Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * partprune.c
4 : * Support for partition pruning during query planning and execution
5 : *
6 : * This module implements partition pruning using the information contained in
7 : * a table's partition descriptor, query clauses, and run-time parameters.
8 : *
9 : * During planning, clauses that can be matched to the table's partition key
10 : * are turned into a set of "pruning steps", which are then executed to
11 : * identify a set of partitions (as indexes in the RelOptInfo->part_rels
12 : * array) that satisfy the constraints in the step. Partitions not in the set
13 : * are said to have been pruned.
14 : *
15 : * A base pruning step may involve expressions whose values are only known
16 : * during execution, such as Params, in which case pruning cannot occur
17 : * entirely during planning. In that case, such steps are included alongside
18 : * the plan, so that they can be used by the executor for further pruning.
19 : *
20 : * There are two kinds of pruning steps. A "base" pruning step represents
21 : * tests on partition key column(s), typically comparisons to expressions.
22 : * A "combine" pruning step represents a Boolean connector (AND/OR), and
23 : * combines the outputs of some previous steps using the appropriate
24 : * combination method.
25 : *
26 : * See gen_partprune_steps_internal() for more details on step generation.
27 : *
28 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
29 : * Portions Copyright (c) 1994, Regents of the University of California
30 : *
31 : * IDENTIFICATION
32 : * src/backend/partitioning/partprune.c
33 : *
34 : *-------------------------------------------------------------------------
35 : */
36 : #include "postgres.h"
37 :
38 : #include "access/hash.h"
39 : #include "access/nbtree.h"
40 : #include "catalog/pg_operator.h"
41 : #include "catalog/pg_opfamily.h"
42 : #include "catalog/pg_proc.h"
43 : #include "catalog/pg_type.h"
44 : #include "executor/executor.h"
45 : #include "miscadmin.h"
46 : #include "nodes/makefuncs.h"
47 : #include "nodes/nodeFuncs.h"
48 : #include "optimizer/appendinfo.h"
49 : #include "optimizer/cost.h"
50 : #include "optimizer/optimizer.h"
51 : #include "optimizer/pathnode.h"
52 : #include "parser/parsetree.h"
53 : #include "partitioning/partbounds.h"
54 : #include "partitioning/partprune.h"
55 : #include "utils/array.h"
56 : #include "utils/lsyscache.h"
57 :
58 :
59 : /*
60 : * Information about a clause matched with a partition key.
61 : */
62 : typedef struct PartClauseInfo
63 : {
64 : int keyno; /* Partition key number (0 to partnatts - 1) */
65 : Oid opno; /* operator used to compare partkey to expr */
66 : bool op_is_ne; /* is clause's original operator <> ? */
67 : Expr *expr; /* expr the partition key is compared to */
68 : Oid cmpfn; /* Oid of function to compare 'expr' to the
69 : * partition key */
70 : int op_strategy; /* btree strategy identifying the operator */
71 : } PartClauseInfo;
72 :
73 : /*
74 : * PartClauseMatchStatus
75 : * Describes the result of match_clause_to_partition_key()
76 : */
77 : typedef enum PartClauseMatchStatus
78 : {
79 : PARTCLAUSE_NOMATCH,
80 : PARTCLAUSE_MATCH_CLAUSE,
81 : PARTCLAUSE_MATCH_NULLNESS,
82 : PARTCLAUSE_MATCH_STEPS,
83 : PARTCLAUSE_MATCH_CONTRADICT,
84 : PARTCLAUSE_UNSUPPORTED,
85 : } PartClauseMatchStatus;
86 :
87 : /*
88 : * PartClauseTarget
89 : * Identifies which qual clauses we can use for generating pruning steps
90 : */
91 : typedef enum PartClauseTarget
92 : {
93 : PARTTARGET_PLANNER, /* want to prune during planning */
94 : PARTTARGET_INITIAL, /* want to prune during executor startup */
95 : PARTTARGET_EXEC, /* want to prune during each plan node scan */
96 : } PartClauseTarget;
97 :
98 : /*
99 : * GeneratePruningStepsContext
100 : * Information about the current state of generation of "pruning steps"
101 : * for a given set of clauses
102 : *
103 : * gen_partprune_steps() initializes and returns an instance of this struct.
104 : *
105 : * Note that has_mutable_op, has_mutable_arg, and has_exec_param are set if
106 : * we found any potentially-useful-for-pruning clause having those properties,
107 : * whether or not we actually used the clause in the steps list. This
108 : * definition allows us to skip the PARTTARGET_EXEC pass in some cases.
109 : */
110 : typedef struct GeneratePruningStepsContext
111 : {
112 : /* Copies of input arguments for gen_partprune_steps: */
113 : RelOptInfo *rel; /* the partitioned relation */
114 : PartClauseTarget target; /* use-case we're generating steps for */
115 : /* Result data: */
116 : List *steps; /* list of PartitionPruneSteps */
117 : bool has_mutable_op; /* clauses include any stable operators */
118 : bool has_mutable_arg; /* clauses include any mutable comparison
119 : * values, *other than* exec params */
120 : bool has_exec_param; /* clauses include any PARAM_EXEC params */
121 : bool contradictory; /* clauses were proven self-contradictory */
122 : /* Working state: */
123 : int next_step_id;
124 : } GeneratePruningStepsContext;
125 :
126 : /* The result of performing one PartitionPruneStep */
127 : typedef struct PruneStepResult
128 : {
129 : /*
130 : * The offsets of bounds (in a table's boundinfo) whose partition is
131 : * selected by the pruning step.
132 : */
133 : Bitmapset *bound_offsets;
134 :
135 : bool scan_default; /* Scan the default partition? */
136 : bool scan_null; /* Scan the partition for NULL values? */
137 : } PruneStepResult;
138 :
139 :
140 : static List *add_part_relids(List *allpartrelids, Bitmapset *partrelids);
141 : static List *make_partitionedrel_pruneinfo(PlannerInfo *root,
142 : RelOptInfo *parentrel,
143 : List *prunequal,
144 : Bitmapset *partrelids,
145 : int *relid_subplan_map,
146 : Bitmapset **matchedsubplans);
147 : static void gen_partprune_steps(RelOptInfo *rel, List *clauses,
148 : PartClauseTarget target,
149 : GeneratePruningStepsContext *context);
150 : static List *gen_partprune_steps_internal(GeneratePruningStepsContext *context,
151 : List *clauses);
152 : static PartitionPruneStep *gen_prune_step_op(GeneratePruningStepsContext *context,
153 : StrategyNumber opstrategy, bool op_is_ne,
154 : List *exprs, List *cmpfns, Bitmapset *nullkeys);
155 : static PartitionPruneStep *gen_prune_step_combine(GeneratePruningStepsContext *context,
156 : List *source_stepids,
157 : PartitionPruneCombineOp combineOp);
158 : static List *gen_prune_steps_from_opexps(GeneratePruningStepsContext *context,
159 : List **keyclauses, Bitmapset *nullkeys);
160 : static PartClauseMatchStatus match_clause_to_partition_key(GeneratePruningStepsContext *context,
161 : Expr *clause, Expr *partkey, int partkeyidx,
162 : bool *clause_is_not_null,
163 : PartClauseInfo **pc, List **clause_steps);
164 : static List *get_steps_using_prefix(GeneratePruningStepsContext *context,
165 : StrategyNumber step_opstrategy,
166 : bool step_op_is_ne,
167 : Expr *step_lastexpr,
168 : Oid step_lastcmpfn,
169 : Bitmapset *step_nullkeys,
170 : List *prefix);
171 : static List *get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
172 : StrategyNumber step_opstrategy,
173 : bool step_op_is_ne,
174 : Expr *step_lastexpr,
175 : Oid step_lastcmpfn,
176 : Bitmapset *step_nullkeys,
177 : List *prefix,
178 : ListCell *start,
179 : List *step_exprs,
180 : List *step_cmpfns);
181 : static PruneStepResult *get_matching_hash_bounds(PartitionPruneContext *context,
182 : StrategyNumber opstrategy, Datum *values, int nvalues,
183 : FmgrInfo *partsupfunc, Bitmapset *nullkeys);
184 : static PruneStepResult *get_matching_list_bounds(PartitionPruneContext *context,
185 : StrategyNumber opstrategy, Datum value, int nvalues,
186 : FmgrInfo *partsupfunc, Bitmapset *nullkeys);
187 : static PruneStepResult *get_matching_range_bounds(PartitionPruneContext *context,
188 : StrategyNumber opstrategy, Datum *values, int nvalues,
189 : FmgrInfo *partsupfunc, Bitmapset *nullkeys);
190 : static Bitmapset *pull_exec_paramids(Expr *expr);
191 : static bool pull_exec_paramids_walker(Node *node, Bitmapset **context);
192 : static Bitmapset *get_partkey_exec_paramids(List *steps);
193 : static PruneStepResult *perform_pruning_base_step(PartitionPruneContext *context,
194 : PartitionPruneStepOp *opstep);
195 : static PruneStepResult *perform_pruning_combine_step(PartitionPruneContext *context,
196 : PartitionPruneStepCombine *cstep,
197 : PruneStepResult **step_results);
198 : static PartClauseMatchStatus match_boolean_partition_clause(Oid partopfamily,
199 : Expr *clause,
200 : Expr *partkey,
201 : Expr **outconst,
202 : bool *notclause);
203 : static void partkey_datum_from_expr(PartitionPruneContext *context,
204 : Expr *expr, int stateidx,
205 : Datum *value, bool *isnull);
206 :
207 :
208 : /*
209 : * make_partition_pruneinfo
210 : * Checks if the given set of quals can be used to build pruning steps
211 : * that the executor can use to prune away unneeded partitions. If
212 : * suitable quals are found then a PartitionPruneInfo is built and tagged
213 : * onto the PlannerInfo's partPruneInfos list.
214 : *
215 : * The return value is the 0-based index of the item added to the
216 : * partPruneInfos list or -1 if nothing was added.
217 : *
218 : * 'parentrel' is the RelOptInfo for an appendrel, and 'subpaths' is the list
219 : * of scan paths for its child rels.
220 : * 'prunequal' is a list of potential pruning quals (i.e., restriction
221 : * clauses that are applicable to the appendrel).
222 : */
223 : int
224 9006 : make_partition_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
225 : List *subpaths,
226 : List *prunequal)
227 : {
228 : PartitionPruneInfo *pruneinfo;
229 9006 : Bitmapset *allmatchedsubplans = NULL;
230 : List *allpartrelids;
231 : List *prunerelinfos;
232 : int *relid_subplan_map;
233 : ListCell *lc;
234 : int i;
235 :
236 : /*
237 : * Scan the subpaths to see which ones are scans of partition child
238 : * relations, and identify their parent partitioned rels. (Note: we must
239 : * restrict the parent partitioned rels to be parentrel or children of
240 : * parentrel, otherwise we couldn't translate prunequal to match.)
241 : *
242 : * Also construct a temporary array to map from partition-child-relation
243 : * relid to the index in 'subpaths' of the scan plan for that partition.
244 : * (Use of "subplan" rather than "subpath" is a bit of a misnomer, but
245 : * we'll let it stand.) For convenience, we use 1-based indexes here, so
246 : * that zero can represent an un-filled array entry.
247 : */
248 9006 : allpartrelids = NIL;
249 9006 : relid_subplan_map = palloc0(sizeof(int) * root->simple_rel_array_size);
250 :
251 9006 : i = 1;
252 25686 : foreach(lc, subpaths)
253 : {
254 16680 : Path *path = (Path *) lfirst(lc);
255 16680 : RelOptInfo *pathrel = path->parent;
256 :
257 : /* We don't consider partitioned joins here */
258 16680 : if (pathrel->reloptkind == RELOPT_OTHER_MEMBER_REL)
259 : {
260 16680 : RelOptInfo *prel = pathrel;
261 16680 : Bitmapset *partrelids = NULL;
262 :
263 : /*
264 : * Traverse up to the pathrel's topmost partitioned parent,
265 : * collecting parent relids as we go; but stop if we reach
266 : * parentrel. (Normally, a pathrel's topmost partitioned parent
267 : * is either parentrel or a UNION ALL appendrel child of
268 : * parentrel. But when handling partitionwise joins of
269 : * multi-level partitioning trees, we can see an append path whose
270 : * parentrel is an intermediate partitioned table.)
271 : */
272 : do
273 : {
274 : AppendRelInfo *appinfo;
275 :
276 : Assert(prel->relid < root->simple_rel_array_size);
277 19804 : appinfo = root->append_rel_array[prel->relid];
278 19804 : prel = find_base_rel(root, appinfo->parent_relid);
279 19804 : if (!IS_PARTITIONED_REL(prel))
280 : break; /* reached a non-partitioned parent */
281 : /* accept this level as an interesting parent */
282 16468 : partrelids = bms_add_member(partrelids, prel->relid);
283 16468 : if (prel == parentrel)
284 13344 : break; /* don't traverse above parentrel */
285 3124 : } while (prel->reloptkind == RELOPT_OTHER_MEMBER_REL);
286 :
287 16680 : if (partrelids)
288 : {
289 : /*
290 : * Found some relevant parent partitions, which may or may not
291 : * overlap with partition trees we already found. Add new
292 : * information to the allpartrelids list.
293 : */
294 13602 : allpartrelids = add_part_relids(allpartrelids, partrelids);
295 : /* Also record the subplan in relid_subplan_map[] */
296 : /* No duplicates please */
297 : Assert(relid_subplan_map[pathrel->relid] == 0);
298 13602 : relid_subplan_map[pathrel->relid] = i;
299 : }
300 : }
301 16680 : i++;
302 : }
303 :
304 : /*
305 : * We now build a PartitionedRelPruneInfo for each topmost partitioned rel
306 : * (omitting any that turn out not to have useful pruning quals).
307 : */
308 9006 : prunerelinfos = NIL;
309 16846 : foreach(lc, allpartrelids)
310 : {
311 7840 : Bitmapset *partrelids = (Bitmapset *) lfirst(lc);
312 : List *pinfolist;
313 7840 : Bitmapset *matchedsubplans = NULL;
314 :
315 7840 : pinfolist = make_partitionedrel_pruneinfo(root, parentrel,
316 : prunequal,
317 : partrelids,
318 : relid_subplan_map,
319 : &matchedsubplans);
320 :
321 : /* When pruning is possible, record the matched subplans */
322 7840 : if (pinfolist != NIL)
323 : {
324 592 : prunerelinfos = lappend(prunerelinfos, pinfolist);
325 592 : allmatchedsubplans = bms_join(matchedsubplans,
326 : allmatchedsubplans);
327 : }
328 : }
329 :
330 9006 : pfree(relid_subplan_map);
331 :
332 : /*
333 : * If none of the partition hierarchies had any useful run-time pruning
334 : * quals, then we can just not bother with run-time pruning.
335 : */
336 9006 : if (prunerelinfos == NIL)
337 8426 : return -1;
338 :
339 : /* Else build the result data structure */
340 580 : pruneinfo = makeNode(PartitionPruneInfo);
341 580 : pruneinfo->relids = bms_copy(parentrel->relids);
342 580 : pruneinfo->prune_infos = prunerelinfos;
343 :
344 : /*
345 : * Some subplans may not belong to any of the identified partitioned rels.
346 : * This can happen for UNION ALL queries which include a non-partitioned
347 : * table, or when some of the hierarchies aren't run-time prunable. Build
348 : * a bitmapset of the indexes of all such subplans, so that the executor
349 : * can identify which subplans should never be pruned.
350 : */
351 580 : if (bms_num_members(allmatchedsubplans) < list_length(subpaths))
352 : {
353 : Bitmapset *other_subplans;
354 :
355 : /* Create the complement of allmatchedsubplans */
356 36 : other_subplans = bms_add_range(NULL, 0, list_length(subpaths) - 1);
357 36 : other_subplans = bms_del_members(other_subplans, allmatchedsubplans);
358 :
359 36 : pruneinfo->other_subplans = other_subplans;
360 : }
361 : else
362 544 : pruneinfo->other_subplans = NULL;
363 :
364 580 : root->partPruneInfos = lappend(root->partPruneInfos, pruneinfo);
365 :
366 580 : return list_length(root->partPruneInfos) - 1;
367 : }
368 :
369 : /*
370 : * add_part_relids
371 : * Add new info to a list of Bitmapsets of partitioned relids.
372 : *
373 : * Within 'allpartrelids', there is one Bitmapset for each topmost parent
374 : * partitioned rel. Each Bitmapset contains the RT indexes of the topmost
375 : * parent as well as its relevant non-leaf child partitions. Since (by
376 : * construction of the rangetable list) parent partitions must have lower
377 : * RT indexes than their children, we can distinguish the topmost parent
378 : * as being the lowest set bit in the Bitmapset.
379 : *
380 : * 'partrelids' contains the RT indexes of a parent partitioned rel, and
381 : * possibly some non-leaf children, that are newly identified as parents of
382 : * some subpath rel passed to make_partition_pruneinfo(). These are added
383 : * to an appropriate member of 'allpartrelids'.
384 : *
385 : * Note that the list contains only RT indexes of partitioned tables that
386 : * are parents of some scan-level relation appearing in the 'subpaths' that
387 : * make_partition_pruneinfo() is dealing with. Also, "topmost" parents are
388 : * not allowed to be higher than the 'parentrel' associated with the append
389 : * path. In this way, we avoid expending cycles on partitioned rels that
390 : * can't contribute useful pruning information for the problem at hand.
391 : * (It is possible for 'parentrel' to be a child partitioned table, and it
392 : * is also possible for scan-level relations to be child partitioned tables
393 : * rather than leaf partitions. Hence we must construct this relation set
394 : * with reference to the particular append path we're dealing with, rather
395 : * than looking at the full partitioning structure represented in the
396 : * RelOptInfos.)
397 : */
398 : static List *
399 13602 : add_part_relids(List *allpartrelids, Bitmapset *partrelids)
400 : {
401 : Index targetpart;
402 : ListCell *lc;
403 :
404 : /* We can easily get the lowest set bit this way: */
405 13602 : targetpart = bms_next_member(partrelids, -1);
406 : Assert(targetpart > 0);
407 :
408 : /* Look for a matching topmost parent */
409 13674 : foreach(lc, allpartrelids)
410 : {
411 5834 : Bitmapset *currpartrelids = (Bitmapset *) lfirst(lc);
412 5834 : Index currtarget = bms_next_member(currpartrelids, -1);
413 :
414 5834 : if (targetpart == currtarget)
415 : {
416 : /* Found a match, so add any new RT indexes to this hierarchy */
417 5762 : currpartrelids = bms_add_members(currpartrelids, partrelids);
418 5762 : lfirst(lc) = currpartrelids;
419 5762 : return allpartrelids;
420 : }
421 : }
422 : /* No match, so add the new partition hierarchy to the list */
423 7840 : return lappend(allpartrelids, partrelids);
424 : }
425 :
426 : /*
427 : * make_partitionedrel_pruneinfo
428 : * Build a List of PartitionedRelPruneInfos, one for each interesting
429 : * partitioned rel in a partitioning hierarchy. These can be used in the
430 : * executor to allow additional partition pruning to take place.
