LCOV - code coverage report
Current view: top level - src/backend/optimizer/util - relnode.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 766 797 96.1 %
Date: 2025-01-18 04:15:08 Functions: 30 30 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * relnode.c
       4             :  *    Relation-node lookup/construction routines
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/optimizer/util/relnode.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include <limits.h>
      18             : 
      19             : #include "miscadmin.h"
      20             : #include "nodes/nodeFuncs.h"
      21             : #include "optimizer/appendinfo.h"
      22             : #include "optimizer/clauses.h"
      23             : #include "optimizer/cost.h"
      24             : #include "optimizer/inherit.h"
      25             : #include "optimizer/optimizer.h"
      26             : #include "optimizer/pathnode.h"
      27             : #include "optimizer/paths.h"
      28             : #include "optimizer/placeholder.h"
      29             : #include "optimizer/plancat.h"
      30             : #include "optimizer/restrictinfo.h"
      31             : #include "optimizer/tlist.h"
      32             : #include "parser/parse_relation.h"
      33             : #include "rewrite/rewriteManip.h"
      34             : #include "utils/hsearch.h"
      35             : #include "utils/lsyscache.h"
      36             : 
      37             : 
      38             : typedef struct JoinHashEntry
      39             : {
      40             :     Relids      join_relids;    /* hash key --- MUST BE FIRST */
      41             :     RelOptInfo *join_rel;
      42             : } JoinHashEntry;
      43             : 
      44             : static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
      45             :                                 RelOptInfo *input_rel,
      46             :                                 SpecialJoinInfo *sjinfo,
      47             :                                 List *pushed_down_joins,
      48             :                                 bool can_null);
      49             : static List *build_joinrel_restrictlist(PlannerInfo *root,
      50             :                                         RelOptInfo *joinrel,
      51             :                                         RelOptInfo *outer_rel,
      52             :                                         RelOptInfo *inner_rel,
      53             :                                         SpecialJoinInfo *sjinfo);
      54             : static void build_joinrel_joinlist(RelOptInfo *joinrel,
      55             :                                    RelOptInfo *outer_rel,
      56             :                                    RelOptInfo *inner_rel);
      57             : static List *subbuild_joinrel_restrictlist(PlannerInfo *root,
      58             :                                            RelOptInfo *joinrel,
      59             :                                            RelOptInfo *input_rel,
      60             :                                            Relids both_input_relids,
      61             :                                            List *new_restrictlist);
      62             : static List *subbuild_joinrel_joinlist(RelOptInfo *joinrel,
      63             :                                        List *joininfo_list,
      64             :                                        List *new_joininfo);
      65             : static void set_foreign_rel_properties(RelOptInfo *joinrel,
      66             :                                        RelOptInfo *outer_rel, RelOptInfo *inner_rel);
      67             : static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel);
      68             : static void build_joinrel_partition_info(PlannerInfo *root,
      69             :                                          RelOptInfo *joinrel,
      70             :                                          RelOptInfo *outer_rel, RelOptInfo *inner_rel,
      71             :                                          SpecialJoinInfo *sjinfo,
      72             :                                          List *restrictlist);
      73             : static bool have_partkey_equi_join(PlannerInfo *root, RelOptInfo *joinrel,
      74             :                                    RelOptInfo *rel1, RelOptInfo *rel2,
      75             :                                    JoinType jointype, List *restrictlist);
      76             : static int  match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel,
      77             :                                          bool strict_op);
      78             : static void set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
      79             :                                             RelOptInfo *outer_rel, RelOptInfo *inner_rel,
      80             :                                             JoinType jointype);
      81             : static void build_child_join_reltarget(PlannerInfo *root,
      82             :                                        RelOptInfo *parentrel,
      83             :                                        RelOptInfo *childrel,
      84             :                                        int nappinfos,
      85             :                                        AppendRelInfo **appinfos);
      86             : 
      87             : 
      88             : /*
      89             :  * setup_simple_rel_arrays
      90             :  *    Prepare the arrays we use for quickly accessing base relations
      91             :  *    and AppendRelInfos.
      92             :  */
      93             : void
      94      540754 : setup_simple_rel_arrays(PlannerInfo *root)
      95             : {
      96             :     int         size;
      97             :     Index       rti;
      98             :     ListCell   *lc;
      99             : 
     100             :     /* Arrays are accessed using RT indexes (1..N) */
     101      540754 :     size = list_length(root->parse->rtable) + 1;
     102      540754 :     root->simple_rel_array_size = size;
     103             : 
     104             :     /*
     105             :      * simple_rel_array is initialized to all NULLs, since no RelOptInfos
     106             :      * exist yet.  It'll be filled by later calls to build_simple_rel().
     107             :      */
     108      540754 :     root->simple_rel_array = (RelOptInfo **)
     109      540754 :         palloc0(size * sizeof(RelOptInfo *));
     110             : 
     111             :     /* simple_rte_array is an array equivalent of the rtable list */
     112      540754 :     root->simple_rte_array = (RangeTblEntry **)
     113      540754 :         palloc0(size * sizeof(RangeTblEntry *));
     114      540754 :     rti = 1;
     115     1415378 :     foreach(lc, root->parse->rtable)
     116             :     {
     117      874624 :         RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
     118             : 
     119      874624 :         root->simple_rte_array[rti++] = rte;
     120             :     }
     121             : 
     122             :     /* append_rel_array is not needed if there are no AppendRelInfos */
     123      540754 :     if (root->append_rel_list == NIL)
     124             :     {
     125      539040 :         root->append_rel_array = NULL;
     126      539040 :         return;
     127             :     }
     128             : 
     129        1714 :     root->append_rel_array = (AppendRelInfo **)
     130        1714 :         palloc0(size * sizeof(AppendRelInfo *));
     131             : 
     132             :     /*
     133             :      * append_rel_array is filled with any already-existing AppendRelInfos,
     134             :      * which currently could only come from UNION ALL flattening.  We might
     135             :      * add more later during inheritance expansion, but it's the
     136             :      * responsibility of the expansion code to update the array properly.
     137             :      */
     138        5926 :     foreach(lc, root->append_rel_list)
     139             :     {
     140        4212 :         AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
     141        4212 :         int         child_relid = appinfo->child_relid;
     142             : 
     143             :         /* Sanity check */
     144             :         Assert(child_relid < size);
     145             : 
     146        4212 :         if (root->append_rel_array[child_relid])
     147           0 :             elog(ERROR, "child relation already exists");
     148             : 
     149        4212 :         root->append_rel_array[child_relid] = appinfo;
     150             :     }
     151             : }
     152             : 
     153             : /*
     154             :  * expand_planner_arrays
     155             :  *      Expand the PlannerInfo's per-RTE arrays by add_size members
     156             :  *      and initialize the newly added entries to NULLs
     157             :  *
     158             :  * Note: this causes the append_rel_array to become allocated even if
     159             :  * it was not before.  This is okay for current uses, because we only call
     160             :  * this when adding child relations, which always have AppendRelInfos.
     161             :  */
     162             : void
     163       18832 : expand_planner_arrays(PlannerInfo *root, int add_size)
     164             : {
     165             :     int         new_size;
     166             : 
     167             :     Assert(add_size > 0);
     168             : 
     169       18832 :     new_size = root->simple_rel_array_size + add_size;
     170             : 
     171       18832 :     root->simple_rel_array =
     172       18832 :         repalloc0_array(root->simple_rel_array, RelOptInfo *, root->simple_rel_array_size, new_size);
     173             : 
     174       18832 :     root->simple_rte_array =
     175       18832 :         repalloc0_array(root->simple_rte_array, RangeTblEntry *, root->simple_rel_array_size, new_size);
     176             : 
     177       18832 :     if (root->append_rel_array)
     178        5282 :         root->append_rel_array =
     179        5282 :             repalloc0_array(root->append_rel_array, AppendRelInfo *, root->simple_rel_array_size, new_size);
     180             :     else
     181       13550 :         root->append_rel_array =
     182       13550 :             palloc0_array(AppendRelInfo *, new_size);
     183             : 
     184       18832 :     root->simple_rel_array_size = new_size;
     185       18832 : }
     186             : 
     187             : /*
     188             :  * build_simple_rel
     189             :  *    Construct a new RelOptInfo for a base relation or 'other' relation.
     190             :  */
     191             : RelOptInfo *
     192      720900 : build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
     193             : {
     194             :     RelOptInfo *rel;
     195             :     RangeTblEntry *rte;
     196             : 
     197             :     /* Rel should not exist already */
     198             :     Assert(relid > 0 && relid < root->simple_rel_array_size);
     199      720900 :     if (root->simple_rel_array[relid] != NULL)
     200           0 :         elog(ERROR, "rel %d already exists", relid);
     201             : 
     202             :     /* Fetch RTE for relation */
     203      720900 :     rte = root->simple_rte_array[relid];
     204             :     Assert(rte != NULL);
     205             : 
     206      720900 :     rel = makeNode(RelOptInfo);
     207      720900 :     rel->reloptkind = parent ? RELOPT_OTHER_MEMBER_REL : RELOPT_BASEREL;
     208      720900 :     rel->relids = bms_make_singleton(relid);
     209      720900 :     rel->rows = 0;
     210             :     /* cheap startup cost is interesting iff not all tuples to be retrieved */
     211      720900 :     rel->consider_startup = (root->tuple_fraction > 0);
     212      720900 :     rel->consider_param_startup = false; /* might get changed later */
     213      720900 :     rel->consider_parallel = false; /* might get changed later */
     214      720900 :     rel->reltarget = create_empty_pathtarget();
     215      720900 :     rel->pathlist = NIL;
     216      720900 :     rel->ppilist = NIL;
     217      720900 :     rel->partial_pathlist = NIL;
     218      720900 :     rel->cheapest_startup_path = NULL;
     219      720900 :     rel->cheapest_total_path = NULL;
     220      720900 :     rel->cheapest_unique_path = NULL;
     221      720900 :     rel->cheapest_parameterized_paths = NIL;
     222      720900 :     rel->relid = relid;
     223      720900 :     rel->rtekind = rte->rtekind;
     224             :     /* min_attr, max_attr, attr_needed, attr_widths are set below */
     225      720900 :     rel->notnullattnums = NULL;
     226      720900 :     rel->lateral_vars = NIL;
     227      720900 :     rel->indexlist = NIL;
     228      720900 :     rel->statlist = NIL;
     229      720900 :     rel->pages = 0;
     230      720900 :     rel->tuples = 0;
     231      720900 :     rel->allvisfrac = 0;
     232      720900 :     rel->eclass_indexes = NULL;
     233      720900 :     rel->subroot = NULL;
     234      720900 :     rel->subplan_params = NIL;
     235      720900 :     rel->rel_parallel_workers = -1; /* set up in get_relation_info */
     236      720900 :     rel->amflags = 0;
     237      720900 :     rel->serverid = InvalidOid;
     238      720900 :     if (rte->rtekind == RTE_RELATION)
     239             :     {
     240             :         Assert(parent == NULL ||
     241             :                parent->rtekind == RTE_RELATION ||
     242             :                parent->rtekind == RTE_SUBQUERY);
     243             : 
     244             :         /*
     245             :          * For any RELATION rte, we need a userid with which to check
     246             :          * permission access. Baserels simply use their own
     247             :          * RTEPermissionInfo's checkAsUser.
     248             :          *
     249             :          * For otherrels normally there's no RTEPermissionInfo, so we use the
     250             :          * parent's, which normally has one. The exceptional case is that the
     251             :          * parent is a subquery, in which case the otherrel will have its own.
     252             :          */
     253      426092 :         if (rel->reloptkind == RELOPT_BASEREL ||
     254       40274 :             (rel->reloptkind == RELOPT_OTHER_MEMBER_REL &&
     255       40274 :              parent->rtekind == RTE_SUBQUERY))
     256      386856 :         {
     257             :             RTEPermissionInfo *perminfo;
     258             : 
     259      386856 :             perminfo = getRTEPermissionInfo(root->parse->rteperminfos, rte);
     260      386856 :             rel->userid = perminfo->checkAsUser;
     261             :         }
     262             :         else
     263       39236 :             rel->userid = parent->userid;
     264             :     }
     265             :     else
     266      294808 :         rel->userid = InvalidOid;
     267      720900 :     rel->useridiscurrent = false;
     268      720900 :     rel->fdwroutine = NULL;
     269      720900 :     rel->fdw_private = NULL;
     270      720900 :     rel->unique_for_rels = NIL;
     271      720900 :     rel->non_unique_for_rels = NIL;
     272      720900 :     rel->baserestrictinfo = NIL;
     273      720900 :     rel->baserestrictcost.startup = 0;
     274      720900 :     rel->baserestrictcost.per_tuple = 0;
     275      720900 :     rel->baserestrict_min_security = UINT_MAX;
     276      720900 :     rel->joininfo = NIL;
     277      720900 :     rel->has_eclass_joins = false;
     278      720900 :     rel->consider_partitionwise_join = false;    /* might get changed later */
     279      720900 :     rel->part_scheme = NULL;
     280      720900 :     rel->nparts = -1;
     281      720900 :     rel->boundinfo = NULL;
     282      720900 :     rel->partbounds_merged = false;
     283      720900 :     rel->partition_qual = NIL;
     284      720900 :     rel->part_rels = NULL;
     285      720900 :     rel->live_parts = NULL;
     286      720900 :     rel->all_partrels = NULL;
     287      720900 :     rel->partexprs = NULL;
     288      720900 :     rel->nullable_partexprs = NULL;
     289             : 
     290             :     /*
     291             :      * Pass assorted information down the inheritance hierarchy.
     292             :      */
     293      720900 :     if (parent)
     294             :     {
     295             :         /* We keep back-links to immediate parent and topmost parent. */
     296       43448 :         rel->parent = parent;
     297       43448 :         rel->top_parent = parent->top_parent ? parent->top_parent : parent;
     298       43448 :         rel->top_parent_relids = rel->top_parent->relids;
     299             : 
     300             :         /*
     301             :          * A child rel is below the same outer joins as its parent.  (We
     302             :          * presume this info was already calculated for the parent.)
     303             :          */
     304       43448 :         rel->nulling_relids = parent->nulling_relids;
     305             : 
     306             :         /*
     307             :          * Also propagate lateral-reference information from appendrel parent
     308             :          * rels to their child rels.  We intentionally give each child rel the
     309             :          * same minimum parameterization, even though it's quite possible that
     310             :          * some don't reference all the lateral rels.  This is because any
     311             :          * append path for the parent will have to have the same
     312             :          * parameterization for every child anyway, and there's no value in
     313             :          * forcing extra reparameterize_path() calls.  Similarly, a lateral
     314             :          * reference to the parent prevents use of otherwise-movable join rels
     315             :          * for each child.
     316             :          *
     317             :          * It's possible for child rels to have their own children, in which
     318             :          * case the topmost parent's lateral info propagates all the way down.
