Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/cost.h"
40 : #include "optimizer/optimizer.h"
41 : #include "optimizer/plancat.h"
42 : #include "parser/parse_relation.h"
43 : #include "parser/parsetree.h"
44 : #include "partitioning/partdesc.h"
45 : #include "rewrite/rewriteHandler.h"
46 : #include "rewrite/rewriteManip.h"
47 : #include "statistics/statistics.h"
48 : #include "storage/bufmgr.h"
49 : #include "tcop/tcopprot.h"
50 : #include "utils/builtins.h"
51 : #include "utils/lsyscache.h"
52 : #include "utils/partcache.h"
53 : #include "utils/rel.h"
54 : #include "utils/snapmgr.h"
55 : #include "utils/syscache.h"
56 :
57 : /* GUC parameter */
58 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
59 :
60 : /* Hook for plugins to get control in get_relation_info() */
61 : get_relation_info_hook_type get_relation_info_hook = NULL;
62 :
63 : typedef struct NotnullHashEntry
64 : {
65 : Oid relid; /* OID of the relation */
66 : Bitmapset *notnullattnums; /* attnums of NOT NULL columns */
67 : } NotnullHashEntry;
68 :
69 :
70 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
71 : Relation relation, bool inhparent);
72 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
73 : List *idxExprs);
74 : static List *get_relation_constraints(PlannerInfo *root,
75 : Oid relationObjectId, RelOptInfo *rel,
76 : bool include_noinherit,
77 : bool include_notnull,
78 : bool include_partition);
79 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
80 : Relation heapRelation);
81 : static List *get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
82 : Relation relation);
83 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
84 : Relation relation);
85 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
86 : Relation relation);
87 : static void set_baserel_partition_key_exprs(Relation relation,
88 : RelOptInfo *rel);
89 : static void set_baserel_partition_constraint(Relation relation,
90 : RelOptInfo *rel);
91 :
92 :
93 : /*
94 : * get_relation_info -
95 : * Retrieves catalog information for a given relation.
96 : *
97 : * Given the Oid of the relation, return the following info into fields
98 : * of the RelOptInfo struct:
99 : *
100 : * min_attr lowest valid AttrNumber
101 : * max_attr highest valid AttrNumber
102 : * indexlist list of IndexOptInfos for relation's indexes
103 : * statlist list of StatisticExtInfo for relation's statistic objects
104 : * serverid if it's a foreign table, the server OID
105 : * fdwroutine if it's a foreign table, the FDW function pointers
106 : * pages number of pages
107 : * tuples number of tuples
108 : * rel_parallel_workers user-defined number of parallel workers
109 : *
110 : * Also, add information about the relation's foreign keys to root->fkey_list.
111 : *
112 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
113 : * cases these are left as zeroes, but sometimes we need to compute attr
114 : * widths here, and we may as well cache the results for costsize.c.
115 : *
116 : * If inhparent is true, all we need to do is set up the attr arrays:
117 : * the RelOptInfo actually represents the appendrel formed by an inheritance
118 : * tree, and so the parent rel's physical size and index information isn't
119 : * important for it, however, for partitioned tables, we do populate the
120 : * indexlist as the planner uses unique indexes as unique proofs for certain
121 : * optimizations.
122 : */
123 : void
124 476456 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
125 : RelOptInfo *rel)
126 : {
127 476456 : Index varno = rel->relid;
128 : Relation relation;
129 : bool hasindex;
130 476456 : List *indexinfos = NIL;
131 :
132 : /*
133 : * We need not lock the relation since it was already locked, either by
134 : * the rewriter or when expand_inherited_rtentry() added it to the query's
135 : * rangetable.
136 : */
137 476456 : relation = table_open(relationObjectId, NoLock);
138 :
139 : /*
140 : * Relations without a table AM can be used in a query only if they are of
141 : * special-cased relkinds. This check prevents us from crashing later if,
142 : * for example, a view's ON SELECT rule has gone missing. Note that
143 : * table_open() already rejected indexes and composite types; spell the
144 : * error the same way it does.
145 : */
146 476456 : if (!relation->rd_tableam)
147 : {
148 20192 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
149 17678 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
150 0 : ereport(ERROR,
151 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
152 : errmsg("cannot open relation \"%s\"",
153 : RelationGetRelationName(relation)),
154 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
155 : }
156 :
157 : /* Temporary and unlogged relations are inaccessible during recovery. */
158 476456 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
159 0 : ereport(ERROR,
160 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
161 : errmsg("cannot access temporary or unlogged relations during recovery")));
162 :
163 476456 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
164 476456 : rel->max_attr = RelationGetNumberOfAttributes(relation);
165 476456 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
166 :
167 : Assert(rel->max_attr >= rel->min_attr);
168 476456 : rel->attr_needed = (Relids *)
169 476456 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
170 476456 : rel->attr_widths = (int32 *)
171 476456 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
172 :
173 : /*
174 : * Record which columns are defined as NOT NULL. We leave this
175 : * unpopulated for non-partitioned inheritance parent relations as it's
176 : * ambiguous as to what it means. Some child tables may have a NOT NULL
177 : * constraint for a column while others may not. We could work harder and
178 : * build a unioned set of all child relations notnullattnums, but there's
179 : * currently no need. The RelOptInfo corresponding to the !inh
180 : * RangeTblEntry does get populated.
181 : */
182 476456 : if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
183 438782 : rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
184 :
185 : /*
186 : * Estimate relation size --- unless it's an inheritance parent, in which
187 : * case the size we want is not the rel's own size but the size of its
188 : * inheritance tree. That will be computed in set_append_rel_size().
189 : */
190 476456 : if (!inhparent)
191 421144 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
192 421144 : &rel->pages, &rel->tuples, &rel->allvisfrac);
193 :
194 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
195 476456 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
196 :
197 : /*
198 : * Make list of indexes. Ignore indexes on system catalogs if told to.
199 : * Don't bother with indexes from traditional inheritance parents. For
200 : * partitioned tables, we need a list of at least unique indexes as these
201 : * serve as unique proofs for certain planner optimizations. However,
202 : * let's not discriminate here and just record all partitioned indexes
203 : * whether they're unique indexes or not.
204 : */
205 476456 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
206 438782 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
207 37674 : hasindex = false;
208 : else
209 438782 : hasindex = relation->rd_rel->relhasindex;
210 :
211 476456 : if (hasindex)
212 : {
213 : List *indexoidlist;
214 : LOCKMODE lmode;
215 : ListCell *l;
216 :
217 353406 : indexoidlist = RelationGetIndexList(relation);
218 :
219 : /*
220 : * For each index, we get the same type of lock that the executor will
221 : * need, and do not release it. This saves a couple of trips to the
222 : * shared lock manager while not creating any real loss of
223 : * concurrency, because no schema changes could be happening on the
224 : * index while we hold lock on the parent rel, and no lock type used
225 : * for queries blocks any other kind of index operation.
226 : */
227 353406 : lmode = root->simple_rte_array[varno]->rellockmode;
228 :
229 1099292 : foreach(l, indexoidlist)
230 : {
231 745886 : Oid indexoid = lfirst_oid(l);
232 : Relation indexRelation;
233 : Form_pg_index index;
234 745886 : IndexAmRoutine *amroutine = NULL;
235 : IndexOptInfo *info;
236 : int ncolumns,
237 : nkeycolumns;
238 : int i;
239 :
240 : /*
241 : * Extract info from the relation descriptor for the index.
