Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * procarray.c
4 : * POSTGRES process array code.
5 : *
6 : *
7 : * This module maintains arrays of PGPROC substructures, as well as associated
8 : * arrays in ProcGlobal, for all active backends. Although there are several
9 : * uses for this, the principal one is as a means of determining the set of
10 : * currently running transactions.
11 : *
12 : * Because of various subtle race conditions it is critical that a backend
13 : * hold the correct locks while setting or clearing its xid (in
14 : * ProcGlobal->xids[]/MyProc->xid). See notes in
15 : * src/backend/access/transam/README.
16 : *
17 : * The process arrays now also include structures representing prepared
18 : * transactions. The xid and subxids fields of these are valid, as are the
19 : * myProcLocks lists. They can be distinguished from regular backend PGPROCs
20 : * at need by checking for pid == 0.
21 : *
22 : * During hot standby, we also keep a list of XIDs representing transactions
23 : * that are known to be running on the primary (or more precisely, were running
24 : * as of the current point in the WAL stream). This list is kept in the
25 : * KnownAssignedXids array, and is updated by watching the sequence of
26 : * arriving XIDs. This is necessary because if we leave those XIDs out of
27 : * snapshots taken for standby queries, then they will appear to be already
28 : * complete, leading to MVCC failures. Note that in hot standby, the PGPROC
29 : * array represents standby processes, which by definition are not running
30 : * transactions that have XIDs.
31 : *
32 : * It is perhaps possible for a backend on the primary to terminate without
33 : * writing an abort record for its transaction. While that shouldn't really
34 : * happen, it would tie up KnownAssignedXids indefinitely, so we protect
35 : * ourselves by pruning the array when a valid list of running XIDs arrives.
36 : *
37 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
38 : * Portions Copyright (c) 1994, Regents of the University of California
39 : *
40 : *
41 : * IDENTIFICATION
42 : * src/backend/storage/ipc/procarray.c
43 : *
44 : *-------------------------------------------------------------------------
45 : */
46 : #include "postgres.h"
47 :
48 : #include <signal.h>
49 :
50 : #include "access/subtrans.h"
51 : #include "access/transam.h"
52 : #include "access/twophase.h"
53 : #include "access/xact.h"
54 : #include "access/xlogutils.h"
55 : #include "catalog/catalog.h"
56 : #include "catalog/pg_authid.h"
57 : #include "miscadmin.h"
58 : #include "pgstat.h"
59 : #include "port/pg_lfind.h"
60 : #include "storage/proc.h"
61 : #include "storage/procarray.h"
62 : #include "utils/acl.h"
63 : #include "utils/builtins.h"
64 : #include "utils/lsyscache.h"
65 : #include "utils/rel.h"
66 : #include "utils/snapmgr.h"
67 :
68 : #define UINT32_ACCESS_ONCE(var) ((uint32)(*((volatile uint32 *)&(var))))
69 :
70 : /* Our shared memory area */
71 : typedef struct ProcArrayStruct
72 : {
73 : int numProcs; /* number of valid procs entries */
74 : int maxProcs; /* allocated size of procs array */
75 :
76 : /*
77 : * Known assigned XIDs handling
78 : */
79 : int maxKnownAssignedXids; /* allocated size of array */
80 : int numKnownAssignedXids; /* current # of valid entries */
81 : int tailKnownAssignedXids; /* index of oldest valid element */
82 : int headKnownAssignedXids; /* index of newest element, + 1 */
83 :
84 : /*
85 : * Highest subxid that has been removed from KnownAssignedXids array to
86 : * prevent overflow; or InvalidTransactionId if none. We track this for
87 : * similar reasons to tracking overflowing cached subxids in PGPROC
88 : * entries. Must hold exclusive ProcArrayLock to change this, and shared
89 : * lock to read it.
90 : */
91 : TransactionId lastOverflowedXid;
92 :
93 : /* oldest xmin of any replication slot */
94 : TransactionId replication_slot_xmin;
95 : /* oldest catalog xmin of any replication slot */
96 : TransactionId replication_slot_catalog_xmin;
97 :
98 : /* indexes into allProcs[], has PROCARRAY_MAXPROCS entries */
99 : int pgprocnos[FLEXIBLE_ARRAY_MEMBER];
100 : } ProcArrayStruct;
101 :
102 : /*
103 : * State for the GlobalVisTest* family of functions. Those functions can
104 : * e.g. be used to decide if a deleted row can be removed without violating
105 : * MVCC semantics: If the deleted row's xmax is not considered to be running
106 : * by anyone, the row can be removed.
107 : *
108 : * To avoid slowing down GetSnapshotData(), we don't calculate a precise
109 : * cutoff XID while building a snapshot (looking at the frequently changing
110 : * xmins scales badly). Instead we compute two boundaries while building the
111 : * snapshot:
112 : *
113 : * 1) definitely_needed, indicating that rows deleted by XIDs >=
114 : * definitely_needed are definitely still visible.
115 : *
116 : * 2) maybe_needed, indicating that rows deleted by XIDs < maybe_needed can
117 : * definitely be removed
118 : *
119 : * When testing an XID that falls in between the two (i.e. XID >= maybe_needed
120 : * && XID < definitely_needed), the boundaries can be recomputed (using
121 : * ComputeXidHorizons()) to get a more accurate answer. This is cheaper than
122 : * maintaining an accurate value all the time.
123 : *
124 : * As it is not cheap to compute accurate boundaries, we limit the number of
125 : * times that happens in short succession. See GlobalVisTestShouldUpdate().
126 : *
127 : *
128 : * There are three backend lifetime instances of this struct, optimized for
129 : * different types of relations. As e.g. a normal user defined table in one
130 : * database is inaccessible to backends connected to another database, a test
131 : * specific to a relation can be more aggressive than a test for a shared
132 : * relation. Currently we track four different states:
133 : *
134 : * 1) GlobalVisSharedRels, which only considers an XID's
135 : * effects visible-to-everyone if neither snapshots in any database, nor a
136 : * replication slot's xmin, nor a replication slot's catalog_xmin might
137 : * still consider XID as running.
138 : *
139 : * 2) GlobalVisCatalogRels, which only considers an XID's
140 : * effects visible-to-everyone if neither snapshots in the current
141 : * database, nor a replication slot's xmin, nor a replication slot's
142 : * catalog_xmin might still consider XID as running.
143 : *
144 : * I.e. the difference to GlobalVisSharedRels is that
145 : * snapshot in other databases are ignored.
146 : *
147 : * 3) GlobalVisDataRels, which only considers an XID's
148 : * effects visible-to-everyone if neither snapshots in the current
149 : * database, nor a replication slot's xmin consider XID as running.
150 : *
151 : * I.e. the difference to GlobalVisCatalogRels is that
152 : * replication slot's catalog_xmin is not taken into account.
153 : *
154 : * 4) GlobalVisTempRels, which only considers the current session, as temp
155 : * tables are not visible to other sessions.
156 : *
157 : * GlobalVisTestFor(relation) returns the appropriate state
158 : * for the relation.
159 : *
160 : * The boundaries are FullTransactionIds instead of TransactionIds to avoid
161 : * wraparound dangers. There e.g. would otherwise exist no procarray state to
162 : * prevent maybe_needed to become old enough after the GetSnapshotData()
163 : * call.
164 : *
165 : * The typedef is in the header.
166 : */
167 : struct GlobalVisState
168 : {
169 : /* XIDs >= are considered running by some backend */
170 : FullTransactionId definitely_needed;
171 :
172 : /* XIDs < are not considered to be running by any backend */
173 : FullTransactionId maybe_needed;
174 : };
175 :
176 : /*
177 : * Result of ComputeXidHorizons().
178 : */
179 : typedef struct ComputeXidHorizonsResult
180 : {
181 : /*
182 : * The value of TransamVariables->latestCompletedXid when
183 : * ComputeXidHorizons() held ProcArrayLock.
184 : */
185 : FullTransactionId latest_completed;
186 :
187 : /*
188 : * The same for procArray->replication_slot_xmin and
189 : * procArray->replication_slot_catalog_xmin.
190 : */
191 : TransactionId slot_xmin;
192 : TransactionId slot_catalog_xmin;
193 :
194 : /*
195 : * Oldest xid that any backend might still consider running. This needs to
196 : * include processes running VACUUM, in contrast to the normal visibility
197 : * cutoffs, as vacuum needs to be able to perform pg_subtrans lookups when
198 : * determining visibility, but doesn't care about rows above its xmin to
199 : * be removed.
200 : *
201 : * This likely should only be needed to determine whether pg_subtrans can
202 : * be truncated. It currently includes the effects of replication slots,
203 : * for historical reasons. But that could likely be changed.
204 : */
205 : TransactionId oldest_considered_running;
206 :
207 : /*
208 : * Oldest xid for which deleted tuples need to be retained in shared
209 : * tables.
210 : *
211 : * This includes the effects of replication slots. If that's not desired,
212 : * look at shared_oldest_nonremovable_raw;
213 : */
214 : TransactionId shared_oldest_nonremovable;
215 :
216 : /*
217 : * Oldest xid that may be necessary to retain in shared tables. This is
218 : * the same as shared_oldest_nonremovable, except that is not affected by
219 : * replication slot's catalog_xmin.
220 : *
221 : * This is mainly useful to be able to send the catalog_xmin to upstream
222 : * streaming replication servers via hot_standby_feedback, so they can
223 : * apply the limit only when accessing catalog tables.
224 : */
225 : TransactionId shared_oldest_nonremovable_raw;
226 :
227 : /*
228 : * Oldest xid for which deleted tuples need to be retained in non-shared
229 : * catalog tables.
230 : */
231 : TransactionId catalog_oldest_nonremovable;
232 :
233 : /*
234 : * Oldest xid for which deleted tuples need to be retained in normal user
235 : * defined tables.
236 : */
237 : TransactionId data_oldest_nonremovable;
238 :
239 : /*
240 : * Oldest xid for which deleted tuples need to be retained in this
241 : * session's temporary tables.
242 : */
243 : TransactionId temp_oldest_nonremovable;
244 : } ComputeXidHorizonsResult;
245 :
246 : /*
247 : * Return value for GlobalVisHorizonKindForRel().
248 : */
249 : typedef enum GlobalVisHorizonKind
250 : {
251 : VISHORIZON_SHARED,
252 : VISHORIZON_CATALOG,
253 : VISHORIZON_DATA,
254 : VISHORIZON_TEMP,
255 : } GlobalVisHorizonKind;
256 :
257 : /*
258 : * Reason codes for KnownAssignedXidsCompress().
259 : */
260 : typedef enum KAXCompressReason
261 : {
262 : KAX_NO_SPACE, /* need to free up space at array end */
263 : KAX_PRUNE, /* we just pruned old entries */
264 : KAX_TRANSACTION_END, /* we just committed/removed some XIDs */
265 : KAX_STARTUP_PROCESS_IDLE, /* startup process is about to sleep */
266 : } KAXCompressReason;
267 :
268 :
269 : static ProcArrayStruct *procArray;
270 :
271 : static PGPROC *allProcs;
272 :
273 : /*
274 : * Cache to reduce overhead of repeated calls to TransactionIdIsInProgress()
275 : */
276 : static TransactionId cachedXidIsNotInProgress = InvalidTransactionId;
277 :
278 : /*
279 : * Bookkeeping for tracking emulated transactions in recovery
280 : */
281 : static TransactionId *KnownAssignedXids;
282 : static bool *KnownAssignedXidsValid;
283 : static TransactionId latestObservedXid = InvalidTransactionId;
284 :
285 : /*
286 : * If we're in STANDBY_SNAPSHOT_PENDING state, standbySnapshotPendingXmin is
287 : * the highest xid that might still be running that we don't have in
288 : * KnownAssignedXids.
289 : */
290 : static TransactionId standbySnapshotPendingXmin;
291 :
292 : /*
293 : * State for visibility checks on different types of relations. See struct
294 : * GlobalVisState for details. As shared, catalog, normal and temporary
295 : * relations can have different horizons, one such state exists for each.
296 : */
297 : static GlobalVisState GlobalVisSharedRels;
298 : static GlobalVisState GlobalVisCatalogRels;
299 : static GlobalVisState GlobalVisDataRels;
300 : static GlobalVisState GlobalVisTempRels;
301 :
302 : /*
303 : * This backend's RecentXmin at the last time the accurate xmin horizon was
304 : * recomputed, or InvalidTransactionId if it has not. Used to limit how many
305 : * times accurate horizons are recomputed. See GlobalVisTestShouldUpdate().
306 : */
307 : static TransactionId ComputeXidHorizonsResultLastXmin;
308 :
309 : #ifdef XIDCACHE_DEBUG
310 :
311 : /* counters for XidCache measurement */
312 : static long xc_by_recent_xmin = 0;
313 : static long xc_by_known_xact = 0;
314 : static long xc_by_my_xact = 0;
315 : static long xc_by_latest_xid = 0;
316 : static long xc_by_main_xid = 0;
317 : static long xc_by_child_xid = 0;
318 : static long xc_by_known_assigned = 0;
319 : static long xc_no_overflow = 0;
320 : static long xc_slow_answer = 0;
321 :
322 : #define xc_by_recent_xmin_inc() (xc_by_recent_xmin++)
323 : #define xc_by_known_xact_inc() (xc_by_known_xact++)
324 : #define xc_by_my_xact_inc() (xc_by_my_xact++)
325 : #define xc_by_latest_xid_inc() (xc_by_latest_xid++)
326 : #define xc_by_main_xid_inc() (xc_by_main_xid++)
327 : #define xc_by_child_xid_inc() (xc_by_child_xid++)
328 : #define xc_by_known_assigned_inc() (xc_by_known_assigned++)
329 : #define xc_no_overflow_inc() (xc_no_overflow++)
330 : #define xc_slow_answer_inc() (xc_slow_answer++)
331 :
332 : static void DisplayXidCache(void);
333 : #else /* !XIDCACHE_DEBUG */
334 :
335 : #define xc_by_recent_xmin_inc() ((void) 0)
336 : #define xc_by_known_xact_inc() ((void) 0)
337 : #define xc_by_my_xact_inc() ((void) 0)
338 : #define xc_by_latest_xid_inc() ((void) 0)
339 : #define xc_by_main_xid_inc() ((void) 0)
340 : #define xc_by_child_xid_inc() ((void) 0)
341 : #define xc_by_known_assigned_inc() ((void) 0)
342 : #define xc_no_overflow_inc() ((void) 0)
343 : #define xc_slow_answer_inc() ((void) 0)
344 : #endif /* XIDCACHE_DEBUG */
345 :
346 : /* Primitives for KnownAssignedXids array handling for standby */
347 : static void KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock);
348 : static void KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
349 : bool exclusive_lock);
350 : static bool KnownAssignedXidsSearch(TransactionId xid, bool remove);
351 : static bool KnownAssignedXidExists(TransactionId xid);
352 : static void KnownAssignedXidsRemove(TransactionId xid);
353 : static void KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
354 : TransactionId *subxids);
355 : static void KnownAssignedXidsRemovePreceding(TransactionId removeXid);
356 : static int KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax);
357 : static int KnownAssignedXidsGetAndSetXmin(TransactionId *xarray,
358 : TransactionId *xmin,
359 : TransactionId xmax);
360 : static TransactionId KnownAssignedXidsGetOldestXmin(void);
361 : static void KnownAssignedXidsDisplay(int trace_level);
362 : static void KnownAssignedXidsReset(void);
363 : static inline void ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid);
364 : static void ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid);
365 : static void MaintainLatestCompletedXid(TransactionId latestXid);
366 : static void MaintainLatestCompletedXidRecovery(TransactionId latestXid);
367 :
368 : static inline FullTransactionId FullXidRelativeTo(FullTransactionId rel,
369 : TransactionId xid);
370 : static void GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons);
371 :
372 : /*
373 : * Report shared-memory space needed by ProcArrayShmemInit
374 : */
375 : Size
376 4150 : ProcArrayShmemSize(void)
377 : {
378 : Size size;
379 :
380 : /* Size of the ProcArray structure itself */
381 : #define PROCARRAY_MAXPROCS (MaxBackends + max_prepared_xacts)
382 :
383 4150 : size = offsetof(ProcArrayStruct, pgprocnos);
384 4150 : size = add_size(size, mul_size(sizeof(int), PROCARRAY_MAXPROCS));
385 :
386 : /*
387 : * During Hot Standby processing we have a data structure called
388 : * KnownAssignedXids, created in shared memory. Local data structures are
389 : * also created in various backends during GetSnapshotData(),
390 : * TransactionIdIsInProgress() and GetRunningTransactionData(). All of the
391 : * main structures created in those functions must be identically sized,
392 : * since we may at times copy the whole of the data structures around. We
393 : * refer to this size as TOTAL_MAX_CACHED_SUBXIDS.
394 : *
395 : * Ideally we'd only create this structure if we were actually doing hot
396 : * standby in the current run, but we don't know that yet at the time
397 : * shared memory is being set up.
398 : */
399 : #define TOTAL_MAX_CACHED_SUBXIDS \
400 : ((PGPROC_MAX_CACHED_SUBXIDS + 1) * PROCARRAY_MAXPROCS)
401 :
402 4150 : if (EnableHotStandby)
403 : {
404 4126 : size = add_size(size,
405 : mul_size(sizeof(TransactionId),
406 4126 : TOTAL_MAX_CACHED_SUBXIDS));
407 4126 : size = add_size(size,
408 4126 : mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS));
409 : }
410 :
411 4150 : return size;
412 : }
413 :
414 : /*
415 : * Initialize the shared PGPROC array during postmaster startup.
416 : */
417 : void
418 2228 : ProcArrayShmemInit(void)
419 : {
420 : bool found;
421 :
422 : /* Create or attach to the ProcArray shared structure */
423 2228 : procArray = (ProcArrayStruct *)
424 2228 : ShmemInitStruct("Proc Array",
425 : add_size(offsetof(ProcArrayStruct, pgprocnos),
426 : mul_size(sizeof(int),
427 2228 : PROCARRAY_MAXPROCS)),
428 : &found);
429 :
430 2228 : if (!found)
431 : {
432 : /*
433 : * We're the first - initialize.
434 : */
435 2228 : procArray->numProcs = 0;
436 2228 : procArray->maxProcs = PROCARRAY_MAXPROCS;
437 2228 : procArray->maxKnownAssignedXids = TOTAL_MAX_CACHED_SUBXIDS;
438 2228 : procArray->numKnownAssignedXids = 0;
439 2228 : procArray->tailKnownAssignedXids = 0;
440 2228 : procArray->headKnownAssignedXids = 0;
441 2228 : procArray->lastOverflowedXid = InvalidTransactionId;
442 2228 : procArray->replication_slot_xmin = InvalidTransactionId;
443 2228 : procArray->replication_slot_catalog_xmin = InvalidTransactionId;
444 2228 : TransamVariables->xactCompletionCount = 1;
445 : }
446 :
447 2228 : allProcs = ProcGlobal->allProcs;
448 :
449 : /* Create or attach to the KnownAssignedXids arrays too, if needed */
450 2228 : if (EnableHotStandby)
451 : {
452 2216 : KnownAssignedXids = (TransactionId *)
453 2216 : ShmemInitStruct("KnownAssignedXids",
454 : mul_size(sizeof(TransactionId),
455 2216 : TOTAL_MAX_CACHED_SUBXIDS),
456 : &found);
457 2216 : KnownAssignedXidsValid = (bool *)
458 2216 : ShmemInitStruct("KnownAssignedXidsValid",
459 2216 : mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS),
460 : &found);
461 : }
462 2228 : }
463 :
464 : /*
465 : * Add the specified PGPROC to the shared array.
466 : */
467 : void
468 37714 : ProcArrayAdd(PGPROC *proc)
469 : {
470 37714 : int pgprocno = GetNumberFromPGProc(proc);
471 37714 : ProcArrayStruct *arrayP = procArray;
472 : int index;
473 : int movecount;
474 :
475 : /* See ProcGlobal comment explaining why both locks are held */
476 37714 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
477 37714 : LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
478 :
479 37714 : if (arrayP->numProcs >= arrayP->maxProcs)
480 : {
481 : /*
482 : * Oops, no room. (This really shouldn't happen, since there is a
483 : * fixed supply of PGPROC structs too, and so we should have failed
484 : * earlier.)
485 : */
486 0 : ereport(FATAL,
487 : (errcode(ERRCODE_TOO_MANY_CONNECTIONS),
488 : errmsg("sorry, too many clients already")));
489 : }
490 :
491 : /*
492 : * Keep the procs array sorted by (PGPROC *) so that we can utilize
493 : * locality of references much better. This is useful while traversing the
494 : * ProcArray because there is an increased likelihood of finding the next
495 : * PGPROC structure in the cache.
496 : *
497 : * Since the occurrence of adding/removing a proc is much lower than the
498 : * access to the ProcArray itself, the overhead should be marginal
499 : */
500 92688 : for (index = 0; index < arrayP->numProcs; index++)
501 : {
502 83876 : int this_procno = arrayP->pgprocnos[index];
503 :
504 : Assert(this_procno >= 0 && this_procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
505 : Assert(allProcs[this_procno].pgxactoff == index);
506 :
507 : /* If we have found our right position in the array, break */
508 83876 : if (this_procno > pgprocno)
509 28902 : break;
510 : }
511 :
512 37714 : movecount = arrayP->numProcs - index;
513 37714 : memmove(&arrayP->pgprocnos[index + 1],
514 37714 : &arrayP->pgprocnos[index],
515 : movecount * sizeof(*arrayP->pgprocnos));
516 37714 : memmove(&ProcGlobal->xids[index + 1],
517 37714 : &ProcGlobal->xids[index],
518 : movecount * sizeof(*ProcGlobal->xids));
519 37714 : memmove(&ProcGlobal->subxidStates[index + 1],
520 37714 : &ProcGlobal->subxidStates[index],
521 : movecount * sizeof(*ProcGlobal->subxidStates));
522 37714 : memmove(&ProcGlobal->statusFlags[index + 1],
523 37714 : &ProcGlobal->statusFlags[index],
524 : movecount * sizeof(*ProcGlobal->statusFlags));
525 :
526 37714 : arrayP->pgprocnos[index] = GetNumberFromPGProc(proc);
527 37714 : proc->pgxactoff = index;
528 37714 : ProcGlobal->xids[index] = proc->xid;
529 37714 : ProcGlobal->subxidStates[index] = proc->subxidStatus;
530 37714 : ProcGlobal->statusFlags[index] = proc->statusFlags;
531 :
532 37714 : arrayP->numProcs++;
533 :
534 : /* adjust pgxactoff for all following PGPROCs */
535 37714 : index++;
536 102966 : for (; index < arrayP->numProcs; index++)
537 : {
538 65252 : int procno = arrayP->pgprocnos[index];
539 :
540 : Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
541 : Assert(allProcs[procno].pgxactoff == index - 1);
542 :
543 65252 : allProcs[procno].pgxactoff = index;
544 : }
545 :
546 : /*
547 : * Release in reversed acquisition order, to reduce frequency of having to
548 : * wait for XidGenLock while holding ProcArrayLock.
549 : */
550 37714 : LWLockRelease(XidGenLock);
551 37714 : LWLockRelease(ProcArrayLock);
552 37714 : }
553 :
554 : /*
555 : * Remove the specified PGPROC from the shared array.
556 : *
557 : * When latestXid is a valid XID, we are removing a live 2PC gxact from the
558 : * array, and thus causing it to appear as "not running" anymore. In this
559 : * case we must advance latestCompletedXid. (This is essentially the same
560 : * as ProcArrayEndTransaction followed by removal of the PGPROC, but we take
561 : * the ProcArrayLock only once, and don't damage the content of the PGPROC;
562 : * twophase.c depends on the latter.)
563 : */
564 : void
565 37658 : ProcArrayRemove(PGPROC *proc, TransactionId latestXid)
566 : {
567 37658 : ProcArrayStruct *arrayP = procArray;
568 : int myoff;
569 : int movecount;
570 :
571 : #ifdef XIDCACHE_DEBUG
572 : /* dump stats at backend shutdown, but not prepared-xact end */
573 : if (proc->pid != 0)
574 : DisplayXidCache();
575 : #endif
576 :
577 : /* See ProcGlobal comment explaining why both locks are held */
578 37658 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
579 37658 : LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
580 :
581 37658 : myoff = proc->pgxactoff;
582 :
583 : Assert(myoff >= 0 && myoff < arrayP->numProcs);
584 : Assert(ProcGlobal->allProcs[arrayP->pgprocnos[myoff]].pgxactoff == myoff);
585 :
586 37658 : if (TransactionIdIsValid(latestXid))
587 : {
588 : Assert(TransactionIdIsValid(ProcGlobal->xids[myoff]));
589 :
590 : /* Advance global latestCompletedXid while holding the lock */
591 598 : MaintainLatestCompletedXid(latestXid);
592 :
593 : /* Same with xactCompletionCount */
594 598 : TransamVariables->xactCompletionCount++;
595 :
596 598 : ProcGlobal->xids[myoff] = InvalidTransactionId;
597 598 : ProcGlobal->subxidStates[myoff].overflowed = false;
598 598 : ProcGlobal->subxidStates[myoff].count = 0;
599 : }
600 : else
601 : {
602 : /* Shouldn't be trying to remove a live transaction here */
603 : Assert(!TransactionIdIsValid(ProcGlobal->xids[myoff]));
604 : }
605 :
606 : Assert(!TransactionIdIsValid(ProcGlobal->xids[myoff]));
607 : Assert(ProcGlobal->subxidStates[myoff].count == 0);
608 : Assert(ProcGlobal->subxidStates[myoff].overflowed == false);
609 :
610 37658 : ProcGlobal->statusFlags[myoff] = 0;
611 :
612 : /* Keep the PGPROC array sorted. See notes above */
613 37658 : movecount = arrayP->numProcs - myoff - 1;
614 37658 : memmove(&arrayP->pgprocnos[myoff],
615 37658 : &arrayP->pgprocnos[myoff + 1],
616 : movecount * sizeof(*arrayP->pgprocnos));
617 37658 : memmove(&ProcGlobal->xids[myoff],
618 37658 : &ProcGlobal->xids[myoff + 1],
619 : movecount * sizeof(*ProcGlobal->xids));
620 37658 : memmove(&ProcGlobal->subxidStates[myoff],
621 37658 : &ProcGlobal->subxidStates[myoff + 1],
622 : movecount * sizeof(*ProcGlobal->subxidStates));
623 37658 : memmove(&ProcGlobal->statusFlags[myoff],
624 37658 : &ProcGlobal->statusFlags[myoff + 1],
625 : movecount * sizeof(*ProcGlobal->statusFlags));
626 :
627 37658 : arrayP->pgprocnos[arrayP->numProcs - 1] = -1; /* for debugging */
628 37658 : arrayP->numProcs--;
629 :
630 : /*
631 : * Adjust pgxactoff of following procs for removed PGPROC (note that
632 : * numProcs already has been decremented).
633 : */
634 109542 : for (int index = myoff; index < arrayP->numProcs; index++)
635 : {
636 71884 : int procno = arrayP->pgprocnos[index];
637 :
638 : Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
639 : Assert(allProcs[procno].pgxactoff - 1 == index);
640 :
641 71884 : allProcs[procno].pgxactoff = index;
642 : }
643 :
644 : /*
645 : * Release in reversed acquisition order, to reduce frequency of having to
646 : * wait for XidGenLock while holding ProcArrayLock.
