LCOV - code coverage report
Current view: top level - src/backend/storage/ipc - dsm.c (source / functions) Hit Total Coverage
Test: PostgreSQL 17devel Lines: 269 383 70.2 %
Date: 2024-04-20 12:11:36 Functions: 25 32 78.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * dsm.c
       4             :  *    manage dynamic shared memory segments
       5             :  *
       6             :  * This file provides a set of services to make programming with dynamic
       7             :  * shared memory segments more convenient.  Unlike the low-level
       8             :  * facilities provided by dsm_impl.h and dsm_impl.c, mappings and segments
       9             :  * created using this module will be cleaned up automatically.  Mappings
      10             :  * will be removed when the resource owner under which they were created
      11             :  * is cleaned up, unless dsm_pin_mapping() is used, in which case they
      12             :  * have session lifespan.  Segments will be removed when there are no
      13             :  * remaining mappings, or at postmaster shutdown in any case.  After a
      14             :  * hard postmaster crash, remaining segments will be removed, if they
      15             :  * still exist, at the next postmaster startup.
      16             :  *
      17             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
      18             :  * Portions Copyright (c) 1994, Regents of the University of California
      19             :  *
      20             :  *
      21             :  * IDENTIFICATION
      22             :  *    src/backend/storage/ipc/dsm.c
      23             :  *
      24             :  *-------------------------------------------------------------------------
      25             :  */
      26             : 
      27             : #include "postgres.h"
      28             : 
      29             : #include <fcntl.h>
      30             : #include <unistd.h>
      31             : #ifndef WIN32
      32             : #include <sys/mman.h>
      33             : #endif
      34             : #include <sys/stat.h>
      35             : 
      36             : #include "common/pg_prng.h"
      37             : #include "lib/ilist.h"
      38             : #include "miscadmin.h"
      39             : #include "port/pg_bitutils.h"
      40             : #include "storage/dsm.h"
      41             : #include "storage/fd.h"
      42             : #include "storage/ipc.h"
      43             : #include "storage/lwlock.h"
      44             : #include "storage/pg_shmem.h"
      45             : #include "storage/shmem.h"
      46             : #include "utils/freepage.h"
      47             : #include "utils/memutils.h"
      48             : #include "utils/resowner.h"
      49             : 
      50             : #define PG_DYNSHMEM_CONTROL_MAGIC       0x9a503d32
      51             : 
      52             : #define PG_DYNSHMEM_FIXED_SLOTS         64
      53             : #define PG_DYNSHMEM_SLOTS_PER_BACKEND   5
      54             : 
      55             : #define INVALID_CONTROL_SLOT        ((uint32) -1)
      56             : 
      57             : /* Backend-local tracking for on-detach callbacks. */
      58             : typedef struct dsm_segment_detach_callback
      59             : {
      60             :     on_dsm_detach_callback function;
      61             :     Datum       arg;
      62             :     slist_node  node;
      63             : } dsm_segment_detach_callback;
      64             : 
      65             : /* Backend-local state for a dynamic shared memory segment. */
      66             : struct dsm_segment
      67             : {
      68             :     dlist_node  node;           /* List link in dsm_segment_list. */
      69             :     ResourceOwner resowner;     /* Resource owner. */
      70             :     dsm_handle  handle;         /* Segment name. */
      71             :     uint32      control_slot;   /* Slot in control segment. */
      72             :     void       *impl_private;   /* Implementation-specific private data. */
      73             :     void       *mapped_address; /* Mapping address, or NULL if unmapped. */
      74             :     Size        mapped_size;    /* Size of our mapping. */
      75             :     slist_head  on_detach;      /* On-detach callbacks. */
      76             : };
      77             : 
      78             : /* Shared-memory state for a dynamic shared memory segment. */
      79             : typedef struct dsm_control_item
      80             : {
      81             :     dsm_handle  handle;
      82             :     uint32      refcnt;         /* 2+ = active, 1 = moribund, 0 = gone */
      83             :     size_t      first_page;
      84             :     size_t      npages;
      85             :     void       *impl_private_pm_handle; /* only needed on Windows */
      86             :     bool        pinned;
      87             : } dsm_control_item;
      88             : 
      89             : /* Layout of the dynamic shared memory control segment. */
      90             : typedef struct dsm_control_header
      91             : {
      92             :     uint32      magic;
      93             :     uint32      nitems;
      94             :     uint32      maxitems;
      95             :     dsm_control_item item[FLEXIBLE_ARRAY_MEMBER];
      96             : } dsm_control_header;
      97             : 
      98             : static void dsm_cleanup_for_mmap(void);
      99             : static void dsm_postmaster_shutdown(int code, Datum arg);
     100             : static dsm_segment *dsm_create_descriptor(void);
     101             : static bool dsm_control_segment_sane(dsm_control_header *control,
     102             :                                      Size mapped_size);
     103             : static uint64 dsm_control_bytes_needed(uint32 nitems);
     104             : static inline dsm_handle make_main_region_dsm_handle(int slot);
     105             : static inline bool is_main_region_dsm_handle(dsm_handle handle);
     106             : 
     107             : /* Has this backend initialized the dynamic shared memory system yet? */
     108             : static bool dsm_init_done = false;
     109             : 
     110             : /* Preallocated DSM space in the main shared memory region. */
     111             : static void *dsm_main_space_begin = NULL;
     112             : 
     113             : /*
     114             :  * List of dynamic shared memory segments used by this backend.
     115             :  *
     116             :  * At process exit time, we must decrement the reference count of each
     117             :  * segment we have attached; this list makes it possible to find all such
     118             :  * segments.
     119             :  *
     120             :  * This list should always be empty in the postmaster.  We could probably
     121             :  * allow the postmaster to map dynamic shared memory segments before it
     122             :  * begins to start child processes, provided that each process adjusted
     123             :  * the reference counts for those segments in the control segment at
     124             :  * startup time, but there's no obvious need for such a facility, which
     125             :  * would also be complex to handle in the EXEC_BACKEND case.  Once the
     126             :  * postmaster has begun spawning children, there's an additional problem:
     127             :  * each new mapping would require an update to the control segment,
     128             :  * which requires locking, in which the postmaster must not be involved.
     129             :  */
     130             : static dlist_head dsm_segment_list = DLIST_STATIC_INIT(dsm_segment_list);
     131             : 
     132             : /*
     133             :  * Control segment information.
     134             :  *
     135             :  * Unlike ordinary shared memory segments, the control segment is not
     136             :  * reference counted; instead, it lasts for the postmaster's entire
     137             :  * life cycle.  For simplicity, it doesn't have a dsm_segment object either.
     138             :  */
     139             : static dsm_handle dsm_control_handle;
     140             : static dsm_control_header *dsm_control;
     141             : static Size dsm_control_mapped_size = 0;
     142             : static void *dsm_control_impl_private = NULL;
     143             : 
     144             : 
     145             : /* ResourceOwner callbacks to hold DSM segments */
     146             : static void ResOwnerReleaseDSM(Datum res);
     147             : static char *ResOwnerPrintDSM(Datum res);
     148             : 
     149             : static const ResourceOwnerDesc dsm_resowner_desc =
     150             : {
     151             :     .name = "dynamic shared memory segment",
     152             :     .release_phase = RESOURCE_RELEASE_BEFORE_LOCKS,
     153             :     .release_priority = RELEASE_PRIO_DSMS,
     154             :     .ReleaseResource = ResOwnerReleaseDSM,
     155             :     .DebugPrint = ResOwnerPrintDSM
     156             : };
     157             : 
     158             : /* Convenience wrappers over ResourceOwnerRemember/Forget */
     159             : static inline void
     160        4728 : ResourceOwnerRememberDSM(ResourceOwner owner, dsm_segment *seg)
     161             : {
     162        4728 :     ResourceOwnerRemember(owner, PointerGetDatum(seg), &dsm_resowner_desc);
     163        4728 : }
     164             : static inline void
     165        4728 : ResourceOwnerForgetDSM(ResourceOwner owner, dsm_segment *seg)
     166             : {
     167        4728 :     ResourceOwnerForget(owner, PointerGetDatum(seg), &dsm_resowner_desc);
     168        4728 : }
     169             : 
     170             : /*
     171             :  * Start up the dynamic shared memory system.
