Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * partprune.c
4 : * Support for partition pruning during query planning and execution
5 : *
6 : * This module implements partition pruning using the information contained in
7 : * a table's partition descriptor, query clauses, and run-time parameters.
8 : *
9 : * During planning, clauses that can be matched to the table's partition key
10 : * are turned into a set of "pruning steps", which are then executed to
11 : * identify a set of partitions (as indexes in the RelOptInfo->part_rels
12 : * array) that satisfy the constraints in the step. Partitions not in the set
13 : * are said to have been pruned.
14 : *
15 : * A base pruning step may involve expressions whose values are only known
16 : * during execution, such as Params, in which case pruning cannot occur
17 : * entirely during planning. In that case, such steps are included alongside
18 : * the plan, so that they can be used by the executor for further pruning.
19 : *
20 : * There are two kinds of pruning steps. A "base" pruning step represents
21 : * tests on partition key column(s), typically comparisons to expressions.
22 : * A "combine" pruning step represents a Boolean connector (AND/OR), and
23 : * combines the outputs of some previous steps using the appropriate
24 : * combination method.
25 : *
26 : * See gen_partprune_steps_internal() for more details on step generation.
27 : *
28 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
29 : * Portions Copyright (c) 1994, Regents of the University of California
30 : *
31 : * IDENTIFICATION
32 : * src/backend/partitioning/partprune.c
33 : *
34 : *-------------------------------------------------------------------------
35 : */
36 : #include "postgres.h"
37 :
38 : #include "access/hash.h"
39 : #include "access/nbtree.h"
40 : #include "catalog/pg_operator.h"
41 : #include "catalog/pg_opfamily.h"
42 : #include "catalog/pg_proc.h"
43 : #include "catalog/pg_type.h"
44 : #include "executor/executor.h"
45 : #include "miscadmin.h"
46 : #include "nodes/makefuncs.h"
47 : #include "nodes/nodeFuncs.h"
48 : #include "optimizer/appendinfo.h"
49 : #include "optimizer/cost.h"
50 : #include "optimizer/optimizer.h"
51 : #include "optimizer/pathnode.h"
52 : #include "parser/parsetree.h"
53 : #include "partitioning/partbounds.h"
54 : #include "partitioning/partprune.h"
55 : #include "utils/array.h"
56 : #include "utils/lsyscache.h"
57 :
58 :
59 : /*
60 : * Information about a clause matched with a partition key.
61 : */
62 : typedef struct PartClauseInfo
63 : {
64 : int keyno; /* Partition key number (0 to partnatts - 1) */
65 : Oid opno; /* operator used to compare partkey to expr */
66 : bool op_is_ne; /* is clause's original operator <> ? */
67 : Expr *expr; /* expr the partition key is compared to */
68 : Oid cmpfn; /* Oid of function to compare 'expr' to the
69 : * partition key */
70 : int op_strategy; /* btree strategy identifying the operator */
71 : } PartClauseInfo;
72 :
73 : /*
74 : * PartClauseMatchStatus
75 : * Describes the result of match_clause_to_partition_key()
76 : */
77 : typedef enum PartClauseMatchStatus
78 : {
79 : PARTCLAUSE_NOMATCH,
80 : PARTCLAUSE_MATCH_CLAUSE,
81 : PARTCLAUSE_MATCH_NULLNESS,
82 : PARTCLAUSE_MATCH_STEPS,
83 : PARTCLAUSE_MATCH_CONTRADICT,
84 : PARTCLAUSE_UNSUPPORTED,
85 : } PartClauseMatchStatus;
86 :
87 : /*
88 : * PartClauseTarget
89 : * Identifies which qual clauses we can use for generating pruning steps
90 : */
91 : typedef enum PartClauseTarget
92 : {
93 : PARTTARGET_PLANNER, /* want to prune during planning */
94 : PARTTARGET_INITIAL, /* want to prune during executor startup */
95 : PARTTARGET_EXEC, /* want to prune during each plan node scan */
96 : } PartClauseTarget;
97 :
98 : /*
99 : * GeneratePruningStepsContext
100 : * Information about the current state of generation of "pruning steps"
101 : * for a given set of clauses
102 : *
103 : * gen_partprune_steps() initializes and returns an instance of this struct.
104 : *
105 : * Note that has_mutable_op, has_mutable_arg, and has_exec_param are set if
106 : * we found any potentially-useful-for-pruning clause having those properties,
107 : * whether or not we actually used the clause in the steps list. This
108 : * definition allows us to skip the PARTTARGET_EXEC pass in some cases.
109 : */
110 : typedef struct GeneratePruningStepsContext
111 : {
112 : /* Copies of input arguments for gen_partprune_steps: */
113 : RelOptInfo *rel; /* the partitioned relation */
114 : PartClauseTarget target; /* use-case we're generating steps for */
115 : /* Result data: */
116 : List *steps; /* list of PartitionPruneSteps */
117 : bool has_mutable_op; /* clauses include any stable operators */
118 : bool has_mutable_arg; /* clauses include any mutable comparison
119 : * values, *other than* exec params */
120 : bool has_exec_param; /* clauses include any PARAM_EXEC params */
121 : bool contradictory; /* clauses were proven self-contradictory */
122 : /* Working state: */
123 : int next_step_id;
124 : } GeneratePruningStepsContext;
125 :
126 : /* The result of performing one PartitionPruneStep */
127 : typedef struct PruneStepResult
128 : {
129 : /*
130 : * The offsets of bounds (in a table's boundinfo) whose partition is
131 : * selected by the pruning step.
132 : */
133 : Bitmapset *bound_offsets;
134 :
135 : bool scan_default; /* Scan the default partition? */
136 : bool scan_null; /* Scan the partition for NULL values? */
137 : } PruneStepResult;
138 :
139 :
140 : static List *add_part_relids(List *allpartrelids, Bitmapset *partrelids);
141 : static List *make_partitionedrel_pruneinfo(PlannerInfo *root,
142 : RelOptInfo *parentrel,
143 : List *prunequal,
144 : Bitmapset *partrelids,
145 : int *relid_subplan_map,
146 : Bitmapset **matchedsubplans);
147 : static void gen_partprune_steps(RelOptInfo *rel, List *clauses,
148 : PartClauseTarget target,
149 : GeneratePruningStepsContext *context);
150 : static List *gen_partprune_steps_internal(GeneratePruningStepsContext *context,
151 : List *clauses);
152 : static PartitionPruneStep *gen_prune_step_op(GeneratePruningStepsContext *context,
153 : StrategyNumber opstrategy, bool op_is_ne,
154 : List *exprs, List *cmpfns, Bitmapset *nullkeys);
155 : static PartitionPruneStep *gen_prune_step_combine(GeneratePruningStepsContext *context,
156 : List *source_stepids,
157 : PartitionPruneCombineOp combineOp);
158 : static List *gen_prune_steps_from_opexps(GeneratePruningStepsContext *context,
159 : List **keyclauses, Bitmapset *nullkeys);
160 : static PartClauseMatchStatus match_clause_to_partition_key(GeneratePruningStepsContext *context,
161 : Expr *clause, Expr *partkey, int partkeyidx,
162 : bool *clause_is_not_null,
163 : PartClauseInfo **pc, List **clause_steps);
164 : static List *get_steps_using_prefix(GeneratePruningStepsContext *context,
165 : StrategyNumber step_opstrategy,
166 : bool step_op_is_ne,
167 : Expr *step_lastexpr,
168 : Oid step_lastcmpfn,
169 : Bitmapset *step_nullkeys,
170 : List *prefix);
171 : static List *get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
172 : StrategyNumber step_opstrategy,
173 : bool step_op_is_ne,
174 : Expr *step_lastexpr,
175 : Oid step_lastcmpfn,
176 : Bitmapset *step_nullkeys,
177 : List *prefix,
178 : ListCell *start,
179 : List *step_exprs,
180 : List *step_cmpfns);
181 : static PruneStepResult *get_matching_hash_bounds(PartitionPruneContext *context,
182 : StrategyNumber opstrategy, const Datum *values, int nvalues,
183 : FmgrInfo *partsupfunc, Bitmapset *nullkeys);
184 : static PruneStepResult *get_matching_list_bounds(PartitionPruneContext *context,
185 : StrategyNumber opstrategy, Datum value, int nvalues,
186 : FmgrInfo *partsupfunc, Bitmapset *nullkeys);
187 : static PruneStepResult *get_matching_range_bounds(PartitionPruneContext *context,
188 : StrategyNumber opstrategy, const Datum *values, int nvalues,
189 : FmgrInfo *partsupfunc, Bitmapset *nullkeys);
190 : static Bitmapset *pull_exec_paramids(Expr *expr);
191 : static bool pull_exec_paramids_walker(Node *node, Bitmapset **context);
192 : static Bitmapset *get_partkey_exec_paramids(List *steps);
193 : static PruneStepResult *perform_pruning_base_step(PartitionPruneContext *context,
194 : PartitionPruneStepOp *opstep);
195 : static PruneStepResult *perform_pruning_combine_step(PartitionPruneContext *context,
196 : PartitionPruneStepCombine *cstep,
197 : PruneStepResult **step_results);
198 : static PartClauseMatchStatus match_boolean_partition_clause(Oid partopfamily,
199 : Expr *clause,
200 : Expr *partkey,
201 : Expr **outconst,
202 : bool *notclause);
203 : static void partkey_datum_from_expr(PartitionPruneContext *context,
204 : Expr *expr, int stateidx,
205 : Datum *value, bool *isnull);
206 :
207 :
208 : /*
209 : * make_partition_pruneinfo
210 : * Checks if the given set of quals can be used to build pruning steps
211 : * that the executor can use to prune away unneeded partitions. If
212 : * suitable quals are found then a PartitionPruneInfo is built and tagged
213 : * onto the PlannerInfo's partPruneInfos list.
214 : *
215 : * The return value is the 0-based index of the item added to the
216 : * partPruneInfos list or -1 if nothing was added.
217 : *
218 : * 'parentrel' is the RelOptInfo for an appendrel, and 'subpaths' is the list
219 : * of scan paths for its child rels.
220 : * 'prunequal' is a list of potential pruning quals (i.e., restriction
221 : * clauses that are applicable to the appendrel).
222 : */
223 : int
224 9530 : make_partition_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
225 : List *subpaths,
226 : List *prunequal)
227 : {
228 : PartitionPruneInfo *pruneinfo;
229 9530 : Bitmapset *allmatchedsubplans = NULL;
230 : List *allpartrelids;
231 : List *prunerelinfos;
232 : int *relid_subplan_map;
233 : ListCell *lc;
234 : int i;
235 :
236 : /*
237 : * Scan the subpaths to see which ones are scans of partition child
238 : * relations, and identify their parent partitioned rels. (Note: we must
239 : * restrict the parent partitioned rels to be parentrel or children of
240 : * parentrel, otherwise we couldn't translate prunequal to match.)
241 : *
242 : * Also construct a temporary array to map from partition-child-relation
243 : * relid to the index in 'subpaths' of the scan plan for that partition.
244 : * (Use of "subplan" rather than "subpath" is a bit of a misnomer, but
245 : * we'll let it stand.) For convenience, we use 1-based indexes here, so
246 : * that zero can represent an un-filled array entry.
247 : */
248 9530 : allpartrelids = NIL;
249 9530 : relid_subplan_map = palloc0_array(int, root->simple_rel_array_size);
250 :
251 9530 : i = 1;
252 27190 : foreach(lc, subpaths)
253 : {
254 17660 : Path *path = (Path *) lfirst(lc);
255 17660 : RelOptInfo *pathrel = path->parent;
256 :
257 : /* We don't consider partitioned joins here */
258 17660 : if (pathrel->reloptkind == RELOPT_OTHER_MEMBER_REL)
259 : {
260 17660 : RelOptInfo *prel = pathrel;
261 17660 : Bitmapset *partrelids = NULL;
262 :
263 : /*
264 : * Traverse up to the pathrel's topmost partitioned parent,
265 : * collecting parent relids as we go; but stop if we reach
266 : * parentrel. (Normally, a pathrel's topmost partitioned parent
267 : * is either parentrel or a UNION ALL appendrel child of
268 : * parentrel. But when handling partitionwise joins of
269 : * multi-level partitioning trees, we can see an append path whose
270 : * parentrel is an intermediate partitioned table.)
271 : */
272 : do
273 : {
274 : AppendRelInfo *appinfo;
275 :
276 : Assert(prel->relid < root->simple_rel_array_size);
277 20958 : appinfo = root->append_rel_array[prel->relid];
278 20958 : prel = find_base_rel(root, appinfo->parent_relid);
279 20958 : if (!IS_PARTITIONED_REL(prel))
280 : break; /* reached a non-partitioned parent */
281 : /* accept this level as an interesting parent */
282 17366 : partrelids = bms_add_member(partrelids, prel->relid);
283 17366 : if (prel == parentrel)
284 14068 : break; /* don't traverse above parentrel */
285 3298 : } while (prel->reloptkind == RELOPT_OTHER_MEMBER_REL);
286 :
287 17660 : if (partrelids)
288 : {
289 : /*
290 : * Found some relevant parent partitions, which may or may not
291 : * overlap with partition trees we already found. Add new
292 : * information to the allpartrelids list.
293 : */
294 14326 : allpartrelids = add_part_relids(allpartrelids, partrelids);
295 : /* Also record the subplan in relid_subplan_map[] */
296 : /* No duplicates please */
297 : Assert(relid_subplan_map[pathrel->relid] == 0);
298 14326 : relid_subplan_map[pathrel->relid] = i;
299 : }
300 : }
301 17660 : i++;
302 : }
303 :
304 : /*
305 : * We now build a PartitionedRelPruneInfo for each topmost partitioned rel
306 : * (omitting any that turn out not to have useful pruning quals).
307 : */
308 9530 : prunerelinfos = NIL;
309 17766 : foreach(lc, allpartrelids)
310 : {
311 8236 : Bitmapset *partrelids = (Bitmapset *) lfirst(lc);
312 : List *pinfolist;
313 8236 : Bitmapset *matchedsubplans = NULL;
314 :
315 8236 : pinfolist = make_partitionedrel_pruneinfo(root, parentrel,
316 : prunequal,
317 : partrelids,
318 : relid_subplan_map,
319 : &matchedsubplans);
320 :
321 : /* When pruning is possible, record the matched subplans */
322 8236 : if (pinfolist != NIL)
323 : {
324 612 : prunerelinfos = lappend(prunerelinfos, pinfolist);
325 612 : allmatchedsubplans = bms_join(matchedsubplans,
326 : allmatchedsubplans);
327 : }
328 : }
329 :
330 9530 : pfree(relid_subplan_map);
331 :
332 : /*
333 : * If none of the partition hierarchies had any useful run-time pruning
334 : * quals, then we can just not bother with run-time pruning.
335 : */
336 9530 : if (prunerelinfos == NIL)
337 8930 : return -1;
338 :
339 : /* Else build the result data structure */
340 600 : pruneinfo = makeNode(PartitionPruneInfo);
341 600 : pruneinfo->relids = bms_copy(parentrel->relids);
342 600 : pruneinfo->prune_infos = prunerelinfos;
343 :
344 : /*
345 : * Some subplans may not belong to any of the identified partitioned rels.
346 : * This can happen for UNION ALL queries which include a non-partitioned
347 : * table, or when some of the hierarchies aren't run-time prunable. Build
348 : * a bitmapset of the indexes of all such subplans, so that the executor
349 : * can identify which subplans should never be pruned.
350 : */
351 600 : if (bms_num_members(allmatchedsubplans) < list_length(subpaths))
352 : {
353 : Bitmapset *other_subplans;
354 :
355 : /* Create the complement of allmatchedsubplans */
356 36 : other_subplans = bms_add_range(NULL, 0, list_length(subpaths) - 1);
357 36 : other_subplans = bms_del_members(other_subplans, allmatchedsubplans);
358 :
359 36 : pruneinfo->other_subplans = other_subplans;
360 : }
361 : else
362 564 : pruneinfo->other_subplans = NULL;
363 :
364 600 : root->partPruneInfos = lappend(root->partPruneInfos, pruneinfo);
365 :
366 600 : return list_length(root->partPruneInfos) - 1;
367 : }
368 :
369 : /*
370 : * add_part_relids
371 : * Add new info to a list of Bitmapsets of partitioned relids.
372 : *
373 : * Within 'allpartrelids', there is one Bitmapset for each topmost parent
374 : * partitioned rel. Each Bitmapset contains the RT indexes of the topmost
375 : * parent as well as its relevant non-leaf child partitions. Since (by
376 : * construction of the rangetable list) parent partitions must have lower
377 : * RT indexes than their children, we can distinguish the topmost parent
378 : * as being the lowest set bit in the Bitmapset.
379 : *
380 : * 'partrelids' contains the RT indexes of a parent partitioned rel, and
381 : * possibly some non-leaf children, that are newly identified as parents of
382 : * some subpath rel passed to make_partition_pruneinfo(). These are added
383 : * to an appropriate member of 'allpartrelids'.
384 : *
385 : * Note that the list contains only RT indexes of partitioned tables that
386 : * are parents of some scan-level relation appearing in the 'subpaths' that
387 : * make_partition_pruneinfo() is dealing with. Also, "topmost" parents are
388 : * not allowed to be higher than the 'parentrel' associated with the append
389 : * path. In this way, we avoid expending cycles on partitioned rels that
390 : * can't contribute useful pruning information for the problem at hand.
391 : * (It is possible for 'parentrel' to be a child partitioned table, and it
392 : * is also possible for scan-level relations to be child partitioned tables
393 : * rather than leaf partitions. Hence we must construct this relation set
394 : * with reference to the particular append path we're dealing with, rather
395 : * than looking at the full partitioning structure represented in the
396 : * RelOptInfos.)
397 : */
398 : static List *
399 14326 : add_part_relids(List *allpartrelids, Bitmapset *partrelids)
400 : {
401 : Index targetpart;
402 : ListCell *lc;
403 :
404 : /* We can easily get the lowest set bit this way: */
405 14326 : targetpart = bms_next_member(partrelids, -1);
406 : Assert(targetpart > 0);
407 :
408 : /* Look for a matching topmost parent */
409 14398 : foreach(lc, allpartrelids)
410 : {
411 6162 : Bitmapset *currpartrelids = (Bitmapset *) lfirst(lc);
412 6162 : Index currtarget = bms_next_member(currpartrelids, -1);
413 :
414 6162 : if (targetpart == currtarget)
415 : {
416 : /* Found a match, so add any new RT indexes to this hierarchy */
417 6090 : currpartrelids = bms_add_members(currpartrelids, partrelids);
418 6090 : lfirst(lc) = currpartrelids;
419 6090 : return allpartrelids;
420 : }
421 : }
422 : /* No match, so add the new partition hierarchy to the list */
423 8236 : return lappend(allpartrelids, partrelids);
424 : }
425 :
426 : /*
427 : * make_partitionedrel_pruneinfo
428 : * Build a List of PartitionedRelPruneInfos, one for each interesting
429 : * partitioned rel in a partitioning hierarchy. These can be used in the
430 : * executor to allow additional partition pruning to take place.
