Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * mcv.c
4 : * POSTGRES multivariate MCV lists
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * IDENTIFICATION
11 : * src/backend/statistics/mcv.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include "access/htup_details.h"
18 : #include "catalog/pg_statistic_ext.h"
19 : #include "catalog/pg_statistic_ext_data.h"
20 : #include "fmgr.h"
21 : #include "funcapi.h"
22 : #include "nodes/nodeFuncs.h"
23 : #include "statistics/extended_stats_internal.h"
24 : #include "statistics/statistics.h"
25 : #include "utils/array.h"
26 : #include "utils/builtins.h"
27 : #include "utils/fmgrprotos.h"
28 : #include "utils/lsyscache.h"
29 : #include "utils/selfuncs.h"
30 : #include "utils/syscache.h"
31 : #include "utils/typcache.h"
32 :
33 : /*
34 : * Computes size of a serialized MCV item, depending on the number of
35 : * dimensions (columns) the statistic is defined on. The datum values are
36 : * stored in a separate array (deduplicated, to minimize the size), and
37 : * so the serialized items only store uint16 indexes into that array.
38 : *
39 : * Each serialized item stores (in this order):
40 : *
41 : * - indexes to values (ndim * sizeof(uint16))
42 : * - null flags (ndim * sizeof(bool))
43 : * - frequency (sizeof(double))
44 : * - base_frequency (sizeof(double))
45 : *
46 : * There is no alignment padding within an MCV item.
47 : * So in total each MCV item requires this many bytes:
48 : *
49 : * ndim * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double)
50 : */
51 : #define ITEM_SIZE(ndims) \
52 : ((ndims) * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double))
53 :
54 : /*
55 : * Used to compute size of serialized MCV list representation.
56 : */
57 : #define MinSizeOfMCVList \
58 : (VARHDRSZ + sizeof(uint32) * 3 + sizeof(AttrNumber))
59 :
60 : /*
61 : * Size of the serialized MCV list, excluding the space needed for
62 : * deduplicated per-dimension values. The macro is meant to be used
63 : * when it's not yet safe to access the serialized info about amount
64 : * of data for each column.
65 : */
66 : #define SizeOfMCVList(ndims,nitems) \
67 : ((MinSizeOfMCVList + sizeof(Oid) * (ndims)) + \
68 : ((ndims) * sizeof(DimensionInfo)) + \
69 : ((nitems) * ITEM_SIZE(ndims)))
70 :
71 : static MultiSortSupport build_mss(StatsBuildData *data);
72 :
73 : static SortItem *build_distinct_groups(int numrows, SortItem *items,
74 : MultiSortSupport mss, int *ndistinct);
75 :
76 : static SortItem **build_column_frequencies(SortItem *groups, int ngroups,
77 : MultiSortSupport mss, int *ncounts);
78 :
79 : static int count_distinct_groups(int numrows, SortItem *items,
80 : MultiSortSupport mss);
81 :
82 : /*
83 : * Compute new value for bitmap item, considering whether it's used for
84 : * clauses connected by AND/OR.
85 : */
86 : #define RESULT_MERGE(value, is_or, match) \
87 : ((is_or) ? ((value) || (match)) : ((value) && (match)))
88 :
89 : /*
90 : * When processing a list of clauses, the bitmap item may get set to a value
91 : * such that additional clauses can't change it. For example, when processing
92 : * a list of clauses connected to AND, as soon as the item gets set to 'false'
93 : * then it'll remain like that. Similarly clauses connected by OR and 'true'.
94 : *
95 : * Returns true when the value in the bitmap can't change no matter how the
96 : * remaining clauses are evaluated.
97 : */
98 : #define RESULT_IS_FINAL(value, is_or) ((is_or) ? (value) : (!(value)))
99 :
100 : /*
101 : * get_mincount_for_mcv_list
102 : * Determine the minimum number of times a value needs to appear in
103 : * the sample for it to be included in the MCV list.
104 : *
105 : * We want to keep only values that appear sufficiently often in the
106 : * sample that it is reasonable to extrapolate their sample frequencies to
107 : * the entire table. We do this by placing an upper bound on the relative
108 : * standard error of the sample frequency, so that any estimates the
109 : * planner generates from the MCV statistics can be expected to be
110 : * reasonably accurate.
111 : *
112 : * Since we are sampling without replacement, the sample frequency of a
113 : * particular value is described by a hypergeometric distribution. A
114 : * common rule of thumb when estimating errors in this situation is to
115 : * require at least 10 instances of the value in the sample, in which case
116 : * the distribution can be approximated by a normal distribution, and
117 : * standard error analysis techniques can be applied. Given a sample size
118 : * of n, a population size of N, and a sample frequency of p=cnt/n, the
119 : * standard error of the proportion p is given by
120 : * SE = sqrt(p*(1-p)/n) * sqrt((N-n)/(N-1))
121 : * where the second term is the finite population correction. To get
122 : * reasonably accurate planner estimates, we impose an upper bound on the
123 : * relative standard error of 20% -- i.e., SE/p < 0.2. This 20% relative
124 : * error bound is fairly arbitrary, but has been found empirically to work
125 : * well. Rearranging this formula gives a lower bound on the number of
126 : * instances of the value seen:
127 : * cnt > n*(N-n) / (N-n+0.04*n*(N-1))
128 : * This bound is at most 25, and approaches 0 as n approaches 0 or N. The
129 : * case where n approaches 0 cannot happen in practice, since the sample
130 : * size is at least 300. The case where n approaches N corresponds to
131 : * sampling the whole table, in which case it is reasonable to keep
132 : * the whole MCV list (have no lower bound), so it makes sense to apply
133 : * this formula for all inputs, even though the above derivation is
134 : * technically only valid when the right hand side is at least around 10.
135 : *
136 : * An alternative way to look at this formula is as follows -- assume that
137 : * the number of instances of the value seen scales up to the entire
138 : * table, so that the population count is K=N*cnt/n. Then the distribution
139 : * in the sample is a hypergeometric distribution parameterised by N, n
140 : * and K, and the bound above is mathematically equivalent to demanding
141 : * that the standard deviation of that distribution is less than 20% of
142 : * its mean. Thus the relative errors in any planner estimates produced
143 : * from the MCV statistics are likely to be not too large.
144 : */
145 : static double
146 268 : get_mincount_for_mcv_list(int samplerows, double totalrows)
147 : {
148 268 : double n = samplerows;
149 268 : double N = totalrows;
150 : double numer,
151 : denom;
152 :
153 268 : numer = n * (N - n);
154 268 : denom = N - n + 0.04 * n * (N - 1);
155 :
156 : /* Guard against division by zero (possible if n = N = 1) */
157 268 : if (denom == 0.0)
158 12 : return 0.0;
159 :
160 256 : return numer / denom;
161 : }
162 :
163 : /*
164 : * Builds MCV list from the set of sampled rows.
165 : *
166 : * The algorithm is quite simple:
167 : *
168 : * (1) sort the data (default collation, '<' for the data type)
169 : *
170 : * (2) count distinct groups, decide how many to keep
171 : *
172 : * (3) build the MCV list using the threshold determined in (2)
173 : *
174 : * (4) remove rows represented by the MCV from the sample
175 : *
176 : */
177 : MCVList *
178 268 : statext_mcv_build(StatsBuildData *data, double totalrows, int stattarget)
179 : {
180 : int i,
181 : numattrs,
182 : numrows,
183 : ngroups,
184 : nitems;
185 : double mincount;
186 : SortItem *items;
187 : SortItem *groups;
188 268 : MCVList *mcvlist = NULL;
189 : MultiSortSupport mss;
190 :
191 : /* comparator for all the columns */
192 268 : mss = build_mss(data);
193 :
194 : /* sort the rows */
195 268 : items = build_sorted_items(data, &nitems, mss,
196 : data->nattnums, data->attnums);
197 :
198 268 : if (!items)
199 0 : return NULL;
200 :
201 : /* for convenience */
202 268 : numattrs = data->nattnums;
203 268 : numrows = data->numrows;
204 :
205 : /* transform the sorted rows into groups (sorted by frequency) */
206 268 : groups = build_distinct_groups(nitems, items, mss, &ngroups);
207 :
208 : /*
209 : * The maximum number of MCV items to store, based on the statistics
210 : * target we computed for the statistics object (from the target set for
211 : * the object itself, attributes and the system default). In any case, we
212 : * can't keep more groups than we have available.
213 : */
214 268 : nitems = stattarget;
215 268 : if (nitems > ngroups)
216 172 : nitems = ngroups;
217 :
218 : /*
219 : * Decide how many items to keep in the MCV list. We can't use the same
220 : * algorithm as per-column MCV lists, because that only considers the
221 : * actual group frequency - but we're primarily interested in how the
222 : * actual frequency differs from the base frequency (product of simple
223 : * per-column frequencies, as if the columns were independent).
224 : *
225 : * Using the same algorithm might exclude items that are close to the
226 : * "average" frequency of the sample. But that does not say whether the
227 : * observed frequency is close to the base frequency or not. We also need
228 : * to consider unexpectedly uncommon items (again, compared to the base
229 : * frequency), and the single-column algorithm does not have to.
230 : *
231 : * We simply decide how many items to keep by computing the minimum count
232 : * using get_mincount_for_mcv_list() and then keep all items that seem to
233 : * be more common than that.
234 : */
235 268 : mincount = get_mincount_for_mcv_list(numrows, totalrows);
236 :
237 : /*
238 : * Walk the groups until we find the first group with a count below the
239 : * mincount threshold (the index of that group is the number of groups we
240 : * want to keep).
241 : */
242 10844 : for (i = 0; i < nitems; i++)
243 : {
244 10576 : if (groups[i].count < mincount)
245 : {
246 0 : nitems = i;
247 0 : break;
248 : }
249 : }
250 :
251 : /*
252 : * At this point, we know the number of items for the MCV list. There
253 : * might be none (for uniform distribution with many groups), and in that
254 : * case, there will be no MCV list. Otherwise, construct the MCV list.
255 : */
256 268 : if (nitems > 0)
257 : {
258 : int j;
259 : SortItem key;
260 : MultiSortSupport tmp;
261 :
262 : /* frequencies for values in each attribute */
263 : SortItem **freqs;
264 : int *nfreqs;
265 :
266 : /* used to search values */
267 268 : tmp = (MultiSortSupport) palloc(offsetof(MultiSortSupportData, ssup)
268 : + sizeof(SortSupportData));
269 :
270 : /* compute frequencies for values in each column */
271 268 : nfreqs = palloc0_array(int, numattrs);
272 268 : freqs = build_column_frequencies(groups, ngroups, mss, nfreqs);
273 :
274 : /*
275 : * Allocate the MCV list structure, set the global parameters.
