Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/cost.h"
40 : #include "optimizer/optimizer.h"
41 : #include "optimizer/plancat.h"
42 : #include "parser/parse_relation.h"
43 : #include "parser/parsetree.h"
44 : #include "partitioning/partdesc.h"
45 : #include "rewrite/rewriteHandler.h"
46 : #include "rewrite/rewriteManip.h"
47 : #include "statistics/statistics.h"
48 : #include "storage/bufmgr.h"
49 : #include "tcop/tcopprot.h"
50 : #include "utils/builtins.h"
51 : #include "utils/lsyscache.h"
52 : #include "utils/partcache.h"
53 : #include "utils/rel.h"
54 : #include "utils/snapmgr.h"
55 : #include "utils/syscache.h"
56 :
57 : /* GUC parameter */
58 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
59 :
60 : /* Hook for plugins to get control in get_relation_info() */
61 : get_relation_info_hook_type get_relation_info_hook = NULL;
62 :
63 : typedef struct NotnullHashEntry
64 : {
65 : Oid relid; /* OID of the relation */
66 : Bitmapset *notnullattnums; /* attnums of NOT NULL columns */
67 : } NotnullHashEntry;
68 :
69 :
70 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
71 : Relation relation, bool inhparent);
72 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
73 : List *idxExprs);
74 : static List *get_relation_constraints(PlannerInfo *root,
75 : Oid relationObjectId, RelOptInfo *rel,
76 : bool include_noinherit,
77 : bool include_notnull,
78 : bool include_partition);
79 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
80 : Relation heapRelation);
81 : static List *get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
82 : Relation relation);
83 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
84 : Relation relation);
85 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
86 : Relation relation);
87 : static void set_baserel_partition_key_exprs(Relation relation,
88 : RelOptInfo *rel);
89 : static void set_baserel_partition_constraint(Relation relation,
90 : RelOptInfo *rel);
91 :
92 :
93 : /*
94 : * get_relation_info -
95 : * Retrieves catalog information for a given relation.
96 : *
97 : * Given the Oid of the relation, return the following info into fields
98 : * of the RelOptInfo struct:
99 : *
100 : * min_attr lowest valid AttrNumber
101 : * max_attr highest valid AttrNumber
102 : * indexlist list of IndexOptInfos for relation's indexes
103 : * statlist list of StatisticExtInfo for relation's statistic objects
104 : * serverid if it's a foreign table, the server OID
105 : * fdwroutine if it's a foreign table, the FDW function pointers
106 : * pages number of pages
107 : * tuples number of tuples
108 : * rel_parallel_workers user-defined number of parallel workers
109 : *
110 : * Also, add information about the relation's foreign keys to root->fkey_list.
111 : *
112 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
113 : * cases these are left as zeroes, but sometimes we need to compute attr
114 : * widths here, and we may as well cache the results for costsize.c.
115 : *
116 : * If inhparent is true, all we need to do is set up the attr arrays:
117 : * the RelOptInfo actually represents the appendrel formed by an inheritance
118 : * tree, and so the parent rel's physical size and index information isn't
119 : * important for it, however, for partitioned tables, we do populate the
120 : * indexlist as the planner uses unique indexes as unique proofs for certain
121 : * optimizations.
122 : */
123 : void
124 489382 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
125 : RelOptInfo *rel)
126 : {
127 489382 : Index varno = rel->relid;
128 : Relation relation;
129 : bool hasindex;
130 489382 : List *indexinfos = NIL;
131 :
132 : /*
133 : * We need not lock the relation since it was already locked, either by
134 : * the rewriter or when expand_inherited_rtentry() added it to the query's
135 : * rangetable.
136 : */
137 489382 : relation = table_open(relationObjectId, NoLock);
138 :
139 : /*
140 : * Relations without a table AM can be used in a query only if they are of
141 : * special-cased relkinds. This check prevents us from crashing later if,
142 : * for example, a view's ON SELECT rule has gone missing. Note that
143 : * table_open() already rejected indexes and composite types; spell the
144 : * error the same way it does.
145 : */
146 489382 : if (!relation->rd_tableam)
147 : {
148 20614 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
149 18098 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
150 0 : ereport(ERROR,
151 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
152 : errmsg("cannot open relation \"%s\"",
153 : RelationGetRelationName(relation)),
154 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
155 : }
156 :
157 : /* Temporary and unlogged relations are inaccessible during recovery. */
158 489382 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
159 0 : ereport(ERROR,
160 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
161 : errmsg("cannot access temporary or unlogged relations during recovery")));
162 :
163 489382 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
164 489382 : rel->max_attr = RelationGetNumberOfAttributes(relation);
165 489382 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
166 :
167 : Assert(rel->max_attr >= rel->min_attr);
168 489382 : rel->attr_needed = (Relids *)
169 489382 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
170 489382 : rel->attr_widths = (int32 *)
171 489382 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
172 :
173 : /*
174 : * Record which columns are defined as NOT NULL. We leave this
175 : * unpopulated for non-partitioned inheritance parent relations as it's
176 : * ambiguous as to what it means. Some child tables may have a NOT NULL
177 : * constraint for a column while others may not. We could work harder and
178 : * build a unioned set of all child relations notnullattnums, but there's
179 : * currently no need. The RelOptInfo corresponding to the !inh
180 : * RangeTblEntry does get populated.
181 : */
182 489382 : if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
183 450726 : rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
184 :
185 : /*
186 : * Estimate relation size --- unless it's an inheritance parent, in which
187 : * case the size we want is not the rel's own size but the size of its
188 : * inheritance tree. That will be computed in set_append_rel_size().
189 : */
190 489382 : if (!inhparent)
191 432668 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
192 432668 : &rel->pages, &rel->tuples, &rel->allvisfrac);
193 :
194 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
195 489382 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
196 :
197 : /*
198 : * Make list of indexes. Ignore indexes on system catalogs if told to.
199 : * Don't bother with indexes from traditional inheritance parents. For
200 : * partitioned tables, we need a list of at least unique indexes as these
201 : * serve as unique proofs for certain planner optimizations. However,
202 : * let's not discriminate here and just record all partitioned indexes
203 : * whether they're unique indexes or not.
204 : */
205 489382 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
206 450726 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
207 38656 : hasindex = false;
208 : else
209 450726 : hasindex = relation->rd_rel->relhasindex;
210 :
211 489382 : if (hasindex)
212 : {
213 : List *indexoidlist;
214 : LOCKMODE lmode;
215 : ListCell *l;
216 :
217 364334 : indexoidlist = RelationGetIndexList(relation);
218 :
219 : /*
220 : * For each index, we get the same type of lock that the executor will
221 : * need, and do not release it. This saves a couple of trips to the
222 : * shared lock manager while not creating any real loss of
223 : * concurrency, because no schema changes could be happening on the
224 : * index while we hold lock on the parent rel, and no lock type used
225 : * for queries blocks any other kind of index operation.
226 : */
227 364334 : lmode = root->simple_rte_array[varno]->rellockmode;
228 :
229 1127494 : foreach(l, indexoidlist)
230 : {
231 763160 : Oid indexoid = lfirst_oid(l);
232 : Relation indexRelation;
233 : Form_pg_index index;
234 763160 : IndexAmRoutine *amroutine = NULL;
235 : IndexOptInfo *info;
236 : int ncolumns,
237 : nkeycolumns;
238 : int i;
239 :
240 : /*
241 : * Extract info from the relation descriptor for the index.
242 : */
243 763160 : indexRelation = index_open(indexoid, lmode);
244 763160 : index = indexRelation->rd_index;
245 :
246 : /*
247 : * Ignore invalid indexes, since they can't safely be used for
248 : * queries. Note that this is OK because the data structure we
249 : * are constructing is only used by the planner --- the executor
250 : * still needs to insert into "invalid" indexes, if they're marked
251 : * indisready.
252 : */
253 763160 : if (!index->indisvalid)
254 : {
255 22 : index_close(indexRelation, NoLock);
256 22 : continue;
257 : }
258 :
259 : /*
260 : * If the index is valid, but cannot yet be used, ignore it; but
261 : * mark the plan we are generating as transient. See
262 : * src/backend/access/heap/README.HOT for discussion.
263 : */
264 763138 : if (index->indcheckxmin &&
265 294 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
266 : TransactionXmin))
267 : {
268 294 : root->glob->transientPlan = true;
269 294 : index_close(indexRelation, NoLock);
270 294 : continue;
271 : }
272 :
273 762844 : info = makeNode(IndexOptInfo);
274 :
275 762844 : info->indexoid = index->indexrelid;
276 762844 : info->reltablespace =
277 762844 : RelationGetForm(indexRelation)->reltablespace;
278 762844 : info->rel = rel;
279 762844 : info->ncolumns = ncolumns = index->indnatts;
280 762844 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
281 :
282 762844 : info->indexkeys = palloc_array(int, ncolumns);
283 762844 : info->indexcollations = palloc_array(Oid, nkeycolumns);
284 762844 : info->opfamily = palloc_array(Oid, nkeycolumns);
285 762844 : info->opcintype = palloc_array(Oid, nkeycolumns);
286 762844 : info->canreturn = palloc_array(bool, ncolumns);
287 :
288 2190326 : for (i = 0; i < ncolumns; i++)
289 : {
290 1427482 : info->indexkeys[i] = index->indkey.values[i];
291 1427482 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
292 : }
293 :
294 2189908 : for (i = 0; i < nkeycolumns; i++)
295 : {
296 1427064 : info->opfamily[i] = indexRelation->rd_opfamily[i];
297 1427064 : info->opcintype[i] = indexRelation->rd_opcintype[i];
298 1427064 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
299 : }
300 :
301 762844 : info->relam = indexRelation->rd_rel->relam;
302 :
303 : /*
304 : * We don't have an AM for partitioned indexes, so we'll just
305 : * NULLify the AM related fields for those.
306 : */
307 762844 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
308 : {
309 : /* We copy just the fields we need, not all of rd_indam */
310 755926 : amroutine = indexRelation->rd_indam;
311 755926 : info->amcanorderbyop = amroutine->amcanorderbyop;
312 755926 : info->amoptionalkey = amroutine->amoptionalkey;
313 755926 : info->amsearcharray = amroutine->amsearcharray;
314 755926 : info->amsearchnulls = amroutine->amsearchnulls;
315 755926 : info->amcanparallel = amroutine->amcanparallel;
316 755926 : info->amhasgettuple = (amroutine->amgettuple != NULL);
317 1511852 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
318 755926 : relation->rd_tableam->scan_bitmap_next_tuple != NULL;
319 1489704 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
320 733778 : amroutine->amrestrpos != NULL);
321 755926 : info->amcostestimate = amroutine->amcostestimate;
322 : Assert(info->amcostestimate != NULL);
323 :
324 : /* Fetch index opclass options */
325 755926 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
326 :
327 : /*
328 : * Fetch the ordering information for the index, if any.
329 : */
330 755926 : if (info->relam == BTREE_AM_OID)
331 : {
332 : /*
333 : * If it's a btree index, we can use its opfamily OIDs
334 : * directly as the sort ordering opfamily OIDs.
335 : */
336 : Assert(amroutine->amcanorder);
337 :
338 733778 : info->sortopfamily = info->opfamily;
339 733778 : info->reverse_sort = palloc_array(bool, nkeycolumns);
340 733778 : info->nulls_first = palloc_array(bool, nkeycolumns);
341 :
342 1870964 : for (i = 0; i < nkeycolumns; i++)
343 : {
344 1137186 : int16 opt = indexRelation->rd_indoption[i];
345 :
346 1137186 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
347 1137186 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
348 : }
349 : }
350 22148 : else if (amroutine->amcanorder)
351 : {
352 : /*
353 : * Otherwise, identify the corresponding btree opfamilies
354 : * by trying to map this index's "<" operators into btree.
355 : * Since "<" uniquely defines the behavior of a sort
356 : * order, this is a sufficient test.
357 : *
358 : * XXX This method is rather slow and complicated. It'd
359 : * be better to have a way to explicitly declare the
360 : * corresponding btree opfamily for each opfamily of the
361 : * other index type.