242 : */
243 745886 : indexRelation = index_open(indexoid, lmode);
244 745886 : index = indexRelation->rd_index;
245 :
246 : /*
247 : * Ignore invalid indexes, since they can't safely be used for
248 : * queries. Note that this is OK because the data structure we
249 : * are constructing is only used by the planner --- the executor
250 : * still needs to insert into "invalid" indexes, if they're marked
251 : * indisready.
252 : */
253 745886 : if (!index->indisvalid)
254 : {
255 22 : index_close(indexRelation, NoLock);
256 22 : continue;
257 : }
258 :
259 : /*
260 : * If the index is valid, but cannot yet be used, ignore it; but
261 : * mark the plan we are generating as transient. See
262 : * src/backend/access/heap/README.HOT for discussion.
263 : */
264 745864 : if (index->indcheckxmin &&
265 294 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
266 : TransactionXmin))
267 : {
268 294 : root->glob->transientPlan = true;
269 294 : index_close(indexRelation, NoLock);
270 294 : continue;
271 : }
272 :
273 745570 : info = makeNode(IndexOptInfo);
274 :
275 745570 : info->indexoid = index->indexrelid;
276 745570 : info->reltablespace =
277 745570 : RelationGetForm(indexRelation)->reltablespace;
278 745570 : info->rel = rel;
279 745570 : info->ncolumns = ncolumns = index->indnatts;
280 745570 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
281 :
282 745570 : info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
283 745570 : info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
284 745570 : info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
285 745570 : info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
286 745570 : info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
287 :
288 2150120 : for (i = 0; i < ncolumns; i++)
289 : {
290 1404550 : info->indexkeys[i] = index->indkey.values[i];
291 1404550 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
292 : }
293 :
294 2149702 : for (i = 0; i < nkeycolumns; i++)
295 : {
296 1404132 : info->opfamily[i] = indexRelation->rd_opfamily[i];
297 1404132 : info->opcintype[i] = indexRelation->rd_opcintype[i];
298 1404132 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
299 : }
300 :
301 745570 : info->relam = indexRelation->rd_rel->relam;
302 :
303 : /*
304 : * We don't have an AM for partitioned indexes, so we'll just
305 : * NULLify the AM related fields for those.
306 : */
307 745570 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
308 : {
309 : /* We copy just the fields we need, not all of rd_indam */
310 738906 : amroutine = indexRelation->rd_indam;
311 738906 : info->amcanorderbyop = amroutine->amcanorderbyop;
312 738906 : info->amoptionalkey = amroutine->amoptionalkey;
313 738906 : info->amsearcharray = amroutine->amsearcharray;
314 738906 : info->amsearchnulls = amroutine->amsearchnulls;
315 738906 : info->amcanparallel = amroutine->amcanparallel;
316 738906 : info->amhasgettuple = (amroutine->amgettuple != NULL);
317 1477812 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
318 738906 : relation->rd_tableam->scan_bitmap_next_tuple != NULL;
319 1455716 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
320 716810 : amroutine->amrestrpos != NULL);
321 738906 : info->amcostestimate = amroutine->amcostestimate;
322 : Assert(info->amcostestimate != NULL);
323 :
324 : /* Fetch index opclass options */
325 738906 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
326 :
327 : /*
328 : * Fetch the ordering information for the index, if any.
329 : */
330 738906 : if (info->relam == BTREE_AM_OID)
331 : {
332 : /*
333 : * If it's a btree index, we can use its opfamily OIDs
334 : * directly as the sort ordering opfamily OIDs.
335 : */
336 : Assert(amroutine->amcanorder);
337 :
338 716810 : info->sortopfamily = info->opfamily;
339 716810 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
340 716810 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
341 :
342 1831362 : for (i = 0; i < nkeycolumns; i++)
343 : {
344 1114552 : int16 opt = indexRelation->rd_indoption[i];
345 :
346 1114552 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
347 1114552 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
348 : }
349 : }
350 22096 : else if (amroutine->amcanorder)
351 : {
352 : /*
353 : * Otherwise, identify the corresponding btree opfamilies
354 : * by trying to map this index's "<" operators into btree.
355 : * Since "<" uniquely defines the behavior of a sort
356 : * order, this is a sufficient test.
357 : *
358 : * XXX This method is rather slow and complicated. It'd
359 : * be better to have a way to explicitly declare the
360 : * corresponding btree opfamily for each opfamily of the
361 : * other index type.
362 : */
363 0 : info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
364 0 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
365 0 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
366 :
367 0 : for (i = 0; i < nkeycolumns; i++)
368 : {
369 0 : int16 opt = indexRelation->rd_indoption[i];
370 : Oid ltopr;
371 : Oid opfamily;
372 : Oid opcintype;
373 : CompareType cmptype;
374 :
375 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
376 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
377 :
378 0 : ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
379 0 : info->opcintype[i],
380 0 : info->opcintype[i],
381 : COMPARE_LT);
382 0 : if (OidIsValid(ltopr) &&
383 0 : get_ordering_op_properties(ltopr,
384 : &opfamily,
385 : &opcintype,
386 0 : &cmptype) &&
387 0 : opcintype == info->opcintype[i] &&
388 0 : cmptype == COMPARE_LT)
389 : {
390 : /* Successful mapping */
391 0 : info->sortopfamily[i] = opfamily;
392 : }
393 : else
394 : {
395 : /* Fail ... quietly treat index as unordered */
396 0 : info->sortopfamily = NULL;
397 0 : info->reverse_sort = NULL;
398 0 : info->nulls_first = NULL;
399 0 : break;
400 : }
401 : }
402 : }
403 : else
404 : {
405 22096 : info->sortopfamily = NULL;
406 22096 : info->reverse_sort = NULL;
407 22096 : info->nulls_first = NULL;
408 : }
409 : }
410 : else
411 : {
412 6664 : info->amcanorderbyop = false;
413 6664 : info->amoptionalkey = false;
414 6664 : info->amsearcharray = false;
415 6664 : info->amsearchnulls = false;
416 6664 : info->amcanparallel = false;
417 6664 : info->amhasgettuple = false;
418 6664 : info->amhasgetbitmap = false;
419 6664 : info->amcanmarkpos = false;
420 6664 : info->amcostestimate = NULL;
421 :
422 6664 : info->sortopfamily = NULL;
423 6664 : info->reverse_sort = NULL;
424 6664 : info->nulls_first = NULL;
425 : }
426 :
427 : /*
428 : * Fetch the index expressions and predicate, if any. We must
429 : * modify the copies we obtain from the relcache to have the
430 : * correct varno for the parent relation, so that they match up
431 : * correctly against qual clauses.
432 : */
433 745570 : info->indexprs = RelationGetIndexExpressions(indexRelation);
434 745570 : info->indpred = RelationGetIndexPredicate(indexRelation);
435 745570 : if (info->indexprs && varno != 1)
436 1938 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
437 745570 : if (info->indpred && varno != 1)
438 126 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
439 :
440 : /* Build targetlist using the completed indexprs data */
441 745570 : info->indextlist = build_index_tlist(root, info, relation);
442 :
443 745570 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
444 745570 : info->predOK = false; /* set later, in indxpath.c */
445 745570 : info->unique = index->indisunique;
446 745570 : info->nullsnotdistinct = index->indnullsnotdistinct;
447 745570 : info->immediate = index->indimmediate;
448 745570 : info->hypothetical = false;
449 :
450 : /*
451 : * Estimate the index size. If it's not a partial index, we lock
452 : * the number-of-tuples estimate to equal the parent table; if it
453 : * is partial then we have to use the same methods as we would for
454 : * a table, except we can be sure that the index is not larger
455 : * than the table. We must ignore partitioned indexes here as
456 : * there are not physical indexes.
