LCOV - code coverage report
Current view: top level - src/backend/statistics - dependencies.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 421 473 89.0 %
Date: 2025-12-15 09:18:07 Functions: 16 16 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * dependencies.c
       4             :  *    POSTGRES functional dependencies
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  * IDENTIFICATION
      10             :  *    src/backend/statistics/dependencies.c
      11             :  *
      12             :  *-------------------------------------------------------------------------
      13             :  */
      14             : #include "postgres.h"
      15             : 
      16             : #include "access/htup_details.h"
      17             : #include "catalog/pg_statistic_ext.h"
      18             : #include "catalog/pg_statistic_ext_data.h"
      19             : #include "nodes/nodeFuncs.h"
      20             : #include "optimizer/clauses.h"
      21             : #include "optimizer/optimizer.h"
      22             : #include "parser/parsetree.h"
      23             : #include "statistics/extended_stats_internal.h"
      24             : #include "utils/fmgroids.h"
      25             : #include "utils/lsyscache.h"
      26             : #include "utils/memutils.h"
      27             : #include "utils/selfuncs.h"
      28             : #include "utils/syscache.h"
      29             : #include "utils/typcache.h"
      30             : 
      31             : /* size of the struct header fields (magic, type, ndeps) */
      32             : #define SizeOfHeader        (3 * sizeof(uint32))
      33             : 
      34             : /* size of a serialized dependency (degree, natts, atts) */
      35             : #define SizeOfItem(natts) \
      36             :     (sizeof(double) + sizeof(AttrNumber) * (1 + (natts)))
      37             : 
      38             : /* minimal size of a dependency (with two attributes) */
      39             : #define MinSizeOfItem   SizeOfItem(2)
      40             : 
      41             : /* minimal size of dependencies, when all deps are minimal */
      42             : #define MinSizeOfItems(ndeps) \
      43             :     (SizeOfHeader + (ndeps) * MinSizeOfItem)
      44             : 
      45             : /*
      46             :  * Internal state for DependencyGenerator of dependencies. Dependencies are similar to
      47             :  * k-permutations of n elements, except that the order does not matter for the
      48             :  * first (k-1) elements. That is, (a,b=>c) and (b,a=>c) are equivalent.
      49             :  */
      50             : typedef struct DependencyGeneratorData
      51             : {
      52             :     int         k;              /* size of the dependency */
      53             :     int         n;              /* number of possible attributes */
      54             :     int         current;        /* next dependency to return (index) */
      55             :     AttrNumber  ndependencies;  /* number of dependencies generated */
      56             :     AttrNumber *dependencies;   /* array of pre-generated dependencies  */
      57             : } DependencyGeneratorData;
      58             : 
      59             : typedef DependencyGeneratorData *DependencyGenerator;
      60             : 
      61             : static void generate_dependencies_recurse(DependencyGenerator state,
      62             :                                           int index, AttrNumber start, AttrNumber *current);
      63             : static void generate_dependencies(DependencyGenerator state);
      64             : static DependencyGenerator DependencyGenerator_init(int n, int k);
      65             : static void DependencyGenerator_free(DependencyGenerator state);
      66             : static AttrNumber *DependencyGenerator_next(DependencyGenerator state);
      67             : static double dependency_degree(StatsBuildData *data, int k, AttrNumber *dependency);
      68             : static bool dependency_is_fully_matched(MVDependency *dependency,
      69             :                                         Bitmapset *attnums);
      70             : static bool dependency_is_compatible_clause(Node *clause, Index relid,
      71             :                                             AttrNumber *attnum);
      72             : static bool dependency_is_compatible_expression(Node *clause, Index relid,
      73             :                                                 List *statlist, Node **expr);
      74             : static MVDependency *find_strongest_dependency(MVDependencies **dependencies,
      75             :                                                int ndependencies, Bitmapset *attnums);
      76             : static Selectivity clauselist_apply_dependencies(PlannerInfo *root, List *clauses,
      77             :                                                  int varRelid, JoinType jointype,
      78             :                                                  SpecialJoinInfo *sjinfo,
      79             :                                                  MVDependency **dependencies,
      80             :                                                  int ndependencies,
      81             :                                                  AttrNumber *list_attnums,
      82             :                                                  Bitmapset **estimatedclauses);
      83             : 
      84             : static void
      85         834 : generate_dependencies_recurse(DependencyGenerator state, int index,
      86             :                               AttrNumber start, AttrNumber *current)
      87             : {
      88             :     /*
      89             :      * The generator handles the first (k-1) elements differently from the
      90             :      * last element.
      91             :      */
      92         834 :     if (index < (state->k - 1))
      93             :     {
      94             :         AttrNumber  i;
      95             : 
      96             :         /*
      97             :          * The first (k-1) values have to be in ascending order, which we
      98             :          * generate recursively.
      99             :          */
     100             : 
     101         978 :         for (i = start; i < state->n; i++)
     102             :         {
     103         636 :             current[index] = i;
     104         636 :             generate_dependencies_recurse(state, (index + 1), (i + 1), current);
     105             :         }
     106             :     }
     107             :     else
     108             :     {
     109             :         int         i;
     110             : 
     111             :         /*
     112             :          * the last element is the implied value, which does not respect the
     113             :          * ascending order. We just need to check that the value is not in the
     114             :          * first (k-1) elements.
     115             :          */
     116             : 
     117        1764 :         for (i = 0; i < state->n; i++)
     118             :         {
     119             :             int         j;
     120        1272 :             bool        match = false;
     121             : 
     122        1272 :             current[index] = i;
     123             : 
     124        2196 :             for (j = 0; j < index; j++)
     125             :             {
     126        1560 :                 if (current[j] == i)
     127             :                 {
     128         636 :                     match = true;
     129         636 :                     break;
     130             :                 }
     131             :             }
     132             : 
     133             :             /*
     134             :              * If the value is not found in the first part of the dependency,
     135             :              * we're done.
     136             :              */
     137        1272 :             if (!match)
     138             :             {
     139        1272 :                 state->dependencies = (AttrNumber *) repalloc(state->dependencies,
     140         636 :                                                               state->k * (state->ndependencies + 1) * sizeof(AttrNumber));
     141         636 :                 memcpy(&state->dependencies[(state->k * state->ndependencies)],
     142         636 :                        current, state->k * sizeof(AttrNumber));
     143         636 :                 state->ndependencies++;
     144             :             }
     145             :         }
     146             :     }
     147         834 : }
     148             : 
     149             : /* generate all dependencies (k-permutations of n elements) */
     150             : static void
     151         198 : generate_dependencies(DependencyGenerator state)
     152             : {
     153         198 :     AttrNumber *current = palloc0_array(AttrNumber, state->k);
     154             : 
     155         198 :     generate_dependencies_recurse(state, 0, 0, current);
     156             : 
     157         198 :     pfree(current);
     158         198 : }
     159             : 
     160             : /*
     161             :  * initialize the DependencyGenerator of variations, and prebuild the variations
     162             :  *
     163             :  * This pre-builds all the variations. We could also generate them in
     164             :  * DependencyGenerator_next(), but this seems simpler.
     165             :  */
     166             : static DependencyGenerator
     167         198 : DependencyGenerator_init(int n, int k)
     168             : {
     169             :     DependencyGenerator state;
     170             : 
     171             :     Assert((n >= k) && (k > 0));
     172             : 
     173             :     /* allocate the DependencyGenerator state */
     174         198 :     state = palloc0_object(DependencyGeneratorData);
     175         198 :     state->dependencies = palloc_array(AttrNumber, k);
     176             : 
     177         198 :     state->ndependencies = 0;
     178         198 :     state->current = 0;
     179         198 :     state->k = k;
     180         198 :     state->n = n;
     181             : 
     182             :     /* now actually pre-generate all the variations */
     183         198 :     generate_dependencies(state);
     184             : 
     185         198 :     return state;
     186             : }
     187             : 
     188             : /* free the DependencyGenerator state */
     189             : static void
     190         198 : DependencyGenerator_free(DependencyGenerator state)
     191             : {
     192         198 :     pfree(state->dependencies);
     193         198 :     pfree(state);
     194         198 : }
     195             : 
     196             : /* generate next combination */
     197             : static AttrNumber *
     198         834 : DependencyGenerator_next(DependencyGenerator state)
     199             : {
     200         834 :     if (state->current == state->ndependencies)
     201         198 :         return NULL;
     202             : 
     203         636 :     return &state->dependencies[state->k * state->current++];
     204             : }
     205             : 
     206             : 
     207             : /*
     208             :  * validates functional dependency on the data
     209             :  *
     210             :  * An actual work horse of detecting functional dependencies. Given a variation
     211             :  * of k attributes, it checks that the first (k-1) are sufficient to determine
     212             :  * the last one.
     213             :  */
     214             : static double
     215         636 : dependency_degree(StatsBuildData *data, int k, AttrNumber *dependency)
     216             : {
     217             :     int         i,
     218             :                 nitems;
     219             :     MultiSortSupport mss;
     220             :     SortItem   *items;
     221             :     AttrNumber *attnums_dep;
     222             : 
     223             :     /* counters valid within a group */
     224         636 :     int         group_size = 0;
     225         636 :     int         n_violations = 0;
     226             : 
     227             :     /* total number of rows supporting (consistent with) the dependency */
     228         636 :     int         n_supporting_rows = 0;
     229             : 
     230             :     /* Make sure we have at least two input attributes. */
     231             :     Assert(k >= 2);
     232             : 
     233             :     /* sort info for all attributes columns */
     234         636 :     mss = multi_sort_init(k);
     235             : 
     236             :     /*
     237             :      * Translate the array of indexes to regular attnums for the dependency
     238             :      * (we will need this to identify the columns in StatsBuildData).
