Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * fd.c
4 : * Virtual file descriptor code.
5 : *
6 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : * IDENTIFICATION
10 : * src/backend/storage/file/fd.c
11 : *
12 : * NOTES:
13 : *
14 : * This code manages a cache of 'virtual' file descriptors (VFDs).
15 : * The server opens many file descriptors for a variety of reasons,
16 : * including base tables, scratch files (e.g., sort and hash spool
17 : * files), and random calls to C library routines like system(3); it
18 : * is quite easy to exceed system limits on the number of open files a
19 : * single process can have. (This is around 1024 on many modern
20 : * operating systems, but may be lower on others.)
21 : *
22 : * VFDs are managed as an LRU pool, with actual OS file descriptors
23 : * being opened and closed as needed. Obviously, if a routine is
24 : * opened using these interfaces, all subsequent operations must also
25 : * be through these interfaces (the File type is not a real file
26 : * descriptor).
27 : *
28 : * For this scheme to work, most (if not all) routines throughout the
29 : * server should use these interfaces instead of calling the C library
30 : * routines (e.g., open(2) and fopen(3)) themselves. Otherwise, we
31 : * may find ourselves short of real file descriptors anyway.
32 : *
33 : * INTERFACE ROUTINES
34 : *
35 : * PathNameOpenFile and OpenTemporaryFile are used to open virtual files.
36 : * A File opened with OpenTemporaryFile is automatically deleted when the
37 : * File is closed, either explicitly or implicitly at end of transaction or
38 : * process exit. PathNameOpenFile is intended for files that are held open
39 : * for a long time, like relation files. It is the caller's responsibility
40 : * to close them, there is no automatic mechanism in fd.c for that.
41 : *
42 : * PathName(Create|Open|Delete)Temporary(File|Dir) are used to manage
43 : * temporary files that have names so that they can be shared between
44 : * backends. Such files are automatically closed and count against the
45 : * temporary file limit of the backend that creates them, but unlike anonymous
46 : * files they are not automatically deleted. See sharedfileset.c for a shared
47 : * ownership mechanism that provides automatic cleanup for shared files when
48 : * the last of a group of backends detaches.
49 : *
50 : * AllocateFile, AllocateDir, OpenPipeStream and OpenTransientFile are
51 : * wrappers around fopen(3), opendir(3), popen(3) and open(2), respectively.
52 : * They behave like the corresponding native functions, except that the handle
53 : * is registered with the current subtransaction, and will be automatically
54 : * closed at abort. These are intended mainly for short operations like
55 : * reading a configuration file; there is a limit on the number of files that
56 : * can be opened using these functions at any one time.
57 : *
58 : * Finally, BasicOpenFile is just a thin wrapper around open() that can
59 : * release file descriptors in use by the virtual file descriptors if
60 : * necessary. There is no automatic cleanup of file descriptors returned by
61 : * BasicOpenFile, it is solely the caller's responsibility to close the file
62 : * descriptor by calling close(2).
63 : *
64 : * If a non-virtual file descriptor needs to be held open for any length of
65 : * time, report it to fd.c by calling AcquireExternalFD or ReserveExternalFD
66 : * (and eventually ReleaseExternalFD), so that we can take it into account
67 : * while deciding how many VFDs can be open. This applies to FDs obtained
68 : * with BasicOpenFile as well as those obtained without use of any fd.c API.
69 : *
70 : *-------------------------------------------------------------------------
71 : */
72 :
73 : #include "postgres.h"
74 :
75 : #include <dirent.h>
76 : #include <sys/file.h>
77 : #include <sys/param.h>
78 : #include <sys/resource.h> /* for getrlimit */
79 : #include <sys/stat.h>
80 : #include <sys/types.h>
81 : #ifndef WIN32
82 : #include <sys/mman.h>
83 : #endif
84 : #include <limits.h>
85 : #include <unistd.h>
86 : #include <fcntl.h>
87 :
88 : #include "access/xact.h"
89 : #include "access/xlog.h"
90 : #include "catalog/pg_tablespace.h"
91 : #include "common/file_perm.h"
92 : #include "common/file_utils.h"
93 : #include "common/pg_prng.h"
94 : #include "miscadmin.h"
95 : #include "pgstat.h"
96 : #include "postmaster/startup.h"
97 : #include "storage/aio.h"
98 : #include "storage/fd.h"
99 : #include "storage/ipc.h"
100 : #include "utils/guc.h"
101 : #include "utils/guc_hooks.h"
102 : #include "utils/resowner.h"
103 : #include "utils/varlena.h"
104 :
105 : /* Define PG_FLUSH_DATA_WORKS if we have an implementation for pg_flush_data */
106 : #if defined(HAVE_SYNC_FILE_RANGE)
107 : #define PG_FLUSH_DATA_WORKS 1
108 : #elif !defined(WIN32) && defined(MS_ASYNC)
109 : #define PG_FLUSH_DATA_WORKS 1
110 : #elif defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
111 : #define PG_FLUSH_DATA_WORKS 1
112 : #endif
113 :
114 : /*
115 : * We must leave some file descriptors free for system(), the dynamic loader,
116 : * and other code that tries to open files without consulting fd.c. This
117 : * is the number left free. (While we try fairly hard to prevent EMFILE
118 : * errors, there's never any guarantee that we won't get ENFILE due to
119 : * other processes chewing up FDs. So it's a bad idea to try to open files
120 : * without consulting fd.c. Nonetheless we cannot control all code.)
121 : *
122 : * Because this is just a fixed setting, we are effectively assuming that
123 : * no such code will leave FDs open over the long term; otherwise the slop
124 : * is likely to be insufficient. Note in particular that we expect that
125 : * loading a shared library does not result in any permanent increase in
126 : * the number of open files. (This appears to be true on most if not
127 : * all platforms as of Feb 2004.)
128 : */
129 : #define NUM_RESERVED_FDS 10
130 :
131 : /*
132 : * If we have fewer than this many usable FDs after allowing for the reserved
133 : * ones, choke. (This value is chosen to work with "ulimit -n 64", but not
134 : * much less than that. Note that this value ensures numExternalFDs can be
135 : * at least 16; as of this writing, the contrib/postgres_fdw regression tests
136 : * will not pass unless that can grow to at least 14.)
137 : */
138 : #define FD_MINFREE 48
139 :
140 : /*
141 : * A number of platforms allow individual processes to open many more files
142 : * than they can really support when *many* processes do the same thing.
143 : * This GUC parameter lets the DBA limit max_safe_fds to something less than
144 : * what the postmaster's initial probe suggests will work.
145 : */
146 : int max_files_per_process = 1000;
147 :
148 : /*
149 : * Maximum number of file descriptors to open for operations that fd.c knows
150 : * about (VFDs, AllocateFile etc, or "external" FDs). This is initialized
151 : * to a conservative value, and remains that way indefinitely in bootstrap or
152 : * standalone-backend cases. In normal postmaster operation, the postmaster
153 : * calls set_max_safe_fds() late in initialization to update the value, and
154 : * that value is then inherited by forked subprocesses.
155 : *
156 : * Note: the value of max_files_per_process is taken into account while
157 : * setting this variable, and so need not be tested separately.
158 : */
159 : int max_safe_fds = FD_MINFREE; /* default if not changed */
160 :
161 : /* Whether it is safe to continue running after fsync() fails. */
162 : bool data_sync_retry = false;
163 :
164 : /* How SyncDataDirectory() should do its job. */
165 : int recovery_init_sync_method = DATA_DIR_SYNC_METHOD_FSYNC;
166 :
167 : /* Which kinds of files should be opened with PG_O_DIRECT. */
168 : int io_direct_flags;
169 :
170 : /* Debugging.... */
171 :
172 : #ifdef FDDEBUG
173 : #define DO_DB(A) \
174 : do { \
175 : int _do_db_save_errno = errno; \
176 : A; \
177 : errno = _do_db_save_errno; \
178 : } while (0)
179 : #else
180 : #define DO_DB(A) \
181 : ((void) 0)
182 : #endif
183 :
184 : #define VFD_CLOSED (-1)
185 :
186 : #define FileIsValid(file) \
187 : ((file) > 0 && (file) < (int) SizeVfdCache && VfdCache[file].fileName != NULL)
188 :
189 : #define FileIsNotOpen(file) (VfdCache[file].fd == VFD_CLOSED)
190 :
191 : /* these are the assigned bits in fdstate below: */
192 : #define FD_DELETE_AT_CLOSE (1 << 0) /* T = delete when closed */
193 : #define FD_CLOSE_AT_EOXACT (1 << 1) /* T = close at eoXact */
194 : #define FD_TEMP_FILE_LIMIT (1 << 2) /* T = respect temp_file_limit */
195 :
196 : typedef struct vfd
197 : {
198 : int fd; /* current FD, or VFD_CLOSED if none */
199 : unsigned short fdstate; /* bitflags for VFD's state */
200 : ResourceOwner resowner; /* owner, for automatic cleanup */
201 : File nextFree; /* link to next free VFD, if in freelist */
202 : File lruMoreRecently; /* doubly linked recency-of-use list */
203 : File lruLessRecently;
204 : pgoff_t fileSize; /* current size of file (0 if not temporary) */
205 : char *fileName; /* name of file, or NULL for unused VFD */
206 : /* NB: fileName is malloc'd, and must be free'd when closing the VFD */
207 : int fileFlags; /* open(2) flags for (re)opening the file */
208 : mode_t fileMode; /* mode to pass to open(2) */
209 : } Vfd;
210 :
211 : /*
212 : * Virtual File Descriptor array pointer and size. This grows as
213 : * needed. 'File' values are indexes into this array.
214 : * Note that VfdCache[0] is not a usable VFD, just a list header.
215 : */
216 : static Vfd *VfdCache;
217 : static Size SizeVfdCache = 0;
218 :
219 : /*
220 : * Number of file descriptors known to be in use by VFD entries.
221 : */
222 : static int nfile = 0;
223 :
224 : /*
225 : * Flag to tell whether it's worth scanning VfdCache looking for temp files
226 : * to close
227 : */
228 : static bool have_xact_temporary_files = false;
229 :
230 : /*
231 : * Tracks the total size of all temporary files. Note: when temp_file_limit
232 : * is being enforced, this cannot overflow since the limit cannot be more
233 : * than INT_MAX kilobytes. When not enforcing, it could theoretically
234 : * overflow, but we don't care.
235 : */
236 : static uint64 temporary_files_size = 0;
237 :
238 : /* Temporary file access initialized and not yet shut down? */
239 : #ifdef USE_ASSERT_CHECKING
240 : static bool temporary_files_allowed = false;
241 : #endif
242 :
243 : /*
244 : * List of OS handles opened with AllocateFile, AllocateDir and
245 : * OpenTransientFile.
246 : */
247 : typedef enum
248 : {
249 : AllocateDescFile,
250 : AllocateDescPipe,
251 : AllocateDescDir,
252 : AllocateDescRawFD,
253 : } AllocateDescKind;
254 :
255 : typedef struct
256 : {
257 : AllocateDescKind kind;
258 : SubTransactionId create_subid;
259 : union
260 : {
261 : FILE *file;
262 : DIR *dir;
263 : int fd;
264 : } desc;
265 : } AllocateDesc;
266 :
267 : static int numAllocatedDescs = 0;
268 : static int maxAllocatedDescs = 0;
269 : static AllocateDesc *allocatedDescs = NULL;
270 :
271 : /*
272 : * Number of open "external" FDs reported to Reserve/ReleaseExternalFD.
273 : */
274 : static int numExternalFDs = 0;
275 :
276 : /*
277 : * Number of temporary files opened during the current session;
278 : * this is used in generation of tempfile names.
279 : */
280 : static long tempFileCounter = 0;
281 :
282 : /*
283 : * Array of OIDs of temp tablespaces. (Some entries may be InvalidOid,
284 : * indicating that the current database's default tablespace should be used.)
285 : * When numTempTableSpaces is -1, this has not been set in the current
286 : * transaction.
287 : */
288 : static Oid *tempTableSpaces = NULL;
289 : static int numTempTableSpaces = -1;
290 : static int nextTempTableSpace = 0;
291 :
292 :
293 : /*--------------------
294 : *
295 : * Private Routines
296 : *
297 : * Delete - delete a file from the Lru ring
298 : * LruDelete - remove a file from the Lru ring and close its FD
299 : * Insert - put a file at the front of the Lru ring
300 : * LruInsert - put a file at the front of the Lru ring and open it
301 : * ReleaseLruFile - Release an fd by closing the last entry in the Lru ring
302 : * ReleaseLruFiles - Release fd(s) until we're under the max_safe_fds limit
303 : * AllocateVfd - grab a free (or new) file record (from VfdCache)
304 : * FreeVfd - free a file record
305 : *
306 : * The Least Recently Used ring is a doubly linked list that begins and
307 : * ends on element zero. Element zero is special -- it doesn't represent
308 : * a file and its "fd" field always == VFD_CLOSED. Element zero is just an
309 : * anchor that shows us the beginning/end of the ring.
310 : * Only VFD elements that are currently really open (have an FD assigned) are
311 : * in the Lru ring. Elements that are "virtually" open can be recognized
312 : * by having a non-null fileName field.
313 : *
314 : * example:
315 : *
316 : * /--less----\ /---------\
317 : * v \ v \
318 : * #0 --more---> LeastRecentlyUsed --more-\ \
319 : * ^\ | |
320 : * \\less--> MostRecentlyUsedFile <---/ |
321 : * \more---/ \--less--/
322 : *
323 : *--------------------
324 : */
325 : static void Delete(File file);
326 : static void LruDelete(File file);
327 : static void Insert(File file);
328 : static int LruInsert(File file);
329 : static bool ReleaseLruFile(void);
330 : static void ReleaseLruFiles(void);
331 : static File AllocateVfd(void);
332 : static void FreeVfd(File file);
333 :
334 : static int FileAccess(File file);
335 : static File OpenTemporaryFileInTablespace(Oid tblspcOid, bool rejectError);
336 : static bool reserveAllocatedDesc(void);
337 : static int FreeDesc(AllocateDesc *desc);
338 :
339 : static void BeforeShmemExit_Files(int code, Datum arg);
340 : static void CleanupTempFiles(bool isCommit, bool isProcExit);
341 : static void RemovePgTempRelationFiles(const char *tsdirname);
342 : static void RemovePgTempRelationFilesInDbspace(const char *dbspacedirname);
343 :
344 : static void walkdir(const char *path,
345 : void (*action) (const char *fname, bool isdir, int elevel),
346 : bool process_symlinks,
347 : int elevel);
348 : #ifdef PG_FLUSH_DATA_WORKS
349 : static void pre_sync_fname(const char *fname, bool isdir, int elevel);
350 : #endif
351 : static void datadir_fsync_fname(const char *fname, bool isdir, int elevel);
352 : static void unlink_if_exists_fname(const char *fname, bool isdir, int elevel);
353 :
354 : static int fsync_parent_path(const char *fname, int elevel);
355 :
356 :
357 : /* ResourceOwner callbacks to hold virtual file descriptors */
358 : static void ResOwnerReleaseFile(Datum res);
359 : static char *ResOwnerPrintFile(Datum res);
360 :
361 : static const ResourceOwnerDesc file_resowner_desc =
362 : {
363 : .name = "File",
364 : .release_phase = RESOURCE_RELEASE_AFTER_LOCKS,
365 : .release_priority = RELEASE_PRIO_FILES,
366 : .ReleaseResource = ResOwnerReleaseFile,
367 : .DebugPrint = ResOwnerPrintFile
368 : };
369 :
370 : /* Convenience wrappers over ResourceOwnerRemember/Forget */
371 : static inline void
372 7810 : ResourceOwnerRememberFile(ResourceOwner owner, File file)
373 : {
374 7810 : ResourceOwnerRemember(owner, Int32GetDatum(file), &file_resowner_desc);
375 7810 : }
376 : static inline void
377 7802 : ResourceOwnerForgetFile(ResourceOwner owner, File file)
378 : {
379 7802 : ResourceOwnerForget(owner, Int32GetDatum(file), &file_resowner_desc);
380 7802 : }
381 :
382 : /*
383 : * pg_fsync --- do fsync with or without writethrough
384 : */
385 : int
386 133462 : pg_fsync(int fd)
387 : {
388 : #if !defined(WIN32) && defined(USE_ASSERT_CHECKING)
389 : struct stat st;
390 :
391 : /*
392 : * Some operating system implementations of fsync() have requirements
393 : * about the file access modes that were used when their file descriptor
394 : * argument was opened, and these requirements differ depending on whether
395 : * the file descriptor is for a directory.
396 : *
397 : * For any file descriptor that may eventually be handed to fsync(), we
398 : * should have opened it with access modes that are compatible with
399 : * fsync() on all supported systems, otherwise the code may not be
400 : * portable, even if it runs ok on the current system.
401 : *
402 : * We assert here that a descriptor for a file was opened with write
403 : * permissions (i.e., not O_RDONLY) and for a directory without write
404 : * permissions (O_RDONLY). Notice that the assertion check is made even
405 : * if fsync() is disabled.
406 : *
407 : * If fstat() fails, ignore it and let the follow-up fsync() complain.
408 : */
409 : if (fstat(fd, &st) == 0)
410 : {
411 : int desc_flags = fcntl(fd, F_GETFL);
412 :
413 : desc_flags &= O_ACCMODE;
414 :
415 : if (S_ISDIR(st.st_mode))
416 : Assert(desc_flags == O_RDONLY);
417 : else
418 : Assert(desc_flags != O_RDONLY);
419 : }
420 : errno = 0;
421 : #endif
422 :
423 : /* #if is to skip the wal_sync_method test if there's no need for it */
424 : #if defined(HAVE_FSYNC_WRITETHROUGH)
425 : if (wal_sync_method == WAL_SYNC_METHOD_FSYNC_WRITETHROUGH)
426 : return pg_fsync_writethrough(fd);
427 : else
428 : #endif
429 133462 : return pg_fsync_no_writethrough(fd);
430 : }
431 :
432 :
433 : /*
434 : * pg_fsync_no_writethrough --- same as fsync except does nothing if
435 : * enableFsync is off
436 : */
437 : int
438 133462 : pg_fsync_no_writethrough(int fd)
439 : {
440 : int rc;
441 :
442 133462 : if (!enableFsync)
443 133462 : return 0;
444 :
445 0 : retry:
446 0 : rc = fsync(fd);
447 :
448 0 : if (rc == -1 && errno == EINTR)
449 0 : goto retry;
450 :
451 0 : return rc;
452 : }
453 :
454 : /*
455 : * pg_fsync_writethrough
456 : */
457 : int
458 0 : pg_fsync_writethrough(int fd)
459 : {
460 0 : if (enableFsync)
461 : {
462 : #if defined(F_FULLFSYNC)
463 : return (fcntl(fd, F_FULLFSYNC, 0) == -1) ? -1 : 0;
464 : #else
465 0 : errno = ENOSYS;
466 0 : return -1;
467 : #endif
468 : }
469 : else
470 0 : return 0;
471 : }
472 :
473 : /*
474 : * pg_fdatasync --- same as fdatasync except does nothing if enableFsync is off
475 : */
476 : int
477 2 : pg_fdatasync(int fd)
478 : {
479 : int rc;
480 :
481 2 : if (!enableFsync)
482 0 : return 0;
483 :
484 2 : retry:
485 2 : rc = fdatasync(fd);
486 :
487 2 : if (rc == -1 && errno == EINTR)
488 0 : goto retry;
489 :
490 2 : return rc;
491 : }
492 :
493 : /*
494 : * pg_file_exists -- check that a file exists.
495 : *
496 : * This requires an absolute path to the file. Returns true if the file is
497 : * not a directory, false otherwise.