457 : */
458 745570 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
459 : {
460 738906 : if (info->indpred == NIL)
461 : {
462 737922 : info->pages = RelationGetNumberOfBlocks(indexRelation);
463 737922 : info->tuples = rel->tuples;
464 : }
465 : else
466 : {
467 : double allvisfrac; /* dummy */
468 :
469 984 : estimate_rel_size(indexRelation, NULL,
470 984 : &info->pages, &info->tuples, &allvisfrac);
471 984 : if (info->tuples > rel->tuples)
472 18 : info->tuples = rel->tuples;
473 : }
474 :
475 : /*
476 : * Get tree height while we have the index open
477 : */
478 738906 : if (amroutine->amgettreeheight)
479 : {
480 716810 : info->tree_height = amroutine->amgettreeheight(indexRelation);
481 : }
482 : else
483 : {
484 : /* For other index types, just set it to "unknown" for now */
485 22096 : info->tree_height = -1;
486 : }
487 : }
488 : else
489 : {
490 : /* Zero these out for partitioned indexes */
491 6664 : info->pages = 0;
492 6664 : info->tuples = 0.0;
493 6664 : info->tree_height = -1;
494 : }
495 :
496 745570 : index_close(indexRelation, NoLock);
497 :
498 : /*
499 : * We've historically used lcons() here. It'd make more sense to
500 : * use lappend(), but that causes the planner to change behavior
501 : * in cases where two indexes seem equally attractive. For now,
502 : * stick with lcons() --- few tables should have so many indexes
503 : * that the O(N^2) behavior of lcons() is really a problem.
504 : */
505 745570 : indexinfos = lcons(info, indexinfos);
506 : }
507 :
508 353406 : list_free(indexoidlist);
509 : }
510 :
511 476456 : rel->indexlist = indexinfos;
512 :
513 476456 : rel->statlist = get_relation_statistics(root, rel, relation);
514 :
515 : /* Grab foreign-table info using the relcache, while we have it */
516 476456 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
517 : {
518 : /* Check if the access to foreign tables is restricted */
519 2514 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
520 : {
521 : /* there must not be built-in foreign tables */
522 : Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
523 :
524 4 : ereport(ERROR,
525 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
526 : errmsg("access to non-system foreign table is restricted")));
527 : }
528 :
529 2510 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
530 2510 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
531 : }
532 : else
533 : {
534 473942 : rel->serverid = InvalidOid;
535 473942 : rel->fdwroutine = NULL;
536 : }
537 :
538 : /* Collect info about relation's foreign keys, if relevant */
539 476438 : get_relation_foreign_keys(root, rel, relation, inhparent);
540 :
541 : /* Collect info about functions implemented by the rel's table AM. */
542 476438 : if (relation->rd_tableam &&
543 456264 : relation->rd_tableam->scan_set_tidrange != NULL &&
544 456264 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
545 456264 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
546 :
547 : /*
548 : * Collect info about relation's partitioning scheme, if any. Only
549 : * inheritance parents may be partitioned.
550 : */
551 476438 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
552 17638 : set_relation_partition_info(root, rel, relation);
553 :
554 476438 : table_close(relation, NoLock);
555 :
556 : /*
557 : * Allow a plugin to editorialize on the info we obtained from the
558 : * catalogs. Actions might include altering the assumed relation size,
559 : * removing an index, or adding a hypothetical index to the indexlist.
560 : */
561 476438 : if (get_relation_info_hook)
562 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
563 476438 : }
564 :
565 : /*
566 : * get_relation_foreign_keys -
567 : * Retrieves foreign key information for a given relation.
568 : *
569 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
570 : * root->fkey_list. We do this now while we have the relcache entry open.
571 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
572 : * until all RelOptInfos have been built, but the cost of re-opening the
573 : * relcache entries would probably exceed any savings.
574 : */
575 : static void
576 476438 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
577 : Relation relation, bool inhparent)
578 : {
579 476438 : List *rtable = root->parse->rtable;
580 : List *cachedfkeys;
581 : ListCell *lc;
582 :
583 : /*
584 : * If it's not a baserel, we don't care about its FKs. Also, if the query
585 : * references only a single relation, we can skip the lookup since no FKs
586 : * could satisfy the requirements below.
587 : */
588 909418 : if (rel->reloptkind != RELOPT_BASEREL ||
589 432980 : list_length(rtable) < 2)
590 244160 : return;
591 :
592 : /*
593 : * If it's the parent of an inheritance tree, ignore its FKs. We could
594 : * make useful FK-based deductions if we found that all members of the
595 : * inheritance tree have equivalent FK constraints, but detecting that
596 : * would require code that hasn't been written.
597 : */
598 232278 : if (inhparent)
599 5898 : return;
600 :
601 : /*
602 : * Extract data about relation's FKs from the relcache. Note that this
603 : * list belongs to the relcache and might disappear in a cache flush, so
604 : * we must not do any further catalog access within this function.
605 : */
606 226380 : cachedfkeys = RelationGetFKeyList(relation);
607 :
608 : /*
609 : * Figure out which FKs are of interest for this query, and create
610 : * ForeignKeyOptInfos for them. We want only FKs that reference some
611 : * other RTE of the current query. In queries containing self-joins,
612 : * there might be more than one other RTE for a referenced table, and we
613 : * should make a ForeignKeyOptInfo for each occurrence.
614 : *
615 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
616 : * too hard to identify those here, so we might end up making some useless
617 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
618 : * them again.
619 : */
620 228974 : foreach(lc, cachedfkeys)
621 : {
622 2594 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
623 : Index rti;
624 : ListCell *lc2;
625 :
626 : /* conrelid should always be that of the table we're considering */
627 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
628 :
629 : /* skip constraints currently not enforced */
630 2594 : if (!cachedfk->conenforced)
631 18 : continue;
632 :
633 : /* Scan to find other RTEs matching confrelid */
634 2576 : rti = 0;
635 11396 : foreach(lc2, rtable)
636 : {
637 8820 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
638 : ForeignKeyOptInfo *info;
639 :
640 8820 : rti++;
641 : /* Ignore if not the correct table */
642 8820 : if (rte->rtekind != RTE_RELATION ||
643 5494 : rte->relid != cachedfk->confrelid)
644 6650 : continue;
645 : /* Ignore if it's an inheritance parent; doesn't really match */
646 2170 : if (rte->inh)
647 258 : continue;
648 : /* Ignore self-referential FKs; we only care about joins */
649 1912 : if (rti == rel->relid)
650 132 : continue;
651 :
652 : /* OK, let's make an entry */
653 1780 : info = makeNode(ForeignKeyOptInfo);
654 1780 : info->con_relid = rel->relid;
655 1780 : info->ref_relid = rti;
656 1780 : info->nkeys = cachedfk->nkeys;
657 1780 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
658 1780 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
659 1780 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
660 : /* zero out fields to be filled by match_foreign_keys_to_quals */
661 1780 : info->nmatched_ec = 0;
662 1780 : info->nconst_ec = 0;
663 1780 : info->nmatched_rcols = 0;
664 1780 : info->nmatched_ri = 0;
665 1780 : memset(info->eclass, 0, sizeof(info->eclass));
666 1780 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
667 1780 : memset(info->rinfos, 0, sizeof(info->rinfos));
668 :
669 1780 : root->fkey_list = lappend(root->fkey_list, info);
670 : }
671 : }
672 : }
673 :
674 : /*
675 : * get_relation_notnullatts -
676 : * Retrieves column not-null constraint information for a given relation.