     239             :      */
     240         636 :     attnums_dep = palloc_array(AttrNumber, k);
     241        2052 :     for (i = 0; i < k; i++)
     242        1416 :         attnums_dep[i] = data->attnums[dependency[i]];
     243             : 
     244             :     /*
     245             :      * Verify the dependency (a,b,...)->z, using a rather simple algorithm:
     246             :      *
     247             :      * (a) sort the data lexicographically
     248             :      *
     249             :      * (b) split the data into groups by first (k-1) columns
     250             :      *
     251             :      * (c) for each group count different values in the last column
     252             :      *
     253             :      * We use the column data types' default sort operators and collations;
     254             :      * perhaps at some point it'd be worth using column-specific collations?
     255             :      */
     256             : 
     257             :     /* prepare the sort function for the dimensions */
     258        2052 :     for (i = 0; i < k; i++)
     259             :     {
     260        1416 :         VacAttrStats *colstat = data->stats[dependency[i]];
     261             :         TypeCacheEntry *type;
     262             : 
     263        1416 :         type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
     264        1416 :         if (type->lt_opr == InvalidOid) /* shouldn't happen */
     265           0 :             elog(ERROR, "cache lookup failed for ordering operator for type %u",
     266             :                  colstat->attrtypid);
     267             : 
     268             :         /* prepare the sort function for this dimension */
     269        1416 :         multi_sort_add_dimension(mss, i, type->lt_opr, colstat->attrcollid);
     270             :     }
     271             : 
     272             :     /*
     273             :      * build an array of SortItem(s) sorted using the multi-sort support
     274             :      *
     275             :      * XXX This relies on all stats entries pointing to the same tuple
     276             :      * descriptor.  For now that assumption holds, but it might change in the
     277             :      * future for example if we support statistics on multiple tables.
     278             :      */
     279         636 :     items = build_sorted_items(data, &nitems, mss, k, attnums_dep);
     280             : 
     281             :     /*
     282             :      * Walk through the sorted array, split it into rows according to the
     283             :      * first (k-1) columns. If there's a single value in the last column, we
     284             :      * count the group as 'supporting' the functional dependency. Otherwise we
     285             :      * count it as contradicting.
     286             :      */
     287             : 
     288             :     /* start with the first row forming a group */
     289         636 :     group_size = 1;
     290             : 
     291             :     /* loop 1 beyond the end of the array so that we count the final group */
     292     1505878 :     for (i = 1; i <= nitems; i++)
     293             :     {
     294             :         /*
     295             :          * Check if the group ended, which may be either because we processed
     296             :          * all the items (i==nitems), or because the i-th item is not equal to
     297             :          * the preceding one.
     298             :          */
     299     3009848 :         if (i == nitems ||
     300     1504606 :             multi_sort_compare_dims(0, k - 2, &items[i - 1], &items[i], mss) != 0)
     301             :         {
     302             :             /*
     303             :              * If no violations were found in the group then track the rows of
     304             :              * the group as supporting the functional dependency.
     305             :              */
     306       32628 :             if (n_violations == 0)
     307       19938 :                 n_supporting_rows += group_size;
     308             : 
     309             :             /* Reset counters for the new group */
     310       32628 :             n_violations = 0;
     311       32628 :             group_size = 1;
     312       32628 :             continue;
     313             :         }
     314             :         /* first columns match, but the last one does not (so contradicting) */
     315     1472614 :         else if (multi_sort_compare_dim(k - 1, &items[i - 1], &items[i], mss) != 0)
     316       60102 :             n_violations++;
     317             : 
     318     1472614 :         group_size++;
     319             :     }
     320             : 
     321             :     /* Compute the 'degree of validity' as (supporting/total). */
     322         636 :     return (n_supporting_rows * 1.0 / data->numrows);
     323             : }
     324             : 
     325             : /*
     326             :  * detects functional dependencies between groups of columns
     327             :  *
     328             :  * Generates all possible subsets of columns (variations) and computes
     329             :  * the degree of validity for each one. For example when creating statistics
     330             :  * on three columns (a,b,c) there are 9 possible dependencies
     331             :  *
     332             :  *     two columns            three columns
     333             :  *     -----------            -------------
     334             :  *     (a) -> b                (a,b) -> c
     335             :  *     (a) -> c                (a,c) -> b
     336             :  *     (b) -> a                (b,c) -> a
     337             :  *     (b) -> c
     338             :  *     (c) -> a
     339             :  *     (c) -> b
     340             :  */
     341             : MVDependencies *
     342         150 : statext_dependencies_build(StatsBuildData *data)
     343             : {
     344             :     int         i,
     345             :                 k;
     346             : 
     347             :     /* result */
     348         150 :     MVDependencies *dependencies = NULL;
     349             :     MemoryContext cxt;
     350             : 
     351             :     Assert(data->nattnums >= 2);
     352             : 
     353             :     /* tracks memory allocated by dependency_degree calls */
     354         150 :     cxt = AllocSetContextCreate(CurrentMemoryContext,
     355             :                                 "dependency_degree cxt",
     356             :                                 ALLOCSET_DEFAULT_SIZES);
     357             : 
     358             :     /*
     359             :      * We'll try build functional dependencies starting from the smallest ones
     360             :      * covering just 2 columns, to the largest ones, covering all columns
     361             :      * included in the statistics object.  We start from the smallest ones
     362             :      * because we want to be able to skip already implied ones.
     363             :      */
     364         348 :     for (k = 2; k <= data->nattnums; k++)
     365             :     {
     366             :         AttrNumber *dependency; /* array with k elements */
     367             : 
     368             :         /* prepare a DependencyGenerator of variation */
     369         198 :         DependencyGenerator DependencyGenerator = DependencyGenerator_init(data->nattnums, k);
     370             : 
     371             :         /* generate all possible variations of k values (out of n) */
     372         834 :         while ((dependency = DependencyGenerator_next(DependencyGenerator)))
     373             :         {
     374             :             double      degree;
     375             :             MVDependency *d;
     376             :             MemoryContext oldcxt;
     377             : 
     378             :             /* release memory used by dependency degree calculation */
     379         636 :             oldcxt = MemoryContextSwitchTo(cxt);
     380             : 
     381             :             /* compute how valid the dependency seems */
     382         636 :             degree = dependency_degree(data, k, dependency);
     383             : 
     384         636 :             MemoryContextSwitchTo(oldcxt);
     385         636 :             MemoryContextReset(cxt);
     386             : 
     387             :             /*
     388             :              * if the dependency seems entirely invalid, don't store it
     389             :              */
     390         636 :             if (degree == 0.0)
     391         252 :                 continue;
     392             : 
     393         384 :             d = (MVDependency *) palloc0(offsetof(MVDependency, attributes)
     394         384 :                                          + k * sizeof(AttrNumber));
     395             : 
     396             :             /* copy the dependency (and keep the indexes into stxkeys) */
     397         384 :             d->degree = degree;
     398         384 :             d->nattributes = k;
     399        1224 :             for (i = 0; i < k; i++)
     400         840 :                 d->attributes[i] = data->attnums[dependency[i]];
     401             : 
     402             :             /* initialize the list of dependencies */
     403         384 :             if (dependencies == NULL)
     404             :             {
     405         132 :                 dependencies = palloc0_object(MVDependencies);
     406             : 
     407         132 :                 dependencies->magic = STATS_DEPS_MAGIC;
     408         132 :                 dependencies->type = STATS_DEPS_TYPE_BASIC;
     409         132 :                 dependencies->ndeps = 0;
     410             :             }
     411             : 
     412         384 :             dependencies->ndeps++;
     413         384 :             dependencies = (MVDependencies *) repalloc(dependencies,
     414             :                                                        offsetof(MVDependencies, deps)
     415         384 :                                                        + dependencies->ndeps * sizeof(MVDependency *));
     416             : 
     417         384 :             dependencies->deps[dependencies->ndeps - 1] = d;
     418             :         }
     419             : 
     420             :         /*
     421             :          * we're done with variations of k elements, so free the
     422             :          * DependencyGenerator
     423             :          */
     424         198 :         DependencyGenerator_free(DependencyGenerator);
     425             :     }
     426             : 
     427         150 :     MemoryContextDelete(cxt);
     428             : 
     429         150 :     return dependencies;
     430             : }
     431             : 
     432             : 
     433             : /*
     434             :  * Serialize list of dependencies into a bytea value.
