LCOV - code coverage report
Current view: top level - src/backend/storage/ipc - procarray.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 1170 1323 88.4 %
Date: 2026-01-12 02:17:34 Functions: 71 76 93.4 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * procarray.c
       4             :  *    POSTGRES process array code.
       5             :  *
       6             :  *
       7             :  * This module maintains arrays of PGPROC substructures, as well as associated
       8             :  * arrays in ProcGlobal, for all active backends.  Although there are several
       9             :  * uses for this, the principal one is as a means of determining the set of
      10             :  * currently running transactions.
      11             :  *
      12             :  * Because of various subtle race conditions it is critical that a backend
      13             :  * hold the correct locks while setting or clearing its xid (in
      14             :  * ProcGlobal->xids[]/MyProc->xid).  See notes in
      15             :  * src/backend/access/transam/README.
      16             :  *
      17             :  * The process arrays now also include structures representing prepared
      18             :  * transactions.  The xid and subxids fields of these are valid, as are the
      19             :  * myProcLocks lists.  They can be distinguished from regular backend PGPROCs
      20             :  * at need by checking for pid == 0.
      21             :  *
      22             :  * During hot standby, we also keep a list of XIDs representing transactions
      23             :  * that are known to be running on the primary (or more precisely, were running
      24             :  * as of the current point in the WAL stream).  This list is kept in the
      25             :  * KnownAssignedXids array, and is updated by watching the sequence of
      26             :  * arriving XIDs.  This is necessary because if we leave those XIDs out of
      27             :  * snapshots taken for standby queries, then they will appear to be already
      28             :  * complete, leading to MVCC failures.  Note that in hot standby, the PGPROC
      29             :  * array represents standby processes, which by definition are not running
      30             :  * transactions that have XIDs.
      31             :  *
      32             :  * It is perhaps possible for a backend on the primary to terminate without
      33             :  * writing an abort record for its transaction.  While that shouldn't really
      34             :  * happen, it would tie up KnownAssignedXids indefinitely, so we protect
      35             :  * ourselves by pruning the array when a valid list of running XIDs arrives.
      36             :  *
      37             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
      38             :  * Portions Copyright (c) 1994, Regents of the University of California
      39             :  *
      40             :  *
      41             :  * IDENTIFICATION
      42             :  *    src/backend/storage/ipc/procarray.c
      43             :  *
      44             :  *-------------------------------------------------------------------------
      45             :  */
      46             : #include "postgres.h"
      47             : 
      48             : #include <signal.h>
      49             : 
      50             : #include "access/subtrans.h"
      51             : #include "access/transam.h"
      52             : #include "access/twophase.h"
      53             : #include "access/xact.h"
      54             : #include "access/xlogutils.h"
      55             : #include "catalog/catalog.h"
      56             : #include "catalog/pg_authid.h"
      57             : #include "miscadmin.h"
      58             : #include "pgstat.h"
      59             : #include "postmaster/bgworker.h"
      60             : #include "port/pg_lfind.h"
      61             : #include "storage/proc.h"
      62             : #include "storage/procarray.h"
      63             : #include "utils/acl.h"
      64             : #include "utils/builtins.h"
      65             : #include "utils/injection_point.h"
      66             : #include "utils/lsyscache.h"
      67             : #include "utils/rel.h"
      68             : #include "utils/snapmgr.h"
      69             : 
      70             : #define UINT32_ACCESS_ONCE(var)      ((uint32)(*((volatile uint32 *)&(var))))
      71             : 
      72             : /* Our shared memory area */
      73             : typedef struct ProcArrayStruct
      74             : {
      75             :     int         numProcs;       /* number of valid procs entries */
      76             :     int         maxProcs;       /* allocated size of procs array */
      77             : 
      78             :     /*
      79             :      * Known assigned XIDs handling
      80             :      */
      81             :     int         maxKnownAssignedXids;   /* allocated size of array */
      82             :     int         numKnownAssignedXids;   /* current # of valid entries */
      83             :     int         tailKnownAssignedXids;  /* index of oldest valid element */
      84             :     int         headKnownAssignedXids;  /* index of newest element, + 1 */
      85             : 
      86             :     /*
      87             :      * Highest subxid that has been removed from KnownAssignedXids array to
      88             :      * prevent overflow; or InvalidTransactionId if none.  We track this for
      89             :      * similar reasons to tracking overflowing cached subxids in PGPROC
      90             :      * entries.  Must hold exclusive ProcArrayLock to change this, and shared
      91             :      * lock to read it.
      92             :      */
      93             :     TransactionId lastOverflowedXid;
      94             : 
      95             :     /* oldest xmin of any replication slot */
      96             :     TransactionId replication_slot_xmin;
      97             :     /* oldest catalog xmin of any replication slot */
      98             :     TransactionId replication_slot_catalog_xmin;
      99             : 
     100             :     /* indexes into allProcs[], has PROCARRAY_MAXPROCS entries */
     101             :     int         pgprocnos[FLEXIBLE_ARRAY_MEMBER];
     102             : } ProcArrayStruct;
     103             : 
     104             : /*
     105             :  * State for the GlobalVisTest* family of functions. Those functions can
     106             :  * e.g. be used to decide if a deleted row can be removed without violating
     107             :  * MVCC semantics: If the deleted row's xmax is not considered to be running
     108             :  * by anyone, the row can be removed.
     109             :  *
     110             :  * To avoid slowing down GetSnapshotData(), we don't calculate a precise
     111             :  * cutoff XID while building a snapshot (looking at the frequently changing
     112             :  * xmins scales badly). Instead we compute two boundaries while building the
     113             :  * snapshot:
     114             :  *
     115             :  * 1) definitely_needed, indicating that rows deleted by XIDs >=
     116             :  *    definitely_needed are definitely still visible.
     117             :  *
     118             :  * 2) maybe_needed, indicating that rows deleted by XIDs < maybe_needed can
     119             :  *    definitely be removed
     120             :  *
     121             :  * When testing an XID that falls in between the two (i.e. XID >= maybe_needed
     122             :  * && XID < definitely_needed), the boundaries can be recomputed (using
     123             :  * ComputeXidHorizons()) to get a more accurate answer. This is cheaper than
     124             :  * maintaining an accurate value all the time.
     125             :  *
     126             :  * As it is not cheap to compute accurate boundaries, we limit the number of
     127             :  * times that happens in short succession. See GlobalVisTestShouldUpdate().
     128             :  *
     129             :  *
     130             :  * There are three backend lifetime instances of this struct, optimized for
     131             :  * different types of relations. As e.g. a normal user defined table in one
     132             :  * database is inaccessible to backends connected to another database, a test
     133             :  * specific to a relation can be more aggressive than a test for a shared
     134             :  * relation.  Currently we track four different states:
     135             :  *
     136             :  * 1) GlobalVisSharedRels, which only considers an XID's
     137             :  *    effects visible-to-everyone if neither snapshots in any database, nor a
     138             :  *    replication slot's xmin, nor a replication slot's catalog_xmin might
     139             :  *    still consider XID as running.
     140             :  *
     141             :  * 2) GlobalVisCatalogRels, which only considers an XID's
     142             :  *    effects visible-to-everyone if neither snapshots in the current
     143             :  *    database, nor a replication slot's xmin, nor a replication slot's
     144             :  *    catalog_xmin might still consider XID as running.
     145             :  *
     146             :  *    I.e. the difference to GlobalVisSharedRels is that
     147             :  *    snapshot in other databases are ignored.
     148             :  *
     149             :  * 3) GlobalVisDataRels, which only considers an XID's
     150             :  *    effects visible-to-everyone if neither snapshots in the current
     151             :  *    database, nor a replication slot's xmin consider XID as running.
     152             :  *
     153             :  *    I.e. the difference to GlobalVisCatalogRels is that
     154             :  *    replication slot's catalog_xmin is not taken into account.
     155             :  *
     156             :  * 4) GlobalVisTempRels, which only considers the current session, as temp
     157             :  *    tables are not visible to other sessions.
     158             :  *
     159             :  * GlobalVisTestFor(relation) returns the appropriate state
     160             :  * for the relation.
     161             :  *
     162             :  * The boundaries are FullTransactionIds instead of TransactionIds to avoid
     163             :  * wraparound dangers. There e.g. would otherwise exist no procarray state to
     164             :  * prevent maybe_needed to become old enough after the GetSnapshotData()
     165             :  * call.
     166             :  *
     167             :  * The typedef is in the header.
     168             :  */
     169             : struct GlobalVisState
     170             : {
     171             :     /* XIDs >= are considered running by some backend */
     172             :     FullTransactionId definitely_needed;
     173             : 
     174             :     /* XIDs < are not considered to be running by any backend */
     175             :     FullTransactionId maybe_needed;
     176             : };
     177             : 
     178             : /*
     179             :  * Result of ComputeXidHorizons().
     180             :  */
     181             : typedef struct ComputeXidHorizonsResult
     182             : {
     183             :     /*
     184             :      * The value of TransamVariables->latestCompletedXid when
     185             :      * ComputeXidHorizons() held ProcArrayLock.
     186             :      */
     187             :     FullTransactionId latest_completed;
     188             : 
     189             :     /*
     190             :      * The same for procArray->replication_slot_xmin and
     191             :      * procArray->replication_slot_catalog_xmin.
     192             :      */
     193             :     TransactionId slot_xmin;
     194             :     TransactionId slot_catalog_xmin;
     195             : 
     196             :     /*
     197             :      * Oldest xid that any backend might still consider running. This needs to
     198             :      * include processes running VACUUM, in contrast to the normal visibility
     199             :      * cutoffs, as vacuum needs to be able to perform pg_subtrans lookups when
     200             :      * determining visibility, but doesn't care about rows above its xmin to
     201             :      * be removed.
     202             :      *
     203             :      * This likely should only be needed to determine whether pg_subtrans can
     204             :      * be truncated. It currently includes the effects of replication slots,
     205             :      * for historical reasons. But that could likely be changed.
     206             :      */
     207             :     TransactionId oldest_considered_running;
     208             : 
     209             :     /*
     210             :      * Oldest xid for which deleted tuples need to be retained in shared
     211             :      * tables.
     212             :      *
     213             :      * This includes the effects of replication slots. If that's not desired,
     214             :      * look at shared_oldest_nonremovable_raw;
     215             :      */
     216             :     TransactionId shared_oldest_nonremovable;
     217             : 
     218             :     /*
     219             :      * Oldest xid that may be necessary to retain in shared tables. This is
     220             :      * the same as shared_oldest_nonremovable, except that is not affected by
     221             :      * replication slot's catalog_xmin.
     222             :      *
     223             :      * This is mainly useful to be able to send the catalog_xmin to upstream
     224             :      * streaming replication servers via hot_standby_feedback, so they can
     225             :      * apply the limit only when accessing catalog tables.
     226             :      */
     227             :     TransactionId shared_oldest_nonremovable_raw;
     228             : 
     229             :     /*
     230             :      * Oldest xid for which deleted tuples need to be retained in non-shared
     231             :      * catalog tables.
     232             :      */
     233             :     TransactionId catalog_oldest_nonremovable;
     234             : 
     235             :     /*
     236             :      * Oldest xid for which deleted tuples need to be retained in normal user
     237             :      * defined tables.
     238             :      */
     239             :     TransactionId data_oldest_nonremovable;
     240             : 
     241             :     /*
     242             :      * Oldest xid for which deleted tuples need to be retained in this
     243             :      * session's temporary tables.
     244             :      */
     245             :     TransactionId temp_oldest_nonremovable;
     246             : } ComputeXidHorizonsResult;
     247             : 
     248             : /*
     249             :  * Return value for GlobalVisHorizonKindForRel().
     250             :  */
     251             : typedef enum GlobalVisHorizonKind
     252             : {
     253             :     VISHORIZON_SHARED,
     254             :     VISHORIZON_CATALOG,
     255             :     VISHORIZON_DATA,
     256             :     VISHORIZON_TEMP,
     257             : } GlobalVisHorizonKind;
     258             : 
     259             : /*
     260             :  * Reason codes for KnownAssignedXidsCompress().
     261             :  */
     262             : typedef enum KAXCompressReason
     263             : {
     264             :     KAX_NO_SPACE,               /* need to free up space at array end */
     265             :     KAX_PRUNE,                  /* we just pruned old entries */
     266             :     KAX_TRANSACTION_END,        /* we just committed/removed some XIDs */
     267             :     KAX_STARTUP_PROCESS_IDLE,   /* startup process is about to sleep */
     268             : } KAXCompressReason;
     269             : 
     270             : 
     271             : static ProcArrayStruct *procArray;
     272             : 
     273             : static PGPROC *allProcs;
     274             : 
     275             : /*
     276             :  * Cache to reduce overhead of repeated calls to TransactionIdIsInProgress()
     277             :  */
     278             : static TransactionId cachedXidIsNotInProgress = InvalidTransactionId;
     279             : 
     280             : /*
     281             :  * Bookkeeping for tracking emulated transactions in recovery
     282             :  */
     283             : static TransactionId *KnownAssignedXids;
     284             : static bool *KnownAssignedXidsValid;
     285             : static TransactionId latestObservedXid = InvalidTransactionId;
     286             : 
     287             : /*
     288             :  * If we're in STANDBY_SNAPSHOT_PENDING state, standbySnapshotPendingXmin is
     289             :  * the highest xid that might still be running that we don't have in
     290             :  * KnownAssignedXids.
     291             :  */
     292             : static TransactionId standbySnapshotPendingXmin;
     293             : 
     294             : /*
     295             :  * State for visibility checks on different types of relations. See struct
     296             :  * GlobalVisState for details. As shared, catalog, normal and temporary
     297             :  * relations can have different horizons, one such state exists for each.
     298             :  */
     299             : static GlobalVisState GlobalVisSharedRels;
     300             : static GlobalVisState GlobalVisCatalogRels;
     301             : static GlobalVisState GlobalVisDataRels;
     302             : static GlobalVisState GlobalVisTempRels;
     303             : 
     304             : /*
     305             :  * This backend's RecentXmin at the last time the accurate xmin horizon was
     306             :  * recomputed, or InvalidTransactionId if it has not. Used to limit how many
     307             :  * times accurate horizons are recomputed. See GlobalVisTestShouldUpdate().
     308             :  */
     309             : static TransactionId ComputeXidHorizonsResultLastXmin;
     310             : 
     311             : #ifdef XIDCACHE_DEBUG
     312             : 
     313             : /* counters for XidCache measurement */
     314             : static long xc_by_recent_xmin = 0;
     315             : static long xc_by_known_xact = 0;
     316             : static long xc_by_my_xact = 0;
     317             : static long xc_by_latest_xid = 0;
     318             : static long xc_by_main_xid = 0;
     319             : static long xc_by_child_xid = 0;
     320             : static long xc_by_known_assigned = 0;
     321             : static long xc_no_overflow = 0;
     322             : static long xc_slow_answer = 0;
     323             : 
     324             : #define xc_by_recent_xmin_inc()     (xc_by_recent_xmin++)
     325             : #define xc_by_known_xact_inc()      (xc_by_known_xact++)
     326             : #define xc_by_my_xact_inc()         (xc_by_my_xact++)
     327             : #define xc_by_latest_xid_inc()      (xc_by_latest_xid++)
     328             : #define xc_by_main_xid_inc()        (xc_by_main_xid++)
     329             : #define xc_by_child_xid_inc()       (xc_by_child_xid++)
     330             : #define xc_by_known_assigned_inc()  (xc_by_known_assigned++)
     331             : #define xc_no_overflow_inc()        (xc_no_overflow++)
     332             : #define xc_slow_answer_inc()        (xc_slow_answer++)
     333             : 
     334             : static void DisplayXidCache(void);
     335             : #else                           /* !XIDCACHE_DEBUG */
     336             : 
     337             : #define xc_by_recent_xmin_inc()     ((void) 0)
     338             : #define xc_by_known_xact_inc()      ((void) 0)
     339             : #define xc_by_my_xact_inc()         ((void) 0)
     340             : #define xc_by_latest_xid_inc()      ((void) 0)
     341             : #define xc_by_main_xid_inc()        ((void) 0)
     342             : #define xc_by_child_xid_inc()       ((void) 0)
     343             : #define xc_by_known_assigned_inc()  ((void) 0)
     344             : #define xc_no_overflow_inc()        ((void) 0)
     345             : #define xc_slow_answer_inc()        ((void) 0)
     346             : #endif                          /* XIDCACHE_DEBUG */
     347             : 
     348             : /* Primitives for KnownAssignedXids array handling for standby */
     349             : static void KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock);
     350             : static void KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
     351             :                                  bool exclusive_lock);
     352             : static bool KnownAssignedXidsSearch(TransactionId xid, bool remove);
     353             : static bool KnownAssignedXidExists(TransactionId xid);
     354             : static void KnownAssignedXidsRemove(TransactionId xid);
     355             : static void KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
     356             :                                         TransactionId *subxids);
     357             : static void KnownAssignedXidsRemovePreceding(TransactionId removeXid);
     358             : static int  KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax);
     359             : static int  KnownAssignedXidsGetAndSetXmin(TransactionId *xarray,
     360             :                                            TransactionId *xmin,
     361             :                                            TransactionId xmax);
     362             : static TransactionId KnownAssignedXidsGetOldestXmin(void);
     363             : static void KnownAssignedXidsDisplay(int trace_level);
     364             : static void KnownAssignedXidsReset(void);
     365             : static inline void ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid);
     366             : static void ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid);
     367             : static void MaintainLatestCompletedXid(TransactionId latestXid);
     368             : static void MaintainLatestCompletedXidRecovery(TransactionId latestXid);
     369             : 
     370             : static inline FullTransactionId FullXidRelativeTo(FullTransactionId rel,
     371             :                                                   TransactionId xid);
     372             : static void GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons);
     373             : 
     374             : /*
     375             :  * Report shared-memory space needed by ProcArrayShmemInit
     376             :  */
     377             : Size
     378        4238 : ProcArrayShmemSize(void)
     379             : {
     380             :     Size        size;
     381             : 
     382             :     /* Size of the ProcArray structure itself */
     383             : #define PROCARRAY_MAXPROCS  (MaxBackends + max_prepared_xacts)
     384             : 
     385        4238 :     size = offsetof(ProcArrayStruct, pgprocnos);
     386        4238 :     size = add_size(size, mul_size(sizeof(int), PROCARRAY_MAXPROCS));
     387             : 
     388             :     /*
     389             :      * During Hot Standby processing we have a data structure called
     390             :      * KnownAssignedXids, created in shared memory. Local data structures are
     391             :      * also created in various backends during GetSnapshotData(),
     392             :      * TransactionIdIsInProgress() and GetRunningTransactionData(). All of the
     393             :      * main structures created in those functions must be identically sized,
     394             :      * since we may at times copy the whole of the data structures around. We
     395             :      * refer to this size as TOTAL_MAX_CACHED_SUBXIDS.
     396             :      *
     397             :      * Ideally we'd only create this structure if we were actually doing hot
     398             :      * standby in the current run, but we don't know that yet at the time
     399             :      * shared memory is being set up.
     400             :      */
     401             : #define TOTAL_MAX_CACHED_SUBXIDS \
     402             :     ((PGPROC_MAX_CACHED_SUBXIDS + 1) * PROCARRAY_MAXPROCS)
     403             : 
     404        4238 :     if (EnableHotStandby)
     405             :     {
     406        4214 :         size = add_size(size,
     407             :                         mul_size(sizeof(TransactionId),
     408        4214 :                                  TOTAL_MAX_CACHED_SUBXIDS));
     409        4214 :         size = add_size(size,
     410        4214 :                         mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS));
     411             :     }
     412             : 
     413        4238 :     return size;
     414             : }
     415             : 
     416             : /*
     417             :  * Initialize the shared PGPROC array during postmaster startup.
     418             :  */
     419             : void
     420        2272 : ProcArrayShmemInit(void)
     421             : {
     422             :     bool        found;
     423             : 
     424             :     /* Create or attach to the ProcArray shared structure */
     425        2272 :     procArray = (ProcArrayStruct *)
     426        2272 :         ShmemInitStruct("Proc Array",
     427             :                         add_size(offsetof(ProcArrayStruct, pgprocnos),
     428             :                                  mul_size(sizeof(int),
     429        2272 :                                           PROCARRAY_MAXPROCS)),
     430             :                         &found);
     431             : 
     432        2272 :     if (!found)
     433             :     {
     434             :         /*
     435             :          * We're the first - initialize.
     436             :          */
     437        2272 :         procArray->numProcs = 0;
     438        2272 :         procArray->maxProcs = PROCARRAY_MAXPROCS;
     439        2272 :         procArray->maxKnownAssignedXids = TOTAL_MAX_CACHED_SUBXIDS;
     440        2272 :         procArray->numKnownAssignedXids = 0;
     441        2272 :         procArray->tailKnownAssignedXids = 0;
     442        2272 :         procArray->headKnownAssignedXids = 0;
     443        2272 :         procArray->lastOverflowedXid = InvalidTransactionId;
     444        2272 :         procArray->replication_slot_xmin = InvalidTransactionId;
     445        2272 :         procArray->replication_slot_catalog_xmin = InvalidTransactionId;
     446        2272 :         TransamVariables->xactCompletionCount = 1;
     447             :     }
     448             : 
     449        2272 :     allProcs = ProcGlobal->allProcs;
     450             : 
     451             :     /* Create or attach to the KnownAssignedXids arrays too, if needed */
     452        2272 :     if (EnableHotStandby)
     453             :     {
     454        2260 :         KnownAssignedXids = (TransactionId *)
     455        2260 :             ShmemInitStruct("KnownAssignedXids",
     456             :                             mul_size(sizeof(TransactionId),
     457        2260 :                                      TOTAL_MAX_CACHED_SUBXIDS),
     458             :                             &found);
     459        2260 :         KnownAssignedXidsValid = (bool *)
     460        2260 :             ShmemInitStruct("KnownAssignedXidsValid",
     461        2260 :                             mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS),
     462             :                             &found);
     463             :     }
     464        2272 : }
     465             : 
     466             : /*
     467             :  * Add the specified PGPROC to the shared array.
     468             :  */
     469             : void
     470       37008 : ProcArrayAdd(PGPROC *proc)
     471             : {
     472       37008 :     int         pgprocno = GetNumberFromPGProc(proc);
     473       37008 :     ProcArrayStruct *arrayP = procArray;
     474             :     int         index;
     475             :     int         movecount;
     476             : 
     477             :     /* See ProcGlobal comment explaining why both locks are held */
     478       37008 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
     479       37008 :     LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
     480             : 
     481       37008 :     if (arrayP->numProcs >= arrayP->maxProcs)
     482             :     {
     483             :         /*
     484             :          * Oops, no room.  (This really shouldn't happen, since there is a
     485             :          * fixed supply of PGPROC structs too, and so we should have failed
     486             :          * earlier.)
     487             :          */
     488           0 :         ereport(FATAL,
     489             :                 (errcode(ERRCODE_TOO_MANY_CONNECTIONS),
     490             :                  errmsg("sorry, too many clients already")));
     491             :     }
     492             : 
     493             :     /*
     494             :      * Keep the procs array sorted by (PGPROC *) so that we can utilize
     495             :      * locality of references much better. This is useful while traversing the
     496             :      * ProcArray because there is an increased likelihood of finding the next
     497             :      * PGPROC structure in the cache.
     498             :      *
     499             :      * Since the occurrence of adding/removing a proc is much lower than the
     500             :      * access to the ProcArray itself, the overhead should be marginal
     501             :      */
     502       88430 :     for (index = 0; index < arrayP->numProcs; index++)
     503             :     {
     504       79388 :         int         this_procno = arrayP->pgprocnos[index];
     505             : 
     506             :         Assert(this_procno >= 0 && this_procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
     507             :         Assert(allProcs[this_procno].pgxactoff == index);
     508             : 
     509             :         /* If we have found our right position in the array, break */
     510       79388 :         if (this_procno > pgprocno)
     511       27966 :             break;
     512             :     }
     513             : 
     514       37008 :     movecount = arrayP->numProcs - index;
     515       37008 :     memmove(&arrayP->pgprocnos[index + 1],
     516       37008 :             &arrayP->pgprocnos[index],
     517             :             movecount * sizeof(*arrayP->pgprocnos));
     518       37008 :     memmove(&ProcGlobal->xids[index + 1],
     519       37008 :             &ProcGlobal->xids[index],
     520             :             movecount * sizeof(*ProcGlobal->xids));
     521       37008 :     memmove(&ProcGlobal->subxidStates[index + 1],
     522       37008 :             &ProcGlobal->subxidStates[index],
     523             :             movecount * sizeof(*ProcGlobal->subxidStates));
     524       37008 :     memmove(&ProcGlobal->statusFlags[index + 1],
     525       37008 :             &ProcGlobal->statusFlags[index],
     526             :             movecount * sizeof(*ProcGlobal->statusFlags));
     527             : 
     528       37008 :     arrayP->pgprocnos[index] = GetNumberFromPGProc(proc);
     529       37008 :     proc->pgxactoff = index;
     530       37008 :     ProcGlobal->xids[index] = proc->xid;
     531       37008 :     ProcGlobal->subxidStates[index] = proc->subxidStatus;
     532       37008 :     ProcGlobal->statusFlags[index] = proc->statusFlags;
     533             : 
     534       37008 :     arrayP->numProcs++;
     535             : 
     536             :     /* adjust pgxactoff for all following PGPROCs */
     537       37008 :     index++;
     538      102032 :     for (; index < arrayP->numProcs; index++)
     539             :     {
     540       65024 :         int         procno = arrayP->pgprocnos[index];
     541             : 
     542             :         Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
     543             :         Assert(allProcs[procno].pgxactoff == index - 1);
     544             : 
     545       65024 :         allProcs[procno].pgxactoff = index;
     546             :     }
     547             : 
     548             :     /*
     549             :      * Release in reversed acquisition order, to reduce frequency of having to
     550             :      * wait for XidGenLock while holding ProcArrayLock.
     551             :      */
     552       37008 :     LWLockRelease(XidGenLock);
     553       37008 :     LWLockRelease(ProcArrayLock);
     554       37008 : }
     555             : 
     556             : /*
     557             :  * Remove the specified PGPROC from the shared array.
     558             :  *
     559             :  * When latestXid is a valid XID, we are removing a live 2PC gxact from the
     560             :  * array, and thus causing it to appear as "not running" anymore.  In this
     561             :  * case we must advance latestCompletedXid.  (This is essentially the same
     562             :  * as ProcArrayEndTransaction followed by removal of the PGPROC, but we take
     563             :  * the ProcArrayLock only once, and don't damage the content of the PGPROC;
     564             :  * twophase.c depends on the latter.)
     565             :  */
     566             : void
     567       36954 : ProcArrayRemove(PGPROC *proc, TransactionId latestXid)
     568             : {
     569       36954 :     ProcArrayStruct *arrayP = procArray;
     570             :     int         myoff;
     571             :     int         movecount;
     572             : 
     573             : #ifdef XIDCACHE_DEBUG
     574             :     /* dump stats at backend shutdown, but not prepared-xact end */
     575             :     if (proc->pid != 0)
     576             :         DisplayXidCache();
     577             : #endif
     578             : 
     579             :     /* See ProcGlobal comment explaining why both locks are held */
     580       36954 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
     581       36954 :     LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
     582             : 
     583       36954 :     myoff = proc->pgxactoff;
     584             : 
     585             :     Assert(myoff >= 0 && myoff < arrayP->numProcs);
     586             :     Assert(ProcGlobal->allProcs[arrayP->pgprocnos[myoff]].pgxactoff == myoff);
     587             : 
     588       36954 :     if (TransactionIdIsValid(latestXid))
     589             :     {
     590             :         Assert(TransactionIdIsValid(ProcGlobal->xids[myoff]));
     591             : 
     592             :         /* Advance global latestCompletedXid while holding the lock */
     593         620 :         MaintainLatestCompletedXid(latestXid);
     594             : 
     595             :         /* Same with xactCompletionCount  */
     596         620 :         TransamVariables->xactCompletionCount++;
     597             : 
     598         620 :         ProcGlobal->xids[myoff] = InvalidTransactionId;
     599         620 :         ProcGlobal->subxidStates[myoff].overflowed = false;
     600         620 :         ProcGlobal->subxidStates[myoff].count = 0;
     601             :     }
     602             :     else
     603             :     {
     604             :         /* Shouldn't be trying to remove a live transaction here */
     605             :         Assert(!TransactionIdIsValid(ProcGlobal->xids[myoff]));
     606             :     }
     607             : 
     608             :     Assert(!TransactionIdIsValid(ProcGlobal->xids[myoff]));
     609             :     Assert(ProcGlobal->subxidStates[myoff].count == 0);
     610             :     Assert(ProcGlobal->subxidStates[myoff].overflowed == false);
     611             : 
     612       36954 :     ProcGlobal->statusFlags[myoff] = 0;
     613             : 
     614             :     /* Keep the PGPROC array sorted. See notes above */
     615       36954 :     movecount = arrayP->numProcs - myoff - 1;
     616       36954 :     memmove(&arrayP->pgprocnos[myoff],
     617       36954 :             &arrayP->pgprocnos[myoff + 1],
     618             :             movecount * sizeof(*arrayP->pgprocnos));
     619       36954 :     memmove(&ProcGlobal->xids[myoff],
     620       36954 :             &ProcGlobal->xids[myoff + 1],
     621             :             movecount * sizeof(*ProcGlobal->xids));
     622       36954 :     memmove(&ProcGlobal->subxidStates[myoff],
     623       36954 :             &ProcGlobal->subxidStates[myoff + 1],
     624             :             movecount * sizeof(*ProcGlobal->subxidStates));
     625       36954 :     memmove(&ProcGlobal->statusFlags[myoff],
     626       36954 :             &ProcGlobal->statusFlags[myoff + 1],
     627             :             movecount * sizeof(*ProcGlobal->statusFlags));
     628             : 
     629       36954 :     arrayP->pgprocnos[arrayP->numProcs - 1] = -1; /* for debugging */
     630       36954 :     arrayP->numProcs--;
     631             : 
     632             :     /*
     633             :      * Adjust pgxactoff of following procs for removed PGPROC (note that
     634             :      * numProcs already has been decremented).
     635             :      */
     636      108510 :     for (int index = myoff; index < arrayP->numProcs; index++)
     637             :     {
     638       71556 :         int         procno = arrayP->pgprocnos[index];
     639             : 
     640             :         Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
     641             :         Assert(allProcs[procno].pgxactoff - 1 == index);
     642             : 
     643       71556 :         allProcs[procno].pgxactoff = index;
     644             :     }
     645             : 
     646             :     /*
     647             :      * Release in reversed acquisition order, to reduce frequency of having to
     648             :      * wait for XidGenLock while holding ProcArrayLock.