431 : *
432 : * parentrel: rel associated with the appendpath being considered
433 : * prunequal: potential pruning quals, represented for parentrel
434 : * partrelids: Set of RT indexes identifying relevant partitioned tables
435 : * within a single partitioning hierarchy
436 : * relid_subplan_map[]: maps child relation relids to subplan indexes
437 : * matchedsubplans: on success, receives the set of subplan indexes which
438 : * were matched to this partition hierarchy
439 : *
440 : * If we cannot find any useful run-time pruning steps, return NIL.
441 : * However, on success, each rel identified in partrelids will have
442 : * an element in the result list, even if some of them are useless.
443 : */
444 : static List *
445 8236 : make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
446 : List *prunequal,
447 : Bitmapset *partrelids,
448 : int *relid_subplan_map,
449 : Bitmapset **matchedsubplans)
450 : {
451 8236 : RelOptInfo *targetpart = NULL;
452 8236 : List *pinfolist = NIL;
453 8236 : bool doruntimeprune = false;
454 : int *relid_subpart_map;
455 8236 : Bitmapset *subplansfound = NULL;
456 : ListCell *lc;
457 : int rti;
458 : int i;
459 :
460 : /*
461 : * Examine each partitioned rel, constructing a temporary array to map
462 : * from planner relids to index of the partitioned rel, and building a
463 : * PartitionedRelPruneInfo for each partitioned rel.
464 : *
465 : * In this phase we discover whether runtime pruning is needed at all; if
466 : * not, we can avoid doing further work.
467 : */
468 8236 : relid_subpart_map = palloc0_array(int, root->simple_rel_array_size);
469 :
470 8236 : i = 1;
471 8236 : rti = -1;
472 18042 : while ((rti = bms_next_member(partrelids, rti)) > 0)
473 : {
474 9812 : RelOptInfo *subpart = find_base_rel(root, rti);
475 : PartitionedRelPruneInfo *pinfo;
476 : List *partprunequal;
477 : List *initial_pruning_steps;
478 : List *exec_pruning_steps;
479 : Bitmapset *execparamids;
480 : GeneratePruningStepsContext context;
481 :
482 : /*
483 : * Fill the mapping array.
484 : *
485 : * relid_subpart_map maps relid of a non-leaf partition to the index
486 : * in the returned PartitionedRelPruneInfo list of the info for that
487 : * partition. We use 1-based indexes here, so that zero can represent
488 : * an un-filled array entry.
489 : */
490 : Assert(rti < root->simple_rel_array_size);
491 9812 : relid_subpart_map[rti] = i++;
492 :
493 : /*
494 : * Translate pruning qual, if necessary, for this partition.
495 : *
496 : * The first item in the list is the target partitioned relation.
497 : */
498 9812 : if (!targetpart)
499 : {
500 8236 : targetpart = subpart;
501 :
502 : /*
503 : * The prunequal is presented to us as a qual for 'parentrel'.
504 : * Frequently this rel is the same as targetpart, so we can skip
505 : * an adjust_appendrel_attrs step. But it might not be, and then
506 : * we have to translate. We update the prunequal parameter here,
507 : * because in later iterations of the loop for child partitions,
508 : * we want to translate from parent to child variables.
509 : */
510 8236 : if (!bms_equal(parentrel->relids, subpart->relids))
511 : {
512 : int nappinfos;
513 60 : AppendRelInfo **appinfos = find_appinfos_by_relids(root,
514 : subpart->relids,
515 : &nappinfos);
516 :
517 60 : prunequal = (List *) adjust_appendrel_attrs(root, (Node *)
518 : prunequal,
519 : nappinfos,
520 : appinfos);
521 :
522 60 : pfree(appinfos);
523 : }
524 :
525 8236 : partprunequal = prunequal;
526 : }
527 : else
528 : {
529 : /*
530 : * For sub-partitioned tables the columns may not be in the same
531 : * order as the parent, so we must translate the prunequal to make
532 : * it compatible with this relation.
533 : */
534 : partprunequal = (List *)
535 1576 : adjust_appendrel_attrs_multilevel(root,
536 : (Node *) prunequal,
537 : subpart,
538 : targetpart);
539 : }
540 :
541 : /*
542 : * Convert pruning qual to pruning steps. We may need to do this
543 : * twice, once to obtain executor startup pruning steps, and once for
544 : * executor per-scan pruning steps. This first pass creates startup
545 : * pruning steps and detects whether there's any possibly-useful quals
546 : * that would require per-scan pruning.
547 : */
548 9812 : gen_partprune_steps(subpart, partprunequal, PARTTARGET_INITIAL,
549 : &context);
550 :
551 9812 : if (context.contradictory)
552 : {
553 : /*
554 : * This shouldn't happen as the planner should have detected this
555 : * earlier. However, we do use additional quals from parameterized
556 : * paths here. These do only compare Params to the partition key,
557 : * so this shouldn't cause the discovery of any new qual
558 : * contradictions that were not previously discovered as the Param
559 : * values are unknown during planning. Anyway, we'd better do
560 : * something sane here, so let's just disable run-time pruning.
561 : */
562 6 : return NIL;
563 : }
564 :
565 : /*
566 : * If no mutable operators or expressions appear in usable pruning
567 : * clauses, then there's no point in running startup pruning, because
568 : * plan-time pruning should have pruned everything prunable.
569 : */
570 9806 : if (context.has_mutable_op || context.has_mutable_arg)
571 384 : initial_pruning_steps = context.steps;
572 : else
573 9422 : initial_pruning_steps = NIL;
574 :
575 : /*
576 : * If no exec Params appear in potentially-usable pruning clauses,
577 : * then there's no point in even thinking about per-scan pruning.
578 : */
579 9806 : if (context.has_exec_param)
580 : {
581 : /* ... OK, we'd better think about it */
582 414 : gen_partprune_steps(subpart, partprunequal, PARTTARGET_EXEC,
583 : &context);
584 :
585 414 : if (context.contradictory)
586 : {
587 : /* As above, skip run-time pruning if anything fishy happens */
588 0 : return NIL;
589 : }
590 :
591 414 : exec_pruning_steps = context.steps;
592 :
593 : /*
594 : * Detect which exec Params actually got used; the fact that some
595 : * were in available clauses doesn't mean we actually used them.
596 : * Skip per-scan pruning if there are none.
597 : */
598 414 : execparamids = get_partkey_exec_paramids(exec_pruning_steps);
599 :
600 414 : if (bms_is_empty(execparamids))
601 0 : exec_pruning_steps = NIL;
602 : }
603 : else
604 : {
605 : /* No exec Params anywhere, so forget about scan-time pruning */
606 9392 : exec_pruning_steps = NIL;
607 9392 : execparamids = NULL;
608 : }
609 :
610 9806 : if (initial_pruning_steps || exec_pruning_steps)
611 780 : doruntimeprune = true;
612 :
613 : /* Begin constructing the PartitionedRelPruneInfo for this rel */
614 9806 : pinfo = makeNode(PartitionedRelPruneInfo);
615 9806 : pinfo->rtindex = rti;
616 9806 : pinfo->initial_pruning_steps = initial_pruning_steps;
617 9806 : pinfo->exec_pruning_steps = exec_pruning_steps;
618 9806 : pinfo->execparamids = execparamids;
619 : /* Remaining fields will be filled in the next loop */
620 :
621 9806 : pinfolist = lappend(pinfolist, pinfo);
622 : }
623 :
624 8230 : if (!doruntimeprune)
625 : {
626 : /* No run-time pruning required. */
627 7618 : pfree(relid_subpart_map);
628 7618 : return NIL;
629 : }
630 :
631 : /*
632 : * Run-time pruning will be required, so initialize other information.
633 : * That includes two maps -- one needed to convert partition indexes of
634 : * leaf partitions to the indexes of their subplans in the subplan list,
635 : * another needed to convert partition indexes of sub-partitioned
636 : * partitions to the indexes of their PartitionedRelPruneInfo in the
637 : * PartitionedRelPruneInfo list.
638 : */
639 1662 : foreach(lc, pinfolist)
640 : {
641 1050 : PartitionedRelPruneInfo *pinfo = lfirst(lc);
642 1050 : RelOptInfo *subpart = find_base_rel(root, pinfo->rtindex);
643 : Bitmapset *present_parts;
644 1050 : int nparts = subpart->nparts;
645 : int *subplan_map;
646 : int *subpart_map;
647 : Oid *relid_map;
648 : int *leafpart_rti_map;
649 :
650 : /*
651 : * Construct the subplan and subpart maps for this partitioning level.
652 : * Here we convert to zero-based indexes, with -1 for empty entries.
653 : * Also construct a Bitmapset of all partitions that are present (that
654 : * is, not pruned already).
655 : */
656 1050 : subplan_map = (int *) palloc(nparts * sizeof(int));
657 1050 : memset(subplan_map, -1, nparts * sizeof(int));
658 1050 : subpart_map = (int *) palloc(nparts * sizeof(int));
659 1050 : memset(subpart_map, -1, nparts * sizeof(int));
660 1050 : relid_map = (Oid *) palloc0(nparts * sizeof(Oid));
661 1050 : leafpart_rti_map = (int *) palloc0(nparts * sizeof(int));
662 1050 : present_parts = NULL;
663 :
664 1050 : i = -1;
665 3946 : while ((i = bms_next_member(subpart->live_parts, i)) >= 0)
666 : {
667 2896 : RelOptInfo *partrel = subpart->part_rels[i];
668 : int subplanidx;
669 : int subpartidx;
670 :
671 : Assert(partrel != NULL);
672 :
673 2896 : subplan_map[i] = subplanidx = relid_subplan_map[partrel->relid] - 1;
674 2896 : subpart_map[i] = subpartidx = relid_subpart_map[partrel->relid] - 1;
675 2896 : relid_map[i] = planner_rt_fetch(partrel->relid, root)->relid;
676 :
677 : /*
678 : * Track the RT indexes of "leaf" partitions so they can be
679 : * included in the PlannerGlobal.prunableRelids set, indicating
680 : * relations that may be pruned during executor startup.
681 : *
682 : * Only leaf partitions with a valid subplan that are prunable
683 : * using initial pruning are added to prunableRelids. So
684 : * partitions without a subplan due to constraint exclusion will
685 : * remain in PlannedStmt.unprunableRelids.
686 : */
687 2896 : if (subplanidx >= 0)
688 : {
689 2452 : present_parts = bms_add_member(present_parts, i);
690 :
691 : /*
692 : * Non-leaf partitions may appear here when they use an
693 : * unflattened Append or MergeAppend. These should not be
694 : * included in prunableRelids.
695 : */
696 2452 : if (partrel->nparts == -1)
697 2422 : leafpart_rti_map[i] = (int) partrel->relid;
698 :
699 : /* Record finding this subplan */
700 2452 : subplansfound = bms_add_member(subplansfound, subplanidx);
701 : }
702 444 : else if (subpartidx >= 0)
703 438 : present_parts = bms_add_member(present_parts, i);
704 : }
705 :
706 : /*
707 : * Ensure there were no stray PartitionedRelPruneInfo generated for
708 : * partitioned tables that we have no sub-paths or
709 : * sub-PartitionedRelPruneInfo for.
710 : */
711 : Assert(!bms_is_empty(present_parts));
712 :
713 : /* Record the maps and other information. */
714 1050 : pinfo->present_parts = present_parts;
715 1050 : pinfo->nparts = nparts;
716 1050 : pinfo->subplan_map = subplan_map;
717 1050 : pinfo->subpart_map = subpart_map;
718 1050 : pinfo->relid_map = relid_map;
719 1050 : pinfo->leafpart_rti_map = leafpart_rti_map;
720 : }
721 :
722 612 : pfree(relid_subpart_map);
723 :
724 612 : *matchedsubplans = subplansfound;
725 :
726 612 : return pinfolist;
727 : }
728 :
729 : /*
730 : * gen_partprune_steps
731 : * Process 'clauses' (typically a rel's baserestrictinfo list of clauses)
732 : * and create a list of "partition pruning steps".
733 : *
734 : * 'target' tells whether to generate pruning steps for planning (use
735 : * immutable clauses only), or for executor startup (use any allowable
736 : * clause except ones containing PARAM_EXEC Params), or for executor
737 : * per-scan pruning (use any allowable clause).
738 : *
739 : * 'context' is an output argument that receives the steps list as well as
740 : * some subsidiary flags; see the GeneratePruningStepsContext typedef.
741 : */
742 : static void
743 21384 : gen_partprune_steps(RelOptInfo *rel, List *clauses, PartClauseTarget target,
744 : GeneratePruningStepsContext *context)
745 : {
746 : /* Initialize all output values to zero/false/NULL */
747 21384 : memset(context, 0, sizeof(GeneratePruningStepsContext));
748 21384 : context->rel = rel;
749 21384 : context->target = target;
750 :
751 : /*
752 : * If this partitioned table is in turn a partition, and it shares any
753 : * partition keys with its parent, then it's possible that the hierarchy
754 : * allows the parent a narrower range of values than some of its
755 : * partitions (particularly the default one). This is normally not
756 : * useful, but it can be to prune the default partition.
757 : */
758 21384 : if (partition_bound_has_default(rel->boundinfo) && rel->partition_qual)
759 : {
760 : /* Make a copy to avoid modifying the passed-in List */
761 738 : clauses = list_concat_copy(clauses, rel->partition_qual);
762 : }
763 :
764 : /* Down into the rabbit-hole. */
765 21384 : (void) gen_partprune_steps_internal(context, clauses);
766 21384 : }
767 :
768 : /*
769 : * prune_append_rel_partitions
770 : * Process rel's baserestrictinfo and make use of quals which can be
771 : * evaluated during query planning in order to determine the minimum set
772 : * of partitions which must be scanned to satisfy these quals. Returns
773 : * the matching partitions in the form of a Bitmapset containing the
774 : * partitions' indexes in the rel's part_rels array.
775 : *
776 : * Callers must ensure that 'rel' is a partitioned table.
777 : */
778 : Bitmapset *
779 18010 : prune_append_rel_partitions(RelOptInfo *rel)
780 : {
781 18010 : List *clauses = rel->baserestrictinfo;
782 : List *pruning_steps;
783 : GeneratePruningStepsContext gcontext;
784 : PartitionPruneContext context;
785 :
786 : Assert(rel->part_scheme != NULL);
787 :
788 : /* If there are no partitions, return the empty set */
789 18010 : if (rel->nparts == 0)
790 0 : return NULL;
791 :
792 : /*
793 : * If pruning is disabled or if there are no clauses to prune with, return
794 : * all partitions.
795 : */
796 18010 : if (!enable_partition_pruning || clauses == NIL)
797 6852 : return bms_add_range(NULL, 0, rel->nparts - 1);
798 :
799 : /*
800 : * Process clauses to extract pruning steps that are usable at plan time.
801 : * If the clauses are found to be contradictory, we can return the empty
802 : * set.
803 : */
804 11158 : gen_partprune_steps(rel, clauses, PARTTARGET_PLANNER,
805 : &gcontext);
806 11158 : if (gcontext.contradictory)
807 126 : return NULL;
808 11032 : pruning_steps = gcontext.steps;
809 :
810 : /* If there's nothing usable, return all partitions */
811 11032 : if (pruning_steps == NIL)
812 3004 : return bms_add_range(NULL, 0, rel->nparts - 1);
813 :
814 : /* Set up PartitionPruneContext */
815 8028 : context.strategy = rel->part_scheme->strategy;
816 8028 : context.partnatts = rel->part_scheme->partnatts;
817 8028 : context.nparts = rel->nparts;
818 8028 : context.boundinfo = rel->boundinfo;
819 8028 : context.partcollation = rel->part_scheme->partcollation;
820 8028 : context.partsupfunc = rel->part_scheme->partsupfunc;
821 8028 : context.stepcmpfuncs = palloc0_array(FmgrInfo,
822 : context.partnatts * list_length(pruning_steps));
823 8028 : context.ppccontext = CurrentMemoryContext;
824 :
825 : /* These are not valid when being called from the planner */
826 8028 : context.planstate = NULL;
827 8028 : context.exprcontext = NULL;
828 8028 : context.exprstates = NULL;
829 :
830 : /* Actual pruning happens here. */
831 8028 : return get_matching_partitions(&context, pruning_steps);
832 : }
833 :
834 : /*
835 : * get_matching_partitions
836 : * Determine partitions that survive partition pruning
837 : *
838 : * Note: context->exprcontext must be valid when the pruning_steps were
839 : * generated with a target other than PARTTARGET_PLANNER.
840 : *
841 : * Returns a Bitmapset of the RelOptInfo->part_rels indexes of the surviving
842 : * partitions.
843 : */
844 : Bitmapset *
845 12040 : get_matching_partitions(PartitionPruneContext *context, List *pruning_steps)
846 : {
847 : Bitmapset *result;
848 12040 : int num_steps = list_length(pruning_steps),
849 : i;
850 : PruneStepResult **results,
851 : *final_result;
852 : ListCell *lc;
853 : bool scan_default;
854 :
855 : /* If there are no pruning steps then all partitions match. */
856 12040 : if (num_steps == 0)
857 : {
858 : Assert(context->nparts > 0);
859 0 : return bms_add_range(NULL, 0, context->nparts - 1);
860 : }
861 :
862 : /*
863 : * Allocate space for individual pruning steps to store its result. Each
864 : * slot will hold a PruneStepResult after performing a given pruning step.
865 : * Later steps may use the result of one or more earlier steps. The
866 : * result of applying all pruning steps is the value contained in the slot
867 : * of the last pruning step.
868 : */
869 : results = (PruneStepResult **)
870 12040 : palloc0(num_steps * sizeof(PruneStepResult *));
871 29064 : foreach(lc, pruning_steps)
872 : {
873 17024 : PartitionPruneStep *step = lfirst(lc);
874 :
875 17024 : switch (nodeTag(step))
876 : {
877 14458 : case T_PartitionPruneStepOp:
878 28916 : results[step->step_id] =
879 14458 : perform_pruning_base_step(context,
880 : (PartitionPruneStepOp *) step);
881 14458 : break;
882 :
883 2566 : case T_PartitionPruneStepCombine:
884 5132 : results[step->step_id] =
885 2566 : perform_pruning_combine_step(context,
886 : (PartitionPruneStepCombine *) step,
887 : results);
888 2566 : break;
889 :
890 0 : default:
891 0 : elog(ERROR, "invalid pruning step type: %d",
892 : (int) nodeTag(step));
893 : }
894 : }
895 :
896 : /*
897 : * At this point we know the offsets of all the datums whose corresponding
898 : * partitions need to be in the result, including special null-accepting
899 : * and default partitions. Collect the actual partition indexes now.
900 : */
901 12040 : final_result = results[num_steps - 1];
902 : Assert(final_result != NULL);
903 12040 : i = -1;
904 12040 : result = NULL;
905 12040 : scan_default = final_result->scan_default;
906 24156 : while ((i = bms_next_member(final_result->bound_offsets, i)) >= 0)
907 : {
908 : int partindex;
909 :
910 : Assert(i < context->boundinfo->nindexes);
911 12116 : partindex = context->boundinfo->indexes[i];
912 :
913 12116 : if (partindex < 0)
914 : {
915 : /*
916 : * In range partitioning cases, if a partition index is -1 it
917 : * means that the bound at the offset is the upper bound for a
918 : * range not covered by any partition (other than a possible
919 : * default partition). In hash partitioning, the same means no
920 : * partition has been defined for the corresponding remainder
921 : * value.
