Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * freelist.c
4 : * routines for managing the buffer pool's replacement strategy.
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/storage/buffer/freelist.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include "pgstat.h"
19 : #include "port/atomics.h"
20 : #include "storage/buf_internals.h"
21 : #include "storage/bufmgr.h"
22 : #include "storage/proc.h"
23 :
24 : #define INT_ACCESS_ONCE(var) ((int)(*((volatile int *)&(var))))
25 :
26 :
27 : /*
28 : * The shared freelist control information.
29 : */
30 : typedef struct
31 : {
32 : /* Spinlock: protects the values below */
33 : slock_t buffer_strategy_lock;
34 :
35 : /*
36 : * Clock sweep hand: index of next buffer to consider grabbing. Note that
37 : * this isn't a concrete buffer - we only ever increase the value. So, to
38 : * get an actual buffer, it needs to be used modulo NBuffers.
39 : */
40 : pg_atomic_uint32 nextVictimBuffer;
41 :
42 : int firstFreeBuffer; /* Head of list of unused buffers */
43 : int lastFreeBuffer; /* Tail of list of unused buffers */
44 :
45 : /*
46 : * NOTE: lastFreeBuffer is undefined when firstFreeBuffer is -1 (that is,
47 : * when the list is empty)
48 : */
49 :
50 : /*
51 : * Statistics. These counters should be wide enough that they can't
52 : * overflow during a single bgwriter cycle.
53 : */
54 : uint32 completePasses; /* Complete cycles of the clock sweep */
55 : pg_atomic_uint32 numBufferAllocs; /* Buffers allocated since last reset */
56 :
57 : /*
58 : * Bgworker process to be notified upon activity or -1 if none. See
59 : * StrategyNotifyBgWriter.
60 : */
61 : int bgwprocno;
62 : } BufferStrategyControl;
63 :
64 : /* Pointers to shared state */
65 : static BufferStrategyControl *StrategyControl = NULL;
66 :
67 : /*
68 : * Private (non-shared) state for managing a ring of shared buffers to re-use.
69 : * This is currently the only kind of BufferAccessStrategy object, but someday
70 : * we might have more kinds.
71 : */
72 : typedef struct BufferAccessStrategyData
73 : {
74 : /* Overall strategy type */
75 : BufferAccessStrategyType btype;
76 : /* Number of elements in buffers[] array */
77 : int nbuffers;
78 :
79 : /*
80 : * Index of the "current" slot in the ring, ie, the one most recently
81 : * returned by GetBufferFromRing.
82 : */
83 : int current;
84 :
85 : /*
86 : * Array of buffer numbers. InvalidBuffer (that is, zero) indicates we
87 : * have not yet selected a buffer for this ring slot. For allocation
88 : * simplicity this is palloc'd together with the fixed fields of the
89 : * struct.
90 : */
91 : Buffer buffers[FLEXIBLE_ARRAY_MEMBER];
92 : } BufferAccessStrategyData;
93 :
94 :
95 : /* Prototypes for internal functions */
96 : static BufferDesc *GetBufferFromRing(BufferAccessStrategy strategy,
97 : uint32 *buf_state);
98 : static void AddBufferToRing(BufferAccessStrategy strategy,
99 : BufferDesc *buf);
100 :
101 : /*
102 : * ClockSweepTick - Helper routine for StrategyGetBuffer()
103 : *
104 : * Move the clock hand one buffer ahead of its current position and return the
105 : * id of the buffer now under the hand.
106 : */
107 : static inline uint32
108 7381634 : ClockSweepTick(void)
109 : {
110 : uint32 victim;
111 :
112 : /*
113 : * Atomically move hand ahead one buffer - if there's several processes
114 : * doing this, this can lead to buffers being returned slightly out of
115 : * apparent order.
116 : */
117 : victim =
118 7381634 : pg_atomic_fetch_add_u32(&StrategyControl->nextVictimBuffer, 1);
119 :
120 7381634 : if (victim >= NBuffers)
121 : {
122 59514 : uint32 originalVictim = victim;
123 :
124 : /* always wrap what we look up in BufferDescriptors */
125 59514 : victim = victim % NBuffers;
126 :
127 : /*
128 : * If we're the one that just caused a wraparound, force
129 : * completePasses to be incremented while holding the spinlock. We
130 : * need the spinlock so StrategySyncStart() can return a consistent
131 : * value consisting of nextVictimBuffer and completePasses.
