, because setting an already-set latch is much
    1016             :              * cheaper than setting one that has been reset.
    1017             :              */
    1018      212800 :             (void) WaitLatch(MyLatch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0,
    1019             :                              WAIT_EVENT_MESSAGE_QUEUE_SEND);
    1020             : 
    1021             :             /* Reset the latch so we don't spin. */
    1022      212800 :             ResetLatch(MyLatch);
    1023             : 
    1024             :             /* An interrupt may have occurred while we were waiting. */
    1025      212800 :             CHECK_FOR_INTERRUPTS();
    1026             :         }
    1027             :         else
    1028             :         {
    1029             :             Size        offset;
    1030             :             Size        sendnow;
    1031             : 
    1032     3665006 :             offset = wb % (uint64) ringsize;
    1033     3665006 :             sendnow = Min(available, ringsize - offset);
    1034             : 
    1035             :             /*
    1036             :              * Write as much data as we can via a single memcpy(). Make sure
    1037             :              * these writes happen after the read of mq_bytes_read, above.
    1038             :              * This barrier pairs with the one in shm_mq_inc_bytes_read.
    1039             :              * (Since we're separating the read of mq_bytes_read from a
    1040             :              * subsequent write to mq_ring, we need a full barrier here.)
    1041             :              */
    1042     3665006 :             pg_memory_barrier();
    1043     3665006 :             memcpy(&mq->mq_ring[mq->mq_ring_offset + offset],
    1044             :                    (char *) data + sent, sendnow);
    1045     3665006 :             sent += sendnow;
    1046             : 
    1047             :             /*
    1048             :              * Update count of bytes written, with alignment padding.  Note
    1049             :              * that this will never actually insert any padding except at the
    1050             :              * end of a run of bytes, because the buffer size is a multiple of
    1051             :              * MAXIMUM_ALIGNOF, and each read is as well.
    1052             :              */
    1053             :             Assert(sent == nbytes || sendnow == MAXALIGN(sendnow));
    1054             : 
    1055             :             /*
    1056             :              * For efficiency, we don't update the bytes written in the shared
    1057             :              * memory and also don't set the reader's latch here.  Refer to
    1058             :              * the comments atop the shm_mq_handle structure for more
    1059             :              * information.
    1060             :              */
    1061     3665006 :             mqh->mqh_send_pending += MAXALIGN(sendnow);
    1062             :         }
    1063             :     }
    1064             : 
    1065     3430944 :     *bytes_written = sent;
    1066     3430944 :     return SHM_MQ_SUCCESS;
    1067             : }
    1068             : 
    1069             : /*
    1070             :  * Wait until at least *nbytesp bytes are available to be read from the
    1071             :  * shared message queue, or until the buffer wraps around.  If the queue is
    1072             :  * detached, returns SHM_MQ_DETACHED.  If nowait is specified and a wait
    1073             :  * would be required, returns SHM_MQ_WOULD_BLOCK.  Otherwise, *datap is set
    1074             :  * to the location at which data bytes can be read, *nbytesp is set to the
    1075             :  * number of bytes which can be read at that address, and the return value
    1076             :  * is SHM_MQ_SUCCESS.
    1077             :  */
    1078             : static shm_mq_result
    1079     2088050 : shm_mq_receive_bytes(shm_mq_handle *mqh, Size bytes_needed, bool nowait,
    1080             :                      Size *nbytesp, void **datap)
    1081             : {
    1082     2088050 :     shm_mq     *mq = mqh->mqh_queue;
    1083     2088050 :     Size        ringsize = mq->mq_ring_size;
    1084             :     uint64      used;
    1085             :     uint64      written;
    1086             : 
    1087             :     for (;;)
    1088      268530 :     {
    1089             :         Size        offset;
    1090             :         uint64      read;
    1091             : 
    1092             :         /* Get bytes written, so we can compute what's available to read. */
    1093     2356580 :         written = pg_atomic_read_u64(&mq->mq_bytes_written);
    1094             : 
    1095             :         /*
    1096             :          * Get bytes read.  Include bytes we could consume but have not yet
    1097             :          * consumed.
    1098             :          */
    1099     2356580 :         read = pg_atomic_read_u64(&mq->mq_bytes_read) +
    1100     2356580 :             mqh->mqh_consume_pending;
    1101     2356580 :         used = written - read;
    1102             :         Assert(used <= ringsize);
    1103     2356580 :         offset = read % (uint64) ringsize;
    1104             : 
    1105             :         /* If we have enough data or buffer has wrapped, we're done. */
    1106     2356580 :         if (used >= bytes_needed || offset + used >= ringsize)
    1107             :         {
    1108     1957316 :             *nbytesp = Min(used, ringsize - offset);
    1109     1957316 :             *datap = &mq->mq_ring[mq->mq_ring_offset + offset];
    1110             : 
    1111             :             /*
    1112             :              * Separate the read of mq_bytes_written, above, from caller's
    1113             :              * attempt to read the data itself.  Pairs with the barrier in
    1114             :              * shm_mq_inc_bytes_written.