647 : */
648 37658 : LWLockRelease(XidGenLock);
649 37658 : LWLockRelease(ProcArrayLock);
650 37658 : }
651 :
652 :
653 : /*
654 : * ProcArrayEndTransaction -- mark a transaction as no longer running
655 : *
656 : * This is used interchangeably for commit and abort cases. The transaction
657 : * commit/abort must already be reported to WAL and pg_xact.
658 : *
659 : * proc is currently always MyProc, but we pass it explicitly for flexibility.
660 : * latestXid is the latest Xid among the transaction's main XID and
661 : * subtransactions, or InvalidTransactionId if it has no XID. (We must ask
662 : * the caller to pass latestXid, instead of computing it from the PGPROC's
663 : * contents, because the subxid information in the PGPROC might be
664 : * incomplete.)
665 : */
666 : void
667 1164722 : ProcArrayEndTransaction(PGPROC *proc, TransactionId latestXid)
668 : {
669 1164722 : if (TransactionIdIsValid(latestXid))
670 : {
671 : /*
672 : * We must lock ProcArrayLock while clearing our advertised XID, so
673 : * that we do not exit the set of "running" transactions while someone
674 : * else is taking a snapshot. See discussion in
675 : * src/backend/access/transam/README.
676 : */
677 : Assert(TransactionIdIsValid(proc->xid));
678 :
679 : /*
680 : * If we can immediately acquire ProcArrayLock, we clear our own XID
681 : * and release the lock. If not, use group XID clearing to improve
682 : * efficiency.
683 : */
684 270894 : if (LWLockConditionalAcquire(ProcArrayLock, LW_EXCLUSIVE))
685 : {
686 270470 : ProcArrayEndTransactionInternal(proc, latestXid);
687 270470 : LWLockRelease(ProcArrayLock);
688 : }
689 : else
690 424 : ProcArrayGroupClearXid(proc, latestXid);
691 : }
692 : else
693 : {
694 : /*
695 : * If we have no XID, we don't need to lock, since we won't affect
696 : * anyone else's calculation of a snapshot. We might change their
697 : * estimate of global xmin, but that's OK.
698 : */
699 : Assert(!TransactionIdIsValid(proc->xid));
700 : Assert(proc->subxidStatus.count == 0);
701 : Assert(!proc->subxidStatus.overflowed);
702 :
703 893828 : proc->vxid.lxid = InvalidLocalTransactionId;
704 893828 : proc->xmin = InvalidTransactionId;
705 :
706 : /* be sure this is cleared in abort */
707 893828 : proc->delayChkptFlags = 0;
708 :
709 893828 : proc->recoveryConflictPending = false;
710 :
711 : /* must be cleared with xid/xmin: */
712 : /* avoid unnecessarily dirtying shared cachelines */
713 893828 : if (proc->statusFlags & PROC_VACUUM_STATE_MASK)
714 : {
715 : Assert(!LWLockHeldByMe(ProcArrayLock));
716 268656 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
717 : Assert(proc->statusFlags == ProcGlobal->statusFlags[proc->pgxactoff]);
718 268656 : proc->statusFlags &= ~PROC_VACUUM_STATE_MASK;
719 268656 : ProcGlobal->statusFlags[proc->pgxactoff] = proc->statusFlags;
720 268656 : LWLockRelease(ProcArrayLock);
721 : }
722 : }
723 1164722 : }
724 :
725 : /*
726 : * Mark a write transaction as no longer running.
727 : *
728 : * We don't do any locking here; caller must handle that.
729 : */
730 : static inline void
731 270894 : ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid)
732 : {
733 270894 : int pgxactoff = proc->pgxactoff;
734 :
735 : /*
736 : * Note: we need exclusive lock here because we're going to change other
737 : * processes' PGPROC entries.
738 : */
739 : Assert(LWLockHeldByMeInMode(ProcArrayLock, LW_EXCLUSIVE));
740 : Assert(TransactionIdIsValid(ProcGlobal->xids[pgxactoff]));
741 : Assert(ProcGlobal->xids[pgxactoff] == proc->xid);
742 :
743 270894 : ProcGlobal->xids[pgxactoff] = InvalidTransactionId;
744 270894 : proc->xid = InvalidTransactionId;
745 270894 : proc->vxid.lxid = InvalidLocalTransactionId;
746 270894 : proc->xmin = InvalidTransactionId;
747 :
748 : /* be sure this is cleared in abort */
749 270894 : proc->delayChkptFlags = 0;
750 :
751 270894 : proc->recoveryConflictPending = false;
752 :
753 : /* must be cleared with xid/xmin: */
754 : /* avoid unnecessarily dirtying shared cachelines */
755 270894 : if (proc->statusFlags & PROC_VACUUM_STATE_MASK)
756 : {
757 1400 : proc->statusFlags &= ~PROC_VACUUM_STATE_MASK;
758 1400 : ProcGlobal->statusFlags[proc->pgxactoff] = proc->statusFlags;
759 : }
760 :
761 : /* Clear the subtransaction-XID cache too while holding the lock */
762 : Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count &&
763 : ProcGlobal->subxidStates[pgxactoff].overflowed == proc->subxidStatus.overflowed);
764 270894 : if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed)
765 : {
766 1130 : ProcGlobal->subxidStates[pgxactoff].count = 0;
767 1130 : ProcGlobal->subxidStates[pgxactoff].overflowed = false;
768 1130 : proc->subxidStatus.count = 0;
769 1130 : proc->subxidStatus.overflowed = false;
770 : }
771 :
772 : /* Also advance global latestCompletedXid while holding the lock */
773 270894 : MaintainLatestCompletedXid(latestXid);
774 :
775 : /* Same with xactCompletionCount */
776 270894 : TransamVariables->xactCompletionCount++;
777 270894 : }
778 :
779 : /*
780 : * ProcArrayGroupClearXid -- group XID clearing
781 : *
782 : * When we cannot immediately acquire ProcArrayLock in exclusive mode at
783 : * commit time, add ourselves to a list of processes that need their XIDs
784 : * cleared. The first process to add itself to the list will acquire
785 : * ProcArrayLock in exclusive mode and perform ProcArrayEndTransactionInternal
786 : * on behalf of all group members. This avoids a great deal of contention
787 : * around ProcArrayLock when many processes are trying to commit at once,
788 : * since the lock need not be repeatedly handed off from one committing
789 : * process to the next.
790 : */
791 : static void
792 424 : ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid)
793 : {
794 424 : int pgprocno = GetNumberFromPGProc(proc);
795 424 : PROC_HDR *procglobal = ProcGlobal;
796 : uint32 nextidx;
797 : uint32 wakeidx;
798 :
799 : /* We should definitely have an XID to clear. */
800 : Assert(TransactionIdIsValid(proc->xid));
801 :
802 : /* Add ourselves to the list of processes needing a group XID clear. */
803 424 : proc->procArrayGroupMember = true;
804 424 : proc->procArrayGroupMemberXid = latestXid;
805 424 : nextidx = pg_atomic_read_u32(&procglobal->procArrayGroupFirst);
806 : while (true)
807 : {
808 424 : pg_atomic_write_u32(&proc->procArrayGroupNext, nextidx);
809 :
810 424 : if (pg_atomic_compare_exchange_u32(&procglobal->procArrayGroupFirst,
811 : &nextidx,
812 : (uint32) pgprocno))
813 424 : break;
814 : }
815 :
816 : /*
817 : * If the list was not empty, the leader will clear our XID. It is
818 : * impossible to have followers without a leader because the first process
819 : * that has added itself to the list will always have nextidx as
820 : * INVALID_PROC_NUMBER.
821 : */
822 424 : if (nextidx != INVALID_PROC_NUMBER)
823 : {
824 22 : int extraWaits = 0;
825 :
826 : /* Sleep until the leader clears our XID. */
827 22 : pgstat_report_wait_start(WAIT_EVENT_PROCARRAY_GROUP_UPDATE);
828 : for (;;)
829 : {
830 : /* acts as a read barrier */
831 22 : PGSemaphoreLock(proc->sem);
832 22 : if (!proc->procArrayGroupMember)
833 22 : break;
834 0 : extraWaits++;
835 : }
836 22 : pgstat_report_wait_end();
837 :
838 : Assert(pg_atomic_read_u32(&proc->procArrayGroupNext) == INVALID_PROC_NUMBER);
839 :
840 : /* Fix semaphore count for any absorbed wakeups */
841 22 : while (extraWaits-- > 0)
842 0 : PGSemaphoreUnlock(proc->sem);
843 22 : return;
844 : }
845 :
846 : /* We are the leader. Acquire the lock on behalf of everyone. */
847 402 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
848 :
849 : /*
850 : * Now that we've got the lock, clear the list of processes waiting for
851 : * group XID clearing, saving a pointer to the head of the list. Trying
852 : * to pop elements one at a time could lead to an ABA problem.
853 : */
854 402 : nextidx = pg_atomic_exchange_u32(&procglobal->procArrayGroupFirst,
855 : INVALID_PROC_NUMBER);
856 :
857 : /* Remember head of list so we can perform wakeups after dropping lock. */
858 402 : wakeidx = nextidx;
859 :
860 : /* Walk the list and clear all XIDs. */
861 826 : while (nextidx != INVALID_PROC_NUMBER)
862 : {
863 424 : PGPROC *nextproc = &allProcs[nextidx];
864 :
865 424 : ProcArrayEndTransactionInternal(nextproc, nextproc->procArrayGroupMemberXid);
866 :
867 : /* Move to next proc in list. */
868 424 : nextidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext);
869 : }
870 :
871 : /* We're done with the lock now. */
872 402 : LWLockRelease(ProcArrayLock);
873 :
874 : /*
875 : * Now that we've released the lock, go back and wake everybody up. We
876 : * don't do this under the lock so as to keep lock hold times to a
877 : * minimum. The system calls we need to perform to wake other processes
878 : * up are probably much slower than the simple memory writes we did while
879 : * holding the lock.
880 : */
881 826 : while (wakeidx != INVALID_PROC_NUMBER)
882 : {
883 424 : PGPROC *nextproc = &allProcs[wakeidx];
884 :
885 424 : wakeidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext);
886 424 : pg_atomic_write_u32(&nextproc->procArrayGroupNext, INVALID_PROC_NUMBER);
887 :
888 : /* ensure all previous writes are visible before follower continues. */
889 424 : pg_write_barrier();
890 :
891 424 : nextproc->procArrayGroupMember = false;
892 :
893 424 : if (nextproc != MyProc)
894 22 : PGSemaphoreUnlock(nextproc->sem);
895 : }
896 : }
897 :
898 : /*
899 : * ProcArrayClearTransaction -- clear the transaction fields
900 : *
901 : * This is used after successfully preparing a 2-phase transaction. We are
902 : * not actually reporting the transaction's XID as no longer running --- it
903 : * will still appear as running because the 2PC's gxact is in the ProcArray
904 : * too. We just have to clear out our own PGPROC.
905 : */
906 : void
907 588 : ProcArrayClearTransaction(PGPROC *proc)
908 : {
909 : int pgxactoff;
910 :
911 : /*
912 : * Currently we need to lock ProcArrayLock exclusively here, as we
913 : * increment xactCompletionCount below. We also need it at least in shared
914 : * mode for pgproc->pgxactoff to stay the same below.
915 : *
916 : * We could however, as this action does not actually change anyone's view
917 : * of the set of running XIDs (our entry is duplicate with the gxact that
918 : * has already been inserted into the ProcArray), lower the lock level to
919 : * shared if we were to make xactCompletionCount an atomic variable. But
920 : * that doesn't seem worth it currently, as a 2PC commit is heavyweight
921 : * enough for this not to be the bottleneck. If it ever becomes a
922 : * bottleneck it may also be worth considering to combine this with the
923 : * subsequent ProcArrayRemove()
924 : */
925 588 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
926 :
927 588 : pgxactoff = proc->pgxactoff;
928 :
929 588 : ProcGlobal->xids[pgxactoff] = InvalidTransactionId;
930 588 : proc->xid = InvalidTransactionId;
931 :
932 588 : proc->vxid.lxid = InvalidLocalTransactionId;
933 588 : proc->xmin = InvalidTransactionId;
934 588 : proc->recoveryConflictPending = false;
935 :
936 : Assert(!(proc->statusFlags & PROC_VACUUM_STATE_MASK));
937 : Assert(!proc->delayChkptFlags);
938 :
939 : /*
940 : * Need to increment completion count even though transaction hasn't
941 : * really committed yet. The reason for that is that GetSnapshotData()
942 : * omits the xid of the current transaction, thus without the increment we
943 : * otherwise could end up reusing the snapshot later. Which would be bad,
944 : * because it might not count the prepared transaction as running.
945 : */
946 588 : TransamVariables->xactCompletionCount++;
947 :
948 : /* Clear the subtransaction-XID cache too */
949 : Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count &&
950 : ProcGlobal->subxidStates[pgxactoff].overflowed == proc->subxidStatus.overflowed);
951 588 : if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed)
952 : {
953 206 : ProcGlobal->subxidStates[pgxactoff].count = 0;
954 206 : ProcGlobal->subxidStates[pgxactoff].overflowed = false;
955 206 : proc->subxidStatus.count = 0;
956 206 : proc->subxidStatus.overflowed = false;
957 : }
958 :
959 588 : LWLockRelease(ProcArrayLock);
960 588 : }
961 :
962 : /*
963 : * Update TransamVariables->latestCompletedXid to point to latestXid if
964 : * currently older.
965 : */
966 : static void
967 272814 : MaintainLatestCompletedXid(TransactionId latestXid)
968 : {
969 272814 : FullTransactionId cur_latest = TransamVariables->latestCompletedXid;
970 :
971 : Assert(FullTransactionIdIsValid(cur_latest));
972 : Assert(!RecoveryInProgress());
973 : Assert(LWLockHeldByMe(ProcArrayLock));
974 :
975 272814 : if (TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid))
976 : {
977 246384 : TransamVariables->latestCompletedXid =
978 246384 : FullXidRelativeTo(cur_latest, latestXid);
979 : }
980 :
981 : Assert(IsBootstrapProcessingMode() ||
982 : FullTransactionIdIsNormal(TransamVariables->latestCompletedXid));
983 272814 : }
984 :
985 : /*
986 : * Same as MaintainLatestCompletedXid, except for use during WAL replay.
987 : */
988 : static void
989 45170 : MaintainLatestCompletedXidRecovery(TransactionId latestXid)
990 : {
991 45170 : FullTransactionId cur_latest = TransamVariables->latestCompletedXid;
992 : FullTransactionId rel;
993 :
994 : Assert(AmStartupProcess() || !IsUnderPostmaster);
995 : Assert(LWLockHeldByMe(ProcArrayLock));
996 :
997 : /*
998 : * Need a FullTransactionId to compare latestXid with. Can't rely on
999 : * latestCompletedXid to be initialized in recovery. But in recovery it's
1000 : * safe to access nextXid without a lock for the startup process.
1001 : */
1002 45170 : rel = TransamVariables->nextXid;
1003 : Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
1004 :
1005 90124 : if (!FullTransactionIdIsValid(cur_latest) ||
1006 44954 : TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid))
1007 : {
1008 33242 : TransamVariables->latestCompletedXid =
1009 33242 : FullXidRelativeTo(rel, latestXid);
1010 : }
1011 :
1012 : Assert(FullTransactionIdIsNormal(TransamVariables->latestCompletedXid));
1013 45170 : }
1014 :
1015 : /*
1016 : * ProcArrayInitRecovery -- initialize recovery xid mgmt environment
1017 : *
1018 : * Remember up to where the startup process initialized the CLOG and subtrans
1019 : * so we can ensure it's initialized gaplessly up to the point where necessary
1020 : * while in recovery.
1021 : */
1022 : void
1023 216 : ProcArrayInitRecovery(TransactionId initializedUptoXID)
1024 : {
1025 : Assert(standbyState == STANDBY_INITIALIZED);
1026 : Assert(TransactionIdIsNormal(initializedUptoXID));
1027 :
1028 : /*
1029 : * we set latestObservedXid to the xid SUBTRANS has been initialized up
1030 : * to, so we can extend it from that point onwards in
1031 : * RecordKnownAssignedTransactionIds, and when we get consistent in
1032 : * ProcArrayApplyRecoveryInfo().
1033 : */
1034 216 : latestObservedXid = initializedUptoXID;
1035 216 : TransactionIdRetreat(latestObservedXid);
1036 216 : }
1037 :
1038 : /*
1039 : * ProcArrayApplyRecoveryInfo -- apply recovery info about xids
1040 : *
1041 : * Takes us through 3 states: Initialized, Pending and Ready.
1042 : * Normal case is to go all the way to Ready straight away, though there
1043 : * are atypical cases where we need to take it in steps.
1044 : *
1045 : * Use the data about running transactions on the primary to create the initial
1046 : * state of KnownAssignedXids. We also use these records to regularly prune
1047 : * KnownAssignedXids because we know it is possible that some transactions
1048 : * with FATAL errors fail to write abort records, which could cause eventual
1049 : * overflow.
1050 : *
1051 : * See comments for LogStandbySnapshot().
1052 : */
1053 : void
1054 1598 : ProcArrayApplyRecoveryInfo(RunningTransactions running)
1055 : {
1056 : TransactionId *xids;
1057 : TransactionId advanceNextXid;
1058 : int nxids;
1059 : int i;
1060 :
1061 : Assert(standbyState >= STANDBY_INITIALIZED);
1062 : Assert(TransactionIdIsValid(running->nextXid));
1063 : Assert(TransactionIdIsValid(running->oldestRunningXid));
1064 : Assert(TransactionIdIsNormal(running->latestCompletedXid));
1065 :
1066 : /*
1067 : * Remove stale transactions, if any.
1068 : */
1069 1598 : ExpireOldKnownAssignedTransactionIds(running->oldestRunningXid);
1070 :
1071 : /*
1072 : * Adjust TransamVariables->nextXid before StandbyReleaseOldLocks(),
1073 : * because we will need it up to date for accessing two-phase transactions
1074 : * in StandbyReleaseOldLocks().
1075 : */
1076 1598 : advanceNextXid = running->nextXid;
1077 1598 : TransactionIdRetreat(advanceNextXid);
1078 1598 : AdvanceNextFullTransactionIdPastXid(advanceNextXid);
1079 : Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
1080 :
1081 : /*
1082 : * Remove stale locks, if any.
1083 : */
1084 1598 : StandbyReleaseOldLocks(running->oldestRunningXid);
1085 :
1086 : /*
1087 : * If our snapshot is already valid, nothing else to do...
1088 : */
1089 1598 : if (standbyState == STANDBY_SNAPSHOT_READY)
1090 1382 : return;
1091 :
1092 : /*
1093 : * If our initial RunningTransactionsData had an overflowed snapshot then
1094 : * we knew we were missing some subxids from our snapshot. If we continue
1095 : * to see overflowed snapshots then we might never be able to start up, so
1096 : * we make another test to see if our snapshot is now valid. We know that
1097 : * the missing subxids are equal to or earlier than nextXid. After we
1098 : * initialise we continue to apply changes during recovery, so once the
1099 : * oldestRunningXid is later than the nextXid from the initial snapshot we
1100 : * know that we no longer have missing information and can mark the
1101 : * snapshot as valid.
1102 : */
1103 216 : if (standbyState == STANDBY_SNAPSHOT_PENDING)
1104 : {
1105 : /*
1106 : * If the snapshot isn't overflowed or if its empty we can reset our
1107 : * pending state and use this snapshot instead.
1108 : */
1109 0 : if (running->subxid_status != SUBXIDS_MISSING || running->xcnt == 0)
1110 : {
1111 : /*
1112 : * If we have already collected known assigned xids, we need to
1113 : * throw them away before we apply the recovery snapshot.
1114 : */
1115 0 : KnownAssignedXidsReset();
1116 0 : standbyState = STANDBY_INITIALIZED;
1117 : }
1118 : else
1119 : {
1120 0 : if (TransactionIdPrecedes(standbySnapshotPendingXmin,
1121 : running->oldestRunningXid))
1122 : {
1123 0 : standbyState = STANDBY_SNAPSHOT_READY;
1124 0 : elog(DEBUG1,
1125 : "recovery snapshots are now enabled");
1126 : }
1127 : else
1128 0 : elog(DEBUG1,
1129 : "recovery snapshot waiting for non-overflowed snapshot or "
1130 : "until oldest active xid on standby is at least %u (now %u)",
1131 : standbySnapshotPendingXmin,
1132 : running->oldestRunningXid);
1133 0 : return;
1134 : }
1135 : }
1136 :
1137 : Assert(standbyState == STANDBY_INITIALIZED);
1138 :
1139 : /*
1140 : * NB: this can be reached at least twice, so make sure new code can deal
1141 : * with that.
1142 : */
1143 :
1144 : /*
1145 : * Nobody else is running yet, but take locks anyhow
1146 : */
1147 216 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
1148 :
1149 : /*
1150 : * KnownAssignedXids is sorted so we cannot just add the xids, we have to
1151 : * sort them first.
1152 : *
1153 : * Some of the new xids are top-level xids and some are subtransactions.
1154 : * We don't call SubTransSetParent because it doesn't matter yet. If we
1155 : * aren't overflowed then all xids will fit in snapshot and so we don't
1156 : * need subtrans. If we later overflow, an xid assignment record will add
1157 : * xids to subtrans. If RunningTransactionsData is overflowed then we
1158 : * don't have enough information to correctly update subtrans anyway.
1159 : */
1160 :
1161 : /*
1162 : * Allocate a temporary array to avoid modifying the array passed as
1163 : * argument.
1164 : */
1165 216 : xids = palloc_array(TransactionId, running->xcnt + running->subxcnt);
1166 :
1167 : /*
1168 : * Add to the temp array any xids which have not already completed.
1169 : */
1170 216 : nxids = 0;
1171 224 : for (i = 0; i < running->xcnt + running->subxcnt; i++)
1172 : {
1173 8 : TransactionId xid = running->xids[i];
1174 :
1175 : /*
1176 : * The running-xacts snapshot can contain xids that were still visible
1177 : * in the procarray when the snapshot was taken, but were already
1178 : * WAL-logged as completed. They're not running anymore, so ignore
1179 : * them.
1180 : */
1181 8 : if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid))
1182 0 : continue;
1183 :
1184 8 : xids[nxids++] = xid;
1185 : }
1186 :
1187 216 : if (nxids > 0)
1188 : {
1189 8 : if (procArray->numKnownAssignedXids != 0)
1190 : {
1191 0 : LWLockRelease(ProcArrayLock);
1192 0 : elog(ERROR, "KnownAssignedXids is not empty");
1193 : }
1194 :
1195 : /*
1196 : * Sort the array so that we can add them safely into
1197 : * KnownAssignedXids.
1198 : *
1199 : * We have to sort them logically, because in KnownAssignedXidsAdd we
1200 : * call TransactionIdFollowsOrEquals and so on. But we know these XIDs
1201 : * come from RUNNING_XACTS, which means there are only normal XIDs
1202 : * from the same epoch, so this is safe.
1203 : */
1204 8 : qsort(xids, nxids, sizeof(TransactionId), xidLogicalComparator);
1205 :
1206 : /*
1207 : * Add the sorted snapshot into KnownAssignedXids. The running-xacts
1208 : * snapshot may include duplicated xids because of prepared
1209 : * transactions, so ignore them.
1210 : */
1211 16 : for (i = 0; i < nxids; i++)
1212 : {
1213 8 : if (i > 0 && TransactionIdEquals(xids[i - 1], xids[i]))
1214 : {
1215 0 : elog(DEBUG1,
1216 : "found duplicated transaction %u for KnownAssignedXids insertion",
1217 : xids[i]);
1218 0 : continue;
1219 : }
1220 8 : KnownAssignedXidsAdd(xids[i], xids[i], true);
1221 : }
1222 :
1223 8 : KnownAssignedXidsDisplay(DEBUG3);
1224 : }
1225 :
1226 216 : pfree(xids);
1227 :
1228 : /*
1229 : * latestObservedXid is at least set to the point where SUBTRANS was
1230 : * started up to (cf. ProcArrayInitRecovery()) or to the biggest xid
1231 : * RecordKnownAssignedTransactionIds() was called for. Initialize
1232 : * subtrans from thereon, up to nextXid - 1.
1233 : *
1234 : * We need to duplicate parts of RecordKnownAssignedTransactionId() here,
1235 : * because we've just added xids to the known assigned xids machinery that
1236 : * haven't gone through RecordKnownAssignedTransactionId().
1237 : */
1238 : Assert(TransactionIdIsNormal(latestObservedXid));
1239 216 : TransactionIdAdvance(latestObservedXid);
1240 432 : while (TransactionIdPrecedes(latestObservedXid, running->nextXid))
1241 : {
1242 0 : ExtendSUBTRANS(latestObservedXid);
1243 0 : TransactionIdAdvance(latestObservedXid);
1244 : }
1245 216 : TransactionIdRetreat(latestObservedXid); /* = running->nextXid - 1 */
1246 :
1247 : /* ----------
1248 : * Now we've got the running xids we need to set the global values that
1249 : * are used to track snapshots as they evolve further.
1250 : *
1251 : * - latestCompletedXid which will be the xmax for snapshots
1252 : * - lastOverflowedXid which shows whether snapshots overflow
1253 : * - nextXid
1254 : *
1255 : * If the snapshot overflowed, then we still initialise with what we know,
1256 : * but the recovery snapshot isn't fully valid yet because we know there
1257 : * are some subxids missing. We don't know the specific subxids that are
1258 : * missing, so conservatively assume the last one is latestObservedXid.
1259 : * ----------
1260 : */
1261 216 : if (running->subxid_status == SUBXIDS_MISSING)
1262 : {
1263 0 : standbyState = STANDBY_SNAPSHOT_PENDING;
1264 :
1265 0 : standbySnapshotPendingXmin = latestObservedXid;
1266 0 : procArray->lastOverflowedXid = latestObservedXid;
1267 : }
1268 : else
1269 : {
1270 216 : standbyState = STANDBY_SNAPSHOT_READY;
1271 :
1272 216 : standbySnapshotPendingXmin = InvalidTransactionId;
1273 :
1274 : /*
1275 : * If the 'xids' array didn't include all subtransactions, we have to
1276 : * mark any snapshots taken as overflowed.
1277 : */
1278 216 : if (running->subxid_status == SUBXIDS_IN_SUBTRANS)
1279 52 : procArray->lastOverflowedXid = latestObservedXid;
1280 : else
1281 : {
1282 : Assert(running->subxid_status == SUBXIDS_IN_ARRAY);
1283 164 : procArray->lastOverflowedXid = InvalidTransactionId;
1284 : }
1285 : }
1286 :
1287 : /*
1288 : * If a transaction wrote a commit record in the gap between taking and
1289 : * logging the snapshot then latestCompletedXid may already be higher than
1290 : * the value from the snapshot, so check before we use the incoming value.
1291 : * It also might not yet be set at all.
1292 : */
1293 216 : MaintainLatestCompletedXidRecovery(running->latestCompletedXid);
1294 :
1295 : /*
1296 : * NB: No need to increment TransamVariables->xactCompletionCount here,
1297 : * nobody can see it yet.