677 : *
678 : * We do this while we have the relcache entry open, and store the column
679 : * not-null constraint information in a hash table based on the relation OID.
680 : */
681 : void
682 514588 : get_relation_notnullatts(PlannerInfo *root, Relation relation)
683 : {
684 514588 : Oid relid = RelationGetRelid(relation);
685 : NotnullHashEntry *hentry;
686 : bool found;
687 514588 : Bitmapset *notnullattnums = NULL;
688 :
689 : /* bail out if the relation has no not-null constraints */
690 514588 : if (relation->rd_att->constr == NULL ||
691 343126 : !relation->rd_att->constr->has_not_null)
692 215794 : return;
693 :
694 : /* create the hash table if it hasn't been created yet */
695 337830 : if (root->glob->rel_notnullatts_hash == NULL)
696 : {
697 : HTAB *hashtab;
698 : HASHCTL hash_ctl;
699 :
700 171130 : hash_ctl.keysize = sizeof(Oid);
701 171130 : hash_ctl.entrysize = sizeof(NotnullHashEntry);
702 171130 : hash_ctl.hcxt = CurrentMemoryContext;
703 :
704 171130 : hashtab = hash_create("Relation NOT NULL attnums",
705 : 64L, /* arbitrary initial size */
706 : &hash_ctl,
707 : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
708 :
709 171130 : root->glob->rel_notnullatts_hash = hashtab;
710 : }
711 :
712 : /*
713 : * Create a hash entry for this relation OID, if we don't have one
714 : * already.
715 : */
716 337830 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
717 : &relid,
718 : HASH_ENTER,
719 : &found);
720 :
721 : /* bail out if a hash entry already exists for this relation OID */
722 337830 : if (found)
723 39036 : return;
724 :
725 : /* collect the column not-null constraint information for this relation */
726 4467260 : for (int i = 0; i < relation->rd_att->natts; i++)
727 : {
728 4168466 : CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
729 :
730 : Assert(attr->attnullability != ATTNULLABLE_UNKNOWN);
731 :
732 4168466 : if (attr->attnullability == ATTNULLABLE_VALID)
733 : {
734 3528584 : notnullattnums = bms_add_member(notnullattnums, i + 1);
735 :
736 : /*
737 : * Per RemoveAttributeById(), dropped columns will have their
738 : * attnotnull unset, so we needn't check for dropped columns in
739 : * the above condition.
740 : */
741 : Assert(!attr->attisdropped);
742 : }
743 : }
744 :
745 : /* ... and initialize the new hash entry */
746 298794 : hentry->notnullattnums = notnullattnums;
747 : }
748 :
749 : /*
750 : * find_relation_notnullatts -
751 : * Searches the hash table and returns the column not-null constraint
752 : * information for a given relation.
753 : */
754 : Bitmapset *
755 452744 : find_relation_notnullatts(PlannerInfo *root, Oid relid)
756 : {
757 : NotnullHashEntry *hentry;
758 : bool found;
759 :
760 452744 : if (root->glob->rel_notnullatts_hash == NULL)
761 120070 : return NULL;
762 :
763 332674 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
764 : &relid,
765 : HASH_FIND,
766 : &found);
767 332674 : if (!found)
768 5068 : return NULL;
769 :
770 327606 : return hentry->notnullattnums;
771 : }
772 :
773 : /*
774 : * infer_arbiter_indexes -
775 : * Determine the unique indexes used to arbitrate speculative insertion.
776 : *
777 : * Uses user-supplied inference clause expressions and predicate to match a
778 : * unique index from those defined and ready on the heap relation (target).
779 : * An exact match is required on columns/expressions (although they can appear
780 : * in any order). However, the predicate given by the user need only restrict
781 : * insertion to a subset of some part of the table covered by some particular
782 : * unique index (in particular, a partial unique index) in order to be
783 : * inferred.
784 : *
785 : * The implementation does not consider which B-Tree operator class any
786 : * particular available unique index attribute uses, unless one was specified
787 : * in the inference specification. The same is true of collations. In
788 : * particular, there is no system dependency on the default operator class for
789 : * the purposes of inference. If no opclass (or collation) is specified, then
790 : * all matching indexes (that may or may not match the default in terms of
791 : * each attribute opclass/collation) are used for inference.
792 : *
793 : * Note: during index CONCURRENTLY operations, different transactions may
794 : * reference different sets of arbiter indexes. This can lead to false unique
795 : * constraint violations that wouldn't occur during normal operations. For
796 : * more information, see insert.sgml.
797 : */
798 : List *
799 1862 : infer_arbiter_indexes(PlannerInfo *root)
800 : {
801 1862 : OnConflictExpr *onconflict = root->parse->onConflict;
802 :
803 : /* Iteration state */
804 : Index varno;
805 : RangeTblEntry *rte;
806 : Relation relation;
807 1862 : Oid indexOidFromConstraint = InvalidOid;
808 : List *indexList;
809 : ListCell *l;
810 :
811 : /* Normalized inference attributes and inference expressions: */
812 1862 : Bitmapset *inferAttrs = NULL;
813 1862 : List *inferElems = NIL;
814 :
815 : /* Results */
816 1862 : List *results = NIL;
817 :
818 : /*
819 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
820 : * specification or named constraint. ON CONFLICT DO UPDATE statements
821 : * must always provide one or the other (but parser ought to have caught
822 : * that already).
823 : */
824 1862 : if (onconflict->arbiterElems == NIL &&
825 426 : onconflict->constraint == InvalidOid)
826 234 : return NIL;
827 :
828 : /*
829 : * We need not lock the relation since it was already locked, either by
830 : * the rewriter or when expand_inherited_rtentry() added it to the query's
831 : * rangetable.
832 : */
833 1628 : varno = root->parse->resultRelation;
834 1628 : rte = rt_fetch(varno, root->parse->rtable);
835 :
836 1628 : relation = table_open(rte->relid, NoLock);
837 :
838 : /*
839 : * Build normalized/BMS representation of plain indexed attributes, as
840 : * well as a separate list of expression items. This simplifies matching
841 : * the cataloged definition of indexes.
842 : */
843 3518 : foreach(l, onconflict->arbiterElems)
844 : {
845 1890 : InferenceElem *elem = (InferenceElem *) lfirst(l);
846 : Var *var;
847 : int attno;
848 :
849 1890 : if (!IsA(elem->expr, Var))
850 : {
851 : /* If not a plain Var, just shove it in inferElems for now */
852 174 : inferElems = lappend(inferElems, elem->expr);
853 174 : continue;
854 : }
855 :
856 1716 : var = (Var *) elem->expr;
857 1716 : attno = var->varattno;
858 :
859 1716 : if (attno == 0)
860 0 : ereport(ERROR,
861 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
862 : errmsg("whole row unique index inference specifications are not supported")));
863 :
864 1716 : inferAttrs = bms_add_member(inferAttrs,
865 : attno - FirstLowInvalidHeapAttributeNumber);
866 : }
867 :
868 : /*
869 : * Lookup named constraint's index. This is not immediately returned
870 : * because some additional sanity checks are required.
