LCOV - code coverage report
Current view: top level - src/backend/partitioning - partbounds.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 1355 1416 95.7 %
Date: 2025-01-18 05:15:39 Functions: 51 52 98.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * partbounds.c
       4             :  *      Support routines for manipulating partition bounds
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  * IDENTIFICATION
      10             :  *        src/backend/partitioning/partbounds.c
      11             :  *
      12             :  *-------------------------------------------------------------------------
      13             :  */
      14             : 
      15             : #include "postgres.h"
      16             : 
      17             : #include "access/relation.h"
      18             : #include "access/table.h"
      19             : #include "access/tableam.h"
      20             : #include "catalog/partition.h"
      21             : #include "catalog/pg_inherits.h"
      22             : #include "catalog/pg_type.h"
      23             : #include "commands/tablecmds.h"
      24             : #include "common/hashfn.h"
      25             : #include "executor/executor.h"
      26             : #include "miscadmin.h"
      27             : #include "nodes/makefuncs.h"
      28             : #include "nodes/nodeFuncs.h"
      29             : #include "nodes/pathnodes.h"
      30             : #include "parser/parse_coerce.h"
      31             : #include "partitioning/partbounds.h"
      32             : #include "partitioning/partdesc.h"
      33             : #include "utils/array.h"
      34             : #include "utils/builtins.h"
      35             : #include "utils/datum.h"
      36             : #include "utils/fmgroids.h"
      37             : #include "utils/lsyscache.h"
      38             : #include "utils/partcache.h"
      39             : #include "utils/ruleutils.h"
      40             : #include "utils/snapmgr.h"
      41             : #include "utils/syscache.h"
      42             : 
      43             : /*
      44             :  * When qsort'ing partition bounds after reading from the catalog, each bound
      45             :  * is represented with one of the following structs.
      46             :  */
      47             : 
      48             : /* One bound of a hash partition */
      49             : typedef struct PartitionHashBound
      50             : {
      51             :     int         modulus;
      52             :     int         remainder;
      53             :     int         index;
      54             : } PartitionHashBound;
      55             : 
      56             : /* One value coming from some (index'th) list partition */
      57             : typedef struct PartitionListValue
      58             : {
      59             :     int         index;
      60             :     Datum       value;
      61             : } PartitionListValue;
      62             : 
      63             : /* One bound of a range partition */
      64             : typedef struct PartitionRangeBound
      65             : {
      66             :     int         index;
      67             :     Datum      *datums;         /* range bound datums */
      68             :     PartitionRangeDatumKind *kind;  /* the kind of each datum */
      69             :     bool        lower;          /* this is the lower (vs upper) bound */
      70             : } PartitionRangeBound;
      71             : 
      72             : /*
      73             :  * Mapping from partitions of a joining relation to partitions of a join
      74             :  * relation being computed (a.k.a merged partitions)
      75             :  */
      76             : typedef struct PartitionMap
      77             : {
      78             :     int         nparts;         /* number of partitions */
      79             :     int        *merged_indexes; /* indexes of merged partitions */
      80             :     bool       *merged;         /* flags to indicate whether partitions are
      81             :                                  * merged with non-dummy partitions */
      82             :     bool        did_remapping;  /* did we re-map partitions? */
      83             :     int        *old_indexes;    /* old indexes of merged partitions if
      84             :                                  * did_remapping */
      85             : } PartitionMap;
      86             : 
      87             : /* Macro for comparing two range bounds */
      88             : #define compare_range_bounds(partnatts, partsupfunc, partcollations, \
      89             :                              bound1, bound2) \
      90             :     (partition_rbound_cmp(partnatts, partsupfunc, partcollations, \
      91             :                           (bound1)->datums, (bound1)->kind, (bound1)->lower, \
      92             :                           bound2))
      93             : 
      94             : static int32 qsort_partition_hbound_cmp(const void *a, const void *b);
      95             : static int32 qsort_partition_list_value_cmp(const void *a, const void *b,
      96             :                                             void *arg);
      97             : static int32 qsort_partition_rbound_cmp(const void *a, const void *b,
      98             :                                         void *arg);
      99             : static PartitionBoundInfo create_hash_bounds(PartitionBoundSpec **boundspecs,
     100             :                                              int nparts, PartitionKey key, int **mapping);
     101             : static PartitionBoundInfo create_list_bounds(PartitionBoundSpec **boundspecs,
     102             :                                              int nparts, PartitionKey key, int **mapping);
     103             : static PartitionBoundInfo create_range_bounds(PartitionBoundSpec **boundspecs,
     104             :                                               int nparts, PartitionKey key, int **mapping);
     105             : static PartitionBoundInfo merge_list_bounds(FmgrInfo *partsupfunc,
     106             :                                             Oid *partcollation,
     107             :                                             RelOptInfo *outer_rel,
     108             :                                             RelOptInfo *inner_rel,
     109             :                                             JoinType jointype,
     110             :                                             List **outer_parts,
     111             :                                             List **inner_parts);
     112             : static PartitionBoundInfo merge_range_bounds(int partnatts,
     113             :                                              FmgrInfo *partsupfuncs,
     114             :                                              Oid *partcollations,
     115             :                                              RelOptInfo *outer_rel,
     116             :                                              RelOptInfo *inner_rel,
     117             :                                              JoinType jointype,
     118             :                                              List **outer_parts,
     119             :                                              List **inner_parts);
     120             : static void init_partition_map(RelOptInfo *rel, PartitionMap *map);
     121             : static void free_partition_map(PartitionMap *map);
     122             : static bool is_dummy_partition(RelOptInfo *rel, int part_index);
     123             : static int  merge_matching_partitions(PartitionMap *outer_map,
     124             :                                       PartitionMap *inner_map,
     125             :                                       int outer_index,
     126             :                                       int inner_index,
     127             :                                       int *next_index);
     128             : static int  process_outer_partition(PartitionMap *outer_map,
     129             :                                     PartitionMap *inner_map,
     130             :                                     bool outer_has_default,
     131             :                                     bool inner_has_default,
     132             :                                     int outer_index,
     133             :                                     int inner_default,
     134             :                                     JoinType jointype,
     135             :                                     int *next_index,
     136             :                                     int *default_index);
     137             : static int  process_inner_partition(PartitionMap *outer_map,
     138             :                                     PartitionMap *inner_map,
     139             :                                     bool outer_has_default,
     140             :                                     bool inner_has_default,
     141             :                                     int inner_index,
     142             :                                     int outer_default,
     143             :                                     JoinType jointype,
     144             :                                     int *next_index,
     145             :                                     int *default_index);
     146             : static void merge_null_partitions(PartitionMap *outer_map,
     147             :                                   PartitionMap *inner_map,
     148             :                                   bool outer_has_null,
     149             :                                   bool inner_has_null,
     150             :                                   int outer_null,
     151             :                                   int inner_null,
     152             :                                   JoinType jointype,
     153             :                                   int *next_index,
     154             :                                   int *null_index);
     155             : static void merge_default_partitions(PartitionMap *outer_map,
     156             :                                      PartitionMap *inner_map,
     157             :                                      bool outer_has_default,
     158             :                                      bool inner_has_default,
     159             :                                      int outer_default,
     160             :                                      int inner_default,
     161             :                                      JoinType jointype,
     162             :                                      int *next_index,
     163             :                                      int *default_index);
     164             : static int  merge_partition_with_dummy(PartitionMap *map, int index,
     165             :                                        int *next_index);
     166             : static void fix_merged_indexes(PartitionMap *outer_map,
     167             :                                PartitionMap *inner_map,
     168             :                                int nmerged, List *merged_indexes);
     169             : static void generate_matching_part_pairs(RelOptInfo *outer_rel,
     170             :                                          RelOptInfo *inner_rel,
     171             :                                          PartitionMap *outer_map,
     172             :                                          PartitionMap *inner_map,
     173             :                                          int nmerged,
     174             :                                          List **outer_parts,
     175             :                                          List **inner_parts);
     176             : static PartitionBoundInfo build_merged_partition_bounds(char strategy,
     177             :                                                         List *merged_datums,
     178             :                                                         List *merged_kinds,
     179             :                                                         List *merged_indexes,
     180             :                                                         int null_index,
     181             :                                                         int default_index);
     182             : static int  get_range_partition(RelOptInfo *rel,
     183             :                                 PartitionBoundInfo bi,
     184             :                                 int *lb_pos,
     185             :                                 PartitionRangeBound *lb,
     186             :                                 PartitionRangeBound *ub);
     187             : static int  get_range_partition_internal(PartitionBoundInfo bi,
     188             :                                          int *lb_pos,
     189             :                                          PartitionRangeBound *lb,
     190             :                                          PartitionRangeBound *ub);
     191             : static bool compare_range_partitions(int partnatts, FmgrInfo *partsupfuncs,
     192             :                                      Oid *partcollations,
     193             :                                      PartitionRangeBound *outer_lb,
     194             :                                      PartitionRangeBound *outer_ub,
     195             :                                      PartitionRangeBound *inner_lb,
     196             :                                      PartitionRangeBound *inner_ub,
     197             :                                      int *lb_cmpval, int *ub_cmpval);
     198             : static void get_merged_range_bounds(int partnatts, FmgrInfo *partsupfuncs,
     199             :                                     Oid *partcollations, JoinType jointype,
     200             :                                     PartitionRangeBound *outer_lb,
     201             :                                     PartitionRangeBound *outer_ub,
     202             :                                     PartitionRangeBound *inner_lb,
     203             :                                     PartitionRangeBound *inner_ub,
     204             :                                     int lb_cmpval, int ub_cmpval,
     205             :                                     PartitionRangeBound *merged_lb,
     206             :                                     PartitionRangeBound *merged_ub);
     207             : static void add_merged_range_bounds(int partnatts, FmgrInfo *partsupfuncs,
     208             :                                     Oid *partcollations,
     209             :                                     PartitionRangeBound *merged_lb,
     210             :                                     PartitionRangeBound *merged_ub,
     211             :                                     int merged_index,
     212             :                                     List **merged_datums,
     213             :                                     List **merged_kinds,
     214             :                                     List **merged_indexes);
     215             : static PartitionRangeBound *make_one_partition_rbound(PartitionKey key, int index,
     216             :                                                       List *datums, bool lower);
     217             : static int32 partition_hbound_cmp(int modulus1, int remainder1, int modulus2,
     218             :                                   int remainder2);
     219             : static int32 partition_rbound_cmp(int partnatts, FmgrInfo *partsupfunc,
     220             :                                   Oid *partcollation, Datum *datums1,
     221             :                                   PartitionRangeDatumKind *kind1, bool lower1,
     222             :                                   PartitionRangeBound *b2);
     223             : static int  partition_range_bsearch(int partnatts, FmgrInfo *partsupfunc,
     224             :                                     Oid *partcollation,
     225             :                                     PartitionBoundInfo boundinfo,
     226             :                                     PartitionRangeBound *probe, int32 *cmpval);
     227             : static Expr *make_partition_op_expr(PartitionKey key, int keynum,
     228             :                                     uint16 strategy, Expr *arg1, Expr *arg2);
     229             : static Oid  get_partition_operator(PartitionKey key, int col,
     230             :                                    StrategyNumber strategy, bool *need_relabel);
     231             : static List *get_qual_for_hash(Relation parent, PartitionBoundSpec *spec);
     232             : static List *get_qual_for_list(Relation parent, PartitionBoundSpec *spec);
     233             : static List *get_qual_for_range(Relation parent, PartitionBoundSpec *spec,
     234             :                                 bool for_default);
     235             : static void get_range_key_properties(PartitionKey key, int keynum,
     236             :                                      PartitionRangeDatum *ldatum,
     237             :                                      PartitionRangeDatum *udatum,
     238             :                                      ListCell **partexprs_item,
     239             :                                      Expr **keyCol,
     240             :                                      Const **lower_val, Const **upper_val);
     241             : static List *get_range_nulltest(PartitionKey key);
     242             : 
     243             : /*
     244             :  * get_qual_from_partbound
     245             :  *      Given a parser node for partition bound, return the list of executable
     246             :  *      expressions as partition constraint
     247             :  */
     248             : List *
     249        5428 : get_qual_from_partbound(Relation parent, PartitionBoundSpec *spec)
     250             : {
     251        5428 :     PartitionKey key = RelationGetPartitionKey(parent);
     252        5428 :     List       *my_qual = NIL;
     253             : 
     254             :     Assert(key != NULL);
     255             : 
     256        5428 :     switch (key->strategy)
     257             :     {
     258         158 :         case PARTITION_STRATEGY_HASH:
     259             :             Assert(spec->strategy == PARTITION_STRATEGY_HASH);
     260         158 :             my_qual = get_qual_for_hash(parent, spec);
     261         158 :             break;
     262             : 
     263        2572 :         case PARTITION_STRATEGY_LIST:
     264             :             Assert(spec->strategy == PARTITION_STRATEGY_LIST);
     265        2572 :             my_qual = get_qual_for_list(parent, spec);
     266        2572 :             break;
     267             : 
     268        2698 :         case PARTITION_STRATEGY_RANGE:
     269             :             Assert(spec->strategy == PARTITION_STRATEGY_RANGE);
     270        2698 :             my_qual = get_qual_for_range(parent, spec, false);
     271        2698 :             break;
     272             :     }
     273             : 
     274        5428 :     return my_qual;
     275             : }
     276             : 
     277             : /*
     278             :  *  partition_bounds_create
     279             :  *      Build a PartitionBoundInfo struct from a list of PartitionBoundSpec
     280             :  *      nodes
     281             :  *
     282             :  * This function creates a PartitionBoundInfo and fills the values of its
     283             :  * various members based on the input list.  Importantly, 'datums' array will
     284             :  * contain Datum representation of individual bounds (possibly after
     285             :  * de-duplication as in case of range bounds), sorted in a canonical order
     286             :  * defined by qsort_partition_* functions of respective partitioning methods.
     287             :  * 'indexes' array will contain as many elements as there are bounds (specific
     288             :  * exceptions to this rule are listed in the function body), which represent
     289             :  * the 0-based canonical positions of partitions.
     290             :  *
     291             :  * Upon return from this function, *mapping is set to an array of
     292             :  * list_length(boundspecs) elements, each of which maps the original index of
     293             :  * a partition to its canonical index.
     294             :  *
     295             :  * Note: The objects returned by this function are wholly allocated in the
     296             :  * current memory context.
     297             :  */
     298             : PartitionBoundInfo
     299       15678 : partition_bounds_create(PartitionBoundSpec **boundspecs, int nparts,
     300             :                         PartitionKey key, int **mapping)
     301             : {
     302             :     int         i;
     303             : 
     304             :     Assert(nparts > 0);
     305             : 
     306             :     /*
     307             :      * For each partitioning method, we first convert the partition bounds
     308             :      * from their parser node representation to the internal representation,
     309             :      * along with any additional preprocessing (such as de-duplicating range
     310             :      * bounds).  Resulting bound datums are then added to the 'datums' array
     311             :      * in PartitionBoundInfo.  For each datum added, an integer indicating the
     312             :      * canonical partition index is added to the 'indexes' array.
     313             :      *
     314             :      * For each bound, we remember its partition's position (0-based) in the
     315             :      * original list to later map it to the canonical index.
     316             :      */
     317             : 
     318             :     /*
     319             :      * Initialize mapping array with invalid values, this is filled within
     320             :      * each sub-routine below depending on the bound type.
     321             :      */
     322       15678 :     *mapping = (int *) palloc(sizeof(int) * nparts);
     323       46890 :     for (i = 0; i < nparts; i++)
     324       31212 :         (*mapping)[i] = -1;
     325             : 
     326       15678 :     switch (key->strategy)
     327             :     {
     328         808 :         case PARTITION_STRATEGY_HASH:
     329         808 :             return create_hash_bounds(boundspecs, nparts, key, mapping);
     330             : 
     331        8090 :         case PARTITION_STRATEGY_LIST:
     332        8090 :             return create_list_bounds(boundspecs, nparts, key, mapping);
     333             : 
     334        6780 :         case PARTITION_STRATEGY_RANGE:
     335        6780 :             return create_range_bounds(boundspecs, nparts, key, mapping);
     336             :     }
     337             : 
     338             :     Assert(false);
     339           0 :     return NULL;                /* keep compiler quiet */
     340             : }
     341             : 
     342             : /*
     343             :  * create_hash_bounds
     344             :  *      Create a PartitionBoundInfo for a hash partitioned table
     345             :  */
     346             : static PartitionBoundInfo
     347         808 : create_hash_bounds(PartitionBoundSpec **boundspecs, int nparts,
     348             :                    PartitionKey key, int **mapping)
     349             : {
     350             :     PartitionBoundInfo boundinfo;
     351             :     PartitionHashBound *hbounds;
     352             :     int         i;
     353             :     int         greatest_modulus;
     354             :     Datum      *boundDatums;
     355             : 
     356             :     boundinfo = (PartitionBoundInfoData *)
     357         808 :         palloc0(sizeof(PartitionBoundInfoData));
     358         808 :     boundinfo->strategy = key->strategy;
     359             :     /* No special hash partitions. */
     360         808 :     boundinfo->null_index = -1;
     361         808 :     boundinfo->default_index = -1;
     362             : 
     363             :     hbounds = (PartitionHashBound *)
     364         808 :         palloc(nparts * sizeof(PartitionHashBound));
     365             : 
     366             :     /* Convert from node to the internal representation */
     367        2540 :     for (i = 0; i < nparts; i++)
     368             :     {
     369        1732 :         PartitionBoundSpec *spec = boundspecs[i];
     370             : 
     371        1732 :         if (spec->strategy != PARTITION_STRATEGY_HASH)
     372           0 :             elog(ERROR, "invalid strategy in partition bound spec");
     373             : 
     374        1732 :         hbounds[i].modulus = spec->modulus;
     375        1732 :         hbounds[i].remainder = spec->remainder;
     376        1732 :         hbounds[i].index = i;
     377             :     }
     378             : 
     379             :     /* Sort all the bounds in ascending order */
     380         808 :     qsort(hbounds, nparts, sizeof(PartitionHashBound),
     381             :           qsort_partition_hbound_cmp);
     382             : 
     383             :     /* After sorting, moduli are now stored in ascending order. */
     384         808 :     greatest_modulus = hbounds[nparts - 1].modulus;
     385             : 
     386         808 :     boundinfo->ndatums = nparts;
     387         808 :     boundinfo->datums = (Datum **) palloc0(nparts * sizeof(Datum *));
     388         808 :     boundinfo->kind = NULL;
     389         808 :     boundinfo->interleaved_parts = NULL;
     390         808 :     boundinfo->nindexes = greatest_modulus;
     391         808 :     boundinfo->indexes = (int *) palloc(greatest_modulus * sizeof(int));
     392        6352 :     for (i = 0; i < greatest_modulus; i++)
     393        5544 :         boundinfo->indexes[i] = -1;
     394             : 
     395             :     /*
     396             :      * In the loop below, to save from allocating a series of small datum
     397             :      * arrays, here we just allocate a single array and below we'll just
     398             :      * assign a portion of this array per partition.
     399             :      */
     400         808 :     boundDatums = (Datum *) palloc(nparts * 2 * sizeof(Datum));
     401             : 
     402             :     /*
     403             :      * For hash partitioning, there are as many datums (modulus and remainder
     404             :      * pairs) as there are partitions.  Indexes are simply values ranging from
     405             :      * 0 to (nparts - 1).
     406             :      */
     407        2540 :     for (i = 0; i < nparts; i++)
     408             :     {
     409        1732 :         int         modulus = hbounds[i].modulus;
     410        1732 :         int         remainder = hbounds[i].remainder;
     411             : 
     412        1732 :         boundinfo->datums[i] = &boundDatums[i * 2];
     413        1732 :         boundinfo->datums[i][0] = Int32GetDatum(modulus);
     414        1732 :         boundinfo->datums[i][1] = Int32GetDatum(remainder);
     415             : 
     416        3938 :         while (remainder < greatest_modulus)
     417             :         {
     418             :             /* overlap? */
     419             :             Assert(boundinfo->indexes[remainder] == -1);
     420        2206 :             boundinfo->indexes[remainder] = i;
     421        2206 :             remainder += modulus;
     422             :         }
     423             : 
     424        1732 :         (*mapping)[hbounds[i].index] = i;
     425             :     }
     426         808 :     pfree(hbounds);
     427             : 
     428         808 :     return boundinfo;
     429             : }
     430             : 
     431             : /*
     432             :  * get_non_null_list_datum_count
     433             :  *      Counts the number of non-null Datums in each partition.
     434             :  */
     435             : static int
     436        8090 : get_non_null_list_datum_count(PartitionBoundSpec **boundspecs, int nparts)
     437             : {
     438             :     int         i;
     439        8090 :     int         count = 0;
     440             : 
     441       23738 :     for (i = 0; i < nparts; i++)
     442             :     {
     443             :         ListCell   *lc;
     444             : 
     445       39514 :         foreach(lc, boundspecs[i]->listdatums)
     446             :         {
     447       23866 :             Const      *val = lfirst_node(Const, lc);
     448             : 
     449       23866 :             if (!val->constisnull)
     450       23314 :                 count++;
     451             :         }
     452             :     }
     453             : 
     454        8090 :     return count;
     455             : }
     456             : 
     457             : /*
     458             :  * create_list_bounds
     459             :  *      Create a PartitionBoundInfo for a list partitioned table
     460             :  */
     461             : static PartitionBoundInfo
     462        8090 : create_list_bounds(PartitionBoundSpec **boundspecs, int nparts,
     463             :                    PartitionKey key, int **mapping)
     464             : {
     465             :     PartitionBoundInfo boundinfo;
     466             :     PartitionListValue *all_values;
     467             :     int         i;
     468             :     int         j;
     469             :     int         ndatums;
     470        8090 :     int         next_index = 0;
     471        8090 :     int         default_index = -1;
     472        8090 :     int         null_index = -1;
     473             :     Datum      *boundDatums;
     474             : 
     475             :     boundinfo = (PartitionBoundInfoData *)
     476        8090 :         palloc0(sizeof(PartitionBoundInfoData));
     477        8090 :     boundinfo->strategy = key->strategy;
     478             :     /* Will be set correctly below. */
     479        8090 :     boundinfo->null_index = -1;
     480        8090 :     boundinfo->default_index = -1;
     481             : 
     482        8090 :     ndatums = get_non_null_list_datum_count(boundspecs, nparts);
     483             :     all_values = (PartitionListValue *)
     484        8090 :         palloc(ndatums * sizeof(PartitionListValue));
     485             : 
     486             :     /* Create a unified list of non-null values across all partitions. */
     487       23738 :     for (j = 0, i = 0; i < nparts; i++)
     488             :     {
     489       15648 :         PartitionBoundSpec *spec = boundspecs[i];
     490             :         ListCell   *c;
     491             : 
     492       15648 :         if (spec->strategy != PARTITION_STRATEGY_LIST)
     493           0 :             elog(ERROR, "invalid strategy in partition bound spec");
     494             : 
     495             :         /*
     496             :          * Note the index of the partition bound spec for the default
     497             :          * partition.  There's no datum to add to the list on non-null datums
     498             :          * for this partition.
     499             :          */
     500       15648 :         if (spec->is_default)
     501             :         {
     502         892 :             default_index = i;
     503         892 :             continue;
     504             :         }
     505             : 
     506       38622 :         foreach(c, spec->listdatums)
     507             :         {
     508       23866 :             Const      *val = lfirst_node(Const, c);
     509             : 
     510       23866 :             if (!val->constisnull)
     511             :             {
     512       23314 :                 all_values[j].index = i;
     513       23314 :                 all_values[j].value = val->constvalue;
     514       23314 :                 j++;
     515             :             }
     516             :             else
     517             :             {
     518             :                 /*
     519             :                  * Never put a null into the values array; save the index of
     520             :                  * the partition that stores nulls, instead.
     521             :                  */
     522         552 :                 if (null_index != -1)
     523           0 :                     elog(ERROR, "found null more than once");
     524         552 :                 null_index = i;
     525             :             }
     526             :         }
     527             :     }
     528             : 
     529             :     /* ensure we found a Datum for every slot in the all_values array */
     530             :     Assert(j == ndatums);
     531             : 
     532        8090 :     qsort_arg(all_values, ndatums, sizeof(PartitionListValue),
     533             :               qsort_partition_list_value_cmp, key);
     534             : 
     535        8090 :     boundinfo->ndatums = ndatums;
     536        8090 :     boundinfo->datums = (Datum **) palloc0(ndatums * sizeof(Datum *));
     537        8090 :     boundinfo->kind = NULL;
     538        8090 :     boundinfo->interleaved_parts = NULL;
     539        8090 :     boundinfo->nindexes = ndatums;
     540        8090 :     boundinfo->indexes = (int *) palloc(ndatums * sizeof(int));
     541             : 
     542             :     /*
     543             :      * In the loop below, to save from allocating a series of small datum
     544             :      * arrays, here we just allocate a single array and below we'll just
     545             :      * assign a portion of this array per datum.
     546             :      */
     547        8090 :     boundDatums = (Datum *) palloc(ndatums * sizeof(Datum));
     548             : 
     549             :     /*
     550             :      * Copy values.  Canonical indexes are values ranging from 0 to (nparts -
     551             :      * 1) assigned to each partition such that all datums of a given partition
     552             :      * receive the same value. The value for a given partition is the index of
     553             :      * that partition's smallest datum in the all_values[] array.
     554             :      */
     555       31404 :     for (i = 0; i < ndatums; i++)
     556             :     {
     557       23314 :         int         orig_index = all_values[i].index;
     558             : 
     559       23314 :         boundinfo->datums[i] = &boundDatums[i];
     560       46628 :         boundinfo->datums[i][0] = datumCopy(all_values[i].value,
     561       23314 :                                             key->parttypbyval[0],
     562       23314 :                                             key->parttyplen[0]);
     563             : 
     564             :         /* If the old index has no mapping, assign one */
     565       23314 :         if ((*mapping)[orig_index] == -1)
     566       14552 :             (*mapping)[orig_index] = next_index++;
     567             : 
     568       23314 :         boundinfo->indexes[i] = (*mapping)[orig_index];
     569             :     }
     570             : 
     571        8090 :     pfree(all_values);
     572             : 
     573             :     /*
     574             :      * Set the canonical value for null_index, if any.
     575             :      *
     576             :      * It is possible that the null-accepting partition has not been assigned
     577             :      * an index yet, which could happen if such partition accepts only null
     578             :      * and hence not handled in the above loop which only looked at non-null
     579             :      * values.
     580             :      */
     581        8090 :     if (null_index != -1)
     582             :     {
     583             :         Assert(null_index >= 0);
     584         552 :         if ((*mapping)[null_index] == -1)
     585         204 :             (*mapping)[null_index] = next_index++;
     586         552 :         boundinfo->null_index = (*mapping)[null_index];
     587             :     }
     588             : 
     589             :     /* Set the canonical value for default_index, if any. */
     590        8090 :     if (default_index != -1)
     591             :     {
     592             :         /*
     593             :          * The default partition accepts any value not specified in the lists
     594             :          * of other partitions, hence it should not get mapped index while
     595             :          * assigning those for non-null datums.
     596             :          */
     597             :         Assert(default_index >= 0);
     598             :         Assert((*mapping)[default_index] == -1);
     599         892 :         (*mapping)[default_index] = next_index++;
     600         892 :         boundinfo->default_index = (*mapping)[default_index];
     601             :     }
     602             : 
     603             :     /*
     604             :      * Calculate interleaved partitions.  Here we look for partitions which
     605             :      * might be interleaved with other partitions and set a bit in
     606             :      * interleaved_parts for any partitions which may be interleaved with
     607             :      * another partition.
     608             :      */
     609             : 
     610             :     /*
     611             :      * There must be multiple partitions to have any interleaved partitions,
     612             :      * otherwise there's nothing to interleave with.
     613             :      */
     614        8090 :     if (nparts > 1)
     615             :     {
     616             :         /*
     617             :          * Short-circuit check to see if only 1 Datum is allowed per
     618             :          * partition.  When this is true there's no need to do the more
     619             :          * expensive checks to look for interleaved values.
     620             :          */
     621        4832 :         if (boundinfo->ndatums +
     622        4832 :             partition_bound_accepts_nulls(boundinfo) +
     623        4832 :             partition_bound_has_default(boundinfo) != nparts)
     624             :         {
     625        1894 :             int         last_index = -1;
     626             : 
     627             :             /*
     628             :              * Since the indexes array is sorted in Datum order, if any
     629             :              * partitions are interleaved then it will show up by the
     630             :              * partition indexes not being in ascending order.  Here we check
     631             :              * for that and record all partitions that are out of order.