498 : */
499 : bool
500 41876 : pg_file_exists(const char *name)
501 : {
502 : struct stat st;
503 :
504 : Assert(name != NULL);
505 :
506 41876 : if (stat(name, &st) == 0)
507 22158 : return !S_ISDIR(st.st_mode);
508 19718 : else if (!(errno == ENOENT || errno == ENOTDIR || errno == EACCES))
509 0 : ereport(ERROR,
510 : (errcode_for_file_access(),
511 : errmsg("could not access file \"%s\": %m", name)));
512 :
513 19718 : return false;
514 : }
515 :
516 : /*
517 : * pg_flush_data --- advise OS that the described dirty data should be flushed
518 : *
519 : * offset of 0 with nbytes 0 means that the entire file should be flushed
520 : */
521 : void
522 76558 : pg_flush_data(int fd, pgoff_t offset, pgoff_t nbytes)
523 : {
524 : /*
525 : * Right now file flushing is primarily used to avoid making later
526 : * fsync()/fdatasync() calls have less impact. Thus don't trigger flushes
527 : * if fsyncs are disabled - that's a decision we might want to make
528 : * configurable at some point.
529 : */
530 76558 : if (!enableFsync)
531 76558 : return;
532 :
533 : /*
534 : * We compile all alternatives that are supported on the current platform,
535 : * to find portability problems more easily.
536 : */
537 : #if defined(HAVE_SYNC_FILE_RANGE)
538 : {
539 : int rc;
540 : static bool not_implemented_by_kernel = false;
541 :
542 0 : if (not_implemented_by_kernel)
543 0 : return;
544 :
545 0 : retry:
546 :
547 : /*
548 : * sync_file_range(SYNC_FILE_RANGE_WRITE), currently linux specific,
549 : * tells the OS that writeback for the specified blocks should be
550 : * started, but that we don't want to wait for completion. Note that
551 : * this call might block if too much dirty data exists in the range.
552 : * This is the preferable method on OSs supporting it, as it works
553 : * reliably when available (contrast to msync()) and doesn't flush out
554 : * clean data (like FADV_DONTNEED).
555 : */
556 0 : rc = sync_file_range(fd, offset, nbytes,
557 : SYNC_FILE_RANGE_WRITE);
558 0 : if (rc != 0)
559 : {
560 : int elevel;
561 :
562 0 : if (rc == EINTR)
563 0 : goto retry;
564 :
565 : /*
566 : * For systems that don't have an implementation of
567 : * sync_file_range() such as Windows WSL, generate only one
568 : * warning and then suppress all further attempts by this process.
569 : */
570 0 : if (errno == ENOSYS)
571 : {
572 0 : elevel = WARNING;
573 0 : not_implemented_by_kernel = true;
574 : }
575 : else
576 0 : elevel = data_sync_elevel(WARNING);
577 :
578 0 : ereport(elevel,
579 : (errcode_for_file_access(),
580 : errmsg("could not flush dirty data: %m")));
581 : }
582 :
583 0 : return;
584 : }
585 : #endif
586 : #if !defined(WIN32) && defined(MS_ASYNC)
587 : {
588 : void *p;
589 : static int pagesize = 0;
590 :
591 : /*
592 : * On several OSs msync(MS_ASYNC) on a mmap'ed file triggers
593 : * writeback. On linux it only does so if MS_SYNC is specified, but
594 : * then it does the writeback synchronously. Luckily all common linux
595 : * systems have sync_file_range(). This is preferable over
596 : * FADV_DONTNEED because it doesn't flush out clean data.
597 : *
598 : * We map the file (mmap()), tell the kernel to sync back the contents
599 : * (msync()), and then remove the mapping again (munmap()).
600 : */
601 :
602 : /* mmap() needs actual length if we want to map whole file */
603 : if (offset == 0 && nbytes == 0)
604 : {
605 : nbytes = lseek(fd, 0, SEEK_END);
606 : if (nbytes < 0)
607 : {
608 : ereport(WARNING,
609 : (errcode_for_file_access(),
610 : errmsg("could not determine dirty data size: %m")));
611 : return;
612 : }
613 : }
614 :
615 : /*
616 : * Some platforms reject partial-page mmap() attempts. To deal with
617 : * that, just truncate the request to a page boundary. If any extra
618 : * bytes don't get flushed, well, it's only a hint anyway.
619 : */
620 :
621 : /* fetch pagesize only once */
622 : if (pagesize == 0)
623 : pagesize = sysconf(_SC_PAGESIZE);
624 :
625 : /* align length to pagesize, dropping any fractional page */
626 : if (pagesize > 0)
627 : nbytes = (nbytes / pagesize) * pagesize;
628 :
629 : /* fractional-page request is a no-op */
630 : if (nbytes <= 0)
631 : return;
632 :
633 : /*
634 : * mmap could well fail, particularly on 32-bit platforms where there
635 : * may simply not be enough address space. If so, silently fall
636 : * through to the next implementation.
637 : */
638 : if (nbytes <= (pgoff_t) SSIZE_MAX)
639 : p = mmap(NULL, nbytes, PROT_READ, MAP_SHARED, fd, offset);
640 : else
641 : p = MAP_FAILED;
642 :
643 : if (p != MAP_FAILED)
644 : {
645 : int rc;
646 :
647 : rc = msync(p, (size_t) nbytes, MS_ASYNC);
648 : if (rc != 0)
649 : {
650 : ereport(data_sync_elevel(WARNING),
651 : (errcode_for_file_access(),
652 : errmsg("could not flush dirty data: %m")));
653 : /* NB: need to fall through to munmap()! */
654 : }
655 :
656 : rc = munmap(p, (size_t) nbytes);
657 : if (rc != 0)
658 : {
659 : /* FATAL error because mapping would remain */
660 : ereport(FATAL,
661 : (errcode_for_file_access(),
662 : errmsg("could not munmap() while flushing data: %m")));
663 : }
664 :
665 : return;
666 : }
667 : }
668 : #endif
669 : #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
670 : {
671 : int rc;
672 :
673 : /*
674 : * Signal the kernel that the passed in range should not be cached
675 : * anymore. This has the, desired, side effect of writing out dirty
676 : * data, and the, undesired, side effect of likely discarding useful
677 : * clean cached blocks. For the latter reason this is the least
678 : * preferable method.
679 : */
680 :
681 : rc = posix_fadvise(fd, offset, nbytes, POSIX_FADV_DONTNEED);
682 :
683 : if (rc != 0)
684 : {
685 : /* don't error out, this is just a performance optimization */
686 : ereport(WARNING,
687 : (errcode_for_file_access(),
688 : errmsg("could not flush dirty data: %m")));
689 : }
690 :
691 : return;
692 : }
693 : #endif
694 : }
695 :
696 : /*
697 : * Truncate an open file to a given length.
698 : */
699 : static int
700 1070 : pg_ftruncate(int fd, pgoff_t length)
701 : {
702 : int ret;
703 :
704 1070 : retry:
705 1070 : ret = ftruncate(fd, length);
706 :
707 1070 : if (ret == -1 && errno == EINTR)
708 0 : goto retry;
709 :
710 1070 : return ret;
711 : }
712 :
713 : /*
714 : * Truncate a file to a given length by name.
715 : */
716 : int
717 434898 : pg_truncate(const char *path, pgoff_t length)
718 : {
719 : int ret;
720 : #ifdef WIN32
721 : int save_errno;
722 : int fd;
723 :
724 : fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
725 : if (fd >= 0)
726 : {
727 : ret = pg_ftruncate(fd, length);
728 : save_errno = errno;
729 : CloseTransientFile(fd);
730 : errno = save_errno;
731 : }
732 : else
733 : ret = -1;
734 : #else
735 :
736 434898 : retry:
737 434898 : ret = truncate(path, length);
738 :
739 434898 : if (ret == -1 && errno == EINTR)
740 0 : goto retry;
741 : #endif
742 :
743 434898 : return ret;
744 : }
745 :
746 : /*
747 : * fsync_fname -- fsync a file or directory, handling errors properly
748 : *
749 : * Try to fsync a file or directory. When doing the latter, ignore errors that
750 : * indicate the OS just doesn't allow/require fsyncing directories.
751 : */
752 : void
753 42604 : fsync_fname(const char *fname, bool isdir)
754 : {
755 42604 : fsync_fname_ext(fname, isdir, false, data_sync_elevel(ERROR));
756 42604 : }
757 :
758 : /*
759 : * durable_rename -- rename(2) wrapper, issuing fsyncs required for durability
760 : *
761 : * This routine ensures that, after returning, the effect of renaming file
762 : * persists in case of a crash. A crash while this routine is running will
763 : * leave you with either the pre-existing or the moved file in place of the
764 : * new file; no mixed state or truncated files are possible.
765 : *
766 : * It does so by using fsync on the old filename and the possibly existing
767 : * target filename before the rename, and the target file and directory after.
768 : *
769 : * Note that rename() cannot be used across arbitrary directories, as they
770 : * might not be on the same filesystem. Therefore this routine does not
771 : * support renaming across directories.
772 : *
773 : * Log errors with the caller specified severity.
774 : *
775 : * Returns 0 if the operation succeeded, -1 otherwise. Note that errno is not
776 : * valid upon return.
777 : */
778 : int
779 12870 : durable_rename(const char *oldfile, const char *newfile, int elevel)
780 : {
781 : int fd;
782 :
783 : /*
784 : * First fsync the old and target path (if it exists), to ensure that they
785 : * are properly persistent on disk. Syncing the target file is not
786 : * strictly necessary, but it makes it easier to reason about crashes;
787 : * because it's then guaranteed that either source or target file exists
788 : * after a crash.
789 : */
790 12870 : if (fsync_fname_ext(oldfile, false, false, elevel) != 0)
791 0 : return -1;
792 :
793 12870 : fd = OpenTransientFile(newfile, PG_BINARY | O_RDWR);
794 12870 : if (fd < 0)
795 : {
796 8952 : if (errno != ENOENT)
797 : {
798 0 : ereport(elevel,
799 : (errcode_for_file_access(),
800 : errmsg("could not open file \"%s\": %m", newfile)));
801 0 : return -1;
802 : }
803 : }
804 : else
805 : {
806 3918 : if (pg_fsync(fd) != 0)
807 : {
808 : int save_errno;
809 :
810 : /* close file upon error, might not be in transaction context */
811 0 : save_errno = errno;
812 0 : CloseTransientFile(fd);
813 0 : errno = save_errno;
814 :
815 0 : ereport(elevel,
816 : (errcode_for_file_access(),
817 : errmsg("could not fsync file \"%s\": %m", newfile)));
818 0 : return -1;
819 : }
820 :
821 3918 : if (CloseTransientFile(fd) != 0)
822 : {
823 0 : ereport(elevel,
824 : (errcode_for_file_access(),
825 : errmsg("could not close file \"%s\": %m", newfile)));
826 0 : return -1;
827 : }
828 : }
829 :
830 : /* Time to do the real deal... */
831 12870 : if (rename(oldfile, newfile) < 0)
832 : {
833 0 : ereport(elevel,
834 : (errcode_for_file_access(),
835 : errmsg("could not rename file \"%s\" to \"%s\": %m",
836 : oldfile, newfile)));
837 0 : return -1;
838 : }
839 :
840 : /*
841 : * To guarantee renaming the file is persistent, fsync the file with its
842 : * new name, and its containing directory.
843 : */
844 12870 : if (fsync_fname_ext(newfile, false, false, elevel) != 0)
845 0 : return -1;
846 :
847 12870 : if (fsync_parent_path(newfile, elevel) != 0)
848 0 : return -1;
849 :
850 12870 : return 0;
851 : }
852 :
853 : /*
854 : * durable_unlink -- remove a file in a durable manner
855 : *
856 : * This routine ensures that, after returning, the effect of removing file
857 : * persists in case of a crash. A crash while this routine is running will
858 : * leave the system in no mixed state.
859 : *
860 : * It does so by using fsync on the parent directory of the file after the
861 : * actual removal is done.
862 : *
863 : * Log errors with the severity specified by caller.
864 : *
865 : * Returns 0 if the operation succeeded, -1 otherwise. Note that errno is not
866 : * valid upon return.
867 : */
868 : int
869 2584 : durable_unlink(const char *fname, int elevel)
870 : {
871 2584 : if (unlink(fname) < 0)
872 : {
873 78 : ereport(elevel,
874 : (errcode_for_file_access(),
875 : errmsg("could not remove file \"%s\": %m",
876 : fname)));
877 78 : return -1;
878 : }
879 :
880 : /*
881 : * To guarantee that the removal of the file is persistent, fsync its
882 : * parent directory.
883 : */
884 2506 : if (fsync_parent_path(fname, elevel) != 0)
885 0 : return -1;
886 :
887 2506 : return 0;
888 : }
889 :
890 : /*
891 : * InitFileAccess --- initialize this module during backend startup
892 : *
893 : * This is called during either normal or standalone backend start.
894 : * It is *not* called in the postmaster.
895 : *
896 : * Note that this does not initialize temporary file access, that is
897 : * separately initialized via InitTemporaryFileAccess().
898 : */
899 : void
900 45096 : InitFileAccess(void)
901 : {
902 : Assert(SizeVfdCache == 0); /* call me only once */
903 :
904 : /* initialize cache header entry */
905 45096 : VfdCache = (Vfd *) malloc(sizeof(Vfd));
906 45096 : if (VfdCache == NULL)
907 0 : ereport(FATAL,
908 : (errcode(ERRCODE_OUT_OF_MEMORY),
909 : errmsg("out of memory")));
910 :
911 360768 : MemSet(&(VfdCache[0]), 0, sizeof(Vfd));
912 45096 : VfdCache->fd = VFD_CLOSED;
913 :
914 45096 : SizeVfdCache = 1;
915 45096 : }
916 :
917 : /*
918 : * InitTemporaryFileAccess --- initialize temporary file access during startup
919 : *
920 : * This is called during either normal or standalone backend start.
921 : * It is *not* called in the postmaster.
922 : *
923 : * This is separate from InitFileAccess() because temporary file cleanup can
924 : * cause pgstat reporting. As pgstat is shut down during before_shmem_exit(),
925 : * our reporting has to happen before that. Low level file access should be
926 : * available for longer, hence the separate initialization / shutdown of
927 : * temporary file handling.
928 : */
929 : void
930 45096 : InitTemporaryFileAccess(void)
931 : {
932 : Assert(SizeVfdCache != 0); /* InitFileAccess() needs to have run */
933 : Assert(!temporary_files_allowed); /* call me only once */
934 :
935 : /*
936 : * Register before-shmem-exit hook to ensure temp files are dropped while
937 : * we can still report stats.
938 : */
939 45096 : before_shmem_exit(BeforeShmemExit_Files, 0);
940 :
941 : #ifdef USE_ASSERT_CHECKING
942 : temporary_files_allowed = true;
943 : #endif
944 45096 : }
945 :
946 : /*
947 : * count_usable_fds --- count how many FDs the system will let us open,
948 : * and estimate how many are already open.
949 : *
950 : * We stop counting if usable_fds reaches max_to_probe. Note: a small
951 : * value of max_to_probe might result in an underestimate of already_open;
952 : * we must fill in any "gaps" in the set of used FDs before the calculation
953 : * of already_open will give the right answer. In practice, max_to_probe
954 : * of a couple of dozen should be enough to ensure good results.
955 : *
956 : * We assume stderr (FD 2) is available for dup'ing. While the calling
957 : * script could theoretically close that, it would be a really bad idea,
958 : * since then one risks loss of error messages from, e.g., libc.
959 : */
960 : static void
961 2218 : count_usable_fds(int max_to_probe, int *usable_fds, int *already_open)
962 : {
963 : int *fd;
964 : int size;
965 2218 : int used = 0;
966 2218 : int highestfd = 0;
967 : int j;
968 :
969 : #ifdef HAVE_GETRLIMIT
970 : struct rlimit rlim;
971 : int getrlimit_status;
972 : #endif
973 :
974 2218 : size = 1024;
975 2218 : fd = (int *) palloc(size * sizeof(int));
976 :
977 : #ifdef HAVE_GETRLIMIT
978 2218 : getrlimit_status = getrlimit(RLIMIT_NOFILE, &rlim);
979 2218 : if (getrlimit_status != 0)
980 0 : ereport(WARNING, (errmsg("getrlimit failed: %m")));
981 : #endif /* HAVE_GETRLIMIT */
982 :
983 : /* dup until failure or probe limit reached */
984 : for (;;)
985 2215782 : {
986 : int thisfd;
987 :
988 : #ifdef HAVE_GETRLIMIT
989 :
990 : /*
991 : * don't go beyond RLIMIT_NOFILE; causes irritating kernel logs on
992 : * some platforms
993 : */
994 2218000 : if (getrlimit_status == 0 && highestfd >= rlim.rlim_cur - 1)
995 0 : break;
996 : #endif
997 :
998 2218000 : thisfd = dup(2);
999 2218000 : if (thisfd < 0)
1000 : {
1001 : /* Expect EMFILE or ENFILE, else it's fishy */
1002 0 : if (errno != EMFILE && errno != ENFILE)
1003 0 : elog(WARNING, "duplicating stderr file descriptor failed after %d successes: %m", used);
1004 0 : break;
1005 : }
1006 :
1007 2218000 : if (used >= size)
1008 : {
1009 0 : size *= 2;
1010 0 : fd = (int *) repalloc(fd, size * sizeof(int));
1011 : }
1012 2218000 : fd[used++] = thisfd;
1013 :
1014 2218000 : if (highestfd < thisfd)
1015 2218000 : highestfd = thisfd;
1016 :
1017 2218000 : if (used >= max_to_probe)
1018 2218 : break;
1019 : }
1020 :
1021 : /* release the files we opened */
1022 2220218 : for (j = 0; j < used; j++)
1023 2218000 : close(fd[j]);
1024 :
1025 2218 : pfree(fd);
1026 :
1027 : /*
1028 : * Return results. usable_fds is just the number of successful dups. We
1029 : * assume that the system limit is highestfd+1 (remember 0 is a legal FD
1030 : * number) and so already_open is highestfd+1 - usable_fds.
1031 : */
1032 2218 : *usable_fds = used;
1033 2218 : *already_open = highestfd + 1 - used;
1034 2218 : }
1035 :
1036 : /*
1037 : * set_max_safe_fds
1038 : * Determine number of file descriptors that fd.c is allowed to use
1039 : */
1040 : void
1041 2218 : set_max_safe_fds(void)
1042 : {
1043 : int usable_fds;
1044 : int already_open;
1045 :
1046 : /*----------
1047 : * We want to set max_safe_fds to
1048 : * MIN(usable_fds, max_files_per_process)
1049 : * less the slop factor for files that are opened without consulting
1050 : * fd.c. This ensures that we won't allow to open more than
1051 : * max_files_per_process, or the experimentally-determined EMFILE limit,
1052 : * additional files.
1053 : *----------
1054 : */
1055 2218 : count_usable_fds(max_files_per_process,
1056 : &usable_fds, &already_open);
1057 :
1058 2218 : max_safe_fds = Min(usable_fds, max_files_per_process);
1059 :
1060 : /*
1061 : * Take off the FDs reserved for system() etc.
1062 : */
1063 2218 : max_safe_fds -= NUM_RESERVED_FDS;
1064 :
1065 : /*
1066 : * Make sure we still have enough to get by.