132 : */
133 59514 : if (victim == 0)
134 : {
135 : uint32 expected;
136 : uint32 wrapped;
137 59368 : bool success = false;
138 :
139 59368 : expected = originalVictim + 1;
140 :
141 118872 : while (!success)
142 : {
143 : /*
144 : * Acquire the spinlock while increasing completePasses. That
145 : * allows other readers to read nextVictimBuffer and
146 : * completePasses in a consistent manner which is required for
147 : * StrategySyncStart(). In theory delaying the increment
148 : * could lead to an overflow of nextVictimBuffers, but that's
149 : * highly unlikely and wouldn't be particularly harmful.
150 : */
151 59504 : SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
152 :
153 59504 : wrapped = expected % NBuffers;
154 :
155 59504 : success = pg_atomic_compare_exchange_u32(&StrategyControl->nextVictimBuffer,
156 : &expected, wrapped);
157 59504 : if (success)
158 59368 : StrategyControl->completePasses++;
159 59504 : SpinLockRelease(&StrategyControl->buffer_strategy_lock);
160 : }
161 : }
162 : }
163 7381634 : return victim;
164 : }
165 :
166 : /*
167 : * have_free_buffer -- a lockless check to see if there is a free buffer in
168 : * buffer pool.
169 : *
170 : * If the result is true that will become stale once free buffers are moved out
171 : * by other operations, so the caller who strictly want to use a free buffer
172 : * should not call this.
173 : */
174 : bool
175 778 : have_free_buffer(void)
176 : {
177 778 : if (StrategyControl->firstFreeBuffer >= 0)
178 778 : return true;
179 : else
180 0 : return false;
181 : }
182 :
183 : /*
184 : * StrategyGetBuffer
185 : *
186 : * Called by the bufmgr to get the next candidate buffer to use in
187 : * BufferAlloc(). The only hard requirement BufferAlloc() has is that
188 : * the selected buffer must not currently be pinned by anyone.
189 : *
190 : * strategy is a BufferAccessStrategy object, or NULL for default strategy.
191 : *
192 : * To ensure that no one else can pin the buffer before we do, we must
193 : * return the buffer with the buffer header spinlock still held.
194 : */
195 : BufferDesc *
196 3803878 : StrategyGetBuffer(BufferAccessStrategy strategy, uint32 *buf_state, bool *from_ring)
197 : {
198 : BufferDesc *buf;
199 : int bgwprocno;
200 : int trycounter;
201 : uint32 local_buf_state; /* to avoid repeated (de-)referencing */
202 :
203 3803878 : *from_ring = false;
204 :
205 : /*
206 : * If given a strategy object, see whether it can select a buffer. We
207 : * assume strategy objects don't need buffer_strategy_lock.
208 : */
209 3803878 : if (strategy != NULL)
210 : {
211 1686838 : buf = GetBufferFromRing(strategy, buf_state);
212 1686838 : if (buf != NULL)
213 : {
214 709822 : *from_ring = true;
215 709822 : return buf;
216 : }
217 : }
218 :
219 : /*
220 : * If asked, we need to waken the bgwriter. Since we don't want to rely on
221 : * a spinlock for this we force a read from shared memory once, and then
222 : * set the latch based on that value. We need to go through that length
223 : * because otherwise bgwprocno might be reset while/after we check because
224 : * the compiler might just reread from memory.
225 : *
226 : * This can possibly set the latch of the wrong process if the bgwriter
227 : * dies in the wrong moment. But since PGPROC->procLatch is never
228 : * deallocated the worst consequence of that is that we set the latch of
229 : * some arbitrary process.
230 : */
231 3094056 : bgwprocno = INT_ACCESS_ONCE(StrategyControl->bgwprocno);
232 3094056 : if (bgwprocno != -1)
233 : {
234 : /* reset bgwprocno first, before setting the latch */
235 518 : StrategyControl->bgwprocno = -1;
236 :
237 : /*
238 : * Not acquiring ProcArrayLock here which is slightly icky. It's
239 : * actually fine because procLatch isn't ever freed, so we just can
240 : * potentially set the wrong process' (or no process') latch.
