Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/cost.h"
40 : #include "optimizer/optimizer.h"
41 : #include "optimizer/plancat.h"
42 : #include "parser/parse_relation.h"
43 : #include "parser/parsetree.h"
44 : #include "partitioning/partdesc.h"
45 : #include "rewrite/rewriteManip.h"
46 : #include "statistics/statistics.h"
47 : #include "storage/bufmgr.h"
48 : #include "tcop/tcopprot.h"
49 : #include "utils/builtins.h"
50 : #include "utils/lsyscache.h"
51 : #include "utils/partcache.h"
52 : #include "utils/rel.h"
53 : #include "utils/snapmgr.h"
54 : #include "utils/syscache.h"
55 :
56 : /* GUC parameter */
57 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
58 :
59 : /* Hook for plugins to get control in get_relation_info() */
60 : get_relation_info_hook_type get_relation_info_hook = NULL;
61 :
62 :
63 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
64 : Relation relation, bool inhparent);
65 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
66 : List *idxExprs);
67 : static List *get_relation_constraints(PlannerInfo *root,
68 : Oid relationObjectId, RelOptInfo *rel,
69 : bool include_noinherit,
70 : bool include_notnull,
71 : bool include_partition);
72 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
73 : Relation heapRelation);
74 : static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
75 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
76 : Relation relation);
77 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
78 : Relation relation);
79 : static void set_baserel_partition_key_exprs(Relation relation,
80 : RelOptInfo *rel);
81 : static void set_baserel_partition_constraint(Relation relation,
82 : RelOptInfo *rel);
83 :
84 :
85 : /*
86 : * get_relation_info -
87 : * Retrieves catalog information for a given relation.
88 : *
89 : * Given the Oid of the relation, return the following info into fields
90 : * of the RelOptInfo struct:
91 : *
92 : * min_attr lowest valid AttrNumber
93 : * max_attr highest valid AttrNumber
94 : * indexlist list of IndexOptInfos for relation's indexes
95 : * statlist list of StatisticExtInfo for relation's statistic objects
96 : * serverid if it's a foreign table, the server OID
97 : * fdwroutine if it's a foreign table, the FDW function pointers
98 : * pages number of pages
99 : * tuples number of tuples
100 : * rel_parallel_workers user-defined number of parallel workers
101 : *
102 : * Also, add information about the relation's foreign keys to root->fkey_list.
103 : *
104 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
105 : * cases these are left as zeroes, but sometimes we need to compute attr
106 : * widths here, and we may as well cache the results for costsize.c.
107 : *
108 : * If inhparent is true, all we need to do is set up the attr arrays:
109 : * the RelOptInfo actually represents the appendrel formed by an inheritance
110 : * tree, and so the parent rel's physical size and index information isn't
111 : * important for it, however, for partitioned tables, we do populate the
112 : * indexlist as the planner uses unique indexes as unique proofs for certain
113 : * optimizations.
114 : */
115 : void
116 426092 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
117 : RelOptInfo *rel)
118 : {
119 426092 : Index varno = rel->relid;
120 : Relation relation;
121 : bool hasindex;
122 426092 : List *indexinfos = NIL;
123 :
124 : /*
125 : * We need not lock the relation since it was already locked, either by
126 : * the rewriter or when expand_inherited_rtentry() added it to the query's
127 : * rangetable.
128 : */
129 426092 : relation = table_open(relationObjectId, NoLock);
130 :
131 : /*
132 : * Relations without a table AM can be used in a query only if they are of
133 : * special-cased relkinds. This check prevents us from crashing later if,
134 : * for example, a view's ON SELECT rule has gone missing. Note that
135 : * table_open() already rejected indexes and composite types; spell the
136 : * error the same way it does.
137 : */
138 426092 : if (!relation->rd_tableam)
139 : {
140 19060 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
141 16616 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
142 0 : ereport(ERROR,
143 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
144 : errmsg("cannot open relation \"%s\"",
145 : RelationGetRelationName(relation)),
146 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
147 : }
148 :
149 : /* Temporary and unlogged relations are inaccessible during recovery. */
150 426092 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
151 0 : ereport(ERROR,
152 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
153 : errmsg("cannot access temporary or unlogged relations during recovery")));
154 :
155 426092 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
156 426092 : rel->max_attr = RelationGetNumberOfAttributes(relation);
157 426092 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
158 :
159 : Assert(rel->max_attr >= rel->min_attr);
160 426092 : rel->attr_needed = (Relids *)
161 426092 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
162 426092 : rel->attr_widths = (int32 *)
163 426092 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
164 :
165 : /*
166 : * Record which columns are defined as NOT NULL. We leave this
167 : * unpopulated for non-partitioned inheritance parent relations as it's
168 : * ambiguous as to what it means. Some child tables may have a NOT NULL
169 : * constraint for a column while others may not. We could work harder and
170 : * build a unioned set of all child relations notnullattnums, but there's
171 : * currently no need. The RelOptInfo corresponding to the !inh
172 : * RangeTblEntry does get populated.
173 : */
174 426092 : if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
175 : {
176 5121492 : for (int i = 0; i < relation->rd_att->natts; i++)
177 : {
178 4731032 : CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
179 :
180 4731032 : if (attr->attnotnull)
181 : {
182 3549104 : rel->notnullattnums = bms_add_member(rel->notnullattnums,
183 : i + 1);
184 :
185 : /*
186 : * Per RemoveAttributeById(), dropped columns will have their
187 : * attnotnull unset, so we needn't check for dropped columns
188 : * in the above condition.
189 : */
190 : Assert(!attr->attisdropped);
191 : }
192 : }
193 : }
194 :
195 : /*
196 : * Estimate relation size --- unless it's an inheritance parent, in which
197 : * case the size we want is not the rel's own size but the size of its
198 : * inheritance tree. That will be computed in set_append_rel_size().
199 : */
200 426092 : if (!inhparent)
201 373884 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
202 373884 : &rel->pages, &rel->tuples, &rel->allvisfrac);
203 :
204 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
205 426092 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
206 :
207 : /*
208 : * Make list of indexes. Ignore indexes on system catalogs if told to.
209 : * Don't bother with indexes from traditional inheritance parents. For
210 : * partitioned tables, we need a list of at least unique indexes as these
211 : * serve as unique proofs for certain planner optimizations. However,
212 : * let's not discriminate here and just record all partitioned indexes
213 : * whether they're unique indexes or not.
214 : */
215 426092 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
216 390460 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
217 35632 : hasindex = false;
218 : else
219 390460 : hasindex = relation->rd_rel->relhasindex;
220 :
221 426092 : if (hasindex)
222 : {
223 : List *indexoidlist;
224 : LOCKMODE lmode;
225 : ListCell *l;
226 :
227 310258 : indexoidlist = RelationGetIndexList(relation);
228 :
229 : /*
230 : * For each index, we get the same type of lock that the executor will
231 : * need, and do not release it. This saves a couple of trips to the
232 : * shared lock manager while not creating any real loss of
233 : * concurrency, because no schema changes could be happening on the
234 : * index while we hold lock on the parent rel, and no lock type used
235 : * for queries blocks any other kind of index operation.
236 : */
237 310258 : lmode = root->simple_rte_array[varno]->rellockmode;
238 :
239 956250 : foreach(l, indexoidlist)
240 : {
241 645992 : Oid indexoid = lfirst_oid(l);
242 : Relation indexRelation;
243 : Form_pg_index index;
244 645992 : IndexAmRoutine *amroutine = NULL;
245 : IndexOptInfo *info;
246 : int ncolumns,
247 : nkeycolumns;
248 : int i;
249 :
250 : /*
251 : * Extract info from the relation descriptor for the index.
252 : */
253 645992 : indexRelation = index_open(indexoid, lmode);
254 645992 : index = indexRelation->rd_index;
255 :
256 : /*
257 : * Ignore invalid indexes, since they can't safely be used for
258 : * queries. Note that this is OK because the data structure we
259 : * are constructing is only used by the planner --- the executor
260 : * still needs to insert into "invalid" indexes, if they're marked
261 : * indisready.
262 : */
263 645992 : if (!index->indisvalid)
264 : {
265 22 : index_close(indexRelation, NoLock);
266 22 : continue;
267 : }
268 :
269 : /*
270 : * If the index is valid, but cannot yet be used, ignore it; but
271 : * mark the plan we are generating as transient. See
272 : * src/backend/access/heap/README.HOT for discussion.
273 : */
274 645970 : if (index->indcheckxmin &&
275 294 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
276 : TransactionXmin))
277 : {
278 110 : root->glob->transientPlan = true;
279 110 : index_close(indexRelation, NoLock);
280 110 : continue;
281 : }
282 :
283 645860 : info = makeNode(IndexOptInfo);
284 :
285 645860 : info->indexoid = index->indexrelid;
286 645860 : info->reltablespace =
287 645860 : RelationGetForm(indexRelation)->reltablespace;
288 645860 : info->rel = rel;
289 645860 : info->ncolumns = ncolumns = index->indnatts;
290 645860 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
291 :
292 645860 : info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
293 645860 : info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
294 645860 : info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
295 645860 : info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
296 645860 : info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
297 :
298 1893664 : for (i = 0; i < ncolumns; i++)
299 : {
300 1247804 : info->indexkeys[i] = index->indkey.values[i];
301 1247804 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
302 : }
303 :
304 1893246 : for (i = 0; i < nkeycolumns; i++)
305 : {
306 1247386 : info->opfamily[i] = indexRelation->rd_opfamily[i];
307 1247386 : info->opcintype[i] = indexRelation->rd_opcintype[i];
308 1247386 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
309 : }
310 :
311 645860 : info->relam = indexRelation->rd_rel->relam;
312 :
313 : /*
314 : * We don't have an AM for partitioned indexes, so we'll just
315 : * NULLify the AM related fields for those.
316 : */
317 645860 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
318 : {
319 : /* We copy just the fields we need, not all of rd_indam */
320 639386 : amroutine = indexRelation->rd_indam;
321 639386 : info->amcanorderbyop = amroutine->amcanorderbyop;
322 639386 : info->amoptionalkey = amroutine->amoptionalkey;
323 639386 : info->amsearcharray = amroutine->amsearcharray;
324 639386 : info->amsearchnulls = amroutine->amsearchnulls;
325 639386 : info->amcanparallel = amroutine->amcanparallel;
326 639386 : info->amhasgettuple = (amroutine->amgettuple != NULL);
327 1278772 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
328 639386 : relation->rd_tableam->scan_bitmap_next_block != NULL;
329 1256808 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
330 617422 : amroutine->amrestrpos != NULL);
331 639386 : info->amcostestimate = amroutine->amcostestimate;
332 : Assert(info->amcostestimate != NULL);
333 :
334 : /* Fetch index opclass options */
335 639386 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
336 :
337 : /*
338 : * Fetch the ordering information for the index, if any.
339 : */
340 639386 : if (info->relam == BTREE_AM_OID)
341 : {
342 : /*
343 : * If it's a btree index, we can use its opfamily OIDs
344 : * directly as the sort ordering opfamily OIDs.