1067 : */
1068 2218 : if (max_safe_fds < FD_MINFREE)
1069 0 : ereport(FATAL,
1070 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
1071 : errmsg("insufficient file descriptors available to start server process"),
1072 : errdetail("System allows %d, server needs at least %d, %d files are already open.",
1073 : max_safe_fds + NUM_RESERVED_FDS,
1074 : FD_MINFREE + NUM_RESERVED_FDS,
1075 : already_open)));
1076 :
1077 2218 : elog(DEBUG2, "max_safe_fds = %d, usable_fds = %d, already_open = %d",
1078 : max_safe_fds, usable_fds, already_open);
1079 2218 : }
1080 :
1081 : /*
1082 : * Open a file with BasicOpenFilePerm() and pass default file mode for the
1083 : * fileMode parameter.
1084 : */
1085 : int
1086 71872 : BasicOpenFile(const char *fileName, int fileFlags)
1087 : {
1088 71872 : return BasicOpenFilePerm(fileName, fileFlags, pg_file_create_mode);
1089 : }
1090 :
1091 : /*
1092 : * BasicOpenFilePerm --- same as open(2) except can free other FDs if needed
1093 : *
1094 : * This is exported for use by places that really want a plain kernel FD,
1095 : * but need to be proof against running out of FDs. Once an FD has been
1096 : * successfully returned, it is the caller's responsibility to ensure that
1097 : * it will not be leaked on ereport()! Most users should *not* call this
1098 : * routine directly, but instead use the VFD abstraction level, which
1099 : * provides protection against descriptor leaks as well as management of
1100 : * files that need to be open for more than a short period of time.
1101 : *
1102 : * Ideally this should be the *only* direct call of open() in the backend.
1103 : * In practice, the postmaster calls open() directly, and there are some
1104 : * direct open() calls done early in backend startup. Those are OK since
1105 : * this module wouldn't have any open files to close at that point anyway.
1106 : */
1107 : int
1108 18651476 : BasicOpenFilePerm(const char *fileName, int fileFlags, mode_t fileMode)
1109 : {
1110 : int fd;
1111 :
1112 18651476 : tryAgain:
1113 : #ifdef PG_O_DIRECT_USE_F_NOCACHE
1114 : fd = open(fileName, fileFlags & ~PG_O_DIRECT, fileMode);
1115 : #else
1116 18651476 : fd = open(fileName, fileFlags, fileMode);
1117 : #endif
1118 :
1119 18651476 : if (fd >= 0)
1120 : {
1121 : #ifdef PG_O_DIRECT_USE_F_NOCACHE
1122 : if (fileFlags & PG_O_DIRECT)
1123 : {
1124 : if (fcntl(fd, F_NOCACHE, 1) < 0)
1125 : {
1126 : int save_errno = errno;
1127 :
1128 : close(fd);
1129 : errno = save_errno;
1130 : return -1;
1131 : }
1132 : }
1133 : #endif
1134 :
1135 17727606 : return fd; /* success! */
1136 : }
1137 :
1138 923870 : if (errno == EMFILE || errno == ENFILE)
1139 : {
1140 0 : int save_errno = errno;
1141 :
1142 0 : ereport(LOG,
1143 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
1144 : errmsg("out of file descriptors: %m; release and retry")));
1145 0 : errno = 0;
1146 0 : if (ReleaseLruFile())
1147 0 : goto tryAgain;
1148 0 : errno = save_errno;
1149 : }
1150 :
1151 923870 : return -1; /* failure */
1152 : }
1153 :
1154 : /*
1155 : * AcquireExternalFD - attempt to reserve an external file descriptor
1156 : *
1157 : * This should be used by callers that need to hold a file descriptor open
1158 : * over more than a short interval, but cannot use any of the other facilities
1159 : * provided by this module.
1160 : *
1161 : * The difference between this and the underlying ReserveExternalFD function
1162 : * is that this will report failure (by setting errno and returning false)
1163 : * if "too many" external FDs are already reserved. This should be used in
1164 : * any code where the total number of FDs to be reserved is not predictable
1165 : * and small.
1166 : */
1167 : bool
1168 321016 : AcquireExternalFD(void)
1169 : {
1170 : /*
1171 : * We don't want more than max_safe_fds / 3 FDs to be consumed for
1172 : * "external" FDs.
1173 : */
1174 321016 : if (numExternalFDs < max_safe_fds / 3)
1175 : {
1176 321016 : ReserveExternalFD();
1177 321016 : return true;
1178 : }
1179 0 : errno = EMFILE;
1180 0 : return false;
1181 : }
1182 :
1183 : /*
1184 : * ReserveExternalFD - report external consumption of a file descriptor
1185 : *
1186 : * This should be used by callers that need to hold a file descriptor open
1187 : * over more than a short interval, but cannot use any of the other facilities
1188 : * provided by this module. This just tracks the use of the FD and closes
1189 : * VFDs if needed to ensure we keep NUM_RESERVED_FDS FDs available.
1190 : *
1191 : * Call this directly only in code where failure to reserve the FD would be
1192 : * fatal; for example, the WAL-writing code does so, since the alternative is
1193 : * session failure. Also, it's very unwise to do so in code that could
1194 : * consume more than one FD per process.
1195 : *
1196 : * Note: as long as everybody plays nice so that NUM_RESERVED_FDS FDs remain
1197 : * available, it doesn't matter too much whether this is called before or
1198 : * after actually opening the FD; but doing so beforehand reduces the risk of
1199 : * an EMFILE failure if not everybody played nice. In any case, it's solely
1200 : * caller's responsibility to keep the external-FD count in sync with reality.
1201 : */
1202 : void
1203 478326 : ReserveExternalFD(void)
1204 : {
1205 : /*
1206 : * Release VFDs if needed to stay safe. Because we do this before
1207 : * incrementing numExternalFDs, the final state will be as desired, i.e.,
1208 : * nfile + numAllocatedDescs + numExternalFDs <= max_safe_fds.
1209 : */
1210 478326 : ReleaseLruFiles();
1211 :
1212 478326 : numExternalFDs++;
1213 478326 : }
1214 :
1215 : /*
1216 : * ReleaseExternalFD - report release of an external file descriptor
1217 : *
1218 : * This is guaranteed not to change errno, so it can be used in failure paths.
1219 : */
1220 : void
1221 439208 : ReleaseExternalFD(void)
1222 : {
1223 : Assert(numExternalFDs > 0);
1224 439208 : numExternalFDs--;
1225 439208 : }
1226 :
1227 :
1228 : #if defined(FDDEBUG)
1229 :
1230 : static void
1231 : _dump_lru(void)
1232 : {
1233 : int mru = VfdCache[0].lruLessRecently;
1234 : Vfd *vfdP = &VfdCache[mru];
1235 : char buf[2048];
1236 :
1237 : snprintf(buf, sizeof(buf), "LRU: MOST %d ", mru);
1238 : while (mru != 0)
1239 : {
1240 : mru = vfdP->lruLessRecently;
1241 : vfdP = &VfdCache[mru];
1242 : snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%d ", mru);
1243 : }
1244 : snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "LEAST");
1245 : elog(LOG, "%s", buf);
1246 : }
1247 : #endif /* FDDEBUG */
1248 :
1249 : static void
1250 2736444 : Delete(File file)
1251 : {
1252 : Vfd *vfdP;
1253 :
1254 : Assert(file != 0);
1255 :
1256 : DO_DB(elog(LOG, "Delete %d (%s)",
1257 : file, VfdCache[file].fileName));
1258 : DO_DB(_dump_lru());
1259 :
1260 2736444 : vfdP = &VfdCache[file];
1261 :
1262 2736444 : VfdCache[vfdP->lruLessRecently].lruMoreRecently = vfdP->lruMoreRecently;
1263 2736444 : VfdCache[vfdP->lruMoreRecently].lruLessRecently = vfdP->lruLessRecently;
1264 :
1265 : DO_DB(_dump_lru());
1266 2736444 : }
1267 :
1268 : static void
1269 4980 : LruDelete(File file)
1270 : {
1271 : Vfd *vfdP;
1272 :
1273 : Assert(file != 0);
1274 :
1275 : DO_DB(elog(LOG, "LruDelete %d (%s)",
1276 : file, VfdCache[file].fileName));
1277 :
1278 4980 : vfdP = &VfdCache[file];
1279 :
1280 4980 : pgaio_closing_fd(vfdP->fd);
1281 :
1282 : /*
1283 : * Close the file. We aren't expecting this to fail; if it does, better
1284 : * to leak the FD than to mess up our internal state.
1285 : */
1286 4980 : if (close(vfdP->fd) != 0)
1287 0 : elog(vfdP->fdstate & FD_TEMP_FILE_LIMIT ? LOG : data_sync_elevel(LOG),
1288 : "could not close file \"%s\": %m", vfdP->fileName);
1289 4980 : vfdP->fd = VFD_CLOSED;
1290 4980 : --nfile;
1291 :
1292 : /* delete the vfd record from the LRU ring */
1293 4980 : Delete(file);
1294 4980 : }
1295 :
1296 : static void
1297 3764298 : Insert(File file)
1298 : {
1299 : Vfd *vfdP;
1300 :
1301 : Assert(file != 0);
1302 :
1303 : DO_DB(elog(LOG, "Insert %d (%s)",
1304 : file, VfdCache[file].fileName));
1305 : DO_DB(_dump_lru());
1306 :
1307 3764298 : vfdP = &VfdCache[file];
1308 :
1309 3764298 : vfdP->lruMoreRecently = 0;
1310 3764298 : vfdP->lruLessRecently = VfdCache[0].lruLessRecently;
1311 3764298 : VfdCache[0].lruLessRecently = file;
1312 3764298 : VfdCache[vfdP->lruLessRecently].lruMoreRecently = file;
1313 :
1314 : DO_DB(_dump_lru());
1315 3764298 : }
1316 :
1317 : /* returns 0 on success, -1 on re-open failure (with errno set) */
1318 : static int
1319 60 : LruInsert(File file)
1320 : {
1321 : Vfd *vfdP;
1322 :
1323 : Assert(file != 0);
1324 :
1325 : DO_DB(elog(LOG, "LruInsert %d (%s)",
1326 : file, VfdCache[file].fileName));
1327 :
1328 60 : vfdP = &VfdCache[file];
1329 :
1330 60 : if (FileIsNotOpen(file))
1331 : {
1332 : /* Close excess kernel FDs. */
1333 60 : ReleaseLruFiles();
1334 :
1335 : /*
1336 : * The open could still fail for lack of file descriptors, eg due to
1337 : * overall system file table being full. So, be prepared to release
1338 : * another FD if necessary...
1339 : */
1340 60 : vfdP->fd = BasicOpenFilePerm(vfdP->fileName, vfdP->fileFlags,
1341 : vfdP->fileMode);
1342 60 : if (vfdP->fd < 0)
1343 : {
1344 : DO_DB(elog(LOG, "re-open failed: %m"));
1345 0 : return -1;
1346 : }
1347 : else
1348 : {
1349 60 : ++nfile;
1350 : }
1351 : }
1352 :
1353 : /*
1354 : * put it at the head of the Lru ring
1355 : */
1356 :
1357 60 : Insert(file);
1358 :
1359 60 : return 0;
1360 : }
1361 :
1362 : /*
1363 : * Release one kernel FD by closing the least-recently-used VFD.
1364 : */
1365 : static bool
1366 4690 : ReleaseLruFile(void)
1367 : {
1368 : DO_DB(elog(LOG, "ReleaseLruFile. Opened %d", nfile));
1369 :
1370 4690 : if (nfile > 0)
1371 : {
1372 : /*
1373 : * There are opened files and so there should be at least one used vfd
1374 : * in the ring.
1375 : */
1376 : Assert(VfdCache[0].lruMoreRecently != 0);
1377 4690 : LruDelete(VfdCache[0].lruMoreRecently);
1378 4690 : return true; /* freed a file */
1379 : }
1380 0 : return false; /* no files available to free */
1381 : }
1382 :
1383 : /*
1384 : * Release kernel FDs as needed to get under the max_safe_fds limit.
1385 : * After calling this, it's OK to try to open another file.
1386 : */
1387 : static void
1388 19331902 : ReleaseLruFiles(void)
1389 : {
1390 19336592 : while (nfile + numAllocatedDescs + numExternalFDs >= max_safe_fds)
1391 : {
1392 4690 : if (!ReleaseLruFile())
1393 0 : break;
1394 : }
1395 19331902 : }
1396 :
1397 : static File
1398 3085050 : AllocateVfd(void)
1399 : {
1400 : Index i;
1401 : File file;
1402 :
1403 : DO_DB(elog(LOG, "AllocateVfd. Size %zu", SizeVfdCache));
1404 :
1405 : Assert(SizeVfdCache > 0); /* InitFileAccess not called? */
1406 :
1407 3085050 : if (VfdCache[0].nextFree == 0)
1408 : {
1409 : /*
1410 : * The free list is empty so it is time to increase the size of the
1411 : * array. We choose to double it each time this happens. However,
1412 : * there's not much point in starting *real* small.
1413 : */
1414 55230 : Size newCacheSize = SizeVfdCache * 2;
1415 : Vfd *newVfdCache;
1416 :
1417 55230 : if (newCacheSize < 32)
1418 38622 : newCacheSize = 32;
1419 :
1420 : /*
1421 : * Be careful not to clobber VfdCache ptr if realloc fails.
1422 : */
1423 55230 : newVfdCache = (Vfd *) realloc(VfdCache, sizeof(Vfd) * newCacheSize);
1424 55230 : if (newVfdCache == NULL)
1425 0 : ereport(ERROR,
1426 : (errcode(ERRCODE_OUT_OF_MEMORY),
1427 : errmsg("out of memory")));
1428 55230 : VfdCache = newVfdCache;
1429 :
1430 : /*
1431 : * Initialize the new entries and link them into the free list.
1432 : */
1433 2705952 : for (i = SizeVfdCache; i < newCacheSize; i++)
1434 : {
1435 21205776 : MemSet(&(VfdCache[i]), 0, sizeof(Vfd));
1436 2650722 : VfdCache[i].nextFree = i + 1;
1437 2650722 : VfdCache[i].fd = VFD_CLOSED;
1438 : }
1439 55230 : VfdCache[newCacheSize - 1].nextFree = 0;
1440 55230 : VfdCache[0].nextFree = SizeVfdCache;
1441 :
1442 : /*
1443 : * Record the new size
1444 : */
1445 55230 : SizeVfdCache = newCacheSize;
1446 : }
1447 :
1448 3085050 : file = VfdCache[0].nextFree;
1449 :
1450 3085050 : VfdCache[0].nextFree = VfdCache[file].nextFree;
1451 :
1452 3085050 : return file;
1453 : }
1454 :
1455 : static void
1456 2052498 : FreeVfd(File file)
1457 : {
1458 2052498 : Vfd *vfdP = &VfdCache[file];
1459 :
1460 : DO_DB(elog(LOG, "FreeVfd: %d (%s)",
1461 : file, vfdP->fileName ? vfdP->fileName : ""));
1462 :
1463 2052498 : if (vfdP->fileName != NULL)
1464 : {
1465 1141808 : free(vfdP->fileName);
1466 1141808 : vfdP->fileName = NULL;
1467 : }
1468 2052498 : vfdP->fdstate = 0x0;
1469 :
1470 2052498 : vfdP->nextFree = VfdCache[0].nextFree;
1471 2052498 : VfdCache[0].nextFree = file;
1472 2052498 : }
1473 :
1474 : /* returns 0 on success, -1 on re-open failure (with errno set) */
1475 : static int
1476 6054420 : FileAccess(File file)
1477 : {
1478 : int returnValue;
1479 :
1480 : DO_DB(elog(LOG, "FileAccess %d (%s)",
1481 : file, VfdCache[file].fileName));
1482 :
1483 : /*
1484 : * Is the file open? If not, open it and put it at the head of the LRU
1485 : * ring (possibly closing the least recently used file to get an FD).
1486 : */
1487 :
1488 6054420 : if (FileIsNotOpen(file))
1489 : {
1490 60 : returnValue = LruInsert(file);
1491 60 : if (returnValue != 0)
1492 0 : return returnValue;
1493 : }
1494 6054360 : else if (VfdCache[0].lruLessRecently != file)
1495 : {
1496 : /*
1497 : * We now know that the file is open and that it is not the last one
1498 : * accessed, so we need to move it to the head of the Lru ring.
1499 : */
1500 :
1501 1589878 : Delete(file);
1502 1589878 : Insert(file);
1503 : }
1504 :
1505 6054420 : return 0;
1506 : }
1507 :
1508 : /*
1509 : * Called whenever a temporary file is deleted to report its size.
1510 : */
1511 : static void
1512 4668 : ReportTemporaryFileUsage(const char *path, pgoff_t size)
1513 : {
1514 4668 : pgstat_report_tempfile(size);
1515 :
1516 4668 : if (log_temp_files >= 0)
1517 : {
1518 1440 : if ((size / 1024) >= log_temp_files)
1519 230 : ereport(LOG,
1520 : (errmsg("temporary file: path \"%s\", size %lu",
1521 : path, (unsigned long) size)));
1522 : }
1523 4668 : }
1524 :
1525 : /*
1526 : * Called to register a temporary file for automatic close.
1527 : * ResourceOwnerEnlarge(CurrentResourceOwner) must have been called
1528 : * before the file was opened.
1529 : */
1530 : static void
1531 7810 : RegisterTemporaryFile(File file)
1532 : {
1533 7810 : ResourceOwnerRememberFile(CurrentResourceOwner, file);
1534 7810 : VfdCache[file].resowner = CurrentResourceOwner;
1535 :
1536 : /* Backup mechanism for closing at end of xact. */
1537 7810 : VfdCache[file].fdstate |= FD_CLOSE_AT_EOXACT;
1538 7810 : have_xact_temporary_files = true;
1539 7810 : }
1540 :
1541 : /*
1542 : * Called when we get a shared invalidation message on some relation.
1543 : */
1544 : #ifdef NOT_USED
1545 : void
1546 : FileInvalidate(File file)
1547 : {
1548 : Assert(FileIsValid(file));
1549 : if (!FileIsNotOpen(file))
1550 : LruDelete(file);
1551 : }
1552 : #endif
1553 :
1554 : /*
1555 : * Open a file with PathNameOpenFilePerm() and pass default file mode for the
1556 : * fileMode parameter.
1557 : */
1558 : File
1559 3085050 : PathNameOpenFile(const char *fileName, int fileFlags)
1560 : {
1561 3085050 : return PathNameOpenFilePerm(fileName, fileFlags, pg_file_create_mode);
1562 : }
1563 :
1564 : /*
1565 : * open a file in an arbitrary directory
1566 : *
1567 : * NB: if the passed pathname is relative (which it usually is),
1568 : * it will be interpreted relative to the process' working directory
1569 : * (which should always be $PGDATA when this code is running).
1570 : */
1571 : File
1572 3085050 : PathNameOpenFilePerm(const char *fileName, int fileFlags, mode_t fileMode)
1573 : {
1574 : char *fnamecopy;
1575 : File file;
1576 : Vfd *vfdP;
1577 :
1578 : DO_DB(elog(LOG, "PathNameOpenFilePerm: %s %x %o",
1579 : fileName, fileFlags, fileMode));
1580 :
1581 : /*
1582 : * We need a malloc'd copy of the file name; fail cleanly if no room.
1583 : */
1584 3085050 : fnamecopy = strdup(fileName);
1585 3085050 : if (fnamecopy == NULL)
1586 0 : ereport(ERROR,
1587 : (errcode(ERRCODE_OUT_OF_MEMORY),
1588 : errmsg("out of memory")));
1589 :
1590 3085050 : file = AllocateVfd();
1591 3085050 : vfdP = &VfdCache[file];
1592 :
1593 : /* Close excess kernel FDs. */
1594 3085050 : ReleaseLruFiles();
1595 :
1596 : /*
1597 : * Descriptors managed by VFDs are implicitly marked O_CLOEXEC. The
1598 : * client shouldn't be expected to know which kernel descriptors are
1599 : * currently open, so it wouldn't make sense for them to be inherited by
1600 : * executed subprograms.
