LCOV - code coverage report
Current view: top level - src/backend/statistics - dependencies.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 423 475 89.1 %
Date: 2025-11-20 19:18:15 Functions: 16 16 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * dependencies.c
       4             :  *    POSTGRES functional dependencies
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  * IDENTIFICATION
      10             :  *    src/backend/statistics/dependencies.c
      11             :  *
      12             :  *-------------------------------------------------------------------------
      13             :  */
      14             : #include "postgres.h"
      15             : 
      16             : #include "access/htup_details.h"
      17             : #include "catalog/pg_statistic_ext.h"
      18             : #include "catalog/pg_statistic_ext_data.h"
      19             : #include "nodes/nodeFuncs.h"
      20             : #include "optimizer/clauses.h"
      21             : #include "optimizer/optimizer.h"
      22             : #include "parser/parsetree.h"
      23             : #include "statistics/extended_stats_internal.h"
      24             : #include "utils/fmgroids.h"
      25             : #include "utils/lsyscache.h"
      26             : #include "utils/memutils.h"
      27             : #include "utils/selfuncs.h"
      28             : #include "utils/syscache.h"
      29             : #include "utils/typcache.h"
      30             : 
      31             : /* size of the struct header fields (magic, type, ndeps) */
      32             : #define SizeOfHeader        (3 * sizeof(uint32))
      33             : 
      34             : /* size of a serialized dependency (degree, natts, atts) */
      35             : #define SizeOfItem(natts) \
      36             :     (sizeof(double) + sizeof(AttrNumber) * (1 + (natts)))
      37             : 
      38             : /* minimal size of a dependency (with two attributes) */
      39             : #define MinSizeOfItem   SizeOfItem(2)
      40             : 
      41             : /* minimal size of dependencies, when all deps are minimal */
      42             : #define MinSizeOfItems(ndeps) \
      43             :     (SizeOfHeader + (ndeps) * MinSizeOfItem)
      44             : 
      45             : /*
      46             :  * Internal state for DependencyGenerator of dependencies. Dependencies are similar to
      47             :  * k-permutations of n elements, except that the order does not matter for the
      48             :  * first (k-1) elements. That is, (a,b=>c) and (b,a=>c) are equivalent.
      49             :  */
      50             : typedef struct DependencyGeneratorData
      51             : {
      52             :     int         k;              /* size of the dependency */
      53             :     int         n;              /* number of possible attributes */
      54             :     int         current;        /* next dependency to return (index) */
      55             :     AttrNumber  ndependencies;  /* number of dependencies generated */
      56             :     AttrNumber *dependencies;   /* array of pre-generated dependencies  */
      57             : } DependencyGeneratorData;
      58             : 
      59             : typedef DependencyGeneratorData *DependencyGenerator;
      60             : 
      61             : static void generate_dependencies_recurse(DependencyGenerator state,
      62             :                                           int index, AttrNumber start, AttrNumber *current);
      63             : static void generate_dependencies(DependencyGenerator state);
      64             : static DependencyGenerator DependencyGenerator_init(int n, int k);
      65             : static void DependencyGenerator_free(DependencyGenerator state);
      66             : static AttrNumber *DependencyGenerator_next(DependencyGenerator state);
      67             : static double dependency_degree(StatsBuildData *data, int k, AttrNumber *dependency);
      68             : static bool dependency_is_fully_matched(MVDependency *dependency,
      69             :                                         Bitmapset *attnums);
      70             : static bool dependency_is_compatible_clause(Node *clause, Index relid,
      71             :                                             AttrNumber *attnum);
      72             : static bool dependency_is_compatible_expression(Node *clause, Index relid,
      73             :                                                 List *statlist, Node **expr);
      74             : static MVDependency *find_strongest_dependency(MVDependencies **dependencies,
      75             :                                                int ndependencies, Bitmapset *attnums);
      76             : static Selectivity clauselist_apply_dependencies(PlannerInfo *root, List *clauses,
      77             :                                                  int varRelid, JoinType jointype,
      78             :                                                  SpecialJoinInfo *sjinfo,
      79             :                                                  MVDependency **dependencies,
      80             :                                                  int ndependencies,
      81             :                                                  AttrNumber *list_attnums,
      82             :                                                  Bitmapset **estimatedclauses);
      83             : 
      84             : static void
      85         834 : generate_dependencies_recurse(DependencyGenerator state, int index,
      86             :                               AttrNumber start, AttrNumber *current)
      87             : {
      88             :     /*
      89             :      * The generator handles the first (k-1) elements differently from the
      90             :      * last element.
      91             :      */
      92         834 :     if (index < (state->k - 1))
      93             :     {
      94             :         AttrNumber  i;
      95             : 
      96             :         /*
      97             :          * The first (k-1) values have to be in ascending order, which we
      98             :          * generate recursively.
      99             :          */
     100             : 
     101         978 :         for (i = start; i < state->n; i++)
     102             :         {
     103         636 :             current[index] = i;
     104         636 :             generate_dependencies_recurse(state, (index + 1), (i + 1), current);
     105             :         }
     106             :     }
     107             :     else
     108             :     {
     109             :         int         i;
     110             : 
     111             :         /*
     112             :          * the last element is the implied value, which does not respect the
     113             :          * ascending order. We just need to check that the value is not in the
     114             :          * first (k-1) elements.
     115             :          */
     116             : 
     117        1764 :         for (i = 0; i < state->n; i++)
     118             :         {
     119             :             int         j;
     120        1272 :             bool        match = false;
     121             : 
     122        1272 :             current[index] = i;
     123             : 
     124        2196 :             for (j = 0; j < index; j++)
     125             :             {
     126        1560 :                 if (current[j] == i)
     127             :                 {
     128         636 :                     match = true;
     129         636 :                     break;
     130             :                 }
     131             :             }
     132             : 
     133             :             /*
     134             :              * If the value is not found in the first part of the dependency,
     135             :              * we're done.
     136             :              */
     137        1272 :             if (!match)
     138             :             {
     139        1272 :                 state->dependencies = (AttrNumber *) repalloc(state->dependencies,
     140         636 :                                                               state->k * (state->ndependencies + 1) * sizeof(AttrNumber));
     141         636 :                 memcpy(&state->dependencies[(state->k * state->ndependencies)],
     142         636 :                        current, state->k * sizeof(AttrNumber));
     143         636 :                 state->ndependencies++;
     144             :             }
     145             :         }
     146             :     }
     147         834 : }
     148             : 
     149             : /* generate all dependencies (k-permutations of n elements) */
     150             : static void
     151         198 : generate_dependencies(DependencyGenerator state)
     152             : {
     153         198 :     AttrNumber *current = (AttrNumber *) palloc0(sizeof(AttrNumber) * state->k);
     154             : 
     155         198 :     generate_dependencies_recurse(state, 0, 0, current);
     156             : 
     157         198 :     pfree(current);
     158         198 : }
     159             : 
     160             : /*
     161             :  * initialize the DependencyGenerator of variations, and prebuild the variations
     162             :  *
     163             :  * This pre-builds all the variations. We could also generate them in
     164             :  * DependencyGenerator_next(), but this seems simpler.
     165             :  */
     166             : static DependencyGenerator
     167         198 : DependencyGenerator_init(int n, int k)
     168             : {
     169             :     DependencyGenerator state;
     170             : 
     171             :     Assert((n >= k) && (k > 0));
     172             : 
     173             :     /* allocate the DependencyGenerator state */
     174         198 :     state = (DependencyGenerator) palloc0(sizeof(DependencyGeneratorData));
     175         198 :     state->dependencies = (AttrNumber *) palloc(k * sizeof(AttrNumber));
     176             : 
     177         198 :     state->ndependencies = 0;
     178         198 :     state->current = 0;
     179         198 :     state->k = k;
     180         198 :     state->n = n;
     181             : 
     182             :     /* now actually pre-generate all the variations */
     183         198 :     generate_dependencies(state);
     184             : 
     185         198 :     return state;
     186             : }
     187             : 
     188             : /* free the DependencyGenerator state */
     189             : static void
     190         198 : DependencyGenerator_free(DependencyGenerator state)
     191             : {
     192         198 :     pfree(state->dependencies);
     193         198 :     pfree(state);
     194         198 : }
     195             : 
     196             : /* generate next combination */
     197             : static AttrNumber *
     198         834 : DependencyGenerator_next(DependencyGenerator state)
     199             : {
     200         834 :     if (state->current == state->ndependencies)
     201         198 :         return NULL;
     202             : 
     203         636 :     return &state->dependencies[state->k * state->current++];
     204             : }
     205             : 
     206             : 
     207             : /*
     208             :  * validates functional dependency on the data
     209             :  *
     210             :  * An actual work horse of detecting functional dependencies. Given a variation
     211             :  * of k attributes, it checks that the first (k-1) are sufficient to determine
     212             :  * the last one.
     213             :  */
     214             : static double
     215         636 : dependency_degree(StatsBuildData *data, int k, AttrNumber *dependency)
     216             : {
     217             :     int         i,
     218             :                 nitems;
     219             :     MultiSortSupport mss;
     220             :     SortItem   *items;
     221             :     AttrNumber *attnums_dep;
     222             : 
     223             :     /* counters valid within a group */
     224         636 :     int         group_size = 0;
     225         636 :     int         n_violations = 0;
     226             : 
     227             :     /* total number of rows supporting (consistent with) the dependency */
     228         636 :     int         n_supporting_rows = 0;
     229             : 
     230             :     /* Make sure we have at least two input attributes. */
     231             :     Assert(k >= 2);
     232             : 
     233             :     /* sort info for all attributes columns */
     234         636 :     mss = multi_sort_init(k);
     235             : 
     236             :     /*
     237             :      * Translate the array of indexes to regular attnums for the dependency
     238             :      * (we will need this to identify the columns in StatsBuildData).
