LCOV - code coverage report
Current view: top level - src/backend/statistics - mvdistinct.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 167 178 93.8 %
Date: 2025-11-20 19:18:15 Functions: 13 13 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * mvdistinct.c
       4             :  *    POSTGRES multivariate ndistinct coefficients
       5             :  *
       6             :  * Estimating number of groups in a combination of columns (e.g. for GROUP BY)
       7             :  * is tricky, and the estimation error is often significant.
       8             : 
       9             :  * The multivariate ndistinct coefficients address this by storing ndistinct
      10             :  * estimates for combinations of the user-specified columns.  So for example
      11             :  * given a statistics object on three columns (a,b,c), this module estimates
      12             :  * and stores n-distinct for (a,b), (a,c), (b,c) and (a,b,c).  The per-column
      13             :  * estimates are already available in pg_statistic.
      14             :  *
      15             :  *
      16             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      17             :  * Portions Copyright (c) 1994, Regents of the University of California
      18             :  *
      19             :  * IDENTIFICATION
      20             :  *    src/backend/statistics/mvdistinct.c
      21             :  *
      22             :  *-------------------------------------------------------------------------
      23             :  */
      24             : #include "postgres.h"
      25             : 
      26             : #include <math.h>
      27             : 
      28             : #include "catalog/pg_statistic_ext.h"
      29             : #include "catalog/pg_statistic_ext_data.h"
      30             : #include "statistics/extended_stats_internal.h"
      31             : #include "utils/syscache.h"
      32             : #include "utils/typcache.h"
      33             : #include "varatt.h"
      34             : 
      35             : static double ndistinct_for_combination(double totalrows, StatsBuildData *data,
      36             :                                         int k, int *combination);
      37             : static double estimate_ndistinct(double totalrows, int numrows, int d, int f1);
      38             : static int  n_choose_k(int n, int k);
      39             : static int  num_combinations(int n);
      40             : 
      41             : /* size of the struct header fields (magic, type, nitems) */
      42             : #define SizeOfHeader        (3 * sizeof(uint32))
      43             : 
      44             : /* size of a serialized ndistinct item (coefficient, natts, atts) */
      45             : #define SizeOfItem(natts) \
      46             :     (sizeof(double) + sizeof(int) + (natts) * sizeof(AttrNumber))
      47             : 
      48             : /* minimal size of a ndistinct item (with two attributes) */
      49             : #define MinSizeOfItem   SizeOfItem(2)
      50             : 
      51             : /* minimal size of mvndistinct, when all items are minimal */
      52             : #define MinSizeOfItems(nitems)  \
      53             :     (SizeOfHeader + (nitems) * MinSizeOfItem)
      54             : 
      55             : /* Combination generator API */
      56             : 
      57             : /* internal state for generator of k-combinations of n elements */
      58             : typedef struct CombinationGenerator
      59             : {
      60             :     int         k;              /* size of the combination */
      61             :     int         n;              /* total number of elements */
      62             :     int         current;        /* index of the next combination to return */
      63             :     int         ncombinations;  /* number of combinations (size of array) */
      64             :     int        *combinations;   /* array of pre-built combinations */
      65             : } CombinationGenerator;
      66             : 
      67             : static CombinationGenerator *generator_init(int n, int k);
      68             : static void generator_free(CombinationGenerator *state);
      69             : static int *generator_next(CombinationGenerator *state);
      70             : static void generate_combinations(CombinationGenerator *state);
      71             : 
      72             : 
      73             : /*
      74             :  * statext_ndistinct_build
      75             :  *      Compute ndistinct coefficient for the combination of attributes.
      76             :  *
      77             :  * This computes the ndistinct estimate using the same estimator used
      78             :  * in analyze.c and then computes the coefficient.
      79             :  *
      80             :  * To handle expressions easily, we treat them as system attributes with
      81             :  * negative attnums, and offset everything by number of expressions to
      82             :  * allow using Bitmapsets.