     649             :      */
     650       36954 :     LWLockRelease(XidGenLock);
     651       36954 :     LWLockRelease(ProcArrayLock);
     652       36954 : }
     653             : 
     654             : 
     655             : /*
     656             :  * ProcArrayEndTransaction -- mark a transaction as no longer running
     657             :  *
     658             :  * This is used interchangeably for commit and abort cases.  The transaction
     659             :  * commit/abort must already be reported to WAL and pg_xact.
     660             :  *
     661             :  * proc is currently always MyProc, but we pass it explicitly for flexibility.
     662             :  * latestXid is the latest Xid among the transaction's main XID and
     663             :  * subtransactions, or InvalidTransactionId if it has no XID.  (We must ask
     664             :  * the caller to pass latestXid, instead of computing it from the PGPROC's
     665             :  * contents, because the subxid information in the PGPROC might be
     666             :  * incomplete.)
     667             :  */
     668             : void
     669      964426 : ProcArrayEndTransaction(PGPROC *proc, TransactionId latestXid)
     670             : {
     671      964426 :     if (TransactionIdIsValid(latestXid))
     672             :     {
     673             :         /*
     674             :          * We must lock ProcArrayLock while clearing our advertised XID, so
     675             :          * that we do not exit the set of "running" transactions while someone
     676             :          * else is taking a snapshot.  See discussion in
     677             :          * src/backend/access/transam/README.
     678             :          */
     679             :         Assert(TransactionIdIsValid(proc->xid));
     680             : 
     681             :         /*
     682             :          * If we can immediately acquire ProcArrayLock, we clear our own XID
     683             :          * and release the lock.  If not, use group XID clearing to improve
     684             :          * efficiency.
     685             :          */
     686      274740 :         if (LWLockConditionalAcquire(ProcArrayLock, LW_EXCLUSIVE))
     687             :         {
     688      274376 :             ProcArrayEndTransactionInternal(proc, latestXid);
     689      274376 :             LWLockRelease(ProcArrayLock);
     690             :         }
     691             :         else
     692         364 :             ProcArrayGroupClearXid(proc, latestXid);
     693             :     }
     694             :     else
     695             :     {
     696             :         /*
     697             :          * If we have no XID, we don't need to lock, since we won't affect
     698             :          * anyone else's calculation of a snapshot.  We might change their
     699             :          * estimate of global xmin, but that's OK.
     700             :          */
     701             :         Assert(!TransactionIdIsValid(proc->xid));
     702             :         Assert(proc->subxidStatus.count == 0);
     703             :         Assert(!proc->subxidStatus.overflowed);
     704             : 
     705      689686 :         proc->vxid.lxid = InvalidLocalTransactionId;
     706      689686 :         proc->xmin = InvalidTransactionId;
     707             : 
     708             :         /* be sure this is cleared in abort */
     709      689686 :         proc->delayChkptFlags = 0;
     710             : 
     711      689686 :         proc->recoveryConflictPending = false;
     712             : 
     713             :         /* must be cleared with xid/xmin: */
     714             :         /* avoid unnecessarily dirtying shared cachelines */
     715      689686 :         if (proc->statusFlags & PROC_VACUUM_STATE_MASK)
     716             :         {
     717             :             Assert(!LWLockHeldByMe(ProcArrayLock));
     718      167464 :             LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
     719             :             Assert(proc->statusFlags == ProcGlobal->statusFlags[proc->pgxactoff]);
     720      167464 :             proc->statusFlags &= ~PROC_VACUUM_STATE_MASK;
     721      167464 :             ProcGlobal->statusFlags[proc->pgxactoff] = proc->statusFlags;
     722      167464 :             LWLockRelease(ProcArrayLock);
     723             :         }
     724             :     }
     725      964426 : }
     726             : 
     727             : /*
     728             :  * Mark a write transaction as no longer running.
     729             :  *
     730             :  * We don't do any locking here; caller must handle that.
     731             :  */
     732             : static inline void
     733      274740 : ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid)
     734             : {
     735      274740 :     int         pgxactoff = proc->pgxactoff;
     736             : 
     737             :     /*
     738             :      * Note: we need exclusive lock here because we're going to change other
     739             :      * processes' PGPROC entries.
     740             :      */
     741             :     Assert(LWLockHeldByMeInMode(ProcArrayLock, LW_EXCLUSIVE));
     742             :     Assert(TransactionIdIsValid(ProcGlobal->xids[pgxactoff]));
     743             :     Assert(ProcGlobal->xids[pgxactoff] == proc->xid);
     744             : 
     745      274740 :     ProcGlobal->xids[pgxactoff] = InvalidTransactionId;
     746      274740 :     proc->xid = InvalidTransactionId;
     747      274740 :     proc->vxid.lxid = InvalidLocalTransactionId;
     748      274740 :     proc->xmin = InvalidTransactionId;
     749             : 
     750             :     /* be sure this is cleared in abort */
     751      274740 :     proc->delayChkptFlags = 0;
     752             : 
     753      274740 :     proc->recoveryConflictPending = false;
     754             : 
     755             :     /* must be cleared with xid/xmin: */
     756             :     /* avoid unnecessarily dirtying shared cachelines */
     757      274740 :     if (proc->statusFlags & PROC_VACUUM_STATE_MASK)
     758             :     {
     759        1516 :         proc->statusFlags &= ~PROC_VACUUM_STATE_MASK;
     760        1516 :         ProcGlobal->statusFlags[proc->pgxactoff] = proc->statusFlags;
     761             :     }
     762             : 
     763             :     /* Clear the subtransaction-XID cache too while holding the lock */
     764             :     Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count &&
     765             :            ProcGlobal->subxidStates[pgxactoff].overflowed == proc->subxidStatus.overflowed);
     766      274740 :     if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed)
     767             :     {
     768        1162 :         ProcGlobal->subxidStates[pgxactoff].count = 0;
     769        1162 :         ProcGlobal->subxidStates[pgxactoff].overflowed = false;
     770        1162 :         proc->subxidStatus.count = 0;
     771        1162 :         proc->subxidStatus.overflowed = false;
     772             :     }
     773             : 
     774             :     /* Also advance global latestCompletedXid while holding the lock */
     775      274740 :     MaintainLatestCompletedXid(latestXid);
     776             : 
     777             :     /* Same with xactCompletionCount  */
     778      274740 :     TransamVariables->xactCompletionCount++;
     779      274740 : }
     780             : 
     781             : /*
     782             :  * ProcArrayGroupClearXid -- group XID clearing
     783             :  *
     784             :  * When we cannot immediately acquire ProcArrayLock in exclusive mode at
     785             :  * commit time, add ourselves to a list of processes that need their XIDs
     786             :  * cleared.  The first process to add itself to the list will acquire
     787             :  * ProcArrayLock in exclusive mode and perform ProcArrayEndTransactionInternal
     788             :  * on behalf of all group members.  This avoids a great deal of contention
     789             :  * around ProcArrayLock when many processes are trying to commit at once,
     790             :  * since the lock need not be repeatedly handed off from one committing
     791             :  * process to the next.
     792             :  */
     793             : static void
     794         364 : ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid)
     795             : {
     796         364 :     int         pgprocno = GetNumberFromPGProc(proc);
     797         364 :     PROC_HDR   *procglobal = ProcGlobal;
     798             :     uint32      nextidx;
     799             :     uint32      wakeidx;
     800             : 
     801             :     /* We should definitely have an XID to clear. */
     802             :     Assert(TransactionIdIsValid(proc->xid));
     803             : 
     804             :     /* Add ourselves to the list of processes needing a group XID clear. */
     805         364 :     proc->procArrayGroupMember = true;
     806         364 :     proc->procArrayGroupMemberXid = latestXid;
     807         364 :     nextidx = pg_atomic_read_u32(&procglobal->procArrayGroupFirst);
     808             :     while (true)
     809             :     {
     810         364 :         pg_atomic_write_u32(&proc->procArrayGroupNext, nextidx);
     811             : 
     812         364 :         if (pg_atomic_compare_exchange_u32(&procglobal->procArrayGroupFirst,
     813             :                                            &nextidx,
     814             :                                            (uint32) pgprocno))
     815         364 :             break;
     816             :     }
     817             : 
     818             :     /*
     819             :      * If the list was not empty, the leader will clear our XID.  It is
     820             :      * impossible to have followers without a leader because the first process
     821             :      * that has added itself to the list will always have nextidx as
     822             :      * INVALID_PROC_NUMBER.
     823             :      */
     824         364 :     if (nextidx != INVALID_PROC_NUMBER)
     825             :     {
     826          36 :         int         extraWaits = 0;
     827             : 
     828             :         /* Sleep until the leader clears our XID. */
     829          36 :         pgstat_report_wait_start(WAIT_EVENT_PROCARRAY_GROUP_UPDATE);
     830             :         for (;;)
     831             :         {
     832             :             /* acts as a read barrier */
     833          36 :             PGSemaphoreLock(proc->sem);
     834          36 :             if (!proc->procArrayGroupMember)
     835          36 :                 break;
     836           0 :             extraWaits++;
     837             :         }
     838          36 :         pgstat_report_wait_end();
     839             : 
     840             :         Assert(pg_atomic_read_u32(&proc->procArrayGroupNext) == INVALID_PROC_NUMBER);
     841             : 
     842             :         /* Fix semaphore count for any absorbed wakeups */
     843          36 :         while (extraWaits-- > 0)
     844           0 :             PGSemaphoreUnlock(proc->sem);
     845          36 :         return;
     846             :     }
     847             : 
     848             :     /* We are the leader.  Acquire the lock on behalf of everyone. */
     849         328 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
     850             : 
     851             :     /*
     852             :      * Now that we've got the lock, clear the list of processes waiting for
     853             :      * group XID clearing, saving a pointer to the head of the list.  Trying
     854             :      * to pop elements one at a time could lead to an ABA problem.
     855             :      */
     856         328 :     nextidx = pg_atomic_exchange_u32(&procglobal->procArrayGroupFirst,
     857             :                                      INVALID_PROC_NUMBER);
     858             : 
     859             :     /* Remember head of list so we can perform wakeups after dropping lock. */
     860         328 :     wakeidx = nextidx;
     861             : 
     862             :     /* Walk the list and clear all XIDs. */
     863         692 :     while (nextidx != INVALID_PROC_NUMBER)
     864             :     {
     865         364 :         PGPROC     *nextproc = &allProcs[nextidx];
     866             : 
     867         364 :         ProcArrayEndTransactionInternal(nextproc, nextproc->procArrayGroupMemberXid);
     868             : 
     869             :         /* Move to next proc in list. */
     870         364 :         nextidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext);
     871             :     }
     872             : 
     873             :     /* We're done with the lock now. */
     874         328 :     LWLockRelease(ProcArrayLock);
     875             : 
     876             :     /*
     877             :      * Now that we've released the lock, go back and wake everybody up.  We
     878             :      * don't do this under the lock so as to keep lock hold times to a
     879             :      * minimum.  The system calls we need to perform to wake other processes
     880             :      * up are probably much slower than the simple memory writes we did while
     881             :      * holding the lock.
     882             :      */
     883         692 :     while (wakeidx != INVALID_PROC_NUMBER)
     884             :     {
     885         364 :         PGPROC     *nextproc = &allProcs[wakeidx];
     886             : 
     887         364 :         wakeidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext);
     888         364 :         pg_atomic_write_u32(&nextproc->procArrayGroupNext, INVALID_PROC_NUMBER);
     889             : 
     890             :         /* ensure all previous writes are visible before follower continues. */
     891         364 :         pg_write_barrier();
     892             : 
     893         364 :         nextproc->procArrayGroupMember = false;
     894             : 
     895         364 :         if (nextproc != MyProc)
     896          36 :             PGSemaphoreUnlock(nextproc->sem);
     897             :     }
     898             : }
     899             : 
     900             : /*
     901             :  * ProcArrayClearTransaction -- clear the transaction fields
     902             :  *
     903             :  * This is used after successfully preparing a 2-phase transaction.  We are
     904             :  * not actually reporting the transaction's XID as no longer running --- it
     905             :  * will still appear as running because the 2PC's gxact is in the ProcArray
     906             :  * too.  We just have to clear out our own PGPROC.
     907             :  */
     908             : void
     909         608 : ProcArrayClearTransaction(PGPROC *proc)
     910             : {
     911             :     int         pgxactoff;
     912             : 
     913             :     /*
     914             :      * Currently we need to lock ProcArrayLock exclusively here, as we
     915             :      * increment xactCompletionCount below. We also need it at least in shared
     916             :      * mode for pgproc->pgxactoff to stay the same below.
     917             :      *
     918             :      * We could however, as this action does not actually change anyone's view
     919             :      * of the set of running XIDs (our entry is duplicate with the gxact that
     920             :      * has already been inserted into the ProcArray), lower the lock level to
     921             :      * shared if we were to make xactCompletionCount an atomic variable. But
     922             :      * that doesn't seem worth it currently, as a 2PC commit is heavyweight
     923             :      * enough for this not to be the bottleneck.  If it ever becomes a
     924             :      * bottleneck it may also be worth considering to combine this with the
     925             :      * subsequent ProcArrayRemove()
     926             :      */
     927         608 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
     928             : 
     929         608 :     pgxactoff = proc->pgxactoff;
     930             : 
     931         608 :     ProcGlobal->xids[pgxactoff] = InvalidTransactionId;
     932         608 :     proc->xid = InvalidTransactionId;
     933             : 
     934         608 :     proc->vxid.lxid = InvalidLocalTransactionId;
     935         608 :     proc->xmin = InvalidTransactionId;
     936         608 :     proc->recoveryConflictPending = false;
     937             : 
     938             :     Assert(!(proc->statusFlags & PROC_VACUUM_STATE_MASK));
     939             :     Assert(!proc->delayChkptFlags);
     940             : 
     941             :     /*
     942             :      * Need to increment completion count even though transaction hasn't
     943             :      * really committed yet. The reason for that is that GetSnapshotData()
     944             :      * omits the xid of the current transaction, thus without the increment we
     945             :      * otherwise could end up reusing the snapshot later. Which would be bad,
     946             :      * because it might not count the prepared transaction as running.
     947             :      */
     948         608 :     TransamVariables->xactCompletionCount++;
     949             : 
     950             :     /* Clear the subtransaction-XID cache too */
     951             :     Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count &&
     952             :            ProcGlobal->subxidStates[pgxactoff].overflowed == proc->subxidStatus.overflowed);
     953         608 :     if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed)
     954             :     {
     955         212 :         ProcGlobal->subxidStates[pgxactoff].count = 0;
     956         212 :         ProcGlobal->subxidStates[pgxactoff].overflowed = false;
     957         212 :         proc->subxidStatus.count = 0;
     958         212 :         proc->subxidStatus.overflowed = false;
     959             :     }
     960             : 
     961         608 :     LWLockRelease(ProcArrayLock);
     962         608 : }
     963             : 
     964             : /*
     965             :  * Update TransamVariables->latestCompletedXid to point to latestXid if
     966             :  * currently older.
     967             :  */
     968             : static void
     969      276696 : MaintainLatestCompletedXid(TransactionId latestXid)
     970             : {
     971      276696 :     FullTransactionId cur_latest = TransamVariables->latestCompletedXid;
     972             : 
     973             :     Assert(FullTransactionIdIsValid(cur_latest));
     974             :     Assert(!RecoveryInProgress());
     975             :     Assert(LWLockHeldByMe(ProcArrayLock));
     976             : 
     977      276696 :     if (TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid))
     978             :     {
     979      248278 :         TransamVariables->latestCompletedXid =
     980      248278 :             FullXidRelativeTo(cur_latest, latestXid);
     981             :     }
     982             : 
     983             :     Assert(IsBootstrapProcessingMode() ||
     984             :            FullTransactionIdIsNormal(TransamVariables->latestCompletedXid));
     985      276696 : }
     986             : 
     987             : /*
     988             :  * Same as MaintainLatestCompletedXid, except for use during WAL replay.
     989             :  */
     990             : static void
     991       46336 : MaintainLatestCompletedXidRecovery(TransactionId latestXid)
     992             : {
     993       46336 :     FullTransactionId cur_latest = TransamVariables->latestCompletedXid;
     994             :     FullTransactionId rel;
     995             : 
     996             :     Assert(AmStartupProcess() || !IsUnderPostmaster);
     997             :     Assert(LWLockHeldByMe(ProcArrayLock));
     998             : 
     999             :     /*
    1000             :      * Need a FullTransactionId to compare latestXid with. Can't rely on
    1001             :      * latestCompletedXid to be initialized in recovery. But in recovery it's
    1002             :      * safe to access nextXid without a lock for the startup process.
    1003             :      */
    1004       46336 :     rel = TransamVariables->nextXid;
    1005             :     Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
    1006             : 
    1007       92442 :     if (!FullTransactionIdIsValid(cur_latest) ||
    1008       46106 :         TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid))
    1009             :     {
    1010       34130 :         TransamVariables->latestCompletedXid =
    1011       34130 :             FullXidRelativeTo(rel, latestXid);
    1012             :     }
    1013             : 
    1014             :     Assert(FullTransactionIdIsNormal(TransamVariables->latestCompletedXid));
    1015       46336 : }
    1016             : 
    1017             : /*
    1018             :  * ProcArrayInitRecovery -- initialize recovery xid mgmt environment
    1019             :  *
    1020             :  * Remember up to where the startup process initialized the CLOG and subtrans
    1021             :  * so we can ensure it's initialized gaplessly up to the point where necessary
    1022             :  * while in recovery.
    1023             :  */
    1024             : void
    1025         230 : ProcArrayInitRecovery(TransactionId initializedUptoXID)
    1026             : {
    1027             :     Assert(standbyState == STANDBY_INITIALIZED);
    1028             :     Assert(TransactionIdIsNormal(initializedUptoXID));
    1029             : 
    1030             :     /*
    1031             :      * we set latestObservedXid to the xid SUBTRANS has been initialized up
    1032             :      * to, so we can extend it from that point onwards in
    1033             :      * RecordKnownAssignedTransactionIds, and when we get consistent in
    1034             :      * ProcArrayApplyRecoveryInfo().
    1035             :      */
    1036         230 :     latestObservedXid = initializedUptoXID;
    1037         230 :     TransactionIdRetreat(latestObservedXid);
    1038         230 : }
    1039             : 
    1040             : /*
    1041             :  * ProcArrayApplyRecoveryInfo -- apply recovery info about xids
    1042             :  *
    1043             :  * Takes us through 3 states: Initialized, Pending and Ready.
    1044             :  * Normal case is to go all the way to Ready straight away, though there
    1045             :  * are atypical cases where we need to take it in steps.
    1046             :  *
    1047             :  * Use the data about running transactions on the primary to create the initial
    1048             :  * state of KnownAssignedXids. We also use these records to regularly prune
    1049             :  * KnownAssignedXids because we know it is possible that some transactions
    1050             :  * with FATAL errors fail to write abort records, which could cause eventual
    1051             :  * overflow.
    1052             :  *
    1053             :  * See comments for LogStandbySnapshot().
    1054             :  */
    1055             : void
    1056        1684 : ProcArrayApplyRecoveryInfo(RunningTransactions running)
    1057             : {
    1058             :     TransactionId *xids;
    1059             :     TransactionId advanceNextXid;
    1060             :     int         nxids;
    1061             :     int         i;
    1062             : 
    1063             :     Assert(standbyState >= STANDBY_INITIALIZED);
    1064             :     Assert(TransactionIdIsValid(running->nextXid));
    1065             :     Assert(TransactionIdIsValid(running->oldestRunningXid));
    1066             :     Assert(TransactionIdIsNormal(running->latestCompletedXid));
    1067             : 
    1068             :     /*
    1069             :      * Remove stale transactions, if any.
    1070             :      */
    1071        1684 :     ExpireOldKnownAssignedTransactionIds(running->oldestRunningXid);
    1072             : 
    1073             :     /*
    1074             :      * Adjust TransamVariables->nextXid before StandbyReleaseOldLocks(),
    1075             :      * because we will need it up to date for accessing two-phase transactions
    1076             :      * in StandbyReleaseOldLocks().
    1077             :      */
    1078        1684 :     advanceNextXid = running->nextXid;
    1079        1684 :     TransactionIdRetreat(advanceNextXid);
    1080        1684 :     AdvanceNextFullTransactionIdPastXid(advanceNextXid);
    1081             :     Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
    1082             : 
    1083             :     /*
    1084             :      * Remove stale locks, if any.
    1085             :      */
    1086        1684 :     StandbyReleaseOldLocks(running->oldestRunningXid);
    1087             : 
    1088             :     /*
    1089             :      * If our snapshot is already valid, nothing else to do...
    1090             :      */
    1091        1684 :     if (standbyState == STANDBY_SNAPSHOT_READY)
    1092        1454 :         return;
    1093             : 
    1094             :     /*
    1095             :      * If our initial RunningTransactionsData had an overflowed snapshot then
    1096             :      * we knew we were missing some subxids from our snapshot. If we continue
    1097             :      * to see overflowed snapshots then we might never be able to start up, so
    1098             :      * we make another test to see if our snapshot is now valid. We know that
    1099             :      * the missing subxids are equal to or earlier than nextXid. After we
    1100             :      * initialise we continue to apply changes during recovery, so once the
    1101             :      * oldestRunningXid is later than the nextXid from the initial snapshot we
    1102             :      * know that we no longer have missing information and can mark the
    1103             :      * snapshot as valid.
    1104             :      */
    1105         230 :     if (standbyState == STANDBY_SNAPSHOT_PENDING)
    1106             :     {
    1107             :         /*
    1108             :          * If the snapshot isn't overflowed or if its empty we can reset our
    1109             :          * pending state and use this snapshot instead.
    1110             :          */
    1111           0 :         if (running->subxid_status != SUBXIDS_MISSING || running->xcnt == 0)
    1112             :         {
    1113             :             /*
    1114             :              * If we have already collected known assigned xids, we need to
    1115             :              * throw them away before we apply the recovery snapshot.
    1116             :              */
    1117           0 :             KnownAssignedXidsReset();
    1118           0 :             standbyState = STANDBY_INITIALIZED;
    1119             :         }
    1120             :         else
    1121             :         {
    1122           0 :             if (TransactionIdPrecedes(standbySnapshotPendingXmin,
    1123             :                                       running->oldestRunningXid))
    1124             :             {
    1125           0 :                 standbyState = STANDBY_SNAPSHOT_READY;
    1126           0 :                 elog(DEBUG1,
    1127             :                      "recovery snapshots are now enabled");
    1128             :             }
    1129             :             else
    1130           0 :                 elog(DEBUG1,
    1131             :                      "recovery snapshot waiting for non-overflowed snapshot or "
    1132             :                      "until oldest active xid on standby is at least %u (now %u)",
    1133             :                      standbySnapshotPendingXmin,
    1134             :                      running->oldestRunningXid);
    1135           0 :             return;
    1136             :         }
    1137             :     }
    1138             : 
    1139             :     Assert(standbyState == STANDBY_INITIALIZED);
    1140             : 
    1141             :     /*
    1142             :      * NB: this can be reached at least twice, so make sure new code can deal
    1143             :      * with that.
    1144             :      */
    1145             : 
    1146             :     /*
    1147             :      * Nobody else is running yet, but take locks anyhow
    1148             :      */
    1149         230 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    1150             : 
    1151             :     /*
    1152             :      * KnownAssignedXids is sorted so we cannot just add the xids, we have to
    1153             :      * sort them first.
    1154             :      *
    1155             :      * Some of the new xids are top-level xids and some are subtransactions.
    1156             :      * We don't call SubTransSetParent because it doesn't matter yet. If we
    1157             :      * aren't overflowed then all xids will fit in snapshot and so we don't
    1158             :      * need subtrans. If we later overflow, an xid assignment record will add
    1159             :      * xids to subtrans. If RunningTransactionsData is overflowed then we
    1160             :      * don't have enough information to correctly update subtrans anyway.
    1161             :      */
    1162             : 
    1163             :     /*
    1164             :      * Allocate a temporary array to avoid modifying the array passed as
    1165             :      * argument.
    1166             :      */
    1167         230 :     xids = palloc_array(TransactionId, running->xcnt + running->subxcnt);
    1168             : 
    1169             :     /*
    1170             :      * Add to the temp array any xids which have not already completed.
    1171             :      */
    1172         230 :     nxids = 0;
    1173         238 :     for (i = 0; i < running->xcnt + running->subxcnt; i++)
    1174             :     {
    1175           8 :         TransactionId xid = running->xids[i];
    1176             : 
    1177             :         /*
    1178             :          * The running-xacts snapshot can contain xids that were still visible
    1179             :          * in the procarray when the snapshot was taken, but were already
    1180             :          * WAL-logged as completed. They're not running anymore, so ignore
    1181             :          * them.
    1182             :          */
    1183           8 :         if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid))
    1184           0 :             continue;
    1185             : 
    1186           8 :         xids[nxids++] = xid;
    1187             :     }
    1188             : 
    1189         230 :     if (nxids > 0)
    1190             :     {
    1191           8 :         if (procArray->numKnownAssignedXids != 0)
    1192             :         {
    1193           0 :             LWLockRelease(ProcArrayLock);
    1194           0 :             elog(ERROR, "KnownAssignedXids is not empty");
    1195             :         }
    1196             : 
    1197             :         /*
    1198             :          * Sort the array so that we can add them safely into
    1199             :          * KnownAssignedXids.
    1200             :          *
    1201             :          * We have to sort them logically, because in KnownAssignedXidsAdd we
    1202             :          * call TransactionIdFollowsOrEquals and so on. But we know these XIDs
    1203             :          * come from RUNNING_XACTS, which means there are only normal XIDs
    1204             :          * from the same epoch, so this is safe.
    1205             :          */
    1206           8 :         qsort(xids, nxids, sizeof(TransactionId), xidLogicalComparator);
    1207             : 
    1208             :         /*
    1209             :          * Add the sorted snapshot into KnownAssignedXids.  The running-xacts
    1210             :          * snapshot may include duplicated xids because of prepared
    1211             :          * transactions, so ignore them.
    1212             :          */
    1213          16 :         for (i = 0; i < nxids; i++)
    1214             :         {
    1215           8 :             if (i > 0 && TransactionIdEquals(xids[i - 1], xids[i]))
    1216             :             {
    1217           0 :                 elog(DEBUG1,
    1218             :                      "found duplicated transaction %u for KnownAssignedXids insertion",
    1219             :                      xids[i]);
    1220           0 :                 continue;
    1221             :             }
    1222           8 :             KnownAssignedXidsAdd(xids[i], xids[i], true);
    1223             :         }
    1224             : 
    1225           8 :         KnownAssignedXidsDisplay(DEBUG3);
    1226             :     }
    1227             : 
    1228         230 :     pfree(xids);
    1229             : 
    1230             :     /*
    1231             :      * latestObservedXid is at least set to the point where SUBTRANS was
    1232             :      * started up to (cf. ProcArrayInitRecovery()) or to the biggest xid
    1233             :      * RecordKnownAssignedTransactionIds() was called for.  Initialize
    1234             :      * subtrans from thereon, up to nextXid - 1.
    1235             :      *
    1236             :      * We need to duplicate parts of RecordKnownAssignedTransactionId() here,
    1237             :      * because we've just added xids to the known assigned xids machinery that
    1238             :      * haven't gone through RecordKnownAssignedTransactionId().
    1239             :      */
    1240             :     Assert(TransactionIdIsNormal(latestObservedXid));
    1241         230 :     TransactionIdAdvance(latestObservedXid);
    1242         460 :     while (TransactionIdPrecedes(latestObservedXid, running->nextXid))
    1243             :     {
    1244           0 :         ExtendSUBTRANS(latestObservedXid);
    1245           0 :         TransactionIdAdvance(latestObservedXid);
    1246             :     }
    1247         230 :     TransactionIdRetreat(latestObservedXid);    /* = running->nextXid - 1 */
    1248             : 
    1249             :     /* ----------
    1250             :      * Now we've got the running xids we need to set the global values that
    1251             :      * are used to track snapshots as they evolve further.
    1252             :      *
    1253             :      * - latestCompletedXid which will be the xmax for snapshots
    1254             :      * - lastOverflowedXid which shows whether snapshots overflow
    1255             :      * - nextXid
    1256             :      *
    1257             :      * If the snapshot overflowed, then we still initialise with what we know,
    1258             :      * but the recovery snapshot isn't fully valid yet because we know there
    1259             :      * are some subxids missing. We don't know the specific subxids that are
    1260             :      * missing, so conservatively assume the last one is latestObservedXid.
    1261             :      * ----------
    1262             :      */
    1263         230 :     if (running->subxid_status == SUBXIDS_MISSING)
    1264             :     {
    1265           0 :         standbyState = STANDBY_SNAPSHOT_PENDING;
    1266             : 
    1267           0 :         standbySnapshotPendingXmin = latestObservedXid;
    1268           0 :         procArray->lastOverflowedXid = latestObservedXid;
    1269             :     }
    1270             :     else
    1271             :     {
    1272         230 :         standbyState = STANDBY_SNAPSHOT_READY;
    1273             : 
    1274         230 :         standbySnapshotPendingXmin = InvalidTransactionId;
    1275             : 
    1276             :         /*
    1277             :          * If the 'xids' array didn't include all subtransactions, we have to
    1278             :          * mark any snapshots taken as overflowed.
    1279             :          */
    1280         230 :         if (running->subxid_status == SUBXIDS_IN_SUBTRANS)
    1281          52 :             procArray->lastOverflowedXid = latestObservedXid;
    1282             :         else
    1283             :         {
    1284             :             Assert(running->subxid_status == SUBXIDS_IN_ARRAY);
    1285         178 :             procArray->lastOverflowedXid = InvalidTransactionId;
    1286             :         }
    1287             :     }
    1288             : 
    1289             :     /*
    1290             :      * If a transaction wrote a commit record in the gap between taking and
    1291             :      * logging the snapshot then latestCompletedXid may already be higher than
    1292             :      * the value from the snapshot, so check before we use the incoming value.
    1293             :      * It also might not yet be set at all.
    1294             :      */
    1295         230 :     MaintainLatestCompletedXidRecovery(running->latestCompletedXid);
    1296             : 
    1297             :     /*
    1298             :      * NB: No need to increment TransamVariables->xactCompletionCount here,
    1299             :      * nobody can see it yet.