     239             :      */
     240         636 :     attnums_dep = (AttrNumber *) palloc(k * sizeof(AttrNumber));
     241        2052 :     for (i = 0; i < k; i++)
     242        1416 :         attnums_dep[i] = data->attnums[dependency[i]];
     243             : 
     244             :     /*
     245             :      * Verify the dependency (a,b,...)->z, using a rather simple algorithm:
     246             :      *
     247             :      * (a) sort the data lexicographically
     248             :      *
     249             :      * (b) split the data into groups by first (k-1) columns
     250             :      *
     251             :      * (c) for each group count different values in the last column
     252             :      *
     253             :      * We use the column data types' default sort operators and collations;
     254             :      * perhaps at some point it'd be worth using column-specific collations?
     255             :      */
     256             : 
     257             :     /* prepare the sort function for the dimensions */
     258        2052 :     for (i = 0; i < k; i++)
     259             :     {
     260        1416 :         VacAttrStats *colstat = data->stats[dependency[i]];
     261             :         TypeCacheEntry *type;
     262             : 
     263        1416 :         type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
     264        1416 :         if (type->lt_opr == InvalidOid) /* shouldn't happen */
     265           0 :             elog(ERROR, "cache lookup failed for ordering operator for type %u",
     266             :                  colstat->attrtypid);
     267             : 
     268             :         /* prepare the sort function for this dimension */
     269        1416 :         multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
     270             :     }
     271             : 
     272             :     /*
     273             :      * build an array of SortItem(s) sorted using the multi-sort support
     274             :      *
     275             :      * XXX This relies on all stats entries pointing to the same tuple
     276             :      * descriptor.  For now that assumption holds, but it might change in the
     277             :      * future for example if we support statistics on multiple tables.
     278             :      */
     279         636 :     items = build_sorted_items(data, &nitems, mss, k, attnums_dep);
     280             : 
     281             :     /*
     282             :      * Walk through the sorted array, split it into rows according to the
     283             :      * first (k-1) columns. If there's a single value in the last column, we
     284             :      * count the group as 'supporting' the functional dependency. Otherwise we
     285             :      * count it as contradicting.
     286             :      */
     287             : 
     288             :     /* start with the first row forming a group */
     289         636 :     group_size = 1;
     290             : 
     291             :     /* loop 1 beyond the end of the array so that we count the final group */
     292     1505878 :     for (i = 1; i <= nitems; i++)
     293             :     {
     294             :         /*
     295             :          * Check if the group ended, which may be either because we processed
     296             :          * all the items (i==nitems), or because the i-th item is not equal to
     297             :          * the preceding one.
     298             :          */
     299     3009848 :         if (i == nitems ||
     300     1504606 :             multi_sort_compare_dims(0, k - 2, &items[i - 1], &items[i], mss) != 0)
     301             :         {
     302             :             /*
     303             :              * If no violations were found in the group then track the rows of
     304             :              * the group as supporting the functional dependency.
     305             :              */
     306       32628 :             if (n_violations == 0)
     307       19938 :                 n_supporting_rows += group_size;
     308             : 
     309             :             /* Reset counters for the new group */
     310       32628 :             n_violations = 0;
     311       32628 :             group_size = 1;
     312       32628 :             continue;
     313             :         }
     314             :         /* first columns match, but the last one does not (so contradicting) */
     315     1472614 :         else if (multi_sort_compare_dim(k - 1, &items[i - 1], &items[i], mss) != 0)
     316       60102 :             n_violations++;
     317             : 
     318     1472614 :         group_size++;
     319             :     }
     320             : 
     321             :     /* Compute the 'degree of validity' as (supporting/total). */
     322         636 :     return (n_supporting_rows * 1.0 / data->numrows);
     323             : }
     324             : 
     325             : /*
     326             :  * detects functional dependencies between groups of columns
     327             :  *
     328             :  * Generates all possible subsets of columns (variations) and computes
     329             :  * the degree of validity for each one. For example when creating statistics
     330             :  * on three columns (a,b,c) there are 9 possible dependencies
     331             :  *
     332             :  *     two columns            three columns
     333             :  *     -----------            -------------
     334             :  *     (a) -> b                (a,b) -> c
     335             :  *     (a) -> c                (a,c) -> b
     336             :  *     (b) -> a                (b,c) -> a
     337             :  *     (b) -> c
     338             :  *     (c) -> a
     339             :  *     (c) -> b
     340             :  */
     341             : MVDependencies *
     342         150 : statext_dependencies_build(StatsBuildData *data)
     343             : {
     344             :     int         i,
     345             :                 k;
     346             : 
     347             :     /* result */
     348         150 :     MVDependencies *dependencies = NULL;
     349             :     MemoryContext cxt;
     350             : 
     351             :     Assert(data->nattnums >= 2);
     352             : 
     353             :     /* tracks memory allocated by dependency_degree calls */
     354         150 :     cxt = AllocSetContextCreate(CurrentMemoryContext,
     355             :                                 "dependency_degree cxt",
     356             :                                 ALLOCSET_DEFAULT_SIZES);
     357             : 
     358             :     /*
     359             :      * We'll try build functional dependencies starting from the smallest ones
     360             :      * covering just 2 columns, to the largest ones, covering all columns
     361             :      * included in the statistics object.  We start from the smallest ones
     362             :      * because we want to be able to skip already implied ones.
     363             :      */
     364         348 :     for (k = 2; k <= data->nattnums; k++)
     365             :     {
     366             :         AttrNumber *dependency; /* array with k elements */
     367             : 
     368             :         /* prepare a DependencyGenerator of variation */
     369         198 :         DependencyGenerator DependencyGenerator = DependencyGenerator_init(data->nattnums, k);
     370             : 
     371             :         /* generate all possible variations of k values (out of n) */
     372         834 :         while ((dependency = DependencyGenerator_next(DependencyGenerator)))
     373             :         {
     374             :             double      degree;
     375             :             MVDependency *d;
     376             :             MemoryContext oldcxt;
     377             : 
     378             :             /* release memory used by dependency degree calculation */
     379         636 :             oldcxt = MemoryContextSwitchTo(cxt);
     380             : 
     381             :             /* compute how valid the dependency seems */
     382         636 :             degree = dependency_degree(data, k, dependency);
     383             : 
     384         636 :             MemoryContextSwitchTo(oldcxt);
     385         636 :             MemoryContextReset(cxt);
     386             : 
     387             :             /*
     388             :              * if the dependency seems entirely invalid, don't store it
     389             :              */
     390         636 :             if (degree == 0.0)
     391         252 :                 continue;
     392             : 
     393         384 :             d = (MVDependency *) palloc0(offsetof(MVDependency, attributes)
     394         384 :                                          + k * sizeof(AttrNumber));
     395             : 
     396             :             /* copy the dependency (and keep the indexes into stxkeys) */
     397         384 :             d->degree = degree;
     398         384 :             d->nattributes = k;
     399        1224 :             for (i = 0; i < k; i++)
     400         840 :                 d->attributes[i] = data->attnums[dependency[i]];
     401             : 
     402             :             /* initialize the list of dependencies */
     403         384 :             if (dependencies == NULL)
     404             :             {
     405             :                 dependencies
     406         132 :                     = (MVDependencies *) palloc0(sizeof(MVDependencies));
     407             : 
     408         132 :                 dependencies->magic = STATS_DEPS_MAGIC;
     409         132 :                 dependencies->type = STATS_DEPS_TYPE_BASIC;
     410         132 :                 dependencies->ndeps = 0;
     411             :             }
     412             : 
     413         384 :             dependencies->ndeps++;
     414         384 :             dependencies = (MVDependencies *) repalloc(dependencies,
     415             :                                                        offsetof(MVDependencies, deps)
     416         384 :                                                        + dependencies->ndeps * sizeof(MVDependency *));
     417             : 
     418         384 :             dependencies->deps[dependencies->ndeps - 1] = d;
     419             :         }
     420             : 
     421             :         /*
     422             :          * we're done with variations of k elements, so free the
     423             :          * DependencyGenerator
     424             :          */
     425         198 :         DependencyGenerator_free(DependencyGenerator);
     426             :     }
     427             : 
     428         150 :     MemoryContextDelete(cxt);
     429             : 
     430         150 :     return dependencies;
     431             : }
     432             : 
     433             : 
     434             : /*
     435             :  * Serialize list of dependencies into a bytea value.