     319             :          */
     320       43448 :         rel->direct_lateral_relids = parent->direct_lateral_relids;
     321       43448 :         rel->lateral_relids = parent->lateral_relids;
     322       43448 :         rel->lateral_referencers = parent->lateral_referencers;
     323             :     }
     324             :     else
     325             :     {
     326      677452 :         rel->parent = NULL;
     327      677452 :         rel->top_parent = NULL;
     328      677452 :         rel->top_parent_relids = NULL;
     329      677452 :         rel->nulling_relids = NULL;
     330      677452 :         rel->direct_lateral_relids = NULL;
     331      677452 :         rel->lateral_relids = NULL;
     332      677452 :         rel->lateral_referencers = NULL;
     333             :     }
     334             : 
     335             :     /* Check type of rtable entry */
     336      720900 :     switch (rte->rtekind)
     337             :     {
     338      426092 :         case RTE_RELATION:
     339             :             /* Table --- retrieve statistics from the system catalogs */
     340      426092 :             get_relation_info(root, rte->relid, rte->inh, rel);
     341      426074 :             break;
     342       81898 :         case RTE_SUBQUERY:
     343             :         case RTE_FUNCTION:
     344             :         case RTE_TABLEFUNC:
     345             :         case RTE_VALUES:
     346             :         case RTE_CTE:
     347             :         case RTE_NAMEDTUPLESTORE:
     348             : 
     349             :             /*
     350             :              * Subquery, function, tablefunc, values list, CTE, or ENR --- set
     351             :              * up attr range and arrays
     352             :              *
     353             :              * Note: 0 is included in range to support whole-row Vars
     354             :              */
     355       81898 :             rel->min_attr = 0;
     356       81898 :             rel->max_attr = list_length(rte->eref->colnames);
     357       81898 :             rel->attr_needed = (Relids *)
     358       81898 :                 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
     359       81898 :             rel->attr_widths = (int32 *)
     360       81898 :                 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
     361       81898 :             break;
     362      212910 :         case RTE_RESULT:
     363             :             /* RTE_RESULT has no columns, nor could it have whole-row Var */
     364      212910 :             rel->min_attr = 0;
     365      212910 :             rel->max_attr = -1;
     366      212910 :             rel->attr_needed = NULL;
     367      212910 :             rel->attr_widths = NULL;
     368      212910 :             break;
     369           0 :         default:
     370           0 :             elog(ERROR, "unrecognized RTE kind: %d",
     371             :                  (int) rte->rtekind);
     372             :             break;
     373             :     }
     374             : 
     375             :     /*
     376             :      * We must apply the partially filled in RelOptInfo before calling
     377             :      * apply_child_basequals due to some transformations within that function
     378             :      * which require the RelOptInfo to be available in the simple_rel_array.
     379             :      */
     380      720882 :     root->simple_rel_array[relid] = rel;
     381             : 
     382             :     /*
     383             :      * Apply the parent's quals to the child, with appropriate substitution of
     384             :      * variables.  If the resulting clause is constant-FALSE or NULL after
     385             :      * applying transformations, apply_child_basequals returns false to
     386             :      * indicate that scanning this relation won't yield any rows.  In this
     387             :      * case, we mark the child as dummy right away.  (We must do this
     388             :      * immediately so that pruning works correctly when recursing in
     389             :      * expand_partitioned_rtentry.)
     390             :      */
     391      720882 :     if (parent)
     392             :     {
     393       43448 :         AppendRelInfo *appinfo = root->append_rel_array[relid];
     394             : 
     395             :         Assert(appinfo != NULL);
     396       43448 :         if (!apply_child_basequals(root, parent, rel, rte, appinfo))
     397             :         {
     398             :             /*
     399             :              * Restriction clause reduced to constant FALSE or NULL.  Mark as
     400             :              * dummy so we won't scan this relation.
     401             :              */
     402          90 :             mark_dummy_rel(rel);
     403             :         }
     404             :     }
     405             : 
     406      720882 :     return rel;
     407             : }
     408             : 
     409             : /*
     410             :  * find_base_rel
     411             :  *    Find a base or otherrel relation entry, which must already exist.
     412             :  */
     413             : RelOptInfo *
     414     5758984 : find_base_rel(PlannerInfo *root, int relid)
     415             : {
     416             :     RelOptInfo *rel;
     417             : 
     418             :     /* use an unsigned comparison to prevent negative array element access */
     419     5758984 :     if ((uint32) relid < (uint32) root->simple_rel_array_size)
     420             :     {
     421     5758984 :         rel = root->simple_rel_array[relid];
     422     5758984 :         if (rel)
     423     5758984 :             return rel;
     424             :     }
     425             : 
     426           0 :     elog(ERROR, "no relation entry for relid %d", relid);
     427             : 
     428             :     return NULL;                /* keep compiler quiet */
     429             : }
     430             : 
     431             : /*
     432             :  * find_base_rel_noerr
     433             :  *    Find a base or otherrel relation entry, returning NULL if there's none
     434             :  */
     435             : RelOptInfo *
     436     1269694 : find_base_rel_noerr(PlannerInfo *root, int relid)
     437             : {
     438             :     /* use an unsigned comparison to prevent negative array element access */
     439     1269694 :     if ((uint32) relid < (uint32) root->simple_rel_array_size)
     440     1269694 :         return root->simple_rel_array[relid];
     441           0 :     return NULL;
     442             : }
     443             : 
     444             : /*
     445             :  * find_base_rel_ignore_join
     446             :  *    Find a base or otherrel relation entry, which must already exist.
     447             :  *
     448             :  * Unlike find_base_rel, if relid references an outer join then this
     449             :  * will return NULL rather than raising an error.  This is convenient
     450             :  * for callers that must deal with relid sets including both base and
     451             :  * outer joins.
     452             :  */
     453             : RelOptInfo *
     454      161090 : find_base_rel_ignore_join(PlannerInfo *root, int relid)
     455             : {
     456             :     /* use an unsigned comparison to prevent negative array element access */
     457      161090 :     if ((uint32) relid < (uint32) root->simple_rel_array_size)
     458             :     {
     459             :         RelOptInfo *rel;
     460             :         RangeTblEntry *rte;
     461             : 
     462      161090 :         rel = root->simple_rel_array[relid];
     463      161090 :         if (rel)
     464      149116 :             return rel;
     465             : 
     466             :         /*
     467             :          * We could just return NULL here, but for debugging purposes it seems
     468             :          * best to actually verify that the relid is an outer join and not
     469             :          * something weird.
     470             :          */
     471       11974 :         rte = root->simple_rte_array[relid];
     472       11974 :         if (rte && rte->rtekind == RTE_JOIN && rte->jointype != JOIN_INNER)
     473       11974 :             return NULL;
     474             :     }
     475             : 
     476           0 :     elog(ERROR, "no relation entry for relid %d", relid);
     477             : 
     478             :     return NULL;                /* keep compiler quiet */
     479             : }
     480             : 
     481             : /*
     482             :  * build_join_rel_hash
     483             :  *    Construct the auxiliary hash table for join relations.
     484             :  */
     485             : static void
     486          44 : build_join_rel_hash(PlannerInfo *root)
     487             : {
     488             :     HTAB       *hashtab;
     489             :     HASHCTL     hash_ctl;
     490             :     ListCell   *l;
     491             : 
     492             :     /* Create the hash table */
     493          44 :     hash_ctl.keysize = sizeof(Relids);
     494          44 :     hash_ctl.entrysize = sizeof(JoinHashEntry);
     495          44 :     hash_ctl.hash = bitmap_hash;
     496          44 :     hash_ctl.match = bitmap_match;
     497          44 :     hash_ctl.hcxt = CurrentMemoryContext;
     498          44 :     hashtab = hash_create("JoinRelHashTable",
     499             :                           256L,
     500             :                           &hash_ctl,
     501             :                           HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
     502             : 
     503             :     /* Insert all the already-existing joinrels */
     504        1496 :     foreach(l, root->join_rel_list)
     505             :     {
     506        1452 :         RelOptInfo *rel = (RelOptInfo *) lfirst(l);
     507             :         JoinHashEntry *hentry;
     508             :         bool        found;
     509             : 
     510        1452 :         hentry = (JoinHashEntry *) hash_search(hashtab,
     511        1452 :                                                &(rel->relids),
     512             :                                                HASH_ENTER,
     513             :                                                &found);
     514             :         Assert(!found);
     515        1452 :         hentry->join_rel = rel;
     516             :     }
     517             : 
     518          44 :     root->join_rel_hash = hashtab;
     519          44 : }
     520             : 
     521             : /*
     522             :  * find_join_rel
     523             :  *    Returns relation entry corresponding to 'relids' (a set of RT indexes),
     524             :  *    or NULL if none exists.  This is for join relations.
     525             :  */
     526             : RelOptInfo *
     527      278678 : find_join_rel(PlannerInfo *root, Relids relids)
     528             : {
     529             :     /*
     530             :      * Switch to using hash lookup when list grows "too long".  The threshold
     531             :      * is arbitrary and is known only here.
     532             :      */
     533      278678 :     if (!root->join_rel_hash && list_length(root->join_rel_list) > 32)
     534          44 :         build_join_rel_hash(root);
     535             : 
     536             :     /*
     537             :      * Use either hashtable lookup or linear search, as appropriate.
     538             :      *
     539             :      * Note: the seemingly redundant hashkey variable is used to avoid taking
     540             :      * the address of relids; unless the compiler is exceedingly smart, doing
     541             :      * so would force relids out of a register and thus probably slow down the
     542             :      * list-search case.
     543             :      */
     544      278678 :     if (root->join_rel_hash)
     545             :     {
     546        3930 :         Relids      hashkey = relids;
     547             :         JoinHashEntry *hentry;
     548             : 
     549        3930 :         hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
     550             :                                                &hashkey,
     551             :                                                HASH_FIND,
     552             :                                                NULL);
     553        3930 :         if (hentry)
     554        3474 :             return hentry->join_rel;
     555             :     }
     556             :     else
     557             :     {
     558             :         ListCell   *l;
     559             : 
     560     1642298 :         foreach(l, root->join_rel_list)
     561             :         {
     562     1460894 :             RelOptInfo *rel = (RelOptInfo *) lfirst(l);
     563             : 
     564     1460894 :             if (bms_equal(rel->relids, relids))
     565       93344 :                 return rel;
     566             :         }
     567             :     }
     568             : 
     569      181860 :     return NULL;
     570             : }
     571             : 
     572             : /*
     573             :  * set_foreign_rel_properties
     574             :  *      Set up foreign-join fields if outer and inner relation are foreign
     575             :  *      tables (or joins) belonging to the same server and assigned to the same
     576             :  *      user to check access permissions as.
     577             :  *
     578             :  * In addition to an exact match of userid, we allow the case where one side
     579             :  * has zero userid (implying current user) and the other side has explicit
     580             :  * userid that happens to equal the current user; but in that case, pushdown of
     581             :  * the join is only valid for the current user.  The useridiscurrent field
     582             :  * records whether we had to make such an assumption for this join or any
     583             :  * sub-join.
     584             :  *
     585             :  * Otherwise these fields are left invalid, so GetForeignJoinPaths will not be
     586             :  * called for the join relation.
     587             :  */
     588             : static void
     589      185790 : set_foreign_rel_properties(RelOptInfo *joinrel, RelOptInfo *outer_rel,
     590             :                            RelOptInfo *inner_rel)
     591             : {
     592      185790 :     if (OidIsValid(outer_rel->serverid) &&
     593         842 :         inner_rel->serverid == outer_rel->serverid)
     594             :     {
     595         766 :         if (inner_rel->userid == outer_rel->userid)
     596             :         {
     597         754 :             joinrel->serverid = outer_rel->serverid;
     598         754 :             joinrel->userid = outer_rel->userid;
     599         754 :             joinrel->useridiscurrent = outer_rel->useridiscurrent || inner_rel->useridiscurrent;
     600         754 :             joinrel->fdwroutine = outer_rel->fdwroutine;
     601             :         }
     602          20 :         else if (!OidIsValid(inner_rel->userid) &&
     603           8 :                  outer_rel->userid == GetUserId())
     604             :         {
     605           4 :             joinrel->serverid = outer_rel->serverid;
     606           4 :             joinrel->userid = outer_rel->userid;
     607           4 :             joinrel->useridiscurrent = true;
     608           4 :             joinrel->fdwroutine = outer_rel->fdwroutine;
     609             :         }
     610           8 :         else if (!OidIsValid(outer_rel->userid) &&
     611           0 :                  inner_rel->userid == GetUserId())
     612             :         {
     613           0 :             joinrel->serverid = outer_rel->serverid;
     614           0 :             joinrel->userid = inner_rel->userid;
     615           0 :             joinrel->useridiscurrent = true;
     616           0 :             joinrel->fdwroutine = outer_rel->fdwroutine;
     617             :         }
     618             :     }
     619      185790 : }
     620             : 
     621             : /*
     622             :  * add_join_rel
     623             :  *      Add given join relation to the list of join relations in the given
     624             :  *      PlannerInfo. Also add it to the auxiliary hashtable if there is one.
     625             :  */
     626             : static void
     627      185790 : add_join_rel(PlannerInfo *root, RelOptInfo *joinrel)
     628             : {
     629             :     /* GEQO requires us to append the new joinrel to the end of the list! */
     630      185790 :     root->join_rel_list = lappend(root->join_rel_list, joinrel);
     631             : 
     632             :     /* store it into the auxiliary hashtable if there is one. */
     633      185790 :     if (root->join_rel_hash)
     634             :     {
     635             :         JoinHashEntry *hentry;
     636             :         bool        found;
     637             : 
     638         456 :         hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
     639         456 :                                                &(joinrel->relids),
     640             :                                                HASH_ENTER,
     641             :                                                &found);
     642             :         Assert(!found);
     643         456 :         hentry->join_rel = joinrel;
     644             :     }
     645      185790 : }
     646             : 
     647             : /*
     648             :  * build_join_rel
     649             :  *    Returns relation entry corresponding to the union of two given rels,
     650             :  *    creating a new relation entry if none already exists.
     651             :  *
     652             :  * 'joinrelids' is the Relids set that uniquely identifies the join
     653             :  * 'outer_rel' and 'inner_rel' are relation nodes for the relations to be
     654             :  *      joined
     655             :  * 'sjinfo': join context info
     656             :  * 'pushed_down_joins': any pushed-down outer joins that are now completed
     657             :  * 'restrictlist_ptr': result variable.  If not NULL, *restrictlist_ptr
     658             :  *      receives the list of RestrictInfo nodes that apply to this
     659             :  *      particular pair of joinable relations.
     660             :  *
     661             :  * restrictlist_ptr makes the routine's API a little grotty, but it saves
     662             :  * duplicated calculation of the restrictlist...
     663             :  */
     664             : RelOptInfo *
     665      275690 : build_join_rel(PlannerInfo *root,
     666             :                Relids joinrelids,
     667             :                RelOptInfo *outer_rel,
     668             :                RelOptInfo *inner_rel,
     669             :                SpecialJoinInfo *sjinfo,
     670             :                List *pushed_down_joins,
     671             :                List **restrictlist_ptr)
     672             : {
     673             :     RelOptInfo *joinrel;
     674             :     List       *restrictlist;
     675             : 
     676             :     /* This function should be used only for join between parents. */
     677             :     Assert(!IS_OTHER_REL(outer_rel) && !IS_OTHER_REL(inner_rel));
     678             : 
     679             :     /*
     680             :      * See if we already have a joinrel for this set of base rels.