362 : */
363 0 : info->sortopfamily = palloc_array(Oid, nkeycolumns);
364 0 : info->reverse_sort = palloc_array(bool, nkeycolumns);
365 0 : info->nulls_first = palloc_array(bool, nkeycolumns);
366 :
367 0 : for (i = 0; i < nkeycolumns; i++)
368 : {
369 0 : int16 opt = indexRelation->rd_indoption[i];
370 : Oid ltopr;
371 : Oid opfamily;
372 : Oid opcintype;
373 : CompareType cmptype;
374 :
375 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
376 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
377 :
378 0 : ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
379 0 : info->opcintype[i],
380 0 : info->opcintype[i],
381 : COMPARE_LT);
382 0 : if (OidIsValid(ltopr) &&
383 0 : get_ordering_op_properties(ltopr,
384 : &opfamily,
385 : &opcintype,
386 0 : &cmptype) &&
387 0 : opcintype == info->opcintype[i] &&
388 0 : cmptype == COMPARE_LT)
389 : {
390 : /* Successful mapping */
391 0 : info->sortopfamily[i] = opfamily;
392 : }
393 : else
394 : {
395 : /* Fail ... quietly treat index as unordered */
396 0 : info->sortopfamily = NULL;
397 0 : info->reverse_sort = NULL;
398 0 : info->nulls_first = NULL;
399 0 : break;
400 : }
401 : }
402 : }
403 : else
404 : {
405 22148 : info->sortopfamily = NULL;
406 22148 : info->reverse_sort = NULL;
407 22148 : info->nulls_first = NULL;
408 : }
409 : }
410 : else
411 : {
412 6918 : info->amcanorderbyop = false;
413 6918 : info->amoptionalkey = false;
414 6918 : info->amsearcharray = false;
415 6918 : info->amsearchnulls = false;
416 6918 : info->amcanparallel = false;
417 6918 : info->amhasgettuple = false;
418 6918 : info->amhasgetbitmap = false;
419 6918 : info->amcanmarkpos = false;
420 6918 : info->amcostestimate = NULL;
421 :
422 6918 : info->sortopfamily = NULL;
423 6918 : info->reverse_sort = NULL;
424 6918 : info->nulls_first = NULL;
425 : }
426 :
427 : /*
428 : * Fetch the index expressions and predicate, if any. We must
429 : * modify the copies we obtain from the relcache to have the
430 : * correct varno for the parent relation, so that they match up
431 : * correctly against qual clauses.
432 : *
433 : * After fixing the varnos, we need to run the index expressions
434 : * and predicate through const-simplification again, using a valid
435 : * "root". This ensures that NullTest quals for Vars can be
436 : * properly reduced.
437 : */
438 762844 : info->indexprs = RelationGetIndexExpressions(indexRelation);
439 762844 : info->indpred = RelationGetIndexPredicate(indexRelation);
440 762844 : if (info->indexprs)
441 : {
442 3032 : if (varno != 1)
443 1938 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
444 :
445 3032 : info->indexprs = (List *)
446 3032 : eval_const_expressions(root, (Node *) info->indexprs);
447 : }
448 762844 : if (info->indpred)
449 : {
450 1056 : if (varno != 1)
451 126 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
452 :
453 1056 : info->indpred = (List *)
454 1056 : eval_const_expressions(root,
455 1056 : (Node *) make_ands_explicit(info->indpred));
456 1056 : info->indpred = make_ands_implicit((Expr *) info->indpred);
457 : }
458 :
459 : /* Build targetlist using the completed indexprs data */
460 762844 : info->indextlist = build_index_tlist(root, info, relation);
461 :
462 762844 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
463 762844 : info->predOK = false; /* set later, in indxpath.c */
464 762844 : info->unique = index->indisunique;
465 762844 : info->nullsnotdistinct = index->indnullsnotdistinct;
466 762844 : info->immediate = index->indimmediate;
467 762844 : info->hypothetical = false;
468 :
469 : /*
470 : * Estimate the index size. If it's not a partial index, we lock
471 : * the number-of-tuples estimate to equal the parent table; if it
472 : * is partial then we have to use the same methods as we would for
473 : * a table, except we can be sure that the index is not larger
474 : * than the table. We must ignore partitioned indexes here as
475 : * there are not physical indexes.
476 : */
477 762844 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
478 : {
479 755926 : if (info->indpred == NIL)
480 : {
481 754894 : info->pages = RelationGetNumberOfBlocks(indexRelation);
482 754894 : info->tuples = rel->tuples;
483 : }
484 : else
485 : {
486 : double allvisfrac; /* dummy */
487 :
488 1032 : estimate_rel_size(indexRelation, NULL,
489 1032 : &info->pages, &info->tuples, &allvisfrac);
490 1032 : if (info->tuples > rel->tuples)
491 18 : info->tuples = rel->tuples;
492 : }
493 :
494 : /*
495 : * Get tree height while we have the index open
496 : */
497 755926 : if (amroutine->amgettreeheight)
498 : {
499 733778 : info->tree_height = amroutine->amgettreeheight(indexRelation);
500 : }
501 : else
502 : {
503 : /* For other index types, just set it to "unknown" for now */
504 22148 : info->tree_height = -1;
505 : }
506 : }
507 : else
508 : {
509 : /* Zero these out for partitioned indexes */
510 6918 : info->pages = 0;
511 6918 : info->tuples = 0.0;
512 6918 : info->tree_height = -1;
513 : }
514 :
515 762844 : index_close(indexRelation, NoLock);
516 :
517 : /*
518 : * We've historically used lcons() here. It'd make more sense to
519 : * use lappend(), but that causes the planner to change behavior
520 : * in cases where two indexes seem equally attractive. For now,
521 : * stick with lcons() --- few tables should have so many indexes
522 : * that the O(N^2) behavior of lcons() is really a problem.
523 : */
524 762844 : indexinfos = lcons(info, indexinfos);
525 : }
526 :
527 364334 : list_free(indexoidlist);
528 : }
529 :
530 489382 : rel->indexlist = indexinfos;
531 :
532 489382 : rel->statlist = get_relation_statistics(root, rel, relation);
533 :
534 : /* Grab foreign-table info using the relcache, while we have it */
535 489382 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
536 : {
537 : /* Check if the access to foreign tables is restricted */
538 2516 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
539 : {
540 : /* there must not be built-in foreign tables */
541 : Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
542 :
543 4 : ereport(ERROR,
544 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
545 : errmsg("access to non-system foreign table is restricted")));
546 : }
547 :
548 2512 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
549 2512 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
550 : }
551 : else
552 : {
553 486866 : rel->serverid = InvalidOid;
554 486866 : rel->fdwroutine = NULL;
555 : }
556 :
557 : /* Collect info about relation's foreign keys, if relevant */
558 489364 : get_relation_foreign_keys(root, rel, relation, inhparent);
559 :
560 : /* Collect info about functions implemented by the rel's table AM. */
561 489364 : if (relation->rd_tableam &&
562 468768 : relation->rd_tableam->scan_set_tidrange != NULL &&
563 468768 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
564 468768 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
565 :
566 : /*
567 : * Collect info about relation's partitioning scheme, if any. Only
568 : * inheritance parents may be partitioned.
569 : */
570 489364 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
571 18058 : set_relation_partition_info(root, rel, relation);
572 :
573 489364 : table_close(relation, NoLock);
574 :
575 : /*
576 : * Allow a plugin to editorialize on the info we obtained from the
577 : * catalogs. Actions might include altering the assumed relation size,
578 : * removing an index, or adding a hypothetical index to the indexlist.
579 : */
580 489364 : if (get_relation_info_hook)
581 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
582 489364 : }
583 :
584 : /*
585 : * get_relation_foreign_keys -
586 : * Retrieves foreign key information for a given relation.
587 : *
588 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
589 : * root->fkey_list. We do this now while we have the relcache entry open.
590 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
591 : * until all RelOptInfos have been built, but the cost of re-opening the
592 : * relcache entries would probably exceed any savings.
593 : */
594 : static void
595 489364 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
596 : Relation relation, bool inhparent)
597 : {
598 489364 : List *rtable = root->parse->rtable;
599 : List *cachedfkeys;
600 : ListCell *lc;
601 :
602 : /*
603 : * If it's not a baserel, we don't care about its FKs. Also, if the query
604 : * references only a single relation, we can skip the lookup since no FKs
605 : * could satisfy the requirements below.
606 : */
607 934210 : if (rel->reloptkind != RELOPT_BASEREL ||
608 444846 : list_length(rtable) < 2)
609 253844 : return;
610 :
611 : /*
612 : * If it's the parent of an inheritance tree, ignore its FKs. We could
613 : * make useful FK-based deductions if we found that all members of the
614 : * inheritance tree have equivalent FK constraints, but detecting that
615 : * would require code that hasn't been written.
616 : */
617 235520 : if (inhparent)
618 5974 : return;
619 :
620 : /*
621 : * Extract data about relation's FKs from the relcache. Note that this
622 : * list belongs to the relcache and might disappear in a cache flush, so
623 : * we must not do any further catalog access within this function.
624 : */
625 229546 : cachedfkeys = RelationGetFKeyList(relation);
626 :
627 : /*
628 : * Figure out which FKs are of interest for this query, and create
629 : * ForeignKeyOptInfos for them. We want only FKs that reference some
630 : * other RTE of the current query. In queries containing self-joins,
631 : * there might be more than one other RTE for a referenced table, and we
632 : * should make a ForeignKeyOptInfo for each occurrence.
633 : *
634 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
635 : * too hard to identify those here, so we might end up making some useless
636 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
637 : * them again.
638 : */
639 232164 : foreach(lc, cachedfkeys)
640 : {
641 2618 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
642 : Index rti;
643 : ListCell *lc2;
644 :
645 : /* conrelid should always be that of the table we're considering */
646 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
647 :
648 : /* skip constraints currently not enforced */
649 2618 : if (!cachedfk->conenforced)
650 18 : continue;
651 :
652 : /* Scan to find other RTEs matching confrelid */
653 2600 : rti = 0;
654 11492 : foreach(lc2, rtable)
655 : {
656 8892 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
657 : ForeignKeyOptInfo *info;
658 :
659 8892 : rti++;
660 : /* Ignore if not the correct table */
661 8892 : if (rte->rtekind != RTE_RELATION ||
662 5542 : rte->relid != cachedfk->confrelid)
663 6710 : continue;
664 : /* Ignore if it's an inheritance parent; doesn't really match */
665 2182 : if (rte->inh)
666 270 : continue;
667 : /* Ignore self-referential FKs; we only care about joins */
668 1912 : if (rti == rel->relid)
669 132 : continue;
670 :
671 : /* OK, let's make an entry */
672 1780 : info = makeNode(ForeignKeyOptInfo);
673 1780 : info->con_relid = rel->relid;
674 1780 : info->ref_relid = rti;
675 1780 : info->nkeys = cachedfk->nkeys;
676 1780 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
677 1780 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
678 1780 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
679 : /* zero out fields to be filled by match_foreign_keys_to_quals */
680 1780 : info->nmatched_ec = 0;
681 1780 : info->nconst_ec = 0;
682 1780 : info->nmatched_rcols = 0;
683 1780 : info->nmatched_ri = 0;
684 1780 : memset(info->eclass, 0, sizeof(info->eclass));
685 1780 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
686 1780 : memset(info->rinfos, 0, sizeof(info->rinfos));
687 :
688 1780 : root->fkey_list = lappend(root->fkey_list, info);
689 : }
690 : }
691 : }
692 :
693 : /*
694 : * get_relation_notnullatts -
695 : * Retrieves column not-null constraint information for a given relation.
696 : *
697 : * We do this while we have the relcache entry open, and store the column
698 : * not-null constraint information in a hash table based on the relation OID.
699 : */
700 : void
701 527236 : get_relation_notnullatts(PlannerInfo *root, Relation relation)
702 : {
703 527236 : Oid relid = RelationGetRelid(relation);
704 : NotnullHashEntry *hentry;
705 : bool found;
706 527236 : Bitmapset *notnullattnums = NULL;
707 :
708 : /* bail out if the relation has no not-null constraints */
709 527236 : if (relation->rd_att->constr == NULL ||
710 354578 : !relation->rd_att->constr->has_not_null)
711 217988 : return;
712 :
713 : /* create the hash table if it hasn't been created yet */
714 348964 : if (root->glob->rel_notnullatts_hash == NULL)
715 : {
716 : HTAB *hashtab;
717 : HASHCTL hash_ctl;
718 :
719 179290 : hash_ctl.keysize = sizeof(Oid);
720 179290 : hash_ctl.entrysize = sizeof(NotnullHashEntry);
721 179290 : hash_ctl.hcxt = CurrentMemoryContext;
722 :
723 179290 : hashtab = hash_create("Relation NOT NULL attnums",
724 : 64L, /* arbitrary initial size */
725 : &hash_ctl,
726 : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
727 :
728 179290 : root->glob->rel_notnullatts_hash = hashtab;
729 : }
730 :
731 : /*
732 : * Create a hash entry for this relation OID, if we don't have one
733 : * already.