     632             :              */
     633       14364 :             for (i = 0; i < boundinfo->nindexes; i++)
     634             :             {
     635       12470 :                 int         index = boundinfo->indexes[i];
     636             : 
     637       12470 :                 if (index < last_index)
     638        1468 :                     boundinfo->interleaved_parts = bms_add_member(boundinfo->interleaved_parts,
     639             :                                                                   index);
     640             : 
     641             :                 /*
     642             :                  * Otherwise, if the null_index exists in the indexes array,
     643             :                  * then the NULL partition must also allow some other Datum,
     644             :                  * therefore it's "interleaved".
     645             :                  */
     646       11002 :                 else if (partition_bound_accepts_nulls(boundinfo) &&
     647        2838 :                          index == boundinfo->null_index)
     648         756 :                     boundinfo->interleaved_parts = bms_add_member(boundinfo->interleaved_parts,
     649             :                                                                   index);
     650             : 
     651       12470 :                 last_index = index;
     652             :             }
     653             :         }
     654             : 
     655             :         /*
     656             :          * The DEFAULT partition is the "catch-all" partition that can contain
     657             :          * anything that does not belong to any other partition.  If there are
     658             :          * any other partitions then the DEFAULT partition must be marked as
     659             :          * interleaved.
     660             :          */
     661        4832 :         if (partition_bound_has_default(boundinfo))
     662         770 :             boundinfo->interleaved_parts = bms_add_member(boundinfo->interleaved_parts,
     663             :                                                           boundinfo->default_index);
     664             :     }
     665             : 
     666             : 
     667             :     /* All partitions must now have been assigned canonical indexes. */
     668             :     Assert(next_index == nparts);
     669        8090 :     return boundinfo;
     670             : }
     671             : 
     672             : /*
     673             :  * create_range_bounds
     674             :  *      Create a PartitionBoundInfo for a range partitioned table
     675             :  */
     676             : static PartitionBoundInfo
     677        6780 : create_range_bounds(PartitionBoundSpec **boundspecs, int nparts,
     678             :                     PartitionKey key, int **mapping)
     679             : {
     680             :     PartitionBoundInfo boundinfo;
     681        6780 :     PartitionRangeBound **rbounds = NULL;
     682             :     PartitionRangeBound **all_bounds,
     683             :                *prev;
     684             :     int         i,
     685             :                 k,
     686             :                 partnatts;
     687        6780 :     int         ndatums = 0;
     688        6780 :     int         default_index = -1;
     689        6780 :     int         next_index = 0;
     690             :     Datum      *boundDatums;
     691             :     PartitionRangeDatumKind *boundKinds;
     692             : 
     693             :     boundinfo = (PartitionBoundInfoData *)
     694        6780 :         palloc0(sizeof(PartitionBoundInfoData));
     695        6780 :     boundinfo->strategy = key->strategy;
     696             :     /* There is no special null-accepting range partition. */
     697        6780 :     boundinfo->null_index = -1;
     698             :     /* Will be set correctly below. */
     699        6780 :     boundinfo->default_index = -1;
     700             : 
     701             :     all_bounds = (PartitionRangeBound **)
     702        6780 :         palloc0(2 * nparts * sizeof(PartitionRangeBound *));
     703             : 
     704             :     /* Create a unified list of range bounds across all the partitions. */
     705        6780 :     ndatums = 0;
     706       20612 :     for (i = 0; i < nparts; i++)
     707             :     {
     708       13832 :         PartitionBoundSpec *spec = boundspecs[i];
     709             :         PartitionRangeBound *lower,
     710             :                    *upper;
     711             : 
     712       13832 :         if (spec->strategy != PARTITION_STRATEGY_RANGE)
     713           0 :             elog(ERROR, "invalid strategy in partition bound spec");
     714             : 
     715             :         /*
     716             :          * Note the index of the partition bound spec for the default
     717             :          * partition.  There's no datum to add to the all_bounds array for
     718             :          * this partition.
     719             :          */
     720       13832 :         if (spec->is_default)
     721             :         {
     722         766 :             default_index = i;
     723         766 :             continue;
     724             :         }
     725             : 
     726       13066 :         lower = make_one_partition_rbound(key, i, spec->lowerdatums, true);
     727       13066 :         upper = make_one_partition_rbound(key, i, spec->upperdatums, false);
     728       13066 :         all_bounds[ndatums++] = lower;
     729       13066 :         all_bounds[ndatums++] = upper;
     730             :     }
     731             : 
     732             :     Assert(ndatums == nparts * 2 ||
     733             :            (default_index != -1 && ndatums == (nparts - 1) * 2));
     734             : 
     735             :     /* Sort all the bounds in ascending order */
     736        6780 :     qsort_arg(all_bounds, ndatums,
     737             :               sizeof(PartitionRangeBound *),
     738             :               qsort_partition_rbound_cmp,
     739             :               key);
     740             : 
     741             :     /* Save distinct bounds from all_bounds into rbounds. */
     742             :     rbounds = (PartitionRangeBound **)
     743        6780 :         palloc(ndatums * sizeof(PartitionRangeBound *));
     744        6780 :     k = 0;
     745        6780 :     prev = NULL;
     746       32912 :     for (i = 0; i < ndatums; i++)
     747             :     {
     748       26132 :         PartitionRangeBound *cur = all_bounds[i];
     749       26132 :         bool        is_distinct = false;
     750             :         int         j;
     751             : 
     752             :         /* Is the current bound distinct from the previous one? */
     753       35380 :         for (j = 0; j < key->partnatts; j++)
     754             :         {
     755             :             Datum       cmpval;
     756             : 
     757       29946 :             if (prev == NULL || cur->kind[j] != prev->kind[j])
     758             :             {
     759        8074 :                 is_distinct = true;
     760        8074 :                 break;
     761             :             }
     762             : 
     763             :             /*
     764             :              * If the bounds are both MINVALUE or MAXVALUE, stop now and treat
     765             :              * them as equal, since any values after this point must be
     766             :              * ignored.
     767             :              */
     768       21872 :             if (cur->kind[j] != PARTITION_RANGE_DATUM_VALUE)
     769         186 :                 break;
     770             : 
     771       21686 :             cmpval = FunctionCall2Coll(&key->partsupfunc[j],
     772       21686 :                                        key->partcollation[j],
     773       21686 :                                        cur->datums[j],
     774       21686 :                                        prev->datums[j]);
     775       21686 :             if (DatumGetInt32(cmpval) != 0)
     776             :             {
     777       12438 :                 is_distinct = true;
     778       12438 :                 break;
     779             :             }
     780             :         }
     781             : 
     782             :         /*
     783             :          * Only if the bound is distinct save it into a temporary array, i.e,
     784             :          * rbounds which is later copied into boundinfo datums array.
     785             :          */
     786       26132 :         if (is_distinct)
     787       20512 :             rbounds[k++] = all_bounds[i];
     788             : 
     789       26132 :         prev = cur;
     790             :     }
     791             : 
     792        6780 :     pfree(all_bounds);
     793             : 
     794             :     /* Update ndatums to hold the count of distinct datums. */
     795        6780 :     ndatums = k;
     796             : 
     797             :     /*
     798             :      * Add datums to boundinfo.  Canonical indexes are values ranging from 0
     799             :      * to nparts - 1, assigned in that order to each partition's upper bound.
     800             :      * For 'datums' elements that are lower bounds, there is -1 in the
     801             :      * 'indexes' array to signify that no partition exists for the values less
     802             :      * than such a bound and greater than or equal to the previous upper
     803             :      * bound.
     804             :      */
     805        6780 :     boundinfo->ndatums = ndatums;
     806        6780 :     boundinfo->datums = (Datum **) palloc0(ndatums * sizeof(Datum *));
     807        6780 :     boundinfo->kind = (PartitionRangeDatumKind **)
     808        6780 :         palloc(ndatums *
     809             :                sizeof(PartitionRangeDatumKind *));
     810        6780 :     boundinfo->interleaved_parts = NULL;
     811             : 
     812             :     /*
     813             :      * For range partitioning, an additional value of -1 is stored as the last
     814             :      * element of the indexes[] array.
     815             :      */
     816        6780 :     boundinfo->nindexes = ndatums + 1;
     817        6780 :     boundinfo->indexes = (int *) palloc((ndatums + 1) * sizeof(int));
     818             : 
     819             :     /*
     820             :      * In the loop below, to save from allocating a series of small arrays,
     821             :      * here we just allocate a single array for Datums and another for
     822             :      * PartitionRangeDatumKinds, below we'll just assign a portion of these
     823             :      * arrays in each loop.
     824             :      */
     825        6780 :     partnatts = key->partnatts;
     826        6780 :     boundDatums = (Datum *) palloc(ndatums * partnatts * sizeof(Datum));
     827        6780 :     boundKinds = (PartitionRangeDatumKind *) palloc(ndatums * partnatts *
     828             :                                                     sizeof(PartitionRangeDatumKind));
     829             : 
     830       27292 :     for (i = 0; i < ndatums; i++)
     831             :     {
     832             :         int         j;
     833             : 
     834       20512 :         boundinfo->datums[i] = &boundDatums[i * partnatts];
     835       20512 :         boundinfo->kind[i] = &boundKinds[i * partnatts];
     836       46636 :         for (j = 0; j < partnatts; j++)
     837             :         {
     838       26124 :             if (rbounds[i]->kind[j] == PARTITION_RANGE_DATUM_VALUE)
     839       23638 :                 boundinfo->datums[i][j] =
     840       23638 :                     datumCopy(rbounds[i]->datums[j],
     841       23638 :                               key->parttypbyval[j],
     842       23638 :                               key->parttyplen[j]);
     843       26124 :             boundinfo->kind[i][j] = rbounds[i]->kind[j];
     844             :         }
     845             : 
     846             :         /*
     847             :          * There is no mapping for invalid indexes.
     848             :          *
     849             :          * Any lower bounds in the rbounds array have invalid indexes
     850             :          * assigned, because the values between the previous bound (if there
     851             :          * is one) and this (lower) bound are not part of the range of any
     852             :          * existing partition.
     853             :          */
     854       20512 :         if (rbounds[i]->lower)
     855        7446 :             boundinfo->indexes[i] = -1;
     856             :         else
     857             :         {
     858       13066 :             int         orig_index = rbounds[i]->index;
     859             : 
     860             :             /* If the old index has no mapping, assign one */
     861       13066 :             if ((*mapping)[orig_index] == -1)
     862       13066 :                 (*mapping)[orig_index] = next_index++;
     863             : 
     864       13066 :             boundinfo->indexes[i] = (*mapping)[orig_index];
     865             :         }
     866             :     }
     867             : 
     868        6780 :     pfree(rbounds);
     869             : 
     870             :     /* Set the canonical value for default_index, if any. */
     871        6780 :     if (default_index != -1)
     872             :     {
     873             :         Assert(default_index >= 0 && (*mapping)[default_index] == -1);
     874         766 :         (*mapping)[default_index] = next_index++;
     875         766 :         boundinfo->default_index = (*mapping)[default_index];
     876             :     }
     877             : 
     878             :     /* The extra -1 element. */
     879             :     Assert(i == ndatums);
     880        6780 :     boundinfo->indexes[i] = -1;
     881             : 
     882             :     /* All partitions must now have been assigned canonical indexes. */
     883             :     Assert(next_index == nparts);
     884        6780 :     return boundinfo;
     885             : }
     886             : 
     887             : /*
     888             :  * Are two partition bound collections logically equal?
     889             :  *
     890             :  * Used in the keep logic of relcache.c (ie, in RelationClearRelation()).
     891             :  * This is also useful when b1 and b2 are bound collections of two separate
     892             :  * relations, respectively, because PartitionBoundInfo is a canonical
     893             :  * representation of partition bounds.
     894             :  */
     895             : bool
     896        1638 : partition_bounds_equal(int partnatts, int16 *parttyplen, bool *parttypbyval,
     897             :                        PartitionBoundInfo b1, PartitionBoundInfo b2)
     898             : {
     899             :     int         i;
     900             : 
     901        1638 :     if (b1->strategy != b2->strategy)
     902           0 :         return false;
     903             : 
     904        1638 :     if (b1->ndatums != b2->ndatums)
     905         222 :         return false;
     906             : 
     907        1416 :     if (b1->nindexes != b2->nindexes)
     908           0 :         return false;
     909             : 
     910        1416 :     if (b1->null_index != b2->null_index)
     911          72 :         return false;
     912             : 
     913        1344 :     if (b1->default_index != b2->default_index)
     914           0 :         return false;
     915             : 
     916             :     /* For all partition strategies, the indexes[] arrays have to match */
     917        8018 :     for (i = 0; i < b1->nindexes; i++)
     918             :     {
     919        6722 :         if (b1->indexes[i] != b2->indexes[i])
     920          48 :             return false;
     921             :     }
     922             : 
     923             :     /* Finally, compare the datums[] arrays */
     924        1296 :     if (b1->strategy == PARTITION_STRATEGY_HASH)
     925             :     {
     926             :         /*
     927             :          * We arrange the partitions in the ascending order of their moduli
     928             :          * and remainders.  Also every modulus is factor of next larger
     929             :          * modulus.  Therefore we can safely store index of a given partition
     930             :          * in indexes array at remainder of that partition.  Also entries at
     931             :          * (remainder + N * modulus) positions in indexes array are all same
     932             :          * for (modulus, remainder) specification for any partition.  Thus the
     933             :          * datums arrays from the given bounds are the same, if and only if
     934             :          * their indexes arrays are the same.  So, it suffices to compare the
     935             :          * indexes arrays.
     936             :          *
     937             :          * Nonetheless make sure that the bounds are indeed the same when the
     938             :          * indexes match.  Hash partition bound stores modulus and remainder
     939             :          * at b1->datums[i][0] and b1->datums[i][1] position respectively.
     940             :          */
     941             : #ifdef USE_ASSERT_CHECKING
     942             :         for (i = 0; i < b1->ndatums; i++)
     943             :             Assert((b1->datums[i][0] == b2->datums[i][0] &&
     944             :                     b1->datums[i][1] == b2->datums[i][1]));
     945             : #endif
     946             :     }
     947             :     else
     948             :     {
     949        5876 :         for (i = 0; i < b1->ndatums; i++)
     950             :         {
     951             :             int         j;
     952             : 
     953        9490 :             for (j = 0; j < partnatts; j++)
     954             :             {
     955             :                 /* For range partitions, the bounds might not be finite. */
     956        4862 :                 if (b1->kind != NULL)
     957             :                 {
     958             :                     /* The different kinds of bound all differ from each other */
     959        3572 :                     if (b1->kind[i][j] != b2->kind[i][j])
     960           0 :                         return false;
     961             : 
     962             :                     /*
     963             :                      * Non-finite bounds are equal without further
     964             :                      * examination.
     965             :                      */
     966        3572 :                     if (b1->kind[i][j] != PARTITION_RANGE_DATUM_VALUE)
     967           0 :                         continue;
     968             :                 }
     969             : 
     970             :                 /*
     971             :                  * Compare the actual values. Note that it would be both
     972             :                  * incorrect and unsafe to invoke the comparison operator
     973             :                  * derived from the partitioning specification here.  It would
     974             :                  * be incorrect because we want the relcache entry to be
     975             :                  * updated for ANY change to the partition bounds, not just
     976             :                  * those that the partitioning operator thinks are
     977             :                  * significant.  It would be unsafe because we might reach
     978             :                  * this code in the context of an aborted transaction, and an
     979             :                  * arbitrary partitioning operator might not be safe in that
     980             :                  * context.  datumIsEqual() should be simple enough to be
     981             :                  * safe.
     982             :                  */
     983        4862 :                 if (!datumIsEqual(b1->datums[i][j], b2->datums[i][j],
     984        4862 :                                   parttypbyval[j], parttyplen[j]))
     985         186 :                     return false;
     986             :             }
     987             :         }
     988             :     }
     989        1110 :     return true;
     990             : }
     991             : 
     992             : /*
     993             :  * Return a copy of given PartitionBoundInfo structure. The data types of bounds
     994             :  * are described by given partition key specification.
     995             :  *
     996             :  * Note: it's important that this function and its callees not do any catalog
     997             :  * access, nor anything else that would result in allocating memory other than
     998             :  * the returned data structure.  Since this is called in a long-lived context,
     999             :  * that would result in unwanted memory leaks.
    1000             :  */
    1001             : PartitionBoundInfo
    1002       15678 : partition_bounds_copy(PartitionBoundInfo src,
    1003             :                       PartitionKey key)
    1004             : {
    1005             :     PartitionBoundInfo dest;
    1006             :     int         i;
    1007             :     int         ndatums;
    1008             :     int         nindexes;
    1009             :     int         partnatts;
    1010             :     bool        hash_part;
    1011             :     int         natts;
    1012             :     Datum      *boundDatums;
    1013             : 
    1014       15678 :     dest = (PartitionBoundInfo) palloc(sizeof(PartitionBoundInfoData));
    1015             : 
    1016       15678 :     dest->strategy = src->strategy;
    1017       15678 :     ndatums = dest->ndatums = src->ndatums;
    1018       15678 :     nindexes = dest->nindexes = src->nindexes;
    1019       15678 :     partnatts = key->partnatts;
    1020             : 
    1021             :     /* List partitioned tables have only a single partition key. */
    1022             :     Assert(key->strategy != PARTITION_STRATEGY_LIST || partnatts == 1);
    1023             : 
    1024       15678 :     dest->datums = (Datum **) palloc(sizeof(Datum *) * ndatums);
    1025             : 
    1026       15678 :     if (src->kind != NULL)
    1027             :     {
    1028             :         PartitionRangeDatumKind *boundKinds;
    1029             : 
    1030             :         /* only RANGE partition should have a non-NULL kind */
    1031             :         Assert(key->strategy == PARTITION_STRATEGY_RANGE);
    1032             : 
    1033        6780 :         dest->kind = (PartitionRangeDatumKind **) palloc(ndatums *
    1034             :                                                          sizeof(PartitionRangeDatumKind *));
    1035             : 
    1036             :         /*
    1037             :          * In the loop below, to save from allocating a series of small arrays
    1038             :          * for storing the PartitionRangeDatumKind, we allocate a single chunk
    1039             :          * here and use a smaller portion of it for each datum.
    1040             :          */
    1041        6780 :         boundKinds = (PartitionRangeDatumKind *) palloc(ndatums * partnatts *
    1042             :                                                         sizeof(PartitionRangeDatumKind));
    1043             : 
    1044       27292 :         for (i = 0; i < ndatums; i++)
    1045             :         {
    1046       20512 :             dest->kind[i] = &boundKinds[i * partnatts];
    1047       20512 :             memcpy(dest->kind[i], src->kind[i],
    1048             :                    sizeof(PartitionRangeDatumKind) * partnatts);
    1049             :         }
    1050             :     }
    1051             :     else
    1052        8898 :         dest->kind = NULL;
    1053             : 
    1054             :     /* copy interleaved partitions for LIST partitioned tables */
    1055       15678 :     dest->interleaved_parts = bms_copy(src->interleaved_parts);
    1056             : 
    1057             :     /*
    1058             :      * For hash partitioning, datums array will have two elements - modulus
    1059             :      * and remainder.
    1060             :      */
    1061       15678 :     hash_part = (key->strategy == PARTITION_STRATEGY_HASH);
    1062       15678 :     natts = hash_part ? 2 : partnatts;
    1063       15678 :     boundDatums = palloc(ndatums * natts * sizeof(Datum));
    1064             : 
    1065       61236 :     for (i = 0; i < ndatums; i++)
    1066             :     {
    1067             :         int         j;
    1068             : 
    1069       45558 :         dest->datums[i] = &boundDatums[i * natts];
    1070             : 
    1071       98460 :         for (j = 0; j < natts; j++)
    1072             :         {
    1073             :             bool        byval;
    1074             :             int         typlen;
    1075             : 
    1076       52902 :             if (hash_part)
    1077             :             {
    1078        3464 :                 typlen = sizeof(int32); /* Always int4 */
    1079        3464 :                 byval = true;   /* int4 is pass-by-value */
    1080             :             }
    1081             :             else
    1082             :             {
    1083       49438 :                 byval = key->parttypbyval[j];
    1084       49438 :                 typlen = key->parttyplen[j];
    1085             :             }
    1086             : 
    1087       52902 :             if (dest->kind == NULL ||
    1088       26124 :                 dest->kind[i][j] == PARTITION_RANGE_DATUM_VALUE)
    1089       50416 :                 dest->datums[i][j] = datumCopy(src->datums[i][j],
    1090             :                                                byval, typlen);
    1091             :         }
    1092             :     }
    1093             : 
    1094       15678 :     dest->indexes = (int *) palloc(sizeof(int) * nindexes);
    1095       15678 :     memcpy(dest->indexes, src->indexes, sizeof(int) * nindexes);
    1096             : 
    1097       15678 :     dest->null_index = src->null_index;
    1098       15678 :     dest->default_index = src->default_index;
    1099             : 
    1100       15678 :     return dest;
    1101             : }
    1102             : 
    1103             : /*
    1104             :  * partition_bounds_merge
    1105             :  *      Check to see whether every partition of 'outer_rel' matches/overlaps
    1106             :  *      one partition of 'inner_rel' at most, and vice versa; and if so, build
    1107             :  *      and return the partition bounds for a join relation between the rels,
    1108             :  *      generating two lists of the matching/overlapping partitions, which are
    1109             :  *      returned to *outer_parts and *inner_parts respectively.
    1110             :  *
    1111             :  * The lists contain the same number of partitions, and the partitions at the
    1112             :  * same positions in the lists indicate join pairs used for partitioned join.
    1113             :  * If a partition on one side matches/overlaps multiple partitions on the other
    1114             :  * side, this function returns NULL, setting *outer_parts and *inner_parts to
    1115             :  * NIL.
    1116             :  */
    1117             : PartitionBoundInfo
    1118         846 : partition_bounds_merge(int partnatts,
    1119             :                        FmgrInfo *partsupfunc, Oid *partcollation,
    1120             :                        RelOptInfo *outer_rel, RelOptInfo *inner_rel,
    1121             :                        JoinType jointype,
    1122             :                        List **outer_parts, List **inner_parts)
    1123             : {
    1124             :     /*
    1125             :      * Currently, this function is called only from try_partitionwise_join(),
    1126             :      * so the join type should be INNER, LEFT, FULL, SEMI, or ANTI.
    1127             :      */
    1128             :     Assert(jointype == JOIN_INNER || jointype == JOIN_LEFT ||
    1129             :            jointype == JOIN_FULL || jointype == JOIN_SEMI ||
    1130             :            jointype == JOIN_ANTI);
    1131             : 
    1132             :     /* The partitioning strategies should be the same. */
    1133             :     Assert(outer_rel->boundinfo->strategy == inner_rel->boundinfo->strategy);
    1134             : 
    1135         846 :     *outer_parts = *inner_parts = NIL;
    1136         846 :     switch (outer_rel->boundinfo->strategy)
    1137             :     {
    1138           0 :         case PARTITION_STRATEGY_HASH:
    1139             : 
    1140             :             /*
    1141             :              * For hash partitioned tables, we currently support partitioned
    1142             :              * join only when they have exactly the same partition bounds.
    1143             :              *
    1144             :              * XXX: it might be possible to relax the restriction to support
    1145             :              * cases where hash partitioned tables have missing partitions
    1146             :              * and/or different moduli, but it's not clear if it would be
    1147             :              * useful to support the former case since it's unusual to have
    1148             :              * missing partitions.  On the other hand, it would be useful to
    1149             :              * support the latter case, but in that case, there is a high
    1150             :              * probability that a partition on one side will match multiple
    1151             :              * partitions on the other side, which is the scenario the current
    1152             :              * implementation of partitioned join can't handle.
    1153             :              */
    1154           0 :             return NULL;
    1155             : 
    1156         486 :         case PARTITION_STRATEGY_LIST:
    1157         486 :             return merge_list_bounds(partsupfunc,
    1158             :                                      partcollation,
    1159             :                                      outer_rel,
    1160             :                                      inner_rel,
    1161             :                                      jointype,
    1162             :                                      outer_parts,
    1163             :                                      inner_parts);
    1164             : 
    1165         360 :         case PARTITION_STRATEGY_RANGE:
    1166         360 :             return merge_range_bounds(partnatts,
    1167             :                                       partsupfunc,
    1168             :                                       partcollation,
    1169             :                                       outer_rel,
    1170             :                                       inner_rel,
    1171             :                                       jointype,
    1172             :                                       outer_parts,
    1173             :                                       inner_parts);
    1174             :     }
    1175             : 
    1176           0 :     return NULL;
    1177             : }
    1178             : 
    1179             : /*
    1180             :  * merge_list_bounds
    1181             :  *      Create the partition bounds for a join relation between list
    1182             :  *      partitioned tables, if possible
    1183             :  *
    1184             :  * In this function we try to find sets of matching partitions from both sides
    1185             :  * by comparing list values stored in their partition bounds.  Since the list
    1186             :  * values appear in the ascending order, an algorithm similar to merge join is
    1187             :  * used for that.  If a partition on one side doesn't have a matching
    1188             :  * partition on the other side, the algorithm tries to match it with the
    1189             :  * default partition on the other side if any; if not, the algorithm tries to
    1190             :  * match it with a dummy partition on the other side if it's on the
    1191             :  * non-nullable side of an outer join.  Also, if both sides have the default
    1192             :  * partitions, the algorithm tries to match them with each other.  We give up
    1193             :  * if the algorithm finds a partition matching multiple partitions on the
    1194             :  * other side, which is the scenario the current implementation of partitioned
    1195             :  * join can't handle.
    1196             :  */
    1197             : static PartitionBoundInfo
    1198         486 : merge_list_bounds(FmgrInfo *partsupfunc, Oid *partcollation,
    1199             :                   RelOptInfo *outer_rel, RelOptInfo *inner_rel,
    1200             :                   JoinType jointype,
    1201             :                   List **outer_parts, List **inner_parts)
    1202             : {
    1203         486 :     PartitionBoundInfo merged_bounds = NULL;
    1204         486 :     PartitionBoundInfo outer_bi = outer_rel->boundinfo;
    1205         486 :     PartitionBoundInfo inner_bi = inner_rel->boundinfo;
    1206         486 :     bool        outer_has_default = partition_bound_has_default(outer_bi);
    1207         486 :     bool        inner_has_default = partition_bound_has_default(inner_bi);
    1208         486 :     int         outer_default = outer_bi->default_index;
    1209         486 :     int         inner_default = inner_bi->default_index;
    1210         486 :     bool        outer_has_null = partition_bound_accepts_nulls(outer_bi);
    1211         486 :     bool        inner_has_null = partition_bound_accepts_nulls(inner_bi);
    1212             :     PartitionMap outer_map;
    1213             :     PartitionMap inner_map;
    1214             :     int         outer_pos;
    1215             :     int         inner_pos;
    1216         486 :     int         next_index = 0;
    1217         486 :     int         null_index = -1;
    1218         486 :     int         default_index = -1;
    1219         486 :     List       *merged_datums = NIL;
    1220         486 :     List       *merged_indexes = NIL;
    1221             : 
    1222             :     Assert(*outer_parts == NIL);
    1223             :     Assert(*inner_parts == NIL);
    1224             :     Assert(outer_bi->strategy == inner_bi->strategy &&
    1225             :            outer_bi->strategy == PARTITION_STRATEGY_LIST);
    1226             :     /* List partitioning doesn't require kinds. */
    1227             :     Assert(!outer_bi->kind && !inner_bi->kind);
    1228             : 
    1229         486 :     init_partition_map(outer_rel, &outer_map);
    1230         486 :     init_partition_map(inner_rel, &inner_map);
    1231             : 
    1232             :     /*
    1233             :      * If the default partitions (if any) have been proven empty, deem them
    1234             :      * non-existent.
    1235             :      */
    1236         486 :     if (outer_has_default && is_dummy_partition(outer_rel, outer_default))
    1237          24 :         outer_has_default = false;
    1238         486 :     if (inner_has_default && is_dummy_partition(inner_rel, inner_default))
    1239           0 :         inner_has_default = false;
    1240             : 
    1241             :     /*
    1242             :      * Merge partitions from both sides.  In each iteration we compare a pair
    1243             :      * of list values, one from each side, and decide whether the
    1244             :      * corresponding partitions match or not.  If the two values match
    1245             :      * exactly, move to the next pair of list values, otherwise move to the
    1246             :      * next list value on the side with a smaller list value.