345 : */
346 : Assert(amroutine->amcanorder);
347 :
348 617422 : info->sortopfamily = info->opfamily;
349 617422 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
350 617422 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
351 :
352 1575132 : for (i = 0; i < nkeycolumns; i++)
353 : {
354 957710 : int16 opt = indexRelation->rd_indoption[i];
355 :
356 957710 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
357 957710 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
358 : }
359 : }
360 21964 : else if (amroutine->amcanorder)
361 : {
362 : /*
363 : * Otherwise, identify the corresponding btree opfamilies
364 : * by trying to map this index's "<" operators into btree.
365 : * Since "<" uniquely defines the behavior of a sort
366 : * order, this is a sufficient test.
367 : *
368 : * XXX This method is rather slow and also requires the
369 : * undesirable assumption that the other index AM numbers
370 : * its strategies the same as btree. It'd be better to
371 : * have a way to explicitly declare the corresponding
372 : * btree opfamily for each opfamily of the other index
373 : * type. But given the lack of current or foreseeable
374 : * amcanorder index types, it's not worth expending more
375 : * effort on now.
376 : */
377 0 : info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
378 0 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
379 0 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
380 :
381 0 : for (i = 0; i < nkeycolumns; i++)
382 : {
383 0 : int16 opt = indexRelation->rd_indoption[i];
384 : Oid ltopr;
385 : Oid btopfamily;
386 : Oid btopcintype;
387 : int16 btstrategy;
388 :
389 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
390 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
391 :
392 0 : ltopr = get_opfamily_member(info->opfamily[i],
393 0 : info->opcintype[i],
394 0 : info->opcintype[i],
395 : BTLessStrategyNumber);
396 0 : if (OidIsValid(ltopr) &&
397 0 : get_ordering_op_properties(ltopr,
398 : &btopfamily,
399 : &btopcintype,
400 0 : &btstrategy) &&
401 0 : btopcintype == info->opcintype[i] &&
402 0 : btstrategy == BTLessStrategyNumber)
403 : {
404 : /* Successful mapping */
405 0 : info->sortopfamily[i] = btopfamily;
406 : }
407 : else
408 : {
409 : /* Fail ... quietly treat index as unordered */
410 0 : info->sortopfamily = NULL;
411 0 : info->reverse_sort = NULL;
412 0 : info->nulls_first = NULL;
413 0 : break;
414 : }
415 : }
416 : }
417 : else
418 : {
419 21964 : info->sortopfamily = NULL;
420 21964 : info->reverse_sort = NULL;
421 21964 : info->nulls_first = NULL;
422 : }
423 : }
424 : else
425 : {
426 6474 : info->amcanorderbyop = false;
427 6474 : info->amoptionalkey = false;
428 6474 : info->amsearcharray = false;
429 6474 : info->amsearchnulls = false;
430 6474 : info->amcanparallel = false;
431 6474 : info->amhasgettuple = false;
432 6474 : info->amhasgetbitmap = false;
433 6474 : info->amcanmarkpos = false;
434 6474 : info->amcostestimate = NULL;
435 :
436 6474 : info->sortopfamily = NULL;
437 6474 : info->reverse_sort = NULL;
438 6474 : info->nulls_first = NULL;
439 : }
440 :
441 : /*
442 : * Fetch the index expressions and predicate, if any. We must
443 : * modify the copies we obtain from the relcache to have the
444 : * correct varno for the parent relation, so that they match up
445 : * correctly against qual clauses.
446 : */
447 645860 : info->indexprs = RelationGetIndexExpressions(indexRelation);
448 645860 : info->indpred = RelationGetIndexPredicate(indexRelation);
449 645860 : if (info->indexprs && varno != 1)
450 1662 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
451 645860 : if (info->indpred && varno != 1)
452 126 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
453 :
454 : /* Build targetlist using the completed indexprs data */
455 645860 : info->indextlist = build_index_tlist(root, info, relation);
456 :
457 645860 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
458 645860 : info->predOK = false; /* set later, in indxpath.c */
459 645860 : info->unique = index->indisunique;
460 645860 : info->nullsnotdistinct = index->indnullsnotdistinct;
461 645860 : info->immediate = index->indimmediate;
462 645860 : info->hypothetical = false;
463 :
464 : /*
465 : * Estimate the index size. If it's not a partial index, we lock
466 : * the number-of-tuples estimate to equal the parent table; if it
467 : * is partial then we have to use the same methods as we would for
468 : * a table, except we can be sure that the index is not larger
469 : * than the table. We must ignore partitioned indexes here as
470 : * there are not physical indexes.
471 : */
472 645860 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
473 : {
474 639386 : if (info->indpred == NIL)
475 : {
476 638402 : info->pages = RelationGetNumberOfBlocks(indexRelation);
477 638402 : info->tuples = rel->tuples;
478 : }
479 : else
480 : {
481 : double allvisfrac; /* dummy */
482 :
483 984 : estimate_rel_size(indexRelation, NULL,
484 984 : &info->pages, &info->tuples, &allvisfrac);
485 984 : if (info->tuples > rel->tuples)
486 18 : info->tuples = rel->tuples;
487 : }
488 :
489 : /*
490 : * Get tree height while we have the index open
491 : */
492 639386 : if (amroutine->amgettreeheight)
493 : {
494 617422 : info->tree_height = amroutine->amgettreeheight(indexRelation);
495 : }
496 : else
497 : {
498 : /* For other index types, just set it to "unknown" for now */
499 21964 : info->tree_height = -1;
500 : }
501 : }
502 : else
503 : {
504 : /* Zero these out for partitioned indexes */
505 6474 : info->pages = 0;
506 6474 : info->tuples = 0.0;
507 6474 : info->tree_height = -1;
508 : }
509 :
510 645860 : index_close(indexRelation, NoLock);
511 :
512 : /*
513 : * We've historically used lcons() here. It'd make more sense to
514 : * use lappend(), but that causes the planner to change behavior
515 : * in cases where two indexes seem equally attractive. For now,
516 : * stick with lcons() --- few tables should have so many indexes
517 : * that the O(N^2) behavior of lcons() is really a problem.
518 : */
519 645860 : indexinfos = lcons(info, indexinfos);
520 : }
521 :
522 310258 : list_free(indexoidlist);
523 : }
524 :
525 426092 : rel->indexlist = indexinfos;
526 :
527 426092 : rel->statlist = get_relation_statistics(rel, relation);
528 :
529 : /* Grab foreign-table info using the relcache, while we have it */
530 426092 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
531 : {
532 : /* Check if the access to foreign tables is restricted */
533 2444 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
534 : {
535 : /* there must not be built-in foreign tables */
536 : Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
537 :
538 4 : ereport(ERROR,
539 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
540 : errmsg("access to non-system foreign table is restricted")));
541 : }
542 :
543 2440 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
544 2440 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
545 : }
546 : else
547 : {
548 423648 : rel->serverid = InvalidOid;
549 423648 : rel->fdwroutine = NULL;
550 : }
551 :
552 : /* Collect info about relation's foreign keys, if relevant */
553 426074 : get_relation_foreign_keys(root, rel, relation, inhparent);
554 :
555 : /* Collect info about functions implemented by the rel's table AM. */
556 426074 : if (relation->rd_tableam &&
557 407032 : relation->rd_tableam->scan_set_tidrange != NULL &&
558 407032 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
559 407032 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
560 :
561 : /*
562 : * Collect info about relation's partitioning scheme, if any. Only
563 : * inheritance parents may be partitioned.
564 : */
565 426074 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
566 16576 : set_relation_partition_info(root, rel, relation);
567 :
568 426074 : table_close(relation, NoLock);
569 :
570 : /*
571 : * Allow a plugin to editorialize on the info we obtained from the
572 : * catalogs. Actions might include altering the assumed relation size,
573 : * removing an index, or adding a hypothetical index to the indexlist.
574 : */
575 426074 : if (get_relation_info_hook)
576 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
577 426074 : }
578 :
579 : /*
580 : * get_relation_foreign_keys -
581 : * Retrieves foreign key information for a given relation.
582 : *
583 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
584 : * root->fkey_list. We do this now while we have the relcache entry open.
585 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
586 : * until all RelOptInfos have been built, but the cost of re-opening the
587 : * relcache entries would probably exceed any savings.
588 : */
589 : static void
590 426074 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
591 : Relation relation, bool inhparent)
592 : {
593 426074 : List *rtable = root->parse->rtable;
594 : List *cachedfkeys;
595 : ListCell *lc;
596 :
597 : /*
598 : * If it's not a baserel, we don't care about its FKs. Also, if the query
599 : * references only a single relation, we can skip the lookup since no FKs
600 : * could satisfy the requirements below.
601 : */
602 811874 : if (rel->reloptkind != RELOPT_BASEREL ||
603 385800 : list_length(rtable) < 2)
604 225706 : return;
605 :
606 : /*
607 : * If it's the parent of an inheritance tree, ignore its FKs. We could
608 : * make useful FK-based deductions if we found that all members of the
609 : * inheritance tree have equivalent FK constraints, but detecting that
610 : * would require code that hasn't been written.
611 : */
612 200368 : if (inhparent)
613 5234 : return;
614 :
615 : /*
616 : * Extract data about relation's FKs from the relcache. Note that this
617 : * list belongs to the relcache and might disappear in a cache flush, so
618 : * we must not do any further catalog access within this function.
619 : */
620 195134 : cachedfkeys = RelationGetFKeyList(relation);
621 :
622 : /*
623 : * Figure out which FKs are of interest for this query, and create
624 : * ForeignKeyOptInfos for them. We want only FKs that reference some
625 : * other RTE of the current query. In queries containing self-joins,
626 : * there might be more than one other RTE for a referenced table, and we
627 : * should make a ForeignKeyOptInfo for each occurrence.
628 : *
629 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
630 : * too hard to identify those here, so we might end up making some useless
631 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
632 : * them again.
633 : */
634 197494 : foreach(lc, cachedfkeys)
635 : {
636 2360 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
637 : Index rti;
638 : ListCell *lc2;
639 :
640 : /* conrelid should always be that of the table we're considering */
641 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
642 :
643 : /* Scan to find other RTEs matching confrelid */
644 2360 : rti = 0;
645 10532 : foreach(lc2, rtable)
646 : {
647 8172 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
648 : ForeignKeyOptInfo *info;
649 :
650 8172 : rti++;
651 : /* Ignore if not the correct table */
652 8172 : if (rte->rtekind != RTE_RELATION ||
653 5062 : rte->relid != cachedfk->confrelid)
654 6140 : continue;
655 : /* Ignore if it's an inheritance parent; doesn't really match */
656 2032 : if (rte->inh)
657 192 : continue;
658 : /* Ignore self-referential FKs; we only care about joins */
659 1840 : if (rti == rel->relid)
660 132 : continue;
661 :
662 : /* OK, let's make an entry */
663 1708 : info = makeNode(ForeignKeyOptInfo);
664 1708 : info->con_relid = rel->relid;
665 1708 : info->ref_relid = rti;
666 1708 : info->nkeys = cachedfk->nkeys;
667 1708 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
668 1708 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
669 1708 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
670 : /* zero out fields to be filled by match_foreign_keys_to_quals */
671 1708 : info->nmatched_ec = 0;
672 1708 : info->nconst_ec = 0;
673 1708 : info->nmatched_rcols = 0;
674 1708 : info->nmatched_ri = 0;
675 1708 : memset(info->eclass, 0, sizeof(info->eclass));
676 1708 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
677 1708 : memset(info->rinfos, 0, sizeof(info->rinfos));
678 :
679 1708 : root->fkey_list = lappend(root->fkey_list, info);
680 : }
681 : }
682 : }
683 :
684 : /*
685 : * infer_arbiter_indexes -
686 : * Determine the unique indexes used to arbitrate speculative insertion.