     172             :  *
     173             :  * This is called just once during each cluster lifetime, at postmaster
     174             :  * startup time.
     175             :  */
     176             : void
     177        1768 : dsm_postmaster_startup(PGShmemHeader *shim)
     178             : {
     179        1768 :     void       *dsm_control_address = NULL;
     180             :     uint32      maxitems;
     181             :     Size        segsize;
     182             : 
     183             :     Assert(!IsUnderPostmaster);
     184             : 
     185             :     /*
     186             :      * If we're using the mmap implementations, clean up any leftovers.
     187             :      * Cleanup isn't needed on Windows, and happens earlier in startup for
     188             :      * POSIX and System V shared memory, via a direct call to
     189             :      * dsm_cleanup_using_control_segment.
     190             :      */
     191        1768 :     if (dynamic_shared_memory_type == DSM_IMPL_MMAP)
     192           0 :         dsm_cleanup_for_mmap();
     193             : 
     194             :     /* Determine size for new control segment. */
     195        1768 :     maxitems = PG_DYNSHMEM_FIXED_SLOTS
     196        1768 :         + PG_DYNSHMEM_SLOTS_PER_BACKEND * MaxBackends;
     197        1768 :     elog(DEBUG2, "dynamic shared memory system will support %u segments",
     198             :          maxitems);
     199        1768 :     segsize = dsm_control_bytes_needed(maxitems);
     200             : 
     201             :     /*
     202             :      * Loop until we find an unused identifier for the new control segment. We
     203             :      * sometimes use DSM_HANDLE_INVALID as a sentinel value indicating "no
     204             :      * control segment", so avoid generating that value for a real handle.
     205             :      */
     206             :     for (;;)
     207             :     {
     208           0 :         Assert(dsm_control_address == NULL);
     209             :         Assert(dsm_control_mapped_size == 0);
     210             :         /* Use even numbers only */
     211        1768 :         dsm_control_handle = pg_prng_uint32(&pg_global_prng_state) << 1;
     212        1768 :         if (dsm_control_handle == DSM_HANDLE_INVALID)
     213           0 :             continue;
     214        1768 :         if (dsm_impl_op(DSM_OP_CREATE, dsm_control_handle, segsize,
     215             :                         &dsm_control_impl_private, &dsm_control_address,
     216             :                         &dsm_control_mapped_size, ERROR))
     217        1768 :             break;
     218             :     }
     219        1768 :     dsm_control = dsm_control_address;
     220        1768 :     on_shmem_exit(dsm_postmaster_shutdown, PointerGetDatum(shim));
     221        1768 :     elog(DEBUG2,
     222             :          "created dynamic shared memory control segment %u (%zu bytes)",
     223             :          dsm_control_handle, segsize);
     224        1768 :     shim->dsm_control = dsm_control_handle;
     225             : 
     226             :     /* Initialize control segment. */
     227        1768 :     dsm_control->magic = PG_DYNSHMEM_CONTROL_MAGIC;
     228        1768 :     dsm_control->nitems = 0;
     229        1768 :     dsm_control->maxitems = maxitems;
     230        1768 : }
     231             : 
     232             : /*
     233             :  * Determine whether the control segment from the previous postmaster
     234             :  * invocation still exists.  If so, remove the dynamic shared memory
     235             :  * segments to which it refers, and then the control segment itself.
     236             :  */
     237             : void
     238           6 : dsm_cleanup_using_control_segment(dsm_handle old_control_handle)
     239             : {
     240           6 :     void       *mapped_address = NULL;
     241           6 :     void       *junk_mapped_address = NULL;
     242           6 :     void       *impl_private = NULL;
     243           6 :     void       *junk_impl_private = NULL;
     244           6 :     Size        mapped_size = 0;
     245           6 :     Size        junk_mapped_size = 0;
     246             :     uint32      nitems;
     247             :     uint32      i;
     248             :     dsm_control_header *old_control;
     249             : 
     250             :     /*
     251             :      * Try to attach the segment.  If this fails, it probably just means that
     252             :      * the operating system has been rebooted and the segment no longer
     253             :      * exists, or an unrelated process has used the same shm ID.  So just fall
     254             :      * out quietly.
     255             :      */
     256           6 :     if (!dsm_impl_op(DSM_OP_ATTACH, old_control_handle, 0, &impl_private,
     257             :                      &mapped_address, &mapped_size, DEBUG1))
     258           0 :         return;
     259             : 
     260             :     /*
     261             :      * We've managed to reattach it, but the contents might not be sane. If
     262             :      * they aren't, we disregard the segment after all.
     263             :      */
     264           6 :     old_control = (dsm_control_header *) mapped_address;
     265           6 :     if (!dsm_control_segment_sane(old_control, mapped_size))
     266             :     {
     267           0 :         dsm_impl_op(DSM_OP_DETACH, old_control_handle, 0, &impl_private,
     268             :                     &mapped_address, &mapped_size, LOG);
     269           0 :         return;
     270             :     }
     271             : 
     272             :     /*
     273             :      * OK, the control segment looks basically valid, so we can use it to get
     274             :      * a list of segments that need to be removed.
     275             :      */
     276           6 :     nitems = old_control->nitems;
     277          12 :     for (i = 0; i < nitems; ++i)
     278             :     {
     279             :         dsm_handle  handle;
     280             :         uint32      refcnt;
     281             : 
     282             :         /* If the reference count is 0, the slot is actually unused. */
     283           6 :         refcnt = old_control->item[i].refcnt;
     284           6 :         if (refcnt == 0)
     285           0 :             continue;
     286             : 
     287             :         /* If it was using the main shmem area, there is nothing to do. */
     288           6 :         handle = old_control->item[i].handle;
     289           6 :         if (is_main_region_dsm_handle(handle))
     290           0 :             continue;
     291             : 
     292             :         /* Log debugging information. */
     293           6 :         elog(DEBUG2, "cleaning up orphaned dynamic shared memory with ID %u (reference count %u)",
     294             :              handle, refcnt);
     295             : 
     296             :         /* Destroy the referenced segment. */
     297           6 :         dsm_impl_op(DSM_OP_DESTROY, handle, 0, &junk_impl_private,
     298             :                     &junk_mapped_address, &junk_mapped_size, LOG);
     299             :     }
     300             : 
     301             :     /* Destroy the old control segment, too. */
     302           6 :     elog(DEBUG2,
     303             :          "cleaning up dynamic shared memory control segment with ID %u",
     304             :          old_control_handle);
     305           6 :     dsm_impl_op(DSM_OP_DESTROY, old_control_handle, 0, &impl_private,
     306             :                 &mapped_address, &mapped_size, LOG);
     307             : }
     308             : 
     309             : /*
     310             :  * When we're using the mmap shared memory implementation, "shared memory"
     311             :  * segments might even manage to survive an operating system reboot.
     312             :  * But there's no guarantee as to exactly what will survive: some segments
     313             :  * may survive, and others may not, and the contents of some may be out
     314             :  * of date.  In particular, the control segment may be out of date, so we
     315             :  * can't rely on it to figure out what to remove.  However, since we know
     316             :  * what directory contains the files we used as shared memory, we can simply
     317             :  * scan the directory and blow everything away that shouldn't be there.