431 : *
432 : * parentrel: rel associated with the appendpath being considered
433 : * prunequal: potential pruning quals, represented for parentrel
434 : * partrelids: Set of RT indexes identifying relevant partitioned tables
435 : * within a single partitioning hierarchy
436 : * relid_subplan_map[]: maps child relation relids to subplan indexes
437 : * matchedsubplans: on success, receives the set of subplan indexes which
438 : * were matched to this partition hierarchy
439 : *
440 : * If we cannot find any useful run-time pruning steps, return NIL.
441 : * However, on success, each rel identified in partrelids will have
442 : * an element in the result list, even if some of them are useless.
443 : */
444 : static List *
445 7840 : make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
446 : List *prunequal,
447 : Bitmapset *partrelids,
448 : int *relid_subplan_map,
449 : Bitmapset **matchedsubplans)
450 : {
451 7840 : RelOptInfo *targetpart = NULL;
452 7840 : List *pinfolist = NIL;
453 7840 : bool doruntimeprune = false;
454 : int *relid_subpart_map;
455 7840 : Bitmapset *subplansfound = NULL;
456 : ListCell *lc;
457 : int rti;
458 : int i;
459 :
460 : /*
461 : * Examine each partitioned rel, constructing a temporary array to map
462 : * from planner relids to index of the partitioned rel, and building a
463 : * PartitionedRelPruneInfo for each partitioned rel.
464 : *
465 : * In this phase we discover whether runtime pruning is needed at all; if
466 : * not, we can avoid doing further work.
467 : */
468 7840 : relid_subpart_map = palloc0(sizeof(int) * root->simple_rel_array_size);
469 :
470 7840 : i = 1;
471 7840 : rti = -1;
472 17178 : while ((rti = bms_next_member(partrelids, rti)) > 0)
473 : {
474 9344 : RelOptInfo *subpart = find_base_rel(root, rti);
475 : PartitionedRelPruneInfo *pinfo;
476 : List *partprunequal;
477 : List *initial_pruning_steps;
478 : List *exec_pruning_steps;
479 : Bitmapset *execparamids;
480 : GeneratePruningStepsContext context;
481 :
482 : /*
483 : * Fill the mapping array.
484 : *
485 : * relid_subpart_map maps relid of a non-leaf partition to the index
486 : * in the returned PartitionedRelPruneInfo list of the info for that
487 : * partition. We use 1-based indexes here, so that zero can represent
488 : * an un-filled array entry.
489 : */
490 : Assert(rti < root->simple_rel_array_size);
491 9344 : relid_subpart_map[rti] = i++;
492 :
493 : /*
494 : * Translate pruning qual, if necessary, for this partition.
495 : *
496 : * The first item in the list is the target partitioned relation.
497 : */
498 9344 : if (!targetpart)
499 : {
500 7840 : targetpart = subpart;
501 :
502 : /*
503 : * The prunequal is presented to us as a qual for 'parentrel'.
504 : * Frequently this rel is the same as targetpart, so we can skip
505 : * an adjust_appendrel_attrs step. But it might not be, and then
506 : * we have to translate. We update the prunequal parameter here,
507 : * because in later iterations of the loop for child partitions,
508 : * we want to translate from parent to child variables.
509 : */
510 7840 : if (!bms_equal(parentrel->relids, subpart->relids))
511 : {
512 : int nappinfos;
513 60 : AppendRelInfo **appinfos = find_appinfos_by_relids(root,
514 : subpart->relids,
515 : &nappinfos);
516 :
517 60 : prunequal = (List *) adjust_appendrel_attrs(root, (Node *)
518 : prunequal,
519 : nappinfos,
520 : appinfos);
521 :
522 60 : pfree(appinfos);
523 : }
524 :
525 7840 : partprunequal = prunequal;
526 : }
527 : else
528 : {
529 : /*
530 : * For sub-partitioned tables the columns may not be in the same
531 : * order as the parent, so we must translate the prunequal to make
532 : * it compatible with this relation.
533 : */
534 : partprunequal = (List *)
535 1504 : adjust_appendrel_attrs_multilevel(root,
536 : (Node *) prunequal,
537 : subpart,
538 : targetpart);
539 : }
540 :
541 : /*
542 : * Convert pruning qual to pruning steps. We may need to do this
543 : * twice, once to obtain executor startup pruning steps, and once for
544 : * executor per-scan pruning steps. This first pass creates startup
545 : * pruning steps and detects whether there's any possibly-useful quals
546 : * that would require per-scan pruning.
547 : */
548 9344 : gen_partprune_steps(subpart, partprunequal, PARTTARGET_INITIAL,
549 : &context);
550 :
551 9344 : if (context.contradictory)
552 : {
553 : /*
554 : * This shouldn't happen as the planner should have detected this
555 : * earlier. However, we do use additional quals from parameterized
556 : * paths here. These do only compare Params to the partition key,
557 : * so this shouldn't cause the discovery of any new qual
558 : * contradictions that were not previously discovered as the Param
559 : * values are unknown during planning. Anyway, we'd better do
560 : * something sane here, so let's just disable run-time pruning.
561 : */
562 6 : return NIL;
563 : }
564 :
565 : /*
566 : * If no mutable operators or expressions appear in usable pruning
567 : * clauses, then there's no point in running startup pruning, because
568 : * plan-time pruning should have pruned everything prunable.
569 : */
570 9338 : if (context.has_mutable_op || context.has_mutable_arg)
571 366 : initial_pruning_steps = context.steps;
572 : else
573 8972 : initial_pruning_steps = NIL;
574 :
575 : /*
576 : * If no exec Params appear in potentially-usable pruning clauses,
577 : * then there's no point in even thinking about per-scan pruning.
578 : */
579 9338 : if (context.has_exec_param)
580 : {
581 : /* ... OK, we'd better think about it */
582 412 : gen_partprune_steps(subpart, partprunequal, PARTTARGET_EXEC,
583 : &context);
584 :
585 412 : if (context.contradictory)
586 : {
587 : /* As above, skip run-time pruning if anything fishy happens */
588 0 : return NIL;
589 : }
590 :
591 412 : exec_pruning_steps = context.steps;
592 :
593 : /*
594 : * Detect which exec Params actually got used; the fact that some
595 : * were in available clauses doesn't mean we actually used them.
596 : * Skip per-scan pruning if there are none.
597 : */
598 412 : execparamids = get_partkey_exec_paramids(exec_pruning_steps);
599 :
600 412 : if (bms_is_empty(execparamids))
601 0 : exec_pruning_steps = NIL;
602 : }
603 : else
604 : {
605 : /* No exec Params anywhere, so forget about scan-time pruning */
606 8926 : exec_pruning_steps = NIL;
607 8926 : execparamids = NULL;
608 : }
609 :
610 9338 : if (initial_pruning_steps || exec_pruning_steps)
611 760 : doruntimeprune = true;
612 :
613 : /* Begin constructing the PartitionedRelPruneInfo for this rel */
614 9338 : pinfo = makeNode(PartitionedRelPruneInfo);
615 9338 : pinfo->rtindex = rti;
616 9338 : pinfo->initial_pruning_steps = initial_pruning_steps;
617 9338 : pinfo->exec_pruning_steps = exec_pruning_steps;
618 9338 : pinfo->execparamids = execparamids;
619 : /* Remaining fields will be filled in the next loop */
620 :
621 9338 : pinfolist = lappend(pinfolist, pinfo);
622 : }
623 :
624 7834 : if (!doruntimeprune)
625 : {
626 : /* No run-time pruning required. */
627 7242 : pfree(relid_subpart_map);
628 7242 : return NIL;
629 : }
630 :
631 : /*
632 : * Run-time pruning will be required, so initialize other information.
633 : * That includes two maps -- one needed to convert partition indexes of
634 : * leaf partitions to the indexes of their subplans in the subplan list,
635 : * another needed to convert partition indexes of sub-partitioned
636 : * partitions to the indexes of their PartitionedRelPruneInfo in the
637 : * PartitionedRelPruneInfo list.
638 : */
639 1592 : foreach(lc, pinfolist)
640 : {
641 1000 : PartitionedRelPruneInfo *pinfo = lfirst(lc);
642 1000 : RelOptInfo *subpart = find_base_rel(root, pinfo->rtindex);
643 : Bitmapset *present_parts;
644 1000 : int nparts = subpart->nparts;
645 : int *subplan_map;
646 : int *subpart_map;
647 : Oid *relid_map;
648 : int *leafpart_rti_map;
649 :
650 : /*
651 : * Construct the subplan and subpart maps for this partitioning level.
652 : * Here we convert to zero-based indexes, with -1 for empty entries.
653 : * Also construct a Bitmapset of all partitions that are present (that
654 : * is, not pruned already).
655 : */
656 1000 : subplan_map = (int *) palloc(nparts * sizeof(int));
657 1000 : memset(subplan_map, -1, nparts * sizeof(int));
658 1000 : subpart_map = (int *) palloc(nparts * sizeof(int));
659 1000 : memset(subpart_map, -1, nparts * sizeof(int));
660 1000 : relid_map = (Oid *) palloc0(nparts * sizeof(Oid));
661 1000 : leafpart_rti_map = (int *) palloc0(nparts * sizeof(int));
662 1000 : present_parts = NULL;
663 :
664 1000 : i = -1;
665 3756 : while ((i = bms_next_member(subpart->live_parts, i)) >= 0)
666 : {
667 2756 : RelOptInfo *partrel = subpart->part_rels[i];
668 : int subplanidx;
669 : int subpartidx;
670 :
671 : Assert(partrel != NULL);
672 :
673 2756 : subplan_map[i] = subplanidx = relid_subplan_map[partrel->relid] - 1;
674 2756 : subpart_map[i] = subpartidx = relid_subpart_map[partrel->relid] - 1;
675 2756 : relid_map[i] = planner_rt_fetch(partrel->relid, root)->relid;
676 :
677 : /*
678 : * Track the RT indexes of "leaf" partitions so they can be
679 : * included in the PlannerGlobal.prunableRelids set, indicating
680 : * relations that may be pruned during executor startup.
681 : *
682 : * Only leaf partitions with a valid subplan that are prunable
683 : * using initial pruning are added to prunableRelids. So
684 : * partitions without a subplan due to constraint exclusion will
685 : * remain in PlannedStmt.unprunableRelids.
686 : */
687 2756 : if (subplanidx >= 0)
688 : {
689 2342 : present_parts = bms_add_member(present_parts, i);
690 :
691 : /*
692 : * Non-leaf partitions may appear here when they use an
693 : * unflattened Append or MergeAppend. These should not be
694 : * included in prunableRelids.
695 : */
696 2342 : if (partrel->nparts == -1)
697 2312 : leafpart_rti_map[i] = (int) partrel->relid;
698 :
699 : /* Record finding this subplan */
700 2342 : subplansfound = bms_add_member(subplansfound, subplanidx);
701 : }
702 414 : else if (subpartidx >= 0)
703 408 : present_parts = bms_add_member(present_parts, i);
704 : }
705 :
706 : /*
707 : * Ensure there were no stray PartitionedRelPruneInfo generated for
708 : * partitioned tables that we have no sub-paths or
709 : * sub-PartitionedRelPruneInfo for.
710 : */
711 : Assert(!bms_is_empty(present_parts));
712 :
713 : /* Record the maps and other information. */
714 1000 : pinfo->present_parts = present_parts;
715 1000 : pinfo->nparts = nparts;
716 1000 : pinfo->subplan_map = subplan_map;
717 1000 : pinfo->subpart_map = subpart_map;
718 1000 : pinfo->relid_map = relid_map;
719 1000 : pinfo->leafpart_rti_map = leafpart_rti_map;
720 : }
721 :
722 592 : pfree(relid_subpart_map);
723 :
724 592 : *matchedsubplans = subplansfound;
725 :
726 592 : return pinfolist;
727 : }
728 :
729 : /*
730 : * gen_partprune_steps
731 : * Process 'clauses' (typically a rel's baserestrictinfo list of clauses)
732 : * and create a list of "partition pruning steps".
733 : *
734 : * 'target' tells whether to generate pruning steps for planning (use
735 : * immutable clauses only), or for executor startup (use any allowable
736 : * clause except ones containing PARAM_EXEC Params), or for executor
737 : * per-scan pruning (use any allowable clause).
738 : *
739 : * 'context' is an output argument that receives the steps list as well as
740 : * some subsidiary flags; see the GeneratePruningStepsContext typedef.
741 : */
742 : static void
743 20452 : gen_partprune_steps(RelOptInfo *rel, List *clauses, PartClauseTarget target,
744 : GeneratePruningStepsContext *context)
745 : {
746 : /* Initialize all output values to zero/false/NULL */
747 20452 : memset(context, 0, sizeof(GeneratePruningStepsContext));
748 20452 : context->rel = rel;
749 20452 : context->target = target;
750 :
751 : /*
752 : * If this partitioned table is in turn a partition, and it shares any
753 : * partition keys with its parent, then it's possible that the hierarchy
754 : * allows the parent a narrower range of values than some of its
755 : * partitions (particularly the default one). This is normally not
756 : * useful, but it can be to prune the default partition.
757 : */
758 20452 : if (partition_bound_has_default(rel->boundinfo) && rel->partition_qual)
759 : {
760 : /* Make a copy to avoid modifying the passed-in List */
761 738 : clauses = list_concat_copy(clauses, rel->partition_qual);
762 : }
763 :
764 : /* Down into the rabbit-hole. */
765 20452 : (void) gen_partprune_steps_internal(context, clauses);
766 20452 : }
767 :
768 : /*
769 : * prune_append_rel_partitions
770 : * Process rel's baserestrictinfo and make use of quals which can be
771 : * evaluated during query planning in order to determine the minimum set
772 : * of partitions which must be scanned to satisfy these quals. Returns
773 : * the matching partitions in the form of a Bitmapset containing the
774 : * partitions' indexes in the rel's part_rels array.
775 : *
776 : * Callers must ensure that 'rel' is a partitioned table.
777 : */
778 : Bitmapset *
779 16640 : prune_append_rel_partitions(RelOptInfo *rel)
780 : {
781 16640 : List *clauses = rel->baserestrictinfo;
782 : List *pruning_steps;
783 : GeneratePruningStepsContext gcontext;
784 : PartitionPruneContext context;
785 :
786 : Assert(rel->part_scheme != NULL);
787 :
788 : /* If there are no partitions, return the empty set */
789 16640 : if (rel->nparts == 0)
790 0 : return NULL;
791 :
792 : /*
793 : * If pruning is disabled or if there are no clauses to prune with, return
794 : * all partitions.
795 : */
796 16640 : if (!enable_partition_pruning || clauses == NIL)
797 5944 : return bms_add_range(NULL, 0, rel->nparts - 1);
798 :
799 : /*
800 : * Process clauses to extract pruning steps that are usable at plan time.
801 : * If the clauses are found to be contradictory, we can return the empty
802 : * set.
803 : */
804 10696 : gen_partprune_steps(rel, clauses, PARTTARGET_PLANNER,
805 : &gcontext);
806 10696 : if (gcontext.contradictory)
807 126 : return NULL;
808 10570 : pruning_steps = gcontext.steps;
809 :
810 : /* If there's nothing usable, return all partitions */
811 10570 : if (pruning_steps == NIL)
812 2860 : return bms_add_range(NULL, 0, rel->nparts - 1);
813 :
814 : /* Set up PartitionPruneContext */
815 7710 : context.strategy = rel->part_scheme->strategy;
816 7710 : context.partnatts = rel->part_scheme->partnatts;
817 7710 : context.nparts = rel->nparts;
818 7710 : context.boundinfo = rel->boundinfo;
819 7710 : context.partcollation = rel->part_scheme->partcollation;
820 7710 : context.partsupfunc = rel->part_scheme->partsupfunc;
821 15420 : context.stepcmpfuncs = (FmgrInfo *) palloc0(sizeof(FmgrInfo) *
822 15420 : context.partnatts *
823 7710 : list_length(pruning_steps));
824 7710 : context.ppccontext = CurrentMemoryContext;
825 :
826 : /* These are not valid when being called from the planner */
827 7710 : context.planstate = NULL;
828 7710 : context.exprcontext = NULL;
829 7710 : context.exprstates = NULL;
830 :
831 : /* Actual pruning happens here. */
832 7710 : return get_matching_partitions(&context, pruning_steps);
833 : }
834 :
835 : /*
836 : * get_matching_partitions
837 : * Determine partitions that survive partition pruning
838 : *
839 : * Note: context->exprcontext must be valid when the pruning_steps were
840 : * generated with a target other than PARTTARGET_PLANNER.
841 : *
842 : * Returns a Bitmapset of the RelOptInfo->part_rels indexes of the surviving
843 : * partitions.
844 : */
845 : Bitmapset *
846 11716 : get_matching_partitions(PartitionPruneContext *context, List *pruning_steps)
847 : {
848 : Bitmapset *result;
849 11716 : int num_steps = list_length(pruning_steps),
850 : i;
851 : PruneStepResult **results,
852 : *final_result;
853 : ListCell *lc;
854 : bool scan_default;
855 :
856 : /* If there are no pruning steps then all partitions match. */
857 11716 : if (num_steps == 0)
858 : {
859 : Assert(context->nparts > 0);
860 0 : return bms_add_range(NULL, 0, context->nparts - 1);
861 : }
862 :
863 : /*
864 : * Allocate space for individual pruning steps to store its result. Each
865 : * slot will hold a PruneStepResult after performing a given pruning step.
866 : * Later steps may use the result of one or more earlier steps. The
867 : * result of applying all pruning steps is the value contained in the slot
868 : * of the last pruning step.
869 : */
870 : results = (PruneStepResult **)
871 11716 : palloc0(num_steps * sizeof(PruneStepResult *));
872 28404 : foreach(lc, pruning_steps)
873 : {
874 16688 : PartitionPruneStep *step = lfirst(lc);
875 :
876 16688 : switch (nodeTag(step))
877 : {
878 14128 : case T_PartitionPruneStepOp:
879 28256 : results[step->step_id] =
880 14128 : perform_pruning_base_step(context,
881 : (PartitionPruneStepOp *) step);
882 14128 : break;
883 :
884 2560 : case T_PartitionPruneStepCombine:
885 5120 : results[step->step_id] =
886 2560 : perform_pruning_combine_step(context,
887 : (PartitionPruneStepCombine *) step,
888 : results);
889 2560 : break;
890 :
891 0 : default:
892 0 : elog(ERROR, "invalid pruning step type: %d",
893 : (int) nodeTag(step));
894 : }
895 : }
896 :
897 : /*
898 : * At this point we know the offsets of all the datums whose corresponding
899 : * partitions need to be in the result, including special null-accepting
900 : * and default partitions. Collect the actual partition indexes now.