1601 : */
1602 3085050 : fileFlags |= O_CLOEXEC;
1603 :
1604 3085050 : vfdP->fd = BasicOpenFilePerm(fileName, fileFlags, fileMode);
1605 :
1606 3085050 : if (vfdP->fd < 0)
1607 : {
1608 910690 : int save_errno = errno;
1609 :
1610 910690 : FreeVfd(file);
1611 910690 : free(fnamecopy);
1612 910690 : errno = save_errno;
1613 910690 : return -1;
1614 : }
1615 2174360 : ++nfile;
1616 : DO_DB(elog(LOG, "PathNameOpenFile: success %d",
1617 : vfdP->fd));
1618 :
1619 2174360 : vfdP->fileName = fnamecopy;
1620 : /* Saved flags are adjusted to be OK for re-opening file */
1621 2174360 : vfdP->fileFlags = fileFlags & ~(O_CREAT | O_TRUNC | O_EXCL);
1622 2174360 : vfdP->fileMode = fileMode;
1623 2174360 : vfdP->fileSize = 0;
1624 2174360 : vfdP->fdstate = 0x0;
1625 2174360 : vfdP->resowner = NULL;
1626 :
1627 2174360 : Insert(file);
1628 :
1629 2174360 : return file;
1630 : }
1631 :
1632 : /*
1633 : * Create directory 'directory'. If necessary, create 'basedir', which must
1634 : * be the directory above it. This is designed for creating the top-level
1635 : * temporary directory on demand before creating a directory underneath it.
1636 : * Do nothing if the directory already exists.
1637 : *
1638 : * Directories created within the top-level temporary directory should begin
1639 : * with PG_TEMP_FILE_PREFIX, so that they can be identified as temporary and
1640 : * deleted at startup by RemovePgTempFiles(). Further subdirectories below
1641 : * that do not need any particular prefix.
1642 : */
1643 : void
1644 366 : PathNameCreateTemporaryDir(const char *basedir, const char *directory)
1645 : {
1646 366 : if (MakePGDirectory(directory) < 0)
1647 : {
1648 36 : if (errno == EEXIST)
1649 14 : return;
1650 :
1651 : /*
1652 : * Failed. Try to create basedir first in case it's missing. Tolerate
1653 : * EEXIST to close a race against another process following the same
1654 : * algorithm.
1655 : */
1656 22 : if (MakePGDirectory(basedir) < 0 && errno != EEXIST)
1657 0 : ereport(ERROR,
1658 : (errcode_for_file_access(),
1659 : errmsg("cannot create temporary directory \"%s\": %m",
1660 : basedir)));
1661 :
1662 : /* Try again. */
1663 22 : if (MakePGDirectory(directory) < 0 && errno != EEXIST)
1664 0 : ereport(ERROR,
1665 : (errcode_for_file_access(),
1666 : errmsg("cannot create temporary subdirectory \"%s\": %m",
1667 : directory)));
1668 : }
1669 : }
1670 :
1671 : /*
1672 : * Delete a directory and everything in it, if it exists.
1673 : */
1674 : void
1675 436 : PathNameDeleteTemporaryDir(const char *dirname)
1676 : {
1677 : struct stat statbuf;
1678 :
1679 : /* Silently ignore missing directory. */
1680 436 : if (stat(dirname, &statbuf) != 0 && errno == ENOENT)
1681 86 : return;
1682 :
1683 : /*
1684 : * Currently, walkdir doesn't offer a way for our passed in function to
1685 : * maintain state. Perhaps it should, so that we could tell the caller
1686 : * whether this operation succeeded or failed. Since this operation is
1687 : * used in a cleanup path, we wouldn't actually behave differently: we'll
1688 : * just log failures.
1689 : */
1690 350 : walkdir(dirname, unlink_if_exists_fname, false, LOG);
1691 : }
1692 :
1693 : /*
1694 : * Open a temporary file that will disappear when we close it.
1695 : *
1696 : * This routine takes care of generating an appropriate tempfile name.
1697 : * There's no need to pass in fileFlags or fileMode either, since only
1698 : * one setting makes any sense for a temp file.
1699 : *
1700 : * Unless interXact is true, the file is remembered by CurrentResourceOwner
1701 : * to ensure it's closed and deleted when it's no longer needed, typically at
1702 : * the end-of-transaction. In most cases, you don't want temporary files to
1703 : * outlive the transaction that created them, so this should be false -- but
1704 : * if you need "somewhat" temporary storage, this might be useful. In either
1705 : * case, the file is removed when the File is explicitly closed.
1706 : */
1707 : File
1708 2434 : OpenTemporaryFile(bool interXact)
1709 : {
1710 2434 : File file = 0;
1711 :
1712 : Assert(temporary_files_allowed); /* check temp file access is up */
1713 :
1714 : /*
1715 : * Make sure the current resource owner has space for this File before we
1716 : * open it, if we'll be registering it below.
1717 : */
1718 2434 : if (!interXact)
1719 2434 : ResourceOwnerEnlarge(CurrentResourceOwner);
1720 :
1721 : /*
1722 : * If some temp tablespace(s) have been given to us, try to use the next
1723 : * one. If a given tablespace can't be found, we silently fall back to
1724 : * the database's default tablespace.
1725 : *
1726 : * BUT: if the temp file is slated to outlive the current transaction,
1727 : * force it into the database's default tablespace, so that it will not
1728 : * pose a threat to possible tablespace drop attempts.
1729 : */
1730 2434 : if (numTempTableSpaces > 0 && !interXact)
1731 : {
1732 2 : Oid tblspcOid = GetNextTempTableSpace();
1733 :
1734 2 : if (OidIsValid(tblspcOid))
1735 2 : file = OpenTemporaryFileInTablespace(tblspcOid, false);
1736 : }
1737 :
1738 : /*
1739 : * If not, or if tablespace is bad, create in database's default
1740 : * tablespace. MyDatabaseTableSpace should normally be set before we get
1741 : * here, but just in case it isn't, fall back to pg_default tablespace.
1742 : */
1743 2434 : if (file <= 0)
1744 2432 : file = OpenTemporaryFileInTablespace(MyDatabaseTableSpace ?
1745 : MyDatabaseTableSpace :
1746 : DEFAULTTABLESPACE_OID,
1747 : true);
1748 :
1749 : /* Mark it for deletion at close and temporary file size limit */
1750 2434 : VfdCache[file].fdstate |= FD_DELETE_AT_CLOSE | FD_TEMP_FILE_LIMIT;
1751 :
1752 : /* Register it with the current resource owner */
1753 2434 : if (!interXact)
1754 2434 : RegisterTemporaryFile(file);
1755 :
1756 2434 : return file;
1757 : }
1758 :
1759 : /*
1760 : * Return the path of the temp directory in a given tablespace.
1761 : */
1762 : void
1763 15682 : TempTablespacePath(char *path, Oid tablespace)
1764 : {
1765 : /*
1766 : * Identify the tempfile directory for this tablespace.
1767 : *
1768 : * If someone tries to specify pg_global, use pg_default instead.
1769 : */
1770 15682 : if (tablespace == InvalidOid ||
1771 2 : tablespace == DEFAULTTABLESPACE_OID ||
1772 : tablespace == GLOBALTABLESPACE_OID)
1773 15680 : snprintf(path, MAXPGPATH, "base/%s", PG_TEMP_FILES_DIR);
1774 : else
1775 : {
1776 : /* All other tablespaces are accessed via symlinks */
1777 2 : snprintf(path, MAXPGPATH, "%s/%u/%s/%s",
1778 : PG_TBLSPC_DIR, tablespace, TABLESPACE_VERSION_DIRECTORY,
1779 : PG_TEMP_FILES_DIR);
1780 : }
1781 15682 : }
1782 :
1783 : /*
1784 : * Open a temporary file in a specific tablespace.
1785 : * Subroutine for OpenTemporaryFile, which see for details.
1786 : */
1787 : static File
1788 2434 : OpenTemporaryFileInTablespace(Oid tblspcOid, bool rejectError)
1789 : {
1790 : char tempdirpath[MAXPGPATH];
1791 : char tempfilepath[MAXPGPATH];
1792 : File file;
1793 :
1794 2434 : TempTablespacePath(tempdirpath, tblspcOid);
1795 :
1796 : /*
1797 : * Generate a tempfile name that should be unique within the current
1798 : * database instance.
1799 : */
1800 2434 : snprintf(tempfilepath, sizeof(tempfilepath), "%s/%s%d.%ld",
1801 : tempdirpath, PG_TEMP_FILE_PREFIX, MyProcPid, tempFileCounter++);
1802 :
1803 : /*
1804 : * Open the file. Note: we don't use O_EXCL, in case there is an orphaned
1805 : * temp file that can be reused.
1806 : */
1807 2434 : file = PathNameOpenFile(tempfilepath,
1808 : O_RDWR | O_CREAT | O_TRUNC | PG_BINARY);
1809 2434 : if (file <= 0)
1810 : {
1811 : /*
1812 : * We might need to create the tablespace's tempfile directory, if no
1813 : * one has yet done so.
1814 : *
1815 : * Don't check for an error from MakePGDirectory; it could fail if
1816 : * someone else just did the same thing. If it doesn't work then
1817 : * we'll bomb out on the second create attempt, instead.
1818 : */
1819 192 : (void) MakePGDirectory(tempdirpath);
1820 :
1821 192 : file = PathNameOpenFile(tempfilepath,
1822 : O_RDWR | O_CREAT | O_TRUNC | PG_BINARY);
1823 192 : if (file <= 0 && rejectError)
1824 0 : elog(ERROR, "could not create temporary file \"%s\": %m",
1825 : tempfilepath);
1826 : }
1827 :
1828 2434 : return file;
1829 : }
1830 :
1831 :
1832 : /*
1833 : * Create a new file. The directory containing it must already exist. Files
1834 : * created this way are subject to temp_file_limit and are automatically
1835 : * closed at end of transaction, but are not automatically deleted on close
1836 : * because they are intended to be shared between cooperating backends.
1837 : *
1838 : * If the file is inside the top-level temporary directory, its name should
1839 : * begin with PG_TEMP_FILE_PREFIX so that it can be identified as temporary
1840 : * and deleted at startup by RemovePgTempFiles(). Alternatively, it can be
1841 : * inside a directory created with PathNameCreateTemporaryDir(), in which case
1842 : * the prefix isn't needed.
1843 : */
1844 : File
1845 2600 : PathNameCreateTemporaryFile(const char *path, bool error_on_failure)
1846 : {
1847 : File file;
1848 :
1849 : Assert(temporary_files_allowed); /* check temp file access is up */
1850 :
1851 2600 : ResourceOwnerEnlarge(CurrentResourceOwner);
1852 :
1853 : /*
1854 : * Open the file. Note: we don't use O_EXCL, in case there is an orphaned
1855 : * temp file that can be reused.
1856 : */
1857 2600 : file = PathNameOpenFile(path, O_RDWR | O_CREAT | O_TRUNC | PG_BINARY);
1858 2600 : if (file <= 0)
1859 : {
1860 366 : if (error_on_failure)
1861 0 : ereport(ERROR,
1862 : (errcode_for_file_access(),
1863 : errmsg("could not create temporary file \"%s\": %m",
1864 : path)));
1865 : else
1866 366 : return file;
1867 : }
1868 :
1869 : /* Mark it for temp_file_limit accounting. */
1870 2234 : VfdCache[file].fdstate |= FD_TEMP_FILE_LIMIT;
1871 :
1872 : /* Register it for automatic close. */
1873 2234 : RegisterTemporaryFile(file);
1874 :
1875 2234 : return file;
1876 : }
1877 :
1878 : /*
1879 : * Open a file that was created with PathNameCreateTemporaryFile, possibly in
1880 : * another backend. Files opened this way don't count against the
1881 : * temp_file_limit of the caller, are automatically closed at the end of the
1882 : * transaction but are not deleted on close.
1883 : */
1884 : File
1885 6830 : PathNameOpenTemporaryFile(const char *path, int mode)
1886 : {
1887 : File file;
1888 :
1889 : Assert(temporary_files_allowed); /* check temp file access is up */
1890 :
1891 6830 : ResourceOwnerEnlarge(CurrentResourceOwner);
1892 :
1893 6830 : file = PathNameOpenFile(path, mode | PG_BINARY);
1894 :
1895 : /* If no such file, then we don't raise an error. */
1896 6830 : if (file <= 0 && errno != ENOENT)
1897 0 : ereport(ERROR,
1898 : (errcode_for_file_access(),
1899 : errmsg("could not open temporary file \"%s\": %m",
1900 : path)));
1901 :
1902 6830 : if (file > 0)
1903 : {
1904 : /* Register it for automatic close. */
1905 3142 : RegisterTemporaryFile(file);
1906 : }
1907 :
1908 6830 : return file;
1909 : }
1910 :
1911 : /*
1912 : * Delete a file by pathname. Return true if the file existed, false if
1913 : * didn't.
1914 : */
1915 : bool
1916 5172 : PathNameDeleteTemporaryFile(const char *path, bool error_on_failure)
1917 : {
1918 : struct stat filestats;
1919 : int stat_errno;
1920 :
1921 : /* Get the final size for pgstat reporting. */
1922 5172 : if (stat(path, &filestats) != 0)
1923 2938 : stat_errno = errno;
1924 : else
1925 2234 : stat_errno = 0;
1926 :
1927 : /*
1928 : * Unlike FileClose's automatic file deletion code, we tolerate
1929 : * non-existence to support BufFileDeleteFileSet which doesn't know how
1930 : * many segments it has to delete until it runs out.
1931 : */
1932 5172 : if (stat_errno == ENOENT)
1933 2938 : return false;
1934 :
1935 2234 : if (unlink(path) < 0)
1936 : {
1937 0 : if (errno != ENOENT)
1938 0 : ereport(error_on_failure ? ERROR : LOG,
1939 : (errcode_for_file_access(),
1940 : errmsg("could not unlink temporary file \"%s\": %m",
1941 : path)));
1942 0 : return false;
1943 : }
1944 :
1945 2234 : if (stat_errno == 0)
1946 2234 : ReportTemporaryFileUsage(path, filestats.st_size);
1947 : else
1948 : {
1949 0 : errno = stat_errno;
1950 0 : ereport(LOG,
1951 : (errcode_for_file_access(),
1952 : errmsg("could not stat file \"%s\": %m", path)));
1953 : }
1954 :
1955 2234 : return true;
1956 : }
1957 :
1958 : /*
1959 : * close a file when done with it
1960 : */
1961 : void
1962 1141808 : FileClose(File file)
1963 : {
1964 : Vfd *vfdP;
1965 :
1966 : Assert(FileIsValid(file));
1967 :
1968 : DO_DB(elog(LOG, "FileClose: %d (%s)",
1969 : file, VfdCache[file].fileName));
1970 :
1971 1141808 : vfdP = &VfdCache[file];
1972 :
1973 1141808 : if (!FileIsNotOpen(file))
1974 : {
1975 1141586 : pgaio_closing_fd(vfdP->fd);
1976 :
1977 : /* close the file */
1978 1141586 : if (close(vfdP->fd) != 0)
1979 : {
1980 : /*
1981 : * We may need to panic on failure to close non-temporary files;
1982 : * see LruDelete.
1983 : */
1984 0 : elog(vfdP->fdstate & FD_TEMP_FILE_LIMIT ? LOG : data_sync_elevel(LOG),
1985 : "could not close file \"%s\": %m", vfdP->fileName);
1986 : }
1987 :
1988 1141586 : --nfile;
1989 1141586 : vfdP->fd = VFD_CLOSED;
1990 :
1991 : /* remove the file from the lru ring */
1992 1141586 : Delete(file);
1993 : }
1994 :
1995 1141808 : if (vfdP->fdstate & FD_TEMP_FILE_LIMIT)
1996 : {
1997 : /* Subtract its size from current usage (do first in case of error) */
1998 4668 : temporary_files_size -= vfdP->fileSize;
1999 4668 : vfdP->fileSize = 0;
2000 : }
2001 :
2002 : /*
2003 : * Delete the file if it was temporary, and make a log entry if wanted
2004 : */
2005 1141808 : if (vfdP->fdstate & FD_DELETE_AT_CLOSE)
2006 : {
2007 : struct stat filestats;
2008 : int stat_errno;
2009 :
2010 : /*
2011 : * If we get an error, as could happen within the ereport/elog calls,
2012 : * we'll come right back here during transaction abort. Reset the
2013 : * flag to ensure that we can't get into an infinite loop. This code
2014 : * is arranged to ensure that the worst-case consequence is failing to
2015 : * emit log message(s), not failing to attempt the unlink.
2016 : */
2017 2434 : vfdP->fdstate &= ~FD_DELETE_AT_CLOSE;
2018 :
2019 :
2020 : /* first try the stat() */
2021 2434 : if (stat(vfdP->fileName, &filestats))
2022 0 : stat_errno = errno;
2023 : else
2024 2434 : stat_errno = 0;
2025 :
2026 : /* in any case do the unlink */
2027 2434 : if (unlink(vfdP->fileName))
2028 0 : ereport(LOG,
2029 : (errcode_for_file_access(),
2030 : errmsg("could not delete file \"%s\": %m", vfdP->fileName)));
2031 :
2032 : /* and last report the stat results */
2033 2434 : if (stat_errno == 0)
2034 2434 : ReportTemporaryFileUsage(vfdP->fileName, filestats.st_size);
2035 : else
2036 : {
2037 0 : errno = stat_errno;
2038 0 : ereport(LOG,
2039 : (errcode_for_file_access(),
2040 : errmsg("could not stat file \"%s\": %m", vfdP->fileName)));
2041 : }
2042 : }
2043 :
2044 : /* Unregister it from the resource owner */
2045 1141808 : if (vfdP->resowner)
2046 7802 : ResourceOwnerForgetFile(vfdP->resowner, file);
2047 :
2048 : /*
2049 : * Return the Vfd slot to the free list
2050 : */
2051 1141808 : FreeVfd(file);
2052 1141808 : }
2053 :
2054 : /*
2055 : * FilePrefetch - initiate asynchronous read of a given range of the file.
2056 : *
2057 : * Returns 0 on success, otherwise an errno error code (like posix_fadvise()).
2058 : *
2059 : * posix_fadvise() is the simplest standardized interface that accomplishes
2060 : * this.