1298 : */
1299 :
1300 216 : LWLockRelease(ProcArrayLock);
1301 :
1302 216 : KnownAssignedXidsDisplay(DEBUG3);
1303 216 : if (standbyState == STANDBY_SNAPSHOT_READY)
1304 216 : elog(DEBUG1, "recovery snapshots are now enabled");
1305 : else
1306 0 : elog(DEBUG1,
1307 : "recovery snapshot waiting for non-overflowed snapshot or "
1308 : "until oldest active xid on standby is at least %u (now %u)",
1309 : standbySnapshotPendingXmin,
1310 : running->oldestRunningXid);
1311 : }
1312 :
1313 : /*
1314 : * ProcArrayApplyXidAssignment
1315 : * Process an XLOG_XACT_ASSIGNMENT WAL record
1316 : */
1317 : void
1318 42 : ProcArrayApplyXidAssignment(TransactionId topxid,
1319 : int nsubxids, TransactionId *subxids)
1320 : {
1321 : TransactionId max_xid;
1322 : int i;
1323 :
1324 : Assert(standbyState >= STANDBY_INITIALIZED);
1325 :
1326 42 : max_xid = TransactionIdLatest(topxid, nsubxids, subxids);
1327 :
1328 : /*
1329 : * Mark all the subtransactions as observed.
1330 : *
1331 : * NOTE: This will fail if the subxid contains too many previously
1332 : * unobserved xids to fit into known-assigned-xids. That shouldn't happen
1333 : * as the code stands, because xid-assignment records should never contain
1334 : * more than PGPROC_MAX_CACHED_SUBXIDS entries.
1335 : */
1336 42 : RecordKnownAssignedTransactionIds(max_xid);
1337 :
1338 : /*
1339 : * Notice that we update pg_subtrans with the top-level xid, rather than
1340 : * the parent xid. This is a difference between normal processing and
1341 : * recovery, yet is still correct in all cases. The reason is that
1342 : * subtransaction commit is not marked in clog until commit processing, so
1343 : * all aborted subtransactions have already been clearly marked in clog.
1344 : * As a result we are able to refer directly to the top-level
1345 : * transaction's state rather than skipping through all the intermediate
1346 : * states in the subtransaction tree. This should be the first time we
1347 : * have attempted to SubTransSetParent().
1348 : */
1349 2730 : for (i = 0; i < nsubxids; i++)
1350 2688 : SubTransSetParent(subxids[i], topxid);
1351 :
1352 : /* KnownAssignedXids isn't maintained yet, so we're done for now */
1353 42 : if (standbyState == STANDBY_INITIALIZED)
1354 0 : return;
1355 :
1356 : /*
1357 : * Uses same locking as transaction commit
1358 : */
1359 42 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
1360 :
1361 : /*
1362 : * Remove subxids from known-assigned-xacts.
1363 : */
1364 42 : KnownAssignedXidsRemoveTree(InvalidTransactionId, nsubxids, subxids);
1365 :
1366 : /*
1367 : * Advance lastOverflowedXid to be at least the last of these subxids.
1368 : */
1369 42 : if (TransactionIdPrecedes(procArray->lastOverflowedXid, max_xid))
1370 42 : procArray->lastOverflowedXid = max_xid;
1371 :
1372 42 : LWLockRelease(ProcArrayLock);
1373 : }
1374 :
1375 : /*
1376 : * TransactionIdIsInProgress -- is given transaction running in some backend
1377 : *
1378 : * Aside from some shortcuts such as checking RecentXmin and our own Xid,
1379 : * there are four possibilities for finding a running transaction:
1380 : *
1381 : * 1. The given Xid is a main transaction Id. We will find this out cheaply
1382 : * by looking at ProcGlobal->xids.
1383 : *
1384 : * 2. The given Xid is one of the cached subxact Xids in the PGPROC array.
1385 : * We can find this out cheaply too.
1386 : *
1387 : * 3. In Hot Standby mode, we must search the KnownAssignedXids list to see
1388 : * if the Xid is running on the primary.
1389 : *
1390 : * 4. Search the SubTrans tree to find the Xid's topmost parent, and then see
1391 : * if that is running according to ProcGlobal->xids[] or KnownAssignedXids.
1392 : * This is the slowest way, but sadly it has to be done always if the others
1393 : * failed, unless we see that the cached subxact sets are complete (none have
1394 : * overflowed).
1395 : *
1396 : * ProcArrayLock has to be held while we do 1, 2, 3. If we save the top Xids
1397 : * while doing 1 and 3, we can release the ProcArrayLock while we do 4.
1398 : * This buys back some concurrency (and we can't retrieve the main Xids from
1399 : * ProcGlobal->xids[] again anyway; see GetNewTransactionId).
1400 : */
1401 : bool
1402 32406876 : TransactionIdIsInProgress(TransactionId xid)
1403 : {
1404 : static TransactionId *xids = NULL;
1405 : static TransactionId *other_xids;
1406 : XidCacheStatus *other_subxidstates;
1407 32406876 : int nxids = 0;
1408 32406876 : ProcArrayStruct *arrayP = procArray;
1409 : TransactionId topxid;
1410 : TransactionId latestCompletedXid;
1411 : int mypgxactoff;
1412 : int numProcs;
1413 : int j;
1414 :
1415 : /*
1416 : * Don't bother checking a transaction older than RecentXmin; it could not
1417 : * possibly still be running. (Note: in particular, this guarantees that
1418 : * we reject InvalidTransactionId, FrozenTransactionId, etc as not
1419 : * running.)
1420 : */
1421 32406876 : if (TransactionIdPrecedes(xid, RecentXmin))
1422 : {
1423 : xc_by_recent_xmin_inc();
1424 9229534 : return false;
1425 : }
1426 :
1427 : /*
1428 : * We may have just checked the status of this transaction, so if it is
1429 : * already known to be completed, we can fall out without any access to
1430 : * shared memory.
1431 : */
1432 23177342 : if (TransactionIdEquals(cachedXidIsNotInProgress, xid))
1433 : {
1434 : xc_by_known_xact_inc();
1435 1913472 : return false;
1436 : }
1437 :
1438 : /*
1439 : * Also, we can handle our own transaction (and subtransactions) without
1440 : * any access to shared memory.
1441 : */
1442 21263870 : if (TransactionIdIsCurrentTransactionId(xid))
1443 : {
1444 : xc_by_my_xact_inc();
1445 398976 : return true;
1446 : }
1447 :
1448 : /*
1449 : * If first time through, get workspace to remember main XIDs in. We
1450 : * malloc it permanently to avoid repeated palloc/pfree overhead.
1451 : */
1452 20864894 : if (xids == NULL)
1453 : {
1454 : /*
1455 : * In hot standby mode, reserve enough space to hold all xids in the
1456 : * known-assigned list. If we later finish recovery, we no longer need
1457 : * the bigger array, but we don't bother to shrink it.
1458 : */
1459 3382 : int maxxids = RecoveryInProgress() ? TOTAL_MAX_CACHED_SUBXIDS : arrayP->maxProcs;
1460 :
1461 3382 : xids = (TransactionId *) malloc(maxxids * sizeof(TransactionId));
1462 3382 : if (xids == NULL)
1463 0 : ereport(ERROR,
1464 : (errcode(ERRCODE_OUT_OF_MEMORY),
1465 : errmsg("out of memory")));
1466 : }
1467 :
1468 20864894 : other_xids = ProcGlobal->xids;
1469 20864894 : other_subxidstates = ProcGlobal->subxidStates;
1470 :
1471 20864894 : LWLockAcquire(ProcArrayLock, LW_SHARED);
1472 :
1473 : /*
1474 : * Now that we have the lock, we can check latestCompletedXid; if the
1475 : * target Xid is after that, it's surely still running.
1476 : */
1477 20864894 : latestCompletedXid =
1478 20864894 : XidFromFullTransactionId(TransamVariables->latestCompletedXid);
1479 20864894 : if (TransactionIdPrecedes(latestCompletedXid, xid))
1480 : {
1481 3077604 : LWLockRelease(ProcArrayLock);
1482 : xc_by_latest_xid_inc();
1483 3077604 : return true;
1484 : }
1485 :
1486 : /* No shortcuts, gotta grovel through the array */
1487 17787290 : mypgxactoff = MyProc->pgxactoff;
1488 17787290 : numProcs = arrayP->numProcs;
1489 18254928 : for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++)
1490 : {
1491 : int pgprocno;
1492 : PGPROC *proc;
1493 : TransactionId pxid;
1494 : int pxids;
1495 :
1496 : /* Ignore ourselves --- dealt with it above */
1497 18211882 : if (pgxactoff == mypgxactoff)
1498 45598 : continue;
1499 :
1500 : /* Fetch xid just once - see GetNewTransactionId */
1501 18166284 : pxid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]);
1502 :
1503 18166284 : if (!TransactionIdIsValid(pxid))
1504 278492 : continue;
1505 :
1506 : /*
1507 : * Step 1: check the main Xid
1508 : */
1509 17887792 : if (TransactionIdEquals(pxid, xid))
1510 : {
1511 17743820 : LWLockRelease(ProcArrayLock);
1512 : xc_by_main_xid_inc();
1513 17743820 : return true;
1514 : }
1515 :
1516 : /*
1517 : * We can ignore main Xids that are younger than the target Xid, since
1518 : * the target could not possibly be their child.
1519 : */
1520 143972 : if (TransactionIdPrecedes(xid, pxid))
1521 70192 : continue;
1522 :
1523 : /*
1524 : * Step 2: check the cached child-Xids arrays
1525 : */
1526 73780 : pxids = other_subxidstates[pgxactoff].count;
1527 73780 : pg_read_barrier(); /* pairs with barrier in GetNewTransactionId() */
1528 73780 : pgprocno = arrayP->pgprocnos[pgxactoff];
1529 73780 : proc = &allProcs[pgprocno];
1530 126942 : for (j = pxids - 1; j >= 0; j--)
1531 : {
1532 : /* Fetch xid just once - see GetNewTransactionId */
1533 53586 : TransactionId cxid = UINT32_ACCESS_ONCE(proc->subxids.xids[j]);
1534 :
1535 53586 : if (TransactionIdEquals(cxid, xid))
1536 : {
1537 424 : LWLockRelease(ProcArrayLock);
1538 : xc_by_child_xid_inc();
1539 424 : return true;
1540 : }
1541 : }
1542 :
1543 : /*
1544 : * Save the main Xid for step 4. We only need to remember main Xids
1545 : * that have uncached children. (Note: there is no race condition
1546 : * here because the overflowed flag cannot be cleared, only set, while
1547 : * we hold ProcArrayLock. So we can't miss an Xid that we need to
1548 : * worry about.)
1549 : */
1550 73356 : if (other_subxidstates[pgxactoff].overflowed)
1551 510 : xids[nxids++] = pxid;
1552 : }
1553 :
1554 : /*
1555 : * Step 3: in hot standby mode, check the known-assigned-xids list. XIDs
1556 : * in the list must be treated as running.
1557 : */
1558 43046 : if (RecoveryInProgress())
1559 : {
1560 : /* none of the PGPROC entries should have XIDs in hot standby mode */
1561 : Assert(nxids == 0);
1562 :
1563 2 : if (KnownAssignedXidExists(xid))
1564 : {
1565 0 : LWLockRelease(ProcArrayLock);
1566 : xc_by_known_assigned_inc();
1567 0 : return true;
1568 : }
1569 :
1570 : /*
1571 : * If the KnownAssignedXids overflowed, we have to check pg_subtrans
1572 : * too. Fetch all xids from KnownAssignedXids that are lower than
1573 : * xid, since if xid is a subtransaction its parent will always have a
1574 : * lower value. Note we will collect both main and subXIDs here, but
1575 : * there's no help for it.
1576 : */
1577 2 : if (TransactionIdPrecedesOrEquals(xid, procArray->lastOverflowedXid))
1578 0 : nxids = KnownAssignedXidsGet(xids, xid);
1579 : }
1580 :
1581 43046 : LWLockRelease(ProcArrayLock);
1582 :
1583 : /*
1584 : * If none of the relevant caches overflowed, we know the Xid is not
1585 : * running without even looking at pg_subtrans.
1586 : */
1587 43046 : if (nxids == 0)
1588 : {
1589 : xc_no_overflow_inc();
1590 42536 : cachedXidIsNotInProgress = xid;
1591 42536 : return false;
1592 : }
1593 :
1594 : /*
1595 : * Step 4: have to check pg_subtrans.
1596 : *
1597 : * At this point, we know it's either a subtransaction of one of the Xids
1598 : * in xids[], or it's not running. If it's an already-failed
1599 : * subtransaction, we want to say "not running" even though its parent may
1600 : * still be running. So first, check pg_xact to see if it's been aborted.
1601 : */
1602 : xc_slow_answer_inc();
1603 :
1604 510 : if (TransactionIdDidAbort(xid))
1605 : {
1606 0 : cachedXidIsNotInProgress = xid;
1607 0 : return false;
1608 : }
1609 :
1610 : /*
1611 : * It isn't aborted, so check whether the transaction tree it belongs to
1612 : * is still running (or, more precisely, whether it was running when we
1613 : * held ProcArrayLock).
1614 : */
1615 510 : topxid = SubTransGetTopmostTransaction(xid);
1616 : Assert(TransactionIdIsValid(topxid));
1617 824 : if (!TransactionIdEquals(topxid, xid) &&
1618 314 : pg_lfind32(topxid, xids, nxids))
1619 314 : return true;
1620 :
1621 196 : cachedXidIsNotInProgress = xid;
1622 196 : return false;
1623 : }
1624 :
1625 :
1626 : /*
1627 : * Determine XID horizons.
1628 : *
1629 : * This is used by wrapper functions like GetOldestNonRemovableTransactionId()
1630 : * (for VACUUM), GetReplicationHorizons() (for hot_standby_feedback), etc as
1631 : * well as "internally" by GlobalVisUpdate() (see comment above struct
1632 : * GlobalVisState).
1633 : *
1634 : * See the definition of ComputeXidHorizonsResult for the various computed
1635 : * horizons.
1636 : *
1637 : * For VACUUM separate horizons (used to decide which deleted tuples must
1638 : * be preserved), for shared and non-shared tables are computed. For shared
1639 : * relations backends in all databases must be considered, but for non-shared
1640 : * relations that's not required, since only backends in my own database could
1641 : * ever see the tuples in them. Also, we can ignore concurrently running lazy
1642 : * VACUUMs because (a) they must be working on other tables, and (b) they
1643 : * don't need to do snapshot-based lookups.
1644 : *
1645 : * This also computes a horizon used to truncate pg_subtrans. For that
1646 : * backends in all databases have to be considered, and concurrently running
1647 : * lazy VACUUMs cannot be ignored, as they still may perform pg_subtrans
1648 : * accesses.
1649 : *
1650 : * Note: we include all currently running xids in the set of considered xids.
1651 : * This ensures that if a just-started xact has not yet set its snapshot,
1652 : * when it does set the snapshot it cannot set xmin less than what we compute.
1653 : * See notes in src/backend/access/transam/README.
1654 : *
1655 : * Note: despite the above, it's possible for the calculated values to move
1656 : * backwards on repeated calls. The calculated values are conservative, so
1657 : * that anything older is definitely not considered as running by anyone
1658 : * anymore, but the exact values calculated depend on a number of things. For
1659 : * example, if there are no transactions running in the current database, the
1660 : * horizon for normal tables will be latestCompletedXid. If a transaction
1661 : * begins after that, its xmin will include in-progress transactions in other
1662 : * databases that started earlier, so another call will return a lower value.
1663 : * Nonetheless it is safe to vacuum a table in the current database with the
1664 : * first result. There are also replication-related effects: a walsender
1665 : * process can set its xmin based on transactions that are no longer running
1666 : * on the primary but are still being replayed on the standby, thus possibly
1667 : * making the values go backwards. In this case there is a possibility that
1668 : * we lose data that the standby would like to have, but unless the standby
1669 : * uses a replication slot to make its xmin persistent there is little we can
1670 : * do about that --- data is only protected if the walsender runs continuously
1671 : * while queries are executed on the standby. (The Hot Standby code deals
1672 : * with such cases by failing standby queries that needed to access
1673 : * already-removed data, so there's no integrity bug.)
1674 : *
1675 : * Note: the approximate horizons (see definition of GlobalVisState) are
1676 : * updated by the computations done here. That's currently required for
1677 : * correctness and a small optimization. Without doing so it's possible that
1678 : * heap vacuum's call to heap_page_prune_and_freeze() uses a more conservative
1679 : * horizon than later when deciding which tuples can be removed - which the
1680 : * code doesn't expect (breaking HOT).
1681 : */
1682 : static void
1683 439566 : ComputeXidHorizons(ComputeXidHorizonsResult *h)
1684 : {
1685 439566 : ProcArrayStruct *arrayP = procArray;
1686 : TransactionId kaxmin;
1687 439566 : bool in_recovery = RecoveryInProgress();
1688 439566 : TransactionId *other_xids = ProcGlobal->xids;
1689 :
1690 : /* inferred after ProcArrayLock is released */
1691 439566 : h->catalog_oldest_nonremovable = InvalidTransactionId;
1692 :
1693 439566 : LWLockAcquire(ProcArrayLock, LW_SHARED);
1694 :
1695 439566 : h->latest_completed = TransamVariables->latestCompletedXid;
1696 :
1697 : /*
1698 : * We initialize the MIN() calculation with latestCompletedXid + 1. This
1699 : * is a lower bound for the XIDs that might appear in the ProcArray later,
1700 : * and so protects us against overestimating the result due to future
1701 : * additions.
1702 : */
1703 : {
1704 : TransactionId initial;
1705 :
1706 439566 : initial = XidFromFullTransactionId(h->latest_completed);
1707 : Assert(TransactionIdIsValid(initial));
1708 439566 : TransactionIdAdvance(initial);
1709 :
1710 439566 : h->oldest_considered_running = initial;
1711 439566 : h->shared_oldest_nonremovable = initial;
1712 439566 : h->data_oldest_nonremovable = initial;
1713 :
1714 : /*
1715 : * Only modifications made by this backend affect the horizon for
1716 : * temporary relations. Instead of a check in each iteration of the
1717 : * loop over all PGPROCs it is cheaper to just initialize to the
1718 : * current top-level xid any.
1719 : *
1720 : * Without an assigned xid we could use a horizon as aggressive as
1721 : * GetNewTransactionId(), but we can get away with the much cheaper
1722 : * latestCompletedXid + 1: If this backend has no xid there, by
1723 : * definition, can't be any newer changes in the temp table than
1724 : * latestCompletedXid.
1725 : */
1726 439566 : if (TransactionIdIsValid(MyProc->xid))
1727 64040 : h->temp_oldest_nonremovable = MyProc->xid;
1728 : else
1729 375526 : h->temp_oldest_nonremovable = initial;
1730 : }
1731 :
1732 : /*
1733 : * Fetch slot horizons while ProcArrayLock is held - the
1734 : * LWLockAcquire/LWLockRelease are a barrier, ensuring this happens inside
1735 : * the lock.
1736 : */
1737 439566 : h->slot_xmin = procArray->replication_slot_xmin;
1738 439566 : h->slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
1739 :
1740 2767702 : for (int index = 0; index < arrayP->numProcs; index++)
1741 : {
1742 2328136 : int pgprocno = arrayP->pgprocnos[index];
1743 2328136 : PGPROC *proc = &allProcs[pgprocno];
1744 2328136 : int8 statusFlags = ProcGlobal->statusFlags[index];
1745 : TransactionId xid;
1746 : TransactionId xmin;
1747 :
1748 : /* Fetch xid just once - see GetNewTransactionId */
1749 2328136 : xid = UINT32_ACCESS_ONCE(other_xids[index]);
1750 2328136 : xmin = UINT32_ACCESS_ONCE(proc->xmin);
1751 :
1752 : /*
1753 : * Consider both the transaction's Xmin, and its Xid.
1754 : *
1755 : * We must check both because a transaction might have an Xmin but not
1756 : * (yet) an Xid; conversely, if it has an Xid, that could determine
1757 : * some not-yet-set Xmin.
1758 : */
1759 2328136 : xmin = TransactionIdOlder(xmin, xid);
1760 :
1761 : /* if neither is set, this proc doesn't influence the horizon */
1762 2328136 : if (!TransactionIdIsValid(xmin))
1763 958280 : continue;
1764 :
1765 : /*
1766 : * Don't ignore any procs when determining which transactions might be
1767 : * considered running. While slots should ensure logical decoding
1768 : * backends are protected even without this check, it can't hurt to
1769 : * include them here as well..
1770 : */
1771 1369856 : h->oldest_considered_running =
1772 1369856 : TransactionIdOlder(h->oldest_considered_running, xmin);
1773 :
1774 : /*
1775 : * Skip over backends either vacuuming (which is ok with rows being
1776 : * removed, as long as pg_subtrans is not truncated) or doing logical
1777 : * decoding (which manages xmin separately, check below).
1778 : */
1779 1369856 : if (statusFlags & (PROC_IN_VACUUM | PROC_IN_LOGICAL_DECODING))
1780 516010 : continue;
1781 :
1782 : /* shared tables need to take backends in all databases into account */
1783 853846 : h->shared_oldest_nonremovable =
1784 853846 : TransactionIdOlder(h->shared_oldest_nonremovable, xmin);
1785 :
1786 : /*
1787 : * Normally sessions in other databases are ignored for anything but
1788 : * the shared horizon.
1789 : *
1790 : * However, include them when MyDatabaseId is not (yet) set. A
1791 : * backend in the process of starting up must not compute a "too
1792 : * aggressive" horizon, otherwise we could end up using it to prune
1793 : * still-needed data away. If the current backend never connects to a
1794 : * database this is harmless, because data_oldest_nonremovable will
1795 : * never be utilized.
1796 : *
1797 : * Also, sessions marked with PROC_AFFECTS_ALL_HORIZONS should always
1798 : * be included. (This flag is used for hot standby feedback, which
1799 : * can't be tied to a specific database.)
1800 : *
1801 : * Also, while in recovery we cannot compute an accurate per-database
1802 : * horizon, as all xids are managed via the KnownAssignedXids
1803 : * machinery.
1804 : */
1805 853846 : if (proc->databaseId == MyDatabaseId ||
1806 39116 : MyDatabaseId == InvalidOid ||
1807 25482 : (statusFlags & PROC_AFFECTS_ALL_HORIZONS) ||
1808 : in_recovery)
1809 : {
1810 828368 : h->data_oldest_nonremovable =
1811 828368 : TransactionIdOlder(h->data_oldest_nonremovable, xmin);
1812 : }
1813 : }
1814 :
1815 : /*
1816 : * If in recovery fetch oldest xid in KnownAssignedXids, will be applied
1817 : * after lock is released.
1818 : */
1819 439566 : if (in_recovery)
1820 698 : kaxmin = KnownAssignedXidsGetOldestXmin();
1821 :
1822 : /*
1823 : * No other information from shared state is needed, release the lock
1824 : * immediately. The rest of the computations can be done without a lock.
1825 : */
1826 439566 : LWLockRelease(ProcArrayLock);
1827 :
1828 439566 : if (in_recovery)
1829 : {
1830 698 : h->oldest_considered_running =
1831 698 : TransactionIdOlder(h->oldest_considered_running, kaxmin);
1832 698 : h->shared_oldest_nonremovable =
1833 698 : TransactionIdOlder(h->shared_oldest_nonremovable, kaxmin);
1834 698 : h->data_oldest_nonremovable =
1835 698 : TransactionIdOlder(h->data_oldest_nonremovable, kaxmin);
1836 : /* temp relations cannot be accessed in recovery */
1837 : }
1838 :
1839 : Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1840 : h->shared_oldest_nonremovable));
1841 : Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
1842 : h->data_oldest_nonremovable));
1843 :
1844 : /*
1845 : * Check whether there are replication slots requiring an older xmin.
1846 : */
1847 439566 : h->shared_oldest_nonremovable =
1848 439566 : TransactionIdOlder(h->shared_oldest_nonremovable, h->slot_xmin);
1849 439566 : h->data_oldest_nonremovable =
1850 439566 : TransactionIdOlder(h->data_oldest_nonremovable, h->slot_xmin);
1851 :
1852 : /*
1853 : * The only difference between catalog / data horizons is that the slot's
1854 : * catalog xmin is applied to the catalog one (so catalogs can be accessed
1855 : * for logical decoding). Initialize with data horizon, and then back up
1856 : * further if necessary. Have to back up the shared horizon as well, since
1857 : * that also can contain catalogs.
1858 : */
1859 439566 : h->shared_oldest_nonremovable_raw = h->shared_oldest_nonremovable;
1860 439566 : h->shared_oldest_nonremovable =
1861 439566 : TransactionIdOlder(h->shared_oldest_nonremovable,
1862 : h->slot_catalog_xmin);
1863 439566 : h->catalog_oldest_nonremovable = h->data_oldest_nonremovable;
1864 439566 : h->catalog_oldest_nonremovable =
1865 439566 : TransactionIdOlder(h->catalog_oldest_nonremovable,
1866 : h->slot_catalog_xmin);
1867 :
1868 : /*
1869 : * It's possible that slots backed up the horizons further than
1870 : * oldest_considered_running. Fix.
1871 : */
1872 439566 : h->oldest_considered_running =
1873 439566 : TransactionIdOlder(h->oldest_considered_running,
1874 : h->shared_oldest_nonremovable);
1875 439566 : h->oldest_considered_running =
1876 439566 : TransactionIdOlder(h->oldest_considered_running,
1877 : h->catalog_oldest_nonremovable);
1878 439566 : h->oldest_considered_running =
1879 439566 : TransactionIdOlder(h->oldest_considered_running,
1880 : h->data_oldest_nonremovable);
1881 :
1882 : /*
1883 : * shared horizons have to be at least as old as the oldest visible in
1884 : * current db
1885 : */
1886 : Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
1887 : h->data_oldest_nonremovable));
1888 : Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable,
1889 : h->catalog_oldest_nonremovable));
1890 :
1891 : /*
1892 : * Horizons need to ensure that pg_subtrans access is still possible for
1893 : * the relevant backends.
1894 : */
1895 : Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1896 : h->shared_oldest_nonremovable));
1897 : Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1898 : h->catalog_oldest_nonremovable));
1899 : Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1900 : h->data_oldest_nonremovable));
1901 : Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1902 : h->temp_oldest_nonremovable));
1903 : Assert(!TransactionIdIsValid(h->slot_xmin) ||
1904 : TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1905 : h->slot_xmin));
1906 : Assert(!TransactionIdIsValid(h->slot_catalog_xmin) ||
1907 : TransactionIdPrecedesOrEquals(h->oldest_considered_running,
1908 : h->slot_catalog_xmin));
1909 :
1910 : /* update approximate horizons with the computed horizons */
1911 439566 : GlobalVisUpdateApply(h);
1912 439566 : }
1913 :
1914 : /*
1915 : * Determine what kind of visibility horizon needs to be used for a
1916 : * relation. If rel is NULL, the most conservative horizon is used.
1917 : */
1918 : static inline GlobalVisHorizonKind
1919 28938044 : GlobalVisHorizonKindForRel(Relation rel)
1920 : {
1921 : /*
1922 : * Other relkinds currently don't contain xids, nor always the necessary
1923 : * logical decoding markers.
1924 : */
1925 : Assert(!rel ||
1926 : rel->rd_rel->relkind == RELKIND_RELATION ||
1927 : rel->rd_rel->relkind == RELKIND_MATVIEW ||
1928 : rel->rd_rel->relkind == RELKIND_TOASTVALUE);
1929 :
1930 28938044 : if (rel == NULL || rel->rd_rel->relisshared || RecoveryInProgress())
1931 235310 : return VISHORIZON_SHARED;
1932 28702734 : else if (IsCatalogRelation(rel) ||
1933 22758474 : RelationIsAccessibleInLogicalDecoding(rel))
1934 5944268 : return VISHORIZON_CATALOG;
1935 22758466 : else if (!RELATION_IS_LOCAL(rel))
1936 22650070 : return VISHORIZON_DATA;
1937 : else
1938 108396 : return VISHORIZON_TEMP;
1939 : }
1940 :
1941 : /*
1942 : * Return the oldest XID for which deleted tuples must be preserved in the
1943 : * passed table.