    1300             :      */
    1301             : 
    1302         230 :     LWLockRelease(ProcArrayLock);
    1303             : 
    1304         230 :     KnownAssignedXidsDisplay(DEBUG3);
    1305         230 :     if (standbyState == STANDBY_SNAPSHOT_READY)
    1306         230 :         elog(DEBUG1, "recovery snapshots are now enabled");
    1307             :     else
    1308           0 :         elog(DEBUG1,
    1309             :              "recovery snapshot waiting for non-overflowed snapshot or "
    1310             :              "until oldest active xid on standby is at least %u (now %u)",
    1311             :              standbySnapshotPendingXmin,
    1312             :              running->oldestRunningXid);
    1313             : }
    1314             : 
    1315             : /*
    1316             :  * ProcArrayApplyXidAssignment
    1317             :  *      Process an XLOG_XACT_ASSIGNMENT WAL record
    1318             :  */
    1319             : void
    1320          42 : ProcArrayApplyXidAssignment(TransactionId topxid,
    1321             :                             int nsubxids, TransactionId *subxids)
    1322             : {
    1323             :     TransactionId max_xid;
    1324             :     int         i;
    1325             : 
    1326             :     Assert(standbyState >= STANDBY_INITIALIZED);
    1327             : 
    1328          42 :     max_xid = TransactionIdLatest(topxid, nsubxids, subxids);
    1329             : 
    1330             :     /*
    1331             :      * Mark all the subtransactions as observed.
    1332             :      *
    1333             :      * NOTE: This will fail if the subxid contains too many previously
    1334             :      * unobserved xids to fit into known-assigned-xids. That shouldn't happen
    1335             :      * as the code stands, because xid-assignment records should never contain
    1336             :      * more than PGPROC_MAX_CACHED_SUBXIDS entries.
    1337             :      */
    1338          42 :     RecordKnownAssignedTransactionIds(max_xid);
    1339             : 
    1340             :     /*
    1341             :      * Notice that we update pg_subtrans with the top-level xid, rather than
    1342             :      * the parent xid. This is a difference between normal processing and
    1343             :      * recovery, yet is still correct in all cases. The reason is that
    1344             :      * subtransaction commit is not marked in clog until commit processing, so
    1345             :      * all aborted subtransactions have already been clearly marked in clog.
    1346             :      * As a result we are able to refer directly to the top-level
    1347             :      * transaction's state rather than skipping through all the intermediate
    1348             :      * states in the subtransaction tree. This should be the first time we
    1349             :      * have attempted to SubTransSetParent().
    1350             :      */
    1351        2730 :     for (i = 0; i < nsubxids; i++)
    1352        2688 :         SubTransSetParent(subxids[i], topxid);
    1353             : 
    1354             :     /* KnownAssignedXids isn't maintained yet, so we're done for now */
    1355          42 :     if (standbyState == STANDBY_INITIALIZED)
    1356           0 :         return;
    1357             : 
    1358             :     /*
    1359             :      * Uses same locking as transaction commit
    1360             :      */
    1361          42 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    1362             : 
    1363             :     /*
    1364             :      * Remove subxids from known-assigned-xacts.
    1365             :      */
    1366          42 :     KnownAssignedXidsRemoveTree(InvalidTransactionId, nsubxids, subxids);
    1367             : 
    1368             :     /*
    1369             :      * Advance lastOverflowedXid to be at least the last of these subxids.
    1370             :      */
    1371          42 :     if (TransactionIdPrecedes(procArray->lastOverflowedXid, max_xid))
    1372          42 :         procArray->lastOverflowedXid = max_xid;
    1373             : 
    1374          42 :     LWLockRelease(ProcArrayLock);
    1375             : }
    1376             : 
    1377             : /*
    1378             :  * TransactionIdIsInProgress -- is given transaction running in some backend
    1379             :  *
    1380             :  * Aside from some shortcuts such as checking RecentXmin and our own Xid,
    1381             :  * there are four possibilities for finding a running transaction:
    1382             :  *
    1383             :  * 1. The given Xid is a main transaction Id.  We will find this out cheaply
    1384             :  * by looking at ProcGlobal->xids.
    1385             :  *
    1386             :  * 2. The given Xid is one of the cached subxact Xids in the PGPROC array.
    1387             :  * We can find this out cheaply too.
    1388             :  *
    1389             :  * 3. In Hot Standby mode, we must search the KnownAssignedXids list to see
    1390             :  * if the Xid is running on the primary.
    1391             :  *
    1392             :  * 4. Search the SubTrans tree to find the Xid's topmost parent, and then see
    1393             :  * if that is running according to ProcGlobal->xids[] or KnownAssignedXids.
    1394             :  * This is the slowest way, but sadly it has to be done always if the others
    1395             :  * failed, unless we see that the cached subxact sets are complete (none have
    1396             :  * overflowed).
    1397             :  *
    1398             :  * ProcArrayLock has to be held while we do 1, 2, 3.  If we save the top Xids
    1399             :  * while doing 1 and 3, we can release the ProcArrayLock while we do 4.
    1400             :  * This buys back some concurrency (and we can't retrieve the main Xids from
    1401             :  * ProcGlobal->xids[] again anyway; see GetNewTransactionId).
    1402             :  */
    1403             : bool
    1404    22539484 : TransactionIdIsInProgress(TransactionId xid)
    1405             : {
    1406             :     static TransactionId *xids = NULL;
    1407             :     static TransactionId *other_xids;
    1408             :     XidCacheStatus *other_subxidstates;
    1409    22539484 :     int         nxids = 0;
    1410    22539484 :     ProcArrayStruct *arrayP = procArray;
    1411             :     TransactionId topxid;
    1412             :     TransactionId latestCompletedXid;
    1413             :     int         mypgxactoff;
    1414             :     int         numProcs;
    1415             :     int         j;
    1416             : 
    1417             :     /*
    1418             :      * Don't bother checking a transaction older than RecentXmin; it could not
    1419             :      * possibly still be running.  (Note: in particular, this guarantees that
    1420             :      * we reject InvalidTransactionId, FrozenTransactionId, etc as not
    1421             :      * running.)
    1422             :      */
    1423    22539484 :     if (TransactionIdPrecedes(xid, RecentXmin))
    1424             :     {
    1425             :         xc_by_recent_xmin_inc();
    1426     9379608 :         return false;
    1427             :     }
    1428             : 
    1429             :     /*
    1430             :      * We may have just checked the status of this transaction, so if it is
    1431             :      * already known to be completed, we can fall out without any access to
    1432             :      * shared memory.
    1433             :      */
    1434    13159876 :     if (TransactionIdEquals(cachedXidIsNotInProgress, xid))
    1435             :     {
    1436             :         xc_by_known_xact_inc();
    1437     1781574 :         return false;
    1438             :     }
    1439             : 
    1440             :     /*
    1441             :      * Also, we can handle our own transaction (and subtransactions) without
    1442             :      * any access to shared memory.
    1443             :      */
    1444    11378302 :     if (TransactionIdIsCurrentTransactionId(xid))
    1445             :     {
    1446             :         xc_by_my_xact_inc();
    1447      400152 :         return true;
    1448             :     }
    1449             : 
    1450             :     /*
    1451             :      * If first time through, get workspace to remember main XIDs in. We
    1452             :      * malloc it permanently to avoid repeated palloc/pfree overhead.
    1453             :      */
    1454    10978150 :     if (xids == NULL)
    1455             :     {
    1456             :         /*
    1457             :          * In hot standby mode, reserve enough space to hold all xids in the
    1458             :          * known-assigned list. If we later finish recovery, we no longer need
    1459             :          * the bigger array, but we don't bother to shrink it.
    1460             :          */
    1461        2436 :         int         maxxids = RecoveryInProgress() ? TOTAL_MAX_CACHED_SUBXIDS : arrayP->maxProcs;
    1462             : 
    1463        2436 :         xids = (TransactionId *) malloc(maxxids * sizeof(TransactionId));
    1464        2436 :         if (xids == NULL)
    1465           0 :             ereport(ERROR,
    1466             :                     (errcode(ERRCODE_OUT_OF_MEMORY),
    1467             :                      errmsg("out of memory")));
    1468             :     }
    1469             : 
    1470    10978150 :     other_xids = ProcGlobal->xids;
    1471    10978150 :     other_subxidstates = ProcGlobal->subxidStates;
    1472             : 
    1473    10978150 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    1474             : 
    1475             :     /*
    1476             :      * Now that we have the lock, we can check latestCompletedXid; if the
    1477             :      * target Xid is after that, it's surely still running.
    1478             :      */
    1479    10978150 :     latestCompletedXid =
    1480    10978150 :         XidFromFullTransactionId(TransamVariables->latestCompletedXid);
    1481    10978150 :     if (TransactionIdPrecedes(latestCompletedXid, xid))
    1482             :     {
    1483     3077534 :         LWLockRelease(ProcArrayLock);
    1484             :         xc_by_latest_xid_inc();
    1485     3077534 :         return true;
    1486             :     }
    1487             : 
    1488             :     /* No shortcuts, gotta grovel through the array */
    1489     7900616 :     mypgxactoff = MyProc->pgxactoff;
    1490     7900616 :     numProcs = arrayP->numProcs;
    1491     8265570 :     for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++)
    1492             :     {
    1493             :         int         pgprocno;
    1494             :         PGPROC     *proc;
    1495             :         TransactionId pxid;
    1496             :         int         pxids;
    1497             : 
    1498             :         /* Ignore ourselves --- dealt with it above */
    1499     8240752 :         if (pgxactoff == mypgxactoff)
    1500       27780 :             continue;
    1501             : 
    1502             :         /* Fetch xid just once - see GetNewTransactionId */
    1503     8212972 :         pxid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]);
    1504             : 
    1505     8212972 :         if (!TransactionIdIsValid(pxid))
    1506      207210 :             continue;
    1507             : 
    1508             :         /*
    1509             :          * Step 1: check the main Xid
    1510             :          */
    1511     8005762 :         if (TransactionIdEquals(pxid, xid))
    1512             :         {
    1513     7875382 :             LWLockRelease(ProcArrayLock);
    1514             :             xc_by_main_xid_inc();
    1515     7875382 :             return true;
    1516             :         }
    1517             : 
    1518             :         /*
    1519             :          * We can ignore main Xids that are younger than the target Xid, since
    1520             :          * the target could not possibly be their child.
    1521             :          */
    1522      130380 :         if (TransactionIdPrecedes(xid, pxid))
    1523       66692 :             continue;
    1524             : 
    1525             :         /*
    1526             :          * Step 2: check the cached child-Xids arrays
    1527             :          */
    1528       63688 :         pxids = other_subxidstates[pgxactoff].count;
    1529       63688 :         pg_read_barrier();      /* pairs with barrier in GetNewTransactionId() */
    1530       63688 :         pgprocno = arrayP->pgprocnos[pgxactoff];
    1531       63688 :         proc = &allProcs[pgprocno];
    1532      120218 :         for (j = pxids - 1; j >= 0; j--)
    1533             :         {
    1534             :             /* Fetch xid just once - see GetNewTransactionId */
    1535       56946 :             TransactionId cxid = UINT32_ACCESS_ONCE(proc->subxids.xids[j]);
    1536             : 
    1537       56946 :             if (TransactionIdEquals(cxid, xid))
    1538             :             {
    1539         416 :                 LWLockRelease(ProcArrayLock);
    1540             :                 xc_by_child_xid_inc();
    1541         416 :                 return true;
    1542             :             }
    1543             :         }
    1544             : 
    1545             :         /*
    1546             :          * Save the main Xid for step 4.  We only need to remember main Xids
    1547             :          * that have uncached children.  (Note: there is no race condition
    1548             :          * here because the overflowed flag cannot be cleared, only set, while
    1549             :          * we hold ProcArrayLock.  So we can't miss an Xid that we need to
    1550             :          * worry about.)
    1551             :          */
    1552       63272 :         if (other_subxidstates[pgxactoff].overflowed)
    1553         496 :             xids[nxids++] = pxid;
    1554             :     }
    1555             : 
    1556             :     /*
    1557             :      * Step 3: in hot standby mode, check the known-assigned-xids list.  XIDs
    1558             :      * in the list must be treated as running.
    1559             :      */
    1560       24818 :     if (RecoveryInProgress())
    1561             :     {
    1562             :         /* none of the PGPROC entries should have XIDs in hot standby mode */
    1563             :         Assert(nxids == 0);
    1564             : 
    1565           2 :         if (KnownAssignedXidExists(xid))
    1566             :         {
    1567           0 :             LWLockRelease(ProcArrayLock);
    1568             :             xc_by_known_assigned_inc();
    1569           0 :             return true;
    1570             :         }
    1571             : 
    1572             :         /*
    1573             :          * If the KnownAssignedXids overflowed, we have to check pg_subtrans
    1574             :          * too.  Fetch all xids from KnownAssignedXids that are lower than
    1575             :          * xid, since if xid is a subtransaction its parent will always have a
    1576             :          * lower value.  Note we will collect both main and subXIDs here, but
    1577             :          * there's no help for it.
    1578             :          */
    1579           2 :         if (TransactionIdPrecedesOrEquals(xid, procArray->lastOverflowedXid))
    1580           0 :             nxids = KnownAssignedXidsGet(xids, xid);
    1581             :     }
    1582             : 
    1583       24818 :     LWLockRelease(ProcArrayLock);
    1584             : 
    1585             :     /*
    1586             :      * If none of the relevant caches overflowed, we know the Xid is not
    1587             :      * running without even looking at pg_subtrans.
    1588             :      */
    1589       24818 :     if (nxids == 0)
    1590             :     {
    1591             :         xc_no_overflow_inc();
    1592       24322 :         cachedXidIsNotInProgress = xid;
    1593       24322 :         return false;
    1594             :     }
    1595             : 
    1596             :     /*
    1597             :      * Step 4: have to check pg_subtrans.
    1598             :      *
    1599             :      * At this point, we know it's either a subtransaction of one of the Xids
    1600             :      * in xids[], or it's not running.  If it's an already-failed
    1601             :      * subtransaction, we want to say "not running" even though its parent may
    1602             :      * still be running.  So first, check pg_xact to see if it's been aborted.
    1603             :      */
    1604             :     xc_slow_answer_inc();
    1605             : 
    1606         496 :     if (TransactionIdDidAbort(xid))
    1607             :     {
    1608           0 :         cachedXidIsNotInProgress = xid;
    1609           0 :         return false;
    1610             :     }
    1611             : 
    1612             :     /*
    1613             :      * It isn't aborted, so check whether the transaction tree it belongs to
    1614             :      * is still running (or, more precisely, whether it was running when we
    1615             :      * held ProcArrayLock).
    1616             :      */
    1617         496 :     topxid = SubTransGetTopmostTransaction(xid);
    1618             :     Assert(TransactionIdIsValid(topxid));
    1619         810 :     if (!TransactionIdEquals(topxid, xid) &&
    1620         314 :         pg_lfind32(topxid, xids, nxids))
    1621         314 :         return true;
    1622             : 
    1623         182 :     cachedXidIsNotInProgress = xid;
    1624         182 :     return false;
    1625             : }
    1626             : 
    1627             : 
    1628             : /*
    1629             :  * Determine XID horizons.
    1630             :  *
    1631             :  * This is used by wrapper functions like GetOldestNonRemovableTransactionId()
    1632             :  * (for VACUUM), GetReplicationHorizons() (for hot_standby_feedback), etc as
    1633             :  * well as "internally" by GlobalVisUpdate() (see comment above struct
    1634             :  * GlobalVisState).
    1635             :  *
    1636             :  * See the definition of ComputeXidHorizonsResult for the various computed
    1637             :  * horizons.
    1638             :  *
    1639             :  * For VACUUM separate horizons (used to decide which deleted tuples must
    1640             :  * be preserved), for shared and non-shared tables are computed.  For shared
    1641             :  * relations backends in all databases must be considered, but for non-shared
    1642             :  * relations that's not required, since only backends in my own database could
    1643             :  * ever see the tuples in them. Also, we can ignore concurrently running lazy
    1644             :  * VACUUMs because (a) they must be working on other tables, and (b) they
    1645             :  * don't need to do snapshot-based lookups.
    1646             :  *
    1647             :  * This also computes a horizon used to truncate pg_subtrans. For that
    1648             :  * backends in all databases have to be considered, and concurrently running
    1649             :  * lazy VACUUMs cannot be ignored, as they still may perform pg_subtrans
    1650             :  * accesses.
    1651             :  *
    1652             :  * Note: we include all currently running xids in the set of considered xids.
    1653             :  * This ensures that if a just-started xact has not yet set its snapshot,
    1654             :  * when it does set the snapshot it cannot set xmin less than what we compute.
    1655             :  * See notes in src/backend/access/transam/README.
    1656             :  *
    1657             :  * Note: despite the above, it's possible for the calculated values to move
    1658             :  * backwards on repeated calls. The calculated values are conservative, so
    1659             :  * that anything older is definitely not considered as running by anyone
    1660             :  * anymore, but the exact values calculated depend on a number of things. For
    1661             :  * example, if there are no transactions running in the current database, the
    1662             :  * horizon for normal tables will be latestCompletedXid. If a transaction
    1663             :  * begins after that, its xmin will include in-progress transactions in other
    1664             :  * databases that started earlier, so another call will return a lower value.
    1665             :  * Nonetheless it is safe to vacuum a table in the current database with the
    1666             :  * first result.  There are also replication-related effects: a walsender
    1667             :  * process can set its xmin based on transactions that are no longer running
    1668             :  * on the primary but are still being replayed on the standby, thus possibly
    1669             :  * making the values go backwards.  In this case there is a possibility that
    1670             :  * we lose data that the standby would like to have, but unless the standby
    1671             :  * uses a replication slot to make its xmin persistent there is little we can
    1672             :  * do about that --- data is only protected if the walsender runs continuously
    1673             :  * while queries are executed on the standby.  (The Hot Standby code deals
    1674             :  * with such cases by failing standby queries that needed to access
    1675             :  * already-removed data, so there's no integrity bug.)
    1676             :  *
    1677             :  * Note: the approximate horizons (see definition of GlobalVisState) are
    1678             :  * updated by the computations done here. That's currently required for
    1679             :  * correctness and a small optimization. Without doing so it's possible that
    1680             :  * heap vacuum's call to heap_page_prune_and_freeze() uses a more conservative
    1681             :  * horizon than later when deciding which tuples can be removed - which the
    1682             :  * code doesn't expect (breaking HOT).
    1683             :  */
    1684             : static void
    1685      341476 : ComputeXidHorizons(ComputeXidHorizonsResult *h)
    1686             : {
    1687      341476 :     ProcArrayStruct *arrayP = procArray;
    1688             :     TransactionId kaxmin;
    1689      341476 :     bool        in_recovery = RecoveryInProgress();
    1690      341476 :     TransactionId *other_xids = ProcGlobal->xids;
    1691             : 
    1692             :     /* inferred after ProcArrayLock is released */
    1693      341476 :     h->catalog_oldest_nonremovable = InvalidTransactionId;
    1694             : 
    1695      341476 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    1696             : 
    1697      341476 :     h->latest_completed = TransamVariables->latestCompletedXid;
    1698             : 
    1699             :     /*
    1700             :      * We initialize the MIN() calculation with latestCompletedXid + 1. This
    1701             :      * is a lower bound for the XIDs that might appear in the ProcArray later,
    1702             :      * and so protects us against overestimating the result due to future
    1703             :      * additions.
    1704             :      */
    1705             :     {
    1706             :         TransactionId initial;
    1707             : 
    1708      341476 :         initial = XidFromFullTransactionId(h->latest_completed);
    1709             :         Assert(TransactionIdIsValid(initial));
    1710      341476 :         TransactionIdAdvance(initial);
    1711             : 
    1712      341476 :         h->oldest_considered_running = initial;
    1713      341476 :         h->shared_oldest_nonremovable = initial;
    1714      341476 :         h->data_oldest_nonremovable = initial;
    1715             : 
    1716             :         /*
    1717             :          * Only modifications made by this backend affect the horizon for
    1718             :          * temporary relations. Instead of a check in each iteration of the
    1719             :          * loop over all PGPROCs it is cheaper to just initialize to the
    1720             :          * current top-level xid any.
    1721             :          *
    1722             :          * Without an assigned xid we could use a horizon as aggressive as
    1723             :          * GetNewTransactionId(), but we can get away with the much cheaper
    1724             :          * latestCompletedXid + 1: If this backend has no xid there, by
    1725             :          * definition, can't be any newer changes in the temp table than
    1726             :          * latestCompletedXid.
    1727             :          */
    1728      341476 :         if (TransactionIdIsValid(MyProc->xid))
    1729       67316 :             h->temp_oldest_nonremovable = MyProc->xid;
    1730             :         else
    1731      274160 :             h->temp_oldest_nonremovable = initial;
    1732             :     }
    1733             : 
    1734             :     /*
    1735             :      * Fetch slot horizons while ProcArrayLock is held - the
    1736             :      * LWLockAcquire/LWLockRelease are a barrier, ensuring this happens inside
    1737             :      * the lock.
    1738             :      */
    1739      341476 :     h->slot_xmin = procArray->replication_slot_xmin;
    1740      341476 :     h->slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
    1741             : 
    1742     2056256 :     for (int index = 0; index < arrayP->numProcs; index++)
    1743             :     {
    1744     1714780 :         int         pgprocno = arrayP->pgprocnos[index];
    1745     1714780 :         PGPROC     *proc = &allProcs[pgprocno];
    1746     1714780 :         int8        statusFlags = ProcGlobal->statusFlags[index];
    1747             :         TransactionId xid;
    1748             :         TransactionId xmin;
    1749             : 
    1750             :         /* Fetch xid just once - see GetNewTransactionId */
    1751     1714780 :         xid = UINT32_ACCESS_ONCE(other_xids[index]);
    1752     1714780 :         xmin = UINT32_ACCESS_ONCE(proc->xmin);
    1753             : 
    1754             :         /*
    1755             :          * Consider both the transaction's Xmin, and its Xid.
    1756             :          *
    1757             :          * We must check both because a transaction might have an Xmin but not
    1758             :          * (yet) an Xid; conversely, if it has an Xid, that could determine
    1759             :          * some not-yet-set Xmin.
    1760             :          */
    1761     1714780 :         xmin = TransactionIdOlder(xmin, xid);
    1762             : 
    1763             :         /* if neither is set, this proc doesn't influence the horizon */
    1764     1714780 :         if (!TransactionIdIsValid(xmin))
    1765      761976 :             continue;
    1766             : 
    1767             :         /*
    1768             :          * Don't ignore any procs when determining which transactions might be
    1769             :          * considered running.  While slots should ensure logical decoding
    1770             :          * backends are protected even without this check, it can't hurt to
    1771             :          * include them here as well..
    1772             :          */
    1773      952804 :         h->oldest_considered_running =
    1774      952804 :             TransactionIdOlder(h->oldest_considered_running, xmin);
    1775             : 
    1776             :         /*
    1777             :          * Skip over backends either vacuuming (which is ok with rows being
    1778             :          * removed, as long as pg_subtrans is not truncated) or doing logical
    1779             :          * decoding (which manages xmin separately, check below).
    1780             :          */
    1781      952804 :         if (statusFlags & (PROC_IN_VACUUM | PROC_IN_LOGICAL_DECODING))
    1782      282794 :             continue;
    1783             : 
    1784             :         /* shared tables need to take backends in all databases into account */
    1785      670010 :         h->shared_oldest_nonremovable =
    1786      670010 :             TransactionIdOlder(h->shared_oldest_nonremovable, xmin);
    1787             : 
    1788             :         /*
    1789             :          * Normally sessions in other databases are ignored for anything but
    1790             :          * the shared horizon.
    1791             :          *
    1792             :          * However, include them when MyDatabaseId is not (yet) set.  A
    1793             :          * backend in the process of starting up must not compute a "too
    1794             :          * aggressive" horizon, otherwise we could end up using it to prune
    1795             :          * still-needed data away.  If the current backend never connects to a
    1796             :          * database this is harmless, because data_oldest_nonremovable will
    1797             :          * never be utilized.
    1798             :          *
    1799             :          * Also, sessions marked with PROC_AFFECTS_ALL_HORIZONS should always
    1800             :          * be included.  (This flag is used for hot standby feedback, which
    1801             :          * can't be tied to a specific database.)
    1802             :          *
    1803             :          * Also, while in recovery we cannot compute an accurate per-database
    1804             :          * horizon, as all xids are managed via the KnownAssignedXids
    1805             :          * machinery.
    1806             :          */
    1807      670010 :         if (proc->databaseId == MyDatabaseId ||
    1808       36986 :             MyDatabaseId == InvalidOid ||
    1809       22432 :             (statusFlags & PROC_AFFECTS_ALL_HORIZONS) ||
    1810             :             in_recovery)
    1811             :         {
    1812      647582 :             h->data_oldest_nonremovable =
    1813      647582 :                 TransactionIdOlder(h->data_oldest_nonremovable, xmin);
    1814             :         }
    1815             :     }
    1816             : 
    1817             :     /*
    1818             :      * If in recovery fetch oldest xid in KnownAssignedXids, will be applied
    1819             :      * after lock is released.
    1820             :      */
    1821      341476 :     if (in_recovery)
    1822         684 :         kaxmin = KnownAssignedXidsGetOldestXmin();
    1823             : 
    1824             :     /*
    1825             :      * No other information from shared state is needed, release the lock
    1826             :      * immediately. The rest of the computations can be done without a lock.
    1827             :      */
    1828      341476 :     LWLockRelease(ProcArrayLock);
    1829             : 
    1830      341476 :     if (in_recovery)
    1831             :     {
    1832         684 :         h->oldest_considered_running =
    1833         684 :             TransactionIdOlder(h->oldest_considered_running, kaxmin);
    1834         684 :         h->shared_oldest_nonremovable =
    1835         684 :             TransactionIdOlder(h->shared_oldest_nonremovable, kaxmin);
    1836         684 :         h->data_oldest_nonremovable =
    1837         684 :             TransactionIdOlder(h->data_oldest_nonremovable, kaxmin);
    1838             :         /* temp relations cannot be accessed in recovery */
    1839             :     }
    1840             : 
    1841             :     Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
    1842             :                                          h->shared_oldest_nonremovable));
    1843             :     Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
    1844             :                                          h->data_oldest_nonremovable));
    1845             : 
    1846             :     /*
    1847             :      * Check whether there are replication slots requiring an older xmin.
    1848             :      */
    1849      341476 :     h->shared_oldest_nonremovable =
    1850      341476 :         TransactionIdOlder(h->shared_oldest_nonremovable, h->slot_xmin);
    1851      341476 :     h->data_oldest_nonremovable =
    1852      341476 :         TransactionIdOlder(h->data_oldest_nonremovable, h->slot_xmin);
    1853             : 
    1854             :     /*
    1855             :      * The only difference between catalog / data horizons is that the slot's
    1856             :      * catalog xmin is applied to the catalog one (so catalogs can be accessed
    1857             :      * for logical decoding). Initialize with data horizon, and then back up
    1858             :      * further if necessary. Have to back up the shared horizon as well, since
    1859             :      * that also can contain catalogs.
    1860             :      */
    1861      341476 :     h->shared_oldest_nonremovable_raw = h->shared_oldest_nonremovable;
    1862      341476 :     h->shared_oldest_nonremovable =
    1863      341476 :         TransactionIdOlder(h->shared_oldest_nonremovable,
    1864             :                            h->slot_catalog_xmin);
    1865      341476 :     h->catalog_oldest_nonremovable = h->data_oldest_nonremovable;
    1866      341476 :     h->catalog_oldest_nonremovable =
    1867      341476 :         TransactionIdOlder(h->catalog_oldest_nonremovable,
    1868             :                            h->slot_catalog_xmin);
    1869             : 
    1870             :     /*
    1871             :      * It's possible that slots backed up the horizons further than
    1872             :      * oldest_considered_running. Fix.
    1873             :      */
    1874      341476 :     h->oldest_considered_running =
    1875      341476 :         TransactionIdOlder(h->oldest_considered_running,
    1876             :                            h->shared_oldest_nonremovable);
    1877      341476 :     h->oldest_considered_running =
    1878      341476 :         TransactionIdOlder(h->oldest_considered_running,
    1879             :                            h->catalog_oldest_nonremovable);
    1880      341476 :     h->oldest_considered_running =
    1881      341476 :         TransactionIdOlder(h->oldest_considered_running,
    1882             :                            h->data_oldest_nonremovable);
    1883             : 
    1884             :     /*
    1885             :      * shared horizons have to be at least as old as the oldest visible in
    1886             :      * current db
    1887             :      */
    1888             :     Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
    1889             :                                          h->data_oldest_nonremovable));
    1890             :     Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
    1891             :                                          h->catalog_oldest_nonremovable));
    1892             : 
    1893             :     /*
    1894             :      * Horizons need to ensure that pg_subtrans access is still possible for
    1895             :      * the relevant backends.
    1896             :      */
    1897             :     Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
    1898             :                                          h->shared_oldest_nonremovable));
    1899             :     Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
    1900             :                                          h->catalog_oldest_nonremovable));
    1901             :     Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
    1902             :                                          h->data_oldest_nonremovable));
    1903             :     Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
    1904             :                                          h->temp_oldest_nonremovable));
    1905             :     Assert(!TransactionIdIsValid(h->slot_xmin) ||
    1906             :            TransactionIdPrecedesOrEquals(h->oldest_considered_running,
    1907             :                                          h->slot_xmin));
    1908             :     Assert(!TransactionIdIsValid(h->slot_catalog_xmin) ||
    1909             :            TransactionIdPrecedesOrEquals(h->oldest_considered_running,
    1910             :                                          h->slot_catalog_xmin));
    1911             : 
    1912             :     /* update approximate horizons with the computed horizons */
    1913      341476 :     GlobalVisUpdateApply(h);
    1914      341476 : }
    1915             : 
    1916             : /*
    1917             :  * Determine what kind of visibility horizon needs to be used for a
    1918             :  * relation. If rel is NULL, the most conservative horizon is used.
    1919             :  */
    1920             : static inline GlobalVisHorizonKind
    1921    29197366 : GlobalVisHorizonKindForRel(Relation rel)
    1922             : {
    1923             :     /*
    1924             :      * Other relkinds currently don't contain xids, nor always the necessary
    1925             :      * logical decoding markers.
    1926             :      */
    1927             :     Assert(!rel ||
    1928             :            rel->rd_rel->relkind == RELKIND_RELATION ||
    1929             :            rel->rd_rel->relkind == RELKIND_MATVIEW ||
    1930             :            rel->rd_rel->relkind == RELKIND_TOASTVALUE);
    1931             : 
    1932    29197366 :     if (rel == NULL || rel->rd_rel->relisshared || RecoveryInProgress())
    1933      202838 :         return VISHORIZON_SHARED;
    1934    28994528 :     else if (IsCatalogRelation(rel) ||
    1935    22755434 :              RelationIsAccessibleInLogicalDecoding(rel))
    1936     6239102 :         return VISHORIZON_CATALOG;
    1937    22755426 :     else if (!RELATION_IS_LOCAL(rel))
    1938    22646288 :         return VISHORIZON_DATA;
    1939             :     else
    1940      109138 :         return VISHORIZON_TEMP;
    1941             : }
    1942             : 
    1943             : /*
    1944             :  * Return the oldest XID for which deleted tuples must be preserved in the
    1945             :  * passed table.