687 : *
688 : * Uses user-supplied inference clause expressions and predicate to match a
689 : * unique index from those defined and ready on the heap relation (target).
690 : * An exact match is required on columns/expressions (although they can appear
691 : * in any order). However, the predicate given by the user need only restrict
692 : * insertion to a subset of some part of the table covered by some particular
693 : * unique index (in particular, a partial unique index) in order to be
694 : * inferred.
695 : *
696 : * The implementation does not consider which B-Tree operator class any
697 : * particular available unique index attribute uses, unless one was specified
698 : * in the inference specification. The same is true of collations. In
699 : * particular, there is no system dependency on the default operator class for
700 : * the purposes of inference. If no opclass (or collation) is specified, then
701 : * all matching indexes (that may or may not match the default in terms of
702 : * each attribute opclass/collation) are used for inference.
703 : */
704 : List *
705 1814 : infer_arbiter_indexes(PlannerInfo *root)
706 : {
707 1814 : OnConflictExpr *onconflict = root->parse->onConflict;
708 :
709 : /* Iteration state */
710 : Index varno;
711 : RangeTblEntry *rte;
712 : Relation relation;
713 1814 : Oid indexOidFromConstraint = InvalidOid;
714 : List *indexList;
715 : ListCell *l;
716 :
717 : /* Normalized inference attributes and inference expressions: */
718 1814 : Bitmapset *inferAttrs = NULL;
719 1814 : List *inferElems = NIL;
720 :
721 : /* Results */
722 1814 : List *results = NIL;
723 :
724 : /*
725 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
726 : * specification or named constraint. ON CONFLICT DO UPDATE statements
727 : * must always provide one or the other (but parser ought to have caught
728 : * that already).
729 : */
730 1814 : if (onconflict->arbiterElems == NIL &&
731 408 : onconflict->constraint == InvalidOid)
732 216 : return NIL;
733 :
734 : /*
735 : * We need not lock the relation since it was already locked, either by
736 : * the rewriter or when expand_inherited_rtentry() added it to the query's
737 : * rangetable.
738 : */
739 1598 : varno = root->parse->resultRelation;
740 1598 : rte = rt_fetch(varno, root->parse->rtable);
741 :
742 1598 : relation = table_open(rte->relid, NoLock);
743 :
744 : /*
745 : * Build normalized/BMS representation of plain indexed attributes, as
746 : * well as a separate list of expression items. This simplifies matching
747 : * the cataloged definition of indexes.
748 : */
749 3458 : foreach(l, onconflict->arbiterElems)
750 : {
751 1860 : InferenceElem *elem = (InferenceElem *) lfirst(l);
752 : Var *var;
753 : int attno;
754 :
755 1860 : if (!IsA(elem->expr, Var))
756 : {
757 : /* If not a plain Var, just shove it in inferElems for now */
758 174 : inferElems = lappend(inferElems, elem->expr);
759 174 : continue;
760 : }
761 :
762 1686 : var = (Var *) elem->expr;
763 1686 : attno = var->varattno;
764 :
765 1686 : if (attno == 0)
766 0 : ereport(ERROR,
767 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
768 : errmsg("whole row unique index inference specifications are not supported")));
769 :
770 1686 : inferAttrs = bms_add_member(inferAttrs,
771 : attno - FirstLowInvalidHeapAttributeNumber);
772 : }
773 :
774 : /*
775 : * Lookup named constraint's index. This is not immediately returned
776 : * because some additional sanity checks are required.
777 : */
778 1598 : if (onconflict->constraint != InvalidOid)
779 : {
780 192 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
781 :
782 192 : if (indexOidFromConstraint == InvalidOid)
783 0 : ereport(ERROR,
784 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
785 : errmsg("constraint in ON CONFLICT clause has no associated index")));
786 : }
787 :
788 : /*
789 : * Using that representation, iterate through the list of indexes on the
790 : * target relation to try and find a match
791 : */
792 1598 : indexList = RelationGetIndexList(relation);
793 :
794 3432 : foreach(l, indexList)
795 : {
796 2026 : Oid indexoid = lfirst_oid(l);
797 : Relation idxRel;
798 : Form_pg_index idxForm;
799 : Bitmapset *indexedAttrs;
800 : List *idxExprs;
801 : List *predExprs;
802 : AttrNumber natt;
803 : ListCell *el;
804 :
805 : /*
806 : * Extract info from the relation descriptor for the index. Obtain
807 : * the same lock type that the executor will ultimately use.
808 : *
809 : * Let executor complain about !indimmediate case directly, because
810 : * enforcement needs to occur there anyway when an inference clause is
811 : * omitted.
812 : */
813 2026 : idxRel = index_open(indexoid, rte->rellockmode);
814 2026 : idxForm = idxRel->rd_index;
815 :
816 2026 : if (!idxForm->indisvalid)
817 6 : goto next;
818 :
819 : /*
820 : * Note that we do not perform a check against indcheckxmin (like e.g.
821 : * get_relation_info()) here to eliminate candidates, because
822 : * uniqueness checking only cares about the most recently committed
823 : * tuple versions.
824 : */
825 :
826 : /*
827 : * Look for match on "ON constraint_name" variant, which may not be
828 : * unique constraint. This can only be a constraint name.
829 : */
830 2020 : if (indexOidFromConstraint == idxForm->indexrelid)
831 : {
832 192 : if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
833 78 : ereport(ERROR,
834 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
835 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
836 :
837 114 : results = lappend_oid(results, idxForm->indexrelid);
838 114 : list_free(indexList);
839 114 : index_close(idxRel, NoLock);
840 114 : table_close(relation, NoLock);
841 114 : return results;
842 : }
843 1828 : else if (indexOidFromConstraint != InvalidOid)
844 : {
845 : /* No point in further work for index in named constraint case */
846 18 : goto next;
847 : }
848 :
849 : /*
850 : * Only considering conventional inference at this point (not named
851 : * constraints), so index under consideration can be immediately
852 : * skipped if it's not unique
853 : */
854 1810 : if (!idxForm->indisunique)
855 4 : goto next;
856 :
857 : /*
858 : * So-called unique constraints with WITHOUT OVERLAPS are really
859 : * exclusion constraints, so skip those too.
860 : */
861 1806 : if (idxForm->indisexclusion)
862 144 : goto next;
863 :
864 : /* Build BMS representation of plain (non expression) index attrs */
865 1662 : indexedAttrs = NULL;
866 3888 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
867 : {
868 2226 : int attno = idxRel->rd_index->indkey.values[natt];
869 :
870 2226 : if (attno != 0)
871 1914 : indexedAttrs = bms_add_member(indexedAttrs,
872 : attno - FirstLowInvalidHeapAttributeNumber);
873 : }
874 :
875 : /* Non-expression attributes (if any) must match */
876 1662 : if (!bms_equal(indexedAttrs, inferAttrs))
877 378 : goto next;
878 :
879 : /* Expression attributes (if any) must match */
880 1284 : idxExprs = RelationGetIndexExpressions(idxRel);
881 1284 : if (idxExprs && varno != 1)
882 6 : ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
883 :
884 2928 : foreach(el, onconflict->arbiterElems)
885 : {
886 1692 : InferenceElem *elem = (InferenceElem *) lfirst(el);
887 :
888 : /*
889 : * Ensure that collation/opclass aspects of inference expression
890 : * element match. Even though this loop is primarily concerned
891 : * with matching expressions, it is a convenient point to check
892 : * this for both expressions and ordinary (non-expression)
893 : * attributes appearing as inference elements.
894 : */
895 1692 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
896 48 : goto next;
897 :
898 : /*
899 : * Plain Vars don't factor into count of expression elements, and
900 : * the question of whether or not they satisfy the index
901 : * definition has already been considered (they must).
902 : */
903 1656 : if (IsA(elem->expr, Var))
904 1482 : continue;
905 :
906 : /*
907 : * Might as well avoid redundant check in the rare cases where
908 : * infer_collation_opclass_match() is required to do real work.
909 : * Otherwise, check that element expression appears in cataloged
910 : * index definition.
911 : */
912 174 : if (elem->infercollid != InvalidOid ||
913 306 : elem->inferopclass != InvalidOid ||
914 150 : list_member(idxExprs, elem->expr))
915 162 : continue;
916 :
917 12 : goto next;
918 : }
919 :
920 : /*
921 : * Now that all inference elements were matched, ensure that the
922 : * expression elements from inference clause are not missing any
923 : * cataloged expressions. This does the right thing when unique
924 : * indexes redundantly repeat the same attribute, or if attributes
925 : * redundantly appear multiple times within an inference clause.
926 : */
927 1236 : if (list_difference(idxExprs, inferElems) != NIL)
928 54 : goto next;
929 :
930 : /*
931 : * If it's a partial index, its predicate must be implied by the ON
932 : * CONFLICT's WHERE clause.
933 : */
934 1182 : predExprs = RelationGetIndexPredicate(idxRel);
935 1182 : if (predExprs && varno != 1)
936 6 : ChangeVarNodes((Node *) predExprs, 1, varno, 0);
937 :
938 1182 : if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
939 36 : goto next;
940 :
941 1146 : results = lappend_oid(results, idxForm->indexrelid);
942 1834 : next:
943 1834 : index_close(idxRel, NoLock);
944 : }
945 :
946 1406 : list_free(indexList);
947 1406 : table_close(relation, NoLock);
948 :
949 1406 : if (results == NIL)
950 314 : ereport(ERROR,
951 : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
952 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
953 :
954 1092 : return results;
955 : }
956 :
957 : /*
958 : * infer_collation_opclass_match - ensure infer element opclass/collation match
959 : *
960 : * Given unique index inference element from inference specification, if
961 : * collation was specified, or if opclass was specified, verify that there is
962 : * at least one matching indexed attribute (occasionally, there may be more).
963 : * Skip this in the common case where inference specification does not include
964 : * collation or opclass (instead matching everything, regardless of cataloged
965 : * collation/opclass of indexed attribute).
966 : *
967 : * At least historically, Postgres has not offered collations or opclasses
968 : * with alternative-to-default notions of equality, so these additional
969 : * criteria should only be required infrequently.
970 : *
971 : * Don't give up immediately when an inference element matches some attribute
972 : * cataloged as indexed but not matching additional opclass/collation
973 : * criteria. This is done so that the implementation is as forgiving as
974 : * possible of redundancy within cataloged index attributes (or, less
975 : * usefully, within inference specification elements). If collations actually
976 : * differ between apparently redundantly indexed attributes (redundant within
977 : * or across indexes), then there really is no redundancy as such.
978 : *
979 : * Note that if an inference element specifies an opclass and a collation at
980 : * once, both must match in at least one particular attribute within index
981 : * catalog definition in order for that inference element to be considered
982 : * inferred/satisfied.