276 : */
277 268 : mcvlist = (MCVList *) palloc0(offsetof(MCVList, items) +
278 268 : sizeof(MCVItem) * nitems);
279 :
280 268 : mcvlist->magic = STATS_MCV_MAGIC;
281 268 : mcvlist->type = STATS_MCV_TYPE_BASIC;
282 268 : mcvlist->ndimensions = numattrs;
283 268 : mcvlist->nitems = nitems;
284 :
285 : /* store info about data type OIDs */
286 978 : for (i = 0; i < numattrs; i++)
287 710 : mcvlist->types[i] = data->stats[i]->attrtypid;
288 :
289 : /* Copy the first chunk of groups into the result. */
290 10844 : for (i = 0; i < nitems; i++)
291 : {
292 : /* just point to the proper place in the list */
293 10576 : MCVItem *item = &mcvlist->items[i];
294 :
295 10576 : item->values = palloc_array(Datum, numattrs);
296 10576 : item->isnull = palloc_array(bool, numattrs);
297 :
298 : /* copy values for the group */
299 10576 : memcpy(item->values, groups[i].values, sizeof(Datum) * numattrs);
300 10576 : memcpy(item->isnull, groups[i].isnull, sizeof(bool) * numattrs);
301 :
302 : /* groups should be sorted by frequency in descending order */
303 : Assert((i == 0) || (groups[i - 1].count >= groups[i].count));
304 :
305 : /* group frequency */
306 10576 : item->frequency = (double) groups[i].count / numrows;
307 :
308 : /* base frequency, if the attributes were independent */
309 10576 : item->base_frequency = 1.0;
310 38898 : for (j = 0; j < numattrs; j++)
311 : {
312 : SortItem *freq;
313 :
314 : /* single dimension */
315 28322 : tmp->ndims = 1;
316 28322 : tmp->ssup[0] = mss->ssup[j];
317 :
318 : /* fill search key */
319 28322 : key.values = &groups[i].values[j];
320 28322 : key.isnull = &groups[i].isnull[j];
321 :
322 28322 : freq = (SortItem *) bsearch_arg(&key, freqs[j], nfreqs[j],
323 : sizeof(SortItem),
324 : multi_sort_compare, tmp);
325 :
326 28322 : item->base_frequency *= ((double) freq->count) / numrows;
327 : }
328 : }
329 :
330 268 : pfree(nfreqs);
331 268 : pfree(freqs);
332 : }
333 :
334 268 : pfree(items);
335 268 : pfree(groups);
336 :
337 268 : return mcvlist;
338 : }
339 :
340 : /*
341 : * build_mss
342 : * Build a MultiSortSupport for the given StatsBuildData.
343 : */
344 : static MultiSortSupport
345 268 : build_mss(StatsBuildData *data)
346 : {
347 : int i;
348 268 : int numattrs = data->nattnums;
349 :
350 : /* Sort by multiple columns (using array of SortSupport) */
351 268 : MultiSortSupport mss = multi_sort_init(numattrs);
352 :
353 : /* prepare the sort functions for all the attributes */
354 978 : for (i = 0; i < numattrs; i++)
355 : {
356 710 : VacAttrStats *colstat = data->stats[i];
357 : TypeCacheEntry *type;
358 :
359 710 : type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
360 710 : if (type->lt_opr == InvalidOid) /* shouldn't happen */
361 0 : elog(ERROR, "cache lookup failed for ordering operator for type %u",
362 : colstat->attrtypid);
363 :
364 710 : multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
365 : }
366 :
367 268 : return mss;
368 : }
369 :
370 : /*
371 : * count_distinct_groups
372 : * Count distinct combinations of SortItems in the array.
373 : *
374 : * The array is assumed to be sorted according to the MultiSortSupport.
375 : */
376 : static int
377 268 : count_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss)
378 : {
379 : int i;
380 : int ndistinct;
381 :
382 268 : ndistinct = 1;
383 483846 : for (i = 1; i < numrows; i++)
384 : {
385 : /* make sure the array really is sorted */
386 : Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
387 :
388 483578 : if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
389 90456 : ndistinct += 1;
390 : }
391 :
392 268 : return ndistinct;
393 : }
394 :
395 : /*
396 : * compare_sort_item_count
397 : * Comparator for sorting items by count (frequencies) in descending
398 : * order.
399 : */
400 : static int
401 97566 : compare_sort_item_count(const void *a, const void *b, void *arg)
402 : {
403 97566 : const SortItem *ia = a;
404 97566 : const SortItem *ib = b;
405 :
406 97566 : if (ia->count == ib->count)
407 96586 : return 0;
408 980 : else if (ia->count > ib->count)
409 650 : return -1;
410 :
411 330 : return 1;
412 : }
413 :
414 : /*
415 : * build_distinct_groups
416 : * Build an array of SortItems for distinct groups and counts matching
417 : * items.
418 : *
419 : * The 'items' array is assumed to be sorted.
420 : */
421 : static SortItem *
422 268 : build_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss,
423 : int *ndistinct)
424 : {
425 : int i,
426 : j;
427 268 : int ngroups = count_distinct_groups(numrows, items, mss);
428 :
429 268 : SortItem *groups = (SortItem *) palloc(ngroups * sizeof(SortItem));
430 :
431 268 : j = 0;
432 268 : groups[0] = items[0];
433 268 : groups[0].count = 1;
434 :
435 483846 : for (i = 1; i < numrows; i++)
436 : {
437 : /* Assume sorted in ascending order. */
438 : Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
439 :
440 : /* New distinct group detected. */
441 483578 : if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
442 : {
443 90456 : groups[++j] = items[i];
444 90456 : groups[j].count = 0;
445 : }
446 :
447 483578 : groups[j].count++;
448 : }
449 :
450 : /* ensure we filled the expected number of distinct groups */
451 : Assert(j + 1 == ngroups);
452 :
453 : /* Sort the distinct groups by frequency (in descending order). */
454 268 : qsort_interruptible(groups, ngroups, sizeof(SortItem),
455 : compare_sort_item_count, NULL);
456 :
457 268 : *ndistinct = ngroups;
458 268 : return groups;
459 : }
460 :
461 : /* compare sort items (single dimension) */
462 : static int
463 1032554 : sort_item_compare(const void *a, const void *b, void *arg)
464 : {
465 1032554 : SortSupport ssup = (SortSupport) arg;
466 1032554 : const SortItem *ia = a;
467 1032554 : const SortItem *ib = b;
468 :
469 2065108 : return ApplySortComparator(ia->values[0], ia->isnull[0],
470 1032554 : ib->values[0], ib->isnull[0],
471 : ssup);
472 : }
473 :
474 : /*
475 : * build_column_frequencies
476 : * Compute frequencies of values in each column.
477 : *
478 : * This returns an array of SortItems for each attribute the MCV is built
479 : * on, with a frequency (number of occurrences) for each value. This is
480 : * then used to compute "base" frequency of MCV items.
481 : *
482 : * All the memory is allocated in a single chunk, so that a single pfree
483 : * is enough to release it. We do not allocate space for values/isnull
484 : * arrays in the SortItems, because we can simply point into the input
485 : * groups directly.
486 : */
487 : static SortItem **
488 268 : build_column_frequencies(SortItem *groups, int ngroups,
489 : MultiSortSupport mss, int *ncounts)
490 : {
491 : int i,
492 : dim;
493 : SortItem **result;
494 : char *ptr;
495 :
496 : Assert(groups);
497 : Assert(ncounts);
498 :
499 : /* allocate arrays for all columns as a single chunk */
500 268 : ptr = palloc(MAXALIGN(sizeof(SortItem *) * mss->ndims) +
501 268 : mss->ndims * MAXALIGN(sizeof(SortItem) * ngroups));
502 :
503 : /* initial array of pointers */
504 268 : result = (SortItem **) ptr;
505 268 : ptr += MAXALIGN(sizeof(SortItem *) * mss->ndims);
506 :
507 978 : for (dim = 0; dim < mss->ndims; dim++)
508 : {
509 710 : SortSupport ssup = &mss->ssup[dim];
510 :
511 : /* array of values for a single column */
512 710 : result[dim] = (SortItem *) ptr;
513 710 : ptr += MAXALIGN(sizeof(SortItem) * ngroups);
514 :
515 : /* extract data for the dimension */
516 252928 : for (i = 0; i < ngroups; i++)
517 : {
518 : /* point into the input groups */
519 252218 : result[dim][i].values = &groups[i].values[dim];
520 252218 : result[dim][i].isnull = &groups[i].isnull[dim];
521 252218 : result[dim][i].count = groups[i].count;
522 : }
523 :
524 : /* sort the values, deduplicate */
525 710 : qsort_interruptible(result[dim], ngroups, sizeof(SortItem),
526 : sort_item_compare, ssup);
527 :
528 : /*
529 : * Identify distinct values, compute frequency (there might be
530 : * multiple MCV items containing this value, so we need to sum counts
531 : * from all of them.
532 : */
533 710 : ncounts[dim] = 1;
534 252218 : for (i = 1; i < ngroups; i++)
535 : {
536 251508 : if (sort_item_compare(&result[dim][i - 1], &result[dim][i], ssup) == 0)
537 : {
538 148664 : result[dim][ncounts[dim] - 1].count += result[dim][i].count;
539 148664 : continue;
540 : }
541 :
542 102844 : result[dim][ncounts[dim]] = result[dim][i];
543 :
544 102844 : ncounts[dim]++;
545 : }
546 : }
547 :
548 268 : return result;
549 : }
550 :
551 : /*
552 : * statext_mcv_load
553 : * Load the MCV list for the indicated pg_statistic_ext_data tuple.
554 : */
555 : MCVList *
556 606 : statext_mcv_load(Oid mvoid, bool inh)
557 : {
558 : MCVList *result;
559 : bool isnull;
560 : Datum mcvlist;
561 606 : HeapTuple htup = SearchSysCache2(STATEXTDATASTXOID,
562 : ObjectIdGetDatum(mvoid), BoolGetDatum(inh));
563 :
564 606 : if (!HeapTupleIsValid(htup))
565 0 : elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
566 :
567 606 : mcvlist = SysCacheGetAttr(STATEXTDATASTXOID, htup,
568 : Anum_pg_statistic_ext_data_stxdmcv, &isnull);
569 :
570 606 : if (isnull)
571 0 : elog(ERROR,
572 : "requested statistics kind \"%c\" is not yet built for statistics object %u",
573 : STATS_EXT_MCV, mvoid);
574 :
575 606 : result = statext_mcv_deserialize(DatumGetByteaP(mcvlist));
576 :
577 606 : ReleaseSysCache(htup);
578 :
579 606 : return result;
580 : }
581 :
582 :
583 : /*
584 : * statext_mcv_serialize
585 : * Serialize MCV list into a pg_mcv_list value.
586 : *
587 : * The MCV items may include values of various data types, and it's reasonable
588 : * to expect redundancy (values for a given attribute, repeated for multiple
589 : * MCV list items). So we deduplicate the values into arrays, and then replace
590 : * the values by indexes into those arrays.
591 : *
592 : * The overall structure of the serialized representation looks like this:
593 : *
594 : * +---------------+----------------+---------------------+-------+
595 : * | header fields | dimension info | deduplicated values | items |
596 : * +---------------+----------------+---------------------+-------+
597 : *
598 : * Where dimension info stores information about the type of the K-th
599 : * attribute (e.g. typlen, typbyval and length of deduplicated values).
600 : * Deduplicated values store deduplicated values for each attribute. And
601 : * items store the actual MCV list items, with values replaced by indexes into
602 : * the arrays.
603 : *
604 : * When serializing the items, we use uint16 indexes. The number of MCV items
605 : * is limited by the statistics target (which is capped to 10k at the moment).
606 : * We might increase this to 65k and still fit into uint16, so there's a bit of
607 : * slack. Furthermore, this limit is on the number of distinct values per column,
608 : * and we usually have few of those (and various combinations of them for the
609 : * those MCV list). So uint16 seems fine for now.
610 : *
611 : * We don't really expect the serialization to save as much space as for
612 : * histograms, as we are not doing any bucket splits (which is the source
613 : * of high redundancy in histograms).
614 : *
615 : * TODO: Consider packing boolean flags (NULL) for each item into a single char
616 : * (or a longer type) instead of using an array of bool items.