901 : */
902 11716 : final_result = results[num_steps - 1];
903 : Assert(final_result != NULL);
904 11716 : i = -1;
905 11716 : result = NULL;
906 11716 : scan_default = final_result->scan_default;
907 23424 : while ((i = bms_next_member(final_result->bound_offsets, i)) >= 0)
908 : {
909 : int partindex;
910 :
911 : Assert(i < context->boundinfo->nindexes);
912 11708 : partindex = context->boundinfo->indexes[i];
913 :
914 11708 : if (partindex < 0)
915 : {
916 : /*
917 : * In range partitioning cases, if a partition index is -1 it
918 : * means that the bound at the offset is the upper bound for a
919 : * range not covered by any partition (other than a possible
920 : * default partition). In hash partitioning, the same means no
921 : * partition has been defined for the corresponding remainder
922 : * value.
923 : *
924 : * In either case, the value is still part of the queried range of
925 : * values, so mark to scan the default partition if one exists.
926 : */
927 1306 : scan_default |= partition_bound_has_default(context->boundinfo);
928 1306 : continue;
929 : }
930 :
931 10402 : result = bms_add_member(result, partindex);
932 : }
933 :
934 : /* Add the null and/or default partition if needed and present. */
935 11716 : if (final_result->scan_null)
936 : {
937 : Assert(context->strategy == PARTITION_STRATEGY_LIST);
938 : Assert(partition_bound_accepts_nulls(context->boundinfo));
939 156 : result = bms_add_member(result, context->boundinfo->null_index);
940 : }
941 11716 : if (scan_default)
942 : {
943 : Assert(context->strategy == PARTITION_STRATEGY_LIST ||
944 : context->strategy == PARTITION_STRATEGY_RANGE);
945 : Assert(partition_bound_has_default(context->boundinfo));
946 734 : result = bms_add_member(result, context->boundinfo->default_index);
947 : }
948 :
949 11716 : return result;
950 : }
951 :
952 : /*
953 : * gen_partprune_steps_internal
954 : * Processes 'clauses' to generate a List of partition pruning steps. We
955 : * return NIL when no steps were generated.
956 : *
957 : * These partition pruning steps come in 2 forms; operator steps and combine
958 : * steps.
959 : *
960 : * Operator steps (PartitionPruneStepOp) contain details of clauses that we
961 : * determined that we can use for partition pruning. These contain details of
962 : * the expression which is being compared to the partition key and the
963 : * comparison function.
964 : *
965 : * Combine steps (PartitionPruneStepCombine) instruct the partition pruning
966 : * code how it should produce a single set of partitions from multiple input
967 : * operator and other combine steps. A PARTPRUNE_COMBINE_INTERSECT type
968 : * combine step will merge its input steps to produce a result which only
969 : * contains the partitions which are present in all of the input operator
970 : * steps. A PARTPRUNE_COMBINE_UNION combine step will produce a result that
971 : * has all of the partitions from each of the input operator steps.
972 : *
973 : * For BoolExpr clauses, each argument is processed recursively. Steps
974 : * generated from processing an OR BoolExpr will be combined using
975 : * PARTPRUNE_COMBINE_UNION. AND BoolExprs get combined using
976 : * PARTPRUNE_COMBINE_INTERSECT.
977 : *
978 : * Otherwise, the list of clauses we receive we assume to be mutually ANDed.
979 : * We generate all of the pruning steps we can based on these clauses and then
980 : * at the end, if we have more than 1 step, we combine each step with a
981 : * PARTPRUNE_COMBINE_INTERSECT combine step. Single steps are returned as-is.
982 : *
983 : * If we find clauses that are mutually contradictory, or contradictory with
984 : * the partitioning constraint, or a pseudoconstant clause that contains
985 : * false, we set context->contradictory to true and return NIL (that is, no
986 : * pruning steps). Caller should consider all partitions as pruned in that
987 : * case.
988 : */
989 : static List *
990 25908 : gen_partprune_steps_internal(GeneratePruningStepsContext *context,
991 : List *clauses)
992 : {
993 25908 : PartitionScheme part_scheme = context->rel->part_scheme;
994 : List *keyclauses[PARTITION_MAX_KEYS];
995 25908 : Bitmapset *nullkeys = NULL,
996 25908 : *notnullkeys = NULL;
997 25908 : bool generate_opsteps = false;
998 25908 : List *result = NIL;
999 : ListCell *lc;
1000 :
1001 : /*
1002 : * If this partitioned relation has a default partition and is itself a
1003 : * partition (as evidenced by partition_qual being not NIL), we first
1004 : * check if the clauses contradict the partition constraint. If they do,
1005 : * there's no need to generate any steps as it'd already be proven that no
1006 : * partitions need to be scanned.
1007 : *
1008 : * This is a measure of last resort only to be used because the default
1009 : * partition cannot be pruned using the steps generated from clauses that
1010 : * contradict the parent's partition constraint; regular pruning, which is
1011 : * cheaper, is sufficient when no default partition exists.
1012 : */
1013 32876 : if (partition_bound_has_default(context->rel->boundinfo) &&
1014 6968 : predicate_refuted_by(context->rel->partition_qual, clauses, false))
1015 : {
1016 282 : context->contradictory = true;
1017 282 : return NIL;
1018 : }
1019 :
1020 25626 : memset(keyclauses, 0, sizeof(keyclauses));
1021 60588 : foreach(lc, clauses)
1022 : {
1023 35088 : Expr *clause = (Expr *) lfirst(lc);
1024 : int i;
1025 :
1026 : /* Look through RestrictInfo, if any */
1027 35088 : if (IsA(clause, RestrictInfo))
1028 13916 : clause = ((RestrictInfo *) clause)->clause;
1029 :
1030 : /* Constant-false-or-null is contradictory */
1031 35088 : if (IsA(clause, Const) &&
1032 66 : (((Const *) clause)->constisnull ||
1033 66 : !DatumGetBool(((Const *) clause)->constvalue)))
1034 : {
1035 66 : context->contradictory = true;
1036 126 : return NIL;
1037 : }
1038 :
1039 : /* Get the BoolExpr's out of the way. */
1040 35022 : if (IsA(clause, BoolExpr))
1041 : {
1042 : /*
1043 : * Generate steps for arguments.
1044 : *
1045 : * While steps generated for the arguments themselves will be
1046 : * added to context->steps during recursion and will be evaluated
1047 : * independently, collect their step IDs to be stored in the
1048 : * combine step we'll be creating.
1049 : */
1050 2940 : if (is_orclause(clause))
1051 : {
1052 1920 : List *arg_stepids = NIL;
1053 1920 : bool all_args_contradictory = true;
1054 : ListCell *lc1;
1055 :
1056 : /*
1057 : * We can share the outer context area with the recursive
1058 : * call, but contradictory had better not be true yet.
1059 : */
1060 : Assert(!context->contradictory);
1061 :
1062 : /*
1063 : * Get pruning step for each arg. If we get contradictory for
1064 : * all args, it means the OR expression is false as a whole.
1065 : */
1066 6046 : foreach(lc1, ((BoolExpr *) clause)->args)
1067 : {
1068 4126 : Expr *arg = lfirst(lc1);
1069 : bool arg_contradictory;
1070 : List *argsteps;
1071 :
1072 4126 : argsteps = gen_partprune_steps_internal(context,
1073 4126 : list_make1(arg));
1074 4126 : arg_contradictory = context->contradictory;
1075 : /* Keep context->contradictory clear till we're done */
1076 4126 : context->contradictory = false;
1077 :
1078 4126 : if (arg_contradictory)
1079 : {
1080 : /* Just ignore self-contradictory arguments. */
1081 276 : continue;
1082 : }
1083 : else
1084 3850 : all_args_contradictory = false;
1085 :
1086 3850 : if (argsteps != NIL)
1087 : {
1088 : /*
1089 : * gen_partprune_steps_internal() always adds a single
1090 : * combine step when it generates multiple steps, so
1091 : * here we can just pay attention to the last one in
1092 : * the list. If it just generated one, then the last
1093 : * one in the list is still the one we want.
1094 : */
1095 3298 : PartitionPruneStep *last = llast(argsteps);
1096 :
1097 3298 : arg_stepids = lappend_int(arg_stepids, last->step_id);
1098 : }
1099 : else
1100 : {
1101 : PartitionPruneStep *orstep;
1102 :
1103 : /*
1104 : * The arg didn't contain a clause matching this
1105 : * partition key. We cannot prune using such an arg.
1106 : * To indicate that to the pruning code, we must
1107 : * construct a dummy PartitionPruneStepCombine whose
1108 : * source_stepids is set to an empty List.
1109 : */
1110 552 : orstep = gen_prune_step_combine(context, NIL,
1111 : PARTPRUNE_COMBINE_UNION);
1112 552 : arg_stepids = lappend_int(arg_stepids, orstep->step_id);
1113 : }
1114 : }
1115 :
1116 : /* If all the OR arms are contradictory, we can stop */
1117 1920 : if (all_args_contradictory)
1118 : {
1119 0 : context->contradictory = true;
1120 0 : return NIL;
1121 : }
1122 :
1123 1920 : if (arg_stepids != NIL)
1124 : {
1125 : PartitionPruneStep *step;
1126 :
1127 1920 : step = gen_prune_step_combine(context, arg_stepids,
1128 : PARTPRUNE_COMBINE_UNION);
1129 1920 : result = lappend(result, step);
1130 : }
1131 1920 : continue;
1132 : }
1133 1020 : else if (is_andclause(clause))
1134 : {
1135 780 : List *args = ((BoolExpr *) clause)->args;
1136 : List *argsteps;
1137 :
1138 : /*
1139 : * args may itself contain clauses of arbitrary type, so just
1140 : * recurse and later combine the component partitions sets
1141 : * using a combine step.
1142 : */
1143 780 : argsteps = gen_partprune_steps_internal(context, args);
1144 :
1145 : /* If any AND arm is contradictory, we can stop immediately */
1146 780 : if (context->contradictory)
1147 0 : return NIL;
1148 :
1149 : /*
1150 : * gen_partprune_steps_internal() always adds a single combine
1151 : * step when it generates multiple steps, so here we can just
1152 : * pay attention to the last one in the list. If it just
1153 : * generated one, then the last one in the list is still the
1154 : * one we want.
1155 : */
1156 780 : if (argsteps != NIL)
1157 576 : result = lappend(result, llast(argsteps));
1158 :
1159 780 : continue;
1160 : }
1161 :
1162 : /*
1163 : * Fall-through for a NOT clause, which if it's a Boolean clause,
1164 : * will be handled in match_clause_to_partition_key(). We
1165 : * currently don't perform any pruning for more complex NOT
1166 : * clauses.
1167 : */
1168 : }
1169 :
1170 : /*
1171 : * See if we can match this clause to any of the partition keys.
1172 : */
1173 44184 : for (i = 0; i < part_scheme->partnatts; i++)
1174 : {
1175 36426 : Expr *partkey = linitial(context->rel->partexprs[i]);
1176 36426 : bool clause_is_not_null = false;
1177 36426 : PartClauseInfo *pc = NULL;
1178 36426 : List *clause_steps = NIL;
1179 :
1180 36426 : switch (match_clause_to_partition_key(context,
1181 : clause, partkey, i,
1182 : &clause_is_not_null,
1183 : &pc, &clause_steps))
1184 : {
1185 19898 : case PARTCLAUSE_MATCH_CLAUSE:
1186 : Assert(pc != NULL);
1187 :
1188 : /*
1189 : * Since we only allow strict operators, check for any
1190 : * contradicting IS NULL.
1191 : */
1192 19898 : if (bms_is_member(i, nullkeys))
1193 : {
1194 6 : context->contradictory = true;
1195 60 : return NIL;
1196 : }
1197 19892 : generate_opsteps = true;
1198 19892 : keyclauses[i] = lappend(keyclauses[i], pc);
1199 19892 : break;
1200 :
1201 2220 : case PARTCLAUSE_MATCH_NULLNESS:
1202 2220 : if (!clause_is_not_null)
1203 : {
1204 : /*
1205 : * check for conflicting IS NOT NULL as well as
1206 : * contradicting strict clauses
1207 : */
1208 1638 : if (bms_is_member(i, notnullkeys) ||
1209 1632 : keyclauses[i] != NIL)
1210 : {
1211 30 : context->contradictory = true;
1212 30 : return NIL;
1213 : }
1214 1608 : nullkeys = bms_add_member(nullkeys, i);
1215 : }
1216 : else
1217 : {
1218 : /* check for conflicting IS NULL */
1219 582 : if (bms_is_member(i, nullkeys))
1220 : {
1221 0 : context->contradictory = true;
1222 0 : return NIL;
1223 : }
1224 582 : notnullkeys = bms_add_member(notnullkeys, i);
1225 : }
1226 2190 : break;
1227 :
1228 550 : case PARTCLAUSE_MATCH_STEPS:
1229 : Assert(clause_steps != NIL);
1230 550 : result = list_concat(result, clause_steps);
1231 550 : break;
1232 :
1233 24 : case PARTCLAUSE_MATCH_CONTRADICT:
1234 : /* We've nothing more to do if a contradiction was found. */
1235 24 : context->contradictory = true;
1236 24 : return NIL;
1237 :
1238 11862 : case PARTCLAUSE_NOMATCH:
1239 :
1240 : /*
1241 : * Clause didn't match this key, but it might match the
1242 : * next one.
1243 : */
1244 11862 : continue;
1245 :
1246 1872 : case PARTCLAUSE_UNSUPPORTED:
1247 : /* This clause cannot be used for pruning. */
1248 1872 : break;
1249 : }
1250 :
1251 : /* done; go check the next clause. */
1252 24504 : break;
1253 : }
1254 : }
1255 :
1256 : /*-----------
1257 : * Now generate some (more) pruning steps. We have three strategies:
1258 : *
1259 : * 1) Generate pruning steps based on IS NULL clauses:
1260 : * a) For list partitioning, null partition keys can only be found in
1261 : * the designated null-accepting partition, so if there are IS NULL
1262 : * clauses containing partition keys we should generate a pruning
1263 : * step that gets rid of all partitions but that one. We can
1264 : * disregard any OpExpr we may have found.
1265 : * b) For range partitioning, only the default partition can contain
1266 : * NULL values, so the same rationale applies.
1267 : * c) For hash partitioning, we only apply this strategy if we have
1268 : * IS NULL clauses for all the keys. Strategy 2 below will take
1269 : * care of the case where some keys have OpExprs and others have
1270 : * IS NULL clauses.
1271 : *
1272 : * 2) If not, generate steps based on OpExprs we have (if any).
1273 : *
1274 : * 3) If this doesn't work either, we may be able to generate steps to
1275 : * prune just the null-accepting partition (if one exists), if we have
1276 : * IS NOT NULL clauses for all partition keys.
1277 : */
1278 25500 : if (!bms_is_empty(nullkeys) &&
1279 1158 : (part_scheme->strategy == PARTITION_STRATEGY_LIST ||
1280 570 : part_scheme->strategy == PARTITION_STRATEGY_RANGE ||
1281 444 : (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
1282 444 : bms_num_members(nullkeys) == part_scheme->partnatts)))
1283 762 : {
1284 : PartitionPruneStep *step;
1285 :
1286 : /* Strategy 1 */
1287 762 : step = gen_prune_step_op(context, InvalidStrategy,
1288 : false, NIL, NIL, nullkeys);
1289 762 : result = lappend(result, step);
1290 : }
1291 24738 : else if (generate_opsteps)
1292 : {
1293 : List *opsteps;
1294 :
1295 : /* Strategy 2 */
1296 17338 : opsteps = gen_prune_steps_from_opexps(context, keyclauses, nullkeys);
1297 17338 : result = list_concat(result, opsteps);
1298 : }
1299 7400 : else if (bms_num_members(notnullkeys) == part_scheme->partnatts)
1300 : {
1301 : PartitionPruneStep *step;
1302 :
1303 : /* Strategy 3 */
1304 180 : step = gen_prune_step_op(context, InvalidStrategy,
1305 : false, NIL, NIL, NULL);
1306 180 : result = lappend(result, step);
1307 : }
1308 :
1309 : /*
1310 : * Finally, if there are multiple steps, since the 'clauses' are mutually
1311 : * ANDed, add an INTERSECT step to combine the partition sets resulting
1312 : * from them and append it to the result list.
1313 : */
1314 25500 : if (list_length(result) > 1)
1315 : {
1316 1756 : List *step_ids = NIL;
1317 : PartitionPruneStep *final;
1318 :
1319 6366 : foreach(lc, result)
1320 : {
1321 4610 : PartitionPruneStep *step = lfirst(lc);
1322 :
1323 4610 : step_ids = lappend_int(step_ids, step->step_id);
1324 : }
1325 :
1326 1756 : final = gen_prune_step_combine(context, step_ids,
1327 : PARTPRUNE_COMBINE_INTERSECT);
1328 1756 : result = lappend(result, final);
1329 : }
1330 :
1331 25500 : return result;
1332 : }
1333 :
1334 : /*
1335 : * gen_prune_step_op
1336 : * Generate a pruning step for a specific operator
1337 : *
1338 : * The step is assigned a unique step identifier and added to context's 'steps'
1339 : * list.
1340 : */
1341 : static PartitionPruneStep *
1342 19940 : gen_prune_step_op(GeneratePruningStepsContext *context,
1343 : StrategyNumber opstrategy, bool op_is_ne,
1344 : List *exprs, List *cmpfns,
1345 : Bitmapset *nullkeys)
1346 : {
1347 19940 : PartitionPruneStepOp *opstep = makeNode(PartitionPruneStepOp);
1348 :
1349 19940 : opstep->step.step_id = context->next_step_id++;
1350 :
1351 : /*
1352 : * For clauses that contain an <> operator, set opstrategy to
1353 : * InvalidStrategy to signal get_matching_list_bounds to do the right
1354 : * thing.
1355 : */
1356 19940 : opstep->opstrategy = op_is_ne ? InvalidStrategy : opstrategy;
1357 : Assert(list_length(exprs) == list_length(cmpfns));
1358 19940 : opstep->exprs = exprs;
1359 19940 : opstep->cmpfns = cmpfns;
1360 19940 : opstep->nullkeys = nullkeys;
1361 :
1362 19940 : context->steps = lappend(context->steps, opstep);
1363 :
1364 19940 : return (PartitionPruneStep *) opstep;
1365 : }
1366 :
1367 : /*
1368 : * gen_prune_step_combine
1369 : * Generate a pruning step for a combination of several other steps
1370 : *
1371 : * The step is assigned a unique step identifier and added to context's
1372 : * 'steps' list.
1373 : */
1374 : static PartitionPruneStep *
1375 4228 : gen_prune_step_combine(GeneratePruningStepsContext *context,
1376 : List *source_stepids,
1377 : PartitionPruneCombineOp combineOp)
1378 : {
1379 4228 : PartitionPruneStepCombine *cstep = makeNode(PartitionPruneStepCombine);
1380 :
1381 4228 : cstep->step.step_id = context->next_step_id++;
1382 4228 : cstep->combineOp = combineOp;
1383 4228 : cstep->source_stepids = source_stepids;
1384 :
1385 4228 : context->steps = lappend(context->steps, cstep);
1386 :
1387 4228 : return (PartitionPruneStep *) cstep;
1388 : }
1389 :
1390 : /*
1391 : * gen_prune_steps_from_opexps
1392 : * Generate and return a list of PartitionPruneStepOp that are based on
1393 : * OpExpr and BooleanTest clauses that have been matched to the partition
1394 : * key.