241 : */
242 518 : SetLatch(&ProcGlobal->allProcs[bgwprocno].procLatch);
243 : }
244 :
245 : /*
246 : * We count buffer allocation requests so that the bgwriter can estimate
247 : * the rate of buffer consumption. Note that buffers recycled by a
248 : * strategy object are intentionally not counted here.
249 : */
250 3094056 : pg_atomic_fetch_add_u32(&StrategyControl->numBufferAllocs, 1);
251 :
252 : /*
253 : * First check, without acquiring the lock, whether there's buffers in the
254 : * freelist. Since we otherwise don't require the spinlock in every
255 : * StrategyGetBuffer() invocation, it'd be sad to acquire it here -
256 : * uselessly in most cases. That obviously leaves a race where a buffer is
257 : * put on the freelist but we don't see the store yet - but that's pretty
258 : * harmless, it'll just get used during the next buffer acquisition.
259 : *
260 : * If there's buffers on the freelist, acquire the spinlock to pop one
261 : * buffer of the freelist. Then check whether that buffer is usable and
262 : * repeat if not.
263 : *
264 : * Note that the freeNext fields are considered to be protected by the
265 : * buffer_strategy_lock not the individual buffer spinlocks, so it's OK to
266 : * manipulate them without holding the spinlock.
267 : */
268 3094056 : if (StrategyControl->firstFreeBuffer >= 0)
269 : {
270 : while (true)
271 : {
272 : /* Acquire the spinlock to remove element from the freelist */
273 1443472 : SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
274 :
275 1443472 : if (StrategyControl->firstFreeBuffer < 0)
276 : {
277 24 : SpinLockRelease(&StrategyControl->buffer_strategy_lock);
278 24 : break;
279 : }
280 :
281 1443448 : buf = GetBufferDescriptor(StrategyControl->firstFreeBuffer);
282 : Assert(buf->freeNext != FREENEXT_NOT_IN_LIST);
283 :
284 : /* Unconditionally remove buffer from freelist */
285 1443448 : StrategyControl->firstFreeBuffer = buf->freeNext;
286 1443448 : buf->freeNext = FREENEXT_NOT_IN_LIST;
287 :
288 : /*
289 : * Release the lock so someone else can access the freelist while
290 : * we check out this buffer.
291 : */
292 1443448 : SpinLockRelease(&StrategyControl->buffer_strategy_lock);
293 :
294 : /*
295 : * If the buffer is pinned or has a nonzero usage_count, we cannot
296 : * use it; discard it and retry. (This can only happen if VACUUM
297 : * put a valid buffer in the freelist and then someone else used
298 : * it before we got to it. It's probably impossible altogether as
299 : * of 8.3, but we'd better check anyway.)
300 : */
301 1443448 : local_buf_state = LockBufHdr(buf);
302 1443448 : if (BUF_STATE_GET_REFCOUNT(local_buf_state) == 0
303 1443442 : && BUF_STATE_GET_USAGECOUNT(local_buf_state) == 0)
304 : {
305 1443414 : if (strategy != NULL)
306 723656 : AddBufferToRing(strategy, buf);
307 1443414 : *buf_state = local_buf_state;
308 1443414 : return buf;
309 : }
310 34 : UnlockBufHdr(buf, local_buf_state);
311 : }
312 : }
313 :
314 : /* Nothing on the freelist, so run the "clock sweep" algorithm */
315 1650642 : trycounter = NBuffers;
316 : for (;;)
317 : {
318 7381634 : buf = GetBufferDescriptor(ClockSweepTick());
319 :
320 : /*
321 : * If the buffer is pinned or has a nonzero usage_count, we cannot use
322 : * it; decrement the usage_count (unless pinned) and keep scanning.