      83             :  */
      84             : MVNDistinct *
      85         204 : statext_ndistinct_build(double totalrows, StatsBuildData *data)
      86             : {
      87             :     MVNDistinct *result;
      88             :     int         k;
      89             :     int         itemcnt;
      90         204 :     int         numattrs = data->nattnums;
      91         204 :     int         numcombs = num_combinations(numattrs);
      92             : 
      93         204 :     result = palloc(offsetof(MVNDistinct, items) +
      94         204 :                     numcombs * sizeof(MVNDistinctItem));
      95         204 :     result->magic = STATS_NDISTINCT_MAGIC;
      96         204 :     result->type = STATS_NDISTINCT_TYPE_BASIC;
      97         204 :     result->nitems = numcombs;
      98             : 
      99         204 :     itemcnt = 0;
     100         504 :     for (k = 2; k <= numattrs; k++)
     101             :     {
     102             :         int        *combination;
     103             :         CombinationGenerator *generator;
     104             : 
     105             :         /* generate combinations of K out of N elements */
     106         300 :         generator = generator_init(numattrs, k);
     107             : 
     108         888 :         while ((combination = generator_next(generator)))
     109             :         {
     110         588 :             MVNDistinctItem *item = &result->items[itemcnt];
     111             :             int         j;
     112             : 
     113         588 :             item->attributes = palloc(sizeof(AttrNumber) * k);
     114         588 :             item->nattributes = k;
     115             : 
     116             :             /* translate the indexes to attnums */
     117        1956 :             for (j = 0; j < k; j++)
     118             :             {
     119        1368 :                 item->attributes[j] = data->attnums[combination[j]];
     120             : 
     121             :                 Assert(AttributeNumberIsValid(item->attributes[j]));
     122             :             }
     123             : 
     124         588 :             item->ndistinct =
     125         588 :                 ndistinct_for_combination(totalrows, data, k, combination);
     126             : 
     127         588 :             itemcnt++;
     128             :             Assert(itemcnt <= result->nitems);
     129             :         }
     130             : 
     131         300 :         generator_free(generator);
     132             :     }
     133             : 
     134             :     /* must consume exactly the whole output array */
     135             :     Assert(itemcnt == result->nitems);
     136             : 
     137         204 :     return result;
     138             : }
     139             : 
     140             : /*
     141             :  * statext_ndistinct_load
     142             :  *      Load the ndistinct value for the indicated pg_statistic_ext tuple
     143             :  */
     144             : MVNDistinct *
     145         426 : statext_ndistinct_load(Oid mvoid, bool inh)
     146             : {
     147             :     MVNDistinct *result;
     148             :     bool        isnull;
     149             :     Datum       ndist;
     150             :     HeapTuple   htup;
     151             : 
     152         426 :     htup = SearchSysCache2(STATEXTDATASTXOID,
     153             :                            ObjectIdGetDatum(mvoid), BoolGetDatum(inh));
     154         426 :     if (!HeapTupleIsValid(htup))
     155           0 :         elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
     156             : 
     157         426 :     ndist = SysCacheGetAttr(STATEXTDATASTXOID, htup,
     158             :                             Anum_pg_statistic_ext_data_stxdndistinct, &isnull);
     159         426 :     if (isnull)
     160           0 :         elog(ERROR,
     161             :              "requested statistics kind \"%c\" is not yet built for statistics object %u",
     162             :              STATS_EXT_NDISTINCT, mvoid);
     163             : 
     164         426 :     result = statext_ndistinct_deserialize(DatumGetByteaPP(ndist));
     165             : 
     166         426 :     ReleaseSysCache(htup);
     167             : 
     168         426 :     return result;
     169             : }
     170             : 
     171             : /*
     172             :  * statext_ndistinct_serialize
     173             :  *      serialize ndistinct to the on-disk bytea format
     174             :  */
     175             : bytea *
     176         204 : statext_ndistinct_serialize(MVNDistinct *ndistinct)
     177             : {
     178             :     int         i;
     179             :     bytea      *output;
     180             :     char       *tmp;
     181             :     Size        len;
     182             : 
     183             :     Assert(ndistinct->magic == STATS_NDISTINCT_MAGIC);
     184             :     Assert(ndistinct->type == STATS_NDISTINCT_TYPE_BASIC);
     185             : 
     186             :     /*
     187             :      * Base size is size of scalar fields in the struct, plus one base struct
     188             :      * for each item, including number of items for each.