617 : */
618 : bytea *
619 298 : statext_mcv_serialize(MCVList *mcvlist, VacAttrStats **stats)
620 : {
621 : int i;
622 : int dim;
623 298 : int ndims = mcvlist->ndimensions;
624 :
625 : SortSupport ssup;
626 : DimensionInfo *info;
627 :
628 : Size total_length;
629 :
630 : /* serialized items (indexes into arrays, etc.) */
631 : bytea *raw;
632 : char *ptr;
633 : char *endptr PG_USED_FOR_ASSERTS_ONLY;
634 :
635 : /* values per dimension (and number of non-NULL values) */
636 298 : Datum **values = palloc0_array(Datum *, ndims);
637 298 : int *counts = palloc0_array(int, ndims);
638 :
639 : /*
640 : * We'll include some rudimentary information about the attribute types
641 : * (length, by-val flag), so that we don't have to look them up while
642 : * deserializing the MCV list (we already have the type OID in the
643 : * header). This is safe because when changing the type of the attribute
644 : * the statistics gets dropped automatically. We need to store the info
645 : * about the arrays of deduplicated values anyway.
646 : */
647 298 : info = palloc0_array(DimensionInfo, ndims);
648 :
649 : /* sort support data for all attributes included in the MCV list */
650 298 : ssup = palloc0_array(SortSupportData, ndims);
651 :
652 : /* collect and deduplicate values for each dimension (attribute) */
653 1092 : for (dim = 0; dim < ndims; dim++)
654 : {
655 : int ndistinct;
656 : TypeCacheEntry *typentry;
657 :
658 : /*
659 : * Lookup the LT operator (can't get it from stats extra_data, as we
660 : * don't know how to interpret that - scalar vs. array etc.).
661 : */
662 794 : typentry = lookup_type_cache(stats[dim]->attrtypid, TYPECACHE_LT_OPR);
663 :
664 : /* copy important info about the data type (length, by-value) */
665 794 : info[dim].typlen = stats[dim]->attrtype->typlen;
666 794 : info[dim].typbyval = stats[dim]->attrtype->typbyval;
667 :
668 : /* allocate space for values in the attribute and collect them */
669 794 : values[dim] = palloc0_array(Datum, mcvlist->nitems);
670 :
671 29704 : for (i = 0; i < mcvlist->nitems; i++)
672 : {
673 : /* skip NULL values - we don't need to deduplicate those */
674 28910 : if (mcvlist->items[i].isnull[dim])
675 140 : continue;
676 :
677 : /* append the value at the end */
678 28770 : values[dim][counts[dim]] = mcvlist->items[i].values[dim];
679 28770 : counts[dim] += 1;
680 : }
681 :
682 : /* if there are just NULL values in this dimension, we're done */
683 794 : if (counts[dim] == 0)
684 8 : continue;
685 :
686 : /* sort and deduplicate the data */
687 786 : ssup[dim].ssup_cxt = CurrentMemoryContext;
688 786 : ssup[dim].ssup_collation = stats[dim]->attrcollid;
689 786 : ssup[dim].ssup_nulls_first = false;
690 :
691 786 : PrepareSortSupportFromOrderingOp(typentry->lt_opr, &ssup[dim]);
692 :
693 786 : qsort_interruptible(values[dim], counts[dim], sizeof(Datum),
694 786 : compare_scalars_simple, &ssup[dim]);
695 :
696 : /*
697 : * Walk through the array and eliminate duplicate values, but keep the
698 : * ordering (so that we can do a binary search later). We know there's
699 : * at least one item as (counts[dim] != 0), so we can skip the first
700 : * element.
701 : */
702 786 : ndistinct = 1; /* number of distinct values */
703 28770 : for (i = 1; i < counts[dim]; i++)
704 : {
705 : /* expect sorted array */
706 : Assert(compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]) <= 0);
707 :
708 : /* if the value is the same as the previous one, we can skip it */
709 27984 : if (!compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]))
710 11660 : continue;
711 :
712 16324 : values[dim][ndistinct] = values[dim][i];
713 16324 : ndistinct += 1;
714 : }
715 :
716 : /* we must not exceed PG_UINT16_MAX, as we use uint16 indexes */
717 : Assert(ndistinct <= PG_UINT16_MAX);
718 :
719 : /*
720 : * Store additional info about the attribute - number of deduplicated
721 : * values, and also size of the serialized data. For fixed-length data
722 : * types this is trivial to compute, for varwidth types we need to
723 : * actually walk the array and sum the sizes.
724 : */
725 786 : info[dim].nvalues = ndistinct;
726 :
727 786 : if (info[dim].typbyval) /* by-value data types */
728 : {
729 506 : info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
730 :
731 : /*
732 : * We copy the data into the MCV item during deserialization, so
733 : * we don't need to allocate any extra space.
734 : */
735 506 : info[dim].nbytes_aligned = 0;
736 : }
737 280 : else if (info[dim].typlen > 0) /* fixed-length by-ref */
738 : {
739 : /*
740 : * We don't care about alignment in the serialized data, so we
741 : * pack the data as much as possible. But we also track how much
742 : * data will be needed after deserialization, and in that case we
743 : * need to account for alignment of each item.
744 : *
745 : * Note: As the items are fixed-length, we could easily compute
746 : * this during deserialization, but we do it here anyway.
747 : */
748 24 : info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
749 24 : info[dim].nbytes_aligned = info[dim].nvalues * MAXALIGN(info[dim].typlen);
750 : }
751 256 : else if (info[dim].typlen == -1) /* varlena */
752 : {
753 256 : info[dim].nbytes = 0;
754 256 : info[dim].nbytes_aligned = 0;
755 3782 : for (i = 0; i < info[dim].nvalues; i++)
756 : {
757 : Size len;
758 :
759 : /*
760 : * For varlena values, we detoast the values and store the
761 : * length and data separately. We don't bother with alignment
762 : * here, which means that during deserialization we need to
763 : * copy the fields and only access the copies.
764 : */
765 3526 : values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i]));
766 :
767 : /* serialized length (uint32 length + data) */
768 3526 : len = VARSIZE_ANY_EXHDR(DatumGetPointer(values[dim][i]));
769 3526 : info[dim].nbytes += sizeof(uint32); /* length */
770 3526 : info[dim].nbytes += len; /* value (no header) */
771 :
772 : /*
773 : * During deserialization we'll build regular varlena values
774 : * with full headers, and we need to align them properly.
775 : */
776 3526 : info[dim].nbytes_aligned += MAXALIGN(VARHDRSZ + len);
777 : }
778 : }
779 0 : else if (info[dim].typlen == -2) /* cstring */
780 : {
781 0 : info[dim].nbytes = 0;
782 0 : info[dim].nbytes_aligned = 0;
783 0 : for (i = 0; i < info[dim].nvalues; i++)
784 : {
785 : Size len;
786 :
787 : /*
788 : * cstring is handled similar to varlena - first we store the
789 : * length as uint32 and then the data. We don't care about
790 : * alignment, which means that during deserialization we need
791 : * to copy the fields and only access the copies.
792 : */
793 :
794 : /* c-strings include terminator, so +1 byte */
795 0 : len = strlen(DatumGetCString(values[dim][i])) + 1;
796 0 : info[dim].nbytes += sizeof(uint32); /* length */
797 0 : info[dim].nbytes += len; /* value */
798 :
799 : /* space needed for properly aligned deserialized copies */
800 0 : info[dim].nbytes_aligned += MAXALIGN(len);
801 : }
802 : }
803 :
804 : /* we know (count>0) so there must be some data */
805 : Assert(info[dim].nbytes > 0);
806 : }
807 :
808 : /*
809 : * Now we can finally compute how much space we'll actually need for the
810 : * whole serialized MCV list (varlena header, MCV header, dimension info
811 : * for each attribute, deduplicated values and items).
812 : */
813 298 : total_length = (3 * sizeof(uint32)) /* magic + type + nitems */
814 : + sizeof(AttrNumber) /* ndimensions */
815 298 : + (ndims * sizeof(Oid)); /* attribute types */
816 :
817 : /* dimension info */
818 298 : total_length += ndims * sizeof(DimensionInfo);
819 :
820 : /* add space for the arrays of deduplicated values */
821 1092 : for (i = 0; i < ndims; i++)
822 794 : total_length += info[i].nbytes;
823 :
824 : /*
825 : * And finally account for the items (those are fixed-length, thanks to
826 : * replacing values with uint16 indexes into the deduplicated arrays).
827 : */
828 298 : total_length += mcvlist->nitems * ITEM_SIZE(dim);
829 :
830 : /*
831 : * Allocate space for the whole serialized MCV list (we'll skip bytes, so
832 : * we set them to zero to make the result more compressible).
833 : */
834 298 : raw = (bytea *) palloc0(VARHDRSZ + total_length);
835 298 : SET_VARSIZE(raw, VARHDRSZ + total_length);
836 :
837 298 : ptr = VARDATA(raw);
838 298 : endptr = ptr + total_length;
839 :
840 : /* copy the MCV list header fields, one by one */
841 298 : memcpy(ptr, &mcvlist->magic, sizeof(uint32));
842 298 : ptr += sizeof(uint32);
843 :
844 298 : memcpy(ptr, &mcvlist->type, sizeof(uint32));
845 298 : ptr += sizeof(uint32);
846 :
847 298 : memcpy(ptr, &mcvlist->nitems, sizeof(uint32));
848 298 : ptr += sizeof(uint32);
849 :
850 298 : memcpy(ptr, &mcvlist->ndimensions, sizeof(AttrNumber));
851 298 : ptr += sizeof(AttrNumber);
852 :
853 298 : memcpy(ptr, mcvlist->types, sizeof(Oid) * ndims);
854 298 : ptr += (sizeof(Oid) * ndims);
855 :
856 : /* store information about the attributes (data amounts, ...) */
857 298 : memcpy(ptr, info, sizeof(DimensionInfo) * ndims);
858 298 : ptr += sizeof(DimensionInfo) * ndims;
859 :
860 : /* Copy the deduplicated values for all attributes to the output. */
861 1092 : for (dim = 0; dim < ndims; dim++)
862 : {
863 : /* remember the starting point for Asserts later */
864 794 : char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
865 :
866 17904 : for (i = 0; i < info[dim].nvalues; i++)
867 : {
868 17110 : Datum value = values[dim][i];
869 :
870 17110 : if (info[dim].typbyval) /* passed by value */
871 : {
872 : Datum tmp;
873 :
874 : /*
875 : * For byval types, we need to copy just the significant bytes
876 : * - we can't use memcpy directly, as that assumes
877 : * little-endian behavior. store_att_byval does almost what
878 : * we need, but it requires a properly aligned buffer - the
879 : * output buffer does not guarantee that. So we simply use a
880 : * local Datum variable (which guarantees proper alignment),
881 : * and then copy the value from it.