323 : */
324 7381634 : local_buf_state = LockBufHdr(buf);
325 :
326 7381634 : if (BUF_STATE_GET_REFCOUNT(local_buf_state) == 0)
327 : {
328 7241212 : if (BUF_STATE_GET_USAGECOUNT(local_buf_state) != 0)
329 : {
330 5590570 : local_buf_state -= BUF_USAGECOUNT_ONE;
331 :
332 5590570 : trycounter = NBuffers;
333 : }
334 : else
335 : {
336 : /* Found a usable buffer */
337 1650642 : if (strategy != NULL)
338 253360 : AddBufferToRing(strategy, buf);
339 1650642 : *buf_state = local_buf_state;
340 1650642 : return buf;
341 : }
342 : }
343 140422 : else if (--trycounter == 0)
344 : {
345 : /*
346 : * We've scanned all the buffers without making any state changes,
347 : * so all the buffers are pinned (or were when we looked at them).
348 : * We could hope that someone will free one eventually, but it's
349 : * probably better to fail than to risk getting stuck in an
350 : * infinite loop.
351 : */
352 0 : UnlockBufHdr(buf, local_buf_state);
353 0 : elog(ERROR, "no unpinned buffers available");
354 : }
355 5730992 : UnlockBufHdr(buf, local_buf_state);
356 : }
357 : }
358 :
359 : /*
360 : * StrategyFreeBuffer: put a buffer on the freelist
361 : */
362 : void
363 215342 : StrategyFreeBuffer(BufferDesc *buf)
364 : {
365 215342 : SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
366 :
367 : /*
368 : * It is possible that we are told to put something in the freelist that
369 : * is already in it; don't screw up the list if so.
370 : */
371 215342 : if (buf->freeNext == FREENEXT_NOT_IN_LIST)
372 : {
373 215342 : buf->freeNext = StrategyControl->firstFreeBuffer;
374 215342 : if (buf->freeNext < 0)
375 4978 : StrategyControl->lastFreeBuffer = buf->buf_id;
376 215342 : StrategyControl->firstFreeBuffer = buf->buf_id;
377 : }
378 :
379 215342 : SpinLockRelease(&StrategyControl->buffer_strategy_lock);
380 215342 : }
381 :
382 : /*
383 : * StrategySyncStart -- tell BgBufferSync where to start syncing
384 : *
385 : * The result is the buffer index of the best buffer to sync first.
386 : * BgBufferSync() will proceed circularly around the buffer array from there.
387 : *
388 : * In addition, we return the completed-pass count (which is effectively
389 : * the higher-order bits of nextVictimBuffer) and the count of recent buffer
390 : * allocs if non-NULL pointers are passed. The alloc count is reset after
391 : * being read.
392 : */
393 : int
394 20588 : StrategySyncStart(uint32 *complete_passes, uint32 *num_buf_alloc)
395 : {
396 : uint32 nextVictimBuffer;
397 : int result;
398 :
399 20588 : SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
400 20588 : nextVictimBuffer = pg_atomic_read_u32(&StrategyControl->nextVictimBuffer);
401 20588 : result = nextVictimBuffer % NBuffers;
402 :
403 20588 : if (complete_passes)
404 : {
405 20588 : *complete_passes = StrategyControl->completePasses;
406 :
407 : /*
408 : * Additionally add the number of wraparounds that happened before
409 : * completePasses could be incremented. C.f. ClockSweepTick().
410 : */
411 20588 : *complete_passes += nextVictimBuffer / NBuffers;
412 : }
413 :
414 20588 : if (num_buf_alloc)
415 : {
416 20588 : *num_buf_alloc = pg_atomic_exchange_u32(&StrategyControl->numBufferAllocs, 0);
417 : }
418 20588 : SpinLockRelease(&StrategyControl->buffer_strategy_lock);
419 20588 : return result;
420 : }
421 :
422 : /*
423 : * StrategyNotifyBgWriter -- set or clear allocation notification latch
424 : *
425 : * If bgwprocno isn't -1, the next invocation of StrategyGetBuffer will
426 : * set that latch. Pass -1 to clear the pending notification before it
427 : * happens. This feature is used by the bgwriter process to wake itself up
428 : * from hibernation, and is not meant for anybody else to use.