    1247             :      */
    1248         486 :     outer_pos = inner_pos = 0;
    1249        3822 :     while (outer_pos < outer_bi->ndatums || inner_pos < inner_bi->ndatums)
    1250             :     {
    1251        3384 :         int         outer_index = -1;
    1252        3384 :         int         inner_index = -1;
    1253             :         Datum      *outer_datums;
    1254             :         Datum      *inner_datums;
    1255             :         int         cmpval;
    1256        3384 :         Datum      *merged_datum = NULL;
    1257        3384 :         int         merged_index = -1;
    1258             : 
    1259        3384 :         if (outer_pos < outer_bi->ndatums)
    1260             :         {
    1261             :             /*
    1262             :              * If the partition on the outer side has been proven empty,
    1263             :              * ignore it and move to the next datum on the outer side.
    1264             :              */
    1265        3336 :             outer_index = outer_bi->indexes[outer_pos];
    1266        3336 :             if (is_dummy_partition(outer_rel, outer_index))
    1267             :             {
    1268         168 :                 outer_pos++;
    1269         168 :                 continue;
    1270             :             }
    1271             :         }
    1272        3216 :         if (inner_pos < inner_bi->ndatums)
    1273             :         {
    1274             :             /*
    1275             :              * If the partition on the inner side has been proven empty,
    1276             :              * ignore it and move to the next datum on the inner side.
    1277             :              */
    1278        3216 :             inner_index = inner_bi->indexes[inner_pos];
    1279        3216 :             if (is_dummy_partition(inner_rel, inner_index))
    1280             :             {
    1281           0 :                 inner_pos++;
    1282           0 :                 continue;
    1283             :             }
    1284             :         }
    1285             : 
    1286             :         /* Get the list values. */
    1287        6432 :         outer_datums = outer_pos < outer_bi->ndatums ?
    1288        3216 :             outer_bi->datums[outer_pos] : NULL;
    1289        6432 :         inner_datums = inner_pos < inner_bi->ndatums ?
    1290        3216 :             inner_bi->datums[inner_pos] : NULL;
    1291             : 
    1292             :         /*
    1293             :          * We run this loop till both sides finish.  This allows us to avoid
    1294             :          * duplicating code to handle the remaining values on the side which
    1295             :          * finishes later.  For that we set the comparison parameter cmpval in
    1296             :          * such a way that it appears as if the side which finishes earlier
    1297             :          * has an extra value higher than any other value on the unfinished
    1298             :          * side. That way we advance the values on the unfinished side till
    1299             :          * all of its values are exhausted.
    1300             :          */
    1301        3216 :         if (outer_pos >= outer_bi->ndatums)
    1302          48 :             cmpval = 1;
    1303        3168 :         else if (inner_pos >= inner_bi->ndatums)
    1304           0 :             cmpval = -1;
    1305             :         else
    1306             :         {
    1307             :             Assert(outer_datums != NULL && inner_datums != NULL);
    1308        3168 :             cmpval = DatumGetInt32(FunctionCall2Coll(&partsupfunc[0],
    1309             :                                                      partcollation[0],
    1310             :                                                      outer_datums[0],
    1311             :                                                      inner_datums[0]));
    1312             :         }
    1313             : 
    1314        3216 :         if (cmpval == 0)
    1315             :         {
    1316             :             /* Two list values match exactly. */
    1317             :             Assert(outer_pos < outer_bi->ndatums);
    1318             :             Assert(inner_pos < inner_bi->ndatums);
    1319             :             Assert(outer_index >= 0);
    1320             :             Assert(inner_index >= 0);
    1321             : 
    1322             :             /*
    1323             :              * Try merging both partitions.  If successful, add the list value
    1324             :              * and index of the merged partition below.
    1325             :              */
    1326        1644 :             merged_index = merge_matching_partitions(&outer_map, &inner_map,
    1327             :                                                      outer_index, inner_index,
    1328             :                                                      &next_index);
    1329        1644 :             if (merged_index == -1)
    1330          30 :                 goto cleanup;
    1331             : 
    1332        1614 :             merged_datum = outer_datums;
    1333             : 
    1334             :             /* Move to the next pair of list values. */
    1335        1614 :             outer_pos++;
    1336        1614 :             inner_pos++;
    1337             :         }
    1338        1572 :         else if (cmpval < 0)
    1339             :         {
    1340             :             /* A list value missing from the inner side. */
    1341             :             Assert(outer_pos < outer_bi->ndatums);
    1342             : 
    1343             :             /*
    1344             :              * If the inner side has the default partition, or this is an
    1345             :              * outer join, try to assign a merged partition to the outer
    1346             :              * partition (see process_outer_partition()).  Otherwise, the
    1347             :              * outer partition will not contribute to the result.
    1348             :              */
    1349         636 :             if (inner_has_default || IS_OUTER_JOIN(jointype))
    1350             :             {
    1351             :                 /* Get the outer partition. */
    1352         408 :                 outer_index = outer_bi->indexes[outer_pos];
    1353             :                 Assert(outer_index >= 0);
    1354         408 :                 merged_index = process_outer_partition(&outer_map,
    1355             :                                                        &inner_map,
    1356             :                                                        outer_has_default,
    1357             :                                                        inner_has_default,
    1358             :                                                        outer_index,
    1359             :                                                        inner_default,
    1360             :                                                        jointype,
    1361             :                                                        &next_index,
    1362             :                                                        &default_index);
    1363         408 :                 if (merged_index == -1)
    1364           6 :                     goto cleanup;
    1365         402 :                 merged_datum = outer_datums;
    1366             :             }
    1367             : 
    1368             :             /* Move to the next list value on the outer side. */
    1369         630 :             outer_pos++;
    1370             :         }
    1371             :         else
    1372             :         {
    1373             :             /* A list value missing from the outer side. */
    1374             :             Assert(cmpval > 0);
    1375             :             Assert(inner_pos < inner_bi->ndatums);
    1376             : 
    1377             :             /*
    1378             :              * If the outer side has the default partition, or this is a FULL
    1379             :              * join, try to assign a merged partition to the inner partition
    1380             :              * (see process_inner_partition()).  Otherwise, the inner
    1381             :              * partition will not contribute to the result.
    1382             :              */
    1383         936 :             if (outer_has_default || jointype == JOIN_FULL)
    1384             :             {
    1385             :                 /* Get the inner partition. */
    1386         252 :                 inner_index = inner_bi->indexes[inner_pos];
    1387             :                 Assert(inner_index >= 0);
    1388         252 :                 merged_index = process_inner_partition(&outer_map,
    1389             :                                                        &inner_map,
    1390             :                                                        outer_has_default,
    1391             :                                                        inner_has_default,
    1392             :                                                        inner_index,
    1393             :                                                        outer_default,
    1394             :                                                        jointype,
    1395             :                                                        &next_index,
    1396             :                                                        &default_index);
    1397         252 :                 if (merged_index == -1)
    1398          12 :                     goto cleanup;
    1399         240 :                 merged_datum = inner_datums;
    1400             :             }
    1401             : 
    1402             :             /* Move to the next list value on the inner side. */
    1403         924 :             inner_pos++;
    1404             :         }
    1405             : 
    1406             :         /*
    1407             :          * If we assigned a merged partition, add the list value and index of
    1408             :          * the merged partition if appropriate.
    1409             :          */
    1410        3168 :         if (merged_index >= 0 && merged_index != default_index)
    1411             :         {
    1412        2184 :             merged_datums = lappend(merged_datums, merged_datum);
    1413        2184 :             merged_indexes = lappend_int(merged_indexes, merged_index);
    1414             :         }
    1415             :     }
    1416             : 
    1417             :     /*
    1418             :      * If the NULL partitions (if any) have been proven empty, deem them
    1419             :      * non-existent.
    1420             :      */
    1421         630 :     if (outer_has_null &&
    1422         192 :         is_dummy_partition(outer_rel, outer_bi->null_index))
    1423           0 :         outer_has_null = false;
    1424         630 :     if (inner_has_null &&
    1425         192 :         is_dummy_partition(inner_rel, inner_bi->null_index))
    1426           0 :         inner_has_null = false;
    1427             : 
    1428             :     /* Merge the NULL partitions if any. */
    1429         438 :     if (outer_has_null || inner_has_null)
    1430         216 :         merge_null_partitions(&outer_map, &inner_map,
    1431             :                               outer_has_null, inner_has_null,
    1432             :                               outer_bi->null_index, inner_bi->null_index,
    1433             :                               jointype, &next_index, &null_index);
    1434             :     else
    1435             :         Assert(null_index == -1);
    1436             : 
    1437             :     /* Merge the default partitions if any. */
    1438         438 :     if (outer_has_default || inner_has_default)
    1439          96 :         merge_default_partitions(&outer_map, &inner_map,
    1440             :                                  outer_has_default, inner_has_default,
    1441             :                                  outer_default, inner_default,
    1442             :                                  jointype, &next_index, &default_index);
    1443             :     else
    1444             :         Assert(default_index == -1);
    1445             : 
    1446             :     /* If we have merged partitions, create the partition bounds. */
    1447         438 :     if (next_index > 0)
    1448             :     {
    1449             :         /* Fix the merged_indexes list if necessary. */
    1450         438 :         if (outer_map.did_remapping || inner_map.did_remapping)
    1451             :         {
    1452             :             Assert(jointype == JOIN_FULL);
    1453          48 :             fix_merged_indexes(&outer_map, &inner_map,
    1454             :                                next_index, merged_indexes);
    1455             :         }
    1456             : 
    1457             :         /* Use maps to match partitions from inputs. */
    1458         438 :         generate_matching_part_pairs(outer_rel, inner_rel,
    1459             :                                      &outer_map, &inner_map,
    1460             :                                      next_index,
    1461             :                                      outer_parts, inner_parts);
    1462             :         Assert(*outer_parts != NIL);
    1463             :         Assert(*inner_parts != NIL);
    1464             :         Assert(list_length(*outer_parts) == list_length(*inner_parts));
    1465             :         Assert(list_length(*outer_parts) <= next_index);
    1466             : 
    1467             :         /* Make a PartitionBoundInfo struct to return. */
    1468         438 :         merged_bounds = build_merged_partition_bounds(outer_bi->strategy,
    1469             :                                                       merged_datums,
    1470             :                                                       NIL,
    1471             :                                                       merged_indexes,
    1472             :                                                       null_index,
    1473             :                                                       default_index);
    1474             :         Assert(merged_bounds);
    1475             :     }
    1476             : 
    1477           0 : cleanup:
    1478             :     /* Free local memory before returning. */
    1479         486 :     list_free(merged_datums);
    1480         486 :     list_free(merged_indexes);
    1481         486 :     free_partition_map(&outer_map);
    1482         486 :     free_partition_map(&inner_map);
    1483             : 
    1484         486 :     return merged_bounds;
    1485             : }
    1486             : 
    1487             : /*
    1488             :  * merge_range_bounds
    1489             :  *      Create the partition bounds for a join relation between range
    1490             :  *      partitioned tables, if possible
    1491             :  *
    1492             :  * In this function we try to find sets of overlapping partitions from both
    1493             :  * sides by comparing ranges stored in their partition bounds.  Since the
    1494             :  * ranges appear in the ascending order, an algorithm similar to merge join is
    1495             :  * used for that.  If a partition on one side doesn't have an overlapping
    1496             :  * partition on the other side, the algorithm tries to match it with the
    1497             :  * default partition on the other side if any; if not, the algorithm tries to
    1498             :  * match it with a dummy partition on the other side if it's on the
    1499             :  * non-nullable side of an outer join.  Also, if both sides have the default
    1500             :  * partitions, the algorithm tries to match them with each other.  We give up
    1501             :  * if the algorithm finds a partition overlapping multiple partitions on the
    1502             :  * other side, which is the scenario the current implementation of partitioned
    1503             :  * join can't handle.
    1504             :  */
    1505             : static PartitionBoundInfo
    1506         360 : merge_range_bounds(int partnatts, FmgrInfo *partsupfuncs,
    1507             :                    Oid *partcollations,
    1508             :                    RelOptInfo *outer_rel, RelOptInfo *inner_rel,
    1509             :                    JoinType jointype,
    1510             :                    List **outer_parts, List **inner_parts)
    1511             : {
    1512         360 :     PartitionBoundInfo merged_bounds = NULL;
    1513         360 :     PartitionBoundInfo outer_bi = outer_rel->boundinfo;
    1514         360 :     PartitionBoundInfo inner_bi = inner_rel->boundinfo;
    1515         360 :     bool        outer_has_default = partition_bound_has_default(outer_bi);
    1516         360 :     bool        inner_has_default = partition_bound_has_default(inner_bi);
    1517         360 :     int         outer_default = outer_bi->default_index;
    1518         360 :     int         inner_default = inner_bi->default_index;
    1519             :     PartitionMap outer_map;
    1520             :     PartitionMap inner_map;
    1521             :     int         outer_index;
    1522             :     int         inner_index;
    1523             :     int         outer_lb_pos;
    1524             :     int         inner_lb_pos;
    1525             :     PartitionRangeBound outer_lb;
    1526             :     PartitionRangeBound outer_ub;
    1527             :     PartitionRangeBound inner_lb;
    1528             :     PartitionRangeBound inner_ub;
    1529         360 :     int         next_index = 0;
    1530         360 :     int         default_index = -1;
    1531         360 :     List       *merged_datums = NIL;
    1532         360 :     List       *merged_kinds = NIL;
    1533         360 :     List       *merged_indexes = NIL;
    1534             : 
    1535             :     Assert(*outer_parts == NIL);
    1536             :     Assert(*inner_parts == NIL);
    1537             :     Assert(outer_bi->strategy == inner_bi->strategy &&
    1538             :            outer_bi->strategy == PARTITION_STRATEGY_RANGE);
    1539             : 
    1540         360 :     init_partition_map(outer_rel, &outer_map);
    1541         360 :     init_partition_map(inner_rel, &inner_map);
    1542             : 
    1543             :     /*
    1544             :      * If the default partitions (if any) have been proven empty, deem them
    1545             :      * non-existent.
    1546             :      */
    1547         360 :     if (outer_has_default && is_dummy_partition(outer_rel, outer_default))
    1548          12 :         outer_has_default = false;
    1549         360 :     if (inner_has_default && is_dummy_partition(inner_rel, inner_default))
    1550           0 :         inner_has_default = false;
    1551             : 
    1552             :     /*
    1553             :      * Merge partitions from both sides.  In each iteration we compare a pair
    1554             :      * of ranges, one from each side, and decide whether the corresponding
    1555             :      * partitions match or not.  If the two ranges overlap, move to the next
    1556             :      * pair of ranges, otherwise move to the next range on the side with a
    1557             :      * lower range.  outer_lb_pos/inner_lb_pos keep track of the positions of
    1558             :      * lower bounds in the datums arrays in the outer/inner
    1559             :      * PartitionBoundInfos respectively.
    1560             :      */
    1561         360 :     outer_lb_pos = inner_lb_pos = 0;
    1562         360 :     outer_index = get_range_partition(outer_rel, outer_bi, &outer_lb_pos,
    1563             :                                       &outer_lb, &outer_ub);
    1564         360 :     inner_index = get_range_partition(inner_rel, inner_bi, &inner_lb_pos,
    1565             :                                       &inner_lb, &inner_ub);
    1566        1284 :     while (outer_index >= 0 || inner_index >= 0)
    1567             :     {
    1568             :         bool        overlap;
    1569             :         int         ub_cmpval;
    1570             :         int         lb_cmpval;
    1571         990 :         PartitionRangeBound merged_lb = {-1, NULL, NULL, true};
    1572         990 :         PartitionRangeBound merged_ub = {-1, NULL, NULL, false};
    1573         990 :         int         merged_index = -1;
    1574             : 
    1575             :         /*
    1576             :          * We run this loop till both sides finish.  This allows us to avoid
    1577             :          * duplicating code to handle the remaining ranges on the side which
    1578             :          * finishes later.  For that we set the comparison parameter cmpval in
    1579             :          * such a way that it appears as if the side which finishes earlier
    1580             :          * has an extra range higher than any other range on the unfinished
    1581             :          * side. That way we advance the ranges on the unfinished side till
    1582             :          * all of its ranges are exhausted.
    1583             :          */
    1584         990 :         if (outer_index == -1)
    1585             :         {
    1586          90 :             overlap = false;
    1587          90 :             lb_cmpval = 1;
    1588          90 :             ub_cmpval = 1;
    1589             :         }
    1590         900 :         else if (inner_index == -1)
    1591             :         {
    1592          36 :             overlap = false;
    1593          36 :             lb_cmpval = -1;
    1594          36 :             ub_cmpval = -1;
    1595             :         }
    1596             :         else
    1597         864 :             overlap = compare_range_partitions(partnatts, partsupfuncs,
    1598             :                                                partcollations,
    1599             :                                                &outer_lb, &outer_ub,
    1600             :                                                &inner_lb, &inner_ub,
    1601             :                                                &lb_cmpval, &ub_cmpval);
    1602             : 
    1603         990 :         if (overlap)
    1604             :         {
    1605             :             /* Two ranges overlap; form a join pair. */
    1606             : 
    1607             :             PartitionRangeBound save_outer_ub;
    1608             :             PartitionRangeBound save_inner_ub;
    1609             : 
    1610             :             /* Both partitions should not have been merged yet. */
    1611             :             Assert(outer_index >= 0);
    1612             :             Assert(outer_map.merged_indexes[outer_index] == -1 &&
    1613             :                    outer_map.merged[outer_index] == false);
    1614             :             Assert(inner_index >= 0);
    1615             :             Assert(inner_map.merged_indexes[inner_index] == -1 &&
    1616             :                    inner_map.merged[inner_index] == false);
    1617             : 
    1618             :             /*
    1619             :              * Get the index of the merged partition.  Both partitions aren't
    1620             :              * merged yet, so the partitions should be merged successfully.
    1621             :              */
    1622         828 :             merged_index = merge_matching_partitions(&outer_map, &inner_map,
    1623             :                                                      outer_index, inner_index,
    1624             :                                                      &next_index);
    1625             :             Assert(merged_index >= 0);
    1626             : 
    1627             :             /* Get the range bounds of the merged partition. */
    1628         828 :             get_merged_range_bounds(partnatts, partsupfuncs,
    1629             :                                     partcollations, jointype,
    1630             :                                     &outer_lb, &outer_ub,
    1631             :                                     &inner_lb, &inner_ub,
    1632             :                                     lb_cmpval, ub_cmpval,
    1633             :                                     &merged_lb, &merged_ub);
    1634             : 
    1635             :             /* Save the upper bounds of both partitions for use below. */
    1636         828 :             save_outer_ub = outer_ub;
    1637         828 :             save_inner_ub = inner_ub;
    1638             : 
    1639             :             /* Move to the next pair of ranges. */
    1640         828 :             outer_index = get_range_partition(outer_rel, outer_bi, &outer_lb_pos,
    1641             :                                               &outer_lb, &outer_ub);
    1642         828 :             inner_index = get_range_partition(inner_rel, inner_bi, &inner_lb_pos,
    1643             :                                               &inner_lb, &inner_ub);
    1644             : 
    1645             :             /*
    1646             :              * If the range of a partition on one side overlaps the range of
    1647             :              * the next partition on the other side, that will cause the
    1648             :              * partition on one side to match at least two partitions on the
    1649             :              * other side, which is the case that we currently don't support
    1650             :              * partitioned join for; give up.
    1651             :              */
    1652        1032 :             if (ub_cmpval > 0 && inner_index >= 0 &&
    1653         204 :                 compare_range_bounds(partnatts, partsupfuncs, partcollations,
    1654             :                                      &save_outer_ub, &inner_lb) > 0)
    1655          60 :                 goto cleanup;
    1656         858 :             if (ub_cmpval < 0 && outer_index >= 0 &&
    1657          66 :                 compare_range_bounds(partnatts, partsupfuncs, partcollations,
    1658             :                                      &outer_lb, &save_inner_ub) < 0)
    1659          18 :                 goto cleanup;
    1660             : 
    1661             :             /*
    1662             :              * A row from a non-overlapping portion (if any) of a partition on
    1663             :              * one side might find its join partner in the default partition
    1664             :              * (if any) on the other side, causing the same situation as
    1665             :              * above; give up in that case.
    1666             :              */
    1667         774 :             if ((outer_has_default && (lb_cmpval > 0 || ub_cmpval < 0)) ||
    1668          24 :                 (inner_has_default && (lb_cmpval < 0 || ub_cmpval > 0)))
    1669           6 :                 goto cleanup;
    1670             :         }
    1671         162 :         else if (ub_cmpval < 0)
    1672             :         {
    1673             :             /* A non-overlapping outer range. */
    1674             : 
    1675             :             /* The outer partition should not have been merged yet. */
    1676             :             Assert(outer_index >= 0);
    1677             :             Assert(outer_map.merged_indexes[outer_index] == -1 &&
    1678             :                    outer_map.merged[outer_index] == false);
    1679             : 
    1680             :             /*
    1681             :              * If the inner side has the default partition, or this is an
    1682             :              * outer join, try to assign a merged partition to the outer
    1683             :              * partition (see process_outer_partition()).  Otherwise, the
    1684             :              * outer partition will not contribute to the result.
    1685             :              */
    1686          36 :             if (inner_has_default || IS_OUTER_JOIN(jointype))
    1687             :             {
    1688          24 :                 merged_index = process_outer_partition(&outer_map,
    1689             :                                                        &inner_map,
    1690             :                                                        outer_has_default,
    1691             :                                                        inner_has_default,
    1692             :                                                        outer_index,
    1693             :                                                        inner_default,
    1694             :                                                        jointype,
    1695             :                                                        &next_index,
    1696             :                                                        &default_index);
    1697          24 :                 if (merged_index == -1)
    1698           0 :                     goto cleanup;
    1699          24 :                 merged_lb = outer_lb;
    1700          24 :                 merged_ub = outer_ub;
    1701             :             }
    1702             : 
    1703             :             /* Move to the next range on the outer side. */
    1704          36 :             outer_index = get_range_partition(outer_rel, outer_bi, &outer_lb_pos,
    1705             :                                               &outer_lb, &outer_ub);
    1706             :         }
    1707             :         else
    1708             :         {
    1709             :             /* A non-overlapping inner range. */
    1710             :             Assert(ub_cmpval > 0);
    1711             : 
    1712             :             /* The inner partition should not have been merged yet. */
    1713             :             Assert(inner_index >= 0);
    1714             :             Assert(inner_map.merged_indexes[inner_index] == -1 &&
    1715             :                    inner_map.merged[inner_index] == false);
    1716             : 
    1717             :             /*
    1718             :              * If the outer side has the default partition, or this is a FULL
    1719             :              * join, try to assign a merged partition to the inner partition
    1720             :              * (see process_inner_partition()).  Otherwise, the inner
    1721             :              * partition will not contribute to the result.
    1722             :              */
    1723         126 :             if (outer_has_default || jointype == JOIN_FULL)
    1724             :             {
    1725          66 :                 merged_index = process_inner_partition(&outer_map,
    1726             :                                                        &inner_map,
    1727             :                                                        outer_has_default,
    1728             :                                                        inner_has_default,
    1729             :                                                        inner_index,
    1730             :                                                        outer_default,
    1731             :                                                        jointype,
    1732             :                                                        &next_index,
    1733             :                                                        &default_index);
    1734          66 :                 if (merged_index == -1)
    1735           6 :                     goto cleanup;
    1736          60 :                 merged_lb = inner_lb;
    1737          60 :                 merged_ub = inner_ub;
    1738             :             }
    1739             : 
    1740             :             /* Move to the next range on the inner side. */
    1741         120 :             inner_index = get_range_partition(inner_rel, inner_bi, &inner_lb_pos,
    1742             :                                               &inner_lb, &inner_ub);
    1743             :         }
    1744             : 
    1745             :         /*
    1746             :          * If we assigned a merged partition, add the range bounds and index
    1747             :          * of the merged partition if appropriate.
    1748             :          */
    1749         924 :         if (merged_index >= 0 && merged_index != default_index)
    1750         816 :             add_merged_range_bounds(partnatts, partsupfuncs, partcollations,
    1751             :                                     &merged_lb, &merged_ub, merged_index,
    1752             :                                     &merged_datums, &merged_kinds,
    1753             :                                     &merged_indexes);
    1754             :     }
    1755             : 
    1756             :     /* Merge the default partitions if any. */
    1757         294 :     if (outer_has_default || inner_has_default)
    1758          60 :         merge_default_partitions(&outer_map, &inner_map,
    1759             :                                  outer_has_default, inner_has_default,
    1760             :                                  outer_default, inner_default,
    1761             :                                  jointype, &next_index, &default_index);
    1762             :     else
    1763             :         Assert(default_index == -1);
    1764             : 
    1765             :     /* If we have merged partitions, create the partition bounds. */
    1766         294 :     if (next_index > 0)
    1767             :     {
    1768             :         /*
    1769             :          * Unlike the case of list partitioning, we wouldn't have re-merged
    1770             :          * partitions, so did_remapping should be left alone.
    1771             :          */
    1772             :         Assert(!outer_map.did_remapping);
    1773             :         Assert(!inner_map.did_remapping);
    1774             : 
    1775             :         /* Use maps to match partitions from inputs. */
    1776         294 :         generate_matching_part_pairs(outer_rel, inner_rel,
    1777             :                                      &outer_map, &inner_map,
    1778             :                                      next_index,
    1779             :                                      outer_parts, inner_parts);
    1780             :         Assert(*outer_parts != NIL);
    1781             :         Assert(*inner_parts != NIL);
    1782             :         Assert(list_length(*outer_parts) == list_length(*inner_parts));
    1783             :         Assert(list_length(*outer_parts) == next_index);
    1784             : 
    1785             :         /* Make a PartitionBoundInfo struct to return. */
    1786         294 :         merged_bounds = build_merged_partition_bounds(outer_bi->strategy,
    1787             :                                                       merged_datums,
    1788             :                                                       merged_kinds,
    1789             :                                                       merged_indexes,
    1790             :                                                       -1,
    1791             :                                                       default_index);
    1792             :         Assert(merged_bounds);
    1793             :     }
    1794             : 
    1795           0 : cleanup:
    1796             :     /* Free local memory before returning. */
    1797         360 :     list_free(merged_datums);
    1798         360 :     list_free(merged_kinds);
    1799         360 :     list_free(merged_indexes);
    1800         360 :     free_partition_map(&outer_map);
    1801         360 :     free_partition_map(&inner_map);
    1802             : 
    1803         360 :     return merged_bounds;
    1804             : }
    1805             : 
    1806             : /*
    1807             :  * init_partition_map
    1808             :  *      Initialize a PartitionMap struct for given relation
    1809             :  */
    1810             : static void
    1811        1692 : init_partition_map(RelOptInfo *rel, PartitionMap *map)
    1812             : {
    1813        1692 :     int         nparts = rel->nparts;
    1814             :     int         i;
    1815             : 
    1816        1692 :     map->nparts = nparts;
    1817        1692 :     map->merged_indexes = (int *) palloc(sizeof(int) * nparts);
    1818        1692 :     map->merged = (bool *) palloc(sizeof(bool) * nparts);
    1819        1692 :     map->did_remapping = false;
    1820        1692 :     map->old_indexes = (int *) palloc(sizeof(int) * nparts);
    1821        6870 :     for (i = 0; i < nparts; i++)
    1822             :     {
    1823        5178 :         map->merged_indexes[i] = map->old_indexes[i] = -1;
    1824        5178 :         map->merged[i] = false;
    1825             :     }
    1826        1692 : }
    1827             : 
    1828             : /*
    1829             :  * free_partition_map
    1830             :  */
    1831             : static void
    1832        1692 : free_partition_map(PartitionMap *map)
    1833             : {
    1834        1692 :     pfree(map->merged_indexes);
    1835        1692 :     pfree(map->merged);
    1836        1692 :     pfree(map->old_indexes);
    1837        1692 : }
    1838             : 
    1839             : /*
    1840             :  * is_dummy_partition --- has partition been proven empty?
    1841             :  */
    1842             : static bool
    1843        9144 : is_dummy_partition(RelOptInfo *rel, int part_index)
    1844             : {
    1845             :     RelOptInfo *part_rel;
    1846             : 
    1847             :     Assert(part_index >= 0);
    1848        9144 :     part_rel = rel->part_rels[part_index];
    1849        9144 :     if (part_rel == NULL || IS_DUMMY_REL(part_rel))
    1850         252 :         return true;
    1851        8892 :     return false;
    1852             : }
    1853             : 
    1854             : /*
    1855             :  * merge_matching_partitions
    1856             :  *      Try to merge given outer/inner partitions, and return the index of a
    1857             :  *      merged partition produced from them if successful, -1 otherwise
    1858             :  *
    1859             :  * If the merged partition is newly created, *next_index is incremented.