     681             :      */
     682      275690 :     joinrel = find_join_rel(root, joinrelids);
     683             : 
     684      275690 :     if (joinrel)
     685             :     {
     686             :         /*
     687             :          * Yes, so we only need to figure the restrictlist for this particular
     688             :          * pair of component relations.
     689             :          */
     690       94674 :         if (restrictlist_ptr)
     691       94674 :             *restrictlist_ptr = build_joinrel_restrictlist(root,
     692             :                                                            joinrel,
     693             :                                                            outer_rel,
     694             :                                                            inner_rel,
     695             :                                                            sjinfo);
     696       94674 :         return joinrel;
     697             :     }
     698             : 
     699             :     /*
     700             :      * Nope, so make one.
     701             :      */
     702      181016 :     joinrel = makeNode(RelOptInfo);
     703      181016 :     joinrel->reloptkind = RELOPT_JOINREL;
     704      181016 :     joinrel->relids = bms_copy(joinrelids);
     705      181016 :     joinrel->rows = 0;
     706             :     /* cheap startup cost is interesting iff not all tuples to be retrieved */
     707      181016 :     joinrel->consider_startup = (root->tuple_fraction > 0);
     708      181016 :     joinrel->consider_param_startup = false;
     709      181016 :     joinrel->consider_parallel = false;
     710      181016 :     joinrel->reltarget = create_empty_pathtarget();
     711      181016 :     joinrel->pathlist = NIL;
     712      181016 :     joinrel->ppilist = NIL;
     713      181016 :     joinrel->partial_pathlist = NIL;
     714      181016 :     joinrel->cheapest_startup_path = NULL;
     715      181016 :     joinrel->cheapest_total_path = NULL;
     716      181016 :     joinrel->cheapest_unique_path = NULL;
     717      181016 :     joinrel->cheapest_parameterized_paths = NIL;
     718             :     /* init direct_lateral_relids from children; we'll finish it up below */
     719      181016 :     joinrel->direct_lateral_relids =
     720      181016 :         bms_union(outer_rel->direct_lateral_relids,
     721      181016 :                   inner_rel->direct_lateral_relids);
     722      181016 :     joinrel->lateral_relids = min_join_parameterization(root, joinrel->relids,
     723             :                                                         outer_rel, inner_rel);
     724      181016 :     joinrel->relid = 0;          /* indicates not a baserel */
     725      181016 :     joinrel->rtekind = RTE_JOIN;
     726      181016 :     joinrel->min_attr = 0;
     727      181016 :     joinrel->max_attr = 0;
     728      181016 :     joinrel->attr_needed = NULL;
     729      181016 :     joinrel->attr_widths = NULL;
     730      181016 :     joinrel->notnullattnums = NULL;
     731      181016 :     joinrel->nulling_relids = NULL;
     732      181016 :     joinrel->lateral_vars = NIL;
     733      181016 :     joinrel->lateral_referencers = NULL;
     734      181016 :     joinrel->indexlist = NIL;
     735      181016 :     joinrel->statlist = NIL;
     736      181016 :     joinrel->pages = 0;
     737      181016 :     joinrel->tuples = 0;
     738      181016 :     joinrel->allvisfrac = 0;
     739      181016 :     joinrel->eclass_indexes = NULL;
     740      181016 :     joinrel->subroot = NULL;
     741      181016 :     joinrel->subplan_params = NIL;
     742      181016 :     joinrel->rel_parallel_workers = -1;
     743      181016 :     joinrel->amflags = 0;
     744      181016 :     joinrel->serverid = InvalidOid;
     745      181016 :     joinrel->userid = InvalidOid;
     746      181016 :     joinrel->useridiscurrent = false;
     747      181016 :     joinrel->fdwroutine = NULL;
     748      181016 :     joinrel->fdw_private = NULL;
     749      181016 :     joinrel->unique_for_rels = NIL;
     750      181016 :     joinrel->non_unique_for_rels = NIL;
     751      181016 :     joinrel->baserestrictinfo = NIL;
     752      181016 :     joinrel->baserestrictcost.startup = 0;
     753      181016 :     joinrel->baserestrictcost.per_tuple = 0;
     754      181016 :     joinrel->baserestrict_min_security = UINT_MAX;
     755      181016 :     joinrel->joininfo = NIL;
     756      181016 :     joinrel->has_eclass_joins = false;
     757      181016 :     joinrel->consider_partitionwise_join = false;    /* might get changed later */
     758      181016 :     joinrel->parent = NULL;
     759      181016 :     joinrel->top_parent = NULL;
     760      181016 :     joinrel->top_parent_relids = NULL;
     761      181016 :     joinrel->part_scheme = NULL;
     762      181016 :     joinrel->nparts = -1;
     763      181016 :     joinrel->boundinfo = NULL;
     764      181016 :     joinrel->partbounds_merged = false;
     765      181016 :     joinrel->partition_qual = NIL;
     766      181016 :     joinrel->part_rels = NULL;
     767      181016 :     joinrel->live_parts = NULL;
     768      181016 :     joinrel->all_partrels = NULL;
     769      181016 :     joinrel->partexprs = NULL;
     770      181016 :     joinrel->nullable_partexprs = NULL;
     771             : 
     772             :     /* Compute information relevant to the foreign relations. */
     773      181016 :     set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
     774             : 
     775             :     /*
     776             :      * Fill the joinrel's tlist with just the Vars and PHVs that need to be
     777             :      * output from this join (ie, are needed for higher joinclauses or final
     778             :      * output).
     779             :      *
     780             :      * NOTE: the tlist order for a join rel will depend on which pair of outer
     781             :      * and inner rels we first try to build it from.  But the contents should
     782             :      * be the same regardless.
     783             :      */
     784      181016 :     build_joinrel_tlist(root, joinrel, outer_rel, sjinfo, pushed_down_joins,
     785      181016 :                         (sjinfo->jointype == JOIN_FULL));
     786      181016 :     build_joinrel_tlist(root, joinrel, inner_rel, sjinfo, pushed_down_joins,
     787      181016 :                         (sjinfo->jointype != JOIN_INNER));
     788      181016 :     add_placeholders_to_joinrel(root, joinrel, outer_rel, inner_rel, sjinfo);
     789             : 
     790             :     /*
     791             :      * add_placeholders_to_joinrel also took care of adding the ph_lateral
     792             :      * sets of any PlaceHolderVars computed here to direct_lateral_relids, so
     793             :      * now we can finish computing that.  This is much like the computation of
     794             :      * the transitively-closed lateral_relids in min_join_parameterization,
     795             :      * except that here we *do* have to consider the added PHVs.
     796             :      */
     797      181016 :     joinrel->direct_lateral_relids =
     798      181016 :         bms_del_members(joinrel->direct_lateral_relids, joinrel->relids);
     799             : 
     800             :     /*
     801             :      * Construct restrict and join clause lists for the new joinrel. (The
     802             :      * caller might or might not need the restrictlist, but I need it anyway
     803             :      * for set_joinrel_size_estimates().)
     804             :      */
     805      181016 :     restrictlist = build_joinrel_restrictlist(root, joinrel,
     806             :                                               outer_rel, inner_rel,
     807             :                                               sjinfo);
     808      181016 :     if (restrictlist_ptr)
     809      181016 :         *restrictlist_ptr = restrictlist;
     810      181016 :     build_joinrel_joinlist(joinrel, outer_rel, inner_rel);
     811             : 
     812             :     /*
     813             :      * This is also the right place to check whether the joinrel has any
     814             :      * pending EquivalenceClass joins.
     815             :      */
     816      181016 :     joinrel->has_eclass_joins = has_relevant_eclass_joinclause(root, joinrel);
     817             : 
     818             :     /* Store the partition information. */
     819      181016 :     build_joinrel_partition_info(root, joinrel, outer_rel, inner_rel, sjinfo,
     820             :                                  restrictlist);
     821             : 
     822             :     /*
     823             :      * Set estimates of the joinrel's size.
     824             :      */
     825      181016 :     set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
     826             :                                sjinfo, restrictlist);
     827             : 
     828             :     /*
     829             :      * Set the consider_parallel flag if this joinrel could potentially be
     830             :      * scanned within a parallel worker.  If this flag is false for either
     831             :      * inner_rel or outer_rel, then it must be false for the joinrel also.
     832             :      * Even if both are true, there might be parallel-restricted expressions
     833             :      * in the targetlist or quals.
     834             :      *
     835             :      * Note that if there are more than two rels in this relation, they could
     836             :      * be divided between inner_rel and outer_rel in any arbitrary way.  We
     837             :      * assume this doesn't matter, because we should hit all the same baserels
     838             :      * and joinclauses while building up to this joinrel no matter which we
     839             :      * take; therefore, we should make the same decision here however we get
     840             :      * here.
     841             :      */
     842      329942 :     if (inner_rel->consider_parallel && outer_rel->consider_parallel &&
     843      297424 :         is_parallel_safe(root, (Node *) restrictlist) &&
     844      148498 :         is_parallel_safe(root, (Node *) joinrel->reltarget->exprs))
     845      148492 :         joinrel->consider_parallel = true;
     846             : 
     847             :     /* Add the joinrel to the PlannerInfo. */
     848      181016 :     add_join_rel(root, joinrel);
     849             : 
     850             :     /*
     851             :      * Also, if dynamic-programming join search is active, add the new joinrel
     852             :      * to the appropriate sublist.  Note: you might think the Assert on number
     853             :      * of members should be for equality, but some of the level 1 rels might
     854             :      * have been joinrels already, so we can only assert <=.
     855             :      */
     856      181016 :     if (root->join_rel_level)
     857             :     {
     858             :         Assert(root->join_cur_level > 0);
     859             :         Assert(root->join_cur_level <= bms_num_members(joinrel->relids));
     860      177920 :         root->join_rel_level[root->join_cur_level] =
     861      177920 :             lappend(root->join_rel_level[root->join_cur_level], joinrel);
     862             :     }
     863             : 
     864      181016 :     return joinrel;
     865             : }
     866             : 
     867             : /*
     868             :  * build_child_join_rel
     869             :  *    Builds RelOptInfo representing join between given two child relations.
     870             :  *
     871             :  * 'outer_rel' and 'inner_rel' are the RelOptInfos of child relations being
     872             :  *      joined
     873             :  * 'parent_joinrel' is the RelOptInfo representing the join between parent
     874             :  *      relations. Some of the members of new RelOptInfo are produced by
     875             :  *      translating corresponding members of this RelOptInfo
     876             :  * 'restrictlist': list of RestrictInfo nodes that apply to this particular
     877             :  *      pair of joinable relations
     878             :  * 'sjinfo': child join's join-type details
     879             :  * 'nappinfos' and 'appinfos': AppendRelInfo array for child relids
     880             :  */
     881             : RelOptInfo *
     882        4774 : build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel,
     883             :                      RelOptInfo *inner_rel, RelOptInfo *parent_joinrel,
     884             :                      List *restrictlist, SpecialJoinInfo *sjinfo,
     885             :                      int nappinfos, AppendRelInfo **appinfos)
     886             : {
     887        4774 :     RelOptInfo *joinrel = makeNode(RelOptInfo);
     888             : 
     889             :     /* Only joins between "other" relations land here. */
     890             :     Assert(IS_OTHER_REL(outer_rel) && IS_OTHER_REL(inner_rel));
     891             : 
     892             :     /* The parent joinrel should have consider_partitionwise_join set. */
     893             :     Assert(parent_joinrel->consider_partitionwise_join);
     894             : 
     895        4774 :     joinrel->reloptkind = RELOPT_OTHER_JOINREL;
     896        4774 :     joinrel->relids = adjust_child_relids(parent_joinrel->relids,
     897             :                                           nappinfos, appinfos);
     898        4774 :     joinrel->rows = 0;
     899             :     /* cheap startup cost is interesting iff not all tuples to be retrieved */
     900        4774 :     joinrel->consider_startup = (root->tuple_fraction > 0);
     901        4774 :     joinrel->consider_param_startup = false;
     902        4774 :     joinrel->consider_parallel = false;
     903        4774 :     joinrel->reltarget = create_empty_pathtarget();
     904        4774 :     joinrel->pathlist = NIL;
     905        4774 :     joinrel->ppilist = NIL;
     906        4774 :     joinrel->partial_pathlist = NIL;
     907        4774 :     joinrel->cheapest_startup_path = NULL;
     908        4774 :     joinrel->cheapest_total_path = NULL;
     909        4774 :     joinrel->cheapest_unique_path = NULL;
     910        4774 :     joinrel->cheapest_parameterized_paths = NIL;
     911        4774 :     joinrel->direct_lateral_relids = NULL;
     912        4774 :     joinrel->lateral_relids = NULL;
     913        4774 :     joinrel->relid = 0;          /* indicates not a baserel */
     914        4774 :     joinrel->rtekind = RTE_JOIN;
     915        4774 :     joinrel->min_attr = 0;
     916        4774 :     joinrel->max_attr = 0;
     917        4774 :     joinrel->attr_needed = NULL;
     918        4774 :     joinrel->attr_widths = NULL;
     919        4774 :     joinrel->notnullattnums = NULL;
     920        4774 :     joinrel->nulling_relids = NULL;
     921        4774 :     joinrel->lateral_vars = NIL;
     922        4774 :     joinrel->lateral_referencers = NULL;
     923        4774 :     joinrel->indexlist = NIL;
     924        4774 :     joinrel->pages = 0;
     925        4774 :     joinrel->tuples = 0;
     926        4774 :     joinrel->allvisfrac = 0;
     927        4774 :     joinrel->eclass_indexes = NULL;
     928        4774 :     joinrel->subroot = NULL;
     929        4774 :     joinrel->subplan_params = NIL;
     930        4774 :     joinrel->amflags = 0;
     931        4774 :     joinrel->serverid = InvalidOid;
     932        4774 :     joinrel->userid = InvalidOid;
     933        4774 :     joinrel->useridiscurrent = false;
     934        4774 :     joinrel->fdwroutine = NULL;
     935        4774 :     joinrel->fdw_private = NULL;
     936        4774 :     joinrel->baserestrictinfo = NIL;
     937        4774 :     joinrel->baserestrictcost.startup = 0;
     938        4774 :     joinrel->baserestrictcost.per_tuple = 0;
     939        4774 :     joinrel->joininfo = NIL;
     940        4774 :     joinrel->has_eclass_joins = false;
     941        4774 :     joinrel->consider_partitionwise_join = false;    /* might get changed later */
     942        4774 :     joinrel->parent = parent_joinrel;
     943        4774 :     joinrel->top_parent = parent_joinrel->top_parent ? parent_joinrel->top_parent : parent_joinrel;
     944        4774 :     joinrel->top_parent_relids = joinrel->top_parent->relids;
     945        4774 :     joinrel->part_scheme = NULL;
     946        4774 :     joinrel->nparts = -1;
     947        4774 :     joinrel->boundinfo = NULL;
     948        4774 :     joinrel->partbounds_merged = false;
     949        4774 :     joinrel->partition_qual = NIL;
     950        4774 :     joinrel->part_rels = NULL;
     951        4774 :     joinrel->live_parts = NULL;
     952        4774 :     joinrel->all_partrels = NULL;
     953        4774 :     joinrel->partexprs = NULL;
     954        4774 :     joinrel->nullable_partexprs = NULL;
     955             : 
     956             :     /* Compute information relevant to foreign relations. */
     957        4774 :     set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
     958             : 
     959             :     /* Set up reltarget struct */
     960        4774 :     build_child_join_reltarget(root, parent_joinrel, joinrel,
     961             :                                nappinfos, appinfos);
     962             : 
     963             :     /* Construct joininfo list. */
     964        9548 :     joinrel->joininfo = (List *) adjust_appendrel_attrs(root,
     965        4774 :                                                         (Node *) parent_joinrel->joininfo,
     966             :                                                         nappinfos,
     967             :                                                         appinfos);
     968             : 
     969             :     /*
     970             :      * Lateral relids referred in child join will be same as that referred in
     971             :      * the parent relation.