882 : */
883 12474 : store_att_byval(&tmp, value, info[dim].typlen);
884 :
885 12474 : memcpy(ptr, &tmp, info[dim].typlen);
886 12474 : ptr += info[dim].typlen;
887 : }
888 4636 : else if (info[dim].typlen > 0) /* passed by reference */
889 : {
890 : /* no special alignment needed, treated as char array */
891 1110 : memcpy(ptr, DatumGetPointer(value), info[dim].typlen);
892 1110 : ptr += info[dim].typlen;
893 : }
894 3526 : else if (info[dim].typlen == -1) /* varlena */
895 : {
896 3526 : uint32 len = VARSIZE_ANY_EXHDR(DatumGetPointer(value));
897 :
898 : /* copy the length */
899 3526 : memcpy(ptr, &len, sizeof(uint32));
900 3526 : ptr += sizeof(uint32);
901 :
902 : /* data from the varlena value (without the header) */
903 3526 : memcpy(ptr, VARDATA_ANY(DatumGetPointer(value)), len);
904 3526 : ptr += len;
905 : }
906 0 : else if (info[dim].typlen == -2) /* cstring */
907 : {
908 0 : uint32 len = (uint32) strlen(DatumGetCString(value)) + 1;
909 :
910 : /* copy the length */
911 0 : memcpy(ptr, &len, sizeof(uint32));
912 0 : ptr += sizeof(uint32);
913 :
914 : /* value */
915 0 : memcpy(ptr, DatumGetCString(value), len);
916 0 : ptr += len;
917 : }
918 :
919 : /* no underflows or overflows */
920 : Assert((ptr > start) && ((ptr - start) <= info[dim].nbytes));
921 : }
922 :
923 : /* we should get exactly nbytes of data for this dimension */
924 : Assert((ptr - start) == info[dim].nbytes);
925 : }
926 :
927 : /* Serialize the items, with uint16 indexes instead of the values. */
928 11078 : for (i = 0; i < mcvlist->nitems; i++)
929 : {
930 10780 : MCVItem *mcvitem = &mcvlist->items[i];
931 :
932 : /* don't write beyond the allocated space */
933 : Assert(ptr <= (endptr - ITEM_SIZE(dim)));
934 :
935 : /* copy NULL and frequency flags into the serialized MCV */
936 10780 : memcpy(ptr, mcvitem->isnull, sizeof(bool) * ndims);
937 10780 : ptr += sizeof(bool) * ndims;
938 :
939 10780 : memcpy(ptr, &mcvitem->frequency, sizeof(double));
940 10780 : ptr += sizeof(double);
941 :
942 10780 : memcpy(ptr, &mcvitem->base_frequency, sizeof(double));
943 10780 : ptr += sizeof(double);
944 :
945 : /* store the indexes last */
946 39690 : for (dim = 0; dim < ndims; dim++)
947 : {
948 28910 : uint16 index = 0;
949 : Datum *value;
950 :
951 : /* do the lookup only for non-NULL values */
952 28910 : if (!mcvitem->isnull[dim])
953 : {
954 28770 : value = (Datum *) bsearch_arg(&mcvitem->values[dim], values[dim],
955 28770 : info[dim].nvalues, sizeof(Datum),
956 28770 : compare_scalars_simple, &ssup[dim]);
957 :
958 : Assert(value != NULL); /* serialization or deduplication
959 : * error */
960 :
961 : /* compute index within the deduplicated array */
962 28770 : index = (uint16) (value - values[dim]);
963 :
964 : /* check the index is within expected bounds */
965 : Assert(index < info[dim].nvalues);
966 : }
967 :
968 : /* copy the index into the serialized MCV */
969 28910 : memcpy(ptr, &index, sizeof(uint16));
970 28910 : ptr += sizeof(uint16);
971 : }
972 :
973 : /* make sure we don't overflow the allocated value */
974 : Assert(ptr <= endptr);
975 : }
976 :
977 : /* at this point we expect to match the total_length exactly */
978 : Assert(ptr == endptr);
979 :
980 298 : pfree(values);
981 298 : pfree(counts);
982 :
983 298 : return raw;
984 : }
985 :
986 : /*
987 : * statext_mcv_deserialize
988 : * Reads serialized MCV list into MCVList structure.
989 : *
990 : * All the memory needed by the MCV list is allocated as a single chunk, so
991 : * it's possible to simply pfree() it at once.
992 : */
993 : MCVList *
994 748 : statext_mcv_deserialize(bytea *data)
995 : {
996 : int dim,
997 : i;
998 : Size expected_size;
999 : MCVList *mcvlist;
1000 : char *raw;
1001 : char *ptr;
1002 : char *endptr PG_USED_FOR_ASSERTS_ONLY;
1003 :
1004 : int ndims,
1005 : nitems;
1006 748 : DimensionInfo *info = NULL;
1007 :
1008 : /* local allocation buffer (used only for deserialization) */
1009 748 : Datum **map = NULL;
1010 :
1011 : /* MCV list */
1012 : Size mcvlen;
1013 :
1014 : /* buffer used for the result */
1015 : Size datalen;
1016 : char *dataptr;
1017 : char *valuesptr;
1018 : char *isnullptr;
1019 :
1020 748 : if (data == NULL)
1021 0 : return NULL;
1022 :
1023 : /*
1024 : * We can't possibly deserialize a MCV list if there's not even a complete
1025 : * header. We need an explicit formula here, because we serialize the
1026 : * header fields one by one, so we need to ignore struct alignment.
1027 : */
1028 748 : if (VARSIZE_ANY(data) < MinSizeOfMCVList)
1029 0 : elog(ERROR, "invalid MCV size %zu (expected at least %zu)",
1030 : VARSIZE_ANY(data), MinSizeOfMCVList);
1031 :
1032 : /* read the MCV list header */
1033 748 : mcvlist = (MCVList *) palloc0(offsetof(MCVList, items));
1034 :
1035 : /* pointer to the data part (skip the varlena header) */
1036 748 : raw = (char *) data;
1037 748 : ptr = VARDATA_ANY(raw);
1038 748 : endptr = raw + VARSIZE_ANY(data);
1039 :
1040 : /* get the header and perform further sanity checks */
1041 748 : memcpy(&mcvlist->magic, ptr, sizeof(uint32));
1042 748 : ptr += sizeof(uint32);
1043 :
1044 748 : memcpy(&mcvlist->type, ptr, sizeof(uint32));
1045 748 : ptr += sizeof(uint32);
1046 :
1047 748 : memcpy(&mcvlist->nitems, ptr, sizeof(uint32));
1048 748 : ptr += sizeof(uint32);
1049 :
1050 748 : memcpy(&mcvlist->ndimensions, ptr, sizeof(AttrNumber));
1051 748 : ptr += sizeof(AttrNumber);
1052 :
1053 748 : if (mcvlist->magic != STATS_MCV_MAGIC)
1054 0 : elog(ERROR, "invalid MCV magic %u (expected %u)",
1055 : mcvlist->magic, STATS_MCV_MAGIC);
1056 :
1057 748 : if (mcvlist->type != STATS_MCV_TYPE_BASIC)
1058 0 : elog(ERROR, "invalid MCV type %u (expected %u)",
1059 : mcvlist->type, STATS_MCV_TYPE_BASIC);
1060 :
1061 748 : if (mcvlist->ndimensions == 0)
1062 0 : elog(ERROR, "invalid zero-length dimension array in MCVList");
1063 748 : else if ((mcvlist->ndimensions > STATS_MAX_DIMENSIONS) ||
1064 748 : (mcvlist->ndimensions < 0))
1065 0 : elog(ERROR, "invalid length (%d) dimension array in MCVList",
1066 : mcvlist->ndimensions);
1067 :
1068 748 : if (mcvlist->nitems == 0)
1069 0 : elog(ERROR, "invalid zero-length item array in MCVList");
1070 748 : else if (mcvlist->nitems > STATS_MCVLIST_MAX_ITEMS)
1071 0 : elog(ERROR, "invalid length (%u) item array in MCVList",
1072 : mcvlist->nitems);
1073 :
1074 748 : nitems = mcvlist->nitems;
1075 748 : ndims = mcvlist->ndimensions;
1076 :
1077 : /*
1078 : * Check amount of data including DimensionInfo for all dimensions and
1079 : * also the serialized items (including uint16 indexes). Also, walk
1080 : * through the dimension information and add it to the sum.
1081 : */
1082 748 : expected_size = SizeOfMCVList(ndims, nitems);
1083 :
1084 : /*
1085 : * Check that we have at least the dimension and info records, along with
1086 : * the items. We don't know the size of the serialized values yet. We need
1087 : * to do this check first, before accessing the dimension info.
1088 : */
1089 748 : if (VARSIZE_ANY(data) < expected_size)
1090 0 : elog(ERROR, "invalid MCV size %zu (expected %zu)",
1091 : VARSIZE_ANY(data), expected_size);
1092 :
1093 : /* Now copy the array of type Oids. */
1094 748 : memcpy(mcvlist->types, ptr, sizeof(Oid) * ndims);
1095 748 : ptr += (sizeof(Oid) * ndims);
1096 :
1097 : /* Now it's safe to access the dimension info. */
1098 748 : info = palloc(ndims * sizeof(DimensionInfo));
1099 :
1100 748 : memcpy(info, ptr, ndims * sizeof(DimensionInfo));
1101 748 : ptr += (ndims * sizeof(DimensionInfo));
1102 :
1103 : /* account for the value arrays */
1104 2958 : for (dim = 0; dim < ndims; dim++)
1105 : {
1106 : /*
1107 : * XXX I wonder if we can/should rely on asserts here. Maybe those
1108 : * checks should be done every time?
1109 : */
1110 : Assert(info[dim].nvalues >= 0);
1111 : Assert(info[dim].nbytes >= 0);
1112 :
1113 2210 : expected_size += info[dim].nbytes;
1114 : }
1115 :
1116 : /*
1117 : * Now we know the total expected MCV size, including all the pieces
1118 : * (header, dimension info. items and deduplicated data). So do the final
1119 : * check on size.
1120 : */
1121 748 : if (VARSIZE_ANY(data) != expected_size)
1122 0 : elog(ERROR, "invalid MCV size %zu (expected %zu)",
1123 : VARSIZE_ANY(data), expected_size);
1124 :
1125 : /*
1126 : * We need an array of Datum values for each dimension, so that we can
1127 : * easily translate the uint16 indexes later. We also need a top-level
1128 : * array of pointers to those per-dimension arrays.
1129 : *
1130 : * While allocating the arrays for dimensions, compute how much space we
1131 : * need for a copy of the by-ref data, as we can't simply point to the
1132 : * original values (it might go away).
1133 : */
1134 748 : datalen = 0; /* space for by-ref data */
1135 748 : map = palloc_array(Datum *, ndims);
1136 :
1137 2958 : for (dim = 0; dim < ndims; dim++)
1138 : {
1139 2210 : map[dim] = palloc_array(Datum, info[dim].nvalues);
1140 :
1141 : /* space needed for a copy of data for by-ref types */
1142 2210 : datalen += info[dim].nbytes_aligned;
1143 : }
1144 :
1145 : /*
1146 : * Now resize the MCV list so that the allocation includes all the data.
1147 : *
1148 : * Allocate space for a copy of the data, as we can't simply reference the
1149 : * serialized data - it's not aligned properly, and it may disappear while
1150 : * we're still using the MCV list, e.g. due to catcache release.
1151 : *
1152 : * We do care about alignment here, because we will allocate all the
1153 : * pieces at once, but then use pointers to different parts.
1154 : */
1155 748 : mcvlen = MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
1156 :
1157 : /* arrays of values and isnull flags for all MCV items */
1158 748 : mcvlen += nitems * MAXALIGN(sizeof(Datum) * ndims);
1159 748 : mcvlen += nitems * MAXALIGN(sizeof(bool) * ndims);
1160 :
1161 : /* we don't quite need to align this, but it makes some asserts easier */
1162 748 : mcvlen += MAXALIGN(datalen);
1163 :
1164 : /* now resize the deserialized MCV list, and compute pointers to parts */
1165 748 : mcvlist = repalloc(mcvlist, mcvlen);
1166 :
1167 : /* pointer to the beginning of values/isnull arrays */
1168 748 : valuesptr = (char *) mcvlist
1169 748 : + MAXALIGN(offsetof(MCVList, items) + (sizeof(MCVItem) * nitems));
1170 :
1171 748 : isnullptr = valuesptr + (nitems * MAXALIGN(sizeof(Datum) * ndims));
1172 :
1173 748 : dataptr = isnullptr + (nitems * MAXALIGN(sizeof(bool) * ndims));
1174 :
1175 : /*
1176 : * Build mapping (index => value) for translating the serialized data into
1177 : * the in-memory representation.