     435             :  */
     436             : bytea *
     437         174 : statext_dependencies_serialize(MVDependencies *dependencies)
     438             : {
     439             :     int         i;
     440             :     bytea      *output;
     441             :     char       *tmp;
     442             :     Size        len;
     443             : 
     444             :     /* we need to store ndeps, with a number of attributes for each one */
     445         174 :     len = VARHDRSZ + SizeOfHeader;
     446             : 
     447             :     /* and also include space for the actual attribute numbers and degrees */
     448         654 :     for (i = 0; i < dependencies->ndeps; i++)
     449         480 :         len += SizeOfItem(dependencies->deps[i]->nattributes);
     450             : 
     451         174 :     output = (bytea *) palloc0(len);
     452         174 :     SET_VARSIZE(output, len);
     453             : 
     454         174 :     tmp = VARDATA(output);
     455             : 
     456             :     /* Store the base struct values (magic, type, ndeps) */
     457         174 :     memcpy(tmp, &dependencies->magic, sizeof(uint32));
     458         174 :     tmp += sizeof(uint32);
     459         174 :     memcpy(tmp, &dependencies->type, sizeof(uint32));
     460         174 :     tmp += sizeof(uint32);
     461         174 :     memcpy(tmp, &dependencies->ndeps, sizeof(uint32));
     462         174 :     tmp += sizeof(uint32);
     463             : 
     464             :     /* store number of attributes and attribute numbers for each dependency */
     465         654 :     for (i = 0; i < dependencies->ndeps; i++)
     466             :     {
     467         480 :         MVDependency *d = dependencies->deps[i];
     468             : 
     469         480 :         memcpy(tmp, &d->degree, sizeof(double));
     470         480 :         tmp += sizeof(double);
     471             : 
     472         480 :         memcpy(tmp, &d->nattributes, sizeof(AttrNumber));
     473         480 :         tmp += sizeof(AttrNumber);
     474             : 
     475         480 :         memcpy(tmp, d->attributes, sizeof(AttrNumber) * d->nattributes);
     476         480 :         tmp += sizeof(AttrNumber) * d->nattributes;
     477             : 
     478             :         /* protect against overflow */
     479             :         Assert(tmp <= ((char *) output + len));
     480             :     }
     481             : 
     482             :     /* make sure we've produced exactly the right amount of data */
     483             :     Assert(tmp == ((char *) output + len));
     484             : 
     485         174 :     return output;
     486             : }
     487             : 
     488             : /*
     489             :  * Reads serialized dependencies into MVDependencies structure.
     490             :  */
     491             : MVDependencies *
     492        1660 : statext_dependencies_deserialize(bytea *data)
     493             : {
     494             :     int         i;
     495             :     Size        min_expected_size;
     496             :     MVDependencies *dependencies;
     497             :     char       *tmp;
     498             : 
     499        1660 :     if (data == NULL)
     500           0 :         return NULL;
     501             : 
     502        1660 :     if (VARSIZE_ANY_EXHDR(data) < SizeOfHeader)
     503           0 :         elog(ERROR, "invalid MVDependencies size %zu (expected at least %zu)",
     504             :              VARSIZE_ANY_EXHDR(data), SizeOfHeader);
     505             : 
     506             :     /* read the MVDependencies header */
     507        1660 :     dependencies = palloc0_object(MVDependencies);
     508             : 
     509             :     /* initialize pointer to the data part (skip the varlena header) */
     510        1660 :     tmp = VARDATA_ANY(data);
     511             : 
     512             :     /* read the header fields and perform basic sanity checks */
     513        1660 :     memcpy(&dependencies->magic, tmp, sizeof(uint32));
     514        1660 :     tmp += sizeof(uint32);
     515        1660 :     memcpy(&dependencies->type, tmp, sizeof(uint32));
     516        1660 :     tmp += sizeof(uint32);
     517        1660 :     memcpy(&dependencies->ndeps, tmp, sizeof(uint32));
     518        1660 :     tmp += sizeof(uint32);
     519             : 
     520        1660 :     if (dependencies->magic != STATS_DEPS_MAGIC)
     521           0 :         elog(ERROR, "invalid dependency magic %d (expected %d)",
     522             :              dependencies->magic, STATS_DEPS_MAGIC);
     523             : 
     524        1660 :     if (dependencies->type != STATS_DEPS_TYPE_BASIC)
     525           0 :         elog(ERROR, "invalid dependency type %d (expected %d)",
     526             :              dependencies->type, STATS_DEPS_TYPE_BASIC);
     527             : 
     528        1660 :     if (dependencies->ndeps == 0)
     529           0 :         elog(ERROR, "invalid zero-length item array in MVDependencies");
     530             : 
     531             :     /* what minimum bytea size do we expect for those parameters */
     532        1660 :     min_expected_size = SizeOfItem(dependencies->ndeps);
     533             : 
     534        1660 :     if (VARSIZE_ANY_EXHDR(data) < min_expected_size)
     535           0 :         elog(ERROR, "invalid dependencies size %zu (expected at least %zu)",
     536             :              VARSIZE_ANY_EXHDR(data), min_expected_size);
     537             : 
     538             :     /* allocate space for the MCV items */
     539        1660 :     dependencies = repalloc(dependencies, offsetof(MVDependencies, deps)
     540        1660 :                             + (dependencies->ndeps * sizeof(MVDependency *)));
     541             : 
     542        9726 :     for (i = 0; i < dependencies->ndeps; i++)
     543             :     {
     544             :         double      degree;
     545             :         AttrNumber  k;
     546             :         MVDependency *d;
     547             : 
     548             :         /* degree of validity */
     549        8066 :         memcpy(&degree, tmp, sizeof(double));
     550        8066 :         tmp += sizeof(double);
     551             : 
     552             :         /* number of attributes */
     553        8066 :         memcpy(&k, tmp, sizeof(AttrNumber));
     554        8066 :         tmp += sizeof(AttrNumber);
     555             : 
     556             :         /* is the number of attributes valid? */
     557             :         Assert((k >= 2) && (k <= STATS_MAX_DIMENSIONS));
     558             : 
     559             :         /* now that we know the number of attributes, allocate the dependency */
     560        8066 :         d = (MVDependency *) palloc0(offsetof(MVDependency, attributes)
     561        8066 :                                      + (k * sizeof(AttrNumber)));
     562             : 
     563        8066 :         d->degree = degree;
     564        8066 :         d->nattributes = k;
     565             : 
     566             :         /* copy attribute numbers */
     567        8066 :         memcpy(d->attributes, tmp, sizeof(AttrNumber) * d->nattributes);
     568        8066 :         tmp += sizeof(AttrNumber) * d->nattributes;
     569             : 
     570        8066 :         dependencies->deps[i] = d;
     571             : 
     572             :         /* still within the bytea */
     573             :         Assert(tmp <= ((char *) data + VARSIZE_ANY(data)));
     574             :     }
     575             : 
     576             :     /* we should have consumed the whole bytea exactly */
     577             :     Assert(tmp == ((char *) data + VARSIZE_ANY(data)));
     578             : 
     579        1660 :     return dependencies;
     580             : }
     581             : 
     582             : /*
     583             :  * dependency_is_fully_matched
     584             :  *      checks that a functional dependency is fully matched given clauses on
     585             :  *      attributes (assuming the clauses are suitable equality clauses)
     586             :  */
     587             : static bool
     588        6156 : dependency_is_fully_matched(MVDependency *dependency, Bitmapset *attnums)
     589             : {
     590             :     int         j;
     591             : 
     592             :     /*
     593             :      * Check that the dependency actually is fully covered by clauses. We have
     594             :      * to translate all attribute numbers, as those are referenced
     595             :      */
     596       15642 :     for (j = 0; j < dependency->nattributes; j++)
     597             :     {
     598       12558 :         int         attnum = dependency->attributes[j];
     599             : 
     600       12558 :         if (!bms_is_member(attnum, attnums))
     601        3072 :             return false;
     602             :     }
     603             : 
     604        3084 :     return true;
     605             : }
     606             : 
     607             : /*
     608             :  * statext_dependencies_load
     609             :  *      Load the functional dependencies for the indicated pg_statistic_ext tuple
     610             :  */
     611             : MVDependencies *
     612        1608 : statext_dependencies_load(Oid mvoid, bool inh)
     613             : {
     614             :     MVDependencies *result;
     615             :     bool        isnull;
     616             :     Datum       deps;
     617             :     HeapTuple   htup;
     618             : 
     619        1608 :     htup = SearchSysCache2(STATEXTDATASTXOID,
     620             :                            ObjectIdGetDatum(mvoid),
     621             :                            BoolGetDatum(inh));
     622        1608 :     if (!HeapTupleIsValid(htup))
     623           0 :         elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
     624             : 
     625        1608 :     deps = SysCacheGetAttr(STATEXTDATASTXOID, htup,
     626             :                            Anum_pg_statistic_ext_data_stxddependencies, &isnull);
     627        1608 :     if (isnull)
     628           0 :         elog(ERROR,
     629             :              "requested statistics kind \"%c\" is not yet built for statistics object %u",
     630             :              STATS_EXT_DEPENDENCIES, mvoid);
     631             : 
     632        1608 :     result = statext_dependencies_deserialize(DatumGetByteaPP(deps));
     633             : 
     634        1608 :     ReleaseSysCache(htup);
     635             : 
     636        1608 :     return result;
     637             : }
     638             : 
     639             : /*
     640             :  * dependency_is_compatible_clause
     641             :  *      Determines if the clause is compatible with functional dependencies
     642             :  *
     643             :  * Only clauses that have the form of equality to a pseudoconstant, or can be
     644             :  * interpreted that way, are currently accepted.  Furthermore the variable
     645             :  * part of the clause must be a simple Var belonging to the specified
     646             :  * relation, whose attribute number we return in *attnum on success.