    1946             :  *
    1947             :  * If rel is not NULL the horizon may be considerably more recent than
    1948             :  * otherwise (i.e. fewer tuples will be removable). In the NULL case a horizon
    1949             :  * that is correct (but not optimal) for all relations will be returned.
    1950             :  *
    1951             :  * This is used by VACUUM to decide which deleted tuples must be preserved in
    1952             :  * the passed in table.
    1953             :  */
    1954             : TransactionId
    1955      230890 : GetOldestNonRemovableTransactionId(Relation rel)
    1956             : {
    1957             :     ComputeXidHorizonsResult horizons;
    1958             : 
    1959      230890 :     ComputeXidHorizons(&horizons);
    1960             : 
    1961      230890 :     switch (GlobalVisHorizonKindForRel(rel))
    1962             :     {
    1963       34458 :         case VISHORIZON_SHARED:
    1964       34458 :             return horizons.shared_oldest_nonremovable;
    1965      133810 :         case VISHORIZON_CATALOG:
    1966      133810 :             return horizons.catalog_oldest_nonremovable;
    1967       37402 :         case VISHORIZON_DATA:
    1968       37402 :             return horizons.data_oldest_nonremovable;
    1969       25220 :         case VISHORIZON_TEMP:
    1970       25220 :             return horizons.temp_oldest_nonremovable;
    1971             :     }
    1972             : 
    1973             :     /* just to prevent compiler warnings */
    1974           0 :     return InvalidTransactionId;
    1975             : }
    1976             : 
    1977             : /*
    1978             :  * Return the oldest transaction id any currently running backend might still
    1979             :  * consider running. This should not be used for visibility / pruning
    1980             :  * determinations (see GetOldestNonRemovableTransactionId()), but for
    1981             :  * decisions like up to where pg_subtrans can be truncated.
    1982             :  */
    1983             : TransactionId
    1984        3496 : GetOldestTransactionIdConsideredRunning(void)
    1985             : {
    1986             :     ComputeXidHorizonsResult horizons;
    1987             : 
    1988        3496 :     ComputeXidHorizons(&horizons);
    1989             : 
    1990        3496 :     return horizons.oldest_considered_running;
    1991             : }
    1992             : 
    1993             : /*
    1994             :  * Return the visibility horizons for a hot standby feedback message.
    1995             :  */
    1996             : void
    1997         100 : GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
    1998             : {
    1999             :     ComputeXidHorizonsResult horizons;
    2000             : 
    2001         100 :     ComputeXidHorizons(&horizons);
    2002             : 
    2003             :     /*
    2004             :      * Don't want to use shared_oldest_nonremovable here, as that contains the
    2005             :      * effect of replication slot's catalog_xmin. We want to send a separate
    2006             :      * feedback for the catalog horizon, so the primary can remove data table
    2007             :      * contents more aggressively.
    2008             :      */
    2009         100 :     *xmin = horizons.shared_oldest_nonremovable_raw;
    2010         100 :     *catalog_xmin = horizons.slot_catalog_xmin;
    2011         100 : }
    2012             : 
    2013             : /*
    2014             :  * GetMaxSnapshotXidCount -- get max size for snapshot XID array
    2015             :  *
    2016             :  * We have to export this for use by snapmgr.c.
    2017             :  */
    2018             : int
    2019       68668 : GetMaxSnapshotXidCount(void)
    2020             : {
    2021       68668 :     return procArray->maxProcs;
    2022             : }
    2023             : 
    2024             : /*
    2025             :  * GetMaxSnapshotSubxidCount -- get max size for snapshot sub-XID array
    2026             :  *
    2027             :  * We have to export this for use by snapmgr.c.
    2028             :  */
    2029             : int
    2030       68286 : GetMaxSnapshotSubxidCount(void)
    2031             : {
    2032       68286 :     return TOTAL_MAX_CACHED_SUBXIDS;
    2033             : }
    2034             : 
    2035             : /*
    2036             :  * Helper function for GetSnapshotData() that checks if the bulk of the
    2037             :  * visibility information in the snapshot is still valid. If so, it updates
    2038             :  * the fields that need to change and returns true. Otherwise it returns
    2039             :  * false.
    2040             :  *
    2041             :  * This very likely can be evolved to not need ProcArrayLock held (at very
    2042             :  * least in the case we already hold a snapshot), but that's for another day.
    2043             :  */
    2044             : static bool
    2045     4216878 : GetSnapshotDataReuse(Snapshot snapshot)
    2046             : {
    2047             :     uint64      curXactCompletionCount;
    2048             : 
    2049             :     Assert(LWLockHeldByMe(ProcArrayLock));
    2050             : 
    2051     4216878 :     if (unlikely(snapshot->snapXactCompletionCount == 0))
    2052       68248 :         return false;
    2053             : 
    2054     4148630 :     curXactCompletionCount = TransamVariables->xactCompletionCount;
    2055     4148630 :     if (curXactCompletionCount != snapshot->snapXactCompletionCount)
    2056      735732 :         return false;
    2057             : 
    2058             :     /*
    2059             :      * If the current xactCompletionCount is still the same as it was at the
    2060             :      * time the snapshot was built, we can be sure that rebuilding the
    2061             :      * contents of the snapshot the hard way would result in the same snapshot
    2062             :      * contents:
    2063             :      *
    2064             :      * As explained in transam/README, the set of xids considered running by
    2065             :      * GetSnapshotData() cannot change while ProcArrayLock is held. Snapshot
    2066             :      * contents only depend on transactions with xids and xactCompletionCount
    2067             :      * is incremented whenever a transaction with an xid finishes (while
    2068             :      * holding ProcArrayLock exclusively). Thus the xactCompletionCount check
    2069             :      * ensures we would detect if the snapshot would have changed.
    2070             :      *
    2071             :      * As the snapshot contents are the same as it was before, it is safe to
    2072             :      * re-enter the snapshot's xmin into the PGPROC array. None of the rows
    2073             :      * visible under the snapshot could already have been removed (that'd
    2074             :      * require the set of running transactions to change) and it fulfills the
    2075             :      * requirement that concurrent GetSnapshotData() calls yield the same
    2076             :      * xmin.
    2077             :      */
    2078     3412898 :     if (!TransactionIdIsValid(MyProc->xmin))
    2079     1266246 :         MyProc->xmin = TransactionXmin = snapshot->xmin;
    2080             : 
    2081     3412898 :     RecentXmin = snapshot->xmin;
    2082             :     Assert(TransactionIdPrecedesOrEquals(TransactionXmin, RecentXmin));
    2083             : 
    2084     3412898 :     snapshot->curcid = GetCurrentCommandId(false);
    2085     3412898 :     snapshot->active_count = 0;
    2086     3412898 :     snapshot->regd_count = 0;
    2087     3412898 :     snapshot->copied = false;
    2088             : 
    2089     3412898 :     return true;
    2090             : }
    2091             : 
    2092             : /*
    2093             :  * GetSnapshotData -- returns information about running transactions.
    2094             :  *
    2095             :  * The returned snapshot includes xmin (lowest still-running xact ID),
    2096             :  * xmax (highest completed xact ID + 1), and a list of running xact IDs
    2097             :  * in the range xmin <= xid < xmax.  It is used as follows:
    2098             :  *      All xact IDs < xmin are considered finished.
    2099             :  *      All xact IDs >= xmax are considered still running.
    2100             :  *      For an xact ID xmin <= xid < xmax, consult list to see whether
    2101             :  *      it is considered running or not.
    2102             :  * This ensures that the set of transactions seen as "running" by the
    2103             :  * current xact will not change after it takes the snapshot.
    2104             :  *
    2105             :  * All running top-level XIDs are included in the snapshot, except for lazy
    2106             :  * VACUUM processes.  We also try to include running subtransaction XIDs,
    2107             :  * but since PGPROC has only a limited cache area for subxact XIDs, full
    2108             :  * information may not be available.  If we find any overflowed subxid arrays,
    2109             :  * we have to mark the snapshot's subxid data as overflowed, and extra work
    2110             :  * *may* need to be done to determine what's running (see XidInMVCCSnapshot()).
    2111             :  *
    2112             :  * We also update the following backend-global variables:
    2113             :  *      TransactionXmin: the oldest xmin of any snapshot in use in the
    2114             :  *          current transaction (this is the same as MyProc->xmin).
    2115             :  *      RecentXmin: the xmin computed for the most recent snapshot.  XIDs
    2116             :  *          older than this are known not running any more.
    2117             :  *
    2118             :  * And try to advance the bounds of GlobalVis{Shared,Catalog,Data,Temp}Rels
    2119             :  * for the benefit of the GlobalVisTest* family of functions.
    2120             :  *
    2121             :  * Note: this function should probably not be called with an argument that's
    2122             :  * not statically allocated (see xip allocation below).
    2123             :  */
    2124             : Snapshot
    2125     4216878 : GetSnapshotData(Snapshot snapshot)
    2126             : {
    2127     4216878 :     ProcArrayStruct *arrayP = procArray;
    2128     4216878 :     TransactionId *other_xids = ProcGlobal->xids;
    2129             :     TransactionId xmin;
    2130             :     TransactionId xmax;
    2131     4216878 :     int         count = 0;
    2132     4216878 :     int         subcount = 0;
    2133     4216878 :     bool        suboverflowed = false;
    2134             :     FullTransactionId latest_completed;
    2135             :     TransactionId oldestxid;
    2136             :     int         mypgxactoff;
    2137             :     TransactionId myxid;
    2138             :     uint64      curXactCompletionCount;
    2139             : 
    2140     4216878 :     TransactionId replication_slot_xmin = InvalidTransactionId;
    2141     4216878 :     TransactionId replication_slot_catalog_xmin = InvalidTransactionId;
    2142             : 
    2143             :     Assert(snapshot != NULL);
    2144             : 
    2145             :     /*
    2146             :      * Allocating space for maxProcs xids is usually overkill; numProcs would
    2147             :      * be sufficient.  But it seems better to do the malloc while not holding
    2148             :      * the lock, so we can't look at numProcs.  Likewise, we allocate much
    2149             :      * more subxip storage than is probably needed.
    2150             :      *
    2151             :      * This does open a possibility for avoiding repeated malloc/free: since
    2152             :      * maxProcs does not change at runtime, we can simply reuse the previous
    2153             :      * xip arrays if any.  (This relies on the fact that all callers pass
    2154             :      * static SnapshotData structs.)
    2155             :      */
    2156     4216878 :     if (snapshot->xip == NULL)
    2157             :     {
    2158             :         /*
    2159             :          * First call for this snapshot. Snapshot is same size whether or not
    2160             :          * we are in recovery, see later comments.
    2161             :          */
    2162       68236 :         snapshot->xip = (TransactionId *)
    2163       68236 :             malloc(GetMaxSnapshotXidCount() * sizeof(TransactionId));
    2164       68236 :         if (snapshot->xip == NULL)
    2165           0 :             ereport(ERROR,
    2166             :                     (errcode(ERRCODE_OUT_OF_MEMORY),
    2167             :                      errmsg("out of memory")));
    2168             :         Assert(snapshot->subxip == NULL);
    2169       68236 :         snapshot->subxip = (TransactionId *)
    2170       68236 :             malloc(GetMaxSnapshotSubxidCount() * sizeof(TransactionId));
    2171       68236 :         if (snapshot->subxip == NULL)
    2172           0 :             ereport(ERROR,
    2173             :                     (errcode(ERRCODE_OUT_OF_MEMORY),
    2174             :                      errmsg("out of memory")));
    2175             :     }
    2176             : 
    2177             :     /*
    2178             :      * It is sufficient to get shared lock on ProcArrayLock, even if we are
    2179             :      * going to set MyProc->xmin.
    2180             :      */
    2181     4216878 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    2182             : 
    2183     4216878 :     if (GetSnapshotDataReuse(snapshot))
    2184             :     {
    2185     3412898 :         LWLockRelease(ProcArrayLock);
    2186     3412898 :         return snapshot;
    2187             :     }
    2188             : 
    2189      803980 :     latest_completed = TransamVariables->latestCompletedXid;
    2190      803980 :     mypgxactoff = MyProc->pgxactoff;
    2191      803980 :     myxid = other_xids[mypgxactoff];
    2192             :     Assert(myxid == MyProc->xid);
    2193             : 
    2194      803980 :     oldestxid = TransamVariables->oldestXid;
    2195      803980 :     curXactCompletionCount = TransamVariables->xactCompletionCount;
    2196             : 
    2197             :     /* xmax is always latestCompletedXid + 1 */
    2198      803980 :     xmax = XidFromFullTransactionId(latest_completed);
    2199      803980 :     TransactionIdAdvance(xmax);
    2200             :     Assert(TransactionIdIsNormal(xmax));
    2201             : 
    2202             :     /* initialize xmin calculation with xmax */
    2203      803980 :     xmin = xmax;
    2204             : 
    2205             :     /* take own xid into account, saves a check inside the loop */
    2206      803980 :     if (TransactionIdIsNormal(myxid) && NormalTransactionIdPrecedes(myxid, xmin))
    2207       58864 :         xmin = myxid;
    2208             : 
    2209      803980 :     snapshot->takenDuringRecovery = RecoveryInProgress();
    2210             : 
    2211      803980 :     if (!snapshot->takenDuringRecovery)
    2212             :     {
    2213      801354 :         int         numProcs = arrayP->numProcs;
    2214      801354 :         TransactionId *xip = snapshot->xip;
    2215      801354 :         int        *pgprocnos = arrayP->pgprocnos;
    2216      801354 :         XidCacheStatus *subxidStates = ProcGlobal->subxidStates;
    2217      801354 :         uint8      *allStatusFlags = ProcGlobal->statusFlags;
    2218             : 
    2219             :         /*
    2220             :          * First collect set of pgxactoff/xids that need to be included in the
    2221             :          * snapshot.
    2222             :          */
    2223     7024194 :         for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++)
    2224             :         {
    2225             :             /* Fetch xid just once - see GetNewTransactionId */
    2226     6222840 :             TransactionId xid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]);
    2227             :             uint8       statusFlags;
    2228             : 
    2229             :             Assert(allProcs[arrayP->pgprocnos[pgxactoff]].pgxactoff == pgxactoff);
    2230             : 
    2231             :             /*
    2232             :              * If the transaction has no XID assigned, we can skip it; it
    2233             :              * won't have sub-XIDs either.
    2234             :              */
    2235     6222840 :             if (likely(xid == InvalidTransactionId))
    2236     4595584 :                 continue;
    2237             : 
    2238             :             /*
    2239             :              * We don't include our own XIDs (if any) in the snapshot. It
    2240             :              * needs to be included in the xmin computation, but we did so
    2241             :              * outside the loop.
    2242             :              */
    2243     1627256 :             if (pgxactoff == mypgxactoff)
    2244      113716 :                 continue;
    2245             : 
    2246             :             /*
    2247             :              * The only way we are able to get here with a non-normal xid is
    2248             :              * during bootstrap - with this backend using
    2249             :              * BootstrapTransactionId. But the above test should filter that
    2250             :              * out.
    2251             :              */
    2252             :             Assert(TransactionIdIsNormal(xid));
    2253             : 
    2254             :             /*
    2255             :              * If the XID is >= xmax, we can skip it; such transactions will
    2256             :              * be treated as running anyway (and any sub-XIDs will also be >=
    2257             :              * xmax).
    2258             :              */
    2259     1513540 :             if (!NormalTransactionIdPrecedes(xid, xmax))
    2260      416184 :                 continue;
    2261             : 
    2262             :             /*
    2263             :              * Skip over backends doing logical decoding which manages xmin
    2264             :              * separately (check below) and ones running LAZY VACUUM.
    2265             :              */
    2266     1097356 :             statusFlags = allStatusFlags[pgxactoff];
    2267     1097356 :             if (statusFlags & (PROC_IN_LOGICAL_DECODING | PROC_IN_VACUUM))
    2268         186 :                 continue;
    2269             : 
    2270     1097170 :             if (NormalTransactionIdPrecedes(xid, xmin))
    2271      586744 :                 xmin = xid;
    2272             : 
    2273             :             /* Add XID to snapshot. */
    2274     1097170 :             xip[count++] = xid;
    2275             : 
    2276             :             /*
    2277             :              * Save subtransaction XIDs if possible (if we've already
    2278             :              * overflowed, there's no point).  Note that the subxact XIDs must
    2279             :              * be later than their parent, so no need to check them against
    2280             :              * xmin.  We could filter against xmax, but it seems better not to
    2281             :              * do that much work while holding the ProcArrayLock.
    2282             :              *
    2283             :              * The other backend can add more subxids concurrently, but cannot
    2284             :              * remove any.  Hence it's important to fetch nxids just once.
    2285             :              * Should be safe to use memcpy, though.  (We needn't worry about
    2286             :              * missing any xids added concurrently, because they must postdate
    2287             :              * xmax.)
    2288             :              *
    2289             :              * Again, our own XIDs are not included in the snapshot.
    2290             :              */
    2291     1097170 :             if (!suboverflowed)
    2292             :             {
    2293             : 
    2294     1097162 :                 if (subxidStates[pgxactoff].overflowed)
    2295        1080 :                     suboverflowed = true;
    2296             :                 else
    2297             :                 {
    2298     1096082 :                     int         nsubxids = subxidStates[pgxactoff].count;
    2299             : 
    2300     1096082 :                     if (nsubxids > 0)
    2301             :                     {
    2302       10484 :                         int         pgprocno = pgprocnos[pgxactoff];
    2303       10484 :                         PGPROC     *proc = &allProcs[pgprocno];
    2304             : 
    2305       10484 :                         pg_read_barrier();  /* pairs with GetNewTransactionId */
    2306             : 
    2307       10484 :                         memcpy(snapshot->subxip + subcount,
    2308       10484 :                                proc->subxids.xids,
    2309             :                                nsubxids * sizeof(TransactionId));
    2310       10484 :                         subcount += nsubxids;
    2311             :                     }
    2312             :                 }
    2313             :             }
    2314             :         }
    2315             :     }
    2316             :     else
    2317             :     {
    2318             :         /*
    2319             :          * We're in hot standby, so get XIDs from KnownAssignedXids.
    2320             :          *
    2321             :          * We store all xids directly into subxip[]. Here's why:
    2322             :          *
    2323             :          * In recovery we don't know which xids are top-level and which are
    2324             :          * subxacts, a design choice that greatly simplifies xid processing.
    2325             :          *
    2326             :          * It seems like we would want to try to put xids into xip[] only, but
    2327             :          * that is fairly small. We would either need to make that bigger or
    2328             :          * to increase the rate at which we WAL-log xid assignment; neither is
    2329             :          * an appealing choice.
    2330             :          *
    2331             :          * We could try to store xids into xip[] first and then into subxip[]
    2332             :          * if there are too many xids. That only works if the snapshot doesn't
    2333             :          * overflow because we do not search subxip[] in that case. A simpler
    2334             :          * way is to just store all xids in the subxip array because this is
    2335             :          * by far the bigger array. We just leave the xip array empty.
    2336             :          *
    2337             :          * Either way we need to change the way XidInMVCCSnapshot() works
    2338             :          * depending upon when the snapshot was taken, or change normal
    2339             :          * snapshot processing so it matches.
    2340             :          *
    2341             :          * Note: It is possible for recovery to end before we finish taking
    2342             :          * the snapshot, and for newly assigned transaction ids to be added to
    2343             :          * the ProcArray.  xmax cannot change while we hold ProcArrayLock, so
    2344             :          * those newly added transaction ids would be filtered away, so we
    2345             :          * need not be concerned about them.
    2346             :          */
    2347        2626 :         subcount = KnownAssignedXidsGetAndSetXmin(snapshot->subxip, &xmin,
    2348             :                                                   xmax);
    2349             : 
    2350        2626 :         if (TransactionIdPrecedesOrEquals(xmin, procArray->lastOverflowedXid))
    2351          12 :             suboverflowed = true;
    2352             :     }
    2353             : 
    2354             : 
    2355             :     /*
    2356             :      * Fetch into local variable while ProcArrayLock is held - the
    2357             :      * LWLockRelease below is a barrier, ensuring this happens inside the
    2358             :      * lock.
    2359             :      */
    2360      803980 :     replication_slot_xmin = procArray->replication_slot_xmin;
    2361      803980 :     replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
    2362             : 
    2363      803980 :     if (!TransactionIdIsValid(MyProc->xmin))
    2364      435052 :         MyProc->xmin = TransactionXmin = xmin;
    2365             : 
    2366      803980 :     LWLockRelease(ProcArrayLock);
    2367             : 
    2368             :     /* maintain state for GlobalVis* */
    2369             :     {
    2370             :         TransactionId def_vis_xid;
    2371             :         TransactionId def_vis_xid_data;
    2372             :         FullTransactionId def_vis_fxid;
    2373             :         FullTransactionId def_vis_fxid_data;
    2374             :         FullTransactionId oldestfxid;
    2375             : 
    2376             :         /*
    2377             :          * Converting oldestXid is only safe when xid horizon cannot advance,
    2378             :          * i.e. holding locks. While we don't hold the lock anymore, all the
    2379             :          * necessary data has been gathered with lock held.
    2380             :          */
    2381      803980 :         oldestfxid = FullXidRelativeTo(latest_completed, oldestxid);
    2382             : 
    2383             :         /* Check whether there's a replication slot requiring an older xmin. */
    2384             :         def_vis_xid_data =
    2385      803980 :             TransactionIdOlder(xmin, replication_slot_xmin);
    2386             : 
    2387             :         /*
    2388             :          * Rows in non-shared, non-catalog tables possibly could be vacuumed
    2389             :          * if older than this xid.
    2390             :          */
    2391      803980 :         def_vis_xid = def_vis_xid_data;
    2392             : 
    2393             :         /*
    2394             :          * Check whether there's a replication slot requiring an older catalog
    2395             :          * xmin.
    2396             :          */
    2397             :         def_vis_xid =
    2398      803980 :             TransactionIdOlder(replication_slot_catalog_xmin, def_vis_xid);
    2399             : 
    2400      803980 :         def_vis_fxid = FullXidRelativeTo(latest_completed, def_vis_xid);
    2401      803980 :         def_vis_fxid_data = FullXidRelativeTo(latest_completed, def_vis_xid_data);
    2402             : 
    2403             :         /*
    2404             :          * Check if we can increase upper bound. As a previous
    2405             :          * GlobalVisUpdate() might have computed more aggressive values, don't
    2406             :          * overwrite them if so.
    2407             :          */
    2408             :         GlobalVisSharedRels.definitely_needed =
    2409      803980 :             FullTransactionIdNewer(def_vis_fxid,
    2410             :                                    GlobalVisSharedRels.definitely_needed);
    2411             :         GlobalVisCatalogRels.definitely_needed =
    2412      803980 :             FullTransactionIdNewer(def_vis_fxid,
    2413             :                                    GlobalVisCatalogRels.definitely_needed);
    2414             :         GlobalVisDataRels.definitely_needed =
    2415      803980 :             FullTransactionIdNewer(def_vis_fxid_data,
    2416             :                                    GlobalVisDataRels.definitely_needed);
    2417             :         /* See temp_oldest_nonremovable computation in ComputeXidHorizons() */
    2418      803980 :         if (TransactionIdIsNormal(myxid))
    2419             :             GlobalVisTempRels.definitely_needed =
    2420      113512 :                 FullXidRelativeTo(latest_completed, myxid);
    2421             :         else
    2422             :         {
    2423      690468 :             GlobalVisTempRels.definitely_needed = latest_completed;
    2424      690468 :             FullTransactionIdAdvance(&GlobalVisTempRels.definitely_needed);
    2425             :         }
    2426             : 
    2427             :         /*
    2428             :          * Check if we know that we can initialize or increase the lower
    2429             :          * bound. Currently the only cheap way to do so is to use
    2430             :          * TransamVariables->oldestXid as input.
    2431             :          *
    2432             :          * We should definitely be able to do better. We could e.g. put a
    2433             :          * global lower bound value into TransamVariables.
    2434             :          */
    2435             :         GlobalVisSharedRels.maybe_needed =
    2436      803980 :             FullTransactionIdNewer(GlobalVisSharedRels.maybe_needed,
    2437             :                                    oldestfxid);
    2438             :         GlobalVisCatalogRels.maybe_needed =
    2439      803980 :             FullTransactionIdNewer(GlobalVisCatalogRels.maybe_needed,
    2440             :                                    oldestfxid);
    2441             :         GlobalVisDataRels.maybe_needed =
    2442      803980 :             FullTransactionIdNewer(GlobalVisDataRels.maybe_needed,
    2443             :                                    oldestfxid);
    2444             :         /* accurate value known */
    2445      803980 :         GlobalVisTempRels.maybe_needed = GlobalVisTempRels.definitely_needed;
    2446             :     }
    2447             : 
    2448      803980 :     RecentXmin = xmin;
    2449             :     Assert(TransactionIdPrecedesOrEquals(TransactionXmin, RecentXmin));
    2450             : 
    2451      803980 :     snapshot->xmin = xmin;
    2452      803980 :     snapshot->xmax = xmax;
    2453      803980 :     snapshot->xcnt = count;
    2454      803980 :     snapshot->subxcnt = subcount;
    2455      803980 :     snapshot->suboverflowed = suboverflowed;
    2456      803980 :     snapshot->snapXactCompletionCount = curXactCompletionCount;
    2457             : 
    2458      803980 :     snapshot->curcid = GetCurrentCommandId(false);
    2459             : 
    2460             :     /*
    2461             :      * This is a new snapshot, so set both refcounts are zero, and mark it as
    2462             :      * not copied in persistent memory.
    2463             :      */
    2464      803980 :     snapshot->active_count = 0;
    2465      803980 :     snapshot->regd_count = 0;
    2466      803980 :     snapshot->copied = false;
    2467             : 
    2468      803980 :     return snapshot;
    2469             : }
    2470             : 
    2471             : /*
    2472             :  * ProcArrayInstallImportedXmin -- install imported xmin into MyProc->xmin
    2473             :  *
    2474             :  * This is called when installing a snapshot imported from another
    2475             :  * transaction.  To ensure that OldestXmin doesn't go backwards, we must
    2476             :  * check that the source transaction is still running, and we'd better do
    2477             :  * that atomically with installing the new xmin.
    2478             :  *
    2479             :  * Returns true if successful, false if source xact is no longer running.
    2480             :  */
    2481             : bool
    2482          32 : ProcArrayInstallImportedXmin(TransactionId xmin,
    2483             :                              VirtualTransactionId *sourcevxid)
    2484             : {
    2485          32 :     bool        result = false;
    2486          32 :     ProcArrayStruct *arrayP = procArray;
    2487             :     int         index;
    2488             : 
    2489             :     Assert(TransactionIdIsNormal(xmin));
    2490          32 :     if (!sourcevxid)
    2491           0 :         return false;
    2492             : 
    2493             :     /* Get lock so source xact can't end while we're doing this */
    2494          32 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    2495             : 
    2496             :     /*
    2497             :      * Find the PGPROC entry of the source transaction. (This could use
    2498             :      * GetPGProcByNumber(), unless it's a prepared xact.  But this isn't
    2499             :      * performance critical.)
    2500             :      */
    2501          32 :     for (index = 0; index < arrayP->numProcs; index++)
    2502             :     {
    2503          32 :         int         pgprocno = arrayP->pgprocnos[index];
    2504          32 :         PGPROC     *proc = &allProcs[pgprocno];
    2505          32 :         int         statusFlags = ProcGlobal->statusFlags[index];
    2506             :         TransactionId xid;
    2507             : 
    2508             :         /* Ignore procs running LAZY VACUUM */
    2509          32 :         if (statusFlags & PROC_IN_VACUUM)
    2510           0 :             continue;
    2511             : 
    2512             :         /* We are only interested in the specific virtual transaction. */
    2513          32 :         if (proc->vxid.procNumber != sourcevxid->procNumber)
    2514           0 :             continue;
    2515          32 :         if (proc->vxid.lxid != sourcevxid->localTransactionId)
    2516           0 :             continue;
    2517             : 
    2518             :         /*
    2519             :          * We check the transaction's database ID for paranoia's sake: if it's
    2520             :          * in another DB then its xmin does not cover us.  Caller should have
    2521             :          * detected this already, so we just treat any funny cases as
    2522             :          * "transaction not found".
    2523             :          */
    2524          32 :         if (proc->databaseId != MyDatabaseId)
    2525           0 :             continue;
    2526             : 
    2527             :         /*
    2528             :          * Likewise, let's just make real sure its xmin does cover us.
    2529             :          */
    2530          32 :         xid = UINT32_ACCESS_ONCE(proc->xmin);
    2531          32 :         if (!TransactionIdIsNormal(xid) ||
    2532          32 :             !TransactionIdPrecedesOrEquals(xid, xmin))
    2533           0 :             continue;
    2534             : 
    2535             :         /*
    2536             :          * We're good.  Install the new xmin.  As in GetSnapshotData, set
    2537             :          * TransactionXmin too.  (Note that because snapmgr.c called
    2538             :          * GetSnapshotData first, we'll be overwriting a valid xmin here, so
    2539             :          * we don't check that.)
    2540             :          */
    2541          32 :         MyProc->xmin = TransactionXmin = xmin;
    2542             : 
    2543          32 :         result = true;
    2544          32 :         break;
    2545             :     }
    2546             : 
    2547          32 :     LWLockRelease(ProcArrayLock);
    2548             : 
    2549          32 :     return result;
    2550             : }
    2551             : 
    2552             : /*
    2553             :  * ProcArrayInstallRestoredXmin -- install restored xmin into MyProc->xmin
    2554             :  *
    2555             :  * This is like ProcArrayInstallImportedXmin, but we have a pointer to the
    2556             :  * PGPROC of the transaction from which we imported the snapshot, rather than
    2557             :  * an XID.
    2558             :  *
    2559             :  * Note that this function also copies statusFlags from the source `proc` in
    2560             :  * order to avoid the case where MyProc's xmin needs to be skipped for
    2561             :  * computing xid horizon.
    2562             :  *
    2563             :  * Returns true if successful, false if source xact is no longer running.
    2564             :  */
    2565             : bool
    2566        3268 : ProcArrayInstallRestoredXmin(TransactionId xmin, PGPROC *proc)
    2567             : {
    2568        3268 :     bool        result = false;
    2569             :     TransactionId xid;
    2570             : 
    2571             :     Assert(TransactionIdIsNormal(xmin));
    2572             :     Assert(proc != NULL);
    2573             : 
    2574             :     /*
    2575             :      * Get an exclusive lock so that we can copy statusFlags from source proc.