    1115             :              */
    1116     1957316 :             pg_read_barrier();
    1117     1957316 :             return SHM_MQ_SUCCESS;
    1118             :         }
    1119             : 
    1120             :         /*
    1121             :          * Fall out before waiting if the queue has been detached.
    1122             :          *
    1123             :          * Note that we don't check for this until *after* considering whether
    1124             :          * the data already available is enough, since the receiver can finish
    1125             :          * receiving a message stored in the buffer even after the sender has
    1126             :          * detached.
    1127             :          */
    1128      399264 :         if (mq->mq_detached)
    1129             :         {
    1130             :             /*
    1131             :              * If the writer advanced mq_bytes_written and then set
    1132             :              * mq_detached, we might not have read the final value of
    1133             :              * mq_bytes_written above.  Insert a read barrier and then check
    1134             :              * again if mq_bytes_written has advanced.
    1135             :              */
    1136        2522 :             pg_read_barrier();
    1137        2522 :             if (written != pg_atomic_read_u64(&mq->mq_bytes_written))
    1138           0 :                 continue;
    1139             : 
    1140        2522 :             return SHM_MQ_DETACHED;
    1141             :         }
    1142             : 
    1143             :         /*
    1144             :          * We didn't get enough data to satisfy the request, so mark any data
    1145             :          * previously-consumed as read to make more buffer space.
    1146             :          */
    1147      396742 :         if (mqh->mqh_consume_pending > 0)
    1148             :         {
    1149      247110 :             shm_mq_inc_bytes_read(mq, mqh->mqh_consume_pending);
    1150      247110 :             mqh->mqh_consume_pending = 0;
    1151             :         }
    1152             : 
    1153             :         /* Skip manipulation of our latch if nowait = true. */
    1154      396742 :         if (nowait)
    1155      128212 :             return SHM_MQ_WOULD_BLOCK;
    1156             : 
    1157             :         /*
    1158             :          * Wait for our latch to be set.  It might already be set for some
    1159             :          * unrelated reason, but that'll just result in one extra trip through
    1160             :          * the loop.  It's worth it to avoid resetting the latch at top of
    1161             :          * loop, because setting an already-set latch is much cheaper than
    1162             :          * setting one that has been reset.
    1163             :          */
    1164      268530 :         (void) WaitLatch(MyLatch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0,
    1165             :                          WAIT_EVENT_MESSAGE_QUEUE_RECEIVE);
    1166             : 
    1167             :         /* Reset the latch so we don't spin. */
    1168      268530 :         ResetLatch(MyLatch);
    1169             : 
    1170             :         /* An interrupt may have occurred while we were waiting. */
    1171      268530 :         CHECK_FOR_INTERRUPTS();
    1172             :     }
    1173             : }
    1174             : 
    1175             : /*
    1176             :  * Test whether a counterparty who may not even be alive yet is definitely gone.
    1177             :  */
    1178             : static bool
    1179     5159452 : shm_mq_counterparty_gone(shm_mq *mq, BackgroundWorkerHandle *handle)
    1180             : {
    1181             :     pid_t       pid;
    1182             : 
    1183             :     /* If the queue has been detached, counterparty is definitely gone. */
    1184     5159452 :     if (mq->mq_detached)
    1185        1468 :         return true;
    1186             : 
    1187             :     /* If there's a handle, check worker status. */
    1188     5157984 :     if (handle != NULL)
    1189             :     {
    1190             :         BgwHandleStatus status;
    1191             : 
    1192             :         /* Check for unexpected worker death. */
    1193     5157954 :         status = GetBackgroundWorkerPid(handle, &pid);
    1194     5157954 :         if (status != BGWH_STARTED && status != BGWH_NOT_YET_STARTED)
    1195             :         {
    1196             :             /* Mark it detached, just to make it official. */
    1197           0 :             mq->mq_detached = true;
    1198           0 :             return true;
    1199             :         }
    1200             :     }
    1201             : 
    1202             :     /* Counterparty is not definitively gone. */
    1203     5157984 :     return false;
    1204             : }
    1205             : 
    1206             : /*
    1207             :  * This is used when a process is waiting for its counterpart to attach to the
    1208             :  * queue.  We exit when the other process attaches as expected, or, if
    1209             :  * handle != NULL, when the referenced background process or the postmaster
    1210             :  * dies.  Note that if handle == NULL, and the process fails to attach, we'll
    1211             :  * potentially get stuck here forever waiting for a process that may never
    1212             :  * start.  We do check for interrupts, though.
    1213             :  *
    1214             :  * ptr is a pointer to the memory address that we're expecting to become
    1215             :  * non-NULL when our counterpart attaches to the queue.