     647             :  */
     648             : static bool
     649        3960 : dependency_is_compatible_clause(Node *clause, Index relid, AttrNumber *attnum)
     650             : {
     651             :     Var        *var;
     652             :     Node       *clause_expr;
     653             : 
     654        3960 :     if (IsA(clause, RestrictInfo))
     655             :     {
     656        3840 :         RestrictInfo *rinfo = (RestrictInfo *) clause;
     657             : 
     658             :         /* Pseudoconstants are not interesting (they couldn't contain a Var) */
     659        3840 :         if (rinfo->pseudoconstant)
     660           6 :             return false;
     661             : 
     662             :         /* Clauses referencing multiple, or no, varnos are incompatible */
     663        3834 :         if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON)
     664           0 :             return false;
     665             : 
     666        3834 :         clause = (Node *) rinfo->clause;
     667             :     }
     668             : 
     669        3954 :     if (is_opclause(clause))
     670             :     {
     671             :         /* If it's an opclause, check for Var = Const or Const = Var. */
     672        1446 :         OpExpr     *expr = (OpExpr *) clause;
     673             : 
     674             :         /* Only expressions with two arguments are candidates. */
     675        1446 :         if (list_length(expr->args) != 2)
     676           0 :             return false;
     677             : 
     678             :         /* Make sure non-selected argument is a pseudoconstant. */
     679        1446 :         if (is_pseudo_constant_clause(lsecond(expr->args)))
     680        1446 :             clause_expr = linitial(expr->args);
     681           0 :         else if (is_pseudo_constant_clause(linitial(expr->args)))
     682           0 :             clause_expr = lsecond(expr->args);
     683             :         else
     684           0 :             return false;
     685             : 
     686             :         /*
     687             :          * If it's not an "=" operator, just ignore the clause, as it's not
     688             :          * compatible with functional dependencies.
     689             :          *
     690             :          * This uses the function for estimating selectivity, not the operator
     691             :          * directly (a bit awkward, but well ...).
     692             :          *
     693             :          * XXX this is pretty dubious; probably it'd be better to check btree
     694             :          * or hash opclass membership, so as not to be fooled by custom
     695             :          * selectivity functions, and to be more consistent with decisions
     696             :          * elsewhere in the planner.
     697             :          */
     698        1446 :         if (get_oprrest(expr->opno) != F_EQSEL)
     699          36 :             return false;
     700             : 
     701             :         /* OK to proceed with checking "var" */
     702             :     }
     703        2508 :     else if (IsA(clause, ScalarArrayOpExpr))
     704             :     {
     705             :         /* If it's a scalar array operator, check for Var IN Const. */
     706        2436 :         ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
     707             : 
     708             :         /*
     709             :          * Reject ALL() variant, we only care about ANY/IN.
     710             :          *
     711             :          * XXX Maybe we should check if all the values are the same, and allow
     712             :          * ALL in that case? Doesn't seem very practical, though.
     713             :          */
     714        2436 :         if (!expr->useOr)
     715          36 :             return false;
     716             : 
     717             :         /* Only expressions with two arguments are candidates. */
     718        2400 :         if (list_length(expr->args) != 2)
     719           0 :             return false;
     720             : 
     721             :         /*
     722             :          * We know it's always (Var IN Const), so we assume the var is the
     723             :          * first argument, and pseudoconstant is the second one.
     724             :          */
     725        2400 :         if (!is_pseudo_constant_clause(lsecond(expr->args)))
     726           0 :             return false;
     727             : 
     728        2400 :         clause_expr = linitial(expr->args);
     729             : 
     730             :         /*
     731             :          * If it's not an "=" operator, just ignore the clause, as it's not
     732             :          * compatible with functional dependencies. The operator is identified
     733             :          * simply by looking at which function it uses to estimate
     734             :          * selectivity. That's a bit strange, but it's what other similar
     735             :          * places do.
     736             :          */
     737        2400 :         if (get_oprrest(expr->opno) != F_EQSEL)
     738         180 :             return false;
     739             : 
     740             :         /* OK to proceed with checking "var" */
     741             :     }
     742          72 :     else if (is_orclause(clause))
     743             :     {
     744          72 :         BoolExpr   *bool_expr = (BoolExpr *) clause;
     745             :         ListCell   *lc;
     746             : 
     747             :         /* start with no attribute number */
     748          72 :         *attnum = InvalidAttrNumber;
     749             : 
     750         150 :         foreach(lc, bool_expr->args)
     751             :         {
     752             :             AttrNumber  clause_attnum;
     753             : 
     754             :             /*
     755             :              * Had we found incompatible clause in the arguments, treat the
     756             :              * whole clause as incompatible.
     757             :              */
     758         120 :             if (!dependency_is_compatible_clause((Node *) lfirst(lc),
     759             :                                                  relid, &clause_attnum))
     760          42 :                 return false;
     761             : 
     762          84 :             if (*attnum == InvalidAttrNumber)
     763          36 :                 *attnum = clause_attnum;
     764             : 
     765             :             /* ensure all the variables are the same (same attnum) */
     766          84 :             if (*attnum != clause_attnum)
     767           6 :                 return false;
     768             :         }
     769             : 
     770             :         /* the Var is already checked by the recursive call */
     771          30 :         return true;
     772             :     }
     773           0 :     else if (is_notclause(clause))
     774             :     {
     775             :         /*
     776             :          * "NOT x" can be interpreted as "x = false", so get the argument and
     777             :          * proceed with seeing if it's a suitable Var.
     778             :          */
     779           0 :         clause_expr = (Node *) get_notclausearg(clause);
     780             :     }
     781             :     else
     782             :     {
     783             :         /*
     784             :          * A boolean expression "x" can be interpreted as "x = true", so
     785             :          * proceed with seeing if it's a suitable Var.
     786             :          */
     787           0 :         clause_expr = clause;
     788             :     }
     789             : 
     790             :     /*
     791             :      * We may ignore any RelabelType node above the operand.  (There won't be
     792             :      * more than one, since eval_const_expressions has been applied already.)
     793             :      */
     794        3630 :     if (IsA(clause_expr, RelabelType))
     795           0 :         clause_expr = (Node *) ((RelabelType *) clause_expr)->arg;
     796             : 
     797             :     /* We only support plain Vars for now */
     798        3630 :     if (!IsA(clause_expr, Var))
     799         288 :         return false;
     800             : 
     801             :     /* OK, we know we have a Var */
     802        3342 :     var = (Var *) clause_expr;
     803             : 
     804             :     /* Ensure Var is from the correct relation */
     805        3342 :     if (var->varno != relid)
     806           0 :         return false;
     807             : 
     808             :     /* We also better ensure the Var is from the current level */
     809        3342 :     if (var->varlevelsup != 0)
     810           0 :         return false;
     811             : 
     812             :     /* Also ignore system attributes (we don't allow stats on those) */
     813        3342 :     if (!AttrNumberIsForUserDefinedAttr(var->varattno))
     814           0 :         return false;
     815             : 
     816        3342 :     *attnum = var->varattno;
     817        3342 :     return true;
     818             : }
     819             : 
     820             : /*
     821             :  * find_strongest_dependency
     822             :  *      find the strongest dependency on the attributes
     823             :  *
     824             :  * When applying functional dependencies, we start with the strongest
     825             :  * dependencies. That is, we select the dependency that:
     826             :  *
     827             :  * (a) has all attributes covered by equality clauses
     828             :  *
     829             :  * (b) has the most attributes
     830             :  *
     831             :  * (c) has the highest degree of validity
     832             :  *
     833             :  * This guarantees that we eliminate the most redundant conditions first
     834             :  * (see the comment in dependencies_clauselist_selectivity).
     835             :  */
     836             : static MVDependency *
     837        3486 : find_strongest_dependency(MVDependencies **dependencies, int ndependencies,
     838             :                           Bitmapset *attnums)
     839             : {
     840             :     int         i,
     841             :                 j;
     842        3486 :     MVDependency *strongest = NULL;
     843             : 
     844             :     /* number of attnums in clauses */
     845        3486 :     int         nattnums = bms_num_members(attnums);
     846             : 
     847             :     /*
     848             :      * Iterate over the MVDependency items and find the strongest one from the
     849             :      * fully-matched dependencies. We do the cheap checks first, before
     850             :      * matching it against the attnums.
     851             :      */
     852        7008 :     for (i = 0; i < ndependencies; i++)
     853             :     {
     854       20280 :         for (j = 0; j < dependencies[i]->ndeps; j++)
     855             :         {
     856       16758 :             MVDependency *dependency = dependencies[i]->deps[j];
     857             : 
     858             :             /*
     859             :              * Skip dependencies referencing more attributes than available
     860             :              * clauses, as those can't be fully matched.
     861             :              */
     862       16758 :             if (dependency->nattributes > nattnums)
     863       10602 :                 continue;
     864             : 
     865        6156 :             if (strongest)
     866             :             {
     867             :                 /* skip dependencies on fewer attributes than the strongest. */
     868        3936 :                 if (dependency->nattributes < strongest->nattributes)
     869           0 :                     continue;
     870             : 
     871             :                 /* also skip weaker dependencies when attribute count matches */
     872        3936 :                 if (strongest->nattributes == dependency->nattributes &&
     873        3654 :                     strongest->degree > dependency->degree)
     874           0 :                     continue;
     875             :             }
     876             : 
     877             :             /*
     878             :              * this dependency is stronger, but we must still check that it's
     879             :              * fully matched to these attnums. We perform this check last as
     880             :              * it's slightly more expensive than the previous checks.
     881             :              */
     882        6156 :             if (dependency_is_fully_matched(dependency, attnums))
     883        3084 :                 strongest = dependency; /* save new best match */
     884             :         }
     885             :     }
     886             : 
     887        3486 :     return strongest;
     888             : }
     889             : 
     890             : /*
     891             :  * clauselist_apply_dependencies
     892             :  *      Apply the specified functional dependencies to a list of clauses and
     893             :  *      return the estimated selectivity of the clauses that are compatible
     894             :  *      with any of the given dependencies.