734 : */
735 348964 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
736 : &relid,
737 : HASH_ENTER,
738 : &found);
739 :
740 : /* bail out if a hash entry already exists for this relation OID */
741 348964 : if (found)
742 39716 : return;
743 :
744 : /* collect the column not-null constraint information for this relation */
745 4551752 : for (int i = 0; i < relation->rd_att->natts; i++)
746 : {
747 4242504 : CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
748 :
749 : Assert(attr->attnullability != ATTNULLABLE_UNKNOWN);
750 :
751 4242504 : if (attr->attnullability == ATTNULLABLE_VALID)
752 : {
753 3586070 : notnullattnums = bms_add_member(notnullattnums, i + 1);
754 :
755 : /*
756 : * Per RemoveAttributeById(), dropped columns will have their
757 : * attnotnull unset, so we needn't check for dropped columns in
758 : * the above condition.
759 : */
760 : Assert(!attr->attisdropped);
761 : }
762 : }
763 :
764 : /* ... and initialize the new hash entry */
765 309248 : hentry->notnullattnums = notnullattnums;
766 : }
767 :
768 : /*
769 : * find_relation_notnullatts -
770 : * Searches the hash table and returns the column not-null constraint
771 : * information for a given relation.
772 : */
773 : Bitmapset *
774 465834 : find_relation_notnullatts(PlannerInfo *root, Oid relid)
775 : {
776 : NotnullHashEntry *hentry;
777 : bool found;
778 :
779 465834 : if (root->glob->rel_notnullatts_hash == NULL)
780 121816 : return NULL;
781 :
782 344018 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
783 : &relid,
784 : HASH_FIND,
785 : &found);
786 344018 : if (!found)
787 5128 : return NULL;
788 :
789 338890 : return hentry->notnullattnums;
790 : }
791 :
792 : /*
793 : * infer_arbiter_indexes -
794 : * Determine the unique indexes used to arbitrate speculative insertion.
795 : *
796 : * Uses user-supplied inference clause expressions and predicate to match a
797 : * unique index from those defined and ready on the heap relation (target).
798 : * An exact match is required on columns/expressions (although they can appear
799 : * in any order). However, the predicate given by the user need only restrict
800 : * insertion to a subset of some part of the table covered by some particular
801 : * unique index (in particular, a partial unique index) in order to be
802 : * inferred.
803 : *
804 : * The implementation does not consider which B-Tree operator class any
805 : * particular available unique index attribute uses, unless one was specified
806 : * in the inference specification. The same is true of collations. In
807 : * particular, there is no system dependency on the default operator class for
808 : * the purposes of inference. If no opclass (or collation) is specified, then
809 : * all matching indexes (that may or may not match the default in terms of
810 : * each attribute opclass/collation) are used for inference.
811 : */
812 : List *
813 1868 : infer_arbiter_indexes(PlannerInfo *root)
814 : {
815 1868 : OnConflictExpr *onconflict = root->parse->onConflict;
816 :
817 : /* Iteration state */
818 : Index varno;
819 : RangeTblEntry *rte;
820 : Relation relation;
821 1868 : Oid indexOidFromConstraint = InvalidOid;
822 : List *indexList;
823 1868 : List *indexRelList = NIL;
824 :
825 : /*
826 : * Required attributes and expressions used to match indexes to the clause
827 : * given by the user. In the ON CONFLICT ON CONSTRAINT case, we compute
828 : * these from that constraint's index to match all other indexes, to
829 : * account for the case where that index is being concurrently reindexed.
830 : */
831 1868 : List *inferIndexExprs = (List *) onconflict->arbiterWhere;
832 1868 : Bitmapset *inferAttrs = NULL;
833 1868 : List *inferElems = NIL;
834 :
835 : /* Results */
836 1868 : List *results = NIL;
837 1868 : bool foundValid = false;
838 :
839 : /*
840 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
841 : * specification or named constraint. ON CONFLICT DO UPDATE statements
842 : * must always provide one or the other (but parser ought to have caught
843 : * that already).
844 : */
845 1868 : if (onconflict->arbiterElems == NIL &&
846 426 : onconflict->constraint == InvalidOid)
847 234 : return NIL;
848 :
849 : /*
850 : * We need not lock the relation since it was already locked, either by
851 : * the rewriter or when expand_inherited_rtentry() added it to the query's
852 : * rangetable.
853 : */
854 1634 : varno = root->parse->resultRelation;
855 1634 : rte = rt_fetch(varno, root->parse->rtable);
856 :
857 1634 : relation = table_open(rte->relid, NoLock);
858 :
859 : /*
860 : * Build normalized/BMS representation of plain indexed attributes, as
861 : * well as a separate list of expression items. This simplifies matching
862 : * the cataloged definition of indexes.
863 : */
864 5164 : foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
865 : {
866 : Var *var;
867 : int attno;
868 :
869 : /* we cannot also have a constraint name, per grammar */
870 : Assert(!OidIsValid(onconflict->constraint));
871 :
872 1896 : if (!IsA(elem->expr, Var))
873 : {
874 : /* If not a plain Var, just shove it in inferElems for now */
875 174 : inferElems = lappend(inferElems, elem->expr);
876 174 : continue;
877 : }
878 :
879 1722 : var = (Var *) elem->expr;
880 1722 : attno = var->varattno;
881 :
882 1722 : if (attno == 0)
883 0 : ereport(ERROR,
884 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
885 : errmsg("whole row unique index inference specifications are not supported")));
886 :
887 1722 : inferAttrs = bms_add_member(inferAttrs,
888 : attno - FirstLowInvalidHeapAttributeNumber);
889 : }
890 :
891 : /*
892 : * Next, open all the indexes. We need this list for two things: first,
893 : * if an ON CONSTRAINT clause was given, and that constraint's index is
894 : * undergoing REINDEX CONCURRENTLY, then we need to consider all matches
895 : * for that index. Second, if an attribute list was specified in the ON
896 : * CONFLICT clause, we use the list to find the indexes whose attributes
897 : * match that list.
898 : */
899 1634 : indexList = RelationGetIndexList(relation);
900 5342 : foreach_oid(indexoid, indexList)
901 : {
902 : Relation idxRel;
903 :
904 : /* obtain the same lock type that the executor will ultimately use */
905 2074 : idxRel = index_open(indexoid, rte->rellockmode);
906 2074 : indexRelList = lappend(indexRelList, idxRel);
907 : }
908 :
909 : /*
910 : * If a constraint was named in the command, look up its index. We don't
911 : * return it immediately because we need some additional sanity checks,
912 : * and also because we need to include other indexes as arbiters to
913 : * account for REINDEX CONCURRENTLY processing it.
914 : */
915 1634 : if (onconflict->constraint != InvalidOid)
916 : {
917 : /* we cannot also have an explicit list of elements, per grammar */
918 : Assert(onconflict->arbiterElems == NIL);
919 :
920 192 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
921 192 : if (indexOidFromConstraint == InvalidOid)
922 0 : ereport(ERROR,
923 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
924 : errmsg("constraint in ON CONFLICT clause has no associated index")));
925 :
926 : /*
927 : * Find the named constraint index to extract its attributes and
928 : * predicates.
929 : */
930 402 : foreach_ptr(RelationData, idxRel, indexRelList)
931 : {
932 210 : Form_pg_index idxForm = idxRel->rd_index;
933 :
934 210 : if (indexOidFromConstraint == idxForm->indexrelid)
935 : {
936 : /* Found it. */
937 : Assert(idxForm->indisready);
938 :
939 : /*
940 : * Set up inferElems and inferPredExprs to match the
941 : * constraint index, so that we can match them in the loop
942 : * below.
943 : */
944 540 : for (int natt = 0; natt < idxForm->indnkeyatts; natt++)
945 : {
946 : int attno;
947 :
948 348 : attno = idxRel->rd_index->indkey.values[natt];
949 348 : if (attno != InvalidAttrNumber)
950 : inferAttrs =
951 336 : bms_add_member(inferAttrs,
952 : attno - FirstLowInvalidHeapAttributeNumber);
953 : }
954 :
955 192 : inferElems = RelationGetIndexExpressions(idxRel);
956 192 : inferIndexExprs = RelationGetIndexPredicate(idxRel);
957 192 : break;
958 : }
959 : }
960 : }
961 :
962 : /*
963 : * Using that representation, iterate through the list of indexes on the
964 : * target relation to find matches.
965 : */
966 5186 : foreach_ptr(RelationData, idxRel, indexRelList)
967 : {
968 : Form_pg_index idxForm;
969 : Bitmapset *indexedAttrs;
970 : List *idxExprs;
971 : List *predExprs;
972 : AttrNumber natt;
973 : bool match;
974 :
975 : /*
976 : * Extract info from the relation descriptor for the index.
977 : *
978 : * Let executor complain about !indimmediate case directly, because
979 : * enforcement needs to occur there anyway when an inference clause is
980 : * omitted.
981 : */
982 2074 : idxForm = idxRel->rd_index;
983 :
984 : /*
985 : * Ignore indexes that aren't indisready, because we cannot trust
986 : * their catalog structure yet. However, if any indexes are marked
987 : * indisready but not yet indisvalid, we still consider them, because
988 : * they might turn valid while we're running. Doing it this way
989 : * allows a concurrent transaction with a slightly later catalog
990 : * snapshot infer the same set of indexes, which is critical to
991 : * prevent spurious 'duplicate key' errors.
992 : *
993 : * However, another critical aspect is that a unique index that isn't
994 : * yet marked indisvalid=true might not be complete yet, meaning it
995 : * wouldn't detect possible duplicate rows. In order to prevent false
996 : * negatives, we require that we include in the set of inferred
997 : * indexes at least one index that is marked valid.
998 : */
999 2074 : if (!idxForm->indisready)
1000 0 : continue;
1001 :
1002 : /*
1003 : * Ignore invalid indexes for partitioned tables. It's possible that
1004 : * some partitions don't have the index (yet), and then we would not
1005 : * find a match during ExecInitPartitionInfo.
1006 : */
1007 2074 : if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
1008 148 : !idxForm->indisvalid)
1009 12 : continue;
1010 :
1011 : /*
1012 : * Note that we do not perform a check against indcheckxmin (like e.g.
1013 : * get_relation_info()) here to eliminate candidates, because
1014 : * uniqueness checking only cares about the most recently committed
1015 : * tuple versions.
1016 : */
1017 :
1018 : /*
1019 : * Look for match for "ON constraint_name" variant, which may not be a
1020 : * unique constraint. This can only be a constraint name.
1021 : */
1022 2062 : if (indexOidFromConstraint == idxForm->indexrelid)
1023 : {
1024 192 : if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
1025 78 : ereport(ERROR,
1026 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1027 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
1028 :
1029 : /* Consider this one a match already */
1030 114 : results = lappend_oid(results, idxForm->indexrelid);
1031 114 : foundValid |= idxForm->indisvalid;
1032 114 : continue;
1033 : }
1034 1870 : else if (indexOidFromConstraint != InvalidOid)
1035 : {
1036 : /*
1037 : * In the case of "ON constraint_name DO UPDATE" we need to skip
1038 : * non-unique candidates.
1039 : */
1040 24 : if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
1041 0 : continue;
1042 : }
1043 : else
1044 : {
1045 : /*
1046 : * Only considering conventional inference at this point (not
1047 : * named constraints), so index under consideration can be
1048 : * immediately skipped if it's not unique.
1049 : */
1050 1846 : if (!idxForm->indisunique)
1051 4 : continue;
1052 : }
1053 :
1054 : /*
1055 : * So-called unique constraints with WITHOUT OVERLAPS are really
1056 : * exclusion constraints, so skip those too.
1057 : */
1058 1866 : if (idxForm->indisexclusion)
1059 150 : continue;
1060 :
1061 : /* Build BMS representation of plain (non expression) index attrs */
1062 1716 : indexedAttrs = NULL;
1063 3996 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
1064 : {
1065 2280 : int attno = idxRel->rd_index->indkey.values[natt];
1066 :
1067 2280 : if (attno != 0)
1068 1968 : indexedAttrs = bms_add_member(indexedAttrs,
1069 : attno - FirstLowInvalidHeapAttributeNumber);
1070 : }
1071 :
1072 : /* Non-expression attributes (if any) must match */
1073 1716 : if (!bms_equal(indexedAttrs, inferAttrs))
1074 396 : continue;
1075 :
1076 : /* Expression attributes (if any) must match */
1077 1320 : idxExprs = RelationGetIndexExpressions(idxRel);
1078 1320 : if (idxExprs)
1079 : {
1080 174 : if (varno != 1)
1081 6 : ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
1082 :
1083 174 : idxExprs = (List *) eval_const_expressions(root, (Node *) idxExprs);
1084 : }
1085 :
1086 : /*
1087 : * If arbiterElems are present, check them. (Note that if a
1088 : * constraint name was given in the command line, this list is NIL.)