    1216             :  */
    1217             : static bool
    1218         428 : shm_mq_wait_internal(shm_mq *mq, PGPROC **ptr, BackgroundWorkerHandle *handle)
    1219             : {
    1220         428 :     bool        result = false;
    1221             : 
    1222             :     for (;;)
    1223        1986 :     {
    1224             :         BgwHandleStatus status;
    1225             :         pid_t       pid;
    1226             : 
    1227             :         /* Acquire the lock just long enough to check the pointer. */
    1228        2414 :         SpinLockAcquire(&mq->mq_mutex);
    1229        2414 :         result = (*ptr != NULL);
    1230        2414 :         SpinLockRelease(&mq->mq_mutex);
    1231             : 
    1232             :         /* Fail if detached; else succeed if initialized. */
    1233        2414 :         if (mq->mq_detached)
    1234             :         {
    1235         232 :             result = false;
    1236         232 :             break;
    1237             :         }
    1238        2182 :         if (result)
    1239         196 :             break;
    1240             : 
    1241        1986 :         if (handle != NULL)
    1242             :         {
    1243             :             /* Check for unexpected worker death. */
    1244        1986 :             status = GetBackgroundWorkerPid(handle, &pid);
    1245        1986 :             if (status != BGWH_STARTED && status != BGWH_NOT_YET_STARTED)
    1246             :             {
    1247           0 :                 result = false;
    1248           0 :                 break;
    1249             :             }
    1250             :         }
    1251             : 
    1252             :         /* Wait to be signaled. */
    1253        1986 :         (void) WaitLatch(MyLatch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0,
    1254             :                          WAIT_EVENT_MESSAGE_QUEUE_INTERNAL);
    1255             : 
    1256             :         /* Reset the latch so we don't spin. */
    1257        1986 :         ResetLatch(MyLatch);
    1258             : 
    1259             :         /* An interrupt may have occurred while we were waiting. */
    1260        1986 :         CHECK_FOR_INTERRUPTS();
    1261             :     }
    1262             : 
    1263         428 :     return result;
    1264             : }
    1265             : 
    1266             : /*
    1267             :  * Increment the number of bytes read.
    1268             :  */
    1269             : static void
    1270      284890 : shm_mq_inc_bytes_read(shm_mq *mq, Size n)
    1271             : {
    1272             :     PGPROC     *sender;
    1273             : 
    1274             :     /*
    1275             :      * Separate prior reads of mq_ring from the increment of mq_bytes_read
    1276             :      * which follows.  This pairs with the full barrier in
    1277             :      * shm_mq_send_bytes(). We only need a read barrier here because the
    1278             :      * increment of mq_bytes_read is actually a read followed by a dependent
    1279             :      * write.
    1280             :      */
    1281      284890 :     pg_read_barrier();
    1282             : 
    1283             :     /*
    1284             :      * There's no need to use pg_atomic_fetch_add_u64 here, because nobody
    1285             :      * else can be changing this value.  This method should be cheaper.
    1286             :      */
    1287      284890 :     pg_atomic_write_u64(&mq->mq_bytes_read,
    1288      284890 :                         pg_atomic_read_u64(&mq->mq_bytes_read) + n);
    1289             : 
    1290             :     /*
    1291             :      * We shouldn't have any bytes to read without a sender, so we can read
    1292             :      * mq_sender here without a lock.  Once it's initialized, it can't change.
    1293             :      */
    1294      284890 :     sender = mq->mq_sender;
    1295             :     Assert(sender != NULL);
    1296      284890 :     SetLatch(&sender->procLatch);
    1297      284890 : }
    1298             : 
    1299             : /*
    1300             :  * Increment the number of bytes written.
    1301             :  */
    1302             : static void
    1303      466360 : shm_mq_inc_bytes_written(shm_mq *mq, Size n)
    1304             : {
    1305             :     /*
    1306             :      * Separate prior reads of mq_ring from the write of mq_bytes_written
    1307             :      * which we're about to do.  Pairs with the read barrier found in
    1308             :      * shm_mq_receive_bytes.
    1309             :      */
    1310      466360 :     pg_write_barrier();
    1311             : 
    1312             :     /*
    1313             :      * There's no need to use pg_atomic_fetch_add_u64 here, because nobody
    1314             :      * else can be changing this value.  This method avoids taking the bus
    1315             :      * lock unnecessarily.
    1316             :      */
    1317      466360 :     pg_atomic_write_u64(&mq->mq_bytes_written,
    1318      466360 :                         pg_atomic_read_u64(&mq->mq_bytes_written) + n);
    1319      466360 : }
    1320             : 
    1321             : /* Shim for on_dsm_detach callback. */
    1322             : static void
    1323        2916 : shm_mq_detach_callback(dsm_segment *seg, Datum arg)
    1324             : {
    1325        2916 :     shm_mq     *mq = (shm_mq *) DatumGetPointer(arg);
    1326             : 
    1327        2916 :     shm_mq_detach_internal(mq);
    1328        2916 : }

Generated by: LCOV version 1.14