     972             :      */
     973        4774 :     joinrel->direct_lateral_relids = (Relids) bms_copy(parent_joinrel->direct_lateral_relids);
     974        4774 :     joinrel->lateral_relids = (Relids) bms_copy(parent_joinrel->lateral_relids);
     975             : 
     976             :     /*
     977             :      * If the parent joinrel has pending equivalence classes, so does the
     978             :      * child.
     979             :      */
     980        4774 :     joinrel->has_eclass_joins = parent_joinrel->has_eclass_joins;
     981             : 
     982             :     /* Is the join between partitions itself partitioned? */
     983        4774 :     build_joinrel_partition_info(root, joinrel, outer_rel, inner_rel, sjinfo,
     984             :                                  restrictlist);
     985             : 
     986             :     /* Child joinrel is parallel safe if parent is parallel safe. */
     987        4774 :     joinrel->consider_parallel = parent_joinrel->consider_parallel;
     988             : 
     989             :     /* Set estimates of the child-joinrel's size. */
     990        4774 :     set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
     991             :                                sjinfo, restrictlist);
     992             : 
     993             :     /* We build the join only once. */
     994             :     Assert(!find_join_rel(root, joinrel->relids));
     995             : 
     996             :     /* Add the relation to the PlannerInfo. */
     997        4774 :     add_join_rel(root, joinrel);
     998             : 
     999             :     /*
    1000             :      * We might need EquivalenceClass members corresponding to the child join,
    1001             :      * so that we can represent sort pathkeys for it.  As with children of
    1002             :      * baserels, we shouldn't need this unless there are relevant eclass joins
    1003             :      * (implying that a merge join might be possible) or pathkeys to sort by.
    1004             :      */
    1005        4774 :     if (joinrel->has_eclass_joins || has_useful_pathkeys(root, parent_joinrel))
    1006        4324 :         add_child_join_rel_equivalences(root,
    1007             :                                         nappinfos, appinfos,
    1008             :                                         parent_joinrel, joinrel);
    1009             : 
    1010        4774 :     return joinrel;
    1011             : }
    1012             : 
    1013             : /*
    1014             :  * min_join_parameterization
    1015             :  *
    1016             :  * Determine the minimum possible parameterization of a joinrel, that is, the
    1017             :  * set of other rels it contains LATERAL references to.  We save this value in
    1018             :  * the join's RelOptInfo.  This function is split out of build_join_rel()
    1019             :  * because join_is_legal() needs the value to check a prospective join.
    1020             :  */
    1021             : Relids
    1022      197494 : min_join_parameterization(PlannerInfo *root,
    1023             :                           Relids joinrelids,
    1024             :                           RelOptInfo *outer_rel,
    1025             :                           RelOptInfo *inner_rel)
    1026             : {
    1027             :     Relids      result;
    1028             : 
    1029             :     /*
    1030             :      * Basically we just need the union of the inputs' lateral_relids, less
    1031             :      * whatever is already in the join.
    1032             :      *
    1033             :      * It's not immediately obvious that this is a valid way to compute the
    1034             :      * result, because it might seem that we're ignoring possible lateral refs
    1035             :      * of PlaceHolderVars that are due to be computed at the join but not in
    1036             :      * either input.  However, because create_lateral_join_info() already
    1037             :      * charged all such PHV refs to each member baserel of the join, they'll
    1038             :      * be accounted for already in the inputs' lateral_relids.  Likewise, we
    1039             :      * do not need to worry about doing transitive closure here, because that
    1040             :      * was already accounted for in the original baserel lateral_relids.
    1041             :      */
    1042      197494 :     result = bms_union(outer_rel->lateral_relids, inner_rel->lateral_relids);
    1043      197494 :     result = bms_del_members(result, joinrelids);
    1044      197494 :     return result;
    1045             : }
    1046             : 
    1047             : /*
    1048             :  * build_joinrel_tlist
    1049             :  *    Builds a join relation's target list from an input relation.
    1050             :  *    (This is invoked twice to handle the two input relations.)
    1051             :  *
    1052             :  * The join's targetlist includes all Vars of its member relations that
    1053             :  * will still be needed above the join.  This subroutine adds all such
    1054             :  * Vars from the specified input rel's tlist to the join rel's tlist.
    1055             :  * Likewise for any PlaceHolderVars emitted by the input rel.
    1056             :  *
    1057             :  * We also compute the expected width of the join's output, making use
    1058             :  * of data that was cached at the baserel level by set_rel_width().
    1059             :  *
    1060             :  * Pass can_null as true if the join is an outer join that can null Vars
    1061             :  * from this input relation.  If so, we will (normally) add the join's relid
    1062             :  * to the nulling bitmaps of Vars and PHVs bubbled up from the input.
    1063             :  *
    1064             :  * When forming an outer join's target list, special handling is needed in
    1065             :  * case the outer join was commuted with another one per outer join identity 3
    1066             :  * (see optimizer/README).  We must take steps to ensure that the output Vars
    1067             :  * have the same nulling bitmaps that they would if the two joins had been
    1068             :  * done in syntactic order; else they won't match Vars appearing higher in
    1069             :  * the query tree.  An exception to the match-the-syntactic-order rule is
    1070             :  * that when an outer join is pushed down into another one's RHS per identity
    1071             :  * 3, we can't mark its Vars as nulled until the now-upper outer join is also
    1072             :  * completed.  So we need to do three things:
    1073             :  *
    1074             :  * First, we add the outer join's relid to the nulling bitmap only if the
    1075             :  * outer join has been completely performed and the Var or PHV actually
    1076             :  * comes from within the syntactically nullable side(s) of the outer join.
    1077             :  * This takes care of the possibility that we have transformed
    1078             :  *      (A leftjoin B on (Pab)) leftjoin C on (Pbc)
    1079             :  * to
    1080             :  *      A leftjoin (B leftjoin C on (Pbc)) on (Pab)
    1081             :  * Here the pushed-down B/C join cannot mark C columns as nulled yet,
    1082             :  * while the now-upper A/B join must not mark C columns as nulled by itself.
    1083             :  *
    1084             :  * Second, perform the same operation for each SpecialJoinInfo listed in
    1085             :  * pushed_down_joins (which, in this example, would be the B/C join when
    1086             :  * we are at the now-upper A/B join).  This allows the now-upper join to
    1087             :  * complete the marking of "C" Vars that now have fully valid values.
    1088             :  *
    1089             :  * Third, any relid in sjinfo->commute_above_r that is already part of
    1090             :  * the joinrel is added to the nulling bitmaps of nullable Vars and PHVs.
    1091             :  * This takes care of the reverse case where we implement
    1092             :  *      A leftjoin (B leftjoin C on (Pbc)) on (Pab)
    1093             :  * as
    1094             :  *      (A leftjoin B on (Pab)) leftjoin C on (Pbc)
    1095             :  * The C columns emitted by the B/C join need to be shown as nulled by both
    1096             :  * the B/C and A/B joins, even though they've not physically traversed the
    1097             :  * A/B join.
    1098             :  */
    1099             : static void
    1100      362032 : build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
    1101             :                     RelOptInfo *input_rel,
    1102             :                     SpecialJoinInfo *sjinfo,
    1103             :                     List *pushed_down_joins,
    1104             :                     bool can_null)
    1105             : {
    1106      362032 :     Relids      relids = joinrel->relids;
    1107      362032 :     int64       tuple_width = joinrel->reltarget->width;
    1108             :     ListCell   *vars;
    1109             :     ListCell   *lc;
    1110             : 
    1111     1728024 :     foreach(vars, input_rel->reltarget->exprs)
    1112             :     {
    1113     1365992 :         Var        *var = (Var *) lfirst(vars);
    1114             : 
    1115             :         /*
    1116             :          * For a PlaceHolderVar, we have to look up the PlaceHolderInfo.
    1117             :          */
    1118     1365992 :         if (IsA(var, PlaceHolderVar))
    1119             :         {
    1120        1828 :             PlaceHolderVar *phv = (PlaceHolderVar *) var;
    1121        1828 :             PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
    1122             : 
    1123             :             /* Is it still needed above this joinrel? */
    1124        1828 :             if (bms_nonempty_difference(phinfo->ph_needed, relids))
    1125             :             {
    1126             :                 /*
    1127             :                  * Yup, add it to the output.  If this join potentially nulls
    1128             :                  * this input, we have to update the PHV's phnullingrels,
    1129             :                  * which means making a copy.
    1130             :                  */
    1131        1318 :                 if (can_null)
    1132             :                 {
    1133         904 :                     phv = copyObject(phv);
    1134             :                     /* See comments above to understand this logic */
    1135        1808 :                     if (sjinfo->ojrelid != 0 &&
    1136        1784 :                         bms_is_member(sjinfo->ojrelid, relids) &&
    1137         880 :                         (bms_is_subset(phv->phrels, sjinfo->syn_righthand) ||
    1138         240 :                          (sjinfo->jointype == JOIN_FULL &&
    1139         114 :                           bms_is_subset(phv->phrels, sjinfo->syn_lefthand))))
    1140         868 :                         phv->phnullingrels = bms_add_member(phv->phnullingrels,
    1141         868 :                                                             sjinfo->ojrelid);
    1142         922 :                     foreach(lc, pushed_down_joins)
    1143             :                     {
    1144          18 :                         SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
    1145             : 
    1146             :                         Assert(bms_is_member(othersj->ojrelid, relids));
    1147          18 :                         if (bms_is_subset(phv->phrels, othersj->syn_righthand))
    1148          12 :                             phv->phnullingrels = bms_add_member(phv->phnullingrels,
    1149          12 :                                                                 othersj->ojrelid);
    1150             :                     }
    1151         904 :                     phv->phnullingrels =
    1152         904 :                         bms_join(phv->phnullingrels,
    1153         904 :                                  bms_intersect(sjinfo->commute_above_r,
    1154             :                                                relids));
    1155             :                 }
    1156             : 
    1157        1318 :                 joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
    1158             :                                                     phv);
    1159             :                 /* Bubbling up the precomputed result has cost zero */
    1160        1318 :                 tuple_width += phinfo->ph_width;
    1161             :             }
    1162        1828 :             continue;
    1163             :         }
    1164             : 
    1165             :         /*
    1166             :          * Otherwise, anything in a baserel or joinrel targetlist ought to be
    1167             :          * a Var.  (More general cases can only appear in appendrel child
    1168             :          * rels, which will never be seen here.)
    1169             :          */
    1170     1364164 :         if (!IsA(var, Var))
    1171           0 :             elog(ERROR, "unexpected node type in rel targetlist: %d",
    1172             :                  (int) nodeTag(var));
    1173             : 
    1174     1364164 :         if (var->varno == ROWID_VAR)
    1175             :         {
    1176             :             /* UPDATE/DELETE/MERGE row identity vars are always needed */
    1177             :             RowIdentityVarInfo *ridinfo = (RowIdentityVarInfo *)
    1178        1044 :                 list_nth(root->row_identity_vars, var->varattno - 1);
    1179             : 
    1180             :             /* Update reltarget width estimate from RowIdentityVarInfo */
    1181        1044 :             tuple_width += ridinfo->rowidwidth;
    1182             :         }
    1183             :         else
    1184             :         {
    1185             :             RelOptInfo *baserel;
    1186             :             int         ndx;
    1187             : 
    1188             :             /* Get the Var's original base rel */
    1189     1363120 :             baserel = find_base_rel(root, var->varno);
    1190             : 
    1191             :             /* Is it still needed above this joinrel? */
    1192     1363120 :             ndx = var->varattno - baserel->min_attr;
    1193     1363120 :             if (!bms_nonempty_difference(baserel->attr_needed[ndx], relids))
    1194      262542 :                 continue;       /* nope, skip it */
    1195             : 
    1196             :             /* Update reltarget width estimate from baserel's attr_widths */
    1197     1100578 :             tuple_width += baserel->attr_widths[ndx];
    1198             :         }
    1199             : 
    1200             :         /*
    1201             :          * Add the Var to the output.  If this join potentially nulls this
    1202             :          * input, we have to update the Var's varnullingrels, which means
    1203             :          * making a copy.  But note that we don't ever add nullingrel bits to
    1204             :          * row identity Vars (cf. comments in setrefs.c).
    1205             :          */
    1206     1101622 :         if (can_null && var->varno != ROWID_VAR)
    1207             :         {
    1208      116888 :             var = copyObject(var);
    1209             :             /* See comments above to understand this logic */
    1210      233184 :             if (sjinfo->ojrelid != 0 &&
    1211      227774 :                 bms_is_member(sjinfo->ojrelid, relids) &&
    1212      111478 :                 (bms_is_member(var->varno, sjinfo->syn_righthand) ||
    1213        3792 :                  (sjinfo->jointype == JOIN_FULL &&
    1214        1776 :                   bms_is_member(var->varno, sjinfo->syn_lefthand))))
    1215      111238 :                 var->varnullingrels = bms_add_member(var->varnullingrels,
    1216      111238 :                                                      sjinfo->ojrelid);
    1217      117422 :             foreach(lc, pushed_down_joins)
    1218             :             {
    1219         534 :                 SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
    1220             : 
    1221             :                 Assert(bms_is_member(othersj->ojrelid, relids));
    1222         534 :                 if (bms_is_member(var->varno, othersj->syn_righthand))
    1223         240 :                     var->varnullingrels = bms_add_member(var->varnullingrels,
    1224         240 :                                                          othersj->ojrelid);
    1225             :             }
    1226      116888 :             var->varnullingrels =
    1227      116888 :                 bms_join(var->varnullingrels,
    1228      116888 :                          bms_intersect(sjinfo->commute_above_r,
    1229             :                                        relids));
    1230             :         }
    1231             : 
    1232     1101622 :         joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
    1233             :                                             var);
    1234             : 
    1235             :         /* Vars have cost zero, so no need to adjust reltarget->cost */
    1236             :     }
    1237             : 
    1238      362032 :     joinrel->reltarget->width = clamp_width_est(tuple_width);
    1239      362032 : }
    1240             : 
    1241             : /*
    1242             :  * build_joinrel_restrictlist
    1243             :  * build_joinrel_joinlist
    1244             :  *    These routines build lists of restriction and join clauses for a
    1245             :  *    join relation from the joininfo lists of the relations it joins.
    1246             :  *
    1247             :  *    These routines are separate because the restriction list must be
    1248             :  *    built afresh for each pair of input sub-relations we consider, whereas
    1249             :  *    the join list need only be computed once for any join RelOptInfo.