    2576             :      */
    2577        3268 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    2578             : 
    2579             :     /*
    2580             :      * Be certain that the referenced PGPROC has an advertised xmin which is
    2581             :      * no later than the one we're installing, so that the system-wide xmin
    2582             :      * can't go backwards.  Also, make sure it's running in the same database,
    2583             :      * so that the per-database xmin cannot go backwards.
    2584             :      */
    2585        3268 :     xid = UINT32_ACCESS_ONCE(proc->xmin);
    2586        3268 :     if (proc->databaseId == MyDatabaseId &&
    2587        3268 :         TransactionIdIsNormal(xid) &&
    2588        3268 :         TransactionIdPrecedesOrEquals(xid, xmin))
    2589             :     {
    2590             :         /*
    2591             :          * Install xmin and propagate the statusFlags that affect how the
    2592             :          * value is interpreted by vacuum.
    2593             :          */
    2594        3268 :         MyProc->xmin = TransactionXmin = xmin;
    2595        3268 :         MyProc->statusFlags = (MyProc->statusFlags & ~PROC_XMIN_FLAGS) |
    2596        3268 :             (proc->statusFlags & PROC_XMIN_FLAGS);
    2597        3268 :         ProcGlobal->statusFlags[MyProc->pgxactoff] = MyProc->statusFlags;
    2598             : 
    2599        3268 :         result = true;
    2600             :     }
    2601             : 
    2602        3268 :     LWLockRelease(ProcArrayLock);
    2603             : 
    2604        3268 :     return result;
    2605             : }
    2606             : 
    2607             : /*
    2608             :  * GetRunningTransactionData -- returns information about running transactions.
    2609             :  *
    2610             :  * Similar to GetSnapshotData but returns more information. We include
    2611             :  * all PGPROCs with an assigned TransactionId, even VACUUM processes and
    2612             :  * prepared transactions.
    2613             :  *
    2614             :  * We acquire XidGenLock and ProcArrayLock, but the caller is responsible for
    2615             :  * releasing them. Acquiring XidGenLock ensures that no new XIDs enter the proc
    2616             :  * array until the caller has WAL-logged this snapshot, and releases the
    2617             :  * lock. Acquiring ProcArrayLock ensures that no transactions commit until the
    2618             :  * lock is released.
    2619             :  *
    2620             :  * The returned data structure is statically allocated; caller should not
    2621             :  * modify it, and must not assume it is valid past the next call.
    2622             :  *
    2623             :  * This is never executed during recovery so there is no need to look at
    2624             :  * KnownAssignedXids.
    2625             :  *
    2626             :  * Dummy PGPROCs from prepared transaction are included, meaning that this
    2627             :  * may return entries with duplicated TransactionId values coming from
    2628             :  * transaction finishing to prepare.  Nothing is done about duplicated
    2629             :  * entries here to not hold on ProcArrayLock more than necessary.
    2630             :  *
    2631             :  * We don't worry about updating other counters, we want to keep this as
    2632             :  * simple as possible and leave GetSnapshotData() as the primary code for
    2633             :  * that bookkeeping.
    2634             :  *
    2635             :  * Note that if any transaction has overflowed its cached subtransactions
    2636             :  * then there is no real need include any subtransactions.
    2637             :  */
    2638             : RunningTransactions
    2639        2894 : GetRunningTransactionData(void)
    2640             : {
    2641             :     /* result workspace */
    2642             :     static RunningTransactionsData CurrentRunningXactsData;
    2643             : 
    2644        2894 :     ProcArrayStruct *arrayP = procArray;
    2645        2894 :     TransactionId *other_xids = ProcGlobal->xids;
    2646        2894 :     RunningTransactions CurrentRunningXacts = &CurrentRunningXactsData;
    2647             :     TransactionId latestCompletedXid;
    2648             :     TransactionId oldestRunningXid;
    2649             :     TransactionId oldestDatabaseRunningXid;
    2650             :     TransactionId *xids;
    2651             :     int         index;
    2652             :     int         count;
    2653             :     int         subcount;
    2654             :     bool        suboverflowed;
    2655             : 
    2656             :     Assert(!RecoveryInProgress());
    2657             : 
    2658             :     /*
    2659             :      * Allocating space for maxProcs xids is usually overkill; numProcs would
    2660             :      * be sufficient.  But it seems better to do the malloc while not holding
    2661             :      * the lock, so we can't look at numProcs.  Likewise, we allocate much
    2662             :      * more subxip storage than is probably needed.
    2663             :      *
    2664             :      * Should only be allocated in bgwriter, since only ever executed during
    2665             :      * checkpoints.
    2666             :      */
    2667        2894 :     if (CurrentRunningXacts->xids == NULL)
    2668             :     {
    2669             :         /*
    2670             :          * First call
    2671             :          */
    2672        1112 :         CurrentRunningXacts->xids = (TransactionId *)
    2673        1112 :             malloc(TOTAL_MAX_CACHED_SUBXIDS * sizeof(TransactionId));
    2674        1112 :         if (CurrentRunningXacts->xids == NULL)
    2675           0 :             ereport(ERROR,
    2676             :                     (errcode(ERRCODE_OUT_OF_MEMORY),
    2677             :                      errmsg("out of memory")));
    2678             :     }
    2679             : 
    2680        2894 :     xids = CurrentRunningXacts->xids;
    2681             : 
    2682        2894 :     count = subcount = 0;
    2683        2894 :     suboverflowed = false;
    2684             : 
    2685             :     /*
    2686             :      * Ensure that no xids enter or leave the procarray while we obtain
    2687             :      * snapshot.
    2688             :      */
    2689        2894 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    2690        2894 :     LWLockAcquire(XidGenLock, LW_SHARED);
    2691             : 
    2692        2894 :     latestCompletedXid =
    2693        2894 :         XidFromFullTransactionId(TransamVariables->latestCompletedXid);
    2694        2894 :     oldestDatabaseRunningXid = oldestRunningXid =
    2695        2894 :         XidFromFullTransactionId(TransamVariables->nextXid);
    2696             : 
    2697             :     /*
    2698             :      * Spin over procArray collecting all xids
    2699             :      */
    2700       14302 :     for (index = 0; index < arrayP->numProcs; index++)
    2701             :     {
    2702             :         TransactionId xid;
    2703             : 
    2704             :         /* Fetch xid just once - see GetNewTransactionId */
    2705       11408 :         xid = UINT32_ACCESS_ONCE(other_xids[index]);
    2706             : 
    2707             :         /*
    2708             :          * We don't need to store transactions that don't have a TransactionId
    2709             :          * yet because they will not show as running on a standby server.
    2710             :          */
    2711       11408 :         if (!TransactionIdIsValid(xid))
    2712        9402 :             continue;
    2713             : 
    2714             :         /*
    2715             :          * Be careful not to exclude any xids before calculating the values of
    2716             :          * oldestRunningXid and suboverflowed, since these are used to clean
    2717             :          * up transaction information held on standbys.
    2718             :          */
    2719        2006 :         if (TransactionIdPrecedes(xid, oldestRunningXid))
    2720        1300 :             oldestRunningXid = xid;
    2721             : 
    2722             :         /*
    2723             :          * Also, update the oldest running xid within the current database. As
    2724             :          * fetching pgprocno and PGPROC could cause cache misses, we do cheap
    2725             :          * TransactionId comparison first.
    2726             :          */
    2727        2006 :         if (TransactionIdPrecedes(xid, oldestDatabaseRunningXid))
    2728             :         {
    2729        2006 :             int         pgprocno = arrayP->pgprocnos[index];
    2730        2006 :             PGPROC     *proc = &allProcs[pgprocno];
    2731             : 
    2732        2006 :             if (proc->databaseId == MyDatabaseId)
    2733         426 :                 oldestDatabaseRunningXid = xid;
    2734             :         }
    2735             : 
    2736        2006 :         if (ProcGlobal->subxidStates[index].overflowed)
    2737           4 :             suboverflowed = true;
    2738             : 
    2739             :         /*
    2740             :          * If we wished to exclude xids this would be the right place for it.
    2741             :          * Procs with the PROC_IN_VACUUM flag set don't usually assign xids,
    2742             :          * but they do during truncation at the end when they get the lock and
    2743             :          * truncate, so it is not much of a problem to include them if they
    2744             :          * are seen and it is cleaner to include them.
    2745             :          */
    2746             : 
    2747        2006 :         xids[count++] = xid;
    2748             :     }
    2749             : 
    2750             :     /*
    2751             :      * Spin over procArray collecting all subxids, but only if there hasn't
    2752             :      * been a suboverflow.
    2753             :      */
    2754        2894 :     if (!suboverflowed)
    2755             :     {
    2756        2890 :         XidCacheStatus *other_subxidstates = ProcGlobal->subxidStates;
    2757             : 
    2758       14286 :         for (index = 0; index < arrayP->numProcs; index++)
    2759             :         {
    2760       11396 :             int         pgprocno = arrayP->pgprocnos[index];
    2761       11396 :             PGPROC     *proc = &allProcs[pgprocno];
    2762             :             int         nsubxids;
    2763             : 
    2764             :             /*
    2765             :              * Save subtransaction XIDs. Other backends can't add or remove
    2766             :              * entries while we're holding XidGenLock.
    2767             :              */
    2768       11396 :             nsubxids = other_subxidstates[index].count;
    2769       11396 :             if (nsubxids > 0)
    2770             :             {
    2771             :                 /* barrier not really required, as XidGenLock is held, but ... */
    2772          42 :                 pg_read_barrier();  /* pairs with GetNewTransactionId */
    2773             : 
    2774          42 :                 memcpy(&xids[count], proc->subxids.xids,
    2775             :                        nsubxids * sizeof(TransactionId));
    2776          42 :                 count += nsubxids;
    2777          42 :                 subcount += nsubxids;
    2778             : 
    2779             :                 /*
    2780             :                  * Top-level XID of a transaction is always less than any of
    2781             :                  * its subxids, so we don't need to check if any of the
    2782             :                  * subxids are smaller than oldestRunningXid
    2783             :                  */
    2784             :             }
    2785             :         }
    2786             :     }
    2787             : 
    2788             :     /*
    2789             :      * It's important *not* to include the limits set by slots here because
    2790             :      * snapbuild.c uses oldestRunningXid to manage its xmin horizon. If those
    2791             :      * were to be included here the initial value could never increase because
    2792             :      * of a circular dependency where slots only increase their limits when
    2793             :      * running xacts increases oldestRunningXid and running xacts only
    2794             :      * increases if slots do.
    2795             :      */
    2796             : 
    2797        2894 :     CurrentRunningXacts->xcnt = count - subcount;
    2798        2894 :     CurrentRunningXacts->subxcnt = subcount;
    2799        2894 :     CurrentRunningXacts->subxid_status = suboverflowed ? SUBXIDS_IN_SUBTRANS : SUBXIDS_IN_ARRAY;
    2800        2894 :     CurrentRunningXacts->nextXid = XidFromFullTransactionId(TransamVariables->nextXid);
    2801        2894 :     CurrentRunningXacts->oldestRunningXid = oldestRunningXid;
    2802        2894 :     CurrentRunningXacts->oldestDatabaseRunningXid = oldestDatabaseRunningXid;
    2803        2894 :     CurrentRunningXacts->latestCompletedXid = latestCompletedXid;
    2804             : 
    2805             :     Assert(TransactionIdIsValid(CurrentRunningXacts->nextXid));
    2806             :     Assert(TransactionIdIsValid(CurrentRunningXacts->oldestRunningXid));
    2807             :     Assert(TransactionIdIsNormal(CurrentRunningXacts->latestCompletedXid));
    2808             : 
    2809             :     /* We don't release the locks here, the caller is responsible for that */
    2810             : 
    2811        2894 :     return CurrentRunningXacts;
    2812             : }
    2813             : 
    2814             : /*
    2815             :  * GetOldestActiveTransactionId()
    2816             :  *
    2817             :  * Similar to GetSnapshotData but returns just oldestActiveXid. We include
    2818             :  * all PGPROCs with an assigned TransactionId, even VACUUM processes.
    2819             :  *
    2820             :  * If allDbs is true, we look at all databases, though there is no need to
    2821             :  * include WALSender since this has no effect on hot standby conflicts. If
    2822             :  * allDbs is false, skip processes attached to other databases.
    2823             :  *
    2824             :  * This is never executed during recovery so there is no need to look at
    2825             :  * KnownAssignedXids.
    2826             :  *
    2827             :  * We don't worry about updating other counters, we want to keep this as
    2828             :  * simple as possible and leave GetSnapshotData() as the primary code for
    2829             :  * that bookkeeping.
    2830             :  *
    2831             :  * inCommitOnly indicates getting the oldestActiveXid among the transactions
    2832             :  * in the commit critical section.
    2833             :  */
    2834             : TransactionId
    2835        9088 : GetOldestActiveTransactionId(bool inCommitOnly, bool allDbs)
    2836             : {
    2837        9088 :     ProcArrayStruct *arrayP = procArray;
    2838        9088 :     TransactionId *other_xids = ProcGlobal->xids;
    2839             :     TransactionId oldestRunningXid;
    2840             :     int         index;
    2841             : 
    2842             :     Assert(!RecoveryInProgress());
    2843             : 
    2844             :     /*
    2845             :      * Read nextXid, as the upper bound of what's still active.
    2846             :      *
    2847             :      * Reading a TransactionId is atomic, but we must grab the lock to make
    2848             :      * sure that all XIDs < nextXid are already present in the proc array (or
    2849             :      * have already completed), when we spin over it.
    2850             :      */
    2851        9088 :     LWLockAcquire(XidGenLock, LW_SHARED);
    2852        9088 :     oldestRunningXid = XidFromFullTransactionId(TransamVariables->nextXid);
    2853        9088 :     LWLockRelease(XidGenLock);
    2854             : 
    2855             :     /*
    2856             :      * Spin over procArray collecting all xids and subxids.
    2857             :      */
    2858        9088 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    2859       50224 :     for (index = 0; index < arrayP->numProcs; index++)
    2860             :     {
    2861             :         TransactionId xid;
    2862       41136 :         int         pgprocno = arrayP->pgprocnos[index];
    2863       41136 :         PGPROC     *proc = &allProcs[pgprocno];
    2864             : 
    2865             :         /* Fetch xid just once - see GetNewTransactionId */
    2866       41136 :         xid = UINT32_ACCESS_ONCE(other_xids[index]);
    2867             : 
    2868       41136 :         if (!TransactionIdIsNormal(xid))
    2869       32394 :             continue;
    2870             : 
    2871        8742 :         if (inCommitOnly &&
    2872        6894 :             (proc->delayChkptFlags & DELAY_CHKPT_IN_COMMIT) == 0)
    2873        5110 :             continue;
    2874             : 
    2875        3632 :         if (!allDbs && proc->databaseId != MyDatabaseId)
    2876           0 :             continue;
    2877             : 
    2878        3632 :         if (TransactionIdPrecedes(xid, oldestRunningXid))
    2879        2960 :             oldestRunningXid = xid;
    2880             : 
    2881             :         /*
    2882             :          * Top-level XID of a transaction is always less than any of its
    2883             :          * subxids, so we don't need to check if any of the subxids are
    2884             :          * smaller than oldestRunningXid
    2885             :          */
    2886             :     }
    2887        9088 :     LWLockRelease(ProcArrayLock);
    2888             : 
    2889        9088 :     return oldestRunningXid;
    2890             : }
    2891             : 
    2892             : /*
    2893             :  * GetOldestSafeDecodingTransactionId -- lowest xid not affected by vacuum
    2894             :  *
    2895             :  * Returns the oldest xid that we can guarantee not to have been affected by
    2896             :  * vacuum, i.e. no rows >= that xid have been vacuumed away unless the
    2897             :  * transaction aborted. Note that the value can (and most of the time will) be
    2898             :  * much more conservative than what really has been affected by vacuum, but we
    2899             :  * currently don't have better data available.
    2900             :  *
    2901             :  * This is useful to initialize the cutoff xid after which a new changeset
    2902             :  * extraction replication slot can start decoding changes.
    2903             :  *
    2904             :  * Must be called with ProcArrayLock held either shared or exclusively,
    2905             :  * although most callers will want to use exclusive mode since it is expected
    2906             :  * that the caller will immediately use the xid to peg the xmin horizon.
    2907             :  */
    2908             : TransactionId
    2909        1366 : GetOldestSafeDecodingTransactionId(bool catalogOnly)
    2910             : {
    2911        1366 :     ProcArrayStruct *arrayP = procArray;
    2912             :     TransactionId oldestSafeXid;
    2913             :     int         index;
    2914        1366 :     bool        recovery_in_progress = RecoveryInProgress();
    2915             : 
    2916             :     Assert(LWLockHeldByMe(ProcArrayLock));
    2917             : 
    2918             :     /*
    2919             :      * Acquire XidGenLock, so no transactions can acquire an xid while we're
    2920             :      * running. If no transaction with xid were running concurrently a new xid
    2921             :      * could influence the RecentXmin et al.
    2922             :      *
    2923             :      * We initialize the computation to nextXid since that's guaranteed to be
    2924             :      * a safe, albeit pessimal, value.
    2925             :      */
    2926        1366 :     LWLockAcquire(XidGenLock, LW_SHARED);
    2927        1366 :     oldestSafeXid = XidFromFullTransactionId(TransamVariables->nextXid);
    2928             : 
    2929             :     /*
    2930             :      * If there's already a slot pegging the xmin horizon, we can start with
    2931             :      * that value, it's guaranteed to be safe since it's computed by this
    2932             :      * routine initially and has been enforced since.  We can always use the
    2933             :      * slot's general xmin horizon, but the catalog horizon is only usable
    2934             :      * when only catalog data is going to be looked at.
    2935             :      */
    2936        1824 :     if (TransactionIdIsValid(procArray->replication_slot_xmin) &&
    2937         458 :         TransactionIdPrecedes(procArray->replication_slot_xmin,
    2938             :                               oldestSafeXid))
    2939          24 :         oldestSafeXid = procArray->replication_slot_xmin;
    2940             : 
    2941        1366 :     if (catalogOnly &&
    2942         698 :         TransactionIdIsValid(procArray->replication_slot_catalog_xmin) &&
    2943         140 :         TransactionIdPrecedes(procArray->replication_slot_catalog_xmin,
    2944             :                               oldestSafeXid))
    2945          56 :         oldestSafeXid = procArray->replication_slot_catalog_xmin;
    2946             : 
    2947             :     /*
    2948             :      * If we're not in recovery, we walk over the procarray and collect the
    2949             :      * lowest xid. Since we're called with ProcArrayLock held and have
    2950             :      * acquired XidGenLock, no entries can vanish concurrently, since
    2951             :      * ProcGlobal->xids[i] is only set with XidGenLock held and only cleared
    2952             :      * with ProcArrayLock held.
    2953             :      *
    2954             :      * In recovery we can't lower the safe value besides what we've computed
    2955             :      * above, so we'll have to wait a bit longer there. We unfortunately can
    2956             :      * *not* use KnownAssignedXidsGetOldestXmin() since the KnownAssignedXids
    2957             :      * machinery can miss values and return an older value than is safe.
    2958             :      */
    2959        1366 :     if (!recovery_in_progress)
    2960             :     {
    2961        1302 :         TransactionId *other_xids = ProcGlobal->xids;
    2962             : 
    2963             :         /*
    2964             :          * Spin over procArray collecting min(ProcGlobal->xids[i])
    2965             :          */
    2966        6680 :         for (index = 0; index < arrayP->numProcs; index++)
    2967             :         {
    2968             :             TransactionId xid;
    2969             : 
    2970             :             /* Fetch xid just once - see GetNewTransactionId */
    2971        5378 :             xid = UINT32_ACCESS_ONCE(other_xids[index]);
    2972             : 
    2973        5378 :             if (!TransactionIdIsNormal(xid))
    2974        5360 :                 continue;
    2975             : 
    2976          18 :             if (TransactionIdPrecedes(xid, oldestSafeXid))
    2977          16 :                 oldestSafeXid = xid;
    2978             :         }
    2979             :     }
    2980             : 
    2981        1366 :     LWLockRelease(XidGenLock);
    2982             : 
    2983        1366 :     return oldestSafeXid;
    2984             : }
    2985             : 
    2986             : /*
    2987             :  * GetVirtualXIDsDelayingChkpt -- Get the VXIDs of transactions that are
    2988             :  * delaying checkpoint because they have critical actions in progress.
    2989             :  *
    2990             :  * Constructs an array of VXIDs of transactions that are currently in commit
    2991             :  * critical sections, as shown by having specified delayChkptFlags bits set
    2992             :  * in their PGPROC.
    2993             :  *
    2994             :  * Returns a palloc'd array that should be freed by the caller.
    2995             :  * *nvxids is the number of valid entries.
    2996             :  *
    2997             :  * Note that because backends set or clear delayChkptFlags without holding any
    2998             :  * lock, the result is somewhat indeterminate, but we don't really care.  Even
    2999             :  * in a multiprocessor with delayed writes to shared memory, it should be
    3000             :  * certain that setting of delayChkptFlags will propagate to shared memory
    3001             :  * when the backend takes a lock, so we cannot fail to see a virtual xact as
    3002             :  * delayChkptFlags if it's already inserted its commit record.  Whether it
    3003             :  * takes a little while for clearing of delayChkptFlags to propagate is
    3004             :  * unimportant for correctness.
    3005             :  */
    3006             : VirtualTransactionId *
    3007        6336 : GetVirtualXIDsDelayingChkpt(int *nvxids, int type)
    3008             : {
    3009             :     VirtualTransactionId *vxids;
    3010        6336 :     ProcArrayStruct *arrayP = procArray;
    3011        6336 :     int         count = 0;
    3012             :     int         index;
    3013             : 
    3014             :     Assert(type != 0);
    3015             : 
    3016             :     /* allocate what's certainly enough result space */
    3017        6336 :     vxids = palloc_array(VirtualTransactionId, arrayP->maxProcs);
    3018             : 
    3019        6336 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3020             : 
    3021       21072 :     for (index = 0; index < arrayP->numProcs; index++)
    3022             :     {
    3023       14736 :         int         pgprocno = arrayP->pgprocnos[index];
    3024       14736 :         PGPROC     *proc = &allProcs[pgprocno];
    3025             : 
    3026       14736 :         if ((proc->delayChkptFlags & type) != 0)
    3027             :         {
    3028             :             VirtualTransactionId vxid;
    3029             : 
    3030          72 :             GET_VXID_FROM_PGPROC(vxid, *proc);
    3031          72 :             if (VirtualTransactionIdIsValid(vxid))
    3032          72 :                 vxids[count++] = vxid;
    3033             :         }
    3034             :     }
    3035             : 
    3036        6336 :     LWLockRelease(ProcArrayLock);
    3037             : 
    3038        6336 :     *nvxids = count;
    3039        6336 :     return vxids;
    3040             : }
    3041             : 
    3042             : /*
    3043             :  * HaveVirtualXIDsDelayingChkpt -- Are any of the specified VXIDs delaying?
    3044             :  *
    3045             :  * This is used with the results of GetVirtualXIDsDelayingChkpt to see if any
    3046             :  * of the specified VXIDs are still in critical sections of code.
    3047             :  *
    3048             :  * Note: this is O(N^2) in the number of vxacts that are/were delaying, but
    3049             :  * those numbers should be small enough for it not to be a problem.
    3050             :  */
    3051             : bool
    3052          94 : HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type)
    3053             : {
    3054          94 :     bool        result = false;
    3055          94 :     ProcArrayStruct *arrayP = procArray;
    3056             :     int         index;
    3057             : 
    3058             :     Assert(type != 0);
    3059             : 
    3060          94 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3061             : 
    3062         776 :     for (index = 0; index < arrayP->numProcs; index++)
    3063             :     {
    3064         716 :         int         pgprocno = arrayP->pgprocnos[index];
    3065         716 :         PGPROC     *proc = &allProcs[pgprocno];
    3066             :         VirtualTransactionId vxid;
    3067             : 
    3068         716 :         GET_VXID_FROM_PGPROC(vxid, *proc);
    3069             : 
    3070         716 :         if ((proc->delayChkptFlags & type) != 0 &&
    3071          64 :             VirtualTransactionIdIsValid(vxid))
    3072             :         {
    3073             :             int         i;
    3074             : 
    3075         110 :             for (i = 0; i < nvxids; i++)
    3076             :             {
    3077          80 :                 if (VirtualTransactionIdEquals(vxid, vxids[i]))
    3078             :                 {
    3079          34 :                     result = true;
    3080          34 :                     break;
    3081             :                 }
    3082             :             }
    3083          64 :             if (result)
    3084          34 :                 break;
    3085             :         }
    3086             :     }
    3087             : 
    3088          94 :     LWLockRelease(ProcArrayLock);
    3089             : 
    3090          94 :     return result;
    3091             : }
    3092             : 
    3093             : /*
    3094             :  * ProcNumberGetProc -- get a backend's PGPROC given its proc number
    3095             :  *
    3096             :  * The result may be out of date arbitrarily quickly, so the caller
    3097             :  * must be careful about how this information is used.  NULL is
    3098             :  * returned if the backend is not active.
    3099             :  */
    3100             : PGPROC *
    3101        1150 : ProcNumberGetProc(ProcNumber procNumber)
    3102             : {
    3103             :     PGPROC     *result;
    3104             : 
    3105        1150 :     if (procNumber < 0 || procNumber >= ProcGlobal->allProcCount)
    3106           4 :         return NULL;
    3107        1146 :     result = GetPGProcByNumber(procNumber);
    3108             : 
    3109        1146 :     if (result->pid == 0)
    3110           6 :         return NULL;
    3111             : 
    3112        1140 :     return result;
    3113             : }
    3114             : 
    3115             : /*
    3116             :  * ProcNumberGetTransactionIds -- get a backend's transaction status
    3117             :  *
    3118             :  * Get the xid, xmin, nsubxid and overflow status of the backend.  The
    3119             :  * result may be out of date arbitrarily quickly, so the caller must be
    3120             :  * careful about how this information is used.
    3121             :  */
    3122             : void
    3123       25522 : ProcNumberGetTransactionIds(ProcNumber procNumber, TransactionId *xid,
    3124             :                             TransactionId *xmin, int *nsubxid, bool *overflowed)
    3125             : {
    3126             :     PGPROC     *proc;
    3127             : 
    3128       25522 :     *xid = InvalidTransactionId;
    3129       25522 :     *xmin = InvalidTransactionId;
    3130       25522 :     *nsubxid = 0;
    3131       25522 :     *overflowed = false;
    3132             : 
    3133       25522 :     if (procNumber < 0 || procNumber >= ProcGlobal->allProcCount)
    3134           0 :         return;
    3135       25522 :     proc = GetPGProcByNumber(procNumber);
    3136             : 
    3137             :     /* Need to lock out additions/removals of backends */
    3138       25522 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3139             : 
    3140       25522 :     if (proc->pid != 0)
    3141             :     {
    3142       25522 :         *xid = proc->xid;
    3143       25522 :         *xmin = proc->xmin;
    3144       25522 :         *nsubxid = proc->subxidStatus.count;
    3145       25522 :         *overflowed = proc->subxidStatus.overflowed;
    3146             :     }
    3147             : 
    3148       25522 :     LWLockRelease(ProcArrayLock);
    3149             : }
    3150             : 
    3151             : /*
    3152             :  * BackendPidGetProc -- get a backend's PGPROC given its PID
    3153             :  *
    3154             :  * Returns NULL if not found.  Note that it is up to the caller to be
    3155             :  * sure that the question remains meaningful for long enough for the
    3156             :  * answer to be used ...
    3157             :  */
    3158             : PGPROC *
    3159       28188 : BackendPidGetProc(int pid)
    3160             : {
    3161             :     PGPROC     *result;
    3162             : 
    3163       28188 :     if (pid == 0)               /* never match dummy PGPROCs */
    3164           6 :         return NULL;
    3165             : 
    3166       28182 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3167             : 
    3168       28182 :     result = BackendPidGetProcWithLock(pid);
    3169             : 
    3170       28182 :     LWLockRelease(ProcArrayLock);
    3171             : 
    3172       28182 :     return result;
    3173             : }
    3174             : 
    3175             : /*
    3176             :  * BackendPidGetProcWithLock -- get a backend's PGPROC given its PID
    3177             :  *
    3178             :  * Same as above, except caller must be holding ProcArrayLock.  The found
    3179             :  * entry, if any, can be assumed to be valid as long as the lock remains held.
    3180             :  */
    3181             : PGPROC *
    3182       32336 : BackendPidGetProcWithLock(int pid)
    3183             : {
    3184       32336 :     PGPROC     *result = NULL;
    3185       32336 :     ProcArrayStruct *arrayP = procArray;
    3186             :     int         index;
    3187             : 
    3188       32336 :     if (pid == 0)               /* never match dummy PGPROCs */
    3189           0 :         return NULL;
    3190             : 
    3191      127062 :     for (index = 0; index < arrayP->numProcs; index++)
    3192             :     {
    3193      112844 :         PGPROC     *proc = &allProcs[arrayP->pgprocnos[index]];
    3194             : 
    3195      112844 :         if (proc->pid == pid)
    3196             :         {
    3197       18118 :             result = proc;
    3198       18118 :             break;
    3199             :         }
    3200             :     }
    3201             : 
    3202       32336 :     return result;
    3203             : }
    3204             : 
    3205             : /*
    3206             :  * BackendXidGetPid -- get a backend's pid given its XID
    3207             :  *
    3208             :  * Returns 0 if not found or it's a prepared transaction.  Note that
    3209             :  * it is up to the caller to be sure that the question remains
    3210             :  * meaningful for long enough for the answer to be used ...
    3211             :  *
    3212             :  * Only main transaction Ids are considered.  This function is mainly
    3213             :  * useful for determining what backend owns a lock.
    3214             :  *
    3215             :  * Beware that not every xact has an XID assigned.  However, as long as you
    3216             :  * only call this using an XID found on disk, you're safe.
    3217             :  */
    3218             : int
    3219          60 : BackendXidGetPid(TransactionId xid)
    3220             : {
    3221          60 :     int         result = 0;
    3222          60 :     ProcArrayStruct *arrayP = procArray;
    3223          60 :     TransactionId *other_xids = ProcGlobal->xids;
    3224             :     int         index;
    3225             : 
    3226          60 :     if (xid == InvalidTransactionId)    /* never match invalid xid */
    3227           0 :         return 0;
    3228             : 
    3229          60 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3230             : 
    3231         184 :     for (index = 0; index < arrayP->numProcs; index++)
    3232             :     {
    3233         168 :         if (other_xids[index] == xid)
    3234             :         {
    3235          44 :             int         pgprocno = arrayP->pgprocnos[index];
    3236          44 :             PGPROC     *proc = &allProcs[pgprocno];
    3237             : 
    3238          44 :             result = proc->pid;
    3239          44 :             break;
    3240             :         }
    3241             :     }
    3242             : 
    3243          60 :     LWLockRelease(ProcArrayLock);
    3244             : 
    3245          60 :     return result;
    3246             : }
    3247             : 
    3248             : /*
    3249             :  * IsBackendPid -- is a given pid a running backend
    3250             :  *
    3251             :  * This is not called by the backend, but is called by external modules.