     189             :      */
     190         204 :     len = VARHDRSZ + SizeOfHeader;
     191             : 
     192             :     /* and also include space for the actual attribute numbers */
     193         792 :     for (i = 0; i < ndistinct->nitems; i++)
     194             :     {
     195             :         int         nmembers;
     196             : 
     197         588 :         nmembers = ndistinct->items[i].nattributes;
     198             :         Assert(nmembers >= 2);
     199             : 
     200         588 :         len += SizeOfItem(nmembers);
     201             :     }
     202             : 
     203         204 :     output = (bytea *) palloc(len);
     204         204 :     SET_VARSIZE(output, len);
     205             : 
     206         204 :     tmp = VARDATA(output);
     207             : 
     208             :     /* Store the base struct values (magic, type, nitems) */
     209         204 :     memcpy(tmp, &ndistinct->magic, sizeof(uint32));
     210         204 :     tmp += sizeof(uint32);
     211         204 :     memcpy(tmp, &ndistinct->type, sizeof(uint32));
     212         204 :     tmp += sizeof(uint32);
     213         204 :     memcpy(tmp, &ndistinct->nitems, sizeof(uint32));
     214         204 :     tmp += sizeof(uint32);
     215             : 
     216             :     /*
     217             :      * store number of attributes and attribute numbers for each entry
     218             :      */
     219         792 :     for (i = 0; i < ndistinct->nitems; i++)
     220             :     {
     221         588 :         MVNDistinctItem item = ndistinct->items[i];
     222         588 :         int         nmembers = item.nattributes;
     223             : 
     224         588 :         memcpy(tmp, &item.ndistinct, sizeof(double));
     225         588 :         tmp += sizeof(double);
     226         588 :         memcpy(tmp, &nmembers, sizeof(int));
     227         588 :         tmp += sizeof(int);
     228             : 
     229         588 :         memcpy(tmp, item.attributes, sizeof(AttrNumber) * nmembers);
     230         588 :         tmp += nmembers * sizeof(AttrNumber);
     231             : 
     232             :         /* protect against overflows */
     233             :         Assert(tmp <= ((char *) output + len));
     234             :     }
     235             : 
     236             :     /* check we used exactly the expected space */
     237             :     Assert(tmp == ((char *) output + len));
     238             : 
     239         204 :     return output;
     240             : }
     241             : 
     242             : /*
     243             :  * statext_ndistinct_deserialize
     244             :  *      Read an on-disk bytea format MVNDistinct to in-memory format
     245             :  */
     246             : MVNDistinct *
     247         450 : statext_ndistinct_deserialize(bytea *data)
     248             : {
     249             :     int         i;
     250             :     Size        minimum_size;
     251             :     MVNDistinct ndist;
     252             :     MVNDistinct *ndistinct;
     253             :     char       *tmp;
     254             : 
     255         450 :     if (data == NULL)
     256           0 :         return NULL;
     257             : 
     258             :     /* we expect at least the basic fields of MVNDistinct struct */
     259         450 :     if (VARSIZE_ANY_EXHDR(data) < SizeOfHeader)
     260           0 :         elog(ERROR, "invalid MVNDistinct size %zu (expected at least %zu)",
     261             :              VARSIZE_ANY_EXHDR(data), SizeOfHeader);
     262             : 
     263             :     /* initialize pointer to the data part (skip the varlena header) */
     264         450 :     tmp = VARDATA_ANY(data);
     265             : 
     266             :     /* read the header fields and perform basic sanity checks */
     267         450 :     memcpy(&ndist.magic, tmp, sizeof(uint32));
     268         450 :     tmp += sizeof(uint32);
     269         450 :     memcpy(&ndist.type, tmp, sizeof(uint32));
     270         450 :     tmp += sizeof(uint32);
     271         450 :     memcpy(&ndist.nitems, tmp, sizeof(uint32));
     272         450 :     tmp += sizeof(uint32);
     273             : 
     274         450 :     if (ndist.magic != STATS_NDISTINCT_MAGIC)
     275           0 :         elog(ERROR, "invalid ndistinct magic %08x (expected %08x)",
     276             :              ndist.magic, STATS_NDISTINCT_MAGIC);
     277         450 :     if (ndist.type != STATS_NDISTINCT_TYPE_BASIC)
     278           0 :         elog(ERROR, "invalid ndistinct type %d (expected %d)",
     279             :              ndist.type, STATS_NDISTINCT_TYPE_BASIC);
     280         450 :     if (ndist.nitems == 0)
     281           0 :         elog(ERROR, "invalid zero-length item array in MVNDistinct");
     282             : 
     283             :     /* what minimum bytea size do we expect for those parameters */