     895             :  *
     896             :  * This will estimate all not-already-estimated clauses that are compatible
     897             :  * with functional dependencies, and which have an attribute mentioned by any
     898             :  * of the given dependencies (either as an implying or implied attribute).
     899             :  *
     900             :  * Given (lists of) clauses on attributes (a,b) and a functional dependency
     901             :  * (a=>b), the per-column selectivities P(a) and P(b) are notionally combined
     902             :  * using the formula
     903             :  *
     904             :  *      P(a,b) = f * P(a) + (1-f) * P(a) * P(b)
     905             :  *
     906             :  * where 'f' is the degree of dependency.  This reflects the fact that we
     907             :  * expect a fraction f of all rows to be consistent with the dependency
     908             :  * (a=>b), and so have a selectivity of P(a), while the remaining rows are
     909             :  * treated as independent.
     910             :  *
     911             :  * In practice, we use a slightly modified version of this formula, which uses
     912             :  * a selectivity of Min(P(a), P(b)) for the dependent rows, since the result
     913             :  * should obviously not exceed either column's individual selectivity.  I.e.,
     914             :  * we actually combine selectivities using the formula
     915             :  *
     916             :  *      P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b)
     917             :  *
     918             :  * This can make quite a difference if the specific values matching the
     919             :  * clauses are not consistent with the functional dependency.
     920             :  */
     921             : static Selectivity
     922        1596 : clauselist_apply_dependencies(PlannerInfo *root, List *clauses,
     923             :                               int varRelid, JoinType jointype,
     924             :                               SpecialJoinInfo *sjinfo,
     925             :                               MVDependency **dependencies, int ndependencies,
     926             :                               AttrNumber *list_attnums,
     927             :                               Bitmapset **estimatedclauses)
     928             : {
     929             :     Bitmapset  *attnums;
     930             :     int         i;
     931             :     int         j;
     932             :     int         nattrs;
     933             :     Selectivity *attr_sel;
     934             :     int         attidx;
     935             :     int         listidx;
     936             :     ListCell   *l;
     937             :     Selectivity s1;
     938             : 
     939             :     /*
     940             :      * Extract the attnums of all implying and implied attributes from all the
     941             :      * given dependencies.  Each of these attributes is expected to have at
     942             :      * least 1 not-already-estimated compatible clause that we will estimate
     943             :      * here.
     944             :      */
     945        1596 :     attnums = NULL;
     946        3486 :     for (i = 0; i < ndependencies; i++)
     947             :     {
     948        5952 :         for (j = 0; j < dependencies[i]->nattributes; j++)
     949             :         {
     950        4062 :             AttrNumber  attnum = dependencies[i]->attributes[j];
     951             : 
     952        4062 :             attnums = bms_add_member(attnums, attnum);
     953             :         }
     954             :     }
     955             : 
     956             :     /*
     957             :      * Compute per-column selectivity estimates for each of these attributes,
     958             :      * and mark all the corresponding clauses as estimated.
     959             :      */
     960        1596 :     nattrs = bms_num_members(attnums);
     961        1596 :     attr_sel = palloc_array(Selectivity, nattrs);
     962             : 
     963        1596 :     attidx = 0;
     964        1596 :     i = -1;
     965        5094 :     while ((i = bms_next_member(attnums, i)) >= 0)
     966             :     {
     967        3498 :         List       *attr_clauses = NIL;
     968             :         Selectivity simple_sel;
     969             : 
     970        3498 :         listidx = -1;
     971       11436 :         foreach(l, clauses)
     972             :         {
     973        7938 :             Node       *clause = (Node *) lfirst(l);
     974             : 
     975        7938 :             listidx++;
     976        7938 :             if (list_attnums[listidx] == i)
     977             :             {
     978        3498 :                 attr_clauses = lappend(attr_clauses, clause);
     979        3498 :                 *estimatedclauses = bms_add_member(*estimatedclauses, listidx);
     980             :             }
     981             :         }
     982             : 
     983        3498 :         simple_sel = clauselist_selectivity_ext(root, attr_clauses, varRelid,
     984             :                                                 jointype, sjinfo, false);
     985        3498 :         attr_sel[attidx++] = simple_sel;
     986             :     }
     987             : 
     988             :     /*
     989             :      * Now combine these selectivities using the dependency information.  For
     990             :      * chains of dependencies such as a -> b -> c, the b -> c dependency will
     991             :      * come before the a -> b dependency in the array, so we traverse the
     992             :      * array backwards to ensure such chains are computed in the right order.
     993             :      *
     994             :      * As explained above, pairs of selectivities are combined using the
     995             :      * formula
     996             :      *
     997             :      * P(a,b) = f * Min(P(a), P(b)) + (1-f) * P(a) * P(b)
     998             :      *
     999             :      * to ensure that the combined selectivity is never greater than either
    1000             :      * individual selectivity.
    1001             :      *
    1002             :      * Where multiple dependencies apply (e.g., a -> b -> c), we use
    1003             :      * conditional probabilities to compute the overall result as follows:
    1004             :      *
    1005             :      * P(a,b,c) = P(c|a,b) * P(a,b) = P(c|a,b) * P(b|a) * P(a)
    1006             :      *
    1007             :      * so we replace the selectivities of all implied attributes with
    1008             :      * conditional probabilities, that are conditional on all their implying
    1009             :      * attributes.  The selectivities of all other non-implied attributes are
    1010             :      * left as they are.
    1011             :      */
    1012        3486 :     for (i = ndependencies - 1; i >= 0; i--)
    1013             :     {
    1014        1890 :         MVDependency *dependency = dependencies[i];
    1015             :         AttrNumber  attnum;
    1016             :         Selectivity s2;
    1017             :         double      f;
    1018             : 
    1019             :         /* Selectivity of all the implying attributes */
    1020        1890 :         s1 = 1.0;
    1021        4062 :         for (j = 0; j < dependency->nattributes - 1; j++)
    1022             :         {
    1023        2172 :             attnum = dependency->attributes[j];
    1024        2172 :             attidx = bms_member_index(attnums, attnum);
    1025        2172 :             s1 *= attr_sel[attidx];
    1026             :         }
    1027             : 
    1028             :         /* Original selectivity of the implied attribute */
    1029        1890 :         attnum = dependency->attributes[j];
    1030        1890 :         attidx = bms_member_index(attnums, attnum);
    1031        1890 :         s2 = attr_sel[attidx];
    1032             : 
    1033             :         /*
    1034             :          * Replace s2 with the conditional probability s2 given s1, computed
    1035             :          * using the formula P(b|a) = P(a,b) / P(a), which simplifies to
    1036             :          *
    1037             :          * P(b|a) = f * Min(P(a), P(b)) / P(a) + (1-f) * P(b)
    1038             :          *
    1039             :          * where P(a) = s1, the selectivity of the implying attributes, and
    1040             :          * P(b) = s2, the selectivity of the implied attribute.
    1041             :          */
    1042        1890 :         f = dependency->degree;
    1043             : 
    1044        1890 :         if (s1 <= s2)
    1045        1782 :             attr_sel[attidx] = f + (1 - f) * s2;
    1046             :         else
    1047         108 :             attr_sel[attidx] = f * s2 / s1 + (1 - f) * s2;
    1048             :     }
    1049             : 
    1050             :     /*
    1051             :      * The overall selectivity of all the clauses on all these attributes is
    1052             :      * then the product of all the original (non-implied) probabilities and
    1053             :      * the new conditional (implied) probabilities.
    1054             :      */
    1055        1596 :     s1 = 1.0;
    1056        5094 :     for (i = 0; i < nattrs; i++)
    1057        3498 :         s1 *= attr_sel[i];
    1058             : 
    1059        1596 :     CLAMP_PROBABILITY(s1);
    1060             : 
    1061        1596 :     pfree(attr_sel);
    1062        1596 :     bms_free(attnums);
    1063             : 
    1064        1596 :     return s1;
    1065             : }
    1066             : 
    1067             : /*
    1068             :  * dependency_is_compatible_expression
    1069             :  *      Determines if the expression is compatible with functional dependencies
    1070             :  *
    1071             :  * Similar to dependency_is_compatible_clause, but doesn't enforce that the
    1072             :  * expression is a simple Var.  On success, return the matching statistics
    1073             :  * expression into *expr.
    1074             :  */
    1075             : static bool
    1076         642 : dependency_is_compatible_expression(Node *clause, Index relid, List *statlist, Node **expr)
    1077             : {
    1078             :     ListCell   *lc,
    1079             :                *lc2;
    1080             :     Node       *clause_expr;
    1081             : 
    1082         642 :     if (IsA(clause, RestrictInfo))
    1083             :     {
    1084         552 :         RestrictInfo *rinfo = (RestrictInfo *) clause;
    1085             : 
    1086             :         /* Pseudoconstants are not interesting (they couldn't contain a Var) */
    1087         552 :         if (rinfo->pseudoconstant)
    1088           6 :             return false;
    1089             : 
    1090             :         /* Clauses referencing multiple, or no, varnos are incompatible */
    1091         546 :         if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON)
    1092           0 :             return false;
    1093             : 
    1094         546 :         clause = (Node *) rinfo->clause;
    1095             :     }
    1096             : 
    1097         636 :     if (is_opclause(clause))
    1098             :     {
    1099             :         /* If it's an opclause, check for Var = Const or Const = Var. */
    1100         204 :         OpExpr     *expr = (OpExpr *) clause;
    1101             : 
    1102             :         /* Only expressions with two arguments are candidates. */
    1103         204 :         if (list_length(expr->args) != 2)
    1104           0 :             return false;
    1105             : 
    1106             :         /* Make sure non-selected argument is a pseudoconstant. */
    1107         204 :         if (is_pseudo_constant_clause(lsecond(expr->args)))
    1108         204 :             clause_expr = linitial(expr->args);
    1109           0 :         else if (is_pseudo_constant_clause(linitial(expr->args)))
    1110           0 :             clause_expr = lsecond(expr->args);
    1111             :         else
    1112           0 :             return false;
    1113             : 
    1114             :         /*
    1115             :          * If it's not an "=" operator, just ignore the clause, as it's not
    1116             :          * compatible with functional dependencies.