    1860             :  */
    1861             : static int
    1862        2718 : merge_matching_partitions(PartitionMap *outer_map, PartitionMap *inner_map,
    1863             :                           int outer_index, int inner_index, int *next_index)
    1864             : {
    1865             :     int         outer_merged_index;
    1866             :     int         inner_merged_index;
    1867             :     bool        outer_merged;
    1868             :     bool        inner_merged;
    1869             : 
    1870             :     Assert(outer_index >= 0 && outer_index < outer_map->nparts);
    1871        2718 :     outer_merged_index = outer_map->merged_indexes[outer_index];
    1872        2718 :     outer_merged = outer_map->merged[outer_index];
    1873             :     Assert(inner_index >= 0 && inner_index < inner_map->nparts);
    1874        2718 :     inner_merged_index = inner_map->merged_indexes[inner_index];
    1875        2718 :     inner_merged = inner_map->merged[inner_index];
    1876             : 
    1877             :     /*
    1878             :      * Handle cases where we have already assigned a merged partition to each
    1879             :      * of the given partitions.
    1880             :      */
    1881        2718 :     if (outer_merged_index >= 0 && inner_merged_index >= 0)
    1882             :     {
    1883             :         /*
    1884             :          * If the merged partitions are the same, no need to do anything;
    1885             :          * return the index of the merged partitions.  Otherwise, if each of
    1886             :          * the given partitions has been merged with a dummy partition on the
    1887             :          * other side, re-map them to either of the two merged partitions.
    1888             :          * Otherwise, they can't be merged, so return -1.
    1889             :          */
    1890         660 :         if (outer_merged_index == inner_merged_index)
    1891             :         {
    1892             :             Assert(outer_merged);
    1893             :             Assert(inner_merged);
    1894         552 :             return outer_merged_index;
    1895             :         }
    1896         108 :         if (!outer_merged && !inner_merged)
    1897             :         {
    1898             :             /*
    1899             :              * This can only happen for a list-partitioning case.  We re-map
    1900             :              * them to the merged partition with the smaller of the two merged
    1901             :              * indexes to preserve the property that the canonical order of
    1902             :              * list partitions is determined by the indexes assigned to the
    1903             :              * smallest list value of each partition.
    1904             :              */
    1905         102 :             if (outer_merged_index < inner_merged_index)
    1906             :             {
    1907          54 :                 outer_map->merged[outer_index] = true;
    1908          54 :                 inner_map->merged_indexes[inner_index] = outer_merged_index;
    1909          54 :                 inner_map->merged[inner_index] = true;
    1910          54 :                 inner_map->did_remapping = true;
    1911          54 :                 inner_map->old_indexes[inner_index] = inner_merged_index;
    1912          54 :                 return outer_merged_index;
    1913             :             }
    1914             :             else
    1915             :             {
    1916          48 :                 inner_map->merged[inner_index] = true;
    1917          48 :                 outer_map->merged_indexes[outer_index] = inner_merged_index;
    1918          48 :                 outer_map->merged[outer_index] = true;
    1919          48 :                 outer_map->did_remapping = true;
    1920          48 :                 outer_map->old_indexes[outer_index] = outer_merged_index;
    1921          48 :                 return inner_merged_index;
    1922             :             }
    1923             :         }
    1924           6 :         return -1;
    1925             :     }
    1926             : 
    1927             :     /* At least one of the given partitions should not have yet been merged. */
    1928             :     Assert(outer_merged_index == -1 || inner_merged_index == -1);
    1929             : 
    1930             :     /*
    1931             :      * If neither of them has been merged, merge them.  Otherwise, if one has
    1932             :      * been merged with a dummy partition on the other side (and the other
    1933             :      * hasn't yet been merged with anything), re-merge them.  Otherwise, they
    1934             :      * can't be merged, so return -1.
    1935             :      */
    1936        2058 :     if (outer_merged_index == -1 && inner_merged_index == -1)
    1937             :     {
    1938        1758 :         int         merged_index = *next_index;
    1939             : 
    1940             :         Assert(!outer_merged);
    1941             :         Assert(!inner_merged);
    1942        1758 :         outer_map->merged_indexes[outer_index] = merged_index;
    1943        1758 :         outer_map->merged[outer_index] = true;
    1944        1758 :         inner_map->merged_indexes[inner_index] = merged_index;
    1945        1758 :         inner_map->merged[inner_index] = true;
    1946        1758 :         *next_index = *next_index + 1;
    1947        1758 :         return merged_index;
    1948             :     }
    1949         300 :     if (outer_merged_index >= 0 && !outer_map->merged[outer_index])
    1950             :     {
    1951             :         Assert(inner_merged_index == -1);
    1952             :         Assert(!inner_merged);
    1953         264 :         inner_map->merged_indexes[inner_index] = outer_merged_index;
    1954         264 :         inner_map->merged[inner_index] = true;
    1955         264 :         outer_map->merged[outer_index] = true;
    1956         264 :         return outer_merged_index;
    1957             :     }
    1958          36 :     if (inner_merged_index >= 0 && !inner_map->merged[inner_index])
    1959             :     {
    1960             :         Assert(outer_merged_index == -1);
    1961             :         Assert(!outer_merged);
    1962           0 :         outer_map->merged_indexes[outer_index] = inner_merged_index;
    1963           0 :         outer_map->merged[outer_index] = true;
    1964           0 :         inner_map->merged[inner_index] = true;
    1965           0 :         return inner_merged_index;
    1966             :     }
    1967          36 :     return -1;
    1968             : }
    1969             : 
    1970             : /*
    1971             :  * process_outer_partition
    1972             :  *      Try to assign given outer partition a merged partition, and return the
    1973             :  *      index of the merged partition if successful, -1 otherwise
    1974             :  *
    1975             :  * If the partition is newly created, *next_index is incremented.  Also, if it
    1976             :  * is the default partition of the join relation, *default_index is set to the
    1977             :  * index if not already done.
    1978             :  */
    1979             : static int
    1980         432 : process_outer_partition(PartitionMap *outer_map,
    1981             :                         PartitionMap *inner_map,
    1982             :                         bool outer_has_default,
    1983             :                         bool inner_has_default,
    1984             :                         int outer_index,
    1985             :                         int inner_default,
    1986             :                         JoinType jointype,
    1987             :                         int *next_index,
    1988             :                         int *default_index)
    1989             : {
    1990         432 :     int         merged_index = -1;
    1991             : 
    1992             :     Assert(outer_index >= 0);
    1993             : 
    1994             :     /*
    1995             :      * If the inner side has the default partition, a row from the outer
    1996             :      * partition might find its join partner in the default partition; try
    1997             :      * merging the outer partition with the default partition.  Otherwise,
    1998             :      * this should be an outer join, in which case the outer partition has to
    1999             :      * be scanned all the way anyway; merge the outer partition with a dummy
    2000             :      * partition on the other side.
    2001             :      */
    2002         432 :     if (inner_has_default)
    2003             :     {
    2004             :         Assert(inner_default >= 0);
    2005             : 
    2006             :         /*
    2007             :          * If the outer side has the default partition as well, the default
    2008             :          * partition on the inner side will have two matching partitions on
    2009             :          * the other side: the outer partition and the default partition on
    2010             :          * the outer side.  Partitionwise join doesn't handle this scenario
    2011             :          * yet.
    2012             :          */
    2013           6 :         if (outer_has_default)
    2014           0 :             return -1;
    2015             : 
    2016           6 :         merged_index = merge_matching_partitions(outer_map, inner_map,
    2017             :                                                  outer_index, inner_default,
    2018             :                                                  next_index);
    2019           6 :         if (merged_index == -1)
    2020           6 :             return -1;
    2021             : 
    2022             :         /*
    2023             :          * If this is a FULL join, the default partition on the inner side has
    2024             :          * to be scanned all the way anyway, so the resulting partition will
    2025             :          * contain all key values from the default partition, which any other
    2026             :          * partition of the join relation will not contain.  Thus the
    2027             :          * resulting partition will act as the default partition of the join
    2028             :          * relation; record the index in *default_index if not already done.
    2029             :          */
    2030           0 :         if (jointype == JOIN_FULL)
    2031             :         {
    2032           0 :             if (*default_index == -1)
    2033           0 :                 *default_index = merged_index;
    2034             :             else
    2035             :                 Assert(*default_index == merged_index);
    2036             :         }
    2037             :     }
    2038             :     else
    2039             :     {
    2040             :         Assert(IS_OUTER_JOIN(jointype));
    2041             :         Assert(jointype != JOIN_RIGHT);
    2042             : 
    2043             :         /* If we have already assigned a partition, no need to do anything. */
    2044         426 :         merged_index = outer_map->merged_indexes[outer_index];
    2045         426 :         if (merged_index == -1)
    2046         402 :             merged_index = merge_partition_with_dummy(outer_map, outer_index,
    2047             :                                                       next_index);
    2048             :     }
    2049         426 :     return merged_index;
    2050             : }
    2051             : 
    2052             : /*
    2053             :  * process_inner_partition
    2054             :  *      Try to assign given inner partition a merged partition, and return the
    2055             :  *      index of the merged partition if successful, -1 otherwise
    2056             :  *
    2057             :  * If the partition is newly created, *next_index is incremented.  Also, if it
    2058             :  * is the default partition of the join relation, *default_index is set to the
    2059             :  * index if not already done.
    2060             :  */
    2061             : static int
    2062         318 : process_inner_partition(PartitionMap *outer_map,
    2063             :                         PartitionMap *inner_map,
    2064             :                         bool outer_has_default,
    2065             :                         bool inner_has_default,
    2066             :                         int inner_index,
    2067             :                         int outer_default,
    2068             :                         JoinType jointype,
    2069             :                         int *next_index,
    2070             :                         int *default_index)
    2071             : {
    2072         318 :     int         merged_index = -1;
    2073             : 
    2074             :     Assert(inner_index >= 0);
    2075             : 
    2076             :     /*
    2077             :      * If the outer side has the default partition, a row from the inner
    2078             :      * partition might find its join partner in the default partition; try
    2079             :      * merging the inner partition with the default partition.  Otherwise,
    2080             :      * this should be a FULL join, in which case the inner partition has to be
    2081             :      * scanned all the way anyway; merge the inner partition with a dummy
    2082             :      * partition on the other side.
    2083             :      */
    2084         318 :     if (outer_has_default)
    2085             :     {
    2086             :         Assert(outer_default >= 0);
    2087             : 
    2088             :         /*
    2089             :          * If the inner side has the default partition as well, the default
    2090             :          * partition on the outer side will have two matching partitions on
    2091             :          * the other side: the inner partition and the default partition on
    2092             :          * the inner side.  Partitionwise join doesn't handle this scenario
    2093             :          * yet.
    2094             :          */
    2095         204 :         if (inner_has_default)
    2096          12 :             return -1;
    2097             : 
    2098         192 :         merged_index = merge_matching_partitions(outer_map, inner_map,
    2099             :                                                  outer_default, inner_index,
    2100             :                                                  next_index);
    2101         192 :         if (merged_index == -1)
    2102           6 :             return -1;
    2103             : 
    2104             :         /*
    2105             :          * If this is an outer join, the default partition on the outer side
    2106             :          * has to be scanned all the way anyway, so the resulting partition
    2107             :          * will contain all key values from the default partition, which any
    2108             :          * other partition of the join relation will not contain.  Thus the
    2109             :          * resulting partition will act as the default partition of the join
    2110             :          * relation; record the index in *default_index if not already done.
    2111             :          */
    2112         186 :         if (IS_OUTER_JOIN(jointype))
    2113             :         {
    2114             :             Assert(jointype != JOIN_RIGHT);
    2115         108 :             if (*default_index == -1)
    2116          72 :                 *default_index = merged_index;
    2117             :             else
    2118             :                 Assert(*default_index == merged_index);
    2119             :         }
    2120             :     }
    2121             :     else
    2122             :     {
    2123             :         Assert(jointype == JOIN_FULL);
    2124             : 
    2125             :         /* If we have already assigned a partition, no need to do anything. */
    2126         114 :         merged_index = inner_map->merged_indexes[inner_index];
    2127         114 :         if (merged_index == -1)
    2128         114 :             merged_index = merge_partition_with_dummy(inner_map, inner_index,
    2129             :                                                       next_index);
    2130             :     }
    2131         300 :     return merged_index;
    2132             : }
    2133             : 
    2134             : /*
    2135             :  * merge_null_partitions
    2136             :  *      Merge the NULL partitions from a join's outer and inner sides.
    2137             :  *
    2138             :  * If the merged partition produced from them is the NULL partition of the join
    2139             :  * relation, *null_index is set to the index of the merged partition.
    2140             :  *
    2141             :  * Note: We assume here that the join clause for a partitioned join is strict
    2142             :  * because have_partkey_equi_join() requires that the corresponding operator
    2143             :  * be mergejoinable, and we currently assume that mergejoinable operators are
    2144             :  * strict (see MJEvalOuterValues()/MJEvalInnerValues()).
    2145             :  */
    2146             : static void
    2147         216 : merge_null_partitions(PartitionMap *outer_map,
    2148             :                       PartitionMap *inner_map,
    2149             :                       bool outer_has_null,
    2150             :                       bool inner_has_null,
    2151             :                       int outer_null,
    2152             :                       int inner_null,
    2153             :                       JoinType jointype,
    2154             :                       int *next_index,
    2155             :                       int *null_index)
    2156             : {
    2157         216 :     bool        consider_outer_null = false;
    2158         216 :     bool        consider_inner_null = false;
    2159             : 
    2160             :     Assert(outer_has_null || inner_has_null);
    2161             :     Assert(*null_index == -1);
    2162             : 
    2163             :     /*
    2164             :      * Check whether the NULL partitions have already been merged and if so,
    2165             :      * set the consider_outer_null/consider_inner_null flags.
    2166             :      */
    2167         216 :     if (outer_has_null)
    2168             :     {
    2169             :         Assert(outer_null >= 0 && outer_null < outer_map->nparts);
    2170         192 :         if (outer_map->merged_indexes[outer_null] == -1)
    2171          84 :             consider_outer_null = true;
    2172             :     }
    2173         216 :     if (inner_has_null)
    2174             :     {
    2175             :         Assert(inner_null >= 0 && inner_null < inner_map->nparts);
    2176         192 :         if (inner_map->merged_indexes[inner_null] == -1)
    2177         120 :             consider_inner_null = true;
    2178             :     }
    2179             : 
    2180             :     /* If both flags are set false, we don't need to do anything. */
    2181         216 :     if (!consider_outer_null && !consider_inner_null)
    2182          72 :         return;
    2183             : 
    2184         144 :     if (consider_outer_null && !consider_inner_null)
    2185             :     {
    2186             :         Assert(outer_has_null);
    2187             : 
    2188             :         /*
    2189             :          * If this is an outer join, the NULL partition on the outer side has
    2190             :          * to be scanned all the way anyway; merge the NULL partition with a
    2191             :          * dummy partition on the other side.  In that case
    2192             :          * consider_outer_null means that the NULL partition only contains
    2193             :          * NULL values as the key values, so the merged partition will do so;
    2194             :          * treat it as the NULL partition of the join relation.
    2195             :          */
    2196          24 :         if (IS_OUTER_JOIN(jointype))
    2197             :         {
    2198             :             Assert(jointype != JOIN_RIGHT);
    2199          12 :             *null_index = merge_partition_with_dummy(outer_map, outer_null,
    2200             :                                                      next_index);
    2201             :         }
    2202             :     }
    2203         120 :     else if (!consider_outer_null && consider_inner_null)
    2204             :     {
    2205             :         Assert(inner_has_null);
    2206             : 
    2207             :         /*
    2208             :          * If this is a FULL join, the NULL partition on the inner side has to
    2209             :          * be scanned all the way anyway; merge the NULL partition with a
    2210             :          * dummy partition on the other side.  In that case
    2211             :          * consider_inner_null means that the NULL partition only contains
    2212             :          * NULL values as the key values, so the merged partition will do so;
    2213             :          * treat it as the NULL partition of the join relation.
    2214             :          */
    2215          60 :         if (jointype == JOIN_FULL)
    2216           0 :             *null_index = merge_partition_with_dummy(inner_map, inner_null,
    2217             :                                                      next_index);
    2218             :     }
    2219             :     else
    2220             :     {
    2221             :         Assert(consider_outer_null && consider_inner_null);
    2222             :         Assert(outer_has_null);
    2223             :         Assert(inner_has_null);
    2224             : 
    2225             :         /*
    2226             :          * If this is an outer join, the NULL partition on the outer side (and
    2227             :          * that on the inner side if this is a FULL join) have to be scanned
    2228             :          * all the way anyway, so merge them.  Note that each of the NULL
    2229             :          * partitions isn't merged yet, so they should be merged successfully.
    2230             :          * Like the above, each of the NULL partitions only contains NULL
    2231             :          * values as the key values, so the merged partition will do so; treat
    2232             :          * it as the NULL partition of the join relation.
    2233             :          *
    2234             :          * Note: if this an INNER/SEMI join, the join clause will never be
    2235             :          * satisfied by two NULL values (see comments above), so both the NULL
    2236             :          * partitions can be eliminated.
    2237             :          */
    2238          60 :         if (IS_OUTER_JOIN(jointype))
    2239             :         {
    2240             :             Assert(jointype != JOIN_RIGHT);
    2241          48 :             *null_index = merge_matching_partitions(outer_map, inner_map,
    2242             :                                                     outer_null, inner_null,
    2243             :                                                     next_index);
    2244             :             Assert(*null_index >= 0);
    2245             :         }
    2246             :     }
    2247             : }
    2248             : 
    2249             : /*
    2250             :  * merge_default_partitions
    2251             :  *      Merge the default partitions from a join's outer and inner sides.
    2252             :  *
    2253             :  * If the merged partition produced from them is the default partition of the
    2254             :  * join relation, *default_index is set to the index of the merged partition.
    2255             :  */
    2256             : static void
    2257         156 : merge_default_partitions(PartitionMap *outer_map,
    2258             :                          PartitionMap *inner_map,
    2259             :                          bool outer_has_default,
    2260             :                          bool inner_has_default,
    2261             :                          int outer_default,
    2262             :                          int inner_default,
    2263             :                          JoinType jointype,
    2264             :                          int *next_index,
    2265             :                          int *default_index)
    2266             : {
    2267         156 :     int         outer_merged_index = -1;
    2268         156 :     int         inner_merged_index = -1;
    2269             : 
    2270             :     Assert(outer_has_default || inner_has_default);
    2271             : 
    2272             :     /* Get the merged partition indexes for the default partitions. */
    2273         156 :     if (outer_has_default)
    2274             :     {
    2275             :         Assert(outer_default >= 0 && outer_default < outer_map->nparts);
    2276         120 :         outer_merged_index = outer_map->merged_indexes[outer_default];
    2277             :     }
    2278         156 :     if (inner_has_default)
    2279             :     {
    2280             :         Assert(inner_default >= 0 && inner_default < inner_map->nparts);
    2281          36 :         inner_merged_index = inner_map->merged_indexes[inner_default];
    2282             :     }
    2283             : 
    2284         156 :     if (outer_has_default && !inner_has_default)
    2285             :     {
    2286             :         /*
    2287             :          * If this is an outer join, the default partition on the outer side
    2288             :          * has to be scanned all the way anyway; if we have not yet assigned a
    2289             :          * partition, merge the default partition with a dummy partition on
    2290             :          * the other side.  The merged partition will act as the default
    2291             :          * partition of the join relation (see comments in
    2292             :          * process_inner_partition()).
    2293             :          */
    2294         120 :         if (IS_OUTER_JOIN(jointype))
    2295             :         {
    2296             :             Assert(jointype != JOIN_RIGHT);
    2297          72 :             if (outer_merged_index == -1)
    2298             :             {
    2299             :                 Assert(*default_index == -1);
    2300           0 :                 *default_index = merge_partition_with_dummy(outer_map,
    2301             :                                                             outer_default,
    2302             :                                                             next_index);
    2303             :             }
    2304             :             else
    2305             :                 Assert(*default_index == outer_merged_index);
    2306             :         }
    2307             :         else
    2308             :             Assert(*default_index == -1);
    2309             :     }
    2310          36 :     else if (!outer_has_default && inner_has_default)
    2311             :     {
    2312             :         /*
    2313             :          * If this is a FULL join, the default partition on the inner side has
    2314             :          * to be scanned all the way anyway; if we have not yet assigned a
    2315             :          * partition, merge the default partition with a dummy partition on
    2316             :          * the other side.  The merged partition will act as the default
    2317             :          * partition of the join relation (see comments in
    2318             :          * process_outer_partition()).
    2319             :          */
    2320          36 :         if (jointype == JOIN_FULL)
    2321             :         {
    2322           0 :             if (inner_merged_index == -1)
    2323             :             {
    2324             :                 Assert(*default_index == -1);
    2325           0 :                 *default_index = merge_partition_with_dummy(inner_map,
    2326             :                                                             inner_default,
    2327             :                                                             next_index);
    2328             :             }
    2329             :             else
    2330             :                 Assert(*default_index == inner_merged_index);
    2331             :         }
    2332             :         else
    2333             :             Assert(*default_index == -1);
    2334             :     }
    2335             :     else
    2336             :     {
    2337             :         Assert(outer_has_default && inner_has_default);
    2338             : 
    2339             :         /*
    2340             :          * The default partitions have to be joined with each other, so merge
    2341             :          * them.  Note that each of the default partitions isn't merged yet
    2342             :          * (see, process_outer_partition()/process_inner_partition()), so they
    2343             :          * should be merged successfully.  The merged partition will act as
    2344             :          * the default partition of the join relation.
    2345             :          */
    2346             :         Assert(outer_merged_index == -1);
    2347             :         Assert(inner_merged_index == -1);
    2348             :         Assert(*default_index == -1);
    2349           0 :         *default_index = merge_matching_partitions(outer_map,
    2350             :                                                    inner_map,
    2351             :                                                    outer_default,
    2352             :                                                    inner_default,
    2353             :                                                    next_index);
    2354             :         Assert(*default_index >= 0);
    2355             :     }
    2356         156 : }
    2357             : 
    2358             : /*
    2359             :  * merge_partition_with_dummy
    2360             :  *      Assign given partition a new partition of a join relation
    2361             :  *
    2362             :  * Note: The caller assumes that the given partition doesn't have a non-dummy
    2363             :  * matching partition on the other side, but if the given partition finds the
    2364             :  * matching partition later, we will adjust the assignment.
    2365             :  */
    2366             : static int
    2367         528 : merge_partition_with_dummy(PartitionMap *map, int index, int *next_index)
    2368             : {
    2369         528 :     int         merged_index = *next_index;
    2370             : 
    2371             :     Assert(index >= 0 && index < map->nparts);
    2372             :     Assert(map->merged_indexes[index] == -1);
    2373             :     Assert(!map->merged[index]);
    2374         528 :     map->merged_indexes[index] = merged_index;
    2375             :     /* Leave the merged flag alone! */
    2376         528 :     *next_index = *next_index + 1;
    2377         528 :     return merged_index;
    2378             : }
    2379             : 
    2380             : /*
    2381             :  * fix_merged_indexes
    2382             :  *      Adjust merged indexes of re-merged partitions
    2383             :  */
    2384             : static void
    2385          48 : fix_merged_indexes(PartitionMap *outer_map, PartitionMap *inner_map,
    2386             :                    int nmerged, List *merged_indexes)
    2387             : {
    2388             :     int        *new_indexes;
    2389             :     int         merged_index;
    2390             :     int         i;
    2391             :     ListCell   *lc;
    2392             : 
    2393             :     Assert(nmerged > 0);
    2394             : 
    2395          48 :     new_indexes = (int *) palloc(sizeof(int) * nmerged);
    2396         312 :     for (i = 0; i < nmerged; i++)
    2397         264 :         new_indexes[i] = -1;
    2398             : 
    2399             :     /* Build the mapping of old merged indexes to new merged indexes. */
    2400          48 :     if (outer_map->did_remapping)
    2401             :     {
    2402         210 :         for (i = 0; i < outer_map->nparts; i++)
    2403             :         {
    2404         162 :             merged_index = outer_map->old_indexes[i];
    2405         162 :             if (merged_index >= 0)
    2406          48 :                 new_indexes[merged_index] = outer_map->merged_indexes[i];
    2407             :         }
    2408             :     }
    2409          48 :     if (inner_map->did_remapping)
    2410             :     {
    2411         210 :         for (i = 0; i < inner_map->nparts; i++)
    2412             :         {
    2413         162 :             merged_index = inner_map->old_indexes[i];
    2414         162 :             if (merged_index >= 0)
    2415          48 :                 new_indexes[merged_index] = inner_map->merged_indexes[i];
    2416             :         }
    2417             :     }
    2418             : 
    2419             :     /* Fix the merged_indexes list using the mapping. */
    2420         438 :     foreach(lc, merged_indexes)
    2421             :     {
    2422         390 :         merged_index = lfirst_int(lc);
    2423             :         Assert(merged_index >= 0);
    2424         390 :         if (new_indexes[merged_index] >= 0)
    2425          96 :             lfirst_int(lc) = new_indexes[merged_index];
    2426             :     }
    2427             : 
    2428          48 :     pfree(new_indexes);
    2429          48 : }
    2430             : 
    2431             : /*
    2432             :  * generate_matching_part_pairs
    2433             :  *      Generate a pair of lists of partitions that produce merged partitions
    2434             :  *
    2435             :  * The lists of partitions are built in the order of merged partition indexes,
    2436             :  * and returned in *outer_parts and *inner_parts.
    2437             :  */
    2438             : static void
    2439         732 : generate_matching_part_pairs(RelOptInfo *outer_rel, RelOptInfo *inner_rel,
    2440             :                              PartitionMap *outer_map, PartitionMap *inner_map,
    2441             :                              int nmerged,
    2442             :                              List **outer_parts, List **inner_parts)
    2443             : {
    2444         732 :     int         outer_nparts = outer_map->nparts;
    2445         732 :     int         inner_nparts = inner_map->nparts;
    2446             :     int        *outer_indexes;
    2447             :     int        *inner_indexes;
    2448             :     int         max_nparts;
    2449             :     int         i;
    2450             : 
    2451             :     Assert(nmerged > 0);
    2452             :     Assert(*outer_parts == NIL);
    2453             :     Assert(*inner_parts == NIL);
    2454             : 
    2455         732 :     outer_indexes = (int *) palloc(sizeof(int) * nmerged);
    2456         732 :     inner_indexes = (int *) palloc(sizeof(int) * nmerged);
    2457        2796 :     for (i = 0; i < nmerged; i++)
    2458        2064 :         outer_indexes[i] = inner_indexes[i] = -1;
    2459             : 
    2460             :     /* Set pairs of matching partitions. */
    2461             :     Assert(outer_nparts == outer_rel->nparts);
    2462             :     Assert(inner_nparts == inner_rel->nparts);
    2463         732 :     max_nparts = Max(outer_nparts, inner_nparts);
    2464        3060 :     for (i = 0; i < max_nparts; i++)
    2465             :     {
    2466        2328 :         if (i < outer_nparts)
    2467             :         {
    2468        2220 :             int         merged_index = outer_map->merged_indexes[i];
    2469             : 
    2470        2220 :             if (merged_index >= 0)
    2471             :             {
    2472             :                 Assert(merged_index < nmerged);
    2473        1956 :                 outer_indexes[merged_index] = i;
    2474             :             }
    2475             :         }
    2476        2328 :         if (i < inner_nparts)
    2477             :         {
    2478        2244 :             int         merged_index = inner_map->merged_indexes[i];
    2479             : 
    2480        2244 :             if (merged_index >= 0)
    2481             :             {
    2482             :                 Assert(merged_index < nmerged);
    2483        1920 :                 inner_indexes[merged_index] = i;
    2484             :             }
    2485             :         }
    2486             :     }
    2487             : 
    2488             :     /* Build the list pairs. */
    2489        2796 :     for (i = 0; i < nmerged; i++)
    2490             :     {
    2491        2064 :         int         outer_index = outer_indexes[i];
    2492        2064 :         int         inner_index = inner_indexes[i];
    2493             : 
    2494             :         /*
    2495             :          * If both partitions are dummy, it means the merged partition that
    2496             :          * had been assigned to the outer/inner partition was removed when
    2497             :          * re-merging the outer/inner partition in
    2498             :          * merge_matching_partitions(); ignore the merged partition.