871 : */
872 1628 : if (onconflict->constraint != InvalidOid)
873 : {
874 192 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
875 :
876 192 : if (indexOidFromConstraint == InvalidOid)
877 0 : ereport(ERROR,
878 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
879 : errmsg("constraint in ON CONFLICT clause has no associated index")));
880 : }
881 :
882 : /*
883 : * Using that representation, iterate through the list of indexes on the
884 : * target relation to try and find a match
885 : */
886 1628 : indexList = RelationGetIndexList(relation);
887 :
888 3492 : foreach(l, indexList)
889 : {
890 2056 : Oid indexoid = lfirst_oid(l);
891 : Relation idxRel;
892 : Form_pg_index idxForm;
893 : Bitmapset *indexedAttrs;
894 : List *idxExprs;
895 : List *predExprs;
896 : AttrNumber natt;
897 : ListCell *el;
898 :
899 : /*
900 : * Extract info from the relation descriptor for the index. Obtain
901 : * the same lock type that the executor will ultimately use.
902 : *
903 : * Let executor complain about !indimmediate case directly, because
904 : * enforcement needs to occur there anyway when an inference clause is
905 : * omitted.
906 : */
907 2056 : idxRel = index_open(indexoid, rte->rellockmode);
908 2056 : idxForm = idxRel->rd_index;
909 :
910 2056 : if (!idxForm->indisvalid)
911 6 : goto next;
912 :
913 : /*
914 : * Note that we do not perform a check against indcheckxmin (like e.g.
915 : * get_relation_info()) here to eliminate candidates, because
916 : * uniqueness checking only cares about the most recently committed
917 : * tuple versions.
918 : */
919 :
920 : /*
921 : * Look for match on "ON constraint_name" variant, which may not be
922 : * unique constraint. This can only be a constraint name.
923 : */
924 2050 : if (indexOidFromConstraint == idxForm->indexrelid)
925 : {
926 192 : if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
927 78 : ereport(ERROR,
928 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
929 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
930 :
931 114 : results = lappend_oid(results, idxForm->indexrelid);
932 114 : list_free(indexList);
933 114 : index_close(idxRel, NoLock);
934 114 : table_close(relation, NoLock);
935 114 : return results;
936 : }
937 1858 : else if (indexOidFromConstraint != InvalidOid)
938 : {
939 : /* No point in further work for index in named constraint case */
940 18 : goto next;
941 : }
942 :
943 : /*
944 : * Only considering conventional inference at this point (not named
945 : * constraints), so index under consideration can be immediately
946 : * skipped if it's not unique
947 : */
948 1840 : if (!idxForm->indisunique)
949 4 : goto next;
950 :
951 : /*
952 : * So-called unique constraints with WITHOUT OVERLAPS are really
953 : * exclusion constraints, so skip those too.
954 : */
955 1836 : if (idxForm->indisexclusion)
956 144 : goto next;
957 :
958 : /* Build BMS representation of plain (non expression) index attrs */
959 1692 : indexedAttrs = NULL;
960 3948 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
961 : {
962 2256 : int attno = idxRel->rd_index->indkey.values[natt];
963 :
964 2256 : if (attno != 0)
965 1944 : indexedAttrs = bms_add_member(indexedAttrs,
966 : attno - FirstLowInvalidHeapAttributeNumber);
967 : }
968 :
969 : /* Non-expression attributes (if any) must match */
970 1692 : if (!bms_equal(indexedAttrs, inferAttrs))
971 378 : goto next;
972 :
973 : /* Expression attributes (if any) must match */
974 1314 : idxExprs = RelationGetIndexExpressions(idxRel);
975 1314 : if (idxExprs && varno != 1)
976 6 : ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
977 :
978 2988 : foreach(el, onconflict->arbiterElems)
979 : {
980 1722 : InferenceElem *elem = (InferenceElem *) lfirst(el);
981 :
982 : /*
983 : * Ensure that collation/opclass aspects of inference expression
984 : * element match. Even though this loop is primarily concerned
985 : * with matching expressions, it is a convenient point to check
986 : * this for both expressions and ordinary (non-expression)
987 : * attributes appearing as inference elements.
988 : */
989 1722 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
990 48 : goto next;
991 :
992 : /*
993 : * Plain Vars don't factor into count of expression elements, and
994 : * the question of whether or not they satisfy the index
995 : * definition has already been considered (they must).
996 : */
997 1686 : if (IsA(elem->expr, Var))
998 1512 : continue;
999 :
1000 : /*
1001 : * Might as well avoid redundant check in the rare cases where
1002 : * infer_collation_opclass_match() is required to do real work.
1003 : * Otherwise, check that element expression appears in cataloged
1004 : * index definition.
1005 : */
1006 174 : if (elem->infercollid != InvalidOid ||
1007 306 : elem->inferopclass != InvalidOid ||
1008 150 : list_member(idxExprs, elem->expr))
1009 162 : continue;
1010 :
1011 12 : goto next;
1012 : }
1013 :
1014 : /*
1015 : * Now that all inference elements were matched, ensure that the
1016 : * expression elements from inference clause are not missing any
1017 : * cataloged expressions. This does the right thing when unique
1018 : * indexes redundantly repeat the same attribute, or if attributes
1019 : * redundantly appear multiple times within an inference clause.
1020 : */
1021 1266 : if (list_difference(idxExprs, inferElems) != NIL)
1022 54 : goto next;
1023 :
1024 : /*
1025 : * If it's a partial index, its predicate must be implied by the ON
1026 : * CONFLICT's WHERE clause.
1027 : */
1028 1212 : predExprs = RelationGetIndexPredicate(idxRel);
1029 1212 : if (predExprs && varno != 1)
1030 6 : ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1031 :
1032 1212 : if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
1033 36 : goto next;
1034 :
1035 1176 : results = lappend_oid(results, idxForm->indexrelid);
1036 1864 : next:
1037 1864 : index_close(idxRel, NoLock);
1038 : }
1039 :
1040 1436 : list_free(indexList);
1041 1436 : table_close(relation, NoLock);
1042 :
1043 1436 : if (results == NIL)
1044 314 : ereport(ERROR,
1045 : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1046 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1047 :
1048 1122 : return results;
1049 : }
1050 :
1051 : /*
1052 : * infer_collation_opclass_match - ensure infer element opclass/collation match
1053 : *
1054 : * Given unique index inference element from inference specification, if
1055 : * collation was specified, or if opclass was specified, verify that there is
1056 : * at least one matching indexed attribute (occasionally, there may be more).
1057 : * Skip this in the common case where inference specification does not include
1058 : * collation or opclass (instead matching everything, regardless of cataloged
1059 : * collation/opclass of indexed attribute).
1060 : *
1061 : * At least historically, Postgres has not offered collations or opclasses
1062 : * with alternative-to-default notions of equality, so these additional
1063 : * criteria should only be required infrequently.
1064 : *
1065 : * Don't give up immediately when an inference element matches some attribute
1066 : * cataloged as indexed but not matching additional opclass/collation
1067 : * criteria. This is done so that the implementation is as forgiving as
1068 : * possible of redundancy within cataloged index attributes (or, less
1069 : * usefully, within inference specification elements). If collations actually
1070 : * differ between apparently redundantly indexed attributes (redundant within
1071 : * or across indexes), then there really is no redundancy as such.
1072 : *
1073 : * Note that if an inference element specifies an opclass and a collation at
1074 : * once, both must match in at least one particular attribute within index
1075 : * catalog definition in order for that inference element to be considered
1076 : * inferred/satisfied.