    1117             :          *
    1118             :          * This uses the function for estimating selectivity, not the operator
    1119             :          * directly (a bit awkward, but well ...).
    1120             :          *
    1121             :          * XXX this is pretty dubious; probably it'd be better to check btree
    1122             :          * or hash opclass membership, so as not to be fooled by custom
    1123             :          * selectivity functions, and to be more consistent with decisions
    1124             :          * elsewhere in the planner.
    1125             :          */
    1126         204 :         if (get_oprrest(expr->opno) != F_EQSEL)
    1127          36 :             return false;
    1128             : 
    1129             :         /* OK to proceed with checking "var" */
    1130             :     }
    1131         432 :     else if (IsA(clause, ScalarArrayOpExpr))
    1132             :     {
    1133             :         /* If it's a scalar array operator, check for Var IN Const. */
    1134         390 :         ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) clause;
    1135             : 
    1136             :         /*
    1137             :          * Reject ALL() variant, we only care about ANY/IN.
    1138             :          *
    1139             :          * FIXME Maybe we should check if all the values are the same, and
    1140             :          * allow ALL in that case? Doesn't seem very practical, though.
    1141             :          */
    1142         390 :         if (!expr->useOr)
    1143          36 :             return false;
    1144             : 
    1145             :         /* Only expressions with two arguments are candidates. */
    1146         354 :         if (list_length(expr->args) != 2)
    1147           0 :             return false;
    1148             : 
    1149             :         /*
    1150             :          * We know it's always (Var IN Const), so we assume the var is the
    1151             :          * first argument, and pseudoconstant is the second one.
    1152             :          */
    1153         354 :         if (!is_pseudo_constant_clause(lsecond(expr->args)))
    1154           0 :             return false;
    1155             : 
    1156         354 :         clause_expr = linitial(expr->args);
    1157             : 
    1158             :         /*
    1159             :          * If it's not an "=" operator, just ignore the clause, as it's not
    1160             :          * compatible with functional dependencies. The operator is identified
    1161             :          * simply by looking at which function it uses to estimate
    1162             :          * selectivity. That's a bit strange, but it's what other similar
    1163             :          * places do.
    1164             :          */
    1165         354 :         if (get_oprrest(expr->opno) != F_EQSEL)
    1166         180 :             return false;
    1167             : 
    1168             :         /* OK to proceed with checking "var" */
    1169             :     }
    1170          42 :     else if (is_orclause(clause))
    1171             :     {
    1172          42 :         BoolExpr   *bool_expr = (BoolExpr *) clause;
    1173             : 
    1174             :         /* start with no expression (we'll use the first match) */
    1175          42 :         *expr = NULL;
    1176             : 
    1177         120 :         foreach(lc, bool_expr->args)
    1178             :         {
    1179          90 :             Node       *or_expr = NULL;
    1180             : 
    1181             :             /*
    1182             :              * Had we found incompatible expression in the arguments, treat
    1183             :              * the whole expression as incompatible.
    1184             :              */
    1185          90 :             if (!dependency_is_compatible_expression((Node *) lfirst(lc), relid,
    1186             :                                                      statlist, &or_expr))
    1187          12 :                 return false;
    1188             : 
    1189          84 :             if (*expr == NULL)
    1190          36 :                 *expr = or_expr;
    1191             : 
    1192             :             /* ensure all the expressions are the same */
    1193          84 :             if (!equal(or_expr, *expr))
    1194           6 :                 return false;
    1195             :         }
    1196             : 
    1197             :         /* the expression is already checked by the recursive call */
    1198          30 :         return true;
    1199             :     }
    1200           0 :     else if (is_notclause(clause))
    1201             :     {
    1202             :         /*
    1203             :          * "NOT x" can be interpreted as "x = false", so get the argument and
    1204             :          * proceed with seeing if it's a suitable Var.
    1205             :          */
    1206           0 :         clause_expr = (Node *) get_notclausearg(clause);
    1207             :     }
    1208             :     else
    1209             :     {
    1210             :         /*
    1211             :          * A boolean expression "x" can be interpreted as "x = true", so
    1212             :          * proceed with seeing if it's a suitable Var.
    1213             :          */
    1214           0 :         clause_expr = clause;
    1215             :     }
    1216             : 
    1217             :     /*
    1218             :      * We may ignore any RelabelType node above the operand.  (There won't be
    1219             :      * more than one, since eval_const_expressions has been applied already.)
    1220             :      */
    1221         342 :     if (IsA(clause_expr, RelabelType))
    1222           0 :         clause_expr = (Node *) ((RelabelType *) clause_expr)->arg;
    1223             : 
    1224             :     /*
    1225             :      * Search for a matching statistics expression.
    1226             :      */
    1227         348 :     foreach(lc, statlist)
    1228             :     {
    1229         342 :         StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
    1230             : 
    1231             :         /* ignore stats without dependencies */
    1232         342 :         if (info->kind != STATS_EXT_DEPENDENCIES)
    1233           0 :             continue;
    1234             : 
    1235         558 :         foreach(lc2, info->exprs)
    1236             :         {
    1237         552 :             Node       *stat_expr = (Node *) lfirst(lc2);
    1238             : 
    1239         552 :             if (equal(clause_expr, stat_expr))
    1240             :             {
    1241         336 :                 *expr = stat_expr;
    1242         336 :                 return true;
    1243             :             }
    1244             :         }
    1245             :     }
    1246             : 
    1247           6 :     return false;
    1248             : }
    1249             : 
    1250             : /*
    1251             :  * dependencies_clauselist_selectivity
    1252             :  *      Return the estimated selectivity of (a subset of) the given clauses
    1253             :  *      using functional dependency statistics, or 1.0 if no useful functional
    1254             :  *      dependency statistic exists.
    1255             :  *
    1256             :  * 'estimatedclauses' is an input/output argument that gets a bit set
    1257             :  * corresponding to the (zero-based) list index of each clause that is included
    1258             :  * in the estimated selectivity.
    1259             :  *
    1260             :  * Given equality clauses on attributes (a,b) we find the strongest dependency
    1261             :  * between them, i.e. either (a=>b) or (b=>a). Assuming (a=>b) is the selected
    1262             :  * dependency, we then combine the per-clause selectivities using the formula
    1263             :  *
    1264             :  *     P(a,b) = f * P(a) + (1-f) * P(a) * P(b)
    1265             :  *
    1266             :  * where 'f' is the degree of the dependency.  (Actually we use a slightly
    1267             :  * modified version of this formula -- see clauselist_apply_dependencies()).
    1268             :  *
    1269             :  * With clauses on more than two attributes, the dependencies are applied
    1270             :  * recursively, starting with the widest/strongest dependencies. For example
    1271             :  * P(a,b,c) is first split like this:
    1272             :  *
    1273             :  *     P(a,b,c) = f * P(a,b) + (1-f) * P(a,b) * P(c)
    1274             :  *
    1275             :  * assuming (a,b=>c) is the strongest dependency.
    1276             :  */
    1277             : Selectivity
    1278        2436 : dependencies_clauselist_selectivity(PlannerInfo *root,
    1279             :                                     List *clauses,
    1280             :                                     int varRelid,
    1281             :                                     JoinType jointype,
    1282             :                                     SpecialJoinInfo *sjinfo,
    1283             :                                     RelOptInfo *rel,
    1284             :                                     Bitmapset **estimatedclauses)
    1285             : {
    1286        2436 :     Selectivity s1 = 1.0;
    1287             :     ListCell   *l;
    1288        2436 :     Bitmapset  *clauses_attnums = NULL;
    1289             :     AttrNumber *list_attnums;
    1290             :     int         listidx;
    1291             :     MVDependencies **func_dependencies;
    1292             :     int         nfunc_dependencies;
    1293             :     int         total_ndeps;
    1294             :     MVDependency **dependencies;
    1295             :     int         ndependencies;
    1296             :     int         i;
    1297             :     AttrNumber  attnum_offset;
    1298        2436 :     RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
    1299             : 
    1300             :     /* unique expressions */
    1301             :     Node      **unique_exprs;
    1302             :     int         unique_exprs_cnt;
    1303             : 
    1304             :     /* check if there's any stats that might be useful for us. */
    1305        2436 :     if (!has_stats_of_kind(rel->statlist, STATS_EXT_DEPENDENCIES))
    1306         648 :         return 1.0;
    1307             : 
    1308        1788 :     list_attnums = palloc_array(AttrNumber, list_length(clauses));
    1309             : 
    1310             :     /*
    1311             :      * We allocate space as if every clause was a unique expression, although
    1312             :      * that's probably overkill. Some will be simple column references that
    1313             :      * we'll translate to attnums, and there might be duplicates. But it's
    1314             :      * easier and cheaper to just do one allocation than repalloc later.