    2499             :          */
    2500        2064 :         if (outer_index == -1 && inner_index == -1)
    2501          96 :             continue;
    2502             : 
    2503        3924 :         *outer_parts = lappend(*outer_parts, outer_index >= 0 ?
    2504        1956 :                                outer_rel->part_rels[outer_index] : NULL);
    2505        3888 :         *inner_parts = lappend(*inner_parts, inner_index >= 0 ?
    2506        1920 :                                inner_rel->part_rels[inner_index] : NULL);
    2507             :     }
    2508             : 
    2509         732 :     pfree(outer_indexes);
    2510         732 :     pfree(inner_indexes);
    2511         732 : }
    2512             : 
    2513             : /*
    2514             :  * build_merged_partition_bounds
    2515             :  *      Create a PartitionBoundInfo struct from merged partition bounds
    2516             :  */
    2517             : static PartitionBoundInfo
    2518         732 : build_merged_partition_bounds(char strategy, List *merged_datums,
    2519             :                               List *merged_kinds, List *merged_indexes,
    2520             :                               int null_index, int default_index)
    2521             : {
    2522             :     PartitionBoundInfo merged_bounds;
    2523         732 :     int         ndatums = list_length(merged_datums);
    2524             :     int         pos;
    2525             :     ListCell   *lc;
    2526             : 
    2527         732 :     merged_bounds = (PartitionBoundInfo) palloc(sizeof(PartitionBoundInfoData));
    2528         732 :     merged_bounds->strategy = strategy;
    2529         732 :     merged_bounds->ndatums = ndatums;
    2530             : 
    2531         732 :     merged_bounds->datums = (Datum **) palloc(sizeof(Datum *) * ndatums);
    2532         732 :     pos = 0;
    2533        4044 :     foreach(lc, merged_datums)
    2534        3312 :         merged_bounds->datums[pos++] = (Datum *) lfirst(lc);
    2535             : 
    2536         732 :     if (strategy == PARTITION_STRATEGY_RANGE)
    2537             :     {
    2538             :         Assert(list_length(merged_kinds) == ndatums);
    2539         294 :         merged_bounds->kind = (PartitionRangeDatumKind **)
    2540         294 :             palloc(sizeof(PartitionRangeDatumKind *) * ndatums);
    2541         294 :         pos = 0;
    2542        1560 :         foreach(lc, merged_kinds)
    2543        1266 :             merged_bounds->kind[pos++] = (PartitionRangeDatumKind *) lfirst(lc);
    2544             : 
    2545             :         /* There are ndatums+1 indexes in the case of range partitioning. */
    2546         294 :         merged_indexes = lappend_int(merged_indexes, -1);
    2547         294 :         ndatums++;
    2548             :     }
    2549             :     else
    2550             :     {
    2551             :         Assert(strategy == PARTITION_STRATEGY_LIST);
    2552             :         Assert(merged_kinds == NIL);
    2553         438 :         merged_bounds->kind = NULL;
    2554             :     }
    2555             : 
    2556             :     /* interleaved_parts is always NULL for join relations. */
    2557         732 :     merged_bounds->interleaved_parts = NULL;
    2558             : 
    2559             :     Assert(list_length(merged_indexes) == ndatums);
    2560         732 :     merged_bounds->nindexes = ndatums;
    2561         732 :     merged_bounds->indexes = (int *) palloc(sizeof(int) * ndatums);
    2562         732 :     pos = 0;
    2563        4338 :     foreach(lc, merged_indexes)
    2564        3606 :         merged_bounds->indexes[pos++] = lfirst_int(lc);
    2565             : 
    2566         732 :     merged_bounds->null_index = null_index;
    2567         732 :     merged_bounds->default_index = default_index;
    2568             : 
    2569         732 :     return merged_bounds;
    2570             : }
    2571             : 
    2572             : /*
    2573             :  * get_range_partition
    2574             :  *      Get the next non-dummy partition of a range-partitioned relation,
    2575             :  *      returning the index of that partition
    2576             :  *
    2577             :  * *lb and *ub are set to the lower and upper bounds of that partition
    2578             :  * respectively, and *lb_pos is advanced to the next lower bound, if any.
    2579             :  */
    2580             : static int
    2581        2580 : get_range_partition(RelOptInfo *rel,
    2582             :                     PartitionBoundInfo bi,
    2583             :                     int *lb_pos,
    2584             :                     PartitionRangeBound *lb,
    2585             :                     PartitionRangeBound *ub)
    2586             : {
    2587             :     int         part_index;
    2588             : 
    2589             :     Assert(bi->strategy == PARTITION_STRATEGY_RANGE);
    2590             : 
    2591             :     do
    2592             :     {
    2593        2580 :         part_index = get_range_partition_internal(bi, lb_pos, lb, ub);
    2594        2580 :         if (part_index == -1)
    2595         630 :             return -1;
    2596        1950 :     } while (is_dummy_partition(rel, part_index));
    2597             : 
    2598        1902 :     return part_index;
    2599             : }
    2600             : 
    2601             : static int
    2602        2580 : get_range_partition_internal(PartitionBoundInfo bi,
    2603             :                              int *lb_pos,
    2604             :                              PartitionRangeBound *lb,
    2605             :                              PartitionRangeBound *ub)
    2606             : {
    2607             :     /* Return the index as -1 if we've exhausted all lower bounds. */
    2608        2580 :     if (*lb_pos >= bi->ndatums)
    2609         630 :         return -1;
    2610             : 
    2611             :     /* A lower bound should have at least one more bound after it. */
    2612             :     Assert(*lb_pos + 1 < bi->ndatums);
    2613             : 
    2614             :     /* Set the lower bound. */
    2615        1950 :     lb->index = bi->indexes[*lb_pos];
    2616        1950 :     lb->datums = bi->datums[*lb_pos];
    2617        1950 :     lb->kind = bi->kind[*lb_pos];
    2618        1950 :     lb->lower = true;
    2619             :     /* Set the upper bound. */
    2620        1950 :     ub->index = bi->indexes[*lb_pos + 1];
    2621        1950 :     ub->datums = bi->datums[*lb_pos + 1];
    2622        1950 :     ub->kind = bi->kind[*lb_pos + 1];
    2623        1950 :     ub->lower = false;
    2624             : 
    2625             :     /* The index assigned to an upper bound should be valid. */
    2626             :     Assert(ub->index >= 0);
    2627             : 
    2628             :     /*
    2629             :      * Advance the position to the next lower bound.  If there are no bounds
    2630             :      * left beyond the upper bound, we have reached the last lower bound.
    2631             :      */
    2632        1950 :     if (*lb_pos + 2 >= bi->ndatums)
    2633         684 :         *lb_pos = bi->ndatums;
    2634             :     else
    2635             :     {
    2636             :         /*
    2637             :          * If the index assigned to the bound next to the upper bound isn't
    2638             :          * valid, that is the next lower bound; else, the upper bound is also
    2639             :          * the lower bound of the next range partition.
    2640             :          */
    2641        1266 :         if (bi->indexes[*lb_pos + 2] < 0)
    2642         474 :             *lb_pos = *lb_pos + 2;
    2643             :         else
    2644         792 :             *lb_pos = *lb_pos + 1;
    2645             :     }
    2646             : 
    2647        1950 :     return ub->index;
    2648             : }
    2649             : 
    2650             : /*
    2651             :  * compare_range_partitions
    2652             :  *      Compare the bounds of two range partitions, and return true if the
    2653             :  *      two partitions overlap, false otherwise
    2654             :  *
    2655             :  * *lb_cmpval is set to -1, 0, or 1 if the outer partition's lower bound is
    2656             :  * lower than, equal to, or higher than the inner partition's lower bound
    2657             :  * respectively.  Likewise, *ub_cmpval is set to -1, 0, or 1 if the outer
    2658             :  * partition's upper bound is lower than, equal to, or higher than the inner
    2659             :  * partition's upper bound respectively.
    2660             :  */
    2661             : static bool
    2662         864 : compare_range_partitions(int partnatts, FmgrInfo *partsupfuncs,
    2663             :                          Oid *partcollations,
    2664             :                          PartitionRangeBound *outer_lb,
    2665             :                          PartitionRangeBound *outer_ub,
    2666             :                          PartitionRangeBound *inner_lb,
    2667             :                          PartitionRangeBound *inner_ub,
    2668             :                          int *lb_cmpval, int *ub_cmpval)
    2669             : {
    2670             :     /*
    2671             :      * Check if the outer partition's upper bound is lower than the inner
    2672             :      * partition's lower bound; if so the partitions aren't overlapping.
    2673             :      */
    2674         864 :     if (compare_range_bounds(partnatts, partsupfuncs, partcollations,
    2675             :                              outer_ub, inner_lb) < 0)
    2676             :     {
    2677           0 :         *lb_cmpval = -1;
    2678           0 :         *ub_cmpval = -1;
    2679           0 :         return false;
    2680             :     }
    2681             : 
    2682             :     /*
    2683             :      * Check if the outer partition's lower bound is higher than the inner
    2684             :      * partition's upper bound; if so the partitions aren't overlapping.
    2685             :      */
    2686         864 :     if (compare_range_bounds(partnatts, partsupfuncs, partcollations,
    2687             :                              outer_lb, inner_ub) > 0)
    2688             :     {
    2689          36 :         *lb_cmpval = 1;
    2690          36 :         *ub_cmpval = 1;
    2691          36 :         return false;
    2692             :     }
    2693             : 
    2694             :     /* All other cases indicate overlapping partitions. */
    2695         828 :     *lb_cmpval = compare_range_bounds(partnatts, partsupfuncs, partcollations,
    2696             :                                       outer_lb, inner_lb);
    2697         828 :     *ub_cmpval = compare_range_bounds(partnatts, partsupfuncs, partcollations,
    2698             :                                       outer_ub, inner_ub);
    2699         828 :     return true;
    2700             : }
    2701             : 
    2702             : /*
    2703             :  * get_merged_range_bounds
    2704             :  *      Given the bounds of range partitions to be joined, determine the bounds
    2705             :  *      of a merged partition produced from the range partitions
    2706             :  *
    2707             :  * *merged_lb and *merged_ub are set to the lower and upper bounds of the
    2708             :  * merged partition.
    2709             :  */
    2710             : static void
    2711         828 : get_merged_range_bounds(int partnatts, FmgrInfo *partsupfuncs,
    2712             :                         Oid *partcollations, JoinType jointype,
    2713             :                         PartitionRangeBound *outer_lb,
    2714             :                         PartitionRangeBound *outer_ub,
    2715             :                         PartitionRangeBound *inner_lb,
    2716             :                         PartitionRangeBound *inner_ub,
    2717             :                         int lb_cmpval, int ub_cmpval,
    2718             :                         PartitionRangeBound *merged_lb,
    2719             :                         PartitionRangeBound *merged_ub)
    2720             : {
    2721             :     Assert(compare_range_bounds(partnatts, partsupfuncs, partcollations,
    2722             :                                 outer_lb, inner_lb) == lb_cmpval);
    2723             :     Assert(compare_range_bounds(partnatts, partsupfuncs, partcollations,
    2724             :                                 outer_ub, inner_ub) == ub_cmpval);
    2725             : 
    2726         828 :     switch (jointype)
    2727             :     {
    2728         432 :         case JOIN_INNER:
    2729             :         case JOIN_SEMI:
    2730             : 
    2731             :             /*
    2732             :              * An INNER/SEMI join will have the rows that fit both sides, so
    2733             :              * the lower bound of the merged partition will be the higher of
    2734             :              * the two lower bounds, and the upper bound of the merged
    2735             :              * partition will be the lower of the two upper bounds.
    2736             :              */
    2737         432 :             *merged_lb = (lb_cmpval > 0) ? *outer_lb : *inner_lb;
    2738         432 :             *merged_ub = (ub_cmpval < 0) ? *outer_ub : *inner_ub;
    2739         432 :             break;
    2740             : 
    2741         324 :         case JOIN_LEFT:
    2742             :         case JOIN_ANTI:
    2743             : 
    2744             :             /*
    2745             :              * A LEFT/ANTI join will have all the rows from the outer side, so
    2746             :              * the bounds of the merged partition will be the same as the
    2747             :              * outer bounds.
    2748             :              */
    2749         324 :             *merged_lb = *outer_lb;
    2750         324 :             *merged_ub = *outer_ub;
    2751         324 :             break;
    2752             : 
    2753          72 :         case JOIN_FULL:
    2754             : 
    2755             :             /*
    2756             :              * A FULL join will have all the rows from both sides, so the
    2757             :              * lower bound of the merged partition will be the lower of the
    2758             :              * two lower bounds, and the upper bound of the merged partition
    2759             :              * will be the higher of the two upper bounds.
    2760             :              */
    2761          72 :             *merged_lb = (lb_cmpval < 0) ? *outer_lb : *inner_lb;
    2762          72 :             *merged_ub = (ub_cmpval > 0) ? *outer_ub : *inner_ub;
    2763          72 :             break;
    2764             : 
    2765           0 :         default:
    2766           0 :             elog(ERROR, "unrecognized join type: %d", (int) jointype);
    2767             :     }
    2768         828 : }
    2769             : 
    2770             : /*
    2771             :  * add_merged_range_bounds
    2772             :  *      Add the bounds of a merged partition to the lists of range bounds
    2773             :  */
    2774             : static void
    2775         816 : add_merged_range_bounds(int partnatts, FmgrInfo *partsupfuncs,
    2776             :                         Oid *partcollations,
    2777             :                         PartitionRangeBound *merged_lb,
    2778             :                         PartitionRangeBound *merged_ub,
    2779             :                         int merged_index,
    2780             :                         List **merged_datums,
    2781             :                         List **merged_kinds,
    2782             :                         List **merged_indexes)
    2783             : {
    2784             :     int         cmpval;
    2785             : 
    2786         816 :     if (!*merged_datums)
    2787             :     {
    2788             :         /* First merged partition */
    2789             :         Assert(!*merged_kinds);
    2790             :         Assert(!*merged_indexes);
    2791         330 :         cmpval = 1;
    2792             :     }
    2793             :     else
    2794             :     {
    2795             :         PartitionRangeBound prev_ub;
    2796             : 
    2797             :         Assert(*merged_datums);
    2798             :         Assert(*merged_kinds);
    2799             :         Assert(*merged_indexes);
    2800             : 
    2801             :         /* Get the last upper bound. */
    2802         486 :         prev_ub.index = llast_int(*merged_indexes);
    2803         486 :         prev_ub.datums = (Datum *) llast(*merged_datums);
    2804         486 :         prev_ub.kind = (PartitionRangeDatumKind *) llast(*merged_kinds);
    2805         486 :         prev_ub.lower = false;
    2806             : 
    2807             :         /*
    2808             :          * We pass lower1 = false to partition_rbound_cmp() to prevent it from
    2809             :          * considering the last upper bound to be smaller than the lower bound
    2810             :          * of the merged partition when the values of the two range bounds
    2811             :          * compare equal.
    2812             :          */
    2813         486 :         cmpval = partition_rbound_cmp(partnatts, partsupfuncs, partcollations,
    2814             :                                       merged_lb->datums, merged_lb->kind,
    2815             :                                       false, &prev_ub);
    2816             :         Assert(cmpval >= 0);
    2817             :     }
    2818             : 
    2819             :     /*
    2820             :      * If the lower bound is higher than the last upper bound, add the lower
    2821             :      * bound with the index as -1 indicating that that is a lower bound; else,
    2822             :      * the last upper bound will be reused as the lower bound of the merged
    2823             :      * partition, so skip this.
    2824             :      */
    2825         816 :     if (cmpval > 0)
    2826             :     {
    2827         576 :         *merged_datums = lappend(*merged_datums, merged_lb->datums);
    2828         576 :         *merged_kinds = lappend(*merged_kinds, merged_lb->kind);
    2829         576 :         *merged_indexes = lappend_int(*merged_indexes, -1);
    2830             :     }
    2831             : 
    2832             :     /* Add the upper bound and index of the merged partition. */
    2833         816 :     *merged_datums = lappend(*merged_datums, merged_ub->datums);
    2834         816 :     *merged_kinds = lappend(*merged_kinds, merged_ub->kind);
    2835         816 :     *merged_indexes = lappend_int(*merged_indexes, merged_index);
    2836         816 : }
    2837             : 
    2838             : /*
    2839             :  * partitions_are_ordered
    2840             :  *      Determine whether the partitions described by 'boundinfo' are ordered,
    2841             :  *      that is partitions appearing earlier in the PartitionDesc sequence
    2842             :  *      contain partition keys strictly less than those appearing later.
    2843             :  *      Also, if NULL values are possible, they must come in the last
    2844             :  *      partition defined in the PartitionDesc.  'live_parts' marks which
    2845             :  *      partitions we should include when checking the ordering.  Partitions
    2846             :  *      that do not appear in 'live_parts' are ignored.
    2847             :  *
    2848             :  * If out of order, or there is insufficient info to know the order,
    2849             :  * then we return false.
    2850             :  */
    2851             : bool
    2852       27198 : partitions_are_ordered(PartitionBoundInfo boundinfo, Bitmapset *live_parts)
    2853             : {
    2854             :     Assert(boundinfo != NULL);
    2855             : 
    2856       27198 :     switch (boundinfo->strategy)
    2857             :     {
    2858       15980 :         case PARTITION_STRATEGY_RANGE:
    2859             : 
    2860             :             /*
    2861             :              * RANGE-type partitioning guarantees that the partitions can be
    2862             :              * scanned in the order that they're defined in the PartitionDesc
    2863             :              * to provide sequential, non-overlapping ranges of tuples.
    2864             :              * However, if a DEFAULT partition exists and it's contained
    2865             :              * within live_parts, then the partitions are not ordered.
    2866             :              */
    2867       15980 :             if (!partition_bound_has_default(boundinfo) ||
    2868        1852 :                 !bms_is_member(boundinfo->default_index, live_parts))
    2869       14704 :                 return true;
    2870        1276 :             break;
    2871             : 
    2872       10308 :         case PARTITION_STRATEGY_LIST:
    2873             : 
    2874             :             /*
    2875             :              * LIST partitioned are ordered providing none of live_parts
    2876             :              * overlap with the partitioned table's interleaved partitions.
    2877             :              */
    2878       10308 :             if (!bms_overlap(live_parts, boundinfo->interleaved_parts))
    2879        7792 :                 return true;
    2880             : 
    2881        2516 :             break;
    2882         910 :         case PARTITION_STRATEGY_HASH:
    2883         910 :             break;
    2884             :     }
    2885             : 
    2886        4702 :     return false;
    2887             : }
    2888             : 
    2889             : /*
    2890             :  * check_new_partition_bound
    2891             :  *
    2892             :  * Checks if the new partition's bound overlaps any of the existing partitions
    2893             :  * of parent.  Also performs additional checks as necessary per strategy.
    2894             :  */
    2895             : void
    2896        9586 : check_new_partition_bound(char *relname, Relation parent,
    2897             :                           PartitionBoundSpec *spec, ParseState *pstate)
    2898             : {
    2899        9586 :     PartitionKey key = RelationGetPartitionKey(parent);
    2900        9586 :     PartitionDesc partdesc = RelationGetPartitionDesc(parent, false);
    2901        9586 :     PartitionBoundInfo boundinfo = partdesc->boundinfo;
    2902        9586 :     int         with = -1;
    2903        9586 :     bool        overlap = false;
    2904        9586 :     int         overlap_location = -1;
    2905             : 
    2906        9586 :     if (spec->is_default)
    2907             :     {
    2908             :         /*
    2909             :          * The default partition bound never conflicts with any other
    2910             :          * partition's; if that's what we're attaching, the only possible
    2911             :          * problem is that one already exists, so check for that and we're
    2912             :          * done.
    2913             :          */
    2914         542 :         if (boundinfo == NULL || !partition_bound_has_default(boundinfo))
    2915         518 :             return;
    2916             : 
    2917             :         /* Default partition already exists, error out. */
    2918          24 :         ereport(ERROR,
    2919             :                 (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    2920             :                  errmsg("partition \"%s\" conflicts with existing default partition \"%s\"",
    2921             :                         relname, get_rel_name(partdesc->oids[boundinfo->default_index])),
    2922             :                  parser_errposition(pstate, spec->location)));
    2923             :     }
    2924             : 
    2925        9044 :     switch (key->strategy)
    2926             :     {
    2927         656 :         case PARTITION_STRATEGY_HASH:
    2928             :             {
    2929             :                 Assert(spec->strategy == PARTITION_STRATEGY_HASH);
    2930             :                 Assert(spec->remainder >= 0 && spec->remainder < spec->modulus);
    2931             : 
    2932         656 :                 if (partdesc->nparts > 0)
    2933             :                 {
    2934             :                     int         greatest_modulus;
    2935             :                     int         remainder;
    2936             :                     int         offset;
    2937             : 
    2938             :                     /*
    2939             :                      * Check rule that every modulus must be a factor of the
    2940             :                      * next larger modulus.  (For example, if you have a bunch
    2941             :                      * of partitions that all have modulus 5, you can add a
    2942             :                      * new partition with modulus 10 or a new partition with
    2943             :                      * modulus 15, but you cannot add both a partition with
    2944             :                      * modulus 10 and a partition with modulus 15, because 10
    2945             :                      * is not a factor of 15.)  We need only check the next
    2946             :                      * smaller and next larger existing moduli, relying on
    2947             :                      * previous enforcement of this rule to be sure that the
    2948             :                      * rest are in line.
    2949             :                      */
    2950             : 
    2951             :                     /*
    2952             :                      * Get the greatest (modulus, remainder) pair contained in
    2953             :                      * boundinfo->datums that is less than or equal to the
    2954             :                      * (spec->modulus, spec->remainder) pair.
    2955             :                      */
    2956         434 :                     offset = partition_hash_bsearch(boundinfo,
    2957             :                                                     spec->modulus,
    2958             :                                                     spec->remainder);
    2959         434 :                     if (offset < 0)
    2960             :                     {
    2961             :                         int         next_modulus;
    2962             : 
    2963             :                         /*
    2964             :                          * All existing moduli are greater or equal, so the
    2965             :                          * new one must be a factor of the smallest one, which
    2966             :                          * is first in the boundinfo.
    2967             :                          */
    2968          14 :                         next_modulus = DatumGetInt32(boundinfo->datums[0][0]);
    2969          14 :                         if (next_modulus % spec->modulus != 0)
    2970           6 :                             ereport(ERROR,
    2971             :                                     (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    2972             :                                      errmsg("every hash partition modulus must be a factor of the next larger modulus"),
    2973             :                                      errdetail("The new modulus %d is not a factor of %d, the modulus of existing partition \"%s\".",
    2974             :                                                spec->modulus, next_modulus,
    2975             :                                                get_rel_name(partdesc->oids[0]))));
    2976             :                     }
    2977             :                     else
    2978             :                     {
    2979             :                         int         prev_modulus;
    2980             : 
    2981             :                         /*
    2982             :                          * We found the largest (modulus, remainder) pair less
    2983             :                          * than or equal to the new one.  That modulus must be
    2984             :                          * a divisor of, or equal to, the new modulus.
    2985             :                          */
    2986         420 :                         prev_modulus = DatumGetInt32(boundinfo->datums[offset][0]);
    2987             : 
    2988         420 :                         if (spec->modulus % prev_modulus != 0)
    2989           6 :                             ereport(ERROR,
    2990             :                                     (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    2991             :                                      errmsg("every hash partition modulus must be a factor of the next larger modulus"),
    2992             :                                      errdetail("The new modulus %d is not divisible by %d, the modulus of existing partition \"%s\".",
    2993             :                                                spec->modulus,
    2994             :                                                prev_modulus,
    2995             :                                                get_rel_name(partdesc->oids[offset]))));
    2996             : 
    2997         414 :                         if (offset + 1 < boundinfo->ndatums)
    2998             :                         {
    2999             :                             int         next_modulus;
    3000             : 
    3001             :                             /*
    3002             :                              * Look at the next higher (modulus, remainder)
    3003             :                              * pair.  That could have the same modulus and a
    3004             :                              * larger remainder than the new pair, in which
    3005             :                              * case we're good.  If it has a larger modulus,
    3006             :                              * the new modulus must divide that one.
    3007             :                              */
    3008          30 :                             next_modulus = DatumGetInt32(boundinfo->datums[offset + 1][0]);
    3009             : 
    3010          30 :                             if (next_modulus % spec->modulus != 0)
    3011           6 :                                 ereport(ERROR,
    3012             :                                         (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    3013             :                                          errmsg("every hash partition modulus must be a factor of the next larger modulus"),
    3014             :                                          errdetail("The new modulus %d is not a factor of %d, the modulus of existing partition \"%s\".",
    3015             :                                                    spec->modulus, next_modulus,
    3016             :                                                    get_rel_name(partdesc->oids[offset + 1]))));
    3017             :                         }
    3018             :                     }
    3019             : 
    3020         416 :                     greatest_modulus = boundinfo->nindexes;
    3021         416 :                     remainder = spec->remainder;
    3022             : 
    3023             :                     /*
    3024             :                      * Normally, the lowest remainder that could conflict with
    3025             :                      * the new partition is equal to the remainder specified
    3026             :                      * for the new partition, but when the new partition has a
    3027             :                      * modulus higher than any used so far, we need to adjust.
    3028             :                      */
    3029         416 :                     if (remainder >= greatest_modulus)
    3030          12 :                         remainder = remainder % greatest_modulus;
    3031             : 
    3032             :                     /* Check every potentially-conflicting remainder. */
    3033             :                     do
    3034             :                     {
    3035         542 :                         if (boundinfo->indexes[remainder] != -1)
    3036             :                         {
    3037          24 :                             overlap = true;
    3038          24 :                             overlap_location = spec->location;
    3039          24 :                             with = boundinfo->indexes[remainder];
    3040          24 :                             break;
    3041             :                         }
    3042         518 :                         remainder += spec->modulus;
    3043         518 :                     } while (remainder < greatest_modulus);
    3044             :                 }
    3045             : 
    3046         638 :                 break;
    3047             :             }
    3048             : 
    3049        4598 :         case PARTITION_STRATEGY_LIST:
    3050             :             {
    3051             :                 Assert(spec->strategy == PARTITION_STRATEGY_LIST);
    3052             : 
    3053        4598 :                 if (partdesc->nparts > 0)
    3054             :                 {
    3055             :                     ListCell   *cell;
    3056             : 
    3057             :                     Assert(boundinfo &&
    3058             :                            boundinfo->strategy == PARTITION_STRATEGY_LIST &&
    3059             :                            (boundinfo->ndatums > 0 ||
    3060             :                             partition_bound_accepts_nulls(boundinfo) ||
    3061             :                             partition_bound_has_default(boundinfo)));
    3062             : 
    3063        5980 :                     foreach(cell, spec->listdatums)
    3064             :                     {
    3065        3636 :                         Const      *val = lfirst_node(Const, cell);
    3066             : 
    3067        3636 :                         overlap_location = val->location;
    3068        3636 :                         if (!val->constisnull)
    3069             :                         {
    3070             :                             int         offset;
    3071             :                             bool        equal;
    3072             : 
    3073        3510 :                             offset = partition_list_bsearch(&key->partsupfunc[0],
    3074             :                                                             key->partcollation,
    3075             :                                                             boundinfo,
    3076             :                                                             val->constvalue,
    3077             :                                                             &equal);
    3078        3510 :                             if (offset >= 0 && equal)
    3079             :                             {
    3080          18 :                                 overlap = true;
    3081          18 :                                 with = boundinfo->indexes[offset];
    3082          18 :                                 break;
    3083             :                             }
    3084             :                         }
    3085         126 :                         else if (partition_bound_accepts_nulls(boundinfo))
    3086             :                         {
    3087           6 :                             overlap = true;
    3088           6 :                             with = boundinfo->null_index;
    3089           6 :                             break;
    3090             :                         }
    3091             :                     }
    3092             :                 }
    3093             : 
    3094        4598 :                 break;
    3095             :             }
    3096             : 
    3097        3790 :         case PARTITION_STRATEGY_RANGE:
    3098             :             {
    3099             :                 PartitionRangeBound *lower,
    3100             :                            *upper;
    3101             :                 int         cmpval;
    3102             : 
    3103             :                 Assert(spec->strategy == PARTITION_STRATEGY_RANGE);
    3104        3790 :                 lower = make_one_partition_rbound(key, -1, spec->lowerdatums, true);
    3105        3790 :                 upper = make_one_partition_rbound(key, -1, spec->upperdatums, false);
    3106             : 
    3107             :                 /*
    3108             :                  * First check if the resulting range would be empty with
    3109             :                  * specified lower and upper bounds.  partition_rbound_cmp
    3110             :                  * cannot return zero here, since the lower-bound flags are
    3111             :                  * different.