922 : *
923 : * In either case, the value is still part of the queried range of
924 : * values, so mark to scan the default partition if one exists.
925 : */
926 1330 : scan_default |= partition_bound_has_default(context->boundinfo);
927 1330 : continue;
928 : }
929 :
930 10786 : result = bms_add_member(result, partindex);
931 : }
932 :
933 : /* Add the null and/or default partition if needed and present. */
934 12040 : if (final_result->scan_null)
935 : {
936 : Assert(context->strategy == PARTITION_STRATEGY_LIST);
937 : Assert(partition_bound_accepts_nulls(context->boundinfo));
938 156 : result = bms_add_member(result, context->boundinfo->null_index);
939 : }
940 12040 : if (scan_default)
941 : {
942 : Assert(context->strategy == PARTITION_STRATEGY_LIST ||
943 : context->strategy == PARTITION_STRATEGY_RANGE);
944 : Assert(partition_bound_has_default(context->boundinfo));
945 734 : result = bms_add_member(result, context->boundinfo->default_index);
946 : }
947 :
948 12040 : return result;
949 : }
950 :
951 : /*
952 : * gen_partprune_steps_internal
953 : * Processes 'clauses' to generate a List of partition pruning steps. We
954 : * return NIL when no steps were generated.
955 : *
956 : * These partition pruning steps come in 2 forms; operator steps and combine
957 : * steps.
958 : *
959 : * Operator steps (PartitionPruneStepOp) contain details of clauses that we
960 : * determined that we can use for partition pruning. These contain details of
961 : * the expression which is being compared to the partition key and the
962 : * comparison function.
963 : *
964 : * Combine steps (PartitionPruneStepCombine) instruct the partition pruning
965 : * code how it should produce a single set of partitions from multiple input
966 : * operator and other combine steps. A PARTPRUNE_COMBINE_INTERSECT type
967 : * combine step will merge its input steps to produce a result which only
968 : * contains the partitions which are present in all of the input operator
969 : * steps. A PARTPRUNE_COMBINE_UNION combine step will produce a result that
970 : * has all of the partitions from each of the input operator steps.
971 : *
972 : * For BoolExpr clauses, each argument is processed recursively. Steps
973 : * generated from processing an OR BoolExpr will be combined using
974 : * PARTPRUNE_COMBINE_UNION. AND BoolExprs get combined using
975 : * PARTPRUNE_COMBINE_INTERSECT.
976 : *
977 : * Otherwise, the list of clauses we receive we assume to be mutually ANDed.
978 : * We generate all of the pruning steps we can based on these clauses and then
979 : * at the end, if we have more than 1 step, we combine each step with a
980 : * PARTPRUNE_COMBINE_INTERSECT combine step. Single steps are returned as-is.
981 : *
982 : * If we find clauses that are mutually contradictory, or contradictory with
983 : * the partitioning constraint, or a pseudoconstant clause that contains
984 : * false, we set context->contradictory to true and return NIL (that is, no
985 : * pruning steps). Caller should consider all partitions as pruned in that
986 : * case.
987 : */
988 : static List *
989 26880 : gen_partprune_steps_internal(GeneratePruningStepsContext *context,
990 : List *clauses)
991 : {
992 26880 : PartitionScheme part_scheme = context->rel->part_scheme;
993 : List *keyclauses[PARTITION_MAX_KEYS];
994 26880 : Bitmapset *nullkeys = NULL,
995 26880 : *notnullkeys = NULL;
996 26880 : bool generate_opsteps = false;
997 26880 : List *result = NIL;
998 : ListCell *lc;
999 :
1000 : /*
1001 : * If this partitioned relation has a default partition and is itself a
1002 : * partition (as evidenced by partition_qual being not NIL), we first
1003 : * check if the clauses contradict the partition constraint. If they do,
1004 : * there's no need to generate any steps as it'd already be proven that no
1005 : * partitions need to be scanned.
1006 : *
1007 : * This is a measure of last resort only to be used because the default
1008 : * partition cannot be pruned using the steps generated from clauses that
1009 : * contradict the parent's partition constraint; regular pruning, which is
1010 : * cheaper, is sufficient when no default partition exists.
1011 : */
1012 34000 : if (partition_bound_has_default(context->rel->boundinfo) &&
1013 7120 : predicate_refuted_by(context->rel->partition_qual, clauses, false))
1014 : {
1015 282 : context->contradictory = true;
1016 282 : return NIL;
1017 : }
1018 :
1019 26598 : memset(keyclauses, 0, sizeof(keyclauses));
1020 62648 : foreach(lc, clauses)
1021 : {
1022 36176 : Expr *clause = (Expr *) lfirst(lc);
1023 : int i;
1024 :
1025 : /* Look through RestrictInfo, if any */
1026 36176 : if (IsA(clause, RestrictInfo))
1027 14436 : clause = ((RestrictInfo *) clause)->clause;
1028 :
1029 : /* Constant-false-or-null is contradictory */
1030 36176 : if (IsA(clause, Const) &&
1031 66 : (((Const *) clause)->constisnull ||
1032 66 : !DatumGetBool(((Const *) clause)->constvalue)))
1033 : {
1034 66 : context->contradictory = true;
1035 126 : return NIL;
1036 : }
1037 :
1038 : /* Get the BoolExpr's out of the way. */
1039 36110 : if (IsA(clause, BoolExpr))
1040 : {
1041 : /*
1042 : * Generate steps for arguments.
1043 : *
1044 : * While steps generated for the arguments themselves will be
1045 : * added to context->steps during recursion and will be evaluated
1046 : * independently, collect their step IDs to be stored in the
1047 : * combine step we'll be creating.
1048 : */
1049 2950 : if (is_orclause(clause))
1050 1930 : {
1051 1930 : List *arg_stepids = NIL;
1052 1930 : bool all_args_contradictory = true;
1053 : ListCell *lc1;
1054 :
1055 : /*
1056 : * We can share the outer context area with the recursive
1057 : * call, but contradictory had better not be true yet.
1058 : */
1059 : Assert(!context->contradictory);
1060 :
1061 : /*
1062 : * Get pruning step for each arg. If we get contradictory for
1063 : * all args, it means the OR expression is false as a whole.
1064 : */
1065 6086 : foreach(lc1, ((BoolExpr *) clause)->args)
1066 : {
1067 4156 : Expr *arg = lfirst(lc1);
1068 : bool arg_contradictory;
1069 : List *argsteps;
1070 :
1071 4156 : argsteps = gen_partprune_steps_internal(context,
1072 4156 : list_make1(arg));
1073 4156 : arg_contradictory = context->contradictory;
1074 : /* Keep context->contradictory clear till we're done */
1075 4156 : context->contradictory = false;
1076 :
1077 4156 : if (arg_contradictory)
1078 : {
1079 : /* Just ignore self-contradictory arguments. */
1080 276 : continue;
1081 : }
1082 : else
1083 3880 : all_args_contradictory = false;
1084 :
1085 3880 : if (argsteps != NIL)
1086 : {
1087 : /*
1088 : * gen_partprune_steps_internal() always adds a single
1089 : * combine step when it generates multiple steps, so
1090 : * here we can just pay attention to the last one in
1091 : * the list. If it just generated one, then the last
1092 : * one in the list is still the one we want.
1093 : */
1094 3328 : PartitionPruneStep *last = llast(argsteps);
1095 :
1096 3328 : arg_stepids = lappend_int(arg_stepids, last->step_id);
1097 : }
1098 : else
1099 : {
1100 : PartitionPruneStep *orstep;
1101 :
1102 : /*
1103 : * The arg didn't contain a clause matching this
1104 : * partition key. We cannot prune using such an arg.
1105 : * To indicate that to the pruning code, we must
1106 : * construct a dummy PartitionPruneStepCombine whose
1107 : * source_stepids is set to an empty List.
1108 : */
1109 552 : orstep = gen_prune_step_combine(context, NIL,
1110 : PARTPRUNE_COMBINE_UNION);
1111 552 : arg_stepids = lappend_int(arg_stepids, orstep->step_id);
1112 : }
1113 : }
1114 :
1115 : /* If all the OR arms are contradictory, we can stop */
1116 1930 : if (all_args_contradictory)
1117 : {
1118 0 : context->contradictory = true;
1119 0 : return NIL;
1120 : }
1121 :
1122 1930 : if (arg_stepids != NIL)
1123 : {
1124 : PartitionPruneStep *step;
1125 :
1126 1930 : step = gen_prune_step_combine(context, arg_stepids,
1127 : PARTPRUNE_COMBINE_UNION);
1128 1930 : result = lappend(result, step);
1129 : }
1130 1930 : continue;
1131 : }
1132 1020 : else if (is_andclause(clause))
1133 780 : {
1134 780 : List *args = ((BoolExpr *) clause)->args;
1135 : List *argsteps;
1136 :
1137 : /*
1138 : * args may itself contain clauses of arbitrary type, so just
1139 : * recurse and later combine the component partitions sets
1140 : * using a combine step.
1141 : */
1142 780 : argsteps = gen_partprune_steps_internal(context, args);
1143 :
1144 : /* If any AND arm is contradictory, we can stop immediately */
1145 780 : if (context->contradictory)
1146 0 : return NIL;
1147 :
1148 : /*
1149 : * gen_partprune_steps_internal() always adds a single combine
1150 : * step when it generates multiple steps, so here we can just
1151 : * pay attention to the last one in the list. If it just
1152 : * generated one, then the last one in the list is still the
1153 : * one we want.
1154 : */
1155 780 : if (argsteps != NIL)
1156 576 : result = lappend(result, llast(argsteps));
1157 :
1158 780 : continue;
1159 : }
1160 :
1161 : /*
1162 : * Fall-through for a NOT clause, which if it's a Boolean clause,
1163 : * will be handled in match_clause_to_partition_key(). We
1164 : * currently don't perform any pruning for more complex NOT
1165 : * clauses.
1166 : */
1167 : }
1168 :
1169 : /*
1170 : * See if we can match this clause to any of the partition keys.
1171 : */
1172 45614 : for (i = 0; i < part_scheme->partnatts; i++)
1173 : {
1174 37504 : Expr *partkey = linitial(context->rel->partexprs[i]);
1175 37504 : bool clause_is_not_null = false;
1176 37504 : PartClauseInfo *pc = NULL;
1177 37504 : List *clause_steps = NIL;
1178 :
1179 37504 : switch (match_clause_to_partition_key(context,
1180 : clause, partkey, i,
1181 : &clause_is_not_null,
1182 : &pc, &clause_steps))
1183 : {
1184 20580 : case PARTCLAUSE_MATCH_CLAUSE:
1185 : Assert(pc != NULL);
1186 :
1187 : /*
1188 : * Since we only allow strict operators, check for any
1189 : * contradicting IS NULL.
1190 : */
1191 20580 : if (bms_is_member(i, nullkeys))
1192 : {
1193 6 : context->contradictory = true;
1194 60 : return NIL;
1195 : }
1196 20574 : generate_opsteps = true;
1197 20574 : keyclauses[i] = lappend(keyclauses[i], pc);
1198 20574 : break;
1199 :
1200 2220 : case PARTCLAUSE_MATCH_NULLNESS:
1201 2220 : if (!clause_is_not_null)
1202 : {
1203 : /*
1204 : * check for conflicting IS NOT NULL as well as
1205 : * contradicting strict clauses
1206 : */
1207 1638 : if (bms_is_member(i, notnullkeys) ||
1208 1632 : keyclauses[i] != NIL)
1209 : {
1210 30 : context->contradictory = true;
1211 30 : return NIL;
1212 : }
1213 1608 : nullkeys = bms_add_member(nullkeys, i);
1214 : }
1215 : else
1216 : {
1217 : /* check for conflicting IS NULL */
1218 582 : if (bms_is_member(i, nullkeys))
1219 : {
1220 0 : context->contradictory = true;
1221 0 : return NIL;
1222 : }
1223 582 : notnullkeys = bms_add_member(notnullkeys, i);
1224 : }
1225 2190 : break;
1226 :
1227 560 : case PARTCLAUSE_MATCH_STEPS:
1228 : Assert(clause_steps != NIL);
1229 560 : result = list_concat(result, clause_steps);
1230 560 : break;
1231 :
1232 24 : case PARTCLAUSE_MATCH_CONTRADICT:
1233 : /* We've nothing more to do if a contradiction was found. */
1234 24 : context->contradictory = true;
1235 24 : return NIL;
1236 :
1237 12214 : case PARTCLAUSE_NOMATCH:
1238 :
1239 : /*
1240 : * Clause didn't match this key, but it might match the
1241 : * next one.
1242 : */
1243 12214 : continue;
1244 :
1245 1906 : case PARTCLAUSE_UNSUPPORTED:
1246 : /* This clause cannot be used for pruning. */
1247 1906 : break;
1248 : }
1249 :
1250 : /* done; go check the next clause. */
1251 25230 : break;
1252 : }
1253 : }
1254 :
1255 : /*-----------
1256 : * Now generate some (more) pruning steps. We have three strategies:
1257 : *
1258 : * 1) Generate pruning steps based on IS NULL clauses:
1259 : * a) For list partitioning, null partition keys can only be found in
1260 : * the designated null-accepting partition, so if there are IS NULL
1261 : * clauses containing partition keys we should generate a pruning
1262 : * step that gets rid of all partitions but that one. We can
1263 : * disregard any OpExpr we may have found.
1264 : * b) For range partitioning, only the default partition can contain
1265 : * NULL values, so the same rationale applies.
1266 : * c) For hash partitioning, we only apply this strategy if we have
1267 : * IS NULL clauses for all the keys. Strategy 2 below will take
1268 : * care of the case where some keys have OpExprs and others have
1269 : * IS NULL clauses.
1270 : *
1271 : * 2) If not, generate steps based on OpExprs we have (if any).
1272 : *
1273 : * 3) If this doesn't work either, we may be able to generate steps to
1274 : * prune just the null-accepting partition (if one exists), if we have
1275 : * IS NOT NULL clauses for all partition keys.
1276 : */
1277 26472 : if (!bms_is_empty(nullkeys) &&
1278 1158 : (part_scheme->strategy == PARTITION_STRATEGY_LIST ||
1279 570 : part_scheme->strategy == PARTITION_STRATEGY_RANGE ||
1280 444 : (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
1281 444 : bms_num_members(nullkeys) == part_scheme->partnatts)))
1282 762 : {
1283 : PartitionPruneStep *step;
1284 :
1285 : /* Strategy 1 */
1286 762 : step = gen_prune_step_op(context, InvalidStrategy,
1287 : false, NIL, NIL, nullkeys);
1288 762 : result = lappend(result, step);
1289 : }
1290 25710 : else if (generate_opsteps)
1291 : {
1292 : List *opsteps;
1293 :
1294 : /* Strategy 2 */
1295 18008 : opsteps = gen_prune_steps_from_opexps(context, keyclauses, nullkeys);
1296 18008 : result = list_concat(result, opsteps);
1297 : }
1298 7702 : else if (bms_num_members(notnullkeys) == part_scheme->partnatts)
1299 : {
1300 : PartitionPruneStep *step;
1301 :
1302 : /* Strategy 3 */
1303 180 : step = gen_prune_step_op(context, InvalidStrategy,
1304 : false, NIL, NIL, NULL);
1305 180 : result = lappend(result, step);
1306 : }
1307 :
1308 : /*
1309 : * Finally, if there are multiple steps, since the 'clauses' are mutually
1310 : * ANDed, add an INTERSECT step to combine the partition sets resulting
1311 : * from them and append it to the result list.
1312 : */
1313 26472 : if (list_length(result) > 1)
1314 : {
1315 1768 : List *step_ids = NIL;
1316 : PartitionPruneStep *final;
1317 :
1318 6402 : foreach(lc, result)
1319 : {
1320 4634 : PartitionPruneStep *step = lfirst(lc);
1321 :
1322 4634 : step_ids = lappend_int(step_ids, step->step_id);
1323 : }
1324 :
1325 1768 : final = gen_prune_step_combine(context, step_ids,
1326 : PARTPRUNE_COMBINE_INTERSECT);
1327 1768 : result = lappend(result, final);
1328 : }
1329 :
1330 26472 : return result;
1331 : }
1332 :
1333 : /*
1334 : * gen_prune_step_op
1335 : * Generate a pruning step for a specific operator
1336 : *
1337 : * The step is assigned a unique step identifier and added to context's 'steps'
1338 : * list.
1339 : */
1340 : static PartitionPruneStep *
1341 20622 : gen_prune_step_op(GeneratePruningStepsContext *context,
1342 : StrategyNumber opstrategy, bool op_is_ne,
1343 : List *exprs, List *cmpfns,
1344 : Bitmapset *nullkeys)
1345 : {
1346 20622 : PartitionPruneStepOp *opstep = makeNode(PartitionPruneStepOp);
1347 :
1348 20622 : opstep->step.step_id = context->next_step_id++;
1349 :
1350 : /*
1351 : * For clauses that contain an <> operator, set opstrategy to
1352 : * InvalidStrategy to signal get_matching_list_bounds to do the right
1353 : * thing.
1354 : */
1355 20622 : opstep->opstrategy = op_is_ne ? InvalidStrategy : opstrategy;
1356 : Assert(list_length(exprs) == list_length(cmpfns));
1357 20622 : opstep->exprs = exprs;
1358 20622 : opstep->cmpfns = cmpfns;
1359 20622 : opstep->nullkeys = nullkeys;
1360 :
1361 20622 : context->steps = lappend(context->steps, opstep);
1362 :
1363 20622 : return (PartitionPruneStep *) opstep;
1364 : }
1365 :
1366 : /*
1367 : * gen_prune_step_combine
1368 : * Generate a pruning step for a combination of several other steps
1369 : *
1370 : * The step is assigned a unique step identifier and added to context's
1371 : * 'steps' list.
1372 : */
1373 : static PartitionPruneStep *
1374 4250 : gen_prune_step_combine(GeneratePruningStepsContext *context,
1375 : List *source_stepids,
1376 : PartitionPruneCombineOp combineOp)
1377 : {
1378 4250 : PartitionPruneStepCombine *cstep = makeNode(PartitionPruneStepCombine);
1379 :
1380 4250 : cstep->step.step_id = context->next_step_id++;
1381 4250 : cstep->combineOp = combineOp;
1382 4250 : cstep->source_stepids = source_stepids;
1383 :
1384 4250 : context->steps = lappend(context->steps, cstep);
1385 :
1386 4250 : return (PartitionPruneStep *) cstep;
1387 : }
1388 :
1389 : /*
1390 : * gen_prune_steps_from_opexps
1391 : * Generate and return a list of PartitionPruneStepOp that are based on
1392 : * OpExpr and BooleanTest clauses that have been matched to the partition
1393 : * key.