     436             :  */
     437             : bytea *
     438         132 : statext_dependencies_serialize(MVDependencies *dependencies)
     439             : {
     440             :     int         i;
     441             :     bytea      *output;
     442             :     char       *tmp;
     443             :     Size        len;
     444             : 
     445             :     /* we need to store ndeps, with a number of attributes for each one */
     446         132 :     len = VARHDRSZ + SizeOfHeader;
     447             : 
     448             :     /* and also include space for the actual attribute numbers and degrees */
     449         516 :     for (i = 0; i < dependencies->ndeps; i++)
     450         384 :         len += SizeOfItem(dependencies->deps[i]->nattributes);
     451             : 
     452         132 :     output = (bytea *) palloc0(len);
     453         132 :     SET_VARSIZE(output, len);
     454             : 
     455         132 :     tmp = VARDATA(output);
     456             : 
     457             :     /* Store the base struct values (magic, type, ndeps) */
     458         132 :     memcpy(tmp, &dependencies->magic, sizeof(uint32));
     459         132 :     tmp += sizeof(uint32);
     460         132 :     memcpy(tmp, &dependencies->type, sizeof(uint32));
     461         132 :     tmp += sizeof(uint32);
     462         132 :     memcpy(tmp, &dependencies->ndeps, sizeof(uint32));
     463         132 :     tmp += sizeof(uint32);
     464             : 
     465             :     /* store number of attributes and attribute numbers for each dependency */
     466         516 :     for (i = 0; i < dependencies->ndeps; i++)
     467             :     {
     468         384 :         MVDependency *d = dependencies->deps[i];
     469             : 
     470         384 :         memcpy(tmp, &d->degree, sizeof(double));
     471         384 :         tmp += sizeof(double);
     472             : 
     473         384 :         memcpy(tmp, &d->nattributes, sizeof(AttrNumber));
     474         384 :         tmp += sizeof(AttrNumber);
     475             : 
     476         384 :         memcpy(tmp, d->attributes, sizeof(AttrNumber) * d->nattributes);
     477         384 :         tmp += sizeof(AttrNumber) * d->nattributes;
     478             : 
     479             :         /* protect against overflow */
     480             :         Assert(tmp <= ((char *) output + len));
     481             :     }
     482             : 
     483             :     /* make sure we've produced exactly the right amount of data */
     484             :     Assert(tmp == ((char *) output + len));
     485             : 
     486         132 :     return output;
     487             : }
     488             : 
     489             : /*
     490             :  * Reads serialized dependencies into MVDependencies structure.
     491             :  */
     492             : MVDependencies *
     493        1624 : statext_dependencies_deserialize(bytea *data)
     494             : {
     495             :     int         i;
     496             :     Size        min_expected_size;
     497             :     MVDependencies *dependencies;
     498             :     char       *tmp;
     499             : 
     500        1624 :     if (data == NULL)
     501           0 :         return NULL;
     502             : 
     503        1624 :     if (VARSIZE_ANY_EXHDR(data) < SizeOfHeader)
     504           0 :         elog(ERROR, "invalid MVDependencies size %zu (expected at least %zu)",
     505             :              VARSIZE_ANY_EXHDR(data), SizeOfHeader);
     506             : 
     507             :     /* read the MVDependencies header */
     508        1624 :     dependencies = (MVDependencies *) palloc0(sizeof(MVDependencies));
     509             : 
     510             :     /* initialize pointer to the data part (skip the varlena header) */
     511        1624 :     tmp = VARDATA_ANY(data);
     512             : 
     513             :     /* read the header fields and perform basic sanity checks */
     514        1624 :     memcpy(&dependencies->magic, tmp, sizeof(uint32));
     515        1624 :     tmp += sizeof(uint32);
     516        1624 :     memcpy(&dependencies->type, tmp, sizeof(uint32));
     517        1624 :     tmp += sizeof(uint32);
     518        1624 :     memcpy(&dependencies->ndeps, tmp, sizeof(uint32));
     519        1624 :     tmp += sizeof(uint32);
     520             : 
     521        1624 :     if (dependencies->magic != STATS_DEPS_MAGIC)
     522           0 :         elog(ERROR, "invalid dependency magic %d (expected %d)",
     523             :              dependencies->magic, STATS_DEPS_MAGIC);
     524             : 
     525        1624 :     if (dependencies->type != STATS_DEPS_TYPE_BASIC)
     526           0 :         elog(ERROR, "invalid dependency type %d (expected %d)",
     527             :              dependencies->type, STATS_DEPS_TYPE_BASIC);
     528             : 
     529        1624 :     if (dependencies->ndeps == 0)
     530           0 :         elog(ERROR, "invalid zero-length item array in MVDependencies");
     531             : 
     532             :     /* what minimum bytea size do we expect for those parameters */
     533        1624 :     min_expected_size = SizeOfItem(dependencies->ndeps);
     534             : 
     535        1624 :     if (VARSIZE_ANY_EXHDR(data) < min_expected_size)
     536           0 :         elog(ERROR, "invalid dependencies size %zu (expected at least %zu)",
     537             :              VARSIZE_ANY_EXHDR(data), min_expected_size);
     538             : 
     539             :     /* allocate space for the MCV items */
     540        1624 :     dependencies = repalloc(dependencies, offsetof(MVDependencies, deps)
     541        1624 :                             + (dependencies->ndeps * sizeof(MVDependency *)));
     542             : 
     543        9618 :     for (i = 0; i < dependencies->ndeps; i++)
     544             :     {
     545             :         double      degree;
     546             :         AttrNumber  k;
     547             :         MVDependency *d;
     548             : 
     549             :         /* degree of validity */
     550        7994 :         memcpy(&degree, tmp, sizeof(double));
     551        7994 :         tmp += sizeof(double);
     552             : 
     553             :         /* number of attributes */
     554        7994 :         memcpy(&k, tmp, sizeof(AttrNumber));
     555        7994 :         tmp += sizeof(AttrNumber);
     556             : 
     557             :         /* is the number of attributes valid? */
     558             :         Assert((k >= 2) && (k <= STATS_MAX_DIMENSIONS));
     559             : 
     560             :         /* now that we know the number of attributes, allocate the dependency */
     561        7994 :         d = (MVDependency *) palloc0(offsetof(MVDependency, attributes)
     562        7994 :                                      + (k * sizeof(AttrNumber)));
     563             : 
     564        7994 :         d->degree = degree;
     565        7994 :         d->nattributes = k;
     566             : 
     567             :         /* copy attribute numbers */
     568        7994 :         memcpy(d->attributes, tmp, sizeof(AttrNumber) * d->nattributes);
     569        7994 :         tmp += sizeof(AttrNumber) * d->nattributes;
     570             : 
     571        7994 :         dependencies->deps[i] = d;
     572             : 
     573             :         /* still within the bytea */
     574             :         Assert(tmp <= ((char *) data + VARSIZE_ANY(data)));
     575             :     }
     576             : 
     577             :     /* we should have consumed the whole bytea exactly */
     578             :     Assert(tmp == ((char *) data + VARSIZE_ANY(data)));
     579             : 
     580        1624 :     return dependencies;
     581             : }
     582             : 
     583             : /*
     584             :  * dependency_is_fully_matched
     585             :  *      checks that a functional dependency is fully matched given clauses on
     586             :  *      attributes (assuming the clauses are suitable equality clauses)
     587             :  */
     588             : static bool
     589        6156 : dependency_is_fully_matched(MVDependency *dependency, Bitmapset *attnums)
     590             : {
     591             :     int         j;
     592             : 
     593             :     /*
     594             :      * Check that the dependency actually is fully covered by clauses. We have
     595             :      * to translate all attribute numbers, as those are referenced
     596             :      */
     597       15642 :     for (j = 0; j < dependency->nattributes; j++)
     598             :     {
     599       12558 :         int         attnum = dependency->attributes[j];
     600             : 
     601       12558 :         if (!bms_is_member(attnum, attnums))
     602        3072 :             return false;
     603             :     }
     604             : 
     605        3084 :     return true;
     606             : }
     607             : 
     608             : /*
     609             :  * statext_dependencies_load
     610             :  *      Load the functional dependencies for the indicated pg_statistic_ext tuple
     611             :  */
     612             : MVDependencies *
     613        1608 : statext_dependencies_load(Oid mvoid, bool inh)
     614             : {
     615             :     MVDependencies *result;
     616             :     bool        isnull;
     617             :     Datum       deps;
     618             :     HeapTuple   htup;
     619             : 
     620        1608 :     htup = SearchSysCache2(STATEXTDATASTXOID,
     621             :                            ObjectIdGetDatum(mvoid),
     622             :                            BoolGetDatum(inh));
     623        1608 :     if (!HeapTupleIsValid(htup))
     624           0 :         elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
     625             : 
     626        1608 :     deps = SysCacheGetAttr(STATEXTDATASTXOID, htup,
     627             :                            Anum_pg_statistic_ext_data_stxddependencies, &isnull);
     628        1608 :     if (isnull)
     629           0 :         elog(ERROR,
     630             :              "requested statistics kind \"%c\" is not yet built for statistics object %u",
     631             :              STATS_EXT_DEPENDENCIES, mvoid);
     632             : 
     633        1608 :     result = statext_dependencies_deserialize(DatumGetByteaPP(deps));
     634             : 
     635        1608 :     ReleaseSysCache(htup);
     636             : 
     637        1608 :     return result;
     638             : }
     639             : 
     640             : /*
     641             :  * dependency_is_compatible_clause
     642             :  *      Determines if the clause is compatible with functional dependencies
     643             :  *
     644             :  * Only clauses that have the form of equality to a pseudoconstant, or can be
     645             :  * interpreted that way, are currently accepted.  Furthermore the variable
     646             :  * part of the clause must be a simple Var belonging to the specified
     647             :  * relation, whose attribute number we return in *attnum on success.