    1250             :  *    The join list is fully determined by the set of rels making up the
    1251             :  *    joinrel, so we should get the same results (up to ordering) from any
    1252             :  *    candidate pair of sub-relations.  But the restriction list is whatever
    1253             :  *    is not handled in the sub-relations, so it depends on which
    1254             :  *    sub-relations are considered.
    1255             :  *
    1256             :  *    If a join clause from an input relation refers to base+OJ rels still not
    1257             :  *    present in the joinrel, then it is still a join clause for the joinrel;
    1258             :  *    we put it into the joininfo list for the joinrel.  Otherwise,
    1259             :  *    the clause is now a restrict clause for the joined relation, and we
    1260             :  *    return it to the caller of build_joinrel_restrictlist() to be stored in
    1261             :  *    join paths made from this pair of sub-relations.  (It will not need to
    1262             :  *    be considered further up the join tree.)
    1263             :  *
    1264             :  *    In many cases we will find the same RestrictInfos in both input
    1265             :  *    relations' joinlists, so be careful to eliminate duplicates.
    1266             :  *    Pointer equality should be a sufficient test for dups, since all
    1267             :  *    the various joinlist entries ultimately refer to RestrictInfos
    1268             :  *    pushed into them by distribute_restrictinfo_to_rels().
    1269             :  *
    1270             :  * 'joinrel' is a join relation node
    1271             :  * 'outer_rel' and 'inner_rel' are a pair of relations that can be joined
    1272             :  *      to form joinrel.
    1273             :  * 'sjinfo': join context info
    1274             :  *
    1275             :  * build_joinrel_restrictlist() returns a list of relevant restrictinfos,
    1276             :  * whereas build_joinrel_joinlist() stores its results in the joinrel's
    1277             :  * joininfo list.  One or the other must accept each given clause!
    1278             :  *
    1279             :  * NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass
    1280             :  * up to the join relation.  I believe this is no longer necessary, because
    1281             :  * RestrictInfo nodes are no longer context-dependent.  Instead, just include
    1282             :  * the original nodes in the lists made for the join relation.
    1283             :  */
    1284             : static List *
    1285      275690 : build_joinrel_restrictlist(PlannerInfo *root,
    1286             :                            RelOptInfo *joinrel,
    1287             :                            RelOptInfo *outer_rel,
    1288             :                            RelOptInfo *inner_rel,
    1289             :                            SpecialJoinInfo *sjinfo)
    1290             : {
    1291             :     List       *result;
    1292             :     Relids      both_input_relids;
    1293             : 
    1294      275690 :     both_input_relids = bms_union(outer_rel->relids, inner_rel->relids);
    1295             : 
    1296             :     /*
    1297             :      * Collect all the clauses that syntactically belong at this level,
    1298             :      * eliminating any duplicates (important since we will see many of the
    1299             :      * same clauses arriving from both input relations).
    1300             :      */
    1301      275690 :     result = subbuild_joinrel_restrictlist(root, joinrel, outer_rel,
    1302             :                                            both_input_relids, NIL);
    1303      275690 :     result = subbuild_joinrel_restrictlist(root, joinrel, inner_rel,
    1304             :                                            both_input_relids, result);
    1305             : 
    1306             :     /*
    1307             :      * Add on any clauses derived from EquivalenceClasses.  These cannot be
    1308             :      * redundant with the clauses in the joininfo lists, so don't bother
    1309             :      * checking.
    1310             :      */
    1311      275690 :     result = list_concat(result,
    1312      275690 :                          generate_join_implied_equalities(root,
    1313             :                                                           joinrel->relids,
    1314             :                                                           outer_rel->relids,
    1315             :                                                           inner_rel,
    1316             :                                                           sjinfo));
    1317             : 
    1318      275690 :     return result;
    1319             : }
    1320             : 
    1321             : static void
    1322      181016 : build_joinrel_joinlist(RelOptInfo *joinrel,
    1323             :                        RelOptInfo *outer_rel,
    1324             :                        RelOptInfo *inner_rel)
    1325             : {
    1326             :     List       *result;
    1327             : 
    1328             :     /*
    1329             :      * Collect all the clauses that syntactically belong above this level,
    1330             :      * eliminating any duplicates (important since we will see many of the
    1331             :      * same clauses arriving from both input relations).
    1332             :      */
    1333      181016 :     result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL);
    1334      181016 :     result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result);
    1335             : 
    1336      181016 :     joinrel->joininfo = result;
    1337      181016 : }
    1338             : 
    1339             : static List *
    1340      551380 : subbuild_joinrel_restrictlist(PlannerInfo *root,
    1341             :                               RelOptInfo *joinrel,
    1342             :                               RelOptInfo *input_rel,
    1343             :                               Relids both_input_relids,
    1344             :                               List *new_restrictlist)
    1345             : {
    1346             :     ListCell   *l;
    1347             : 
    1348     1048534 :     foreach(l, input_rel->joininfo)
    1349             :     {
    1350      497154 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
    1351             : 
    1352      497154 :         if (bms_is_subset(rinfo->required_relids, joinrel->relids))
    1353             :         {
    1354             :             /*
    1355             :              * This clause should become a restriction clause for the joinrel,
    1356             :              * since it refers to no outside rels.  However, if it's a clone
    1357             :              * clause then it might be too late to evaluate it, so we have to
    1358             :              * check.  (If it is too late, just ignore the clause, taking it
    1359             :              * on faith that another clone was or will be selected.)  Clone
    1360             :              * clauses should always be outer-join clauses, so we compare
    1361             :              * against both_input_relids.
    1362             :              */
    1363      294836 :             if (rinfo->has_clone || rinfo->is_clone)
    1364             :             {
    1365             :                 Assert(!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids));
    1366       45964 :                 if (!bms_is_subset(rinfo->required_relids, both_input_relids))
    1367        7480 :                     continue;
    1368       38484 :                 if (bms_overlap(rinfo->incompatible_relids, both_input_relids))
    1369       14688 :                     continue;
    1370             :             }
    1371             :             else
    1372             :             {
    1373             :                 /*
    1374             :                  * For non-clone clauses, we just Assert it's OK.  These might
    1375             :                  * be either join or filter clauses; if it's a join clause
    1376             :                  * then it should not refer to the current join's output.
    1377             :                  * (There is little point in checking incompatible_relids,
    1378             :                  * because it'll be NULL.)
    1379             :                  */
    1380             :                 Assert(RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids) ||
    1381             :                        bms_is_subset(rinfo->required_relids,
    1382             :                                      both_input_relids));
    1383             :             }
    1384             : 
    1385             :             /*
    1386             :              * OK, so add it to the list, being careful to eliminate
    1387             :              * duplicates.  (Since RestrictInfo nodes in different joinlists
    1388             :              * will have been multiply-linked rather than copied, pointer
    1389             :              * equality should be a sufficient test.)
    1390             :              */
    1391      272668 :             new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo);
    1392             :         }
    1393             :         else
    1394             :         {
    1395             :             /*
    1396             :              * This clause is still a join clause at this level, so we ignore
    1397             :              * it in this routine.
    1398             :              */
    1399             :         }
    1400             :     }
    1401             : 
    1402      551380 :     return new_restrictlist;
    1403             : }
    1404             : 
    1405             : static List *
    1406      362032 : subbuild_joinrel_joinlist(RelOptInfo *joinrel,
    1407             :                           List *joininfo_list,
    1408             :                           List *new_joininfo)
    1409             : {
    1410             :     ListCell   *l;
    1411             : 
    1412             :     /* Expected to be called only for join between parent relations. */
    1413             :     Assert(joinrel->reloptkind == RELOPT_JOINREL);
    1414             : 
    1415      678260 :     foreach(l, joininfo_list)
    1416             :     {
    1417      316228 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
    1418             : 
    1419      316228 :         if (bms_is_subset(rinfo->required_relids, joinrel->relids))
    1420             :         {
    1421             :             /*
    1422             :              * This clause becomes a restriction clause for the joinrel, since
    1423             :              * it refers to no outside rels.  So we can ignore it in this
    1424             :              * routine.
    1425             :              */
    1426             :         }
    1427             :         else
    1428             :         {
    1429             :             /*
    1430             :              * This clause is still a join clause at this level, so add it to
    1431             :              * the new joininfo list, being careful to eliminate duplicates.
    1432             :              * (Since RestrictInfo nodes in different joinlists will have been
    1433             :              * multiply-linked rather than copied, pointer equality should be
    1434             :              * a sufficient test.)
    1435             :              */
    1436      125240 :             new_joininfo = list_append_unique_ptr(new_joininfo, rinfo);
    1437             :         }
    1438             :     }
    1439             : 
    1440      362032 :     return new_joininfo;
    1441             : }
    1442             : 
    1443             : 
    1444             : /*
    1445             :  * fetch_upper_rel
    1446             :  *      Build a RelOptInfo describing some post-scan/join query processing,
    1447             :  *      or return a pre-existing one if somebody already built it.
    1448             :  *
    1449             :  * An "upper" relation is identified by an UpperRelationKind and a Relids set.
    1450             :  * The meaning of the Relids set is not specified here, and very likely will
    1451             :  * vary for different relation kinds.
    1452             :  *
    1453             :  * Most of the fields in an upper-level RelOptInfo are not used and are not
    1454             :  * set here (though makeNode should ensure they're zeroes).  We basically only
    1455             :  * care about fields that are of interest to add_path() and set_cheapest().
    1456             :  */
    1457             : RelOptInfo *
    1458     1679676 : fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
    1459             : {
    1460             :     RelOptInfo *upperrel;
    1461             :     ListCell   *lc;
    1462             : 
    1463             :     /*
    1464             :      * For the moment, our indexing data structure is just a List for each
    1465             :      * relation kind.  If we ever get so many of one kind that this stops
    1466             :      * working well, we can improve it.  No code outside this function should
    1467             :      * assume anything about how to find a particular upperrel.
    1468             :      */
    1469             : 
    1470             :     /* If we already made this upperrel for the query, return it */
    1471     1686618 :     foreach(lc, root->upper_rels[kind])
    1472             :     {
    1473     1065568 :         upperrel = (RelOptInfo *) lfirst(lc);
    1474             : 
    1475     1065568 :         if (bms_equal(upperrel->relids, relids))
    1476     1058626 :             return upperrel;
    1477             :     }
    1478             : 
    1479      621050 :     upperrel = makeNode(RelOptInfo);
    1480      621050 :     upperrel->reloptkind = RELOPT_UPPER_REL;
    1481      621050 :     upperrel->relids = bms_copy(relids);
    1482             : 
    1483             :     /* cheap startup cost is interesting iff not all tuples to be retrieved */
    1484      621050 :     upperrel->consider_startup = (root->tuple_fraction > 0);
    1485      621050 :     upperrel->consider_param_startup = false;
    1486      621050 :     upperrel->consider_parallel = false; /* might get changed later */
    1487      621050 :     upperrel->reltarget = create_empty_pathtarget();
    1488      621050 :     upperrel->pathlist = NIL;
    1489      621050 :     upperrel->cheapest_startup_path = NULL;
    1490      621050 :     upperrel->cheapest_total_path = NULL;
    1491      621050 :     upperrel->cheapest_unique_path = NULL;
    1492      621050 :     upperrel->cheapest_parameterized_paths = NIL;
    1493             : 
    1494      621050 :     root->upper_rels[kind] = lappend(root->upper_rels[kind], upperrel);
    1495             : 
    1496      621050 :     return upperrel;
    1497             : }
    1498             : 
    1499             : 
    1500             : /*
    1501             :  * find_childrel_parents
    1502             :  *      Compute the set of parent relids of an appendrel child rel.
    1503             :  *
    1504             :  * Since appendrels can be nested, a child could have multiple levels of
    1505             :  * appendrel ancestors.  This function computes a Relids set of all the
    1506             :  * parent relation IDs.
    1507             :  */
    1508             : Relids
    1509       11342 : find_childrel_parents(PlannerInfo *root, RelOptInfo *rel)
    1510             : {
    1511       11342 :     Relids      result = NULL;
    1512             : 
    1513             :     Assert(rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
    1514             :     Assert(rel->relid > 0 && rel->relid < root->simple_rel_array_size);
    1515             : 
    1516             :     do
    1517             :     {
    1518       13426 :         AppendRelInfo *appinfo = root->append_rel_array[rel->relid];
    1519       13426 :         Index       prelid = appinfo->parent_relid;
    1520             : 
    1521       13426 :         result = bms_add_member(result, prelid);
    1522             : 
    1523             :         /* traverse up to the parent rel, loop if it's also a child rel */
    1524       13426 :         rel = find_base_rel(root, prelid);
    1525       13426 :     } while (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
    1526             : 
    1527             :     Assert(rel->reloptkind == RELOPT_BASEREL);
    1528             : 
    1529       11342 :     return result;
    1530             : }
    1531             : 
    1532             : 
    1533             : /*
    1534             :  * get_baserel_parampathinfo
    1535             :  *      Get the ParamPathInfo for a parameterized path for a base relation,
    1536             :  *      constructing one if we don't have one already.
    1537             :  *
    1538             :  * This centralizes estimating the rowcounts for parameterized paths.
    1539             :  * We need to cache those to be sure we use the same rowcount for all paths
    1540             :  * of the same parameterization for a given rel.  This is also a convenient
    1541             :  * place to determine which movable join clauses the parameterized path will
    1542             :  * be responsible for evaluating.
    1543             :  */
    1544             : ParamPathInfo *
    1545     1581944 : get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel,
    1546             :                           Relids required_outer)
    1547             : {
    1548             :     ParamPathInfo *ppi;
    1549             :     Relids      joinrelids;
    1550             :     List       *pclauses;
    1551             :     List       *eqclauses;
    1552             :     Bitmapset  *pserials;
    1553             :     double      rows;
    1554             :     ListCell   *lc;
    1555             : 
    1556             :     /* If rel has LATERAL refs, every path for it should account for them */
    1557             :     Assert(bms_is_subset(baserel->lateral_relids, required_outer));
    1558             : 
    1559             :     /* Unparameterized paths have no ParamPathInfo */
    1560     1581944 :     if (bms_is_empty(required_outer))
    1561     1302692 :         return NULL;
    1562             : 
    1563             :     Assert(!bms_overlap(baserel->relids, required_outer));
    1564             : 
    1565             :     /* If we already have a PPI for this parameterization, just return it */
    1566      279252 :     if ((ppi = find_param_path_info(baserel, required_outer)))
    1567      147618 :         return ppi;
    1568             : 
    1569             :     /*
    1570             :      * Identify all joinclauses that are movable to this base rel given this
    1571             :      * parameterization.
    1572             :      */
    1573      131634 :     joinrelids = bms_union(baserel->relids, required_outer);
    1574      131634 :     pclauses = NIL;
    1575      216458 :     foreach(lc, baserel->joininfo)
    1576             :     {
    1577       84824 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1578             : 
    1579       84824 :         if (join_clause_is_movable_into(rinfo,
    1580             :                                         baserel->relids,
    1581             :                                         joinrelids))
    1582       35974 :             pclauses = lappend(pclauses, rinfo);
    1583             :     }
    1584             : 
    1585             :     /*
    1586             :      * Add in joinclauses generated by EquivalenceClasses, too.  (These
    1587             :      * necessarily satisfy join_clause_is_movable_into; but in assert-enabled
    1588             :      * builds, let's verify that.)