2061 : */
2062 : int
2063 17020 : FilePrefetch(File file, pgoff_t offset, pgoff_t amount, uint32 wait_event_info)
2064 : {
2065 : Assert(FileIsValid(file));
2066 :
2067 : DO_DB(elog(LOG, "FilePrefetch: %d (%s) " INT64_FORMAT " " INT64_FORMAT,
2068 : file, VfdCache[file].fileName,
2069 : (int64) offset, (int64) amount));
2070 :
2071 : #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_WILLNEED)
2072 : {
2073 : int returnCode;
2074 :
2075 17020 : returnCode = FileAccess(file);
2076 17020 : if (returnCode < 0)
2077 0 : return returnCode;
2078 :
2079 17020 : retry:
2080 17020 : pgstat_report_wait_start(wait_event_info);
2081 17020 : returnCode = posix_fadvise(VfdCache[file].fd, offset, amount,
2082 : POSIX_FADV_WILLNEED);
2083 17020 : pgstat_report_wait_end();
2084 :
2085 17020 : if (returnCode == EINTR)
2086 0 : goto retry;
2087 :
2088 17020 : return returnCode;
2089 : }
2090 : #elif defined(__darwin__)
2091 : {
2092 : struct radvisory
2093 : {
2094 : off_t ra_offset; /* offset into the file */
2095 : int ra_count; /* size of the read */
2096 : } ra;
2097 : int returnCode;
2098 :
2099 : returnCode = FileAccess(file);
2100 : if (returnCode < 0)
2101 : return returnCode;
2102 :
2103 : ra.ra_offset = offset;
2104 : ra.ra_count = amount;
2105 : pgstat_report_wait_start(wait_event_info);
2106 : returnCode = fcntl(VfdCache[file].fd, F_RDADVISE, &ra);
2107 : pgstat_report_wait_end();
2108 : if (returnCode != -1)
2109 : return 0;
2110 : else
2111 : return errno;
2112 : }
2113 : #else
2114 : return 0;
2115 : #endif
2116 : }
2117 :
2118 : void
2119 0 : FileWriteback(File file, pgoff_t offset, pgoff_t nbytes, uint32 wait_event_info)
2120 : {
2121 : int returnCode;
2122 :
2123 : Assert(FileIsValid(file));
2124 :
2125 : DO_DB(elog(LOG, "FileWriteback: %d (%s) " INT64_FORMAT " " INT64_FORMAT,
2126 : file, VfdCache[file].fileName,
2127 : (int64) offset, (int64) nbytes));
2128 :
2129 0 : if (nbytes <= 0)
2130 0 : return;
2131 :
2132 0 : if (VfdCache[file].fileFlags & PG_O_DIRECT)
2133 0 : return;
2134 :
2135 0 : returnCode = FileAccess(file);
2136 0 : if (returnCode < 0)
2137 0 : return;
2138 :
2139 0 : pgstat_report_wait_start(wait_event_info);
2140 0 : pg_flush_data(VfdCache[file].fd, offset, nbytes);
2141 0 : pgstat_report_wait_end();
2142 : }
2143 :
2144 : ssize_t
2145 792230 : FileReadV(File file, const struct iovec *iov, int iovcnt, pgoff_t offset,
2146 : uint32 wait_event_info)
2147 : {
2148 : ssize_t returnCode;
2149 : Vfd *vfdP;
2150 :
2151 : Assert(FileIsValid(file));
2152 :
2153 : DO_DB(elog(LOG, "FileReadV: %d (%s) " INT64_FORMAT " %d",
2154 : file, VfdCache[file].fileName,
2155 : (int64) offset,
2156 : iovcnt));
2157 :
2158 792230 : returnCode = FileAccess(file);
2159 792230 : if (returnCode < 0)
2160 0 : return returnCode;
2161 :
2162 792230 : vfdP = &VfdCache[file];
2163 :
2164 792230 : retry:
2165 792230 : pgstat_report_wait_start(wait_event_info);
2166 792230 : returnCode = pg_preadv(vfdP->fd, iov, iovcnt, offset);
2167 792230 : pgstat_report_wait_end();
2168 :
2169 792230 : if (returnCode < 0)
2170 : {
2171 : /*
2172 : * Windows may run out of kernel buffers and return "Insufficient
2173 : * system resources" error. Wait a bit and retry to solve it.
2174 : *
2175 : * It is rumored that EINTR is also possible on some Unix filesystems,
2176 : * in which case immediate retry is indicated.
2177 : */
2178 : #ifdef WIN32
2179 : DWORD error = GetLastError();
2180 :
2181 : switch (error)
2182 : {
2183 : case ERROR_NO_SYSTEM_RESOURCES:
2184 : pg_usleep(1000L);
2185 : errno = EINTR;
2186 : break;
2187 : default:
2188 : _dosmaperr(error);
2189 : break;
2190 : }
2191 : #endif
2192 : /* OK to retry if interrupted */
2193 0 : if (errno == EINTR)
2194 0 : goto retry;
2195 : }
2196 :
2197 792230 : return returnCode;
2198 : }
2199 :
2200 : int
2201 2464766 : FileStartReadV(PgAioHandle *ioh, File file,
2202 : int iovcnt, pgoff_t offset,
2203 : uint32 wait_event_info)
2204 : {
2205 : int returnCode;
2206 : Vfd *vfdP;
2207 :
2208 : Assert(FileIsValid(file));
2209 :
2210 : DO_DB(elog(LOG, "FileStartReadV: %d (%s) " INT64_FORMAT " %d",
2211 : file, VfdCache[file].fileName,
2212 : (int64) offset,
2213 : iovcnt));
2214 :
2215 2464766 : returnCode = FileAccess(file);
2216 2464766 : if (returnCode < 0)
2217 0 : return returnCode;
2218 :
2219 2464766 : vfdP = &VfdCache[file];
2220 :
2221 2464766 : pgaio_io_start_readv(ioh, vfdP->fd, iovcnt, offset);
2222 :
2223 2464766 : return 0;
2224 : }
2225 :
2226 : ssize_t
2227 1503444 : FileWriteV(File file, const struct iovec *iov, int iovcnt, pgoff_t offset,
2228 : uint32 wait_event_info)
2229 : {
2230 : ssize_t returnCode;
2231 : Vfd *vfdP;
2232 :
2233 : Assert(FileIsValid(file));
2234 :
2235 : DO_DB(elog(LOG, "FileWriteV: %d (%s) " INT64_FORMAT " %d",
2236 : file, VfdCache[file].fileName,
2237 : (int64) offset,
2238 : iovcnt));
2239 :
2240 1503444 : returnCode = FileAccess(file);
2241 1503444 : if (returnCode < 0)
2242 0 : return returnCode;
2243 :
2244 1503444 : vfdP = &VfdCache[file];
2245 :
2246 : /*
2247 : * If enforcing temp_file_limit and it's a temp file, check to see if the
2248 : * write would overrun temp_file_limit, and throw error if so. Note: it's
2249 : * really a modularity violation to throw error here; we should set errno
2250 : * and return -1. However, there's no way to report a suitable error
2251 : * message if we do that. All current callers would just throw error
2252 : * immediately anyway, so this is safe at present.
2253 : */
2254 1503444 : if (temp_file_limit >= 0 && (vfdP->fdstate & FD_TEMP_FILE_LIMIT))
2255 : {
2256 0 : pgoff_t past_write = offset;
2257 :
2258 0 : for (int i = 0; i < iovcnt; ++i)
2259 0 : past_write += iov[i].iov_len;
2260 :
2261 0 : if (past_write > vfdP->fileSize)
2262 : {
2263 0 : uint64 newTotal = temporary_files_size;
2264 :
2265 0 : newTotal += past_write - vfdP->fileSize;
2266 0 : if (newTotal > (uint64) temp_file_limit * (uint64) 1024)
2267 0 : ereport(ERROR,
2268 : (errcode(ERRCODE_CONFIGURATION_LIMIT_EXCEEDED),
2269 : errmsg("temporary file size exceeds \"temp_file_limit\" (%dkB)",
2270 : temp_file_limit)));
2271 : }
2272 : }
2273 :
2274 1503444 : retry:
2275 1503444 : pgstat_report_wait_start(wait_event_info);
2276 1503444 : returnCode = pg_pwritev(vfdP->fd, iov, iovcnt, offset);
2277 1503444 : pgstat_report_wait_end();
2278 :
2279 1503444 : if (returnCode >= 0)
2280 : {
2281 : /*
2282 : * Some callers expect short writes to set errno, and traditionally we
2283 : * have assumed that they imply disk space shortage. We don't want to
2284 : * waste CPU cycles adding up the total size here, so we'll just set
2285 : * it for all successful writes in case such a caller determines that
2286 : * the write was short and ereports "%m".
2287 : */
2288 1503444 : errno = ENOSPC;
2289 :
2290 : /*
2291 : * Maintain fileSize and temporary_files_size if it's a temp file.
2292 : */
2293 1503444 : if (vfdP->fdstate & FD_TEMP_FILE_LIMIT)
2294 : {
2295 110444 : pgoff_t past_write = offset + returnCode;
2296 :
2297 110444 : if (past_write > vfdP->fileSize)
2298 : {
2299 77042 : temporary_files_size += past_write - vfdP->fileSize;
2300 77042 : vfdP->fileSize = past_write;
2301 : }
2302 : }
2303 : }
2304 : else
2305 : {
2306 : /*
2307 : * See comments in FileReadV()
2308 : */
2309 : #ifdef WIN32
2310 : DWORD error = GetLastError();
2311 :
2312 : switch (error)
2313 : {
2314 : case ERROR_NO_SYSTEM_RESOURCES:
2315 : pg_usleep(1000L);
2316 : errno = EINTR;
2317 : break;
2318 : default:
2319 : _dosmaperr(error);
2320 : break;
2321 : }
2322 : #endif
2323 : /* OK to retry if interrupted */
2324 0 : if (errno == EINTR)
2325 0 : goto retry;
2326 : }
2327 :
2328 1503444 : return returnCode;
2329 : }
2330 :
2331 : int
2332 2362 : FileSync(File file, uint32 wait_event_info)
2333 : {
2334 : int returnCode;
2335 :
2336 : Assert(FileIsValid(file));
2337 :
2338 : DO_DB(elog(LOG, "FileSync: %d (%s)",
2339 : file, VfdCache[file].fileName));
2340 :
2341 2362 : returnCode = FileAccess(file);
2342 2362 : if (returnCode < 0)
2343 0 : return returnCode;
2344 :
2345 2362 : pgstat_report_wait_start(wait_event_info);
2346 2362 : returnCode = pg_fsync(VfdCache[file].fd);
2347 2362 : pgstat_report_wait_end();
2348 :
2349 2362 : return returnCode;
2350 : }
2351 :
2352 : /*
2353 : * Zero a region of the file.
2354 : *
2355 : * Returns 0 on success, -1 otherwise. In the latter case errno is set to the
2356 : * appropriate error.
2357 : */
2358 : int
2359 427684 : FileZero(File file, pgoff_t offset, pgoff_t amount, uint32 wait_event_info)
2360 : {
2361 : int returnCode;
2362 : ssize_t written;
2363 :
2364 : Assert(FileIsValid(file));
2365 :
2366 : DO_DB(elog(LOG, "FileZero: %d (%s) " INT64_FORMAT " " INT64_FORMAT,
2367 : file, VfdCache[file].fileName,
2368 : (int64) offset, (int64) amount));
2369 :
2370 427684 : returnCode = FileAccess(file);
2371 427684 : if (returnCode < 0)
2372 0 : return returnCode;
2373 :
2374 427684 : pgstat_report_wait_start(wait_event_info);
2375 427684 : written = pg_pwrite_zeros(VfdCache[file].fd, amount, offset);
2376 427684 : pgstat_report_wait_end();
2377 :
2378 427684 : if (written < 0)
2379 0 : return -1;
2380 427684 : else if (written != amount)
2381 : {
2382 : /* if errno is unset, assume problem is no disk space */
2383 0 : if (errno == 0)
2384 0 : errno = ENOSPC;
2385 0 : return -1;
2386 : }
2387 :
2388 427684 : return 0;
2389 : }
2390 :
2391 : /*
2392 : * Try to reserve file space with posix_fallocate(). If posix_fallocate() is
2393 : * not implemented on the operating system or fails with EINVAL / EOPNOTSUPP,
2394 : * use FileZero() instead.
2395 : *
2396 : * Note that at least glibc() implements posix_fallocate() in userspace if not
2397 : * implemented by the filesystem. That's not the case for all environments
2398 : * though.
2399 : *
2400 : * Returns 0 on success, -1 otherwise. In the latter case errno is set to the
2401 : * appropriate error.
2402 : */
2403 : int
2404 1012 : FileFallocate(File file, pgoff_t offset, pgoff_t amount, uint32 wait_event_info)
2405 : {
2406 : #ifdef HAVE_POSIX_FALLOCATE
2407 : int returnCode;
2408 :
2409 : Assert(FileIsValid(file));
2410 :
2411 : DO_DB(elog(LOG, "FileFallocate: %d (%s) " INT64_FORMAT " " INT64_FORMAT,
2412 : file, VfdCache[file].fileName,
2413 : (int64) offset, (int64) amount));
2414 :
2415 1012 : returnCode = FileAccess(file);
2416 1012 : if (returnCode < 0)
2417 0 : return -1;
2418 :
2419 1012 : retry:
2420 1012 : pgstat_report_wait_start(wait_event_info);
2421 1012 : returnCode = posix_fallocate(VfdCache[file].fd, offset, amount);
2422 1012 : pgstat_report_wait_end();
2423 :
2424 1012 : if (returnCode == 0)
2425 1012 : return 0;
2426 0 : else if (returnCode == EINTR)
2427 0 : goto retry;
2428 :
2429 : /* for compatibility with %m printing etc */
2430 0 : errno = returnCode;
2431 :
2432 : /*
2433 : * Return in cases of a "real" failure, if fallocate is not supported,
2434 : * fall through to the FileZero() backed implementation.
2435 : */
2436 0 : if (returnCode != EINVAL && returnCode != EOPNOTSUPP)
2437 0 : return -1;
2438 : #endif
2439 :
2440 0 : return FileZero(file, offset, amount, wait_event_info);
2441 : }
2442 :
2443 : pgoff_t
2444 4766498 : FileSize(File file)
2445 : {
2446 : Assert(FileIsValid(file));
2447 :
2448 : DO_DB(elog(LOG, "FileSize %d (%s)",
2449 : file, VfdCache[file].fileName));
2450 :
2451 4766498 : if (FileIsNotOpen(file))
2452 : {
2453 38 : if (FileAccess(file) < 0)
2454 0 : return (pgoff_t) -1;
2455 : }
2456 :
2457 4766498 : return lseek(VfdCache[file].fd, 0, SEEK_END);
2458 : }
2459 :
2460 : int
2461 1070 : FileTruncate(File file, pgoff_t offset, uint32 wait_event_info)
2462 : {
2463 : int returnCode;
2464 :
2465 : Assert(FileIsValid(file));
2466 :
2467 : DO_DB(elog(LOG, "FileTruncate %d (%s)",
2468 : file, VfdCache[file].fileName));
2469 :
2470 1070 : returnCode = FileAccess(file);
2471 1070 : if (returnCode < 0)
2472 0 : return returnCode;
2473 :
2474 1070 : pgstat_report_wait_start(wait_event_info);
2475 1070 : returnCode = pg_ftruncate(VfdCache[file].fd, offset);
2476 1070 : pgstat_report_wait_end();
2477 :
2478 1070 : if (returnCode == 0 && VfdCache[file].fileSize > offset)
2479 : {
2480 : /* adjust our state for truncation of a temp file */
2481 : Assert(VfdCache[file].fdstate & FD_TEMP_FILE_LIMIT);
2482 0 : temporary_files_size -= VfdCache[file].fileSize - offset;
2483 0 : VfdCache[file].fileSize = offset;
2484 : }
2485 :
2486 1070 : return returnCode;
2487 : }
2488 :
2489 : /*
2490 : * Return the pathname associated with an open file.
2491 : *
2492 : * The returned string points to an internal buffer, which is valid until
2493 : * the file is closed.
2494 : */
2495 : char *
2496 44 : FilePathName(File file)
2497 : {
2498 : Assert(FileIsValid(file));
2499 :
2500 44 : return VfdCache[file].fileName;
2501 : }
2502 :
2503 : /*
2504 : * Return the raw file descriptor of an opened file.
2505 : *
2506 : * The returned file descriptor will be valid until the file is closed, but
2507 : * there are a lot of things that can make that happen. So the caller should
2508 : * be careful not to do much of anything else before it finishes using the
2509 : * returned file descriptor.
2510 : */
2511 : int
2512 844794 : FileGetRawDesc(File file)
2513 : {
2514 : int returnCode;
2515 :
2516 844794 : returnCode = FileAccess(file);
2517 844794 : if (returnCode < 0)
2518 0 : return returnCode;
2519 :
2520 : Assert(FileIsValid(file));
2521 844794 : return VfdCache[file].fd;
2522 : }
2523 :
2524 : /*
2525 : * FileGetRawFlags - returns the file flags on open(2)
2526 : */
2527 : int
2528 0 : FileGetRawFlags(File file)
2529 : {
2530 : Assert(FileIsValid(file));
2531 0 : return VfdCache[file].fileFlags;
2532 : }
2533 :
2534 : /*
2535 : * FileGetRawMode - returns the mode bitmask passed to open(2)
2536 : */
2537 : mode_t
2538 0 : FileGetRawMode(File file)
2539 : {
2540 : Assert(FileIsValid(file));
2541 0 : return VfdCache[file].fileMode;
2542 : }
2543 :
2544 : /*
2545 : * Make room for another allocatedDescs[] array entry if needed and possible.
2546 : * Returns true if an array element is available.
2547 : */
2548 : static bool
2549 15768466 : reserveAllocatedDesc(void)
2550 : {
2551 : AllocateDesc *newDescs;
2552 : int newMax;
2553 :
2554 : /* Quick out if array already has a free slot. */
2555 15768466 : if (numAllocatedDescs < maxAllocatedDescs)
2556 15766212 : return true;
2557 :
2558 : /*
2559 : * If the array hasn't yet been created in the current process, initialize
2560 : * it with FD_MINFREE / 3 elements. In many scenarios this is as many as
2561 : * we will ever need, anyway. We don't want to look at max_safe_fds
2562 : * immediately because set_max_safe_fds() may not have run yet.
2563 : */
2564 2254 : if (allocatedDescs == NULL)
2565 : {
2566 2254 : newMax = FD_MINFREE / 3;
2567 2254 : newDescs = (AllocateDesc *) malloc(newMax * sizeof(AllocateDesc));
2568 : /* Out of memory already? Treat as fatal error. */
2569 2254 : if (newDescs == NULL)
2570 0 : ereport(ERROR,
2571 : (errcode(ERRCODE_OUT_OF_MEMORY),
2572 : errmsg("out of memory")));
2573 2254 : allocatedDescs = newDescs;
2574 2254 : maxAllocatedDescs = newMax;
2575 2254 : return true;
2576 : }
2577 :
2578 : /*
2579 : * Consider enlarging the array beyond the initial allocation used above.
2580 : * By the time this happens, max_safe_fds should be known accurately.
2581 : *
2582 : * We mustn't let allocated descriptors hog all the available FDs, and in
2583 : * practice we'd better leave a reasonable number of FDs for VFD use. So
2584 : * set the maximum to max_safe_fds / 3. (This should certainly be at
2585 : * least as large as the initial size, FD_MINFREE / 3, so we aren't
2586 : * tightening the restriction here.) Recall that "external" FDs are
2587 : * allowed to consume another third of max_safe_fds.
2588 : */
2589 0 : newMax = max_safe_fds / 3;
2590 0 : if (newMax > maxAllocatedDescs)
2591 : {
2592 0 : newDescs = (AllocateDesc *) realloc(allocatedDescs,
2593 : newMax * sizeof(AllocateDesc));
2594 : /* Treat out-of-memory as a non-fatal error. */
2595 0 : if (newDescs == NULL)
2596 0 : return false;
2597 0 : allocatedDescs = newDescs;
2598 0 : maxAllocatedDescs = newMax;
2599 0 : return true;
2600 : }
2601 :
2602 : /* Can't enlarge allocatedDescs[] any more. */
2603 0 : return false;
2604 : }
2605 :
2606 : /*
2607 : * Routines that want to use stdio (ie, FILE*) should use AllocateFile
2608 : * rather than plain fopen(). This lets fd.c deal with freeing FDs if
2609 : * necessary to open the file. When done, call FreeFile rather than fclose.
2610 : *
2611 : * Note that files that will be open for any significant length of time
2612 : * should NOT be handled this way, since they cannot share kernel file
2613 : * descriptors with other files; there is grave risk of running out of FDs
2614 : * if anyone locks down too many FDs. Most callers of this routine are
2615 : * simply reading a config file that they will read and close immediately.