     284         450 :     minimum_size = MinSizeOfItems(ndist.nitems);
     285         450 :     if (VARSIZE_ANY_EXHDR(data) < minimum_size)
     286           0 :         elog(ERROR, "invalid MVNDistinct size %zu (expected at least %zu)",
     287             :              VARSIZE_ANY_EXHDR(data), minimum_size);
     288             : 
     289             :     /*
     290             :      * Allocate space for the ndistinct items (no space for each item's
     291             :      * attnos: those live in bitmapsets allocated separately)
     292             :      */
     293         450 :     ndistinct = palloc0(MAXALIGN(offsetof(MVNDistinct, items)) +
     294         450 :                         (ndist.nitems * sizeof(MVNDistinctItem)));
     295         450 :     ndistinct->magic = ndist.magic;
     296         450 :     ndistinct->type = ndist.type;
     297         450 :     ndistinct->nitems = ndist.nitems;
     298             : 
     299        2412 :     for (i = 0; i < ndistinct->nitems; i++)
     300             :     {
     301        1962 :         MVNDistinctItem *item = &ndistinct->items[i];
     302             : 
     303             :         /* ndistinct value */
     304        1962 :         memcpy(&item->ndistinct, tmp, sizeof(double));
     305        1962 :         tmp += sizeof(double);
     306             : 
     307             :         /* number of attributes */
     308        1962 :         memcpy(&item->nattributes, tmp, sizeof(int));
     309        1962 :         tmp += sizeof(int);
     310             :         Assert((item->nattributes >= 2) && (item->nattributes <= STATS_MAX_DIMENSIONS));
     311             : 
     312             :         item->attributes
     313        1962 :             = (AttrNumber *) palloc(item->nattributes * sizeof(AttrNumber));
     314             : 
     315        1962 :         memcpy(item->attributes, tmp, sizeof(AttrNumber) * item->nattributes);
     316        1962 :         tmp += sizeof(AttrNumber) * item->nattributes;
     317             : 
     318             :         /* still within the bytea */
     319             :         Assert(tmp <= ((char *) data + VARSIZE_ANY(data)));
     320             :     }
     321             : 
     322             :     /* we should have consumed the whole bytea exactly */
     323             :     Assert(tmp == ((char *) data + VARSIZE_ANY(data)));
     324             : 
     325         450 :     return ndistinct;
     326             : }
     327             : 
     328             : /*
     329             :  * ndistinct_for_combination
     330             :  *      Estimates number of distinct values in a combination of columns.
     331             :  *
     332             :  * This uses the same ndistinct estimator as compute_scalar_stats() in
     333             :  * ANALYZE, i.e.,
     334             :  *      n*d / (n - f1 + f1*n/N)
     335             :  *
     336             :  * except that instead of values in a single column we are dealing with
     337             :  * combination of multiple columns.
     338             :  */
     339             : static double
     340         588 : ndistinct_for_combination(double totalrows, StatsBuildData *data,
     341             :                           int k, int *combination)
     342             : {
     343             :     int         i,
     344             :                 j;
     345             :     int         f1,
     346             :                 cnt,
     347             :                 d;
     348             :     bool       *isnull;
     349             :     Datum      *values;
     350             :     SortItem   *items;
     351             :     MultiSortSupport mss;
     352         588 :     int         numrows = data->numrows;
     353             : 
     354         588 :     mss = multi_sort_init(k);
     355             : 
     356             :     /*
     357             :      * In order to determine the number of distinct elements, create separate
     358             :      * values[]/isnull[] arrays with all the data we have, then sort them
     359             :      * using the specified column combination as dimensions.  We could try to
     360             :      * sort in place, but it'd probably be more complex and bug-prone.
     361             :      */
     362         588 :     items = (SortItem *) palloc(numrows * sizeof(SortItem));
     363         588 :     values = (Datum *) palloc0(sizeof(Datum) * numrows * k);
     364         588 :     isnull = (bool *) palloc0(sizeof(bool) * numrows * k);
     365             : 
     366      963818 :     for (i = 0; i < numrows; i++)
     367             :     {
     368      963230 :         items[i].values = &values[i * k];
     369      963230 :         items[i].isnull = &isnull[i * k];
     370             :     }
     371             : 
     372             :     /*
     373             :      * For each dimension, set up sort-support and fill in the values from the
     374             :      * sample data.