     318             :  */
     319             : static void
     320           0 : dsm_cleanup_for_mmap(void)
     321             : {
     322             :     DIR        *dir;
     323             :     struct dirent *dent;
     324             : 
     325             :     /* Scan the directory for something with a name of the correct format. */
     326           0 :     dir = AllocateDir(PG_DYNSHMEM_DIR);
     327             : 
     328           0 :     while ((dent = ReadDir(dir, PG_DYNSHMEM_DIR)) != NULL)
     329             :     {
     330           0 :         if (strncmp(dent->d_name, PG_DYNSHMEM_MMAP_FILE_PREFIX,
     331             :                     strlen(PG_DYNSHMEM_MMAP_FILE_PREFIX)) == 0)
     332             :         {
     333             :             char        buf[MAXPGPATH + sizeof(PG_DYNSHMEM_DIR)];
     334             : 
     335           0 :             snprintf(buf, sizeof(buf), PG_DYNSHMEM_DIR "/%s", dent->d_name);
     336             : 
     337           0 :             elog(DEBUG2, "removing file \"%s\"", buf);
     338             : 
     339             :             /* We found a matching file; so remove it. */
     340           0 :             if (unlink(buf) != 0)
     341           0 :                 ereport(ERROR,
     342             :                         (errcode_for_file_access(),
     343             :                          errmsg("could not remove file \"%s\": %m", buf)));
     344             :         }
     345             :     }
     346             : 
     347             :     /* Cleanup complete. */
     348           0 :     FreeDir(dir);
     349           0 : }
     350             : 
     351             : /*
     352             :  * At shutdown time, we iterate over the control segment and remove all
     353             :  * remaining dynamic shared memory segments.  We avoid throwing errors here;
     354             :  * the postmaster is shutting down either way, and this is just non-critical
     355             :  * resource cleanup.
     356             :  */
     357             : static void
     358        1762 : dsm_postmaster_shutdown(int code, Datum arg)
     359             : {
     360             :     uint32      nitems;
     361             :     uint32      i;
     362             :     void       *dsm_control_address;
     363        1762 :     void       *junk_mapped_address = NULL;
     364        1762 :     void       *junk_impl_private = NULL;
     365        1762 :     Size        junk_mapped_size = 0;
     366        1762 :     PGShmemHeader *shim = (PGShmemHeader *) DatumGetPointer(arg);
     367             : 
     368             :     /*
     369             :      * If some other backend exited uncleanly, it might have corrupted the
     370             :      * control segment while it was dying.  In that case, we warn and ignore
     371             :      * the contents of the control segment.  This may end up leaving behind
     372             :      * stray shared memory segments, but there's not much we can do about that
     373             :      * if the metadata is gone.
     374             :      */
     375        1762 :     nitems = dsm_control->nitems;
     376        1762 :     if (!dsm_control_segment_sane(dsm_control, dsm_control_mapped_size))
     377             :     {
     378           0 :         ereport(LOG,
     379             :                 (errmsg("dynamic shared memory control segment is corrupt")));
     380           0 :         return;
     381             :     }
     382             : 
     383             :     /* Remove any remaining segments. */
     384        3550 :     for (i = 0; i < nitems; ++i)
     385             :     {
     386             :         dsm_handle  handle;
     387             : 
     388             :         /* If the reference count is 0, the slot is actually unused. */
     389        1788 :         if (dsm_control->item[i].refcnt == 0)
     390         100 :             continue;
     391             : 
     392        1688 :         handle = dsm_control->item[i].handle;
     393        1688 :         if (is_main_region_dsm_handle(handle))
     394           0 :             continue;
     395             : 
     396             :         /* Log debugging information. */
     397        1688 :         elog(DEBUG2, "cleaning up orphaned dynamic shared memory with ID %u",
     398             :              handle);
     399             : 
     400             :         /* Destroy the segment. */
     401        1688 :         dsm_impl_op(DSM_OP_DESTROY, handle, 0, &junk_impl_private,
     402             :                     &junk_mapped_address, &junk_mapped_size, LOG);
     403             :     }
     404             : 
     405             :     /* Remove the control segment itself. */
     406        1762 :     elog(DEBUG2,
     407             :          "cleaning up dynamic shared memory control segment with ID %u",
     408             :          dsm_control_handle);
     409        1762 :     dsm_control_address = dsm_control;
     410        1762 :     dsm_impl_op(DSM_OP_DESTROY, dsm_control_handle, 0,
     411             :                 &dsm_control_impl_private, &dsm_control_address,
     412             :                 &dsm_control_mapped_size, LOG);
     413        1762 :     dsm_control = dsm_control_address;
     414        1762 :     shim->dsm_control = 0;
     415             : }
     416             : 
     417             : /*
     418             :  * Prepare this backend for dynamic shared memory usage.  Under EXEC_BACKEND,
     419             :  * we must reread the state file and map the control segment; in other cases,
     420             :  * we'll have inherited the postmaster's mapping and global variables.
     421             :  */
     422             : static void
     423       27520 : dsm_backend_startup(void)
     424             : {
     425             : #ifdef EXEC_BACKEND
     426             :     if (IsUnderPostmaster)
     427             :     {
     428             :         void       *control_address = NULL;
     429             : 
     430             :         /* Attach control segment. */
     431             :         Assert(dsm_control_handle != 0);
     432             :         dsm_impl_op(DSM_OP_ATTACH, dsm_control_handle, 0,
     433             :                     &dsm_control_impl_private, &control_address,
     434             :                     &dsm_control_mapped_size, ERROR);
     435             :         dsm_control = control_address;
     436             :         /* If control segment doesn't look sane, something is badly wrong. */
     437             :         if (!dsm_control_segment_sane(dsm_control, dsm_control_mapped_size))
     438             :         {
     439             :             dsm_impl_op(DSM_OP_DETACH, dsm_control_handle, 0,
     440             :                         &dsm_control_impl_private, &control_address,
     441             :                         &dsm_control_mapped_size, WARNING);
     442             :             ereport(FATAL,
     443             :                     (errcode(ERRCODE_INTERNAL_ERROR),
     444             :                      errmsg("dynamic shared memory control segment is not valid")));
     445             :         }
     446             :     }
     447             : #endif
     448             : 
     449       27520 :     dsm_init_done = true;
     450       27520 : }
     451             : 
     452             : #ifdef EXEC_BACKEND
     453             : /*
     454             :  * When running under EXEC_BACKEND, we get a callback here when the main
     455             :  * shared memory segment is re-attached, so that we can record the control
     456             :  * handle retrieved from it.
     457             :  */
     458             : void
     459             : dsm_set_control_handle(dsm_handle h)
     460             : {
     461             :     Assert(dsm_control_handle == 0 && h != 0);
     462             :     dsm_control_handle = h;
     463             : }
     464             : #endif
     465             : 
     466             : /*
     467             :  * Reserve some space in the main shared memory segment for DSM segments.
     468             :  */
     469             : size_t
     470        5066 : dsm_estimate_size(void)
     471             : {
     472        5066 :     return 1024 * 1024 * (size_t) min_dynamic_shared_memory;
     473             : }
     474             : 
     475             : /*
     476             :  * Initialize space in the main shared memory segment for DSM segments.