1944 : *
1945 : * If rel is not NULL the horizon may be considerably more recent than
1946 : * otherwise (i.e. fewer tuples will be removable). In the NULL case a horizon
1947 : * that is correct (but not optimal) for all relations will be returned.
1948 : *
1949 : * This is used by VACUUM to decide which deleted tuples must be preserved in
1950 : * the passed in table.
1951 : */
1952 : TransactionId
1953 333174 : GetOldestNonRemovableTransactionId(Relation rel)
1954 : {
1955 : ComputeXidHorizonsResult horizons;
1956 :
1957 333174 : ComputeXidHorizons(&horizons);
1958 :
1959 333174 : switch (GlobalVisHorizonKindForRel(rel))
1960 : {
1961 52704 : case VISHORIZON_SHARED:
1962 52704 : return horizons.shared_oldest_nonremovable;
1963 208252 : case VISHORIZON_CATALOG:
1964 208252 : return horizons.catalog_oldest_nonremovable;
1965 47738 : case VISHORIZON_DATA:
1966 47738 : return horizons.data_oldest_nonremovable;
1967 24480 : case VISHORIZON_TEMP:
1968 24480 : return horizons.temp_oldest_nonremovable;
1969 : }
1970 :
1971 : /* just to prevent compiler warnings */
1972 0 : return InvalidTransactionId;
1973 : }
1974 :
1975 : /*
1976 : * Return the oldest transaction id any currently running backend might still
1977 : * consider running. This should not be used for visibility / pruning
1978 : * determinations (see GetOldestNonRemovableTransactionId()), but for
1979 : * decisions like up to where pg_subtrans can be truncated.
1980 : */
1981 : TransactionId
1982 3438 : GetOldestTransactionIdConsideredRunning(void)
1983 : {
1984 : ComputeXidHorizonsResult horizons;
1985 :
1986 3438 : ComputeXidHorizons(&horizons);
1987 :
1988 3438 : return horizons.oldest_considered_running;
1989 : }
1990 :
1991 : /*
1992 : * Return the visibility horizons for a hot standby feedback message.
1993 : */
1994 : void
1995 106 : GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
1996 : {
1997 : ComputeXidHorizonsResult horizons;
1998 :
1999 106 : ComputeXidHorizons(&horizons);
2000 :
2001 : /*
2002 : * Don't want to use shared_oldest_nonremovable here, as that contains the
2003 : * effect of replication slot's catalog_xmin. We want to send a separate
2004 : * feedback for the catalog horizon, so the primary can remove data table
2005 : * contents more aggressively.
2006 : */
2007 106 : *xmin = horizons.shared_oldest_nonremovable_raw;
2008 106 : *catalog_xmin = horizons.slot_catalog_xmin;
2009 106 : }
2010 :
2011 : /*
2012 : * GetMaxSnapshotXidCount -- get max size for snapshot XID array
2013 : *
2014 : * We have to export this for use by snapmgr.c.
2015 : */
2016 : int
2017 69404 : GetMaxSnapshotXidCount(void)
2018 : {
2019 69404 : return procArray->maxProcs;
2020 : }
2021 :
2022 : /*
2023 : * GetMaxSnapshotSubxidCount -- get max size for snapshot sub-XID array
2024 : *
2025 : * We have to export this for use by snapmgr.c.
2026 : */
2027 : int
2028 69024 : GetMaxSnapshotSubxidCount(void)
2029 : {
2030 69024 : return TOTAL_MAX_CACHED_SUBXIDS;
2031 : }
2032 :
2033 : /*
2034 : * Helper function for GetSnapshotData() that checks if the bulk of the
2035 : * visibility information in the snapshot is still valid. If so, it updates
2036 : * the fields that need to change and returns true. Otherwise it returns
2037 : * false.
2038 : *
2039 : * This very likely can be evolved to not need ProcArrayLock held (at very
2040 : * least in the case we already hold a snapshot), but that's for another day.
2041 : */
2042 : static bool
2043 4447566 : GetSnapshotDataReuse(Snapshot snapshot)
2044 : {
2045 : uint64 curXactCompletionCount;
2046 :
2047 : Assert(LWLockHeldByMe(ProcArrayLock));
2048 :
2049 4447566 : if (unlikely(snapshot->snapXactCompletionCount == 0))
2050 68986 : return false;
2051 :
2052 4378580 : curXactCompletionCount = TransamVariables->xactCompletionCount;
2053 4378580 : if (curXactCompletionCount != snapshot->snapXactCompletionCount)
2054 698970 : return false;
2055 :
2056 : /*
2057 : * If the current xactCompletionCount is still the same as it was at the
2058 : * time the snapshot was built, we can be sure that rebuilding the
2059 : * contents of the snapshot the hard way would result in the same snapshot
2060 : * contents:
2061 : *
2062 : * As explained in transam/README, the set of xids considered running by
2063 : * GetSnapshotData() cannot change while ProcArrayLock is held. Snapshot
2064 : * contents only depend on transactions with xids and xactCompletionCount
2065 : * is incremented whenever a transaction with an xid finishes (while
2066 : * holding ProcArrayLock exclusively). Thus the xactCompletionCount check
2067 : * ensures we would detect if the snapshot would have changed.
2068 : *
2069 : * As the snapshot contents are the same as it was before, it is safe to
2070 : * re-enter the snapshot's xmin into the PGPROC array. None of the rows
2071 : * visible under the snapshot could already have been removed (that'd
2072 : * require the set of running transactions to change) and it fulfills the
2073 : * requirement that concurrent GetSnapshotData() calls yield the same
2074 : * xmin.
2075 : */
2076 3679610 : if (!TransactionIdIsValid(MyProc->xmin))
2077 1490092 : MyProc->xmin = TransactionXmin = snapshot->xmin;
2078 :
2079 3679610 : RecentXmin = snapshot->xmin;
2080 : Assert(TransactionIdPrecedesOrEquals(TransactionXmin, RecentXmin));
2081 :
2082 3679610 : snapshot->curcid = GetCurrentCommandId(false);
2083 3679610 : snapshot->active_count = 0;
2084 3679610 : snapshot->regd_count = 0;
2085 3679610 : snapshot->copied = false;
2086 :
2087 3679610 : return true;
2088 : }
2089 :
2090 : /*
2091 : * GetSnapshotData -- returns information about running transactions.
2092 : *
2093 : * The returned snapshot includes xmin (lowest still-running xact ID),
2094 : * xmax (highest completed xact ID + 1), and a list of running xact IDs
2095 : * in the range xmin <= xid < xmax. It is used as follows:
2096 : * All xact IDs < xmin are considered finished.
2097 : * All xact IDs >= xmax are considered still running.
2098 : * For an xact ID xmin <= xid < xmax, consult list to see whether
2099 : * it is considered running or not.
2100 : * This ensures that the set of transactions seen as "running" by the
2101 : * current xact will not change after it takes the snapshot.
2102 : *
2103 : * All running top-level XIDs are included in the snapshot, except for lazy
2104 : * VACUUM processes. We also try to include running subtransaction XIDs,
2105 : * but since PGPROC has only a limited cache area for subxact XIDs, full
2106 : * information may not be available. If we find any overflowed subxid arrays,
2107 : * we have to mark the snapshot's subxid data as overflowed, and extra work
2108 : * *may* need to be done to determine what's running (see XidInMVCCSnapshot()).
2109 : *
2110 : * We also update the following backend-global variables:
2111 : * TransactionXmin: the oldest xmin of any snapshot in use in the
2112 : * current transaction (this is the same as MyProc->xmin).
2113 : * RecentXmin: the xmin computed for the most recent snapshot. XIDs
2114 : * older than this are known not running any more.
2115 : *
2116 : * And try to advance the bounds of GlobalVis{Shared,Catalog,Data,Temp}Rels
2117 : * for the benefit of the GlobalVisTest* family of functions.
2118 : *
2119 : * Note: this function should probably not be called with an argument that's
2120 : * not statically allocated (see xip allocation below).
2121 : */
2122 : Snapshot
2123 4447566 : GetSnapshotData(Snapshot snapshot)
2124 : {
2125 4447566 : ProcArrayStruct *arrayP = procArray;
2126 4447566 : TransactionId *other_xids = ProcGlobal->xids;
2127 : TransactionId xmin;
2128 : TransactionId xmax;
2129 4447566 : int count = 0;
2130 4447566 : int subcount = 0;
2131 4447566 : bool suboverflowed = false;
2132 : FullTransactionId latest_completed;
2133 : TransactionId oldestxid;
2134 : int mypgxactoff;
2135 : TransactionId myxid;
2136 : uint64 curXactCompletionCount;
2137 :
2138 4447566 : TransactionId replication_slot_xmin = InvalidTransactionId;
2139 4447566 : TransactionId replication_slot_catalog_xmin = InvalidTransactionId;
2140 :
2141 : Assert(snapshot != NULL);
2142 :
2143 : /*
2144 : * Allocating space for maxProcs xids is usually overkill; numProcs would
2145 : * be sufficient. But it seems better to do the malloc while not holding
2146 : * the lock, so we can't look at numProcs. Likewise, we allocate much
2147 : * more subxip storage than is probably needed.
2148 : *
2149 : * This does open a possibility for avoiding repeated malloc/free: since
2150 : * maxProcs does not change at runtime, we can simply reuse the previous
2151 : * xip arrays if any. (This relies on the fact that all callers pass
2152 : * static SnapshotData structs.)
2153 : */
2154 4447566 : if (snapshot->xip == NULL)
2155 : {
2156 : /*
2157 : * First call for this snapshot. Snapshot is same size whether or not
2158 : * we are in recovery, see later comments.
2159 : */
2160 68974 : snapshot->xip = (TransactionId *)
2161 68974 : malloc(GetMaxSnapshotXidCount() * sizeof(TransactionId));
2162 68974 : if (snapshot->xip == NULL)
2163 0 : ereport(ERROR,
2164 : (errcode(ERRCODE_OUT_OF_MEMORY),
2165 : errmsg("out of memory")));
2166 : Assert(snapshot->subxip == NULL);
2167 68974 : snapshot->subxip = (TransactionId *)
2168 68974 : malloc(GetMaxSnapshotSubxidCount() * sizeof(TransactionId));
2169 68974 : if (snapshot->subxip == NULL)
2170 0 : ereport(ERROR,
2171 : (errcode(ERRCODE_OUT_OF_MEMORY),
2172 : errmsg("out of memory")));
2173 : }
2174 :
2175 : /*
2176 : * It is sufficient to get shared lock on ProcArrayLock, even if we are
2177 : * going to set MyProc->xmin.
2178 : */
2179 4447566 : LWLockAcquire(ProcArrayLock, LW_SHARED);
2180 :
2181 4447566 : if (GetSnapshotDataReuse(snapshot))
2182 : {
2183 3679610 : LWLockRelease(ProcArrayLock);
2184 3679610 : return snapshot;
2185 : }
2186 :
2187 767956 : latest_completed = TransamVariables->latestCompletedXid;
2188 767956 : mypgxactoff = MyProc->pgxactoff;
2189 767956 : myxid = other_xids[mypgxactoff];
2190 : Assert(myxid == MyProc->xid);
2191 :
2192 767956 : oldestxid = TransamVariables->oldestXid;
2193 767956 : curXactCompletionCount = TransamVariables->xactCompletionCount;
2194 :
2195 : /* xmax is always latestCompletedXid + 1 */
2196 767956 : xmax = XidFromFullTransactionId(latest_completed);
2197 767956 : TransactionIdAdvance(xmax);
2198 : Assert(TransactionIdIsNormal(xmax));
2199 :
2200 : /* initialize xmin calculation with xmax */
2201 767956 : xmin = xmax;
2202 :
2203 : /* take own xid into account, saves a check inside the loop */
2204 767956 : if (TransactionIdIsNormal(myxid) && NormalTransactionIdPrecedes(myxid, xmin))
2205 56532 : xmin = myxid;
2206 :
2207 767956 : snapshot->takenDuringRecovery = RecoveryInProgress();
2208 :
2209 767956 : if (!snapshot->takenDuringRecovery)
2210 : {
2211 765684 : int numProcs = arrayP->numProcs;
2212 765684 : TransactionId *xip = snapshot->xip;
2213 765684 : int *pgprocnos = arrayP->pgprocnos;
2214 765684 : XidCacheStatus *subxidStates = ProcGlobal->subxidStates;
2215 765684 : uint8 *allStatusFlags = ProcGlobal->statusFlags;
2216 :
2217 : /*
2218 : * First collect set of pgxactoff/xids that need to be included in the
2219 : * snapshot.
2220 : */
2221 6530528 : for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++)
2222 : {
2223 : /* Fetch xid just once - see GetNewTransactionId */
2224 5764844 : TransactionId xid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]);
2225 : uint8 statusFlags;
2226 :
2227 : Assert(allProcs[arrayP->pgprocnos[pgxactoff]].pgxactoff == pgxactoff);
2228 :
2229 : /*
2230 : * If the transaction has no XID assigned, we can skip it; it
2231 : * won't have sub-XIDs either.
2232 : */
2233 5764844 : if (likely(xid == InvalidTransactionId))
2234 4170380 : continue;
2235 :
2236 : /*
2237 : * We don't include our own XIDs (if any) in the snapshot. It
2238 : * needs to be included in the xmin computation, but we did so
2239 : * outside the loop.
2240 : */
2241 1594464 : if (pgxactoff == mypgxactoff)
2242 106068 : continue;
2243 :
2244 : /*
2245 : * The only way we are able to get here with a non-normal xid is
2246 : * during bootstrap - with this backend using
2247 : * BootstrapTransactionId. But the above test should filter that
2248 : * out.
2249 : */
2250 : Assert(TransactionIdIsNormal(xid));
2251 :
2252 : /*
2253 : * If the XID is >= xmax, we can skip it; such transactions will
2254 : * be treated as running anyway (and any sub-XIDs will also be >=
2255 : * xmax).
2256 : */
2257 1488396 : if (!NormalTransactionIdPrecedes(xid, xmax))
2258 386058 : continue;
2259 :
2260 : /*
2261 : * Skip over backends doing logical decoding which manages xmin
2262 : * separately (check below) and ones running LAZY VACUUM.
2263 : */
2264 1102338 : statusFlags = allStatusFlags[pgxactoff];
2265 1102338 : if (statusFlags & (PROC_IN_LOGICAL_DECODING | PROC_IN_VACUUM))
2266 0 : continue;
2267 :
2268 1102338 : if (NormalTransactionIdPrecedes(xid, xmin))
2269 531748 : xmin = xid;
2270 :
2271 : /* Add XID to snapshot. */
2272 1102338 : xip[count++] = xid;
2273 :
2274 : /*
2275 : * Save subtransaction XIDs if possible (if we've already
2276 : * overflowed, there's no point). Note that the subxact XIDs must
2277 : * be later than their parent, so no need to check them against
2278 : * xmin. We could filter against xmax, but it seems better not to
2279 : * do that much work while holding the ProcArrayLock.
2280 : *
2281 : * The other backend can add more subxids concurrently, but cannot
2282 : * remove any. Hence it's important to fetch nxids just once.
2283 : * Should be safe to use memcpy, though. (We needn't worry about
2284 : * missing any xids added concurrently, because they must postdate
2285 : * xmax.)
2286 : *
2287 : * Again, our own XIDs are not included in the snapshot.
2288 : */
2289 1102338 : if (!suboverflowed)
2290 : {
2291 :
2292 1102330 : if (subxidStates[pgxactoff].overflowed)
2293 1620 : suboverflowed = true;
2294 : else
2295 : {
2296 1100710 : int nsubxids = subxidStates[pgxactoff].count;
2297 :
2298 1100710 : if (nsubxids > 0)
2299 : {
2300 10418 : int pgprocno = pgprocnos[pgxactoff];
2301 10418 : PGPROC *proc = &allProcs[pgprocno];
2302 :
2303 10418 : pg_read_barrier(); /* pairs with GetNewTransactionId */
2304 :
2305 10418 : memcpy(snapshot->subxip + subcount,
2306 10418 : proc->subxids.xids,
2307 : nsubxids * sizeof(TransactionId));
2308 10418 : subcount += nsubxids;
2309 : }
2310 : }
2311 : }
2312 : }
2313 : }
2314 : else
2315 : {
2316 : /*
2317 : * We're in hot standby, so get XIDs from KnownAssignedXids.
2318 : *
2319 : * We store all xids directly into subxip[]. Here's why:
2320 : *
2321 : * In recovery we don't know which xids are top-level and which are
2322 : * subxacts, a design choice that greatly simplifies xid processing.
2323 : *
2324 : * It seems like we would want to try to put xids into xip[] only, but
2325 : * that is fairly small. We would either need to make that bigger or
2326 : * to increase the rate at which we WAL-log xid assignment; neither is
2327 : * an appealing choice.
2328 : *
2329 : * We could try to store xids into xip[] first and then into subxip[]
2330 : * if there are too many xids. That only works if the snapshot doesn't
2331 : * overflow because we do not search subxip[] in that case. A simpler
2332 : * way is to just store all xids in the subxip array because this is
2333 : * by far the bigger array. We just leave the xip array empty.
2334 : *
2335 : * Either way we need to change the way XidInMVCCSnapshot() works
2336 : * depending upon when the snapshot was taken, or change normal
2337 : * snapshot processing so it matches.
2338 : *
2339 : * Note: It is possible for recovery to end before we finish taking
2340 : * the snapshot, and for newly assigned transaction ids to be added to
2341 : * the ProcArray. xmax cannot change while we hold ProcArrayLock, so
2342 : * those newly added transaction ids would be filtered away, so we
2343 : * need not be concerned about them.
2344 : */
2345 2272 : subcount = KnownAssignedXidsGetAndSetXmin(snapshot->subxip, &xmin,
2346 : xmax);
2347 :
2348 2272 : if (TransactionIdPrecedesOrEquals(xmin, procArray->lastOverflowedXid))
2349 12 : suboverflowed = true;
2350 : }
2351 :
2352 :
2353 : /*
2354 : * Fetch into local variable while ProcArrayLock is held - the
2355 : * LWLockRelease below is a barrier, ensuring this happens inside the
2356 : * lock.
2357 : */
2358 767956 : replication_slot_xmin = procArray->replication_slot_xmin;
2359 767956 : replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
2360 :
2361 767956 : if (!TransactionIdIsValid(MyProc->xmin))
2362 415450 : MyProc->xmin = TransactionXmin = xmin;
2363 :
2364 767956 : LWLockRelease(ProcArrayLock);
2365 :
2366 : /* maintain state for GlobalVis* */
2367 : {
2368 : TransactionId def_vis_xid;
2369 : TransactionId def_vis_xid_data;
2370 : FullTransactionId def_vis_fxid;
2371 : FullTransactionId def_vis_fxid_data;
2372 : FullTransactionId oldestfxid;
2373 :
2374 : /*
2375 : * Converting oldestXid is only safe when xid horizon cannot advance,
2376 : * i.e. holding locks. While we don't hold the lock anymore, all the
2377 : * necessary data has been gathered with lock held.
2378 : */
2379 767956 : oldestfxid = FullXidRelativeTo(latest_completed, oldestxid);
2380 :
2381 : /* Check whether there's a replication slot requiring an older xmin. */
2382 : def_vis_xid_data =
2383 767956 : TransactionIdOlder(xmin, replication_slot_xmin);
2384 :
2385 : /*
2386 : * Rows in non-shared, non-catalog tables possibly could be vacuumed
2387 : * if older than this xid.
2388 : */
2389 767956 : def_vis_xid = def_vis_xid_data;
2390 :
2391 : /*
2392 : * Check whether there's a replication slot requiring an older catalog
2393 : * xmin.
2394 : */
2395 : def_vis_xid =
2396 767956 : TransactionIdOlder(replication_slot_catalog_xmin, def_vis_xid);
2397 :
2398 767956 : def_vis_fxid = FullXidRelativeTo(latest_completed, def_vis_xid);
2399 767956 : def_vis_fxid_data = FullXidRelativeTo(latest_completed, def_vis_xid_data);
2400 :
2401 : /*
2402 : * Check if we can increase upper bound. As a previous
2403 : * GlobalVisUpdate() might have computed more aggressive values, don't
2404 : * overwrite them if so.
2405 : */
2406 : GlobalVisSharedRels.definitely_needed =
2407 767956 : FullTransactionIdNewer(def_vis_fxid,
2408 : GlobalVisSharedRels.definitely_needed);
2409 : GlobalVisCatalogRels.definitely_needed =
2410 767956 : FullTransactionIdNewer(def_vis_fxid,
2411 : GlobalVisCatalogRels.definitely_needed);
2412 : GlobalVisDataRels.definitely_needed =
2413 767956 : FullTransactionIdNewer(def_vis_fxid_data,
2414 : GlobalVisDataRels.definitely_needed);
2415 : /* See temp_oldest_nonremovable computation in ComputeXidHorizons() */
2416 767956 : if (TransactionIdIsNormal(myxid))
2417 : GlobalVisTempRels.definitely_needed =
2418 105864 : FullXidRelativeTo(latest_completed, myxid);
2419 : else
2420 : {
2421 662092 : GlobalVisTempRels.definitely_needed = latest_completed;
2422 662092 : FullTransactionIdAdvance(&GlobalVisTempRels.definitely_needed);
2423 : }
2424 :
2425 : /*
2426 : * Check if we know that we can initialize or increase the lower
2427 : * bound. Currently the only cheap way to do so is to use
2428 : * TransamVariables->oldestXid as input.
2429 : *
2430 : * We should definitely be able to do better. We could e.g. put a
2431 : * global lower bound value into TransamVariables.
2432 : */
2433 : GlobalVisSharedRels.maybe_needed =
2434 767956 : FullTransactionIdNewer(GlobalVisSharedRels.maybe_needed,
2435 : oldestfxid);
2436 : GlobalVisCatalogRels.maybe_needed =
2437 767956 : FullTransactionIdNewer(GlobalVisCatalogRels.maybe_needed,
2438 : oldestfxid);
2439 : GlobalVisDataRels.maybe_needed =
2440 767956 : FullTransactionIdNewer(GlobalVisDataRels.maybe_needed,
2441 : oldestfxid);
2442 : /* accurate value known */
2443 767956 : GlobalVisTempRels.maybe_needed = GlobalVisTempRels.definitely_needed;
2444 : }
2445 :
2446 767956 : RecentXmin = xmin;
2447 : Assert(TransactionIdPrecedesOrEquals(TransactionXmin, RecentXmin));
2448 :
2449 767956 : snapshot->xmin = xmin;
2450 767956 : snapshot->xmax = xmax;
2451 767956 : snapshot->xcnt = count;
2452 767956 : snapshot->subxcnt = subcount;
2453 767956 : snapshot->suboverflowed = suboverflowed;
2454 767956 : snapshot->snapXactCompletionCount = curXactCompletionCount;
2455 :
2456 767956 : snapshot->curcid = GetCurrentCommandId(false);
2457 :
2458 : /*
2459 : * This is a new snapshot, so set both refcounts are zero, and mark it as
2460 : * not copied in persistent memory.
2461 : */
2462 767956 : snapshot->active_count = 0;
2463 767956 : snapshot->regd_count = 0;
2464 767956 : snapshot->copied = false;
2465 :
2466 767956 : return snapshot;
2467 : }
2468 :
2469 : /*
2470 : * ProcArrayInstallImportedXmin -- install imported xmin into MyProc->xmin
2471 : *
2472 : * This is called when installing a snapshot imported from another
2473 : * transaction. To ensure that OldestXmin doesn't go backwards, we must
2474 : * check that the source transaction is still running, and we'd better do
2475 : * that atomically with installing the new xmin.
2476 : *
2477 : * Returns true if successful, false if source xact is no longer running.
2478 : */
2479 : bool
2480 32 : ProcArrayInstallImportedXmin(TransactionId xmin,
2481 : VirtualTransactionId *sourcevxid)
2482 : {
2483 32 : bool result = false;
2484 32 : ProcArrayStruct *arrayP = procArray;
2485 : int index;
2486 :
2487 : Assert(TransactionIdIsNormal(xmin));
2488 32 : if (!sourcevxid)
2489 0 : return false;
2490 :
2491 : /* Get lock so source xact can't end while we're doing this */
2492 32 : LWLockAcquire(ProcArrayLock, LW_SHARED);
2493 :
2494 : /*
2495 : * Find the PGPROC entry of the source transaction. (This could use
2496 : * GetPGProcByNumber(), unless it's a prepared xact. But this isn't
2497 : * performance critical.)
2498 : */
2499 32 : for (index = 0; index < arrayP->numProcs; index++)
2500 : {
2501 32 : int pgprocno = arrayP->pgprocnos[index];
2502 32 : PGPROC *proc = &allProcs[pgprocno];
2503 32 : int statusFlags = ProcGlobal->statusFlags[index];
2504 : TransactionId xid;
2505 :
2506 : /* Ignore procs running LAZY VACUUM */
2507 32 : if (statusFlags & PROC_IN_VACUUM)
2508 0 : continue;
2509 :
2510 : /* We are only interested in the specific virtual transaction. */
2511 32 : if (proc->vxid.procNumber != sourcevxid->procNumber)
2512 0 : continue;
2513 32 : if (proc->vxid.lxid != sourcevxid->localTransactionId)
2514 0 : continue;
2515 :
2516 : /*
2517 : * We check the transaction's database ID for paranoia's sake: if it's
2518 : * in another DB then its xmin does not cover us. Caller should have
2519 : * detected this already, so we just treat any funny cases as
2520 : * "transaction not found".
2521 : */
2522 32 : if (proc->databaseId != MyDatabaseId)
2523 0 : continue;
2524 :
2525 : /*
2526 : * Likewise, let's just make real sure its xmin does cover us.
2527 : */
2528 32 : xid = UINT32_ACCESS_ONCE(proc->xmin);
2529 32 : if (!TransactionIdIsNormal(xid) ||
2530 32 : !TransactionIdPrecedesOrEquals(xid, xmin))
2531 0 : continue;
2532 :
2533 : /*
2534 : * We're good. Install the new xmin. As in GetSnapshotData, set
2535 : * TransactionXmin too. (Note that because snapmgr.c called
2536 : * GetSnapshotData first, we'll be overwriting a valid xmin here, so
2537 : * we don't check that.)
2538 : */
2539 32 : MyProc->xmin = TransactionXmin = xmin;
2540 :
2541 32 : result = true;
2542 32 : break;
2543 : }
2544 :
2545 32 : LWLockRelease(ProcArrayLock);
2546 :
2547 32 : return result;
2548 : }
2549 :
2550 : /*
2551 : * ProcArrayInstallRestoredXmin -- install restored xmin into MyProc->xmin
2552 : *
2553 : * This is like ProcArrayInstallImportedXmin, but we have a pointer to the
2554 : * PGPROC of the transaction from which we imported the snapshot, rather than
2555 : * an XID.
2556 : *
2557 : * Note that this function also copies statusFlags from the source `proc` in
2558 : * order to avoid the case where MyProc's xmin needs to be skipped for
2559 : * computing xid horizon.