1395 : *
1396 : * 'keyclauses' is an array of List pointers, indexed by the partition key's
1397 : * index. Each List element in the array can contain clauses that match to
1398 : * the corresponding partition key column. Partition key columns without any
1399 : * matched clauses will have an empty List.
1400 : *
1401 : * Some partitioning strategies allow pruning to still occur when we only have
1402 : * clauses for a prefix of the partition key columns, for example, RANGE
1403 : * partitioning. Other strategies, such as HASH partitioning, require clauses
1404 : * for all partition key columns.
1405 : *
1406 : * When we return multiple pruning steps here, it's up to the caller to add a
1407 : * relevant "combine" step to combine the returned steps. This is not done
1408 : * here as callers may wish to include additional pruning steps before
1409 : * combining them all.
1410 : */
1411 : static List *
1412 17338 : gen_prune_steps_from_opexps(GeneratePruningStepsContext *context,
1413 : List **keyclauses, Bitmapset *nullkeys)
1414 : {
1415 17338 : PartitionScheme part_scheme = context->rel->part_scheme;
1416 17338 : List *opsteps = NIL;
1417 : List *btree_clauses[BTMaxStrategyNumber + 1],
1418 : *hash_clauses[HTMaxStrategyNumber + 1];
1419 : int i;
1420 : ListCell *lc;
1421 :
1422 17338 : memset(btree_clauses, 0, sizeof(btree_clauses));
1423 17338 : memset(hash_clauses, 0, sizeof(hash_clauses));
1424 34070 : for (i = 0; i < part_scheme->partnatts; i++)
1425 : {
1426 19726 : List *clauselist = keyclauses[i];
1427 19726 : bool consider_next_key = true;
1428 :
1429 : /*
1430 : * For range partitioning, if we have no clauses for the current key,
1431 : * we can't consider any later keys either, so we can stop here.
1432 : */
1433 19726 : if (part_scheme->strategy == PARTITION_STRATEGY_RANGE &&
1434 : clauselist == NIL)
1435 636 : break;
1436 :
1437 : /*
1438 : * For hash partitioning, if a column doesn't have the necessary
1439 : * equality clause, there should be an IS NULL clause, otherwise
1440 : * pruning is not possible.
1441 : */
1442 19090 : if (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
1443 774 : clauselist == NIL && !bms_is_member(i, nullkeys))
1444 72 : return NIL;
1445 :
1446 38550 : foreach(lc, clauselist)
1447 : {
1448 19532 : PartClauseInfo *pc = (PartClauseInfo *) lfirst(lc);
1449 : Oid lefttype,
1450 : righttype;
1451 :
1452 : /* Look up the operator's btree/hash strategy number. */
1453 19532 : if (pc->op_strategy == InvalidStrategy)
1454 622 : get_op_opfamily_properties(pc->opno,
1455 622 : part_scheme->partopfamily[i],
1456 : false,
1457 : &pc->op_strategy,
1458 : &lefttype,
1459 : &righttype);
1460 :
1461 19532 : switch (part_scheme->strategy)
1462 : {
1463 18450 : case PARTITION_STRATEGY_LIST:
1464 : case PARTITION_STRATEGY_RANGE:
1465 36900 : btree_clauses[pc->op_strategy] =
1466 18450 : lappend(btree_clauses[pc->op_strategy], pc);
1467 :
1468 : /*
1469 : * We can't consider subsequent partition keys if the
1470 : * clause for the current key contains a non-inclusive
1471 : * operator.
1472 : */
1473 18450 : if (pc->op_strategy == BTLessStrategyNumber ||
1474 16706 : pc->op_strategy == BTGreaterStrategyNumber)
1475 2448 : consider_next_key = false;
1476 18450 : break;
1477 :
1478 1082 : case PARTITION_STRATEGY_HASH:
1479 1082 : if (pc->op_strategy != HTEqualStrategyNumber)
1480 0 : elog(ERROR, "invalid clause for hash partitioning");
1481 2164 : hash_clauses[pc->op_strategy] =
1482 1082 : lappend(hash_clauses[pc->op_strategy], pc);
1483 1082 : break;
1484 :
1485 0 : default:
1486 0 : elog(ERROR, "invalid partition strategy: %c",
1487 : part_scheme->strategy);
1488 : break;
1489 : }
1490 : }
1491 :
1492 : /*
1493 : * If we've decided that clauses for subsequent partition keys
1494 : * wouldn't be useful for pruning, don't search any further.
1495 : */
1496 19018 : if (!consider_next_key)
1497 2286 : break;
1498 : }
1499 :
1500 : /*
1501 : * Now, we have divided clauses according to their operator strategies.
1502 : * Check for each strategy if we can generate pruning step(s) by
1503 : * collecting a list of expressions whose values will constitute a vector
1504 : * that can be used as a lookup key by a partition bound searching
1505 : * function.
1506 : */
1507 17266 : switch (part_scheme->strategy)
1508 : {
1509 16694 : case PARTITION_STRATEGY_LIST:
1510 : case PARTITION_STRATEGY_RANGE:
1511 : {
1512 16694 : List *eq_clauses = btree_clauses[BTEqualStrategyNumber];
1513 16694 : List *le_clauses = btree_clauses[BTLessEqualStrategyNumber];
1514 16694 : List *ge_clauses = btree_clauses[BTGreaterEqualStrategyNumber];
1515 : int strat;
1516 :
1517 : /*
1518 : * For each clause under consideration for a given strategy,
1519 : * we collect expressions from clauses for earlier keys, whose
1520 : * operator strategy is inclusive, into a list called
1521 : * 'prefix'. By appending the clause's own expression to the
1522 : * 'prefix', we'll generate one step using the so generated
1523 : * vector and assign the current strategy to it. Actually,
1524 : * 'prefix' might contain multiple clauses for the same key,
1525 : * in which case, we must generate steps for various
1526 : * combinations of expressions of different keys, which
1527 : * get_steps_using_prefix takes care of for us.
1528 : */
1529 100164 : for (strat = 1; strat <= BTMaxStrategyNumber; strat++)
1530 : {
1531 101860 : foreach(lc, btree_clauses[strat])
1532 : {
1533 18438 : PartClauseInfo *pc = lfirst(lc);
1534 : ListCell *eq_start;
1535 : ListCell *le_start;
1536 : ListCell *ge_start;
1537 : ListCell *lc1;
1538 18438 : List *prefix = NIL;
1539 : List *pc_steps;
1540 18438 : bool prefix_valid = true;
1541 : bool pk_has_clauses;
1542 : int keyno;
1543 :
1544 : /*
1545 : * If this is a clause for the first partition key,
1546 : * there are no preceding expressions; generate a
1547 : * pruning step without a prefix.
1548 : *
1549 : * Note that we pass NULL for step_nullkeys, because
1550 : * we don't search list/range partition bounds where
1551 : * some keys are NULL.
1552 : */
1553 18438 : if (pc->keyno == 0)
1554 : {
1555 : Assert(pc->op_strategy == strat);
1556 17730 : pc_steps = get_steps_using_prefix(context, strat,
1557 17730 : pc->op_is_ne,
1558 : pc->expr,
1559 : pc->cmpfn,
1560 : NULL,
1561 : NIL);
1562 17730 : opsteps = list_concat(opsteps, pc_steps);
1563 17730 : continue;
1564 : }
1565 :
1566 708 : eq_start = list_head(eq_clauses);
1567 708 : le_start = list_head(le_clauses);
1568 708 : ge_start = list_head(ge_clauses);
1569 :
1570 : /*
1571 : * We arrange clauses into prefix in ascending order
1572 : * of their partition key numbers.
1573 : */
1574 1572 : for (keyno = 0; keyno < pc->keyno; keyno++)
1575 : {
1576 912 : pk_has_clauses = false;
1577 :
1578 : /*
1579 : * Expressions from = clauses can always be in the
1580 : * prefix, provided they're from an earlier key.
1581 : */
1582 1650 : for_each_cell(lc1, eq_clauses, eq_start)
1583 : {
1584 1374 : PartClauseInfo *eqpc = lfirst(lc1);
1585 :
1586 1374 : if (eqpc->keyno == keyno)
1587 : {
1588 738 : prefix = lappend(prefix, eqpc);
1589 738 : pk_has_clauses = true;
1590 : }
1591 : else
1592 : {
1593 : Assert(eqpc->keyno > keyno);
1594 636 : break;
1595 : }
1596 : }
1597 912 : eq_start = lc1;
1598 :
1599 : /*
1600 : * If we're generating steps for </<= strategy, we
1601 : * can add other <= clauses to the prefix,
1602 : * provided they're from an earlier key.
1603 : */
1604 912 : if (strat == BTLessStrategyNumber ||
1605 : strat == BTLessEqualStrategyNumber)
1606 : {
1607 114 : for_each_cell(lc1, le_clauses, le_start)
1608 : {
1609 30 : PartClauseInfo *lepc = lfirst(lc1);
1610 :
1611 30 : if (lepc->keyno == keyno)
1612 : {
1613 18 : prefix = lappend(prefix, lepc);
1614 18 : pk_has_clauses = true;
1615 : }
1616 : else
1617 : {
1618 : Assert(lepc->keyno > keyno);
1619 12 : break;
1620 : }
1621 : }
1622 96 : le_start = lc1;
1623 : }
1624 :
1625 : /*
1626 : * If we're generating steps for >/>= strategy, we
1627 : * can add other >= clauses to the prefix,
1628 : * provided they're from an earlier key.
1629 : */
1630 912 : if (strat == BTGreaterStrategyNumber ||
1631 : strat == BTGreaterEqualStrategyNumber)
1632 : {
1633 396 : for_each_cell(lc1, ge_clauses, ge_start)
1634 : {
1635 300 : PartClauseInfo *gepc = lfirst(lc1);
1636 :
1637 300 : if (gepc->keyno == keyno)
1638 : {
1639 144 : prefix = lappend(prefix, gepc);
1640 144 : pk_has_clauses = true;
1641 : }
1642 : else
1643 : {
1644 : Assert(gepc->keyno > keyno);
1645 156 : break;
1646 : }
1647 : }
1648 252 : ge_start = lc1;
1649 : }
1650 :
1651 : /*
1652 : * If this key has no clauses, prefix is not valid
1653 : * anymore.
1654 : */
1655 912 : if (!pk_has_clauses)
1656 : {
1657 48 : prefix_valid = false;
1658 48 : break;
1659 : }
1660 : }
1661 :
1662 : /*
1663 : * If prefix_valid, generate PartitionPruneStepOps.
1664 : * Otherwise, we would not find clauses for a valid
1665 : * subset of the partition keys anymore for the
1666 : * strategy; give up on generating partition pruning
1667 : * steps further for the strategy.
1668 : *
1669 : * As mentioned above, if 'prefix' contains multiple
1670 : * expressions for the same key, the following will
1671 : * generate multiple steps, one for each combination
1672 : * of the expressions for different keys.
1673 : *
1674 : * Note that we pass NULL for step_nullkeys, because
1675 : * we don't search list/range partition bounds where
1676 : * some keys are NULL.
1677 : */
1678 708 : if (prefix_valid)
1679 : {
1680 : Assert(pc->op_strategy == strat);
1681 660 : pc_steps = get_steps_using_prefix(context, strat,
1682 660 : pc->op_is_ne,
1683 : pc->expr,
1684 : pc->cmpfn,
1685 : NULL,
1686 : prefix);
1687 660 : opsteps = list_concat(opsteps, pc_steps);
1688 : }
1689 : else
1690 48 : break;
1691 : }
1692 : }
1693 16694 : break;
1694 : }
1695 :
1696 572 : case PARTITION_STRATEGY_HASH:
1697 : {
1698 572 : List *eq_clauses = hash_clauses[HTEqualStrategyNumber];
1699 :
1700 : /* For hash partitioning, we have just the = strategy. */
1701 572 : if (eq_clauses != NIL)
1702 : {
1703 : PartClauseInfo *pc;
1704 : List *pc_steps;
1705 572 : List *prefix = NIL;
1706 : int last_keyno;
1707 : ListCell *lc1;
1708 :
1709 : /*
1710 : * Locate the clause for the greatest column. This may
1711 : * not belong to the last partition key, but it is the
1712 : * clause belonging to the last partition key we found a
1713 : * clause for above.
1714 : */
1715 572 : pc = llast(eq_clauses);
1716 :
1717 : /*
1718 : * There might be multiple clauses which matched to that
1719 : * partition key; find the first such clause. While at
1720 : * it, add all the clauses before that one to 'prefix'.
1721 : */
1722 572 : last_keyno = pc->keyno;
1723 1070 : foreach(lc, eq_clauses)
1724 : {
1725 1070 : pc = lfirst(lc);
1726 1070 : if (pc->keyno == last_keyno)
1727 572 : break;
1728 498 : prefix = lappend(prefix, pc);
1729 : }
1730 :
1731 : /*
1732 : * For each clause for the "last" column, after appending
1733 : * the clause's own expression to the 'prefix', we'll
1734 : * generate one step using the so generated vector and
1735 : * assign = as its strategy. Actually, 'prefix' might
1736 : * contain multiple clauses for the same key, in which
1737 : * case, we must generate steps for various combinations
1738 : * of expressions of different keys, which
1739 : * get_steps_using_prefix will take care of for us.
1740 : */
1741 1144 : for_each_cell(lc1, eq_clauses, lc)
1742 : {
1743 572 : pc = lfirst(lc1);
1744 :
1745 : /*
1746 : * Note that we pass nullkeys for step_nullkeys,
1747 : * because we need to tell hash partition bound search
1748 : * function which of the keys we found IS NULL clauses
1749 : * for.
1750 : */
1751 : Assert(pc->op_strategy == HTEqualStrategyNumber);
1752 : pc_steps =
1753 572 : get_steps_using_prefix(context,
1754 : HTEqualStrategyNumber,
1755 : false,
1756 : pc->expr,
1757 : pc->cmpfn,
1758 : nullkeys,
1759 : prefix);
1760 572 : opsteps = list_concat(opsteps, pc_steps);
1761 : }
1762 : }
1763 572 : break;
1764 : }
1765 :
1766 0 : default:
1767 0 : elog(ERROR, "invalid partition strategy: %c",
1768 : part_scheme->strategy);
1769 : break;
1770 : }
1771 :
1772 17266 : return opsteps;
1773 : }
1774 :
1775 : /*
1776 : * If the partition key has a collation, then the clause must have the same
1777 : * input collation. If the partition key is non-collatable, we assume the
1778 : * collation doesn't matter, because while collation wasn't considered when
1779 : * performing partitioning, the clause still may have a collation assigned
1780 : * due to the other input being of a collatable type.
1781 : *
1782 : * See also IndexCollMatchesExprColl.
1783 : */
1784 : #define PartCollMatchesExprColl(partcoll, exprcoll) \
1785 : ((partcoll) == InvalidOid || (partcoll) == (exprcoll))
1786 :
1787 : /*
1788 : * match_clause_to_partition_key
1789 : * Attempt to match the given 'clause' with the specified partition key.
1790 : *
1791 : * Return value is:
1792 : * * PARTCLAUSE_NOMATCH if the clause doesn't match this partition key (but
1793 : * caller should keep trying, because it might match a subsequent key).
1794 : * Output arguments: none set.
1795 : *
1796 : * * PARTCLAUSE_MATCH_CLAUSE if there is a match.
1797 : * Output arguments: *pc is set to a PartClauseInfo constructed for the
1798 : * matched clause.
1799 : *
1800 : * * PARTCLAUSE_MATCH_NULLNESS if there is a match, and the matched clause was
1801 : * either a "a IS NULL" or "a IS NOT NULL" clause.
1802 : * Output arguments: *clause_is_not_null is set to false in the former case
1803 : * true otherwise.
1804 : *
1805 : * * PARTCLAUSE_MATCH_STEPS if there is a match.
1806 : * Output arguments: *clause_steps is set to the list of recursively
1807 : * generated steps for the clause.
1808 : *
1809 : * * PARTCLAUSE_MATCH_CONTRADICT if the clause is self-contradictory, ie
1810 : * it provably returns FALSE or NULL.
1811 : * Output arguments: none set.
1812 : *
1813 : * * PARTCLAUSE_UNSUPPORTED if the clause doesn't match this partition key
1814 : * and couldn't possibly match any other one either, due to its form or
1815 : * properties (such as containing a volatile function).
1816 : * Output arguments: none set.
1817 : */
1818 : static PartClauseMatchStatus
1819 36426 : match_clause_to_partition_key(GeneratePruningStepsContext *context,
1820 : Expr *clause, Expr *partkey, int partkeyidx,
1821 : bool *clause_is_not_null, PartClauseInfo **pc,
1822 : List **clause_steps)
1823 : {
1824 : PartClauseMatchStatus boolmatchstatus;
1825 36426 : PartitionScheme part_scheme = context->rel->part_scheme;
1826 36426 : Oid partopfamily = part_scheme->partopfamily[partkeyidx],
1827 36426 : partcoll = part_scheme->partcollation[partkeyidx];
1828 : Expr *expr;
1829 : bool notclause;
1830 :
1831 : /*
1832 : * Recognize specially shaped clauses that match a Boolean partition key.
1833 : */
1834 36426 : boolmatchstatus = match_boolean_partition_clause(partopfamily, clause,
1835 : partkey, &expr,
1836 : ¬clause);
1837 :
1838 36426 : if (boolmatchstatus == PARTCLAUSE_MATCH_CLAUSE)
1839 : {
1840 : PartClauseInfo *partclause;
1841 :
1842 : /*
1843 : * For bool tests in the form of partkey IS NOT true and IS NOT false,
1844 : * we invert these clauses. Effectively, "partkey IS NOT true"
1845 : * becomes "partkey IS false OR partkey IS NULL". We do this by
1846 : * building an OR BoolExpr and forming a clause just like that and
1847 : * punt it off to gen_partprune_steps_internal() to generate pruning
1848 : * steps.
1849 : */
1850 660 : if (notclause)
1851 : {
1852 : List *new_clauses;
1853 : List *or_clause;
1854 216 : BooleanTest *new_booltest = (BooleanTest *) copyObject(clause);
1855 : NullTest *nulltest;
1856 :
1857 : /* We expect 'notclause' to only be set to true for BooleanTests */
1858 : Assert(IsA(clause, BooleanTest));
1859 :
1860 : /* reverse the bool test */
1861 216 : if (new_booltest->booltesttype == IS_NOT_TRUE)
1862 132 : new_booltest->booltesttype = IS_FALSE;
1863 84 : else if (new_booltest->booltesttype == IS_NOT_FALSE)
1864 84 : new_booltest->booltesttype = IS_TRUE;
1865 : else
1866 : {
1867 : /*
1868 : * We only expect match_boolean_partition_clause to return
1869 : * PARTCLAUSE_MATCH_CLAUSE for IS_NOT_TRUE and IS_NOT_FALSE.