    1589             :      */
    1590      131634 :     eqclauses = generate_join_implied_equalities(root,
    1591             :                                                  joinrelids,
    1592             :                                                  required_outer,
    1593             :                                                  baserel,
    1594             :                                                  NULL);
    1595             : #ifdef USE_ASSERT_CHECKING
    1596             :     foreach(lc, eqclauses)
    1597             :     {
    1598             :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1599             : 
    1600             :         Assert(join_clause_is_movable_into(rinfo,
    1601             :                                            baserel->relids,
    1602             :                                            joinrelids));
    1603             :     }
    1604             : #endif
    1605      131634 :     pclauses = list_concat(pclauses, eqclauses);
    1606             : 
    1607             :     /* Compute set of serial numbers of the enforced clauses */
    1608      131634 :     pserials = NULL;
    1609      263788 :     foreach(lc, pclauses)
    1610             :     {
    1611      132154 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1612             : 
    1613      132154 :         pserials = bms_add_member(pserials, rinfo->rinfo_serial);
    1614             :     }
    1615             : 
    1616             :     /* Estimate the number of rows returned by the parameterized scan */
    1617      131634 :     rows = get_parameterized_baserel_size(root, baserel, pclauses);
    1618             : 
    1619             :     /* And now we can build the ParamPathInfo */
    1620      131634 :     ppi = makeNode(ParamPathInfo);
    1621      131634 :     ppi->ppi_req_outer = required_outer;
    1622      131634 :     ppi->ppi_rows = rows;
    1623      131634 :     ppi->ppi_clauses = pclauses;
    1624      131634 :     ppi->ppi_serials = pserials;
    1625      131634 :     baserel->ppilist = lappend(baserel->ppilist, ppi);
    1626             : 
    1627      131634 :     return ppi;
    1628             : }
    1629             : 
    1630             : /*
    1631             :  * get_joinrel_parampathinfo
    1632             :  *      Get the ParamPathInfo for a parameterized path for a join relation,
    1633             :  *      constructing one if we don't have one already.
    1634             :  *
    1635             :  * This centralizes estimating the rowcounts for parameterized paths.
    1636             :  * We need to cache those to be sure we use the same rowcount for all paths
    1637             :  * of the same parameterization for a given rel.  This is also a convenient
    1638             :  * place to determine which movable join clauses the parameterized path will
    1639             :  * be responsible for evaluating.
    1640             :  *
    1641             :  * outer_path and inner_path are a pair of input paths that can be used to
    1642             :  * construct the join, and restrict_clauses is the list of regular join
    1643             :  * clauses (including clauses derived from EquivalenceClasses) that must be
    1644             :  * applied at the join node when using these inputs.
    1645             :  *
    1646             :  * Unlike the situation for base rels, the set of movable join clauses to be
    1647             :  * enforced at a join varies with the selected pair of input paths, so we
    1648             :  * must calculate that and pass it back, even if we already have a matching
    1649             :  * ParamPathInfo.  We handle this by adding any clauses moved down to this
    1650             :  * join to *restrict_clauses, which is an in/out parameter.  (The addition
    1651             :  * is done in such a way as to not modify the passed-in List structure.)
    1652             :  *
    1653             :  * Note: when considering a nestloop join, the caller must have removed from
    1654             :  * restrict_clauses any movable clauses that are themselves scheduled to be
    1655             :  * pushed into the right-hand path.  We do not do that here since it's
    1656             :  * unnecessary for other join types.
    1657             :  */
    1658             : ParamPathInfo *
    1659     1657026 : get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel,
    1660             :                           Path *outer_path,
    1661             :                           Path *inner_path,
    1662             :                           SpecialJoinInfo *sjinfo,
    1663             :                           Relids required_outer,
    1664             :                           List **restrict_clauses)
    1665             : {
    1666             :     ParamPathInfo *ppi;
    1667             :     Relids      join_and_req;
    1668             :     Relids      outer_and_req;
    1669             :     Relids      inner_and_req;
    1670             :     List       *pclauses;
    1671             :     List       *eclauses;
    1672             :     List       *dropped_ecs;
    1673             :     double      rows;
    1674             :     ListCell   *lc;
    1675             : 
    1676             :     /* If rel has LATERAL refs, every path for it should account for them */
    1677             :     Assert(bms_is_subset(joinrel->lateral_relids, required_outer));
    1678             : 
    1679             :     /* Unparameterized paths have no ParamPathInfo or extra join clauses */
    1680     1657026 :     if (bms_is_empty(required_outer))
    1681     1630124 :         return NULL;
    1682             : 
    1683             :     Assert(!bms_overlap(joinrel->relids, required_outer));
    1684             : 
    1685             :     /*
    1686             :      * Identify all joinclauses that are movable to this join rel given this
    1687             :      * parameterization.  These are the clauses that are movable into this
    1688             :      * join, but not movable into either input path.  Treat an unparameterized
    1689             :      * input path as not accepting parameterized clauses (because it won't,
    1690             :      * per the shortcut exit above), even though the joinclause movement rules
    1691             :      * might allow the same clauses to be moved into a parameterized path for
    1692             :      * that rel.
    1693             :      */
    1694       26902 :     join_and_req = bms_union(joinrel->relids, required_outer);
    1695       26902 :     if (outer_path->param_info)
    1696       24778 :         outer_and_req = bms_union(outer_path->parent->relids,
    1697       24778 :                                   PATH_REQ_OUTER(outer_path));
    1698             :     else
    1699        2124 :         outer_and_req = NULL;   /* outer path does not accept parameters */
    1700       26902 :     if (inner_path->param_info)
    1701       14018 :         inner_and_req = bms_union(inner_path->parent->relids,
    1702       14018 :                                   PATH_REQ_OUTER(inner_path));
    1703             :     else
    1704       12884 :         inner_and_req = NULL;   /* inner path does not accept parameters */
    1705             : 
    1706       26902 :     pclauses = NIL;
    1707       70090 :     foreach(lc, joinrel->joininfo)
    1708             :     {
    1709       43188 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1710             : 
    1711       43188 :         if (join_clause_is_movable_into(rinfo,
    1712             :                                         joinrel->relids,
    1713       21634 :                                         join_and_req) &&
    1714       21634 :             !join_clause_is_movable_into(rinfo,
    1715       21634 :                                          outer_path->parent->relids,
    1716         704 :                                          outer_and_req) &&
    1717         704 :             !join_clause_is_movable_into(rinfo,
    1718         704 :                                          inner_path->parent->relids,
    1719             :                                          inner_and_req))
    1720          96 :             pclauses = lappend(pclauses, rinfo);
    1721             :     }
    1722             : 
    1723             :     /* Consider joinclauses generated by EquivalenceClasses, too */
    1724       26902 :     eclauses = generate_join_implied_equalities(root,
    1725             :                                                 join_and_req,
    1726             :                                                 required_outer,
    1727             :                                                 joinrel,
    1728             :                                                 NULL);
    1729             :     /* We only want ones that aren't movable to lower levels */
    1730       26902 :     dropped_ecs = NIL;
    1731       30640 :     foreach(lc, eclauses)
    1732             :     {
    1733        3738 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1734             : 
    1735             :         Assert(join_clause_is_movable_into(rinfo,
    1736             :                                            joinrel->relids,
    1737             :                                            join_and_req));
    1738        3738 :         if (join_clause_is_movable_into(rinfo,
    1739        3738 :                                         outer_path->parent->relids,
    1740             :                                         outer_and_req))
    1741        2108 :             continue;           /* drop if movable into LHS */
    1742        1630 :         if (join_clause_is_movable_into(rinfo,
    1743        1630 :                                         inner_path->parent->relids,
    1744             :                                         inner_and_req))
    1745             :         {
    1746             :             /* drop if movable into RHS, but remember EC for use below */
    1747             :             Assert(rinfo->left_ec == rinfo->right_ec);
    1748         948 :             dropped_ecs = lappend(dropped_ecs, rinfo->left_ec);
    1749         948 :             continue;
    1750             :         }
    1751         682 :         pclauses = lappend(pclauses, rinfo);
    1752             :     }
    1753             : 
    1754             :     /*
    1755             :      * EquivalenceClasses are harder to deal with than we could wish, because
    1756             :      * of the fact that a given EC can generate different clauses depending on
    1757             :      * context.  Suppose we have an EC {X.X, Y.Y, Z.Z} where X and Y are the
    1758             :      * LHS and RHS of the current join and Z is in required_outer, and further
    1759             :      * suppose that the inner_path is parameterized by both X and Z.  The code
    1760             :      * above will have produced either Z.Z = X.X or Z.Z = Y.Y from that EC,
    1761             :      * and in the latter case will have discarded it as being movable into the
    1762             :      * RHS.  However, the EC machinery might have produced either Y.Y = X.X or
    1763             :      * Y.Y = Z.Z as the EC enforcement clause within the inner_path; it will
    1764             :      * not have produced both, and we can't readily tell from here which one
    1765             :      * it did pick.  If we add no clause to this join, we'll end up with
    1766             :      * insufficient enforcement of the EC; either Z.Z or X.X will fail to be
    1767             :      * constrained to be equal to the other members of the EC.  (When we come
    1768             :      * to join Z to this X/Y path, we will certainly drop whichever EC clause
    1769             :      * is generated at that join, so this omission won't get fixed later.)
    1770             :      *
    1771             :      * To handle this, for each EC we discarded such a clause from, try to
    1772             :      * generate a clause connecting the required_outer rels to the join's LHS
    1773             :      * ("Z.Z = X.X" in the terms of the above example).  If successful, and if
    1774             :      * the clause can't be moved to the LHS, add it to the current join's
    1775             :      * restriction clauses.  (If an EC cannot generate such a clause then it
    1776             :      * has nothing that needs to be enforced here, while if the clause can be
    1777             :      * moved into the LHS then it should have been enforced within that path.)
    1778             :      *
    1779             :      * Note that we don't need similar processing for ECs whose clause was
    1780             :      * considered to be movable into the LHS, because the LHS can't refer to
    1781             :      * the RHS so there is no comparable ambiguity about what it might
    1782             :      * actually be enforcing internally.
    1783             :      */
    1784       26902 :     if (dropped_ecs)
    1785             :     {
    1786             :         Relids      real_outer_and_req;
    1787             : 
    1788         900 :         real_outer_and_req = bms_union(outer_path->parent->relids,
    1789             :                                        required_outer);
    1790             :         eclauses =
    1791         900 :             generate_join_implied_equalities_for_ecs(root,
    1792             :                                                      dropped_ecs,
    1793             :                                                      real_outer_and_req,
    1794             :                                                      required_outer,
    1795             :                                                      outer_path->parent);
    1796         986 :         foreach(lc, eclauses)
    1797             :         {
    1798          86 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1799             : 
    1800             :             Assert(join_clause_is_movable_into(rinfo,
    1801             :                                                outer_path->parent->relids,
    1802             :                                                real_outer_and_req));
    1803          86 :             if (!join_clause_is_movable_into(rinfo,
    1804          86 :                                              outer_path->parent->relids,
    1805             :                                              outer_and_req))
    1806          74 :                 pclauses = lappend(pclauses, rinfo);
    1807             :         }
    1808             :     }
    1809             : 
    1810             :     /*
    1811             :      * Now, attach the identified moved-down clauses to the caller's
    1812             :      * restrict_clauses list.  By using list_concat in this order, we leave
    1813             :      * the original list structure of restrict_clauses undamaged.
    1814             :      */
    1815       26902 :     *restrict_clauses = list_concat(pclauses, *restrict_clauses);
    1816             : 
    1817             :     /* If we already have a PPI for this parameterization, just return it */
    1818       26902 :     if ((ppi = find_param_path_info(joinrel, required_outer)))
    1819       19982 :         return ppi;
    1820             : 
    1821             :     /* Estimate the number of rows returned by the parameterized join */
    1822        6920 :     rows = get_parameterized_joinrel_size(root, joinrel,
    1823             :                                           outer_path,
    1824             :                                           inner_path,
    1825             :                                           sjinfo,
    1826             :                                           *restrict_clauses);
    1827             : 
    1828             :     /*
    1829             :      * And now we can build the ParamPathInfo.  No point in saving the
    1830             :      * input-pair-dependent clause list, though.
    1831             :      *
    1832             :      * Note: in GEQO mode, we'll be called in a temporary memory context, but
    1833             :      * the joinrel structure is there too, so no problem.
    1834             :      */
    1835        6920 :     ppi = makeNode(ParamPathInfo);
    1836        6920 :     ppi->ppi_req_outer = required_outer;
    1837        6920 :     ppi->ppi_rows = rows;
    1838        6920 :     ppi->ppi_clauses = NIL;
    1839        6920 :     ppi->ppi_serials = NULL;
    1840        6920 :     joinrel->ppilist = lappend(joinrel->ppilist, ppi);
    1841             : 
    1842        6920 :     return ppi;
    1843             : }
    1844             : 
    1845             : /*
    1846             :  * get_appendrel_parampathinfo
    1847             :  *      Get the ParamPathInfo for a parameterized path for an append relation.
    1848             :  *
    1849             :  * For an append relation, the rowcount estimate will just be the sum of
    1850             :  * the estimates for its children.  However, we still need a ParamPathInfo
    1851             :  * to flag the fact that the path requires parameters.  So this just creates
    1852             :  * a suitable struct with zero ppi_rows (and no ppi_clauses either, since
    1853             :  * the Append node isn't responsible for checking quals).
    1854             :  */
    1855             : ParamPathInfo *
    1856       37106 : get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
    1857             : {
    1858             :     ParamPathInfo *ppi;
    1859             : 
    1860             :     /* If rel has LATERAL refs, every path for it should account for them */
    1861             :     Assert(bms_is_subset(appendrel->lateral_relids, required_outer));
    1862             : 
    1863             :     /* Unparameterized paths have no ParamPathInfo */
    1864       37106 :     if (bms_is_empty(required_outer))
    1865       36568 :         return NULL;
    1866             : 
    1867             :     Assert(!bms_overlap(appendrel->relids, required_outer));
    1868             : 
    1869             :     /* If we already have a PPI for this parameterization, just return it */
    1870         538 :     if ((ppi = find_param_path_info(appendrel, required_outer)))
    1871         126 :         return ppi;
    1872             : 
    1873             :     /* Else build the ParamPathInfo */
    1874         412 :     ppi = makeNode(ParamPathInfo);
    1875         412 :     ppi->ppi_req_outer = required_outer;
    1876         412 :     ppi->ppi_rows = 0;
    1877         412 :     ppi->ppi_clauses = NIL;
    1878         412 :     ppi->ppi_serials = NULL;
    1879         412 :     appendrel->ppilist = lappend(appendrel->ppilist, ppi);
    1880             : 
    1881         412 :     return ppi;
    1882             : }
    1883             : 
    1884             : /*
    1885             :  * Returns a ParamPathInfo for the parameterization given by required_outer, if
    1886             :  * already available in the given rel. Returns NULL otherwise.