2560 : *
2561 : * Returns true if successful, false if source xact is no longer running.
2562 : */
2563 : bool
2564 3272 : ProcArrayInstallRestoredXmin(TransactionId xmin, PGPROC *proc)
2565 : {
2566 3272 : bool result = false;
2567 : TransactionId xid;
2568 :
2569 : Assert(TransactionIdIsNormal(xmin));
2570 : Assert(proc != NULL);
2571 :
2572 : /*
2573 : * Get an exclusive lock so that we can copy statusFlags from source proc.
2574 : */
2575 3272 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
2576 :
2577 : /*
2578 : * Be certain that the referenced PGPROC has an advertised xmin which is
2579 : * no later than the one we're installing, so that the system-wide xmin
2580 : * can't go backwards. Also, make sure it's running in the same database,
2581 : * so that the per-database xmin cannot go backwards.
2582 : */
2583 3272 : xid = UINT32_ACCESS_ONCE(proc->xmin);
2584 3272 : if (proc->databaseId == MyDatabaseId &&
2585 3272 : TransactionIdIsNormal(xid) &&
2586 3272 : TransactionIdPrecedesOrEquals(xid, xmin))
2587 : {
2588 : /*
2589 : * Install xmin and propagate the statusFlags that affect how the
2590 : * value is interpreted by vacuum.
2591 : */
2592 3272 : MyProc->xmin = TransactionXmin = xmin;
2593 3272 : MyProc->statusFlags = (MyProc->statusFlags & ~PROC_XMIN_FLAGS) |
2594 3272 : (proc->statusFlags & PROC_XMIN_FLAGS);
2595 3272 : ProcGlobal->statusFlags[MyProc->pgxactoff] = MyProc->statusFlags;
2596 :
2597 3272 : result = true;
2598 : }
2599 :
2600 3272 : LWLockRelease(ProcArrayLock);
2601 :
2602 3272 : return result;
2603 : }
2604 :
2605 : /*
2606 : * GetRunningTransactionData -- returns information about running transactions.
2607 : *
2608 : * Similar to GetSnapshotData but returns more information. We include
2609 : * all PGPROCs with an assigned TransactionId, even VACUUM processes and
2610 : * prepared transactions.
2611 : *
2612 : * We acquire XidGenLock and ProcArrayLock, but the caller is responsible for
2613 : * releasing them. Acquiring XidGenLock ensures that no new XIDs enter the proc
2614 : * array until the caller has WAL-logged this snapshot, and releases the
2615 : * lock. Acquiring ProcArrayLock ensures that no transactions commit until the
2616 : * lock is released.
2617 : *
2618 : * The returned data structure is statically allocated; caller should not
2619 : * modify it, and must not assume it is valid past the next call.
2620 : *
2621 : * This is never executed during recovery so there is no need to look at
2622 : * KnownAssignedXids.
2623 : *
2624 : * Dummy PGPROCs from prepared transaction are included, meaning that this
2625 : * may return entries with duplicated TransactionId values coming from
2626 : * transaction finishing to prepare. Nothing is done about duplicated
2627 : * entries here to not hold on ProcArrayLock more than necessary.
2628 : *
2629 : * We don't worry about updating other counters, we want to keep this as
2630 : * simple as possible and leave GetSnapshotData() as the primary code for
2631 : * that bookkeeping.
2632 : *
2633 : * Note that if any transaction has overflowed its cached subtransactions
2634 : * then there is no real need include any subtransactions.
2635 : */
2636 : RunningTransactions
2637 2774 : GetRunningTransactionData(void)
2638 : {
2639 : /* result workspace */
2640 : static RunningTransactionsData CurrentRunningXactsData;
2641 :
2642 2774 : ProcArrayStruct *arrayP = procArray;
2643 2774 : TransactionId *other_xids = ProcGlobal->xids;
2644 2774 : RunningTransactions CurrentRunningXacts = &CurrentRunningXactsData;
2645 : TransactionId latestCompletedXid;
2646 : TransactionId oldestRunningXid;
2647 : TransactionId oldestDatabaseRunningXid;
2648 : TransactionId *xids;
2649 : int index;
2650 : int count;
2651 : int subcount;
2652 : bool suboverflowed;
2653 :
2654 : Assert(!RecoveryInProgress());
2655 :
2656 : /*
2657 : * Allocating space for maxProcs xids is usually overkill; numProcs would
2658 : * be sufficient. But it seems better to do the malloc while not holding
2659 : * the lock, so we can't look at numProcs. Likewise, we allocate much
2660 : * more subxip storage than is probably needed.
2661 : *
2662 : * Should only be allocated in bgwriter, since only ever executed during
2663 : * checkpoints.
2664 : */
2665 2774 : if (CurrentRunningXacts->xids == NULL)
2666 : {
2667 : /*
2668 : * First call
2669 : */
2670 1064 : CurrentRunningXacts->xids = (TransactionId *)
2671 1064 : malloc(TOTAL_MAX_CACHED_SUBXIDS * sizeof(TransactionId));
2672 1064 : if (CurrentRunningXacts->xids == NULL)
2673 0 : ereport(ERROR,
2674 : (errcode(ERRCODE_OUT_OF_MEMORY),
2675 : errmsg("out of memory")));
2676 : }
2677 :
2678 2774 : xids = CurrentRunningXacts->xids;
2679 :
2680 2774 : count = subcount = 0;
2681 2774 : suboverflowed = false;
2682 :
2683 : /*
2684 : * Ensure that no xids enter or leave the procarray while we obtain
2685 : * snapshot.
2686 : */
2687 2774 : LWLockAcquire(ProcArrayLock, LW_SHARED);
2688 2774 : LWLockAcquire(XidGenLock, LW_SHARED);
2689 :
2690 2774 : latestCompletedXid =
2691 2774 : XidFromFullTransactionId(TransamVariables->latestCompletedXid);
2692 2774 : oldestDatabaseRunningXid = oldestRunningXid =
2693 2774 : XidFromFullTransactionId(TransamVariables->nextXid);
2694 :
2695 : /*
2696 : * Spin over procArray collecting all xids
2697 : */
2698 13358 : for (index = 0; index < arrayP->numProcs; index++)
2699 : {
2700 : TransactionId xid;
2701 :
2702 : /* Fetch xid just once - see GetNewTransactionId */
2703 10584 : xid = UINT32_ACCESS_ONCE(other_xids[index]);
2704 :
2705 : /*
2706 : * We don't need to store transactions that don't have a TransactionId
2707 : * yet because they will not show as running on a standby server.
2708 : */
2709 10584 : if (!TransactionIdIsValid(xid))
2710 8782 : continue;
2711 :
2712 : /*
2713 : * Be careful not to exclude any xids before calculating the values of
2714 : * oldestRunningXid and suboverflowed, since these are used to clean
2715 : * up transaction information held on standbys.
2716 : */
2717 1802 : if (TransactionIdPrecedes(xid, oldestRunningXid))
2718 1126 : oldestRunningXid = xid;
2719 :
2720 : /*
2721 : * Also, update the oldest running xid within the current database. As
2722 : * fetching pgprocno and PGPROC could cause cache misses, we do cheap
2723 : * TransactionId comparison first.
2724 : */
2725 1802 : if (TransactionIdPrecedes(xid, oldestDatabaseRunningXid))
2726 : {
2727 1802 : int pgprocno = arrayP->pgprocnos[index];
2728 1802 : PGPROC *proc = &allProcs[pgprocno];
2729 :
2730 1802 : if (proc->databaseId == MyDatabaseId)
2731 424 : oldestDatabaseRunningXid = xid;
2732 : }
2733 :
2734 1802 : if (ProcGlobal->subxidStates[index].overflowed)
2735 2 : suboverflowed = true;
2736 :
2737 : /*
2738 : * If we wished to exclude xids this would be the right place for it.
2739 : * Procs with the PROC_IN_VACUUM flag set don't usually assign xids,
2740 : * but they do during truncation at the end when they get the lock and
2741 : * truncate, so it is not much of a problem to include them if they
2742 : * are seen and it is cleaner to include them.
2743 : */
2744 :
2745 1802 : xids[count++] = xid;
2746 : }
2747 :
2748 : /*
2749 : * Spin over procArray collecting all subxids, but only if there hasn't
2750 : * been a suboverflow.
2751 : */
2752 2774 : if (!suboverflowed)
2753 : {
2754 2772 : XidCacheStatus *other_subxidstates = ProcGlobal->subxidStates;
2755 :
2756 13352 : for (index = 0; index < arrayP->numProcs; index++)
2757 : {
2758 10580 : int pgprocno = arrayP->pgprocnos[index];
2759 10580 : PGPROC *proc = &allProcs[pgprocno];
2760 : int nsubxids;
2761 :
2762 : /*
2763 : * Save subtransaction XIDs. Other backends can't add or remove
2764 : * entries while we're holding XidGenLock.
2765 : */
2766 10580 : nsubxids = other_subxidstates[index].count;
2767 10580 : if (nsubxids > 0)
2768 : {
2769 : /* barrier not really required, as XidGenLock is held, but ... */
2770 42 : pg_read_barrier(); /* pairs with GetNewTransactionId */
2771 :
2772 42 : memcpy(&xids[count], proc->subxids.xids,
2773 : nsubxids * sizeof(TransactionId));
2774 42 : count += nsubxids;
2775 42 : subcount += nsubxids;
2776 :
2777 : /*
2778 : * Top-level XID of a transaction is always less than any of
2779 : * its subxids, so we don't need to check if any of the
2780 : * subxids are smaller than oldestRunningXid
2781 : */
2782 : }
2783 : }
2784 : }
2785 :
2786 : /*
2787 : * It's important *not* to include the limits set by slots here because
2788 : * snapbuild.c uses oldestRunningXid to manage its xmin horizon. If those
2789 : * were to be included here the initial value could never increase because
2790 : * of a circular dependency where slots only increase their limits when
2791 : * running xacts increases oldestRunningXid and running xacts only
2792 : * increases if slots do.
2793 : */
2794 :
2795 2774 : CurrentRunningXacts->xcnt = count - subcount;
2796 2774 : CurrentRunningXacts->subxcnt = subcount;
2797 2774 : CurrentRunningXacts->subxid_status = suboverflowed ? SUBXIDS_IN_SUBTRANS : SUBXIDS_IN_ARRAY;
2798 2774 : CurrentRunningXacts->nextXid = XidFromFullTransactionId(TransamVariables->nextXid);
2799 2774 : CurrentRunningXacts->oldestRunningXid = oldestRunningXid;
2800 2774 : CurrentRunningXacts->oldestDatabaseRunningXid = oldestDatabaseRunningXid;
2801 2774 : CurrentRunningXacts->latestCompletedXid = latestCompletedXid;
2802 :
2803 : Assert(TransactionIdIsValid(CurrentRunningXacts->nextXid));
2804 : Assert(TransactionIdIsValid(CurrentRunningXacts->oldestRunningXid));
2805 : Assert(TransactionIdIsNormal(CurrentRunningXacts->latestCompletedXid));
2806 :
2807 : /* We don't release the locks here, the caller is responsible for that */
2808 :
2809 2774 : return CurrentRunningXacts;
2810 : }
2811 :
2812 : /*
2813 : * GetOldestActiveTransactionId()
2814 : *
2815 : * Similar to GetSnapshotData but returns just oldestActiveXid. We include
2816 : * all PGPROCs with an assigned TransactionId, even VACUUM processes.
2817 : *
2818 : * If allDbs is true, we look at all databases, though there is no need to
2819 : * include WALSender since this has no effect on hot standby conflicts. If
2820 : * allDbs is false, skip processes attached to other databases.
2821 : *
2822 : * This is never executed during recovery so there is no need to look at
2823 : * KnownAssignedXids.
2824 : *
2825 : * We don't worry about updating other counters, we want to keep this as
2826 : * simple as possible and leave GetSnapshotData() as the primary code for
2827 : * that bookkeeping.
2828 : *
2829 : * inCommitOnly indicates getting the oldestActiveXid among the transactions
2830 : * in the commit critical section.
2831 : */
2832 : TransactionId
2833 11516 : GetOldestActiveTransactionId(bool inCommitOnly, bool allDbs)
2834 : {
2835 11516 : ProcArrayStruct *arrayP = procArray;
2836 11516 : TransactionId *other_xids = ProcGlobal->xids;
2837 : TransactionId oldestRunningXid;
2838 : int index;
2839 :
2840 : Assert(!RecoveryInProgress());
2841 :
2842 : /*
2843 : * Read nextXid, as the upper bound of what's still active.
2844 : *
2845 : * Reading a TransactionId is atomic, but we must grab the lock to make
2846 : * sure that all XIDs < nextXid are already present in the proc array (or
2847 : * have already completed), when we spin over it.
2848 : */
2849 11516 : LWLockAcquire(XidGenLock, LW_SHARED);
2850 11516 : oldestRunningXid = XidFromFullTransactionId(TransamVariables->nextXid);
2851 11516 : LWLockRelease(XidGenLock);
2852 :
2853 : /*
2854 : * Spin over procArray collecting all xids and subxids.
2855 : */
2856 11516 : LWLockAcquire(ProcArrayLock, LW_SHARED);
2857 64962 : for (index = 0; index < arrayP->numProcs; index++)
2858 : {
2859 : TransactionId xid;
2860 53446 : int pgprocno = arrayP->pgprocnos[index];
2861 53446 : PGPROC *proc = &allProcs[pgprocno];
2862 :
2863 : /* Fetch xid just once - see GetNewTransactionId */
2864 53446 : xid = UINT32_ACCESS_ONCE(other_xids[index]);
2865 :
2866 53446 : if (!TransactionIdIsNormal(xid))
2867 42372 : continue;
2868 :
2869 11074 : if (inCommitOnly &&
2870 9400 : (proc->delayChkptFlags & DELAY_CHKPT_IN_COMMIT) == 0)
2871 8122 : continue;
2872 :
2873 2952 : if (!allDbs && proc->databaseId != MyDatabaseId)
2874 0 : continue;
2875 :
2876 2952 : if (TransactionIdPrecedes(xid, oldestRunningXid))
2877 2292 : oldestRunningXid = xid;
2878 :
2879 : /*
2880 : * Top-level XID of a transaction is always less than any of its
2881 : * subxids, so we don't need to check if any of the subxids are
2882 : * smaller than oldestRunningXid
2883 : */
2884 : }
2885 11516 : LWLockRelease(ProcArrayLock);
2886 :
2887 11516 : return oldestRunningXid;
2888 : }
2889 :
2890 : /*
2891 : * GetOldestSafeDecodingTransactionId -- lowest xid not affected by vacuum
2892 : *
2893 : * Returns the oldest xid that we can guarantee not to have been affected by
2894 : * vacuum, i.e. no rows >= that xid have been vacuumed away unless the
2895 : * transaction aborted. Note that the value can (and most of the time will) be
2896 : * much more conservative than what really has been affected by vacuum, but we
2897 : * currently don't have better data available.
2898 : *
2899 : * This is useful to initialize the cutoff xid after which a new changeset
2900 : * extraction replication slot can start decoding changes.
2901 : *
2902 : * Must be called with ProcArrayLock held either shared or exclusively,
2903 : * although most callers will want to use exclusive mode since it is expected
2904 : * that the caller will immediately use the xid to peg the xmin horizon.
2905 : */
2906 : TransactionId
2907 1342 : GetOldestSafeDecodingTransactionId(bool catalogOnly)
2908 : {
2909 1342 : ProcArrayStruct *arrayP = procArray;
2910 : TransactionId oldestSafeXid;
2911 : int index;
2912 1342 : bool recovery_in_progress = RecoveryInProgress();
2913 :
2914 : Assert(LWLockHeldByMe(ProcArrayLock));
2915 :
2916 : /*
2917 : * Acquire XidGenLock, so no transactions can acquire an xid while we're
2918 : * running. If no transaction with xid were running concurrently a new xid
2919 : * could influence the RecentXmin et al.
2920 : *
2921 : * We initialize the computation to nextXid since that's guaranteed to be
2922 : * a safe, albeit pessimal, value.
2923 : */
2924 1342 : LWLockAcquire(XidGenLock, LW_SHARED);
2925 1342 : oldestSafeXid = XidFromFullTransactionId(TransamVariables->nextXid);
2926 :
2927 : /*
2928 : * If there's already a slot pegging the xmin horizon, we can start with
2929 : * that value, it's guaranteed to be safe since it's computed by this
2930 : * routine initially and has been enforced since. We can always use the
2931 : * slot's general xmin horizon, but the catalog horizon is only usable
2932 : * when only catalog data is going to be looked at.
2933 : */
2934 1796 : if (TransactionIdIsValid(procArray->replication_slot_xmin) &&
2935 454 : TransactionIdPrecedes(procArray->replication_slot_xmin,
2936 : oldestSafeXid))
2937 24 : oldestSafeXid = procArray->replication_slot_xmin;
2938 :
2939 1342 : if (catalogOnly &&
2940 674 : TransactionIdIsValid(procArray->replication_slot_catalog_xmin) &&
2941 136 : TransactionIdPrecedes(procArray->replication_slot_catalog_xmin,
2942 : oldestSafeXid))
2943 56 : oldestSafeXid = procArray->replication_slot_catalog_xmin;
2944 :
2945 : /*
2946 : * If we're not in recovery, we walk over the procarray and collect the
2947 : * lowest xid. Since we're called with ProcArrayLock held and have
2948 : * acquired XidGenLock, no entries can vanish concurrently, since
2949 : * ProcGlobal->xids[i] is only set with XidGenLock held and only cleared
2950 : * with ProcArrayLock held.
2951 : *
2952 : * In recovery we can't lower the safe value besides what we've computed
2953 : * above, so we'll have to wait a bit longer there. We unfortunately can
2954 : * *not* use KnownAssignedXidsGetOldestXmin() since the KnownAssignedXids
2955 : * machinery can miss values and return an older value than is safe.
2956 : */
2957 1342 : if (!recovery_in_progress)
2958 : {
2959 1284 : TransactionId *other_xids = ProcGlobal->xids;
2960 :
2961 : /*
2962 : * Spin over procArray collecting min(ProcGlobal->xids[i])
2963 : */
2964 6562 : for (index = 0; index < arrayP->numProcs; index++)
2965 : {
2966 : TransactionId xid;
2967 :
2968 : /* Fetch xid just once - see GetNewTransactionId */
2969 5278 : xid = UINT32_ACCESS_ONCE(other_xids[index]);
2970 :
2971 5278 : if (!TransactionIdIsNormal(xid))
2972 5262 : continue;
2973 :
2974 16 : if (TransactionIdPrecedes(xid, oldestSafeXid))
2975 14 : oldestSafeXid = xid;
2976 : }
2977 : }
2978 :
2979 1342 : LWLockRelease(XidGenLock);
2980 :
2981 1342 : return oldestSafeXid;
2982 : }
2983 :
2984 : /*
2985 : * GetVirtualXIDsDelayingChkpt -- Get the VXIDs of transactions that are
2986 : * delaying checkpoint because they have critical actions in progress.
2987 : *
2988 : * Constructs an array of VXIDs of transactions that are currently in commit
2989 : * critical sections, as shown by having specified delayChkptFlags bits set
2990 : * in their PGPROC.
2991 : *
2992 : * Returns a palloc'd array that should be freed by the caller.
2993 : * *nvxids is the number of valid entries.
2994 : *
2995 : * Note that because backends set or clear delayChkptFlags without holding any
2996 : * lock, the result is somewhat indeterminate, but we don't really care. Even
2997 : * in a multiprocessor with delayed writes to shared memory, it should be
2998 : * certain that setting of delayChkptFlags will propagate to shared memory
2999 : * when the backend takes a lock, so we cannot fail to see a virtual xact as
3000 : * delayChkptFlags if it's already inserted its commit record. Whether it
3001 : * takes a little while for clearing of delayChkptFlags to propagate is
3002 : * unimportant for correctness.
3003 : */
3004 : VirtualTransactionId *
3005 6236 : GetVirtualXIDsDelayingChkpt(int *nvxids, int type)
3006 : {
3007 : VirtualTransactionId *vxids;
3008 6236 : ProcArrayStruct *arrayP = procArray;
3009 6236 : int count = 0;
3010 : int index;
3011 :
3012 : Assert(type != 0);
3013 :
3014 : /* allocate what's certainly enough result space */
3015 6236 : vxids = palloc_array(VirtualTransactionId, arrayP->maxProcs);
3016 :
3017 6236 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3018 :
3019 20400 : for (index = 0; index < arrayP->numProcs; index++)
3020 : {
3021 14164 : int pgprocno = arrayP->pgprocnos[index];
3022 14164 : PGPROC *proc = &allProcs[pgprocno];
3023 :
3024 14164 : if ((proc->delayChkptFlags & type) != 0)
3025 : {
3026 : VirtualTransactionId vxid;
3027 :
3028 70 : GET_VXID_FROM_PGPROC(vxid, *proc);
3029 70 : if (VirtualTransactionIdIsValid(vxid))
3030 70 : vxids[count++] = vxid;
3031 : }
3032 : }
3033 :
3034 6236 : LWLockRelease(ProcArrayLock);
3035 :
3036 6236 : *nvxids = count;
3037 6236 : return vxids;
3038 : }
3039 :
3040 : /*
3041 : * HaveVirtualXIDsDelayingChkpt -- Are any of the specified VXIDs delaying?
3042 : *
3043 : * This is used with the results of GetVirtualXIDsDelayingChkpt to see if any
3044 : * of the specified VXIDs are still in critical sections of code.
3045 : *
3046 : * Note: this is O(N^2) in the number of vxacts that are/were delaying, but
3047 : * those numbers should be small enough for it not to be a problem.
3048 : */
3049 : bool
3050 68 : HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type)
3051 : {
3052 68 : bool result = false;
3053 68 : ProcArrayStruct *arrayP = procArray;
3054 : int index;
3055 :
3056 : Assert(type != 0);
3057 :
3058 68 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3059 :
3060 736 : for (index = 0; index < arrayP->numProcs; index++)
3061 : {
3062 680 : int pgprocno = arrayP->pgprocnos[index];
3063 680 : PGPROC *proc = &allProcs[pgprocno];
3064 : VirtualTransactionId vxid;
3065 :
3066 680 : GET_VXID_FROM_PGPROC(vxid, *proc);
3067 :
3068 680 : if ((proc->delayChkptFlags & type) != 0 &&
3069 32 : VirtualTransactionIdIsValid(vxid))
3070 : {
3071 : int i;
3072 :
3073 54 : for (i = 0; i < nvxids; i++)
3074 : {
3075 34 : if (VirtualTransactionIdEquals(vxid, vxids[i]))
3076 : {
3077 12 : result = true;
3078 12 : break;
3079 : }
3080 : }
3081 32 : if (result)
3082 12 : break;
3083 : }
3084 : }
3085 :
3086 68 : LWLockRelease(ProcArrayLock);
3087 :
3088 68 : return result;
3089 : }
3090 :
3091 : /*
3092 : * ProcNumberGetProc -- get a backend's PGPROC given its proc number
3093 : *
3094 : * The result may be out of date arbitrarily quickly, so the caller
3095 : * must be careful about how this information is used. NULL is
3096 : * returned if the backend is not active.
3097 : */
3098 : PGPROC *
3099 1004 : ProcNumberGetProc(ProcNumber procNumber)
3100 : {
3101 : PGPROC *result;
3102 :
3103 1004 : if (procNumber < 0 || procNumber >= ProcGlobal->allProcCount)
3104 2 : return NULL;
3105 1002 : result = GetPGProcByNumber(procNumber);
3106 :
3107 1002 : if (result->pid == 0)
3108 10 : return NULL;
3109 :
3110 992 : return result;
3111 : }
3112 :
3113 : /*
3114 : * ProcNumberGetTransactionIds -- get a backend's transaction status
3115 : *
3116 : * Get the xid, xmin, nsubxid and overflow status of the backend. The
3117 : * result may be out of date arbitrarily quickly, so the caller must be
3118 : * careful about how this information is used.
3119 : */
3120 : void
3121 22554 : ProcNumberGetTransactionIds(ProcNumber procNumber, TransactionId *xid,
3122 : TransactionId *xmin, int *nsubxid, bool *overflowed)
3123 : {
3124 : PGPROC *proc;
3125 :
3126 22554 : *xid = InvalidTransactionId;
3127 22554 : *xmin = InvalidTransactionId;
3128 22554 : *nsubxid = 0;
3129 22554 : *overflowed = false;
3130 :
3131 22554 : if (procNumber < 0 || procNumber >= ProcGlobal->allProcCount)
3132 0 : return;
3133 22554 : proc = GetPGProcByNumber(procNumber);
3134 :
3135 : /* Need to lock out additions/removals of backends */
3136 22554 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3137 :
3138 22554 : if (proc->pid != 0)
3139 : {
3140 22554 : *xid = proc->xid;
3141 22554 : *xmin = proc->xmin;
3142 22554 : *nsubxid = proc->subxidStatus.count;
3143 22554 : *overflowed = proc->subxidStatus.overflowed;
3144 : }
3145 :
3146 22554 : LWLockRelease(ProcArrayLock);
3147 : }
3148 :
3149 : /*
3150 : * BackendPidGetProc -- get a backend's PGPROC given its PID
3151 : *
3152 : * Returns NULL if not found. Note that it is up to the caller to be
3153 : * sure that the question remains meaningful for long enough for the
3154 : * answer to be used ...
3155 : */
3156 : PGPROC *
3157 25162 : BackendPidGetProc(int pid)
3158 : {
3159 : PGPROC *result;
3160 :
3161 25162 : if (pid == 0) /* never match dummy PGPROCs */
3162 6 : return NULL;
3163 :
3164 25156 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3165 :
3166 25156 : result = BackendPidGetProcWithLock(pid);
3167 :
3168 25156 : LWLockRelease(ProcArrayLock);
3169 :
3170 25156 : return result;
3171 : }
3172 :
3173 : /*
3174 : * BackendPidGetProcWithLock -- get a backend's PGPROC given its PID
3175 : *
3176 : * Same as above, except caller must be holding ProcArrayLock. The found
3177 : * entry, if any, can be assumed to be valid as long as the lock remains held.
3178 : */
3179 : PGPROC *
3180 29002 : BackendPidGetProcWithLock(int pid)
3181 : {
3182 29002 : PGPROC *result = NULL;
3183 29002 : ProcArrayStruct *arrayP = procArray;
3184 : int index;
3185 :
3186 29002 : if (pid == 0) /* never match dummy PGPROCs */
3187 0 : return NULL;
3188 :
3189 110518 : for (index = 0; index < arrayP->numProcs; index++)
3190 : {
3191 97966 : PGPROC *proc = &allProcs[arrayP->pgprocnos[index]];
3192 :
3193 97966 : if (proc->pid == pid)
3194 : {
3195 16450 : result = proc;
3196 16450 : break;
3197 : }
3198 : }
3199 :
3200 29002 : return result;
3201 : }
3202 :
3203 : /*
3204 : * BackendXidGetPid -- get a backend's pid given its XID
3205 : *
3206 : * Returns 0 if not found or it's a prepared transaction. Note that
3207 : * it is up to the caller to be sure that the question remains
3208 : * meaningful for long enough for the answer to be used ...
3209 : *
3210 : * Only main transaction Ids are considered. This function is mainly
3211 : * useful for determining what backend owns a lock.
3212 : *
3213 : * Beware that not every xact has an XID assigned. However, as long as you
3214 : * only call this using an XID found on disk, you're safe.