     477             :  */
     478             : void
     479        1768 : dsm_shmem_init(void)
     480             : {
     481        1768 :     size_t      size = dsm_estimate_size();
     482             :     bool        found;
     483             : 
     484        1768 :     if (size == 0)
     485        1768 :         return;
     486             : 
     487           0 :     dsm_main_space_begin = ShmemInitStruct("Preallocated DSM", size, &found);
     488           0 :     if (!found)
     489             :     {
     490           0 :         FreePageManager *fpm = (FreePageManager *) dsm_main_space_begin;
     491           0 :         size_t      first_page = 0;
     492             :         size_t      pages;
     493             : 
     494             :         /* Reserve space for the FreePageManager. */
     495           0 :         while (first_page * FPM_PAGE_SIZE < sizeof(FreePageManager))
     496           0 :             ++first_page;
     497             : 
     498             :         /* Initialize it and give it all the rest of the space. */
     499           0 :         FreePageManagerInitialize(fpm, dsm_main_space_begin);
     500           0 :         pages = (size / FPM_PAGE_SIZE) - first_page;
     501           0 :         FreePageManagerPut(fpm, first_page, pages);
     502             :     }
     503             : }
     504             : 
     505             : /*
     506             :  * Create a new dynamic shared memory segment.
     507             :  *
     508             :  * If there is a non-NULL CurrentResourceOwner, the new segment is associated
     509             :  * with it and must be detached before the resource owner releases, or a
     510             :  * warning will be logged.  If CurrentResourceOwner is NULL, the segment
     511             :  * remains attached until explicitly detached or the session ends.
     512             :  * Creating with a NULL CurrentResourceOwner is equivalent to creating
     513             :  * with a non-NULL CurrentResourceOwner and then calling dsm_pin_mapping.
     514             :  */
     515             : dsm_segment *
     516        2730 : dsm_create(Size size, int flags)
     517             : {
     518             :     dsm_segment *seg;
     519             :     uint32      i;
     520             :     uint32      nitems;
     521        2730 :     size_t      npages = 0;
     522        2730 :     size_t      first_page = 0;
     523        2730 :     FreePageManager *dsm_main_space_fpm = dsm_main_space_begin;
     524        2730 :     bool        using_main_dsm_region = false;
     525             : 
     526             :     /*
     527             :      * Unsafe in postmaster. It might seem pointless to allow use of dsm in
     528             :      * single user mode, but otherwise some subsystems will need dedicated
     529             :      * single user mode code paths.
     530             :      */
     531             :     Assert(IsUnderPostmaster || !IsPostmasterEnvironment);
     532             : 
     533        2730 :     if (!dsm_init_done)
     534        1374 :         dsm_backend_startup();
     535             : 
     536             :     /* Create a new segment descriptor. */
     537        2730 :     seg = dsm_create_descriptor();
     538             : 
     539             :     /*
     540             :      * Lock the control segment while we try to allocate from the main shared
     541             :      * memory area, if configured.
     542             :      */
     543        2730 :     if (dsm_main_space_fpm)
     544             :     {
     545           0 :         npages = size / FPM_PAGE_SIZE;
     546           0 :         if (size % FPM_PAGE_SIZE > 0)
     547           0 :             ++npages;
     548             : 
     549           0 :         LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
     550           0 :         if (FreePageManagerGet(dsm_main_space_fpm, npages, &first_page))
     551             :         {
     552             :             /* We can carve out a piece of the main shared memory segment. */
     553           0 :             seg->mapped_address = (char *) dsm_main_space_begin +
     554           0 :                 first_page * FPM_PAGE_SIZE;
     555           0 :             seg->mapped_size = npages * FPM_PAGE_SIZE;
     556           0 :             using_main_dsm_region = true;
     557             :             /* We'll choose a handle below. */
     558             :         }
     559             :     }
     560             : 
     561        2730 :     if (!using_main_dsm_region)
     562             :     {
     563             :         /*
     564             :          * We need to create a new memory segment.  Loop until we find an
     565             :          * unused segment identifier.
     566             :          */
     567        2730 :         if (dsm_main_space_fpm)
     568           0 :             LWLockRelease(DynamicSharedMemoryControlLock);
     569             :         for (;;)
     570             :         {
     571           0 :             Assert(seg->mapped_address == NULL && seg->mapped_size == 0);
     572             :             /* Use even numbers only */
     573        2730 :             seg->handle = pg_prng_uint32(&pg_global_prng_state) << 1;
     574        2730 :             if (seg->handle == DSM_HANDLE_INVALID)   /* Reserve sentinel */
     575           0 :                 continue;
     576        2730 :             if (dsm_impl_op(DSM_OP_CREATE, seg->handle, size, &seg->impl_private,
     577             :                             &seg->mapped_address, &seg->mapped_size, ERROR))
     578        2730 :                 break;
     579             :         }
     580        2730 :         LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
     581             :     }
     582             : 
     583             :     /* Search the control segment for an unused slot. */
     584        2730 :     nitems = dsm_control->nitems;
     585        7062 :     for (i = 0; i < nitems; ++i)
     586             :     {
     587        5490 :         if (dsm_control->item[i].refcnt == 0)
     588             :         {
     589        1158 :             if (using_main_dsm_region)
     590             :             {
     591           0 :                 seg->handle = make_main_region_dsm_handle(i);
     592           0 :                 dsm_control->item[i].first_page = first_page;
     593           0 :                 dsm_control->item[i].npages = npages;
     594             :             }
     595             :             else
     596             :                 Assert(!is_main_region_dsm_handle(seg->handle));
     597        1158 :             dsm_control->item[i].handle = seg->handle;
     598             :             /* refcnt of 1 triggers destruction, so start at 2 */
     599        1158 :             dsm_control->item[i].refcnt = 2;
     600        1158 :             dsm_control->item[i].impl_private_pm_handle = NULL;
     601        1158 :             dsm_control->item[i].pinned = false;
     602        1158 :             seg->control_slot = i;
     603        1158 :             LWLockRelease(DynamicSharedMemoryControlLock);
     604        1158 :             return seg;
     605             :         }
     606             :     }
     607             : 
     608             :     /* Verify that we can support an additional mapping. */
     609        1572 :     if (nitems >= dsm_control->maxitems)
     610             :     {
     611           0 :         if (using_main_dsm_region)
     612           0 :             FreePageManagerPut(dsm_main_space_fpm, first_page, npages);
     613           0 :         LWLockRelease(DynamicSharedMemoryControlLock);
     614           0 :         if (!using_main_dsm_region)
     615           0 :             dsm_impl_op(DSM_OP_DESTROY, seg->handle, 0, &seg->impl_private,
     616             :                         &seg->mapped_address, &seg->mapped_size, WARNING);
     617           0 :         if (seg->resowner != NULL)
     618           0 :             ResourceOwnerForgetDSM(seg->resowner, seg);
     619           0 :         dlist_delete(&seg->node);
     620           0 :         pfree(seg);
     621             : 
     622           0 :         if ((flags & DSM_CREATE_NULL_IF_MAXSEGMENTS) != 0)
     623           0 :             return NULL;
     624           0 :         ereport(ERROR,
     625             :                 (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
     626             :                  errmsg("too many dynamic shared memory segments")));
     627             :     }
     628             : 
     629             :     /* Enter the handle into a new array slot. */
     630        1572 :     if (using_main_dsm_region)
     631             :     {
     632           0 :         seg->handle = make_main_region_dsm_handle(nitems);
     633           0 :         dsm_control->item[i].first_page = first_page;
     634           0 :         dsm_control->item[i].npages = npages;
     635             :     }
     636        1572 :     dsm_control->item[nitems].handle = seg->handle;
     637             :     /* refcnt of 1 triggers destruction, so start at 2 */
     638        1572 :     dsm_control->item[nitems].refcnt = 2;
     639        1572 :     dsm_control->item[nitems].impl_private_pm_handle = NULL;
     640        1572 :     dsm_control->item[nitems].pinned = false;
     641        1572 :     seg->control_slot = nitems;
     642        1572 :     dsm_control->nitems++;
     643        1572 :     LWLockRelease(DynamicSharedMemoryControlLock);
     644             : 
     645        1572 :     return seg;
     646             : }
     647             : 
     648             : /*
     649             :  * Attach a dynamic shared memory segment.