     648             :  */
     649             : static bool
     650        3960 : dependency_is_compatible_clause(Node *clause, Index relid, AttrNumber *attnum)
     651             : {
     652             :     Var        *var;
     653             :     Node       *clause_expr;
     654             : 
     655        3960 :     if (IsA(clause, RestrictInfo))
     656             :     {
     657        3840 :         RestrictInfo *rinfo = (RestrictInfo *) clause;
     658             : 
     659             :         /* Pseudoconstants are not interesting (they couldn't contain a Var) */
     660        3840 :         if (rinfo->pseudoconstant)
     661           6 :             return false;
     662             : 
     663             :         /* Clauses referencing multiple, or no, varnos are incompatible */
     664        3834 :         if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON)
     665           0 :             return false;
     666             : 
     667        3834 :         clause = (Node *) rinfo->clause;
     668             :     }
     669             : 
     670        3954 :     if (is_opclause(clause))
     671             :     {
     672             :         /* If it's an opclause, check for Var = Const or Const = Var. */
     673        1446 :         OpExpr     *expr = (OpExpr *) clause;
     674             : 
     675             :         /* Only expressions with two arguments are candidates. */
     676        1446 :         if (list_length(expr->args) != 2)
     677           0 :             return false;
     678             : 
     679             :         /* Make sure non-selected argument is a pseudoconstant. */
     680        1446 :         if (is_pseudo_constant_clause(lsecond(expr->args)))
     681        1446 :             clause_expr = linitial(expr->args);
     682           0 :         else if (is_pseudo_constant_clause(linitial(expr->args)))
     683           0 :             clause_expr = lsecond(expr->args);
     684             :         else
     685           0 :             return false;
     686             : 
     687             :         /*
     688             :          * If it's not an "=" operator, just ignore the clause, as it's not
     689             :          * compatible with functional dependencies.
     690             :          *
     691             :          * This uses the function for estimating selectivity, not the operator
     692             :          * directly (a bit awkward, but well ...).
     693             :          *
     694             :          * XXX this is pretty dubious; probably it'd be better to check btree
     695             :          * or hash opclass membership, so as not to be fooled by custom
     696             :          * selectivity functions, and to be more consistent with decisions
     697             :          * elsewhere in the planner.
     698             :          */
     699        1446 :         if (get_oprrest(expr->opno) != F_EQSEL)
     700          36 :             return false;
     701             : 
     702             :         /* OK to proceed with checking "var" */
     703             :     }
     704        2508 :     else if (IsA(clause, ScalarArrayOpExpr))
     705             :     {
     706             :         /* If it's a scalar array operator, check for Var IN Const. */
     707        2436 :         ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
     708             : 
     709             :         /*
     710             :          * Reject ALL() variant, we only care about ANY/IN.
     711             :          *
     712             :          * XXX Maybe we should check if all the values are the same, and allow
     713             :          * ALL in that case? Doesn't seem very practical, though.
     714             :          */
     715        2436 :         if (!expr->useOr)
     716          36 :             return false;
     717             : 
     718             :         /* Only expressions with two arguments are candidates. */
     719        2400 :         if (list_length(expr->args) != 2)
     720           0 :             return false;
     721             : 
     722             :         /*
     723             :          * We know it's always (Var IN Const), so we assume the var is the
     724             :          * first argument, and pseudoconstant is the second one.
     725             :          */
     726        2400 :         if (!is_pseudo_constant_clause(lsecond(expr->args)))
     727           0 :             return false;
     728             : 
     729        2400 :         clause_expr = linitial(expr->args);
     730             : 
     731             :         /*
     732             :          * If it's not an "=" operator, just ignore the clause, as it's not
     733             :          * compatible with functional dependencies. The operator is identified
     734             :          * simply by looking at which function it uses to estimate
     735             :          * selectivity. That's a bit strange, but it's what other similar
     736             :          * places do.
     737             :          */
     738        2400 :         if (get_oprrest(expr->opno) != F_EQSEL)
     739         180 :             return false;
     740             : 
     741             :         /* OK to proceed with checking "var" */
     742             :     }
     743          72 :     else if (is_orclause(clause))
     744             :     {
     745          72 :         BoolExpr   *bool_expr = (BoolExpr *) clause;
     746             :         ListCell   *lc;
     747             : 
     748             :         /* start with no attribute number */
     749          72 :         *attnum = InvalidAttrNumber;
     750             : 
     751         150 :         foreach(lc, bool_expr->args)
     752             :         {
     753             :             AttrNumber  clause_attnum;
     754             : 
     755             :             /*
     756             :              * Had we found incompatible clause in the arguments, treat the
     757             :              * whole clause as incompatible.
     758             :              */
     759         120 :             if (!dependency_is_compatible_clause((Node *) lfirst(lc),
     760             :                                                  relid, &clause_attnum))
     761          42 :                 return false;
     762             : 
     763          84 :             if (*attnum == InvalidAttrNumber)
     764          36 :                 *attnum = clause_attnum;
     765             : 
     766             :             /* ensure all the variables are the same (same attnum) */
     767          84 :             if (*attnum != clause_attnum)
     768           6 :                 return false;
     769             :         }
     770             : 
     771             :         /* the Var is already checked by the recursive call */
     772          30 :         return true;
     773             :     }
     774           0 :     else if (is_notclause(clause))
     775             :     {
     776             :         /*
     777             :          * "NOT x" can be interpreted as "x = false", so get the argument and
     778             :          * proceed with seeing if it's a suitable Var.
     779             :          */
     780           0 :         clause_expr = (Node *) get_notclausearg(clause);
     781             :     }
     782             :     else
     783             :     {
     784             :         /*
     785             :          * A boolean expression "x" can be interpreted as "x = true", so
     786             :          * proceed with seeing if it's a suitable Var.
     787             :          */
     788           0 :         clause_expr = (Node *) clause;
     789             :     }
     790             : 
     791             :     /*
     792             :      * We may ignore any RelabelType node above the operand.  (There won't be
     793             :      * more than one, since eval_const_expressions has been applied already.)
     794             :      */
     795        3630 :     if (IsA(clause_expr, RelabelType))
     796           0 :         clause_expr = (Node *) ((RelabelType *) clause_expr)->arg;
     797             : 
     798             :     /* We only support plain Vars for now */
     799        3630 :     if (!IsA(clause_expr, Var))
     800         288 :         return false;
     801             : 
     802             :     /* OK, we know we have a Var */
     803        3342 :     var = (Var *) clause_expr;
     804             : 
     805             :     /* Ensure Var is from the correct relation */
     806        3342 :     if (var->varno != relid)
     807           0 :         return false;
     808             : 
     809             :     /* We also better ensure the Var is from the current level */
     810        3342 :     if (var->varlevelsup != 0)
     811           0 :         return false;
     812             : 
     813             :     /* Also ignore system attributes (we don't allow stats on those) */
     814        3342 :     if (!AttrNumberIsForUserDefinedAttr(var->varattno))
     815           0 :         return false;
     816             : 
     817        3342 :     *attnum = var->varattno;
     818        3342 :     return true;
     819             : }
     820             : 
     821             : /*
     822             :  * find_strongest_dependency
     823             :  *      find the strongest dependency on the attributes
     824             :  *
     825             :  * When applying functional dependencies, we start with the strongest
     826             :  * dependencies. That is, we select the dependency that:
     827             :  *
     828             :  * (a) has all attributes covered by equality clauses
     829             :  *
     830             :  * (b) has the most attributes
     831             :  *
     832             :  * (c) has the highest degree of validity
     833             :  *
     834             :  * This guarantees that we eliminate the most redundant conditions first
     835             :  * (see the comment in dependencies_clauselist_selectivity).
     836             :  */
     837             : static MVDependency *
     838        3486 : find_strongest_dependency(MVDependencies **dependencies, int ndependencies,
     839             :                           Bitmapset *attnums)
     840             : {
     841             :     int         i,
     842             :                 j;
     843        3486 :     MVDependency *strongest = NULL;
     844             : 
     845             :     /* number of attnums in clauses */
     846        3486 :     int         nattnums = bms_num_members(attnums);
     847             : 
     848             :     /*
     849             :      * Iterate over the MVDependency items and find the strongest one from the
     850             :      * fully-matched dependencies. We do the cheap checks first, before
     851             :      * matching it against the attnums.
     852             :      */
     853        7008 :     for (i = 0; i < ndependencies; i++)
     854             :     {
     855       20280 :         for (j = 0; j < dependencies[i]->ndeps; j++)
     856             :         {
     857       16758 :             MVDependency *dependency = dependencies[i]->deps[j];
     858             : 
     859             :             /*
     860             :              * Skip dependencies referencing more attributes than available
     861             :              * clauses, as those can't be fully matched.
     862             :              */
     863       16758 :             if (dependency->nattributes > nattnums)
     864       10602 :                 continue;
     865             : 
     866        6156 :             if (strongest)
     867             :             {
     868             :                 /* skip dependencies on fewer attributes than the strongest. */
     869        3936 :                 if (dependency->nattributes < strongest->nattributes)
     870           0 :                     continue;
     871             : 
     872             :                 /* also skip weaker dependencies when attribute count matches */
     873        3936 :                 if (strongest->nattributes == dependency->nattributes &&
     874        3654 :                     strongest->degree > dependency->degree)
     875           0 :                     continue;
     876             :             }
     877             : 
     878             :             /*
     879             :              * this dependency is stronger, but we must still check that it's
     880             :              * fully matched to these attnums. We perform this check last as
     881             :              * it's slightly more expensive than the previous checks.
     882             :              */
     883        6156 :             if (dependency_is_fully_matched(dependency, attnums))
     884        3084 :                 strongest = dependency; /* save new best match */
     885             :         }
     886             :     }
     887             : 
     888        3486 :     return strongest;
     889             : }
     890             : 
     891             : /*
     892             :  * clauselist_apply_dependencies
     893             :  *      Apply the specified functional dependencies to a list of clauses and
     894             :  *      return the estimated selectivity of the clauses that are compatible
     895             :  *      with any of the given dependencies.