3215 : */
3216 : int
3217 60 : BackendXidGetPid(TransactionId xid)
3218 : {
3219 60 : int result = 0;
3220 60 : ProcArrayStruct *arrayP = procArray;
3221 60 : TransactionId *other_xids = ProcGlobal->xids;
3222 : int index;
3223 :
3224 60 : if (xid == InvalidTransactionId) /* never match invalid xid */
3225 0 : return 0;
3226 :
3227 60 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3228 :
3229 184 : for (index = 0; index < arrayP->numProcs; index++)
3230 : {
3231 168 : if (other_xids[index] == xid)
3232 : {
3233 44 : int pgprocno = arrayP->pgprocnos[index];
3234 44 : PGPROC *proc = &allProcs[pgprocno];
3235 :
3236 44 : result = proc->pid;
3237 44 : break;
3238 : }
3239 : }
3240 :
3241 60 : LWLockRelease(ProcArrayLock);
3242 :
3243 60 : return result;
3244 : }
3245 :
3246 : /*
3247 : * IsBackendPid -- is a given pid a running backend
3248 : *
3249 : * This is not called by the backend, but is called by external modules.
3250 : */
3251 : bool
3252 4 : IsBackendPid(int pid)
3253 : {
3254 4 : return (BackendPidGetProc(pid) != NULL);
3255 : }
3256 :
3257 :
3258 : /*
3259 : * GetCurrentVirtualXIDs -- returns an array of currently active VXIDs.
3260 : *
3261 : * The array is palloc'd. The number of valid entries is returned into *nvxids.
3262 : *
3263 : * The arguments allow filtering the set of VXIDs returned. Our own process
3264 : * is always skipped. In addition:
3265 : * If limitXmin is not InvalidTransactionId, skip processes with
3266 : * xmin > limitXmin.
3267 : * If excludeXmin0 is true, skip processes with xmin = 0.
3268 : * If allDbs is false, skip processes attached to other databases.
3269 : * If excludeVacuum isn't zero, skip processes for which
3270 : * (statusFlags & excludeVacuum) is not zero.
3271 : *
3272 : * Note: the purpose of the limitXmin and excludeXmin0 parameters is to
3273 : * allow skipping backends whose oldest live snapshot is no older than
3274 : * some snapshot we have. Since we examine the procarray with only shared
3275 : * lock, there are race conditions: a backend could set its xmin just after
3276 : * we look. Indeed, on multiprocessors with weak memory ordering, the
3277 : * other backend could have set its xmin *before* we look. We know however
3278 : * that such a backend must have held shared ProcArrayLock overlapping our
3279 : * own hold of ProcArrayLock, else we would see its xmin update. Therefore,
3280 : * any snapshot the other backend is taking concurrently with our scan cannot
3281 : * consider any transactions as still running that we think are committed
3282 : * (since backends must hold ProcArrayLock exclusive to commit).
3283 : */
3284 : VirtualTransactionId *
3285 828 : GetCurrentVirtualXIDs(TransactionId limitXmin, bool excludeXmin0,
3286 : bool allDbs, int excludeVacuum,
3287 : int *nvxids)
3288 : {
3289 : VirtualTransactionId *vxids;
3290 828 : ProcArrayStruct *arrayP = procArray;
3291 828 : int count = 0;
3292 : int index;
3293 :
3294 : /* allocate what's certainly enough result space */
3295 828 : vxids = palloc_array(VirtualTransactionId, arrayP->maxProcs);
3296 :
3297 828 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3298 :
3299 4922 : for (index = 0; index < arrayP->numProcs; index++)
3300 : {
3301 4094 : int pgprocno = arrayP->pgprocnos[index];
3302 4094 : PGPROC *proc = &allProcs[pgprocno];
3303 4094 : uint8 statusFlags = ProcGlobal->statusFlags[index];
3304 :
3305 4094 : if (proc == MyProc)
3306 828 : continue;
3307 :
3308 3266 : if (excludeVacuum & statusFlags)
3309 28 : continue;
3310 :
3311 3238 : if (allDbs || proc->databaseId == MyDatabaseId)
3312 : {
3313 : /* Fetch xmin just once - might change on us */
3314 1420 : TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin);
3315 :
3316 1420 : if (excludeXmin0 && !TransactionIdIsValid(pxmin))
3317 858 : continue;
3318 :
3319 : /*
3320 : * InvalidTransactionId precedes all other XIDs, so a proc that
3321 : * hasn't set xmin yet will not be rejected by this test.
3322 : */
3323 1124 : if (!TransactionIdIsValid(limitXmin) ||
3324 562 : TransactionIdPrecedesOrEquals(pxmin, limitXmin))
3325 : {
3326 : VirtualTransactionId vxid;
3327 :
3328 526 : GET_VXID_FROM_PGPROC(vxid, *proc);
3329 526 : if (VirtualTransactionIdIsValid(vxid))
3330 526 : vxids[count++] = vxid;
3331 : }
3332 : }
3333 : }
3334 :
3335 828 : LWLockRelease(ProcArrayLock);
3336 :
3337 828 : *nvxids = count;
3338 828 : return vxids;
3339 : }
3340 :
3341 : /*
3342 : * GetConflictingVirtualXIDs -- returns an array of currently active VXIDs.
3343 : *
3344 : * Usage is limited to conflict resolution during recovery on standby servers.
3345 : * limitXmin is supplied as either a cutoff with snapshotConflictHorizon
3346 : * semantics, or InvalidTransactionId in cases where caller cannot accurately
3347 : * determine a safe snapshotConflictHorizon value.
3348 : *
3349 : * If limitXmin is InvalidTransactionId then we want to kill everybody,
3350 : * so we're not worried if they have a snapshot or not, nor does it really
3351 : * matter what type of lock we hold. Caller must avoid calling here with
3352 : * snapshotConflictHorizon style cutoffs that were set to InvalidTransactionId
3353 : * during original execution, since that actually indicates that there is
3354 : * definitely no need for a recovery conflict (the snapshotConflictHorizon
3355 : * convention for InvalidTransactionId values is the opposite of our own!).
3356 : *
3357 : * All callers that are checking xmins always now supply a valid and useful
3358 : * value for limitXmin. The limitXmin is always lower than the lowest
3359 : * numbered KnownAssignedXid that is not already a FATAL error. This is
3360 : * because we only care about cleanup records that are cleaning up tuple
3361 : * versions from committed transactions. In that case they will only occur
3362 : * at the point where the record is less than the lowest running xid. That
3363 : * allows us to say that if any backend takes a snapshot concurrently with
3364 : * us then the conflict assessment made here would never include the snapshot
3365 : * that is being derived. So we take LW_SHARED on the ProcArray and allow
3366 : * concurrent snapshots when limitXmin is valid. We might think about adding
3367 : * Assert(limitXmin < lowest(KnownAssignedXids))
3368 : * but that would not be true in the case of FATAL errors lagging in array,
3369 : * but we already know those are bogus anyway, so we skip that test.
3370 : *
3371 : * If dbOid is valid we skip backends attached to other databases.
3372 : *
3373 : * Be careful to *not* pfree the result from this function. We reuse
3374 : * this array sufficiently often that we use malloc for the result.
3375 : */
3376 : VirtualTransactionId *
3377 28262 : GetConflictingVirtualXIDs(TransactionId limitXmin, Oid dbOid)
3378 : {
3379 : static VirtualTransactionId *vxids;
3380 28262 : ProcArrayStruct *arrayP = procArray;
3381 28262 : int count = 0;
3382 : int index;
3383 :
3384 : /*
3385 : * If first time through, get workspace to remember main XIDs in. We
3386 : * malloc it permanently to avoid repeated palloc/pfree overhead. Allow
3387 : * result space, remembering room for a terminator.
3388 : */
3389 28262 : if (vxids == NULL)
3390 : {
3391 54 : vxids = (VirtualTransactionId *)
3392 54 : malloc(sizeof(VirtualTransactionId) * (arrayP->maxProcs + 1));
3393 54 : if (vxids == NULL)
3394 0 : ereport(ERROR,
3395 : (errcode(ERRCODE_OUT_OF_MEMORY),
3396 : errmsg("out of memory")));
3397 : }
3398 :
3399 28262 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3400 :
3401 28558 : for (index = 0; index < arrayP->numProcs; index++)
3402 : {
3403 296 : int pgprocno = arrayP->pgprocnos[index];
3404 296 : PGPROC *proc = &allProcs[pgprocno];
3405 :
3406 : /* Exclude prepared transactions */
3407 296 : if (proc->pid == 0)
3408 0 : continue;
3409 :
3410 296 : if (!OidIsValid(dbOid) ||
3411 284 : proc->databaseId == dbOid)
3412 : {
3413 : /* Fetch xmin just once - can't change on us, but good coding */
3414 32 : TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin);
3415 :
3416 : /*
3417 : * We ignore an invalid pxmin because this means that backend has
3418 : * no snapshot currently. We hold a Share lock to avoid contention
3419 : * with users taking snapshots. That is not a problem because the
3420 : * current xmin is always at least one higher than the latest
3421 : * removed xid, so any new snapshot would never conflict with the
3422 : * test here.
3423 : */
3424 32 : if (!TransactionIdIsValid(limitXmin) ||
3425 6 : (TransactionIdIsValid(pxmin) && !TransactionIdFollows(pxmin, limitXmin)))
3426 : {
3427 : VirtualTransactionId vxid;
3428 :
3429 4 : GET_VXID_FROM_PGPROC(vxid, *proc);
3430 4 : if (VirtualTransactionIdIsValid(vxid))
3431 4 : vxids[count++] = vxid;
3432 : }
3433 : }
3434 : }
3435 :
3436 28262 : LWLockRelease(ProcArrayLock);
3437 :
3438 : /* add the terminator */
3439 28262 : vxids[count].procNumber = INVALID_PROC_NUMBER;
3440 28262 : vxids[count].localTransactionId = InvalidLocalTransactionId;
3441 :
3442 28262 : return vxids;
3443 : }
3444 :
3445 : /*
3446 : * CancelVirtualTransaction - used in recovery conflict processing
3447 : *
3448 : * Returns pid of the process signaled, or 0 if not found.
3449 : */
3450 : pid_t
3451 6 : CancelVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode)
3452 : {
3453 6 : return SignalVirtualTransaction(vxid, sigmode, true);
3454 : }
3455 :
3456 : pid_t
3457 10 : SignalVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode,
3458 : bool conflictPending)
3459 : {
3460 10 : ProcArrayStruct *arrayP = procArray;
3461 : int index;
3462 10 : pid_t pid = 0;
3463 :
3464 10 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3465 :
3466 10 : for (index = 0; index < arrayP->numProcs; index++)
3467 : {
3468 10 : int pgprocno = arrayP->pgprocnos[index];
3469 10 : PGPROC *proc = &allProcs[pgprocno];
3470 : VirtualTransactionId procvxid;
3471 :
3472 10 : GET_VXID_FROM_PGPROC(procvxid, *proc);
3473 :
3474 10 : if (procvxid.procNumber == vxid.procNumber &&
3475 10 : procvxid.localTransactionId == vxid.localTransactionId)
3476 : {
3477 10 : proc->recoveryConflictPending = conflictPending;
3478 10 : pid = proc->pid;
3479 10 : if (pid != 0)
3480 : {
3481 : /*
3482 : * Kill the pid if it's still here. If not, that's what we
3483 : * wanted so ignore any errors.
3484 : */
3485 10 : (void) SendProcSignal(pid, sigmode, vxid.procNumber);
3486 : }
3487 10 : break;
3488 : }
3489 : }
3490 :
3491 10 : LWLockRelease(ProcArrayLock);
3492 :
3493 10 : return pid;
3494 : }
3495 :
3496 : /*
3497 : * MinimumActiveBackends --- count backends (other than myself) that are
3498 : * in active transactions. Return true if the count exceeds the
3499 : * minimum threshold passed. This is used as a heuristic to decide if
3500 : * a pre-XLOG-flush delay is worthwhile during commit.
3501 : *
3502 : * Do not count backends that are blocked waiting for locks, since they are
3503 : * not going to get to run until someone else commits.
3504 : */
3505 : bool
3506 0 : MinimumActiveBackends(int min)
3507 : {
3508 0 : ProcArrayStruct *arrayP = procArray;
3509 0 : int count = 0;
3510 : int index;
3511 :
3512 : /* Quick short-circuit if no minimum is specified */
3513 0 : if (min == 0)
3514 0 : return true;
3515 :
3516 : /*
3517 : * Note: for speed, we don't acquire ProcArrayLock. This is a little bit
3518 : * bogus, but since we are only testing fields for zero or nonzero, it
3519 : * should be OK. The result is only used for heuristic purposes anyway...
3520 : */
3521 0 : for (index = 0; index < arrayP->numProcs; index++)
3522 : {
3523 0 : int pgprocno = arrayP->pgprocnos[index];
3524 0 : PGPROC *proc = &allProcs[pgprocno];
3525 :
3526 : /*
3527 : * Since we're not holding a lock, need to be prepared to deal with
3528 : * garbage, as someone could have incremented numProcs but not yet
3529 : * filled the structure.
3530 : *
3531 : * If someone just decremented numProcs, 'proc' could also point to a
3532 : * PGPROC entry that's no longer in the array. It still points to a
3533 : * PGPROC struct, though, because freed PGPROC entries just go to the
3534 : * free list and are recycled. Its contents are nonsense in that case,
3535 : * but that's acceptable for this function.
3536 : */
3537 0 : if (pgprocno == -1)
3538 0 : continue; /* do not count deleted entries */
3539 0 : if (proc == MyProc)
3540 0 : continue; /* do not count myself */
3541 0 : if (proc->xid == InvalidTransactionId)
3542 0 : continue; /* do not count if no XID assigned */
3543 0 : if (proc->pid == 0)
3544 0 : continue; /* do not count prepared xacts */
3545 0 : if (proc->waitLock != NULL)
3546 0 : continue; /* do not count if blocked on a lock */
3547 0 : count++;
3548 0 : if (count >= min)
3549 0 : break;
3550 : }
3551 :
3552 0 : return count >= min;
3553 : }
3554 :
3555 : /*
3556 : * CountDBBackends --- count backends that are using specified database
3557 : */
3558 : int
3559 32 : CountDBBackends(Oid databaseid)
3560 : {
3561 32 : ProcArrayStruct *arrayP = procArray;
3562 32 : int count = 0;
3563 : int index;
3564 :
3565 32 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3566 :
3567 48 : for (index = 0; index < arrayP->numProcs; index++)
3568 : {
3569 16 : int pgprocno = arrayP->pgprocnos[index];
3570 16 : PGPROC *proc = &allProcs[pgprocno];
3571 :
3572 16 : if (proc->pid == 0)
3573 0 : continue; /* do not count prepared xacts */
3574 16 : if (!OidIsValid(databaseid) ||
3575 16 : proc->databaseId == databaseid)
3576 4 : count++;
3577 : }
3578 :
3579 32 : LWLockRelease(ProcArrayLock);
3580 :
3581 32 : return count;
3582 : }
3583 :
3584 : /*
3585 : * CountDBConnections --- counts database backends (only regular backends)
3586 : */
3587 : int
3588 0 : CountDBConnections(Oid databaseid)
3589 : {
3590 0 : ProcArrayStruct *arrayP = procArray;
3591 0 : int count = 0;
3592 : int index;
3593 :
3594 0 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3595 :
3596 0 : for (index = 0; index < arrayP->numProcs; index++)
3597 : {
3598 0 : int pgprocno = arrayP->pgprocnos[index];
3599 0 : PGPROC *proc = &allProcs[pgprocno];
3600 :
3601 0 : if (proc->pid == 0)
3602 0 : continue; /* do not count prepared xacts */
3603 0 : if (!proc->isRegularBackend)
3604 0 : continue; /* count only regular backend processes */
3605 0 : if (!OidIsValid(databaseid) ||
3606 0 : proc->databaseId == databaseid)
3607 0 : count++;
3608 : }
3609 :
3610 0 : LWLockRelease(ProcArrayLock);
3611 :
3612 0 : return count;
3613 : }
3614 :
3615 : /*
3616 : * CancelDBBackends --- cancel backends that are using specified database
3617 : */
3618 : void
3619 18 : CancelDBBackends(Oid databaseid, ProcSignalReason sigmode, bool conflictPending)
3620 : {
3621 18 : ProcArrayStruct *arrayP = procArray;
3622 : int index;
3623 :
3624 : /* tell all backends to die */
3625 18 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3626 :
3627 36 : for (index = 0; index < arrayP->numProcs; index++)
3628 : {
3629 18 : int pgprocno = arrayP->pgprocnos[index];
3630 18 : PGPROC *proc = &allProcs[pgprocno];
3631 :
3632 18 : if (databaseid == InvalidOid || proc->databaseId == databaseid)
3633 : {
3634 : VirtualTransactionId procvxid;
3635 : pid_t pid;
3636 :
3637 18 : GET_VXID_FROM_PGPROC(procvxid, *proc);
3638 :
3639 18 : proc->recoveryConflictPending = conflictPending;
3640 18 : pid = proc->pid;
3641 18 : if (pid != 0)
3642 : {
3643 : /*
3644 : * Kill the pid if it's still here. If not, that's what we
3645 : * wanted so ignore any errors.
3646 : */
3647 18 : (void) SendProcSignal(pid, sigmode, procvxid.procNumber);
3648 : }
3649 : }
3650 : }
3651 :
3652 18 : LWLockRelease(ProcArrayLock);
3653 18 : }
3654 :
3655 : /*
3656 : * CountUserBackends --- count backends that are used by specified user
3657 : * (only regular backends, not any type of background worker)
3658 : */
3659 : int
3660 0 : CountUserBackends(Oid roleid)
3661 : {
3662 0 : ProcArrayStruct *arrayP = procArray;
3663 0 : int count = 0;
3664 : int index;
3665 :
3666 0 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3667 :
3668 0 : for (index = 0; index < arrayP->numProcs; index++)
3669 : {
3670 0 : int pgprocno = arrayP->pgprocnos[index];
3671 0 : PGPROC *proc = &allProcs[pgprocno];
3672 :
3673 0 : if (proc->pid == 0)
3674 0 : continue; /* do not count prepared xacts */
3675 0 : if (!proc->isRegularBackend)
3676 0 : continue; /* count only regular backend processes */
3677 0 : if (proc->roleId == roleid)
3678 0 : count++;
3679 : }
3680 :
3681 0 : LWLockRelease(ProcArrayLock);
3682 :
3683 0 : return count;
3684 : }
3685 :
3686 : /*
3687 : * CountOtherDBBackends -- check for other backends running in the given DB
3688 : *
3689 : * If there are other backends in the DB, we will wait a maximum of 5 seconds
3690 : * for them to exit. Autovacuum backends are encouraged to exit early by
3691 : * sending them SIGTERM, but normal user backends are just waited for.
3692 : *
3693 : * The current backend is always ignored; it is caller's responsibility to
3694 : * check whether the current backend uses the given DB, if it's important.
3695 : *
3696 : * Returns true if there are (still) other backends in the DB, false if not.
3697 : * Also, *nbackends and *nprepared are set to the number of other backends
3698 : * and prepared transactions in the DB, respectively.
3699 : *
3700 : * This function is used to interlock DROP DATABASE and related commands
3701 : * against there being any active backends in the target DB --- dropping the
3702 : * DB while active backends remain would be a Bad Thing. Note that we cannot
3703 : * detect here the possibility of a newly-started backend that is trying to
3704 : * connect to the doomed database, so additional interlocking is needed during
3705 : * backend startup. The caller should normally hold an exclusive lock on the
3706 : * target DB before calling this, which is one reason we mustn't wait
3707 : * indefinitely.
3708 : */
3709 : bool
3710 910 : CountOtherDBBackends(Oid databaseId, int *nbackends, int *nprepared)
3711 : {
3712 910 : ProcArrayStruct *arrayP = procArray;
3713 :
3714 : #define MAXAUTOVACPIDS 10 /* max autovacs to SIGTERM per iteration */
3715 : int autovac_pids[MAXAUTOVACPIDS];
3716 : int tries;
3717 :
3718 : /* 50 tries with 100ms sleep between tries makes 5 sec total wait */
3719 910 : for (tries = 0; tries < 50; tries++)
3720 : {
3721 910 : int nautovacs = 0;
3722 910 : bool found = false;
3723 : int index;
3724 :
3725 910 : CHECK_FOR_INTERRUPTS();
3726 :
3727 910 : *nbackends = *nprepared = 0;
3728 :
3729 910 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3730 :
3731 3328 : for (index = 0; index < arrayP->numProcs; index++)
3732 : {
3733 2418 : int pgprocno = arrayP->pgprocnos[index];
3734 2418 : PGPROC *proc = &allProcs[pgprocno];
3735 2418 : uint8 statusFlags = ProcGlobal->statusFlags[index];
3736 :
3737 2418 : if (proc->databaseId != databaseId)
3738 2222 : continue;
3739 196 : if (proc == MyProc)
3740 196 : continue;
3741 :
3742 0 : found = true;
3743 :
3744 0 : if (proc->pid == 0)
3745 0 : (*nprepared)++;
3746 : else
3747 : {
3748 0 : (*nbackends)++;
3749 0 : if ((statusFlags & PROC_IS_AUTOVACUUM) &&
3750 : nautovacs < MAXAUTOVACPIDS)
3751 0 : autovac_pids[nautovacs++] = proc->pid;
3752 : }
3753 : }
3754 :
3755 910 : LWLockRelease(ProcArrayLock);
3756 :
3757 910 : if (!found)
3758 910 : return false; /* no conflicting backends, so done */
3759 :
3760 : /*
3761 : * Send SIGTERM to any conflicting autovacuums before sleeping. We
3762 : * postpone this step until after the loop because we don't want to
3763 : * hold ProcArrayLock while issuing kill(). We have no idea what might
3764 : * block kill() inside the kernel...
3765 : */
3766 0 : for (index = 0; index < nautovacs; index++)
3767 0 : (void) kill(autovac_pids[index], SIGTERM); /* ignore any error */
3768 :
3769 : /* sleep, then try again */
3770 0 : pg_usleep(100 * 1000L); /* 100ms */
3771 : }
3772 :
3773 0 : return true; /* timed out, still conflicts */
3774 : }
3775 :
3776 : /*
3777 : * Terminate existing connections to the specified database. This routine
3778 : * is used by the DROP DATABASE command when user has asked to forcefully
3779 : * drop the database.
3780 : *
3781 : * The current backend is always ignored; it is caller's responsibility to
3782 : * check whether the current backend uses the given DB, if it's important.
3783 : *
3784 : * If the target database has a prepared transaction or permissions checks
3785 : * fail for a connection, this fails without terminating anything.
3786 : */
3787 : void
3788 2 : TerminateOtherDBBackends(Oid databaseId)
3789 : {
3790 2 : ProcArrayStruct *arrayP = procArray;
3791 2 : List *pids = NIL;
3792 2 : int nprepared = 0;
3793 : int i;
3794 :
3795 2 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3796 :
3797 8 : for (i = 0; i < procArray->numProcs; i++)
3798 : {
3799 6 : int pgprocno = arrayP->pgprocnos[i];
3800 6 : PGPROC *proc = &allProcs[pgprocno];
3801 :
3802 6 : if (proc->databaseId != databaseId)
3803 6 : continue;
3804 0 : if (proc == MyProc)
3805 0 : continue;
3806 :
3807 0 : if (proc->pid != 0)
3808 0 : pids = lappend_int(pids, proc->pid);
3809 : else
3810 0 : nprepared++;
3811 : }
3812 :
3813 2 : LWLockRelease(ProcArrayLock);
3814 :
3815 2 : if (nprepared > 0)
3816 0 : ereport(ERROR,
3817 : (errcode(ERRCODE_OBJECT_IN_USE),
3818 : errmsg("database \"%s\" is being used by prepared transactions",
3819 : get_database_name(databaseId)),
3820 : errdetail_plural("There is %d prepared transaction using the database.",
3821 : "There are %d prepared transactions using the database.",
3822 : nprepared,
3823 : nprepared)));
3824 :
3825 2 : if (pids)
3826 : {
3827 : ListCell *lc;
3828 :
3829 : /*
3830 : * Permissions checks relax the pg_terminate_backend checks in two
3831 : * ways, both by omitting the !OidIsValid(proc->roleId) check:
3832 : *
3833 : * - Accept terminating autovacuum workers, since DROP DATABASE
3834 : * without FORCE terminates them.
3835 : *
3836 : * - Accept terminating bgworkers. For bgworker authors, it's
3837 : * convenient to be able to recommend FORCE if a worker is blocking
3838 : * DROP DATABASE unexpectedly.
3839 : *
3840 : * Unlike pg_terminate_backend, we don't raise some warnings - like
3841 : * "PID %d is not a PostgreSQL server process", because for us already
3842 : * finished session is not a problem.
3843 : */
3844 0 : foreach(lc, pids)
3845 : {
3846 0 : int pid = lfirst_int(lc);
3847 0 : PGPROC *proc = BackendPidGetProc(pid);
3848 :
3849 0 : if (proc != NULL)
3850 : {
3851 0 : if (superuser_arg(proc->roleId) && !superuser())
3852 0 : ereport(ERROR,
3853 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
3854 : errmsg("permission denied to terminate process"),
3855 : errdetail("Only roles with the %s attribute may terminate processes of roles with the %s attribute.",
3856 : "SUPERUSER", "SUPERUSER")));
3857 :
3858 0 : if (!has_privs_of_role(GetUserId(), proc->roleId) &&
3859 0 : !has_privs_of_role(GetUserId(), ROLE_PG_SIGNAL_BACKEND))
3860 0 : ereport(ERROR,
3861 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
3862 : errmsg("permission denied to terminate process"),
3863 : errdetail("Only roles with privileges of the role whose process is being terminated or with privileges of the \"%s\" role may terminate this process.",
3864 : "pg_signal_backend")));
3865 : }
3866 : }
3867 :
3868 : /*
3869 : * There's a race condition here: once we release the ProcArrayLock,
3870 : * it's possible for the session to exit before we issue kill. That
3871 : * race condition possibility seems too unlikely to worry about. See
3872 : * pg_signal_backend.
3873 : */
3874 0 : foreach(lc, pids)
3875 : {
3876 0 : int pid = lfirst_int(lc);
3877 0 : PGPROC *proc = BackendPidGetProc(pid);
3878 :
3879 0 : if (proc != NULL)
3880 : {
3881 : /*
3882 : * If we have setsid(), signal the backend's whole process
3883 : * group
3884 : */
3885 : #ifdef HAVE_SETSID
3886 0 : (void) kill(-pid, SIGTERM);
3887 : #else
3888 : (void) kill(pid, SIGTERM);
3889 : #endif
3890 : }
3891 : }
3892 : }
3893 2 : }
3894 :
3895 : /*
3896 : * ProcArraySetReplicationSlotXmin
3897 : *
3898 : * Install limits to future computations of the xmin horizon to prevent vacuum
3899 : * and HOT pruning from removing affected rows still needed by clients with
3900 : * replication slots.