    1315             :      */
    1316        1788 :     unique_exprs = palloc_array(Node *, list_length(clauses));
    1317        1788 :     unique_exprs_cnt = 0;
    1318             : 
    1319             :     /*
    1320             :      * Pre-process the clauses list to extract the attnums seen in each item.
    1321             :      * We need to determine if there's any clauses which will be useful for
    1322             :      * dependency selectivity estimations. Along the way we'll record all of
    1323             :      * the attnums for each clause in a list which we'll reference later so we
    1324             :      * don't need to repeat the same work again. We'll also keep track of all
    1325             :      * attnums seen.
    1326             :      *
    1327             :      * We also skip clauses that we already estimated using different types of
    1328             :      * statistics (we treat them as incompatible).
    1329             :      *
    1330             :      * To handle expressions, we assign them negative attnums, as if it was a
    1331             :      * system attribute (this is fine, as we only allow extended stats on user
    1332             :      * attributes). And then we offset everything by the number of
    1333             :      * expressions, so that we can store the values in a bitmapset.
    1334             :      */
    1335        1788 :     listidx = 0;
    1336        5670 :     foreach(l, clauses)
    1337             :     {
    1338        3882 :         Node       *clause = (Node *) lfirst(l);
    1339             :         AttrNumber  attnum;
    1340        3882 :         Node       *expr = NULL;
    1341             : 
    1342             :         /* ignore clause by default */
    1343        3882 :         list_attnums[listidx] = InvalidAttrNumber;
    1344             : 
    1345        3882 :         if (!bms_is_member(listidx, *estimatedclauses))
    1346             :         {
    1347             :             /*
    1348             :              * If it's a simple column reference, just extract the attnum. If
    1349             :              * it's an expression, assign a negative attnum as if it was a
    1350             :              * system attribute.
    1351             :              */
    1352        3840 :             if (dependency_is_compatible_clause(clause, rel->relid, &attnum))
    1353             :             {
    1354        3288 :                 list_attnums[listidx] = attnum;
    1355             :             }
    1356         552 :             else if (dependency_is_compatible_expression(clause, rel->relid,
    1357             :                                                          rel->statlist,
    1358             :                                                          &expr))
    1359             :             {
    1360             :                 /* special attnum assigned to this expression */
    1361         282 :                 attnum = InvalidAttrNumber;
    1362             : 
    1363             :                 Assert(expr != NULL);
    1364             : 
    1365             :                 /* If the expression is duplicate, use the same attnum. */
    1366         474 :                 for (i = 0; i < unique_exprs_cnt; i++)
    1367             :                 {
    1368         192 :                     if (equal(unique_exprs[i], expr))
    1369             :                     {
    1370             :                         /* negative attribute number to expression */
    1371           0 :                         attnum = -(i + 1);
    1372           0 :                         break;
    1373             :                     }
    1374             :                 }
    1375             : 
    1376             :                 /* not found in the list, so add it */
    1377         282 :                 if (attnum == InvalidAttrNumber)
    1378             :                 {
    1379         282 :                     unique_exprs[unique_exprs_cnt++] = expr;
    1380             : 
    1381             :                     /* after incrementing the value, to get -1, -2, ... */
    1382         282 :                     attnum = (-unique_exprs_cnt);
    1383             :                 }
    1384             : 
    1385             :                 /* remember which attnum was assigned to this clause */
    1386         282 :                 list_attnums[listidx] = attnum;
    1387             :             }
    1388             :         }
    1389             : 
    1390        3882 :         listidx++;
    1391             :     }
    1392             : 
    1393             :     Assert(listidx == list_length(clauses));
    1394             : 
    1395             :     /*
    1396             :      * How much we need to offset the attnums? If there are no expressions,
    1397             :      * then no offset is needed. Otherwise we need to offset enough for the
    1398             :      * lowest value (-unique_exprs_cnt) to become 1.
    1399             :      */
    1400        1788 :     if (unique_exprs_cnt > 0)
    1401         132 :         attnum_offset = (unique_exprs_cnt + 1);
    1402             :     else
    1403        1656 :         attnum_offset = 0;
    1404             : 
    1405             :     /*
    1406             :      * Now that we know how many expressions there are, we can offset the
    1407             :      * values just enough to build the bitmapset.
    1408             :      */
    1409        5670 :     for (i = 0; i < list_length(clauses); i++)
    1410             :     {
    1411             :         AttrNumber  attnum;
    1412             : 
    1413             :         /* ignore incompatible or already estimated clauses */
    1414        3882 :         if (list_attnums[i] == InvalidAttrNumber)
    1415         312 :             continue;
    1416             : 
    1417             :         /* make sure the attnum is in the expected range */
    1418             :         Assert(list_attnums[i] >= (-unique_exprs_cnt));
    1419             :         Assert(list_attnums[i] <= MaxHeapAttributeNumber);
    1420             : 
    1421             :         /* make sure the attnum is positive (valid AttrNumber) */
    1422        3570 :         attnum = list_attnums[i] + attnum_offset;
    1423             : 
    1424             :         /*
    1425             :          * Either it's a regular attribute, or it's an expression, in which
    1426             :          * case we must not have seen it before (expressions are unique).
    1427             :          *
    1428             :          * XXX Check whether it's a regular attribute has to be done using the
    1429             :          * original attnum, while the second check has to use the value with
    1430             :          * an offset.
    1431             :          */
    1432             :         Assert(AttrNumberIsForUserDefinedAttr(list_attnums[i]) ||
    1433             :                !bms_is_member(attnum, clauses_attnums));
    1434             : 
    1435             :         /*
    1436             :          * Remember the offset attnum, both for attributes and expressions.
    1437             :          * We'll pass list_attnums to clauselist_apply_dependencies, which
    1438             :          * uses it to identify clauses in a bitmap. We could also pass the
    1439             :          * offset, but this is more convenient.
    1440             :          */
    1441        3570 :         list_attnums[i] = attnum;
    1442             : 
    1443        3570 :         clauses_attnums = bms_add_member(clauses_attnums, attnum);
    1444             :     }
    1445             : 
    1446             :     /*
    1447             :      * If there's not at least two distinct attnums and expressions, then
    1448             :      * reject the whole list of clauses. We must return 1.0 so the calling
    1449             :      * function's selectivity is unaffected.
    1450             :      */
    1451        1788 :     if (bms_membership(clauses_attnums) != BMS_MULTIPLE)
    1452             :     {
    1453         192 :         bms_free(clauses_attnums);
    1454         192 :         pfree(list_attnums);
    1455         192 :         return 1.0;
    1456             :     }
    1457             : 
    1458             :     /*
    1459             :      * Load all functional dependencies matching at least two parameters. We
    1460             :      * can simply consider all dependencies at once, without having to search
    1461             :      * for the best statistics object.
    1462             :      *
    1463             :      * To not waste cycles and memory, we deserialize dependencies only for
    1464             :      * statistics that match at least two attributes. The array is allocated
    1465             :      * with the assumption that all objects match - we could grow the array to
    1466             :      * make it just the right size, but it's likely wasteful anyway thanks to
    1467             :      * moving the freed chunks to freelists etc.
    1468             :      */
    1469        1596 :     func_dependencies = palloc_array(MVDependencies *, list_length(rel->statlist));
    1470        1596 :     nfunc_dependencies = 0;
    1471        1596 :     total_ndeps = 0;
    1472             : 
    1473        3330 :     foreach(l, rel->statlist)
    1474             :     {
    1475        1734 :         StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l);
    1476             :         int         nmatched;
    1477             :         int         nexprs;
    1478             :         int         k;
    1479             :         MVDependencies *deps;
    1480             : 
    1481             :         /* skip statistics that are not of the correct type */
    1482        1734 :         if (stat->kind != STATS_EXT_DEPENDENCIES)
    1483         108 :             continue;
    1484             : 
    1485             :         /* skip statistics with mismatching stxdinherit value */
    1486        1626 :         if (stat->inherit != rte->inh)
    1487           0 :             continue;
    1488             : 
    1489             :         /*
    1490             :          * Count matching attributes - we have to undo the attnum offsets. The
    1491             :          * input attribute numbers are not offset (expressions are not
    1492             :          * included in stat->keys, so it's not necessary). But we need to
    1493             :          * offset it before checking against clauses_attnums.
    1494             :          */
    1495        1626 :         nmatched = 0;
    1496        1626 :         k = -1;
    1497        6120 :         while ((k = bms_next_member(stat->keys, k)) >= 0)
    1498             :         {
    1499        4494 :             AttrNumber  attnum = (AttrNumber) k;
    1500             : 
    1501             :             /* skip expressions */
    1502        4494 :             if (!AttrNumberIsForUserDefinedAttr(attnum))
    1503           0 :                 continue;
    1504             : 
    1505             :             /* apply the same offset as above */
    1506        4494 :             attnum += attnum_offset;
    1507             : 
    1508        4494 :             if (bms_is_member(attnum, clauses_attnums))
    1509        3240 :                 nmatched++;
    1510             :         }
    1511             : 
    1512             :         /* count matching expressions */
    1513        1626 :         nexprs = 0;
    1514        1884 :         for (i = 0; i < unique_exprs_cnt; i++)
    1515             :         {
    1516             :             ListCell   *lc;
    1517             : 
    1518        1032 :             foreach(lc, stat->exprs)
    1519             :             {
    1520         774 :                 Node       *stat_expr = (Node *) lfirst(lc);
    1521             : 
    1522             :                 /* try to match it */
    1523         774 :                 if (equal(stat_expr, unique_exprs[i]))
    1524         258 :                     nexprs++;
    1525             :             }
    1526             :         }
    1527             : 
    1528             :         /*
    1529             :          * Skip objects matching fewer than two attributes/expressions from
    1530             :          * clauses.