1089 : */
1090 1320 : match = true;
1091 4320 : foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
1092 : {
1093 : /*
1094 : * Ensure that collation/opclass aspects of inference expression
1095 : * element match. Even though this loop is primarily concerned
1096 : * with matching expressions, it is a convenient point to check
1097 : * this for both expressions and ordinary (non-expression)
1098 : * attributes appearing as inference elements.
1099 : */
1100 1728 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
1101 : {
1102 36 : match = false;
1103 36 : break;
1104 : }
1105 :
1106 : /*
1107 : * Plain Vars don't factor into count of expression elements, and
1108 : * the question of whether or not they satisfy the index
1109 : * definition has already been considered (they must).
1110 : */
1111 1692 : if (IsA(elem->expr, Var))
1112 1518 : continue;
1113 :
1114 : /*
1115 : * Might as well avoid redundant check in the rare cases where
1116 : * infer_collation_opclass_match() is required to do real work.
1117 : * Otherwise, check that element expression appears in cataloged
1118 : * index definition.
1119 : */
1120 174 : if (elem->infercollid != InvalidOid ||
1121 306 : elem->inferopclass != InvalidOid ||
1122 150 : list_member(idxExprs, elem->expr))
1123 162 : continue;
1124 :
1125 12 : match = false;
1126 12 : break;
1127 : }
1128 1320 : if (!match)
1129 48 : continue;
1130 :
1131 : /*
1132 : * In case of inference from an attribute list, ensure that the
1133 : * expression elements from inference clause are not missing any
1134 : * cataloged expressions. This does the right thing when unique
1135 : * indexes redundantly repeat the same attribute, or if attributes
1136 : * redundantly appear multiple times within an inference clause.
1137 : *
1138 : * In case a constraint was named, ensure the candidate has an equal
1139 : * set of expressions as the named constraint's index.
1140 : */
1141 1272 : if (list_difference(idxExprs, inferElems) != NIL)
1142 54 : continue;
1143 :
1144 1218 : predExprs = RelationGetIndexPredicate(idxRel);
1145 1218 : if (predExprs)
1146 : {
1147 66 : if (varno != 1)
1148 6 : ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1149 :
1150 : predExprs = (List *)
1151 66 : eval_const_expressions(root,
1152 66 : (Node *) make_ands_explicit(predExprs));
1153 66 : predExprs = make_ands_implicit((Expr *) predExprs);
1154 : }
1155 :
1156 : /*
1157 : * Partial indexes affect each form of ON CONFLICT differently: if a
1158 : * constraint was named, then the predicates must be identical. In
1159 : * conventional inference, the index's predicate must be implied by
1160 : * the WHERE clause.
1161 : */
1162 1218 : if (OidIsValid(indexOidFromConstraint))
1163 : {
1164 0 : if (list_difference(predExprs, inferIndexExprs) != NIL)
1165 0 : continue;
1166 : }
1167 : else
1168 : {
1169 1218 : if (!predicate_implied_by(predExprs, inferIndexExprs, false))
1170 36 : continue;
1171 : }
1172 :
1173 : /* All good -- consider this index a match */
1174 1182 : results = lappend_oid(results, idxForm->indexrelid);
1175 1182 : foundValid |= idxForm->indisvalid;
1176 : }
1177 :
1178 : /* Close all indexes */
1179 5108 : foreach_ptr(RelationData, idxRel, indexRelList)
1180 : {
1181 1996 : index_close(idxRel, NoLock);
1182 : }
1183 :
1184 1556 : list_free(indexList);
1185 1556 : list_free(indexRelList);
1186 1556 : table_close(relation, NoLock);
1187 :
1188 : /* We require at least one indisvalid index */
1189 1556 : if (results == NIL || !foundValid)
1190 314 : ereport(ERROR,
1191 : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1192 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1193 :
1194 1242 : return results;
1195 : }
1196 :
1197 : /*
1198 : * infer_collation_opclass_match - ensure infer element opclass/collation match
1199 : *
1200 : * Given unique index inference element from inference specification, if
1201 : * collation was specified, or if opclass was specified, verify that there is
1202 : * at least one matching indexed attribute (occasionally, there may be more).
1203 : * Skip this in the common case where inference specification does not include
1204 : * collation or opclass (instead matching everything, regardless of cataloged
1205 : * collation/opclass of indexed attribute).
1206 : *
1207 : * At least historically, Postgres has not offered collations or opclasses
1208 : * with alternative-to-default notions of equality, so these additional
1209 : * criteria should only be required infrequently.
1210 : *
1211 : * Don't give up immediately when an inference element matches some attribute
1212 : * cataloged as indexed but not matching additional opclass/collation
1213 : * criteria. This is done so that the implementation is as forgiving as
1214 : * possible of redundancy within cataloged index attributes (or, less
1215 : * usefully, within inference specification elements). If collations actually
1216 : * differ between apparently redundantly indexed attributes (redundant within
1217 : * or across indexes), then there really is no redundancy as such.
1218 : *
1219 : * Note that if an inference element specifies an opclass and a collation at
1220 : * once, both must match in at least one particular attribute within index
1221 : * catalog definition in order for that inference element to be considered
1222 : * inferred/satisfied.
1223 : */
1224 : static bool
1225 1728 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
1226 : List *idxExprs)
1227 : {
1228 : AttrNumber natt;
1229 1728 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1230 1728 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1231 1728 : int nplain = 0; /* # plain attrs observed */
1232 :
1233 : /*
1234 : * If inference specification element lacks collation/opclass, then no
1235 : * need to check for exact match.
1236 : */
1237 1728 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1238 1614 : return true;
1239 :
1240 : /*
1241 : * Lookup opfamily and input type, for matching indexes
1242 : */
1243 114 : if (elem->inferopclass)
1244 : {
1245 84 : inferopfamily = get_opclass_family(elem->inferopclass);
1246 84 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1247 : }
1248 :
1249 246 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1250 : {
1251 210 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
1252 210 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1253 210 : Oid collation = idxRel->rd_indcollation[natt - 1];
1254 210 : int attno = idxRel->rd_index->indkey.values[natt - 1];
1255 :
1256 210 : if (attno != 0)
1257 168 : nplain++;
1258 :
1259 210 : if (elem->inferopclass != InvalidOid &&
1260 66 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1261 : {
1262 : /* Attribute needed to match opclass, but didn't */
1263 90 : continue;
1264 : }
1265 :
1266 120 : if (elem->infercollid != InvalidOid &&
1267 84 : elem->infercollid != collation)
1268 : {
1269 : /* Attribute needed to match collation, but didn't */
1270 36 : continue;
1271 : }
1272 :
1273 : /* If one matching index att found, good enough -- return true */
1274 84 : if (IsA(elem->expr, Var))
1275 : {
1276 54 : if (((Var *) elem->expr)->varattno == attno)
1277 54 : return true;
1278 : }
1279 30 : else if (attno == 0)
1280 : {
1281 30 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1282 :
1283 : /*
1284 : * Note that unlike routines like match_index_to_operand() we
1285 : * don't need to care about RelabelType. Neither the index
1286 : * definition nor the inference clause should contain them.
1287 : */
1288 30 : if (equal(elem->expr, nattExpr))
1289 24 : return true;
1290 : }
1291 : }
1292 :
1293 36 : return false;
1294 : }
1295 :
1296 : /*
1297 : * estimate_rel_size - estimate # pages and # tuples in a table or index
1298 : *
1299 : * We also estimate the fraction of the pages that are marked all-visible in
1300 : * the visibility map, for use in estimation of index-only scans.
1301 : *
1302 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1303 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1304 : * the attribute widths for estimation purposes.
1305 : */
1306 : void
1307 467648 : estimate_rel_size(Relation rel, int32 *attr_widths,
1308 : BlockNumber *pages, double *tuples, double *allvisfrac)
1309 : {
1310 : BlockNumber curpages;
1311 : BlockNumber relpages;
1312 : double reltuples;
1313 : BlockNumber relallvisible;
1314 : double density;
1315 :
1316 467648 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1317 : {
1318 464042 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1319 : allvisfrac);
1320 : }
1321 3606 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1322 : {
1323 : /*
1324 : * XXX: It'd probably be good to move this into a callback, individual
1325 : * index types e.g. know if they have a metapage.
1326 : */
1327 :
1328 : /* it has storage, ok to call the smgr */
1329 1032 : curpages = RelationGetNumberOfBlocks(rel);
1330 :
1331 : /* report estimated # pages */
1332 1032 : *pages = curpages;
1333 : /* quick exit if rel is clearly empty */
1334 1032 : if (curpages == 0)
1335 : {
1336 0 : *tuples = 0;
1337 0 : *allvisfrac = 0;
1338 0 : return;
1339 : }
1340 :
1341 : /* coerce values in pg_class to more desirable types */
1342 1032 : relpages = (BlockNumber) rel->rd_rel->relpages;
1343 1032 : reltuples = (double) rel->rd_rel->reltuples;
1344 1032 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1345 :
1346 : /*
1347 : * Discount the metapage while estimating the number of tuples. This
1348 : * is a kluge because it assumes more than it ought to about index
1349 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1350 : * suspect for GiST indexes.
1351 : */
1352 1032 : if (relpages > 0)
1353 : {
1354 1014 : curpages--;
1355 1014 : relpages--;
1356 : }
1357 :
1358 : /* estimate number of tuples from previous tuple density */
1359 1032 : if (reltuples >= 0 && relpages > 0)
1360 714 : density = reltuples / (double) relpages;
1361 : else
1362 : {
1363 : /*
1364 : * If we have no data because the relation was never vacuumed,
1365 : * estimate tuple width from attribute datatypes. We assume here
1366 : * that the pages are completely full, which is OK for tables
1367 : * (since they've presumably not been VACUUMed yet) but is
1368 : * probably an overestimate for indexes. Fortunately
1369 : * get_relation_info() can clamp the overestimate to the parent
1370 : * table's size.
1371 : *
1372 : * Note: this code intentionally disregards alignment
1373 : * considerations, because (a) that would be gilding the lily
1374 : * considering how crude the estimate is, and (b) it creates
1375 : * platform dependencies in the default plans which are kind of a
1376 : * headache for regression testing.
1377 : *
1378 : * XXX: Should this logic be more index specific?
1379 : */
1380 : int32 tuple_width;
1381 :
1382 318 : tuple_width = get_rel_data_width(rel, attr_widths);
1383 318 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1384 318 : tuple_width += sizeof(ItemIdData);
1385 : /* note: integer division is intentional here */
1386 318 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1387 : }
1388 1032 : *tuples = rint(density * (double) curpages);
1389 :
1390 : /*
1391 : * We use relallvisible as-is, rather than scaling it up like we do
1392 : * for the pages and tuples counts, on the theory that any pages added
1393 : * since the last VACUUM are most likely not marked all-visible. But
1394 : * costsize.c wants it converted to a fraction.
1395 : */
1396 1032 : if (relallvisible == 0 || curpages <= 0)
1397 1032 : *allvisfrac = 0;
1398 0 : else if ((double) relallvisible >= curpages)
1399 0 : *allvisfrac = 1;
1400 : else
1401 0 : *allvisfrac = (double) relallvisible / curpages;
1402 : }
1403 : else
1404 : {
1405 : /*
1406 : * Just use whatever's in pg_class. This covers foreign tables,
1407 : * sequences, and also relkinds without storage (shouldn't get here?);
1408 : * see initializations in AddNewRelationTuple(). Note that FDW must
1409 : * cope if reltuples is -1!
1410 : */
1411 2574 : *pages = rel->rd_rel->relpages;
1412 2574 : *tuples = rel->rd_rel->reltuples;
1413 2574 : *allvisfrac = 0;
1414 : }
1415 : }
1416 :
1417 :
1418 : /*
1419 : * get_rel_data_width
1420 : *
1421 : * Estimate the average width of (the data part of) the relation's tuples.
1422 : *
1423 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1424 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1425 : *
1426 : * Currently we ignore dropped columns. Ideally those should be included
1427 : * in the result, but we haven't got any way to get info about them; and
1428 : * since they might be mostly NULLs, treating them as zero-width is not
1429 : * necessarily the wrong thing anyway.