983 : */
984 : static bool
985 1692 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
986 : List *idxExprs)
987 : {
988 : AttrNumber natt;
989 1692 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
990 1692 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
991 1692 : int nplain = 0; /* # plain attrs observed */
992 :
993 : /*
994 : * If inference specification element lacks collation/opclass, then no
995 : * need to check for exact match.
996 : */
997 1692 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
998 1578 : return true;
999 :
1000 : /*
1001 : * Lookup opfamily and input type, for matching indexes
1002 : */
1003 114 : if (elem->inferopclass)
1004 : {
1005 84 : inferopfamily = get_opclass_family(elem->inferopclass);
1006 84 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1007 : }
1008 :
1009 246 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1010 : {
1011 210 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
1012 210 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1013 210 : Oid collation = idxRel->rd_indcollation[natt - 1];
1014 210 : int attno = idxRel->rd_index->indkey.values[natt - 1];
1015 :
1016 210 : if (attno != 0)
1017 168 : nplain++;
1018 :
1019 210 : if (elem->inferopclass != InvalidOid &&
1020 66 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1021 : {
1022 : /* Attribute needed to match opclass, but didn't */
1023 90 : continue;
1024 : }
1025 :
1026 120 : if (elem->infercollid != InvalidOid &&
1027 84 : elem->infercollid != collation)
1028 : {
1029 : /* Attribute needed to match collation, but didn't */
1030 36 : continue;
1031 : }
1032 :
1033 : /* If one matching index att found, good enough -- return true */
1034 84 : if (IsA(elem->expr, Var))
1035 : {
1036 54 : if (((Var *) elem->expr)->varattno == attno)
1037 54 : return true;
1038 : }
1039 30 : else if (attno == 0)
1040 : {
1041 30 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1042 :
1043 : /*
1044 : * Note that unlike routines like match_index_to_operand() we
1045 : * don't need to care about RelabelType. Neither the index
1046 : * definition nor the inference clause should contain them.
1047 : */
1048 30 : if (equal(elem->expr, nattExpr))
1049 24 : return true;
1050 : }
1051 : }
1052 :
1053 36 : return false;
1054 : }
1055 :
1056 : /*
1057 : * estimate_rel_size - estimate # pages and # tuples in a table or index
1058 : *
1059 : * We also estimate the fraction of the pages that are marked all-visible in
1060 : * the visibility map, for use in estimation of index-only scans.
1061 : *
1062 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1063 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1064 : * the attribute widths for estimation purposes.
1065 : */
1066 : void
1067 406140 : estimate_rel_size(Relation rel, int32 *attr_widths,
1068 : BlockNumber *pages, double *tuples, double *allvisfrac)
1069 : {
1070 : BlockNumber curpages;
1071 : BlockNumber relpages;
1072 : double reltuples;
1073 : BlockNumber relallvisible;
1074 : double density;
1075 :
1076 406140 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1077 : {
1078 402672 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1079 : allvisfrac);
1080 : }
1081 3468 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1082 : {
1083 : /*
1084 : * XXX: It'd probably be good to move this into a callback, individual
1085 : * index types e.g. know if they have a metapage.
1086 : */
1087 :
1088 : /* it has storage, ok to call the smgr */
1089 984 : curpages = RelationGetNumberOfBlocks(rel);
1090 :
1091 : /* report estimated # pages */
1092 984 : *pages = curpages;
1093 : /* quick exit if rel is clearly empty */
1094 984 : if (curpages == 0)
1095 : {
1096 0 : *tuples = 0;
1097 0 : *allvisfrac = 0;
1098 0 : return;
1099 : }
1100 :
1101 : /* coerce values in pg_class to more desirable types */
1102 984 : relpages = (BlockNumber) rel->rd_rel->relpages;
1103 984 : reltuples = (double) rel->rd_rel->reltuples;
1104 984 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1105 :
1106 : /*
1107 : * Discount the metapage while estimating the number of tuples. This
1108 : * is a kluge because it assumes more than it ought to about index
1109 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1110 : * suspect for GiST indexes.
1111 : */
1112 984 : if (relpages > 0)
1113 : {
1114 966 : curpages--;
1115 966 : relpages--;
1116 : }
1117 :
1118 : /* estimate number of tuples from previous tuple density */
1119 984 : if (reltuples >= 0 && relpages > 0)
1120 666 : density = reltuples / (double) relpages;
1121 : else
1122 : {
1123 : /*
1124 : * If we have no data because the relation was never vacuumed,
1125 : * estimate tuple width from attribute datatypes. We assume here
1126 : * that the pages are completely full, which is OK for tables
1127 : * (since they've presumably not been VACUUMed yet) but is
1128 : * probably an overestimate for indexes. Fortunately
1129 : * get_relation_info() can clamp the overestimate to the parent
1130 : * table's size.
1131 : *
1132 : * Note: this code intentionally disregards alignment
1133 : * considerations, because (a) that would be gilding the lily
1134 : * considering how crude the estimate is, and (b) it creates
1135 : * platform dependencies in the default plans which are kind of a
1136 : * headache for regression testing.
1137 : *
1138 : * XXX: Should this logic be more index specific?
1139 : */
1140 : int32 tuple_width;
1141 :
1142 318 : tuple_width = get_rel_data_width(rel, attr_widths);
1143 318 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1144 318 : tuple_width += sizeof(ItemIdData);
1145 : /* note: integer division is intentional here */
1146 318 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1147 : }
1148 984 : *tuples = rint(density * (double) curpages);
1149 :
1150 : /*
1151 : * We use relallvisible as-is, rather than scaling it up like we do
1152 : * for the pages and tuples counts, on the theory that any pages added
1153 : * since the last VACUUM are most likely not marked all-visible. But
1154 : * costsize.c wants it converted to a fraction.
1155 : */
1156 984 : if (relallvisible == 0 || curpages <= 0)
1157 984 : *allvisfrac = 0;
1158 0 : else if ((double) relallvisible >= curpages)
1159 0 : *allvisfrac = 1;
1160 : else
1161 0 : *allvisfrac = (double) relallvisible / curpages;
1162 : }
1163 : else
1164 : {
1165 : /*
1166 : * Just use whatever's in pg_class. This covers foreign tables,
1167 : * sequences, and also relkinds without storage (shouldn't get here?);
1168 : * see initializations in AddNewRelationTuple(). Note that FDW must
1169 : * cope if reltuples is -1!
1170 : */
1171 2484 : *pages = rel->rd_rel->relpages;
1172 2484 : *tuples = rel->rd_rel->reltuples;
1173 2484 : *allvisfrac = 0;
1174 : }
1175 : }
1176 :
1177 :
1178 : /*
1179 : * get_rel_data_width
1180 : *
1181 : * Estimate the average width of (the data part of) the relation's tuples.
1182 : *
1183 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1184 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1185 : *
1186 : * Currently we ignore dropped columns. Ideally those should be included
1187 : * in the result, but we haven't got any way to get info about them; and
1188 : * since they might be mostly NULLs, treating them as zero-width is not
1189 : * necessarily the wrong thing anyway.
1190 : */
1191 : int32
1192 137410 : get_rel_data_width(Relation rel, int32 *attr_widths)
1193 : {
1194 137410 : int64 tuple_width = 0;
1195 : int i;
1196 :
1197 612528 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1198 : {
1199 475118 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1200 : int32 item_width;
1201 :
1202 475118 : if (att->attisdropped)
1203 2582 : continue;
1204 :
1205 : /* use previously cached data, if any */
1206 472536 : if (attr_widths != NULL && attr_widths[i] > 0)
1207 : {
1208 6180 : tuple_width += attr_widths[i];
1209 6180 : continue;
1210 : }
1211 :
1212 : /* This should match set_rel_width() in costsize.c */
1213 466356 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1214 466356 : if (item_width <= 0)
1215 : {
1216 464578 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1217 : Assert(item_width > 0);
1218 : }
1219 466356 : if (attr_widths != NULL)
1220 395652 : attr_widths[i] = item_width;
1221 466356 : tuple_width += item_width;
1222 : }
1223 :
1224 137410 : return clamp_width_est(tuple_width);
1225 : }
1226 :
1227 : /*
1228 : * get_relation_data_width
1229 : *
1230 : * External API for get_rel_data_width: same behavior except we have to
1231 : * open the relcache entry.
1232 : */
1233 : int32
1234 2496 : get_relation_data_width(Oid relid, int32 *attr_widths)
1235 : {
1236 : int32 result;
1237 : Relation relation;
1238 :
1239 : /* As above, assume relation is already locked */
1240 2496 : relation = table_open(relid, NoLock);
1241 :
1242 2496 : result = get_rel_data_width(relation, attr_widths);
1243 :
1244 2496 : table_close(relation, NoLock);
1245 :
1246 2496 : return result;
1247 : }
1248 :
1249 :
1250 : /*
1251 : * get_relation_constraints
1252 : *
1253 : * Retrieve the applicable constraint expressions of the given relation.
1254 : *
1255 : * Returns a List (possibly empty) of constraint expressions. Each one
1256 : * has been canonicalized, and its Vars are changed to have the varno
1257 : * indicated by rel->relid. This allows the expressions to be easily
1258 : * compared to expressions taken from WHERE.
1259 : *
1260 : * If include_noinherit is true, it's okay to include constraints that
1261 : * are marked NO INHERIT.
1262 : *
1263 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1264 : * and added to the result for each column that's marked attnotnull.
1265 : *
1266 : * If include_partition is true, and the relation is a partition,
1267 : * also include the partitioning constraints.
1268 : *
1269 : * Note: at present this is invoked at most once per relation per planner
1270 : * run, and in many cases it won't be invoked at all, so there seems no
1271 : * point in caching the data in RelOptInfo.
1272 : */
1273 : static List *
1274 20498 : get_relation_constraints(PlannerInfo *root,
1275 : Oid relationObjectId, RelOptInfo *rel,
1276 : bool include_noinherit,
1277 : bool include_notnull,
1278 : bool include_partition)
1279 : {
1280 20498 : List *result = NIL;
1281 20498 : Index varno = rel->relid;
1282 : Relation relation;
1283 : TupleConstr *constr;
1284 :
1285 : /*
1286 : * We assume the relation has already been safely locked.
1287 : */
1288 20498 : relation = table_open(relationObjectId, NoLock);
1289 :
1290 20498 : constr = relation->rd_att->constr;
1291 20498 : if (constr != NULL)
1292 : {
1293 7762 : int num_check = constr->num_check;
1294 : int i;
1295 :
1296 8198 : for (i = 0; i < num_check; i++)
1297 : {
1298 : Node *cexpr;
1299 :
1300 : /*
1301 : * If this constraint hasn't been fully validated yet, we must
1302 : * ignore it here. Also ignore if NO INHERIT and we weren't told
1303 : * that that's safe.
1304 : */
1305 436 : if (!constr->check[i].ccvalid)
1306 54 : continue;
1307 :
1308 : /*
1309 : * NOT ENFORCED constraints are always marked as invalid, which
1310 : * should have been ignored.
1311 : */
1312 : Assert(constr->check[i].ccenforced);
1313 :
1314 : /*
1315 : * Also ignore if NO INHERIT and we weren't told that that's safe.