    3112             :                  */
    3113        3790 :                 cmpval = partition_rbound_cmp(key->partnatts,
    3114             :                                               key->partsupfunc,
    3115             :                                               key->partcollation,
    3116             :                                               lower->datums, lower->kind,
    3117             :                                               true, upper);
    3118             :                 Assert(cmpval != 0);
    3119        3790 :                 if (cmpval > 0)
    3120             :                 {
    3121             :                     /* Point to problematic key in the lower datums list. */
    3122          12 :                     PartitionRangeDatum *datum = list_nth(spec->lowerdatums,
    3123             :                                                           cmpval - 1);
    3124             : 
    3125          12 :                     ereport(ERROR,
    3126             :                             (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    3127             :                              errmsg("empty range bound specified for partition \"%s\"",
    3128             :                                     relname),
    3129             :                              errdetail("Specified lower bound %s is greater than or equal to upper bound %s.",
    3130             :                                        get_range_partbound_string(spec->lowerdatums),
    3131             :                                        get_range_partbound_string(spec->upperdatums)),
    3132             :                              parser_errposition(pstate, datum->location)));
    3133             :                 }
    3134             : 
    3135        3778 :                 if (partdesc->nparts > 0)
    3136             :                 {
    3137             :                     int         offset;
    3138             : 
    3139             :                     Assert(boundinfo &&
    3140             :                            boundinfo->strategy == PARTITION_STRATEGY_RANGE &&
    3141             :                            (boundinfo->ndatums > 0 ||
    3142             :                             partition_bound_has_default(boundinfo)));
    3143             : 
    3144             :                     /*
    3145             :                      * Test whether the new lower bound (which is treated
    3146             :                      * inclusively as part of the new partition) lies inside
    3147             :                      * an existing partition, or in a gap.
    3148             :                      *
    3149             :                      * If it's inside an existing partition, the bound at
    3150             :                      * offset + 1 will be the upper bound of that partition,
    3151             :                      * and its index will be >= 0.
    3152             :                      *
    3153             :                      * If it's in a gap, the bound at offset + 1 will be the
    3154             :                      * lower bound of the next partition, and its index will
    3155             :                      * be -1. This is also true if there is no next partition,
    3156             :                      * since the index array is initialised with an extra -1
    3157             :                      * at the end.
    3158             :                      */
    3159        2070 :                     offset = partition_range_bsearch(key->partnatts,
    3160             :                                                      key->partsupfunc,
    3161             :                                                      key->partcollation,
    3162             :                                                      boundinfo, lower,
    3163             :                                                      &cmpval);
    3164             : 
    3165        2070 :                     if (boundinfo->indexes[offset + 1] < 0)
    3166             :                     {
    3167             :                         /*
    3168             :                          * Check that the new partition will fit in the gap.
    3169             :                          * For it to fit, the new upper bound must be less
    3170             :                          * than or equal to the lower bound of the next
    3171             :                          * partition, if there is one.
    3172             :                          */
    3173        2034 :                         if (offset + 1 < boundinfo->ndatums)
    3174             :                         {
    3175             :                             Datum      *datums;
    3176             :                             PartitionRangeDatumKind *kind;
    3177             :                             bool        is_lower;
    3178             : 
    3179          90 :                             datums = boundinfo->datums[offset + 1];
    3180          90 :                             kind = boundinfo->kind[offset + 1];
    3181          90 :                             is_lower = (boundinfo->indexes[offset + 1] == -1);
    3182             : 
    3183          90 :                             cmpval = partition_rbound_cmp(key->partnatts,
    3184             :                                                           key->partsupfunc,
    3185             :                                                           key->partcollation,
    3186             :                                                           datums, kind,
    3187             :                                                           is_lower, upper);
    3188          90 :                             if (cmpval < 0)
    3189             :                             {
    3190             :                                 /*
    3191             :                                  * Point to problematic key in the upper
    3192             :                                  * datums list.
    3193             :                                  */
    3194             :                                 PartitionRangeDatum *datum =
    3195          12 :                                     list_nth(spec->upperdatums, abs(cmpval) - 1);
    3196             : 
    3197             :                                 /*
    3198             :                                  * The new partition overlaps with the
    3199             :                                  * existing partition between offset + 1 and
    3200             :                                  * offset + 2.
    3201             :                                  */
    3202          12 :                                 overlap = true;
    3203          12 :                                 overlap_location = datum->location;
    3204          12 :                                 with = boundinfo->indexes[offset + 2];
    3205             :                             }
    3206             :                         }
    3207             :                     }
    3208             :                     else
    3209             :                     {
    3210             :                         /*
    3211             :                          * The new partition overlaps with the existing
    3212             :                          * partition between offset and offset + 1.
    3213             :                          */
    3214             :                         PartitionRangeDatum *datum;
    3215             : 
    3216             :                         /*
    3217             :                          * Point to problematic key in the lower datums list;
    3218             :                          * if we have equality, point to the first one.
    3219             :                          */
    3220          36 :                         datum = cmpval == 0 ? linitial(spec->lowerdatums) :
    3221          18 :                             list_nth(spec->lowerdatums, abs(cmpval) - 1);
    3222          36 :                         overlap = true;
    3223          36 :                         overlap_location = datum->location;
    3224          36 :                         with = boundinfo->indexes[offset + 1];
    3225             :                     }
    3226             :                 }
    3227             : 
    3228        3778 :                 break;
    3229             :             }
    3230             :     }
    3231             : 
    3232        9014 :     if (overlap)
    3233             :     {
    3234             :         Assert(with >= 0);
    3235          96 :         ereport(ERROR,
    3236             :                 (errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    3237             :                  errmsg("partition \"%s\" would overlap partition \"%s\"",
    3238             :                         relname, get_rel_name(partdesc->oids[with])),
    3239             :                  parser_errposition(pstate, overlap_location)));
    3240             :     }
    3241             : }
    3242             : 
    3243             : /*
    3244             :  * check_default_partition_contents
    3245             :  *
    3246             :  * This function checks if there exists a row in the default partition that
    3247             :  * would properly belong to the new partition being added.  If it finds one,
    3248             :  * it throws an error.
    3249             :  */
    3250             : void
    3251         348 : check_default_partition_contents(Relation parent, Relation default_rel,
    3252             :                                  PartitionBoundSpec *new_spec)
    3253             : {
    3254             :     List       *new_part_constraints;
    3255             :     List       *def_part_constraints;
    3256             :     List       *all_parts;
    3257             :     ListCell   *lc;
    3258             : 
    3259         696 :     new_part_constraints = (new_spec->strategy == PARTITION_STRATEGY_LIST)
    3260         162 :         ? get_qual_for_list(parent, new_spec)
    3261         348 :         : get_qual_for_range(parent, new_spec, false);
    3262             :     def_part_constraints =
    3263         348 :         get_proposed_default_constraint(new_part_constraints);
    3264             : 
    3265             :     /*
    3266             :      * Map the Vars in the constraint expression from parent's attnos to
    3267             :      * default_rel's.
    3268             :      */
    3269             :     def_part_constraints =
    3270         348 :         map_partition_varattnos(def_part_constraints, 1, default_rel,
    3271             :                                 parent);
    3272             : 
    3273             :     /*
    3274             :      * If the existing constraints on the default partition imply that it will
    3275             :      * not contain any row that would belong to the new partition, we can
    3276             :      * avoid scanning the default partition.
    3277             :      */
    3278         348 :     if (PartConstraintImpliedByRelConstraint(default_rel, def_part_constraints))
    3279             :     {
    3280          14 :         ereport(DEBUG1,
    3281             :                 (errmsg_internal("updated partition constraint for default partition \"%s\" is implied by existing constraints",
    3282             :                                  RelationGetRelationName(default_rel))));
    3283          14 :         return;
    3284             :     }
    3285             : 
    3286             :     /*
    3287             :      * Scan the default partition and its subpartitions, and check for rows
    3288             :      * that do not satisfy the revised partition constraints.
    3289             :      */
    3290         334 :     if (default_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
    3291          52 :         all_parts = find_all_inheritors(RelationGetRelid(default_rel),
    3292             :                                         AccessExclusiveLock, NULL);
    3293             :     else
    3294         282 :         all_parts = list_make1_oid(RelationGetRelid(default_rel));
    3295             : 
    3296         792 :     foreach(lc, all_parts)
    3297             :     {
    3298         476 :         Oid         part_relid = lfirst_oid(lc);
    3299             :         Relation    part_rel;
    3300             :         Expr       *partition_constraint;
    3301             :         EState     *estate;
    3302         476 :         ExprState  *partqualstate = NULL;
    3303             :         Snapshot    snapshot;
    3304             :         ExprContext *econtext;
    3305             :         TableScanDesc scan;
    3306             :         MemoryContext oldCxt;
    3307             :         TupleTableSlot *tupslot;
    3308             : 
    3309             :         /* Lock already taken above. */
    3310         476 :         if (part_relid != RelationGetRelid(default_rel))
    3311             :         {
    3312         142 :             part_rel = table_open(part_relid, NoLock);
    3313             : 
    3314             :             /*
    3315             :              * Map the Vars in the constraint expression from default_rel's
    3316             :              * the sub-partition's.
    3317             :              */
    3318         142 :             partition_constraint = make_ands_explicit(def_part_constraints);
    3319             :             partition_constraint = (Expr *)
    3320         142 :                 map_partition_varattnos((List *) partition_constraint, 1,
    3321             :                                         part_rel, default_rel);
    3322             : 
    3323             :             /*
    3324             :              * If the partition constraints on default partition child imply
    3325             :              * that it will not contain any row that would belong to the new
    3326             :              * partition, we can avoid scanning the child table.
    3327             :              */
    3328         142 :             if (PartConstraintImpliedByRelConstraint(part_rel,
    3329             :                                                      def_part_constraints))
    3330             :             {
    3331           8 :                 ereport(DEBUG1,
    3332             :                         (errmsg_internal("updated partition constraint for default partition \"%s\" is implied by existing constraints",
    3333             :                                          RelationGetRelationName(part_rel))));
    3334             : 
    3335           8 :                 table_close(part_rel, NoLock);
    3336           8 :                 continue;
    3337             :             }
    3338             :         }
    3339             :         else
    3340             :         {
    3341         334 :             part_rel = default_rel;
    3342         334 :             partition_constraint = make_ands_explicit(def_part_constraints);
    3343             :         }
    3344             : 
    3345             :         /*
    3346             :          * Only RELKIND_RELATION relations (i.e. leaf partitions) need to be
    3347             :          * scanned.
    3348             :          */
    3349         468 :         if (part_rel->rd_rel->relkind != RELKIND_RELATION)
    3350             :         {
    3351          52 :             if (part_rel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
    3352           0 :                 ereport(WARNING,
    3353             :                         (errcode(ERRCODE_CHECK_VIOLATION),
    3354             :                          errmsg("skipped scanning foreign table \"%s\" which is a partition of default partition \"%s\"",
    3355             :                                 RelationGetRelationName(part_rel),
    3356             :                                 RelationGetRelationName(default_rel))));
    3357             : 
    3358          52 :             if (RelationGetRelid(default_rel) != RelationGetRelid(part_rel))
    3359           0 :                 table_close(part_rel, NoLock);
    3360             : 
    3361          52 :             continue;
    3362             :         }
    3363             : 
    3364         416 :         estate = CreateExecutorState();
    3365             : 
    3366             :         /* Build expression execution states for partition check quals */
    3367         416 :         partqualstate = ExecPrepareExpr(partition_constraint, estate);
    3368             : 
    3369         416 :         econtext = GetPerTupleExprContext(estate);
    3370         416 :         snapshot = RegisterSnapshot(GetLatestSnapshot());
    3371         416 :         tupslot = table_slot_create(part_rel, &estate->es_tupleTable);
    3372         416 :         scan = table_beginscan(part_rel, snapshot, 0, NULL);
    3373             : 
    3374             :         /*
    3375             :          * Switch to per-tuple memory context and reset it for each tuple
    3376             :          * produced, so we don't leak memory.
    3377             :          */
    3378         416 :         oldCxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
    3379             : 
    3380         464 :         while (table_scan_getnextslot(scan, ForwardScanDirection, tupslot))
    3381             :         {
    3382          66 :             econtext->ecxt_scantuple = tupslot;
    3383             : 
    3384          66 :             if (!ExecCheck(partqualstate, econtext))
    3385          18 :                 ereport(ERROR,
    3386             :                         (errcode(ERRCODE_CHECK_VIOLATION),
    3387             :                          errmsg("updated partition constraint for default partition \"%s\" would be violated by some row",
    3388             :                                 RelationGetRelationName(default_rel)),
    3389             :                          errtable(default_rel)));
    3390             : 
    3391          48 :             ResetExprContext(econtext);
    3392          48 :             CHECK_FOR_INTERRUPTS();
    3393             :         }
    3394             : 
    3395         398 :         MemoryContextSwitchTo(oldCxt);
    3396         398 :         table_endscan(scan);
    3397         398 :         UnregisterSnapshot(snapshot);
    3398         398 :         ExecDropSingleTupleTableSlot(tupslot);
    3399         398 :         FreeExecutorState(estate);
    3400             : 
    3401         398 :         if (RelationGetRelid(default_rel) != RelationGetRelid(part_rel))
    3402         134 :             table_close(part_rel, NoLock);  /* keep the lock until commit */
    3403             :     }
    3404             : }
    3405             : 
    3406             : /*
    3407             :  * get_hash_partition_greatest_modulus
    3408             :  *
    3409             :  * Returns the greatest modulus of the hash partition bound.
    3410             :  * This is no longer used in the core code, but we keep it around
    3411             :  * in case external modules are using it.
    3412             :  */
    3413             : int
    3414           0 : get_hash_partition_greatest_modulus(PartitionBoundInfo bound)
    3415             : {
    3416             :     Assert(bound && bound->strategy == PARTITION_STRATEGY_HASH);
    3417           0 :     return bound->nindexes;
    3418             : }
    3419             : 
    3420             : /*
    3421             :  * make_one_partition_rbound
    3422             :  *
    3423             :  * Return a PartitionRangeBound given a list of PartitionRangeDatum elements
    3424             :  * and a flag telling whether the bound is lower or not.  Made into a function
    3425             :  * because there are multiple sites that want to use this facility.
    3426             :  */
    3427             : static PartitionRangeBound *
    3428       33712 : make_one_partition_rbound(PartitionKey key, int index, List *datums, bool lower)
    3429             : {
    3430             :     PartitionRangeBound *bound;
    3431             :     ListCell   *lc;
    3432             :     int         i;
    3433             : 
    3434             :     Assert(datums != NIL);
    3435             : 
    3436       33712 :     bound = (PartitionRangeBound *) palloc0(sizeof(PartitionRangeBound));
    3437       33712 :     bound->index = index;
    3438       33712 :     bound->datums = (Datum *) palloc0(key->partnatts * sizeof(Datum));
    3439       33712 :     bound->kind = (PartitionRangeDatumKind *) palloc0(key->partnatts *
    3440             :                                                       sizeof(PartitionRangeDatumKind));
    3441       33712 :     bound->lower = lower;
    3442             : 
    3443       33712 :     i = 0;
    3444       76764 :     foreach(lc, datums)
    3445             :     {
    3446       43052 :         PartitionRangeDatum *datum = lfirst_node(PartitionRangeDatum, lc);
    3447             : 
    3448             :         /* What's contained in this range datum? */
    3449       43052 :         bound->kind[i] = datum->kind;
    3450             : 
    3451       43052 :         if (datum->kind == PARTITION_RANGE_DATUM_VALUE)
    3452             :         {
    3453       39684 :             Const      *val = castNode(Const, datum->value);
    3454             : 
    3455       39684 :             if (val->constisnull)
    3456           0 :                 elog(ERROR, "invalid range bound datum");
    3457       39684 :             bound->datums[i] = val->constvalue;
    3458             :         }
    3459             : 
    3460       43052 :         i++;
    3461             :     }
    3462             : 
    3463       33712 :     return bound;
    3464             : }
    3465             : 
    3466             : /*
    3467             :  * partition_rbound_cmp
    3468             :  *
    3469             :  * For two range bounds this decides whether the 1st one (specified by
    3470             :  * datums1, kind1, and lower1) is <, =, or > the bound specified in *b2.
    3471             :  *
    3472             :  * 0 is returned if they are equal, otherwise a non-zero integer whose sign
    3473             :  * indicates the ordering, and whose absolute value gives the 1-based
    3474             :  * partition key number of the first mismatching column.
    3475             :  *
    3476             :  * partnatts, partsupfunc and partcollation give the number of attributes in the
    3477             :  * bounds to be compared, comparison function to be used and the collations of
    3478             :  * attributes, respectively.
    3479             :  *
    3480             :  * Note that if the values of the two range bounds compare equal, then we take
    3481             :  * into account whether they are upper or lower bounds, and an upper bound is
    3482             :  * considered to be smaller than a lower bound. This is important to the way
    3483             :  * that RelationBuildPartitionDesc() builds the PartitionBoundInfoData
    3484             :  * structure, which only stores the upper bound of a common boundary between
    3485             :  * two contiguous partitions.
    3486             :  */
    3487             : static int32
    3488       33558 : partition_rbound_cmp(int partnatts, FmgrInfo *partsupfunc,
    3489             :                      Oid *partcollation,
    3490             :                      Datum *datums1, PartitionRangeDatumKind *kind1,
    3491             :                      bool lower1, PartitionRangeBound *b2)
    3492             : {
    3493       33558 :     int32       colnum = 0;
    3494       33558 :     int32       cmpval = 0;     /* placate compiler */
    3495             :     int         i;
    3496       33558 :     Datum      *datums2 = b2->datums;
    3497       33558 :     PartitionRangeDatumKind *kind2 = b2->kind;
    3498       33558 :     bool        lower2 = b2->lower;
    3499             : 
    3500       47970 :     for (i = 0; i < partnatts; i++)
    3501             :     {
    3502             :         /* Track column number in case we need it for result */
    3503       39456 :         colnum++;
    3504             : 
    3505             :         /*
    3506             :          * First, handle cases where the column is unbounded, which should not
    3507             :          * invoke the comparison procedure, and should not consider any later
    3508             :          * columns. Note that the PartitionRangeDatumKind enum elements
    3509             :          * compare the same way as the values they represent.
    3510             :          */
    3511       39456 :         if (kind1[i] < kind2[i])
    3512        1940 :             return -colnum;
    3513       37516 :         else if (kind1[i] > kind2[i])
    3514           6 :             return colnum;
    3515       37510 :         else if (kind1[i] != PARTITION_RANGE_DATUM_VALUE)
    3516             :         {
    3517             :             /*
    3518             :              * The column bounds are both MINVALUE or both MAXVALUE. No later
    3519             :              * columns should be considered, but we still need to compare
    3520             :              * whether they are upper or lower bounds.
    3521             :              */
    3522         258 :             break;
    3523             :         }
    3524             : 
    3525       37252 :         cmpval = DatumGetInt32(FunctionCall2Coll(&partsupfunc[i],
    3526       37252 :                                                  partcollation[i],
    3527       37252 :                                                  datums1[i],
    3528       37252 :                                                  datums2[i]));
    3529       37252 :         if (cmpval != 0)
    3530       22840 :             break;
    3531             :     }
    3532             : 
    3533             :     /*
    3534             :      * If the comparison is anything other than equal, we're done. If they
    3535             :      * compare equal though, we still have to consider whether the boundaries
    3536             :      * are inclusive or exclusive.  Exclusive one is considered smaller of the
    3537             :      * two.
    3538             :      */
    3539       31612 :     if (cmpval == 0 && lower1 != lower2)
    3540        7578 :         cmpval = lower1 ? 1 : -1;
    3541             : 
    3542       31612 :     return cmpval == 0 ? 0 : (cmpval < 0 ? -colnum : colnum);
    3543             : }
    3544             : 
    3545             : /*
    3546             :  * partition_rbound_datum_cmp
    3547             :  *
    3548             :  * Return whether range bound (specified in rb_datums and rb_kind)
    3549             :  * is <, =, or > partition key of tuple (tuple_datums)
    3550             :  *
    3551             :  * n_tuple_datums, partsupfunc and partcollation give number of attributes in
    3552             :  * the bounds to be compared, comparison function to be used and the collations
    3553             :  * of attributes resp.
    3554             :  */
    3555             : int32
    3556     1555122 : partition_rbound_datum_cmp(FmgrInfo *partsupfunc, Oid *partcollation,
    3557             :                            Datum *rb_datums, PartitionRangeDatumKind *rb_kind,
    3558             :                            Datum *tuple_datums, int n_tuple_datums)
    3559             : {
    3560             :     int         i;
    3561     1555122 :     int32       cmpval = -1;
    3562             : 
    3563     1623252 :     for (i = 0; i < n_tuple_datums; i++)
    3564             :     {
    3565     1560630 :         if (rb_kind[i] == PARTITION_RANGE_DATUM_MINVALUE)
    3566       68404 :             return -1;
    3567     1492226 :         else if (rb_kind[i] == PARTITION_RANGE_DATUM_MAXVALUE)
    3568       68682 :             return 1;
    3569             : 
    3570     1423544 :         cmpval = DatumGetInt32(FunctionCall2Coll(&partsupfunc[i],
    3571     1423544 :                                                  partcollation[i],
    3572     1423544 :                                                  rb_datums[i],
    3573     1423544 :                                                  tuple_datums[i]));
    3574     1423544 :         if (cmpval != 0)
    3575     1355414 :             break;
    3576             :     }
    3577             : 
    3578     1418036 :     return cmpval;
    3579             : }
    3580             : 
    3581             : /*
    3582             :  * partition_hbound_cmp
    3583             :  *
    3584             :  * Compares modulus first, then remainder if modulus is equal.
    3585             :  */
    3586             : static int32
    3587        1648 : partition_hbound_cmp(int modulus1, int remainder1, int modulus2, int remainder2)
    3588             : {
    3589        1648 :     if (modulus1 < modulus2)
    3590         174 :         return -1;
    3591        1474 :     if (modulus1 > modulus2)
    3592          60 :         return 1;
    3593        1414 :     if (modulus1 == modulus2 && remainder1 != remainder2)
    3594        1414 :         return (remainder1 > remainder2) ? 1 : -1;
    3595           0 :     return 0;
    3596             : }
    3597             : 
    3598             : /*
    3599             :  * partition_list_bsearch
    3600             :  *      Returns the index of the greatest bound datum that is less than equal
    3601             :  *      to the given value or -1 if all of the bound datums are greater
    3602             :  *
    3603             :  * *is_equal is set to true if the bound datum at the returned index is equal
    3604             :  * to the input value.
    3605             :  */
    3606             : int
    3607      157586 : partition_list_bsearch(FmgrInfo *partsupfunc, Oid *partcollation,
    3608             :                        PartitionBoundInfo boundinfo,
    3609             :                        Datum value, bool *is_equal)
    3610             : {
    3611             :     int         lo,
    3612             :                 hi,
    3613             :                 mid;
    3614             : 
    3615      157586 :     lo = -1;
    3616      157586 :     hi = boundinfo->ndatums - 1;
    3617      319090 :     while (lo < hi)
    3618             :     {
    3619             :         int32       cmpval;
    3620             : 
    3621      311322 :         mid = (lo + hi + 1) / 2;
    3622      311322 :         cmpval = DatumGetInt32(FunctionCall2Coll(&partsupfunc[0],
    3623             :                                                  partcollation[0],
    3624      311322 :                                                  boundinfo->datums[mid][0],
    3625             :                                                  value));
    3626      311322 :         if (cmpval <= 0)
    3627             :         {
    3628      264650 :             lo = mid;
    3629      264650 :             *is_equal = (cmpval == 0);
    3630      264650 :             if (*is_equal)
    3631      149818 :                 break;
    3632             :         }
    3633             :         else
    3634       46672 :             hi = mid - 1;
    3635             :     }
    3636             : 
    3637      157586 :     return lo;
    3638             : }
    3639             : 
    3640             : /*
    3641             :  * partition_range_bsearch
    3642             :  *      Returns the index of the greatest range bound that is less than or
    3643             :  *      equal to the given range bound or -1 if all of the range bounds are
    3644             :  *      greater
    3645             :  *
    3646             :  * Upon return from this function, *cmpval is set to 0 if the bound at the
    3647             :  * returned index matches the input range bound exactly, otherwise a
    3648             :  * non-zero integer whose sign indicates the ordering, and whose absolute
    3649             :  * value gives the 1-based partition key number of the first mismatching
    3650             :  * column.
    3651             :  */
    3652             : static int
    3653        2070 : partition_range_bsearch(int partnatts, FmgrInfo *partsupfunc,
    3654             :                         Oid *partcollation,
    3655             :                         PartitionBoundInfo boundinfo,
    3656             :                         PartitionRangeBound *probe, int32 *cmpval)
    3657             : {
    3658             :     int         lo,
    3659             :                 hi,
    3660             :                 mid;
    3661             : 
    3662        2070 :     lo = -1;
    3663        2070 :     hi = boundinfo->ndatums - 1;
    3664        6482 :     while (lo < hi)
    3665             :     {
    3666        4430 :         mid = (lo + hi + 1) / 2;
    3667        8860 :         *cmpval = partition_rbound_cmp(partnatts, partsupfunc,
    3668             :                                        partcollation,
    3669        4430 :                                        boundinfo->datums[mid],
    3670        4430 :                                        boundinfo->kind[mid],
    3671        4430 :                                        (boundinfo->indexes[mid] == -1),
    3672             :                                        probe);
    3673        4430 :         if (*cmpval <= 0)
    3674             :         {
    3675        4292 :             lo = mid;
    3676        4292 :             if (*cmpval == 0)
    3677          18 :                 break;
    3678             :         }
    3679             :         else
    3680         138 :             hi = mid - 1;
    3681             :     }
    3682             : 
    3683        2070 :     return lo;
    3684             : }
    3685             : 
    3686             : /*
    3687             :  * partition_range_datum_bsearch
    3688             :  *      Returns the index of the greatest range bound that is less than or
    3689             :  *      equal to the given tuple or -1 if all of the range bounds are greater
    3690             :  *
    3691             :  * *is_equal is set to true if the range bound at the returned index is equal
    3692             :  * to the input tuple.
    3693             :  */
    3694             : int
    3695      493160 : partition_range_datum_bsearch(FmgrInfo *partsupfunc, Oid *partcollation,
    3696             :                               PartitionBoundInfo boundinfo,
    3697             :                               int nvalues, Datum *values, bool *is_equal)
    3698             : {
    3699             :     int         lo,
    3700             :                 hi,
    3701             :                 mid;
    3702             : 
    3703      493160 :     lo = -1;
    3704      493160 :     hi = boundinfo->ndatums - 1;
    3705     1518762 :     while (lo < hi)
    3706             :     {
    3707             :         int32       cmpval;
    3708             : 
    3709     1081602 :         mid = (lo + hi + 1) / 2;
    3710     1081602 :         cmpval = partition_rbound_datum_cmp(partsupfunc,
    3711             :                                             partcollation,
    3712     1081602 :                                             boundinfo->datums[mid],
    3713     1081602 :                                             boundinfo->kind[mid],
    3714             :                                             values,
    3715             :                                             nvalues);
    3716     1081602 :         if (cmpval <= 0)
    3717             :         {
    3718      622772 :             lo = mid;
    3719      622772 :             *is_equal = (cmpval == 0);
    3720             : 
    3721      622772 :             if (*is_equal)
    3722       56000 :                 break;
    3723             :         }
    3724             :         else
    3725      458830 :             hi = mid - 1;
    3726             :     }
    3727             : 
    3728      493160 :     return lo;
    3729             : }
    3730             : 
    3731             : /*
    3732             :  * partition_hash_bsearch
    3733             :  *      Returns the index of the greatest (modulus, remainder) pair that is
    3734             :  *      less than or equal to the given (modulus, remainder) pair or -1 if
    3735             :  *      all of them are greater
    3736             :  */
    3737             : int
    3738         434 : partition_hash_bsearch(PartitionBoundInfo boundinfo,
    3739             :                        int modulus, int remainder)
    3740             : {
    3741             :     int         lo,
    3742             :                 hi,
    3743             :                 mid;
    3744             : 
    3745         434 :     lo = -1;
    3746         434 :     hi = boundinfo->ndatums - 1;
    3747        1128 :     while (lo < hi)
    3748             :     {
    3749             :         int32       cmpval,
    3750             :                     bound_modulus,
    3751             :                     bound_remainder;
    3752             : 
    3753         694 :         mid = (lo + hi + 1) / 2;
    3754         694 :         bound_modulus = DatumGetInt32(boundinfo->datums[mid][0]);
    3755         694 :         bound_remainder = DatumGetInt32(boundinfo->datums[mid][1]);
    3756         694 :         cmpval = partition_hbound_cmp(bound_modulus, bound_remainder,
    3757             :                                       modulus, remainder);
    3758         694 :         if (cmpval <= 0)
    3759             :         {
    3760         632 :             lo = mid;
    3761             : 
    3762         632 :             if (cmpval == 0)
    3763           0 :                 break;
    3764             :         }
    3765             :         else
    3766          62 :             hi = mid - 1;
    3767             :     }
    3768             : 
    3769         434 :     return lo;
    3770             : }
    3771             : 
    3772             : /*
    3773             :  * qsort_partition_hbound_cmp
    3774             :  *
    3775             :  * Hash bounds are sorted by modulus, then by remainder.