429 : */
430 : void
431 808 : StrategyNotifyBgWriter(int bgwprocno)
432 : {
433 : /*
434 : * We acquire buffer_strategy_lock just to ensure that the store appears
435 : * atomic to StrategyGetBuffer. The bgwriter should call this rather
436 : * infrequently, so there's no performance penalty from being safe.
437 : */
438 808 : SpinLockAcquire(&StrategyControl->buffer_strategy_lock);
439 808 : StrategyControl->bgwprocno = bgwprocno;
440 808 : SpinLockRelease(&StrategyControl->buffer_strategy_lock);
441 808 : }
442 :
443 :
444 : /*
445 : * StrategyShmemSize
446 : *
447 : * estimate the size of shared memory used by the freelist-related structures.
448 : *
449 : * Note: for somewhat historical reasons, the buffer lookup hashtable size
450 : * is also determined here.
451 : */
452 : Size
453 3906 : StrategyShmemSize(void)
454 : {
455 3906 : Size size = 0;
456 :
457 : /* size of lookup hash table ... see comment in StrategyInitialize */
458 3906 : size = add_size(size, BufTableShmemSize(NBuffers + NUM_BUFFER_PARTITIONS));
459 :
460 : /* size of the shared replacement strategy control block */
461 3906 : size = add_size(size, MAXALIGN(sizeof(BufferStrategyControl)));
462 :
463 3906 : return size;
464 : }
465 :
466 : /*
467 : * StrategyInitialize -- initialize the buffer cache replacement
468 : * strategy.
469 : *
470 : * Assumes: All of the buffers are already built into a linked list.
471 : * Only called by postmaster and only during initialization.
472 : */
473 : void
474 2100 : StrategyInitialize(bool init)
475 : {
476 : bool found;
477 :
478 : /*
479 : * Initialize the shared buffer lookup hashtable.
480 : *
481 : * Since we can't tolerate running out of lookup table entries, we must be
482 : * sure to specify an adequate table size here. The maximum steady-state
483 : * usage is of course NBuffers entries, but BufferAlloc() tries to insert
484 : * a new entry before deleting the old. In principle this could be
485 : * happening in each partition concurrently, so we could need as many as
486 : * NBuffers + NUM_BUFFER_PARTITIONS entries.
487 : */
488 2100 : InitBufTable(NBuffers + NUM_BUFFER_PARTITIONS);
489 :
490 : /*
491 : * Get or create the shared strategy control block
492 : */
493 2100 : StrategyControl = (BufferStrategyControl *)
494 2100 : ShmemInitStruct("Buffer Strategy Status",
495 : sizeof(BufferStrategyControl),
496 : &found);
497 :
498 2100 : if (!found)
499 : {
500 : /*
501 : * Only done once, usually in postmaster
502 : */
503 : Assert(init);
504 :
505 2100 : SpinLockInit(&StrategyControl->buffer_strategy_lock);
506 :
507 : /*
508 : * Grab the whole linked list of free buffers for our strategy. We
509 : * assume it was previously set up by BufferManagerShmemInit().
510 : */
511 2100 : StrategyControl->firstFreeBuffer = 0;
512 2100 : StrategyControl->lastFreeBuffer = NBuffers - 1;
513 :
514 : /* Initialize the clock sweep pointer */
515 2100 : pg_atomic_init_u32(&StrategyControl->nextVictimBuffer, 0);
516 :
517 : /* Clear statistics */
518 2100 : StrategyControl->completePasses = 0;
519 2100 : pg_atomic_init_u32(&StrategyControl->numBufferAllocs, 0);
520 :
521 : /* No pending notification */
522 2100 : StrategyControl->bgwprocno = -1;
523 : }
524 : else
525 : Assert(!init);
526 2100 : }
527 :
528 :
529 : /* ----------------------------------------------------------------
530 : * Backend-private buffer ring management
531 : * ----------------------------------------------------------------
532 : */
533 :
534 :
535 : /*
536 : * GetAccessStrategy -- create a BufferAccessStrategy object
537 : *
538 : * The object is allocated in the current memory context.
539 : */
540 : BufferAccessStrategy
541 279314 : GetAccessStrategy(BufferAccessStrategyType btype)
542 : {
543 : int ring_size_kb;
544 :
545 : /*
546 : * Select ring size to use. See buffer/README for rationales.