     896             :  *
     897             :  * This will estimate all not-already-estimated clauses that are compatible
     898             :  * with functional dependencies, and which have an attribute mentioned by any
     899             :  * of the given dependencies (either as an implying or implied attribute).
     900             :  *
     901             :  * Given (lists of) clauses on attributes (a,b) and a functional dependency
     902             :  * (a=>b), the per-column selectivities P(a) and P(b) are notionally combined
     903             :  * using the formula
     904             :  *
     905             :  *      P(a,b) = f * P(a) + (1-f) * P(a) * P(b)
     906             :  *
     907             :  * where 'f' is the degree of dependency.  This reflects the fact that we
     908             :  * expect a fraction f of all rows to be consistent with the dependency
     909             :  * (a=>b), and so have a selectivity of P(a), while the remaining rows are
     910             :  * treated as independent.
     911             :  *
     912             :  * In practice, we use a slightly modified version of this formula, which uses
     913             :  * a selectivity of Min(P(a), P(b)) for the dependent rows, since the result
     914             :  * should obviously not exceed either column's individual selectivity.  I.e.,
     915             :  * we actually combine selectivities using the formula
     916             :  *
     917             :  *      P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b)
     918             :  *
     919             :  * This can make quite a difference if the specific values matching the
     920             :  * clauses are not consistent with the functional dependency.
     921             :  */
     922             : static Selectivity
     923        1596 : clauselist_apply_dependencies(PlannerInfo *root, List *clauses,
     924             :                               int varRelid, JoinType jointype,
     925             :                               SpecialJoinInfo *sjinfo,
     926             :                               MVDependency **dependencies, int ndependencies,
     927             :                               AttrNumber *list_attnums,
     928             :                               Bitmapset **estimatedclauses)
     929             : {
     930             :     Bitmapset  *attnums;
     931             :     int         i;
     932             :     int         j;
     933             :     int         nattrs;
     934             :     Selectivity *attr_sel;
     935             :     int         attidx;
     936             :     int         listidx;
     937             :     ListCell   *l;
     938             :     Selectivity s1;
     939             : 
     940             :     /*
     941             :      * Extract the attnums of all implying and implied attributes from all the
     942             :      * given dependencies.  Each of these attributes is expected to have at
     943             :      * least 1 not-already-estimated compatible clause that we will estimate
     944             :      * here.
     945             :      */
     946        1596 :     attnums = NULL;
     947        3486 :     for (i = 0; i < ndependencies; i++)
     948             :     {
     949        5952 :         for (j = 0; j < dependencies[i]->nattributes; j++)
     950             :         {
     951        4062 :             AttrNumber  attnum = dependencies[i]->attributes[j];
     952             : 
     953        4062 :             attnums = bms_add_member(attnums, attnum);
     954             :         }
     955             :     }
     956             : 
     957             :     /*
     958             :      * Compute per-column selectivity estimates for each of these attributes,
     959             :      * and mark all the corresponding clauses as estimated.
     960             :      */
     961        1596 :     nattrs = bms_num_members(attnums);
     962        1596 :     attr_sel = (Selectivity *) palloc(sizeof(Selectivity) * nattrs);
     963             : 
     964        1596 :     attidx = 0;
     965        1596 :     i = -1;
     966        5094 :     while ((i = bms_next_member(attnums, i)) >= 0)
     967             :     {
     968        3498 :         List       *attr_clauses = NIL;
     969             :         Selectivity simple_sel;
     970             : 
     971        3498 :         listidx = -1;
     972       11436 :         foreach(l, clauses)
     973             :         {
     974        7938 :             Node       *clause = (Node *) lfirst(l);
     975             : 
     976        7938 :             listidx++;
     977        7938 :             if (list_attnums[listidx] == i)
     978             :             {
     979        3498 :                 attr_clauses = lappend(attr_clauses, clause);
     980        3498 :                 *estimatedclauses = bms_add_member(*estimatedclauses, listidx);
     981             :             }
     982             :         }
     983             : 
     984        3498 :         simple_sel = clauselist_selectivity_ext(root, attr_clauses, varRelid,
     985             :                                                 jointype, sjinfo, false);
     986        3498 :         attr_sel[attidx++] = simple_sel;
     987             :     }
     988             : 
     989             :     /*
     990             :      * Now combine these selectivities using the dependency information.  For
     991             :      * chains of dependencies such as a -> b -> c, the b -> c dependency will
     992             :      * come before the a -> b dependency in the array, so we traverse the
     993             :      * array backwards to ensure such chains are computed in the right order.
     994             :      *
     995             :      * As explained above, pairs of selectivities are combined using the
     996             :      * formula
     997             :      *
     998             :      * P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b)
     999             :      *
    1000             :      * to ensure that the combined selectivity is never greater than either
    1001             :      * individual selectivity.
    1002             :      *
    1003             :      * Where multiple dependencies apply (e.g., a -> b -> c), we use
    1004             :      * conditional probabilities to compute the overall result as follows:
    1005             :      *
    1006             :      * P(a,b,c) = P(c|a,b) * P(a,b) = P(c|a,b) * P(b|a) * P(a)
    1007             :      *
    1008             :      * so we replace the selectivities of all implied attributes with
    1009             :      * conditional probabilities, that are conditional on all their implying
    1010             :      * attributes.  The selectivities of all other non-implied attributes are
    1011             :      * left as they are.
    1012             :      */
    1013        3486 :     for (i = ndependencies - 1; i >= 0; i--)
    1014             :     {
    1015        1890 :         MVDependency *dependency = dependencies[i];
    1016             :         AttrNumber  attnum;
    1017             :         Selectivity s2;
    1018             :         double      f;
    1019             : 
    1020             :         /* Selectivity of all the implying attributes */
    1021        1890 :         s1 = 1.0;
    1022        4062 :         for (j = 0; j < dependency->nattributes - 1; j++)
    1023             :         {
    1024        2172 :             attnum = dependency->attributes[j];
    1025        2172 :             attidx = bms_member_index(attnums, attnum);
    1026        2172 :             s1 *= attr_sel[attidx];
    1027             :         }
    1028             : 
    1029             :         /* Original selectivity of the implied attribute */
    1030        1890 :         attnum = dependency->attributes[j];
    1031        1890 :         attidx = bms_member_index(attnums, attnum);
    1032        1890 :         s2 = attr_sel[attidx];
    1033             : 
    1034             :         /*
    1035             :          * Replace s2 with the conditional probability s2 given s1, computed
    1036             :          * using the formula P(b|a) = P(a,b) / P(a), which simplifies to
    1037             :          *
    1038             :          * P(b|a) = f * Min(P(a), P(b)) / P(a) + (1-f) * P(b)
    1039             :          *
    1040             :          * where P(a) = s1, the selectivity of the implying attributes, and
    1041             :          * P(b) = s2, the selectivity of the implied attribute.
    1042             :          */
    1043        1890 :         f = dependency->degree;
    1044             : 
    1045        1890 :         if (s1 <= s2)
    1046        1782 :             attr_sel[attidx] = f + (1 - f) * s2;
    1047             :         else
    1048         108 :             attr_sel[attidx] = f * s2 / s1 + (1 - f) * s2;
    1049             :     }
    1050             : 
    1051             :     /*
    1052             :      * The overall selectivity of all the clauses on all these attributes is
    1053             :      * then the product of all the original (non-implied) probabilities and
    1054             :      * the new conditional (implied) probabilities.
    1055             :      */
    1056        1596 :     s1 = 1.0;
    1057        5094 :     for (i = 0; i < nattrs; i++)
    1058        3498 :         s1 *= attr_sel[i];
    1059             : 
    1060        1596 :     CLAMP_PROBABILITY(s1);
    1061             : 
    1062        1596 :     pfree(attr_sel);
    1063        1596 :     bms_free(attnums);
    1064             : 
    1065        1596 :     return s1;
    1066             : }
    1067             : 
    1068             : /*
    1069             :  * dependency_is_compatible_expression
    1070             :  *      Determines if the expression is compatible with functional dependencies
    1071             :  *
    1072             :  * Similar to dependency_is_compatible_clause, but doesn't enforce that the
    1073             :  * expression is a simple Var.  On success, return the matching statistics
    1074             :  * expression into *expr.
    1075             :  */
    1076             : static bool
    1077         642 : dependency_is_compatible_expression(Node *clause, Index relid, List *statlist, Node **expr)
    1078             : {
    1079             :     ListCell   *lc,
    1080             :                *lc2;
    1081             :     Node       *clause_expr;
    1082             : 
    1083         642 :     if (IsA(clause, RestrictInfo))
    1084             :     {
    1085         552 :         RestrictInfo *rinfo = (RestrictInfo *) clause;
    1086             : 
    1087             :         /* Pseudoconstants are not interesting (they couldn't contain a Var) */
    1088         552 :         if (rinfo->pseudoconstant)
    1089           6 :             return false;
    1090             : 
    1091             :         /* Clauses referencing multiple, or no, varnos are incompatible */
    1092         546 :         if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON)
    1093           0 :             return false;
    1094             : 
    1095         546 :         clause = (Node *) rinfo->clause;
    1096             :     }
    1097             : 
    1098         636 :     if (is_opclause(clause))
    1099             :     {
    1100             :         /* If it's an opclause, check for Var = Const or Const = Var. */
    1101         204 :         OpExpr     *expr = (OpExpr *) clause;
    1102             : 
    1103             :         /* Only expressions with two arguments are candidates. */
    1104         204 :         if (list_length(expr->args) != 2)
    1105           0 :             return false;
    1106             : 
    1107             :         /* Make sure non-selected argument is a pseudoconstant. */
    1108         204 :         if (is_pseudo_constant_clause(lsecond(expr->args)))
    1109         204 :             clause_expr = linitial(expr->args);
    1110           0 :         else if (is_pseudo_constant_clause(linitial(expr->args)))
    1111           0 :             clause_expr = lsecond(expr->args);
    1112             :         else
    1113           0 :             return false;
    1114             : 
    1115             :         /*
    1116             :          * If it's not an "=" operator, just ignore the clause, as it's not
    1117             :          * compatible with functional dependencies.