2616 : *
2617 : * fd.c will automatically close all files opened with AllocateFile at
2618 : * transaction commit or abort; this prevents FD leakage if a routine
2619 : * that calls AllocateFile is terminated prematurely by ereport(ERROR).
2620 : *
2621 : * Ideally this should be the *only* direct call of fopen() in the backend.
2622 : */
2623 : FILE *
2624 180996 : AllocateFile(const char *name, const char *mode)
2625 : {
2626 : FILE *file;
2627 :
2628 : DO_DB(elog(LOG, "AllocateFile: Allocated %d (%s)",
2629 : numAllocatedDescs, name));
2630 :
2631 : /* Can we allocate another non-virtual FD? */
2632 180996 : if (!reserveAllocatedDesc())
2633 0 : ereport(ERROR,
2634 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2635 : errmsg("exceeded maxAllocatedDescs (%d) while trying to open file \"%s\"",
2636 : maxAllocatedDescs, name)));
2637 :
2638 : /* Close excess kernel FDs. */
2639 180996 : ReleaseLruFiles();
2640 :
2641 180996 : TryAgain:
2642 180996 : if ((file = fopen(name, mode)) != NULL)
2643 : {
2644 166952 : AllocateDesc *desc = &allocatedDescs[numAllocatedDescs];
2645 :
2646 166952 : desc->kind = AllocateDescFile;
2647 166952 : desc->desc.file = file;
2648 166952 : desc->create_subid = GetCurrentSubTransactionId();
2649 166952 : numAllocatedDescs++;
2650 166952 : return desc->desc.file;
2651 : }
2652 :
2653 14044 : if (errno == EMFILE || errno == ENFILE)
2654 : {
2655 0 : int save_errno = errno;
2656 :
2657 0 : ereport(LOG,
2658 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2659 : errmsg("out of file descriptors: %m; release and retry")));
2660 0 : errno = 0;
2661 0 : if (ReleaseLruFile())
2662 0 : goto TryAgain;
2663 0 : errno = save_errno;
2664 : }
2665 :
2666 14044 : return NULL;
2667 : }
2668 :
2669 : /*
2670 : * Open a file with OpenTransientFilePerm() and pass default file mode for
2671 : * the fileMode parameter.
2672 : */
2673 : int
2674 15494260 : OpenTransientFile(const char *fileName, int fileFlags)
2675 : {
2676 15494260 : return OpenTransientFilePerm(fileName, fileFlags, pg_file_create_mode);
2677 : }
2678 :
2679 : /*
2680 : * Like AllocateFile, but returns an unbuffered fd like open(2)
2681 : */
2682 : int
2683 15494272 : OpenTransientFilePerm(const char *fileName, int fileFlags, mode_t fileMode)
2684 : {
2685 : int fd;
2686 :
2687 : DO_DB(elog(LOG, "OpenTransientFile: Allocated %d (%s)",
2688 : numAllocatedDescs, fileName));
2689 :
2690 : /* Can we allocate another non-virtual FD? */
2691 15494272 : if (!reserveAllocatedDesc())
2692 0 : ereport(ERROR,
2693 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2694 : errmsg("exceeded maxAllocatedDescs (%d) while trying to open file \"%s\"",
2695 : maxAllocatedDescs, fileName)));
2696 :
2697 : /* Close excess kernel FDs. */
2698 15494272 : ReleaseLruFiles();
2699 :
2700 15494272 : fd = BasicOpenFilePerm(fileName, fileFlags, fileMode);
2701 :
2702 15494272 : if (fd >= 0)
2703 : {
2704 15484424 : AllocateDesc *desc = &allocatedDescs[numAllocatedDescs];
2705 :
2706 15484424 : desc->kind = AllocateDescRawFD;
2707 15484424 : desc->desc.fd = fd;
2708 15484424 : desc->create_subid = GetCurrentSubTransactionId();
2709 15484424 : numAllocatedDescs++;
2710 :
2711 15484424 : return fd;
2712 : }
2713 :
2714 9848 : return -1; /* failure */
2715 : }
2716 :
2717 : /*
2718 : * Routines that want to initiate a pipe stream should use OpenPipeStream
2719 : * rather than plain popen(). This lets fd.c deal with freeing FDs if
2720 : * necessary. When done, call ClosePipeStream rather than pclose.
2721 : *
2722 : * This function also ensures that the popen'd program is run with default
2723 : * SIGPIPE processing, rather than the SIG_IGN setting the backend normally
2724 : * uses. This ensures desirable response to, eg, closing a read pipe early.
2725 : */
2726 : FILE *
2727 122 : OpenPipeStream(const char *command, const char *mode)
2728 : {
2729 : FILE *file;
2730 : int save_errno;
2731 :
2732 : DO_DB(elog(LOG, "OpenPipeStream: Allocated %d (%s)",
2733 : numAllocatedDescs, command));
2734 :
2735 : /* Can we allocate another non-virtual FD? */
2736 122 : if (!reserveAllocatedDesc())
2737 0 : ereport(ERROR,
2738 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2739 : errmsg("exceeded maxAllocatedDescs (%d) while trying to execute command \"%s\"",
2740 : maxAllocatedDescs, command)));
2741 :
2742 : /* Close excess kernel FDs. */
2743 122 : ReleaseLruFiles();
2744 :
2745 122 : TryAgain:
2746 122 : fflush(NULL);
2747 122 : pqsignal(SIGPIPE, SIG_DFL);
2748 122 : errno = 0;
2749 122 : file = popen(command, mode);
2750 122 : save_errno = errno;
2751 122 : pqsignal(SIGPIPE, SIG_IGN);
2752 122 : errno = save_errno;
2753 122 : if (file != NULL)
2754 : {
2755 122 : AllocateDesc *desc = &allocatedDescs[numAllocatedDescs];
2756 :
2757 122 : desc->kind = AllocateDescPipe;
2758 122 : desc->desc.file = file;
2759 122 : desc->create_subid = GetCurrentSubTransactionId();
2760 122 : numAllocatedDescs++;
2761 122 : return desc->desc.file;
2762 : }
2763 :
2764 0 : if (errno == EMFILE || errno == ENFILE)
2765 : {
2766 0 : ereport(LOG,
2767 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2768 : errmsg("out of file descriptors: %m; release and retry")));
2769 0 : if (ReleaseLruFile())
2770 0 : goto TryAgain;
2771 0 : errno = save_errno;
2772 : }
2773 :
2774 0 : return NULL;
2775 : }
2776 :
2777 : /*
2778 : * Free an AllocateDesc of any type.
2779 : *
2780 : * The argument *must* point into the allocatedDescs[] array.
2781 : */
2782 : static int
2783 15742734 : FreeDesc(AllocateDesc *desc)
2784 : {
2785 : int result;
2786 :
2787 : /* Close the underlying object */
2788 15742734 : switch (desc->kind)
2789 : {
2790 166952 : case AllocateDescFile:
2791 166952 : result = fclose(desc->desc.file);
2792 166952 : break;
2793 122 : case AllocateDescPipe:
2794 122 : result = pclose(desc->desc.file);
2795 122 : break;
2796 91236 : case AllocateDescDir:
2797 91236 : result = closedir(desc->desc.dir);
2798 91236 : break;
2799 15484424 : case AllocateDescRawFD:
2800 15484424 : pgaio_closing_fd(desc->desc.fd);
2801 15484424 : result = close(desc->desc.fd);
2802 15484424 : break;
2803 0 : default:
2804 0 : elog(ERROR, "AllocateDesc kind not recognized");
2805 : result = 0; /* keep compiler quiet */
2806 : break;
2807 : }
2808 :
2809 : /* Compact storage in the allocatedDescs array */
2810 15742734 : numAllocatedDescs--;
2811 15742734 : *desc = allocatedDescs[numAllocatedDescs];
2812 :
2813 15742734 : return result;
2814 : }
2815 :
2816 : /*
2817 : * Close a file returned by AllocateFile.
2818 : *
2819 : * Note we do not check fclose's return value --- it is up to the caller
2820 : * to handle close errors.
2821 : */
2822 : int
2823 166920 : FreeFile(FILE *file)
2824 : {
2825 : int i;
2826 :
2827 : DO_DB(elog(LOG, "FreeFile: Allocated %d", numAllocatedDescs));
2828 :
2829 : /* Remove file from list of allocated files, if it's present */
2830 166922 : for (i = numAllocatedDescs; --i >= 0;)
2831 : {
2832 166922 : AllocateDesc *desc = &allocatedDescs[i];
2833 :
2834 166922 : if (desc->kind == AllocateDescFile && desc->desc.file == file)
2835 166920 : return FreeDesc(desc);
2836 : }
2837 :
2838 : /* Only get here if someone passes us a file not in allocatedDescs */
2839 0 : elog(WARNING, "file passed to FreeFile was not obtained from AllocateFile");
2840 :
2841 0 : return fclose(file);
2842 : }
2843 :
2844 : /*
2845 : * Close a file returned by OpenTransientFile.
2846 : *
2847 : * Note we do not check close's return value --- it is up to the caller
2848 : * to handle close errors.
2849 : */
2850 : int
2851 15484422 : CloseTransientFile(int fd)
2852 : {
2853 : int i;
2854 :
2855 : DO_DB(elog(LOG, "CloseTransientFile: Allocated %d", numAllocatedDescs));
2856 :
2857 : /* Remove fd from list of allocated files, if it's present */
2858 15484452 : for (i = numAllocatedDescs; --i >= 0;)
2859 : {
2860 15484452 : AllocateDesc *desc = &allocatedDescs[i];
2861 :
2862 15484452 : if (desc->kind == AllocateDescRawFD && desc->desc.fd == fd)
2863 15484422 : return FreeDesc(desc);
2864 : }
2865 :
2866 : /* Only get here if someone passes us a file not in allocatedDescs */
2867 0 : elog(WARNING, "fd passed to CloseTransientFile was not obtained from OpenTransientFile");
2868 :
2869 0 : pgaio_closing_fd(fd);
2870 :
2871 0 : return close(fd);
2872 : }
2873 :
2874 : /*
2875 : * Routines that want to use <dirent.h> (ie, DIR*) should use AllocateDir
2876 : * rather than plain opendir(). This lets fd.c deal with freeing FDs if
2877 : * necessary to open the directory, and with closing it after an elog.
2878 : * When done, call FreeDir rather than closedir.
2879 : *
2880 : * Returns NULL, with errno set, on failure. Note that failure detection
2881 : * is commonly left to the following call of ReadDir or ReadDirExtended;
2882 : * see the comments for ReadDir.
2883 : *
2884 : * Ideally this should be the *only* direct call of opendir() in the backend.
2885 : */
2886 : DIR *
2887 93076 : AllocateDir(const char *dirname)
2888 : {
2889 : DIR *dir;
2890 :
2891 : DO_DB(elog(LOG, "AllocateDir: Allocated %d (%s)",
2892 : numAllocatedDescs, dirname));
2893 :
2894 : /* Can we allocate another non-virtual FD? */
2895 93076 : if (!reserveAllocatedDesc())
2896 0 : ereport(ERROR,
2897 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2898 : errmsg("exceeded maxAllocatedDescs (%d) while trying to open directory \"%s\"",
2899 : maxAllocatedDescs, dirname)));
2900 :
2901 : /* Close excess kernel FDs. */
2902 93076 : ReleaseLruFiles();
2903 :
2904 93076 : TryAgain:
2905 93076 : if ((dir = opendir(dirname)) != NULL)
2906 : {
2907 91236 : AllocateDesc *desc = &allocatedDescs[numAllocatedDescs];
2908 :
2909 91236 : desc->kind = AllocateDescDir;
2910 91236 : desc->desc.dir = dir;
2911 91236 : desc->create_subid = GetCurrentSubTransactionId();
2912 91236 : numAllocatedDescs++;
2913 91236 : return desc->desc.dir;
2914 : }
2915 :
2916 1840 : if (errno == EMFILE || errno == ENFILE)
2917 : {
2918 0 : int save_errno = errno;
2919 :
2920 0 : ereport(LOG,
2921 : (errcode(ERRCODE_INSUFFICIENT_RESOURCES),
2922 : errmsg("out of file descriptors: %m; release and retry")));
2923 0 : errno = 0;
2924 0 : if (ReleaseLruFile())
2925 0 : goto TryAgain;
2926 0 : errno = save_errno;
2927 : }
2928 :
2929 1840 : return NULL;
2930 : }
2931 :
2932 : /*
2933 : * Read a directory opened with AllocateDir, ereport'ing any error.
2934 : *
2935 : * This is easier to use than raw readdir() since it takes care of some
2936 : * otherwise rather tedious and error-prone manipulation of errno. Also,
2937 : * if you are happy with a generic error message for AllocateDir failure,
2938 : * you can just do
2939 : *
2940 : * dir = AllocateDir(path);
2941 : * while ((dirent = ReadDir(dir, path)) != NULL)
2942 : * process dirent;
2943 : * FreeDir(dir);
2944 : *
2945 : * since a NULL dir parameter is taken as indicating AllocateDir failed.
2946 : * (Make sure errno isn't changed between AllocateDir and ReadDir if you
2947 : * use this shortcut.)
2948 : *
2949 : * The pathname passed to AllocateDir must be passed to this routine too,
2950 : * but it is only used for error reporting.
2951 : */
2952 : struct dirent *
2953 4961758 : ReadDir(DIR *dir, const char *dirname)
2954 : {
2955 4961758 : return ReadDirExtended(dir, dirname, ERROR);
2956 : }
2957 :
2958 : /*
2959 : * Alternate version of ReadDir that allows caller to specify the elevel
2960 : * for any error report (whether it's reporting an initial failure of
2961 : * AllocateDir or a subsequent directory read failure).
2962 : *
2963 : * If elevel < ERROR, returns NULL after any error. With the normal coding
2964 : * pattern, this will result in falling out of the loop immediately as
2965 : * though the directory contained no (more) entries.
2966 : */
2967 : struct dirent *
2968 8251196 : ReadDirExtended(DIR *dir, const char *dirname, int elevel)
2969 : {
2970 : struct dirent *dent;
2971 :
2972 : /* Give a generic message for AllocateDir failure, if caller didn't */
2973 8251196 : if (dir == NULL)
2974 : {
2975 6 : ereport(elevel,
2976 : (errcode_for_file_access(),
2977 : errmsg("could not open directory \"%s\": %m",
2978 : dirname)));
2979 0 : return NULL;
2980 : }
2981 :
2982 8251190 : errno = 0;
2983 8251190 : if ((dent = readdir(dir)) != NULL)
2984 8183232 : return dent;
2985 :
2986 67958 : if (errno)
2987 0 : ereport(elevel,
2988 : (errcode_for_file_access(),
2989 : errmsg("could not read directory \"%s\": %m",
2990 : dirname)));
2991 67958 : return NULL;
2992 : }
2993 :
2994 : /*
2995 : * Close a directory opened with AllocateDir.
2996 : *
2997 : * Returns closedir's return value (with errno set if it's not 0).
2998 : * Note we do not check the return value --- it is up to the caller
2999 : * to handle close errors if wanted.
3000 : *
3001 : * Does nothing if dir == NULL; we assume that directory open failure was
3002 : * already reported if desired.
3003 : */
3004 : int
3005 90984 : FreeDir(DIR *dir)
3006 : {
3007 : int i;
3008 :
3009 : /* Nothing to do if AllocateDir failed */
3010 90984 : if (dir == NULL)
3011 0 : return 0;
3012 :
3013 : DO_DB(elog(LOG, "FreeDir: Allocated %d", numAllocatedDescs));
3014 :
3015 : /* Remove dir from list of allocated dirs, if it's present */
3016 90984 : for (i = numAllocatedDescs; --i >= 0;)
3017 : {
3018 90984 : AllocateDesc *desc = &allocatedDescs[i];
3019 :
3020 90984 : if (desc->kind == AllocateDescDir && desc->desc.dir == dir)
3021 90984 : return FreeDesc(desc);
3022 : }
3023 :
3024 : /* Only get here if someone passes us a dir not in allocatedDescs */
3025 0 : elog(WARNING, "dir passed to FreeDir was not obtained from AllocateDir");
3026 :
3027 0 : return closedir(dir);
3028 : }
3029 :
3030 :
3031 : /*
3032 : * Close a pipe stream returned by OpenPipeStream.
3033 : */
3034 : int
3035 122 : ClosePipeStream(FILE *file)
3036 : {
3037 : int i;
3038 :
3039 : DO_DB(elog(LOG, "ClosePipeStream: Allocated %d", numAllocatedDescs));
3040 :
3041 : /* Remove file from list of allocated files, if it's present */
3042 122 : for (i = numAllocatedDescs; --i >= 0;)
3043 : {
3044 122 : AllocateDesc *desc = &allocatedDescs[i];
3045 :
3046 122 : if (desc->kind == AllocateDescPipe && desc->desc.file == file)
3047 122 : return FreeDesc(desc);
3048 : }
3049 :
3050 : /* Only get here if someone passes us a file not in allocatedDescs */
3051 0 : elog(WARNING, "file passed to ClosePipeStream was not obtained from OpenPipeStream");
3052 :
3053 0 : return pclose(file);
3054 : }
3055 :
3056 : /*
3057 : * closeAllVfds
3058 : *
3059 : * Force all VFDs into the physically-closed state, so that the fewest
3060 : * possible number of kernel file descriptors are in use. There is no
3061 : * change in the logical state of the VFDs.
3062 : */
3063 : void
3064 64 : closeAllVfds(void)
3065 : {
3066 : Index i;
3067 :
3068 64 : if (SizeVfdCache > 0)
3069 : {
3070 : Assert(FileIsNotOpen(0)); /* Make sure ring not corrupted */
3071 2048 : for (i = 1; i < SizeVfdCache; i++)
3072 : {
3073 1984 : if (!FileIsNotOpen(i))
3074 290 : LruDelete(i);
3075 : }
3076 : }
3077 64 : }
3078 :
3079 :
3080 : /*
3081 : * SetTempTablespaces
3082 : *
3083 : * Define a list (actually an array) of OIDs of tablespaces to use for
3084 : * temporary files. This list will be used until end of transaction,
3085 : * unless this function is called again before then. It is caller's
3086 : * responsibility that the passed-in array has adequate lifespan (typically
3087 : * it'd be allocated in TopTransactionContext).
3088 : *
3089 : * Some entries of the array may be InvalidOid, indicating that the current
3090 : * database's default tablespace should be used.
3091 : */
3092 : void
3093 6392 : SetTempTablespaces(Oid *tableSpaces, int numSpaces)
3094 : {
3095 : Assert(numSpaces >= 0);
3096 6392 : tempTableSpaces = tableSpaces;
3097 6392 : numTempTableSpaces = numSpaces;
3098 :
3099 : /*
3100 : * Select a random starting point in the list. This is to minimize
3101 : * conflicts between backends that are most likely sharing the same list
3102 : * of temp tablespaces. Note that if we create multiple temp files in the
3103 : * same transaction, we'll advance circularly through the list --- this
3104 : * ensures that large temporary sort files are nicely spread across all
3105 : * available tablespaces.
3106 : */
3107 6392 : if (numSpaces > 1)
3108 0 : nextTempTableSpace = pg_prng_uint64_range(&pg_global_prng_state,
3109 0 : 0, numSpaces - 1);
3110 : else
3111 6392 : nextTempTableSpace = 0;
3112 6392 : }
3113 :
3114 : /*
3115 : * TempTablespacesAreSet
3116 : *
3117 : * Returns true if SetTempTablespaces has been called in current transaction.