547 : *
548 : * Note: if you change the ring size for BAS_BULKREAD, see also
549 : * SYNC_SCAN_REPORT_INTERVAL in access/heap/syncscan.c.
550 : */
551 279314 : switch (btype)
552 : {
553 0 : case BAS_NORMAL:
554 : /* if someone asks for NORMAL, just give 'em a "default" object */
555 0 : return NULL;
556 :
557 153926 : case BAS_BULKREAD:
558 : {
559 : int ring_max_kb;
560 :
561 : /*
562 : * The ring always needs to be large enough to allow some
563 : * separation in time between providing a buffer to the user
564 : * of the strategy and that buffer being reused. Otherwise the
565 : * user's pin will prevent reuse of the buffer, even without
566 : * concurrent activity.
567 : *
568 : * We also need to ensure the ring always is large enough for
569 : * SYNC_SCAN_REPORT_INTERVAL, as noted above.
570 : *
571 : * Thus we start out a minimal size and increase the size
572 : * further if appropriate.
573 : */
574 153926 : ring_size_kb = 256;
575 :
576 : /*
577 : * There's no point in a larger ring if we won't be allowed to
578 : * pin sufficiently many buffers. But we never limit to less
579 : * than the minimal size above.
580 : */
581 153926 : ring_max_kb = GetPinLimit() * (BLCKSZ / 1024);
582 153926 : ring_max_kb = Max(ring_size_kb, ring_max_kb);
583 :
584 : /*
585 : * We would like the ring to additionally have space for the
586 : * configured degree of IO concurrency. While being read in,
587 : * buffers can obviously not yet be reused.
588 : *
589 : * Each IO can be up to io_combine_limit blocks large, and we
590 : * want to start up to effective_io_concurrency IOs.
591 : *
592 : * Note that effective_io_concurrency may be 0, which disables
593 : * AIO.
594 : */
595 153926 : ring_size_kb += (BLCKSZ / 1024) *
596 153926 : io_combine_limit * effective_io_concurrency;
597 :
598 153926 : if (ring_size_kb > ring_max_kb)
599 153926 : ring_size_kb = ring_max_kb;
600 153926 : break;
601 : }
602 125388 : case BAS_BULKWRITE:
603 125388 : ring_size_kb = 16 * 1024;
604 125388 : break;
605 0 : case BAS_VACUUM:
606 0 : ring_size_kb = 2048;
607 0 : break;
608 :
609 0 : default:
610 0 : elog(ERROR, "unrecognized buffer access strategy: %d",
611 : (int) btype);
612 : return NULL; /* keep compiler quiet */
613 : }
614 :
615 279314 : return GetAccessStrategyWithSize(btype, ring_size_kb);
616 : }
617 :
618 : /*
619 : * GetAccessStrategyWithSize -- create a BufferAccessStrategy object with a
620 : * number of buffers equivalent to the passed in size.
621 : *
622 : * If the given ring size is 0, no BufferAccessStrategy will be created and
623 : * the function will return NULL. ring_size_kb must not be negative.
624 : */
625 : BufferAccessStrategy
626 294850 : GetAccessStrategyWithSize(BufferAccessStrategyType btype, int ring_size_kb)
627 : {
628 : int ring_buffers;
629 : BufferAccessStrategy strategy;
630 :
631 : Assert(ring_size_kb >= 0);
632 :
633 : /* Figure out how many buffers ring_size_kb is */
634 294850 : ring_buffers = ring_size_kb / (BLCKSZ / 1024);
635 :
636 : /* 0 means unlimited, so no BufferAccessStrategy required */
637 294850 : if (ring_buffers == 0)
638 12 : return NULL;
639 :
640 : /* Cap to 1/8th of shared_buffers */
641 294838 : ring_buffers = Min(NBuffers / 8, ring_buffers);
642 :
643 : /* NBuffers should never be less than 16, so this shouldn't happen */
644 : Assert(ring_buffers > 0);
645 :
646 : /* Allocate the object and initialize all elements to zeroes */
647 : strategy = (BufferAccessStrategy)
648 294838 : palloc0(offsetof(BufferAccessStrategyData, buffers) +
649 : ring_buffers * sizeof(Buffer));
650 :
651 : /* Set fields that don't start out zero */
652 294838 : strategy->btype = btype;
653 294838 : strategy->nbuffers = ring_buffers;
654 :
655 294838 : return strategy;
656 : }
657 :
658 : /*
659 : * GetAccessStrategyBufferCount -- an accessor for the number of buffers in
660 : * the ring
661 : *
662 : * Returns 0 on NULL input to match behavior of GetAccessStrategyWithSize()
663 : * returning NULL with 0 size.