    1118             :          *
    1119             :          * This uses the function for estimating selectivity, not the operator
    1120             :          * directly (a bit awkward, but well ...).
    1121             :          *
    1122             :          * XXX this is pretty dubious; probably it'd be better to check btree
    1123             :          * or hash opclass membership, so as not to be fooled by custom
    1124             :          * selectivity functions, and to be more consistent with decisions
    1125             :          * elsewhere in the planner.
    1126             :          */
    1127         204 :         if (get_oprrest(expr->opno) != F_EQSEL)
    1128          36 :             return false;
    1129             : 
    1130             :         /* OK to proceed with checking "var" */
    1131             :     }
    1132         432 :     else if (IsA(clause, ScalarArrayOpExpr))
    1133             :     {
    1134             :         /* If it's a scalar array operator, check for Var IN Const. */
    1135         390 :         ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
    1136             : 
    1137             :         /*
    1138             :          * Reject ALL() variant, we only care about ANY/IN.
    1139             :          *
    1140             :          * FIXME Maybe we should check if all the values are the same, and
    1141             :          * allow ALL in that case? Doesn't seem very practical, though.
    1142             :          */
    1143         390 :         if (!expr->useOr)
    1144          36 :             return false;
    1145             : 
    1146             :         /* Only expressions with two arguments are candidates. */
    1147         354 :         if (list_length(expr->args) != 2)
    1148           0 :             return false;
    1149             : 
    1150             :         /*
    1151             :          * We know it's always (Var IN Const), so we assume the var is the
    1152             :          * first argument, and pseudoconstant is the second one.
    1153             :          */
    1154         354 :         if (!is_pseudo_constant_clause(lsecond(expr->args)))
    1155           0 :             return false;
    1156             : 
    1157         354 :         clause_expr = linitial(expr->args);
    1158             : 
    1159             :         /*
    1160             :          * If it's not an "=" operator, just ignore the clause, as it's not
    1161             :          * compatible with functional dependencies. The operator is identified
    1162             :          * simply by looking at which function it uses to estimate
    1163             :          * selectivity. That's a bit strange, but it's what other similar
    1164             :          * places do.
    1165             :          */
    1166         354 :         if (get_oprrest(expr->opno) != F_EQSEL)
    1167         180 :             return false;
    1168             : 
    1169             :         /* OK to proceed with checking "var" */
    1170             :     }
    1171          42 :     else if (is_orclause(clause))
    1172             :     {
    1173          42 :         BoolExpr   *bool_expr = (BoolExpr *) clause;
    1174             : 
    1175             :         /* start with no expression (we'll use the first match) */
    1176          42 :         *expr = NULL;
    1177             : 
    1178         120 :         foreach(lc, bool_expr->args)
    1179             :         {
    1180          90 :             Node       *or_expr = NULL;
    1181             : 
    1182             :             /*
    1183             :              * Had we found incompatible expression in the arguments, treat
    1184             :              * the whole expression as incompatible.
    1185             :              */
    1186          90 :             if (!dependency_is_compatible_expression((Node *) lfirst(lc), relid,
    1187             :                                                      statlist, &or_expr))
    1188          12 :                 return false;
    1189             : 
    1190          84 :             if (*expr == NULL)
    1191          36 :                 *expr = or_expr;
    1192             : 
    1193             :             /* ensure all the expressions are the same */
    1194          84 :             if (!equal(or_expr, *expr))
    1195           6 :                 return false;
    1196             :         }
    1197             : 
    1198             :         /* the expression is already checked by the recursive call */
    1199          30 :         return true;
    1200             :     }
    1201           0 :     else if (is_notclause(clause))
    1202             :     {
    1203             :         /*
    1204             :          * "NOT x" can be interpreted as "x = false", so get the argument and
    1205             :          * proceed with seeing if it's a suitable Var.
    1206             :          */
    1207           0 :         clause_expr = (Node *) get_notclausearg(clause);
    1208             :     }
    1209             :     else
    1210             :     {
    1211             :         /*
    1212             :          * A boolean expression "x" can be interpreted as "x = true", so
    1213             :          * proceed with seeing if it's a suitable Var.
    1214             :          */
    1215           0 :         clause_expr = (Node *) clause;
    1216             :     }
    1217             : 
    1218             :     /*
    1219             :      * We may ignore any RelabelType node above the operand.  (There won't be
    1220             :      * more than one, since eval_const_expressions has been applied already.)
    1221             :      */
    1222         342 :     if (IsA(clause_expr, RelabelType))
    1223           0 :         clause_expr = (Node *) ((RelabelType *) clause_expr)->arg;
    1224             : 
    1225             :     /*
    1226             :      * Search for a matching statistics expression.
    1227             :      */
    1228         348 :     foreach(lc, statlist)
    1229             :     {
    1230         342 :         StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
    1231             : 
    1232             :         /* ignore stats without dependencies */
    1233         342 :         if (info->kind != STATS_EXT_DEPENDENCIES)
    1234           0 :             continue;
    1235             : 
    1236         558 :         foreach(lc2, info->exprs)
    1237             :         {
    1238         552 :             Node       *stat_expr = (Node *) lfirst(lc2);
    1239             : 
    1240         552 :             if (equal(clause_expr, stat_expr))
    1241             :             {
    1242         336 :                 *expr = stat_expr;
    1243         336 :                 return true;
    1244             :             }
    1245             :         }
    1246             :     }
    1247             : 
    1248           6 :     return false;
    1249             : }
    1250             : 
    1251             : /*
    1252             :  * dependencies_clauselist_selectivity
    1253             :  *      Return the estimated selectivity of (a subset of) the given clauses
    1254             :  *      using functional dependency statistics, or 1.0 if no useful functional
    1255             :  *      dependency statistic exists.
    1256             :  *
    1257             :  * 'estimatedclauses' is an input/output argument that gets a bit set
    1258             :  * corresponding to the (zero-based) list index of each clause that is included
    1259             :  * in the estimated selectivity.
    1260             :  *
    1261             :  * Given equality clauses on attributes (a,b) we find the strongest dependency
    1262             :  * between them, i.e. either (a=>b) or (b=>a). Assuming (a=>b) is the selected
    1263             :  * dependency, we then combine the per-clause selectivities using the formula
    1264             :  *
    1265             :  *     P(a,b) = f * P(a) + (1-f) * P(a) * P(b)
    1266             :  *
    1267             :  * where 'f' is the degree of the dependency.  (Actually we use a slightly
    1268             :  * modified version of this formula -- see clauselist_apply_dependencies()).
    1269             :  *
    1270             :  * With clauses on more than two attributes, the dependencies are applied
    1271             :  * recursively, starting with the widest/strongest dependencies. For example
    1272             :  * P(a,b,c) is first split like this:
    1273             :  *
    1274             :  *     P(a,b,c) = f * P(a,b) + (1-f) * P(a,b) * P(c)
    1275             :  *
    1276             :  * assuming (a,b=>c) is the strongest dependency.
    1277             :  */
    1278             : Selectivity
    1279        2436 : dependencies_clauselist_selectivity(PlannerInfo *root,
    1280             :                                     List *clauses,
    1281             :                                     int varRelid,
    1282             :                                     JoinType jointype,
    1283             :                                     SpecialJoinInfo *sjinfo,
    1284             :                                     RelOptInfo *rel,
    1285             :                                     Bitmapset **estimatedclauses)
    1286             : {
    1287        2436 :     Selectivity s1 = 1.0;
    1288             :     ListCell   *l;
    1289        2436 :     Bitmapset  *clauses_attnums = NULL;
    1290             :     AttrNumber *list_attnums;
    1291             :     int         listidx;
    1292             :     MVDependencies **func_dependencies;
    1293             :     int         nfunc_dependencies;
    1294             :     int         total_ndeps;
    1295             :     MVDependency **dependencies;
    1296             :     int         ndependencies;
    1297             :     int         i;
    1298             :     AttrNumber  attnum_offset;
    1299        2436 :     RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
    1300             : 
    1301             :     /* unique expressions */
    1302             :     Node      **unique_exprs;
    1303             :     int         unique_exprs_cnt;
    1304             : 
    1305             :     /* check if there's any stats that might be useful for us. */
    1306        2436 :     if (!has_stats_of_kind(rel->statlist, STATS_EXT_DEPENDENCIES))
    1307         648 :         return 1.0;
    1308             : 
    1309        1788 :     list_attnums = (AttrNumber *) palloc(sizeof(AttrNumber) *
    1310        1788 :                                          list_length(clauses));
    1311             : 
    1312             :     /*
    1313             :      * We allocate space as if every clause was a unique expression, although
    1314             :      * that's probably overkill. Some will be simple column references that
    1315             :      * we'll translate to attnums, and there might be duplicates. But it's
    1316             :      * easier and cheaper to just do one allocation than repalloc later.