    3252             :  */
    3253             : bool
    3254           4 : IsBackendPid(int pid)
    3255             : {
    3256           4 :     return (BackendPidGetProc(pid) != NULL);
    3257             : }
    3258             : 
    3259             : 
    3260             : /*
    3261             :  * GetCurrentVirtualXIDs -- returns an array of currently active VXIDs.
    3262             :  *
    3263             :  * The array is palloc'd. The number of valid entries is returned into *nvxids.
    3264             :  *
    3265             :  * The arguments allow filtering the set of VXIDs returned.  Our own process
    3266             :  * is always skipped.  In addition:
    3267             :  *  If limitXmin is not InvalidTransactionId, skip processes with
    3268             :  *      xmin > limitXmin.
    3269             :  *  If excludeXmin0 is true, skip processes with xmin = 0.
    3270             :  *  If allDbs is false, skip processes attached to other databases.
    3271             :  *  If excludeVacuum isn't zero, skip processes for which
    3272             :  *      (statusFlags & excludeVacuum) is not zero.
    3273             :  *
    3274             :  * Note: the purpose of the limitXmin and excludeXmin0 parameters is to
    3275             :  * allow skipping backends whose oldest live snapshot is no older than
    3276             :  * some snapshot we have.  Since we examine the procarray with only shared
    3277             :  * lock, there are race conditions: a backend could set its xmin just after
    3278             :  * we look.  Indeed, on multiprocessors with weak memory ordering, the
    3279             :  * other backend could have set its xmin *before* we look.  We know however
    3280             :  * that such a backend must have held shared ProcArrayLock overlapping our
    3281             :  * own hold of ProcArrayLock, else we would see its xmin update.  Therefore,
    3282             :  * any snapshot the other backend is taking concurrently with our scan cannot
    3283             :  * consider any transactions as still running that we think are committed
    3284             :  * (since backends must hold ProcArrayLock exclusive to commit).
    3285             :  */
    3286             : VirtualTransactionId *
    3287         868 : GetCurrentVirtualXIDs(TransactionId limitXmin, bool excludeXmin0,
    3288             :                       bool allDbs, int excludeVacuum,
    3289             :                       int *nvxids)
    3290             : {
    3291             :     VirtualTransactionId *vxids;
    3292         868 :     ProcArrayStruct *arrayP = procArray;
    3293         868 :     int         count = 0;
    3294             :     int         index;
    3295             : 
    3296             :     /* allocate what's certainly enough result space */
    3297         868 :     vxids = palloc_array(VirtualTransactionId, arrayP->maxProcs);
    3298             : 
    3299         868 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3300             : 
    3301        5204 :     for (index = 0; index < arrayP->numProcs; index++)
    3302             :     {
    3303        4336 :         int         pgprocno = arrayP->pgprocnos[index];
    3304        4336 :         PGPROC     *proc = &allProcs[pgprocno];
    3305        4336 :         uint8       statusFlags = ProcGlobal->statusFlags[index];
    3306             : 
    3307        4336 :         if (proc == MyProc)
    3308         868 :             continue;
    3309             : 
    3310        3468 :         if (excludeVacuum & statusFlags)
    3311          36 :             continue;
    3312             : 
    3313        3432 :         if (allDbs || proc->databaseId == MyDatabaseId)
    3314             :         {
    3315             :             /* Fetch xmin just once - might change on us */
    3316        1540 :             TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin);
    3317             : 
    3318        1540 :             if (excludeXmin0 && !TransactionIdIsValid(pxmin))
    3319         866 :                 continue;
    3320             : 
    3321             :             /*
    3322             :              * InvalidTransactionId precedes all other XIDs, so a proc that
    3323             :              * hasn't set xmin yet will not be rejected by this test.
    3324             :              */
    3325        1348 :             if (!TransactionIdIsValid(limitXmin) ||
    3326         674 :                 TransactionIdPrecedesOrEquals(pxmin, limitXmin))
    3327             :             {
    3328             :                 VirtualTransactionId vxid;
    3329             : 
    3330         626 :                 GET_VXID_FROM_PGPROC(vxid, *proc);
    3331         626 :                 if (VirtualTransactionIdIsValid(vxid))
    3332         626 :                     vxids[count++] = vxid;
    3333             :             }
    3334             :         }
    3335             :     }
    3336             : 
    3337         868 :     LWLockRelease(ProcArrayLock);
    3338             : 
    3339         868 :     *nvxids = count;
    3340         868 :     return vxids;
    3341             : }
    3342             : 
    3343             : /*
    3344             :  * GetConflictingVirtualXIDs -- returns an array of currently active VXIDs.
    3345             :  *
    3346             :  * Usage is limited to conflict resolution during recovery on standby servers.
    3347             :  * limitXmin is supplied as either a cutoff with snapshotConflictHorizon
    3348             :  * semantics, or InvalidTransactionId in cases where caller cannot accurately
    3349             :  * determine a safe snapshotConflictHorizon value.
    3350             :  *
    3351             :  * If limitXmin is InvalidTransactionId then we want to kill everybody,
    3352             :  * so we're not worried if they have a snapshot or not, nor does it really
    3353             :  * matter what type of lock we hold.  Caller must avoid calling here with
    3354             :  * snapshotConflictHorizon style cutoffs that were set to InvalidTransactionId
    3355             :  * during original execution, since that actually indicates that there is
    3356             :  * definitely no need for a recovery conflict (the snapshotConflictHorizon
    3357             :  * convention for InvalidTransactionId values is the opposite of our own!).
    3358             :  *
    3359             :  * All callers that are checking xmins always now supply a valid and useful
    3360             :  * value for limitXmin. The limitXmin is always lower than the lowest
    3361             :  * numbered KnownAssignedXid that is not already a FATAL error. This is
    3362             :  * because we only care about cleanup records that are cleaning up tuple
    3363             :  * versions from committed transactions. In that case they will only occur
    3364             :  * at the point where the record is less than the lowest running xid. That
    3365             :  * allows us to say that if any backend takes a snapshot concurrently with
    3366             :  * us then the conflict assessment made here would never include the snapshot
    3367             :  * that is being derived. So we take LW_SHARED on the ProcArray and allow
    3368             :  * concurrent snapshots when limitXmin is valid. We might think about adding
    3369             :  *   Assert(limitXmin < lowest(KnownAssignedXids))
    3370             :  * but that would not be true in the case of FATAL errors lagging in array,
    3371             :  * but we already know those are bogus anyway, so we skip that test.
    3372             :  *
    3373             :  * If dbOid is valid we skip backends attached to other databases.
    3374             :  *
    3375             :  * Be careful to *not* pfree the result from this function. We reuse
    3376             :  * this array sufficiently often that we use malloc for the result.
    3377             :  */
    3378             : VirtualTransactionId *
    3379       26432 : GetConflictingVirtualXIDs(TransactionId limitXmin, Oid dbOid)
    3380             : {
    3381             :     static VirtualTransactionId *vxids;
    3382       26432 :     ProcArrayStruct *arrayP = procArray;
    3383       26432 :     int         count = 0;
    3384             :     int         index;
    3385             : 
    3386             :     /*
    3387             :      * If first time through, get workspace to remember main XIDs in. We
    3388             :      * malloc it permanently to avoid repeated palloc/pfree overhead. Allow
    3389             :      * result space, remembering room for a terminator.
    3390             :      */
    3391       26432 :     if (vxids == NULL)
    3392             :     {
    3393          56 :         vxids = (VirtualTransactionId *)
    3394          56 :             malloc(sizeof(VirtualTransactionId) * (arrayP->maxProcs + 1));
    3395          56 :         if (vxids == NULL)
    3396           0 :             ereport(ERROR,
    3397             :                     (errcode(ERRCODE_OUT_OF_MEMORY),
    3398             :                      errmsg("out of memory")));
    3399             :     }
    3400             : 
    3401       26432 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3402             : 
    3403       26994 :     for (index = 0; index < arrayP->numProcs; index++)
    3404             :     {
    3405         562 :         int         pgprocno = arrayP->pgprocnos[index];
    3406         562 :         PGPROC     *proc = &allProcs[pgprocno];
    3407             : 
    3408             :         /* Exclude prepared transactions */
    3409         562 :         if (proc->pid == 0)
    3410           0 :             continue;
    3411             : 
    3412         562 :         if (!OidIsValid(dbOid) ||
    3413         550 :             proc->databaseId == dbOid)
    3414             :         {
    3415             :             /* Fetch xmin just once - can't change on us, but good coding */
    3416          32 :             TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin);
    3417             : 
    3418             :             /*
    3419             :              * We ignore an invalid pxmin because this means that backend has
    3420             :              * no snapshot currently. We hold a Share lock to avoid contention
    3421             :              * with users taking snapshots.  That is not a problem because the
    3422             :              * current xmin is always at least one higher than the latest
    3423             :              * removed xid, so any new snapshot would never conflict with the
    3424             :              * test here.
    3425             :              */
    3426          32 :             if (!TransactionIdIsValid(limitXmin) ||
    3427           6 :                 (TransactionIdIsValid(pxmin) && !TransactionIdFollows(pxmin, limitXmin)))
    3428             :             {
    3429             :                 VirtualTransactionId vxid;
    3430             : 
    3431           4 :                 GET_VXID_FROM_PGPROC(vxid, *proc);
    3432           4 :                 if (VirtualTransactionIdIsValid(vxid))
    3433           4 :                     vxids[count++] = vxid;
    3434             :             }
    3435             :         }
    3436             :     }
    3437             : 
    3438       26432 :     LWLockRelease(ProcArrayLock);
    3439             : 
    3440             :     /* add the terminator */
    3441       26432 :     vxids[count].procNumber = INVALID_PROC_NUMBER;
    3442       26432 :     vxids[count].localTransactionId = InvalidLocalTransactionId;
    3443             : 
    3444       26432 :     return vxids;
    3445             : }
    3446             : 
    3447             : /*
    3448             :  * CancelVirtualTransaction - used in recovery conflict processing
    3449             :  *
    3450             :  * Returns pid of the process signaled, or 0 if not found.
    3451             :  */
    3452             : pid_t
    3453           6 : CancelVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode)
    3454             : {
    3455           6 :     return SignalVirtualTransaction(vxid, sigmode, true);
    3456             : }
    3457             : 
    3458             : pid_t
    3459          10 : SignalVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode,
    3460             :                          bool conflictPending)
    3461             : {
    3462          10 :     ProcArrayStruct *arrayP = procArray;
    3463             :     int         index;
    3464          10 :     pid_t       pid = 0;
    3465             : 
    3466          10 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3467             : 
    3468          10 :     for (index = 0; index < arrayP->numProcs; index++)
    3469             :     {
    3470          10 :         int         pgprocno = arrayP->pgprocnos[index];
    3471          10 :         PGPROC     *proc = &allProcs[pgprocno];
    3472             :         VirtualTransactionId procvxid;
    3473             : 
    3474          10 :         GET_VXID_FROM_PGPROC(procvxid, *proc);
    3475             : 
    3476          10 :         if (procvxid.procNumber == vxid.procNumber &&
    3477          10 :             procvxid.localTransactionId == vxid.localTransactionId)
    3478             :         {
    3479          10 :             proc->recoveryConflictPending = conflictPending;
    3480          10 :             pid = proc->pid;
    3481          10 :             if (pid != 0)
    3482             :             {
    3483             :                 /*
    3484             :                  * Kill the pid if it's still here. If not, that's what we
    3485             :                  * wanted so ignore any errors.
    3486             :                  */
    3487          10 :                 (void) SendProcSignal(pid, sigmode, vxid.procNumber);
    3488             :             }
    3489          10 :             break;
    3490             :         }
    3491             :     }
    3492             : 
    3493          10 :     LWLockRelease(ProcArrayLock);
    3494             : 
    3495          10 :     return pid;
    3496             : }
    3497             : 
    3498             : /*
    3499             :  * MinimumActiveBackends --- count backends (other than myself) that are
    3500             :  *      in active transactions.  Return true if the count exceeds the
    3501             :  *      minimum threshold passed.  This is used as a heuristic to decide if
    3502             :  *      a pre-XLOG-flush delay is worthwhile during commit.
    3503             :  *
    3504             :  * Do not count backends that are blocked waiting for locks, since they are
    3505             :  * not going to get to run until someone else commits.
    3506             :  */
    3507             : bool
    3508           0 : MinimumActiveBackends(int min)
    3509             : {
    3510           0 :     ProcArrayStruct *arrayP = procArray;
    3511           0 :     int         count = 0;
    3512             :     int         index;
    3513             : 
    3514             :     /* Quick short-circuit if no minimum is specified */
    3515           0 :     if (min == 0)
    3516           0 :         return true;
    3517             : 
    3518             :     /*
    3519             :      * Note: for speed, we don't acquire ProcArrayLock.  This is a little bit
    3520             :      * bogus, but since we are only testing fields for zero or nonzero, it
    3521             :      * should be OK.  The result is only used for heuristic purposes anyway...
    3522             :      */
    3523           0 :     for (index = 0; index < arrayP->numProcs; index++)
    3524             :     {
    3525           0 :         int         pgprocno = arrayP->pgprocnos[index];
    3526           0 :         PGPROC     *proc = &allProcs[pgprocno];
    3527             : 
    3528             :         /*
    3529             :          * Since we're not holding a lock, need to be prepared to deal with
    3530             :          * garbage, as someone could have incremented numProcs but not yet
    3531             :          * filled the structure.
    3532             :          *
    3533             :          * If someone just decremented numProcs, 'proc' could also point to a
    3534             :          * PGPROC entry that's no longer in the array. It still points to a
    3535             :          * PGPROC struct, though, because freed PGPROC entries just go to the
    3536             :          * free list and are recycled. Its contents are nonsense in that case,
    3537             :          * but that's acceptable for this function.
    3538             :          */
    3539           0 :         if (pgprocno == -1)
    3540           0 :             continue;           /* do not count deleted entries */
    3541           0 :         if (proc == MyProc)
    3542           0 :             continue;           /* do not count myself */
    3543           0 :         if (proc->xid == InvalidTransactionId)
    3544           0 :             continue;           /* do not count if no XID assigned */
    3545           0 :         if (proc->pid == 0)
    3546           0 :             continue;           /* do not count prepared xacts */
    3547           0 :         if (proc->waitLock != NULL)
    3548           0 :             continue;           /* do not count if blocked on a lock */
    3549           0 :         count++;
    3550           0 :         if (count >= min)
    3551           0 :             break;
    3552             :     }
    3553             : 
    3554           0 :     return count >= min;
    3555             : }
    3556             : 
    3557             : /*
    3558             :  * CountDBBackends --- count backends that are using specified database
    3559             :  */
    3560             : int
    3561          32 : CountDBBackends(Oid databaseid)
    3562             : {
    3563          32 :     ProcArrayStruct *arrayP = procArray;
    3564          32 :     int         count = 0;
    3565             :     int         index;
    3566             : 
    3567          32 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3568             : 
    3569          48 :     for (index = 0; index < arrayP->numProcs; index++)
    3570             :     {
    3571          16 :         int         pgprocno = arrayP->pgprocnos[index];
    3572          16 :         PGPROC     *proc = &allProcs[pgprocno];
    3573             : 
    3574          16 :         if (proc->pid == 0)
    3575           0 :             continue;           /* do not count prepared xacts */
    3576          16 :         if (!OidIsValid(databaseid) ||
    3577          16 :             proc->databaseId == databaseid)
    3578           4 :             count++;
    3579             :     }
    3580             : 
    3581          32 :     LWLockRelease(ProcArrayLock);
    3582             : 
    3583          32 :     return count;
    3584             : }
    3585             : 
    3586             : /*
    3587             :  * CountDBConnections --- counts database backends (only regular backends)
    3588             :  */
    3589             : int
    3590           0 : CountDBConnections(Oid databaseid)
    3591             : {
    3592           0 :     ProcArrayStruct *arrayP = procArray;
    3593           0 :     int         count = 0;
    3594             :     int         index;
    3595             : 
    3596           0 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3597             : 
    3598           0 :     for (index = 0; index < arrayP->numProcs; index++)
    3599             :     {
    3600           0 :         int         pgprocno = arrayP->pgprocnos[index];
    3601           0 :         PGPROC     *proc = &allProcs[pgprocno];
    3602             : 
    3603           0 :         if (proc->pid == 0)
    3604           0 :             continue;           /* do not count prepared xacts */
    3605           0 :         if (!proc->isRegularBackend)
    3606           0 :             continue;           /* count only regular backend processes */
    3607           0 :         if (!OidIsValid(databaseid) ||
    3608           0 :             proc->databaseId == databaseid)
    3609           0 :             count++;
    3610             :     }
    3611             : 
    3612           0 :     LWLockRelease(ProcArrayLock);
    3613             : 
    3614           0 :     return count;
    3615             : }
    3616             : 
    3617             : /*
    3618             :  * CancelDBBackends --- cancel backends that are using specified database
    3619             :  */
    3620             : void
    3621          20 : CancelDBBackends(Oid databaseid, ProcSignalReason sigmode, bool conflictPending)
    3622             : {
    3623          20 :     ProcArrayStruct *arrayP = procArray;
    3624             :     int         index;
    3625             : 
    3626             :     /* tell all backends to die */
    3627          20 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    3628             : 
    3629          40 :     for (index = 0; index < arrayP->numProcs; index++)
    3630             :     {
    3631          20 :         int         pgprocno = arrayP->pgprocnos[index];
    3632          20 :         PGPROC     *proc = &allProcs[pgprocno];
    3633             : 
    3634          20 :         if (databaseid == InvalidOid || proc->databaseId == databaseid)
    3635             :         {
    3636             :             VirtualTransactionId procvxid;
    3637             :             pid_t       pid;
    3638             : 
    3639          20 :             GET_VXID_FROM_PGPROC(procvxid, *proc);
    3640             : 
    3641          20 :             proc->recoveryConflictPending = conflictPending;
    3642          20 :             pid = proc->pid;
    3643          20 :             if (pid != 0)
    3644             :             {
    3645             :                 /*
    3646             :                  * Kill the pid if it's still here. If not, that's what we
    3647             :                  * wanted so ignore any errors.
    3648             :                  */
    3649          20 :                 (void) SendProcSignal(pid, sigmode, procvxid.procNumber);
    3650             :             }
    3651             :         }
    3652             :     }
    3653             : 
    3654          20 :     LWLockRelease(ProcArrayLock);
    3655          20 : }
    3656             : 
    3657             : /*
    3658             :  * CountUserBackends --- count backends that are used by specified user
    3659             :  * (only regular backends, not any type of background worker)
    3660             :  */
    3661             : int
    3662           0 : CountUserBackends(Oid roleid)
    3663             : {
    3664           0 :     ProcArrayStruct *arrayP = procArray;
    3665           0 :     int         count = 0;
    3666             :     int         index;
    3667             : 
    3668           0 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3669             : 
    3670           0 :     for (index = 0; index < arrayP->numProcs; index++)
    3671             :     {
    3672           0 :         int         pgprocno = arrayP->pgprocnos[index];
    3673           0 :         PGPROC     *proc = &allProcs[pgprocno];
    3674             : 
    3675           0 :         if (proc->pid == 0)
    3676           0 :             continue;           /* do not count prepared xacts */
    3677           0 :         if (!proc->isRegularBackend)
    3678           0 :             continue;           /* count only regular backend processes */
    3679           0 :         if (proc->roleId == roleid)
    3680           0 :             count++;
    3681             :     }
    3682             : 
    3683           0 :     LWLockRelease(ProcArrayLock);
    3684             : 
    3685           0 :     return count;
    3686             : }
    3687             : 
    3688             : /*
    3689             :  * CountOtherDBBackends -- check for other backends running in the given DB
    3690             :  *
    3691             :  * If there are other backends in the DB, we will wait a maximum of 5 seconds
    3692             :  * for them to exit (or 0.3s for testing purposes).  Autovacuum backends are
    3693             :  * encouraged to exit early by sending them SIGTERM, but normal user backends
    3694             :  * are just waited for.  If background workers connected to this database are
    3695             :  * marked as interruptible, they are terminated.
    3696             :  *
    3697             :  * The current backend is always ignored; it is caller's responsibility to
    3698             :  * check whether the current backend uses the given DB, if it's important.
    3699             :  *
    3700             :  * Returns true if there are (still) other backends in the DB, false if not.
    3701             :  * Also, *nbackends and *nprepared are set to the number of other backends
    3702             :  * and prepared transactions in the DB, respectively.
    3703             :  *
    3704             :  * This function is used to interlock DROP DATABASE and related commands
    3705             :  * against there being any active backends in the target DB --- dropping the
    3706             :  * DB while active backends remain would be a Bad Thing.  Note that we cannot
    3707             :  * detect here the possibility of a newly-started backend that is trying to
    3708             :  * connect to the doomed database, so additional interlocking is needed during
    3709             :  * backend startup.  The caller should normally hold an exclusive lock on the
    3710             :  * target DB before calling this, which is one reason we mustn't wait
    3711             :  * indefinitely.
    3712             :  */
    3713             : bool
    3714         918 : CountOtherDBBackends(Oid databaseId, int *nbackends, int *nprepared)
    3715             : {
    3716         918 :     ProcArrayStruct *arrayP = procArray;
    3717             : 
    3718             : #define MAXAUTOVACPIDS  10      /* max autovacs to SIGTERM per iteration */
    3719             :     int         autovac_pids[MAXAUTOVACPIDS];
    3720             : 
    3721             :     /*
    3722             :      * Retry up to 50 times with 100ms between attempts (max 5s total). Can be
    3723             :      * reduced to 3 attempts (max 0.3s total) to speed up tests.
    3724             :      */
    3725         918 :     int         ntries = 50;
    3726             : 
    3727             : #ifdef USE_INJECTION_POINTS
    3728         918 :     if (IS_INJECTION_POINT_ATTACHED("procarray-reduce-count"))
    3729           2 :         ntries = 3;
    3730             : #endif
    3731             : 
    3732         934 :     for (int tries = 0; tries < ntries; tries++)
    3733             :     {
    3734         932 :         int         nautovacs = 0;
    3735         932 :         bool        found = false;
    3736             :         int         index;
    3737             : 
    3738         932 :         CHECK_FOR_INTERRUPTS();
    3739             : 
    3740         932 :         *nbackends = *nprepared = 0;
    3741             : 
    3742         932 :         LWLockAcquire(ProcArrayLock, LW_SHARED);
    3743             : 
    3744        3454 :         for (index = 0; index < arrayP->numProcs; index++)
    3745             :         {
    3746        2522 :             int         pgprocno = arrayP->pgprocnos[index];
    3747        2522 :             PGPROC     *proc = &allProcs[pgprocno];
    3748        2522 :             uint8       statusFlags = ProcGlobal->statusFlags[index];
    3749             : 
    3750        2522 :             if (proc->databaseId != databaseId)
    3751        2300 :                 continue;
    3752         222 :             if (proc == MyProc)
    3753         206 :                 continue;
    3754             : 
    3755          16 :             found = true;
    3756             : 
    3757          16 :             if (proc->pid == 0)
    3758           0 :                 (*nprepared)++;
    3759             :             else
    3760             :             {
    3761          16 :                 (*nbackends)++;
    3762          16 :                 if ((statusFlags & PROC_IS_AUTOVACUUM) &&
    3763             :                     nautovacs < MAXAUTOVACPIDS)
    3764           0 :                     autovac_pids[nautovacs++] = proc->pid;
    3765             :             }
    3766             :         }
    3767             : 
    3768         932 :         LWLockRelease(ProcArrayLock);
    3769             : 
    3770         932 :         if (!found)
    3771         916 :             return false;       /* no conflicting backends, so done */
    3772             : 
    3773             :         /*
    3774             :          * Send SIGTERM to any conflicting autovacuums before sleeping. We
    3775             :          * postpone this step until after the loop because we don't want to
    3776             :          * hold ProcArrayLock while issuing kill(). We have no idea what might
    3777             :          * block kill() inside the kernel...
    3778             :          */
    3779          16 :         for (index = 0; index < nautovacs; index++)
    3780           0 :             (void) kill(autovac_pids[index], SIGTERM);  /* ignore any error */
    3781             : 
    3782             :         /*
    3783             :          * Terminate all background workers for this database, if they have
    3784             :          * requested it (BGWORKER_INTERRUPTIBLE).
    3785             :          */
    3786          16 :         TerminateBackgroundWorkersForDatabase(databaseId);
    3787             : 
    3788             :         /* sleep, then try again */
    3789          16 :         pg_usleep(100 * 1000L); /* 100ms */
    3790             :     }
    3791             : 
    3792           2 :     return true;                /* timed out, still conflicts */
    3793             : }
    3794             : 
    3795             : /*
    3796             :  * Terminate existing connections to the specified database. This routine
    3797             :  * is used by the DROP DATABASE command when user has asked to forcefully
    3798             :  * drop the database.
    3799             :  *
    3800             :  * The current backend is always ignored; it is caller's responsibility to
    3801             :  * check whether the current backend uses the given DB, if it's important.
    3802             :  *
    3803             :  * If the target database has a prepared transaction or permissions checks
    3804             :  * fail for a connection, this fails without terminating anything.
    3805             :  */
    3806             : void
    3807           2 : TerminateOtherDBBackends(Oid databaseId)
    3808             : {
    3809           2 :     ProcArrayStruct *arrayP = procArray;
    3810           2 :     List       *pids = NIL;
    3811           2 :     int         nprepared = 0;
    3812             :     int         i;
    3813             : 
    3814           2 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3815             : 
    3816           8 :     for (i = 0; i < procArray->numProcs; i++)
    3817             :     {
    3818           6 :         int         pgprocno = arrayP->pgprocnos[i];
    3819           6 :         PGPROC     *proc = &allProcs[pgprocno];
    3820             : 
    3821           6 :         if (proc->databaseId != databaseId)
    3822           6 :             continue;
    3823           0 :         if (proc == MyProc)
    3824           0 :             continue;
    3825             : 
    3826           0 :         if (proc->pid != 0)
    3827           0 :             pids = lappend_int(pids, proc->pid);
    3828             :         else
    3829           0 :             nprepared++;
    3830             :     }
    3831             : 
    3832           2 :     LWLockRelease(ProcArrayLock);
    3833             : 
    3834           2 :     if (nprepared > 0)
    3835           0 :         ereport(ERROR,
    3836             :                 (errcode(ERRCODE_OBJECT_IN_USE),
    3837             :                  errmsg("database \"%s\" is being used by prepared transactions",
    3838             :                         get_database_name(databaseId)),
    3839             :                  errdetail_plural("There is %d prepared transaction using the database.",
    3840             :                                   "There are %d prepared transactions using the database.",
    3841             :                                   nprepared,
    3842             :                                   nprepared)));
    3843             : 
    3844           2 :     if (pids)
    3845             :     {
    3846             :         ListCell   *lc;
    3847             : 
    3848             :         /*
    3849             :          * Permissions checks relax the pg_terminate_backend checks in two
    3850             :          * ways, both by omitting the !OidIsValid(proc->roleId) check:
    3851             :          *
    3852             :          * - Accept terminating autovacuum workers, since DROP DATABASE
    3853             :          * without FORCE terminates them.
    3854             :          *
    3855             :          * - Accept terminating bgworkers.  For bgworker authors, it's
    3856             :          * convenient to be able to recommend FORCE if a worker is blocking
    3857             :          * DROP DATABASE unexpectedly.
    3858             :          *
    3859             :          * Unlike pg_terminate_backend, we don't raise some warnings - like
    3860             :          * "PID %d is not a PostgreSQL server process", because for us already
    3861             :          * finished session is not a problem.
    3862             :          */
    3863           0 :         foreach(lc, pids)
    3864             :         {
    3865           0 :             int         pid = lfirst_int(lc);
    3866           0 :             PGPROC     *proc = BackendPidGetProc(pid);
    3867             : 
    3868           0 :             if (proc != NULL)
    3869             :             {
    3870           0 :                 if (superuser_arg(proc->roleId) && !superuser())
    3871           0 :                     ereport(ERROR,
    3872             :                             (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
    3873             :                              errmsg("permission denied to terminate process"),
    3874             :                              errdetail("Only roles with the %s attribute may terminate processes of roles with the %s attribute.",
    3875             :                                        "SUPERUSER", "SUPERUSER")));
    3876             : 
    3877           0 :                 if (!has_privs_of_role(GetUserId(), proc->roleId) &&
    3878           0 :                     !has_privs_of_role(GetUserId(), ROLE_PG_SIGNAL_BACKEND))
    3879           0 :                     ereport(ERROR,
    3880             :                             (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
    3881             :                              errmsg("permission denied to terminate process"),
    3882             :                              errdetail("Only roles with privileges of the role whose process is being terminated or with privileges of the \"%s\" role may terminate this process.",
    3883             :                                        "pg_signal_backend")));
    3884             :             }
    3885             :         }
    3886             : 
    3887             :         /*
    3888             :          * There's a race condition here: once we release the ProcArrayLock,
    3889             :          * it's possible for the session to exit before we issue kill.  That
    3890             :          * race condition possibility seems too unlikely to worry about.  See
    3891             :          * pg_signal_backend.
    3892             :          */
    3893           0 :         foreach(lc, pids)
    3894             :         {
    3895           0 :             int         pid = lfirst_int(lc);
    3896           0 :             PGPROC     *proc = BackendPidGetProc(pid);
    3897             : 
    3898           0 :             if (proc != NULL)
    3899             :             {
    3900             :                 /*
    3901             :                  * If we have setsid(), signal the backend's whole process
    3902             :                  * group
    3903             :                  */
    3904             : #ifdef HAVE_SETSID
    3905           0 :                 (void) kill(-pid, SIGTERM);
    3906             : #else
    3907             :                 (void) kill(pid, SIGTERM);
    3908             : #endif
    3909             :             }
    3910             :         }
    3911             :     }
    3912           2 : }
    3913             : 
    3914             : /*
    3915             :  * ProcArraySetReplicationSlotXmin
    3916             :  *
    3917             :  * Install limits to future computations of the xmin horizon to prevent vacuum
    3918             :  * and HOT pruning from removing affected rows still needed by clients with
    3919             :  * replication slots.