1430 : */
1431 : int32
1432 160626 : get_rel_data_width(Relation rel, int32 *attr_widths)
1433 : {
1434 160626 : int64 tuple_width = 0;
1435 : int i;
1436 :
1437 866674 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1438 : {
1439 706048 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1440 : int32 item_width;
1441 :
1442 706048 : if (att->attisdropped)
1443 2696 : continue;
1444 :
1445 : /* use previously cached data, if any */
1446 703352 : if (attr_widths != NULL && attr_widths[i] > 0)
1447 : {
1448 5848 : tuple_width += attr_widths[i];
1449 5848 : continue;
1450 : }
1451 :
1452 : /* This should match set_rel_width() in costsize.c */
1453 697504 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1454 697504 : if (item_width <= 0)
1455 : {
1456 695614 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1457 : Assert(item_width > 0);
1458 : }
1459 697504 : if (attr_widths != NULL)
1460 619840 : attr_widths[i] = item_width;
1461 697504 : tuple_width += item_width;
1462 : }
1463 :
1464 160626 : return clamp_width_est(tuple_width);
1465 : }
1466 :
1467 : /*
1468 : * get_relation_data_width
1469 : *
1470 : * External API for get_rel_data_width: same behavior except we have to
1471 : * open the relcache entry.
1472 : */
1473 : int32
1474 2554 : get_relation_data_width(Oid relid, int32 *attr_widths)
1475 : {
1476 : int32 result;
1477 : Relation relation;
1478 :
1479 : /* As above, assume relation is already locked */
1480 2554 : relation = table_open(relid, NoLock);
1481 :
1482 2554 : result = get_rel_data_width(relation, attr_widths);
1483 :
1484 2554 : table_close(relation, NoLock);
1485 :
1486 2554 : return result;
1487 : }
1488 :
1489 :
1490 : /*
1491 : * get_relation_constraints
1492 : *
1493 : * Retrieve the applicable constraint expressions of the given relation.
1494 : * Only constraints that have been validated are considered.
1495 : *
1496 : * Returns a List (possibly empty) of constraint expressions. Each one
1497 : * has been canonicalized, and its Vars are changed to have the varno
1498 : * indicated by rel->relid. This allows the expressions to be easily
1499 : * compared to expressions taken from WHERE.
1500 : *
1501 : * If include_noinherit is true, it's okay to include constraints that
1502 : * are marked NO INHERIT.
1503 : *
1504 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1505 : * and added to the result for each column that's marked attnotnull.
1506 : *
1507 : * If include_partition is true, and the relation is a partition,
1508 : * also include the partitioning constraints.
1509 : *
1510 : * Note: at present this is invoked at most once per relation per planner
1511 : * run, and in many cases it won't be invoked at all, so there seems no
1512 : * point in caching the data in RelOptInfo.
1513 : */
1514 : static List *
1515 21696 : get_relation_constraints(PlannerInfo *root,
1516 : Oid relationObjectId, RelOptInfo *rel,
1517 : bool include_noinherit,
1518 : bool include_notnull,
1519 : bool include_partition)
1520 : {
1521 21696 : List *result = NIL;
1522 21696 : Index varno = rel->relid;
1523 : Relation relation;
1524 : TupleConstr *constr;
1525 :
1526 : /*
1527 : * We assume the relation has already been safely locked.
1528 : */
1529 21696 : relation = table_open(relationObjectId, NoLock);
1530 :
1531 21696 : constr = relation->rd_att->constr;
1532 21696 : if (constr != NULL)
1533 : {
1534 8406 : int num_check = constr->num_check;
1535 : int i;
1536 :
1537 9044 : for (i = 0; i < num_check; i++)
1538 : {
1539 : Node *cexpr;
1540 :
1541 : /*
1542 : * If this constraint hasn't been fully validated yet, we must
1543 : * ignore it here.
1544 : */
1545 638 : if (!constr->check[i].ccvalid)
1546 54 : continue;
1547 :
1548 : /*
1549 : * NOT ENFORCED constraints are always marked as invalid, which
1550 : * should have been ignored.
1551 : */
1552 : Assert(constr->check[i].ccenforced);
1553 :
1554 : /*
1555 : * Also ignore if NO INHERIT and we weren't told that that's safe.
1556 : */
1557 584 : if (constr->check[i].ccnoinherit && !include_noinherit)
1558 0 : continue;
1559 :
1560 584 : cexpr = stringToNode(constr->check[i].ccbin);
1561 :
1562 : /*
1563 : * Fix Vars to have the desired varno. This must be done before
1564 : * const-simplification because eval_const_expressions reduces
1565 : * NullTest for Vars based on varno.
1566 : */
1567 584 : if (varno != 1)
1568 560 : ChangeVarNodes(cexpr, 1, varno, 0);
1569 :
1570 : /*
1571 : * Run each expression through const-simplification and
1572 : * canonicalization. This is not just an optimization, but is
1573 : * necessary, because we will be comparing it to
1574 : * similarly-processed qual clauses, and may fail to detect valid
1575 : * matches without this. This must match the processing done to
1576 : * qual clauses in preprocess_expression()! (We can skip the
1577 : * stuff involving subqueries, however, since we don't allow any
1578 : * in check constraints.)
1579 : */
1580 584 : cexpr = eval_const_expressions(root, cexpr);
1581 :
1582 584 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1583 :
1584 : /*
1585 : * Finally, convert to implicit-AND format (that is, a List) and
1586 : * append the resulting item(s) to our output list.
1587 : */
1588 584 : result = list_concat(result,
1589 584 : make_ands_implicit((Expr *) cexpr));
1590 : }
1591 :
1592 : /* Add NOT NULL constraints in expression form, if requested */
1593 8406 : if (include_notnull && constr->has_not_null)
1594 : {
1595 7916 : int natts = relation->rd_att->natts;
1596 :
1597 32302 : for (i = 1; i <= natts; i++)
1598 : {
1599 24386 : CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
1600 :
1601 24386 : if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1602 : {
1603 9766 : Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
1604 9766 : NullTest *ntest = makeNode(NullTest);
1605 :
1606 9766 : ntest->arg = (Expr *) makeVar(varno,
1607 : i,
1608 : wholeatt->atttypid,
1609 : wholeatt->atttypmod,
1610 : wholeatt->attcollation,
1611 : 0);
1612 9766 : ntest->nulltesttype = IS_NOT_NULL;
1613 :
1614 : /*
1615 : * argisrow=false is correct even for a composite column,
1616 : * because attnotnull does not represent a SQL-spec IS NOT
1617 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1618 : */
1619 9766 : ntest->argisrow = false;
1620 9766 : ntest->location = -1;
1621 9766 : result = lappend(result, ntest);
1622 : }
1623 : }
1624 : }
1625 : }
1626 :
1627 : /*
1628 : * Add partitioning constraints, if requested.
1629 : */
1630 21696 : if (include_partition && relation->rd_rel->relispartition)
1631 : {
1632 : /* make sure rel->partition_qual is set */
1633 12 : set_baserel_partition_constraint(relation, rel);
1634 12 : result = list_concat(result, rel->partition_qual);
1635 : }
1636 :
1637 : /*
1638 : * Expand virtual generated columns in the constraint expressions.
1639 : */
1640 21696 : if (result)
1641 8144 : result = (List *) expand_generated_columns_in_expr((Node *) result,
1642 : relation,
1643 : varno);
1644 :
1645 21696 : table_close(relation, NoLock);
1646 :
1647 21696 : return result;
1648 : }
1649 :
1650 : /*
1651 : * Try loading data for the statistics object.
1652 : *
1653 : * We don't know if the data (specified by statOid and inh value) exist.
1654 : * The result is stored in stainfos list.
1655 : */
1656 : static void
1657 4036 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1658 : Oid statOid, bool inh,
1659 : Bitmapset *keys, List *exprs)
1660 : {
1661 : Form_pg_statistic_ext_data dataForm;
1662 : HeapTuple dtup;
1663 :
1664 4036 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1665 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1666 4036 : if (!HeapTupleIsValid(dtup))
1667 2032 : return;
1668 :
1669 2004 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1670 :
1671 : /* add one StatisticExtInfo for each kind built */
1672 2004 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1673 : {
1674 714 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1675 :
1676 714 : info->statOid = statOid;
1677 714 : info->inherit = dataForm->stxdinherit;
1678 714 : info->rel = rel;
1679 714 : info->kind = STATS_EXT_NDISTINCT;
1680 714 : info->keys = bms_copy(keys);
1681 714 : info->exprs = exprs;
1682 :
1683 714 : *stainfos = lappend(*stainfos, info);
1684 : }
1685 :
1686 2004 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1687 : {
1688 528 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1689 :
1690 528 : info->statOid = statOid;
1691 528 : info->inherit = dataForm->stxdinherit;
1692 528 : info->rel = rel;
1693 528 : info->kind = STATS_EXT_DEPENDENCIES;
1694 528 : info->keys = bms_copy(keys);
1695 528 : info->exprs = exprs;
1696 :
1697 528 : *stainfos = lappend(*stainfos, info);
1698 : }
1699 :
1700 2004 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1701 : {
1702 882 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1703 :
1704 882 : info->statOid = statOid;
1705 882 : info->inherit = dataForm->stxdinherit;
1706 882 : info->rel = rel;
1707 882 : info->kind = STATS_EXT_MCV;
1708 882 : info->keys = bms_copy(keys);
1709 882 : info->exprs = exprs;
1710 :
1711 882 : *stainfos = lappend(*stainfos, info);
1712 : }
1713 :
1714 2004 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1715 : {
1716 810 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1717 :
1718 810 : info->statOid = statOid;
1719 810 : info->inherit = dataForm->stxdinherit;
1720 810 : info->rel = rel;
1721 810 : info->kind = STATS_EXT_EXPRESSIONS;
1722 810 : info->keys = bms_copy(keys);
1723 810 : info->exprs = exprs;
1724 :
1725 810 : *stainfos = lappend(*stainfos, info);
1726 : }
1727 :
1728 2004 : ReleaseSysCache(dtup);
1729 : }
1730 :
1731 : /*
1732 : * get_relation_statistics
1733 : * Retrieve extended statistics defined on the table.
1734 : *
1735 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1736 : * the statistics. Note that this doesn't load the actual statistics data,
1737 : * just the identifying metadata. Only stats actually built are considered.
1738 : */
1739 : static List *
1740 489382 : get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
1741 : Relation relation)
1742 : {
1743 489382 : Index varno = rel->relid;
1744 : List *statoidlist;
1745 489382 : List *stainfos = NIL;
1746 : ListCell *l;
1747 :
1748 489382 : statoidlist = RelationGetStatExtList(relation);
1749 :
1750 491400 : foreach(l, statoidlist)
1751 : {
1752 2018 : Oid statOid = lfirst_oid(l);
1753 : Form_pg_statistic_ext staForm;
1754 : HeapTuple htup;
1755 2018 : Bitmapset *keys = NULL;
1756 2018 : List *exprs = NIL;
1757 : int i;
1758 :
1759 2018 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1760 2018 : if (!HeapTupleIsValid(htup))
1761 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1762 2018 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1763 :
1764 : /*
1765 : * First, build the array of columns covered. This is ultimately
1766 : * wasted if no stats within the object have actually been built, but
1767 : * it doesn't seem worth troubling over that case.
1768 : */
1769 5734 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1770 3716 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1771 :
1772 : /*
1773 : * Preprocess expressions (if any). We read the expressions, fix the
1774 : * varnos, and run them through eval_const_expressions.
1775 : *
1776 : * XXX We don't know yet if there are any data for this stats object,
1777 : * with either stxdinherit value. But it's reasonable to assume there
1778 : * is at least one of those, possibly both. So it's better to process
1779 : * keys and expressions here.
1780 : */
1781 : {
1782 : bool isnull;
1783 : Datum datum;
1784 :
1785 : /* decode expression (if any) */
1786 2018 : datum = SysCacheGetAttr(STATEXTOID, htup,
1787 : Anum_pg_statistic_ext_stxexprs, &isnull);
1788 :
1789 2018 : if (!isnull)
1790 : {
1791 : char *exprsString;
1792 :
1793 814 : exprsString = TextDatumGetCString(datum);
1794 814 : exprs = (List *) stringToNode(exprsString);
1795 814 : pfree(exprsString);
1796 :
1797 : /*
1798 : * Modify the copies we obtain from the relcache to have the
1799 : * correct varno for the parent relation, so that they match
1800 : * up correctly against qual clauses.
1801 : *
1802 : * This must be done before const-simplification because
1803 : * eval_const_expressions reduces NullTest for Vars based on
1804 : * varno.
1805 : */
1806 814 : if (varno != 1)
1807 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1808 :
1809 : /*
1810 : * Run the expressions through eval_const_expressions. This is
1811 : * not just an optimization, but is necessary, because the
1812 : * planner will be comparing them to similarly-processed qual
1813 : * clauses, and may fail to detect valid matches without this.
1814 : * We must not use canonicalize_qual, however, since these
1815 : * aren't qual expressions.