    1887             :  */
    1888             : ParamPathInfo *
    1889      307580 : find_param_path_info(RelOptInfo *rel, Relids required_outer)
    1890             : {
    1891             :     ListCell   *lc;
    1892             : 
    1893      355214 :     foreach(lc, rel->ppilist)
    1894             :     {
    1895      215468 :         ParamPathInfo *ppi = (ParamPathInfo *) lfirst(lc);
    1896             : 
    1897      215468 :         if (bms_equal(ppi->ppi_req_outer, required_outer))
    1898      167834 :             return ppi;
    1899             :     }
    1900             : 
    1901      139746 :     return NULL;
    1902             : }
    1903             : 
    1904             : /*
    1905             :  * get_param_path_clause_serials
    1906             :  *      Given a parameterized Path, return the set of pushed-down clauses
    1907             :  *      (identified by rinfo_serial numbers) enforced within the Path.
    1908             :  */
    1909             : Bitmapset *
    1910      333888 : get_param_path_clause_serials(Path *path)
    1911             : {
    1912      333888 :     if (path->param_info == NULL)
    1913         944 :         return NULL;            /* not parameterized */
    1914             : 
    1915             :     /*
    1916             :      * We don't currently support parameterized MergeAppend paths, as
    1917             :      * explained in the comments for generate_orderedappend_paths.
    1918             :      */
    1919             :     Assert(!IsA(path, MergeAppendPath));
    1920             : 
    1921      332944 :     if (IsA(path, NestPath) ||
    1922      326532 :         IsA(path, MergePath) ||
    1923      326526 :         IsA(path, HashPath))
    1924             :     {
    1925             :         /*
    1926             :          * For a join path, combine clauses enforced within either input path
    1927             :          * with those enforced as joinrestrictinfo in this path.  Note that
    1928             :          * joinrestrictinfo may include some non-pushed-down clauses, but for
    1929             :          * current purposes it's okay if we include those in the result. (To
    1930             :          * be more careful, we could check for clause_relids overlapping the
    1931             :          * path parameterization, but it's not worth the cycles for now.)
    1932             :          */
    1933        7234 :         JoinPath   *jpath = (JoinPath *) path;
    1934             :         Bitmapset  *pserials;
    1935             :         ListCell   *lc;
    1936             : 
    1937        7234 :         pserials = NULL;
    1938        7234 :         pserials = bms_add_members(pserials,
    1939        7234 :                                    get_param_path_clause_serials(jpath->outerjoinpath));
    1940        7234 :         pserials = bms_add_members(pserials,
    1941        7234 :                                    get_param_path_clause_serials(jpath->innerjoinpath));
    1942        8866 :         foreach(lc, jpath->joinrestrictinfo)
    1943             :         {
    1944        1632 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1945             : 
    1946        1632 :             pserials = bms_add_member(pserials, rinfo->rinfo_serial);
    1947             :         }
    1948        7234 :         return pserials;
    1949             :     }
    1950      325710 :     else if (IsA(path, AppendPath))
    1951             :     {
    1952             :         /*
    1953             :          * For an appendrel, take the intersection of the sets of clauses
    1954             :          * enforced in each input path.
    1955             :          */
    1956        2114 :         AppendPath *apath = (AppendPath *) path;
    1957             :         Bitmapset  *pserials;
    1958             :         ListCell   *lc;
    1959             : 
    1960        2114 :         pserials = NULL;
    1961        8822 :         foreach(lc, apath->subpaths)
    1962             :         {
    1963        6708 :             Path       *subpath = (Path *) lfirst(lc);
    1964             :             Bitmapset  *subserials;
    1965             : 
    1966        6708 :             subserials = get_param_path_clause_serials(subpath);
    1967        6708 :             if (lc == list_head(apath->subpaths))
    1968        2090 :                 pserials = bms_copy(subserials);
    1969             :             else
    1970        4618 :                 pserials = bms_int_members(pserials, subserials);
    1971             :         }
    1972        2114 :         return pserials;
    1973             :     }
    1974             :     else
    1975             :     {
    1976             :         /*
    1977             :          * Otherwise, it's a baserel path and we can use the
    1978             :          * previously-computed set of serial numbers.
    1979             :          */
    1980      323596 :         return path->param_info->ppi_serials;
    1981             :     }
    1982             : }
    1983             : 
    1984             : /*
    1985             :  * build_joinrel_partition_info
    1986             :  *      Checks if the two relations being joined can use partitionwise join
    1987             :  *      and if yes, initialize partitioning information of the resulting
    1988             :  *      partitioned join relation.
    1989             :  */
    1990             : static void
    1991      185790 : build_joinrel_partition_info(PlannerInfo *root,
    1992             :                              RelOptInfo *joinrel, RelOptInfo *outer_rel,
    1993             :                              RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo,
    1994             :                              List *restrictlist)
    1995             : {
    1996             :     PartitionScheme part_scheme;
    1997             : 
    1998             :     /* Nothing to do if partitionwise join technique is disabled. */
    1999      185790 :     if (!enable_partitionwise_join)
    2000             :     {
    2001             :         Assert(!IS_PARTITIONED_REL(joinrel));
    2002      179022 :         return;
    2003             :     }
    2004             : 
    2005             :     /*
    2006             :      * We can only consider this join as an input to further partitionwise
    2007             :      * joins if (a) the input relations are partitioned and have
    2008             :      * consider_partitionwise_join=true, (b) the partition schemes match, and
    2009             :      * (c) we can identify an equi-join between the partition keys.  Note that
    2010             :      * if it were possible for have_partkey_equi_join to return different
    2011             :      * answers for the same joinrel depending on which join ordering we try
    2012             :      * first, this logic would break.  That shouldn't happen, though, because
    2013             :      * of the way the query planner deduces implied equalities and reorders
    2014             :      * the joins.  Please see optimizer/README for details.
    2015             :      */
    2016        6768 :     if (outer_rel->part_scheme == NULL || inner_rel->part_scheme == NULL ||
    2017        2228 :         !outer_rel->consider_partitionwise_join ||
    2018        2184 :         !inner_rel->consider_partitionwise_join ||
    2019        2148 :         outer_rel->part_scheme != inner_rel->part_scheme ||
    2020        2124 :         !have_partkey_equi_join(root, joinrel, outer_rel, inner_rel,
    2021             :                                 sjinfo->jointype, restrictlist))
    2022             :     {
    2023             :         Assert(!IS_PARTITIONED_REL(joinrel));
    2024        4812 :         return;
    2025             :     }
    2026             : 
    2027        1956 :     part_scheme = outer_rel->part_scheme;
    2028             : 
    2029             :     /*
    2030             :      * This function will be called only once for each joinrel, hence it
    2031             :      * should not have partitioning fields filled yet.
    2032             :      */
    2033             :     Assert(!joinrel->part_scheme && !joinrel->partexprs &&
    2034             :            !joinrel->nullable_partexprs && !joinrel->part_rels &&
    2035             :            !joinrel->boundinfo);
    2036             : 
    2037             :     /*
    2038             :      * If the join relation is partitioned, it uses the same partitioning
    2039             :      * scheme as the joining relations.
    2040             :      *
    2041             :      * Note: we calculate the partition bounds, number of partitions, and
    2042             :      * child-join relations of the join relation in try_partitionwise_join().
    2043             :      */
    2044        1956 :     joinrel->part_scheme = part_scheme;
    2045        1956 :     set_joinrel_partition_key_exprs(joinrel, outer_rel, inner_rel,
    2046             :                                     sjinfo->jointype);
    2047             : 
    2048             :     /*
    2049             :      * Set the consider_partitionwise_join flag.
    2050             :      */
    2051             :     Assert(outer_rel->consider_partitionwise_join);
    2052             :     Assert(inner_rel->consider_partitionwise_join);
    2053        1956 :     joinrel->consider_partitionwise_join = true;
    2054             : }
    2055             : 
    2056             : /*
    2057             :  * have_partkey_equi_join
    2058             :  *
    2059             :  * Returns true if there exist equi-join conditions involving pairs
    2060             :  * of matching partition keys of the relations being joined for all
    2061             :  * partition keys.
    2062             :  */
    2063             : static bool
    2064        2124 : have_partkey_equi_join(PlannerInfo *root, RelOptInfo *joinrel,
    2065             :                        RelOptInfo *rel1, RelOptInfo *rel2,
    2066             :                        JoinType jointype, List *restrictlist)
    2067             : {
    2068        2124 :     PartitionScheme part_scheme = rel1->part_scheme;
    2069             :     bool        pk_known_equal[PARTITION_MAX_KEYS];
    2070             :     int         num_equal_pks;
    2071             :     ListCell   *lc;
    2072             : 
    2073             :     /*
    2074             :      * This function must only be called when the joined relations have same
    2075             :      * partitioning scheme.
    2076             :      */
    2077             :     Assert(rel1->part_scheme == rel2->part_scheme);
    2078             :     Assert(part_scheme);
    2079             : 
    2080             :     /* We use a bool array to track which partkey columns are known equal */
    2081        2124 :     memset(pk_known_equal, 0, sizeof(pk_known_equal));
    2082             :     /* ... as well as a count of how many are known equal */
    2083        2124 :     num_equal_pks = 0;
    2084             : 
    2085             :     /* First, look through the join's restriction clauses */
    2086        3342 :     foreach(lc, restrictlist)
    2087             :     {
    2088        3144 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
    2089             :         OpExpr     *opexpr;
    2090             :         Expr       *expr1;
    2091             :         Expr       *expr2;
    2092             :         bool        strict_op;
    2093             :         int         ipk1;
    2094             :         int         ipk2;
    2095             : 
    2096             :         /* If processing an outer join, only use its own join clauses. */
    2097        3144 :         if (IS_OUTER_JOIN(jointype) &&
    2098        1652 :             RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    2099         246 :             continue;
    2100             : 
    2101             :         /* Skip clauses which can not be used for a join. */
    2102        2898 :         if (!rinfo->can_join)
    2103          18 :             continue;
    2104             : 
    2105             :         /* Skip clauses which are not equality conditions. */
    2106        2880 :         if (!rinfo->mergeopfamilies && !OidIsValid(rinfo->hashjoinoperator))
    2107           6 :             continue;
    2108             : 
    2109             :         /* Should be OK to assume it's an OpExpr. */
    2110        2874 :         opexpr = castNode(OpExpr, rinfo->clause);
    2111             : 
    2112             :         /* Match the operands to the relation. */
    2113        5598 :         if (bms_is_subset(rinfo->left_relids, rel1->relids) &&
    2114        2724 :             bms_is_subset(rinfo->right_relids, rel2->relids))
    2115             :         {
    2116        2724 :             expr1 = linitial(opexpr->args);
    2117        2724 :             expr2 = lsecond(opexpr->args);
    2118             :         }
    2119         300 :         else if (bms_is_subset(rinfo->left_relids, rel2->relids) &&
    2120         150 :                  bms_is_subset(rinfo->right_relids, rel1->relids))
    2121             :         {
    2122         150 :             expr1 = lsecond(opexpr->args);
    2123         150 :             expr2 = linitial(opexpr->args);
    2124             :         }
    2125             :         else
    2126           0 :             continue;
    2127             : 
    2128             :         /*
    2129             :          * Now we need to know whether the join operator is strict; see
    2130             :          * comments in pathnodes.h.
    2131             :          */
    2132        2874 :         strict_op = op_strict(opexpr->opno);
    2133             : 
    2134             :         /*
    2135             :          * Vars appearing in the relation's partition keys will not have any
    2136             :          * varnullingrels, but those in expr1 and expr2 will if we're above
    2137             :          * outer joins that could null the respective rels.  It's okay to
    2138             :          * match anyway, if the join operator is strict.
    2139             :          */
    2140        2874 :         if (strict_op)
    2141             :         {
    2142        2874 :             if (bms_overlap(rel1->relids, root->outer_join_rels))
    2143         180 :                 expr1 = (Expr *) remove_nulling_relids((Node *) expr1,
    2144         180 :                                                        root->outer_join_rels,
    2145             :                                                        NULL);
    2146        2874 :             if (bms_overlap(rel2->relids, root->outer_join_rels))
    2147           0 :                 expr2 = (Expr *) remove_nulling_relids((Node *) expr2,
    2148           0 :                                                        root->outer_join_rels,
    2149             :                                                        NULL);
    2150             :         }
    2151             : 
    2152             :         /*
    2153             :          * Only clauses referencing the partition keys are useful for
    2154             :          * partitionwise join.
    2155             :          */
    2156        2874 :         ipk1 = match_expr_to_partition_keys(expr1, rel1, strict_op);
    2157        2874 :         if (ipk1 < 0)
    2158         876 :             continue;
    2159        1998 :         ipk2 = match_expr_to_partition_keys(expr2, rel2, strict_op);
    2160        1998 :         if (ipk2 < 0)
    2161          48 :             continue;
    2162             : 
    2163             :         /*
    2164             :          * If the clause refers to keys at different ordinal positions, it can
    2165             :          * not be used for partitionwise join.
    2166             :          */
    2167        1950 :         if (ipk1 != ipk2)
    2168           6 :             continue;
    2169             : 
    2170             :         /* Ignore clause if we already proved these keys equal. */
    2171        1944 :         if (pk_known_equal[ipk1])
    2172           0 :             continue;
    2173             : 
    2174             :         /* Reject if the partition key collation differs from the clause's. */
    2175        1944 :         if (rel1->part_scheme->partcollation[ipk1] != opexpr->inputcollid)
    2176        1926 :             return false;
    2177             : 
    2178             :         /*
    2179             :          * The clause allows partitionwise join only if it uses the same
    2180             :          * operator family as that specified by the partition key.
    2181             :          */
    2182        1932 :         if (part_scheme->strategy == PARTITION_STRATEGY_HASH)
    2183             :         {
    2184          48 :             if (!OidIsValid(rinfo->hashjoinoperator) ||
    2185          48 :                 !op_in_opfamily(rinfo->hashjoinoperator,
    2186          48 :                                 part_scheme->partopfamily[ipk1]))
    2187           0 :                 continue;
    2188             :         }
    2189        1884 :         else if (!list_member_oid(rinfo->mergeopfamilies,
    2190        1884 :                                   part_scheme->partopfamily[ipk1]))
    2191           0 :             continue;
    2192             : 
    2193             :         /* Mark the partition key as having an equi-join clause. */
    2194        1932 :         pk_known_equal[ipk1] = true;
    2195             : 
    2196             :         /* We can stop examining clauses once we prove all keys equal. */
    2197        1932 :         if (++num_equal_pks == part_scheme->partnatts)
    2198        1914 :             return true;
    2199             :     }
    2200             : 
    2201             :     /*
    2202             :      * Also check to see if any keys are known equal by equivclass.c.  In most
    2203             :      * cases there would have been a join restriction clause generated from
    2204             :      * any EC that had such knowledge, but there might be no such clause, or
    2205             :      * it might happen to constrain other members of the ECs than the ones we
    2206             :      * are looking for.