1316 : */
1317 382 : if (constr->check[i].ccnoinherit && !include_noinherit)
1318 0 : continue;
1319 :
1320 :
1321 382 : cexpr = stringToNode(constr->check[i].ccbin);
1322 :
1323 : /*
1324 : * Run each expression through const-simplification and
1325 : * canonicalization. This is not just an optimization, but is
1326 : * necessary, because we will be comparing it to
1327 : * similarly-processed qual clauses, and may fail to detect valid
1328 : * matches without this. This must match the processing done to
1329 : * qual clauses in preprocess_expression()! (We can skip the
1330 : * stuff involving subqueries, however, since we don't allow any
1331 : * in check constraints.)
1332 : */
1333 382 : cexpr = eval_const_expressions(root, cexpr);
1334 :
1335 382 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1336 :
1337 : /* Fix Vars to have the desired varno */
1338 382 : if (varno != 1)
1339 370 : ChangeVarNodes(cexpr, 1, varno, 0);
1340 :
1341 : /*
1342 : * Finally, convert to implicit-AND format (that is, a List) and
1343 : * append the resulting item(s) to our output list.
1344 : */
1345 382 : result = list_concat(result,
1346 382 : make_ands_implicit((Expr *) cexpr));
1347 : }
1348 :
1349 : /* Add NOT NULL constraints in expression form, if requested */
1350 7762 : if (include_notnull && constr->has_not_null)
1351 : {
1352 7324 : int natts = relation->rd_att->natts;
1353 :
1354 29968 : for (i = 1; i <= natts; i++)
1355 : {
1356 22644 : Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1357 :
1358 22644 : if (att->attnotnull && !att->attisdropped)
1359 : {
1360 9150 : NullTest *ntest = makeNode(NullTest);
1361 :
1362 9150 : ntest->arg = (Expr *) makeVar(varno,
1363 : i,
1364 : att->atttypid,
1365 : att->atttypmod,
1366 : att->attcollation,
1367 : 0);
1368 9150 : ntest->nulltesttype = IS_NOT_NULL;
1369 :
1370 : /*
1371 : * argisrow=false is correct even for a composite column,
1372 : * because attnotnull does not represent a SQL-spec IS NOT
1373 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1374 : */
1375 9150 : ntest->argisrow = false;
1376 9150 : ntest->location = -1;
1377 9150 : result = lappend(result, ntest);
1378 : }
1379 : }
1380 : }
1381 : }
1382 :
1383 : /*
1384 : * Add partitioning constraints, if requested.
1385 : */
1386 20498 : if (include_partition && relation->rd_rel->relispartition)
1387 : {
1388 : /* make sure rel->partition_qual is set */
1389 12 : set_baserel_partition_constraint(relation, rel);
1390 12 : result = list_concat(result, rel->partition_qual);
1391 : }
1392 :
1393 20498 : table_close(relation, NoLock);
1394 :
1395 20498 : return result;
1396 : }
1397 :
1398 : /*
1399 : * Try loading data for the statistics object.
1400 : *
1401 : * We don't know if the data (specified by statOid and inh value) exist.
1402 : * The result is stored in stainfos list.
1403 : */
1404 : static void
1405 3760 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1406 : Oid statOid, bool inh,
1407 : Bitmapset *keys, List *exprs)
1408 : {
1409 : Form_pg_statistic_ext_data dataForm;
1410 : HeapTuple dtup;
1411 :
1412 3760 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1413 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1414 3760 : if (!HeapTupleIsValid(dtup))
1415 1882 : return;
1416 :
1417 1878 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1418 :
1419 : /* add one StatisticExtInfo for each kind built */
1420 1878 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1421 : {
1422 684 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1423 :
1424 684 : info->statOid = statOid;
1425 684 : info->inherit = dataForm->stxdinherit;
1426 684 : info->rel = rel;
1427 684 : info->kind = STATS_EXT_NDISTINCT;
1428 684 : info->keys = bms_copy(keys);
1429 684 : info->exprs = exprs;
1430 :
1431 684 : *stainfos = lappend(*stainfos, info);
1432 : }
1433 :
1434 1878 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1435 : {
1436 528 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1437 :
1438 528 : info->statOid = statOid;
1439 528 : info->inherit = dataForm->stxdinherit;
1440 528 : info->rel = rel;
1441 528 : info->kind = STATS_EXT_DEPENDENCIES;
1442 528 : info->keys = bms_copy(keys);
1443 528 : info->exprs = exprs;
1444 :
1445 528 : *stainfos = lappend(*stainfos, info);
1446 : }
1447 :
1448 1878 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1449 : {
1450 792 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1451 :
1452 792 : info->statOid = statOid;
1453 792 : info->inherit = dataForm->stxdinherit;
1454 792 : info->rel = rel;
1455 792 : info->kind = STATS_EXT_MCV;
1456 792 : info->keys = bms_copy(keys);
1457 792 : info->exprs = exprs;
1458 :
1459 792 : *stainfos = lappend(*stainfos, info);
1460 : }
1461 :
1462 1878 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1463 : {
1464 804 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1465 :
1466 804 : info->statOid = statOid;
1467 804 : info->inherit = dataForm->stxdinherit;
1468 804 : info->rel = rel;
1469 804 : info->kind = STATS_EXT_EXPRESSIONS;
1470 804 : info->keys = bms_copy(keys);
1471 804 : info->exprs = exprs;
1472 :
1473 804 : *stainfos = lappend(*stainfos, info);
1474 : }
1475 :
1476 1878 : ReleaseSysCache(dtup);
1477 : }
1478 :
1479 : /*
1480 : * get_relation_statistics
1481 : * Retrieve extended statistics defined on the table.
1482 : *
1483 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1484 : * the statistics. Note that this doesn't load the actual statistics data,
1485 : * just the identifying metadata. Only stats actually built are considered.
1486 : */
1487 : static List *
1488 426092 : get_relation_statistics(RelOptInfo *rel, Relation relation)
1489 : {
1490 426092 : Index varno = rel->relid;
1491 : List *statoidlist;
1492 426092 : List *stainfos = NIL;
1493 : ListCell *l;
1494 :
1495 426092 : statoidlist = RelationGetStatExtList(relation);
1496 :
1497 427972 : foreach(l, statoidlist)
1498 : {
1499 1880 : Oid statOid = lfirst_oid(l);
1500 : Form_pg_statistic_ext staForm;
1501 : HeapTuple htup;
1502 1880 : Bitmapset *keys = NULL;
1503 1880 : List *exprs = NIL;
1504 : int i;
1505 :
1506 1880 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1507 1880 : if (!HeapTupleIsValid(htup))
1508 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1509 1880 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1510 :
1511 : /*
1512 : * First, build the array of columns covered. This is ultimately
1513 : * wasted if no stats within the object have actually been built, but
1514 : * it doesn't seem worth troubling over that case.
1515 : */
1516 5302 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1517 3422 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1518 :
1519 : /*
1520 : * Preprocess expressions (if any). We read the expressions, run them
1521 : * through eval_const_expressions, and fix the varnos.
1522 : *
1523 : * XXX We don't know yet if there are any data for this stats object,
1524 : * with either stxdinherit value. But it's reasonable to assume there
1525 : * is at least one of those, possibly both. So it's better to process
1526 : * keys and expressions here.
1527 : */
1528 : {
1529 : bool isnull;
1530 : Datum datum;
1531 :
1532 : /* decode expression (if any) */
1533 1880 : datum = SysCacheGetAttr(STATEXTOID, htup,
1534 : Anum_pg_statistic_ext_stxexprs, &isnull);
1535 :
1536 1880 : if (!isnull)
1537 : {
1538 : char *exprsString;
1539 :
1540 808 : exprsString = TextDatumGetCString(datum);
1541 808 : exprs = (List *) stringToNode(exprsString);
1542 808 : pfree(exprsString);
1543 :
1544 : /*
1545 : * Run the expressions through eval_const_expressions. This is
1546 : * not just an optimization, but is necessary, because the
1547 : * planner will be comparing them to similarly-processed qual
1548 : * clauses, and may fail to detect valid matches without this.
1549 : * We must not use canonicalize_qual, however, since these
1550 : * aren't qual expressions.
1551 : */
1552 808 : exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1553 :
1554 : /* May as well fix opfuncids too */
1555 808 : fix_opfuncids((Node *) exprs);
1556 :
1557 : /*
1558 : * Modify the copies we obtain from the relcache to have the
1559 : * correct varno for the parent relation, so that they match
1560 : * up correctly against qual clauses.
1561 : */
1562 808 : if (varno != 1)
1563 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1564 : }
1565 : }
1566 :
1567 : /* extract statistics for possible values of stxdinherit flag */
1568 :
1569 1880 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1570 :
1571 1880 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1572 :
1573 1880 : ReleaseSysCache(htup);
1574 1880 : bms_free(keys);
1575 : }
1576 :
1577 426092 : list_free(statoidlist);
1578 :
1579 426092 : return stainfos;
1580 : }
1581 :
1582 : /*
1583 : * relation_excluded_by_constraints
1584 : *
1585 : * Detect whether the relation need not be scanned because it has either
1586 : * self-inconsistent restrictions, or restrictions inconsistent with the
1587 : * relation's applicable constraints.
1588 : *
1589 : * Note: this examines only rel->relid, rel->reloptkind, and
1590 : * rel->baserestrictinfo; therefore it can be called before filling in
1591 : * other fields of the RelOptInfo.
1592 : */
1593 : bool
1594 452102 : relation_excluded_by_constraints(PlannerInfo *root,
1595 : RelOptInfo *rel, RangeTblEntry *rte)
1596 : {
1597 : bool include_noinherit;
1598 : bool include_notnull;
1599 452102 : bool include_partition = false;
1600 : List *safe_restrictions;
1601 : List *constraint_pred;
1602 : List *safe_constraints;
1603 : ListCell *lc;
1604 :
1605 : /* As of now, constraint exclusion works only with simple relations. */
1606 : Assert(IS_SIMPLE_REL(rel));
1607 :
1608 : /*
1609 : * If there are no base restriction clauses, we have no hope of proving
1610 : * anything below, so fall out quickly.
1611 : */
1612 452102 : if (rel->baserestrictinfo == NIL)
1613 195530 : return false;
1614 :
1615 : /*
1616 : * Regardless of the setting of constraint_exclusion, detect
1617 : * constant-FALSE-or-NULL restriction clauses. Although const-folding
1618 : * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1619 : * list can still have other members besides the FALSE constant, due to
1620 : * qual pushdown and other mechanisms; so check them all. This doesn't
1621 : * fire very often, but it seems cheap enough to be worth doing anyway.
1622 : * (Without this, we'd miss some optimizations that 9.5 and earlier found
1623 : * via much more roundabout methods.)
1624 : */
1625 641776 : foreach(lc, rel->baserestrictinfo)
1626 : {
1627 385660 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1628 385660 : Expr *clause = rinfo->clause;
1629 :
1630 385660 : if (clause && IsA(clause, Const) &&
1631 456 : (((Const *) clause)->constisnull ||
1632 456 : !DatumGetBool(((Const *) clause)->constvalue)))
1633 456 : return true;
1634 : }
1635 :
1636 : /*
1637 : * Skip further tests, depending on constraint_exclusion.