664 : */
665 : int
666 34 : GetAccessStrategyBufferCount(BufferAccessStrategy strategy)
667 : {
668 34 : if (strategy == NULL)
669 0 : return 0;
670 :
671 34 : return strategy->nbuffers;
672 : }
673 :
674 : /*
675 : * GetAccessStrategyPinLimit -- get cap of number of buffers that should be pinned
676 : *
677 : * When pinning extra buffers to look ahead, users of a ring-based strategy are
678 : * in danger of pinning too much of the ring at once while performing look-ahead.
679 : * For some strategies, that means "escaping" from the ring, and in others it
680 : * means forcing dirty data to disk very frequently with associated WAL
681 : * flushing. Since external code has no insight into any of that, allow
682 : * individual strategy types to expose a clamp that should be applied when
683 : * deciding on a maximum number of buffers to pin at once.
684 : *
685 : * Callers should combine this number with other relevant limits and take the
686 : * minimum.
687 : */
688 : int
689 1008696 : GetAccessStrategyPinLimit(BufferAccessStrategy strategy)
690 : {
691 1008696 : if (strategy == NULL)
692 735850 : return NBuffers;
693 :
694 272846 : switch (strategy->btype)
695 : {
696 144532 : case BAS_BULKREAD:
697 :
698 : /*
699 : * Since BAS_BULKREAD uses StrategyRejectBuffer(), dirty buffers
700 : * shouldn't be a problem and the caller is free to pin up to the
701 : * entire ring at once.
702 : */
703 144532 : return strategy->nbuffers;
704 :
705 128314 : default:
706 :
707 : /*
708 : * Tell caller not to pin more than half the buffers in the ring.
709 : * This is a trade-off between look ahead distance and deferring
710 : * writeback and associated WAL traffic.
711 : */
712 128314 : return strategy->nbuffers / 2;
713 : }
714 : }
715 :
716 : /*
717 : * FreeAccessStrategy -- release a BufferAccessStrategy object
718 : *
719 : * A simple pfree would do at the moment, but we would prefer that callers
720 : * don't assume that much about the representation of BufferAccessStrategy.
721 : */
722 : void
723 267454 : FreeAccessStrategy(BufferAccessStrategy strategy)
724 : {
725 : /* don't crash if called on a "default" strategy */
726 267454 : if (strategy != NULL)
727 267454 : pfree(strategy);
728 267454 : }
729 :
730 : /*
731 : * GetBufferFromRing -- returns a buffer from the ring, or NULL if the
732 : * ring is empty / not usable.
733 : *
734 : * The bufhdr spin lock is held on the returned buffer.
735 : */
736 : static BufferDesc *
737 1686838 : GetBufferFromRing(BufferAccessStrategy strategy, uint32 *buf_state)
738 : {
739 : BufferDesc *buf;
740 : Buffer bufnum;
741 : uint32 local_buf_state; /* to avoid repeated (de-)referencing */
742 :
743 :
744 : /* Advance to next ring slot */
745 1686838 : if (++strategy->current >= strategy->nbuffers)
746 52496 : strategy->current = 0;
747 :
748 : /*
749 : * If the slot hasn't been filled yet, tell the caller to allocate a new
750 : * buffer with the normal allocation strategy. He will then fill this
751 : * slot by calling AddBufferToRing with the new buffer.
752 : */
753 1686838 : bufnum = strategy->buffers[strategy->current];
754 1686838 : if (bufnum == InvalidBuffer)
755 961756 : return NULL;
756 :
757 : /*
758 : * If the buffer is pinned we cannot use it under any circumstances.