    2207             :      */
    2208         204 :     for (int ipk = 0; ipk < part_scheme->partnatts; ipk++)
    2209             :     {
    2210             :         Oid         btree_opfamily;
    2211             : 
    2212             :         /* Ignore if we already proved these keys equal. */
    2213         204 :         if (pk_known_equal[ipk])
    2214           6 :             continue;
    2215             : 
    2216             :         /*
    2217             :          * We need a btree opfamily to ask equivclass.c about.  If the
    2218             :          * partopfamily is a hash opfamily, look up its equality operator, and
    2219             :          * select some btree opfamily that that operator is part of.  (Any
    2220             :          * such opfamily should be good enough, since equivclass.c will track
    2221             :          * multiple opfamilies as appropriate.)
    2222             :          */
    2223         198 :         if (part_scheme->strategy == PARTITION_STRATEGY_HASH)
    2224             :         {
    2225             :             Oid         eq_op;
    2226             :             List       *eq_opfamilies;
    2227             : 
    2228           0 :             eq_op = get_opfamily_member(part_scheme->partopfamily[ipk],
    2229           0 :                                         part_scheme->partopcintype[ipk],
    2230           0 :                                         part_scheme->partopcintype[ipk],
    2231             :                                         HTEqualStrategyNumber);
    2232           0 :             if (!OidIsValid(eq_op))
    2233           0 :                 break;          /* we're not going to succeed */
    2234           0 :             eq_opfamilies = get_mergejoin_opfamilies(eq_op);
    2235           0 :             if (eq_opfamilies == NIL)
    2236           0 :                 break;          /* we're not going to succeed */
    2237           0 :             btree_opfamily = linitial_oid(eq_opfamilies);
    2238             :         }
    2239             :         else
    2240         198 :             btree_opfamily = part_scheme->partopfamily[ipk];
    2241             : 
    2242             :         /*
    2243             :          * We consider only non-nullable partition keys here; nullable ones
    2244             :          * would not be treated as part of the same equivalence classes as
    2245             :          * non-nullable ones.
    2246             :          */
    2247         354 :         foreach(lc, rel1->partexprs[ipk])
    2248             :         {
    2249         198 :             Node       *expr1 = (Node *) lfirst(lc);
    2250             :             ListCell   *lc2;
    2251         198 :             Oid         partcoll1 = rel1->part_scheme->partcollation[ipk];
    2252         198 :             Oid         exprcoll1 = exprCollation(expr1);
    2253             : 
    2254         366 :             foreach(lc2, rel2->partexprs[ipk])
    2255             :             {
    2256         210 :                 Node       *expr2 = (Node *) lfirst(lc2);
    2257             : 
    2258         210 :                 if (exprs_known_equal(root, expr1, expr2, btree_opfamily))
    2259             :                 {
    2260             :                     /*
    2261             :                      * Ensure that the collation of the expression matches
    2262             :                      * that of the partition key. Checking just one collation
    2263             :                      * (partcoll1 and exprcoll1) suffices because partcoll1
    2264             :                      * and partcoll2, as well as exprcoll1 and exprcoll2,
    2265             :                      * should be identical. This holds because both rel1 and
    2266             :                      * rel2 use the same PartitionScheme and expr1 and expr2
    2267             :                      * are equal.
    2268             :                      */
    2269          54 :                     if (partcoll1 == exprcoll1)
    2270             :                     {
    2271          42 :                         Oid         partcoll2 PG_USED_FOR_ASSERTS_ONLY =
    2272          42 :                             rel2->part_scheme->partcollation[ipk];
    2273             :                         Oid         exprcoll2 PG_USED_FOR_ASSERTS_ONLY =
    2274          42 :                             exprCollation(expr2);
    2275             : 
    2276             :                         Assert(partcoll2 == exprcoll2);
    2277          42 :                         pk_known_equal[ipk] = true;
    2278          42 :                         break;
    2279             :                     }
    2280             :                 }
    2281             :             }
    2282         198 :             if (pk_known_equal[ipk])
    2283          42 :                 break;
    2284             :         }
    2285             : 
    2286         198 :         if (pk_known_equal[ipk])
    2287             :         {
    2288             :             /* We can stop examining keys once we prove all keys equal. */
    2289          42 :             if (++num_equal_pks == part_scheme->partnatts)
    2290          42 :                 return true;
    2291             :         }
    2292             :         else
    2293         156 :             break;              /* no chance to succeed, give up */
    2294             :     }
    2295             : 
    2296         156 :     return false;
    2297             : }
    2298             : 
    2299             : /*
    2300             :  * match_expr_to_partition_keys
    2301             :  *
    2302             :  * Tries to match an expression to one of the nullable or non-nullable
    2303             :  * partition keys of "rel".  Returns the matched key's ordinal position,
    2304             :  * or -1 if the expression could not be matched to any of the keys.
    2305             :  *
    2306             :  * strict_op must be true if the expression will be compared with the
    2307             :  * partition key using a strict operator.  This allows us to consider
    2308             :  * nullable as well as nonnullable partition keys.
    2309             :  */
    2310             : static int
    2311        4872 : match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel, bool strict_op)
    2312             : {
    2313             :     int         cnt;
    2314             : 
    2315             :     /* This function should be called only for partitioned relations. */
    2316             :     Assert(rel->part_scheme);
    2317             :     Assert(rel->partexprs);
    2318             :     Assert(rel->nullable_partexprs);
    2319             : 
    2320             :     /* Remove any relabel decorations. */
    2321        5160 :     while (IsA(expr, RelabelType))
    2322         288 :         expr = (Expr *) (castNode(RelabelType, expr))->arg;
    2323             : 
    2324        5832 :     for (cnt = 0; cnt < rel->part_scheme->partnatts; cnt++)
    2325             :     {
    2326             :         ListCell   *lc;
    2327             : 
    2328             :         /* We can always match to the non-nullable partition keys. */
    2329        5904 :         foreach(lc, rel->partexprs[cnt])
    2330             :         {
    2331        4860 :             if (equal(lfirst(lc), expr))
    2332        3864 :                 return cnt;
    2333             :         }
    2334             : 
    2335        1044 :         if (!strict_op)
    2336           0 :             continue;
    2337             : 
    2338             :         /*
    2339             :          * If it's a strict join operator then a NULL partition key on one
    2340             :          * side will not join to any partition key on the other side, and in
    2341             :          * particular such a row can't join to a row from a different
    2342             :          * partition on the other side.  So, it's okay to search the nullable
    2343             :          * partition keys as well.
    2344             :          */
    2345        1188 :         foreach(lc, rel->nullable_partexprs[cnt])
    2346             :         {
    2347         228 :             if (equal(lfirst(lc), expr))
    2348          84 :                 return cnt;
    2349             :         }
    2350             :     }
    2351             : 
    2352         924 :     return -1;
    2353             : }
    2354             : 
    2355             : /*
    2356             :  * set_joinrel_partition_key_exprs
    2357             :  *      Initialize partition key expressions for a partitioned joinrel.
    2358             :  */
    2359             : static void
    2360        1956 : set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
    2361             :                                 RelOptInfo *outer_rel, RelOptInfo *inner_rel,
    2362             :                                 JoinType jointype)
    2363             : {
    2364        1956 :     PartitionScheme part_scheme = joinrel->part_scheme;
    2365        1956 :     int         partnatts = part_scheme->partnatts;
    2366             : 
    2367        1956 :     joinrel->partexprs = (List **) palloc0(sizeof(List *) * partnatts);
    2368        1956 :     joinrel->nullable_partexprs =
    2369        1956 :         (List **) palloc0(sizeof(List *) * partnatts);
    2370             : 
    2371             :     /*
    2372             :      * The joinrel's partition expressions are the same as those of the input
    2373             :      * rels, but we must properly classify them as nullable or not in the
    2374             :      * joinrel's output.  (Also, we add some more partition expressions if
    2375             :      * it's a FULL JOIN.)
    2376             :      */
    2377        3924 :     for (int cnt = 0; cnt < partnatts; cnt++)
    2378             :     {
    2379             :         /* mark these const to enforce that we copy them properly */
    2380        1968 :         const List *outer_expr = outer_rel->partexprs[cnt];
    2381        1968 :         const List *outer_null_expr = outer_rel->nullable_partexprs[cnt];
    2382        1968 :         const List *inner_expr = inner_rel->partexprs[cnt];
    2383        1968 :         const List *inner_null_expr = inner_rel->nullable_partexprs[cnt];
    2384        1968 :         List       *partexpr = NIL;
    2385        1968 :         List       *nullable_partexpr = NIL;
    2386             :         ListCell   *lc;
    2387             : 
    2388        1968 :         switch (jointype)
    2389             :         {
    2390             :                 /*
    2391             :                  * A join relation resulting from an INNER join may be
    2392             :                  * regarded as partitioned by either of the inner and outer
    2393             :                  * relation keys.  For example, A INNER JOIN B ON A.a = B.b
    2394             :                  * can be regarded as partitioned on either A.a or B.b.  So we
    2395             :                  * add both keys to the joinrel's partexpr lists.  However,
    2396             :                  * anything that was already nullable still has to be treated
    2397             :                  * as nullable.
    2398             :                  */
    2399         844 :             case JOIN_INNER:
    2400         844 :                 partexpr = list_concat_copy(outer_expr, inner_expr);
    2401         844 :                 nullable_partexpr = list_concat_copy(outer_null_expr,
    2402             :                                                      inner_null_expr);
    2403         844 :                 break;
    2404             : 
    2405             :                 /*
    2406             :                  * A join relation resulting from a SEMI or ANTI join may be
    2407             :                  * regarded as partitioned by the outer relation keys.  The
    2408             :                  * inner relation's keys are no longer interesting; since they
    2409             :                  * aren't visible in the join output, nothing could join to
    2410             :                  * them.
    2411             :                  */
    2412         264 :             case JOIN_SEMI:
    2413             :             case JOIN_ANTI:
    2414         264 :                 partexpr = list_copy(outer_expr);
    2415         264 :                 nullable_partexpr = list_copy(outer_null_expr);
    2416         264 :                 break;
    2417             : 
    2418             :                 /*
    2419             :                  * A join relation resulting from a LEFT OUTER JOIN likewise
    2420             :                  * may be regarded as partitioned on the (non-nullable) outer
    2421             :                  * relation keys.  The inner (nullable) relation keys are okay
    2422             :                  * as partition keys for further joins as long as they involve
    2423             :                  * strict join operators.
    2424             :                  */
    2425         574 :             case JOIN_LEFT:
    2426         574 :                 partexpr = list_copy(outer_expr);
    2427         574 :                 nullable_partexpr = list_concat_copy(inner_expr,
    2428             :                                                      outer_null_expr);
    2429         574 :                 nullable_partexpr = list_concat(nullable_partexpr,
    2430             :                                                 inner_null_expr);
    2431         574 :                 break;
    2432             : 
    2433             :                 /*
    2434             :                  * For FULL OUTER JOINs, both relations are nullable, so the
    2435             :                  * resulting join relation may be regarded as partitioned on
    2436             :                  * either of inner and outer relation keys, but only for joins
    2437             :                  * that involve strict join operators.
    2438             :                  */
    2439         286 :             case JOIN_FULL:
    2440         286 :                 nullable_partexpr = list_concat_copy(outer_expr,
    2441             :                                                      inner_expr);
    2442         286 :                 nullable_partexpr = list_concat(nullable_partexpr,
    2443             :                                                 outer_null_expr);
    2444         286 :                 nullable_partexpr = list_concat(nullable_partexpr,
    2445             :                                                 inner_null_expr);
    2446             : 
    2447             :                 /*
    2448             :                  * Also add CoalesceExprs corresponding to each possible
    2449             :                  * full-join output variable (that is, left side coalesced to
    2450             :                  * right side), so that we can match equijoin expressions
    2451             :                  * using those variables.  We really only need these for
    2452             :                  * columns merged by JOIN USING, and only with the pairs of
    2453             :                  * input items that correspond to the data structures that
    2454             :                  * parse analysis would build for such variables.  But it's
    2455             :                  * hard to tell which those are, so just make all the pairs.
    2456             :                  * Extra items in the nullable_partexprs list won't cause big
    2457             :                  * problems.  (It's possible that such items will get matched
    2458             :                  * to user-written COALESCEs, but it should still be valid to
    2459             :                  * partition on those, since they're going to be either the
    2460             :                  * partition column or NULL; it's the same argument as for
    2461             :                  * partitionwise nesting of any outer join.)  We assume no
    2462             :                  * type coercions are needed to make the coalesce expressions,
    2463             :                  * since columns of different types won't have gotten
    2464             :                  * classified as the same PartitionScheme.  Note that we
    2465             :                  * intentionally leave out the varnullingrels decoration that
    2466             :                  * would ordinarily appear on the Vars inside these
    2467             :                  * CoalesceExprs, because have_partkey_equi_join will strip
    2468             :                  * varnullingrels from the expressions it will compare to the
    2469             :                  * partexprs.
    2470             :                  */
    2471         728 :                 foreach(lc, list_concat_copy(outer_expr, outer_null_expr))
    2472             :                 {
    2473         442 :                     Node       *larg = (Node *) lfirst(lc);
    2474             :                     ListCell   *lc2;
    2475             : 
    2476         884 :                     foreach(lc2, list_concat_copy(inner_expr, inner_null_expr))
    2477             :                     {
    2478         442 :                         Node       *rarg = (Node *) lfirst(lc2);
    2479         442 :                         CoalesceExpr *c = makeNode(CoalesceExpr);
    2480             : 
    2481         442 :                         c->coalescetype = exprType(larg);
    2482         442 :                         c->coalescecollid = exprCollation(larg);
    2483         442 :                         c->args = list_make2(larg, rarg);
    2484         442 :                         c->location = -1;
    2485         442 :                         nullable_partexpr = lappend(nullable_partexpr, c);
    2486             :                     }
    2487             :                 }
    2488         286 :                 break;
    2489             : 
    2490           0 :             default:
    2491           0 :                 elog(ERROR, "unrecognized join type: %d", (int) jointype);
    2492             :         }
    2493             : 
    2494        1968 :         joinrel->partexprs[cnt] = partexpr;
    2495        1968 :         joinrel->nullable_partexprs[cnt] = nullable_partexpr;
    2496             :     }
    2497        1956 : }
    2498             : 
    2499             : /*
    2500             :  * build_child_join_reltarget
    2501             :  *    Set up a child-join relation's reltarget from a parent-join relation.
    2502             :  */
    2503             : static void
    2504        4774 : build_child_join_reltarget(PlannerInfo *root,
    2505             :                            RelOptInfo *parentrel,
    2506             :                            RelOptInfo *childrel,
    2507             :                            int nappinfos,
    2508             :                            AppendRelInfo **appinfos)
    2509             : {
    2510             :     /* Build the targetlist */
    2511        9548 :     childrel->reltarget->exprs = (List *)
    2512        4774 :         adjust_appendrel_attrs(root,
    2513        4774 :                                (Node *) parentrel->reltarget->exprs,
    2514             :                                nappinfos, appinfos);
    2515             : 
    2516             :     /* Set the cost and width fields */
    2517        4774 :     childrel->reltarget->cost.startup = parentrel->reltarget->cost.startup;
    2518        4774 :     childrel->reltarget->cost.per_tuple = parentrel->reltarget->cost.per_tuple;
    2519        4774 :     childrel->reltarget->width = parentrel->reltarget->width;
    2520        4774 : }

Generated by: LCOV version 1.14