1638 : */
1639 256116 : switch (constraint_exclusion)
1640 : {
1641 54 : case CONSTRAINT_EXCLUSION_OFF:
1642 : /* In 'off' mode, never make any further tests */
1643 54 : return false;
1644 :
1645 255942 : case CONSTRAINT_EXCLUSION_PARTITION:
1646 :
1647 : /*
1648 : * When constraint_exclusion is set to 'partition' we only handle
1649 : * appendrel members. Partition pruning has already been applied,
1650 : * so there is no need to consider the rel's partition constraints
1651 : * here.
1652 : */
1653 255942 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1654 20736 : break; /* appendrel member, so process it */
1655 235206 : return false;
1656 :
1657 120 : case CONSTRAINT_EXCLUSION_ON:
1658 :
1659 : /*
1660 : * In 'on' mode, always apply constraint exclusion. If we are
1661 : * considering a baserel that is a partition (i.e., it was
1662 : * directly named rather than expanded from a parent table), then
1663 : * its partition constraints haven't been considered yet, so
1664 : * include them in the processing here.
1665 : */
1666 120 : if (rel->reloptkind == RELOPT_BASEREL)
1667 90 : include_partition = true;
1668 120 : break; /* always try to exclude */
1669 : }
1670 :
1671 : /*
1672 : * Check for self-contradictory restriction clauses. We dare not make
1673 : * deductions with non-immutable functions, but any immutable clauses that
1674 : * are self-contradictory allow us to conclude the scan is unnecessary.
1675 : *
1676 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1677 : * expecting to see any in its predicate argument.
1678 : */
1679 20856 : safe_restrictions = NIL;
1680 48946 : foreach(lc, rel->baserestrictinfo)
1681 : {
1682 28090 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1683 :
1684 28090 : if (!contain_mutable_functions((Node *) rinfo->clause))
1685 27084 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1686 : }
1687 :
1688 : /*
1689 : * We can use weak refutation here, since we're comparing restriction
1690 : * clauses with restriction clauses.
1691 : */
1692 20856 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1693 72 : return true;
1694 :
1695 : /*
1696 : * Only plain relations have constraints, so stop here for other rtekinds.
1697 : */
1698 20784 : if (rte->rtekind != RTE_RELATION)
1699 286 : return false;
1700 :
1701 : /*
1702 : * If we are scanning just this table, we can use NO INHERIT constraints,
1703 : * but not if we're scanning its children too. (Note that partitioned
1704 : * tables should never have NO INHERIT constraints; but it's not necessary
1705 : * for us to assume that here.)
1706 : */
1707 20498 : include_noinherit = !rte->inh;
1708 :
1709 : /*
1710 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1711 : * this is a partitioned table. In future we might track their
1712 : * inheritance status more accurately, allowing this to be refined.
1713 : *
1714 : * XXX do we need/want to change this?
1715 : */
1716 20498 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1717 :
1718 : /*
1719 : * Fetch the appropriate set of constraint expressions.
1720 : */
1721 20498 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1722 : include_noinherit,
1723 : include_notnull,
1724 : include_partition);
1725 :
1726 : /*
1727 : * We do not currently enforce that CHECK constraints contain only
1728 : * immutable functions, so it's necessary to check here. We daren't draw
1729 : * conclusions from plan-time evaluation of non-immutable functions. Since
1730 : * they're ANDed, we can just ignore any mutable constraints in the list,
1731 : * and reason about the rest.
1732 : */
1733 20498 : safe_constraints = NIL;
1734 30142 : foreach(lc, constraint_pred)
1735 : {
1736 9644 : Node *pred = (Node *) lfirst(lc);
1737 :
1738 9644 : if (!contain_mutable_functions(pred))
1739 9644 : safe_constraints = lappend(safe_constraints, pred);
1740 : }
1741 :
1742 : /*
1743 : * The constraints are effectively ANDed together, so we can just try to
1744 : * refute the entire collection at once. This may allow us to make proofs
1745 : * that would fail if we took them individually.
1746 : *
1747 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1748 : * an obvious optimization. Some of the clauses might be OR clauses that
1749 : * have volatile and nonvolatile subclauses, and it's OK to make
1750 : * deductions with the nonvolatile parts.
1751 : *
1752 : * We need strong refutation because we have to prove that the constraints
1753 : * would yield false, not just NULL.
1754 : */
1755 20498 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1756 78 : return true;
1757 :
1758 20420 : return false;
1759 : }
1760 :
1761 :
1762 : /*
1763 : * build_physical_tlist
1764 : *
1765 : * Build a targetlist consisting of exactly the relation's user attributes,
1766 : * in order. The executor can special-case such tlists to avoid a projection
1767 : * step at runtime, so we use such tlists preferentially for scan nodes.
1768 : *
1769 : * Exception: if there are any dropped or missing columns, we punt and return
1770 : * NIL. Ideally we would like to handle these cases too. However this
1771 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1772 : * for a tlist that includes vars of no-longer-existent types. In theory we
1773 : * could dig out the required info from the pg_attribute entries of the
1774 : * relation, but that data is not readily available to ExecTypeFromTL.
1775 : * For now, we don't apply the physical-tlist optimization when there are
1776 : * dropped cols.
1777 : *
1778 : * We also support building a "physical" tlist for subqueries, functions,
1779 : * values lists, table expressions, and CTEs, since the same optimization can
1780 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1781 : * NamedTuplestoreScan, and WorkTableScan nodes.
1782 : */
1783 : List *
1784 167694 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
1785 : {
1786 167694 : List *tlist = NIL;
1787 167694 : Index varno = rel->relid;
1788 167694 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
1789 : Relation relation;
1790 : Query *subquery;
1791 : Var *var;
1792 : ListCell *l;
1793 : int attrno,
1794 : numattrs;
1795 : List *colvars;
1796 :
1797 167694 : switch (rte->rtekind)
1798 : {
1799 143662 : case RTE_RELATION:
1800 : /* Assume we already have adequate lock */
1801 143662 : relation = table_open(rte->relid, NoLock);
1802 :
1803 143662 : numattrs = RelationGetNumberOfAttributes(relation);
1804 2548168 : for (attrno = 1; attrno <= numattrs; attrno++)
1805 : {
1806 2404644 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1807 : attrno - 1);
1808 :
1809 2404644 : if (att_tup->attisdropped || att_tup->atthasmissing)
1810 : {
1811 : /* found a dropped or missing col, so punt */
1812 138 : tlist = NIL;
1813 138 : break;
1814 : }
1815 :
1816 2404506 : var = makeVar(varno,
1817 : attrno,
1818 : att_tup->atttypid,
1819 : att_tup->atttypmod,
1820 : att_tup->attcollation,
1821 : 0);
1822 :
1823 2404506 : tlist = lappend(tlist,
1824 2404506 : makeTargetEntry((Expr *) var,
1825 : attrno,
1826 : NULL,
1827 : false));
1828 : }
1829 :
1830 143662 : table_close(relation, NoLock);
1831 143662 : break;
1832 :
1833 2108 : case RTE_SUBQUERY:
1834 2108 : subquery = rte->subquery;
1835 7620 : foreach(l, subquery->targetList)
1836 : {
1837 5512 : TargetEntry *tle = (TargetEntry *) lfirst(l);
1838 :
1839 : /*
1840 : * A resjunk column of the subquery can be reflected as
1841 : * resjunk in the physical tlist; we need not punt.
1842 : */
1843 5512 : var = makeVarFromTargetEntry(varno, tle);
1844 :
1845 5512 : tlist = lappend(tlist,
1846 5512 : makeTargetEntry((Expr *) var,
1847 5512 : tle->resno,
1848 : NULL,
1849 5512 : tle->resjunk));
1850 : }
1851 2108 : break;
1852 :
1853 21924 : case RTE_FUNCTION:
1854 : case RTE_TABLEFUNC:
1855 : case RTE_VALUES:
1856 : case RTE_CTE:
1857 : case RTE_NAMEDTUPLESTORE:
1858 : case RTE_RESULT:
1859 : /* Not all of these can have dropped cols, but share code anyway */
1860 21924 : expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
1861 : true /* include dropped */ , NULL, &colvars);
1862 107436 : foreach(l, colvars)
1863 : {
1864 85512 : var = (Var *) lfirst(l);
1865 :
1866 : /*
1867 : * A non-Var in expandRTE's output means a dropped column;
1868 : * must punt.
1869 : */
1870 85512 : if (!IsA(var, Var))
1871 : {
1872 0 : tlist = NIL;
1873 0 : break;
1874 : }
1875 :
1876 85512 : tlist = lappend(tlist,
1877 85512 : makeTargetEntry((Expr *) var,
1878 85512 : var->varattno,
1879 : NULL,
1880 : false));
1881 : }
1882 21924 : break;
1883 :
1884 0 : default:
1885 : /* caller error */
1886 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1887 : (int) rte->rtekind);
1888 : break;
1889 : }
1890 :
1891 167694 : return tlist;
1892 : }
1893 :
1894 : /*
1895 : * build_index_tlist
1896 : *
1897 : * Build a targetlist representing the columns of the specified index.
1898 : * Each column is represented by a Var for the corresponding base-relation
1899 : * column, or an expression in base-relation Vars, as appropriate.
1900 : *
1901 : * There are never any dropped columns in indexes, so unlike
1902 : * build_physical_tlist, we need no failure case.
1903 : */
1904 : static List *
1905 645860 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
1906 : Relation heapRelation)
1907 : {
1908 645860 : List *tlist = NIL;
1909 645860 : Index varno = index->rel->relid;
1910 : ListCell *indexpr_item;
1911 : int i;
1912 :
1913 645860 : indexpr_item = list_head(index->indexprs);
1914 1893664 : for (i = 0; i < index->ncolumns; i++)
1915 : {
1916 1247804 : int indexkey = index->indexkeys[i];
1917 : Expr *indexvar;
1918 :
1919 1247804 : if (indexkey != 0)
1920 : {
1921 : /* simple column */
1922 : const FormData_pg_attribute *att_tup;
1923 :
1924 1245230 : if (indexkey < 0)
1925 0 : att_tup = SystemAttributeDefinition(indexkey);
1926 : else
1927 1245230 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
1928 :
1929 1245230 : indexvar = (Expr *) makeVar(varno,
1930 : indexkey,
1931 : att_tup->atttypid,
1932 : att_tup->atttypmod,
1933 : att_tup->attcollation,
1934 : 0);
1935 : }
1936 : else
1937 : {
1938 : /* expression column */
1939 2574 : if (indexpr_item == NULL)
1940 0 : elog(ERROR, "wrong number of index expressions");
1941 2574 : indexvar = (Expr *) lfirst(indexpr_item);
1942 2574 : indexpr_item = lnext(index->indexprs, indexpr_item);
1943 : }
1944 :
1945 1247804 : tlist = lappend(tlist,
1946 1247804 : makeTargetEntry(indexvar,
1947 1247804 : i + 1,
1948 : NULL,
1949 : false));
1950 : }
1951 645860 : if (indexpr_item != NULL)
1952 0 : elog(ERROR, "wrong number of index expressions");
1953 :
1954 645860 : return tlist;
1955 : }
1956 :
1957 : /*
1958 : * restriction_selectivity
1959 : *
1960 : * Returns the selectivity of a specified restriction operator clause.