1077 : */
1078 : static bool
1079 1722 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
1080 : List *idxExprs)
1081 : {
1082 : AttrNumber natt;
1083 1722 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1084 1722 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1085 1722 : int nplain = 0; /* # plain attrs observed */
1086 :
1087 : /*
1088 : * If inference specification element lacks collation/opclass, then no
1089 : * need to check for exact match.
1090 : */
1091 1722 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1092 1608 : return true;
1093 :
1094 : /*
1095 : * Lookup opfamily and input type, for matching indexes
1096 : */
1097 114 : if (elem->inferopclass)
1098 : {
1099 84 : inferopfamily = get_opclass_family(elem->inferopclass);
1100 84 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1101 : }
1102 :
1103 246 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1104 : {
1105 210 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
1106 210 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1107 210 : Oid collation = idxRel->rd_indcollation[natt - 1];
1108 210 : int attno = idxRel->rd_index->indkey.values[natt - 1];
1109 :
1110 210 : if (attno != 0)
1111 168 : nplain++;
1112 :
1113 210 : if (elem->inferopclass != InvalidOid &&
1114 66 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1115 : {
1116 : /* Attribute needed to match opclass, but didn't */
1117 90 : continue;
1118 : }
1119 :
1120 120 : if (elem->infercollid != InvalidOid &&
1121 84 : elem->infercollid != collation)
1122 : {
1123 : /* Attribute needed to match collation, but didn't */
1124 36 : continue;
1125 : }
1126 :
1127 : /* If one matching index att found, good enough -- return true */
1128 84 : if (IsA(elem->expr, Var))
1129 : {
1130 54 : if (((Var *) elem->expr)->varattno == attno)
1131 54 : return true;
1132 : }
1133 30 : else if (attno == 0)
1134 : {
1135 30 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1136 :
1137 : /*
1138 : * Note that unlike routines like match_index_to_operand() we
1139 : * don't need to care about RelabelType. Neither the index
1140 : * definition nor the inference clause should contain them.
1141 : */
1142 30 : if (equal(elem->expr, nattExpr))
1143 24 : return true;
1144 : }
1145 : }
1146 :
1147 36 : return false;
1148 : }
1149 :
1150 : /*
1151 : * estimate_rel_size - estimate # pages and # tuples in a table or index
1152 : *
1153 : * We also estimate the fraction of the pages that are marked all-visible in
1154 : * the visibility map, for use in estimation of index-only scans.
1155 : *
1156 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1157 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1158 : * the attribute widths for estimation purposes.
1159 : */
1160 : void
1161 455110 : estimate_rel_size(Relation rel, int32 *attr_widths,
1162 : BlockNumber *pages, double *tuples, double *allvisfrac)
1163 : {
1164 : BlockNumber curpages;
1165 : BlockNumber relpages;
1166 : double reltuples;
1167 : BlockNumber relallvisible;
1168 : double density;
1169 :
1170 455110 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1171 : {
1172 451554 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1173 : allvisfrac);
1174 : }
1175 3556 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1176 : {
1177 : /*
1178 : * XXX: It'd probably be good to move this into a callback, individual
1179 : * index types e.g. know if they have a metapage.
1180 : */
1181 :
1182 : /* it has storage, ok to call the smgr */
1183 984 : curpages = RelationGetNumberOfBlocks(rel);
1184 :
1185 : /* report estimated # pages */
1186 984 : *pages = curpages;
1187 : /* quick exit if rel is clearly empty */
1188 984 : if (curpages == 0)
1189 : {
1190 0 : *tuples = 0;
1191 0 : *allvisfrac = 0;
1192 0 : return;
1193 : }
1194 :
1195 : /* coerce values in pg_class to more desirable types */
1196 984 : relpages = (BlockNumber) rel->rd_rel->relpages;
1197 984 : reltuples = (double) rel->rd_rel->reltuples;
1198 984 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1199 :
1200 : /*
1201 : * Discount the metapage while estimating the number of tuples. This
1202 : * is a kluge because it assumes more than it ought to about index
1203 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1204 : * suspect for GiST indexes.
1205 : */
1206 984 : if (relpages > 0)
1207 : {
1208 966 : curpages--;
1209 966 : relpages--;
1210 : }
1211 :
1212 : /* estimate number of tuples from previous tuple density */
1213 984 : if (reltuples >= 0 && relpages > 0)
1214 666 : density = reltuples / (double) relpages;
1215 : else
1216 : {
1217 : /*
1218 : * If we have no data because the relation was never vacuumed,
1219 : * estimate tuple width from attribute datatypes. We assume here
1220 : * that the pages are completely full, which is OK for tables
1221 : * (since they've presumably not been VACUUMed yet) but is
1222 : * probably an overestimate for indexes. Fortunately
1223 : * get_relation_info() can clamp the overestimate to the parent
1224 : * table's size.
1225 : *
1226 : * Note: this code intentionally disregards alignment
1227 : * considerations, because (a) that would be gilding the lily
1228 : * considering how crude the estimate is, and (b) it creates
1229 : * platform dependencies in the default plans which are kind of a
1230 : * headache for regression testing.
1231 : *
1232 : * XXX: Should this logic be more index specific?
1233 : */
1234 : int32 tuple_width;
1235 :
1236 318 : tuple_width = get_rel_data_width(rel, attr_widths);
1237 318 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1238 318 : tuple_width += sizeof(ItemIdData);
1239 : /* note: integer division is intentional here */
1240 318 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1241 : }
1242 984 : *tuples = rint(density * (double) curpages);
1243 :
1244 : /*
1245 : * We use relallvisible as-is, rather than scaling it up like we do
1246 : * for the pages and tuples counts, on the theory that any pages added
1247 : * since the last VACUUM are most likely not marked all-visible. But
1248 : * costsize.c wants it converted to a fraction.
1249 : */
1250 984 : if (relallvisible == 0 || curpages <= 0)
1251 984 : *allvisfrac = 0;
1252 0 : else if ((double) relallvisible >= curpages)
1253 0 : *allvisfrac = 1;
1254 : else
1255 0 : *allvisfrac = (double) relallvisible / curpages;
1256 : }
1257 : else
1258 : {
1259 : /*
1260 : * Just use whatever's in pg_class. This covers foreign tables,
1261 : * sequences, and also relkinds without storage (shouldn't get here?);
1262 : * see initializations in AddNewRelationTuple(). Note that FDW must
1263 : * cope if reltuples is -1!
1264 : */
1265 2572 : *pages = rel->rd_rel->relpages;
1266 2572 : *tuples = rel->rd_rel->reltuples;
1267 2572 : *allvisfrac = 0;
1268 : }
1269 : }
1270 :
1271 :
1272 : /*
1273 : * get_rel_data_width
1274 : *
1275 : * Estimate the average width of (the data part of) the relation's tuples.
1276 : *
1277 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1278 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1279 : *
1280 : * Currently we ignore dropped columns. Ideally those should be included
1281 : * in the result, but we haven't got any way to get info about them; and
1282 : * since they might be mostly NULLs, treating them as zero-width is not
1283 : * necessarily the wrong thing anyway.