     650             :  *
     651             :  * See comments for dsm_segment_handle() for an explanation of how this
     652             :  * is intended to be used.
     653             :  *
     654             :  * This function will return NULL if the segment isn't known to the system.
     655             :  * This can happen if we're asked to attach the segment, but then everyone
     656             :  * else detaches it (causing it to be destroyed) before we get around to
     657             :  * attaching it.
     658             :  *
     659             :  * If there is a non-NULL CurrentResourceOwner, the attached segment is
     660             :  * associated with it and must be detached before the resource owner releases,
     661             :  * or a warning will be logged.  Otherwise the segment remains attached until
     662             :  * explicitly detached or the session ends.  See the note atop dsm_create().
     663             :  */
     664             : dsm_segment *
     665       32344 : dsm_attach(dsm_handle h)
     666             : {
     667             :     dsm_segment *seg;
     668             :     dlist_iter  iter;
     669             :     uint32      i;
     670             :     uint32      nitems;
     671             : 
     672             :     /* Unsafe in postmaster (and pointless in a stand-alone backend). */
     673             :     Assert(IsUnderPostmaster);
     674             : 
     675       32344 :     if (!dsm_init_done)
     676       26146 :         dsm_backend_startup();
     677             : 
     678             :     /*
     679             :      * Since this is just a debugging cross-check, we could leave it out
     680             :      * altogether, or include it only in assert-enabled builds.  But since the
     681             :      * list of attached segments should normally be very short, let's include
     682             :      * it always for right now.
     683             :      *
     684             :      * If you're hitting this error, you probably want to attempt to find an
     685             :      * existing mapping via dsm_find_mapping() before calling dsm_attach() to
     686             :      * create a new one.
     687             :      */
     688       42604 :     dlist_foreach(iter, &dsm_segment_list)
     689             :     {
     690       10260 :         seg = dlist_container(dsm_segment, node, iter.cur);
     691       10260 :         if (seg->handle == h)
     692           0 :             elog(ERROR, "can't attach the same segment more than once");
     693             :     }
     694             : 
     695             :     /* Create a new segment descriptor. */
     696       32344 :     seg = dsm_create_descriptor();
     697       32344 :     seg->handle = h;
     698             : 
     699             :     /* Bump reference count for this segment in shared memory. */
     700       32344 :     LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
     701       32344 :     nitems = dsm_control->nitems;
     702       47736 :     for (i = 0; i < nitems; ++i)
     703             :     {
     704             :         /*
     705             :          * If the reference count is 0, the slot is actually unused.  If the
     706             :          * reference count is 1, the slot is still in use, but the segment is
     707             :          * in the process of going away; even if the handle matches, another
     708             :          * slot may already have started using the same handle value by
     709             :          * coincidence so we have to keep searching.
     710             :          */
     711       47736 :         if (dsm_control->item[i].refcnt <= 1)
     712         140 :             continue;
     713             : 
     714             :         /* If the handle doesn't match, it's not the slot we want. */
     715       47596 :         if (dsm_control->item[i].handle != seg->handle)
     716       15252 :             continue;
     717             : 
     718             :         /* Otherwise we've found a match. */
     719       32344 :         dsm_control->item[i].refcnt++;
     720       32344 :         seg->control_slot = i;
     721       32344 :         if (is_main_region_dsm_handle(seg->handle))
     722             :         {
     723           0 :             seg->mapped_address = (char *) dsm_main_space_begin +
     724           0 :                 dsm_control->item[i].first_page * FPM_PAGE_SIZE;
     725           0 :             seg->mapped_size = dsm_control->item[i].npages * FPM_PAGE_SIZE;
     726             :         }
     727       32344 :         break;
     728             :     }
     729       32344 :     LWLockRelease(DynamicSharedMemoryControlLock);
     730             : 
     731             :     /*
     732             :      * If we didn't find the handle we're looking for in the control segment,
     733             :      * it probably means that everyone else who had it mapped, including the
     734             :      * original creator, died before we got to this point. It's up to the
     735             :      * caller to decide what to do about that.
     736             :      */
     737       32344 :     if (seg->control_slot == INVALID_CONTROL_SLOT)
     738             :     {
     739           0 :         dsm_detach(seg);
     740           0 :         return NULL;
     741             :     }
     742             : 
     743             :     /* Here's where we actually try to map the segment. */
     744       32344 :     if (!is_main_region_dsm_handle(seg->handle))
     745       32344 :         dsm_impl_op(DSM_OP_ATTACH, seg->handle, 0, &seg->impl_private,
     746             :                     &seg->mapped_address, &seg->mapped_size, ERROR);
     747             : 
     748       32344 :     return seg;
     749             : }
     750             : 
     751             : /*
     752             :  * At backend shutdown time, detach any segments that are still attached.
     753             :  * (This is similar to dsm_detach_all, except that there's no reason to
     754             :  * unmap the control segment before exiting, so we don't bother.)
     755             :  */
     756             : void
     757       63486 : dsm_backend_shutdown(void)
     758             : {
     759       63960 :     while (!dlist_is_empty(&dsm_segment_list))
     760             :     {
     761             :         dsm_segment *seg;
     762             : 
     763         474 :         seg = dlist_head_element(dsm_segment, node, &dsm_segment_list);
     764         474 :         dsm_detach(seg);
     765             :     }
     766       63486 : }
     767             : 
     768             : /*
     769             :  * Detach all shared memory segments, including the control segments.  This
     770             :  * should be called, along with PGSharedMemoryDetach, in processes that
     771             :  * might inherit mappings but are not intended to be connected to dynamic
     772             :  * shared memory.
     773             :  */
     774             : void
     775           0 : dsm_detach_all(void)
     776             : {
     777           0 :     void       *control_address = dsm_control;
     778             : 
     779           0 :     while (!dlist_is_empty(&dsm_segment_list))
     780             :     {
     781             :         dsm_segment *seg;
     782             : 
     783           0 :         seg = dlist_head_element(dsm_segment, node, &dsm_segment_list);
     784           0 :         dsm_detach(seg);
     785             :     }
     786             : 
     787           0 :     if (control_address != NULL)
     788           0 :         dsm_impl_op(DSM_OP_DETACH, dsm_control_handle, 0,
     789             :                     &dsm_control_impl_private, &control_address,
     790             :                     &dsm_control_mapped_size, ERROR);
     791           0 : }
     792             : 
     793             : /*
     794             :  * Detach from a shared memory segment, destroying the segment if we
     795             :  * remove the last reference.
     796             :  *
     797             :  * This function should never fail.  It will often be invoked when aborting
     798             :  * a transaction, and a further error won't serve any purpose.  It's not a
     799             :  * complete disaster if we fail to unmap or destroy the segment; it means a
     800             :  * resource leak, but that doesn't necessarily preclude further operations.
     801             :  */
     802             : void
     803       35074 : dsm_detach(dsm_segment *seg)
     804             : {
     805             :     /*
     806             :      * Invoke registered callbacks.  Just in case one of those callbacks
     807             :      * throws a further error that brings us back here, pop the callback
     808             :      * before invoking it, to avoid infinite error recursion.  Don't allow
     809             :      * interrupts while running the individual callbacks in non-error code
     810             :      * paths, to avoid leaving cleanup work unfinished if we're interrupted by
     811             :      * a statement timeout or similar.