    3920             :  */
    3921             : void
    3922        4862 : ProcArraySetReplicationSlotXmin(TransactionId xmin, TransactionId catalog_xmin,
    3923             :                                 bool already_locked)
    3924             : {
    3925             :     Assert(!already_locked || LWLockHeldByMe(ProcArrayLock));
    3926             : 
    3927        4862 :     if (!already_locked)
    3928        3896 :         LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    3929             : 
    3930        4862 :     procArray->replication_slot_xmin = xmin;
    3931        4862 :     procArray->replication_slot_catalog_xmin = catalog_xmin;
    3932             : 
    3933        4862 :     if (!already_locked)
    3934        3896 :         LWLockRelease(ProcArrayLock);
    3935             : 
    3936        4862 :     elog(DEBUG1, "xmin required by slots: data %u, catalog %u",
    3937             :          xmin, catalog_xmin);
    3938        4862 : }
    3939             : 
    3940             : /*
    3941             :  * ProcArrayGetReplicationSlotXmin
    3942             :  *
    3943             :  * Return the current slot xmin limits. That's useful to be able to remove
    3944             :  * data that's older than those limits.
    3945             :  */
    3946             : void
    3947          44 : ProcArrayGetReplicationSlotXmin(TransactionId *xmin,
    3948             :                                 TransactionId *catalog_xmin)
    3949             : {
    3950          44 :     LWLockAcquire(ProcArrayLock, LW_SHARED);
    3951             : 
    3952          44 :     if (xmin != NULL)
    3953           0 :         *xmin = procArray->replication_slot_xmin;
    3954             : 
    3955          44 :     if (catalog_xmin != NULL)
    3956          44 :         *catalog_xmin = procArray->replication_slot_catalog_xmin;
    3957             : 
    3958          44 :     LWLockRelease(ProcArrayLock);
    3959          44 : }
    3960             : 
    3961             : /*
    3962             :  * XidCacheRemoveRunningXids
    3963             :  *
    3964             :  * Remove a bunch of TransactionIds from the list of known-running
    3965             :  * subtransactions for my backend.  Both the specified xid and those in
    3966             :  * the xids[] array (of length nxids) are removed from the subxids cache.
    3967             :  * latestXid must be the latest XID among the group.
    3968             :  */
    3969             : void
    3970        1336 : XidCacheRemoveRunningXids(TransactionId xid,
    3971             :                           int nxids, const TransactionId *xids,
    3972             :                           TransactionId latestXid)
    3973             : {
    3974             :     int         i,
    3975             :                 j;
    3976             :     XidCacheStatus *mysubxidstat;
    3977             : 
    3978             :     Assert(TransactionIdIsValid(xid));
    3979             : 
    3980             :     /*
    3981             :      * We must hold ProcArrayLock exclusively in order to remove transactions
    3982             :      * from the PGPROC array.  (See src/backend/access/transam/README.)  It's
    3983             :      * possible this could be relaxed since we know this routine is only used
    3984             :      * to abort subtransactions, but pending closer analysis we'd best be
    3985             :      * conservative.
    3986             :      *
    3987             :      * Note that we do not have to be careful about memory ordering of our own
    3988             :      * reads wrt. GetNewTransactionId() here - only this process can modify
    3989             :      * relevant fields of MyProc/ProcGlobal->xids[].  But we do have to be
    3990             :      * careful about our own writes being well ordered.
    3991             :      */
    3992        1336 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    3993             : 
    3994        1336 :     mysubxidstat = &ProcGlobal->subxidStates[MyProc->pgxactoff];
    3995             : 
    3996             :     /*
    3997             :      * Under normal circumstances xid and xids[] will be in increasing order,
    3998             :      * as will be the entries in subxids.  Scan backwards to avoid O(N^2)
    3999             :      * behavior when removing a lot of xids.
    4000             :      */
    4001        1396 :     for (i = nxids - 1; i >= 0; i--)
    4002             :     {
    4003          60 :         TransactionId anxid = xids[i];
    4004             : 
    4005          60 :         for (j = MyProc->subxidStatus.count - 1; j >= 0; j--)
    4006             :         {
    4007          60 :             if (TransactionIdEquals(MyProc->subxids.xids[j], anxid))
    4008             :             {
    4009          60 :                 MyProc->subxids.xids[j] = MyProc->subxids.xids[MyProc->subxidStatus.count - 1];
    4010          60 :                 pg_write_barrier();
    4011          60 :                 mysubxidstat->count--;
    4012          60 :                 MyProc->subxidStatus.count--;
    4013          60 :                 break;
    4014             :             }
    4015             :         }
    4016             : 
    4017             :         /*
    4018             :          * Ordinarily we should have found it, unless the cache has
    4019             :          * overflowed. However it's also possible for this routine to be
    4020             :          * invoked multiple times for the same subtransaction, in case of an
    4021             :          * error during AbortSubTransaction.  So instead of Assert, emit a
    4022             :          * debug warning.
    4023             :          */
    4024          60 :         if (j < 0 && !MyProc->subxidStatus.overflowed)
    4025           0 :             elog(WARNING, "did not find subXID %u in MyProc", anxid);
    4026             :     }
    4027             : 
    4028        1464 :     for (j = MyProc->subxidStatus.count - 1; j >= 0; j--)
    4029             :     {
    4030        1462 :         if (TransactionIdEquals(MyProc->subxids.xids[j], xid))
    4031             :         {
    4032        1334 :             MyProc->subxids.xids[j] = MyProc->subxids.xids[MyProc->subxidStatus.count - 1];
    4033        1334 :             pg_write_barrier();
    4034        1334 :             mysubxidstat->count--;
    4035        1334 :             MyProc->subxidStatus.count--;
    4036        1334 :             break;
    4037             :         }
    4038             :     }
    4039             :     /* Ordinarily we should have found it, unless the cache has overflowed */
    4040        1336 :     if (j < 0 && !MyProc->subxidStatus.overflowed)
    4041           0 :         elog(WARNING, "did not find subXID %u in MyProc", xid);
    4042             : 
    4043             :     /* Also advance global latestCompletedXid while holding the lock */
    4044        1336 :     MaintainLatestCompletedXid(latestXid);
    4045             : 
    4046             :     /* ... and xactCompletionCount */
    4047        1336 :     TransamVariables->xactCompletionCount++;
    4048             : 
    4049        1336 :     LWLockRelease(ProcArrayLock);
    4050        1336 : }
    4051             : 
    4052             : #ifdef XIDCACHE_DEBUG
    4053             : 
    4054             : /*
    4055             :  * Print stats about effectiveness of XID cache
    4056             :  */
    4057             : static void
    4058             : DisplayXidCache(void)
    4059             : {
    4060             :     fprintf(stderr,
    4061             :             "XidCache: xmin: %ld, known: %ld, myxact: %ld, latest: %ld, mainxid: %ld, childxid: %ld, knownassigned: %ld, nooflo: %ld, slow: %ld\n",
    4062             :             xc_by_recent_xmin,
    4063             :             xc_by_known_xact,
    4064             :             xc_by_my_xact,
    4065             :             xc_by_latest_xid,
    4066             :             xc_by_main_xid,
    4067             :             xc_by_child_xid,
    4068             :             xc_by_known_assigned,
    4069             :             xc_no_overflow,
    4070             :             xc_slow_answer);
    4071             : }
    4072             : #endif                          /* XIDCACHE_DEBUG */
    4073             : 
    4074             : /*
    4075             :  * If rel != NULL, return test state appropriate for relation, otherwise
    4076             :  * return state usable for all relations.  The latter may consider XIDs as
    4077             :  * not-yet-visible-to-everyone that a state for a specific relation would
    4078             :  * already consider visible-to-everyone.
    4079             :  *
    4080             :  * This needs to be called while a snapshot is active or registered, otherwise
    4081             :  * there are wraparound and other dangers.
    4082             :  *
    4083             :  * See comment for GlobalVisState for details.
    4084             :  */
    4085             : GlobalVisState *
    4086    28966476 : GlobalVisTestFor(Relation rel)
    4087             : {
    4088    28966476 :     GlobalVisState *state = NULL;
    4089             : 
    4090             :     /* XXX: we should assert that a snapshot is pushed or registered */
    4091             :     Assert(RecentXmin);
    4092             : 
    4093    28966476 :     switch (GlobalVisHorizonKindForRel(rel))
    4094             :     {
    4095      168380 :         case VISHORIZON_SHARED:
    4096      168380 :             state = &GlobalVisSharedRels;
    4097      168380 :             break;
    4098     6105292 :         case VISHORIZON_CATALOG:
    4099     6105292 :             state = &GlobalVisCatalogRels;
    4100     6105292 :             break;
    4101    22608886 :         case VISHORIZON_DATA:
    4102    22608886 :             state = &GlobalVisDataRels;
    4103    22608886 :             break;
    4104       83918 :         case VISHORIZON_TEMP:
    4105       83918 :             state = &GlobalVisTempRels;
    4106       83918 :             break;
    4107             :     }
    4108             : 
    4109             :     Assert(FullTransactionIdIsValid(state->definitely_needed) &&
    4110             :            FullTransactionIdIsValid(state->maybe_needed));
    4111             : 
    4112    28966476 :     return state;
    4113             : }
    4114             : 
    4115             : /*
    4116             :  * Return true if it's worth updating the accurate maybe_needed boundary.
    4117             :  *
    4118             :  * As it is somewhat expensive to determine xmin horizons, we don't want to
    4119             :  * repeatedly do so when there is a low likelihood of it being beneficial.
    4120             :  *
    4121             :  * The current heuristic is that we update only if RecentXmin has changed
    4122             :  * since the last update. If the oldest currently running transaction has not
    4123             :  * finished, it is unlikely that recomputing the horizon would be useful.
    4124             :  */
    4125             : static bool
    4126      901586 : GlobalVisTestShouldUpdate(GlobalVisState *state)
    4127             : {
    4128             :     /* hasn't been updated yet */
    4129      901586 :     if (!TransactionIdIsValid(ComputeXidHorizonsResultLastXmin))
    4130       17850 :         return true;
    4131             : 
    4132             :     /*
    4133             :      * If the maybe_needed/definitely_needed boundaries are the same, it's
    4134             :      * unlikely to be beneficial to refresh boundaries.
    4135             :      */
    4136      883736 :     if (FullTransactionIdFollowsOrEquals(state->maybe_needed,
    4137             :                                          state->definitely_needed))
    4138           0 :         return false;
    4139             : 
    4140             :     /* does the last snapshot built have a different xmin? */
    4141      883736 :     return RecentXmin != ComputeXidHorizonsResultLastXmin;
    4142             : }
    4143             : 
    4144             : static void
    4145      341476 : GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons)
    4146             : {
    4147             :     GlobalVisSharedRels.maybe_needed =
    4148      341476 :         FullXidRelativeTo(horizons->latest_completed,
    4149             :                           horizons->shared_oldest_nonremovable);
    4150             :     GlobalVisCatalogRels.maybe_needed =
    4151      341476 :         FullXidRelativeTo(horizons->latest_completed,
    4152             :                           horizons->catalog_oldest_nonremovable);
    4153             :     GlobalVisDataRels.maybe_needed =
    4154      341476 :         FullXidRelativeTo(horizons->latest_completed,
    4155             :                           horizons->data_oldest_nonremovable);
    4156             :     GlobalVisTempRels.maybe_needed =
    4157      341476 :         FullXidRelativeTo(horizons->latest_completed,
    4158             :                           horizons->temp_oldest_nonremovable);
    4159             : 
    4160             :     /*
    4161             :      * In longer running transactions it's possible that transactions we
    4162             :      * previously needed to treat as running aren't around anymore. So update
    4163             :      * definitely_needed to not be earlier than maybe_needed.
    4164             :      */
    4165             :     GlobalVisSharedRels.definitely_needed =
    4166      341476 :         FullTransactionIdNewer(GlobalVisSharedRels.maybe_needed,
    4167             :                                GlobalVisSharedRels.definitely_needed);
    4168             :     GlobalVisCatalogRels.definitely_needed =
    4169      341476 :         FullTransactionIdNewer(GlobalVisCatalogRels.maybe_needed,
    4170             :                                GlobalVisCatalogRels.definitely_needed);
    4171             :     GlobalVisDataRels.definitely_needed =
    4172      341476 :         FullTransactionIdNewer(GlobalVisDataRels.maybe_needed,
    4173             :                                GlobalVisDataRels.definitely_needed);
    4174      341476 :     GlobalVisTempRels.definitely_needed = GlobalVisTempRels.maybe_needed;
    4175             : 
    4176      341476 :     ComputeXidHorizonsResultLastXmin = RecentXmin;
    4177      341476 : }
    4178             : 
    4179             : /*
    4180             :  * Update boundaries in GlobalVis{Shared,Catalog, Data}Rels
    4181             :  * using ComputeXidHorizons().
    4182             :  */
    4183             : static void
    4184      106990 : GlobalVisUpdate(void)
    4185             : {
    4186             :     ComputeXidHorizonsResult horizons;
    4187             : 
    4188             :     /* updates the horizons as a side-effect */
    4189      106990 :     ComputeXidHorizons(&horizons);
    4190      106990 : }
    4191             : 
    4192             : /*
    4193             :  * Return true if no snapshot still considers fxid to be running.
    4194             :  *
    4195             :  * The state passed needs to have been initialized for the relation fxid is
    4196             :  * from (NULL is also OK), otherwise the result may not be correct.
    4197             :  *
    4198             :  * See comment for GlobalVisState for details.
    4199             :  */
    4200             : bool
    4201    19486982 : GlobalVisTestIsRemovableFullXid(GlobalVisState *state,
    4202             :                                 FullTransactionId fxid)
    4203             : {
    4204             :     /*
    4205             :      * If fxid is older than maybe_needed bound, it definitely is visible to
    4206             :      * everyone.
    4207             :      */
    4208    19486982 :     if (FullTransactionIdPrecedes(fxid, state->maybe_needed))
    4209     5026614 :         return true;
    4210             : 
    4211             :     /*
    4212             :      * If fxid is >= definitely_needed bound, it is very likely to still be
    4213             :      * considered running.
    4214             :      */
    4215    14460368 :     if (FullTransactionIdFollowsOrEquals(fxid, state->definitely_needed))
    4216    13558782 :         return false;
    4217             : 
    4218             :     /*
    4219             :      * fxid is between maybe_needed and definitely_needed, i.e. there might or
    4220             :      * might not exist a snapshot considering fxid running. If it makes sense,
    4221             :      * update boundaries and recheck.
    4222             :      */
    4223      901586 :     if (GlobalVisTestShouldUpdate(state))
    4224             :     {
    4225      106990 :         GlobalVisUpdate();
    4226             : 
    4227             :         Assert(FullTransactionIdPrecedes(fxid, state->definitely_needed));
    4228             : 
    4229      106990 :         return FullTransactionIdPrecedes(fxid, state->maybe_needed);
    4230             :     }
    4231             :     else
    4232      794596 :         return false;
    4233             : }
    4234             : 
    4235             : /*
    4236             :  * Wrapper around GlobalVisTestIsRemovableFullXid() for 32bit xids.
    4237             :  *
    4238             :  * It is crucial that this only gets called for xids from a source that
    4239             :  * protects against xid wraparounds (e.g. from a table and thus protected by
    4240             :  * relfrozenxid).
    4241             :  */
    4242             : bool
    4243    19486302 : GlobalVisTestIsRemovableXid(GlobalVisState *state, TransactionId xid)
    4244             : {
    4245             :     FullTransactionId fxid;
    4246             : 
    4247             :     /*
    4248             :      * Convert 32 bit argument to FullTransactionId. We can do so safely
    4249             :      * because we know the xid has to, at the very least, be between
    4250             :      * [oldestXid, nextXid), i.e. within 2 billion of xid. To avoid taking a
    4251             :      * lock to determine either, we can just compare with
    4252             :      * state->definitely_needed, which was based on those value at the time
    4253             :      * the current snapshot was built.
    4254             :      */
    4255    19486302 :     fxid = FullXidRelativeTo(state->definitely_needed, xid);
    4256             : 
    4257    19486302 :     return GlobalVisTestIsRemovableFullXid(state, fxid);
    4258             : }
    4259             : 
    4260             : /*
    4261             :  * Convenience wrapper around GlobalVisTestFor() and
    4262             :  * GlobalVisTestIsRemovableFullXid(), see their comments.
    4263             :  */
    4264             : bool
    4265         680 : GlobalVisCheckRemovableFullXid(Relation rel, FullTransactionId fxid)
    4266             : {
    4267             :     GlobalVisState *state;
    4268             : 
    4269         680 :     state = GlobalVisTestFor(rel);
    4270             : 
    4271         680 :     return GlobalVisTestIsRemovableFullXid(state, fxid);
    4272             : }
    4273             : 
    4274             : /*
    4275             :  * Convenience wrapper around GlobalVisTestFor() and
    4276             :  * GlobalVisTestIsRemovableXid(), see their comments.
    4277             :  */
    4278             : bool
    4279          16 : GlobalVisCheckRemovableXid(Relation rel, TransactionId xid)
    4280             : {
    4281             :     GlobalVisState *state;
    4282             : 
    4283          16 :     state = GlobalVisTestFor(rel);
    4284             : 
    4285          16 :     return GlobalVisTestIsRemovableXid(state, xid);
    4286             : }
    4287             : 
    4288             : /*
    4289             :  * Convert a 32 bit transaction id into 64 bit transaction id, by assuming it
    4290             :  * is within MaxTransactionId / 2 of XidFromFullTransactionId(rel).
    4291             :  *
    4292             :  * Be very careful about when to use this function. It can only safely be used
    4293             :  * when there is a guarantee that xid is within MaxTransactionId / 2 xids of
    4294             :  * rel. That e.g. can be guaranteed if the caller assures a snapshot is
    4295             :  * held by the backend and xid is from a table (where vacuum/freezing ensures
    4296             :  * the xid has to be within that range), or if xid is from the procarray and
    4297             :  * prevents xid wraparound that way.
    4298             :  */
    4299             : static inline FullTransactionId
    4300    23660066 : FullXidRelativeTo(FullTransactionId rel, TransactionId xid)
    4301             : {
    4302    23660066 :     TransactionId rel_xid = XidFromFullTransactionId(rel);
    4303             : 
    4304             :     Assert(TransactionIdIsValid(xid));
    4305             :     Assert(TransactionIdIsValid(rel_xid));
    4306             : 
    4307             :     /* not guaranteed to find issues, but likely to catch mistakes */
    4308             :     AssertTransactionIdInAllowableRange(xid);
    4309             : 
    4310    47320132 :     return FullTransactionIdFromU64(U64FromFullTransactionId(rel)
    4311    23660066 :                                     + (int32) (xid - rel_xid));
    4312             : }
    4313             : 
    4314             : 
    4315             : /* ----------------------------------------------
    4316             :  *      KnownAssignedTransactionIds sub-module
    4317             :  * ----------------------------------------------
    4318             :  */
    4319             : 
    4320             : /*
    4321             :  * In Hot Standby mode, we maintain a list of transactions that are (or were)
    4322             :  * running on the primary at the current point in WAL.  These XIDs must be
    4323             :  * treated as running by standby transactions, even though they are not in
    4324             :  * the standby server's PGPROC array.
    4325             :  *
    4326             :  * We record all XIDs that we know have been assigned.  That includes all the
    4327             :  * XIDs seen in WAL records, plus all unobserved XIDs that we can deduce have
    4328             :  * been assigned.  We can deduce the existence of unobserved XIDs because we
    4329             :  * know XIDs are assigned in sequence, with no gaps.  The KnownAssignedXids
    4330             :  * list expands as new XIDs are observed or inferred, and contracts when
    4331             :  * transaction completion records arrive.
    4332             :  *
    4333             :  * During hot standby we do not fret too much about the distinction between
    4334             :  * top-level XIDs and subtransaction XIDs. We store both together in the
    4335             :  * KnownAssignedXids list.  In backends, this is copied into snapshots in
    4336             :  * GetSnapshotData(), taking advantage of the fact that XidInMVCCSnapshot()
    4337             :  * doesn't care about the distinction either.  Subtransaction XIDs are
    4338             :  * effectively treated as top-level XIDs and in the typical case pg_subtrans
    4339             :  * links are *not* maintained (which does not affect visibility).
    4340             :  *
    4341             :  * We have room in KnownAssignedXids and in snapshots to hold maxProcs *
    4342             :  * (1 + PGPROC_MAX_CACHED_SUBXIDS) XIDs, so every primary transaction must
    4343             :  * report its subtransaction XIDs in a WAL XLOG_XACT_ASSIGNMENT record at
    4344             :  * least every PGPROC_MAX_CACHED_SUBXIDS.  When we receive one of these
    4345             :  * records, we mark the subXIDs as children of the top XID in pg_subtrans,
    4346             :  * and then remove them from KnownAssignedXids.  This prevents overflow of
    4347             :  * KnownAssignedXids and snapshots, at the cost that status checks for these
    4348             :  * subXIDs will take a slower path through TransactionIdIsInProgress().
    4349             :  * This means that KnownAssignedXids is not necessarily complete for subXIDs,
    4350             :  * though it should be complete for top-level XIDs; this is the same situation
    4351             :  * that holds with respect to the PGPROC entries in normal running.
    4352             :  *
    4353             :  * When we throw away subXIDs from KnownAssignedXids, we need to keep track of
    4354             :  * that, similarly to tracking overflow of a PGPROC's subxids array.  We do
    4355             :  * that by remembering the lastOverflowedXid, ie the last thrown-away subXID.
    4356             :  * As long as that is within the range of interesting XIDs, we have to assume
    4357             :  * that subXIDs are missing from snapshots.  (Note that subXID overflow occurs
    4358             :  * on primary when 65th subXID arrives, whereas on standby it occurs when 64th
    4359             :  * subXID arrives - that is not an error.)
    4360             :  *
    4361             :  * Should a backend on primary somehow disappear before it can write an abort
    4362             :  * record, then we just leave those XIDs in KnownAssignedXids. They actually
    4363             :  * aborted but we think they were running; the distinction is irrelevant
    4364             :  * because either way any changes done by the transaction are not visible to
    4365             :  * backends in the standby.  We prune KnownAssignedXids when
    4366             :  * XLOG_RUNNING_XACTS arrives, to forestall possible overflow of the
    4367             :  * array due to such dead XIDs.
    4368             :  */
    4369             : 
    4370             : /*
    4371             :  * RecordKnownAssignedTransactionIds
    4372             :  *      Record the given XID in KnownAssignedXids, as well as any preceding
    4373             :  *      unobserved XIDs.
    4374             :  *
    4375             :  * RecordKnownAssignedTransactionIds() should be run for *every* WAL record
    4376             :  * associated with a transaction. Must be called for each record after we
    4377             :  * have executed StartupCLOG() et al, since we must ExtendCLOG() etc..
    4378             :  *
    4379             :  * Called during recovery in analogy with and in place of GetNewTransactionId()
    4380             :  */
    4381             : void
    4382     5035540 : RecordKnownAssignedTransactionIds(TransactionId xid)
    4383             : {
    4384             :     Assert(standbyState >= STANDBY_INITIALIZED);
    4385             :     Assert(TransactionIdIsValid(xid));
    4386             :     Assert(TransactionIdIsValid(latestObservedXid));
    4387             : 
    4388     5035540 :     elog(DEBUG4, "record known xact %u latestObservedXid %u",
    4389             :          xid, latestObservedXid);
    4390             : 
    4391             :     /*
    4392             :      * When a newly observed xid arrives, it is frequently the case that it is
    4393             :      * *not* the next xid in sequence. When this occurs, we must treat the
    4394             :      * intervening xids as running also.
    4395             :      */
    4396     5035540 :     if (TransactionIdFollows(xid, latestObservedXid))
    4397             :     {
    4398             :         TransactionId next_expected_xid;
    4399             : 
    4400             :         /*
    4401             :          * Extend subtrans like we do in GetNewTransactionId() during normal
    4402             :          * operation using individual extend steps. Note that we do not need
    4403             :          * to extend clog since its extensions are WAL logged.
    4404             :          *
    4405             :          * This part has to be done regardless of standbyState since we
    4406             :          * immediately start assigning subtransactions to their toplevel
    4407             :          * transactions.
    4408             :          */
    4409       45838 :         next_expected_xid = latestObservedXid;
    4410       93328 :         while (TransactionIdPrecedes(next_expected_xid, xid))
    4411             :         {
    4412       47490 :             TransactionIdAdvance(next_expected_xid);
    4413       47490 :             ExtendSUBTRANS(next_expected_xid);
    4414             :         }
    4415             :         Assert(next_expected_xid == xid);
    4416             : 
    4417             :         /*
    4418             :          * If the KnownAssignedXids machinery isn't up yet, there's nothing
    4419             :          * more to do since we don't track assigned xids yet.
    4420             :          */
    4421       45838 :         if (standbyState <= STANDBY_INITIALIZED)
    4422             :         {
    4423           0 :             latestObservedXid = xid;
    4424           0 :             return;
    4425             :         }
    4426             : 
    4427             :         /*
    4428             :          * Add (latestObservedXid, xid] onto the KnownAssignedXids array.
    4429             :          */
    4430       45838 :         next_expected_xid = latestObservedXid;
    4431       45838 :         TransactionIdAdvance(next_expected_xid);
    4432       45838 :         KnownAssignedXidsAdd(next_expected_xid, xid, false);
    4433             : 
    4434             :         /*
    4435             :          * Now we can advance latestObservedXid
    4436             :          */
    4437       45838 :         latestObservedXid = xid;
    4438             : 
    4439             :         /* TransamVariables->nextXid must be beyond any observed xid */
    4440       45838 :         AdvanceNextFullTransactionIdPastXid(latestObservedXid);
    4441             :     }
    4442             : }
    4443             : 
    4444             : /*
    4445             :  * ExpireTreeKnownAssignedTransactionIds
    4446             :  *      Remove the given XIDs from KnownAssignedXids.
    4447             :  *
    4448             :  * Called during recovery in analogy with and in place of ProcArrayEndTransaction()
    4449             :  */
    4450             : void
    4451       44422 : ExpireTreeKnownAssignedTransactionIds(TransactionId xid, int nsubxids,
    4452             :                                       TransactionId *subxids, TransactionId max_xid)
    4453             : {
    4454             :     Assert(standbyState >= STANDBY_INITIALIZED);
    4455             : 
    4456             :     /*
    4457             :      * Uses same locking as transaction commit
    4458             :      */
    4459       44422 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    4460             : 
    4461       44422 :     KnownAssignedXidsRemoveTree(xid, nsubxids, subxids);
    4462             : 
    4463             :     /* As in ProcArrayEndTransaction, advance latestCompletedXid */
    4464       44422 :     MaintainLatestCompletedXidRecovery(max_xid);
    4465             : 
    4466             :     /* ... and xactCompletionCount */
    4467       44422 :     TransamVariables->xactCompletionCount++;
    4468             : 
    4469       44422 :     LWLockRelease(ProcArrayLock);
    4470       44422 : }
    4471             : 
    4472             : /*
    4473             :  * ExpireAllKnownAssignedTransactionIds
    4474             :  *      Remove all entries in KnownAssignedXids and reset lastOverflowedXid.
    4475             :  */
    4476             : void
    4477         230 : ExpireAllKnownAssignedTransactionIds(void)
    4478             : {
    4479             :     FullTransactionId latestXid;
    4480             : 
    4481         230 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    4482         230 :     KnownAssignedXidsRemovePreceding(InvalidTransactionId);
    4483             : 
    4484             :     /* Reset latestCompletedXid to nextXid - 1 */
    4485             :     Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
    4486         230 :     latestXid = TransamVariables->nextXid;
    4487         230 :     FullTransactionIdRetreat(&latestXid);
    4488         230 :     TransamVariables->latestCompletedXid = latestXid;
    4489             : 
    4490             :     /*
    4491             :      * Any transactions that were in-progress were effectively aborted, so
    4492             :      * advance xactCompletionCount.
    4493             :      */
    4494         230 :     TransamVariables->xactCompletionCount++;
    4495             : 
    4496             :     /*
    4497             :      * Reset lastOverflowedXid.  Currently, lastOverflowedXid has no use after
    4498             :      * the call of this function.  But do this for unification with what
    4499             :      * ExpireOldKnownAssignedTransactionIds() do.
    4500             :      */
    4501         230 :     procArray->lastOverflowedXid = InvalidTransactionId;
    4502         230 :     LWLockRelease(ProcArrayLock);
    4503         230 : }
    4504             : 
    4505             : /*
    4506             :  * ExpireOldKnownAssignedTransactionIds
    4507             :  *      Remove KnownAssignedXids entries preceding the given XID and
    4508             :  *      potentially reset lastOverflowedXid.
    4509             :  */
    4510             : void
    4511        1684 : ExpireOldKnownAssignedTransactionIds(TransactionId xid)
    4512             : {
    4513             :     TransactionId latestXid;
    4514             : 
    4515        1684 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    4516             : 
    4517             :     /* As in ProcArrayEndTransaction, advance latestCompletedXid */
    4518        1684 :     latestXid = xid;
    4519        1684 :     TransactionIdRetreat(latestXid);
    4520        1684 :     MaintainLatestCompletedXidRecovery(latestXid);
    4521             : 
    4522             :     /* ... and xactCompletionCount */
    4523        1684 :     TransamVariables->xactCompletionCount++;
    4524             : 
    4525             :     /*
    4526             :      * Reset lastOverflowedXid if we know all transactions that have been
    4527             :      * possibly running are being gone.  Not doing so could cause an incorrect
    4528             :      * lastOverflowedXid value, which makes extra snapshots be marked as
    4529             :      * suboverflowed.
    4530             :      */
    4531        1684 :     if (TransactionIdPrecedes(procArray->lastOverflowedXid, xid))
    4532        1672 :         procArray->lastOverflowedXid = InvalidTransactionId;
    4533        1684 :     KnownAssignedXidsRemovePreceding(xid);
    4534        1684 :     LWLockRelease(ProcArrayLock);
    4535        1684 : }
    4536             : 
    4537             : /*
    4538             :  * KnownAssignedTransactionIdsIdleMaintenance
    4539             :  *      Opportunistically do maintenance work when the startup process
    4540             :  *      is about to go idle.
    4541             :  */
    4542             : void
    4543       12848 : KnownAssignedTransactionIdsIdleMaintenance(void)
    4544             : {
    4545       12848 :     KnownAssignedXidsCompress(KAX_STARTUP_PROCESS_IDLE, false);
    4546       12848 : }
    4547             : 
    4548             : 
    4549             : /*
    4550             :  * Private module functions to manipulate KnownAssignedXids
    4551             :  *
    4552             :  * There are 5 main uses of the KnownAssignedXids data structure:
    4553             :  *
    4554             :  *  * backends taking snapshots - all valid XIDs need to be copied out
    4555             :  *  * backends seeking to determine presence of a specific XID
    4556             :  *  * startup process adding new known-assigned XIDs
    4557             :  *  * startup process removing specific XIDs as transactions end
    4558             :  *  * startup process pruning array when special WAL records arrive
    4559             :  *
    4560             :  * This data structure is known to be a hot spot during Hot Standby, so we
    4561             :  * go to some lengths to make these operations as efficient and as concurrent
    4562             :  * as possible.