1178 : */
1179 2958 : for (dim = 0; dim < ndims; dim++)
1180 : {
1181 : /* remember start position in the input array */
1182 2210 : char *start PG_USED_FOR_ASSERTS_ONLY = ptr;
1183 :
1184 2210 : if (info[dim].typbyval)
1185 : {
1186 : /* for by-val types we simply copy data into the mapping */
1187 63832 : for (i = 0; i < info[dim].nvalues; i++)
1188 : {
1189 62304 : Datum v = 0;
1190 :
1191 62304 : memcpy(&v, ptr, info[dim].typlen);
1192 62304 : ptr += info[dim].typlen;
1193 :
1194 62304 : map[dim][i] = fetch_att(&v, true, info[dim].typlen);
1195 :
1196 : /* no under/overflow of input array */
1197 : Assert(ptr <= (start + info[dim].nbytes));
1198 : }
1199 : }
1200 : else
1201 : {
1202 : /* for by-ref types we need to also make a copy of the data */
1203 :
1204 : /* passed by reference, but fixed length (name, tid, ...) */
1205 682 : if (info[dim].typlen > 0)
1206 : {
1207 2202 : for (i = 0; i < info[dim].nvalues; i++)
1208 : {
1209 2160 : memcpy(dataptr, ptr, info[dim].typlen);
1210 2160 : ptr += info[dim].typlen;
1211 :
1212 : /* just point into the array */
1213 2160 : map[dim][i] = PointerGetDatum(dataptr);
1214 2160 : dataptr += MAXALIGN(info[dim].typlen);
1215 : }
1216 : }
1217 640 : else if (info[dim].typlen == -1)
1218 : {
1219 : /* varlena */
1220 15776 : for (i = 0; i < info[dim].nvalues; i++)
1221 : {
1222 : uint32 len;
1223 :
1224 : /* read the uint32 length */
1225 15136 : memcpy(&len, ptr, sizeof(uint32));
1226 15136 : ptr += sizeof(uint32);
1227 :
1228 : /* the length is data-only */
1229 15136 : SET_VARSIZE(dataptr, len + VARHDRSZ);
1230 15136 : memcpy(VARDATA(dataptr), ptr, len);
1231 15136 : ptr += len;
1232 :
1233 : /* just point into the array */
1234 15136 : map[dim][i] = PointerGetDatum(dataptr);
1235 :
1236 : /* skip to place of the next deserialized value */
1237 15136 : dataptr += MAXALIGN(len + VARHDRSZ);
1238 : }
1239 : }
1240 0 : else if (info[dim].typlen == -2)
1241 : {
1242 : /* cstring */
1243 0 : for (i = 0; i < info[dim].nvalues; i++)
1244 : {
1245 : uint32 len;
1246 :
1247 0 : memcpy(&len, ptr, sizeof(uint32));
1248 0 : ptr += sizeof(uint32);
1249 :
1250 0 : memcpy(dataptr, ptr, len);
1251 0 : ptr += len;
1252 :
1253 : /* just point into the array */
1254 0 : map[dim][i] = PointerGetDatum(dataptr);
1255 0 : dataptr += MAXALIGN(len);
1256 : }
1257 : }
1258 :
1259 : /* no under/overflow of input array */
1260 : Assert(ptr <= (start + info[dim].nbytes));
1261 :
1262 : /* no overflow of the output mcv value */
1263 : Assert(dataptr <= ((char *) mcvlist + mcvlen));
1264 : }
1265 :
1266 : /* check we consumed input data for this dimension exactly */
1267 : Assert(ptr == (start + info[dim].nbytes));
1268 : }
1269 :
1270 : /* we should have also filled the MCV list exactly */
1271 : Assert(dataptr == ((char *) mcvlist + mcvlen));
1272 :
1273 : /* deserialize the MCV items and translate the indexes to Datums */
1274 50030 : for (i = 0; i < nitems; i++)
1275 : {
1276 49282 : MCVItem *item = &mcvlist->items[i];
1277 :
1278 49282 : item->values = (Datum *) valuesptr;
1279 49282 : valuesptr += MAXALIGN(sizeof(Datum) * ndims);
1280 :
1281 49282 : item->isnull = (bool *) isnullptr;
1282 49282 : isnullptr += MAXALIGN(sizeof(bool) * ndims);
1283 :
1284 49282 : memcpy(item->isnull, ptr, sizeof(bool) * ndims);
1285 49282 : ptr += sizeof(bool) * ndims;
1286 :
1287 49282 : memcpy(&item->frequency, ptr, sizeof(double));
1288 49282 : ptr += sizeof(double);
1289 :
1290 49282 : memcpy(&item->base_frequency, ptr, sizeof(double));
1291 49282 : ptr += sizeof(double);
1292 :
1293 : /* finally translate the indexes (for non-NULL only) */
1294 192168 : for (dim = 0; dim < ndims; dim++)
1295 : {
1296 : uint16 index;
1297 :
1298 142886 : memcpy(&index, ptr, sizeof(uint16));
1299 142886 : ptr += sizeof(uint16);
1300 :
1301 142886 : if (item->isnull[dim])
1302 392 : continue;
1303 :
1304 142494 : item->values[dim] = map[dim][index];
1305 : }
1306 :
1307 : /* check we're not overflowing the input */
1308 : Assert(ptr <= endptr);
1309 : }
1310 :
1311 : /* check that we processed all the data */
1312 : Assert(ptr == endptr);
1313 :
1314 : /* release the buffers used for mapping */
1315 2958 : for (dim = 0; dim < ndims; dim++)
1316 2210 : pfree(map[dim]);
1317 :
1318 748 : pfree(map);
1319 :
1320 748 : return mcvlist;
1321 : }
1322 :
1323 : /*
1324 : * SRF with details about buckets of a histogram:
1325 : *
1326 : * - item ID (0...nitems)
1327 : * - values (string array)
1328 : * - nulls only (boolean array)
1329 : * - frequency (double precision)
1330 : * - base_frequency (double precision)
1331 : *
1332 : * The input is the OID of the statistics, and there are no rows returned if
1333 : * the statistics contains no histogram.
1334 : */
1335 : Datum
1336 6896 : pg_stats_ext_mcvlist_items(PG_FUNCTION_ARGS)
1337 : {
1338 : FuncCallContext *funcctx;
1339 :
1340 : /* stuff done only on the first call of the function */
1341 6896 : if (SRF_IS_FIRSTCALL())
1342 : {
1343 : MemoryContext oldcontext;
1344 : MCVList *mcvlist;
1345 : TupleDesc tupdesc;
1346 :
1347 : /* create a function context for cross-call persistence */
1348 142 : funcctx = SRF_FIRSTCALL_INIT();
1349 :
1350 : /* switch to memory context appropriate for multiple function calls */
1351 142 : oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
1352 :
1353 142 : mcvlist = statext_mcv_deserialize(PG_GETARG_BYTEA_P(0));
1354 :
1355 142 : funcctx->user_fctx = mcvlist;
1356 :
1357 : /* total number of tuples to be returned */
1358 142 : funcctx->max_calls = 0;
1359 142 : if (funcctx->user_fctx != NULL)
1360 142 : funcctx->max_calls = mcvlist->nitems;
1361 :
1362 : /* Build a tuple descriptor for our result type */
1363 142 : if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1364 0 : ereport(ERROR,
1365 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1366 : errmsg("function returning record called in context "
1367 : "that cannot accept type record")));
1368 142 : tupdesc = BlessTupleDesc(tupdesc);
1369 :
1370 : /*
1371 : * generate attribute metadata needed later to produce tuples from raw
1372 : * C strings
1373 : */
1374 142 : funcctx->attinmeta = TupleDescGetAttInMetadata(tupdesc);
1375 :
1376 142 : MemoryContextSwitchTo(oldcontext);
1377 : }
1378 :
1379 : /* stuff done on every call of the function */
1380 6896 : funcctx = SRF_PERCALL_SETUP();
1381 :
1382 6896 : if (funcctx->call_cntr < funcctx->max_calls) /* do when there is more
1383 : * left to send */
1384 : {
1385 : Datum values[5];
1386 : bool nulls[5];
1387 : HeapTuple tuple;
1388 : Datum result;
1389 6754 : ArrayBuildState *astate_values = NULL;
1390 6754 : ArrayBuildState *astate_nulls = NULL;
1391 :
1392 : int i;
1393 : MCVList *mcvlist;
1394 : MCVItem *item;
1395 :
1396 6754 : mcvlist = (MCVList *) funcctx->user_fctx;
1397 :
1398 : Assert(funcctx->call_cntr < mcvlist->nitems);
1399 :
1400 6754 : item = &mcvlist->items[funcctx->call_cntr];
1401 :
1402 20652 : for (i = 0; i < mcvlist->ndimensions; i++)
1403 : {
1404 :
1405 13898 : astate_nulls = accumArrayResult(astate_nulls,
1406 13898 : BoolGetDatum(item->isnull[i]),
1407 : false,
1408 : BOOLOID,
1409 : CurrentMemoryContext);
1410 :
1411 13898 : if (!item->isnull[i])
1412 : {
1413 : bool isvarlena;
1414 : Oid outfunc;
1415 : FmgrInfo fmgrinfo;
1416 : Datum val;
1417 : text *txt;
1418 :
1419 : /* lookup output func for the type */
1420 13788 : getTypeOutputInfo(mcvlist->types[i], &outfunc, &isvarlena);
1421 13788 : fmgr_info(outfunc, &fmgrinfo);
1422 :
1423 13788 : val = FunctionCall1(&fmgrinfo, item->values[i]);
1424 13788 : txt = cstring_to_text(DatumGetPointer(val));
1425 :
1426 13788 : astate_values = accumArrayResult(astate_values,
1427 : PointerGetDatum(txt),
1428 : false,
1429 : TEXTOID,
1430 : CurrentMemoryContext);
1431 : }
1432 : else
1433 110 : astate_values = accumArrayResult(astate_values,
1434 : (Datum) 0,
1435 : true,
1436 : TEXTOID,
1437 : CurrentMemoryContext);
1438 : }
1439 :
1440 6754 : values[0] = Int32GetDatum(funcctx->call_cntr);
1441 6754 : values[1] = makeArrayResult(astate_values, CurrentMemoryContext);
1442 6754 : values[2] = makeArrayResult(astate_nulls, CurrentMemoryContext);
1443 6754 : values[3] = Float8GetDatum(item->frequency);
1444 6754 : values[4] = Float8GetDatum(item->base_frequency);
1445 :
1446 : /* no NULLs in the tuple */
1447 6754 : memset(nulls, 0, sizeof(nulls));
1448 :
1449 : /* build a tuple */
1450 6754 : tuple = heap_form_tuple(funcctx->attinmeta->tupdesc, values, nulls);
1451 :
1452 : /* make the tuple into a datum */
1453 6754 : result = HeapTupleGetDatum(tuple);
1454 :
1455 6754 : SRF_RETURN_NEXT(funcctx, result);
1456 : }
1457 : else /* do when there is no more left */
1458 : {
1459 142 : SRF_RETURN_DONE(funcctx);
1460 : }
1461 : }
1462 :
1463 : /*
1464 : * pg_mcv_list_in - input routine for type pg_mcv_list.
1465 : *
1466 : * pg_mcv_list is real enough to be a table column, but it has no operations
1467 : * of its own, and disallows input too
1468 : */
1469 : Datum
1470 0 : pg_mcv_list_in(PG_FUNCTION_ARGS)
1471 : {
1472 : /*
1473 : * pg_mcv_list stores the data in binary form and parsing text input is
1474 : * not needed, so disallow this.