759 : *
760 : * If usage_count is 0 or 1 then the buffer is fair game (we expect 1,
761 : * since our own previous usage of the ring element would have left it
762 : * there, but it might've been decremented by clock sweep since then). A
763 : * higher usage_count indicates someone else has touched the buffer, so we
764 : * shouldn't re-use it.
765 : */
766 725082 : buf = GetBufferDescriptor(bufnum - 1);
767 725082 : local_buf_state = LockBufHdr(buf);
768 725082 : if (BUF_STATE_GET_REFCOUNT(local_buf_state) == 0
769 716968 : && BUF_STATE_GET_USAGECOUNT(local_buf_state) <= 1)
770 : {
771 709822 : *buf_state = local_buf_state;
772 709822 : return buf;
773 : }
774 15260 : UnlockBufHdr(buf, local_buf_state);
775 :
776 : /*
777 : * Tell caller to allocate a new buffer with the normal allocation
778 : * strategy. He'll then replace this ring element via AddBufferToRing.
779 : */
780 15260 : return NULL;
781 : }
782 :
783 : /*
784 : * AddBufferToRing -- add a buffer to the buffer ring
785 : *
786 : * Caller must hold the buffer header spinlock on the buffer. Since this
787 : * is called with the spinlock held, it had better be quite cheap.
788 : */
789 : static void
790 977016 : AddBufferToRing(BufferAccessStrategy strategy, BufferDesc *buf)
791 : {
792 977016 : strategy->buffers[strategy->current] = BufferDescriptorGetBuffer(buf);
793 977016 : }
794 :
795 : /*
796 : * Utility function returning the IOContext of a given BufferAccessStrategy's
797 : * strategy ring.
798 : */
799 : IOContext
800 122965112 : IOContextForStrategy(BufferAccessStrategy strategy)
801 : {
802 122965112 : if (!strategy)
803 118028980 : return IOCONTEXT_NORMAL;
804 :
805 4936132 : switch (strategy->btype)
806 : {
807 : case BAS_NORMAL:
808 :
809 : /*
810 : * Currently, GetAccessStrategy() returns NULL for
811 : * BufferAccessStrategyType BAS_NORMAL, so this case is
812 : * unreachable.
813 : */
814 : pg_unreachable();
815 : return IOCONTEXT_NORMAL;
816 3444094 : case BAS_BULKREAD:
817 3444094 : return IOCONTEXT_BULKREAD;
818 556546 : case BAS_BULKWRITE:
819 556546 : return IOCONTEXT_BULKWRITE;
820 935492 : case BAS_VACUUM:
821 935492 : return IOCONTEXT_VACUUM;
822 : }
823 :
824 0 : elog(ERROR, "unrecognized BufferAccessStrategyType: %d", strategy->btype);
825 : pg_unreachable();
826 : }
827 :
828 : /*
829 : * StrategyRejectBuffer -- consider rejecting a dirty buffer
830 : *
831 : * When a nondefault strategy is used, the buffer manager calls this function
832 : * when it turns out that the buffer selected by StrategyGetBuffer needs to
833 : * be written out and doing so would require flushing WAL too. This gives us
834 : * a chance to choose a different victim.
835 : *
836 : * Returns true if buffer manager should ask for a new victim, and false
837 : * if this buffer should be written and re-used.
838 : */
839 : bool
840 16914 : StrategyRejectBuffer(BufferAccessStrategy strategy, BufferDesc *buf, bool from_ring)
841 : {
842 : /* We only do this in bulkread mode */
843 16914 : if (strategy->btype != BAS_BULKREAD)
844 3480 : return false;
845 :
846 : /* Don't muck with behavior of normal buffer-replacement strategy */
847 25778 : if (!from_ring ||
848 12344 : strategy->buffers[strategy->current] != BufferDescriptorGetBuffer(buf))
849 1090 : return false;
850 :
851 : /*
852 : * Remove the dirty buffer from the ring; necessary to prevent infinite
853 : * loop if all ring members are dirty.
854 : */
855 12344 : strategy->buffers[strategy->current] = InvalidBuffer;
856 :
857 12344 : return true;
858 : }
|