3118 : * (This is just so that tablespaces.c doesn't need its own per-transaction
3119 : * state.)
3120 : */
3121 : bool
3122 8288 : TempTablespacesAreSet(void)
3123 : {
3124 8288 : return (numTempTableSpaces >= 0);
3125 : }
3126 :
3127 : /*
3128 : * GetTempTablespaces
3129 : *
3130 : * Populate an array with the OIDs of the tablespaces that should be used for
3131 : * temporary files. (Some entries may be InvalidOid, indicating that the
3132 : * current database's default tablespace should be used.) At most numSpaces
3133 : * entries will be filled.
3134 : * Returns the number of OIDs that were copied into the output array.
3135 : */
3136 : int
3137 388 : GetTempTablespaces(Oid *tableSpaces, int numSpaces)
3138 : {
3139 : int i;
3140 :
3141 : Assert(TempTablespacesAreSet());
3142 388 : for (i = 0; i < numTempTableSpaces && i < numSpaces; ++i)
3143 0 : tableSpaces[i] = tempTableSpaces[i];
3144 :
3145 388 : return i;
3146 : }
3147 :
3148 : /*
3149 : * GetNextTempTableSpace
3150 : *
3151 : * Select the next temp tablespace to use. A result of InvalidOid means
3152 : * to use the current database's default tablespace.
3153 : */
3154 : Oid
3155 4394 : GetNextTempTableSpace(void)
3156 : {
3157 4394 : if (numTempTableSpaces > 0)
3158 : {
3159 : /* Advance nextTempTableSpace counter with wraparound */
3160 2 : if (++nextTempTableSpace >= numTempTableSpaces)
3161 2 : nextTempTableSpace = 0;
3162 2 : return tempTableSpaces[nextTempTableSpace];
3163 : }
3164 4392 : return InvalidOid;
3165 : }
3166 :
3167 :
3168 : /*
3169 : * AtEOSubXact_Files
3170 : *
3171 : * Take care of subtransaction commit/abort. At abort, we close AllocateDescs
3172 : * that the subtransaction may have opened. At commit, we reassign them to
3173 : * the parent subtransaction. (Temporary files are tracked by ResourceOwners
3174 : * instead.)
3175 : */
3176 : void
3177 20068 : AtEOSubXact_Files(bool isCommit, SubTransactionId mySubid,
3178 : SubTransactionId parentSubid)
3179 : {
3180 : Index i;
3181 :
3182 20068 : for (i = 0; i < numAllocatedDescs; i++)
3183 : {
3184 0 : if (allocatedDescs[i].create_subid == mySubid)
3185 : {
3186 0 : if (isCommit)
3187 0 : allocatedDescs[i].create_subid = parentSubid;
3188 : else
3189 : {
3190 : /* have to recheck the item after FreeDesc (ugly) */
3191 0 : FreeDesc(&allocatedDescs[i--]);
3192 : }
3193 : }
3194 : }
3195 20068 : }
3196 :
3197 : /*
3198 : * AtEOXact_Files
3199 : *
3200 : * This routine is called during transaction commit or abort. All still-open
3201 : * per-transaction temporary file VFDs are closed, which also causes the
3202 : * underlying files to be deleted (although they should've been closed already
3203 : * by the ResourceOwner cleanup). Furthermore, all "allocated" stdio files are
3204 : * closed. We also forget any transaction-local temp tablespace list.
3205 : *
3206 : * The isCommit flag is used only to decide whether to emit warnings about
3207 : * unclosed files.
3208 : */
3209 : void
3210 1045478 : AtEOXact_Files(bool isCommit)
3211 : {
3212 1045478 : CleanupTempFiles(isCommit, false);
3213 1045478 : tempTableSpaces = NULL;
3214 1045478 : numTempTableSpaces = -1;
3215 1045478 : }
3216 :
3217 : /*
3218 : * BeforeShmemExit_Files
3219 : *
3220 : * before_shmem_exit hook to clean up temp files during backend shutdown.
3221 : * Here, we want to clean up *all* temp files including interXact ones.
3222 : */
3223 : static void
3224 45096 : BeforeShmemExit_Files(int code, Datum arg)
3225 : {
3226 45096 : CleanupTempFiles(false, true);
3227 :
3228 : /* prevent further temp files from being created */
3229 : #ifdef USE_ASSERT_CHECKING
3230 : temporary_files_allowed = false;
3231 : #endif
3232 45096 : }
3233 :
3234 : /*
3235 : * Close temporary files and delete their underlying files.
3236 : *
3237 : * isCommit: if true, this is normal transaction commit, and we don't
3238 : * expect any remaining files; warn if there are some.
3239 : *
3240 : * isProcExit: if true, this is being called as the backend process is
3241 : * exiting. If that's the case, we should remove all temporary files; if
3242 : * that's not the case, we are being called for transaction commit/abort
3243 : * and should only remove transaction-local temp files. In either case,
3244 : * also clean up "allocated" stdio files, dirs and fds.
3245 : */
3246 : static void
3247 1090574 : CleanupTempFiles(bool isCommit, bool isProcExit)
3248 : {
3249 : Index i;
3250 :
3251 : /*
3252 : * Careful here: at proc_exit we need extra cleanup, not just
3253 : * xact_temporary files.
3254 : */
3255 1090574 : if (isProcExit || have_xact_temporary_files)
3256 : {
3257 : Assert(FileIsNotOpen(0)); /* Make sure ring not corrupted */
3258 2769226 : for (i = 1; i < SizeVfdCache; i++)
3259 : {
3260 2722578 : unsigned short fdstate = VfdCache[i].fdstate;
3261 :
3262 2722578 : if (((fdstate & FD_DELETE_AT_CLOSE) || (fdstate & FD_CLOSE_AT_EOXACT)) &&
3263 8 : VfdCache[i].fileName != NULL)
3264 : {
3265 : /*
3266 : * If we're in the process of exiting a backend process, close
3267 : * all temporary files. Otherwise, only close temporary files
3268 : * local to the current transaction. They should be closed by
3269 : * the ResourceOwner mechanism already, so this is just a
3270 : * debugging cross-check.
3271 : */
3272 8 : if (isProcExit)
3273 8 : FileClose(i);
3274 0 : else if (fdstate & FD_CLOSE_AT_EOXACT)
3275 : {
3276 0 : elog(WARNING,
3277 : "temporary file %s not closed at end-of-transaction",
3278 : VfdCache[i].fileName);
3279 0 : FileClose(i);
3280 : }
3281 : }
3282 : }
3283 :
3284 46648 : have_xact_temporary_files = false;
3285 : }
3286 :
3287 : /* Complain if any allocated files remain open at commit. */
3288 1090574 : if (isCommit && numAllocatedDescs > 0)
3289 0 : elog(WARNING, "%d temporary files and directories not closed at end-of-transaction",
3290 : numAllocatedDescs);
3291 :
3292 : /* Clean up "allocated" stdio files, dirs and fds. */
3293 1090860 : while (numAllocatedDescs > 0)
3294 286 : FreeDesc(&allocatedDescs[0]);
3295 1090574 : }
3296 :
3297 :
3298 : /*
3299 : * Remove temporary and temporary relation files left over from a prior
3300 : * postmaster session
3301 : *
3302 : * This should be called during postmaster startup. It will forcibly
3303 : * remove any leftover files created by OpenTemporaryFile and any leftover
3304 : * temporary relation files created by mdcreate.
3305 : *
3306 : * During post-backend-crash restart cycle, this routine is called when
3307 : * remove_temp_files_after_crash GUC is enabled. Multiple crashes while
3308 : * queries are using temp files could result in useless storage usage that can
3309 : * only be reclaimed by a service restart. The argument against enabling it is
3310 : * that someone might want to examine the temporary files for debugging
3311 : * purposes. This does however mean that OpenTemporaryFile had better allow for
3312 : * collision with an existing temp file name.
3313 : *
3314 : * NOTE: this function and its subroutines generally report syscall failures
3315 : * with ereport(LOG) and keep going. Removing temp files is not so critical
3316 : * that we should fail to start the database when we can't do it.
3317 : */
3318 : void
3319 1780 : RemovePgTempFiles(void)
3320 : {
3321 : char temp_path[MAXPGPATH + sizeof(PG_TBLSPC_DIR) + sizeof(TABLESPACE_VERSION_DIRECTORY) + sizeof(PG_TEMP_FILES_DIR)];
3322 : DIR *spc_dir;
3323 : struct dirent *spc_de;
3324 :
3325 : /*
3326 : * First process temp files in pg_default ($PGDATA/base)
3327 : */
3328 1780 : snprintf(temp_path, sizeof(temp_path), "base/%s", PG_TEMP_FILES_DIR);
3329 1780 : RemovePgTempFilesInDir(temp_path, true, false);
3330 1780 : RemovePgTempRelationFiles("base");
3331 :
3332 : /*
3333 : * Cycle through temp directories for all non-default tablespaces.
3334 : */
3335 1780 : spc_dir = AllocateDir(PG_TBLSPC_DIR);
3336 :
3337 5490 : while ((spc_de = ReadDirExtended(spc_dir, PG_TBLSPC_DIR, LOG)) != NULL)
3338 : {
3339 3710 : if (strcmp(spc_de->d_name, ".") == 0 ||
3340 1930 : strcmp(spc_de->d_name, "..") == 0)
3341 3560 : continue;
3342 :
3343 150 : snprintf(temp_path, sizeof(temp_path), "%s/%s/%s/%s",
3344 150 : PG_TBLSPC_DIR, spc_de->d_name, TABLESPACE_VERSION_DIRECTORY,
3345 : PG_TEMP_FILES_DIR);
3346 150 : RemovePgTempFilesInDir(temp_path, true, false);
3347 :
3348 150 : snprintf(temp_path, sizeof(temp_path), "%s/%s/%s",
3349 150 : PG_TBLSPC_DIR, spc_de->d_name, TABLESPACE_VERSION_DIRECTORY);
3350 150 : RemovePgTempRelationFiles(temp_path);
3351 : }
3352 :
3353 1780 : FreeDir(spc_dir);
3354 :
3355 : /*
3356 : * In EXEC_BACKEND case there is a pgsql_tmp directory at the top level of
3357 : * DataDir as well. However, that is *not* cleaned here because doing so
3358 : * would create a race condition. It's done separately, earlier in
3359 : * postmaster startup.
3360 : */
3361 1780 : }
3362 :
3363 : /*
3364 : * Process one pgsql_tmp directory for RemovePgTempFiles.
3365 : *
3366 : * If missing_ok is true, it's all right for the named directory to not exist.
3367 : * Any other problem results in a LOG message. (missing_ok should be true at
3368 : * the top level, since pgsql_tmp directories are not created until needed.)
3369 : *
3370 : * At the top level, this should be called with unlink_all = false, so that
3371 : * only files matching the temporary name prefix will be unlinked. When
3372 : * recursing it will be called with unlink_all = true to unlink everything
3373 : * under a top-level temporary directory.
3374 : *
3375 : * (These two flags could be replaced by one, but it seems clearer to keep
3376 : * them separate.)
3377 : */
3378 : void
3379 1932 : RemovePgTempFilesInDir(const char *tmpdirname, bool missing_ok, bool unlink_all)
3380 : {
3381 : DIR *temp_dir;
3382 : struct dirent *temp_de;
3383 : char rm_path[MAXPGPATH * 2];
3384 :
3385 1932 : temp_dir = AllocateDir(tmpdirname);
3386 :
3387 1932 : if (temp_dir == NULL && errno == ENOENT && missing_ok)
3388 1800 : return;
3389 :
3390 402 : while ((temp_de = ReadDirExtended(temp_dir, tmpdirname, LOG)) != NULL)
3391 : {
3392 270 : if (strcmp(temp_de->d_name, ".") == 0 ||
3393 138 : strcmp(temp_de->d_name, "..") == 0)
3394 264 : continue;
3395 :
3396 6 : snprintf(rm_path, sizeof(rm_path), "%s/%s",
3397 6 : tmpdirname, temp_de->d_name);
3398 :
3399 6 : if (unlink_all ||
3400 6 : strncmp(temp_de->d_name,
3401 : PG_TEMP_FILE_PREFIX,
3402 : strlen(PG_TEMP_FILE_PREFIX)) == 0)
3403 6 : {
3404 6 : PGFileType type = get_dirent_type(rm_path, temp_de, false, LOG);
3405 :
3406 6 : if (type == PGFILETYPE_ERROR)
3407 0 : continue;
3408 6 : else if (type == PGFILETYPE_DIR)
3409 : {
3410 : /* recursively remove contents, then directory itself */
3411 2 : RemovePgTempFilesInDir(rm_path, false, true);
3412 :
3413 2 : if (rmdir(rm_path) < 0)
3414 0 : ereport(LOG,
3415 : (errcode_for_file_access(),
3416 : errmsg("could not remove directory \"%s\": %m",
3417 : rm_path)));
3418 : }
3419 : else
3420 : {
3421 4 : if (unlink(rm_path) < 0)
3422 0 : ereport(LOG,
3423 : (errcode_for_file_access(),
3424 : errmsg("could not remove file \"%s\": %m",
3425 : rm_path)));
3426 : }
3427 : }
3428 : else
3429 0 : ereport(LOG,
3430 : (errmsg("unexpected file found in temporary-files directory: \"%s\"",
3431 : rm_path)));
3432 : }
3433 :
3434 132 : FreeDir(temp_dir);
3435 : }
3436 :
3437 : /* Process one tablespace directory, look for per-DB subdirectories */
3438 : static void
3439 1930 : RemovePgTempRelationFiles(const char *tsdirname)
3440 : {
3441 : DIR *ts_dir;
3442 : struct dirent *de;
3443 : char dbspace_path[MAXPGPATH * 2];
3444 :
3445 1930 : ts_dir = AllocateDir(tsdirname);
3446 :
3447 11998 : while ((de = ReadDirExtended(ts_dir, tsdirname, LOG)) != NULL)
3448 : {
3449 : /*
3450 : * We're only interested in the per-database directories, which have
3451 : * numeric names. Note that this code will also (properly) ignore "."
3452 : * and "..".
3453 : */
3454 10068 : if (strspn(de->d_name, "0123456789") != strlen(de->d_name))
3455 3990 : continue;
3456 :
3457 6078 : snprintf(dbspace_path, sizeof(dbspace_path), "%s/%s",
3458 6078 : tsdirname, de->d_name);
3459 6078 : RemovePgTempRelationFilesInDbspace(dbspace_path);
3460 : }
3461 :
3462 1930 : FreeDir(ts_dir);
3463 1930 : }
3464 :
3465 : /* Process one per-dbspace directory for RemovePgTempRelationFiles */
3466 : static void
3467 6078 : RemovePgTempRelationFilesInDbspace(const char *dbspacedirname)
3468 : {
3469 : DIR *dbspace_dir;
3470 : struct dirent *de;
3471 : char rm_path[MAXPGPATH * 2];
3472 :
3473 6078 : dbspace_dir = AllocateDir(dbspacedirname);
3474 :
3475 1841358 : while ((de = ReadDirExtended(dbspace_dir, dbspacedirname, LOG)) != NULL)
3476 : {
3477 1835280 : if (!looks_like_temp_rel_name(de->d_name))
3478 1835272 : continue;
3479 :
3480 8 : snprintf(rm_path, sizeof(rm_path), "%s/%s",
3481 8 : dbspacedirname, de->d_name);
3482 :
3483 8 : if (unlink(rm_path) < 0)
3484 0 : ereport(LOG,
3485 : (errcode_for_file_access(),
3486 : errmsg("could not remove file \"%s\": %m",
3487 : rm_path)));
3488 : }
3489 :
3490 6078 : FreeDir(dbspace_dir);
3491 6078 : }
3492 :
3493 : /* t<digits>_<digits>, or t<digits>_<digits>_<forkname> */
3494 : bool
3495 2433488 : looks_like_temp_rel_name(const char *name)
3496 : {
3497 : int pos;
3498 : int savepos;
3499 :
3500 : /* Must start with "t". */
3501 2433488 : if (name[0] != 't')
3502 2433408 : return false;
3503 :
3504 : /* Followed by a non-empty string of digits and then an underscore. */
3505 392 : for (pos = 1; isdigit((unsigned char) name[pos]); ++pos)
3506 : ;
3507 80 : if (pos == 1 || name[pos] != '_')
3508 0 : return false;
3509 :
3510 : /* Followed by another nonempty string of digits. */
3511 392 : for (savepos = ++pos; isdigit((unsigned char) name[pos]); ++pos)
3512 : ;
3513 80 : if (savepos == pos)
3514 0 : return false;
3515 :
3516 : /* We might have _forkname or .segment or both. */
3517 80 : if (name[pos] == '_')
3518 : {
3519 40 : int forkchar = forkname_chars(&name[pos + 1], NULL);
3520 :
3521 40 : if (forkchar <= 0)
3522 0 : return false;
3523 40 : pos += forkchar + 1;
3524 : }
3525 80 : if (name[pos] == '.')
3526 : {
3527 : int segchar;
3528 :
3529 80 : for (segchar = 1; isdigit((unsigned char) name[pos + segchar]); ++segchar)
3530 : ;
3531 40 : if (segchar <= 1)
3532 0 : return false;
3533 40 : pos += segchar;
3534 : }
3535 :
3536 : /* Now we should be at the end. */
3537 80 : if (name[pos] != '\0')
3538 0 : return false;
3539 80 : return true;
3540 : }
3541 :
3542 : #ifdef HAVE_SYNCFS
3543 : static void
3544 0 : do_syncfs(const char *path)
3545 : {
3546 : int fd;
3547 :
3548 0 : ereport_startup_progress("syncing data directory (syncfs), elapsed time: %ld.%02d s, current path: %s",
3549 : path);
3550 :
3551 0 : fd = OpenTransientFile(path, O_RDONLY);
3552 0 : if (fd < 0)
3553 : {
3554 0 : ereport(LOG,
3555 : (errcode_for_file_access(),
3556 : errmsg("could not open file \"%s\": %m", path)));
3557 0 : return;
3558 : }
3559 0 : if (syncfs(fd) < 0)
3560 0 : ereport(LOG,
3561 : (errcode_for_file_access(),
3562 : errmsg("could not synchronize file system for file \"%s\": %m", path)));
3563 0 : CloseTransientFile(fd);
3564 : }
3565 : #endif
3566 :
3567 : /*
3568 : * Issue fsync recursively on PGDATA and all its contents, or issue syncfs for
3569 : * all potential filesystem, depending on recovery_init_sync_method setting.
3570 : *
3571 : * We fsync regular files and directories wherever they are, but we
3572 : * follow symlinks only for pg_wal and immediately under pg_tblspc.
3573 : * Other symlinks are presumed to point at files we're not responsible
3574 : * for fsyncing, and might not have privileges to write at all.
3575 : *
3576 : * Errors are logged but not considered fatal; that's because this is used
3577 : * only during database startup, to deal with the possibility that there are
3578 : * issued-but-unsynced writes pending against the data directory. We want to
3579 : * ensure that such writes reach disk before anything that's done in the new
3580 : * run. However, aborting on error would result in failure to start for
3581 : * harmless cases such as read-only files in the data directory, and that's
3582 : * not good either.
3583 : *
3584 : * Note that if we previously crashed due to a PANIC on fsync(), we'll be
3585 : * rewriting all changes again during recovery.
3586 : *
3587 : * Note we assume we're chdir'd into PGDATA to begin with.
3588 : */
3589 : void
3590 358 : SyncDataDirectory(void)
3591 : {
3592 : bool xlog_is_symlink;
3593 :
3594 : /* We can skip this whole thing if fsync is disabled. */
3595 358 : if (!enableFsync)
3596 358 : return;
3597 :
3598 : /*
3599 : * If pg_wal is a symlink, we'll need to recurse into it separately,
3600 : * because the first walkdir below will ignore it.