1284 : */
1285 : int32
1286 151828 : get_rel_data_width(Relation rel, int32 *attr_widths)
1287 : {
1288 151828 : int64 tuple_width = 0;
1289 : int i;
1290 :
1291 833426 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1292 : {
1293 681598 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1294 : int32 item_width;
1295 :
1296 681598 : if (att->attisdropped)
1297 2672 : continue;
1298 :
1299 : /* use previously cached data, if any */
1300 678926 : if (attr_widths != NULL && attr_widths[i] > 0)
1301 : {
1302 5852 : tuple_width += attr_widths[i];
1303 5852 : continue;
1304 : }
1305 :
1306 : /* This should match set_rel_width() in costsize.c */
1307 673074 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1308 673074 : if (item_width <= 0)
1309 : {
1310 671226 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1311 : Assert(item_width > 0);
1312 : }
1313 673074 : if (attr_widths != NULL)
1314 598158 : attr_widths[i] = item_width;
1315 673074 : tuple_width += item_width;
1316 : }
1317 :
1318 151828 : return clamp_width_est(tuple_width);
1319 : }
1320 :
1321 : /*
1322 : * get_relation_data_width
1323 : *
1324 : * External API for get_rel_data_width: same behavior except we have to
1325 : * open the relcache entry.
1326 : */
1327 : int32
1328 2556 : get_relation_data_width(Oid relid, int32 *attr_widths)
1329 : {
1330 : int32 result;
1331 : Relation relation;
1332 :
1333 : /* As above, assume relation is already locked */
1334 2556 : relation = table_open(relid, NoLock);
1335 :
1336 2556 : result = get_rel_data_width(relation, attr_widths);
1337 :
1338 2556 : table_close(relation, NoLock);
1339 :
1340 2556 : return result;
1341 : }
1342 :
1343 :
1344 : /*
1345 : * get_relation_constraints
1346 : *
1347 : * Retrieve the applicable constraint expressions of the given relation.
1348 : * Only constraints that have been validated are considered.
1349 : *
1350 : * Returns a List (possibly empty) of constraint expressions. Each one
1351 : * has been canonicalized, and its Vars are changed to have the varno
1352 : * indicated by rel->relid. This allows the expressions to be easily
1353 : * compared to expressions taken from WHERE.
1354 : *
1355 : * If include_noinherit is true, it's okay to include constraints that
1356 : * are marked NO INHERIT.
1357 : *
1358 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1359 : * and added to the result for each column that's marked attnotnull.
1360 : *
1361 : * If include_partition is true, and the relation is a partition,
1362 : * also include the partitioning constraints.
1363 : *
1364 : * Note: at present this is invoked at most once per relation per planner
1365 : * run, and in many cases it won't be invoked at all, so there seems no
1366 : * point in caching the data in RelOptInfo.
1367 : */
1368 : static List *
1369 21366 : get_relation_constraints(PlannerInfo *root,
1370 : Oid relationObjectId, RelOptInfo *rel,
1371 : bool include_noinherit,
1372 : bool include_notnull,
1373 : bool include_partition)
1374 : {
1375 21366 : List *result = NIL;
1376 21366 : Index varno = rel->relid;
1377 : Relation relation;
1378 : TupleConstr *constr;
1379 :
1380 : /*
1381 : * We assume the relation has already been safely locked.
1382 : */
1383 21366 : relation = table_open(relationObjectId, NoLock);
1384 :
1385 21366 : constr = relation->rd_att->constr;
1386 21366 : if (constr != NULL)
1387 : {
1388 8068 : int num_check = constr->num_check;
1389 : int i;
1390 :
1391 8634 : for (i = 0; i < num_check; i++)
1392 : {
1393 : Node *cexpr;
1394 :
1395 : /*
1396 : * If this constraint hasn't been fully validated yet, we must
1397 : * ignore it here.
1398 : */
1399 566 : if (!constr->check[i].ccvalid)
1400 54 : continue;
1401 :
1402 : /*
1403 : * NOT ENFORCED constraints are always marked as invalid, which
1404 : * should have been ignored.
1405 : */
1406 : Assert(constr->check[i].ccenforced);
1407 :
1408 : /*
1409 : * Also ignore if NO INHERIT and we weren't told that that's safe.
1410 : */
1411 512 : if (constr->check[i].ccnoinherit && !include_noinherit)
1412 0 : continue;
1413 :
1414 512 : cexpr = stringToNode(constr->check[i].ccbin);
1415 :
1416 : /*
1417 : * Fix Vars to have the desired varno. This must be done before
1418 : * const-simplification because eval_const_expressions reduces
1419 : * NullTest for Vars based on varno.
1420 : */
1421 512 : if (varno != 1)
1422 488 : ChangeVarNodes(cexpr, 1, varno, 0);
1423 :
1424 : /*
1425 : * Run each expression through const-simplification and
1426 : * canonicalization. This is not just an optimization, but is
1427 : * necessary, because we will be comparing it to
1428 : * similarly-processed qual clauses, and may fail to detect valid
1429 : * matches without this. This must match the processing done to
1430 : * qual clauses in preprocess_expression()! (We can skip the
1431 : * stuff involving subqueries, however, since we don't allow any
1432 : * in check constraints.)
1433 : */
1434 512 : cexpr = eval_const_expressions(root, cexpr);
1435 :
1436 512 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1437 :
1438 : /*
1439 : * Finally, convert to implicit-AND format (that is, a List) and
1440 : * append the resulting item(s) to our output list.
1441 : */
1442 512 : result = list_concat(result,
1443 512 : make_ands_implicit((Expr *) cexpr));
1444 : }
1445 :
1446 : /* Add NOT NULL constraints in expression form, if requested */
1447 8068 : if (include_notnull && constr->has_not_null)
1448 : {
1449 7638 : int natts = relation->rd_att->natts;
1450 :
1451 31116 : for (i = 1; i <= natts; i++)
1452 : {
1453 23478 : CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
1454 :
1455 23478 : if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1456 : {
1457 9392 : Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
1458 9392 : NullTest *ntest = makeNode(NullTest);
1459 :
1460 9392 : ntest->arg = (Expr *) makeVar(varno,
1461 : i,
1462 : wholeatt->atttypid,
1463 : wholeatt->atttypmod,
1464 : wholeatt->attcollation,
1465 : 0);
1466 9392 : ntest->nulltesttype = IS_NOT_NULL;
1467 :
1468 : /*
1469 : * argisrow=false is correct even for a composite column,
1470 : * because attnotnull does not represent a SQL-spec IS NOT
1471 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1472 : */
1473 9392 : ntest->argisrow = false;
1474 9392 : ntest->location = -1;
1475 9392 : result = lappend(result, ntest);
1476 : }
1477 : }
1478 : }
1479 : }
1480 :
1481 : /*
1482 : * Add partitioning constraints, if requested.
1483 : */
1484 21366 : if (include_partition && relation->rd_rel->relispartition)
1485 : {
1486 : /* make sure rel->partition_qual is set */
1487 12 : set_baserel_partition_constraint(relation, rel);
1488 12 : result = list_concat(result, rel->partition_qual);
1489 : }
1490 :
1491 : /*
1492 : * Expand virtual generated columns in the constraint expressions.
1493 : */
1494 21366 : if (result)
1495 7806 : result = (List *) expand_generated_columns_in_expr((Node *) result,
1496 : relation,
1497 : varno);
1498 :
1499 21366 : table_close(relation, NoLock);
1500 :
1501 21366 : return result;
1502 : }
1503 :
1504 : /*
1505 : * Try loading data for the statistics object.
1506 : *
1507 : * We don't know if the data (specified by statOid and inh value) exist.
1508 : * The result is stored in stainfos list.