1394 : *
1395 : * 'keyclauses' is an array of List pointers, indexed by the partition key's
1396 : * index. Each List element in the array can contain clauses that match to
1397 : * the corresponding partition key column. Partition key columns without any
1398 : * matched clauses will have an empty List.
1399 : *
1400 : * Some partitioning strategies allow pruning to still occur when we only have
1401 : * clauses for a prefix of the partition key columns, for example, RANGE
1402 : * partitioning. Other strategies, such as HASH partitioning, require clauses
1403 : * for all partition key columns.
1404 : *
1405 : * When we return multiple pruning steps here, it's up to the caller to add a
1406 : * relevant "combine" step to combine the returned steps. This is not done
1407 : * here as callers may wish to include additional pruning steps before
1408 : * combining them all.
1409 : */
1410 : static List *
1411 18008 : gen_prune_steps_from_opexps(GeneratePruningStepsContext *context,
1412 : List **keyclauses, Bitmapset *nullkeys)
1413 : {
1414 18008 : PartitionScheme part_scheme = context->rel->part_scheme;
1415 18008 : List *opsteps = NIL;
1416 : List *btree_clauses[BTMaxStrategyNumber + 1],
1417 : *hash_clauses[HTMaxStrategyNumber + 1];
1418 : int i;
1419 : ListCell *lc;
1420 :
1421 18008 : memset(btree_clauses, 0, sizeof(btree_clauses));
1422 18008 : memset(hash_clauses, 0, sizeof(hash_clauses));
1423 35314 : for (i = 0; i < part_scheme->partnatts; i++)
1424 : {
1425 20396 : List *clauselist = keyclauses[i];
1426 20396 : bool consider_next_key = true;
1427 :
1428 : /*
1429 : * For range partitioning, if we have no clauses for the current key,
1430 : * we can't consider any later keys either, so we can stop here.
1431 : */
1432 20396 : if (part_scheme->strategy == PARTITION_STRATEGY_RANGE &&
1433 : clauselist == NIL)
1434 636 : break;
1435 :
1436 : /*
1437 : * For hash partitioning, if a column doesn't have the necessary
1438 : * equality clause, there should be an IS NULL clause, otherwise
1439 : * pruning is not possible.
1440 : */
1441 19760 : if (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
1442 774 : clauselist == NIL && !bms_is_member(i, nullkeys))
1443 72 : return NIL;
1444 :
1445 39902 : foreach(lc, clauselist)
1446 : {
1447 20214 : PartClauseInfo *pc = (PartClauseInfo *) lfirst(lc);
1448 : Oid lefttype,
1449 : righttype;
1450 :
1451 : /* Look up the operator's btree/hash strategy number. */
1452 20214 : if (pc->op_strategy == InvalidStrategy)
1453 622 : get_op_opfamily_properties(pc->opno,
1454 622 : part_scheme->partopfamily[i],
1455 : false,
1456 : &pc->op_strategy,
1457 : &lefttype,
1458 : &righttype);
1459 :
1460 20214 : switch (part_scheme->strategy)
1461 : {
1462 19132 : case PARTITION_STRATEGY_LIST:
1463 : case PARTITION_STRATEGY_RANGE:
1464 38264 : btree_clauses[pc->op_strategy] =
1465 19132 : lappend(btree_clauses[pc->op_strategy], pc);
1466 :
1467 : /*
1468 : * We can't consider subsequent partition keys if the
1469 : * clause for the current key contains a non-inclusive
1470 : * operator.
1471 : */
1472 19132 : if (pc->op_strategy == BTLessStrategyNumber ||
1473 17292 : pc->op_strategy == BTGreaterStrategyNumber)
1474 2544 : consider_next_key = false;
1475 19132 : break;
1476 :
1477 1082 : case PARTITION_STRATEGY_HASH:
1478 1082 : if (pc->op_strategy != HTEqualStrategyNumber)
1479 0 : elog(ERROR, "invalid clause for hash partitioning");
1480 2164 : hash_clauses[pc->op_strategy] =
1481 1082 : lappend(hash_clauses[pc->op_strategy], pc);
1482 1082 : break;
1483 :
1484 0 : default:
1485 0 : elog(ERROR, "invalid partition strategy: %c",
1486 : part_scheme->strategy);
1487 : break;
1488 : }
1489 : }
1490 :
1491 : /*
1492 : * If we've decided that clauses for subsequent partition keys
1493 : * wouldn't be useful for pruning, don't search any further.
1494 : */
1495 19688 : if (!consider_next_key)
1496 2382 : break;
1497 : }
1498 :
1499 : /*
1500 : * Now, we have divided clauses according to their operator strategies.
1501 : * Check for each strategy if we can generate pruning step(s) by
1502 : * collecting a list of expressions whose values will constitute a vector
1503 : * that can be used as a lookup key by a partition bound searching
1504 : * function.
1505 : */
1506 17936 : switch (part_scheme->strategy)
1507 : {
1508 17364 : case PARTITION_STRATEGY_LIST:
1509 : case PARTITION_STRATEGY_RANGE:
1510 : {
1511 17364 : List *eq_clauses = btree_clauses[BTEqualStrategyNumber];
1512 17364 : List *le_clauses = btree_clauses[BTLessEqualStrategyNumber];
1513 17364 : List *ge_clauses = btree_clauses[BTGreaterEqualStrategyNumber];
1514 : int strat;
1515 :
1516 : /*
1517 : * For each clause under consideration for a given strategy,
1518 : * we collect expressions from clauses for earlier keys, whose
1519 : * operator strategy is inclusive, into a list called
1520 : * 'prefix'. By appending the clause's own expression to the
1521 : * 'prefix', we'll generate one step using the so generated
1522 : * vector and assign the current strategy to it. Actually,
1523 : * 'prefix' might contain multiple clauses for the same key,
1524 : * in which case, we must generate steps for various
1525 : * combinations of expressions of different keys, which
1526 : * get_steps_using_prefix takes care of for us.
1527 : */
1528 104184 : for (strat = 1; strat <= BTMaxStrategyNumber; strat++)
1529 : {
1530 105892 : foreach(lc, btree_clauses[strat])
1531 : {
1532 19120 : PartClauseInfo *pc = lfirst(lc);
1533 : ListCell *eq_start;
1534 : ListCell *le_start;
1535 : ListCell *ge_start;
1536 : ListCell *lc1;
1537 19120 : List *prefix = NIL;
1538 : List *pc_steps;
1539 19120 : bool prefix_valid = true;
1540 : bool pk_has_clauses;
1541 : int keyno;
1542 :
1543 : /*
1544 : * If this is a clause for the first partition key,
1545 : * there are no preceding expressions; generate a
1546 : * pruning step without a prefix.
1547 : *
1548 : * Note that we pass NULL for step_nullkeys, because
1549 : * we don't search list/range partition bounds where
1550 : * some keys are NULL.
1551 : */
1552 19120 : if (pc->keyno == 0)
1553 : {
1554 : Assert(pc->op_strategy == strat);
1555 18412 : pc_steps = get_steps_using_prefix(context, strat,
1556 18412 : pc->op_is_ne,
1557 : pc->expr,
1558 : pc->cmpfn,
1559 : NULL,
1560 : NIL);
1561 18412 : opsteps = list_concat(opsteps, pc_steps);
1562 18412 : continue;
1563 : }
1564 :
1565 708 : eq_start = list_head(eq_clauses);
1566 708 : le_start = list_head(le_clauses);
1567 708 : ge_start = list_head(ge_clauses);
1568 :
1569 : /*
1570 : * We arrange clauses into prefix in ascending order
1571 : * of their partition key numbers.
1572 : */
1573 1572 : for (keyno = 0; keyno < pc->keyno; keyno++)
1574 : {
1575 912 : pk_has_clauses = false;
1576 :
1577 : /*
1578 : * Expressions from = clauses can always be in the
1579 : * prefix, provided they're from an earlier key.
1580 : */
1581 1650 : for_each_cell(lc1, eq_clauses, eq_start)
1582 : {
1583 1374 : PartClauseInfo *eqpc = lfirst(lc1);
1584 :
1585 1374 : if (eqpc->keyno == keyno)
1586 : {
1587 738 : prefix = lappend(prefix, eqpc);
1588 738 : pk_has_clauses = true;
1589 : }
1590 : else
1591 : {
1592 : Assert(eqpc->keyno > keyno);
1593 636 : break;
1594 : }
1595 : }
1596 912 : eq_start = lc1;
1597 :
1598 : /*
1599 : * If we're generating steps for </<= strategy, we
1600 : * can add other <= clauses to the prefix,
1601 : * provided they're from an earlier key.
1602 : */
1603 912 : if (strat == BTLessStrategyNumber ||
1604 : strat == BTLessEqualStrategyNumber)
1605 : {
1606 114 : for_each_cell(lc1, le_clauses, le_start)
1607 : {
1608 30 : PartClauseInfo *lepc = lfirst(lc1);
1609 :
1610 30 : if (lepc->keyno == keyno)
1611 : {
1612 18 : prefix = lappend(prefix, lepc);
1613 18 : pk_has_clauses = true;
1614 : }
1615 : else
1616 : {
1617 : Assert(lepc->keyno > keyno);
1618 12 : break;
1619 : }
1620 : }
1621 96 : le_start = lc1;
1622 : }
1623 :
1624 : /*
1625 : * If we're generating steps for >/>= strategy, we
1626 : * can add other >= clauses to the prefix,
1627 : * provided they're from an earlier key.
1628 : */
1629 912 : if (strat == BTGreaterStrategyNumber ||
1630 : strat == BTGreaterEqualStrategyNumber)
1631 : {
1632 396 : for_each_cell(lc1, ge_clauses, ge_start)
1633 : {
1634 300 : PartClauseInfo *gepc = lfirst(lc1);
1635 :
1636 300 : if (gepc->keyno == keyno)
1637 : {
1638 144 : prefix = lappend(prefix, gepc);
1639 144 : pk_has_clauses = true;
1640 : }
1641 : else
1642 : {
1643 : Assert(gepc->keyno > keyno);
1644 156 : break;
1645 : }
1646 : }
1647 252 : ge_start = lc1;
1648 : }
1649 :
1650 : /*
1651 : * If this key has no clauses, prefix is not valid
1652 : * anymore.
1653 : */
1654 912 : if (!pk_has_clauses)
1655 : {
1656 48 : prefix_valid = false;
1657 48 : break;
1658 : }
1659 : }
1660 :
1661 : /*
1662 : * If prefix_valid, generate PartitionPruneStepOps.
1663 : * Otherwise, we would not find clauses for a valid
1664 : * subset of the partition keys anymore for the
1665 : * strategy; give up on generating partition pruning
1666 : * steps further for the strategy.
1667 : *
1668 : * As mentioned above, if 'prefix' contains multiple
1669 : * expressions for the same key, the following will
1670 : * generate multiple steps, one for each combination
1671 : * of the expressions for different keys.
1672 : *
1673 : * Note that we pass NULL for step_nullkeys, because
1674 : * we don't search list/range partition bounds where
1675 : * some keys are NULL.
1676 : */
1677 708 : if (prefix_valid)
1678 : {
1679 : Assert(pc->op_strategy == strat);
1680 660 : pc_steps = get_steps_using_prefix(context, strat,
1681 660 : pc->op_is_ne,
1682 : pc->expr,
1683 : pc->cmpfn,
1684 : NULL,
1685 : prefix);
1686 660 : opsteps = list_concat(opsteps, pc_steps);
1687 : }
1688 : else
1689 48 : break;
1690 : }
1691 : }
1692 17364 : break;
1693 : }
1694 :
1695 572 : case PARTITION_STRATEGY_HASH:
1696 : {
1697 572 : List *eq_clauses = hash_clauses[HTEqualStrategyNumber];
1698 :
1699 : /* For hash partitioning, we have just the = strategy. */
1700 572 : if (eq_clauses != NIL)
1701 : {
1702 : PartClauseInfo *pc;
1703 : List *pc_steps;
1704 572 : List *prefix = NIL;
1705 : int last_keyno;
1706 : ListCell *lc1;
1707 :
1708 : /*
1709 : * Locate the clause for the greatest column. This may
1710 : * not belong to the last partition key, but it is the
1711 : * clause belonging to the last partition key we found a
1712 : * clause for above.
1713 : */
1714 572 : pc = llast(eq_clauses);
1715 :
1716 : /*
1717 : * There might be multiple clauses which matched to that
1718 : * partition key; find the first such clause. While at
1719 : * it, add all the clauses before that one to 'prefix'.
1720 : */
1721 572 : last_keyno = pc->keyno;
1722 1070 : foreach(lc, eq_clauses)
1723 : {
1724 1070 : pc = lfirst(lc);
1725 1070 : if (pc->keyno == last_keyno)
1726 572 : break;
1727 498 : prefix = lappend(prefix, pc);
1728 : }
1729 :
1730 : /*
1731 : * For each clause for the "last" column, after appending
1732 : * the clause's own expression to the 'prefix', we'll
1733 : * generate one step using the so generated vector and
1734 : * assign = as its strategy. Actually, 'prefix' might
1735 : * contain multiple clauses for the same key, in which
1736 : * case, we must generate steps for various combinations
1737 : * of expressions of different keys, which
1738 : * get_steps_using_prefix will take care of for us.
1739 : */
1740 1144 : for_each_cell(lc1, eq_clauses, lc)
1741 : {
1742 572 : pc = lfirst(lc1);
1743 :
1744 : /*
1745 : * Note that we pass nullkeys for step_nullkeys,
1746 : * because we need to tell hash partition bound search
1747 : * function which of the keys we found IS NULL clauses
1748 : * for.
1749 : */
1750 : Assert(pc->op_strategy == HTEqualStrategyNumber);
1751 : pc_steps =
1752 572 : get_steps_using_prefix(context,
1753 : HTEqualStrategyNumber,
1754 : false,
1755 : pc->expr,
1756 : pc->cmpfn,
1757 : nullkeys,
1758 : prefix);
1759 572 : opsteps = list_concat(opsteps, pc_steps);
1760 : }
1761 : }
1762 572 : break;
1763 : }
1764 :
1765 0 : default:
1766 0 : elog(ERROR, "invalid partition strategy: %c",
1767 : part_scheme->strategy);
1768 : break;
1769 : }
1770 :
1771 17936 : return opsteps;
1772 : }
1773 :
1774 : /*
1775 : * If the partition key has a collation, then the clause must have the same
1776 : * input collation. If the partition key is non-collatable, we assume the
1777 : * collation doesn't matter, because while collation wasn't considered when
1778 : * performing partitioning, the clause still may have a collation assigned
1779 : * due to the other input being of a collatable type.
1780 : *
1781 : * See also IndexCollMatchesExprColl.
1782 : */
1783 : #define PartCollMatchesExprColl(partcoll, exprcoll) \
1784 : ((partcoll) == InvalidOid || (partcoll) == (exprcoll))
1785 :
1786 : /*
1787 : * match_clause_to_partition_key
1788 : * Attempt to match the given 'clause' with the specified partition key.
1789 : *
1790 : * Return value is:
1791 : * * PARTCLAUSE_NOMATCH if the clause doesn't match this partition key (but
1792 : * caller should keep trying, because it might match a subsequent key).
1793 : * Output arguments: none set.
1794 : *
1795 : * * PARTCLAUSE_MATCH_CLAUSE if there is a match.
1796 : * Output arguments: *pc is set to a PartClauseInfo constructed for the
1797 : * matched clause.
1798 : *
1799 : * * PARTCLAUSE_MATCH_NULLNESS if there is a match, and the matched clause was
1800 : * either a "a IS NULL" or "a IS NOT NULL" clause.
1801 : * Output arguments: *clause_is_not_null is set to false in the former case
1802 : * true otherwise.
1803 : *
1804 : * * PARTCLAUSE_MATCH_STEPS if there is a match.
1805 : * Output arguments: *clause_steps is set to the list of recursively
1806 : * generated steps for the clause.
1807 : *
1808 : * * PARTCLAUSE_MATCH_CONTRADICT if the clause is self-contradictory, ie
1809 : * it provably returns FALSE or NULL.
1810 : * Output arguments: none set.
1811 : *
1812 : * * PARTCLAUSE_UNSUPPORTED if the clause doesn't match this partition key
1813 : * and couldn't possibly match any other one either, due to its form or
1814 : * properties (such as containing a volatile function).
1815 : * Output arguments: none set.
1816 : */
1817 : static PartClauseMatchStatus
1818 37504 : match_clause_to_partition_key(GeneratePruningStepsContext *context,
1819 : Expr *clause, Expr *partkey, int partkeyidx,
1820 : bool *clause_is_not_null, PartClauseInfo **pc,
1821 : List **clause_steps)
1822 : {
1823 : PartClauseMatchStatus boolmatchstatus;
1824 37504 : PartitionScheme part_scheme = context->rel->part_scheme;
1825 37504 : Oid partopfamily = part_scheme->partopfamily[partkeyidx],
1826 37504 : partcoll = part_scheme->partcollation[partkeyidx];
1827 : Expr *expr;
1828 : bool notclause;
1829 :
1830 : /*
1831 : * Recognize specially shaped clauses that match a Boolean partition key.
1832 : */
1833 37504 : boolmatchstatus = match_boolean_partition_clause(partopfamily, clause,
1834 : partkey, &expr,
1835 : ¬clause);
1836 :
1837 37504 : if (boolmatchstatus == PARTCLAUSE_MATCH_CLAUSE)
1838 : {
1839 : PartClauseInfo *partclause;
1840 :
1841 : /*
1842 : * For bool tests in the form of partkey IS NOT true and IS NOT false,
1843 : * we invert these clauses. Effectively, "partkey IS NOT true"
1844 : * becomes "partkey IS false OR partkey IS NULL". We do this by
1845 : * building an OR BoolExpr and forming a clause just like that and
1846 : * punt it off to gen_partprune_steps_internal() to generate pruning
1847 : * steps.
1848 : */
1849 660 : if (notclause)
1850 : {
1851 : List *new_clauses;
1852 : List *or_clause;
1853 216 : BooleanTest *new_booltest = (BooleanTest *) copyObject(clause);
1854 : NullTest *nulltest;
1855 :
1856 : /* We expect 'notclause' to only be set to true for BooleanTests */
1857 : Assert(IsA(clause, BooleanTest));
1858 :
1859 : /* reverse the bool test */
1860 216 : if (new_booltest->booltesttype == IS_NOT_TRUE)
1861 132 : new_booltest->booltesttype = IS_FALSE;
1862 84 : else if (new_booltest->booltesttype == IS_NOT_FALSE)
1863 84 : new_booltest->booltesttype = IS_TRUE;
1864 : else
1865 : {
1866 : /*
1867 : * We only expect match_boolean_partition_clause to return
1868 : * PARTCLAUSE_MATCH_CLAUSE for IS_NOT_TRUE and IS_NOT_FALSE.