1870 : */
1871 : Assert(false);
1872 : }
1873 :
1874 216 : nulltest = makeNode(NullTest);
1875 216 : nulltest->arg = copyObject(partkey);
1876 216 : nulltest->nulltesttype = IS_NULL;
1877 216 : nulltest->argisrow = false;
1878 216 : nulltest->location = -1;
1879 :
1880 216 : new_clauses = list_make2(new_booltest, nulltest);
1881 216 : or_clause = list_make1(makeBoolExpr(OR_EXPR, new_clauses, -1));
1882 :
1883 : /* Finally, generate steps */
1884 216 : *clause_steps = gen_partprune_steps_internal(context, or_clause);
1885 :
1886 216 : if (context->contradictory)
1887 0 : return PARTCLAUSE_MATCH_CONTRADICT; /* shouldn't happen */
1888 216 : else if (*clause_steps == NIL)
1889 0 : return PARTCLAUSE_UNSUPPORTED; /* step generation failed */
1890 216 : return PARTCLAUSE_MATCH_STEPS;
1891 : }
1892 :
1893 444 : partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
1894 444 : partclause->keyno = partkeyidx;
1895 : /* Do pruning with the Boolean equality operator. */
1896 444 : partclause->opno = BooleanEqualOperator;
1897 444 : partclause->op_is_ne = false;
1898 444 : partclause->expr = expr;
1899 : /* We know that expr is of Boolean type. */
1900 444 : partclause->cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
1901 444 : partclause->op_strategy = InvalidStrategy;
1902 :
1903 444 : *pc = partclause;
1904 :
1905 444 : return PARTCLAUSE_MATCH_CLAUSE;
1906 : }
1907 35766 : else if (boolmatchstatus == PARTCLAUSE_MATCH_NULLNESS)
1908 : {
1909 : /*
1910 : * Handle IS UNKNOWN and IS NOT UNKNOWN. These just logically
1911 : * translate to IS NULL and IS NOT NULL.
1912 : */
1913 96 : *clause_is_not_null = notclause;
1914 96 : return PARTCLAUSE_MATCH_NULLNESS;
1915 : }
1916 66220 : else if (IsA(clause, OpExpr) &&
1917 30550 : list_length(((OpExpr *) clause)->args) == 2)
1918 : {
1919 30550 : OpExpr *opclause = (OpExpr *) clause;
1920 : Expr *leftop,
1921 : *rightop;
1922 : Oid opno,
1923 : op_lefttype,
1924 : op_righttype,
1925 30550 : negator = InvalidOid;
1926 : Oid cmpfn;
1927 : int op_strategy;
1928 30550 : bool is_opne_listp = false;
1929 : PartClauseInfo *partclause;
1930 :
1931 30550 : leftop = (Expr *) get_leftop(clause);
1932 30550 : if (IsA(leftop, RelabelType))
1933 360 : leftop = ((RelabelType *) leftop)->arg;
1934 30550 : rightop = (Expr *) get_rightop(clause);
1935 30550 : if (IsA(rightop, RelabelType))
1936 0 : rightop = ((RelabelType *) rightop)->arg;
1937 30550 : opno = opclause->opno;
1938 :
1939 : /* check if the clause matches this partition key */
1940 30550 : if (equal(leftop, partkey))
1941 19554 : expr = rightop;
1942 10996 : else if (equal(rightop, partkey))
1943 : {
1944 : /*
1945 : * It's only useful if we can commute the operator to put the
1946 : * partkey on the left. If we can't, the clause can be deemed
1947 : * UNSUPPORTED. Even if its leftop matches some later partkey, we
1948 : * now know it has Vars on the right, so it's no use.
1949 : */
1950 1310 : opno = get_commutator(opno);
1951 1310 : if (!OidIsValid(opno))
1952 0 : return PARTCLAUSE_UNSUPPORTED;
1953 1310 : expr = leftop;
1954 : }
1955 : else
1956 : /* clause does not match this partition key, but perhaps next. */
1957 9686 : return PARTCLAUSE_NOMATCH;
1958 :
1959 : /*
1960 : * Partition key match also requires collation match. There may be
1961 : * multiple partkeys with the same expression but different
1962 : * collations, so failure is NOMATCH.
1963 : */
1964 20864 : if (!PartCollMatchesExprColl(partcoll, opclause->inputcollid))
1965 60 : return PARTCLAUSE_NOMATCH;
1966 :
1967 : /*
1968 : * See if the operator is relevant to the partitioning opfamily.
1969 : *
1970 : * Normally we only care about operators that are listed as being part
1971 : * of the partitioning operator family. But there is one exception:
1972 : * the not-equals operators are not listed in any operator family
1973 : * whatsoever, but their negators (equality) are. We can use one of
1974 : * those if we find it, but only for list partitioning.
1975 : *
1976 : * Note: we report NOMATCH on failure if the negator isn't the
1977 : * equality operator for the partkey's opfamily as other partkeys may
1978 : * have the same expression but different opfamily. That's unlikely,
1979 : * but not much more so than duplicate expressions with different
1980 : * collations.
1981 : */
1982 20804 : if (op_in_opfamily(opno, partopfamily))
1983 : {
1984 20444 : get_op_opfamily_properties(opno, partopfamily, false,
1985 : &op_strategy, &op_lefttype,
1986 : &op_righttype);
1987 : }
1988 : else
1989 : {
1990 : /* not supported for anything apart from LIST partitioned tables */
1991 360 : if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
1992 84 : return PARTCLAUSE_UNSUPPORTED;
1993 :
1994 : /* See if the negator is equality */
1995 276 : negator = get_negator(opno);
1996 276 : if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
1997 : {
1998 264 : get_op_opfamily_properties(negator, partopfamily, false,
1999 : &op_strategy, &op_lefttype,
2000 : &op_righttype);
2001 264 : if (op_strategy == BTEqualStrategyNumber)
2002 264 : is_opne_listp = true; /* bingo */
2003 : }
2004 :
2005 : /* Nope, it's not <> either. */
2006 276 : if (!is_opne_listp)
2007 12 : return PARTCLAUSE_NOMATCH;
2008 : }
2009 :
2010 : /*
2011 : * Only allow strict operators. This will guarantee nulls are
2012 : * filtered. (This test is likely useless, since btree and hash
2013 : * comparison operators are generally strict.)
2014 : */
2015 20708 : if (!op_strict(opno))
2016 0 : return PARTCLAUSE_UNSUPPORTED;
2017 :
2018 : /*
2019 : * OK, we have a match to the partition key and a suitable operator.
2020 : * Examine the other argument to see if it's usable for pruning.
2021 : *
2022 : * In most of these cases, we can return UNSUPPORTED because the same
2023 : * failure would occur no matter which partkey it's matched to. (In
2024 : * particular, now that we've successfully matched one side of the
2025 : * opclause to a partkey, there is no chance that matching the other
2026 : * side to another partkey will produce a usable result, since that'd
2027 : * mean there are Vars on both sides.)
2028 : *
2029 : * Also, if we reject an argument for a target-dependent reason, set
2030 : * appropriate fields of *context to report that. We postpone these
2031 : * tests until after matching the partkey and the operator, so as to
2032 : * reduce the odds of setting the context fields for clauses that do
2033 : * not end up contributing to pruning steps.
2034 : *
2035 : * First, check for non-Const argument. (We assume that any immutable
2036 : * subexpression will have been folded to a Const already.)
2037 : */
2038 20708 : if (!IsA(expr, Const))
2039 : {
2040 : Bitmapset *paramids;
2041 :
2042 : /*
2043 : * When pruning in the planner, we only support pruning using
2044 : * comparisons to constants. We cannot prune on the basis of
2045 : * anything that's not immutable. (Note that has_mutable_arg and
2046 : * has_exec_param do not get set for this target value.)
2047 : */
2048 2134 : if (context->target == PARTTARGET_PLANNER)
2049 774 : return PARTCLAUSE_UNSUPPORTED;
2050 :
2051 : /*
2052 : * We can never prune using an expression that contains Vars.
2053 : */
2054 1360 : if (contain_var_clause((Node *) expr))
2055 56 : return PARTCLAUSE_UNSUPPORTED;
2056 :
2057 : /*
2058 : * And we must reject anything containing a volatile function.
2059 : * Stable functions are OK though.
2060 : */
2061 1304 : if (contain_volatile_functions((Node *) expr))
2062 0 : return PARTCLAUSE_UNSUPPORTED;
2063 :
2064 : /*
2065 : * See if there are any exec Params. If so, we can only use this
2066 : * expression during per-scan pruning.
2067 : */
2068 1304 : paramids = pull_exec_paramids(expr);
2069 1304 : if (!bms_is_empty(paramids))
2070 : {
2071 848 : context->has_exec_param = true;
2072 848 : if (context->target != PARTTARGET_EXEC)
2073 418 : return PARTCLAUSE_UNSUPPORTED;
2074 : }
2075 : else
2076 : {
2077 : /* It's potentially usable, but mutable */
2078 456 : context->has_mutable_arg = true;
2079 : }
2080 : }
2081 :
2082 : /*
2083 : * Check whether the comparison operator itself is immutable. (We
2084 : * assume anything that's in a btree or hash opclass is at least
2085 : * stable, but we need to check for immutability.)
2086 : */
2087 19460 : if (op_volatile(opno) != PROVOLATILE_IMMUTABLE)
2088 : {
2089 36 : context->has_mutable_op = true;
2090 :
2091 : /*
2092 : * When pruning in the planner, we cannot prune with mutable
2093 : * operators.
2094 : */
2095 36 : if (context->target == PARTTARGET_PLANNER)
2096 6 : return PARTCLAUSE_UNSUPPORTED;
2097 : }
2098 :
2099 : /*
2100 : * Now find the procedure to use, based on the types. If the clause's
2101 : * other argument is of the same type as the partitioning opclass's
2102 : * declared input type, we can use the procedure cached in
2103 : * PartitionKey. If not, search for a cross-type one in the same
2104 : * opfamily; if one doesn't exist, report no match.
2105 : */
2106 19454 : if (op_righttype == part_scheme->partopcintype[partkeyidx])
2107 19256 : cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
2108 : else
2109 : {
2110 198 : switch (part_scheme->strategy)
2111 : {
2112 : /*
2113 : * For range and list partitioning, we need the ordering
2114 : * procedure with lefttype being the partition key's type,
2115 : * and righttype the clause's operator's right type.
2116 : */
2117 198 : case PARTITION_STRATEGY_LIST:
2118 : case PARTITION_STRATEGY_RANGE:
2119 : cmpfn =
2120 198 : get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
2121 198 : part_scheme->partopcintype[partkeyidx],
2122 : op_righttype, BTORDER_PROC);
2123 198 : break;
2124 :
2125 : /*
2126 : * For hash partitioning, we need the hashing procedure
2127 : * for the clause's type.
2128 : */
2129 0 : case PARTITION_STRATEGY_HASH:
2130 : cmpfn =
2131 0 : get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
2132 : op_righttype, op_righttype,
2133 : HASHEXTENDED_PROC);
2134 0 : break;
2135 :
2136 0 : default:
2137 0 : elog(ERROR, "invalid partition strategy: %c",
2138 : part_scheme->strategy);
2139 : cmpfn = InvalidOid; /* keep compiler quiet */
2140 : break;
2141 : }
2142 :
2143 198 : if (!OidIsValid(cmpfn))
2144 0 : return PARTCLAUSE_NOMATCH;
2145 : }
2146 :
2147 : /*
2148 : * Build the clause, passing the negator if applicable.
2149 : */
2150 19454 : partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
2151 19454 : partclause->keyno = partkeyidx;
2152 19454 : if (is_opne_listp)
2153 : {
2154 : Assert(OidIsValid(negator));
2155 220 : partclause->opno = negator;
2156 220 : partclause->op_is_ne = true;
2157 220 : partclause->op_strategy = InvalidStrategy;
2158 : }
2159 : else
2160 : {
2161 19234 : partclause->opno = opno;
2162 19234 : partclause->op_is_ne = false;
2163 19234 : partclause->op_strategy = op_strategy;
2164 : }
2165 19454 : partclause->expr = expr;
2166 19454 : partclause->cmpfn = cmpfn;
2167 :
2168 19454 : *pc = partclause;
2169 :
2170 19454 : return PARTCLAUSE_MATCH_CLAUSE;
2171 : }
2172 5120 : else if (IsA(clause, ScalarArrayOpExpr))
2173 : {
2174 664 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
2175 664 : Oid saop_op = saop->opno;
2176 664 : Oid saop_coll = saop->inputcollid;
2177 664 : Expr *leftop = (Expr *) linitial(saop->args),
2178 664 : *rightop = (Expr *) lsecond(saop->args);
2179 : List *elem_exprs,
2180 : *elem_clauses;
2181 : ListCell *lc1;
2182 :
2183 664 : if (IsA(leftop, RelabelType))
2184 168 : leftop = ((RelabelType *) leftop)->arg;
2185 :
2186 : /* check if the LHS matches this partition key */
2187 664 : if (!equal(leftop, partkey) ||
2188 216 : !PartCollMatchesExprColl(partcoll, saop->inputcollid))
2189 168 : return PARTCLAUSE_NOMATCH;
2190 :
2191 : /*
2192 : * See if the operator is relevant to the partitioning opfamily.
2193 : *
2194 : * In case of NOT IN (..), we get a '<>', which we handle if list
2195 : * partitioning is in use and we're able to confirm that it's negator
2196 : * is a btree equality operator belonging to the partitioning operator
2197 : * family. As above, report NOMATCH for non-matching operator.
2198 : */
2199 496 : if (!op_in_opfamily(saop_op, partopfamily))
2200 : {
2201 : Oid negator;
2202 :
2203 72 : if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
2204 12 : return PARTCLAUSE_NOMATCH;
2205 :
2206 60 : negator = get_negator(saop_op);
2207 60 : if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
2208 12 : {
2209 : int strategy;
2210 : Oid lefttype,
2211 : righttype;
2212 :
2213 12 : get_op_opfamily_properties(negator, partopfamily,
2214 : false, &strategy,
2215 : &lefttype, &righttype);
2216 12 : if (strategy != BTEqualStrategyNumber)
2217 0 : return PARTCLAUSE_NOMATCH;
2218 : }
2219 : else
2220 48 : return PARTCLAUSE_NOMATCH; /* no useful negator */
2221 : }
2222 :
2223 : /*
2224 : * Only allow strict operators. This will guarantee nulls are
2225 : * filtered. (This test is likely useless, since btree and hash
2226 : * comparison operators are generally strict.)
2227 : */
2228 436 : if (!op_strict(saop_op))
2229 0 : return PARTCLAUSE_UNSUPPORTED;
2230 :
2231 : /*
2232 : * OK, we have a match to the partition key and a suitable operator.
2233 : * Examine the array argument to see if it's usable for pruning. This
2234 : * is identical to the logic for a plain OpExpr.
2235 : */
2236 436 : if (!IsA(rightop, Const))
2237 : {
2238 : Bitmapset *paramids;
2239 :
2240 : /*
2241 : * When pruning in the planner, we only support pruning using
2242 : * comparisons to constants. We cannot prune on the basis of
2243 : * anything that's not immutable. (Note that has_mutable_arg and
2244 : * has_exec_param do not get set for this target value.)
2245 : */
2246 102 : if (context->target == PARTTARGET_PLANNER)
2247 48 : return PARTCLAUSE_UNSUPPORTED;
2248 :
2249 : /*
2250 : * We can never prune using an expression that contains Vars.
2251 : */
2252 54 : if (contain_var_clause((Node *) rightop))
2253 0 : return PARTCLAUSE_UNSUPPORTED;
2254 :
2255 : /*
2256 : * And we must reject anything containing a volatile function.
2257 : * Stable functions are OK though.
2258 : */
2259 54 : if (contain_volatile_functions((Node *) rightop))
2260 0 : return PARTCLAUSE_UNSUPPORTED;
2261 :
2262 : /*
2263 : * See if there are any exec Params. If so, we can only use this
2264 : * expression during per-scan pruning.
2265 : */
2266 54 : paramids = pull_exec_paramids(rightop);
2267 54 : if (!bms_is_empty(paramids))
2268 : {
2269 12 : context->has_exec_param = true;
2270 12 : if (context->target != PARTTARGET_EXEC)
2271 6 : return PARTCLAUSE_UNSUPPORTED;
2272 : }
2273 : else
2274 : {
2275 : /* It's potentially usable, but mutable */
2276 42 : context->has_mutable_arg = true;
2277 : }
2278 : }
2279 :
2280 : /*
2281 : * Check whether the comparison operator itself is immutable. (We
2282 : * assume anything that's in a btree or hash opclass is at least
2283 : * stable, but we need to check for immutability.)
2284 : */
2285 382 : if (op_volatile(saop_op) != PROVOLATILE_IMMUTABLE)
2286 : {
2287 36 : context->has_mutable_op = true;
2288 :
2289 : /*
2290 : * When pruning in the planner, we cannot prune with mutable
2291 : * operators.
2292 : */
2293 36 : if (context->target == PARTTARGET_PLANNER)
2294 18 : return PARTCLAUSE_UNSUPPORTED;
2295 : }
2296 :
2297 : /*
2298 : * Examine the contents of the array argument.
2299 : */
2300 364 : elem_exprs = NIL;
2301 364 : if (IsA(rightop, Const))
2302 : {
2303 : /*
2304 : * For a constant array, convert the elements to a list of Const
2305 : * nodes, one for each array element (excepting nulls).
2306 : */
2307 316 : Const *arr = (Const *) rightop;
2308 : ArrayType *arrval;
2309 : int16 elemlen;
2310 : bool elembyval;
2311 : char elemalign;
2312 : Datum *elem_values;
2313 : bool *elem_nulls;
2314 : int num_elems,
2315 : i;
2316 :
2317 : /* If the array itself is null, the saop returns null */
2318 316 : if (arr->constisnull)
2319 24 : return PARTCLAUSE_MATCH_CONTRADICT;
2320 :
2321 298 : arrval = DatumGetArrayTypeP(arr->constvalue);
2322 298 : get_typlenbyvalalign(ARR_ELEMTYPE(arrval),
2323 : &elemlen, &elembyval, &elemalign);
2324 298 : deconstruct_array(arrval,
2325 : ARR_ELEMTYPE(arrval),
2326 : elemlen, elembyval, elemalign,
2327 : &elem_values, &elem_nulls,
2328 : &num_elems);
2329 1060 : for (i = 0; i < num_elems; i++)
2330 : {
2331 : Const *elem_expr;
2332 :
2333 : /*
2334 : * A null array element must lead to a null comparison result,
2335 : * since saop_op is known strict. We can ignore it in the
2336 : * useOr case, but otherwise it implies self-contradiction.
2337 : */
2338 768 : if (elem_nulls[i])
2339 : {
2340 30 : if (saop->useOr)
2341 24 : continue;
2342 6 : return PARTCLAUSE_MATCH_CONTRADICT;
2343 : }
2344 :
2345 738 : elem_expr = makeConst(ARR_ELEMTYPE(arrval), -1,
2346 : arr->constcollid, elemlen,
2347 738 : elem_values[i], false, elembyval);
2348 738 : elem_exprs = lappend(elem_exprs, elem_expr);
2349 : }
2350 : }
2351 48 : else if (IsA(rightop, ArrayExpr))
2352 : {
2353 42 : ArrayExpr *arrexpr = castNode(ArrayExpr, rightop);
2354 :
2355 : /*
2356 : * For a nested ArrayExpr, we don't know how to get the actual
2357 : * scalar values out into a flat list, so we give up doing
2358 : * anything with this ScalarArrayOpExpr.