    1317             :      */
    1318        1788 :     unique_exprs = (Node **) palloc(sizeof(Node *) * list_length(clauses));
    1319        1788 :     unique_exprs_cnt = 0;
    1320             : 
    1321             :     /*
    1322             :      * Pre-process the clauses list to extract the attnums seen in each item.
    1323             :      * We need to determine if there's any clauses which will be useful for
    1324             :      * dependency selectivity estimations. Along the way we'll record all of
    1325             :      * the attnums for each clause in a list which we'll reference later so we
    1326             :      * don't need to repeat the same work again. We'll also keep track of all
    1327             :      * attnums seen.
    1328             :      *
    1329             :      * We also skip clauses that we already estimated using different types of
    1330             :      * statistics (we treat them as incompatible).
    1331             :      *
    1332             :      * To handle expressions, we assign them negative attnums, as if it was a
    1333             :      * system attribute (this is fine, as we only allow extended stats on user
    1334             :      * attributes). And then we offset everything by the number of
    1335             :      * expressions, so that we can store the values in a bitmapset.
    1336             :      */
    1337        1788 :     listidx = 0;
    1338        5670 :     foreach(l, clauses)
    1339             :     {
    1340        3882 :         Node       *clause = (Node *) lfirst(l);
    1341             :         AttrNumber  attnum;
    1342        3882 :         Node       *expr = NULL;
    1343             : 
    1344             :         /* ignore clause by default */
    1345        3882 :         list_attnums[listidx] = InvalidAttrNumber;
    1346             : 
    1347        3882 :         if (!bms_is_member(listidx, *estimatedclauses))
    1348             :         {
    1349             :             /*
    1350             :              * If it's a simple column reference, just extract the attnum. If
    1351             :              * it's an expression, assign a negative attnum as if it was a
    1352             :              * system attribute.
    1353             :              */
    1354        3840 :             if (dependency_is_compatible_clause(clause, rel->relid, &attnum))
    1355             :             {
    1356        3288 :                 list_attnums[listidx] = attnum;
    1357             :             }
    1358         552 :             else if (dependency_is_compatible_expression(clause, rel->relid,
    1359             :                                                          rel->statlist,
    1360             :                                                          &expr))
    1361             :             {
    1362             :                 /* special attnum assigned to this expression */
    1363         282 :                 attnum = InvalidAttrNumber;
    1364             : 
    1365             :                 Assert(expr != NULL);
    1366             : 
    1367             :                 /* If the expression is duplicate, use the same attnum. */
    1368         474 :                 for (i = 0; i < unique_exprs_cnt; i++)
    1369             :                 {
    1370         192 :                     if (equal(unique_exprs[i], expr))
    1371             :                     {
    1372             :                         /* negative attribute number to expression */
    1373           0 :                         attnum = -(i + 1);
    1374           0 :                         break;
    1375             :                     }
    1376             :                 }
    1377             : 
    1378             :                 /* not found in the list, so add it */
    1379         282 :                 if (attnum == InvalidAttrNumber)
    1380             :                 {
    1381         282 :                     unique_exprs[unique_exprs_cnt++] = expr;
    1382             : 
    1383             :                     /* after incrementing the value, to get -1, -2, ... */
    1384         282 :                     attnum = (-unique_exprs_cnt);
    1385             :                 }
    1386             : 
    1387             :                 /* remember which attnum was assigned to this clause */
    1388         282 :                 list_attnums[listidx] = attnum;
    1389             :             }
    1390             :         }
    1391             : 
    1392        3882 :         listidx++;
    1393             :     }
    1394             : 
    1395             :     Assert(listidx == list_length(clauses));
    1396             : 
    1397             :     /*
    1398             :      * How much we need to offset the attnums? If there are no expressions,
    1399             :      * then no offset is needed. Otherwise we need to offset enough for the
    1400             :      * lowest value (-unique_exprs_cnt) to become 1.
    1401             :      */
    1402        1788 :     if (unique_exprs_cnt > 0)
    1403         132 :         attnum_offset = (unique_exprs_cnt + 1);
    1404             :     else
    1405        1656 :         attnum_offset = 0;
    1406             : 
    1407             :     /*
    1408             :      * Now that we know how many expressions there are, we can offset the
    1409             :      * values just enough to build the bitmapset.
    1410             :      */
    1411        5670 :     for (i = 0; i < list_length(clauses); i++)
    1412             :     {
    1413             :         AttrNumber  attnum;
    1414             : 
    1415             :         /* ignore incompatible or already estimated clauses */
    1416        3882 :         if (list_attnums[i] == InvalidAttrNumber)
    1417         312 :             continue;
    1418             : 
    1419             :         /* make sure the attnum is in the expected range */
    1420             :         Assert(list_attnums[i] >= (-unique_exprs_cnt));
    1421             :         Assert(list_attnums[i] <= MaxHeapAttributeNumber);
    1422             : 
    1423             :         /* make sure the attnum is positive (valid AttrNumber) */
    1424        3570 :         attnum = list_attnums[i] + attnum_offset;
    1425             : 
    1426             :         /*
    1427             :          * Either it's a regular attribute, or it's an expression, in which
    1428             :          * case we must not have seen it before (expressions are unique).
    1429             :          *
    1430             :          * XXX Check whether it's a regular attribute has to be done using the
    1431             :          * original attnum, while the second check has to use the value with
    1432             :          * an offset.
    1433             :          */
    1434             :         Assert(AttrNumberIsForUserDefinedAttr(list_attnums[i]) ||
    1435             :                !bms_is_member(attnum, clauses_attnums));
    1436             : 
    1437             :         /*
    1438             :          * Remember the offset attnum, both for attributes and expressions.
    1439             :          * We'll pass list_attnums to clauselist_apply_dependencies, which
    1440             :          * uses it to identify clauses in a bitmap. We could also pass the
    1441             :          * offset, but this is more convenient.
    1442             :          */
    1443        3570 :         list_attnums[i] = attnum;
    1444             : 
    1445        3570 :         clauses_attnums = bms_add_member(clauses_attnums, attnum);
    1446             :     }
    1447             : 
    1448             :     /*
    1449             :      * If there's not at least two distinct attnums and expressions, then
    1450             :      * reject the whole list of clauses. We must return 1.0 so the calling
    1451             :      * function's selectivity is unaffected.
    1452             :      */
    1453        1788 :     if (bms_membership(clauses_attnums) != BMS_MULTIPLE)
    1454             :     {
    1455         192 :         bms_free(clauses_attnums);
    1456         192 :         pfree(list_attnums);
    1457         192 :         return 1.0;
    1458             :     }
    1459             : 
    1460             :     /*
    1461             :      * Load all functional dependencies matching at least two parameters. We
    1462             :      * can simply consider all dependencies at once, without having to search
    1463             :      * for the best statistics object.
    1464             :      *
    1465             :      * To not waste cycles and memory, we deserialize dependencies only for
    1466             :      * statistics that match at least two attributes. The array is allocated
    1467             :      * with the assumption that all objects match - we could grow the array to
    1468             :      * make it just the right size, but it's likely wasteful anyway thanks to
    1469             :      * moving the freed chunks to freelists etc.
    1470             :      */
    1471        1596 :     func_dependencies = (MVDependencies **) palloc(sizeof(MVDependencies *) *
    1472        1596 :                                                    list_length(rel->statlist));
    1473        1596 :     nfunc_dependencies = 0;
    1474        1596 :     total_ndeps = 0;
    1475             : 
    1476        3330 :     foreach(l, rel->statlist)
    1477             :     {
    1478        1734 :         StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l);
    1479             :         int         nmatched;
    1480             :         int         nexprs;
    1481             :         int         k;
    1482             :         MVDependencies *deps;
    1483             : 
    1484             :         /* skip statistics that are not of the correct type */
    1485        1734 :         if (stat->kind != STATS_EXT_DEPENDENCIES)
    1486         108 :             continue;
    1487             : 
    1488             :         /* skip statistics with mismatching stxdinherit value */
    1489        1626 :         if (stat->inherit != rte->inh)
    1490           0 :             continue;
    1491             : 
    1492             :         /*
    1493             :          * Count matching attributes - we have to undo the attnum offsets. The
    1494             :          * input attribute numbers are not offset (expressions are not
    1495             :          * included in stat->keys, so it's not necessary). But we need to
    1496             :          * offset it before checking against clauses_attnums.
    1497             :          */
    1498        1626 :         nmatched = 0;
    1499        1626 :         k = -1;
    1500        6120 :         while ((k = bms_next_member(stat->keys, k)) >= 0)
    1501             :         {
    1502        4494 :             AttrNumber  attnum = (AttrNumber) k;
    1503             : 
    1504             :             /* skip expressions */
    1505        4494 :             if (!AttrNumberIsForUserDefinedAttr(attnum))
    1506           0 :                 continue;
    1507             : 
    1508             :             /* apply the same offset as above */
    1509        4494 :             attnum += attnum_offset;
    1510             : 
    1511        4494 :             if (bms_is_member(attnum, clauses_attnums))
    1512        3240 :                 nmatched++;
    1513             :         }
    1514             : 
    1515             :         /* count matching expressions */
    1516        1626 :         nexprs = 0;
    1517        1884 :         for (i = 0; i < unique_exprs_cnt; i++)
    1518             :         {
    1519             :             ListCell   *lc;
    1520             : 
    1521        1032 :             foreach(lc, stat->exprs)
    1522             :             {
    1523         774 :                 Node       *stat_expr = (Node *) lfirst(lc);
    1524             : 
    1525             :                 /* try to match it */
    1526         774 :                 if (equal(stat_expr, unique_exprs[i]))
    1527         258 :                     nexprs++;
    1528             :             }
    1529             :         }
    1530             : 
    1531             :         /*
    1532             :          * Skip objects matching fewer than two attributes/expressions from
    1533             :          * clauses.