1961 : * This code executes registered procedures stored in the
1962 : * operator relation, by calling the function manager.
1963 : *
1964 : * See clause_selectivity() for the meaning of the additional parameters.
1965 : */
1966 : Selectivity
1967 612846 : restriction_selectivity(PlannerInfo *root,
1968 : Oid operatorid,
1969 : List *args,
1970 : Oid inputcollid,
1971 : int varRelid)
1972 : {
1973 612846 : RegProcedure oprrest = get_oprrest(operatorid);
1974 : float8 result;
1975 :
1976 : /*
1977 : * if the oprrest procedure is missing for whatever reason, use a
1978 : * selectivity of 0.5
1979 : */
1980 612846 : if (!oprrest)
1981 160 : return (Selectivity) 0.5;
1982 :
1983 612686 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
1984 : inputcollid,
1985 : PointerGetDatum(root),
1986 : ObjectIdGetDatum(operatorid),
1987 : PointerGetDatum(args),
1988 : Int32GetDatum(varRelid)));
1989 :
1990 612662 : if (result < 0.0 || result > 1.0)
1991 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
1992 :
1993 612662 : return (Selectivity) result;
1994 : }
1995 :
1996 : /*
1997 : * join_selectivity
1998 : *
1999 : * Returns the selectivity of a specified join operator clause.
2000 : * This code executes registered procedures stored in the
2001 : * operator relation, by calling the function manager.
2002 : *
2003 : * See clause_selectivity() for the meaning of the additional parameters.
2004 : */
2005 : Selectivity
2006 200136 : join_selectivity(PlannerInfo *root,
2007 : Oid operatorid,
2008 : List *args,
2009 : Oid inputcollid,
2010 : JoinType jointype,
2011 : SpecialJoinInfo *sjinfo)
2012 : {
2013 200136 : RegProcedure oprjoin = get_oprjoin(operatorid);
2014 : float8 result;
2015 :
2016 : /*
2017 : * if the oprjoin procedure is missing for whatever reason, use a
2018 : * selectivity of 0.5
2019 : */
2020 200136 : if (!oprjoin)
2021 146 : return (Selectivity) 0.5;
2022 :
2023 199990 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2024 : inputcollid,
2025 : PointerGetDatum(root),
2026 : ObjectIdGetDatum(operatorid),
2027 : PointerGetDatum(args),
2028 : Int16GetDatum(jointype),
2029 : PointerGetDatum(sjinfo)));
2030 :
2031 199990 : if (result < 0.0 || result > 1.0)
2032 0 : elog(ERROR, "invalid join selectivity: %f", result);
2033 :
2034 199990 : return (Selectivity) result;
2035 : }
2036 :
2037 : /*
2038 : * function_selectivity
2039 : *
2040 : * Returns the selectivity of a specified boolean function clause.
2041 : * This code executes registered procedures stored in the
2042 : * pg_proc relation, by calling the function manager.
2043 : *
2044 : * See clause_selectivity() for the meaning of the additional parameters.
2045 : */
2046 : Selectivity
2047 10916 : function_selectivity(PlannerInfo *root,
2048 : Oid funcid,
2049 : List *args,
2050 : Oid inputcollid,
2051 : bool is_join,
2052 : int varRelid,
2053 : JoinType jointype,
2054 : SpecialJoinInfo *sjinfo)
2055 : {
2056 10916 : RegProcedure prosupport = get_func_support(funcid);
2057 : SupportRequestSelectivity req;
2058 : SupportRequestSelectivity *sresult;
2059 :
2060 : /*
2061 : * If no support function is provided, use our historical default
2062 : * estimate, 0.3333333. This seems a pretty unprincipled choice, but
2063 : * Postgres has been using that estimate for function calls since 1992.
2064 : * The hoariness of this behavior suggests that we should not be in too
2065 : * much hurry to use another value.
2066 : */
2067 10916 : if (!prosupport)
2068 10886 : return (Selectivity) 0.3333333;
2069 :
2070 30 : req.type = T_SupportRequestSelectivity;
2071 30 : req.root = root;
2072 30 : req.funcid = funcid;
2073 30 : req.args = args;
2074 30 : req.inputcollid = inputcollid;
2075 30 : req.is_join = is_join;
2076 30 : req.varRelid = varRelid;
2077 30 : req.jointype = jointype;
2078 30 : req.sjinfo = sjinfo;
2079 30 : req.selectivity = -1; /* to catch failure to set the value */
2080 :
2081 : sresult = (SupportRequestSelectivity *)
2082 30 : DatumGetPointer(OidFunctionCall1(prosupport,
2083 : PointerGetDatum(&req)));
2084 :
2085 : /* If support function fails, use default */
2086 30 : if (sresult != &req)
2087 0 : return (Selectivity) 0.3333333;
2088 :
2089 30 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2090 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2091 :
2092 30 : return (Selectivity) req.selectivity;
2093 : }
2094 :
2095 : /*
2096 : * add_function_cost
2097 : *
2098 : * Get an estimate of the execution cost of a function, and *add* it to
2099 : * the contents of *cost. The estimate may include both one-time and
2100 : * per-tuple components, since QualCost does.
2101 : *
2102 : * The funcid must always be supplied. If it is being called as the
2103 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2104 : * WindowFunc, etc), pass that as "node", else pass NULL.
2105 : *
2106 : * In some usages root might be NULL, too.
2107 : */
2108 : void
2109 1071464 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2110 : QualCost *cost)
2111 : {
2112 : HeapTuple proctup;
2113 : Form_pg_proc procform;
2114 :
2115 1071464 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2116 1071464 : if (!HeapTupleIsValid(proctup))
2117 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2118 1071464 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2119 :
2120 1071464 : if (OidIsValid(procform->prosupport))
2121 : {
2122 : SupportRequestCost req;
2123 : SupportRequestCost *sresult;
2124 :
2125 32492 : req.type = T_SupportRequestCost;
2126 32492 : req.root = root;
2127 32492 : req.funcid = funcid;
2128 32492 : req.node = node;
2129 :
2130 : /* Initialize cost fields so that support function doesn't have to */
2131 32492 : req.startup = 0;
2132 32492 : req.per_tuple = 0;
2133 :
2134 : sresult = (SupportRequestCost *)
2135 32492 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2136 : PointerGetDatum(&req)));
2137 :
2138 32492 : if (sresult == &req)
2139 : {
2140 : /* Success, so accumulate support function's estimate into *cost */
2141 18 : cost->startup += req.startup;
2142 18 : cost->per_tuple += req.per_tuple;
2143 18 : ReleaseSysCache(proctup);
2144 18 : return;
2145 : }
2146 : }
2147 :
2148 : /* No support function, or it failed, so rely on procost */
2149 1071446 : cost->per_tuple += procform->procost * cpu_operator_cost;
2150 :
2151 1071446 : ReleaseSysCache(proctup);
2152 : }
2153 :
2154 : /*
2155 : * get_function_rows
2156 : *
2157 : * Get an estimate of the number of rows returned by a set-returning function.
2158 : *
2159 : * The funcid must always be supplied. In current usage, the calling node
2160 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2161 : * But it's a good idea to not fail if it's NULL.
2162 : *
2163 : * In some usages root might be NULL, too.
2164 : *
2165 : * Note: this returns the unfiltered result of the support function, if any.
2166 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2167 : * leave it to the caller to do so.
2168 : */
2169 : double
2170 48920 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2171 : {
2172 : HeapTuple proctup;
2173 : Form_pg_proc procform;
2174 : double result;
2175 :
2176 48920 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2177 48920 : if (!HeapTupleIsValid(proctup))
2178 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2179 48920 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2180 :
2181 : Assert(procform->proretset); /* else caller error */
2182 :
2183 48920 : if (OidIsValid(procform->prosupport))
2184 : {
2185 : SupportRequestRows req;
2186 : SupportRequestRows *sresult;
2187 :
2188 18926 : req.type = T_SupportRequestRows;
2189 18926 : req.root = root;
2190 18926 : req.funcid = funcid;
2191 18926 : req.node = node;
2192 :
2193 18926 : req.rows = 0; /* just for sanity */
2194 :
2195 : sresult = (SupportRequestRows *)
2196 18926 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2197 : PointerGetDatum(&req)));
2198 :
2199 18926 : if (sresult == &req)
2200 : {
2201 : /* Success */
2202 13252 : ReleaseSysCache(proctup);
2203 13252 : return req.rows;
2204 : }
2205 : }
2206 :
2207 : /* No support function, or it failed, so rely on prorows */
2208 35668 : result = procform->prorows;
2209 :
2210 35668 : ReleaseSysCache(proctup);
2211 :
2212 35668 : return result;
2213 : }
2214 :
2215 : /*
2216 : * has_unique_index
2217 : *
2218 : * Detect whether there is a unique index on the specified attribute
2219 : * of the specified relation, thus allowing us to conclude that all
2220 : * the (non-null) values of the attribute are distinct.
2221 : *
2222 : * This function does not check the index's indimmediate property, which
2223 : * means that uniqueness may transiently fail to hold intra-transaction.
2224 : * That's appropriate when we are making statistical estimates, but beware
2225 : * of using this for any correctness proofs.
2226 : */
2227 : bool
2228 1785050 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2229 : {
2230 : ListCell *ilist;
2231 :
2232 4412752 : foreach(ilist, rel->indexlist)
2233 : {
2234 3227552 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2235 :
2236 : /*
2237 : * Note: ignore partial indexes, since they don't allow us to conclude
2238 : * that all attr values are distinct, *unless* they are marked predOK
2239 : * which means we know the index's predicate is satisfied by the
2240 : * query. We don't take any interest in expressional indexes either.
2241 : * Also, a multicolumn unique index doesn't allow us to conclude that
2242 : * just the specified attr is unique.
2243 : */
2244 3227552 : if (index->unique &&
2245 2243904 : index->nkeycolumns == 1 &&
2246 1251724 : index->indexkeys[0] == attno &&
2247 599886 : (index->indpred == NIL || index->predOK))
2248 599850 : return true;
2249 : }
2250 1185200 : return false;
2251 : }
2252 :
2253 :
2254 : /*
2255 : * has_row_triggers
2256 : *
2257 : * Detect whether the specified relation has any row-level triggers for event.
2258 : */
2259 : bool
2260 498 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2261 : {
2262 498 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2263 : Relation relation;
2264 : TriggerDesc *trigDesc;
2265 498 : bool result = false;
2266 :
2267 : /* Assume we already have adequate lock */
2268 498 : relation = table_open(rte->relid, NoLock);
2269 :
2270 498 : trigDesc = relation->trigdesc;
2271 498 : switch (event)
2272 : {
2273 162 : case CMD_INSERT:
2274 162 : if (trigDesc &&
2275 26 : (trigDesc->trig_insert_after_row ||
2276 14 : trigDesc->trig_insert_before_row))
2277 26 : result = true;
2278 162 : break;
2279 182 : case CMD_UPDATE:
2280 182 : if (trigDesc &&
2281 48 : (trigDesc->trig_update_after_row ||
2282 28 : trigDesc->trig_update_before_row))
2283 36 : result = true;
2284 182 : break;
2285 154 : case CMD_DELETE:
2286 154 : if (trigDesc &&
2287 30 : (trigDesc->trig_delete_after_row ||
2288 18 : trigDesc->trig_delete_before_row))
2289 16 : result = true;
2290 154 : break;
2291 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2292 0 : case CMD_MERGE:
2293 0 : result = false;
2294 0 : break;
2295 0 : default:
2296 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2297 : break;
2298 : }
2299 :
2300 498 : table_close(relation, NoLock);
2301 498 : return result;
2302 : }
2303 :
2304 : /*
2305 : * has_stored_generated_columns
2306 : *
2307 : * Does table identified by RTI have any STORED GENERATED columns?