1869 : */
1870 : Assert(false);
1871 : }
1872 :
1873 216 : nulltest = makeNode(NullTest);
1874 216 : nulltest->arg = copyObject(partkey);
1875 216 : nulltest->nulltesttype = IS_NULL;
1876 216 : nulltest->argisrow = false;
1877 216 : nulltest->location = -1;
1878 :
1879 216 : new_clauses = list_make2(new_booltest, nulltest);
1880 216 : or_clause = list_make1(makeBoolExpr(OR_EXPR, new_clauses, -1));
1881 :
1882 : /* Finally, generate steps */
1883 216 : *clause_steps = gen_partprune_steps_internal(context, or_clause);
1884 :
1885 216 : if (context->contradictory)
1886 0 : return PARTCLAUSE_MATCH_CONTRADICT; /* shouldn't happen */
1887 216 : else if (*clause_steps == NIL)
1888 0 : return PARTCLAUSE_UNSUPPORTED; /* step generation failed */
1889 216 : return PARTCLAUSE_MATCH_STEPS;
1890 : }
1891 :
1892 444 : partclause = palloc_object(PartClauseInfo);
1893 444 : partclause->keyno = partkeyidx;
1894 : /* Do pruning with the Boolean equality operator. */
1895 444 : partclause->opno = BooleanEqualOperator;
1896 444 : partclause->op_is_ne = false;
1897 444 : partclause->expr = expr;
1898 : /* We know that expr is of Boolean type. */
1899 444 : partclause->cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
1900 444 : partclause->op_strategy = InvalidStrategy;
1901 :
1902 444 : *pc = partclause;
1903 :
1904 444 : return PARTCLAUSE_MATCH_CLAUSE;
1905 : }
1906 36844 : else if (boolmatchstatus == PARTCLAUSE_MATCH_NULLNESS)
1907 : {
1908 : /*
1909 : * Handle IS UNKNOWN and IS NOT UNKNOWN. These just logically
1910 : * translate to IS NULL and IS NOT NULL.
1911 : */
1912 96 : *clause_is_not_null = notclause;
1913 96 : return PARTCLAUSE_MATCH_NULLNESS;
1914 : }
1915 68200 : else if (IsA(clause, OpExpr) &&
1916 31452 : list_length(((OpExpr *) clause)->args) == 2)
1917 : {
1918 31452 : OpExpr *opclause = (OpExpr *) clause;
1919 : Expr *leftop,
1920 : *rightop;
1921 : Oid opno,
1922 : op_lefttype,
1923 : op_righttype,
1924 31452 : negator = InvalidOid;
1925 : Oid cmpfn;
1926 : int op_strategy;
1927 31452 : bool is_opne_listp = false;
1928 : PartClauseInfo *partclause;
1929 :
1930 31452 : leftop = (Expr *) get_leftop(clause);
1931 31452 : if (IsA(leftop, RelabelType))
1932 456 : leftop = ((RelabelType *) leftop)->arg;
1933 31452 : rightop = (Expr *) get_rightop(clause);
1934 31452 : if (IsA(rightop, RelabelType))
1935 0 : rightop = ((RelabelType *) rightop)->arg;
1936 31452 : opno = opclause->opno;
1937 :
1938 : /* check if the clause matches this partition key */
1939 31452 : if (equal(leftop, partkey))
1940 20244 : expr = rightop;
1941 11208 : else if (equal(rightop, partkey))
1942 : {
1943 : /*
1944 : * It's only useful if we can commute the operator to put the
1945 : * partkey on the left. If we can't, the clause can be deemed
1946 : * UNSUPPORTED. Even if its leftop matches some later partkey, we
1947 : * now know it has Vars on the right, so it's no use.
1948 : */
1949 1326 : opno = get_commutator(opno);
1950 1326 : if (!OidIsValid(opno))
1951 0 : return PARTCLAUSE_UNSUPPORTED;
1952 1326 : expr = leftop;
1953 : }
1954 : else
1955 : /* clause does not match this partition key, but perhaps next. */
1956 9882 : return PARTCLAUSE_NOMATCH;
1957 :
1958 : /*
1959 : * Partition key match also requires collation match. There may be
1960 : * multiple partkeys with the same expression but different
1961 : * collations, so failure is NOMATCH.
1962 : */
1963 21570 : if (!PartCollMatchesExprColl(partcoll, opclause->inputcollid))
1964 60 : return PARTCLAUSE_NOMATCH;
1965 :
1966 : /*
1967 : * See if the operator is relevant to the partitioning opfamily.
1968 : *
1969 : * Normally we only care about operators that are listed as being part
1970 : * of the partitioning operator family. But there is one exception:
1971 : * the not-equals operators are not listed in any operator family
1972 : * whatsoever, but their negators (equality) are. We can use one of
1973 : * those if we find it, but only for list partitioning.
1974 : *
1975 : * Note: we report NOMATCH on failure if the negator isn't the
1976 : * equality operator for the partkey's opfamily as other partkeys may
1977 : * have the same expression but different opfamily. That's unlikely,
1978 : * but not much more so than duplicate expressions with different
1979 : * collations.
1980 : */
1981 21510 : if (op_in_opfamily(opno, partopfamily))
1982 : {
1983 21138 : get_op_opfamily_properties(opno, partopfamily, false,
1984 : &op_strategy, &op_lefttype,
1985 : &op_righttype);
1986 : }
1987 : else
1988 : {
1989 : /* not supported for anything apart from LIST partitioned tables */
1990 372 : if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
1991 96 : return PARTCLAUSE_UNSUPPORTED;
1992 :
1993 : /* See if the negator is equality */
1994 276 : negator = get_negator(opno);
1995 276 : if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
1996 : {
1997 264 : get_op_opfamily_properties(negator, partopfamily, false,
1998 : &op_strategy, &op_lefttype,
1999 : &op_righttype);
2000 264 : if (op_strategy == BTEqualStrategyNumber)
2001 264 : is_opne_listp = true; /* bingo */
2002 : }
2003 :
2004 : /* Nope, it's not <> either. */
2005 276 : if (!is_opne_listp)
2006 12 : return PARTCLAUSE_NOMATCH;
2007 : }
2008 :
2009 : /*
2010 : * Only allow strict operators. This will guarantee nulls are
2011 : * filtered. (This test is likely useless, since btree and hash
2012 : * comparison operators are generally strict.)
2013 : */
2014 21402 : if (!op_strict(opno))
2015 0 : return PARTCLAUSE_UNSUPPORTED;
2016 :
2017 : /*
2018 : * OK, we have a match to the partition key and a suitable operator.
2019 : * Examine the other argument to see if it's usable for pruning.
2020 : *
2021 : * In most of these cases, we can return UNSUPPORTED because the same
2022 : * failure would occur no matter which partkey it's matched to. (In
2023 : * particular, now that we've successfully matched one side of the
2024 : * opclause to a partkey, there is no chance that matching the other
2025 : * side to another partkey will produce a usable result, since that'd
2026 : * mean there are Vars on both sides.)
2027 : *
2028 : * Also, if we reject an argument for a target-dependent reason, set
2029 : * appropriate fields of *context to report that. We postpone these
2030 : * tests until after matching the partkey and the operator, so as to
2031 : * reduce the odds of setting the context fields for clauses that do
2032 : * not end up contributing to pruning steps.
2033 : *
2034 : * First, check for non-Const argument. (We assume that any immutable
2035 : * subexpression will have been folded to a Const already.)
2036 : */
2037 21402 : if (!IsA(expr, Const))
2038 : {
2039 : Bitmapset *paramids;
2040 :
2041 : /*
2042 : * When pruning in the planner, we only support pruning using
2043 : * comparisons to constants. We cannot prune on the basis of
2044 : * anything that's not immutable. (Note that has_mutable_arg and
2045 : * has_exec_param do not get set for this target value.)
2046 : */
2047 2186 : if (context->target == PARTTARGET_PLANNER)
2048 784 : return PARTCLAUSE_UNSUPPORTED;
2049 :
2050 : /*
2051 : * We can never prune using an expression that contains Vars.
2052 : */
2053 1402 : if (contain_var_clause((Node *) expr))
2054 56 : return PARTCLAUSE_UNSUPPORTED;
2055 :
2056 : /*
2057 : * And we must reject anything containing a volatile function.
2058 : * Stable functions are OK though.
2059 : */
2060 1346 : if (contain_volatile_functions((Node *) expr))
2061 0 : return PARTCLAUSE_UNSUPPORTED;
2062 :
2063 : /*
2064 : * See if there are any exec Params. If so, we can only use this
2065 : * expression during per-scan pruning.
2066 : */
2067 1346 : paramids = pull_exec_paramids(expr);
2068 1346 : if (!bms_is_empty(paramids))
2069 : {
2070 852 : context->has_exec_param = true;
2071 852 : if (context->target != PARTTARGET_EXEC)
2072 420 : return PARTCLAUSE_UNSUPPORTED;
2073 : }
2074 : else
2075 : {
2076 : /* It's potentially usable, but mutable */
2077 494 : context->has_mutable_arg = true;
2078 : }
2079 : }
2080 :
2081 : /*
2082 : * Check whether the comparison operator itself is immutable. (We
2083 : * assume anything that's in a btree or hash opclass is at least
2084 : * stable, but we need to check for immutability.)
2085 : */
2086 20142 : if (op_volatile(opno) != PROVOLATILE_IMMUTABLE)
2087 : {
2088 36 : context->has_mutable_op = true;
2089 :
2090 : /*
2091 : * When pruning in the planner, we cannot prune with mutable
2092 : * operators.
2093 : */
2094 36 : if (context->target == PARTTARGET_PLANNER)
2095 6 : return PARTCLAUSE_UNSUPPORTED;
2096 : }
2097 :
2098 : /*
2099 : * Now find the procedure to use, based on the types. If the clause's
2100 : * other argument is of the same type as the partitioning opclass's
2101 : * declared input type, we can use the procedure cached in
2102 : * PartitionKey. If not, search for a cross-type one in the same
2103 : * opfamily; if one doesn't exist, report no match.
2104 : */
2105 20136 : if (op_righttype == part_scheme->partopcintype[partkeyidx])
2106 19902 : cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
2107 : else
2108 : {
2109 234 : switch (part_scheme->strategy)
2110 : {
2111 : /*
2112 : * For range and list partitioning, we need the ordering
2113 : * procedure with lefttype being the partition key's type,
2114 : * and righttype the clause's operator's right type.
2115 : */
2116 234 : case PARTITION_STRATEGY_LIST:
2117 : case PARTITION_STRATEGY_RANGE:
2118 : cmpfn =
2119 234 : get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
2120 234 : part_scheme->partopcintype[partkeyidx],
2121 : op_righttype, BTORDER_PROC);
2122 234 : break;
2123 :
2124 : /*
2125 : * For hash partitioning, we need the hashing procedure
2126 : * for the clause's type.
2127 : */
2128 0 : case PARTITION_STRATEGY_HASH:
2129 : cmpfn =
2130 0 : get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
2131 : op_righttype, op_righttype,
2132 : HASHEXTENDED_PROC);
2133 0 : break;
2134 :
2135 0 : default:
2136 0 : elog(ERROR, "invalid partition strategy: %c",
2137 : part_scheme->strategy);
2138 : cmpfn = InvalidOid; /* keep compiler quiet */
2139 : break;
2140 : }
2141 :
2142 234 : if (!OidIsValid(cmpfn))
2143 0 : return PARTCLAUSE_NOMATCH;
2144 : }
2145 :
2146 : /*
2147 : * Build the clause, passing the negator if applicable.
2148 : */
2149 20136 : partclause = palloc_object(PartClauseInfo);
2150 20136 : partclause->keyno = partkeyidx;
2151 20136 : if (is_opne_listp)
2152 : {
2153 : Assert(OidIsValid(negator));
2154 220 : partclause->opno = negator;
2155 220 : partclause->op_is_ne = true;
2156 220 : partclause->op_strategy = InvalidStrategy;
2157 : }
2158 : else
2159 : {
2160 19916 : partclause->opno = opno;
2161 19916 : partclause->op_is_ne = false;
2162 19916 : partclause->op_strategy = op_strategy;
2163 : }
2164 20136 : partclause->expr = expr;
2165 20136 : partclause->cmpfn = cmpfn;
2166 :
2167 20136 : *pc = partclause;
2168 :
2169 20136 : return PARTCLAUSE_MATCH_CLAUSE;
2170 : }
2171 5296 : else if (IsA(clause, ScalarArrayOpExpr))
2172 : {
2173 744 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
2174 744 : Oid saop_op = saop->opno;
2175 744 : Oid saop_coll = saop->inputcollid;
2176 744 : Expr *leftop = (Expr *) linitial(saop->args),
2177 744 : *rightop = (Expr *) lsecond(saop->args);
2178 : List *elem_exprs,
2179 : *elem_clauses;
2180 : ListCell *lc1;
2181 :
2182 744 : if (IsA(leftop, RelabelType))
2183 168 : leftop = ((RelabelType *) leftop)->arg;
2184 :
2185 : /* check if the LHS matches this partition key */
2186 744 : if (!equal(leftop, partkey) ||
2187 216 : !PartCollMatchesExprColl(partcoll, saop->inputcollid))
2188 228 : return PARTCLAUSE_NOMATCH;
2189 :
2190 : /*
2191 : * See if the operator is relevant to the partitioning opfamily.
2192 : *
2193 : * In case of NOT IN (..), we get a '<>', which we handle if list
2194 : * partitioning is in use and we're able to confirm that it's negator
2195 : * is a btree equality operator belonging to the partitioning operator
2196 : * family. As above, report NOMATCH for non-matching operator.
2197 : */
2198 516 : if (!op_in_opfamily(saop_op, partopfamily))
2199 : {
2200 : Oid negator;
2201 :
2202 72 : if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
2203 12 : return PARTCLAUSE_NOMATCH;
2204 :
2205 60 : negator = get_negator(saop_op);
2206 60 : if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
2207 12 : {
2208 : int strategy;
2209 : Oid lefttype,
2210 : righttype;
2211 :
2212 12 : get_op_opfamily_properties(negator, partopfamily,
2213 : false, &strategy,
2214 : &lefttype, &righttype);
2215 12 : if (strategy != BTEqualStrategyNumber)
2216 0 : return PARTCLAUSE_NOMATCH;
2217 : }
2218 : else
2219 48 : return PARTCLAUSE_NOMATCH; /* no useful negator */
2220 : }
2221 :
2222 : /*
2223 : * Only allow strict operators. This will guarantee nulls are
2224 : * filtered. (This test is likely useless, since btree and hash
2225 : * comparison operators are generally strict.)
2226 : */
2227 456 : if (!op_strict(saop_op))
2228 0 : return PARTCLAUSE_UNSUPPORTED;
2229 :
2230 : /*
2231 : * OK, we have a match to the partition key and a suitable operator.
2232 : * Examine the array argument to see if it's usable for pruning. This
2233 : * is identical to the logic for a plain OpExpr.
2234 : */
2235 456 : if (!IsA(rightop, Const))
2236 : {
2237 : Bitmapset *paramids;
2238 :
2239 : /*
2240 : * When pruning in the planner, we only support pruning using
2241 : * comparisons to constants. We cannot prune on the basis of
2242 : * anything that's not immutable. (Note that has_mutable_arg and
2243 : * has_exec_param do not get set for this target value.)
2244 : */
2245 122 : if (context->target == PARTTARGET_PLANNER)
2246 58 : return PARTCLAUSE_UNSUPPORTED;
2247 :
2248 : /*
2249 : * We can never prune using an expression that contains Vars.
2250 : */
2251 64 : if (contain_var_clause((Node *) rightop))
2252 0 : return PARTCLAUSE_UNSUPPORTED;
2253 :
2254 : /*
2255 : * And we must reject anything containing a volatile function.
2256 : * Stable functions are OK though.
2257 : */
2258 64 : if (contain_volatile_functions((Node *) rightop))
2259 0 : return PARTCLAUSE_UNSUPPORTED;
2260 :
2261 : /*
2262 : * See if there are any exec Params. If so, we can only use this
2263 : * expression during per-scan pruning.
2264 : */
2265 64 : paramids = pull_exec_paramids(rightop);
2266 64 : if (!bms_is_empty(paramids))
2267 : {
2268 12 : context->has_exec_param = true;
2269 12 : if (context->target != PARTTARGET_EXEC)
2270 6 : return PARTCLAUSE_UNSUPPORTED;
2271 : }
2272 : else
2273 : {
2274 : /* It's potentially usable, but mutable */
2275 52 : context->has_mutable_arg = true;
2276 : }
2277 : }
2278 :
2279 : /*
2280 : * Check whether the comparison operator itself is immutable. (We
2281 : * assume anything that's in a btree or hash opclass is at least
2282 : * stable, but we need to check for immutability.)
2283 : */
2284 392 : if (op_volatile(saop_op) != PROVOLATILE_IMMUTABLE)
2285 : {
2286 36 : context->has_mutable_op = true;
2287 :
2288 : /*
2289 : * When pruning in the planner, we cannot prune with mutable
2290 : * operators.
2291 : */
2292 36 : if (context->target == PARTTARGET_PLANNER)
2293 18 : return PARTCLAUSE_UNSUPPORTED;
2294 : }
2295 :
2296 : /*
2297 : * Examine the contents of the array argument.
2298 : */
2299 374 : elem_exprs = NIL;
2300 374 : if (IsA(rightop, Const))
2301 : {
2302 : /*
2303 : * For a constant array, convert the elements to a list of Const
2304 : * nodes, one for each array element (excepting nulls).
2305 : */
2306 316 : Const *arr = (Const *) rightop;
2307 : ArrayType *arrval;
2308 : int16 elemlen;
2309 : bool elembyval;
2310 : char elemalign;
2311 : Datum *elem_values;
2312 : bool *elem_nulls;
2313 : int num_elems,
2314 : i;
2315 :
2316 : /* If the array itself is null, the saop returns null */
2317 316 : if (arr->constisnull)
2318 24 : return PARTCLAUSE_MATCH_CONTRADICT;
2319 :
2320 298 : arrval = DatumGetArrayTypeP(arr->constvalue);
2321 298 : get_typlenbyvalalign(ARR_ELEMTYPE(arrval),
2322 : &elemlen, &elembyval, &elemalign);
2323 298 : deconstruct_array(arrval,
2324 : ARR_ELEMTYPE(arrval),
2325 : elemlen, elembyval, elemalign,
2326 : &elem_values, &elem_nulls,
2327 : &num_elems);
2328 1060 : for (i = 0; i < num_elems; i++)
2329 : {
2330 : Const *elem_expr;
2331 :
2332 : /*
2333 : * A null array element must lead to a null comparison result,
2334 : * since saop_op is known strict. We can ignore it in the
2335 : * useOr case, but otherwise it implies self-contradiction.
2336 : */
2337 768 : if (elem_nulls[i])
2338 : {
2339 30 : if (saop->useOr)
2340 24 : continue;
2341 6 : return PARTCLAUSE_MATCH_CONTRADICT;
2342 : }
2343 :
2344 738 : elem_expr = makeConst(ARR_ELEMTYPE(arrval), -1,
2345 : arr->constcollid, elemlen,
2346 738 : elem_values[i], false, elembyval);
2347 738 : elem_exprs = lappend(elem_exprs, elem_expr);
2348 : }
2349 : }
2350 58 : else if (IsA(rightop, ArrayExpr))
2351 : {
2352 52 : ArrayExpr *arrexpr = castNode(ArrayExpr, rightop);
2353 :
2354 : /*
2355 : * For a nested ArrayExpr, we don't know how to get the actual
2356 : * scalar values out into a flat list, so we give up doing
2357 : * anything with this ScalarArrayOpExpr.