1475 : */
1476 0 : ereport(ERROR,
1477 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1478 : errmsg("cannot accept a value of type %s", "pg_mcv_list")));
1479 :
1480 : PG_RETURN_VOID(); /* keep compiler quiet */
1481 : }
1482 :
1483 :
1484 : /*
1485 : * pg_mcv_list_out - output routine for type pg_mcv_list.
1486 : *
1487 : * MCV lists are serialized into a bytea value, so we simply call byteaout()
1488 : * to serialize the value into text. But it'd be nice to serialize that into
1489 : * a meaningful representation (e.g. for inspection by people).
1490 : *
1491 : * XXX This should probably return something meaningful, similar to what
1492 : * pg_dependencies_out does. Not sure how to deal with the deduplicated
1493 : * values, though - do we want to expand that or not?
1494 : */
1495 : Datum
1496 22 : pg_mcv_list_out(PG_FUNCTION_ARGS)
1497 : {
1498 22 : return byteaout(fcinfo);
1499 : }
1500 :
1501 : /*
1502 : * pg_mcv_list_recv - binary input routine for type pg_mcv_list.
1503 : */
1504 : Datum
1505 0 : pg_mcv_list_recv(PG_FUNCTION_ARGS)
1506 : {
1507 0 : ereport(ERROR,
1508 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1509 : errmsg("cannot accept a value of type %s", "pg_mcv_list")));
1510 :
1511 : PG_RETURN_VOID(); /* keep compiler quiet */
1512 : }
1513 :
1514 : /*
1515 : * pg_mcv_list_send - binary output routine for type pg_mcv_list.
1516 : *
1517 : * MCV lists are serialized in a bytea value (although the type is named
1518 : * differently), so let's just send that.
1519 : */
1520 : Datum
1521 0 : pg_mcv_list_send(PG_FUNCTION_ARGS)
1522 : {
1523 0 : return byteasend(fcinfo);
1524 : }
1525 :
1526 : /*
1527 : * match the attribute/expression to a dimension of the statistic
1528 : *
1529 : * Returns the zero-based index of the matching statistics dimension.
1530 : * Optionally determines the collation.
1531 : */
1532 : static int
1533 1410 : mcv_match_expression(Node *expr, Bitmapset *keys, List *exprs, Oid *collid)
1534 : {
1535 : int idx;
1536 :
1537 1410 : if (IsA(expr, Var))
1538 : {
1539 : /* simple Var, so just lookup using varattno */
1540 1164 : Var *var = (Var *) expr;
1541 :
1542 1164 : if (collid)
1543 1098 : *collid = var->varcollid;
1544 :
1545 1164 : idx = bms_member_index(keys, var->varattno);
1546 :
1547 1164 : if (idx < 0)
1548 0 : elog(ERROR, "variable not found in statistics object");
1549 : }
1550 : else
1551 : {
1552 : /* expression - lookup in stats expressions */
1553 : ListCell *lc;
1554 :
1555 246 : if (collid)
1556 240 : *collid = exprCollation(expr);
1557 :
1558 : /* expressions are stored after the simple columns */
1559 246 : idx = bms_num_members(keys);
1560 456 : foreach(lc, exprs)
1561 : {
1562 456 : Node *stat_expr = (Node *) lfirst(lc);
1563 :
1564 456 : if (equal(expr, stat_expr))
1565 246 : break;
1566 :
1567 210 : idx++;
1568 : }
1569 :
1570 246 : if (lc == NULL)
1571 0 : elog(ERROR, "expression not found in statistics object");
1572 : }
1573 :
1574 1410 : return idx;
1575 : }
1576 :
1577 : /*
1578 : * mcv_get_match_bitmap
1579 : * Evaluate clauses using the MCV list, and update the match bitmap.
1580 : *
1581 : * A match bitmap keeps match/mismatch status for each MCV item, and we
1582 : * update it based on additional clauses. We also use it to skip items
1583 : * that can't possibly match (e.g. item marked as "mismatch" can't change
1584 : * to "match" when evaluating AND clause list).
1585 : *
1586 : * The function also returns a flag indicating whether there was an
1587 : * equality condition for all attributes, the minimum frequency in the MCV
1588 : * list, and a total MCV frequency (sum of frequencies for all items).
1589 : *
1590 : * XXX Currently the match bitmap uses a bool for each MCV item, which is
1591 : * somewhat wasteful as we could do with just a single bit, thus reducing
1592 : * the size to ~1/8. It would also allow us to combine bitmaps simply using
1593 : * & and |, which should be faster than min/max. The bitmaps are fairly
1594 : * small, though (thanks to the cap on the MCV list size).
1595 : */
1596 : static bool *
1597 846 : mcv_get_match_bitmap(PlannerInfo *root, List *clauses,
1598 : Bitmapset *keys, List *exprs,
1599 : MCVList *mcvlist, bool is_or)
1600 : {
1601 : ListCell *l;
1602 : bool *matches;
1603 :
1604 : /* The bitmap may be partially built. */
1605 : Assert(clauses != NIL);
1606 : Assert(mcvlist != NULL);
1607 : Assert(mcvlist->nitems > 0);
1608 : Assert(mcvlist->nitems <= STATS_MCVLIST_MAX_ITEMS);
1609 :
1610 846 : matches = palloc_array(bool, mcvlist->nitems);
1611 846 : memset(matches, !is_or, sizeof(bool) * mcvlist->nitems);
1612 :
1613 : /*
1614 : * Loop through the list of clauses, and for each of them evaluate all the
1615 : * MCV items not yet eliminated by the preceding clauses.
1616 : */
1617 2430 : foreach(l, clauses)
1618 : {
1619 1584 : Node *clause = (Node *) lfirst(l);
1620 :
1621 : /* if it's a RestrictInfo, then extract the clause */
1622 1584 : if (IsA(clause, RestrictInfo))
1623 1470 : clause = (Node *) ((RestrictInfo *) clause)->clause;
1624 :
1625 : /*
1626 : * Handle the various types of clauses - OpClause, NullTest and
1627 : * AND/OR/NOT
1628 : */
1629 1584 : if (is_opclause(clause))
1630 : {
1631 1062 : OpExpr *expr = (OpExpr *) clause;
1632 : FmgrInfo opproc;
1633 :
1634 : /* valid only after examine_opclause_args returns true */
1635 : Node *clause_expr;
1636 : Const *cst;
1637 : bool expronleft;
1638 : int idx;
1639 : Oid collid;
1640 :
1641 1062 : fmgr_info(get_opcode(expr->opno), &opproc);
1642 :
1643 : /* extract the var/expr and const from the expression */
1644 1062 : if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
1645 0 : elog(ERROR, "incompatible clause");
1646 :
1647 : /* match the attribute/expression to a dimension of the statistic */
1648 1062 : idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
1649 :
1650 : /*
1651 : * Walk through the MCV items and evaluate the current clause. We
1652 : * can skip items that were already ruled out, and terminate if
1653 : * there are no remaining MCV items that might possibly match.
1654 : */
1655 77418 : for (int i = 0; i < mcvlist->nitems; i++)
1656 : {
1657 76356 : bool match = true;
1658 76356 : MCVItem *item = &mcvlist->items[i];
1659 :
1660 : Assert(idx >= 0);
1661 :
1662 : /*
1663 : * When the MCV item or the Const value is NULL we can treat
1664 : * this as a mismatch. We must not call the operator because
1665 : * of strictness.
1666 : */
1667 76356 : if (item->isnull[idx] || cst->constisnull)
1668 : {
1669 48 : matches[i] = RESULT_MERGE(matches[i], is_or, false);
1670 48 : continue;
1671 : }
1672 :
1673 : /*
1674 : * Skip MCV items that can't change result in the bitmap. Once
1675 : * the value gets false for AND-lists, or true for OR-lists,
1676 : * we don't need to look at more clauses.
1677 : */
1678 76308 : if (RESULT_IS_FINAL(matches[i], is_or))
1679 30522 : continue;
1680 :
1681 : /*
1682 : * First check whether the constant is below the lower
1683 : * boundary (in that case we can skip the bucket, because
1684 : * there's no overlap).
1685 : *
1686 : * We don't store collations used to build the statistics, but
1687 : * we can use the collation for the attribute itself, as
1688 : * stored in varcollid. We do reset the statistics after a
1689 : * type change (including collation change), so this is OK.
1690 : * For expressions, we use the collation extracted from the
1691 : * expression itself.
1692 : */
1693 45786 : if (expronleft)
1694 43170 : match = DatumGetBool(FunctionCall2Coll(&opproc,
1695 : collid,
1696 43170 : item->values[idx],
1697 43170 : cst->constvalue));
1698 : else
1699 2616 : match = DatumGetBool(FunctionCall2Coll(&opproc,
1700 : collid,
1701 2616 : cst->constvalue,
1702 2616 : item->values[idx]));
1703 :
1704 : /* update the match bitmap with the result */
1705 45786 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1706 : }
1707 : }
1708 522 : else if (IsA(clause, ScalarArrayOpExpr))
1709 : {
1710 276 : ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
1711 : FmgrInfo opproc;
1712 :
1713 : /* valid only after examine_opclause_args returns true */
1714 : Node *clause_expr;
1715 : Const *cst;
1716 : bool expronleft;
1717 : Oid collid;
1718 : int idx;
1719 :
1720 : /* array evaluation */
1721 : ArrayType *arrayval;
1722 : int16 elmlen;
1723 : bool elmbyval;
1724 : char elmalign;
1725 : int num_elems;
1726 : Datum *elem_values;
1727 : bool *elem_nulls;
1728 :
1729 276 : fmgr_info(get_opcode(expr->opno), &opproc);
1730 :
1731 : /* extract the var/expr and const from the expression */
1732 276 : if (!examine_opclause_args(expr->args, &clause_expr, &cst, &expronleft))
1733 0 : elog(ERROR, "incompatible clause");
1734 :
1735 : /* We expect Var on left */
1736 276 : if (!expronleft)
1737 0 : elog(ERROR, "incompatible clause");
1738 :
1739 : /*
1740 : * Deconstruct the array constant, unless it's NULL (we'll cover
1741 : * that case below)
1742 : */
1743 276 : if (!cst->constisnull)
1744 : {
1745 276 : arrayval = DatumGetArrayTypeP(cst->constvalue);
1746 276 : get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
1747 : &elmlen, &elmbyval, &elmalign);
1748 276 : deconstruct_array(arrayval,
1749 : ARR_ELEMTYPE(arrayval),
1750 : elmlen, elmbyval, elmalign,
1751 : &elem_values, &elem_nulls, &num_elems);
1752 : }
1753 :
1754 : /* match the attribute/expression to a dimension of the statistic */
1755 276 : idx = mcv_match_expression(clause_expr, keys, exprs, &collid);
1756 :
1757 : /*
1758 : * Walk through the MCV items and evaluate the current clause. We
1759 : * can skip items that were already ruled out, and terminate if
1760 : * there are no remaining MCV items that might possibly match.
1761 : */
1762 22968 : for (int i = 0; i < mcvlist->nitems; i++)
1763 : {
1764 : int j;
1765 22692 : bool match = !expr->useOr;
1766 22692 : MCVItem *item = &mcvlist->items[i];
1767 :
1768 : /*
1769 : * When the MCV item or the Const value is NULL we can treat
1770 : * this as a mismatch. We must not call the operator because
1771 : * of strictness.