    3776             :  */
    3777             : static int32
    3778         954 : qsort_partition_hbound_cmp(const void *a, const void *b)
    3779             : {
    3780         954 :     const PartitionHashBound *h1 = (const PartitionHashBound *) a;
    3781         954 :     const PartitionHashBound *h2 = (const PartitionHashBound *) b;
    3782             : 
    3783         954 :     return partition_hbound_cmp(h1->modulus, h1->remainder,
    3784             :                                 h2->modulus, h2->remainder);
    3785             : }
    3786             : 
    3787             : /*
    3788             :  * qsort_partition_list_value_cmp
    3789             :  *
    3790             :  * Compare two list partition bound datums.
    3791             :  */
    3792             : static int32
    3793       31452 : qsort_partition_list_value_cmp(const void *a, const void *b, void *arg)
    3794             : {
    3795       31452 :     Datum       val1 = ((const PartitionListValue *) a)->value,
    3796       31452 :                 val2 = ((const PartitionListValue *) b)->value;
    3797       31452 :     PartitionKey key = (PartitionKey) arg;
    3798             : 
    3799       31452 :     return DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
    3800       31452 :                                            key->partcollation[0],
    3801             :                                            val1, val2));
    3802             : }
    3803             : 
    3804             : /*
    3805             :  * qsort_partition_rbound_cmp
    3806             :  *
    3807             :  * Used when sorting range bounds across all range partitions.
    3808             :  */
    3809             : static int32
    3810       21108 : qsort_partition_rbound_cmp(const void *a, const void *b, void *arg)
    3811             : {
    3812       21108 :     PartitionRangeBound *b1 = (*(PartitionRangeBound *const *) a);
    3813       21108 :     PartitionRangeBound *b2 = (*(PartitionRangeBound *const *) b);
    3814       21108 :     PartitionKey key = (PartitionKey) arg;
    3815             : 
    3816       21108 :     return compare_range_bounds(key->partnatts, key->partsupfunc,
    3817             :                                 key->partcollation,
    3818             :                                 b1, b2);
    3819             : }
    3820             : 
    3821             : /*
    3822             :  * get_partition_operator
    3823             :  *
    3824             :  * Return oid of the operator of the given strategy for the given partition
    3825             :  * key column.  It is assumed that the partitioning key is of the same type as
    3826             :  * the chosen partitioning opclass, or at least binary-compatible.  In the
    3827             :  * latter case, *need_relabel is set to true if the opclass is not of a
    3828             :  * polymorphic type (indicating a RelabelType node needed on top), otherwise
    3829             :  * false.
    3830             :  */
    3831             : static Oid
    3832       13224 : get_partition_operator(PartitionKey key, int col, StrategyNumber strategy,
    3833             :                        bool *need_relabel)
    3834             : {
    3835             :     Oid         operoid;
    3836             : 
    3837             :     /*
    3838             :      * Get the operator in the partitioning opfamily using the opclass'
    3839             :      * declared input type as both left- and righttype.
    3840             :      */
    3841       13224 :     operoid = get_opfamily_member(key->partopfamily[col],
    3842       13224 :                                   key->partopcintype[col],
    3843       13224 :                                   key->partopcintype[col],
    3844             :                                   strategy);
    3845       13224 :     if (!OidIsValid(operoid))
    3846           0 :         elog(ERROR, "missing operator %d(%u,%u) in partition opfamily %u",
    3847             :              strategy, key->partopcintype[col], key->partopcintype[col],
    3848             :              key->partopfamily[col]);
    3849             : 
    3850             :     /*
    3851             :      * If the partition key column is not of the same type as the operator
    3852             :      * class and not polymorphic, tell caller to wrap the non-Const expression
    3853             :      * in a RelabelType.  This matches what parse_coerce.c does.
    3854             :      */
    3855       26558 :     *need_relabel = (key->parttypid[col] != key->partopcintype[col] &&
    3856       13328 :                      key->partopcintype[col] != RECORDOID &&
    3857         104 :                      !IsPolymorphicType(key->partopcintype[col]));
    3858             : 
    3859       13224 :     return operoid;
    3860             : }
    3861             : 
    3862             : /*
    3863             :  * make_partition_op_expr
    3864             :  *      Returns an Expr for the given partition key column with arg1 and
    3865             :  *      arg2 as its leftop and rightop, respectively
    3866             :  */
    3867             : static Expr *
    3868       13224 : make_partition_op_expr(PartitionKey key, int keynum,
    3869             :                        uint16 strategy, Expr *arg1, Expr *arg2)
    3870             : {
    3871             :     Oid         operoid;
    3872       13224 :     bool        need_relabel = false;
    3873       13224 :     Expr       *result = NULL;
    3874             : 
    3875             :     /* Get the correct btree operator for this partitioning column */
    3876       13224 :     operoid = get_partition_operator(key, keynum, strategy, &need_relabel);
    3877             : 
    3878             :     /*
    3879             :      * Chosen operator may be such that the non-Const operand needs to be
    3880             :      * coerced, so apply the same; see the comment in
    3881             :      * get_partition_operator().
    3882             :      */
    3883       13224 :     if (!IsA(arg1, Const) &&
    3884        9994 :         (need_relabel ||
    3885        9948 :          key->partcollation[keynum] != key->parttypcoll[keynum]))
    3886          46 :         arg1 = (Expr *) makeRelabelType(arg1,
    3887          46 :                                         key->partopcintype[keynum],
    3888             :                                         -1,
    3889          46 :                                         key->partcollation[keynum],
    3890             :                                         COERCE_EXPLICIT_CAST);
    3891             : 
    3892             :     /* Generate the actual expression */
    3893       13224 :     switch (key->strategy)
    3894             :     {
    3895        2660 :         case PARTITION_STRATEGY_LIST:
    3896             :             {
    3897        2660 :                 List       *elems = (List *) arg2;
    3898        2660 :                 int         nelems = list_length(elems);
    3899             : 
    3900             :                 Assert(nelems >= 1);
    3901             :                 Assert(keynum == 0);
    3902             : 
    3903        3592 :                 if (nelems > 1 &&
    3904         932 :                     !type_is_array(key->parttypid[keynum]))
    3905         926 :                 {
    3906             :                     ArrayExpr  *arrexpr;
    3907             :                     ScalarArrayOpExpr *saopexpr;
    3908             : 
    3909             :                     /* Construct an ArrayExpr for the right-hand inputs */
    3910         926 :                     arrexpr = makeNode(ArrayExpr);
    3911         926 :                     arrexpr->array_typeid =
    3912         926 :                         get_array_type(key->parttypid[keynum]);
    3913         926 :                     arrexpr->array_collid = key->parttypcoll[keynum];
    3914         926 :                     arrexpr->element_typeid = key->parttypid[keynum];
    3915         926 :                     arrexpr->elements = elems;
    3916         926 :                     arrexpr->multidims = false;
    3917         926 :                     arrexpr->location = -1;
    3918             : 
    3919             :                     /* Build leftop = ANY (rightop) */
    3920         926 :                     saopexpr = makeNode(ScalarArrayOpExpr);
    3921         926 :                     saopexpr->opno = operoid;
    3922         926 :                     saopexpr->opfuncid = get_opcode(operoid);
    3923         926 :                     saopexpr->hashfuncid = InvalidOid;
    3924         926 :                     saopexpr->negfuncid = InvalidOid;
    3925         926 :                     saopexpr->useOr = true;
    3926         926 :                     saopexpr->inputcollid = key->partcollation[keynum];
    3927         926 :                     saopexpr->args = list_make2(arg1, arrexpr);
    3928         926 :                     saopexpr->location = -1;
    3929             : 
    3930         926 :                     result = (Expr *) saopexpr;
    3931             :                 }
    3932             :                 else
    3933             :                 {
    3934        1734 :                     List       *elemops = NIL;
    3935             :                     ListCell   *lc;
    3936             : 
    3937        3474 :                     foreach(lc, elems)
    3938             :                     {
    3939        1740 :                         Expr       *elem = lfirst(lc),
    3940             :                                    *elemop;
    3941             : 
    3942        1740 :                         elemop = make_opclause(operoid,
    3943             :                                                BOOLOID,
    3944             :                                                false,
    3945             :                                                arg1, elem,
    3946             :                                                InvalidOid,
    3947        1740 :                                                key->partcollation[keynum]);
    3948        1740 :                         elemops = lappend(elemops, elemop);
    3949             :                     }
    3950             : 
    3951        1734 :                     result = nelems > 1 ? makeBoolExpr(OR_EXPR, elemops, -1) : linitial(elemops);
    3952             :                 }
    3953        2660 :                 break;
    3954             :             }
    3955             : 
    3956       10564 :         case PARTITION_STRATEGY_RANGE:
    3957       10564 :             result = make_opclause(operoid,
    3958             :                                    BOOLOID,
    3959             :                                    false,
    3960             :                                    arg1, arg2,
    3961             :                                    InvalidOid,
    3962       10564 :                                    key->partcollation[keynum]);
    3963       10564 :             break;
    3964             : 
    3965           0 :         case PARTITION_STRATEGY_HASH:
    3966             :             Assert(false);
    3967           0 :             break;
    3968             :     }
    3969             : 
    3970       13224 :     return result;
    3971             : }
    3972             : 
    3973             : /*
    3974             :  * get_qual_for_hash
    3975             :  *
    3976             :  * Returns a CHECK constraint expression to use as a hash partition's
    3977             :  * constraint, given the parent relation and partition bound structure.
    3978             :  *
    3979             :  * The partition constraint for a hash partition is always a call to the
    3980             :  * built-in function satisfies_hash_partition().
    3981             :  */
    3982             : static List *
    3983         158 : get_qual_for_hash(Relation parent, PartitionBoundSpec *spec)
    3984             : {
    3985         158 :     PartitionKey key = RelationGetPartitionKey(parent);
    3986             :     FuncExpr   *fexpr;
    3987             :     Node       *relidConst;
    3988             :     Node       *modulusConst;
    3989             :     Node       *remainderConst;
    3990             :     List       *args;
    3991             :     ListCell   *partexprs_item;
    3992             :     int         i;
    3993             : 
    3994             :     /* Fixed arguments. */
    3995         158 :     relidConst = (Node *) makeConst(OIDOID,
    3996             :                                     -1,
    3997             :                                     InvalidOid,
    3998             :                                     sizeof(Oid),
    3999             :                                     ObjectIdGetDatum(RelationGetRelid(parent)),
    4000             :                                     false,
    4001             :                                     true);
    4002             : 
    4003         158 :     modulusConst = (Node *) makeConst(INT4OID,
    4004             :                                       -1,
    4005             :                                       InvalidOid,
    4006             :                                       sizeof(int32),
    4007             :                                       Int32GetDatum(spec->modulus),
    4008             :                                       false,
    4009             :                                       true);
    4010             : 
    4011         158 :     remainderConst = (Node *) makeConst(INT4OID,
    4012             :                                         -1,
    4013             :                                         InvalidOid,
    4014             :                                         sizeof(int32),
    4015             :                                         Int32GetDatum(spec->remainder),
    4016             :                                         false,
    4017             :                                         true);
    4018             : 
    4019         158 :     args = list_make3(relidConst, modulusConst, remainderConst);
    4020         158 :     partexprs_item = list_head(key->partexprs);
    4021             : 
    4022             :     /* Add an argument for each key column. */
    4023         340 :     for (i = 0; i < key->partnatts; i++)
    4024             :     {
    4025             :         Node       *keyCol;
    4026             : 
    4027             :         /* Left operand */
    4028         182 :         if (key->partattrs[i] != 0)
    4029             :         {
    4030         176 :             keyCol = (Node *) makeVar(1,
    4031         176 :                                       key->partattrs[i],
    4032         176 :                                       key->parttypid[i],
    4033         176 :                                       key->parttypmod[i],
    4034         176 :                                       key->parttypcoll[i],
    4035             :                                       0);
    4036             :         }
    4037             :         else
    4038             :         {
    4039           6 :             keyCol = (Node *) copyObject(lfirst(partexprs_item));
    4040           6 :             partexprs_item = lnext(key->partexprs, partexprs_item);
    4041             :         }
    4042             : 
    4043         182 :         args = lappend(args, keyCol);
    4044             :     }
    4045             : 
    4046         158 :     fexpr = makeFuncExpr(F_SATISFIES_HASH_PARTITION,
    4047             :                          BOOLOID,
    4048             :                          args,
    4049             :                          InvalidOid,
    4050             :                          InvalidOid,
    4051             :                          COERCE_EXPLICIT_CALL);
    4052             : 
    4053         158 :     return list_make1(fexpr);
    4054             : }
    4055             : 
    4056             : /*
    4057             :  * get_qual_for_list
    4058             :  *
    4059             :  * Returns an implicit-AND list of expressions to use as a list partition's
    4060             :  * constraint, given the parent relation and partition bound structure.
    4061             :  *
    4062             :  * The function returns NIL for a default partition when it's the only
    4063             :  * partition since in that case there is no constraint.
    4064             :  */
    4065             : static List *
    4066        2734 : get_qual_for_list(Relation parent, PartitionBoundSpec *spec)
    4067             : {
    4068        2734 :     PartitionKey key = RelationGetPartitionKey(parent);
    4069             :     List       *result;
    4070             :     Expr       *keyCol;
    4071             :     Expr       *opexpr;
    4072             :     NullTest   *nulltest;
    4073             :     ListCell   *cell;
    4074        2734 :     List       *elems = NIL;
    4075        2734 :     bool        list_has_null = false;
    4076             : 
    4077             :     /*
    4078             :      * Only single-column list partitioning is supported, so we are worried
    4079             :      * only about the partition key with index 0.
    4080             :      */
    4081             :     Assert(key->partnatts == 1);
    4082             : 
    4083             :     /* Construct Var or expression representing the partition column */
    4084        2734 :     if (key->partattrs[0] != 0)
    4085        2620 :         keyCol = (Expr *) makeVar(1,
    4086        2620 :                                   key->partattrs[0],
    4087        2620 :                                   key->parttypid[0],
    4088        2620 :                                   key->parttypmod[0],
    4089        2620 :                                   key->parttypcoll[0],
    4090             :                                   0);
    4091             :     else
    4092         114 :         keyCol = (Expr *) copyObject(linitial(key->partexprs));
    4093             : 
    4094             :     /*
    4095             :      * For default list partition, collect datums for all the partitions. The
    4096             :      * default partition constraint should check that the partition key is
    4097             :      * equal to none of those.
    4098             :      */
    4099        2734 :     if (spec->is_default)
    4100             :     {
    4101             :         int         i;
    4102         270 :         int         ndatums = 0;
    4103         270 :         PartitionDesc pdesc = RelationGetPartitionDesc(parent, false);
    4104         270 :         PartitionBoundInfo boundinfo = pdesc->boundinfo;
    4105             : 
    4106         270 :         if (boundinfo)
    4107             :         {
    4108         270 :             ndatums = boundinfo->ndatums;
    4109             : 
    4110         270 :             if (partition_bound_accepts_nulls(boundinfo))
    4111          48 :                 list_has_null = true;
    4112             :         }
    4113             : 
    4114             :         /*
    4115             :          * If default is the only partition, there need not be any partition
    4116             :          * constraint on it.
    4117             :          */
    4118         270 :         if (ndatums == 0 && !list_has_null)
    4119          38 :             return NIL;
    4120             : 
    4121        1236 :         for (i = 0; i < ndatums; i++)
    4122             :         {
    4123             :             Const      *val;
    4124             : 
    4125             :             /*
    4126             :              * Construct Const from known-not-null datum.  We must be careful
    4127             :              * to copy the value, because our result has to be able to outlive
    4128             :              * the relcache entry we're copying from.
    4129             :              */
    4130        2008 :             val = makeConst(key->parttypid[0],
    4131        1004 :                             key->parttypmod[0],
    4132        1004 :                             key->parttypcoll[0],
    4133        1004 :                             key->parttyplen[0],
    4134        1004 :                             datumCopy(*boundinfo->datums[i],
    4135        1004 :                                       key->parttypbyval[0],
    4136        1004 :                                       key->parttyplen[0]),
    4137             :                             false,  /* isnull */
    4138        1004 :                             key->parttypbyval[0]);
    4139             : 
    4140        1004 :             elems = lappend(elems, val);
    4141             :         }
    4142             :     }
    4143             :     else
    4144             :     {
    4145             :         /*
    4146             :          * Create list of Consts for the allowed values, excluding any nulls.
    4147             :          */
    4148        6534 :         foreach(cell, spec->listdatums)
    4149             :         {
    4150        4070 :             Const      *val = lfirst_node(Const, cell);
    4151             : 
    4152        4070 :             if (val->constisnull)
    4153          72 :                 list_has_null = true;
    4154             :             else
    4155        3998 :                 elems = lappend(elems, copyObject(val));
    4156             :         }
    4157             :     }
    4158             : 
    4159        2696 :     if (elems)
    4160             :     {
    4161             :         /*
    4162             :          * Generate the operator expression from the non-null partition
    4163             :          * values.
    4164             :          */
    4165        2660 :         opexpr = make_partition_op_expr(key, 0, BTEqualStrategyNumber,
    4166             :                                         keyCol, (Expr *) elems);
    4167             :     }
    4168             :     else
    4169             :     {
    4170             :         /*
    4171             :          * If there are no partition values, we don't need an operator
    4172             :          * expression.
    4173             :          */
    4174          36 :         opexpr = NULL;
    4175             :     }
    4176             : 
    4177        2696 :     if (!list_has_null)
    4178             :     {
    4179             :         /*
    4180             :          * Gin up a "col IS NOT NULL" test that will be ANDed with the main
    4181             :          * expression.  This might seem redundant, but the partition routing
    4182             :          * machinery needs it.
    4183             :          */
    4184        2576 :         nulltest = makeNode(NullTest);
    4185        2576 :         nulltest->arg = keyCol;
    4186        2576 :         nulltest->nulltesttype = IS_NOT_NULL;
    4187        2576 :         nulltest->argisrow = false;
    4188        2576 :         nulltest->location = -1;
    4189             : 
    4190        2576 :         result = opexpr ? list_make2(nulltest, opexpr) : list_make1(nulltest);
    4191             :     }
    4192             :     else
    4193             :     {
    4194             :         /*
    4195             :          * Gin up a "col IS NULL" test that will be OR'd with the main
    4196             :          * expression.
    4197             :          */
    4198         120 :         nulltest = makeNode(NullTest);
    4199         120 :         nulltest->arg = keyCol;
    4200         120 :         nulltest->nulltesttype = IS_NULL;
    4201         120 :         nulltest->argisrow = false;
    4202         120 :         nulltest->location = -1;
    4203             : 
    4204         120 :         if (opexpr)
    4205             :         {
    4206             :             Expr       *or;
    4207             : 
    4208          84 :             or = makeBoolExpr(OR_EXPR, list_make2(nulltest, opexpr), -1);
    4209          84 :             result = list_make1(or);
    4210             :         }
    4211             :         else
    4212          36 :             result = list_make1(nulltest);
    4213             :     }
    4214             : 
    4215             :     /*
    4216             :      * Note that, in general, applying NOT to a constraint expression doesn't
    4217             :      * necessarily invert the set of rows it accepts, because NOT (NULL) is
    4218             :      * NULL.  However, the partition constraints we construct here never
    4219             :      * evaluate to NULL, so applying NOT works as intended.
    4220             :      */
    4221        2696 :     if (spec->is_default)
    4222             :     {
    4223         232 :         result = list_make1(make_ands_explicit(result));
    4224         232 :         result = list_make1(makeBoolExpr(NOT_EXPR, result, -1));
    4225             :     }
    4226             : 
    4227        2696 :     return result;
    4228             : }
    4229             : 
    4230             : /*
    4231             :  * get_qual_for_range
    4232             :  *
    4233             :  * Returns an implicit-AND list of expressions to use as a range partition's
    4234             :  * constraint, given the parent relation and partition bound structure.
    4235             :  *
    4236             :  * For a multi-column range partition key, say (a, b, c), with (al, bl, cl)
    4237             :  * as the lower bound tuple and (au, bu, cu) as the upper bound tuple, we
    4238             :  * generate an expression tree of the following form:
    4239             :  *
    4240             :  *  (a IS NOT NULL) and (b IS NOT NULL) and (c IS NOT NULL)
    4241             :  *      AND
    4242             :  *  (a > al OR (a = al AND b > bl) OR (a = al AND b = bl AND c >= cl))
    4243             :  *      AND
    4244             :  *  (a < au OR (a = au AND b < bu) OR (a = au AND b = bu AND c < cu))
    4245             :  *
    4246             :  * It is often the case that a prefix of lower and upper bound tuples contains
    4247             :  * the same values, for example, (al = au), in which case, we will emit an
    4248             :  * expression tree of the following form:
    4249             :  *
    4250             :  *  (a IS NOT NULL) and (b IS NOT NULL) and (c IS NOT NULL)
    4251             :  *      AND
    4252             :  *  (a = al)
    4253             :  *      AND
    4254             :  *  (b > bl OR (b = bl AND c >= cl))
    4255             :  *      AND
    4256             :  *  (b < bu OR (b = bu AND c < cu))
    4257             :  *
    4258             :  * If a bound datum is either MINVALUE or MAXVALUE, these expressions are
    4259             :  * simplified using the fact that any value is greater than MINVALUE and less
    4260             :  * than MAXVALUE. So, for example, if cu = MAXVALUE, c < cu is automatically
    4261             :  * true, and we need not emit any expression for it, and the last line becomes
    4262             :  *
    4263             :  *  (b < bu) OR (b = bu), which is simplified to (b <= bu)
    4264             :  *
    4265             :  * In most common cases with only one partition column, say a, the following
    4266             :  * expression tree will be generated: a IS NOT NULL AND a >= al AND a < au
    4267             :  *
    4268             :  * For default partition, it returns the negation of the constraints of all
    4269             :  * the other partitions.
    4270             :  *
    4271             :  * External callers should pass for_default as false; we set it to true only
    4272             :  * when recursing.
    4273             :  */
    4274             : static List *
    4275        3290 : get_qual_for_range(Relation parent, PartitionBoundSpec *spec,
    4276             :                    bool for_default)
    4277             : {
    4278        3290 :     List       *result = NIL;
    4279             :     ListCell   *cell1,
    4280             :                *cell2,
    4281             :                *partexprs_item,
    4282             :                *partexprs_item_saved;
    4283             :     int         i,
    4284             :                 j;
    4285             :     PartitionRangeDatum *ldatum,
    4286             :                *udatum;
    4287        3290 :     PartitionKey key = RelationGetPartitionKey(parent);
    4288             :     Expr       *keyCol;
    4289             :     Const      *lower_val,
    4290             :                *upper_val;
    4291             :     List       *lower_or_arms,
    4292             :                *upper_or_arms;
    4293             :     int         num_or_arms,
    4294             :                 current_or_arm;
    4295             :     ListCell   *lower_or_start_datum,
    4296             :                *upper_or_start_datum;
    4297             :     bool        need_next_lower_arm,
    4298             :                 need_next_upper_arm;
    4299             : 
    4300        3290 :     if (spec->is_default)
    4301             :     {
    4302         222 :         List       *or_expr_args = NIL;
    4303         222 :         PartitionDesc pdesc = RelationGetPartitionDesc(parent, false);
    4304         222 :         Oid        *inhoids = pdesc->oids;
    4305         222 :         int         nparts = pdesc->nparts,
    4306             :                     k;
    4307             : 
    4308         850 :         for (k = 0; k < nparts; k++)
    4309             :         {
    4310         628 :             Oid         inhrelid = inhoids[k];
    4311             :             HeapTuple   tuple;
    4312             :             Datum       datum;
    4313             :             PartitionBoundSpec *bspec;
    4314             : 
    4315         628 :             tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(inhrelid));
    4316         628 :             if (!HeapTupleIsValid(tuple))
    4317           0 :                 elog(ERROR, "cache lookup failed for relation %u", inhrelid);
    4318             : 
    4319         628 :             datum = SysCacheGetAttrNotNull(RELOID, tuple,
    4320             :                                            Anum_pg_class_relpartbound);
    4321             :             bspec = (PartitionBoundSpec *)
    4322         628 :                 stringToNode(TextDatumGetCString(datum));
    4323         628 :             if (!IsA(bspec, PartitionBoundSpec))
    4324           0 :                 elog(ERROR, "expected PartitionBoundSpec");
    4325             : 
    4326         628 :             if (!bspec->is_default)
    4327             :             {
    4328             :                 List       *part_qual;
    4329             : 
    4330         406 :                 part_qual = get_qual_for_range(parent, bspec, true);
    4331             : 
    4332             :                 /*
    4333             :                  * AND the constraints of the partition and add to
    4334             :                  * or_expr_args
    4335             :                  */
    4336         812 :                 or_expr_args = lappend(or_expr_args, list_length(part_qual) > 1
    4337         388 :                                        ? makeBoolExpr(AND_EXPR, part_qual, -1)
    4338          18 :                                        : linitial(part_qual));
    4339             :             }
    4340         628 :             ReleaseSysCache(tuple);
    4341             :         }
    4342             : 
    4343         222 :         if (or_expr_args != NIL)
    4344             :         {
    4345             :             Expr       *other_parts_constr;
    4346             : 
    4347             :             /*
    4348             :              * Combine the constraints obtained for non-default partitions
    4349             :              * using OR.  As requested, each of the OR's args doesn't include
    4350             :              * the NOT NULL test for partition keys (which is to avoid its
    4351             :              * useless repetition).  Add the same now.
    4352             :              */
    4353             :             other_parts_constr =
    4354         308 :                 makeBoolExpr(AND_EXPR,
    4355             :                              lappend(get_range_nulltest(key),
    4356         154 :                                      list_length(or_expr_args) > 1
    4357         116 :                                      ? makeBoolExpr(OR_EXPR, or_expr_args,
    4358             :                                                     -1)
    4359          38 :                                      : linitial(or_expr_args)),
    4360             :                              -1);
    4361             : 
    4362             :             /*
    4363             :              * Finally, the default partition contains everything *NOT*
    4364             :              * contained in the non-default partitions.
    4365             :              */
    4366         154 :             result = list_make1(makeBoolExpr(NOT_EXPR,
    4367             :                                              list_make1(other_parts_constr), -1));
    4368             :         }
    4369             : 
    4370         222 :         return result;
    4371             :     }
    4372             : 
    4373             :     /*
    4374             :      * If it is the recursive call for default, we skip the get_range_nulltest
    4375             :      * to avoid accumulating the NullTest on the same keys for each partition.
    4376             :      */
    4377        3068 :     if (!for_default)
    4378        2662 :         result = get_range_nulltest(key);
    4379             : 
    4380             :     /*
    4381             :      * Iterate over the key columns and check if the corresponding lower and
    4382             :      * upper datums are equal using the btree equality operator for the
    4383             :      * column's type.  If equal, we emit single keyCol = common_value
    4384             :      * expression.  Starting from the first column for which the corresponding
    4385             :      * lower and upper bound datums are not equal, we generate OR expressions
    4386             :      * as shown in the function's header comment.