2359 : */
2360 42 : if (arrexpr->multidims)
2361 0 : return PARTCLAUSE_UNSUPPORTED;
2362 :
2363 : /*
2364 : * Otherwise, we can just use the list of element values.
2365 : */
2366 42 : elem_exprs = arrexpr->elements;
2367 : }
2368 : else
2369 : {
2370 : /* Give up on any other clause types. */
2371 6 : return PARTCLAUSE_UNSUPPORTED;
2372 : }
2373 :
2374 : /*
2375 : * Now generate a list of clauses, one for each array element, of the
2376 : * form leftop saop_op elem_expr
2377 : */
2378 334 : elem_clauses = NIL;
2379 1156 : foreach(lc1, elem_exprs)
2380 : {
2381 : Expr *elem_clause;
2382 :
2383 822 : elem_clause = make_opclause(saop_op, BOOLOID, false,
2384 822 : leftop, lfirst(lc1),
2385 : InvalidOid, saop_coll);
2386 822 : elem_clauses = lappend(elem_clauses, elem_clause);
2387 : }
2388 :
2389 : /*
2390 : * If we have an ANY clause and multiple elements, now turn the list
2391 : * of clauses into an OR expression.
2392 : */
2393 334 : if (saop->useOr && list_length(elem_clauses) > 1)
2394 280 : elem_clauses = list_make1(makeBoolExpr(OR_EXPR, elem_clauses, -1));
2395 :
2396 : /* Finally, generate steps */
2397 334 : *clause_steps = gen_partprune_steps_internal(context, elem_clauses);
2398 334 : if (context->contradictory)
2399 0 : return PARTCLAUSE_MATCH_CONTRADICT;
2400 334 : else if (*clause_steps == NIL)
2401 0 : return PARTCLAUSE_UNSUPPORTED; /* step generation failed */
2402 334 : return PARTCLAUSE_MATCH_STEPS;
2403 : }
2404 4456 : else if (IsA(clause, NullTest))
2405 : {
2406 3748 : NullTest *nulltest = (NullTest *) clause;
2407 3748 : Expr *arg = nulltest->arg;
2408 :
2409 3748 : if (IsA(arg, RelabelType))
2410 0 : arg = ((RelabelType *) arg)->arg;
2411 :
2412 : /* Does arg match with this partition key column? */
2413 3748 : if (!equal(arg, partkey))
2414 1624 : return PARTCLAUSE_NOMATCH;
2415 :
2416 2124 : *clause_is_not_null = (nulltest->nulltesttype == IS_NOT_NULL);
2417 :
2418 2124 : return PARTCLAUSE_MATCH_NULLNESS;
2419 : }
2420 :
2421 : /*
2422 : * If we get here then the return value depends on the result of the
2423 : * match_boolean_partition_clause call above. If the call returned
2424 : * PARTCLAUSE_UNSUPPORTED then we're either not dealing with a bool qual
2425 : * or the bool qual is not suitable for pruning. Since the qual didn't
2426 : * match up to any of the other qual types supported here, then trying to
2427 : * match it against any other partition key is a waste of time, so just
2428 : * return PARTCLAUSE_UNSUPPORTED. If the qual just couldn't be matched to
2429 : * this partition key, then it may match another, so return
2430 : * PARTCLAUSE_NOMATCH. The only other value that
2431 : * match_boolean_partition_clause can return is PARTCLAUSE_MATCH_CLAUSE,
2432 : * and since that value was already dealt with above, then we can just
2433 : * return boolmatchstatus.
2434 : */
2435 708 : return boolmatchstatus;
2436 : }
2437 :
2438 : /*
2439 : * get_steps_using_prefix
2440 : * Generate a list of PartitionPruneStepOps based on the given input.
2441 : *
2442 : * 'step_lastexpr' and 'step_lastcmpfn' are the Expr and comparison function
2443 : * belonging to the final partition key that we have a clause for. 'prefix'
2444 : * is a list of PartClauseInfos for partition key numbers prior to the given
2445 : * 'step_lastexpr' and 'step_lastcmpfn'. 'prefix' may contain multiple
2446 : * PartClauseInfos belonging to a single partition key. We will generate a
2447 : * PartitionPruneStepOp for each combination of the given PartClauseInfos
2448 : * using, at most, one PartClauseInfo per partition key.
2449 : *
2450 : * For LIST and RANGE partitioned tables, callers must ensure that
2451 : * step_nullkeys is NULL, and that prefix contains at least one clause for
2452 : * each of the partition keys prior to the key that 'step_lastexpr' and
2453 : * 'step_lastcmpfn' belong to.
2454 : *
2455 : * For HASH partitioned tables, callers must ensure that 'prefix' contains at
2456 : * least one clause for each of the partition keys apart from the final key
2457 : * (the expr and comparison function for the final key are in 'step_lastexpr'
2458 : * and 'step_lastcmpfn'). A bit set in step_nullkeys can substitute clauses
2459 : * in the 'prefix' list for any given key. If a bit is set in 'step_nullkeys'
2460 : * for a given key, then there must be no PartClauseInfo for that key in the
2461 : * 'prefix' list.
2462 : *
2463 : * For each of the above cases, callers must ensure that PartClauseInfos in
2464 : * 'prefix' are sorted in ascending order of keyno.
2465 : */
2466 : static List *
2467 18962 : get_steps_using_prefix(GeneratePruningStepsContext *context,
2468 : StrategyNumber step_opstrategy,
2469 : bool step_op_is_ne,
2470 : Expr *step_lastexpr,
2471 : Oid step_lastcmpfn,
2472 : Bitmapset *step_nullkeys,
2473 : List *prefix)
2474 : {
2475 : /* step_nullkeys must be empty for RANGE and LIST partitioned tables */
2476 : Assert(step_nullkeys == NULL ||
2477 : context->rel->part_scheme->strategy == PARTITION_STRATEGY_HASH);
2478 :
2479 : /*
2480 : * No recursive processing is required when 'prefix' is an empty list.
2481 : * This occurs when there is only 1 partition key column.
2482 : */
2483 18962 : if (prefix == NIL)
2484 : {
2485 : PartitionPruneStep *step;
2486 :
2487 17948 : step = gen_prune_step_op(context,
2488 : step_opstrategy,
2489 : step_op_is_ne,
2490 17948 : list_make1(step_lastexpr),
2491 17948 : list_make1_oid(step_lastcmpfn),
2492 : step_nullkeys);
2493 17948 : return list_make1(step);
2494 : }
2495 :
2496 : /* Recurse to generate steps for every combination of clauses. */
2497 1014 : return get_steps_using_prefix_recurse(context,
2498 : step_opstrategy,
2499 : step_op_is_ne,
2500 : step_lastexpr,
2501 : step_lastcmpfn,
2502 : step_nullkeys,
2503 : prefix,
2504 : list_head(prefix),
2505 : NIL, NIL);
2506 : }
2507 :
2508 : /*
2509 : * get_steps_using_prefix_recurse
2510 : * Generate and return a list of PartitionPruneStepOps using the 'prefix'
2511 : * list of PartClauseInfos starting at the 'start' cell.
2512 : *
2513 : * When 'prefix' contains multiple PartClauseInfos for a single partition key
2514 : * we create a PartitionPruneStepOp for each combination of duplicated
2515 : * PartClauseInfos. The returned list will contain a PartitionPruneStepOp
2516 : * for each unique combination of input PartClauseInfos containing at most one
2517 : * PartClauseInfo per partition key.
2518 : *
2519 : * 'prefix' is the input list of PartClauseInfos sorted by keyno.
2520 : * 'start' marks the cell that searching the 'prefix' list should start from.
2521 : * 'step_exprs' and 'step_cmpfns' each contains the expressions and cmpfns
2522 : * we've generated so far from the clauses for the previous part keys.
2523 : */
2524 : static List *
2525 1386 : get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
2526 : StrategyNumber step_opstrategy,
2527 : bool step_op_is_ne,
2528 : Expr *step_lastexpr,
2529 : Oid step_lastcmpfn,
2530 : Bitmapset *step_nullkeys,
2531 : List *prefix,
2532 : ListCell *start,
2533 : List *step_exprs,
2534 : List *step_cmpfns)
2535 : {
2536 1386 : List *result = NIL;
2537 : ListCell *lc;
2538 : int cur_keyno;
2539 : int final_keyno;
2540 :
2541 : /* Actually, recursion would be limited by PARTITION_MAX_KEYS. */
2542 1386 : check_stack_depth();
2543 :
2544 : Assert(start != NULL);
2545 1386 : cur_keyno = ((PartClauseInfo *) lfirst(start))->keyno;
2546 1386 : final_keyno = ((PartClauseInfo *) llast(prefix))->keyno;
2547 :
2548 : /* Check if we need to recurse. */
2549 1386 : if (cur_keyno < final_keyno)
2550 : {
2551 : PartClauseInfo *pc;
2552 : ListCell *next_start;
2553 :
2554 : /*
2555 : * Find the first PartClauseInfo belonging to the next partition key,
2556 : * the next recursive call must start iteration of the prefix list
2557 : * from that point.
2558 : */
2559 720 : for_each_cell(lc, prefix, start)
2560 : {
2561 720 : pc = lfirst(lc);
2562 :
2563 720 : if (pc->keyno > cur_keyno)
2564 348 : break;
2565 : }
2566 :
2567 : /* record where to start iterating in the next recursive call */
2568 348 : next_start = lc;
2569 :
2570 : /*
2571 : * For each PartClauseInfo with keyno set to cur_keyno, add its expr
2572 : * and cmpfn to step_exprs and step_cmpfns, respectively, and recurse
2573 : * using 'next_start' as the starting point in the 'prefix' list.
2574 : */
2575 720 : for_each_cell(lc, prefix, start)
2576 : {
2577 : List *moresteps;
2578 : List *step_exprs1,
2579 : *step_cmpfns1;
2580 :
2581 720 : pc = lfirst(lc);
2582 720 : if (pc->keyno == cur_keyno)
2583 : {
2584 : /* Leave the original step_exprs unmodified. */
2585 372 : step_exprs1 = list_copy(step_exprs);
2586 372 : step_exprs1 = lappend(step_exprs1, pc->expr);
2587 :
2588 : /* Leave the original step_cmpfns unmodified. */
2589 372 : step_cmpfns1 = list_copy(step_cmpfns);
2590 372 : step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
2591 : }
2592 : else
2593 : {
2594 : /* check the 'prefix' list is sorted correctly */
2595 : Assert(pc->keyno > cur_keyno);
2596 348 : break;
2597 : }
2598 :
2599 372 : moresteps = get_steps_using_prefix_recurse(context,
2600 : step_opstrategy,
2601 : step_op_is_ne,
2602 : step_lastexpr,
2603 : step_lastcmpfn,
2604 : step_nullkeys,
2605 : prefix,
2606 : next_start,
2607 : step_exprs1,
2608 : step_cmpfns1);
2609 372 : result = list_concat(result, moresteps);
2610 :
2611 372 : list_free(step_exprs1);
2612 372 : list_free(step_cmpfns1);
2613 : }
2614 : }
2615 : else
2616 : {
2617 : /*
2618 : * End the current recursion cycle and start generating steps, one for
2619 : * each clause with cur_keyno, which is all clauses from here onward
2620 : * till the end of the list. Note that for hash partitioning,
2621 : * step_nullkeys is allowed to be non-empty, in which case step_exprs
2622 : * would only contain expressions for the partition keys that are not
2623 : * specified in step_nullkeys.
2624 : */
2625 : Assert(list_length(step_exprs) == cur_keyno ||
2626 : !bms_is_empty(step_nullkeys));
2627 :
2628 : /*
2629 : * Note also that for hash partitioning, each partition key should
2630 : * have either equality clauses or an IS NULL clause, so if a
2631 : * partition key doesn't have an expression, it would be specified in
2632 : * step_nullkeys.
2633 : */
2634 : Assert(context->rel->part_scheme->strategy
2635 : != PARTITION_STRATEGY_HASH ||
2636 : list_length(step_exprs) + 2 + bms_num_members(step_nullkeys) ==
2637 : context->rel->part_scheme->partnatts);
2638 2088 : for_each_cell(lc, prefix, start)
2639 : {
2640 1050 : PartClauseInfo *pc = lfirst(lc);
2641 : PartitionPruneStep *step;
2642 : List *step_exprs1,
2643 : *step_cmpfns1;
2644 :
2645 : Assert(pc->keyno == cur_keyno);
2646 :
2647 : /* Leave the original step_exprs unmodified. */
2648 1050 : step_exprs1 = list_copy(step_exprs);
2649 1050 : step_exprs1 = lappend(step_exprs1, pc->expr);
2650 1050 : step_exprs1 = lappend(step_exprs1, step_lastexpr);
2651 :
2652 : /* Leave the original step_cmpfns unmodified. */
2653 1050 : step_cmpfns1 = list_copy(step_cmpfns);
2654 1050 : step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
2655 1050 : step_cmpfns1 = lappend_oid(step_cmpfns1, step_lastcmpfn);
2656 :
2657 1050 : step = gen_prune_step_op(context,
2658 : step_opstrategy, step_op_is_ne,
2659 : step_exprs1, step_cmpfns1,
2660 : step_nullkeys);
2661 1050 : result = lappend(result, step);
2662 : }
2663 : }
2664 :
2665 1386 : return result;
2666 : }
2667 :
2668 : /*
2669 : * get_matching_hash_bounds
2670 : * Determine offset of the hash bound matching the specified values,
2671 : * considering that all the non-null values come from clauses containing
2672 : * a compatible hash equality operator and any keys that are null come
2673 : * from an IS NULL clause.
2674 : *
2675 : * Generally this function will return a single matching bound offset,
2676 : * although if a partition has not been setup for a given modulus then we may
2677 : * return no matches. If the number of clauses found don't cover the entire
2678 : * partition key, then we'll need to return all offsets.
2679 : *
2680 : * 'opstrategy' if non-zero must be HTEqualStrategyNumber.
2681 : *
2682 : * 'values' contains Datums indexed by the partition key to use for pruning.
2683 : *
2684 : * 'nvalues', the number of Datums in the 'values' array.
2685 : *
2686 : * 'partsupfunc' contains partition hashing functions that can produce correct
2687 : * hash for the type of the values contained in 'values'.
2688 : *
2689 : * 'nullkeys' is the set of partition keys that are null.
2690 : */
2691 : static PruneStepResult *
2692 316 : get_matching_hash_bounds(PartitionPruneContext *context,
2693 : StrategyNumber opstrategy, Datum *values, int nvalues,
2694 : FmgrInfo *partsupfunc, Bitmapset *nullkeys)
2695 : {
2696 316 : PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
2697 316 : PartitionBoundInfo boundinfo = context->boundinfo;
2698 316 : int *partindices = boundinfo->indexes;
2699 316 : int partnatts = context->partnatts;
2700 : bool isnull[PARTITION_MAX_KEYS];
2701 : int i;
2702 : uint64 rowHash;
2703 : int greatest_modulus;
2704 316 : Oid *partcollation = context->partcollation;
2705 :
2706 : Assert(context->strategy == PARTITION_STRATEGY_HASH);
2707 :
2708 : /*
2709 : * For hash partitioning we can only perform pruning based on equality
2710 : * clauses to the partition key or IS NULL clauses. We also can only
2711 : * prune if we got values for all keys.
2712 : */
2713 316 : if (nvalues + bms_num_members(nullkeys) == partnatts)
2714 : {
2715 : /*
2716 : * If there are any values, they must have come from clauses
2717 : * containing an equality operator compatible with hash partitioning.
2718 : */
2719 : Assert(opstrategy == HTEqualStrategyNumber || nvalues == 0);
2720 :
2721 1286 : for (i = 0; i < partnatts; i++)
2722 970 : isnull[i] = bms_is_member(i, nullkeys);
2723 :
2724 316 : rowHash = compute_partition_hash_value(partnatts, partsupfunc, partcollation,
2725 : values, isnull);
2726 :
2727 316 : greatest_modulus = boundinfo->nindexes;
2728 316 : if (partindices[rowHash % greatest_modulus] >= 0)
2729 310 : result->bound_offsets =
2730 310 : bms_make_singleton(rowHash % greatest_modulus);
2731 : }
2732 : else
2733 : {
2734 : /* Report all valid offsets into the boundinfo->indexes array. */
2735 0 : result->bound_offsets = bms_add_range(NULL, 0,
2736 0 : boundinfo->nindexes - 1);
2737 : }
2738 :
2739 : /*
2740 : * There is neither a special hash null partition or the default hash
2741 : * partition.
2742 : */
2743 316 : result->scan_null = result->scan_default = false;
2744 :
2745 316 : return result;
2746 : }
2747 :
2748 : /*
2749 : * get_matching_list_bounds
2750 : * Determine the offsets of list bounds matching the specified value,
2751 : * according to the semantics of the given operator strategy
2752 : *
2753 : * scan_default will be set in the returned struct, if the default partition
2754 : * needs to be scanned, provided one exists at all. scan_null will be set if
2755 : * the special null-accepting partition needs to be scanned.
2756 : *
2757 : * 'opstrategy' if non-zero must be a btree strategy number.
2758 : *
2759 : * 'value' contains the value to use for pruning.
2760 : *
2761 : * 'nvalues', if non-zero, should be exactly 1, because of list partitioning.
2762 : *
2763 : * 'partsupfunc' contains the list partitioning comparison function to be used
2764 : * to perform partition_list_bsearch
2765 : *
2766 : * 'nullkeys' is the set of partition keys that are null.
2767 : */
2768 : static PruneStepResult *
2769 7182 : get_matching_list_bounds(PartitionPruneContext *context,
2770 : StrategyNumber opstrategy, Datum value, int nvalues,
2771 : FmgrInfo *partsupfunc, Bitmapset *nullkeys)
2772 : {
2773 7182 : PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
2774 7182 : PartitionBoundInfo boundinfo = context->boundinfo;
2775 : int off,
2776 : minoff,
2777 : maxoff;
2778 : bool is_equal;
2779 7182 : bool inclusive = false;
2780 7182 : Oid *partcollation = context->partcollation;
2781 :
2782 : Assert(context->strategy == PARTITION_STRATEGY_LIST);
2783 : Assert(context->partnatts == 1);
2784 :
2785 7182 : result->scan_null = result->scan_default = false;
2786 :
2787 7182 : if (!bms_is_empty(nullkeys))
2788 : {
2789 : /*
2790 : * Nulls may exist in only one partition - the partition whose
2791 : * accepted set of values includes null or the default partition if
2792 : * the former doesn't exist.
2793 : */
2794 318 : if (partition_bound_accepts_nulls(boundinfo))
2795 222 : result->scan_null = true;
2796 : else
2797 96 : result->scan_default = partition_bound_has_default(boundinfo);
2798 318 : return result;
2799 : }
2800 :
2801 : /*
2802 : * If there are no datums to compare keys with, but there are partitions,
2803 : * just return the default partition if one exists.