     812             :      */
     813       35074 :     HOLD_INTERRUPTS();
     814       50402 :     while (!slist_is_empty(&seg->on_detach))
     815             :     {
     816             :         slist_node *node;
     817             :         dsm_segment_detach_callback *cb;
     818             :         on_dsm_detach_callback function;
     819             :         Datum       arg;
     820             : 
     821       15328 :         node = slist_pop_head_node(&seg->on_detach);
     822       15328 :         cb = slist_container(dsm_segment_detach_callback, node, node);
     823       15328 :         function = cb->function;
     824       15328 :         arg = cb->arg;
     825       15328 :         pfree(cb);
     826             : 
     827       15328 :         function(seg, arg);
     828             :     }
     829       35074 :     RESUME_INTERRUPTS();
     830             : 
     831             :     /*
     832             :      * Try to remove the mapping, if one exists.  Normally, there will be, but
     833             :      * maybe not, if we failed partway through a create or attach operation.
     834             :      * We remove the mapping before decrementing the reference count so that
     835             :      * the process that sees a zero reference count can be certain that no
     836             :      * remaining mappings exist.  Even if this fails, we pretend that it
     837             :      * works, because retrying is likely to fail in the same way.
     838             :      */
     839       35074 :     if (seg->mapped_address != NULL)
     840             :     {
     841       35074 :         if (!is_main_region_dsm_handle(seg->handle))
     842       35074 :             dsm_impl_op(DSM_OP_DETACH, seg->handle, 0, &seg->impl_private,
     843             :                         &seg->mapped_address, &seg->mapped_size, WARNING);
     844       35074 :         seg->impl_private = NULL;
     845       35074 :         seg->mapped_address = NULL;
     846       35074 :         seg->mapped_size = 0;
     847             :     }
     848             : 
     849             :     /* Reduce reference count, if we previously increased it. */
     850       35074 :     if (seg->control_slot != INVALID_CONTROL_SLOT)
     851             :     {
     852             :         uint32      refcnt;
     853       35074 :         uint32      control_slot = seg->control_slot;
     854             : 
     855       35074 :         LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
     856             :         Assert(dsm_control->item[control_slot].handle == seg->handle);
     857             :         Assert(dsm_control->item[control_slot].refcnt > 1);
     858       35074 :         refcnt = --dsm_control->item[control_slot].refcnt;
     859       35074 :         seg->control_slot = INVALID_CONTROL_SLOT;
     860       35074 :         LWLockRelease(DynamicSharedMemoryControlLock);
     861             : 
     862             :         /* If new reference count is 1, try to destroy the segment. */
     863       35074 :         if (refcnt == 1)
     864             :         {
     865             :             /* A pinned segment should never reach 1. */
     866             :             Assert(!dsm_control->item[control_slot].pinned);
     867             : 
     868             :             /*
     869             :              * If we fail to destroy the segment here, or are killed before we
     870             :              * finish doing so, the reference count will remain at 1, which
     871             :              * will mean that nobody else can attach to the segment.  At
     872             :              * postmaster shutdown time, or when a new postmaster is started
     873             :              * after a hard kill, another attempt will be made to remove the
     874             :              * segment.
     875             :              *
     876             :              * The main case we're worried about here is being killed by a
     877             :              * signal before we can finish removing the segment.  In that
     878             :              * case, it's important to be sure that the segment still gets
     879             :              * removed. If we actually fail to remove the segment for some
     880             :              * other reason, the postmaster may not have any better luck than
     881             :              * we did.  There's not much we can do about that, though.
     882             :              */
     883        2040 :             if (is_main_region_dsm_handle(seg->handle) ||
     884        1020 :                 dsm_impl_op(DSM_OP_DESTROY, seg->handle, 0, &seg->impl_private,
     885             :                             &seg->mapped_address, &seg->mapped_size, WARNING))
     886             :             {
     887        1020 :                 LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
     888        1020 :                 if (is_main_region_dsm_handle(seg->handle))
     889           0 :                     FreePageManagerPut((FreePageManager *) dsm_main_space_begin,
     890           0 :                                        dsm_control->item[control_slot].first_page,
     891           0 :                                        dsm_control->item[control_slot].npages);
     892             :                 Assert(dsm_control->item[control_slot].handle == seg->handle);
     893             :                 Assert(dsm_control->item[control_slot].refcnt == 1);
     894        1020 :                 dsm_control->item[control_slot].refcnt = 0;
     895        1020 :                 LWLockRelease(DynamicSharedMemoryControlLock);
     896             :             }
     897             :         }
     898             :     }
     899             : 
     900             :     /* Clean up our remaining backend-private data structures. */
     901       35074 :     if (seg->resowner != NULL)
     902        1758 :         ResourceOwnerForgetDSM(seg->resowner, seg);
     903       35074 :     dlist_delete(&seg->node);
     904       35074 :     pfree(seg);
     905       35074 : }
     906             : 
     907             : /*
     908             :  * Keep a dynamic shared memory mapping until end of session.
     909             :  *
     910             :  * By default, mappings are owned by the current resource owner, which
     911             :  * typically means they stick around for the duration of the current query
     912             :  * only.
     913             :  */
     914             : void
     915        2976 : dsm_pin_mapping(dsm_segment *seg)
     916             : {
     917        2976 :     if (seg->resowner != NULL)
     918             :     {
     919        2970 :         ResourceOwnerForgetDSM(seg->resowner, seg);
     920        2970 :         seg->resowner = NULL;
     921             :     }
     922        2976 : }
     923             : 
     924             : /*
     925             :  * Arrange to remove a dynamic shared memory mapping at cleanup time.
     926             :  *
     927             :  * dsm_pin_mapping() can be used to preserve a mapping for the entire
     928             :  * lifetime of a process; this function reverses that decision, making
     929             :  * the segment owned by the current resource owner.  This may be useful
     930             :  * just before performing some operation that will invalidate the segment
     931             :  * for future use by this backend.
     932             :  */
     933             : void
     934           0 : dsm_unpin_mapping(dsm_segment *seg)
     935             : {
     936             :     Assert(seg->resowner == NULL);
     937           0 :     ResourceOwnerEnlarge(CurrentResourceOwner);
     938           0 :     seg->resowner = CurrentResourceOwner;
     939           0 :     ResourceOwnerRememberDSM(seg->resowner, seg);
     940           0 : }
     941             : 
     942             : /*
     943             :  * Keep a dynamic shared memory segment until postmaster shutdown, or until
     944             :  * dsm_unpin_segment is called.
     945             :  *
     946             :  * This function should not be called more than once per segment, unless the
     947             :  * segment is explicitly unpinned with dsm_unpin_segment in between calls.
     948             :  *
     949             :  * Note that this function does not arrange for the current process to
     950             :  * keep the segment mapped indefinitely; if that behavior is desired,
     951             :  * dsm_pin_mapping() should be used from each process that needs to
     952             :  * retain the mapping.
     953             :  */
     954             : void
     955        1754 : dsm_pin_segment(dsm_segment *seg)
     956             : {
     957        1754 :     void       *handle = NULL;
     958             : 
     959             :     /*
     960             :      * Bump reference count for this segment in shared memory. This will
     961             :      * ensure that even if there is no session which is attached to this
     962             :      * segment, it will remain until postmaster shutdown or an explicit call
     963             :      * to unpin.
     964             :      */
     965        1754 :     LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
     966        1754 :     if (dsm_control->item[seg->control_slot].pinned)
     967           0 :         elog(ERROR, "cannot pin a segment that is already pinned");
     968        1754 :     if (!is_main_region_dsm_handle(seg->handle))
     969        1754 :         dsm_impl_pin_segment(seg->handle, seg->impl_private, &handle);
     970        1754 :     dsm_control->item[seg->control_slot].pinned = true;
     971        1754 :     dsm_control->item[seg->control_slot].refcnt++;
     972        1754 :     dsm_control->item[seg->control_slot].impl_private_pm_handle = handle;
     973        1754 :     LWLockRelease(DynamicSharedMemoryControlLock);
     974        1754 : }
     975             : 
     976             : /*
     977             :  * Unpin a dynamic shared memory segment that was previously pinned with
     978             :  * dsm_pin_segment.  This function should not be called unless dsm_pin_segment
     979             :  * was previously called for this segment.