1816 : */
1817 814 : exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1818 :
1819 : /* May as well fix opfuncids too */
1820 814 : fix_opfuncids((Node *) exprs);
1821 : }
1822 : }
1823 :
1824 : /* extract statistics for possible values of stxdinherit flag */
1825 :
1826 2018 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1827 :
1828 2018 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1829 :
1830 2018 : ReleaseSysCache(htup);
1831 2018 : bms_free(keys);
1832 : }
1833 :
1834 489382 : list_free(statoidlist);
1835 :
1836 489382 : return stainfos;
1837 : }
1838 :
1839 : /*
1840 : * relation_excluded_by_constraints
1841 : *
1842 : * Detect whether the relation need not be scanned because it has either
1843 : * self-inconsistent restrictions, or restrictions inconsistent with the
1844 : * relation's applicable constraints.
1845 : *
1846 : * Note: this examines only rel->relid, rel->reloptkind, and
1847 : * rel->baserestrictinfo; therefore it can be called before filling in
1848 : * other fields of the RelOptInfo.
1849 : */
1850 : bool
1851 542028 : relation_excluded_by_constraints(PlannerInfo *root,
1852 : RelOptInfo *rel, RangeTblEntry *rte)
1853 : {
1854 : bool include_noinherit;
1855 : bool include_notnull;
1856 542028 : bool include_partition = false;
1857 : List *safe_restrictions;
1858 : List *constraint_pred;
1859 : List *safe_constraints;
1860 : ListCell *lc;
1861 :
1862 : /* As of now, constraint exclusion works only with simple relations. */
1863 : Assert(IS_SIMPLE_REL(rel));
1864 :
1865 : /*
1866 : * If there are no base restriction clauses, we have no hope of proving
1867 : * anything below, so fall out quickly.
1868 : */
1869 542028 : if (rel->baserestrictinfo == NIL)
1870 249240 : return false;
1871 :
1872 : /*
1873 : * Regardless of the setting of constraint_exclusion, detect
1874 : * constant-FALSE-or-NULL restriction clauses. Although const-folding
1875 : * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1876 : * list can still have other members besides the FALSE constant, due to
1877 : * qual pushdown and other mechanisms; so check them all. This doesn't
1878 : * fire very often, but it seems cheap enough to be worth doing anyway.
1879 : * (Without this, we'd miss some optimizations that 9.5 and earlier found
1880 : * via much more roundabout methods.)
1881 : */
1882 727600 : foreach(lc, rel->baserestrictinfo)
1883 : {
1884 435392 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1885 435392 : Expr *clause = rinfo->clause;
1886 :
1887 435392 : if (clause && IsA(clause, Const) &&
1888 580 : (((Const *) clause)->constisnull ||
1889 574 : !DatumGetBool(((Const *) clause)->constvalue)))
1890 580 : return true;
1891 : }
1892 :
1893 : /*
1894 : * Skip further tests, depending on constraint_exclusion.
1895 : */
1896 292208 : switch (constraint_exclusion)
1897 : {
1898 54 : case CONSTRAINT_EXCLUSION_OFF:
1899 : /* In 'off' mode, never make any further tests */
1900 54 : return false;
1901 :
1902 292010 : case CONSTRAINT_EXCLUSION_PARTITION:
1903 :
1904 : /*
1905 : * When constraint_exclusion is set to 'partition' we only handle
1906 : * appendrel members. Partition pruning has already been applied,
1907 : * so there is no need to consider the rel's partition constraints
1908 : * here.
1909 : */
1910 292010 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1911 21910 : break; /* appendrel member, so process it */
1912 270100 : return false;
1913 :
1914 144 : case CONSTRAINT_EXCLUSION_ON:
1915 :
1916 : /*
1917 : * In 'on' mode, always apply constraint exclusion. If we are
1918 : * considering a baserel that is a partition (i.e., it was
1919 : * directly named rather than expanded from a parent table), then
1920 : * its partition constraints haven't been considered yet, so
1921 : * include them in the processing here.
1922 : */
1923 144 : if (rel->reloptkind == RELOPT_BASEREL)
1924 114 : include_partition = true;
1925 144 : break; /* always try to exclude */
1926 : }
1927 :
1928 : /*
1929 : * Check for self-contradictory restriction clauses. We dare not make
1930 : * deductions with non-immutable functions, but any immutable clauses that
1931 : * are self-contradictory allow us to conclude the scan is unnecessary.
1932 : *
1933 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1934 : * expecting to see any in its predicate argument.
1935 : */
1936 22054 : safe_restrictions = NIL;
1937 52014 : foreach(lc, rel->baserestrictinfo)
1938 : {
1939 29960 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1940 :
1941 29960 : if (!contain_mutable_functions((Node *) rinfo->clause))
1942 28420 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1943 : }
1944 :
1945 : /*
1946 : * We can use weak refutation here, since we're comparing restriction
1947 : * clauses with restriction clauses.
1948 : */
1949 22054 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1950 72 : return true;
1951 :
1952 : /*
1953 : * Only plain relations have constraints, so stop here for other rtekinds.
1954 : */
1955 21982 : if (rte->rtekind != RTE_RELATION)
1956 286 : return false;
1957 :
1958 : /*
1959 : * If we are scanning just this table, we can use NO INHERIT constraints,
1960 : * but not if we're scanning its children too. (Note that partitioned
1961 : * tables should never have NO INHERIT constraints; but it's not necessary
1962 : * for us to assume that here.)
1963 : */
1964 21696 : include_noinherit = !rte->inh;
1965 :
1966 : /*
1967 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1968 : * this is a partitioned table. In future we might track their
1969 : * inheritance status more accurately, allowing this to be refined.
1970 : *
1971 : * XXX do we need/want to change this?
1972 : */
1973 21696 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1974 :
1975 : /*
1976 : * Fetch the appropriate set of constraint expressions.
1977 : */
1978 21696 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1979 : include_noinherit,
1980 : include_notnull,
1981 : include_partition);
1982 :
1983 : /*
1984 : * We do not currently enforce that CHECK constraints contain only
1985 : * immutable functions, so it's necessary to check here. We daren't draw
1986 : * conclusions from plan-time evaluation of non-immutable functions. Since
1987 : * they're ANDed, we can just ignore any mutable constraints in the list,
1988 : * and reason about the rest.
1989 : */
1990 21696 : safe_constraints = NIL;
1991 32226 : foreach(lc, constraint_pred)
1992 : {
1993 10530 : Node *pred = (Node *) lfirst(lc);
1994 :
1995 10530 : if (!contain_mutable_functions(pred))
1996 10530 : safe_constraints = lappend(safe_constraints, pred);
1997 : }
1998 :
1999 : /*
2000 : * The constraints are effectively ANDed together, so we can just try to
2001 : * refute the entire collection at once. This may allow us to make proofs
2002 : * that would fail if we took them individually.
2003 : *
2004 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
2005 : * an obvious optimization. Some of the clauses might be OR clauses that
2006 : * have volatile and nonvolatile subclauses, and it's OK to make
2007 : * deductions with the nonvolatile parts.
2008 : *
2009 : * We need strong refutation because we have to prove that the constraints
2010 : * would yield false, not just NULL.
2011 : */
2012 21696 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
2013 192 : return true;
2014 :
2015 21504 : return false;
2016 : }
2017 :
2018 :
2019 : /*
2020 : * build_physical_tlist
2021 : *
2022 : * Build a targetlist consisting of exactly the relation's user attributes,
2023 : * in order. The executor can special-case such tlists to avoid a projection
2024 : * step at runtime, so we use such tlists preferentially for scan nodes.
2025 : *
2026 : * Exception: if there are any dropped or missing columns, we punt and return
2027 : * NIL. Ideally we would like to handle these cases too. However this
2028 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
2029 : * for a tlist that includes vars of no-longer-existent types. In theory we
2030 : * could dig out the required info from the pg_attribute entries of the
2031 : * relation, but that data is not readily available to ExecTypeFromTL.
2032 : * For now, we don't apply the physical-tlist optimization when there are
2033 : * dropped cols.
2034 : *
2035 : * We also support building a "physical" tlist for subqueries, functions,
2036 : * values lists, table expressions, and CTEs, since the same optimization can
2037 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
2038 : * NamedTuplestoreScan, and WorkTableScan nodes.
2039 : */
2040 : List *
2041 196370 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
2042 : {
2043 196370 : List *tlist = NIL;
2044 196370 : Index varno = rel->relid;
2045 196370 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
2046 : Relation relation;
2047 : Query *subquery;
2048 : Var *var;
2049 : ListCell *l;
2050 : int attrno,
2051 : numattrs;
2052 : List *colvars;
2053 :
2054 196370 : switch (rte->rtekind)
2055 : {
2056 163702 : case RTE_RELATION:
2057 : /* Assume we already have adequate lock */
2058 163702 : relation = table_open(rte->relid, NoLock);
2059 :
2060 163702 : numattrs = RelationGetNumberOfAttributes(relation);
2061 2905146 : for (attrno = 1; attrno <= numattrs; attrno++)
2062 : {
2063 2741582 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
2064 : attrno - 1);
2065 :
2066 2741582 : if (att_tup->attisdropped || att_tup->atthasmissing)
2067 : {
2068 : /* found a dropped or missing col, so punt */
2069 138 : tlist = NIL;
2070 138 : break;
2071 : }
2072 :
2073 2741444 : var = makeVar(varno,
2074 : attrno,
2075 : att_tup->atttypid,
2076 : att_tup->atttypmod,
2077 : att_tup->attcollation,
2078 : 0);
2079 :
2080 2741444 : tlist = lappend(tlist,
2081 2741444 : makeTargetEntry((Expr *) var,
2082 : attrno,
2083 : NULL,
2084 : false));
2085 : }
2086 :
2087 163702 : table_close(relation, NoLock);
2088 163702 : break;
2089 :
2090 7918 : case RTE_SUBQUERY:
2091 7918 : subquery = rte->subquery;
2092 25486 : foreach(l, subquery->targetList)
2093 : {
2094 17568 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2095 :
2096 : /*
2097 : * A resjunk column of the subquery can be reflected as
2098 : * resjunk in the physical tlist; we need not punt.
2099 : */
2100 17568 : var = makeVarFromTargetEntry(varno, tle);
2101 :
2102 17568 : tlist = lappend(tlist,
2103 17568 : makeTargetEntry((Expr *) var,
2104 17568 : tle->resno,
2105 : NULL,
2106 17568 : tle->resjunk));
2107 : }
2108 7918 : break;
2109 :
2110 24750 : case RTE_FUNCTION:
2111 : case RTE_TABLEFUNC:
2112 : case RTE_VALUES:
2113 : case RTE_CTE:
2114 : case RTE_NAMEDTUPLESTORE:
2115 : case RTE_RESULT:
2116 : /* Not all of these can have dropped cols, but share code anyway */
2117 24750 : expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
2118 : true /* include dropped */ , NULL, &colvars);
2119 125398 : foreach(l, colvars)
2120 : {
2121 100648 : var = (Var *) lfirst(l);
2122 :
2123 : /*
2124 : * A non-Var in expandRTE's output means a dropped column;
2125 : * must punt.
2126 : */
2127 100648 : if (!IsA(var, Var))
2128 : {
2129 0 : tlist = NIL;
2130 0 : break;
2131 : }
2132 :
2133 100648 : tlist = lappend(tlist,
2134 100648 : makeTargetEntry((Expr *) var,
2135 100648 : var->varattno,
2136 : NULL,
2137 : false));
2138 : }
2139 24750 : break;
2140 :
2141 0 : default:
2142 : /* caller error */
2143 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
2144 : (int) rte->rtekind);
2145 : break;
2146 : }
2147 :
2148 196370 : return tlist;
2149 : }
2150 :
2151 : /*
2152 : * build_index_tlist
2153 : *
2154 : * Build a targetlist representing the columns of the specified index.
2155 : * Each column is represented by a Var for the corresponding base-relation
2156 : * column, or an expression in base-relation Vars, as appropriate.
2157 : *
2158 : * There are never any dropped columns in indexes, so unlike
2159 : * build_physical_tlist, we need no failure case.