     375             :      *
     376             :      * We use the column data types' default sort operators and collations;
     377             :      * perhaps at some point it'd be worth using column-specific collations?
     378             :      */
     379        1956 :     for (i = 0; i < k; i++)
     380             :     {
     381             :         Oid         typid;
     382             :         TypeCacheEntry *type;
     383        1368 :         Oid         collid = InvalidOid;
     384        1368 :         VacAttrStats *colstat = data->stats[combination[i]];
     385             : 
     386        1368 :         typid = colstat->attrtypid;
     387        1368 :         collid = colstat->attrcollid;
     388             : 
     389        1368 :         type = lookup_type_cache(typid, TYPECACHE_LT_OPR);
     390        1368 :         if (type->lt_opr == InvalidOid) /* shouldn't happen */
     391           0 :             elog(ERROR, "cache lookup failed for ordering operator for type %u",
     392             :                  typid);
     393             : 
     394             :         /* prepare the sort function for this dimension */
     395        1368 :         multi_sort_add_dimension(mss, i, type->lt_opr, collid);
     396             : 
     397             :         /* accumulate all the data for this dimension into the arrays */
     398     2227822 :         for (j = 0; j < numrows; j++)
     399             :         {
     400     2226454 :             items[j].values[i] = data->values[combination[i]][j];
     401     2226454 :             items[j].isnull[i] = data->nulls[combination[i]][j];
     402             :         }
     403             :     }
     404             : 
     405             :     /* We can sort the array now ... */
     406         588 :     qsort_interruptible(items, numrows, sizeof(SortItem),
     407             :                         multi_sort_compare, mss);
     408             : 
     409             :     /* ... and count the number of distinct combinations */
     410             : 
     411         588 :     f1 = 0;
     412         588 :     cnt = 1;
     413         588 :     d = 1;
     414      963230 :     for (i = 1; i < numrows; i++)
     415             :     {
     416      962642 :         if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
     417             :         {
     418      284412 :             if (cnt == 1)
     419      145984 :                 f1 += 1;
     420             : 
     421      284412 :             d++;
     422      284412 :             cnt = 0;
     423             :         }
     424             : 
     425      962642 :         cnt += 1;
     426             :     }
     427             : 
     428         588 :     if (cnt == 1)
     429         138 :         f1 += 1;
     430             : 
     431         588 :     return estimate_ndistinct(totalrows, numrows, d, f1);
     432             : }
     433             : 
     434             : /* The Duj1 estimator (already used in analyze.c). */
     435             : static double
     436         588 : estimate_ndistinct(double totalrows, int numrows, int d, int f1)
     437             : {
     438             :     double      numer,
     439             :                 denom,
     440             :                 ndistinct;
     441             : 
     442         588 :     numer = (double) numrows * (double) d;
     443             : 
     444         588 :     denom = (double) (numrows - f1) +
     445         588 :         (double) f1 * (double) numrows / totalrows;
     446             : 
     447         588 :     ndistinct = numer / denom;
     448             : 
     449             :     /* Clamp to sane range in case of roundoff error */
     450         588 :     if (ndistinct < (double) d)
     451           0 :         ndistinct = (double) d;
     452             : 
     453         588 :     if (ndistinct > totalrows)
     454           0 :         ndistinct = totalrows;
     455             : 
     456         588 :     return floor(ndistinct + 0.5);
     457             : }
     458             : 
     459             : /*
     460             :  * n_choose_k
     461             :  *      computes binomial coefficients using an algorithm that is both
     462             :  *      efficient and prevents overflows
     463             :  */
     464             : static int
     465         300 : n_choose_k(int n, int k)
     466             : {
     467             :     int         d,
     468             :                 r;
     469             : 
     470             :     Assert((k > 0) && (n >= k));
     471             : 
     472             :     /* use symmetry of the binomial coefficients */
     473         300 :     k = Min(k, n - k);
     474             : 
     475         300 :     r = 1;
     476         420 :     for (d = 1; d <= k; ++d)
     477             :     {
     478         120 :         r *= n--;
     479         120 :         r /= d;
     480             :     }
     481             : 
     482         300 :     return r;
     483             : }
     484             : 
     485             : /*
     486             :  * num_combinations
     487             :  *      number of combinations, excluding single-value combinations
     488             :  */
     489             : static int
     490         204 : num_combinations(int n)
     491             : {
     492         204 :     return (1 << n) - (n + 1);
     493             : }
     494             : 
     495             : /*
     496             :  * generator_init
     497             :  *      initialize the generator of combinations
     498             :  *
     499             :  * The generator produces combinations of K elements in the interval (0..N).