     980             :  *
     981             :  * The argument is a dsm_handle rather than a dsm_segment in case you want
     982             :  * to unpin a segment to which you haven't attached.  This turns out to be
     983             :  * useful if, for example, a reference to one shared memory segment is stored
     984             :  * within another shared memory segment.  You might want to unpin the
     985             :  * referenced segment before destroying the referencing segment.
     986             :  */
     987             : void
     988         282 : dsm_unpin_segment(dsm_handle handle)
     989             : {
     990         282 :     uint32      control_slot = INVALID_CONTROL_SLOT;
     991         282 :     bool        destroy = false;
     992             :     uint32      i;
     993             : 
     994             :     /* Find the control slot for the given handle. */
     995         282 :     LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
     996        1546 :     for (i = 0; i < dsm_control->nitems; ++i)
     997             :     {
     998             :         /* Skip unused slots and segments that are concurrently going away. */
     999        1546 :         if (dsm_control->item[i].refcnt <= 1)
    1000          54 :             continue;
    1001             : 
    1002             :         /* If we've found our handle, we can stop searching. */
    1003        1492 :         if (dsm_control->item[i].handle == handle)
    1004             :         {
    1005         282 :             control_slot = i;
    1006         282 :             break;
    1007             :         }
    1008             :     }
    1009             : 
    1010             :     /*
    1011             :      * We should definitely have found the slot, and it should not already be
    1012             :      * in the process of going away, because this function should only be
    1013             :      * called on a segment which is pinned.
    1014             :      */
    1015         282 :     if (control_slot == INVALID_CONTROL_SLOT)
    1016           0 :         elog(ERROR, "cannot unpin unknown segment handle");
    1017         282 :     if (!dsm_control->item[control_slot].pinned)
    1018           0 :         elog(ERROR, "cannot unpin a segment that is not pinned");
    1019             :     Assert(dsm_control->item[control_slot].refcnt > 1);
    1020             : 
    1021             :     /*
    1022             :      * Allow implementation-specific code to run.  We have to do this before
    1023             :      * releasing the lock, because impl_private_pm_handle may get modified by
    1024             :      * dsm_impl_unpin_segment.
    1025             :      */
    1026         282 :     if (!is_main_region_dsm_handle(handle))
    1027         282 :         dsm_impl_unpin_segment(handle,
    1028         282 :                                &dsm_control->item[control_slot].impl_private_pm_handle);
    1029             : 
    1030             :     /* Note that 1 means no references (0 means unused slot). */
    1031         282 :     if (--dsm_control->item[control_slot].refcnt == 1)
    1032         238 :         destroy = true;
    1033         282 :     dsm_control->item[control_slot].pinned = false;
    1034             : 
    1035             :     /* Now we can release the lock. */
    1036         282 :     LWLockRelease(DynamicSharedMemoryControlLock);
    1037             : 
    1038             :     /* Clean up resources if that was the last reference. */
    1039         282 :     if (destroy)
    1040             :     {
    1041         238 :         void       *junk_impl_private = NULL;
    1042         238 :         void       *junk_mapped_address = NULL;
    1043         238 :         Size        junk_mapped_size = 0;
    1044             : 
    1045             :         /*
    1046             :          * For an explanation of how error handling works in this case, see
    1047             :          * comments in dsm_detach.  Note that if we reach this point, the
    1048             :          * current process certainly does not have the segment mapped, because
    1049             :          * if it did, the reference count would have still been greater than 1
    1050             :          * even after releasing the reference count held by the pin.  The fact
    1051             :          * that there can't be a dsm_segment for this handle makes it OK to
    1052             :          * pass the mapped size, mapped address, and private data as NULL
    1053             :          * here.
    1054             :          */
    1055         476 :         if (is_main_region_dsm_handle(handle) ||
    1056         238 :             dsm_impl_op(DSM_OP_DESTROY, handle, 0, &junk_impl_private,
    1057             :                         &junk_mapped_address, &junk_mapped_size, WARNING))
    1058             :         {
    1059         238 :             LWLockAcquire(DynamicSharedMemoryControlLock, LW_EXCLUSIVE);
    1060         238 :             if (is_main_region_dsm_handle(handle))
    1061           0 :                 FreePageManagerPut((FreePageManager *) dsm_main_space_begin,
    1062           0 :                                    dsm_control->item[control_slot].first_page,
    1063           0 :                                    dsm_control->item[control_slot].npages);
    1064             :             Assert(dsm_control->item[control_slot].handle == handle);
    1065             :             Assert(dsm_control->item[control_slot].refcnt == 1);
    1066         238 :             dsm_control->item[control_slot].refcnt = 0;
    1067         238 :             LWLockRelease(DynamicSharedMemoryControlLock);
    1068             :         }
    1069             :     }
    1070         282 : }
    1071             : 
    1072             : /*
    1073             :  * Find an existing mapping for a shared memory segment, if there is one.
    1074             :  */
    1075             : dsm_segment *
    1076           6 : dsm_find_mapping(dsm_handle handle)
    1077             : {
    1078             :     dlist_iter  iter;
    1079             :     dsm_segment *seg;
    1080             : 
    1081          16 :     dlist_foreach(iter, &dsm_segment_list)
    1082             :     {
    1083          10 :         seg = dlist_container(dsm_segment, node, iter.cur);
    1084          10 :         if (seg->handle == handle)
    1085           0 :             return seg;
    1086             :     }
    1087             : 
    1088           6 :     return NULL;
    1089             : }
    1090             : 
    1091             : /*
    1092             :  * Get the address at which a dynamic shared memory segment is mapped.
    1093             :  */
    1094             : void *
    1095       35432 : dsm_segment_address(dsm_segment *seg)
    1096             : {
    1097             :     Assert(seg->mapped_address != NULL);
    1098       35432 :     return seg->mapped_address;
    1099             : }
    1100             : 
    1101             : /*
    1102             :  * Get the size of a mapping.
    1103             :  */
    1104             : Size
    1105           0 : dsm_segment_map_length(dsm_segment *seg)
    1106             : {
    1107             :     Assert(seg->mapped_address != NULL);
    1108           0 :     return seg->mapped_size;
    1109             : }
    1110             : 
    1111             : /*
    1112             :  * Get a handle for a mapping.
    1113             :  *
    1114             :  * To establish communication via dynamic shared memory between two backends,
    1115             :  * one of them should first call dsm_create() to establish a new shared
    1116             :  * memory mapping.  That process should then call dsm_segment_handle() to
    1117             :  * obtain a handle for the mapping, and pass that handle to the
    1118             :  * coordinating backend via some means (e.g. bgw_main_arg, or via the
    1119             :  * main shared memory segment).  The recipient, once in possession of the
    1120             :  * handle, should call dsm_attach().
    1121             :  */
    1122             : dsm_handle
    1123        3700 : dsm_segment_handle(dsm_segment *seg)
    1124             : {
    1125        3700 :     return seg->handle;
    1126             : }
    1127             : 
    1128             : /*
    1129             :  * Register an on-detach callback for a dynamic shared memory segment.