3901 : */
3902 : void
3903 4756 : ProcArraySetReplicationSlotXmin(TransactionId xmin, TransactionId catalog_xmin,
3904 : bool already_locked)
3905 : {
3906 : Assert(!already_locked || LWLockHeldByMe(ProcArrayLock));
3907 :
3908 4756 : if (!already_locked)
3909 3812 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3910 :
3911 4756 : procArray->replication_slot_xmin = xmin;
3912 4756 : procArray->replication_slot_catalog_xmin = catalog_xmin;
3913 :
3914 4756 : if (!already_locked)
3915 3812 : LWLockRelease(ProcArrayLock);
3916 :
3917 4756 : elog(DEBUG1, "xmin required by slots: data %u, catalog %u",
3918 : xmin, catalog_xmin);
3919 4756 : }
3920 :
3921 : /*
3922 : * ProcArrayGetReplicationSlotXmin
3923 : *
3924 : * Return the current slot xmin limits. That's useful to be able to remove
3925 : * data that's older than those limits.
3926 : */
3927 : void
3928 44 : ProcArrayGetReplicationSlotXmin(TransactionId *xmin,
3929 : TransactionId *catalog_xmin)
3930 : {
3931 44 : LWLockAcquire(ProcArrayLock, LW_SHARED);
3932 :
3933 44 : if (xmin != NULL)
3934 0 : *xmin = procArray->replication_slot_xmin;
3935 :
3936 44 : if (catalog_xmin != NULL)
3937 44 : *catalog_xmin = procArray->replication_slot_catalog_xmin;
3938 :
3939 44 : LWLockRelease(ProcArrayLock);
3940 44 : }
3941 :
3942 : /*
3943 : * XidCacheRemoveRunningXids
3944 : *
3945 : * Remove a bunch of TransactionIds from the list of known-running
3946 : * subtransactions for my backend. Both the specified xid and those in
3947 : * the xids[] array (of length nxids) are removed from the subxids cache.
3948 : * latestXid must be the latest XID among the group.
3949 : */
3950 : void
3951 1322 : XidCacheRemoveRunningXids(TransactionId xid,
3952 : int nxids, const TransactionId *xids,
3953 : TransactionId latestXid)
3954 : {
3955 : int i,
3956 : j;
3957 : XidCacheStatus *mysubxidstat;
3958 :
3959 : Assert(TransactionIdIsValid(xid));
3960 :
3961 : /*
3962 : * We must hold ProcArrayLock exclusively in order to remove transactions
3963 : * from the PGPROC array. (See src/backend/access/transam/README.) It's
3964 : * possible this could be relaxed since we know this routine is only used
3965 : * to abort subtransactions, but pending closer analysis we'd best be
3966 : * conservative.
3967 : *
3968 : * Note that we do not have to be careful about memory ordering of our own
3969 : * reads wrt. GetNewTransactionId() here - only this process can modify
3970 : * relevant fields of MyProc/ProcGlobal->xids[]. But we do have to be
3971 : * careful about our own writes being well ordered.
3972 : */
3973 1322 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3974 :
3975 1322 : mysubxidstat = &ProcGlobal->subxidStates[MyProc->pgxactoff];
3976 :
3977 : /*
3978 : * Under normal circumstances xid and xids[] will be in increasing order,
3979 : * as will be the entries in subxids. Scan backwards to avoid O(N^2)
3980 : * behavior when removing a lot of xids.
3981 : */
3982 1382 : for (i = nxids - 1; i >= 0; i--)
3983 : {
3984 60 : TransactionId anxid = xids[i];
3985 :
3986 60 : for (j = MyProc->subxidStatus.count - 1; j >= 0; j--)
3987 : {
3988 60 : if (TransactionIdEquals(MyProc->subxids.xids[j], anxid))
3989 : {
3990 60 : MyProc->subxids.xids[j] = MyProc->subxids.xids[MyProc->subxidStatus.count - 1];
3991 60 : pg_write_barrier();
3992 60 : mysubxidstat->count--;
3993 60 : MyProc->subxidStatus.count--;
3994 60 : break;
3995 : }
3996 : }
3997 :
3998 : /*
3999 : * Ordinarily we should have found it, unless the cache has
4000 : * overflowed. However it's also possible for this routine to be
4001 : * invoked multiple times for the same subtransaction, in case of an
4002 : * error during AbortSubTransaction. So instead of Assert, emit a
4003 : * debug warning.
4004 : */
4005 60 : if (j < 0 && !MyProc->subxidStatus.overflowed)
4006 0 : elog(WARNING, "did not find subXID %u in MyProc", anxid);
4007 : }
4008 :
4009 1450 : for (j = MyProc->subxidStatus.count - 1; j >= 0; j--)
4010 : {
4011 1448 : if (TransactionIdEquals(MyProc->subxids.xids[j], xid))
4012 : {
4013 1320 : MyProc->subxids.xids[j] = MyProc->subxids.xids[MyProc->subxidStatus.count - 1];
4014 1320 : pg_write_barrier();
4015 1320 : mysubxidstat->count--;
4016 1320 : MyProc->subxidStatus.count--;
4017 1320 : break;
4018 : }
4019 : }
4020 : /* Ordinarily we should have found it, unless the cache has overflowed */
4021 1322 : if (j < 0 && !MyProc->subxidStatus.overflowed)
4022 0 : elog(WARNING, "did not find subXID %u in MyProc", xid);
4023 :
4024 : /* Also advance global latestCompletedXid while holding the lock */
4025 1322 : MaintainLatestCompletedXid(latestXid);
4026 :
4027 : /* ... and xactCompletionCount */
4028 1322 : TransamVariables->xactCompletionCount++;
4029 :
4030 1322 : LWLockRelease(ProcArrayLock);
4031 1322 : }
4032 :
4033 : #ifdef XIDCACHE_DEBUG
4034 :
4035 : /*
4036 : * Print stats about effectiveness of XID cache
4037 : */
4038 : static void
4039 : DisplayXidCache(void)
4040 : {
4041 : fprintf(stderr,
4042 : "XidCache: xmin: %ld, known: %ld, myxact: %ld, latest: %ld, mainxid: %ld, childxid: %ld, knownassigned: %ld, nooflo: %ld, slow: %ld\n",
4043 : xc_by_recent_xmin,
4044 : xc_by_known_xact,
4045 : xc_by_my_xact,
4046 : xc_by_latest_xid,
4047 : xc_by_main_xid,
4048 : xc_by_child_xid,
4049 : xc_by_known_assigned,
4050 : xc_no_overflow,
4051 : xc_slow_answer);
4052 : }
4053 : #endif /* XIDCACHE_DEBUG */
4054 :
4055 : /*
4056 : * If rel != NULL, return test state appropriate for relation, otherwise
4057 : * return state usable for all relations. The latter may consider XIDs as
4058 : * not-yet-visible-to-everyone that a state for a specific relation would
4059 : * already consider visible-to-everyone.
4060 : *
4061 : * This needs to be called while a snapshot is active or registered, otherwise
4062 : * there are wraparound and other dangers.
4063 : *
4064 : * See comment for GlobalVisState for details.
4065 : */
4066 : GlobalVisState *
4067 28604870 : GlobalVisTestFor(Relation rel)
4068 : {
4069 28604870 : GlobalVisState *state = NULL;
4070 :
4071 : /* XXX: we should assert that a snapshot is pushed or registered */
4072 : Assert(RecentXmin);
4073 :
4074 28604870 : switch (GlobalVisHorizonKindForRel(rel))
4075 : {
4076 182606 : case VISHORIZON_SHARED:
4077 182606 : state = &GlobalVisSharedRels;
4078 182606 : break;
4079 5736016 : case VISHORIZON_CATALOG:
4080 5736016 : state = &GlobalVisCatalogRels;
4081 5736016 : break;
4082 22602332 : case VISHORIZON_DATA:
4083 22602332 : state = &GlobalVisDataRels;
4084 22602332 : break;
4085 83916 : case VISHORIZON_TEMP:
4086 83916 : state = &GlobalVisTempRels;
4087 83916 : break;
4088 : }
4089 :
4090 : Assert(FullTransactionIdIsValid(state->definitely_needed) &&
4091 : FullTransactionIdIsValid(state->maybe_needed));
4092 :
4093 28604870 : return state;
4094 : }
4095 :
4096 : /*
4097 : * Return true if it's worth updating the accurate maybe_needed boundary.
4098 : *
4099 : * As it is somewhat expensive to determine xmin horizons, we don't want to
4100 : * repeatedly do so when there is a low likelihood of it being beneficial.
4101 : *
4102 : * The current heuristic is that we update only if RecentXmin has changed
4103 : * since the last update. If the oldest currently running transaction has not
4104 : * finished, it is unlikely that recomputing the horizon would be useful.
4105 : */
4106 : static bool
4107 844248 : GlobalVisTestShouldUpdate(GlobalVisState *state)
4108 : {
4109 : /* hasn't been updated yet */
4110 844248 : if (!TransactionIdIsValid(ComputeXidHorizonsResultLastXmin))
4111 17608 : return true;
4112 :
4113 : /*
4114 : * If the maybe_needed/definitely_needed boundaries are the same, it's
4115 : * unlikely to be beneficial to refresh boundaries.
4116 : */
4117 826640 : if (FullTransactionIdFollowsOrEquals(state->maybe_needed,
4118 : state->definitely_needed))
4119 0 : return false;
4120 :
4121 : /* does the last snapshot built have a different xmin? */
4122 826640 : return RecentXmin != ComputeXidHorizonsResultLastXmin;
4123 : }
4124 :
4125 : static void
4126 439566 : GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons)
4127 : {
4128 : GlobalVisSharedRels.maybe_needed =
4129 439566 : FullXidRelativeTo(horizons->latest_completed,
4130 : horizons->shared_oldest_nonremovable);
4131 : GlobalVisCatalogRels.maybe_needed =
4132 439566 : FullXidRelativeTo(horizons->latest_completed,
4133 : horizons->catalog_oldest_nonremovable);
4134 : GlobalVisDataRels.maybe_needed =
4135 439566 : FullXidRelativeTo(horizons->latest_completed,
4136 : horizons->data_oldest_nonremovable);
4137 : GlobalVisTempRels.maybe_needed =
4138 439566 : FullXidRelativeTo(horizons->latest_completed,
4139 : horizons->temp_oldest_nonremovable);
4140 :
4141 : /*
4142 : * In longer running transactions it's possible that transactions we
4143 : * previously needed to treat as running aren't around anymore. So update
4144 : * definitely_needed to not be earlier than maybe_needed.
4145 : */
4146 : GlobalVisSharedRels.definitely_needed =
4147 439566 : FullTransactionIdNewer(GlobalVisSharedRels.maybe_needed,
4148 : GlobalVisSharedRels.definitely_needed);
4149 : GlobalVisCatalogRels.definitely_needed =
4150 439566 : FullTransactionIdNewer(GlobalVisCatalogRels.maybe_needed,
4151 : GlobalVisCatalogRels.definitely_needed);
4152 : GlobalVisDataRels.definitely_needed =
4153 439566 : FullTransactionIdNewer(GlobalVisDataRels.maybe_needed,
4154 : GlobalVisDataRels.definitely_needed);
4155 439566 : GlobalVisTempRels.definitely_needed = GlobalVisTempRels.maybe_needed;
4156 :
4157 439566 : ComputeXidHorizonsResultLastXmin = RecentXmin;
4158 439566 : }
4159 :
4160 : /*
4161 : * Update boundaries in GlobalVis{Shared,Catalog, Data}Rels
4162 : * using ComputeXidHorizons().
4163 : */
4164 : static void
4165 102848 : GlobalVisUpdate(void)
4166 : {
4167 : ComputeXidHorizonsResult horizons;
4168 :
4169 : /* updates the horizons as a side-effect */
4170 102848 : ComputeXidHorizons(&horizons);
4171 102848 : }
4172 :
4173 : /*
4174 : * Return true if no snapshot still considers fxid to be running.
4175 : *
4176 : * The state passed needs to have been initialized for the relation fxid is
4177 : * from (NULL is also OK), otherwise the result may not be correct.
4178 : *
4179 : * See comment for GlobalVisState for details.
4180 : */
4181 : bool
4182 19017414 : GlobalVisTestIsRemovableFullXid(GlobalVisState *state,
4183 : FullTransactionId fxid)
4184 : {
4185 : /*
4186 : * If fxid is older than maybe_needed bound, it definitely is visible to
4187 : * everyone.
4188 : */
4189 19017414 : if (FullTransactionIdPrecedes(fxid, state->maybe_needed))
4190 4645814 : return true;
4191 :
4192 : /*
4193 : * If fxid is >= definitely_needed bound, it is very likely to still be
4194 : * considered running.
4195 : */
4196 14371600 : if (FullTransactionIdFollowsOrEquals(fxid, state->definitely_needed))
4197 13527352 : return false;
4198 :
4199 : /*
4200 : * fxid is between maybe_needed and definitely_needed, i.e. there might or
4201 : * might not exist a snapshot considering fxid running. If it makes sense,
4202 : * update boundaries and recheck.
4203 : */
4204 844248 : if (GlobalVisTestShouldUpdate(state))
4205 : {
4206 102848 : GlobalVisUpdate();
4207 :
4208 : Assert(FullTransactionIdPrecedes(fxid, state->definitely_needed));
4209 :
4210 102848 : return FullTransactionIdPrecedes(fxid, state->maybe_needed);
4211 : }
4212 : else
4213 741400 : return false;
4214 : }
4215 :
4216 : /*
4217 : * Wrapper around GlobalVisTestIsRemovableFullXid() for 32bit xids.
4218 : *
4219 : * It is crucial that this only gets called for xids from a source that
4220 : * protects against xid wraparounds (e.g. from a table and thus protected by
4221 : * relfrozenxid).
4222 : */
4223 : bool
4224 19015456 : GlobalVisTestIsRemovableXid(GlobalVisState *state, TransactionId xid)
4225 : {
4226 : FullTransactionId fxid;
4227 :
4228 : /*
4229 : * Convert 32 bit argument to FullTransactionId. We can do so safely
4230 : * because we know the xid has to, at the very least, be between
4231 : * [oldestXid, nextXid), i.e. within 2 billion of xid. To avoid taking a
4232 : * lock to determine either, we can just compare with
4233 : * state->definitely_needed, which was based on those value at the time
4234 : * the current snapshot was built.
4235 : */
4236 19015456 : fxid = FullXidRelativeTo(state->definitely_needed, xid);
4237 :
4238 19015456 : return GlobalVisTestIsRemovableFullXid(state, fxid);
4239 : }
4240 :
4241 : /*
4242 : * Convenience wrapper around GlobalVisTestFor() and
4243 : * GlobalVisTestIsRemovableFullXid(), see their comments.
4244 : */
4245 : bool
4246 1958 : GlobalVisCheckRemovableFullXid(Relation rel, FullTransactionId fxid)
4247 : {
4248 : GlobalVisState *state;
4249 :
4250 1958 : state = GlobalVisTestFor(rel);
4251 :
4252 1958 : return GlobalVisTestIsRemovableFullXid(state, fxid);
4253 : }
4254 :
4255 : /*
4256 : * Convenience wrapper around GlobalVisTestFor() and
4257 : * GlobalVisTestIsRemovableXid(), see their comments.
4258 : */
4259 : bool
4260 12 : GlobalVisCheckRemovableXid(Relation rel, TransactionId xid)
4261 : {
4262 : GlobalVisState *state;
4263 :
4264 12 : state = GlobalVisTestFor(rel);
4265 :
4266 12 : return GlobalVisTestIsRemovableXid(state, xid);
4267 : }
4268 :
4269 : /*
4270 : * Convert a 32 bit transaction id into 64 bit transaction id, by assuming it
4271 : * is within MaxTransactionId / 2 of XidFromFullTransactionId(rel).
4272 : *
4273 : * Be very careful about when to use this function. It can only safely be used
4274 : * when there is a guarantee that xid is within MaxTransactionId / 2 xids of
4275 : * rel. That e.g. can be guaranteed if the caller assures a snapshot is
4276 : * held by the backend and xid is from a table (where vacuum/freezing ensures
4277 : * the xid has to be within that range), or if xid is from the procarray and
4278 : * prevents xid wraparound that way.
4279 : */
4280 : static inline FullTransactionId
4281 23463078 : FullXidRelativeTo(FullTransactionId rel, TransactionId xid)
4282 : {
4283 23463078 : TransactionId rel_xid = XidFromFullTransactionId(rel);
4284 :
4285 : Assert(TransactionIdIsValid(xid));
4286 : Assert(TransactionIdIsValid(rel_xid));
4287 :
4288 : /* not guaranteed to find issues, but likely to catch mistakes */
4289 : AssertTransactionIdInAllowableRange(xid);
4290 :
4291 46926156 : return FullTransactionIdFromU64(U64FromFullTransactionId(rel)
4292 23463078 : + (int32) (xid - rel_xid));
4293 : }
4294 :
4295 :
4296 : /* ----------------------------------------------
4297 : * KnownAssignedTransactionIds sub-module
4298 : * ----------------------------------------------
4299 : */
4300 :
4301 : /*
4302 : * In Hot Standby mode, we maintain a list of transactions that are (or were)
4303 : * running on the primary at the current point in WAL. These XIDs must be
4304 : * treated as running by standby transactions, even though they are not in
4305 : * the standby server's PGPROC array.
4306 : *
4307 : * We record all XIDs that we know have been assigned. That includes all the
4308 : * XIDs seen in WAL records, plus all unobserved XIDs that we can deduce have
4309 : * been assigned. We can deduce the existence of unobserved XIDs because we
4310 : * know XIDs are assigned in sequence, with no gaps. The KnownAssignedXids
4311 : * list expands as new XIDs are observed or inferred, and contracts when
4312 : * transaction completion records arrive.
4313 : *
4314 : * During hot standby we do not fret too much about the distinction between
4315 : * top-level XIDs and subtransaction XIDs. We store both together in the
4316 : * KnownAssignedXids list. In backends, this is copied into snapshots in
4317 : * GetSnapshotData(), taking advantage of the fact that XidInMVCCSnapshot()
4318 : * doesn't care about the distinction either. Subtransaction XIDs are
4319 : * effectively treated as top-level XIDs and in the typical case pg_subtrans
4320 : * links are *not* maintained (which does not affect visibility).
4321 : *
4322 : * We have room in KnownAssignedXids and in snapshots to hold maxProcs *
4323 : * (1 + PGPROC_MAX_CACHED_SUBXIDS) XIDs, so every primary transaction must
4324 : * report its subtransaction XIDs in a WAL XLOG_XACT_ASSIGNMENT record at
4325 : * least every PGPROC_MAX_CACHED_SUBXIDS. When we receive one of these
4326 : * records, we mark the subXIDs as children of the top XID in pg_subtrans,
4327 : * and then remove them from KnownAssignedXids. This prevents overflow of
4328 : * KnownAssignedXids and snapshots, at the cost that status checks for these
4329 : * subXIDs will take a slower path through TransactionIdIsInProgress().
4330 : * This means that KnownAssignedXids is not necessarily complete for subXIDs,
4331 : * though it should be complete for top-level XIDs; this is the same situation
4332 : * that holds with respect to the PGPROC entries in normal running.
4333 : *
4334 : * When we throw away subXIDs from KnownAssignedXids, we need to keep track of
4335 : * that, similarly to tracking overflow of a PGPROC's subxids array. We do
4336 : * that by remembering the lastOverflowedXid, ie the last thrown-away subXID.
4337 : * As long as that is within the range of interesting XIDs, we have to assume
4338 : * that subXIDs are missing from snapshots. (Note that subXID overflow occurs
4339 : * on primary when 65th subXID arrives, whereas on standby it occurs when 64th
4340 : * subXID arrives - that is not an error.)
4341 : *
4342 : * Should a backend on primary somehow disappear before it can write an abort
4343 : * record, then we just leave those XIDs in KnownAssignedXids. They actually
4344 : * aborted but we think they were running; the distinction is irrelevant
4345 : * because either way any changes done by the transaction are not visible to
4346 : * backends in the standby. We prune KnownAssignedXids when
4347 : * XLOG_RUNNING_XACTS arrives, to forestall possible overflow of the
4348 : * array due to such dead XIDs.
4349 : */
4350 :
4351 : /*
4352 : * RecordKnownAssignedTransactionIds
4353 : * Record the given XID in KnownAssignedXids, as well as any preceding
4354 : * unobserved XIDs.
4355 : *
4356 : * RecordKnownAssignedTransactionIds() should be run for *every* WAL record
4357 : * associated with a transaction. Must be called for each record after we
4358 : * have executed StartupCLOG() et al, since we must ExtendCLOG() etc..
4359 : *
4360 : * Called during recovery in analogy with and in place of GetNewTransactionId()
4361 : */
4362 : void
4363 4951234 : RecordKnownAssignedTransactionIds(TransactionId xid)
4364 : {
4365 : Assert(standbyState >= STANDBY_INITIALIZED);
4366 : Assert(TransactionIdIsValid(xid));
4367 : Assert(TransactionIdIsValid(latestObservedXid));
4368 :
4369 4951234 : elog(DEBUG4, "record known xact %u latestObservedXid %u",
4370 : xid, latestObservedXid);
4371 :
4372 : /*
4373 : * When a newly observed xid arrives, it is frequently the case that it is
4374 : * *not* the next xid in sequence. When this occurs, we must treat the
4375 : * intervening xids as running also.
4376 : */
4377 4951234 : if (TransactionIdFollows(xid, latestObservedXid))
4378 : {
4379 : TransactionId next_expected_xid;
4380 :
4381 : /*
4382 : * Extend subtrans like we do in GetNewTransactionId() during normal
4383 : * operation using individual extend steps. Note that we do not need
4384 : * to extend clog since its extensions are WAL logged.
4385 : *
4386 : * This part has to be done regardless of standbyState since we
4387 : * immediately start assigning subtransactions to their toplevel
4388 : * transactions.
4389 : */
4390 44978 : next_expected_xid = latestObservedXid;
4391 91402 : while (TransactionIdPrecedes(next_expected_xid, xid))
4392 : {
4393 46424 : TransactionIdAdvance(next_expected_xid);
4394 46424 : ExtendSUBTRANS(next_expected_xid);
4395 : }
4396 : Assert(next_expected_xid == xid);
4397 :
4398 : /*
4399 : * If the KnownAssignedXids machinery isn't up yet, there's nothing
4400 : * more to do since we don't track assigned xids yet.
4401 : */
4402 44978 : if (standbyState <= STANDBY_INITIALIZED)
4403 : {
4404 0 : latestObservedXid = xid;
4405 0 : return;
4406 : }
4407 :
4408 : /*
4409 : * Add (latestObservedXid, xid] onto the KnownAssignedXids array.
4410 : */
4411 44978 : next_expected_xid = latestObservedXid;
4412 44978 : TransactionIdAdvance(next_expected_xid);
4413 44978 : KnownAssignedXidsAdd(next_expected_xid, xid, false);
4414 :
4415 : /*
4416 : * Now we can advance latestObservedXid
4417 : */
4418 44978 : latestObservedXid = xid;
4419 :
4420 : /* TransamVariables->nextXid must be beyond any observed xid */
4421 44978 : AdvanceNextFullTransactionIdPastXid(latestObservedXid);
4422 : }
4423 : }
4424 :
4425 : /*
4426 : * ExpireTreeKnownAssignedTransactionIds
4427 : * Remove the given XIDs from KnownAssignedXids.
4428 : *
4429 : * Called during recovery in analogy with and in place of ProcArrayEndTransaction()
4430 : */
4431 : void
4432 43356 : ExpireTreeKnownAssignedTransactionIds(TransactionId xid, int nsubxids,
4433 : TransactionId *subxids, TransactionId max_xid)
4434 : {
4435 : Assert(standbyState >= STANDBY_INITIALIZED);
4436 :
4437 : /*
4438 : * Uses same locking as transaction commit
4439 : */
4440 43356 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4441 :
4442 43356 : KnownAssignedXidsRemoveTree(xid, nsubxids, subxids);
4443 :
4444 : /* As in ProcArrayEndTransaction, advance latestCompletedXid */
4445 43356 : MaintainLatestCompletedXidRecovery(max_xid);
4446 :
4447 : /* ... and xactCompletionCount */
4448 43356 : TransamVariables->xactCompletionCount++;
4449 :
4450 43356 : LWLockRelease(ProcArrayLock);
4451 43356 : }
4452 :
4453 : /*
4454 : * ExpireAllKnownAssignedTransactionIds
4455 : * Remove all entries in KnownAssignedXids and reset lastOverflowedXid.
4456 : */
4457 : void
4458 216 : ExpireAllKnownAssignedTransactionIds(void)
4459 : {
4460 : FullTransactionId latestXid;
4461 :
4462 216 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4463 216 : KnownAssignedXidsRemovePreceding(InvalidTransactionId);
4464 :
4465 : /* Reset latestCompletedXid to nextXid - 1 */
4466 : Assert(FullTransactionIdIsValid(TransamVariables->nextXid));
4467 216 : latestXid = TransamVariables->nextXid;
4468 216 : FullTransactionIdRetreat(&latestXid);
4469 216 : TransamVariables->latestCompletedXid = latestXid;
4470 :
4471 : /*
4472 : * Any transactions that were in-progress were effectively aborted, so
4473 : * advance xactCompletionCount.
4474 : */
4475 216 : TransamVariables->xactCompletionCount++;
4476 :
4477 : /*
4478 : * Reset lastOverflowedXid. Currently, lastOverflowedXid has no use after
4479 : * the call of this function. But do this for unification with what
4480 : * ExpireOldKnownAssignedTransactionIds() do.
4481 : */
4482 216 : procArray->lastOverflowedXid = InvalidTransactionId;
4483 216 : LWLockRelease(ProcArrayLock);
4484 216 : }
4485 :
4486 : /*
4487 : * ExpireOldKnownAssignedTransactionIds
4488 : * Remove KnownAssignedXids entries preceding the given XID and
4489 : * potentially reset lastOverflowedXid.
4490 : */
4491 : void
4492 1598 : ExpireOldKnownAssignedTransactionIds(TransactionId xid)
4493 : {
4494 : TransactionId latestXid;
4495 :
4496 1598 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4497 :
4498 : /* As in ProcArrayEndTransaction, advance latestCompletedXid */
4499 1598 : latestXid = xid;
4500 1598 : TransactionIdRetreat(latestXid);
4501 1598 : MaintainLatestCompletedXidRecovery(latestXid);
4502 :
4503 : /* ... and xactCompletionCount */
4504 1598 : TransamVariables->xactCompletionCount++;
4505 :
4506 : /*
4507 : * Reset lastOverflowedXid if we know all transactions that have been
4508 : * possibly running are being gone. Not doing so could cause an incorrect
4509 : * lastOverflowedXid value, which makes extra snapshots be marked as
4510 : * suboverflowed.
4511 : */
4512 1598 : if (TransactionIdPrecedes(procArray->lastOverflowedXid, xid))
4513 1588 : procArray->lastOverflowedXid = InvalidTransactionId;
4514 1598 : KnownAssignedXidsRemovePreceding(xid);
4515 1598 : LWLockRelease(ProcArrayLock);
4516 1598 : }
4517 :
4518 : /*
4519 : * KnownAssignedTransactionIdsIdleMaintenance
4520 : * Opportunistically do maintenance work when the startup process
4521 : * is about to go idle.
4522 : */
4523 : void
4524 5776 : KnownAssignedTransactionIdsIdleMaintenance(void)
4525 : {
4526 5776 : KnownAssignedXidsCompress(KAX_STARTUP_PROCESS_IDLE, false);
4527 5776 : }
4528 :
4529 :
4530 : /*
4531 : * Private module functions to manipulate KnownAssignedXids
4532 : *
4533 : * There are 5 main uses of the KnownAssignedXids data structure:
4534 : *
4535 : * * backends taking snapshots - all valid XIDs need to be copied out
4536 : * * backends seeking to determine presence of a specific XID
4537 : * * startup process adding new known-assigned XIDs
4538 : * * startup process removing specific XIDs as transactions end
4539 : * * startup process pruning array when special WAL records arrive
4540 : *
4541 : * This data structure is known to be a hot spot during Hot Standby, so we
4542 : * go to some lengths to make these operations as efficient and as concurrent
4543 : * as possible.