2160 : */
2161 : static List *
2162 762844 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
2163 : Relation heapRelation)
2164 : {
2165 762844 : List *tlist = NIL;
2166 762844 : Index varno = index->rel->relid;
2167 : ListCell *indexpr_item;
2168 : int i;
2169 :
2170 762844 : indexpr_item = list_head(index->indexprs);
2171 2190326 : for (i = 0; i < index->ncolumns; i++)
2172 : {
2173 1427482 : int indexkey = index->indexkeys[i];
2174 : Expr *indexvar;
2175 :
2176 1427482 : if (indexkey != 0)
2177 : {
2178 : /* simple column */
2179 : const FormData_pg_attribute *att_tup;
2180 :
2181 1424442 : if (indexkey < 0)
2182 0 : att_tup = SystemAttributeDefinition(indexkey);
2183 : else
2184 1424442 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2185 :
2186 1424442 : indexvar = (Expr *) makeVar(varno,
2187 : indexkey,
2188 1424442 : att_tup->atttypid,
2189 1424442 : att_tup->atttypmod,
2190 1424442 : att_tup->attcollation,
2191 : 0);
2192 : }
2193 : else
2194 : {
2195 : /* expression column */
2196 3040 : if (indexpr_item == NULL)
2197 0 : elog(ERROR, "wrong number of index expressions");
2198 3040 : indexvar = (Expr *) lfirst(indexpr_item);
2199 3040 : indexpr_item = lnext(index->indexprs, indexpr_item);
2200 : }
2201 :
2202 1427482 : tlist = lappend(tlist,
2203 1427482 : makeTargetEntry(indexvar,
2204 1427482 : i + 1,
2205 : NULL,
2206 : false));
2207 : }
2208 762844 : if (indexpr_item != NULL)
2209 0 : elog(ERROR, "wrong number of index expressions");
2210 :
2211 762844 : return tlist;
2212 : }
2213 :
2214 : /*
2215 : * restriction_selectivity
2216 : *
2217 : * Returns the selectivity of a specified restriction operator clause.
2218 : * This code executes registered procedures stored in the
2219 : * operator relation, by calling the function manager.
2220 : *
2221 : * See clause_selectivity() for the meaning of the additional parameters.
2222 : */
2223 : Selectivity
2224 755488 : restriction_selectivity(PlannerInfo *root,
2225 : Oid operatorid,
2226 : List *args,
2227 : Oid inputcollid,
2228 : int varRelid)
2229 : {
2230 755488 : RegProcedure oprrest = get_oprrest(operatorid);
2231 : float8 result;
2232 :
2233 : /*
2234 : * if the oprrest procedure is missing for whatever reason, use a
2235 : * selectivity of 0.5
2236 : */
2237 755488 : if (!oprrest)
2238 160 : return (Selectivity) 0.5;
2239 :
2240 755328 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
2241 : inputcollid,
2242 : PointerGetDatum(root),
2243 : ObjectIdGetDatum(operatorid),
2244 : PointerGetDatum(args),
2245 : Int32GetDatum(varRelid)));
2246 :
2247 755298 : if (result < 0.0 || result > 1.0)
2248 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
2249 :
2250 755298 : return (Selectivity) result;
2251 : }
2252 :
2253 : /*
2254 : * join_selectivity
2255 : *
2256 : * Returns the selectivity of a specified join operator clause.
2257 : * This code executes registered procedures stored in the
2258 : * operator relation, by calling the function manager.
2259 : *
2260 : * See clause_selectivity() for the meaning of the additional parameters.
2261 : */
2262 : Selectivity
2263 271114 : join_selectivity(PlannerInfo *root,
2264 : Oid operatorid,
2265 : List *args,
2266 : Oid inputcollid,
2267 : JoinType jointype,
2268 : SpecialJoinInfo *sjinfo)
2269 : {
2270 271114 : RegProcedure oprjoin = get_oprjoin(operatorid);
2271 : float8 result;
2272 :
2273 : /*
2274 : * if the oprjoin procedure is missing for whatever reason, use a
2275 : * selectivity of 0.5
2276 : */
2277 271114 : if (!oprjoin)
2278 146 : return (Selectivity) 0.5;
2279 :
2280 270968 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2281 : inputcollid,
2282 : PointerGetDatum(root),
2283 : ObjectIdGetDatum(operatorid),
2284 : PointerGetDatum(args),
2285 : Int16GetDatum(jointype),
2286 : PointerGetDatum(sjinfo)));
2287 :
2288 270968 : if (result < 0.0 || result > 1.0)
2289 0 : elog(ERROR, "invalid join selectivity: %f", result);
2290 :
2291 270968 : return (Selectivity) result;
2292 : }
2293 :
2294 : /*
2295 : * function_selectivity
2296 : *
2297 : * Attempt to estimate the selectivity of a specified boolean function clause
2298 : * by asking its support function. If the function lacks support, return -1.
2299 : *
2300 : * See clause_selectivity() for the meaning of the additional parameters.
2301 : */
2302 : Selectivity
2303 12488 : function_selectivity(PlannerInfo *root,
2304 : Oid funcid,
2305 : List *args,
2306 : Oid inputcollid,
2307 : bool is_join,
2308 : int varRelid,
2309 : JoinType jointype,
2310 : SpecialJoinInfo *sjinfo)
2311 : {
2312 12488 : RegProcedure prosupport = get_func_support(funcid);
2313 : SupportRequestSelectivity req;
2314 : SupportRequestSelectivity *sresult;
2315 :
2316 12488 : if (!prosupport)
2317 12458 : return (Selectivity) -1; /* no support function */
2318 :
2319 30 : req.type = T_SupportRequestSelectivity;
2320 30 : req.root = root;
2321 30 : req.funcid = funcid;
2322 30 : req.args = args;
2323 30 : req.inputcollid = inputcollid;
2324 30 : req.is_join = is_join;
2325 30 : req.varRelid = varRelid;
2326 30 : req.jointype = jointype;
2327 30 : req.sjinfo = sjinfo;
2328 30 : req.selectivity = -1; /* to catch failure to set the value */
2329 :
2330 : sresult = (SupportRequestSelectivity *)
2331 30 : DatumGetPointer(OidFunctionCall1(prosupport,
2332 : PointerGetDatum(&req)));
2333 :
2334 30 : if (sresult != &req)
2335 0 : return (Selectivity) -1; /* function did not honor request */
2336 :
2337 30 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2338 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2339 :
2340 30 : return (Selectivity) req.selectivity;
2341 : }
2342 :
2343 : /*
2344 : * add_function_cost
2345 : *
2346 : * Get an estimate of the execution cost of a function, and *add* it to
2347 : * the contents of *cost. The estimate may include both one-time and
2348 : * per-tuple components, since QualCost does.
2349 : *
2350 : * The funcid must always be supplied. If it is being called as the
2351 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2352 : * WindowFunc, etc), pass that as "node", else pass NULL.
2353 : *
2354 : * In some usages root might be NULL, too.
2355 : */
2356 : void
2357 1190294 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2358 : QualCost *cost)
2359 : {
2360 : HeapTuple proctup;
2361 : Form_pg_proc procform;
2362 :
2363 1190294 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2364 1190294 : if (!HeapTupleIsValid(proctup))
2365 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2366 1190294 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2367 :
2368 1190294 : if (OidIsValid(procform->prosupport))
2369 : {
2370 : SupportRequestCost req;
2371 : SupportRequestCost *sresult;
2372 :
2373 35724 : req.type = T_SupportRequestCost;
2374 35724 : req.root = root;
2375 35724 : req.funcid = funcid;
2376 35724 : req.node = node;
2377 :
2378 : /* Initialize cost fields so that support function doesn't have to */
2379 35724 : req.startup = 0;
2380 35724 : req.per_tuple = 0;
2381 :
2382 : sresult = (SupportRequestCost *)
2383 35724 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2384 : PointerGetDatum(&req)));
2385 :
2386 35724 : if (sresult == &req)
2387 : {
2388 : /* Success, so accumulate support function's estimate into *cost */
2389 18 : cost->startup += req.startup;
2390 18 : cost->per_tuple += req.per_tuple;
2391 18 : ReleaseSysCache(proctup);
2392 18 : return;
2393 : }
2394 : }
2395 :
2396 : /* No support function, or it failed, so rely on procost */
2397 1190276 : cost->per_tuple += procform->procost * cpu_operator_cost;
2398 :
2399 1190276 : ReleaseSysCache(proctup);
2400 : }
2401 :
2402 : /*
2403 : * get_function_rows
2404 : *
2405 : * Get an estimate of the number of rows returned by a set-returning function.
2406 : *
2407 : * The funcid must always be supplied. In current usage, the calling node
2408 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2409 : * But it's a good idea to not fail if it's NULL.
2410 : *
2411 : * In some usages root might be NULL, too.
2412 : *
2413 : * Note: this returns the unfiltered result of the support function, if any.
2414 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2415 : * leave it to the caller to do so.
2416 : */
2417 : double
2418 56660 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2419 : {
2420 : HeapTuple proctup;
2421 : Form_pg_proc procform;
2422 : double result;
2423 :
2424 56660 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2425 56660 : if (!HeapTupleIsValid(proctup))
2426 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2427 56660 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2428 :
2429 : Assert(procform->proretset); /* else caller error */
2430 :
2431 56660 : if (OidIsValid(procform->prosupport))
2432 : {
2433 : SupportRequestRows req;
2434 : SupportRequestRows *sresult;
2435 :
2436 21342 : req.type = T_SupportRequestRows;
2437 21342 : req.root = root;
2438 21342 : req.funcid = funcid;
2439 21342 : req.node = node;
2440 :
2441 21342 : req.rows = 0; /* just for sanity */
2442 :
2443 : sresult = (SupportRequestRows *)
2444 21342 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2445 : PointerGetDatum(&req)));
2446 :
2447 21342 : if (sresult == &req)
2448 : {
2449 : /* Success */
2450 17220 : ReleaseSysCache(proctup);
2451 17220 : return req.rows;
2452 : }
2453 : }
2454 :
2455 : /* No support function, or it failed, so rely on prorows */
2456 39440 : result = procform->prorows;
2457 :
2458 39440 : ReleaseSysCache(proctup);
2459 :
2460 39440 : return result;
2461 : }
2462 :
2463 : /*
2464 : * has_unique_index
2465 : *
2466 : * Detect whether there is a unique index on the specified attribute
2467 : * of the specified relation, thus allowing us to conclude that all
2468 : * the (non-null) values of the attribute are distinct.
2469 : *
2470 : * This function does not check the index's indimmediate property, which
2471 : * means that uniqueness may transiently fail to hold intra-transaction.
2472 : * That's appropriate when we are making statistical estimates, but beware
2473 : * of using this for any correctness proofs.
2474 : */
2475 : bool
2476 2357424 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2477 : {
2478 : ListCell *ilist;
2479 :
2480 5753352 : foreach(ilist, rel->indexlist)
2481 : {
2482 4127322 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2483 :
2484 : /*
2485 : * Note: ignore partial indexes, since they don't allow us to conclude
2486 : * that all attr values are distinct, *unless* they are marked predOK
2487 : * which means we know the index's predicate is satisfied by the
2488 : * query. We don't take any interest in expressional indexes either.
2489 : * Also, a multicolumn unique index doesn't allow us to conclude that
2490 : * just the specified attr is unique.
2491 : */
2492 4127322 : if (index->unique &&
2493 2880826 : index->nkeycolumns == 1 &&
2494 1562440 : index->indexkeys[0] == attno &&
2495 731466 : (index->indpred == NIL || index->predOK))
2496 731394 : return true;
2497 : }
2498 1626030 : return false;
2499 : }
2500 :
2501 :
2502 : /*
2503 : * has_row_triggers
2504 : *
2505 : * Detect whether the specified relation has any row-level triggers for event.
2506 : */
2507 : bool
2508 516 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2509 : {
2510 516 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2511 : Relation relation;
2512 : TriggerDesc *trigDesc;
2513 516 : bool result = false;
2514 :
2515 : /* Assume we already have adequate lock */
2516 516 : relation = table_open(rte->relid, NoLock);
2517 :
2518 516 : trigDesc = relation->trigdesc;
2519 516 : switch (event)
2520 : {
2521 164 : case CMD_INSERT:
2522 164 : if (trigDesc &&
2523 26 : (trigDesc->trig_insert_after_row ||
2524 14 : trigDesc->trig_insert_before_row))
2525 26 : result = true;
2526 164 : break;
2527 190 : case CMD_UPDATE:
2528 190 : if (trigDesc &&
2529 48 : (trigDesc->trig_update_after_row ||
2530 28 : trigDesc->trig_update_before_row))
2531 36 : result = true;
2532 190 : break;
2533 162 : case CMD_DELETE:
2534 162 : if (trigDesc &&
2535 30 : (trigDesc->trig_delete_after_row ||
2536 18 : trigDesc->trig_delete_before_row))
2537 16 : result = true;
2538 162 : break;
2539 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2540 0 : case CMD_MERGE:
2541 0 : result = false;
2542 0 : break;
2543 0 : default:
2544 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2545 : break;
2546 : }
2547 :
2548 516 : table_close(relation, NoLock);
2549 516 : return result;
2550 : }
2551 :
2552 : /*
2553 : * has_transition_tables
2554 : *
2555 : * Detect whether the specified relation has any transition tables for event.