3601 : */
3602 0 : xlog_is_symlink = false;
3603 :
3604 : {
3605 : struct stat st;
3606 :
3607 0 : if (lstat("pg_wal", &st) < 0)
3608 0 : ereport(LOG,
3609 : (errcode_for_file_access(),
3610 : errmsg("could not stat file \"%s\": %m",
3611 : "pg_wal")));
3612 0 : else if (S_ISLNK(st.st_mode))
3613 0 : xlog_is_symlink = true;
3614 : }
3615 :
3616 : #ifdef HAVE_SYNCFS
3617 0 : if (recovery_init_sync_method == DATA_DIR_SYNC_METHOD_SYNCFS)
3618 : {
3619 : DIR *dir;
3620 : struct dirent *de;
3621 :
3622 : /*
3623 : * On Linux, we don't have to open every single file one by one. We
3624 : * can use syncfs() to sync whole filesystems. We only expect
3625 : * filesystem boundaries to exist where we tolerate symlinks, namely
3626 : * pg_wal and the tablespaces, so we call syncfs() for each of those
3627 : * directories.
3628 : */
3629 :
3630 : /* Prepare to report progress syncing the data directory via syncfs. */
3631 0 : begin_startup_progress_phase();
3632 :
3633 : /* Sync the top level pgdata directory. */
3634 0 : do_syncfs(".");
3635 : /* If any tablespaces are configured, sync each of those. */
3636 0 : dir = AllocateDir(PG_TBLSPC_DIR);
3637 0 : while ((de = ReadDirExtended(dir, PG_TBLSPC_DIR, LOG)))
3638 : {
3639 : char path[MAXPGPATH];
3640 :
3641 0 : if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0)
3642 0 : continue;
3643 :
3644 0 : snprintf(path, MAXPGPATH, "%s/%s", PG_TBLSPC_DIR, de->d_name);
3645 0 : do_syncfs(path);
3646 : }
3647 0 : FreeDir(dir);
3648 : /* If pg_wal is a symlink, process that too. */
3649 0 : if (xlog_is_symlink)
3650 0 : do_syncfs("pg_wal");
3651 0 : return;
3652 : }
3653 : #endif /* !HAVE_SYNCFS */
3654 :
3655 : #ifdef PG_FLUSH_DATA_WORKS
3656 : /* Prepare to report progress of the pre-fsync phase. */
3657 0 : begin_startup_progress_phase();
3658 :
3659 : /*
3660 : * If possible, hint to the kernel that we're soon going to fsync the data
3661 : * directory and its contents. Errors in this step are even less
3662 : * interesting than normal, so log them only at DEBUG1.
3663 : */
3664 0 : walkdir(".", pre_sync_fname, false, DEBUG1);
3665 0 : if (xlog_is_symlink)
3666 0 : walkdir("pg_wal", pre_sync_fname, false, DEBUG1);
3667 0 : walkdir(PG_TBLSPC_DIR, pre_sync_fname, true, DEBUG1);
3668 : #endif
3669 :
3670 : /* Prepare to report progress syncing the data directory via fsync. */
3671 0 : begin_startup_progress_phase();
3672 :
3673 : /*
3674 : * Now we do the fsync()s in the same order.
3675 : *
3676 : * The main call ignores symlinks, so in addition to specially processing
3677 : * pg_wal if it's a symlink, pg_tblspc has to be visited separately with
3678 : * process_symlinks = true. Note that if there are any plain directories
3679 : * in pg_tblspc, they'll get fsync'd twice. That's not an expected case
3680 : * so we don't worry about optimizing it.
3681 : */
3682 0 : walkdir(".", datadir_fsync_fname, false, LOG);
3683 0 : if (xlog_is_symlink)
3684 0 : walkdir("pg_wal", datadir_fsync_fname, false, LOG);
3685 0 : walkdir(PG_TBLSPC_DIR, datadir_fsync_fname, true, LOG);
3686 : }
3687 :
3688 : /*
3689 : * walkdir: recursively walk a directory, applying the action to each
3690 : * regular file and directory (including the named directory itself).
3691 : *
3692 : * If process_symlinks is true, the action and recursion are also applied
3693 : * to regular files and directories that are pointed to by symlinks in the
3694 : * given directory; otherwise symlinks are ignored. Symlinks are always
3695 : * ignored in subdirectories, ie we intentionally don't pass down the
3696 : * process_symlinks flag to recursive calls.
3697 : *
3698 : * Errors are reported at level elevel, which might be ERROR or less.
3699 : *
3700 : * See also walkdir in file_utils.c, which is a frontend version of this
3701 : * logic.
3702 : */
3703 : static void
3704 350 : walkdir(const char *path,
3705 : void (*action) (const char *fname, bool isdir, int elevel),
3706 : bool process_symlinks,
3707 : int elevel)
3708 : {
3709 : DIR *dir;
3710 : struct dirent *de;
3711 :
3712 350 : dir = AllocateDir(path);
3713 :
3714 3206 : while ((de = ReadDirExtended(dir, path, elevel)) != NULL)
3715 : {
3716 : char subpath[MAXPGPATH * 2];
3717 :
3718 2856 : CHECK_FOR_INTERRUPTS();
3719 :
3720 2856 : if (strcmp(de->d_name, ".") == 0 ||
3721 2506 : strcmp(de->d_name, "..") == 0)
3722 700 : continue;
3723 :
3724 2156 : snprintf(subpath, sizeof(subpath), "%s/%s", path, de->d_name);
3725 :
3726 2156 : switch (get_dirent_type(subpath, de, process_symlinks, elevel))
3727 : {
3728 2156 : case PGFILETYPE_REG:
3729 2156 : (*action) (subpath, false, elevel);
3730 2156 : break;
3731 0 : case PGFILETYPE_DIR:
3732 0 : walkdir(subpath, action, false, elevel);
3733 0 : break;
3734 0 : default:
3735 :
3736 : /*
3737 : * Errors are already reported directly by get_dirent_type(),
3738 : * and any remaining symlinks and unknown file types are
3739 : * ignored.
3740 : */
3741 0 : break;
3742 : }
3743 : }
3744 :
3745 350 : FreeDir(dir); /* we ignore any error here */
3746 :
3747 : /*
3748 : * It's important to fsync the destination directory itself as individual
3749 : * file fsyncs don't guarantee that the directory entry for the file is
3750 : * synced. However, skip this if AllocateDir failed; the action function
3751 : * might not be robust against that.
3752 : */
3753 350 : if (dir)
3754 350 : (*action) (path, true, elevel);
3755 350 : }
3756 :
3757 :
3758 : /*
3759 : * Hint to the OS that it should get ready to fsync() this file.
3760 : *
3761 : * Ignores errors trying to open unreadable files, and logs other errors at a
3762 : * caller-specified level.
3763 : */
3764 : #ifdef PG_FLUSH_DATA_WORKS
3765 :
3766 : static void
3767 0 : pre_sync_fname(const char *fname, bool isdir, int elevel)
3768 : {
3769 : int fd;
3770 :
3771 : /* Don't try to flush directories, it'll likely just fail */
3772 0 : if (isdir)
3773 0 : return;
3774 :
3775 0 : ereport_startup_progress("syncing data directory (pre-fsync), elapsed time: %ld.%02d s, current path: %s",
3776 : fname);
3777 :
3778 0 : fd = OpenTransientFile(fname, O_RDONLY | PG_BINARY);
3779 :
3780 0 : if (fd < 0)
3781 : {
3782 0 : if (errno == EACCES)
3783 0 : return;
3784 0 : ereport(elevel,
3785 : (errcode_for_file_access(),
3786 : errmsg("could not open file \"%s\": %m", fname)));
3787 0 : return;
3788 : }
3789 :
3790 : /*
3791 : * pg_flush_data() ignores errors, which is ok because this is only a
3792 : * hint.
3793 : */
3794 0 : pg_flush_data(fd, 0, 0);
3795 :
3796 0 : if (CloseTransientFile(fd) != 0)
3797 0 : ereport(elevel,
3798 : (errcode_for_file_access(),
3799 : errmsg("could not close file \"%s\": %m", fname)));
3800 : }
3801 :
3802 : #endif /* PG_FLUSH_DATA_WORKS */
3803 :
3804 : static void
3805 0 : datadir_fsync_fname(const char *fname, bool isdir, int elevel)
3806 : {
3807 0 : ereport_startup_progress("syncing data directory (fsync), elapsed time: %ld.%02d s, current path: %s",
3808 : fname);
3809 :
3810 : /*
3811 : * We want to silently ignoring errors about unreadable files. Pass that
3812 : * desire on to fsync_fname_ext().
3813 : */
3814 0 : fsync_fname_ext(fname, isdir, true, elevel);
3815 0 : }
3816 :
3817 : static void
3818 2506 : unlink_if_exists_fname(const char *fname, bool isdir, int elevel)
3819 : {
3820 2506 : if (isdir)
3821 : {
3822 350 : if (rmdir(fname) != 0 && errno != ENOENT)
3823 0 : ereport(elevel,
3824 : (errcode_for_file_access(),
3825 : errmsg("could not remove directory \"%s\": %m", fname)));
3826 : }
3827 : else
3828 : {
3829 : /* Use PathNameDeleteTemporaryFile to report filesize */
3830 2156 : PathNameDeleteTemporaryFile(fname, false);
3831 : }
3832 2506 : }
3833 :
3834 : /*
3835 : * fsync_fname_ext -- Try to fsync a file or directory
3836 : *
3837 : * If ignore_perm is true, ignore errors upon trying to open unreadable
3838 : * files. Logs other errors at a caller-specified level.
3839 : *
3840 : * Returns 0 if the operation succeeded, -1 otherwise.
3841 : */
3842 : int
3843 83720 : fsync_fname_ext(const char *fname, bool isdir, bool ignore_perm, int elevel)
3844 : {
3845 : int fd;
3846 : int flags;
3847 : int returncode;
3848 :
3849 : /*
3850 : * Some OSs require directories to be opened read-only whereas other
3851 : * systems don't allow us to fsync files opened read-only; so we need both
3852 : * cases here. Using O_RDWR will cause us to fail to fsync files that are
3853 : * not writable by our userid, but we assume that's OK.
3854 : */
3855 83720 : flags = PG_BINARY;
3856 83720 : if (!isdir)
3857 31194 : flags |= O_RDWR;
3858 : else
3859 52526 : flags |= O_RDONLY;
3860 :
3861 83720 : fd = OpenTransientFile(fname, flags);
3862 :
3863 : /*
3864 : * Some OSs don't allow us to open directories at all (Windows returns
3865 : * EACCES), just ignore the error in that case. If desired also silently
3866 : * ignoring errors about unreadable files. Log others.
3867 : */
3868 83720 : if (fd < 0 && isdir && (errno == EISDIR || errno == EACCES))
3869 0 : return 0;
3870 83720 : else if (fd < 0 && ignore_perm && errno == EACCES)
3871 0 : return 0;
3872 83720 : else if (fd < 0)
3873 : {
3874 0 : ereport(elevel,
3875 : (errcode_for_file_access(),
3876 : errmsg("could not open file \"%s\": %m", fname)));
3877 0 : return -1;
3878 : }
3879 :
3880 83720 : returncode = pg_fsync(fd);
3881 :
3882 : /*
3883 : * Some OSes don't allow us to fsync directories at all, so we can ignore
3884 : * those errors. Anything else needs to be logged.
3885 : */
3886 83720 : if (returncode != 0 && !(isdir && (errno == EBADF || errno == EINVAL)))
3887 : {
3888 : int save_errno;
3889 :
3890 : /* close file upon error, might not be in transaction context */
3891 0 : save_errno = errno;
3892 0 : (void) CloseTransientFile(fd);
3893 0 : errno = save_errno;
3894 :
3895 0 : ereport(elevel,
3896 : (errcode_for_file_access(),
3897 : errmsg("could not fsync file \"%s\": %m", fname)));
3898 0 : return -1;
3899 : }
3900 :
3901 83720 : if (CloseTransientFile(fd) != 0)
3902 : {
3903 0 : ereport(elevel,
3904 : (errcode_for_file_access(),
3905 : errmsg("could not close file \"%s\": %m", fname)));
3906 0 : return -1;
3907 : }
3908 :
3909 83720 : return 0;
3910 : }
3911 :
3912 : /*
3913 : * fsync_parent_path -- fsync the parent path of a file or directory
3914 : *
3915 : * This is aimed at making file operations persistent on disk in case of
3916 : * an OS crash or power failure.
3917 : */
3918 : static int
3919 15376 : fsync_parent_path(const char *fname, int elevel)
3920 : {
3921 : char parentpath[MAXPGPATH];
3922 :
3923 15376 : strlcpy(parentpath, fname, MAXPGPATH);
3924 15376 : get_parent_directory(parentpath);
3925 :
3926 : /*
3927 : * get_parent_directory() returns an empty string if the input argument is
3928 : * just a file name (see comments in path.c), so handle that as being the
3929 : * current directory.
3930 : */
3931 15376 : if (strlen(parentpath) == 0)
3932 412 : strlcpy(parentpath, ".", MAXPGPATH);
3933 :
3934 15376 : if (fsync_fname_ext(parentpath, true, false, elevel) != 0)
3935 0 : return -1;
3936 :
3937 15376 : return 0;
3938 : }
3939 :
3940 : /*
3941 : * Create a PostgreSQL data sub-directory
3942 : *
3943 : * The data directory itself, and most of its sub-directories, are created at
3944 : * initdb time, but we do have some occasions when we create directories in
3945 : * the backend (CREATE TABLESPACE, for example). In those cases, we want to
3946 : * make sure that those directories are created consistently. Today, that means
3947 : * making sure that the created directory has the correct permissions, which is
3948 : * what pg_dir_create_mode tracks for us.
3949 : *
3950 : * Note that we also set the umask() based on what we understand the correct
3951 : * permissions to be (see file_perm.c).
3952 : *
3953 : * For permissions other than the default, mkdir() can be used directly, but
3954 : * be sure to consider carefully such cases -- a sub-directory with incorrect
3955 : * permissions in a PostgreSQL data directory could cause backups and other
3956 : * processes to fail.
3957 : */
3958 : int
3959 3046 : MakePGDirectory(const char *directoryName)
3960 : {
3961 3046 : return mkdir(directoryName, pg_dir_create_mode);
3962 : }
3963 :
3964 : /*
3965 : * Return the passed-in error level, or PANIC if data_sync_retry is off.
3966 : *
3967 : * Failure to fsync any data file is cause for immediate panic, unless
3968 : * data_sync_retry is enabled. Data may have been written to the operating
3969 : * system and removed from our buffer pool already, and if we are running on
3970 : * an operating system that forgets dirty data on write-back failure, there
3971 : * may be only one copy of the data remaining: in the WAL. A later attempt to
3972 : * fsync again might falsely report success. Therefore we must not allow any
3973 : * further checkpoints to be attempted. data_sync_retry can in theory be
3974 : * enabled on systems known not to drop dirty buffered data on write-back
3975 : * failure (with the likely outcome that checkpoints will continue to fail
3976 : * until the underlying problem is fixed).
3977 : *
3978 : * Any code that reports a failure from fsync() or related functions should
3979 : * filter the error level with this function.
3980 : */
3981 : int
3982 42604 : data_sync_elevel(int elevel)
3983 : {
3984 42604 : return data_sync_retry ? elevel : PANIC;
3985 : }
3986 :
3987 : bool
3988 2306 : check_debug_io_direct(char **newval, void **extra, GucSource source)
3989 : {
3990 2306 : bool result = true;
3991 : int flags;
3992 :
3993 : #if PG_O_DIRECT == 0
3994 : if (strcmp(*newval, "") != 0)
3995 : {
3996 : GUC_check_errdetail("\"%s\" is not supported on this platform.",
3997 : "debug_io_direct");
3998 : result = false;
3999 : }
4000 : flags = 0;
4001 : #else
4002 : List *elemlist;
4003 : ListCell *l;
4004 : char *rawstring;
4005 :
4006 : /* Need a modifiable copy of string */
4007 2306 : rawstring = pstrdup(*newval);
4008 :
4009 2306 : if (!SplitGUCList(rawstring, ',', &elemlist))
4010 : {
4011 0 : GUC_check_errdetail("Invalid list syntax in parameter \"%s\".",
4012 : "debug_io_direct");
4013 0 : pfree(rawstring);
4014 0 : list_free(elemlist);
4015 0 : return false;
4016 : }
4017 :
4018 2306 : flags = 0;
4019 2318 : foreach(l, elemlist)
4020 : {
4021 12 : char *item = (char *) lfirst(l);
4022 :
4023 12 : if (pg_strcasecmp(item, "data") == 0)
4024 4 : flags |= IO_DIRECT_DATA;
4025 8 : else if (pg_strcasecmp(item, "wal") == 0)
4026 4 : flags |= IO_DIRECT_WAL;
4027 4 : else if (pg_strcasecmp(item, "wal_init") == 0)
4028 4 : flags |= IO_DIRECT_WAL_INIT;
4029 : else
4030 : {
4031 0 : GUC_check_errdetail("Invalid option \"%s\".", item);
4032 0 : result = false;
4033 0 : break;
4034 : }
4035 : }
4036 :
4037 : /*
4038 : * It's possible to configure block sizes smaller than our assumed I/O
4039 : * alignment size, which could result in invalid I/O requests.
4040 : */
4041 : #if XLOG_BLCKSZ < PG_IO_ALIGN_SIZE
4042 : if (result && (flags & (IO_DIRECT_WAL | IO_DIRECT_WAL_INIT)))
4043 : {
4044 : GUC_check_errdetail("\"%s\" is not supported for WAL because %s is too small.",
4045 : "debug_io_direct", "XLOG_BLCKSZ");
4046 : result = false;
4047 : }
4048 : #endif
4049 : #if BLCKSZ < PG_IO_ALIGN_SIZE
4050 : if (result && (flags & IO_DIRECT_DATA))
4051 : {
4052 : GUC_check_errdetail("\"%s\" is not supported for data because %s is too small.",
4053 : "debug_io_direct", "BLCKSZ");
4054 : result = false;
4055 : }
4056 : #endif
4057 :
4058 2306 : pfree(rawstring);
4059 2306 : list_free(elemlist);
4060 : #endif
4061 :
4062 2306 : if (!result)
4063 0 : return result;
4064 :
4065 : /* Save the flags in *extra, for use by assign_debug_io_direct */
4066 2306 : *extra = guc_malloc(LOG, sizeof(int));
4067 2306 : if (!*extra)
4068 0 : return false;
4069 2306 : *((int *) *extra) = flags;
4070 :
4071 2306 : return result;
4072 : }
4073 :
4074 : void
4075 2306 : assign_debug_io_direct(const char *newval, void *extra)
4076 : {
4077 2306 : int *flags = (int *) extra;
4078 :
4079 2306 : io_direct_flags = *flags;
4080 2306 : }
4081 :
4082 : /* ResourceOwner callbacks */
4083 :
4084 : static void
4085 8 : ResOwnerReleaseFile(Datum res)
4086 : {
4087 8 : File file = (File) DatumGetInt32(res);
4088 : Vfd *vfdP;
4089 :
4090 : Assert(FileIsValid(file));
4091 :
4092 8 : vfdP = &VfdCache[file];
4093 8 : vfdP->resowner = NULL;
4094 :
4095 8 : FileClose(file);
4096 8 : }
4097 :
4098 : static char *
4099 0 : ResOwnerPrintFile(Datum res)
4100 : {
4101 0 : return psprintf("File %d", DatumGetInt32(res));
4102 : }
|