    4563             :  *
    4564             :  * The XIDs are stored in an array in sorted order --- TransactionIdPrecedes
    4565             :  * order, to be exact --- to allow binary search for specific XIDs.  Note:
    4566             :  * in general TransactionIdPrecedes would not provide a total order, but
    4567             :  * we know that the entries present at any instant should not extend across
    4568             :  * a large enough fraction of XID space to wrap around (the primary would
    4569             :  * shut down for fear of XID wrap long before that happens).  So it's OK to
    4570             :  * use TransactionIdPrecedes as a binary-search comparator.
    4571             :  *
    4572             :  * It's cheap to maintain the sortedness during insertions, since new known
    4573             :  * XIDs are always reported in XID order; we just append them at the right.
    4574             :  *
    4575             :  * To keep individual deletions cheap, we need to allow gaps in the array.
    4576             :  * This is implemented by marking array elements as valid or invalid using
    4577             :  * the parallel boolean array KnownAssignedXidsValid[].  A deletion is done
    4578             :  * by setting KnownAssignedXidsValid[i] to false, *without* clearing the
    4579             :  * XID entry itself.  This preserves the property that the XID entries are
    4580             :  * sorted, so we can do binary searches easily.  Periodically we compress
    4581             :  * out the unused entries; that's much cheaper than having to compress the
    4582             :  * array immediately on every deletion.
    4583             :  *
    4584             :  * The actually valid items in KnownAssignedXids[] and KnownAssignedXidsValid[]
    4585             :  * are those with indexes tail <= i < head; items outside this subscript range
    4586             :  * have unspecified contents.  When head reaches the end of the array, we
    4587             :  * force compression of unused entries rather than wrapping around, since
    4588             :  * allowing wraparound would greatly complicate the search logic.  We maintain
    4589             :  * an explicit tail pointer so that pruning of old XIDs can be done without
    4590             :  * immediately moving the array contents.  In most cases only a small fraction
    4591             :  * of the array contains valid entries at any instant.
    4592             :  *
    4593             :  * Although only the startup process can ever change the KnownAssignedXids
    4594             :  * data structure, we still need interlocking so that standby backends will
    4595             :  * not observe invalid intermediate states.  The convention is that backends
    4596             :  * must hold shared ProcArrayLock to examine the array.  To remove XIDs from
    4597             :  * the array, the startup process must hold ProcArrayLock exclusively, for
    4598             :  * the usual transactional reasons (compare commit/abort of a transaction
    4599             :  * during normal running).  Compressing unused entries out of the array
    4600             :  * likewise requires exclusive lock.  To add XIDs to the array, we just insert
    4601             :  * them into slots to the right of the head pointer and then advance the head
    4602             :  * pointer.  This doesn't require any lock at all, but on machines with weak
    4603             :  * memory ordering, we need to be careful that other processors see the array
    4604             :  * element changes before they see the head pointer change.  We handle this by
    4605             :  * using memory barriers when reading or writing the head/tail pointers (unless
    4606             :  * the caller holds ProcArrayLock exclusively).
    4607             :  *
    4608             :  * Algorithmic analysis:
    4609             :  *
    4610             :  * If we have a maximum of M slots, with N XIDs currently spread across
    4611             :  * S elements then we have N <= S <= M always.
    4612             :  *
    4613             :  *  * Adding a new XID is O(1) and needs no lock (unless compression must
    4614             :  *      happen)
    4615             :  *  * Compressing the array is O(S) and requires exclusive lock
    4616             :  *  * Removing an XID is O(logS) and requires exclusive lock
    4617             :  *  * Taking a snapshot is O(S) and requires shared lock
    4618             :  *  * Checking for an XID is O(logS) and requires shared lock
    4619             :  *
    4620             :  * In comparison, using a hash table for KnownAssignedXids would mean that
    4621             :  * taking snapshots would be O(M). If we can maintain S << M then the
    4622             :  * sorted array technique will deliver significantly faster snapshots.
    4623             :  * If we try to keep S too small then we will spend too much time compressing,
    4624             :  * so there is an optimal point for any workload mix. We use a heuristic to
    4625             :  * decide when to compress the array, though trimming also helps reduce
    4626             :  * frequency of compressing. The heuristic requires us to track the number of
    4627             :  * currently valid XIDs in the array (N).  Except in special cases, we'll
    4628             :  * compress when S >= 2N.  Bounding S at 2N in turn bounds the time for
    4629             :  * taking a snapshot to be O(N), which it would have to be anyway.
    4630             :  */
    4631             : 
    4632             : 
    4633             : /*
    4634             :  * Compress KnownAssignedXids by shifting valid data down to the start of the
    4635             :  * array, removing any gaps.
    4636             :  *
    4637             :  * A compression step is forced if "reason" is KAX_NO_SPACE, otherwise
    4638             :  * we do it only if a heuristic indicates it's a good time to do it.
    4639             :  *
    4640             :  * Compression requires holding ProcArrayLock in exclusive mode.
    4641             :  * Caller must pass haveLock = true if it already holds the lock.
    4642             :  */
    4643             : static void
    4644       58996 : KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock)
    4645             : {
    4646       58996 :     ProcArrayStruct *pArray = procArray;
    4647             :     int         head,
    4648             :                 tail,
    4649             :                 nelements;
    4650             :     int         compress_index;
    4651             :     int         i;
    4652             : 
    4653             :     /* Counters for compression heuristics */
    4654             :     static unsigned int transactionEndsCounter;
    4655             :     static TimestampTz lastCompressTs;
    4656             : 
    4657             :     /* Tuning constants */
    4658             : #define KAX_COMPRESS_FREQUENCY 128  /* in transactions */
    4659             : #define KAX_COMPRESS_IDLE_INTERVAL 1000 /* in ms */
    4660             : 
    4661             :     /*
    4662             :      * Since only the startup process modifies the head/tail pointers, we
    4663             :      * don't need a lock to read them here.
    4664             :      */
    4665       58996 :     head = pArray->headKnownAssignedXids;
    4666       58996 :     tail = pArray->tailKnownAssignedXids;
    4667       58996 :     nelements = head - tail;
    4668             : 
    4669             :     /*
    4670             :      * If we can choose whether to compress, use a heuristic to avoid
    4671             :      * compressing too often or not often enough.  "Compress" here simply
    4672             :      * means moving the values to the beginning of the array, so it is not as
    4673             :      * complex or costly as typical data compression algorithms.
    4674             :      */
    4675       58996 :     if (nelements == pArray->numKnownAssignedXids)
    4676             :     {
    4677             :         /*
    4678             :          * When there are no gaps between head and tail, don't bother to
    4679             :          * compress, except in the KAX_NO_SPACE case where we must compress to
    4680             :          * create some space after the head.
    4681             :          */
    4682       25994 :         if (reason != KAX_NO_SPACE)
    4683       25994 :             return;
    4684             :     }
    4685       33002 :     else if (reason == KAX_TRANSACTION_END)
    4686             :     {
    4687             :         /*
    4688             :          * Consider compressing only once every so many commits.  Frequency
    4689             :          * determined by benchmarks.
    4690             :          */
    4691       29198 :         if ((transactionEndsCounter++) % KAX_COMPRESS_FREQUENCY != 0)
    4692       28952 :             return;
    4693             : 
    4694             :         /*
    4695             :          * Furthermore, compress only if the used part of the array is less
    4696             :          * than 50% full (see comments above).
    4697             :          */
    4698         246 :         if (nelements < 2 * pArray->numKnownAssignedXids)
    4699          22 :             return;
    4700             :     }
    4701        3804 :     else if (reason == KAX_STARTUP_PROCESS_IDLE)
    4702             :     {
    4703             :         /*
    4704             :          * We're about to go idle for lack of new WAL, so we might as well
    4705             :          * compress.  But not too often, to avoid ProcArray lock contention
    4706             :          * with readers.
    4707             :          */
    4708        3574 :         if (lastCompressTs != 0)
    4709             :         {
    4710             :             TimestampTz compress_after;
    4711             : 
    4712        3572 :             compress_after = TimestampTzPlusMilliseconds(lastCompressTs,
    4713             :                                                          KAX_COMPRESS_IDLE_INTERVAL);
    4714        3572 :             if (GetCurrentTimestamp() < compress_after)
    4715        3378 :                 return;
    4716             :         }
    4717             :     }
    4718             : 
    4719             :     /* Need to compress, so get the lock if we don't have it. */
    4720         650 :     if (!haveLock)
    4721         196 :         LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    4722             : 
    4723             :     /*
    4724             :      * We compress the array by reading the valid values from tail to head,
    4725             :      * re-aligning data to 0th element.
    4726             :      */
    4727         650 :     compress_index = 0;
    4728       20886 :     for (i = tail; i < head; i++)
    4729             :     {
    4730       20236 :         if (KnownAssignedXidsValid[i])
    4731             :         {
    4732        2804 :             KnownAssignedXids[compress_index] = KnownAssignedXids[i];
    4733        2804 :             KnownAssignedXidsValid[compress_index] = true;
    4734        2804 :             compress_index++;
    4735             :         }
    4736             :     }
    4737             :     Assert(compress_index == pArray->numKnownAssignedXids);
    4738             : 
    4739         650 :     pArray->tailKnownAssignedXids = 0;
    4740         650 :     pArray->headKnownAssignedXids = compress_index;
    4741             : 
    4742         650 :     if (!haveLock)
    4743         196 :         LWLockRelease(ProcArrayLock);
    4744             : 
    4745             :     /* Update timestamp for maintenance.  No need to hold lock for this. */
    4746         650 :     lastCompressTs = GetCurrentTimestamp();
    4747             : }
    4748             : 
    4749             : /*
    4750             :  * Add xids into KnownAssignedXids at the head of the array.
    4751             :  *
    4752             :  * xids from from_xid to to_xid, inclusive, are added to the array.
    4753             :  *
    4754             :  * If exclusive_lock is true then caller already holds ProcArrayLock in
    4755             :  * exclusive mode, so we need no extra locking here.  Else caller holds no
    4756             :  * lock, so we need to be sure we maintain sufficient interlocks against
    4757             :  * concurrent readers.  (Only the startup process ever calls this, so no need
    4758             :  * to worry about concurrent writers.)
    4759             :  */
    4760             : static void
    4761       45846 : KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
    4762             :                      bool exclusive_lock)
    4763             : {
    4764       45846 :     ProcArrayStruct *pArray = procArray;
    4765             :     TransactionId next_xid;
    4766             :     int         head,
    4767             :                 tail;
    4768             :     int         nxids;
    4769             :     int         i;
    4770             : 
    4771             :     Assert(TransactionIdPrecedesOrEquals(from_xid, to_xid));
    4772             : 
    4773             :     /*
    4774             :      * Calculate how many array slots we'll need.  Normally this is cheap; in
    4775             :      * the unusual case where the XIDs cross the wrap point, we do it the hard
    4776             :      * way.
    4777             :      */
    4778       45846 :     if (to_xid >= from_xid)
    4779       45846 :         nxids = to_xid - from_xid + 1;
    4780             :     else
    4781             :     {
    4782           0 :         nxids = 1;
    4783           0 :         next_xid = from_xid;
    4784           0 :         while (TransactionIdPrecedes(next_xid, to_xid))
    4785             :         {
    4786           0 :             nxids++;
    4787           0 :             TransactionIdAdvance(next_xid);
    4788             :         }
    4789             :     }
    4790             : 
    4791             :     /*
    4792             :      * Since only the startup process modifies the head/tail pointers, we
    4793             :      * don't need a lock to read them here.
    4794             :      */
    4795       45846 :     head = pArray->headKnownAssignedXids;
    4796       45846 :     tail = pArray->tailKnownAssignedXids;
    4797             : 
    4798             :     Assert(head >= 0 && head <= pArray->maxKnownAssignedXids);
    4799             :     Assert(tail >= 0 && tail < pArray->maxKnownAssignedXids);
    4800             : 
    4801             :     /*
    4802             :      * Verify that insertions occur in TransactionId sequence.  Note that even
    4803             :      * if the last existing element is marked invalid, it must still have a
    4804             :      * correctly sequenced XID value.
    4805             :      */
    4806       77600 :     if (head > tail &&
    4807       31754 :         TransactionIdFollowsOrEquals(KnownAssignedXids[head - 1], from_xid))
    4808             :     {
    4809           0 :         KnownAssignedXidsDisplay(LOG);
    4810           0 :         elog(ERROR, "out-of-order XID insertion in KnownAssignedXids");
    4811             :     }
    4812             : 
    4813             :     /*
    4814             :      * If our xids won't fit in the remaining space, compress out free space
    4815             :      */
    4816       45846 :     if (head + nxids > pArray->maxKnownAssignedXids)
    4817             :     {
    4818           0 :         KnownAssignedXidsCompress(KAX_NO_SPACE, exclusive_lock);
    4819             : 
    4820           0 :         head = pArray->headKnownAssignedXids;
    4821             :         /* note: we no longer care about the tail pointer */
    4822             : 
    4823             :         /*
    4824             :          * If it still won't fit then we're out of memory
    4825             :          */
    4826           0 :         if (head + nxids > pArray->maxKnownAssignedXids)
    4827           0 :             elog(ERROR, "too many KnownAssignedXids");
    4828             :     }
    4829             : 
    4830             :     /* Now we can insert the xids into the space starting at head */
    4831       45846 :     next_xid = from_xid;
    4832       93344 :     for (i = 0; i < nxids; i++)
    4833             :     {
    4834       47498 :         KnownAssignedXids[head] = next_xid;
    4835       47498 :         KnownAssignedXidsValid[head] = true;
    4836       47498 :         TransactionIdAdvance(next_xid);
    4837       47498 :         head++;
    4838             :     }
    4839             : 
    4840             :     /* Adjust count of number of valid entries */
    4841       45846 :     pArray->numKnownAssignedXids += nxids;
    4842             : 
    4843             :     /*
    4844             :      * Now update the head pointer.  We use a write barrier to ensure that
    4845             :      * other processors see the above array updates before they see the head
    4846             :      * pointer change.  The barrier isn't required if we're holding
    4847             :      * ProcArrayLock exclusively.
    4848             :      */
    4849       45846 :     if (!exclusive_lock)
    4850       45838 :         pg_write_barrier();
    4851             : 
    4852       45846 :     pArray->headKnownAssignedXids = head;
    4853       45846 : }
    4854             : 
    4855             : /*
    4856             :  * KnownAssignedXidsSearch
    4857             :  *
    4858             :  * Searches KnownAssignedXids for a specific xid and optionally removes it.
    4859             :  * Returns true if it was found, false if not.
    4860             :  *
    4861             :  * Caller must hold ProcArrayLock in shared or exclusive mode.
    4862             :  * Exclusive lock must be held for remove = true.
    4863             :  */
    4864             : static bool
    4865       49766 : KnownAssignedXidsSearch(TransactionId xid, bool remove)
    4866             : {
    4867       49766 :     ProcArrayStruct *pArray = procArray;
    4868             :     int         first,
    4869             :                 last;
    4870             :     int         head;
    4871             :     int         tail;
    4872       49766 :     int         result_index = -1;
    4873             : 
    4874       49766 :     tail = pArray->tailKnownAssignedXids;
    4875       49766 :     head = pArray->headKnownAssignedXids;
    4876             : 
    4877             :     /*
    4878             :      * Only the startup process removes entries, so we don't need the read
    4879             :      * barrier in that case.
    4880             :      */
    4881       49766 :     if (!remove)
    4882           2 :         pg_read_barrier();      /* pairs with KnownAssignedXidsAdd */
    4883             : 
    4884             :     /*
    4885             :      * Standard binary search.  Note we can ignore the KnownAssignedXidsValid
    4886             :      * array here, since even invalid entries will contain sorted XIDs.
    4887             :      */
    4888       49766 :     first = tail;
    4889       49766 :     last = head - 1;
    4890      175464 :     while (first <= last)
    4891             :     {
    4892             :         int         mid_index;
    4893             :         TransactionId mid_xid;
    4894             : 
    4895      173076 :         mid_index = (first + last) / 2;
    4896      173076 :         mid_xid = KnownAssignedXids[mid_index];
    4897             : 
    4898      173076 :         if (xid == mid_xid)
    4899             :         {
    4900       47378 :             result_index = mid_index;
    4901       47378 :             break;
    4902             :         }
    4903      125698 :         else if (TransactionIdPrecedes(xid, mid_xid))
    4904       26856 :             last = mid_index - 1;
    4905             :         else
    4906       98842 :             first = mid_index + 1;
    4907             :     }
    4908             : 
    4909       49766 :     if (result_index < 0)
    4910        2388 :         return false;           /* not in array */
    4911             : 
    4912       47378 :     if (!KnownAssignedXidsValid[result_index])
    4913          52 :         return false;           /* in array, but invalid */
    4914             : 
    4915       47326 :     if (remove)
    4916             :     {
    4917       47326 :         KnownAssignedXidsValid[result_index] = false;
    4918             : 
    4919       47326 :         pArray->numKnownAssignedXids--;
    4920             :         Assert(pArray->numKnownAssignedXids >= 0);
    4921             : 
    4922             :         /*
    4923             :          * If we're removing the tail element then advance tail pointer over
    4924             :          * any invalid elements.  This will speed future searches.
    4925             :          */
    4926       47326 :         if (result_index == tail)
    4927             :         {
    4928       16378 :             tail++;
    4929       29894 :             while (tail < head && !KnownAssignedXidsValid[tail])
    4930       13516 :                 tail++;
    4931       16378 :             if (tail >= head)
    4932             :             {
    4933             :                 /* Array is empty, so we can reset both pointers */
    4934       14072 :                 pArray->headKnownAssignedXids = 0;
    4935       14072 :                 pArray->tailKnownAssignedXids = 0;
    4936             :             }
    4937             :             else
    4938             :             {
    4939        2306 :                 pArray->tailKnownAssignedXids = tail;
    4940             :             }
    4941             :         }
    4942             :     }
    4943             : 
    4944       47326 :     return true;
    4945             : }
    4946             : 
    4947             : /*
    4948             :  * Is the specified XID present in KnownAssignedXids[]?
    4949             :  *
    4950             :  * Caller must hold ProcArrayLock in shared or exclusive mode.
    4951             :  */
    4952             : static bool
    4953           2 : KnownAssignedXidExists(TransactionId xid)
    4954             : {
    4955             :     Assert(TransactionIdIsValid(xid));
    4956             : 
    4957           2 :     return KnownAssignedXidsSearch(xid, false);
    4958             : }
    4959             : 
    4960             : /*
    4961             :  * Remove the specified XID from KnownAssignedXids[].
    4962             :  *
    4963             :  * Caller must hold ProcArrayLock in exclusive mode.
    4964             :  */
    4965             : static void
    4966       49764 : KnownAssignedXidsRemove(TransactionId xid)
    4967             : {
    4968             :     Assert(TransactionIdIsValid(xid));
    4969             : 
    4970       49764 :     elog(DEBUG4, "remove KnownAssignedXid %u", xid);
    4971             : 
    4972             :     /*
    4973             :      * Note: we cannot consider it an error to remove an XID that's not
    4974             :      * present.  We intentionally remove subxact IDs while processing
    4975             :      * XLOG_XACT_ASSIGNMENT, to avoid array overflow.  Then those XIDs will be
    4976             :      * removed again when the top-level xact commits or aborts.
    4977             :      *
    4978             :      * It might be possible to track such XIDs to distinguish this case from
    4979             :      * actual errors, but it would be complicated and probably not worth it.
    4980             :      * So, just ignore the search result.
    4981             :      */
    4982       49764 :     (void) KnownAssignedXidsSearch(xid, true);
    4983       49764 : }
    4984             : 
    4985             : /*
    4986             :  * KnownAssignedXidsRemoveTree
    4987             :  *      Remove xid (if it's not InvalidTransactionId) and all the subxids.
    4988             :  *
    4989             :  * Caller must hold ProcArrayLock in exclusive mode.
    4990             :  */
    4991             : static void
    4992       44464 : KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
    4993             :                             TransactionId *subxids)
    4994             : {
    4995             :     int         i;
    4996             : 
    4997       44464 :     if (TransactionIdIsValid(xid))
    4998       44422 :         KnownAssignedXidsRemove(xid);
    4999             : 
    5000       49806 :     for (i = 0; i < nsubxids; i++)
    5001        5342 :         KnownAssignedXidsRemove(subxids[i]);
    5002             : 
    5003             :     /* Opportunistically compress the array */
    5004       44464 :     KnownAssignedXidsCompress(KAX_TRANSACTION_END, true);
    5005       44464 : }
    5006             : 
    5007             : /*
    5008             :  * Prune KnownAssignedXids up to, but *not* including xid. If xid is invalid
    5009             :  * then clear the whole table.
    5010             :  *
    5011             :  * Caller must hold ProcArrayLock in exclusive mode.
    5012             :  */
    5013             : static void
    5014        1914 : KnownAssignedXidsRemovePreceding(TransactionId removeXid)
    5015             : {
    5016        1914 :     ProcArrayStruct *pArray = procArray;
    5017        1914 :     int         count = 0;
    5018             :     int         head,
    5019             :                 tail,
    5020             :                 i;
    5021             : 
    5022        1914 :     if (!TransactionIdIsValid(removeXid))
    5023             :     {
    5024         230 :         elog(DEBUG4, "removing all KnownAssignedXids");
    5025         230 :         pArray->numKnownAssignedXids = 0;
    5026         230 :         pArray->headKnownAssignedXids = pArray->tailKnownAssignedXids = 0;
    5027         230 :         return;
    5028             :     }
    5029             : 
    5030        1684 :     elog(DEBUG4, "prune KnownAssignedXids to %u", removeXid);
    5031             : 
    5032             :     /*
    5033             :      * Mark entries invalid starting at the tail.  Since array is sorted, we
    5034             :      * can stop as soon as we reach an entry >= removeXid.
    5035             :      */
    5036        1684 :     tail = pArray->tailKnownAssignedXids;
    5037        1684 :     head = pArray->headKnownAssignedXids;
    5038             : 
    5039        1684 :     for (i = tail; i < head; i++)
    5040             :     {
    5041         450 :         if (KnownAssignedXidsValid[i])
    5042             :         {
    5043         450 :             TransactionId knownXid = KnownAssignedXids[i];
    5044             : 
    5045         450 :             if (TransactionIdFollowsOrEquals(knownXid, removeXid))
    5046         450 :                 break;
    5047             : 
    5048           0 :             if (!StandbyTransactionIdIsPrepared(knownXid))
    5049             :             {
    5050           0 :                 KnownAssignedXidsValid[i] = false;
    5051           0 :                 count++;
    5052             :             }
    5053             :         }
    5054             :     }
    5055             : 
    5056        1684 :     pArray->numKnownAssignedXids -= count;
    5057             :     Assert(pArray->numKnownAssignedXids >= 0);
    5058             : 
    5059             :     /*
    5060             :      * Advance the tail pointer if we've marked the tail item invalid.
    5061             :      */
    5062        1684 :     for (i = tail; i < head; i++)
    5063             :     {
    5064         450 :         if (KnownAssignedXidsValid[i])
    5065         450 :             break;
    5066             :     }
    5067        1684 :     if (i >= head)
    5068             :     {
    5069             :         /* Array is empty, so we can reset both pointers */
    5070        1234 :         pArray->headKnownAssignedXids = 0;
    5071        1234 :         pArray->tailKnownAssignedXids = 0;
    5072             :     }
    5073             :     else
    5074             :     {
    5075         450 :         pArray->tailKnownAssignedXids = i;
    5076             :     }
    5077             : 
    5078             :     /* Opportunistically compress the array */
    5079        1684 :     KnownAssignedXidsCompress(KAX_PRUNE, true);
    5080             : }
    5081             : 
    5082             : /*
    5083             :  * KnownAssignedXidsGet - Get an array of xids by scanning KnownAssignedXids.
    5084             :  * We filter out anything >= xmax.
    5085             :  *
    5086             :  * Returns the number of XIDs stored into xarray[].  Caller is responsible
    5087             :  * that array is large enough.
    5088             :  *
    5089             :  * Caller must hold ProcArrayLock in (at least) shared mode.
    5090             :  */
    5091             : static int
    5092           0 : KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax)
    5093             : {
    5094           0 :     TransactionId xtmp = InvalidTransactionId;
    5095             : 
    5096           0 :     return KnownAssignedXidsGetAndSetXmin(xarray, &xtmp, xmax);
    5097             : }
    5098             : 
    5099             : /*
    5100             :  * KnownAssignedXidsGetAndSetXmin - as KnownAssignedXidsGet, plus
    5101             :  * we reduce *xmin to the lowest xid value seen if not already lower.
    5102             :  *
    5103             :  * Caller must hold ProcArrayLock in (at least) shared mode.
    5104             :  */
    5105             : static int
    5106        2626 : KnownAssignedXidsGetAndSetXmin(TransactionId *xarray, TransactionId *xmin,
    5107             :                                TransactionId xmax)
    5108             : {
    5109        2626 :     int         count = 0;
    5110             :     int         head,
    5111             :                 tail;
    5112             :     int         i;
    5113             : 
    5114             :     /*
    5115             :      * Fetch head just once, since it may change while we loop. We can stop
    5116             :      * once we reach the initially seen head, since we are certain that an xid
    5117             :      * cannot enter and then leave the array while we hold ProcArrayLock.  We
    5118             :      * might miss newly-added xids, but they should be >= xmax so irrelevant
    5119             :      * anyway.
    5120             :      */
    5121        2626 :     tail = procArray->tailKnownAssignedXids;
    5122        2626 :     head = procArray->headKnownAssignedXids;
    5123             : 
    5124        2626 :     pg_read_barrier();          /* pairs with KnownAssignedXidsAdd */
    5125             : 
    5126        2772 :     for (i = tail; i < head; i++)
    5127             :     {
    5128             :         /* Skip any gaps in the array */
    5129         404 :         if (KnownAssignedXidsValid[i])
    5130             :         {
    5131         296 :             TransactionId knownXid = KnownAssignedXids[i];
    5132             : 
    5133             :             /*
    5134             :              * Update xmin if required.  Only the first XID need be checked,
    5135             :              * since the array is sorted.
    5136             :              */
    5137         582 :             if (count == 0 &&
    5138         286 :                 TransactionIdPrecedes(knownXid, *xmin))
    5139          34 :                 *xmin = knownXid;
    5140             : 
    5141             :             /*
    5142             :              * Filter out anything >= xmax, again relying on sorted property
    5143             :              * of array.
    5144             :              */
    5145         592 :             if (TransactionIdIsValid(xmax) &&
    5146         296 :                 TransactionIdFollowsOrEquals(knownXid, xmax))
    5147         258 :                 break;
    5148             : 
    5149             :             /* Add knownXid into output array */
    5150          38 :             xarray[count++] = knownXid;
    5151             :         }
    5152             :     }
    5153             : 
    5154        2626 :     return count;
    5155             : }
    5156             : 
    5157             : /*
    5158             :  * Get oldest XID in the KnownAssignedXids array, or InvalidTransactionId
    5159             :  * if nothing there.
    5160             :  */
    5161             : static TransactionId
    5162         684 : KnownAssignedXidsGetOldestXmin(void)
    5163             : {
    5164             :     int         head,
    5165             :                 tail;
    5166             :     int         i;
    5167             : 
    5168             :     /*
    5169             :      * Fetch head just once, since it may change while we loop.
    5170             :      */
    5171         684 :     tail = procArray->tailKnownAssignedXids;
    5172         684 :     head = procArray->headKnownAssignedXids;
    5173             : 
    5174         684 :     pg_read_barrier();          /* pairs with KnownAssignedXidsAdd */
    5175             : 
    5176         684 :     for (i = tail; i < head; i++)
    5177             :     {
    5178             :         /* Skip any gaps in the array */
    5179         280 :         if (KnownAssignedXidsValid[i])
    5180         280 :             return KnownAssignedXids[i];
    5181             :     }
    5182             : 
    5183         404 :     return InvalidTransactionId;
    5184             : }
    5185             : 
    5186             : /*
    5187             :  * Display KnownAssignedXids to provide debug trail
    5188             :  *
    5189             :  * Currently this is only called within startup process, so we need no
    5190             :  * special locking.
    5191             :  *
    5192             :  * Note this is pretty expensive, and much of the expense will be incurred
    5193             :  * even if the elog message will get discarded.  It's not currently called
    5194             :  * in any performance-critical places, however, so no need to be tenser.
    5195             :  */
    5196             : static void
    5197         238 : KnownAssignedXidsDisplay(int trace_level)
    5198             : {
    5199         238 :     ProcArrayStruct *pArray = procArray;
    5200             :     StringInfoData buf;
    5201             :     int         head,
    5202             :                 tail,
    5203             :                 i;
    5204         238 :     int         nxids = 0;
    5205             : 
    5206         238 :     tail = pArray->tailKnownAssignedXids;
    5207         238 :     head = pArray->headKnownAssignedXids;
    5208             : 
    5209         238 :     initStringInfo(&buf);
    5210             : 
    5211         254 :     for (i = tail; i < head; i++)
    5212             :     {
    5213          16 :         if (KnownAssignedXidsValid[i])
    5214             :         {
    5215          16 :             nxids++;
    5216          16 :             appendStringInfo(&buf, "[%d]=%u ", i, KnownAssignedXids[i]);
    5217             :         }
    5218             :     }
    5219             : 
    5220         238 :     elog(trace_level, "%d KnownAssignedXids (num=%d tail=%d head=%d) %s",
    5221             :          nxids,
    5222             :          pArray->numKnownAssignedXids,
    5223             :          pArray->tailKnownAssignedXids,
    5224             :          pArray->headKnownAssignedXids,
    5225             :          buf.data);
    5226             : 
    5227         238 :     pfree(buf.data);
    5228         238 : }
    5229             : 
    5230             : /*
    5231             :  * KnownAssignedXidsReset
    5232             :  *      Resets KnownAssignedXids to be empty
    5233             :  */
    5234             : static void
    5235           0 : KnownAssignedXidsReset(void)
    5236             : {
    5237           0 :     ProcArrayStruct *pArray = procArray;
    5238             : 
    5239           0 :     LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    5240             : 
    5241           0 :     pArray->numKnownAssignedXids = 0;
    5242           0 :     pArray->tailKnownAssignedXids = 0;
    5243           0 :     pArray->headKnownAssignedXids = 0;
    5244             : 
    5245           0 :     LWLockRelease(ProcArrayLock);
    5246           0 : }

Generated by: LCOV version 1.16