2556 : */
2557 : bool
2558 390 : has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
2559 : {
2560 390 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2561 : Relation relation;
2562 : TriggerDesc *trigDesc;
2563 390 : bool result = false;
2564 :
2565 : Assert(rte->rtekind == RTE_RELATION);
2566 :
2567 : /* Currently foreign tables cannot have transition tables */
2568 390 : if (rte->relkind == RELKIND_FOREIGN_TABLE)
2569 290 : return result;
2570 :
2571 : /* Assume we already have adequate lock */
2572 100 : relation = table_open(rte->relid, NoLock);
2573 :
2574 100 : trigDesc = relation->trigdesc;
2575 100 : switch (event)
2576 : {
2577 0 : case CMD_INSERT:
2578 0 : if (trigDesc &&
2579 0 : trigDesc->trig_insert_new_table)
2580 0 : result = true;
2581 0 : break;
2582 60 : case CMD_UPDATE:
2583 60 : if (trigDesc &&
2584 8 : (trigDesc->trig_update_old_table ||
2585 0 : trigDesc->trig_update_new_table))
2586 8 : result = true;
2587 60 : break;
2588 40 : case CMD_DELETE:
2589 40 : if (trigDesc &&
2590 8 : trigDesc->trig_delete_old_table)
2591 8 : result = true;
2592 40 : break;
2593 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2594 0 : case CMD_MERGE:
2595 0 : result = false;
2596 0 : break;
2597 0 : default:
2598 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2599 : break;
2600 : }
2601 :
2602 100 : table_close(relation, NoLock);
2603 100 : return result;
2604 : }
2605 :
2606 : /*
2607 : * has_stored_generated_columns
2608 : *
2609 : * Does table identified by RTI have any STORED GENERATED columns?
2610 : */
2611 : bool
2612 438 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2613 : {
2614 438 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2615 : Relation relation;
2616 : TupleDesc tupdesc;
2617 438 : bool result = false;
2618 :
2619 : /* Assume we already have adequate lock */
2620 438 : relation = table_open(rte->relid, NoLock);
2621 :
2622 438 : tupdesc = RelationGetDescr(relation);
2623 438 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2624 :
2625 438 : table_close(relation, NoLock);
2626 :
2627 438 : return result;
2628 : }
2629 :
2630 : /*
2631 : * get_dependent_generated_columns
2632 : *
2633 : * Get the column numbers of any STORED GENERATED columns of the relation
2634 : * that depend on any column listed in target_cols. Both the input and
2635 : * result bitmapsets contain column numbers offset by
2636 : * FirstLowInvalidHeapAttributeNumber.
2637 : */
2638 : Bitmapset *
2639 90 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2640 : Bitmapset *target_cols)
2641 : {
2642 90 : Bitmapset *dependentCols = NULL;
2643 90 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2644 : Relation relation;
2645 : TupleDesc tupdesc;
2646 : TupleConstr *constr;
2647 :
2648 : /* Assume we already have adequate lock */
2649 90 : relation = table_open(rte->relid, NoLock);
2650 :
2651 90 : tupdesc = RelationGetDescr(relation);
2652 90 : constr = tupdesc->constr;
2653 :
2654 90 : if (constr && constr->has_generated_stored)
2655 : {
2656 12 : for (int i = 0; i < constr->num_defval; i++)
2657 : {
2658 8 : AttrDefault *defval = &constr->defval[i];
2659 : Node *expr;
2660 8 : Bitmapset *attrs_used = NULL;
2661 :
2662 : /* skip if not generated column */
2663 8 : if (!TupleDescCompactAttr(tupdesc, defval->adnum - 1)->attgenerated)
2664 0 : continue;
2665 :
2666 : /* identify columns this generated column depends on */
2667 8 : expr = stringToNode(defval->adbin);
2668 8 : pull_varattnos(expr, 1, &attrs_used);
2669 :
2670 8 : if (bms_overlap(target_cols, attrs_used))
2671 8 : dependentCols = bms_add_member(dependentCols,
2672 8 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2673 : }
2674 : }
2675 :
2676 90 : table_close(relation, NoLock);
2677 :
2678 90 : return dependentCols;
2679 : }
2680 :
2681 : /*
2682 : * set_relation_partition_info
2683 : *
2684 : * Set partitioning scheme and related information for a partitioned table.
2685 : */
2686 : static void
2687 18058 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2688 : Relation relation)
2689 : {
2690 : PartitionDesc partdesc;
2691 :
2692 : /*
2693 : * Create the PartitionDirectory infrastructure if we didn't already.
2694 : */
2695 18058 : if (root->glob->partition_directory == NULL)
2696 : {
2697 12148 : root->glob->partition_directory =
2698 12148 : CreatePartitionDirectory(CurrentMemoryContext, true);
2699 : }
2700 :
2701 18058 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2702 : relation);
2703 18058 : rel->part_scheme = find_partition_scheme(root, relation);
2704 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2705 18058 : rel->boundinfo = partdesc->boundinfo;
2706 18058 : rel->nparts = partdesc->nparts;
2707 18058 : set_baserel_partition_key_exprs(relation, rel);
2708 18058 : set_baserel_partition_constraint(relation, rel);
2709 18058 : }
2710 :
2711 : /*
2712 : * find_partition_scheme
2713 : *
2714 : * Find or create a PartitionScheme for this Relation.
2715 : */
2716 : static PartitionScheme
2717 18058 : find_partition_scheme(PlannerInfo *root, Relation relation)
2718 : {
2719 18058 : PartitionKey partkey = RelationGetPartitionKey(relation);
2720 : ListCell *lc;
2721 : int partnatts,
2722 : i;
2723 : PartitionScheme part_scheme;
2724 :
2725 : /* A partitioned table should have a partition key. */
2726 : Assert(partkey != NULL);
2727 :
2728 18058 : partnatts = partkey->partnatts;
2729 :
2730 : /* Search for a matching partition scheme and return if found one. */
2731 19948 : foreach(lc, root->part_schemes)
2732 : {
2733 6502 : part_scheme = lfirst(lc);
2734 :
2735 : /* Match partitioning strategy and number of keys. */
2736 6502 : if (partkey->strategy != part_scheme->strategy ||
2737 5512 : partnatts != part_scheme->partnatts)
2738 1440 : continue;
2739 :
2740 : /* Match partition key type properties. */
2741 5062 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2742 4612 : sizeof(Oid) * partnatts) != 0 ||
2743 4612 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2744 4612 : sizeof(Oid) * partnatts) != 0 ||
2745 4612 : memcmp(partkey->partcollation, part_scheme->partcollation,
2746 : sizeof(Oid) * partnatts) != 0)
2747 450 : continue;
2748 :
2749 : /*
2750 : * Length and byval information should match when partopcintype
2751 : * matches.
2752 : */
2753 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2754 : sizeof(int16) * partnatts) == 0);
2755 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2756 : sizeof(bool) * partnatts) == 0);
2757 :
2758 : /*
2759 : * If partopfamily and partopcintype matched, must have the same
2760 : * partition comparison functions. Note that we cannot reliably
2761 : * Assert the equality of function structs themselves for they might
2762 : * be different across PartitionKey's, so just Assert for the function
2763 : * OIDs.
2764 : */
2765 : #ifdef USE_ASSERT_CHECKING
2766 : for (i = 0; i < partkey->partnatts; i++)
2767 : Assert(partkey->partsupfunc[i].fn_oid ==
2768 : part_scheme->partsupfunc[i].fn_oid);
2769 : #endif
2770 :
2771 : /* Found matching partition scheme. */
2772 4612 : return part_scheme;
2773 : }
2774 :
2775 : /*
2776 : * Did not find matching partition scheme. Create one copying relevant
2777 : * information from the relcache. We need to copy the contents of the
2778 : * array since the relcache entry may not survive after we have closed the
2779 : * relation.
2780 : */
2781 13446 : part_scheme = palloc0_object(PartitionSchemeData);
2782 13446 : part_scheme->strategy = partkey->strategy;
2783 13446 : part_scheme->partnatts = partkey->partnatts;
2784 :
2785 13446 : part_scheme->partopfamily = palloc_array(Oid, partnatts);
2786 13446 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2787 : sizeof(Oid) * partnatts);
2788 :
2789 13446 : part_scheme->partopcintype = palloc_array(Oid, partnatts);
2790 13446 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2791 : sizeof(Oid) * partnatts);
2792 :
2793 13446 : part_scheme->partcollation = palloc_array(Oid, partnatts);
2794 13446 : memcpy(part_scheme->partcollation, partkey->partcollation,
2795 : sizeof(Oid) * partnatts);
2796 :
2797 13446 : part_scheme->parttyplen = palloc_array(int16, partnatts);
2798 13446 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2799 : sizeof(int16) * partnatts);
2800 :
2801 13446 : part_scheme->parttypbyval = palloc_array(bool, partnatts);
2802 13446 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2803 : sizeof(bool) * partnatts);
2804 :
2805 13446 : part_scheme->partsupfunc = palloc_array(FmgrInfo, partnatts);
2806 28788 : for (i = 0; i < partnatts; i++)
2807 15342 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2808 : CurrentMemoryContext);
2809 :
2810 : /* Add the partitioning scheme to PlannerInfo. */
2811 13446 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2812 :
2813 13446 : return part_scheme;
2814 : }
2815 :
2816 : /*
2817 : * set_baserel_partition_key_exprs
2818 : *
2819 : * Builds partition key expressions for the given base relation and fills
2820 : * rel->partexprs.
2821 : */
2822 : static void
2823 18058 : set_baserel_partition_key_exprs(Relation relation,
2824 : RelOptInfo *rel)
2825 : {
2826 18058 : PartitionKey partkey = RelationGetPartitionKey(relation);
2827 : int partnatts;
2828 : int cnt;
2829 : List **partexprs;
2830 : ListCell *lc;
2831 18058 : Index varno = rel->relid;
2832 :
2833 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2834 :
2835 : /* A partitioned table should have a partition key. */
2836 : Assert(partkey != NULL);
2837 :
2838 18058 : partnatts = partkey->partnatts;
2839 18058 : partexprs = palloc_array(List *, partnatts);
2840 18058 : lc = list_head(partkey->partexprs);
2841 :
2842 38042 : for (cnt = 0; cnt < partnatts; cnt++)
2843 : {
2844 : Expr *partexpr;
2845 19984 : AttrNumber attno = partkey->partattrs[cnt];
2846 :
2847 19984 : if (attno != InvalidAttrNumber)
2848 : {
2849 : /* Single column partition key is stored as a Var node. */
2850 : Assert(attno > 0);
2851 :
2852 19042 : partexpr = (Expr *) makeVar(varno, attno,
2853 19042 : partkey->parttypid[cnt],
2854 19042 : partkey->parttypmod[cnt],
2855 19042 : partkey->parttypcoll[cnt], 0);
2856 : }
2857 : else
2858 : {
2859 942 : if (lc == NULL)
2860 0 : elog(ERROR, "wrong number of partition key expressions");
2861 :
2862 : /* Re-stamp the expression with given varno. */
2863 942 : partexpr = (Expr *) copyObject(lfirst(lc));
2864 942 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2865 942 : lc = lnext(partkey->partexprs, lc);
2866 : }
2867 :
2868 : /* Base relations have a single expression per key. */
2869 19984 : partexprs[cnt] = list_make1(partexpr);
2870 : }
2871 :
2872 18058 : rel->partexprs = partexprs;
2873 :
2874 : /*
2875 : * A base relation does not have nullable partition key expressions, since
2876 : * no outer join is involved. We still allocate an array of empty
2877 : * expression lists to keep partition key expression handling code simple.
2878 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2879 : */
2880 18058 : rel->nullable_partexprs = palloc0_array(List *, partnatts);
2881 18058 : }
2882 :
2883 : /*
2884 : * set_baserel_partition_constraint
2885 : *
2886 : * Builds the partition constraint for the given base relation and sets it
2887 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2888 : * given relation.
2889 : */
2890 : static void
2891 18070 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2892 : {
2893 : List *partconstr;
2894 :
2895 18070 : if (rel->partition_qual) /* already done */
2896 0 : return;
2897 :
2898 : /*
2899 : * Run the partition quals through const-simplification similar to check
2900 : * constraints. We skip canonicalize_qual, though, because partition
2901 : * quals should be in canonical form already; also, since the qual is in
2902 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2903 : * format and back again.
2904 : */
2905 18070 : partconstr = RelationGetPartitionQual(relation);
2906 18070 : if (partconstr)
2907 : {
2908 3752 : partconstr = (List *) expression_planner((Expr *) partconstr);
2909 3752 : if (rel->relid != 1)
2910 3662 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2911 3752 : rel->partition_qual = partconstr;
2912 : }
2913 : }
|