2358 : */
2359 52 : if (arrexpr->multidims)
2360 0 : return PARTCLAUSE_UNSUPPORTED;
2361 :
2362 : /*
2363 : * Otherwise, we can just use the list of element values.
2364 : */
2365 52 : elem_exprs = arrexpr->elements;
2366 : }
2367 : else
2368 : {
2369 : /* Give up on any other clause types. */
2370 6 : return PARTCLAUSE_UNSUPPORTED;
2371 : }
2372 :
2373 : /*
2374 : * Now generate a list of clauses, one for each array element, of the
2375 : * form leftop saop_op elem_expr
2376 : */
2377 344 : elem_clauses = NIL;
2378 1196 : foreach(lc1, elem_exprs)
2379 : {
2380 : Expr *elem_clause;
2381 :
2382 852 : elem_clause = make_opclause(saop_op, BOOLOID, false,
2383 852 : leftop, lfirst(lc1),
2384 : InvalidOid, saop_coll);
2385 852 : elem_clauses = lappend(elem_clauses, elem_clause);
2386 : }
2387 :
2388 : /*
2389 : * If we have an ANY clause and multiple elements, now turn the list
2390 : * of clauses into an OR expression.
2391 : */
2392 344 : if (saop->useOr && list_length(elem_clauses) > 1)
2393 290 : elem_clauses = list_make1(makeBoolExpr(OR_EXPR, elem_clauses, -1));
2394 :
2395 : /* Finally, generate steps */
2396 344 : *clause_steps = gen_partprune_steps_internal(context, elem_clauses);
2397 344 : if (context->contradictory)
2398 0 : return PARTCLAUSE_MATCH_CONTRADICT;
2399 344 : else if (*clause_steps == NIL)
2400 0 : return PARTCLAUSE_UNSUPPORTED; /* step generation failed */
2401 344 : return PARTCLAUSE_MATCH_STEPS;
2402 : }
2403 4552 : else if (IsA(clause, NullTest))
2404 : {
2405 3844 : NullTest *nulltest = (NullTest *) clause;
2406 3844 : Expr *arg = nulltest->arg;
2407 :
2408 3844 : if (IsA(arg, RelabelType))
2409 0 : arg = ((RelabelType *) arg)->arg;
2410 :
2411 : /* Does arg match with this partition key column? */
2412 3844 : if (!equal(arg, partkey))
2413 1720 : return PARTCLAUSE_NOMATCH;
2414 :
2415 2124 : *clause_is_not_null = (nulltest->nulltesttype == IS_NOT_NULL);
2416 :
2417 2124 : return PARTCLAUSE_MATCH_NULLNESS;
2418 : }
2419 :
2420 : /*
2421 : * If we get here then the return value depends on the result of the
2422 : * match_boolean_partition_clause call above. If the call returned
2423 : * PARTCLAUSE_UNSUPPORTED then we're either not dealing with a bool qual
2424 : * or the bool qual is not suitable for pruning. Since the qual didn't
2425 : * match up to any of the other qual types supported here, then trying to
2426 : * match it against any other partition key is a waste of time, so just
2427 : * return PARTCLAUSE_UNSUPPORTED. If the qual just couldn't be matched to
2428 : * this partition key, then it may match another, so return
2429 : * PARTCLAUSE_NOMATCH. The only other value that
2430 : * match_boolean_partition_clause can return is PARTCLAUSE_MATCH_CLAUSE,
2431 : * and since that value was already dealt with above, then we can just
2432 : * return boolmatchstatus.
2433 : */
2434 708 : return boolmatchstatus;
2435 : }
2436 :
2437 : /*
2438 : * get_steps_using_prefix
2439 : * Generate a list of PartitionPruneStepOps based on the given input.
2440 : *
2441 : * 'step_lastexpr' and 'step_lastcmpfn' are the Expr and comparison function
2442 : * belonging to the final partition key that we have a clause for. 'prefix'
2443 : * is a list of PartClauseInfos for partition key numbers prior to the given
2444 : * 'step_lastexpr' and 'step_lastcmpfn'. 'prefix' may contain multiple
2445 : * PartClauseInfos belonging to a single partition key. We will generate a
2446 : * PartitionPruneStepOp for each combination of the given PartClauseInfos
2447 : * using, at most, one PartClauseInfo per partition key.
2448 : *
2449 : * For LIST and RANGE partitioned tables, callers must ensure that
2450 : * step_nullkeys is NULL, and that prefix contains at least one clause for
2451 : * each of the partition keys prior to the key that 'step_lastexpr' and
2452 : * 'step_lastcmpfn' belong to.
2453 : *
2454 : * For HASH partitioned tables, callers must ensure that 'prefix' contains at
2455 : * least one clause for each of the partition keys apart from the final key
2456 : * (the expr and comparison function for the final key are in 'step_lastexpr'
2457 : * and 'step_lastcmpfn'). A bit set in step_nullkeys can substitute clauses
2458 : * in the 'prefix' list for any given key. If a bit is set in 'step_nullkeys'
2459 : * for a given key, then there must be no PartClauseInfo for that key in the
2460 : * 'prefix' list.
2461 : *
2462 : * For each of the above cases, callers must ensure that PartClauseInfos in
2463 : * 'prefix' are sorted in ascending order of keyno.
2464 : */
2465 : static List *
2466 19644 : get_steps_using_prefix(GeneratePruningStepsContext *context,
2467 : StrategyNumber step_opstrategy,
2468 : bool step_op_is_ne,
2469 : Expr *step_lastexpr,
2470 : Oid step_lastcmpfn,
2471 : Bitmapset *step_nullkeys,
2472 : List *prefix)
2473 : {
2474 : /* step_nullkeys must be empty for RANGE and LIST partitioned tables */
2475 : Assert(step_nullkeys == NULL ||
2476 : context->rel->part_scheme->strategy == PARTITION_STRATEGY_HASH);
2477 :
2478 : /*
2479 : * No recursive processing is required when 'prefix' is an empty list.
2480 : * This occurs when there is only 1 partition key column.
2481 : */
2482 19644 : if (prefix == NIL)
2483 : {
2484 : PartitionPruneStep *step;
2485 :
2486 18630 : step = gen_prune_step_op(context,
2487 : step_opstrategy,
2488 : step_op_is_ne,
2489 18630 : list_make1(step_lastexpr),
2490 18630 : list_make1_oid(step_lastcmpfn),
2491 : step_nullkeys);
2492 18630 : return list_make1(step);
2493 : }
2494 :
2495 : /* Recurse to generate steps for every combination of clauses. */
2496 1014 : return get_steps_using_prefix_recurse(context,
2497 : step_opstrategy,
2498 : step_op_is_ne,
2499 : step_lastexpr,
2500 : step_lastcmpfn,
2501 : step_nullkeys,
2502 : prefix,
2503 : list_head(prefix),
2504 : NIL, NIL);
2505 : }
2506 :
2507 : /*
2508 : * get_steps_using_prefix_recurse
2509 : * Generate and return a list of PartitionPruneStepOps using the 'prefix'
2510 : * list of PartClauseInfos starting at the 'start' cell.
2511 : *
2512 : * When 'prefix' contains multiple PartClauseInfos for a single partition key
2513 : * we create a PartitionPruneStepOp for each combination of duplicated
2514 : * PartClauseInfos. The returned list will contain a PartitionPruneStepOp
2515 : * for each unique combination of input PartClauseInfos containing at most one
2516 : * PartClauseInfo per partition key.
2517 : *
2518 : * 'prefix' is the input list of PartClauseInfos sorted by keyno.
2519 : * 'start' marks the cell that searching the 'prefix' list should start from.
2520 : * 'step_exprs' and 'step_cmpfns' each contains the expressions and cmpfns
2521 : * we've generated so far from the clauses for the previous part keys.
2522 : */
2523 : static List *
2524 1386 : get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
2525 : StrategyNumber step_opstrategy,
2526 : bool step_op_is_ne,
2527 : Expr *step_lastexpr,
2528 : Oid step_lastcmpfn,
2529 : Bitmapset *step_nullkeys,
2530 : List *prefix,
2531 : ListCell *start,
2532 : List *step_exprs,
2533 : List *step_cmpfns)
2534 : {
2535 1386 : List *result = NIL;
2536 : ListCell *lc;
2537 : int cur_keyno;
2538 : int final_keyno;
2539 :
2540 : /* Actually, recursion would be limited by PARTITION_MAX_KEYS. */
2541 1386 : check_stack_depth();
2542 :
2543 : Assert(start != NULL);
2544 1386 : cur_keyno = ((PartClauseInfo *) lfirst(start))->keyno;
2545 1386 : final_keyno = ((PartClauseInfo *) llast(prefix))->keyno;
2546 :
2547 : /* Check if we need to recurse. */
2548 1386 : if (cur_keyno < final_keyno)
2549 : {
2550 : PartClauseInfo *pc;
2551 : ListCell *next_start;
2552 :
2553 : /*
2554 : * Find the first PartClauseInfo belonging to the next partition key,
2555 : * the next recursive call must start iteration of the prefix list
2556 : * from that point.
2557 : */
2558 720 : for_each_cell(lc, prefix, start)
2559 : {
2560 720 : pc = lfirst(lc);
2561 :
2562 720 : if (pc->keyno > cur_keyno)
2563 348 : break;
2564 : }
2565 :
2566 : /* record where to start iterating in the next recursive call */
2567 348 : next_start = lc;
2568 :
2569 : /*
2570 : * For each PartClauseInfo with keyno set to cur_keyno, add its expr
2571 : * and cmpfn to step_exprs and step_cmpfns, respectively, and recurse
2572 : * using 'next_start' as the starting point in the 'prefix' list.
2573 : */
2574 720 : for_each_cell(lc, prefix, start)
2575 : {
2576 : List *moresteps;
2577 : List *step_exprs1,
2578 : *step_cmpfns1;
2579 :
2580 720 : pc = lfirst(lc);
2581 720 : if (pc->keyno == cur_keyno)
2582 : {
2583 : /* Leave the original step_exprs unmodified. */
2584 372 : step_exprs1 = list_copy(step_exprs);
2585 372 : step_exprs1 = lappend(step_exprs1, pc->expr);
2586 :
2587 : /* Leave the original step_cmpfns unmodified. */
2588 372 : step_cmpfns1 = list_copy(step_cmpfns);
2589 372 : step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
2590 : }
2591 : else
2592 : {
2593 : /* check the 'prefix' list is sorted correctly */
2594 : Assert(pc->keyno > cur_keyno);
2595 348 : break;
2596 : }
2597 :
2598 372 : moresteps = get_steps_using_prefix_recurse(context,
2599 : step_opstrategy,
2600 : step_op_is_ne,
2601 : step_lastexpr,
2602 : step_lastcmpfn,
2603 : step_nullkeys,
2604 : prefix,
2605 : next_start,
2606 : step_exprs1,
2607 : step_cmpfns1);
2608 372 : result = list_concat(result, moresteps);
2609 :
2610 372 : list_free(step_exprs1);
2611 372 : list_free(step_cmpfns1);
2612 : }
2613 : }
2614 : else
2615 : {
2616 : /*
2617 : * End the current recursion cycle and start generating steps, one for
2618 : * each clause with cur_keyno, which is all clauses from here onward
2619 : * till the end of the list. Note that for hash partitioning,
2620 : * step_nullkeys is allowed to be non-empty, in which case step_exprs
2621 : * would only contain expressions for the partition keys that are not
2622 : * specified in step_nullkeys.
2623 : */
2624 : Assert(list_length(step_exprs) == cur_keyno ||
2625 : !bms_is_empty(step_nullkeys));
2626 :
2627 : /*
2628 : * Note also that for hash partitioning, each partition key should
2629 : * have either equality clauses or an IS NULL clause, so if a
2630 : * partition key doesn't have an expression, it would be specified in
2631 : * step_nullkeys.
2632 : */
2633 : Assert(context->rel->part_scheme->strategy
2634 : != PARTITION_STRATEGY_HASH ||
2635 : list_length(step_exprs) + 2 + bms_num_members(step_nullkeys) ==
2636 : context->rel->part_scheme->partnatts);
2637 2088 : for_each_cell(lc, prefix, start)
2638 : {
2639 1050 : PartClauseInfo *pc = lfirst(lc);
2640 : PartitionPruneStep *step;
2641 : List *step_exprs1,
2642 : *step_cmpfns1;
2643 :
2644 : Assert(pc->keyno == cur_keyno);
2645 :
2646 : /* Leave the original step_exprs unmodified. */
2647 1050 : step_exprs1 = list_copy(step_exprs);
2648 1050 : step_exprs1 = lappend(step_exprs1, pc->expr);
2649 1050 : step_exprs1 = lappend(step_exprs1, step_lastexpr);
2650 :
2651 : /* Leave the original step_cmpfns unmodified. */
2652 1050 : step_cmpfns1 = list_copy(step_cmpfns);
2653 1050 : step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
2654 1050 : step_cmpfns1 = lappend_oid(step_cmpfns1, step_lastcmpfn);
2655 :
2656 1050 : step = gen_prune_step_op(context,
2657 : step_opstrategy, step_op_is_ne,
2658 : step_exprs1, step_cmpfns1,
2659 : step_nullkeys);
2660 1050 : result = lappend(result, step);
2661 : }
2662 : }
2663 :
2664 1386 : return result;
2665 : }
2666 :
2667 : /*
2668 : * get_matching_hash_bounds
2669 : * Determine offset of the hash bound matching the specified values,
2670 : * considering that all the non-null values come from clauses containing
2671 : * a compatible hash equality operator and any keys that are null come
2672 : * from an IS NULL clause.
2673 : *
2674 : * Generally this function will return a single matching bound offset,
2675 : * although if a partition has not been setup for a given modulus then we may
2676 : * return no matches. If the number of clauses found don't cover the entire
2677 : * partition key, then we'll need to return all offsets.
2678 : *
2679 : * 'opstrategy' if non-zero must be HTEqualStrategyNumber.
2680 : *
2681 : * 'values' contains Datums indexed by the partition key to use for pruning.
2682 : *
2683 : * 'nvalues', the number of Datums in the 'values' array.
2684 : *
2685 : * 'partsupfunc' contains partition hashing functions that can produce correct
2686 : * hash for the type of the values contained in 'values'.
2687 : *
2688 : * 'nullkeys' is the set of partition keys that are null.
2689 : */
2690 : static PruneStepResult *
2691 316 : get_matching_hash_bounds(PartitionPruneContext *context,
2692 : StrategyNumber opstrategy, const Datum *values, int nvalues,
2693 : FmgrInfo *partsupfunc, Bitmapset *nullkeys)
2694 : {
2695 316 : PruneStepResult *result = palloc0_object(PruneStepResult);
2696 316 : PartitionBoundInfo boundinfo = context->boundinfo;
2697 316 : int *partindices = boundinfo->indexes;
2698 316 : int partnatts = context->partnatts;
2699 : bool isnull[PARTITION_MAX_KEYS];
2700 : int i;
2701 : uint64 rowHash;
2702 : int greatest_modulus;
2703 316 : Oid *partcollation = context->partcollation;
2704 :
2705 : Assert(context->strategy == PARTITION_STRATEGY_HASH);
2706 :
2707 : /*
2708 : * For hash partitioning we can only perform pruning based on equality
2709 : * clauses to the partition key or IS NULL clauses. We also can only
2710 : * prune if we got values for all keys.
2711 : */
2712 316 : if (nvalues + bms_num_members(nullkeys) == partnatts)
2713 : {
2714 : /*
2715 : * If there are any values, they must have come from clauses
2716 : * containing an equality operator compatible with hash partitioning.
2717 : */
2718 : Assert(opstrategy == HTEqualStrategyNumber || nvalues == 0);
2719 :
2720 1286 : for (i = 0; i < partnatts; i++)
2721 970 : isnull[i] = bms_is_member(i, nullkeys);
2722 :
2723 316 : rowHash = compute_partition_hash_value(partnatts, partsupfunc, partcollation,
2724 : values, isnull);
2725 :
2726 316 : greatest_modulus = boundinfo->nindexes;
2727 316 : if (partindices[rowHash % greatest_modulus] >= 0)
2728 310 : result->bound_offsets =
2729 310 : bms_make_singleton(rowHash % greatest_modulus);
2730 : }
2731 : else
2732 : {
2733 : /* Report all valid offsets into the boundinfo->indexes array. */
2734 0 : result->bound_offsets = bms_add_range(NULL, 0,
2735 0 : boundinfo->nindexes - 1);
2736 : }
2737 :
2738 : /*
2739 : * There is neither a special hash null partition or the default hash
2740 : * partition.
2741 : */
2742 316 : result->scan_null = result->scan_default = false;
2743 :
2744 316 : return result;
2745 : }
2746 :
2747 : /*
2748 : * get_matching_list_bounds
2749 : * Determine the offsets of list bounds matching the specified value,
2750 : * according to the semantics of the given operator strategy
2751 : *
2752 : * scan_default will be set in the returned struct, if the default partition
2753 : * needs to be scanned, provided one exists at all. scan_null will be set if
2754 : * the special null-accepting partition needs to be scanned.
2755 : *
2756 : * 'opstrategy' if non-zero must be a btree strategy number.
2757 : *
2758 : * 'value' contains the value to use for pruning.
2759 : *
2760 : * 'nvalues', if non-zero, should be exactly 1, because of list partitioning.
2761 : *
2762 : * 'partsupfunc' contains the list partitioning comparison function to be used
2763 : * to perform partition_list_bsearch
2764 : *
2765 : * 'nullkeys' is the set of partition keys that are null.
2766 : */
2767 : static PruneStepResult *
2768 7266 : get_matching_list_bounds(PartitionPruneContext *context,
2769 : StrategyNumber opstrategy, Datum value, int nvalues,
2770 : FmgrInfo *partsupfunc, Bitmapset *nullkeys)
2771 : {
2772 7266 : PruneStepResult *result = palloc0_object(PruneStepResult);
2773 7266 : PartitionBoundInfo boundinfo = context->boundinfo;
2774 : int off,
2775 : minoff,
2776 : maxoff;
2777 : bool is_equal;
2778 7266 : bool inclusive = false;
2779 7266 : Oid *partcollation = context->partcollation;
2780 :
2781 : Assert(context->strategy == PARTITION_STRATEGY_LIST);
2782 : Assert(context->partnatts == 1);
2783 :
2784 7266 : result->scan_null = result->scan_default = false;
2785 :
2786 7266 : if (!bms_is_empty(nullkeys))
2787 : {
2788 : /*
2789 : * Nulls may exist in only one partition - the partition whose
2790 : * accepted set of values includes null or the default partition if
2791 : * the former doesn't exist.
2792 : */
2793 318 : if (partition_bound_accepts_nulls(boundinfo))
2794 222 : result->scan_null = true;
2795 : else
2796 96 : result->scan_default = partition_bound_has_default(boundinfo);
2797 318 : return result;
2798 : }
2799 :
2800 : /*
2801 : * If there are no datums to compare keys with, but there are partitions,
2802 : * just return the default partition if one exists.