1772 : */
1773 22692 : if (item->isnull[idx] || cst->constisnull)
1774 : {
1775 18 : matches[i] = RESULT_MERGE(matches[i], is_or, false);
1776 18 : continue;
1777 : }
1778 :
1779 : /*
1780 : * Skip MCV items that can't change result in the bitmap. Once
1781 : * the value gets false for AND-lists, or true for OR-lists,
1782 : * we don't need to look at more clauses.
1783 : */
1784 22674 : if (RESULT_IS_FINAL(matches[i], is_or))
1785 11544 : continue;
1786 :
1787 35754 : for (j = 0; j < num_elems; j++)
1788 : {
1789 30978 : Datum elem_value = elem_values[j];
1790 30978 : bool elem_isnull = elem_nulls[j];
1791 : bool elem_match;
1792 :
1793 : /* NULL values always evaluate as not matching. */
1794 30978 : if (elem_isnull)
1795 : {
1796 2112 : match = RESULT_MERGE(match, expr->useOr, false);
1797 2112 : continue;
1798 : }
1799 :
1800 : /*
1801 : * Stop evaluating the array elements once we reach a
1802 : * matching value that can't change - ALL() is the same as
1803 : * AND-list, ANY() is the same as OR-list.
1804 : */
1805 28866 : if (RESULT_IS_FINAL(match, expr->useOr))
1806 6354 : break;
1807 :
1808 22512 : elem_match = DatumGetBool(FunctionCall2Coll(&opproc,
1809 : collid,
1810 22512 : item->values[idx],
1811 : elem_value));
1812 :
1813 22512 : match = RESULT_MERGE(match, expr->useOr, elem_match);
1814 : }
1815 :
1816 : /* update the match bitmap with the result */
1817 11130 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1818 : }
1819 : }
1820 246 : else if (IsA(clause, NullTest))
1821 : {
1822 66 : NullTest *expr = (NullTest *) clause;
1823 66 : Node *clause_expr = (Node *) (expr->arg);
1824 :
1825 : /* match the attribute/expression to a dimension of the statistic */
1826 66 : int idx = mcv_match_expression(clause_expr, keys, exprs, NULL);
1827 :
1828 : /*
1829 : * Walk through the MCV items and evaluate the current clause. We
1830 : * can skip items that were already ruled out, and terminate if
1831 : * there are no remaining MCV items that might possibly match.
1832 : */
1833 6078 : for (int i = 0; i < mcvlist->nitems; i++)
1834 : {
1835 6012 : bool match = false; /* assume mismatch */
1836 6012 : MCVItem *item = &mcvlist->items[i];
1837 :
1838 : /* if the clause mismatches the MCV item, update the bitmap */
1839 6012 : switch (expr->nulltesttype)
1840 : {
1841 4212 : case IS_NULL:
1842 4212 : match = (item->isnull[idx]) ? true : match;
1843 4212 : break;
1844 :
1845 1800 : case IS_NOT_NULL:
1846 1800 : match = (!item->isnull[idx]) ? true : match;
1847 1800 : break;
1848 : }
1849 :
1850 : /* now, update the match bitmap, depending on OR/AND type */
1851 6012 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1852 : }
1853 : }
1854 180 : else if (is_orclause(clause) || is_andclause(clause))
1855 66 : {
1856 : /* AND/OR clause, with all subclauses being compatible */
1857 :
1858 : int i;
1859 66 : BoolExpr *bool_clause = ((BoolExpr *) clause);
1860 66 : List *bool_clauses = bool_clause->args;
1861 :
1862 : /* match/mismatch bitmap for each MCV item */
1863 66 : bool *bool_matches = NULL;
1864 :
1865 : Assert(bool_clauses != NIL);
1866 : Assert(list_length(bool_clauses) >= 2);
1867 :
1868 : /* build the match bitmap for the OR-clauses */
1869 66 : bool_matches = mcv_get_match_bitmap(root, bool_clauses, keys, exprs,
1870 66 : mcvlist, is_orclause(clause));
1871 :
1872 : /*
1873 : * Merge the bitmap produced by mcv_get_match_bitmap into the
1874 : * current one. We need to consider if we're evaluating AND or OR
1875 : * condition when merging the results.
1876 : */
1877 4362 : for (i = 0; i < mcvlist->nitems; i++)
1878 4296 : matches[i] = RESULT_MERGE(matches[i], is_or, bool_matches[i]);
1879 :
1880 66 : pfree(bool_matches);
1881 : }
1882 114 : else if (is_notclause(clause))
1883 : {
1884 : /* NOT clause, with all subclauses compatible */
1885 :
1886 : int i;
1887 30 : BoolExpr *not_clause = ((BoolExpr *) clause);
1888 30 : List *not_args = not_clause->args;
1889 :
1890 : /* match/mismatch bitmap for each MCV item */
1891 30 : bool *not_matches = NULL;
1892 :
1893 : Assert(not_args != NIL);
1894 : Assert(list_length(not_args) == 1);
1895 :
1896 : /* build the match bitmap for the NOT-clause */
1897 30 : not_matches = mcv_get_match_bitmap(root, not_args, keys, exprs,
1898 : mcvlist, false);
1899 :
1900 : /*
1901 : * Merge the bitmap produced by mcv_get_match_bitmap into the
1902 : * current one. We're handling a NOT clause, so invert the result
1903 : * before merging it into the global bitmap.
1904 : */
1905 150 : for (i = 0; i < mcvlist->nitems; i++)
1906 120 : matches[i] = RESULT_MERGE(matches[i], is_or, !not_matches[i]);
1907 :
1908 30 : pfree(not_matches);
1909 : }
1910 84 : else if (IsA(clause, Var))
1911 : {
1912 : /* Var (has to be a boolean Var, possibly from below NOT) */
1913 :
1914 78 : Var *var = (Var *) (clause);
1915 :
1916 : /* match the attribute to a dimension of the statistic */
1917 78 : int idx = bms_member_index(keys, var->varattno);
1918 :
1919 : Assert(var->vartype == BOOLOID);
1920 :
1921 : /*
1922 : * Walk through the MCV items and evaluate the current clause. We
1923 : * can skip items that were already ruled out, and terminate if
1924 : * there are no remaining MCV items that might possibly match.
1925 : */
1926 378 : for (int i = 0; i < mcvlist->nitems; i++)
1927 : {
1928 300 : MCVItem *item = &mcvlist->items[i];
1929 300 : bool match = false;
1930 :
1931 : /* if the item is NULL, it's a mismatch */
1932 300 : if (!item->isnull[idx] && DatumGetBool(item->values[idx]))
1933 150 : match = true;
1934 :
1935 : /* update the result bitmap */
1936 300 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1937 : }
1938 : }
1939 : else
1940 : {
1941 : /* Otherwise, it must be a bare boolean-returning expression */
1942 : int idx;
1943 :
1944 : /* match the expression to a dimension of the statistic */
1945 6 : idx = mcv_match_expression(clause, keys, exprs, NULL);
1946 :
1947 : /*
1948 : * Walk through the MCV items and evaluate the current clause. We
1949 : * can skip items that were already ruled out, and terminate if
1950 : * there are no remaining MCV items that might possibly match.
1951 : */
1952 222 : for (int i = 0; i < mcvlist->nitems; i++)
1953 : {
1954 : bool match;
1955 216 : MCVItem *item = &mcvlist->items[i];
1956 :
1957 : /* "match" just means it's bool TRUE */
1958 216 : match = !item->isnull[idx] && DatumGetBool(item->values[idx]);
1959 :
1960 : /* now, update the match bitmap, depending on OR/AND type */
1961 216 : matches[i] = RESULT_MERGE(matches[i], is_or, match);
1962 : }
1963 : }
1964 : }
1965 :
1966 846 : return matches;
1967 : }
1968 :
1969 :
1970 : /*
1971 : * mcv_combine_selectivities
1972 : * Combine per-column and multi-column MCV selectivity estimates.
1973 : *
1974 : * simple_sel is a "simple" selectivity estimate (produced without using any
1975 : * extended statistics, essentially assuming independence of columns/clauses).
1976 : *
1977 : * mcv_sel and mcv_basesel are sums of the frequencies and base frequencies of
1978 : * all matching MCV items. The difference (mcv_sel - mcv_basesel) is then
1979 : * essentially interpreted as a correction to be added to simple_sel, as
1980 : * described below.
1981 : *
1982 : * mcv_totalsel is the sum of the frequencies of all MCV items (not just the
1983 : * matching ones). This is used as an upper bound on the portion of the
1984 : * selectivity estimates not covered by the MCV statistics.
1985 : *
1986 : * Note: While simple and base selectivities are defined in a quite similar
1987 : * way, the values are computed differently and are not therefore equal. The
1988 : * simple selectivity is computed as a product of per-clause estimates, while
1989 : * the base selectivity is computed by adding up base frequencies of matching
1990 : * items of the multi-column MCV list. So the values may differ for two main
1991 : * reasons - (a) the MCV list may not cover 100% of the data and (b) some of
1992 : * the MCV items did not match the estimated clauses.
1993 : *
1994 : * As both (a) and (b) reduce the base selectivity value, it generally holds
1995 : * that (simple_sel >= mcv_basesel). If the MCV list covers all the data, the
1996 : * values may be equal.
1997 : *
1998 : * So, other_sel = (simple_sel - mcv_basesel) is an estimate for the part not
1999 : * covered by the MCV list, and (mcv_sel - mcv_basesel) may be seen as a
2000 : * correction for the part covered by the MCV list. Those two statements are
2001 : * actually equivalent.
2002 : */
2003 : Selectivity
2004 798 : mcv_combine_selectivities(Selectivity simple_sel,
2005 : Selectivity mcv_sel,
2006 : Selectivity mcv_basesel,
2007 : Selectivity mcv_totalsel)
2008 : {
2009 : Selectivity other_sel;
2010 : Selectivity sel;
2011 :
2012 : /* estimated selectivity of values not covered by MCV matches */
2013 798 : other_sel = simple_sel - mcv_basesel;
2014 798 : CLAMP_PROBABILITY(other_sel);
2015 :
2016 : /* this non-MCV selectivity cannot exceed 1 - mcv_totalsel */
2017 798 : if (other_sel > 1.0 - mcv_totalsel)
2018 444 : other_sel = 1.0 - mcv_totalsel;
2019 :
2020 : /* overall selectivity is the sum of the MCV and non-MCV parts */
2021 798 : sel = mcv_sel + other_sel;
2022 798 : CLAMP_PROBABILITY(sel);
2023 :
2024 798 : return sel;
2025 : }
2026 :
2027 :
2028 : /*
2029 : * mcv_clauselist_selectivity
2030 : * Use MCV statistics to estimate the selectivity of an implicitly-ANDed
2031 : * list of clauses.
2032 : *
2033 : * This determines which MCV items match every clause in the list and returns
2034 : * the sum of the frequencies of those items.
2035 : *
2036 : * In addition, it returns the sum of the base frequencies of each of those
2037 : * items (that is the sum of the selectivities that each item would have if
2038 : * the columns were independent of one another), and the total selectivity of
2039 : * all the MCV items (not just the matching ones). These are expected to be
2040 : * used together with a "simple" selectivity estimate (one based only on
2041 : * per-column statistics) to produce an overall selectivity estimate that
2042 : * makes use of both per-column and multi-column statistics --- see
2043 : * mcv_combine_selectivities().