    1534             :          */
    1535        1626 :         if (nmatched + nexprs < 2)
    1536          18 :             continue;
    1537             : 
    1538        1608 :         deps = statext_dependencies_load(stat->statOid, rte->inh);
    1539             : 
    1540             :         /*
    1541             :          * The expressions may be represented by different attnums in the
    1542             :          * stats, we need to remap them to be consistent with the clauses.
    1543             :          * That will make the later steps (e.g. picking the strongest item and
    1544             :          * so on) much simpler and cheaper, because it won't need to care
    1545             :          * about the offset at all.
    1546             :          *
    1547             :          * When we're at it, we can ignore dependencies that are not fully
    1548             :          * matched by clauses (i.e. referencing attributes or expressions that
    1549             :          * are not in the clauses).
    1550             :          *
    1551             :          * We have to do this for all statistics, as long as there are any
    1552             :          * expressions - we need to shift the attnums in all dependencies.
    1553             :          *
    1554             :          * XXX Maybe we should do this always, because it also eliminates some
    1555             :          * of the dependencies early. It might be cheaper than having to walk
    1556             :          * the longer list in find_strongest_dependency later, especially as
    1557             :          * we need to do that repeatedly?
    1558             :          *
    1559             :          * XXX We have to do this even when there are no expressions in
    1560             :          * clauses, otherwise find_strongest_dependency may fail for stats
    1561             :          * with expressions (due to lookup of negative value in bitmap). So we
    1562             :          * need to at least filter out those dependencies. Maybe we could do
    1563             :          * it in a cheaper way (if there are no expr clauses, we can just
    1564             :          * discard all negative attnums without any lookups).
    1565             :          */
    1566        1608 :         if (unique_exprs_cnt > 0 || stat->exprs != NIL)
    1567             :         {
    1568         108 :             int         ndeps = 0;
    1569             : 
    1570         648 :             for (i = 0; i < deps->ndeps; i++)
    1571             :             {
    1572         540 :                 bool        skip = false;
    1573         540 :                 MVDependency *dep = deps->deps[i];
    1574             :                 int         j;
    1575             : 
    1576        1506 :                 for (j = 0; j < dep->nattributes; j++)
    1577             :                 {
    1578             :                     int         idx;
    1579             :                     Node       *expr;
    1580        1230 :                     AttrNumber  unique_attnum = InvalidAttrNumber;
    1581             :                     AttrNumber  attnum;
    1582             : 
    1583             :                     /* undo the per-statistics offset */
    1584        1230 :                     attnum = dep->attributes[j];
    1585             : 
    1586             :                     /*
    1587             :                      * For regular attributes we can simply check if it
    1588             :                      * matches any clause. If there's no matching clause, we
    1589             :                      * can just ignore it. We need to offset the attnum
    1590             :                      * though.
    1591             :                      */
    1592        1230 :                     if (AttrNumberIsForUserDefinedAttr(attnum))
    1593             :                     {
    1594           0 :                         dep->attributes[j] = attnum + attnum_offset;
    1595             : 
    1596           0 :                         if (!bms_is_member(dep->attributes[j], clauses_attnums))
    1597             :                         {
    1598           0 :                             skip = true;
    1599           0 :                             break;
    1600             :                         }
    1601             : 
    1602           0 :                         continue;
    1603             :                     }
    1604             : 
    1605             :                     /*
    1606             :                      * the attnum should be a valid system attnum (-1, -2,
    1607             :                      * ...)
    1608             :                      */
    1609             :                     Assert(AttributeNumberIsValid(attnum));
    1610             : 
    1611             :                     /*
    1612             :                      * For expressions, we need to do two translations. First
    1613             :                      * we have to translate the negative attnum to index in
    1614             :                      * the list of expressions (in the statistics object).
    1615             :                      * Then we need to see if there's a matching clause. The
    1616             :                      * index of the unique expression determines the attnum
    1617             :                      * (and we offset it).
    1618             :                      */
    1619        1230 :                     idx = -(1 + attnum);
    1620             : 
    1621             :                     /* Is the expression index is valid? */
    1622             :                     Assert((idx >= 0) && (idx < list_length(stat->exprs)));
    1623             : 
    1624        1230 :                     expr = (Node *) list_nth(stat->exprs, idx);
    1625             : 
    1626             :                     /* try to find the expression in the unique list */
    1627        2460 :                     for (int m = 0; m < unique_exprs_cnt; m++)
    1628             :                     {
    1629             :                         /*
    1630             :                          * found a matching unique expression, use the attnum
    1631             :                          * (derived from index of the unique expression)
    1632             :                          */
    1633        2196 :                         if (equal(unique_exprs[m], expr))
    1634             :                         {
    1635         966 :                             unique_attnum = -(m + 1) + attnum_offset;
    1636         966 :                             break;
    1637             :                         }
    1638             :                     }
    1639             : 
    1640             :                     /*
    1641             :                      * Found no matching expression, so we can simply skip
    1642             :                      * this dependency, because there's no chance it will be
    1643             :                      * fully covered.
    1644             :                      */
    1645        1230 :                     if (unique_attnum == InvalidAttrNumber)
    1646             :                     {
    1647         264 :                         skip = true;
    1648         264 :                         break;
    1649             :                     }
    1650             : 
    1651             :                     /* otherwise remap it to the new attnum */
    1652         966 :                     dep->attributes[j] = unique_attnum;
    1653             :                 }
    1654             : 
    1655             :                 /* if found a matching dependency, keep it */
    1656         540 :                 if (!skip)
    1657             :                 {
    1658             :                     /* maybe we've skipped something earlier, so move it */
    1659         276 :                     if (ndeps != i)
    1660           0 :                         deps->deps[ndeps] = deps->deps[i];
    1661             : 
    1662         276 :                     ndeps++;
    1663             :                 }
    1664             :             }
    1665             : 
    1666         108 :             deps->ndeps = ndeps;
    1667             :         }
    1668             : 
    1669             :         /*
    1670             :          * It's possible we've removed all dependencies, in which case we
    1671             :          * don't bother adding it to the list.
    1672             :          */
    1673        1608 :         if (deps->ndeps > 0)
    1674             :         {
    1675        1608 :             func_dependencies[nfunc_dependencies] = deps;
    1676        1608 :             total_ndeps += deps->ndeps;
    1677        1608 :             nfunc_dependencies++;
    1678             :         }
    1679             :     }
    1680             : 
    1681             :     /* if no matching stats could be found then we've nothing to do */
    1682        1596 :     if (nfunc_dependencies == 0)
    1683             :     {
    1684           0 :         pfree(func_dependencies);
    1685           0 :         bms_free(clauses_attnums);
    1686           0 :         pfree(list_attnums);
    1687           0 :         pfree(unique_exprs);
    1688           0 :         return 1.0;
    1689             :     }
    1690             : 
    1691             :     /*
    1692             :      * Work out which dependencies we can apply, starting with the
    1693             :      * widest/strongest ones, and proceeding to smaller/weaker ones.
    1694             :      */
    1695        1596 :     dependencies = (MVDependency **) palloc(sizeof(MVDependency *) *
    1696             :                                             total_ndeps);
    1697        1596 :     ndependencies = 0;
    1698             : 
    1699             :     while (true)
    1700        1890 :     {
    1701             :         MVDependency *dependency;
    1702             :         AttrNumber  attnum;
    1703             : 
    1704             :         /* the widest/strongest dependency, fully matched by clauses */
    1705        3486 :         dependency = find_strongest_dependency(func_dependencies,
    1706             :                                                nfunc_dependencies,
    1707             :                                                clauses_attnums);
    1708        3486 :         if (!dependency)
    1709        1596 :             break;
    1710             : 
    1711        1890 :         dependencies[ndependencies++] = dependency;
    1712             : 
    1713             :         /* Ignore dependencies using this implied attribute in later loops */
    1714        1890 :         attnum = dependency->attributes[dependency->nattributes - 1];
    1715        1890 :         clauses_attnums = bms_del_member(clauses_attnums, attnum);
    1716             :     }
    1717             : 
    1718             :     /*
    1719             :      * If we found applicable dependencies, use them to estimate all
    1720             :      * compatible clauses on attributes that they refer to.
    1721             :      */
    1722        1596 :     if (ndependencies != 0)
    1723        1596 :         s1 = clauselist_apply_dependencies(root, clauses, varRelid, jointype,
    1724             :                                            sjinfo, dependencies, ndependencies,
    1725             :                                            list_attnums, estimatedclauses);
    1726             : 
    1727             :     /* free deserialized functional dependencies (and then the array) */
    1728        3204 :     for (i = 0; i < nfunc_dependencies; i++)
    1729        1608 :         pfree(func_dependencies[i]);
    1730             : 
    1731        1596 :     pfree(dependencies);
    1732        1596 :     pfree(func_dependencies);
    1733        1596 :     bms_free(clauses_attnums);
    1734        1596 :     pfree(list_attnums);
    1735        1596 :     pfree(unique_exprs);
    1736             : 
    1737        1596 :     return s1;
    1738             : }

Generated by: LCOV version 1.16