2803 : */
2804 6948 : if (boundinfo->ndatums == 0)
2805 : {
2806 0 : result->scan_default = partition_bound_has_default(boundinfo);
2807 0 : return result;
2808 : }
2809 :
2810 6948 : minoff = 0;
2811 6948 : maxoff = boundinfo->ndatums - 1;
2812 :
2813 : /*
2814 : * If there are no values to compare with the datums in boundinfo, it
2815 : * means the caller asked for partitions for all non-null datums. Add
2816 : * indexes of *all* partitions, including the default if any.
2817 : */
2818 6948 : if (nvalues == 0)
2819 : {
2820 : Assert(boundinfo->ndatums > 0);
2821 120 : result->bound_offsets = bms_add_range(NULL, 0,
2822 60 : boundinfo->ndatums - 1);
2823 60 : result->scan_default = partition_bound_has_default(boundinfo);
2824 60 : return result;
2825 : }
2826 :
2827 : /* Special case handling of values coming from a <> operator clause. */
2828 6888 : if (opstrategy == InvalidStrategy)
2829 : {
2830 : /*
2831 : * First match to all bounds. We'll remove any matching datums below.
2832 : */
2833 : Assert(boundinfo->ndatums > 0);
2834 312 : result->bound_offsets = bms_add_range(NULL, 0,
2835 156 : boundinfo->ndatums - 1);
2836 :
2837 156 : off = partition_list_bsearch(partsupfunc, partcollation, boundinfo,
2838 : value, &is_equal);
2839 156 : if (off >= 0 && is_equal)
2840 : {
2841 :
2842 : /* We have a match. Remove from the result. */
2843 : Assert(boundinfo->indexes[off] >= 0);
2844 120 : result->bound_offsets = bms_del_member(result->bound_offsets,
2845 : off);
2846 : }
2847 :
2848 : /* Always include the default partition if any. */
2849 156 : result->scan_default = partition_bound_has_default(boundinfo);
2850 :
2851 156 : return result;
2852 : }
2853 :
2854 : /*
2855 : * With range queries, always include the default list partition, because
2856 : * list partitions divide the key space in a discontinuous manner, not all
2857 : * values in the given range will have a partition assigned. This may not
2858 : * technically be true for some data types (e.g. integer types), however,
2859 : * we currently lack any sort of infrastructure to provide us with proofs
2860 : * that would allow us to do anything smarter here.
2861 : */
2862 6732 : if (opstrategy != BTEqualStrategyNumber)
2863 1002 : result->scan_default = partition_bound_has_default(boundinfo);
2864 :
2865 6732 : switch (opstrategy)
2866 : {
2867 5730 : case BTEqualStrategyNumber:
2868 5730 : off = partition_list_bsearch(partsupfunc,
2869 : partcollation,
2870 : boundinfo, value,
2871 : &is_equal);
2872 5730 : if (off >= 0 && is_equal)
2873 : {
2874 : Assert(boundinfo->indexes[off] >= 0);
2875 2392 : result->bound_offsets = bms_make_singleton(off);
2876 : }
2877 : else
2878 3338 : result->scan_default = partition_bound_has_default(boundinfo);
2879 5730 : return result;
2880 :
2881 450 : case BTGreaterEqualStrategyNumber:
2882 450 : inclusive = true;
2883 : /* fall through */
2884 498 : case BTGreaterStrategyNumber:
2885 498 : off = partition_list_bsearch(partsupfunc,
2886 : partcollation,
2887 : boundinfo, value,
2888 : &is_equal);
2889 498 : if (off >= 0)
2890 : {
2891 : /* We don't want the matched datum to be in the result. */
2892 396 : if (!is_equal || !inclusive)
2893 138 : off++;
2894 : }
2895 : else
2896 : {
2897 : /*
2898 : * This case means all partition bounds are greater, which in
2899 : * turn means that all partitions satisfy this key.
2900 : */
2901 102 : off = 0;
2902 : }
2903 :
2904 : /*
2905 : * off is greater than the numbers of datums we have partitions
2906 : * for. The only possible partition that could contain a match is
2907 : * the default partition, but we must've set context->scan_default
2908 : * above anyway if one exists.
2909 : */
2910 498 : if (off > boundinfo->ndatums - 1)
2911 6 : return result;
2912 :
2913 492 : minoff = off;
2914 492 : break;
2915 :
2916 114 : case BTLessEqualStrategyNumber:
2917 114 : inclusive = true;
2918 : /* fall through */
2919 504 : case BTLessStrategyNumber:
2920 504 : off = partition_list_bsearch(partsupfunc,
2921 : partcollation,
2922 : boundinfo, value,
2923 : &is_equal);
2924 504 : if (off >= 0 && is_equal && !inclusive)
2925 48 : off--;
2926 :
2927 : /*
2928 : * off is smaller than the datums of all non-default partitions.
2929 : * The only possible partition that could contain a match is the
2930 : * default partition, but we must've set context->scan_default
2931 : * above anyway if one exists.
2932 : */
2933 504 : if (off < 0)
2934 6 : return result;
2935 :
2936 498 : maxoff = off;
2937 498 : break;
2938 :
2939 0 : default:
2940 0 : elog(ERROR, "invalid strategy number %d", opstrategy);
2941 : break;
2942 : }
2943 :
2944 : Assert(minoff >= 0 && maxoff >= 0);
2945 990 : result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
2946 990 : return result;
2947 : }
2948 :
2949 :
2950 : /*
2951 : * get_matching_range_bounds
2952 : * Determine the offsets of range bounds matching the specified values,
2953 : * according to the semantics of the given operator strategy
2954 : *
2955 : * Each datum whose offset is in result is to be treated as the upper bound of
2956 : * the partition that will contain the desired values.
2957 : *
2958 : * scan_default is set in the returned struct if a default partition exists
2959 : * and we're absolutely certain that it needs to be scanned. We do *not* set
2960 : * it just because values match portions of the key space uncovered by
2961 : * partitions other than default (space which we normally assume to belong to
2962 : * the default partition): the final set of bounds obtained after combining
2963 : * multiple pruning steps might exclude it, so we infer its inclusion
2964 : * elsewhere.
2965 : *
2966 : * 'opstrategy' must be a btree strategy number.
2967 : *
2968 : * 'values' contains Datums indexed by the partition key to use for pruning.
2969 : *
2970 : * 'nvalues', number of Datums in 'values' array. Must be <= context->partnatts.
2971 : *
2972 : * 'partsupfunc' contains the range partitioning comparison functions to be
2973 : * used to perform partition_range_datum_bsearch or partition_rbound_datum_cmp
2974 : * using.
2975 : *
2976 : * 'nullkeys' is the set of partition keys that are null.
2977 : */
2978 : static PruneStepResult *
2979 6870 : get_matching_range_bounds(PartitionPruneContext *context,
2980 : StrategyNumber opstrategy, const Datum *values, int nvalues,
2981 : FmgrInfo *partsupfunc, Bitmapset *nullkeys)
2982 : {
2983 6870 : PruneStepResult *result = palloc0_object(PruneStepResult);
2984 6870 : PartitionBoundInfo boundinfo = context->boundinfo;
2985 6870 : Oid *partcollation = context->partcollation;
2986 6870 : int partnatts = context->partnatts;
2987 6870 : int *partindices = boundinfo->indexes;
2988 : int off,
2989 : minoff,
2990 : maxoff;
2991 : bool is_equal;
2992 6870 : bool inclusive = false;
2993 :
2994 : Assert(context->strategy == PARTITION_STRATEGY_RANGE);
2995 : Assert(nvalues <= partnatts);
2996 :
2997 6870 : result->scan_null = result->scan_default = false;
2998 :
2999 : /*
3000 : * If there are no datums to compare keys with, or if we got an IS NULL
3001 : * clause just return the default partition, if it exists.
3002 : */
3003 6870 : if (boundinfo->ndatums == 0 || !bms_is_empty(nullkeys))
3004 : {
3005 66 : result->scan_default = partition_bound_has_default(boundinfo);
3006 66 : return result;
3007 : }
3008 :
3009 6804 : minoff = 0;
3010 6804 : maxoff = boundinfo->ndatums;
3011 :
3012 : /*
3013 : * If there are no values to compare with the datums in boundinfo, it
3014 : * means the caller asked for partitions for all non-null datums. Add
3015 : * indexes of *all* partitions, including the default partition if one
3016 : * exists.
3017 : */
3018 6804 : if (nvalues == 0)
3019 : {
3020 : /* ignore key space not covered by any partitions */
3021 30 : if (partindices[minoff] < 0)
3022 30 : minoff++;
3023 30 : if (partindices[maxoff] < 0)
3024 30 : maxoff--;
3025 :
3026 30 : result->scan_default = partition_bound_has_default(boundinfo);
3027 : Assert(partindices[minoff] >= 0 &&
3028 : partindices[maxoff] >= 0);
3029 30 : result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
3030 :
3031 30 : return result;
3032 : }
3033 :
3034 : /*
3035 : * If the query does not constrain all key columns, we'll need to scan the
3036 : * default partition, if any.
3037 : */
3038 6774 : if (nvalues < partnatts)
3039 726 : result->scan_default = partition_bound_has_default(boundinfo);
3040 :
3041 6774 : switch (opstrategy)
3042 : {
3043 5172 : case BTEqualStrategyNumber:
3044 : /* Look for the smallest bound that is = lookup value. */
3045 5172 : off = partition_range_datum_bsearch(partsupfunc,
3046 : partcollation,
3047 : boundinfo,
3048 : nvalues, values,
3049 : &is_equal);
3050 :
3051 5172 : if (off >= 0 && is_equal)
3052 : {
3053 1144 : if (nvalues == partnatts)
3054 : {
3055 : /* There can only be zero or one matching partition. */
3056 706 : result->bound_offsets = bms_make_singleton(off + 1);
3057 706 : return result;
3058 : }
3059 : else
3060 : {
3061 438 : int saved_off = off;
3062 :
3063 : /*
3064 : * Since the lookup value contains only a prefix of keys,
3065 : * we must find other bounds that may also match the
3066 : * prefix. partition_range_datum_bsearch() returns the
3067 : * offset of one of them, find others by checking adjacent
3068 : * bounds.
3069 : */
3070 :
3071 : /*
3072 : * First find greatest bound that's smaller than the
3073 : * lookup value.
3074 : */
3075 684 : while (off >= 1)
3076 : {
3077 : int32 cmpval;
3078 :
3079 : cmpval =
3080 594 : partition_rbound_datum_cmp(partsupfunc,
3081 : partcollation,
3082 594 : boundinfo->datums[off - 1],
3083 594 : boundinfo->kind[off - 1],
3084 : values, nvalues);
3085 594 : if (cmpval != 0)
3086 348 : break;
3087 246 : off--;
3088 : }
3089 :
3090 : Assert(0 ==
3091 : partition_rbound_datum_cmp(partsupfunc,
3092 : partcollation,
3093 : boundinfo->datums[off],
3094 : boundinfo->kind[off],
3095 : values, nvalues));
3096 :
3097 : /*
3098 : * We can treat 'off' as the offset of the smallest bound
3099 : * to be included in the result, if we know it is the
3100 : * upper bound of the partition in which the lookup value
3101 : * could possibly exist. One case it couldn't is if the
3102 : * bound, or precisely the matched portion of its prefix,
3103 : * is not inclusive.
3104 : */
3105 438 : if (boundinfo->kind[off][nvalues] ==
3106 : PARTITION_RANGE_DATUM_MINVALUE)
3107 30 : off++;
3108 :
3109 438 : minoff = off;
3110 :
3111 : /*
3112 : * Now find smallest bound that's greater than the lookup
3113 : * value.
3114 : */
3115 438 : off = saved_off;
3116 720 : while (off < boundinfo->ndatums - 1)
3117 : {
3118 : int32 cmpval;
3119 :
3120 666 : cmpval = partition_rbound_datum_cmp(partsupfunc,
3121 : partcollation,
3122 666 : boundinfo->datums[off + 1],
3123 666 : boundinfo->kind[off + 1],
3124 : values, nvalues);
3125 666 : if (cmpval != 0)
3126 384 : break;
3127 282 : off++;
3128 : }
3129 :
3130 : Assert(0 ==
3131 : partition_rbound_datum_cmp(partsupfunc,
3132 : partcollation,
3133 : boundinfo->datums[off],
3134 : boundinfo->kind[off],
3135 : values, nvalues));
3136 :
3137 : /*
3138 : * off + 1, then would be the offset of the greatest bound
3139 : * to be included in the result.
3140 : */
3141 438 : maxoff = off + 1;
3142 : }
3143 :
3144 : Assert(minoff >= 0 && maxoff >= 0);
3145 438 : result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
3146 : }
3147 : else
3148 : {
3149 : /*
3150 : * The lookup value falls in the range between some bounds in
3151 : * boundinfo. 'off' would be the offset of the greatest bound
3152 : * that is <= lookup value, so add off + 1 to the result
3153 : * instead as the offset of the upper bound of the only
3154 : * partition that may contain the lookup value. If 'off' is
3155 : * -1 indicating that all bounds are greater, then we simply
3156 : * end up adding the first bound's offset, that is, 0.
3157 : */
3158 4028 : result->bound_offsets = bms_make_singleton(off + 1);
3159 : }
3160 :
3161 4466 : return result;
3162 :
3163 516 : case BTGreaterEqualStrategyNumber:
3164 516 : inclusive = true;
3165 : /* fall through */
3166 832 : case BTGreaterStrategyNumber:
3167 :
3168 : /*
3169 : * Look for the smallest bound that is > or >= lookup value and
3170 : * set minoff to its offset.
3171 : */
3172 832 : off = partition_range_datum_bsearch(partsupfunc,
3173 : partcollation,
3174 : boundinfo,
3175 : nvalues, values,
3176 : &is_equal);
3177 832 : if (off < 0)
3178 : {
3179 : /*
3180 : * All bounds are greater than the lookup value, so include
3181 : * all of them in the result.
3182 : */
3183 60 : minoff = 0;
3184 : }
3185 : else
3186 : {
3187 772 : if (is_equal && nvalues < partnatts)
3188 : {
3189 : /*
3190 : * Since the lookup value contains only a prefix of keys,
3191 : * we must find other bounds that may also match the
3192 : * prefix. partition_range_datum_bsearch() returns the
3193 : * offset of one of them, find others by checking adjacent
3194 : * bounds.
3195 : *
3196 : * Based on whether the lookup values are inclusive or
3197 : * not, we must either include the indexes of all such
3198 : * bounds in the result (that is, set minoff to the index
3199 : * of smallest such bound) or find the smallest one that's
3200 : * greater than the lookup values and set minoff to that.
3201 : */
3202 132 : while (off >= 1 && off < boundinfo->ndatums - 1)
3203 : {
3204 : int32 cmpval;
3205 : int nextoff;
3206 :
3207 108 : nextoff = inclusive ? off - 1 : off + 1;
3208 : cmpval =
3209 108 : partition_rbound_datum_cmp(partsupfunc,
3210 : partcollation,
3211 108 : boundinfo->datums[nextoff],
3212 108 : boundinfo->kind[nextoff],
3213 : values, nvalues);
3214 108 : if (cmpval != 0)
3215 54 : break;
3216 :
3217 54 : off = nextoff;
3218 : }
3219 :
3220 : Assert(0 ==
3221 : partition_rbound_datum_cmp(partsupfunc,
3222 : partcollation,
3223 : boundinfo->datums[off],
3224 : boundinfo->kind[off],
3225 : values, nvalues));
3226 :
3227 78 : minoff = inclusive ? off : off + 1;
3228 : }
3229 : else
3230 : {
3231 :
3232 : /*
3233 : * lookup value falls in the range between some bounds in
3234 : * boundinfo. off would be the offset of the greatest
3235 : * bound that is <= lookup value, so add off + 1 to the
3236 : * result instead as the offset of the upper bound of the
3237 : * smallest partition that may contain the lookup value.
3238 : */
3239 694 : minoff = off + 1;
3240 : }
3241 : }
3242 832 : break;
3243 :
3244 84 : case BTLessEqualStrategyNumber:
3245 84 : inclusive = true;
3246 : /* fall through */
3247 770 : case BTLessStrategyNumber:
3248 :
3249 : /*
3250 : * Look for the greatest bound that is < or <= lookup value and
3251 : * set maxoff to its offset.
3252 : */
3253 770 : off = partition_range_datum_bsearch(partsupfunc,
3254 : partcollation,
3255 : boundinfo,
3256 : nvalues, values,
3257 : &is_equal);
3258 770 : if (off >= 0)
3259 : {
3260 : /*
3261 : * See the comment above.
3262 : */
3263 770 : if (is_equal && nvalues < partnatts)
3264 : {
3265 132 : while (off >= 1 && off < boundinfo->ndatums - 1)
3266 : {
3267 : int32 cmpval;
3268 : int nextoff;
3269 :
3270 126 : nextoff = inclusive ? off + 1 : off - 1;
3271 126 : cmpval = partition_rbound_datum_cmp(partsupfunc,
3272 : partcollation,
3273 126 : boundinfo->datums[nextoff],
3274 126 : boundinfo->kind[nextoff],
3275 : values, nvalues);
3276 126 : if (cmpval != 0)
3277 102 : break;
3278 :
3279 24 : off = nextoff;
3280 : }
3281 :
3282 : Assert(0 ==
3283 : partition_rbound_datum_cmp(partsupfunc,
3284 : partcollation,
3285 : boundinfo->datums[off],
3286 : boundinfo->kind[off],
3287 : values, nvalues));
3288 :
3289 108 : maxoff = inclusive ? off + 1 : off;
3290 : }
3291 :
3292 : /*
3293 : * The lookup value falls in the range between some bounds in
3294 : * boundinfo. 'off' would be the offset of the greatest bound
3295 : * that is <= lookup value, so add off + 1 to the result
3296 : * instead as the offset of the upper bound of the greatest
3297 : * partition that may contain lookup value. If the lookup
3298 : * value had exactly matched the bound, but it isn't
3299 : * inclusive, no need add the adjacent partition.
3300 : */
3301 662 : else if (!is_equal || inclusive)
3302 470 : maxoff = off + 1;
3303 : else
3304 192 : maxoff = off;
3305 : }
3306 : else
3307 : {
3308 : /*
3309 : * 'off' is -1 indicating that all bounds are greater, so just
3310 : * set the first bound's offset as maxoff.
3311 : */
3312 0 : maxoff = off + 1;
3313 : }
3314 770 : break;
3315 :
3316 0 : default:
3317 0 : elog(ERROR, "invalid strategy number %d", opstrategy);
3318 : break;
3319 : }
3320 :
3321 : Assert(minoff >= 0 && minoff <= boundinfo->ndatums);
3322 : Assert(maxoff >= 0 && maxoff <= boundinfo->ndatums);
3323 :
3324 : /*
3325 : * If the smallest partition to return has MINVALUE (negative infinity) as
3326 : * its lower bound, increment it to point to the next finite bound
3327 : * (supposedly its upper bound), so that we don't inadvertently end up
3328 : * scanning the default partition.