2308 : */
2309 : bool
2310 420 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2311 : {
2312 420 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2313 : Relation relation;
2314 : TupleDesc tupdesc;
2315 420 : bool result = false;
2316 :
2317 : /* Assume we already have adequate lock */
2318 420 : relation = table_open(rte->relid, NoLock);
2319 :
2320 420 : tupdesc = RelationGetDescr(relation);
2321 420 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2322 :
2323 420 : table_close(relation, NoLock);
2324 :
2325 420 : return result;
2326 : }
2327 :
2328 : /*
2329 : * get_dependent_generated_columns
2330 : *
2331 : * Get the column numbers of any STORED GENERATED columns of the relation
2332 : * that depend on any column listed in target_cols. Both the input and
2333 : * result bitmapsets contain column numbers offset by
2334 : * FirstLowInvalidHeapAttributeNumber.
2335 : */
2336 : Bitmapset *
2337 82 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2338 : Bitmapset *target_cols)
2339 : {
2340 82 : Bitmapset *dependentCols = NULL;
2341 82 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2342 : Relation relation;
2343 : TupleDesc tupdesc;
2344 : TupleConstr *constr;
2345 :
2346 : /* Assume we already have adequate lock */
2347 82 : relation = table_open(rte->relid, NoLock);
2348 :
2349 82 : tupdesc = RelationGetDescr(relation);
2350 82 : constr = tupdesc->constr;
2351 :
2352 82 : if (constr && constr->has_generated_stored)
2353 : {
2354 8 : for (int i = 0; i < constr->num_defval; i++)
2355 : {
2356 4 : AttrDefault *defval = &constr->defval[i];
2357 : Node *expr;
2358 4 : Bitmapset *attrs_used = NULL;
2359 :
2360 : /* skip if not generated column */
2361 4 : if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2362 0 : continue;
2363 :
2364 : /* identify columns this generated column depends on */
2365 4 : expr = stringToNode(defval->adbin);
2366 4 : pull_varattnos(expr, 1, &attrs_used);
2367 :
2368 4 : if (bms_overlap(target_cols, attrs_used))
2369 4 : dependentCols = bms_add_member(dependentCols,
2370 4 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2371 : }
2372 : }
2373 :
2374 82 : table_close(relation, NoLock);
2375 :
2376 82 : return dependentCols;
2377 : }
2378 :
2379 : /*
2380 : * set_relation_partition_info
2381 : *
2382 : * Set partitioning scheme and related information for a partitioned table.
2383 : */
2384 : static void
2385 16576 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2386 : Relation relation)
2387 : {
2388 : PartitionDesc partdesc;
2389 :
2390 : /*
2391 : * Create the PartitionDirectory infrastructure if we didn't already.
2392 : */
2393 16576 : if (root->glob->partition_directory == NULL)
2394 : {
2395 11360 : root->glob->partition_directory =
2396 11360 : CreatePartitionDirectory(CurrentMemoryContext, true);
2397 : }
2398 :
2399 16576 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2400 : relation);
2401 16576 : rel->part_scheme = find_partition_scheme(root, relation);
2402 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2403 16576 : rel->boundinfo = partdesc->boundinfo;
2404 16576 : rel->nparts = partdesc->nparts;
2405 16576 : set_baserel_partition_key_exprs(relation, rel);
2406 16576 : set_baserel_partition_constraint(relation, rel);
2407 16576 : }
2408 :
2409 : /*
2410 : * find_partition_scheme
2411 : *
2412 : * Find or create a PartitionScheme for this Relation.
2413 : */
2414 : static PartitionScheme
2415 16576 : find_partition_scheme(PlannerInfo *root, Relation relation)
2416 : {
2417 16576 : PartitionKey partkey = RelationGetPartitionKey(relation);
2418 : ListCell *lc;
2419 : int partnatts,
2420 : i;
2421 : PartitionScheme part_scheme;
2422 :
2423 : /* A partitioned table should have a partition key. */
2424 : Assert(partkey != NULL);
2425 :
2426 16576 : partnatts = partkey->partnatts;
2427 :
2428 : /* Search for a matching partition scheme and return if found one. */
2429 18436 : foreach(lc, root->part_schemes)
2430 : {
2431 5814 : part_scheme = lfirst(lc);
2432 :
2433 : /* Match partitioning strategy and number of keys. */
2434 5814 : if (partkey->strategy != part_scheme->strategy ||
2435 4836 : partnatts != part_scheme->partnatts)
2436 1410 : continue;
2437 :
2438 : /* Match partition key type properties. */
2439 4404 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2440 3954 : sizeof(Oid) * partnatts) != 0 ||
2441 3954 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2442 3954 : sizeof(Oid) * partnatts) != 0 ||
2443 3954 : memcmp(partkey->partcollation, part_scheme->partcollation,
2444 : sizeof(Oid) * partnatts) != 0)
2445 450 : continue;
2446 :
2447 : /*
2448 : * Length and byval information should match when partopcintype
2449 : * matches.
2450 : */
2451 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2452 : sizeof(int16) * partnatts) == 0);
2453 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2454 : sizeof(bool) * partnatts) == 0);
2455 :
2456 : /*
2457 : * If partopfamily and partopcintype matched, must have the same
2458 : * partition comparison functions. Note that we cannot reliably
2459 : * Assert the equality of function structs themselves for they might
2460 : * be different across PartitionKey's, so just Assert for the function
2461 : * OIDs.
2462 : */
2463 : #ifdef USE_ASSERT_CHECKING
2464 : for (i = 0; i < partkey->partnatts; i++)
2465 : Assert(partkey->partsupfunc[i].fn_oid ==
2466 : part_scheme->partsupfunc[i].fn_oid);
2467 : #endif
2468 :
2469 : /* Found matching partition scheme. */
2470 3954 : return part_scheme;
2471 : }
2472 :
2473 : /*
2474 : * Did not find matching partition scheme. Create one copying relevant
2475 : * information from the relcache. We need to copy the contents of the
2476 : * array since the relcache entry may not survive after we have closed the
2477 : * relation.
2478 : */
2479 12622 : part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2480 12622 : part_scheme->strategy = partkey->strategy;
2481 12622 : part_scheme->partnatts = partkey->partnatts;
2482 :
2483 12622 : part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2484 12622 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2485 : sizeof(Oid) * partnatts);
2486 :
2487 12622 : part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2488 12622 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2489 : sizeof(Oid) * partnatts);
2490 :
2491 12622 : part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2492 12622 : memcpy(part_scheme->partcollation, partkey->partcollation,
2493 : sizeof(Oid) * partnatts);
2494 :
2495 12622 : part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2496 12622 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2497 : sizeof(int16) * partnatts);
2498 :
2499 12622 : part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2500 12622 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2501 : sizeof(bool) * partnatts);
2502 :
2503 12622 : part_scheme->partsupfunc = (FmgrInfo *)
2504 12622 : palloc(sizeof(FmgrInfo) * partnatts);
2505 27062 : for (i = 0; i < partnatts; i++)
2506 14440 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2507 : CurrentMemoryContext);
2508 :
2509 : /* Add the partitioning scheme to PlannerInfo. */
2510 12622 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2511 :
2512 12622 : return part_scheme;
2513 : }
2514 :
2515 : /*
2516 : * set_baserel_partition_key_exprs
2517 : *
2518 : * Builds partition key expressions for the given base relation and fills
2519 : * rel->partexprs.
2520 : */
2521 : static void
2522 16576 : set_baserel_partition_key_exprs(Relation relation,
2523 : RelOptInfo *rel)
2524 : {
2525 16576 : PartitionKey partkey = RelationGetPartitionKey(relation);
2526 : int partnatts;
2527 : int cnt;
2528 : List **partexprs;
2529 : ListCell *lc;
2530 16576 : Index varno = rel->relid;
2531 :
2532 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2533 :
2534 : /* A partitioned table should have a partition key. */
2535 : Assert(partkey != NULL);
2536 :
2537 16576 : partnatts = partkey->partnatts;
2538 16576 : partexprs = (List **) palloc(sizeof(List *) * partnatts);
2539 16576 : lc = list_head(partkey->partexprs);
2540 :
2541 35000 : for (cnt = 0; cnt < partnatts; cnt++)
2542 : {
2543 : Expr *partexpr;
2544 18424 : AttrNumber attno = partkey->partattrs[cnt];
2545 :
2546 18424 : if (attno != InvalidAttrNumber)
2547 : {
2548 : /* Single column partition key is stored as a Var node. */
2549 : Assert(attno > 0);
2550 :
2551 17494 : partexpr = (Expr *) makeVar(varno, attno,
2552 17494 : partkey->parttypid[cnt],
2553 17494 : partkey->parttypmod[cnt],
2554 17494 : partkey->parttypcoll[cnt], 0);
2555 : }
2556 : else
2557 : {
2558 930 : if (lc == NULL)
2559 0 : elog(ERROR, "wrong number of partition key expressions");
2560 :
2561 : /* Re-stamp the expression with given varno. */
2562 930 : partexpr = (Expr *) copyObject(lfirst(lc));
2563 930 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2564 930 : lc = lnext(partkey->partexprs, lc);
2565 : }
2566 :
2567 : /* Base relations have a single expression per key. */
2568 18424 : partexprs[cnt] = list_make1(partexpr);
2569 : }
2570 :
2571 16576 : rel->partexprs = partexprs;
2572 :
2573 : /*
2574 : * A base relation does not have nullable partition key expressions, since
2575 : * no outer join is involved. We still allocate an array of empty
2576 : * expression lists to keep partition key expression handling code simple.
2577 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2578 : */
2579 16576 : rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2580 16576 : }
2581 :
2582 : /*
2583 : * set_baserel_partition_constraint
2584 : *
2585 : * Builds the partition constraint for the given base relation and sets it
2586 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2587 : * given relation.
2588 : */
2589 : static void
2590 16588 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2591 : {
2592 : List *partconstr;
2593 :
2594 16588 : if (rel->partition_qual) /* already done */
2595 0 : return;
2596 :
2597 : /*
2598 : * Run the partition quals through const-simplification similar to check
2599 : * constraints. We skip canonicalize_qual, though, because partition
2600 : * quals should be in canonical form already; also, since the qual is in
2601 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2602 : * format and back again.
2603 : */
2604 16588 : partconstr = RelationGetPartitionQual(relation);
2605 16588 : if (partconstr)
2606 : {
2607 3334 : partconstr = (List *) expression_planner((Expr *) partconstr);
2608 3334 : if (rel->relid != 1)
2609 3252 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2610 3334 : rel->partition_qual = partconstr;
2611 : }
2612 : }
|