4544 : *
4545 : * The XIDs are stored in an array in sorted order --- TransactionIdPrecedes
4546 : * order, to be exact --- to allow binary search for specific XIDs. Note:
4547 : * in general TransactionIdPrecedes would not provide a total order, but
4548 : * we know that the entries present at any instant should not extend across
4549 : * a large enough fraction of XID space to wrap around (the primary would
4550 : * shut down for fear of XID wrap long before that happens). So it's OK to
4551 : * use TransactionIdPrecedes as a binary-search comparator.
4552 : *
4553 : * It's cheap to maintain the sortedness during insertions, since new known
4554 : * XIDs are always reported in XID order; we just append them at the right.
4555 : *
4556 : * To keep individual deletions cheap, we need to allow gaps in the array.
4557 : * This is implemented by marking array elements as valid or invalid using
4558 : * the parallel boolean array KnownAssignedXidsValid[]. A deletion is done
4559 : * by setting KnownAssignedXidsValid[i] to false, *without* clearing the
4560 : * XID entry itself. This preserves the property that the XID entries are
4561 : * sorted, so we can do binary searches easily. Periodically we compress
4562 : * out the unused entries; that's much cheaper than having to compress the
4563 : * array immediately on every deletion.
4564 : *
4565 : * The actually valid items in KnownAssignedXids[] and KnownAssignedXidsValid[]
4566 : * are those with indexes tail <= i < head; items outside this subscript range
4567 : * have unspecified contents. When head reaches the end of the array, we
4568 : * force compression of unused entries rather than wrapping around, since
4569 : * allowing wraparound would greatly complicate the search logic. We maintain
4570 : * an explicit tail pointer so that pruning of old XIDs can be done without
4571 : * immediately moving the array contents. In most cases only a small fraction
4572 : * of the array contains valid entries at any instant.
4573 : *
4574 : * Although only the startup process can ever change the KnownAssignedXids
4575 : * data structure, we still need interlocking so that standby backends will
4576 : * not observe invalid intermediate states. The convention is that backends
4577 : * must hold shared ProcArrayLock to examine the array. To remove XIDs from
4578 : * the array, the startup process must hold ProcArrayLock exclusively, for
4579 : * the usual transactional reasons (compare commit/abort of a transaction
4580 : * during normal running). Compressing unused entries out of the array
4581 : * likewise requires exclusive lock. To add XIDs to the array, we just insert
4582 : * them into slots to the right of the head pointer and then advance the head
4583 : * pointer. This doesn't require any lock at all, but on machines with weak
4584 : * memory ordering, we need to be careful that other processors see the array
4585 : * element changes before they see the head pointer change. We handle this by
4586 : * using memory barriers when reading or writing the head/tail pointers (unless
4587 : * the caller holds ProcArrayLock exclusively).
4588 : *
4589 : * Algorithmic analysis:
4590 : *
4591 : * If we have a maximum of M slots, with N XIDs currently spread across
4592 : * S elements then we have N <= S <= M always.
4593 : *
4594 : * * Adding a new XID is O(1) and needs no lock (unless compression must
4595 : * happen)
4596 : * * Compressing the array is O(S) and requires exclusive lock
4597 : * * Removing an XID is O(logS) and requires exclusive lock
4598 : * * Taking a snapshot is O(S) and requires shared lock
4599 : * * Checking for an XID is O(logS) and requires shared lock
4600 : *
4601 : * In comparison, using a hash table for KnownAssignedXids would mean that
4602 : * taking snapshots would be O(M). If we can maintain S << M then the
4603 : * sorted array technique will deliver significantly faster snapshots.
4604 : * If we try to keep S too small then we will spend too much time compressing,
4605 : * so there is an optimal point for any workload mix. We use a heuristic to
4606 : * decide when to compress the array, though trimming also helps reduce
4607 : * frequency of compressing. The heuristic requires us to track the number of
4608 : * currently valid XIDs in the array (N). Except in special cases, we'll
4609 : * compress when S >= 2N. Bounding S at 2N in turn bounds the time for
4610 : * taking a snapshot to be O(N), which it would have to be anyway.
4611 : */
4612 :
4613 :
4614 : /*
4615 : * Compress KnownAssignedXids by shifting valid data down to the start of the
4616 : * array, removing any gaps.
4617 : *
4618 : * A compression step is forced if "reason" is KAX_NO_SPACE, otherwise
4619 : * we do it only if a heuristic indicates it's a good time to do it.
4620 : *
4621 : * Compression requires holding ProcArrayLock in exclusive mode.
4622 : * Caller must pass haveLock = true if it already holds the lock.
4623 : */
4624 : static void
4625 50772 : KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock)
4626 : {
4627 50772 : ProcArrayStruct *pArray = procArray;
4628 : int head,
4629 : tail,
4630 : nelements;
4631 : int compress_index;
4632 : int i;
4633 :
4634 : /* Counters for compression heuristics */
4635 : static unsigned int transactionEndsCounter;
4636 : static TimestampTz lastCompressTs;
4637 :
4638 : /* Tuning constants */
4639 : #define KAX_COMPRESS_FREQUENCY 128 /* in transactions */
4640 : #define KAX_COMPRESS_IDLE_INTERVAL 1000 /* in ms */
4641 :
4642 : /*
4643 : * Since only the startup process modifies the head/tail pointers, we
4644 : * don't need a lock to read them here.
4645 : */
4646 50772 : head = pArray->headKnownAssignedXids;
4647 50772 : tail = pArray->tailKnownAssignedXids;
4648 50772 : nelements = head - tail;
4649 :
4650 : /*
4651 : * If we can choose whether to compress, use a heuristic to avoid
4652 : * compressing too often or not often enough. "Compress" here simply
4653 : * means moving the values to the beginning of the array, so it is not as
4654 : * complex or costly as typical data compression algorithms.
4655 : */
4656 50772 : if (nelements == pArray->numKnownAssignedXids)
4657 : {
4658 : /*
4659 : * When there are no gaps between head and tail, don't bother to
4660 : * compress, except in the KAX_NO_SPACE case where we must compress to
4661 : * create some space after the head.
4662 : */
4663 20168 : if (reason != KAX_NO_SPACE)
4664 20168 : return;
4665 : }
4666 30604 : else if (reason == KAX_TRANSACTION_END)
4667 : {
4668 : /*
4669 : * Consider compressing only once every so many commits. Frequency
4670 : * determined by benchmarks.
4671 : */
4672 29190 : if ((transactionEndsCounter++) % KAX_COMPRESS_FREQUENCY != 0)
4673 28944 : return;
4674 :
4675 : /*
4676 : * Furthermore, compress only if the used part of the array is less
4677 : * than 50% full (see comments above).
4678 : */
4679 246 : if (nelements < 2 * pArray->numKnownAssignedXids)
4680 16 : return;
4681 : }
4682 1414 : else if (reason == KAX_STARTUP_PROCESS_IDLE)
4683 : {
4684 : /*
4685 : * We're about to go idle for lack of new WAL, so we might as well
4686 : * compress. But not too often, to avoid ProcArray lock contention
4687 : * with readers.
4688 : */
4689 1188 : if (lastCompressTs != 0)
4690 : {
4691 : TimestampTz compress_after;
4692 :
4693 1188 : compress_after = TimestampTzPlusMilliseconds(lastCompressTs,
4694 : KAX_COMPRESS_IDLE_INTERVAL);
4695 1188 : if (GetCurrentTimestamp() < compress_after)
4696 1056 : return;
4697 : }
4698 : }
4699 :
4700 : /* Need to compress, so get the lock if we don't have it. */
4701 588 : if (!haveLock)
4702 132 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4703 :
4704 : /*
4705 : * We compress the array by reading the valid values from tail to head,
4706 : * re-aligning data to 0th element.
4707 : */
4708 588 : compress_index = 0;
4709 21960 : for (i = tail; i < head; i++)
4710 : {
4711 21372 : if (KnownAssignedXidsValid[i])
4712 : {
4713 2574 : KnownAssignedXids[compress_index] = KnownAssignedXids[i];
4714 2574 : KnownAssignedXidsValid[compress_index] = true;
4715 2574 : compress_index++;
4716 : }
4717 : }
4718 : Assert(compress_index == pArray->numKnownAssignedXids);
4719 :
4720 588 : pArray->tailKnownAssignedXids = 0;
4721 588 : pArray->headKnownAssignedXids = compress_index;
4722 :
4723 588 : if (!haveLock)
4724 132 : LWLockRelease(ProcArrayLock);
4725 :
4726 : /* Update timestamp for maintenance. No need to hold lock for this. */
4727 588 : lastCompressTs = GetCurrentTimestamp();
4728 : }
4729 :
4730 : /*
4731 : * Add xids into KnownAssignedXids at the head of the array.
4732 : *
4733 : * xids from from_xid to to_xid, inclusive, are added to the array.
4734 : *
4735 : * If exclusive_lock is true then caller already holds ProcArrayLock in
4736 : * exclusive mode, so we need no extra locking here. Else caller holds no
4737 : * lock, so we need to be sure we maintain sufficient interlocks against
4738 : * concurrent readers. (Only the startup process ever calls this, so no need
4739 : * to worry about concurrent writers.)
4740 : */
4741 : static void
4742 44986 : KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
4743 : bool exclusive_lock)
4744 : {
4745 44986 : ProcArrayStruct *pArray = procArray;
4746 : TransactionId next_xid;
4747 : int head,
4748 : tail;
4749 : int nxids;
4750 : int i;
4751 :
4752 : Assert(TransactionIdPrecedesOrEquals(from_xid, to_xid));
4753 :
4754 : /*
4755 : * Calculate how many array slots we'll need. Normally this is cheap; in
4756 : * the unusual case where the XIDs cross the wrap point, we do it the hard
4757 : * way.
4758 : */
4759 44986 : if (to_xid >= from_xid)
4760 44986 : nxids = to_xid - from_xid + 1;
4761 : else
4762 : {
4763 0 : nxids = 1;
4764 0 : next_xid = from_xid;
4765 0 : while (TransactionIdPrecedes(next_xid, to_xid))
4766 : {
4767 0 : nxids++;
4768 0 : TransactionIdAdvance(next_xid);
4769 : }
4770 : }
4771 :
4772 : /*
4773 : * Since only the startup process modifies the head/tail pointers, we
4774 : * don't need a lock to read them here.
4775 : */
4776 44986 : head = pArray->headKnownAssignedXids;
4777 44986 : tail = pArray->tailKnownAssignedXids;
4778 :
4779 : Assert(head >= 0 && head <= pArray->maxKnownAssignedXids);
4780 : Assert(tail >= 0 && tail < pArray->maxKnownAssignedXids);
4781 :
4782 : /*
4783 : * Verify that insertions occur in TransactionId sequence. Note that even
4784 : * if the last existing element is marked invalid, it must still have a
4785 : * correctly sequenced XID value.
4786 : */
4787 77092 : if (head > tail &&
4788 32106 : TransactionIdFollowsOrEquals(KnownAssignedXids[head - 1], from_xid))
4789 : {
4790 0 : KnownAssignedXidsDisplay(LOG);
4791 0 : elog(ERROR, "out-of-order XID insertion in KnownAssignedXids");
4792 : }
4793 :
4794 : /*
4795 : * If our xids won't fit in the remaining space, compress out free space
4796 : */
4797 44986 : if (head + nxids > pArray->maxKnownAssignedXids)
4798 : {
4799 0 : KnownAssignedXidsCompress(KAX_NO_SPACE, exclusive_lock);
4800 :
4801 0 : head = pArray->headKnownAssignedXids;
4802 : /* note: we no longer care about the tail pointer */
4803 :
4804 : /*
4805 : * If it still won't fit then we're out of memory
4806 : */
4807 0 : if (head + nxids > pArray->maxKnownAssignedXids)
4808 0 : elog(ERROR, "too many KnownAssignedXids");
4809 : }
4810 :
4811 : /* Now we can insert the xids into the space starting at head */
4812 44986 : next_xid = from_xid;
4813 91418 : for (i = 0; i < nxids; i++)
4814 : {
4815 46432 : KnownAssignedXids[head] = next_xid;
4816 46432 : KnownAssignedXidsValid[head] = true;
4817 46432 : TransactionIdAdvance(next_xid);
4818 46432 : head++;
4819 : }
4820 :
4821 : /* Adjust count of number of valid entries */
4822 44986 : pArray->numKnownAssignedXids += nxids;
4823 :
4824 : /*
4825 : * Now update the head pointer. We use a write barrier to ensure that
4826 : * other processors see the above array updates before they see the head
4827 : * pointer change. The barrier isn't required if we're holding
4828 : * ProcArrayLock exclusively.
4829 : */
4830 44986 : if (!exclusive_lock)
4831 44978 : pg_write_barrier();
4832 :
4833 44986 : pArray->headKnownAssignedXids = head;
4834 44986 : }
4835 :
4836 : /*
4837 : * KnownAssignedXidsSearch
4838 : *
4839 : * Searches KnownAssignedXids for a specific xid and optionally removes it.
4840 : * Returns true if it was found, false if not.
4841 : *
4842 : * Caller must hold ProcArrayLock in shared or exclusive mode.
4843 : * Exclusive lock must be held for remove = true.
4844 : */
4845 : static bool
4846 48700 : KnownAssignedXidsSearch(TransactionId xid, bool remove)
4847 : {
4848 48700 : ProcArrayStruct *pArray = procArray;
4849 : int first,
4850 : last;
4851 : int head;
4852 : int tail;
4853 48700 : int result_index = -1;
4854 :
4855 48700 : tail = pArray->tailKnownAssignedXids;
4856 48700 : head = pArray->headKnownAssignedXids;
4857 :
4858 : /*
4859 : * Only the startup process removes entries, so we don't need the read
4860 : * barrier in that case.
4861 : */
4862 48700 : if (!remove)
4863 2 : pg_read_barrier(); /* pairs with KnownAssignedXidsAdd */
4864 :
4865 : /*
4866 : * Standard binary search. Note we can ignore the KnownAssignedXidsValid
4867 : * array here, since even invalid entries will contain sorted XIDs.
4868 : */
4869 48700 : first = tail;
4870 48700 : last = head - 1;
4871 178636 : while (first <= last)
4872 : {
4873 : int mid_index;
4874 : TransactionId mid_xid;
4875 :
4876 176262 : mid_index = (first + last) / 2;
4877 176262 : mid_xid = KnownAssignedXids[mid_index];
4878 :
4879 176262 : if (xid == mid_xid)
4880 : {
4881 46326 : result_index = mid_index;
4882 46326 : break;
4883 : }
4884 129936 : else if (TransactionIdPrecedes(xid, mid_xid))
4885 27058 : last = mid_index - 1;
4886 : else
4887 102878 : first = mid_index + 1;
4888 : }
4889 :
4890 48700 : if (result_index < 0)
4891 2374 : return false; /* not in array */
4892 :
4893 46326 : if (!KnownAssignedXidsValid[result_index])
4894 66 : return false; /* in array, but invalid */
4895 :
4896 46260 : if (remove)
4897 : {
4898 46260 : KnownAssignedXidsValid[result_index] = false;
4899 :
4900 46260 : pArray->numKnownAssignedXids--;
4901 : Assert(pArray->numKnownAssignedXids >= 0);
4902 :
4903 : /*
4904 : * If we're removing the tail element then advance tail pointer over
4905 : * any invalid elements. This will speed future searches.
4906 : */
4907 46260 : if (result_index == tail)
4908 : {
4909 15204 : tail++;
4910 27462 : while (tail < head && !KnownAssignedXidsValid[tail])
4911 12258 : tail++;
4912 15204 : if (tail >= head)
4913 : {
4914 : /* Array is empty, so we can reset both pointers */
4915 12860 : pArray->headKnownAssignedXids = 0;
4916 12860 : pArray->tailKnownAssignedXids = 0;
4917 : }
4918 : else
4919 : {
4920 2344 : pArray->tailKnownAssignedXids = tail;
4921 : }
4922 : }
4923 : }
4924 :
4925 46260 : return true;
4926 : }
4927 :
4928 : /*
4929 : * Is the specified XID present in KnownAssignedXids[]?
4930 : *
4931 : * Caller must hold ProcArrayLock in shared or exclusive mode.
4932 : */
4933 : static bool
4934 2 : KnownAssignedXidExists(TransactionId xid)
4935 : {
4936 : Assert(TransactionIdIsValid(xid));
4937 :
4938 2 : return KnownAssignedXidsSearch(xid, false);
4939 : }
4940 :
4941 : /*
4942 : * Remove the specified XID from KnownAssignedXids[].
4943 : *
4944 : * Caller must hold ProcArrayLock in exclusive mode.
4945 : */
4946 : static void
4947 48698 : KnownAssignedXidsRemove(TransactionId xid)
4948 : {
4949 : Assert(TransactionIdIsValid(xid));
4950 :
4951 48698 : elog(DEBUG4, "remove KnownAssignedXid %u", xid);
4952 :
4953 : /*
4954 : * Note: we cannot consider it an error to remove an XID that's not
4955 : * present. We intentionally remove subxact IDs while processing
4956 : * XLOG_XACT_ASSIGNMENT, to avoid array overflow. Then those XIDs will be
4957 : * removed again when the top-level xact commits or aborts.
4958 : *
4959 : * It might be possible to track such XIDs to distinguish this case from
4960 : * actual errors, but it would be complicated and probably not worth it.
4961 : * So, just ignore the search result.
4962 : */
4963 48698 : (void) KnownAssignedXidsSearch(xid, true);
4964 48698 : }
4965 :
4966 : /*
4967 : * KnownAssignedXidsRemoveTree
4968 : * Remove xid (if it's not InvalidTransactionId) and all the subxids.
4969 : *
4970 : * Caller must hold ProcArrayLock in exclusive mode.
4971 : */
4972 : static void
4973 43398 : KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
4974 : TransactionId *subxids)
4975 : {
4976 : int i;
4977 :
4978 43398 : if (TransactionIdIsValid(xid))
4979 43356 : KnownAssignedXidsRemove(xid);
4980 :
4981 48740 : for (i = 0; i < nsubxids; i++)
4982 5342 : KnownAssignedXidsRemove(subxids[i]);
4983 :
4984 : /* Opportunistically compress the array */
4985 43398 : KnownAssignedXidsCompress(KAX_TRANSACTION_END, true);
4986 43398 : }
4987 :
4988 : /*
4989 : * Prune KnownAssignedXids up to, but *not* including xid. If xid is invalid
4990 : * then clear the whole table.
4991 : *
4992 : * Caller must hold ProcArrayLock in exclusive mode.
4993 : */
4994 : static void
4995 1814 : KnownAssignedXidsRemovePreceding(TransactionId removeXid)
4996 : {
4997 1814 : ProcArrayStruct *pArray = procArray;
4998 1814 : int count = 0;
4999 : int head,
5000 : tail,
5001 : i;
5002 :
5003 1814 : if (!TransactionIdIsValid(removeXid))
5004 : {
5005 216 : elog(DEBUG4, "removing all KnownAssignedXids");
5006 216 : pArray->numKnownAssignedXids = 0;
5007 216 : pArray->headKnownAssignedXids = pArray->tailKnownAssignedXids = 0;
5008 216 : return;
5009 : }
5010 :
5011 1598 : elog(DEBUG4, "prune KnownAssignedXids to %u", removeXid);
5012 :
5013 : /*
5014 : * Mark entries invalid starting at the tail. Since array is sorted, we
5015 : * can stop as soon as we reach an entry >= removeXid.
5016 : */
5017 1598 : tail = pArray->tailKnownAssignedXids;
5018 1598 : head = pArray->headKnownAssignedXids;
5019 :
5020 1598 : for (i = tail; i < head; i++)
5021 : {
5022 436 : if (KnownAssignedXidsValid[i])
5023 : {
5024 436 : TransactionId knownXid = KnownAssignedXids[i];
5025 :
5026 436 : if (TransactionIdFollowsOrEquals(knownXid, removeXid))
5027 436 : break;
5028 :
5029 0 : if (!StandbyTransactionIdIsPrepared(knownXid))
5030 : {
5031 0 : KnownAssignedXidsValid[i] = false;
5032 0 : count++;
5033 : }
5034 : }
5035 : }
5036 :
5037 1598 : pArray->numKnownAssignedXids -= count;
5038 : Assert(pArray->numKnownAssignedXids >= 0);
5039 :
5040 : /*
5041 : * Advance the tail pointer if we've marked the tail item invalid.
5042 : */
5043 1598 : for (i = tail; i < head; i++)
5044 : {
5045 436 : if (KnownAssignedXidsValid[i])
5046 436 : break;
5047 : }
5048 1598 : if (i >= head)
5049 : {
5050 : /* Array is empty, so we can reset both pointers */
5051 1162 : pArray->headKnownAssignedXids = 0;
5052 1162 : pArray->tailKnownAssignedXids = 0;
5053 : }
5054 : else
5055 : {
5056 436 : pArray->tailKnownAssignedXids = i;
5057 : }
5058 :
5059 : /* Opportunistically compress the array */
5060 1598 : KnownAssignedXidsCompress(KAX_PRUNE, true);
5061 : }
5062 :
5063 : /*
5064 : * KnownAssignedXidsGet - Get an array of xids by scanning KnownAssignedXids.
5065 : * We filter out anything >= xmax.
5066 : *
5067 : * Returns the number of XIDs stored into xarray[]. Caller is responsible
5068 : * that array is large enough.
5069 : *
5070 : * Caller must hold ProcArrayLock in (at least) shared mode.
5071 : */
5072 : static int
5073 0 : KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax)
5074 : {
5075 0 : TransactionId xtmp = InvalidTransactionId;
5076 :
5077 0 : return KnownAssignedXidsGetAndSetXmin(xarray, &xtmp, xmax);
5078 : }
5079 :
5080 : /*
5081 : * KnownAssignedXidsGetAndSetXmin - as KnownAssignedXidsGet, plus
5082 : * we reduce *xmin to the lowest xid value seen if not already lower.
5083 : *
5084 : * Caller must hold ProcArrayLock in (at least) shared mode.
5085 : */
5086 : static int
5087 2272 : KnownAssignedXidsGetAndSetXmin(TransactionId *xarray, TransactionId *xmin,
5088 : TransactionId xmax)
5089 : {
5090 2272 : int count = 0;
5091 : int head,
5092 : tail;
5093 : int i;
5094 :
5095 : /*
5096 : * Fetch head just once, since it may change while we loop. We can stop
5097 : * once we reach the initially seen head, since we are certain that an xid
5098 : * cannot enter and then leave the array while we hold ProcArrayLock. We
5099 : * might miss newly-added xids, but they should be >= xmax so irrelevant
5100 : * anyway.
5101 : */
5102 2272 : tail = procArray->tailKnownAssignedXids;
5103 2272 : head = procArray->headKnownAssignedXids;
5104 :
5105 2272 : pg_read_barrier(); /* pairs with KnownAssignedXidsAdd */
5106 :
5107 2320 : for (i = tail; i < head; i++)
5108 : {
5109 : /* Skip any gaps in the array */
5110 192 : if (KnownAssignedXidsValid[i])
5111 : {
5112 172 : TransactionId knownXid = KnownAssignedXids[i];
5113 :
5114 : /*
5115 : * Update xmin if required. Only the first XID need be checked,
5116 : * since the array is sorted.
5117 : */
5118 344 : if (count == 0 &&
5119 172 : TransactionIdPrecedes(knownXid, *xmin))
5120 28 : *xmin = knownXid;
5121 :
5122 : /*
5123 : * Filter out anything >= xmax, again relying on sorted property
5124 : * of array.
5125 : */
5126 344 : if (TransactionIdIsValid(xmax) &&
5127 172 : TransactionIdFollowsOrEquals(knownXid, xmax))
5128 144 : break;
5129 :
5130 : /* Add knownXid into output array */
5131 28 : xarray[count++] = knownXid;
5132 : }
5133 : }
5134 :
5135 2272 : return count;
5136 : }
5137 :
5138 : /*
5139 : * Get oldest XID in the KnownAssignedXids array, or InvalidTransactionId
5140 : * if nothing there.
5141 : */
5142 : static TransactionId
5143 698 : KnownAssignedXidsGetOldestXmin(void)
5144 : {
5145 : int head,
5146 : tail;
5147 : int i;
5148 :
5149 : /*
5150 : * Fetch head just once, since it may change while we loop.
5151 : */
5152 698 : tail = procArray->tailKnownAssignedXids;
5153 698 : head = procArray->headKnownAssignedXids;
5154 :
5155 698 : pg_read_barrier(); /* pairs with KnownAssignedXidsAdd */
5156 :
5157 698 : for (i = tail; i < head; i++)
5158 : {
5159 : /* Skip any gaps in the array */
5160 288 : if (KnownAssignedXidsValid[i])
5161 288 : return KnownAssignedXids[i];
5162 : }
5163 :
5164 410 : return InvalidTransactionId;
5165 : }
5166 :
5167 : /*
5168 : * Display KnownAssignedXids to provide debug trail
5169 : *
5170 : * Currently this is only called within startup process, so we need no
5171 : * special locking.
5172 : *
5173 : * Note this is pretty expensive, and much of the expense will be incurred
5174 : * even if the elog message will get discarded. It's not currently called
5175 : * in any performance-critical places, however, so no need to be tenser.
5176 : */
5177 : static void
5178 224 : KnownAssignedXidsDisplay(int trace_level)
5179 : {
5180 224 : ProcArrayStruct *pArray = procArray;
5181 : StringInfoData buf;
5182 : int head,
5183 : tail,
5184 : i;
5185 224 : int nxids = 0;
5186 :
5187 224 : tail = pArray->tailKnownAssignedXids;
5188 224 : head = pArray->headKnownAssignedXids;
5189 :
5190 224 : initStringInfo(&buf);
5191 :
5192 240 : for (i = tail; i < head; i++)
5193 : {
5194 16 : if (KnownAssignedXidsValid[i])
5195 : {
5196 16 : nxids++;
5197 16 : appendStringInfo(&buf, "[%d]=%u ", i, KnownAssignedXids[i]);
5198 : }
5199 : }
5200 :
5201 224 : elog(trace_level, "%d KnownAssignedXids (num=%d tail=%d head=%d) %s",
5202 : nxids,
5203 : pArray->numKnownAssignedXids,
5204 : pArray->tailKnownAssignedXids,
5205 : pArray->headKnownAssignedXids,
5206 : buf.data);
5207 :
5208 224 : pfree(buf.data);
5209 224 : }
5210 :
5211 : /*
5212 : * KnownAssignedXidsReset
5213 : * Resets KnownAssignedXids to be empty
5214 : */
5215 : static void
5216 0 : KnownAssignedXidsReset(void)
5217 : {
5218 0 : ProcArrayStruct *pArray = procArray;
5219 :
5220 0 : LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
5221 :
5222 0 : pArray->numKnownAssignedXids = 0;
5223 0 : pArray->tailKnownAssignedXids = 0;
5224 0 : pArray->headKnownAssignedXids = 0;
5225 :
5226 0 : LWLockRelease(ProcArrayLock);
5227 0 : }
|