     500             :  * We prebuild all the combinations in this method, which is simpler than
     501             :  * generating them on the fly.
     502             :  */
     503             : static CombinationGenerator *
     504         300 : generator_init(int n, int k)
     505             : {
     506             :     CombinationGenerator *state;
     507             : 
     508             :     Assert((n >= k) && (k > 0));
     509             : 
     510             :     /* allocate the generator state as a single chunk of memory */
     511         300 :     state = (CombinationGenerator *) palloc(sizeof(CombinationGenerator));
     512             : 
     513         300 :     state->ncombinations = n_choose_k(n, k);
     514             : 
     515             :     /* pre-allocate space for all combinations */
     516         300 :     state->combinations = (int *) palloc(sizeof(int) * k * state->ncombinations);
     517             : 
     518         300 :     state->current = 0;
     519         300 :     state->k = k;
     520         300 :     state->n = n;
     521             : 
     522             :     /* now actually pre-generate all the combinations of K elements */
     523         300 :     generate_combinations(state);
     524             : 
     525             :     /* make sure we got the expected number of combinations */
     526             :     Assert(state->current == state->ncombinations);
     527             : 
     528             :     /* reset the number, so we start with the first one */
     529         300 :     state->current = 0;
     530             : 
     531         300 :     return state;
     532             : }
     533             : 
     534             : /*
     535             :  * generator_next
     536             :  *      returns the next combination from the prebuilt list
     537             :  *
     538             :  * Returns a combination of K array indexes (0 .. N), as specified to
     539             :  * generator_init), or NULL when there are no more combination.
     540             :  */
     541             : static int *
     542         888 : generator_next(CombinationGenerator *state)
     543             : {
     544         888 :     if (state->current == state->ncombinations)
     545         300 :         return NULL;
     546             : 
     547         588 :     return &state->combinations[state->k * state->current++];
     548             : }
     549             : 
     550             : /*
     551             :  * generator_free
     552             :  *      free the internal state of the generator
     553             :  *
     554             :  * Releases the generator internal state (pre-built combinations).
     555             :  */
     556             : static void
     557         300 : generator_free(CombinationGenerator *state)
     558             : {
     559         300 :     pfree(state->combinations);
     560         300 :     pfree(state);
     561         300 : }
     562             : 
     563             : /*
     564             :  * generate_combinations_recurse
     565             :  *      given a prefix, generate all possible combinations
     566             :  *
     567             :  * Given a prefix (first few elements of the combination), generate following
     568             :  * elements recursively. We generate the combinations in lexicographic order,
     569             :  * which eliminates permutations of the same combination.
     570             :  */
     571             : static void
     572        2256 : generate_combinations_recurse(CombinationGenerator *state,
     573             :                               int index, int start, int *current)
     574             : {
     575             :     /* If we haven't filled all the elements, simply recurse. */
     576        2256 :     if (index < state->k)
     577             :     {
     578             :         int         i;
     579             : 
     580             :         /*
     581             :          * The values have to be in ascending order, so make sure we start
     582             :          * with the value passed by parameter.
     583             :          */
     584             : 
     585        3624 :         for (i = start; i < state->n; i++)
     586             :         {
     587        1956 :             current[index] = i;
     588        1956 :             generate_combinations_recurse(state, (index + 1), (i + 1), current);
     589             :         }
     590             : 
     591        1668 :         return;
     592             :     }
     593             :     else
     594             :     {
     595             :         /* we got a valid combination, add it to the array */
     596         588 :         memcpy(&state->combinations[(state->k * state->current)],
     597         588 :                current, state->k * sizeof(int));
     598         588 :         state->current++;
     599             :     }
     600             : }
     601             : 
     602             : /*
     603             :  * generate_combinations
     604             :  *      generate all k-combinations of N elements
     605             :  */
     606             : static void
     607         300 : generate_combinations(CombinationGenerator *state)
     608             : {
     609         300 :     int        *current = (int *) palloc0(sizeof(int) * state->k);
     610             : 
     611         300 :     generate_combinations_recurse(state, 0, 0, current);
     612             : 
     613         300 :     pfree(current);
     614         300 : }

Generated by: LCOV version 1.16