2804 : */
2805 6864 : if (boundinfo->ndatums == 0)
2806 : {
2807 0 : result->scan_default = partition_bound_has_default(boundinfo);
2808 0 : return result;
2809 : }
2810 :
2811 6864 : minoff = 0;
2812 6864 : maxoff = boundinfo->ndatums - 1;
2813 :
2814 : /*
2815 : * If there are no values to compare with the datums in boundinfo, it
2816 : * means the caller asked for partitions for all non-null datums. Add
2817 : * indexes of *all* partitions, including the default if any.
2818 : */
2819 6864 : if (nvalues == 0)
2820 : {
2821 : Assert(boundinfo->ndatums > 0);
2822 120 : result->bound_offsets = bms_add_range(NULL, 0,
2823 60 : boundinfo->ndatums - 1);
2824 60 : result->scan_default = partition_bound_has_default(boundinfo);
2825 60 : return result;
2826 : }
2827 :
2828 : /* Special case handling of values coming from a <> operator clause. */
2829 6804 : if (opstrategy == InvalidStrategy)
2830 : {
2831 : /*
2832 : * First match to all bounds. We'll remove any matching datums below.
2833 : */
2834 : Assert(boundinfo->ndatums > 0);
2835 312 : result->bound_offsets = bms_add_range(NULL, 0,
2836 156 : boundinfo->ndatums - 1);
2837 :
2838 156 : off = partition_list_bsearch(partsupfunc, partcollation, boundinfo,
2839 : value, &is_equal);
2840 156 : if (off >= 0 && is_equal)
2841 : {
2842 :
2843 : /* We have a match. Remove from the result. */
2844 : Assert(boundinfo->indexes[off] >= 0);
2845 120 : result->bound_offsets = bms_del_member(result->bound_offsets,
2846 : off);
2847 : }
2848 :
2849 : /* Always include the default partition if any. */
2850 156 : result->scan_default = partition_bound_has_default(boundinfo);
2851 :
2852 156 : return result;
2853 : }
2854 :
2855 : /*
2856 : * With range queries, always include the default list partition, because
2857 : * list partitions divide the key space in a discontinuous manner, not all
2858 : * values in the given range will have a partition assigned. This may not
2859 : * technically be true for some data types (e.g. integer types), however,
2860 : * we currently lack any sort of infrastructure to provide us with proofs
2861 : * that would allow us to do anything smarter here.
2862 : */
2863 6648 : if (opstrategy != BTEqualStrategyNumber)
2864 972 : result->scan_default = partition_bound_has_default(boundinfo);
2865 :
2866 6648 : switch (opstrategy)
2867 : {
2868 5676 : case BTEqualStrategyNumber:
2869 5676 : off = partition_list_bsearch(partsupfunc,
2870 : partcollation,
2871 : boundinfo, value,
2872 : &is_equal);
2873 5676 : if (off >= 0 && is_equal)
2874 : {
2875 : Assert(boundinfo->indexes[off] >= 0);
2876 2338 : result->bound_offsets = bms_make_singleton(off);
2877 : }
2878 : else
2879 3338 : result->scan_default = partition_bound_has_default(boundinfo);
2880 5676 : return result;
2881 :
2882 450 : case BTGreaterEqualStrategyNumber:
2883 450 : inclusive = true;
2884 : /* fall through */
2885 498 : case BTGreaterStrategyNumber:
2886 498 : off = partition_list_bsearch(partsupfunc,
2887 : partcollation,
2888 : boundinfo, value,
2889 : &is_equal);
2890 498 : if (off >= 0)
2891 : {
2892 : /* We don't want the matched datum to be in the result. */
2893 396 : if (!is_equal || !inclusive)
2894 138 : off++;
2895 : }
2896 : else
2897 : {
2898 : /*
2899 : * This case means all partition bounds are greater, which in
2900 : * turn means that all partitions satisfy this key.
2901 : */
2902 102 : off = 0;
2903 : }
2904 :
2905 : /*
2906 : * off is greater than the numbers of datums we have partitions
2907 : * for. The only possible partition that could contain a match is
2908 : * the default partition, but we must've set context->scan_default
2909 : * above anyway if one exists.
2910 : */
2911 498 : if (off > boundinfo->ndatums - 1)
2912 6 : return result;
2913 :
2914 492 : minoff = off;
2915 492 : break;
2916 :
2917 114 : case BTLessEqualStrategyNumber:
2918 114 : inclusive = true;
2919 : /* fall through */
2920 474 : case BTLessStrategyNumber:
2921 474 : off = partition_list_bsearch(partsupfunc,
2922 : partcollation,
2923 : boundinfo, value,
2924 : &is_equal);
2925 474 : if (off >= 0 && is_equal && !inclusive)
2926 48 : off--;
2927 :
2928 : /*
2929 : * off is smaller than the datums of all non-default partitions.
2930 : * The only possible partition that could contain a match is the
2931 : * default partition, but we must've set context->scan_default
2932 : * above anyway if one exists.
2933 : */
2934 474 : if (off < 0)
2935 6 : return result;
2936 :
2937 468 : maxoff = off;
2938 468 : break;
2939 :
2940 0 : default:
2941 0 : elog(ERROR, "invalid strategy number %d", opstrategy);
2942 : break;
2943 : }
2944 :
2945 : Assert(minoff >= 0 && maxoff >= 0);
2946 960 : result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
2947 960 : return result;
2948 : }
2949 :
2950 :
2951 : /*
2952 : * get_matching_range_bounds
2953 : * Determine the offsets of range bounds matching the specified values,
2954 : * according to the semantics of the given operator strategy
2955 : *
2956 : * Each datum whose offset is in result is to be treated as the upper bound of
2957 : * the partition that will contain the desired values.
2958 : *
2959 : * scan_default is set in the returned struct if a default partition exists
2960 : * and we're absolutely certain that it needs to be scanned. We do *not* set
2961 : * it just because values match portions of the key space uncovered by
2962 : * partitions other than default (space which we normally assume to belong to
2963 : * the default partition): the final set of bounds obtained after combining
2964 : * multiple pruning steps might exclude it, so we infer its inclusion
2965 : * elsewhere.
2966 : *
2967 : * 'opstrategy' must be a btree strategy number.
2968 : *
2969 : * 'values' contains Datums indexed by the partition key to use for pruning.
2970 : *
2971 : * 'nvalues', number of Datums in 'values' array. Must be <= context->partnatts.
2972 : *
2973 : * 'partsupfunc' contains the range partitioning comparison functions to be
2974 : * used to perform partition_range_datum_bsearch or partition_rbound_datum_cmp
2975 : * using.
2976 : *
2977 : * 'nullkeys' is the set of partition keys that are null.
2978 : */
2979 : static PruneStepResult *
2980 6624 : get_matching_range_bounds(PartitionPruneContext *context,
2981 : StrategyNumber opstrategy, Datum *values, int nvalues,
2982 : FmgrInfo *partsupfunc, Bitmapset *nullkeys)
2983 : {
2984 6624 : PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
2985 6624 : PartitionBoundInfo boundinfo = context->boundinfo;
2986 6624 : Oid *partcollation = context->partcollation;
2987 6624 : int partnatts = context->partnatts;
2988 6624 : int *partindices = boundinfo->indexes;
2989 : int off,
2990 : minoff,
2991 : maxoff;
2992 : bool is_equal;
2993 6624 : bool inclusive = false;
2994 :
2995 : Assert(context->strategy == PARTITION_STRATEGY_RANGE);
2996 : Assert(nvalues <= partnatts);
2997 :
2998 6624 : result->scan_null = result->scan_default = false;
2999 :
3000 : /*
3001 : * If there are no datums to compare keys with, or if we got an IS NULL
3002 : * clause just return the default partition, if it exists.
3003 : */
3004 6624 : if (boundinfo->ndatums == 0 || !bms_is_empty(nullkeys))
3005 : {
3006 66 : result->scan_default = partition_bound_has_default(boundinfo);
3007 66 : return result;
3008 : }
3009 :
3010 6558 : minoff = 0;
3011 6558 : maxoff = boundinfo->ndatums;
3012 :
3013 : /*
3014 : * If there are no values to compare with the datums in boundinfo, it
3015 : * means the caller asked for partitions for all non-null datums. Add
3016 : * indexes of *all* partitions, including the default partition if one
3017 : * exists.
3018 : */
3019 6558 : if (nvalues == 0)
3020 : {
3021 : /* ignore key space not covered by any partitions */
3022 30 : if (partindices[minoff] < 0)
3023 30 : minoff++;
3024 30 : if (partindices[maxoff] < 0)
3025 30 : maxoff--;
3026 :
3027 30 : result->scan_default = partition_bound_has_default(boundinfo);
3028 : Assert(partindices[minoff] >= 0 &&
3029 : partindices[maxoff] >= 0);
3030 30 : result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
3031 :
3032 30 : return result;
3033 : }
3034 :
3035 : /*
3036 : * If the query does not constrain all key columns, we'll need to scan the
3037 : * default partition, if any.
3038 : */
3039 6528 : if (nvalues < partnatts)
3040 726 : result->scan_default = partition_bound_has_default(boundinfo);
3041 :
3042 6528 : switch (opstrategy)
3043 : {
3044 4950 : case BTEqualStrategyNumber:
3045 : /* Look for the smallest bound that is = lookup value. */
3046 4950 : off = partition_range_datum_bsearch(partsupfunc,
3047 : partcollation,
3048 : boundinfo,
3049 : nvalues, values,
3050 : &is_equal);
3051 :
3052 4950 : if (off >= 0 && is_equal)
3053 : {
3054 1070 : if (nvalues == partnatts)
3055 : {
3056 : /* There can only be zero or one matching partition. */
3057 632 : result->bound_offsets = bms_make_singleton(off + 1);
3058 632 : return result;
3059 : }
3060 : else
3061 : {
3062 438 : int saved_off = off;
3063 :
3064 : /*
3065 : * Since the lookup value contains only a prefix of keys,
3066 : * we must find other bounds that may also match the
3067 : * prefix. partition_range_datum_bsearch() returns the
3068 : * offset of one of them, find others by checking adjacent
3069 : * bounds.
3070 : */
3071 :
3072 : /*
3073 : * First find greatest bound that's smaller than the
3074 : * lookup value.
3075 : */
3076 684 : while (off >= 1)
3077 : {
3078 : int32 cmpval;
3079 :
3080 : cmpval =
3081 594 : partition_rbound_datum_cmp(partsupfunc,
3082 : partcollation,
3083 594 : boundinfo->datums[off - 1],
3084 594 : boundinfo->kind[off - 1],
3085 : values, nvalues);
3086 594 : if (cmpval != 0)
3087 348 : break;
3088 246 : off--;
3089 : }
3090 :
3091 : Assert(0 ==
3092 : partition_rbound_datum_cmp(partsupfunc,
3093 : partcollation,
3094 : boundinfo->datums[off],
3095 : boundinfo->kind[off],
3096 : values, nvalues));
3097 :
3098 : /*
3099 : * We can treat 'off' as the offset of the smallest bound
3100 : * to be included in the result, if we know it is the
3101 : * upper bound of the partition in which the lookup value
3102 : * could possibly exist. One case it couldn't is if the
3103 : * bound, or precisely the matched portion of its prefix,
3104 : * is not inclusive.
3105 : */
3106 438 : if (boundinfo->kind[off][nvalues] ==
3107 : PARTITION_RANGE_DATUM_MINVALUE)
3108 30 : off++;
3109 :
3110 438 : minoff = off;
3111 :
3112 : /*
3113 : * Now find smallest bound that's greater than the lookup
3114 : * value.
3115 : */
3116 438 : off = saved_off;
3117 720 : while (off < boundinfo->ndatums - 1)
3118 : {
3119 : int32 cmpval;
3120 :
3121 666 : cmpval = partition_rbound_datum_cmp(partsupfunc,
3122 : partcollation,
3123 666 : boundinfo->datums[off + 1],
3124 666 : boundinfo->kind[off + 1],
3125 : values, nvalues);
3126 666 : if (cmpval != 0)
3127 384 : break;
3128 282 : off++;
3129 : }
3130 :
3131 : Assert(0 ==
3132 : partition_rbound_datum_cmp(partsupfunc,
3133 : partcollation,
3134 : boundinfo->datums[off],
3135 : boundinfo->kind[off],
3136 : values, nvalues));
3137 :
3138 : /*
3139 : * off + 1, then would be the offset of the greatest bound
3140 : * to be included in the result.
3141 : */
3142 438 : maxoff = off + 1;
3143 : }
3144 :
3145 : Assert(minoff >= 0 && maxoff >= 0);
3146 438 : result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
3147 : }
3148 : else
3149 : {
3150 : /*
3151 : * The lookup value falls in the range between some bounds in
3152 : * boundinfo. 'off' would be the offset of the greatest bound
3153 : * that is <= lookup value, so add off + 1 to the result
3154 : * instead as the offset of the upper bound of the only
3155 : * partition that may contain the lookup value. If 'off' is
3156 : * -1 indicating that all bounds are greater, then we simply
3157 : * end up adding the first bound's offset, that is, 0.
3158 : */
3159 3880 : result->bound_offsets = bms_make_singleton(off + 1);
3160 : }
3161 :
3162 4318 : return result;
3163 :
3164 510 : case BTGreaterEqualStrategyNumber:
3165 510 : inclusive = true;
3166 : /* fall through */
3167 826 : case BTGreaterStrategyNumber:
3168 :
3169 : /*
3170 : * Look for the smallest bound that is > or >= lookup value and
3171 : * set minoff to its offset.
3172 : */
3173 826 : off = partition_range_datum_bsearch(partsupfunc,
3174 : partcollation,
3175 : boundinfo,
3176 : nvalues, values,
3177 : &is_equal);
3178 826 : if (off < 0)
3179 : {
3180 : /*
3181 : * All bounds are greater than the lookup value, so include
3182 : * all of them in the result.
3183 : */
3184 60 : minoff = 0;
3185 : }
3186 : else
3187 : {
3188 766 : if (is_equal && nvalues < partnatts)
3189 : {
3190 : /*
3191 : * Since the lookup value contains only a prefix of keys,
3192 : * we must find other bounds that may also match the
3193 : * prefix. partition_range_datum_bsearch() returns the
3194 : * offset of one of them, find others by checking adjacent
3195 : * bounds.
3196 : *
3197 : * Based on whether the lookup values are inclusive or
3198 : * not, we must either include the indexes of all such
3199 : * bounds in the result (that is, set minoff to the index
3200 : * of smallest such bound) or find the smallest one that's
3201 : * greater than the lookup values and set minoff to that.
3202 : */
3203 132 : while (off >= 1 && off < boundinfo->ndatums - 1)
3204 : {
3205 : int32 cmpval;
3206 : int nextoff;
3207 :
3208 108 : nextoff = inclusive ? off - 1 : off + 1;
3209 : cmpval =
3210 108 : partition_rbound_datum_cmp(partsupfunc,
3211 : partcollation,
3212 108 : boundinfo->datums[nextoff],
3213 108 : boundinfo->kind[nextoff],
3214 : values, nvalues);
3215 108 : if (cmpval != 0)
3216 54 : break;
3217 :
3218 54 : off = nextoff;
3219 : }
3220 :
3221 : Assert(0 ==
3222 : partition_rbound_datum_cmp(partsupfunc,
3223 : partcollation,
3224 : boundinfo->datums[off],
3225 : boundinfo->kind[off],
3226 : values, nvalues));
3227 :
3228 78 : minoff = inclusive ? off : off + 1;
3229 : }
3230 : else
3231 : {
3232 :
3233 : /*
3234 : * lookup value falls in the range between some bounds in
3235 : * boundinfo. off would be the offset of the greatest
3236 : * bound that is <= lookup value, so add off + 1 to the
3237 : * result instead as the offset of the upper bound of the
3238 : * smallest partition that may contain the lookup value.
3239 : */
3240 688 : minoff = off + 1;
3241 : }
3242 : }
3243 826 : break;
3244 :
3245 84 : case BTLessEqualStrategyNumber:
3246 84 : inclusive = true;
3247 : /* fall through */
3248 752 : case BTLessStrategyNumber:
3249 :
3250 : /*
3251 : * Look for the greatest bound that is < or <= lookup value and
3252 : * set maxoff to its offset.
3253 : */
3254 752 : off = partition_range_datum_bsearch(partsupfunc,
3255 : partcollation,
3256 : boundinfo,
3257 : nvalues, values,
3258 : &is_equal);
3259 752 : if (off >= 0)
3260 : {
3261 : /*
3262 : * See the comment above.
3263 : */
3264 752 : if (is_equal && nvalues < partnatts)
3265 : {
3266 132 : while (off >= 1 && off < boundinfo->ndatums - 1)
3267 : {
3268 : int32 cmpval;
3269 : int nextoff;
3270 :
3271 126 : nextoff = inclusive ? off + 1 : off - 1;
3272 126 : cmpval = partition_rbound_datum_cmp(partsupfunc,
3273 : partcollation,
3274 126 : boundinfo->datums[nextoff],
3275 126 : boundinfo->kind[nextoff],
3276 : values, nvalues);
3277 126 : if (cmpval != 0)
3278 102 : break;
3279 :
3280 24 : off = nextoff;
3281 : }
3282 :
3283 : Assert(0 ==
3284 : partition_rbound_datum_cmp(partsupfunc,
3285 : partcollation,
3286 : boundinfo->datums[off],
3287 : boundinfo->kind[off],
3288 : values, nvalues));
3289 :
3290 108 : maxoff = inclusive ? off + 1 : off;
3291 : }
3292 :
3293 : /*
3294 : * The lookup value falls in the range between some bounds in
3295 : * boundinfo. 'off' would be the offset of the greatest bound
3296 : * that is <= lookup value, so add off + 1 to the result
3297 : * instead as the offset of the upper bound of the greatest
3298 : * partition that may contain lookup value. If the lookup
3299 : * value had exactly matched the bound, but it isn't
3300 : * inclusive, no need add the adjacent partition.
3301 : */
3302 644 : else if (!is_equal || inclusive)
3303 464 : maxoff = off + 1;
3304 : else
3305 180 : maxoff = off;
3306 : }
3307 : else
3308 : {
3309 : /*
3310 : * 'off' is -1 indicating that all bounds are greater, so just
3311 : * set the first bound's offset as maxoff.
3312 : */
3313 0 : maxoff = off + 1;
3314 : }
3315 752 : break;
3316 :
3317 0 : default:
3318 0 : elog(ERROR, "invalid strategy number %d", opstrategy);
3319 : break;
3320 : }
3321 :
3322 : Assert(minoff >= 0 && minoff <= boundinfo->ndatums);
3323 : Assert(maxoff >= 0 && maxoff <= boundinfo->ndatums);
3324 :
3325 : /*
3326 : * If the smallest partition to return has MINVALUE (negative infinity) as
3327 : * its lower bound, increment it to point to the next finite bound
3328 : * (supposedly its upper bound), so that we don't inadvertently end up
3329 : * scanning the default partition.