    1531             :          */
    1532        1626 :         if (nmatched + nexprs < 2)
    1533          18 :             continue;
    1534             : 
    1535        1608 :         deps = statext_dependencies_load(stat->statOid, rte->inh);
    1536             : 
    1537             :         /*
    1538             :          * The expressions may be represented by different attnums in the
    1539             :          * stats, we need to remap them to be consistent with the clauses.
    1540             :          * That will make the later steps (e.g. picking the strongest item and
    1541             :          * so on) much simpler and cheaper, because it won't need to care
    1542             :          * about the offset at all.
    1543             :          *
    1544             :          * When we're at it, we can ignore dependencies that are not fully
    1545             :          * matched by clauses (i.e. referencing attributes or expressions that
    1546             :          * are not in the clauses).
    1547             :          *
    1548             :          * We have to do this for all statistics, as long as there are any
    1549             :          * expressions - we need to shift the attnums in all dependencies.
    1550             :          *
    1551             :          * XXX Maybe we should do this always, because it also eliminates some
    1552             :          * of the dependencies early. It might be cheaper than having to walk
    1553             :          * the longer list in find_strongest_dependency later, especially as
    1554             :          * we need to do that repeatedly?
    1555             :          *
    1556             :          * XXX We have to do this even when there are no expressions in
    1557             :          * clauses, otherwise find_strongest_dependency may fail for stats
    1558             :          * with expressions (due to lookup of negative value in bitmap). So we
    1559             :          * need to at least filter out those dependencies. Maybe we could do
    1560             :          * it in a cheaper way (if there are no expr clauses, we can just
    1561             :          * discard all negative attnums without any lookups).
    1562             :          */
    1563        1608 :         if (unique_exprs_cnt > 0 || stat->exprs != NIL)
    1564             :         {
    1565         108 :             int         ndeps = 0;
    1566             : 
    1567         648 :             for (i = 0; i < deps->ndeps; i++)
    1568             :             {
    1569         540 :                 bool        skip = false;
    1570         540 :                 MVDependency *dep = deps->deps[i];
    1571             :                 int         j;
    1572             : 
    1573        1506 :                 for (j = 0; j < dep->nattributes; j++)
    1574             :                 {
    1575             :                     int         idx;
    1576             :                     Node       *expr;
    1577        1230 :                     AttrNumber  unique_attnum = InvalidAttrNumber;
    1578             :                     AttrNumber  attnum;
    1579             : 
    1580             :                     /* undo the per-statistics offset */
    1581        1230 :                     attnum = dep->attributes[j];
    1582             : 
    1583             :                     /*
    1584             :                      * For regular attributes we can simply check if it
    1585             :                      * matches any clause. If there's no matching clause, we
    1586             :                      * can just ignore it. We need to offset the attnum
    1587             :                      * though.
    1588             :                      */
    1589        1230 :                     if (AttrNumberIsForUserDefinedAttr(attnum))
    1590             :                     {
    1591           0 :                         dep->attributes[j] = attnum + attnum_offset;
    1592             : 
    1593           0 :                         if (!bms_is_member(dep->attributes[j], clauses_attnums))
    1594             :                         {
    1595           0 :                             skip = true;
    1596           0 :                             break;
    1597             :                         }
    1598             : 
    1599           0 :                         continue;
    1600             :                     }
    1601             : 
    1602             :                     /*
    1603             :                      * the attnum should be a valid system attnum (-1, -2,
    1604             :                      * ...)
    1605             :                      */
    1606             :                     Assert(AttributeNumberIsValid(attnum));
    1607             : 
    1608             :                     /*
    1609             :                      * For expressions, we need to do two translations. First
    1610             :                      * we have to translate the negative attnum to index in
    1611             :                      * the list of expressions (in the statistics object).
    1612             :                      * Then we need to see if there's a matching clause. The
    1613             :                      * index of the unique expression determines the attnum
    1614             :                      * (and we offset it).
    1615             :                      */
    1616        1230 :                     idx = -(1 + attnum);
    1617             : 
    1618             :                     /* Is the expression index is valid? */
    1619             :                     Assert((idx >= 0) && (idx < list_length(stat->exprs)));
    1620             : 
    1621        1230 :                     expr = (Node *) list_nth(stat->exprs, idx);
    1622             : 
    1623             :                     /* try to find the expression in the unique list */
    1624        2460 :                     for (int m = 0; m < unique_exprs_cnt; m++)
    1625             :                     {
    1626             :                         /*
    1627             :                          * found a matching unique expression, use the attnum
    1628             :                          * (derived from index of the unique expression)
    1629             :                          */
    1630        2196 :                         if (equal(unique_exprs[m], expr))
    1631             :                         {
    1632         966 :                             unique_attnum = -(m + 1) + attnum_offset;
    1633         966 :                             break;
    1634             :                         }
    1635             :                     }
    1636             : 
    1637             :                     /*
    1638             :                      * Found no matching expression, so we can simply skip
    1639             :                      * this dependency, because there's no chance it will be
    1640             :                      * fully covered.
    1641             :                      */
    1642        1230 :                     if (unique_attnum == InvalidAttrNumber)
    1643             :                     {
    1644         264 :                         skip = true;
    1645         264 :                         break;
    1646             :                     }
    1647             : 
    1648             :                     /* otherwise remap it to the new attnum */
    1649         966 :                     dep->attributes[j] = unique_attnum;
    1650             :                 }
    1651             : 
    1652             :                 /* if found a matching dependency, keep it */
    1653         540 :                 if (!skip)
    1654             :                 {
    1655             :                     /* maybe we've skipped something earlier, so move it */
    1656         276 :                     if (ndeps != i)
    1657           0 :                         deps->deps[ndeps] = deps->deps[i];
    1658             : 
    1659         276 :                     ndeps++;
    1660             :                 }
    1661             :             }
    1662             : 
    1663         108 :             deps->ndeps = ndeps;
    1664             :         }
    1665             : 
    1666             :         /*
    1667             :          * It's possible we've removed all dependencies, in which case we
    1668             :          * don't bother adding it to the list.
    1669             :          */
    1670        1608 :         if (deps->ndeps > 0)
    1671             :         {
    1672        1608 :             func_dependencies[nfunc_dependencies] = deps;
    1673        1608 :             total_ndeps += deps->ndeps;
    1674        1608 :             nfunc_dependencies++;
    1675             :         }
    1676             :     }
    1677             : 
    1678             :     /* if no matching stats could be found then we've nothing to do */
    1679        1596 :     if (nfunc_dependencies == 0)
    1680             :     {
    1681           0 :         pfree(func_dependencies);
    1682           0 :         bms_free(clauses_attnums);
    1683           0 :         pfree(list_attnums);
    1684           0 :         pfree(unique_exprs);
    1685           0 :         return 1.0;
    1686             :     }
    1687             : 
    1688             :     /*
    1689             :      * Work out which dependencies we can apply, starting with the
    1690             :      * widest/strongest ones, and proceeding to smaller/weaker ones.
    1691             :      */
    1692        1596 :     dependencies = palloc_array(MVDependency *, total_ndeps);
    1693        1596 :     ndependencies = 0;
    1694             : 
    1695             :     while (true)
    1696        1890 :     {
    1697             :         MVDependency *dependency;
    1698             :         AttrNumber  attnum;
    1699             : 
    1700             :         /* the widest/strongest dependency, fully matched by clauses */
    1701        3486 :         dependency = find_strongest_dependency(func_dependencies,
    1702             :                                                nfunc_dependencies,
    1703             :                                                clauses_attnums);
    1704        3486 :         if (!dependency)
    1705        1596 :             break;
    1706             : 
    1707        1890 :         dependencies[ndependencies++] = dependency;
    1708             : 
    1709             :         /* Ignore dependencies using this implied attribute in later loops */
    1710        1890 :         attnum = dependency->attributes[dependency->nattributes - 1];
    1711        1890 :         clauses_attnums = bms_del_member(clauses_attnums, attnum);
    1712             :     }
    1713             : 
    1714             :     /*
    1715             :      * If we found applicable dependencies, use them to estimate all
    1716             :      * compatible clauses on attributes that they refer to.
    1717             :      */
    1718        1596 :     if (ndependencies != 0)
    1719        1596 :         s1 = clauselist_apply_dependencies(root, clauses, varRelid, jointype,
    1720             :                                            sjinfo, dependencies, ndependencies,
    1721             :                                            list_attnums, estimatedclauses);
    1722             : 
    1723             :     /* free deserialized functional dependencies (and then the array) */
    1724        3204 :     for (i = 0; i < nfunc_dependencies; i++)
    1725        1608 :         pfree(func_dependencies[i]);
    1726             : 
    1727        1596 :     pfree(dependencies);
    1728        1596 :     pfree(func_dependencies);
    1729        1596 :     bms_free(clauses_attnums);
    1730        1596 :     pfree(list_attnums);
    1731        1596 :     pfree(unique_exprs);
    1732             : 
    1733        1596 :     return s1;
    1734             : }

Generated by: LCOV version 1.16