2044 : */
2045 : Selectivity
2046 510 : mcv_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat,
2047 : List *clauses, int varRelid,
2048 : JoinType jointype, SpecialJoinInfo *sjinfo,
2049 : RelOptInfo *rel,
2050 : Selectivity *basesel, Selectivity *totalsel)
2051 : {
2052 : int i;
2053 : MCVList *mcv;
2054 510 : Selectivity s = 0.0;
2055 510 : RangeTblEntry *rte = root->simple_rte_array[rel->relid];
2056 :
2057 : /* match/mismatch bitmap for each MCV item */
2058 510 : bool *matches = NULL;
2059 :
2060 : /* load the MCV list stored in the statistics object */
2061 510 : mcv = statext_mcv_load(stat->statOid, rte->inh);
2062 :
2063 : /* build a match bitmap for the clauses */
2064 510 : matches = mcv_get_match_bitmap(root, clauses, stat->keys, stat->exprs,
2065 : mcv, false);
2066 :
2067 : /* sum frequencies for all the matching MCV items */
2068 510 : *basesel = 0.0;
2069 510 : *totalsel = 0.0;
2070 37830 : for (i = 0; i < mcv->nitems; i++)
2071 : {
2072 37320 : *totalsel += mcv->items[i].frequency;
2073 :
2074 37320 : if (matches[i] != false)
2075 : {
2076 666 : *basesel += mcv->items[i].base_frequency;
2077 666 : s += mcv->items[i].frequency;
2078 : }
2079 : }
2080 :
2081 510 : return s;
2082 : }
2083 :
2084 :
2085 : /*
2086 : * mcv_clause_selectivity_or
2087 : * Use MCV statistics to estimate the selectivity of a clause that
2088 : * appears in an ORed list of clauses.
2089 : *
2090 : * As with mcv_clauselist_selectivity() this determines which MCV items match
2091 : * the clause and returns both the sum of the frequencies and the sum of the
2092 : * base frequencies of those items, as well as the sum of the frequencies of
2093 : * all MCV items (not just the matching ones) so that this information can be
2094 : * used by mcv_combine_selectivities() to produce a selectivity estimate that
2095 : * makes use of both per-column and multi-column statistics.
2096 : *
2097 : * Additionally, we return information to help compute the overall selectivity
2098 : * of the ORed list of clauses assumed to contain this clause. This function
2099 : * is intended to be called for each clause in the ORed list of clauses,
2100 : * allowing the overall selectivity to be computed using the following
2101 : * algorithm:
2102 : *
2103 : * Suppose P[n] = P(C[1] OR C[2] OR ... OR C[n]) is the combined selectivity
2104 : * of the first n clauses in the list. Then the combined selectivity taking
2105 : * into account the next clause C[n+1] can be written as
2106 : *
2107 : * P[n+1] = P[n] + P(C[n+1]) - P((C[1] OR ... OR C[n]) AND C[n+1])
2108 : *
2109 : * The final term above represents the overlap between the clauses examined so
2110 : * far and the (n+1)'th clause. To estimate its selectivity, we track the
2111 : * match bitmap for the ORed list of clauses examined so far and examine its
2112 : * intersection with the match bitmap for the (n+1)'th clause.
2113 : *
2114 : * We then also return the sums of the MCV item frequencies and base
2115 : * frequencies for the match bitmap intersection corresponding to the overlap
2116 : * term above, so that they can be combined with a simple selectivity estimate
2117 : * for that term.
2118 : *
2119 : * The parameter "or_matches" is an in/out parameter tracking the match bitmap
2120 : * for the clauses examined so far. The caller is expected to set it to NULL
2121 : * the first time it calls this function.
2122 : */
2123 : Selectivity
2124 240 : mcv_clause_selectivity_or(PlannerInfo *root, StatisticExtInfo *stat,
2125 : MCVList *mcv, Node *clause, bool **or_matches,
2126 : Selectivity *basesel, Selectivity *overlap_mcvsel,
2127 : Selectivity *overlap_basesel, Selectivity *totalsel)
2128 : {
2129 240 : Selectivity s = 0.0;
2130 : bool *new_matches;
2131 : int i;
2132 :
2133 : /* build the OR-matches bitmap, if not built already */
2134 240 : if (*or_matches == NULL)
2135 96 : *or_matches = palloc0_array(bool, mcv->nitems);
2136 :
2137 : /* build the match bitmap for the new clause */
2138 240 : new_matches = mcv_get_match_bitmap(root, list_make1(clause), stat->keys,
2139 : stat->exprs, mcv, false);
2140 :
2141 : /*
2142 : * Sum the frequencies for all the MCV items matching this clause and also
2143 : * those matching the overlap between this clause and any of the preceding
2144 : * clauses as described above.
2145 : */
2146 240 : *basesel = 0.0;
2147 240 : *overlap_mcvsel = 0.0;
2148 240 : *overlap_basesel = 0.0;
2149 240 : *totalsel = 0.0;
2150 15516 : for (i = 0; i < mcv->nitems; i++)
2151 : {
2152 15276 : *totalsel += mcv->items[i].frequency;
2153 :
2154 15276 : if (new_matches[i])
2155 : {
2156 336 : s += mcv->items[i].frequency;
2157 336 : *basesel += mcv->items[i].base_frequency;
2158 :
2159 336 : if ((*or_matches)[i])
2160 : {
2161 144 : *overlap_mcvsel += mcv->items[i].frequency;
2162 144 : *overlap_basesel += mcv->items[i].base_frequency;
2163 : }
2164 : }
2165 :
2166 : /* update the OR-matches bitmap for the next clause */
2167 15276 : (*or_matches)[i] = (*or_matches)[i] || new_matches[i];
2168 : }
2169 :
2170 240 : pfree(new_matches);
2171 :
2172 240 : return s;
2173 : }
2174 :
2175 : /*
2176 : * Free allocations of a MCVList.
2177 : */
2178 : void
2179 0 : statext_mcv_free(MCVList *mcvlist)
2180 : {
2181 0 : for (int i = 0; i < mcvlist->nitems; i++)
2182 : {
2183 0 : MCVItem *item = &mcvlist->items[i];
2184 :
2185 0 : pfree(item->values);
2186 0 : pfree(item->isnull);
2187 : }
2188 0 : pfree(mcvlist);
2189 0 : }
2190 :
2191 : /*
2192 : * Create the MCV composite datum, which is a serialization of an array of
2193 : * MCVItems.
2194 : *
2195 : * The inputs consist of four separate arrays of equal length "numitems"
2196 : * (mcv_elems, mcv_nulls, freqs and base_freqs) that form the basics of
2197 : * what is stored in the catalogs. These form an array of composite
2198 : * records defined by the three atttypX arrays of equal length "numattrs".
2199 : *
2200 : * If any data element fails to convert to the input type specified for that
2201 : * attribute, then function will return a NULL Datum if elevel < ERROR.
2202 : */
2203 : Datum
2204 30 : statext_mcv_import(int elevel, int numattrs,
2205 : Oid *atttypids, int32 *atttypmods, Oid *atttypcolls,
2206 : int nitems, Datum *mcv_elems, bool *mcv_nulls,
2207 : float8 *freqs, float8 *base_freqs)
2208 : {
2209 : MCVList *mcvlist;
2210 : bytea *bytes;
2211 : VacAttrStats **vastats;
2212 :
2213 : /*
2214 : * Allocate the MCV list structure, set the global parameters.
2215 : */
2216 30 : mcvlist = (MCVList *) palloc0(offsetof(MCVList, items) +
2217 30 : (sizeof(MCVItem) * nitems));
2218 :
2219 30 : mcvlist->magic = STATS_MCV_MAGIC;
2220 30 : mcvlist->type = STATS_MCV_TYPE_BASIC;
2221 30 : mcvlist->ndimensions = numattrs;
2222 30 : mcvlist->nitems = nitems;
2223 :
2224 : /* Set the values for the 1-D arrays and allocate space for the 2-D arrays */
2225 234 : for (int i = 0; i < nitems; i++)
2226 : {
2227 204 : MCVItem *item = &mcvlist->items[i];
2228 :
2229 204 : item->frequency = freqs[i];
2230 204 : item->base_frequency = base_freqs[i];
2231 204 : item->values = (Datum *) palloc0_array(Datum, numattrs);
2232 204 : item->isnull = (bool *) palloc0_array(bool, numattrs);
2233 : }
2234 :
2235 : /*
2236 : * Walk through each dimension, determine the input function for that
2237 : * type, and then attempt to convert all values in that column via that
2238 : * function. We approach this column-wise because it is simpler to deal
2239 : * with one input function at time, and possibly more cache-friendly.
2240 : */
2241 114 : for (int j = 0; j < numattrs; j++)
2242 : {
2243 : FmgrInfo finfo;
2244 : Oid ioparam;
2245 : Oid infunc;
2246 84 : int index = j;
2247 :
2248 84 : getTypeInputInfo(atttypids[j], &infunc, &ioparam);
2249 84 : fmgr_info(infunc, &finfo);
2250 :
2251 : /* store info about data type OIDs */
2252 84 : mcvlist->types[j] = atttypids[j];
2253 :
2254 672 : for (int i = 0; i < nitems; i++)
2255 : {
2256 588 : MCVItem *item = &mcvlist->items[i];
2257 :
2258 588 : if (mcv_nulls[index])
2259 : {
2260 : /* NULL value detected, hence no input to process */
2261 38 : item->values[j] = (Datum) 0;
2262 38 : item->isnull[j] = true;
2263 : }
2264 : else
2265 : {
2266 550 : char *s = TextDatumGetCString(mcv_elems[index]);
2267 550 : ErrorSaveContext escontext = {T_ErrorSaveContext};
2268 :
2269 550 : if (!InputFunctionCallSafe(&finfo, s, ioparam, atttypmods[j],
2270 550 : (Node *) &escontext, &item->values[j]))
2271 : {
2272 0 : ereport(elevel,
2273 : (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
2274 : errmsg("could not parse MCV element \"%s\": incorrect value", s)));
2275 0 : pfree(s);
2276 0 : goto error;
2277 : }
2278 :
2279 550 : pfree(s);
2280 : }
2281 :
2282 588 : index += numattrs;
2283 : }
2284 : }
2285 :
2286 : /*
2287 : * The function statext_mcv_serialize() requires an array of pointers to
2288 : * VacAttrStats records, but only a few fields within those records have
2289 : * to be filled out.
2290 : */
2291 30 : vastats = (VacAttrStats **) palloc0_array(VacAttrStats *, numattrs);
2292 :
2293 114 : for (int i = 0; i < numattrs; i++)
2294 : {
2295 84 : Oid typid = atttypids[i];
2296 : HeapTuple typtuple;
2297 :
2298 84 : typtuple = SearchSysCacheCopy1(TYPEOID, ObjectIdGetDatum(typid));
2299 :
2300 84 : if (!HeapTupleIsValid(typtuple))
2301 0 : elog(ERROR, "cache lookup failed for type %u", typid);
2302 :
2303 84 : vastats[i] = palloc0_object(VacAttrStats);
2304 :
2305 84 : vastats[i]->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
2306 84 : vastats[i]->attrtypid = typid;
2307 84 : vastats[i]->attrcollid = atttypcolls[i];
2308 : }
2309 :
2310 30 : bytes = statext_mcv_serialize(mcvlist, vastats);
2311 :
2312 114 : for (int i = 0; i < numattrs; i++)
2313 : {
2314 84 : pfree(vastats[i]);
2315 : }
2316 30 : pfree((void *) vastats);
2317 :
2318 30 : pfree(mcv_elems);
2319 30 : pfree(mcv_nulls);
2320 :
2321 30 : if (bytes == NULL)
2322 : {
2323 0 : ereport(elevel,
2324 : (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
2325 : errmsg("could not import MCV list")));
2326 0 : goto error;
2327 : }
2328 :
2329 30 : return PointerGetDatum(bytes);
2330 :
2331 0 : error:
2332 0 : statext_mcv_free(mcvlist);
2333 0 : return (Datum) 0;
2334 : }
|