3330 : */
3331 1578 : if (minoff < boundinfo->ndatums && partindices[minoff] < 0)
3332 : {
3333 902 : int lastkey = nvalues - 1;
3334 :
3335 902 : if (boundinfo->kind[minoff][lastkey] ==
3336 : PARTITION_RANGE_DATUM_MINVALUE)
3337 : {
3338 164 : minoff++;
3339 : Assert(boundinfo->indexes[minoff] >= 0);
3340 : }
3341 : }
3342 :
3343 : /*
3344 : * If the previous greatest partition has MAXVALUE (positive infinity) as
3345 : * its upper bound (something only possible to do with multi-column range
3346 : * partitioning), we scan switch to it as the greatest partition to
3347 : * return. Again, so that we don't inadvertently end up scanning the
3348 : * default partition.
3349 : */
3350 1578 : if (maxoff >= 1 && partindices[maxoff] < 0)
3351 : {
3352 1018 : int lastkey = nvalues - 1;
3353 :
3354 1018 : if (boundinfo->kind[maxoff - 1][lastkey] ==
3355 : PARTITION_RANGE_DATUM_MAXVALUE)
3356 : {
3357 156 : maxoff--;
3358 : Assert(boundinfo->indexes[maxoff] >= 0);
3359 : }
3360 : }
3361 :
3362 : Assert(minoff >= 0 && maxoff >= 0);
3363 1578 : if (minoff <= maxoff)
3364 1578 : result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
3365 :
3366 1578 : return result;
3367 : }
3368 :
3369 : /*
3370 : * pull_exec_paramids
3371 : * Returns a Bitmapset containing the paramids of all Params with
3372 : * paramkind = PARAM_EXEC in 'expr'.
3373 : */
3374 : static Bitmapset *
3375 1824 : pull_exec_paramids(Expr *expr)
3376 : {
3377 1824 : Bitmapset *result = NULL;
3378 :
3379 1824 : (void) pull_exec_paramids_walker((Node *) expr, &result);
3380 :
3381 1824 : return result;
3382 : }
3383 :
3384 : static bool
3385 2310 : pull_exec_paramids_walker(Node *node, Bitmapset **context)
3386 : {
3387 2310 : if (node == NULL)
3388 18 : return false;
3389 2292 : if (IsA(node, Param))
3390 : {
3391 1806 : Param *param = (Param *) node;
3392 :
3393 1806 : if (param->paramkind == PARAM_EXEC)
3394 1350 : *context = bms_add_member(*context, param->paramid);
3395 1806 : return false;
3396 : }
3397 486 : return expression_tree_walker(node, pull_exec_paramids_walker, context);
3398 : }
3399 :
3400 : /*
3401 : * get_partkey_exec_paramids
3402 : * Loop through given pruning steps and find out which exec Params
3403 : * are used.
3404 : *
3405 : * Returns a Bitmapset of Param IDs.
3406 : */
3407 : static Bitmapset *
3408 412 : get_partkey_exec_paramids(List *steps)
3409 : {
3410 412 : Bitmapset *execparamids = NULL;
3411 : ListCell *lc;
3412 :
3413 940 : foreach(lc, steps)
3414 : {
3415 528 : PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
3416 : ListCell *lc2;
3417 :
3418 528 : if (!IsA(step, PartitionPruneStepOp))
3419 52 : continue;
3420 :
3421 1000 : foreach(lc2, step->exprs)
3422 : {
3423 524 : Expr *expr = lfirst(lc2);
3424 :
3425 : /* We can be quick for plain Consts */
3426 524 : if (!IsA(expr, Const))
3427 466 : execparamids = bms_join(execparamids,
3428 : pull_exec_paramids(expr));
3429 : }
3430 : }
3431 :
3432 412 : return execparamids;
3433 : }
3434 :
3435 : /*
3436 : * perform_pruning_base_step
3437 : * Determines the indexes of datums that satisfy conditions specified in
3438 : * 'opstep'.
3439 : *
3440 : * Result also contains whether special null-accepting and/or default
3441 : * partition need to be scanned.
3442 : */
3443 : static PruneStepResult *
3444 14128 : perform_pruning_base_step(PartitionPruneContext *context,
3445 : PartitionPruneStepOp *opstep)
3446 : {
3447 : ListCell *lc1,
3448 : *lc2;
3449 : int keyno,
3450 : nvalues;
3451 : Datum values[PARTITION_MAX_KEYS];
3452 : FmgrInfo *partsupfunc;
3453 : int stateidx;
3454 :
3455 : /*
3456 : * There better be the same number of expressions and compare functions.
3457 : */
3458 : Assert(list_length(opstep->exprs) == list_length(opstep->cmpfns));
3459 :
3460 14128 : nvalues = 0;
3461 14128 : lc1 = list_head(opstep->exprs);
3462 14128 : lc2 = list_head(opstep->cmpfns);
3463 :
3464 : /*
3465 : * Generate the partition lookup key that will be used by one of the
3466 : * get_matching_*_bounds functions called below.
3467 : */
3468 30116 : for (keyno = 0; keyno < context->partnatts; keyno++)
3469 : {
3470 : /*
3471 : * For hash partitioning, it is possible that values of some keys are
3472 : * not provided in operator clauses, but instead the planner found
3473 : * that they appeared in a IS NULL clause.
3474 : */
3475 16366 : if (bms_is_member(keyno, opstep->nullkeys))
3476 816 : continue;
3477 :
3478 : /*
3479 : * For range partitioning, we must only perform pruning with values
3480 : * for either all partition keys or a prefix thereof.
3481 : */
3482 15550 : if (keyno > nvalues && context->strategy == PARTITION_STRATEGY_RANGE)
3483 372 : break;
3484 :
3485 15178 : if (lc1 != NULL)
3486 : {
3487 : Expr *expr;
3488 : Datum datum;
3489 : bool isnull;
3490 : Oid cmpfn;
3491 :
3492 14350 : expr = lfirst(lc1);
3493 14350 : stateidx = PruneCxtStateIdx(context->partnatts,
3494 : opstep->step.step_id, keyno);
3495 14350 : partkey_datum_from_expr(context, expr, stateidx,
3496 : &datum, &isnull);
3497 :
3498 : /*
3499 : * Since we only allow strict operators in pruning steps, any
3500 : * null-valued comparison value must cause the comparison to fail,
3501 : * so that no partitions could match.
3502 : */
3503 14350 : if (isnull)
3504 : {
3505 : PruneStepResult *result;
3506 :
3507 6 : result = (PruneStepResult *) palloc(sizeof(PruneStepResult));
3508 6 : result->bound_offsets = NULL;
3509 6 : result->scan_default = false;
3510 6 : result->scan_null = false;
3511 :
3512 6 : return result;
3513 : }
3514 :
3515 : /* Set up the stepcmpfuncs entry, unless we already did */
3516 14344 : cmpfn = lfirst_oid(lc2);
3517 : Assert(OidIsValid(cmpfn));
3518 14344 : if (cmpfn != context->stepcmpfuncs[stateidx].fn_oid)
3519 : {
3520 : /*
3521 : * If the needed support function is the same one cached in
3522 : * the relation's partition key, copy the cached FmgrInfo.
3523 : * Otherwise (i.e., when we have a cross-type comparison), an
3524 : * actual lookup is required.
3525 : */
3526 11188 : if (cmpfn == context->partsupfunc[keyno].fn_oid)
3527 11098 : fmgr_info_copy(&context->stepcmpfuncs[stateidx],
3528 11098 : &context->partsupfunc[keyno],
3529 : context->ppccontext);
3530 : else
3531 90 : fmgr_info_cxt(cmpfn, &context->stepcmpfuncs[stateidx],
3532 : context->ppccontext);
3533 : }
3534 :
3535 14344 : values[keyno] = datum;
3536 14344 : nvalues++;
3537 :
3538 14344 : lc1 = lnext(opstep->exprs, lc1);
3539 14344 : lc2 = lnext(opstep->cmpfns, lc2);
3540 : }
3541 : }
3542 :
3543 : /*
3544 : * Point partsupfunc to the entry for the 0th key of this step; the
3545 : * additional support functions, if any, follow consecutively.
3546 : */
3547 14122 : stateidx = PruneCxtStateIdx(context->partnatts, opstep->step.step_id, 0);
3548 14122 : partsupfunc = &context->stepcmpfuncs[stateidx];
3549 :
3550 14122 : switch (context->strategy)
3551 : {
3552 316 : case PARTITION_STRATEGY_HASH:
3553 316 : return get_matching_hash_bounds(context,
3554 316 : opstep->opstrategy,
3555 : values, nvalues,
3556 : partsupfunc,
3557 : opstep->nullkeys);
3558 :
3559 7182 : case PARTITION_STRATEGY_LIST:
3560 7182 : return get_matching_list_bounds(context,
3561 7182 : opstep->opstrategy,
3562 : values[0], nvalues,
3563 : &partsupfunc[0],
3564 : opstep->nullkeys);
3565 :
3566 6624 : case PARTITION_STRATEGY_RANGE:
3567 6624 : return get_matching_range_bounds(context,
3568 6624 : opstep->opstrategy,
3569 : values, nvalues,
3570 : partsupfunc,
3571 : opstep->nullkeys);
3572 :
3573 0 : default:
3574 0 : elog(ERROR, "unexpected partition strategy: %d",
3575 : (int) context->strategy);
3576 : break;
3577 : }
3578 :
3579 : return NULL;
3580 : }
3581 :
3582 : /*
3583 : * perform_pruning_combine_step
3584 : * Determines the indexes of datums obtained by combining those given
3585 : * by the steps identified by cstep->source_stepids using the specified
3586 : * combination method
3587 : *
3588 : * Since cstep may refer to the result of earlier steps, we also receive
3589 : * step_results here.
3590 : */
3591 : static PruneStepResult *
3592 2560 : perform_pruning_combine_step(PartitionPruneContext *context,
3593 : PartitionPruneStepCombine *cstep,
3594 : PruneStepResult **step_results)
3595 : {
3596 2560 : PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
3597 : bool firststep;
3598 : ListCell *lc1;
3599 :
3600 : /*
3601 : * A combine step without any source steps is an indication to not perform
3602 : * any partition pruning. Return all datum indexes in that case.
3603 : */
3604 2560 : if (cstep->source_stepids == NIL)
3605 : {
3606 378 : PartitionBoundInfo boundinfo = context->boundinfo;
3607 :
3608 378 : result->bound_offsets =
3609 378 : bms_add_range(NULL, 0, boundinfo->nindexes - 1);
3610 378 : result->scan_default = partition_bound_has_default(boundinfo);
3611 378 : result->scan_null = partition_bound_accepts_nulls(boundinfo);
3612 378 : return result;
3613 : }
3614 :
3615 2182 : switch (cstep->combineOp)
3616 : {
3617 1176 : case PARTPRUNE_COMBINE_UNION:
3618 3596 : foreach(lc1, cstep->source_stepids)
3619 : {
3620 2420 : int step_id = lfirst_int(lc1);
3621 : PruneStepResult *step_result;
3622 :
3623 : /*
3624 : * step_results[step_id] must contain a valid result, which is
3625 : * confirmed by the fact that cstep's step_id is greater than
3626 : * step_id and the fact that results of the individual steps
3627 : * are evaluated in sequence of their step_ids.
3628 : */
3629 2420 : if (step_id >= cstep->step.step_id)
3630 0 : elog(ERROR, "invalid pruning combine step argument");
3631 2420 : step_result = step_results[step_id];
3632 : Assert(step_result != NULL);
3633 :
3634 : /* Record any additional datum indexes from this step */
3635 4840 : result->bound_offsets = bms_add_members(result->bound_offsets,
3636 2420 : step_result->bound_offsets);
3637 :
3638 : /* Update whether to scan null and default partitions. */
3639 2420 : if (!result->scan_null)
3640 2318 : result->scan_null = step_result->scan_null;
3641 2420 : if (!result->scan_default)
3642 2138 : result->scan_default = step_result->scan_default;
3643 : }
3644 1176 : break;
3645 :
3646 1006 : case PARTPRUNE_COMBINE_INTERSECT:
3647 1006 : firststep = true;
3648 3582 : foreach(lc1, cstep->source_stepids)
3649 : {
3650 2576 : int step_id = lfirst_int(lc1);
3651 : PruneStepResult *step_result;
3652 :
3653 2576 : if (step_id >= cstep->step.step_id)
3654 0 : elog(ERROR, "invalid pruning combine step argument");
3655 2576 : step_result = step_results[step_id];
3656 : Assert(step_result != NULL);
3657 :
3658 2576 : if (firststep)
3659 : {
3660 : /* Copy step's result the first time. */
3661 1006 : result->bound_offsets =
3662 1006 : bms_copy(step_result->bound_offsets);
3663 1006 : result->scan_null = step_result->scan_null;
3664 1006 : result->scan_default = step_result->scan_default;
3665 1006 : firststep = false;
3666 : }
3667 : else
3668 : {
3669 : /* Record datum indexes common to both steps */
3670 1570 : result->bound_offsets =
3671 1570 : bms_int_members(result->bound_offsets,
3672 1570 : step_result->bound_offsets);
3673 :
3674 : /* Update whether to scan null and default partitions. */
3675 1570 : if (result->scan_null)
3676 96 : result->scan_null = step_result->scan_null;
3677 1570 : if (result->scan_default)
3678 756 : result->scan_default = step_result->scan_default;
3679 : }
3680 : }
3681 1006 : break;
3682 : }
3683 :
3684 2182 : return result;
3685 : }
3686 :
3687 : /*
3688 : * match_boolean_partition_clause
3689 : *
3690 : * If we're able to match the clause to the partition key as specially-shaped
3691 : * boolean clause, set *outconst to a Const containing a true, false or NULL
3692 : * value, set *notclause according to if the clause was in the "not" form,
3693 : * i.e. "IS NOT TRUE", "IS NOT FALSE" or "IS NOT UNKNOWN" and return
3694 : * PARTCLAUSE_MATCH_CLAUSE for "IS [NOT] (TRUE|FALSE)" clauses and
3695 : * PARTCLAUSE_MATCH_NULLNESS for "IS [NOT] UNKNOWN" clauses. Otherwise,
3696 : * return PARTCLAUSE_UNSUPPORTED if the clause cannot be used for partition
3697 : * pruning, and PARTCLAUSE_NOMATCH for supported clauses that do not match this
3698 : * 'partkey'.
3699 : */
3700 : static PartClauseMatchStatus
3701 36426 : match_boolean_partition_clause(Oid partopfamily, Expr *clause, Expr *partkey,
3702 : Expr **outconst, bool *notclause)
3703 : {
3704 : Expr *leftop;
3705 :
3706 36426 : *outconst = NULL;
3707 36426 : *notclause = false;
3708 :
3709 : /*
3710 : * Partitioning currently can only use built-in AMs, so checking for
3711 : * built-in boolean opfamilies is good enough.
3712 : */
3713 36426 : if (!IsBuiltinBooleanOpfamily(partopfamily))
3714 34974 : return PARTCLAUSE_UNSUPPORTED;
3715 :
3716 1452 : if (IsA(clause, BooleanTest))
3717 : {
3718 780 : BooleanTest *btest = (BooleanTest *) clause;
3719 :
3720 780 : leftop = btest->arg;
3721 780 : if (IsA(leftop, RelabelType))
3722 0 : leftop = ((RelabelType *) leftop)->arg;
3723 :
3724 780 : if (equal(leftop, partkey))
3725 : {
3726 564 : switch (btest->booltesttype)
3727 : {
3728 132 : case IS_NOT_TRUE:
3729 132 : *notclause = true;
3730 : /* fall through */
3731 246 : case IS_TRUE:
3732 246 : *outconst = (Expr *) makeBoolConst(true, false);
3733 246 : return PARTCLAUSE_MATCH_CLAUSE;
3734 84 : case IS_NOT_FALSE:
3735 84 : *notclause = true;
3736 : /* fall through */
3737 222 : case IS_FALSE:
3738 222 : *outconst = (Expr *) makeBoolConst(false, false);
3739 222 : return PARTCLAUSE_MATCH_CLAUSE;
3740 54 : case IS_NOT_UNKNOWN:
3741 54 : *notclause = true;
3742 : /* fall through */
3743 96 : case IS_UNKNOWN:
3744 96 : return PARTCLAUSE_MATCH_NULLNESS;
3745 0 : default:
3746 0 : return PARTCLAUSE_UNSUPPORTED;
3747 : }
3748 : }
3749 : /* does not match partition key */
3750 216 : return PARTCLAUSE_NOMATCH;
3751 : }
3752 : else
3753 : {
3754 672 : bool is_not_clause = is_notclause(clause);
3755 :
3756 672 : leftop = is_not_clause ? get_notclausearg(clause) : clause;
3757 :
3758 672 : if (IsA(leftop, RelabelType))
3759 0 : leftop = ((RelabelType *) leftop)->arg;
3760 :
3761 : /* Compare to the partition key, and make up a clause ... */
3762 672 : if (equal(leftop, partkey))
3763 144 : *outconst = (Expr *) makeBoolConst(!is_not_clause, false);
3764 528 : else if (equal(negate_clause((Node *) leftop), partkey))
3765 48 : *outconst = (Expr *) makeBoolConst(is_not_clause, false);
3766 : else
3767 480 : return PARTCLAUSE_NOMATCH;
3768 :
3769 192 : return PARTCLAUSE_MATCH_CLAUSE;
3770 : }
3771 : }
3772 :
3773 : /*
3774 : * partkey_datum_from_expr
3775 : * Evaluate expression for potential partition pruning
3776 : *
3777 : * Evaluate 'expr'; set *value and *isnull to the resulting Datum and nullflag.
3778 : *
3779 : * If expr isn't a Const, its ExprState is in stateidx of the context
3780 : * exprstate array.
3781 : *
3782 : * Note that the evaluated result may be in the per-tuple memory context of
3783 : * context->exprcontext, and we may have leaked other memory there too.
3784 : * This memory must be recovered by resetting that ExprContext after
3785 : * we're done with the pruning operation (see execPartition.c).
3786 : */
3787 : static void
3788 14350 : partkey_datum_from_expr(PartitionPruneContext *context,
3789 : Expr *expr, int stateidx,
3790 : Datum *value, bool *isnull)
3791 : {
3792 14350 : if (IsA(expr, Const))
3793 : {
3794 : /* We can always determine the value of a constant */
3795 10026 : Const *con = (Const *) expr;
3796 :
3797 10026 : *value = con->constvalue;
3798 10026 : *isnull = con->constisnull;
3799 : }
3800 : else
3801 : {
3802 : ExprState *exprstate;
3803 : ExprContext *ectx;
3804 :
3805 : /*
3806 : * We should never see a non-Const in a step unless the caller has
3807 : * passed a valid ExprContext.
3808 : */
3809 : Assert(context->exprcontext != NULL);
3810 :
3811 4324 : exprstate = context->exprstates[stateidx];
3812 4324 : ectx = context->exprcontext;
3813 4324 : *value = ExecEvalExprSwitchContext(exprstate, ectx, isnull);
3814 : }
3815 14350 : }
|