3329 : */
3330 1602 : if (minoff < boundinfo->ndatums && partindices[minoff] < 0)
3331 : {
3332 920 : int lastkey = nvalues - 1;
3333 :
3334 920 : if (boundinfo->kind[minoff][lastkey] ==
3335 : PARTITION_RANGE_DATUM_MINVALUE)
3336 : {
3337 164 : minoff++;
3338 : Assert(boundinfo->indexes[minoff] >= 0);
3339 : }
3340 : }
3341 :
3342 : /*
3343 : * If the previous greatest partition has MAXVALUE (positive infinity) as
3344 : * its upper bound (something only possible to do with multi-column range
3345 : * partitioning), we scan switch to it as the greatest partition to
3346 : * return. Again, so that we don't inadvertently end up scanning the
3347 : * default partition.
3348 : */
3349 1602 : if (maxoff >= 1 && partindices[maxoff] < 0)
3350 : {
3351 1030 : int lastkey = nvalues - 1;
3352 :
3353 1030 : if (boundinfo->kind[maxoff - 1][lastkey] ==
3354 : PARTITION_RANGE_DATUM_MAXVALUE)
3355 : {
3356 156 : maxoff--;
3357 : Assert(boundinfo->indexes[maxoff] >= 0);
3358 : }
3359 : }
3360 :
3361 : Assert(minoff >= 0 && maxoff >= 0);
3362 1602 : if (minoff <= maxoff)
3363 1602 : result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
3364 :
3365 1602 : return result;
3366 : }
3367 :
3368 : /*
3369 : * pull_exec_paramids
3370 : * Returns a Bitmapset containing the paramids of all Params with
3371 : * paramkind = PARAM_EXEC in 'expr'.
3372 : */
3373 : static Bitmapset *
3374 1878 : pull_exec_paramids(Expr *expr)
3375 : {
3376 1878 : Bitmapset *result = NULL;
3377 :
3378 1878 : (void) pull_exec_paramids_walker((Node *) expr, &result);
3379 :
3380 1878 : return result;
3381 : }
3382 :
3383 : static bool
3384 2404 : pull_exec_paramids_walker(Node *node, Bitmapset **context)
3385 : {
3386 2404 : if (node == NULL)
3387 18 : return false;
3388 2386 : if (IsA(node, Param))
3389 : {
3390 1880 : Param *param = (Param *) node;
3391 :
3392 1880 : if (param->paramkind == PARAM_EXEC)
3393 1356 : *context = bms_add_member(*context, param->paramid);
3394 1880 : return false;
3395 : }
3396 506 : return expression_tree_walker(node, pull_exec_paramids_walker, context);
3397 : }
3398 :
3399 : /*
3400 : * get_partkey_exec_paramids
3401 : * Loop through given pruning steps and find out which exec Params
3402 : * are used.
3403 : *
3404 : * Returns a Bitmapset of Param IDs.
3405 : */
3406 : static Bitmapset *
3407 414 : get_partkey_exec_paramids(List *steps)
3408 : {
3409 414 : Bitmapset *execparamids = NULL;
3410 : ListCell *lc;
3411 :
3412 944 : foreach(lc, steps)
3413 : {
3414 530 : PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
3415 : ListCell *lc2;
3416 :
3417 530 : if (!IsA(step, PartitionPruneStepOp))
3418 52 : continue;
3419 :
3420 1004 : foreach(lc2, step->exprs)
3421 : {
3422 526 : Expr *expr = lfirst(lc2);
3423 :
3424 : /* We can be quick for plain Consts */
3425 526 : if (!IsA(expr, Const))
3426 468 : execparamids = bms_join(execparamids,
3427 : pull_exec_paramids(expr));
3428 : }
3429 : }
3430 :
3431 414 : return execparamids;
3432 : }
3433 :
3434 : /*
3435 : * perform_pruning_base_step
3436 : * Determines the indexes of datums that satisfy conditions specified in
3437 : * 'opstep'.
3438 : *
3439 : * Result also contains whether special null-accepting and/or default
3440 : * partition need to be scanned.
3441 : */
3442 : static PruneStepResult *
3443 14458 : perform_pruning_base_step(PartitionPruneContext *context,
3444 : PartitionPruneStepOp *opstep)
3445 : {
3446 : ListCell *lc1,
3447 : *lc2;
3448 : int keyno,
3449 : nvalues;
3450 : Datum values[PARTITION_MAX_KEYS];
3451 : FmgrInfo *partsupfunc;
3452 : int stateidx;
3453 :
3454 : /*
3455 : * There better be the same number of expressions and compare functions.
3456 : */
3457 : Assert(list_length(opstep->exprs) == list_length(opstep->cmpfns));
3458 :
3459 14458 : nvalues = 0;
3460 14458 : lc1 = list_head(opstep->exprs);
3461 14458 : lc2 = list_head(opstep->cmpfns);
3462 :
3463 : /*
3464 : * Generate the partition lookup key that will be used by one of the
3465 : * get_matching_*_bounds functions called below.
3466 : */
3467 30776 : for (keyno = 0; keyno < context->partnatts; keyno++)
3468 : {
3469 : /*
3470 : * For hash partitioning, it is possible that values of some keys are
3471 : * not provided in operator clauses, but instead the planner found
3472 : * that they appeared in a IS NULL clause.
3473 : */
3474 16696 : if (bms_is_member(keyno, opstep->nullkeys))
3475 816 : continue;
3476 :
3477 : /*
3478 : * For range partitioning, we must only perform pruning with values
3479 : * for either all partition keys or a prefix thereof.
3480 : */
3481 15880 : if (keyno > nvalues && context->strategy == PARTITION_STRATEGY_RANGE)
3482 372 : break;
3483 :
3484 15508 : if (lc1 != NULL)
3485 : {
3486 : Expr *expr;
3487 : Datum datum;
3488 : bool isnull;
3489 : Oid cmpfn;
3490 :
3491 14680 : expr = lfirst(lc1);
3492 14680 : stateidx = PruneCxtStateIdx(context->partnatts,
3493 : opstep->step.step_id, keyno);
3494 14680 : partkey_datum_from_expr(context, expr, stateidx,
3495 : &datum, &isnull);
3496 :
3497 : /*
3498 : * Since we only allow strict operators in pruning steps, any
3499 : * null-valued comparison value must cause the comparison to fail,
3500 : * so that no partitions could match.
3501 : */
3502 14680 : if (isnull)
3503 : {
3504 : PruneStepResult *result;
3505 :
3506 6 : result = palloc_object(PruneStepResult);
3507 6 : result->bound_offsets = NULL;
3508 6 : result->scan_default = false;
3509 6 : result->scan_null = false;
3510 :
3511 6 : return result;
3512 : }
3513 :
3514 : /* Set up the stepcmpfuncs entry, unless we already did */
3515 14674 : cmpfn = lfirst_oid(lc2);
3516 : Assert(OidIsValid(cmpfn));
3517 14674 : if (cmpfn != context->stepcmpfuncs[stateidx].fn_oid)
3518 : {
3519 : /*
3520 : * If the needed support function is the same one cached in
3521 : * the relation's partition key, copy the cached FmgrInfo.
3522 : * Otherwise (i.e., when we have a cross-type comparison), an
3523 : * actual lookup is required.
3524 : */
3525 11518 : if (cmpfn == context->partsupfunc[keyno].fn_oid)
3526 11410 : fmgr_info_copy(&context->stepcmpfuncs[stateidx],
3527 11410 : &context->partsupfunc[keyno],
3528 : context->ppccontext);
3529 : else
3530 108 : fmgr_info_cxt(cmpfn, &context->stepcmpfuncs[stateidx],
3531 : context->ppccontext);
3532 : }
3533 :
3534 14674 : values[keyno] = datum;
3535 14674 : nvalues++;
3536 :
3537 14674 : lc1 = lnext(opstep->exprs, lc1);
3538 14674 : lc2 = lnext(opstep->cmpfns, lc2);
3539 : }
3540 : }
3541 :
3542 : /*
3543 : * Point partsupfunc to the entry for the 0th key of this step; the
3544 : * additional support functions, if any, follow consecutively.
3545 : */
3546 14452 : stateidx = PruneCxtStateIdx(context->partnatts, opstep->step.step_id, 0);
3547 14452 : partsupfunc = &context->stepcmpfuncs[stateidx];
3548 :
3549 14452 : switch (context->strategy)
3550 : {
3551 316 : case PARTITION_STRATEGY_HASH:
3552 316 : return get_matching_hash_bounds(context,
3553 316 : opstep->opstrategy,
3554 : values, nvalues,
3555 : partsupfunc,
3556 : opstep->nullkeys);
3557 :
3558 7266 : case PARTITION_STRATEGY_LIST:
3559 7266 : return get_matching_list_bounds(context,
3560 7266 : opstep->opstrategy,
3561 : values[0], nvalues,
3562 : &partsupfunc[0],
3563 : opstep->nullkeys);
3564 :
3565 6870 : case PARTITION_STRATEGY_RANGE:
3566 6870 : return get_matching_range_bounds(context,
3567 6870 : opstep->opstrategy,
3568 : values, nvalues,
3569 : partsupfunc,
3570 : opstep->nullkeys);
3571 :
3572 0 : default:
3573 0 : elog(ERROR, "unexpected partition strategy: %d",
3574 : (int) context->strategy);
3575 : break;
3576 : }
3577 :
3578 : return NULL;
3579 : }
3580 :
3581 : /*
3582 : * perform_pruning_combine_step
3583 : * Determines the indexes of datums obtained by combining those given
3584 : * by the steps identified by cstep->source_stepids using the specified
3585 : * combination method
3586 : *
3587 : * Since cstep may refer to the result of earlier steps, we also receive
3588 : * step_results here.
3589 : */
3590 : static PruneStepResult *
3591 2566 : perform_pruning_combine_step(PartitionPruneContext *context,
3592 : PartitionPruneStepCombine *cstep,
3593 : PruneStepResult **step_results)
3594 : {
3595 2566 : PruneStepResult *result = palloc0_object(PruneStepResult);
3596 : bool firststep;
3597 : ListCell *lc1;
3598 :
3599 : /*
3600 : * A combine step without any source steps is an indication to not perform
3601 : * any partition pruning. Return all datum indexes in that case.
3602 : */
3603 2566 : if (cstep->source_stepids == NIL)
3604 : {
3605 378 : PartitionBoundInfo boundinfo = context->boundinfo;
3606 :
3607 378 : result->bound_offsets =
3608 378 : bms_add_range(NULL, 0, boundinfo->nindexes - 1);
3609 378 : result->scan_default = partition_bound_has_default(boundinfo);
3610 378 : result->scan_null = partition_bound_accepts_nulls(boundinfo);
3611 378 : return result;
3612 : }
3613 :
3614 2188 : switch (cstep->combineOp)
3615 : {
3616 1176 : case PARTPRUNE_COMBINE_UNION:
3617 3596 : foreach(lc1, cstep->source_stepids)
3618 : {
3619 2420 : int step_id = lfirst_int(lc1);
3620 : PruneStepResult *step_result;
3621 :
3622 : /*
3623 : * step_results[step_id] must contain a valid result, which is
3624 : * confirmed by the fact that cstep's step_id is greater than
3625 : * step_id and the fact that results of the individual steps
3626 : * are evaluated in sequence of their step_ids.
3627 : */
3628 2420 : if (step_id >= cstep->step.step_id)
3629 0 : elog(ERROR, "invalid pruning combine step argument");
3630 2420 : step_result = step_results[step_id];
3631 : Assert(step_result != NULL);
3632 :
3633 : /* Record any additional datum indexes from this step */
3634 4840 : result->bound_offsets = bms_add_members(result->bound_offsets,
3635 2420 : step_result->bound_offsets);
3636 :
3637 : /* Update whether to scan null and default partitions. */
3638 2420 : if (!result->scan_null)
3639 2318 : result->scan_null = step_result->scan_null;
3640 2420 : if (!result->scan_default)
3641 2138 : result->scan_default = step_result->scan_default;
3642 : }
3643 1176 : break;
3644 :
3645 1012 : case PARTPRUNE_COMBINE_INTERSECT:
3646 1012 : firststep = true;
3647 3600 : foreach(lc1, cstep->source_stepids)
3648 : {
3649 2588 : int step_id = lfirst_int(lc1);
3650 : PruneStepResult *step_result;
3651 :
3652 2588 : if (step_id >= cstep->step.step_id)
3653 0 : elog(ERROR, "invalid pruning combine step argument");
3654 2588 : step_result = step_results[step_id];
3655 : Assert(step_result != NULL);
3656 :
3657 2588 : if (firststep)
3658 : {
3659 : /* Copy step's result the first time. */
3660 1012 : result->bound_offsets =
3661 1012 : bms_copy(step_result->bound_offsets);
3662 1012 : result->scan_null = step_result->scan_null;
3663 1012 : result->scan_default = step_result->scan_default;
3664 1012 : firststep = false;
3665 : }
3666 : else
3667 : {
3668 : /* Record datum indexes common to both steps */
3669 1576 : result->bound_offsets =
3670 1576 : bms_int_members(result->bound_offsets,
3671 1576 : step_result->bound_offsets);
3672 :
3673 : /* Update whether to scan null and default partitions. */
3674 1576 : if (result->scan_null)
3675 96 : result->scan_null = step_result->scan_null;
3676 1576 : if (result->scan_default)
3677 756 : result->scan_default = step_result->scan_default;
3678 : }
3679 : }
3680 1012 : break;
3681 : }
3682 :
3683 2188 : return result;
3684 : }
3685 :
3686 : /*
3687 : * match_boolean_partition_clause
3688 : *
3689 : * If we're able to match the clause to the partition key as specially-shaped
3690 : * boolean clause, set *outconst to a Const containing a true, false or NULL
3691 : * value, set *notclause according to if the clause was in the "not" form,
3692 : * i.e. "IS NOT TRUE", "IS NOT FALSE" or "IS NOT UNKNOWN" and return
3693 : * PARTCLAUSE_MATCH_CLAUSE for "IS [NOT] (TRUE|FALSE)" clauses and
3694 : * PARTCLAUSE_MATCH_NULLNESS for "IS [NOT] UNKNOWN" clauses. Otherwise,
3695 : * return PARTCLAUSE_UNSUPPORTED if the clause cannot be used for partition
3696 : * pruning, and PARTCLAUSE_NOMATCH for supported clauses that do not match this
3697 : * 'partkey'.
3698 : */
3699 : static PartClauseMatchStatus
3700 37504 : match_boolean_partition_clause(Oid partopfamily, Expr *clause, Expr *partkey,
3701 : Expr **outconst, bool *notclause)
3702 : {
3703 : Expr *leftop;
3704 :
3705 37504 : *outconst = NULL;
3706 37504 : *notclause = false;
3707 :
3708 : /*
3709 : * Partitioning currently can only use built-in AMs, so checking for
3710 : * built-in boolean opfamilies is good enough.
3711 : */
3712 37504 : if (!IsBuiltinBooleanOpfamily(partopfamily))
3713 36052 : return PARTCLAUSE_UNSUPPORTED;
3714 :
3715 1452 : if (IsA(clause, BooleanTest))
3716 : {
3717 780 : BooleanTest *btest = (BooleanTest *) clause;
3718 :
3719 780 : leftop = btest->arg;
3720 780 : if (IsA(leftop, RelabelType))
3721 0 : leftop = ((RelabelType *) leftop)->arg;
3722 :
3723 780 : if (equal(leftop, partkey))
3724 : {
3725 564 : switch (btest->booltesttype)
3726 : {
3727 132 : case IS_NOT_TRUE:
3728 132 : *notclause = true;
3729 : /* fall through */
3730 246 : case IS_TRUE:
3731 246 : *outconst = (Expr *) makeBoolConst(true, false);
3732 246 : return PARTCLAUSE_MATCH_CLAUSE;
3733 84 : case IS_NOT_FALSE:
3734 84 : *notclause = true;
3735 : /* fall through */
3736 222 : case IS_FALSE:
3737 222 : *outconst = (Expr *) makeBoolConst(false, false);
3738 222 : return PARTCLAUSE_MATCH_CLAUSE;
3739 54 : case IS_NOT_UNKNOWN:
3740 54 : *notclause = true;
3741 : /* fall through */
3742 96 : case IS_UNKNOWN:
3743 96 : return PARTCLAUSE_MATCH_NULLNESS;
3744 0 : default:
3745 0 : return PARTCLAUSE_UNSUPPORTED;
3746 : }
3747 : }
3748 : /* does not match partition key */
3749 216 : return PARTCLAUSE_NOMATCH;
3750 : }
3751 : else
3752 : {
3753 672 : bool is_not_clause = is_notclause(clause);
3754 :
3755 672 : leftop = is_not_clause ? get_notclausearg(clause) : clause;
3756 :
3757 672 : if (IsA(leftop, RelabelType))
3758 0 : leftop = ((RelabelType *) leftop)->arg;
3759 :
3760 : /* Compare to the partition key, and make up a clause ... */
3761 672 : if (equal(leftop, partkey))
3762 144 : *outconst = (Expr *) makeBoolConst(!is_not_clause, false);
3763 528 : else if (equal(negate_clause((Node *) leftop), partkey))
3764 48 : *outconst = (Expr *) makeBoolConst(is_not_clause, false);
3765 : else
3766 480 : return PARTCLAUSE_NOMATCH;
3767 :
3768 192 : return PARTCLAUSE_MATCH_CLAUSE;
3769 : }
3770 : }
3771 :
3772 : /*
3773 : * partkey_datum_from_expr
3774 : * Evaluate expression for potential partition pruning
3775 : *
3776 : * Evaluate 'expr'; set *value and *isnull to the resulting Datum and nullflag.
3777 : *
3778 : * If expr isn't a Const, its ExprState is in stateidx of the context
3779 : * exprstate array.
3780 : *
3781 : * Note that the evaluated result may be in the per-tuple memory context of
3782 : * context->exprcontext, and we may have leaked other memory there too.
3783 : * This memory must be recovered by resetting that ExprContext after
3784 : * we're done with the pruning operation (see execPartition.c).
3785 : */
3786 : static void
3787 14680 : partkey_datum_from_expr(PartitionPruneContext *context,
3788 : Expr *expr, int stateidx,
3789 : Datum *value, bool *isnull)
3790 : {
3791 14680 : if (IsA(expr, Const))
3792 : {
3793 : /* We can always determine the value of a constant */
3794 10350 : Const *con = (Const *) expr;
3795 :
3796 10350 : *value = con->constvalue;
3797 10350 : *isnull = con->constisnull;
3798 : }
3799 : else
3800 : {
3801 : ExprState *exprstate;
3802 : ExprContext *ectx;
3803 :
3804 : /*
3805 : * We should never see a non-Const in a step unless the caller has
3806 : * passed a valid ExprContext.
3807 : */
3808 : Assert(context->exprcontext != NULL);
3809 :
3810 4330 : exprstate = context->exprstates[stateidx];
3811 4330 : ectx = context->exprcontext;
3812 4330 : *value = ExecEvalExprSwitchContext(exprstate, ectx, isnull);
3813 : }
3814 14680 : }
|