    4387             :      */
    4388        3068 :     i = 0;
    4389        3068 :     partexprs_item = list_head(key->partexprs);
    4390        3068 :     partexprs_item_saved = partexprs_item;  /* placate compiler */
    4391        3608 :     forboth(cell1, spec->lowerdatums, cell2, spec->upperdatums)
    4392             :     {
    4393             :         EState     *estate;
    4394             :         MemoryContext oldcxt;
    4395             :         Expr       *test_expr;
    4396             :         ExprState  *test_exprstate;
    4397             :         Datum       test_result;
    4398             :         bool        isNull;
    4399             : 
    4400        3608 :         ldatum = lfirst_node(PartitionRangeDatum, cell1);
    4401        3608 :         udatum = lfirst_node(PartitionRangeDatum, cell2);
    4402             : 
    4403             :         /*
    4404             :          * Since get_range_key_properties() modifies partexprs_item, and we
    4405             :          * might need to start over from the previous expression in the later
    4406             :          * part of this function, save away the current value.
    4407             :          */
    4408        3608 :         partexprs_item_saved = partexprs_item;
    4409             : 
    4410        3608 :         get_range_key_properties(key, i, ldatum, udatum,
    4411             :                                  &partexprs_item,
    4412             :                                  &keyCol,
    4413             :                                  &lower_val, &upper_val);
    4414             : 
    4415             :         /*
    4416             :          * If either value is NULL, the corresponding partition bound is
    4417             :          * either MINVALUE or MAXVALUE, and we treat them as unequal, because
    4418             :          * even if they're the same, there is no common value to equate the
    4419             :          * key column with.
    4420             :          */
    4421        3608 :         if (!lower_val || !upper_val)
    4422             :             break;
    4423             : 
    4424             :         /* Create the test expression */
    4425        3230 :         estate = CreateExecutorState();
    4426        3230 :         oldcxt = MemoryContextSwitchTo(estate->es_query_cxt);
    4427        3230 :         test_expr = make_partition_op_expr(key, i, BTEqualStrategyNumber,
    4428             :                                            (Expr *) lower_val,
    4429             :                                            (Expr *) upper_val);
    4430        3230 :         fix_opfuncids((Node *) test_expr);
    4431        3230 :         test_exprstate = ExecInitExpr(test_expr, NULL);
    4432        3230 :         test_result = ExecEvalExprSwitchContext(test_exprstate,
    4433        3230 :                                                 GetPerTupleExprContext(estate),
    4434             :                                                 &isNull);
    4435        3230 :         MemoryContextSwitchTo(oldcxt);
    4436        3230 :         FreeExecutorState(estate);
    4437             : 
    4438             :         /* If not equal, go generate the OR expressions */
    4439        3230 :         if (!DatumGetBool(test_result))
    4440        2690 :             break;
    4441             : 
    4442             :         /*
    4443             :          * The bounds for the last key column can't be equal, because such a
    4444             :          * range partition would never be allowed to be defined (it would have
    4445             :          * an empty range otherwise).
    4446             :          */
    4447         540 :         if (i == key->partnatts - 1)
    4448           0 :             elog(ERROR, "invalid range bound specification");
    4449             : 
    4450             :         /* Equal, so generate keyCol = lower_val expression */
    4451         540 :         result = lappend(result,
    4452         540 :                          make_partition_op_expr(key, i, BTEqualStrategyNumber,
    4453             :                                                 keyCol, (Expr *) lower_val));
    4454             : 
    4455         540 :         i++;
    4456             :     }
    4457             : 
    4458             :     /* First pair of lower_val and upper_val that are not equal. */
    4459        3068 :     lower_or_start_datum = cell1;
    4460        3068 :     upper_or_start_datum = cell2;
    4461             : 
    4462             :     /* OR will have as many arms as there are key columns left. */
    4463        3068 :     num_or_arms = key->partnatts - i;
    4464        3068 :     current_or_arm = 0;
    4465        3068 :     lower_or_arms = upper_or_arms = NIL;
    4466        3068 :     need_next_lower_arm = need_next_upper_arm = true;
    4467        3360 :     while (current_or_arm < num_or_arms)
    4468             :     {
    4469        3360 :         List       *lower_or_arm_args = NIL,
    4470        3360 :                    *upper_or_arm_args = NIL;
    4471             : 
    4472             :         /* Restart scan of columns from the i'th one */
    4473        3360 :         j = i;
    4474        3360 :         partexprs_item = partexprs_item_saved;
    4475             : 
    4476        3736 :         for_both_cell(cell1, spec->lowerdatums, lower_or_start_datum,
    4477             :                       cell2, spec->upperdatums, upper_or_start_datum)
    4478             :         {
    4479        3736 :             PartitionRangeDatum *ldatum_next = NULL,
    4480        3736 :                        *udatum_next = NULL;
    4481             : 
    4482        3736 :             ldatum = lfirst_node(PartitionRangeDatum, cell1);
    4483        3736 :             if (lnext(spec->lowerdatums, cell1))
    4484         746 :                 ldatum_next = castNode(PartitionRangeDatum,
    4485             :                                        lfirst(lnext(spec->lowerdatums, cell1)));
    4486        3736 :             udatum = lfirst_node(PartitionRangeDatum, cell2);
    4487        3736 :             if (lnext(spec->upperdatums, cell2))
    4488         746 :                 udatum_next = castNode(PartitionRangeDatum,
    4489             :                                        lfirst(lnext(spec->upperdatums, cell2)));
    4490        3736 :             get_range_key_properties(key, j, ldatum, udatum,
    4491             :                                      &partexprs_item,
    4492             :                                      &keyCol,
    4493             :                                      &lower_val, &upper_val);
    4494             : 
    4495        3736 :             if (need_next_lower_arm && lower_val)
    4496             :             {
    4497             :                 uint16      strategy;
    4498             : 
    4499             :                 /*
    4500             :                  * For the non-last columns of this arm, use the EQ operator.
    4501             :                  * For the last column of this arm, use GT, unless this is the
    4502             :                  * last column of the whole bound check, or the next bound
    4503             :                  * datum is MINVALUE, in which case use GE.
    4504             :                  */
    4505        3460 :                 if (j - i < current_or_arm)
    4506         322 :                     strategy = BTEqualStrategyNumber;
    4507        3138 :                 else if (j == key->partnatts - 1 ||
    4508         310 :                          (ldatum_next &&
    4509         310 :                           ldatum_next->kind == PARTITION_RANGE_DATUM_MINVALUE))
    4510        2870 :                     strategy = BTGreaterEqualStrategyNumber;
    4511             :                 else
    4512         268 :                     strategy = BTGreaterStrategyNumber;
    4513             : 
    4514        3460 :                 lower_or_arm_args = lappend(lower_or_arm_args,
    4515        3460 :                                             make_partition_op_expr(key, j,
    4516             :                                                                    strategy,
    4517             :                                                                    keyCol,
    4518             :                                                                    (Expr *) lower_val));
    4519             :             }
    4520             : 
    4521        3736 :             if (need_next_upper_arm && upper_val)
    4522             :             {
    4523             :                 uint16      strategy;
    4524             : 
    4525             :                 /*
    4526             :                  * For the non-last columns of this arm, use the EQ operator.
    4527             :                  * For the last column of this arm, use LT, unless the next
    4528             :                  * bound datum is MAXVALUE, in which case use LE.
    4529             :                  */
    4530        3334 :                 if (j - i < current_or_arm)
    4531         256 :                     strategy = BTEqualStrategyNumber;
    4532        3078 :                 else if (udatum_next &&
    4533         274 :                          udatum_next->kind == PARTITION_RANGE_DATUM_MAXVALUE)
    4534          30 :                     strategy = BTLessEqualStrategyNumber;
    4535             :                 else
    4536        3048 :                     strategy = BTLessStrategyNumber;
    4537             : 
    4538        3334 :                 upper_or_arm_args = lappend(upper_or_arm_args,
    4539        3334 :                                             make_partition_op_expr(key, j,
    4540             :                                                                    strategy,
    4541             :                                                                    keyCol,
    4542             :                                                                    (Expr *) upper_val));
    4543             :             }
    4544             : 
    4545             :             /*
    4546             :              * Did we generate enough of OR's arguments?  First arm considers
    4547             :              * the first of the remaining columns, second arm considers first
    4548             :              * two of the remaining columns, and so on.
    4549             :              */
    4550        3736 :             ++j;
    4551        3736 :             if (j - i > current_or_arm)
    4552             :             {
    4553             :                 /*
    4554             :                  * We must not emit any more arms if the new column that will
    4555             :                  * be considered is unbounded, or this one was.
    4556             :                  */
    4557        3360 :                 if (!lower_val || !ldatum_next ||
    4558         310 :                     ldatum_next->kind != PARTITION_RANGE_DATUM_VALUE)
    4559        3104 :                     need_next_lower_arm = false;
    4560        3360 :                 if (!upper_val || !udatum_next ||
    4561         274 :                     udatum_next->kind != PARTITION_RANGE_DATUM_VALUE)
    4562        3152 :                     need_next_upper_arm = false;
    4563        3360 :                 break;
    4564             :             }
    4565             :         }
    4566             : 
    4567        3360 :         if (lower_or_arm_args != NIL)
    4568        6276 :             lower_or_arms = lappend(lower_or_arms,
    4569        3138 :                                     list_length(lower_or_arm_args) > 1
    4570         256 :                                     ? makeBoolExpr(AND_EXPR, lower_or_arm_args, -1)
    4571        2882 :                                     : linitial(lower_or_arm_args));
    4572             : 
    4573        3360 :         if (upper_or_arm_args != NIL)
    4574        6156 :             upper_or_arms = lappend(upper_or_arms,
    4575        3078 :                                     list_length(upper_or_arm_args) > 1
    4576         208 :                                     ? makeBoolExpr(AND_EXPR, upper_or_arm_args, -1)
    4577        2870 :                                     : linitial(upper_or_arm_args));
    4578             : 
    4579             :         /* If no work to do in the next iteration, break away. */
    4580        3360 :         if (!need_next_lower_arm && !need_next_upper_arm)
    4581        3068 :             break;
    4582             : 
    4583         292 :         ++current_or_arm;
    4584             :     }
    4585             : 
    4586             :     /*
    4587             :      * Generate the OR expressions for each of lower and upper bounds (if
    4588             :      * required), and append to the list of implicitly ANDed list of
    4589             :      * expressions.
    4590             :      */
    4591        3068 :     if (lower_or_arms != NIL)
    4592        5764 :         result = lappend(result,
    4593        2882 :                          list_length(lower_or_arms) > 1
    4594         190 :                          ? makeBoolExpr(OR_EXPR, lower_or_arms, -1)
    4595        2692 :                          : linitial(lower_or_arms));
    4596        3068 :     if (upper_or_arms != NIL)
    4597        5740 :         result = lappend(result,
    4598        2870 :                          list_length(upper_or_arms) > 1
    4599         160 :                          ? makeBoolExpr(OR_EXPR, upper_or_arms, -1)
    4600        2710 :                          : linitial(upper_or_arms));
    4601             : 
    4602             :     /*
    4603             :      * As noted above, for non-default, we return list with constant TRUE. If
    4604             :      * the result is NIL during the recursive call for default, it implies
    4605             :      * this is the only other partition which can hold every value of the key
    4606             :      * except NULL. Hence we return the NullTest result skipped earlier.
    4607             :      */
    4608        3068 :     if (result == NIL)
    4609           0 :         result = for_default
    4610           0 :             ? get_range_nulltest(key)
    4611           0 :             : list_make1(makeBoolConst(true, false));
    4612             : 
    4613        3068 :     return result;
    4614             : }
    4615             : 
    4616             : /*
    4617             :  * get_range_key_properties
    4618             :  *      Returns range partition key information for a given column
    4619             :  *
    4620             :  * This is a subroutine for get_qual_for_range, and its API is pretty
    4621             :  * specialized to that caller.
    4622             :  *
    4623             :  * Constructs an Expr for the key column (returned in *keyCol) and Consts
    4624             :  * for the lower and upper range limits (returned in *lower_val and
    4625             :  * *upper_val).  For MINVALUE/MAXVALUE limits, NULL is returned instead of
    4626             :  * a Const.  All of these structures are freshly palloc'd.
    4627             :  *
    4628             :  * *partexprs_item points to the cell containing the next expression in
    4629             :  * the key->partexprs list, or NULL.  It may be advanced upon return.
    4630             :  */
    4631             : static void
    4632        7344 : get_range_key_properties(PartitionKey key, int keynum,
    4633             :                          PartitionRangeDatum *ldatum,
    4634             :                          PartitionRangeDatum *udatum,
    4635             :                          ListCell **partexprs_item,
    4636             :                          Expr **keyCol,
    4637             :                          Const **lower_val, Const **upper_val)
    4638             : {
    4639             :     /* Get partition key expression for this column */
    4640        7344 :     if (key->partattrs[keynum] != 0)
    4641             :     {
    4642        6616 :         *keyCol = (Expr *) makeVar(1,
    4643        6616 :                                    key->partattrs[keynum],
    4644        6616 :                                    key->parttypid[keynum],
    4645        6616 :                                    key->parttypmod[keynum],
    4646        6616 :                                    key->parttypcoll[keynum],
    4647             :                                    0);
    4648             :     }
    4649             :     else
    4650             :     {
    4651         728 :         if (*partexprs_item == NULL)
    4652           0 :             elog(ERROR, "wrong number of partition key expressions");
    4653         728 :         *keyCol = copyObject(lfirst(*partexprs_item));
    4654         728 :         *partexprs_item = lnext(key->partexprs, *partexprs_item);
    4655             :     }
    4656             : 
    4657             :     /* Get appropriate Const nodes for the bounds */
    4658        7344 :     if (ldatum->kind == PARTITION_RANGE_DATUM_VALUE)
    4659        6900 :         *lower_val = castNode(Const, copyObject(ldatum->value));
    4660             :     else
    4661         444 :         *lower_val = NULL;
    4662             : 
    4663        7344 :     if (udatum->kind == PARTITION_RANGE_DATUM_VALUE)
    4664        6768 :         *upper_val = castNode(Const, copyObject(udatum->value));
    4665             :     else
    4666         576 :         *upper_val = NULL;
    4667        7344 : }
    4668             : 
    4669             : /*
    4670             :  * get_range_nulltest
    4671             :  *
    4672             :  * A non-default range partition table does not currently allow partition
    4673             :  * keys to be null, so emit an IS NOT NULL expression for each key column.
    4674             :  */
    4675             : static List *
    4676        2816 : get_range_nulltest(PartitionKey key)
    4677             : {
    4678        2816 :     List       *result = NIL;
    4679             :     NullTest   *nulltest;
    4680             :     ListCell   *partexprs_item;
    4681             :     int         i;
    4682             : 
    4683        2816 :     partexprs_item = list_head(key->partexprs);
    4684        6404 :     for (i = 0; i < key->partnatts; i++)
    4685             :     {
    4686             :         Expr       *keyCol;
    4687             : 
    4688        3588 :         if (key->partattrs[i] != 0)
    4689             :         {
    4690        3236 :             keyCol = (Expr *) makeVar(1,
    4691        3236 :                                       key->partattrs[i],
    4692        3236 :                                       key->parttypid[i],
    4693        3236 :                                       key->parttypmod[i],
    4694        3236 :                                       key->parttypcoll[i],
    4695             :                                       0);
    4696             :         }
    4697             :         else
    4698             :         {
    4699         352 :             if (partexprs_item == NULL)
    4700           0 :                 elog(ERROR, "wrong number of partition key expressions");
    4701         352 :             keyCol = copyObject(lfirst(partexprs_item));
    4702         352 :             partexprs_item = lnext(key->partexprs, partexprs_item);
    4703             :         }
    4704             : 
    4705        3588 :         nulltest = makeNode(NullTest);
    4706        3588 :         nulltest->arg = keyCol;
    4707        3588 :         nulltest->nulltesttype = IS_NOT_NULL;
    4708        3588 :         nulltest->argisrow = false;
    4709        3588 :         nulltest->location = -1;
    4710        3588 :         result = lappend(result, nulltest);
    4711             :     }
    4712             : 
    4713        2816 :     return result;
    4714             : }
    4715             : 
    4716             : /*
    4717             :  * compute_partition_hash_value
    4718             :  *
    4719             :  * Compute the hash value for given partition key values.
    4720             :  */
    4721             : uint64
    4722      213042 : compute_partition_hash_value(int partnatts, FmgrInfo *partsupfunc, const Oid *partcollation,
    4723             :                              const Datum *values, const bool *isnull)
    4724             : {
    4725             :     int         i;
    4726      213042 :     uint64      rowHash = 0;
    4727      213042 :     Datum       seed = UInt64GetDatum(HASH_PARTITION_SEED);
    4728             : 
    4729      427068 :     for (i = 0; i < partnatts; i++)
    4730             :     {
    4731             :         /* Nulls are just ignored */
    4732      214026 :         if (!isnull[i])
    4733             :         {
    4734             :             Datum       hash;
    4735             : 
    4736             :             Assert(OidIsValid(partsupfunc[i].fn_oid));
    4737             : 
    4738             :             /*
    4739             :              * Compute hash for each datum value by calling respective
    4740             :              * datatype-specific hash functions of each partition key
    4741             :              * attribute.
    4742             :              */
    4743      213384 :             hash = FunctionCall2Coll(&partsupfunc[i], partcollation[i],
    4744      213384 :                                      values[i], seed);
    4745             : 
    4746             :             /* Form a single 64-bit hash value */
    4747      213384 :             rowHash = hash_combine64(rowHash, DatumGetUInt64(hash));
    4748             :         }
    4749             :     }
    4750             : 
    4751      213042 :     return rowHash;
    4752             : }
    4753             : 
    4754             : /*
    4755             :  * satisfies_hash_partition
    4756             :  *
    4757             :  * This is an SQL-callable function for use in hash partition constraints.
    4758             :  * The first three arguments are the parent table OID, modulus, and remainder.
    4759             :  * The remaining arguments are the value of the partitioning columns (or
    4760             :  * expressions); these are hashed and the results are combined into a single
    4761             :  * hash value by calling hash_combine64.
    4762             :  *
    4763             :  * Returns true if remainder produced when this computed single hash value is
    4764             :  * divided by the given modulus is equal to given remainder, otherwise false.
    4765             :  * NB: it's important that this never return null, as the constraint machinery
    4766             :  * would consider that to be a "pass".
    4767             :  *
    4768             :  * See get_qual_for_hash() for usage.
    4769             :  */
    4770             : Datum
    4771        4228 : satisfies_hash_partition(PG_FUNCTION_ARGS)
    4772             : {
    4773             :     typedef struct ColumnsHashData
    4774             :     {
    4775             :         Oid         relid;
    4776             :         int         nkeys;
    4777             :         Oid         variadic_type;
    4778             :         int16       variadic_typlen;
    4779             :         bool        variadic_typbyval;
    4780             :         char        variadic_typalign;
    4781             :         Oid         partcollid[PARTITION_MAX_KEYS];
    4782             :         FmgrInfo    partsupfunc[FLEXIBLE_ARRAY_MEMBER];
    4783             :     } ColumnsHashData;
    4784             :     Oid         parentId;
    4785             :     int         modulus;
    4786             :     int         remainder;
    4787        4228 :     Datum       seed = UInt64GetDatum(HASH_PARTITION_SEED);
    4788             :     ColumnsHashData *my_extra;
    4789        4228 :     uint64      rowHash = 0;
    4790             : 
    4791             :     /* Return false if the parent OID, modulus, or remainder is NULL. */
    4792        4228 :     if (PG_ARGISNULL(0) || PG_ARGISNULL(1) || PG_ARGISNULL(2))
    4793          12 :         PG_RETURN_BOOL(false);
    4794        4216 :     parentId = PG_GETARG_OID(0);
    4795        4216 :     modulus = PG_GETARG_INT32(1);
    4796        4216 :     remainder = PG_GETARG_INT32(2);
    4797             : 
    4798             :     /* Sanity check modulus and remainder. */
    4799        4216 :     if (modulus <= 0)
    4800           6 :         ereport(ERROR,
    4801             :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    4802             :                  errmsg("modulus for hash partition must be an integer value greater than zero")));
    4803        4210 :     if (remainder < 0)
    4804           6 :         ereport(ERROR,
    4805             :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    4806             :                  errmsg("remainder for hash partition must be an integer value greater than or equal to zero")));
    4807        4204 :     if (remainder >= modulus)
    4808           6 :         ereport(ERROR,
    4809             :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    4810             :                  errmsg("remainder for hash partition must be less than modulus")));
    4811             : 
    4812             :     /*
    4813             :      * Cache hash function information.
    4814             :      */
    4815        4198 :     my_extra = (ColumnsHashData *) fcinfo->flinfo->fn_extra;
    4816        4198 :     if (my_extra == NULL || my_extra->relid != parentId)
    4817             :     {
    4818             :         Relation    parent;
    4819             :         PartitionKey key;
    4820             :         int         j;
    4821             : 
    4822             :         /* Open parent relation and fetch partition key info */
    4823        2196 :         parent = relation_open(parentId, AccessShareLock);
    4824        2190 :         key = RelationGetPartitionKey(parent);
    4825             : 
    4826             :         /* Reject parent table that is not hash-partitioned. */
    4827        2190 :         if (key == NULL || key->strategy != PARTITION_STRATEGY_HASH)
    4828          12 :             ereport(ERROR,
    4829             :                     (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    4830             :                      errmsg("\"%s\" is not a hash partitioned table",
    4831             :                             get_rel_name(parentId))));
    4832             : 
    4833        2178 :         if (!get_fn_expr_variadic(fcinfo->flinfo))
    4834             :         {
    4835        2148 :             int         nargs = PG_NARGS() - 3;
    4836             : 
    4837             :             /* complain if wrong number of column values */
    4838        2148 :             if (key->partnatts != nargs)
    4839          12 :                 ereport(ERROR,
    4840             :                         (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    4841             :                          errmsg("number of partitioning columns (%d) does not match number of partition keys provided (%d)",
    4842             :                                 key->partnatts, nargs)));
    4843             : 
    4844             :             /* allocate space for our cache */
    4845        4272 :             fcinfo->flinfo->fn_extra =
    4846        2136 :                 MemoryContextAllocZero(fcinfo->flinfo->fn_mcxt,
    4847             :                                        offsetof(ColumnsHashData, partsupfunc) +
    4848        2136 :                                        sizeof(FmgrInfo) * nargs);
    4849        2136 :             my_extra = (ColumnsHashData *) fcinfo->flinfo->fn_extra;
    4850        2136 :             my_extra->relid = parentId;
    4851        2136 :             my_extra->nkeys = key->partnatts;
    4852        2136 :             memcpy(my_extra->partcollid, key->partcollation,
    4853        2136 :                    key->partnatts * sizeof(Oid));
    4854             : 
    4855             :             /* check argument types and save fmgr_infos */
    4856        4314 :             for (j = 0; j < key->partnatts; ++j)
    4857             :             {
    4858        2184 :                 Oid         argtype = get_fn_expr_argtype(fcinfo->flinfo, j + 3);
    4859             : 
    4860        2184 :                 if (argtype != key->parttypid[j] && !IsBinaryCoercible(argtype, key->parttypid[j]))
    4861           6 :                     ereport(ERROR,
    4862             :                             (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    4863             :                              errmsg("column %d of the partition key has type %s, but supplied value is of type %s",
    4864             :                                     j + 1, format_type_be(key->parttypid[j]), format_type_be(argtype))));
    4865             : 
    4866        2178 :                 fmgr_info_copy(&my_extra->partsupfunc[j],
    4867        2178 :                                &key->partsupfunc[j],
    4868        2178 :                                fcinfo->flinfo->fn_mcxt);
    4869             :             }
    4870             :         }
    4871             :         else
    4872             :         {
    4873          30 :             ArrayType  *variadic_array = PG_GETARG_ARRAYTYPE_P(3);
    4874             : 
    4875             :             /* allocate space for our cache -- just one FmgrInfo in this case */
    4876          60 :             fcinfo->flinfo->fn_extra =
    4877          30 :                 MemoryContextAllocZero(fcinfo->flinfo->fn_mcxt,
    4878             :                                        offsetof(ColumnsHashData, partsupfunc) +
    4879             :                                        sizeof(FmgrInfo));
    4880          30 :             my_extra = (ColumnsHashData *) fcinfo->flinfo->fn_extra;
    4881          30 :             my_extra->relid = parentId;
    4882          30 :             my_extra->nkeys = key->partnatts;
    4883          30 :             my_extra->variadic_type = ARR_ELEMTYPE(variadic_array);
    4884          30 :             get_typlenbyvalalign(my_extra->variadic_type,
    4885             :                                  &my_extra->variadic_typlen,
    4886             :                                  &my_extra->variadic_typbyval,
    4887             :                                  &my_extra->variadic_typalign);
    4888          30 :             my_extra->partcollid[0] = key->partcollation[0];
    4889             : 
    4890             :             /* check argument types */
    4891          72 :             for (j = 0; j < key->partnatts; ++j)
    4892          54 :                 if (key->parttypid[j] != my_extra->variadic_type)
    4893          12 :                     ereport(ERROR,
    4894             :                             (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    4895             :                              errmsg("column %d of the partition key has type \"%s\", but supplied value is of type \"%s\"",
    4896             :                                     j + 1,
    4897             :                                     format_type_be(key->parttypid[j]),
    4898             :                                     format_type_be(my_extra->variadic_type))));
    4899             : 
    4900          18 :             fmgr_info_copy(&my_extra->partsupfunc[0],
    4901             :                            &key->partsupfunc[0],
    4902          18 :                            fcinfo->flinfo->fn_mcxt);
    4903             :         }
    4904             : 
    4905             :         /* Hold lock until commit */
    4906        2148 :         relation_close(parent, NoLock);
    4907             :     }
    4908             : 
    4909        4150 :     if (!OidIsValid(my_extra->variadic_type))
    4910             :     {
    4911        4132 :         int         nkeys = my_extra->nkeys;
    4912             :         int         i;
    4913             : 
    4914             :         /*
    4915             :          * For a non-variadic call, neither the number of arguments nor their
    4916             :          * types can change across calls, so avoid the expense of rechecking
    4917             :          * here.
    4918             :          */
    4919             : 
    4920        8306 :         for (i = 0; i < nkeys; i++)
    4921             :         {
    4922             :             Datum       hash;
    4923             : 
    4924             :             /* keys start from fourth argument of function. */
    4925        4174 :             int         argno = i + 3;
    4926             : 
    4927        4174 :             if (PG_ARGISNULL(argno))
    4928           0 :                 continue;
    4929             : 
    4930        4174 :             hash = FunctionCall2Coll(&my_extra->partsupfunc[i],
    4931             :                                      my_extra->partcollid[i],
    4932             :                                      PG_GETARG_DATUM(argno),
    4933             :                                      seed);
    4934             : 
    4935             :             /* Form a single 64-bit hash value */
    4936        4174 :             rowHash = hash_combine64(rowHash, DatumGetUInt64(hash));
    4937             :         }
    4938             :     }
    4939             :     else
    4940             :     {
    4941          18 :         ArrayType  *variadic_array = PG_GETARG_ARRAYTYPE_P(3);
    4942             :         int         i;
    4943             :         int         nelems;
    4944             :         Datum      *datum;
    4945             :         bool       *isnull;
    4946             : 
    4947          18 :         deconstruct_array(variadic_array,
    4948             :                           my_extra->variadic_type,
    4949          18 :                           my_extra->variadic_typlen,
    4950          18 :                           my_extra->variadic_typbyval,
    4951          18 :                           my_extra->variadic_typalign,
    4952             :                           &datum, &isnull, &nelems);
    4953             : 
    4954             :         /* complain if wrong number of column values */
    4955          18 :         if (nelems != my_extra->nkeys)
    4956           6 :             ereport(ERROR,
    4957             :                     (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
    4958             :                      errmsg("number of partitioning columns (%d) does not match number of partition keys provided (%d)",
    4959             :                             my_extra->nkeys, nelems)));
    4960             : 
    4961          36 :         for (i = 0; i < nelems; i++)
    4962             :         {
    4963             :             Datum       hash;
    4964             : 
    4965          24 :             if (isnull[i])
    4966           0 :                 continue;
    4967             : 
    4968          24 :             hash = FunctionCall2Coll(&my_extra->partsupfunc[0],
    4969             :                                      my_extra->partcollid[0],
    4970          24 :                                      datum[i],
    4971             :                                      seed);
    4972             : 
    4973             :             /* Form a single 64-bit hash value */
    4974          24 :             rowHash = hash_combine64(rowHash, DatumGetUInt64(hash));
    4975             :         }
    4976             :     }
    4977             : 
    4978        4144 :     PG_RETURN_BOOL(rowHash % modulus == remainder);
    4979             : }

Generated by: LCOV version 1.14