    1130             :  */
    1131             : void
    1132       23000 : on_dsm_detach(dsm_segment *seg, on_dsm_detach_callback function, Datum arg)
    1133             : {
    1134             :     dsm_segment_detach_callback *cb;
    1135             : 
    1136       23000 :     cb = MemoryContextAlloc(TopMemoryContext,
    1137             :                             sizeof(dsm_segment_detach_callback));
    1138       23000 :     cb->function = function;
    1139       23000 :     cb->arg = arg;
    1140       23000 :     slist_push_head(&seg->on_detach, &cb->node);
    1141       23000 : }
    1142             : 
    1143             : /*
    1144             :  * Unregister an on-detach callback for a dynamic shared memory segment.
    1145             :  */
    1146             : void
    1147        7672 : cancel_on_dsm_detach(dsm_segment *seg, on_dsm_detach_callback function,
    1148             :                      Datum arg)
    1149             : {
    1150             :     slist_mutable_iter iter;
    1151             : 
    1152       23736 :     slist_foreach_modify(iter, &seg->on_detach)
    1153             :     {
    1154             :         dsm_segment_detach_callback *cb;
    1155             : 
    1156       23736 :         cb = slist_container(dsm_segment_detach_callback, node, iter.cur);
    1157       23736 :         if (cb->function == function && cb->arg == arg)
    1158             :         {
    1159        7672 :             slist_delete_current(&iter);
    1160        7672 :             pfree(cb);
    1161        7672 :             break;
    1162             :         }
    1163             :     }
    1164        7672 : }
    1165             : 
    1166             : /*
    1167             :  * Discard all registered on-detach callbacks without executing them.
    1168             :  */
    1169             : void
    1170       29944 : reset_on_dsm_detach(void)
    1171             : {
    1172             :     dlist_iter  iter;
    1173             : 
    1174       29944 :     dlist_foreach(iter, &dsm_segment_list)
    1175             :     {
    1176           0 :         dsm_segment *seg = dlist_container(dsm_segment, node, iter.cur);
    1177             : 
    1178             :         /* Throw away explicit on-detach actions one by one. */
    1179           0 :         while (!slist_is_empty(&seg->on_detach))
    1180             :         {
    1181             :             slist_node *node;
    1182             :             dsm_segment_detach_callback *cb;
    1183             : 
    1184           0 :             node = slist_pop_head_node(&seg->on_detach);
    1185           0 :             cb = slist_container(dsm_segment_detach_callback, node, node);
    1186           0 :             pfree(cb);
    1187             :         }
    1188             : 
    1189             :         /*
    1190             :          * Decrementing the reference count is a sort of implicit on-detach
    1191             :          * action; make sure we don't do that, either.
    1192             :          */
    1193           0 :         seg->control_slot = INVALID_CONTROL_SLOT;
    1194             :     }
    1195       29944 : }
    1196             : 
    1197             : /*
    1198             :  * Create a segment descriptor.
    1199             :  */
    1200             : static dsm_segment *
    1201       35074 : dsm_create_descriptor(void)
    1202             : {
    1203             :     dsm_segment *seg;
    1204             : 
    1205       35074 :     if (CurrentResourceOwner)
    1206        4728 :         ResourceOwnerEnlarge(CurrentResourceOwner);
    1207             : 
    1208       35074 :     seg = MemoryContextAlloc(TopMemoryContext, sizeof(dsm_segment));
    1209       35074 :     dlist_push_head(&dsm_segment_list, &seg->node);
    1210             : 
    1211             :     /* seg->handle must be initialized by the caller */
    1212       35074 :     seg->control_slot = INVALID_CONTROL_SLOT;
    1213       35074 :     seg->impl_private = NULL;
    1214       35074 :     seg->mapped_address = NULL;
    1215       35074 :     seg->mapped_size = 0;
    1216             : 
    1217       35074 :     seg->resowner = CurrentResourceOwner;
    1218       35074 :     if (CurrentResourceOwner)
    1219        4728 :         ResourceOwnerRememberDSM(CurrentResourceOwner, seg);
    1220             : 
    1221       35074 :     slist_init(&seg->on_detach);
    1222             : 
    1223       35074 :     return seg;
    1224             : }
    1225             : 
    1226             : /*
    1227             :  * Sanity check a control segment.
    1228             :  *
    1229             :  * The goal here isn't to detect everything that could possibly be wrong with
    1230             :  * the control segment; there's not enough information for that.  Rather, the
    1231             :  * goal is to make sure that someone can iterate over the items in the segment
    1232             :  * without overrunning the end of the mapping and crashing.  We also check
    1233             :  * the magic number since, if that's messed up, this may not even be one of
    1234             :  * our segments at all.
    1235             :  */
    1236             : static bool
    1237        1768 : dsm_control_segment_sane(dsm_control_header *control, Size mapped_size)
    1238             : {
    1239        1768 :     if (mapped_size < offsetof(dsm_control_header, item))
    1240           0 :         return false;           /* Mapped size too short to read header. */
    1241        1768 :     if (control->magic != PG_DYNSHMEM_CONTROL_MAGIC)
    1242           0 :         return false;           /* Magic number doesn't match. */
    1243        1768 :     if (dsm_control_bytes_needed(control->maxitems) > mapped_size)
    1244           0 :         return false;           /* Max item count won't fit in map. */
    1245        1768 :     if (control->nitems > control->maxitems)
    1246           0 :         return false;           /* Overfull. */
    1247        1768 :     return true;
    1248             : }
    1249             : 
    1250             : /*
    1251             :  * Compute the number of control-segment bytes needed to store a given
    1252             :  * number of items.
    1253             :  */
    1254             : static uint64
    1255        3536 : dsm_control_bytes_needed(uint32 nitems)
    1256             : {
    1257             :     return offsetof(dsm_control_header, item)
    1258        3536 :         + sizeof(dsm_control_item) * (uint64) nitems;
    1259             : }
    1260             : 
    1261             : static inline dsm_handle
    1262           0 : make_main_region_dsm_handle(int slot)
    1263             : {
    1264             :     dsm_handle  handle;
    1265             : 
    1266             :     /*
    1267             :      * We need to create a handle that doesn't collide with any existing extra
    1268             :      * segment created by dsm_impl_op(), so we'll make it odd.  It also
    1269             :      * mustn't collide with any other main area pseudo-segment, so we'll
    1270             :      * include the slot number in some of the bits.  We also want to make an
    1271             :      * effort to avoid newly created and recently destroyed handles from being
    1272             :      * confused, so we'll make the rest of the bits random.
    1273             :      */
    1274           0 :     handle = 1;
    1275           0 :     handle |= slot << 1;
    1276           0 :     handle |= pg_prng_uint32(&pg_global_prng_state) << (pg_leftmost_one_pos32(dsm_control->maxitems) + 1);
    1277           0 :     return handle;
    1278             : }
    1279             : 
    1280             : static inline bool
    1281      106008 : is_main_region_dsm_handle(dsm_handle handle)
    1282             : {
    1283      106008 :     return handle & 1;
    1284             : }
    1285             : 
    1286             : /* ResourceOwner callbacks */
    1287             : 
    1288             : static void
    1289           0 : ResOwnerReleaseDSM(Datum res)
    1290             : {
    1291           0 :     dsm_segment *seg = (dsm_segment *) DatumGetPointer(res);
    1292             : 
    1293           0 :     seg->resowner = NULL;
    1294           0 :     dsm_detach(seg);
    1295           0 : }
    1296             : static char *
    1297           0 : ResOwnerPrintDSM(Datum res)
    1298             : {
    1299           0 :     dsm_segment *seg = (dsm_segment *) DatumGetPointer(res);
    1300             : 
    1301           0 :     return psprintf("dynamic shared memory segment %u",
    1302             :                     dsm_segment_handle(seg));
    1303             : }

Generated by: LCOV version 1.14