1509 : */
1510 : static void
1511 4012 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1512 : Oid statOid, bool inh,
1513 : Bitmapset *keys, List *exprs)
1514 : {
1515 : Form_pg_statistic_ext_data dataForm;
1516 : HeapTuple dtup;
1517 :
1518 4012 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1519 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1520 4012 : if (!HeapTupleIsValid(dtup))
1521 2008 : return;
1522 :
1523 2004 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1524 :
1525 : /* add one StatisticExtInfo for each kind built */
1526 2004 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1527 : {
1528 714 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1529 :
1530 714 : info->statOid = statOid;
1531 714 : info->inherit = dataForm->stxdinherit;
1532 714 : info->rel = rel;
1533 714 : info->kind = STATS_EXT_NDISTINCT;
1534 714 : info->keys = bms_copy(keys);
1535 714 : info->exprs = exprs;
1536 :
1537 714 : *stainfos = lappend(*stainfos, info);
1538 : }
1539 :
1540 2004 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1541 : {
1542 528 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1543 :
1544 528 : info->statOid = statOid;
1545 528 : info->inherit = dataForm->stxdinherit;
1546 528 : info->rel = rel;
1547 528 : info->kind = STATS_EXT_DEPENDENCIES;
1548 528 : info->keys = bms_copy(keys);
1549 528 : info->exprs = exprs;
1550 :
1551 528 : *stainfos = lappend(*stainfos, info);
1552 : }
1553 :
1554 2004 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1555 : {
1556 882 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1557 :
1558 882 : info->statOid = statOid;
1559 882 : info->inherit = dataForm->stxdinherit;
1560 882 : info->rel = rel;
1561 882 : info->kind = STATS_EXT_MCV;
1562 882 : info->keys = bms_copy(keys);
1563 882 : info->exprs = exprs;
1564 :
1565 882 : *stainfos = lappend(*stainfos, info);
1566 : }
1567 :
1568 2004 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1569 : {
1570 810 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1571 :
1572 810 : info->statOid = statOid;
1573 810 : info->inherit = dataForm->stxdinherit;
1574 810 : info->rel = rel;
1575 810 : info->kind = STATS_EXT_EXPRESSIONS;
1576 810 : info->keys = bms_copy(keys);
1577 810 : info->exprs = exprs;
1578 :
1579 810 : *stainfos = lappend(*stainfos, info);
1580 : }
1581 :
1582 2004 : ReleaseSysCache(dtup);
1583 : }
1584 :
1585 : /*
1586 : * get_relation_statistics
1587 : * Retrieve extended statistics defined on the table.
1588 : *
1589 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1590 : * the statistics. Note that this doesn't load the actual statistics data,
1591 : * just the identifying metadata. Only stats actually built are considered.
1592 : */
1593 : static List *
1594 476456 : get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
1595 : Relation relation)
1596 : {
1597 476456 : Index varno = rel->relid;
1598 : List *statoidlist;
1599 476456 : List *stainfos = NIL;
1600 : ListCell *l;
1601 :
1602 476456 : statoidlist = RelationGetStatExtList(relation);
1603 :
1604 478462 : foreach(l, statoidlist)
1605 : {
1606 2006 : Oid statOid = lfirst_oid(l);
1607 : Form_pg_statistic_ext staForm;
1608 : HeapTuple htup;
1609 2006 : Bitmapset *keys = NULL;
1610 2006 : List *exprs = NIL;
1611 : int i;
1612 :
1613 2006 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1614 2006 : if (!HeapTupleIsValid(htup))
1615 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1616 2006 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1617 :
1618 : /*
1619 : * First, build the array of columns covered. This is ultimately
1620 : * wasted if no stats within the object have actually been built, but
1621 : * it doesn't seem worth troubling over that case.
1622 : */
1623 5698 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1624 3692 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1625 :
1626 : /*
1627 : * Preprocess expressions (if any). We read the expressions, fix the
1628 : * varnos, and run them through eval_const_expressions.
1629 : *
1630 : * XXX We don't know yet if there are any data for this stats object,
1631 : * with either stxdinherit value. But it's reasonable to assume there
1632 : * is at least one of those, possibly both. So it's better to process
1633 : * keys and expressions here.
1634 : */
1635 : {
1636 : bool isnull;
1637 : Datum datum;
1638 :
1639 : /* decode expression (if any) */
1640 2006 : datum = SysCacheGetAttr(STATEXTOID, htup,
1641 : Anum_pg_statistic_ext_stxexprs, &isnull);
1642 :
1643 2006 : if (!isnull)
1644 : {
1645 : char *exprsString;
1646 :
1647 814 : exprsString = TextDatumGetCString(datum);
1648 814 : exprs = (List *) stringToNode(exprsString);
1649 814 : pfree(exprsString);
1650 :
1651 : /*
1652 : * Modify the copies we obtain from the relcache to have the
1653 : * correct varno for the parent relation, so that they match
1654 : * up correctly against qual clauses.
1655 : *
1656 : * This must be done before const-simplification because
1657 : * eval_const_expressions reduces NullTest for Vars based on
1658 : * varno.
1659 : */
1660 814 : if (varno != 1)
1661 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1662 :
1663 : /*
1664 : * Run the expressions through eval_const_expressions. This is
1665 : * not just an optimization, but is necessary, because the
1666 : * planner will be comparing them to similarly-processed qual
1667 : * clauses, and may fail to detect valid matches without this.
1668 : * We must not use canonicalize_qual, however, since these
1669 : * aren't qual expressions.
1670 : */
1671 814 : exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1672 :
1673 : /* May as well fix opfuncids too */
1674 814 : fix_opfuncids((Node *) exprs);
1675 : }
1676 : }
1677 :
1678 : /* extract statistics for possible values of stxdinherit flag */
1679 :
1680 2006 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1681 :
1682 2006 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1683 :
1684 2006 : ReleaseSysCache(htup);
1685 2006 : bms_free(keys);
1686 : }
1687 :
1688 476456 : list_free(statoidlist);
1689 :
1690 476456 : return stainfos;
1691 : }
1692 :
1693 : /*
1694 : * relation_excluded_by_constraints
1695 : *
1696 : * Detect whether the relation need not be scanned because it has either
1697 : * self-inconsistent restrictions, or restrictions inconsistent with the
1698 : * relation's applicable constraints.
1699 : *
1700 : * Note: this examines only rel->relid, rel->reloptkind, and
1701 : * rel->baserestrictinfo; therefore it can be called before filling in
1702 : * other fields of the RelOptInfo.
1703 : */
1704 : bool
1705 523130 : relation_excluded_by_constraints(PlannerInfo *root,
1706 : RelOptInfo *rel, RangeTblEntry *rte)
1707 : {
1708 : bool include_noinherit;
1709 : bool include_notnull;
1710 523130 : bool include_partition = false;
1711 : List *safe_restrictions;
1712 : List *constraint_pred;
1713 : List *safe_constraints;
1714 : ListCell *lc;
1715 :
1716 : /* As of now, constraint exclusion works only with simple relations. */
1717 : Assert(IS_SIMPLE_REL(rel));
1718 :
1719 : /*
1720 : * If there are no base restriction clauses, we have no hope of proving
1721 : * anything below, so fall out quickly.
1722 : */
1723 523130 : if (rel->baserestrictinfo == NIL)
1724 239834 : return false;
1725 :
1726 : /*
1727 : * Regardless of the setting of constraint_exclusion, detect
1728 : * constant-FALSE-or-NULL restriction clauses. Although const-folding
1729 : * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1730 : * list can still have other members besides the FALSE constant, due to
1731 : * qual pushdown and other mechanisms; so check them all. This doesn't
1732 : * fire very often, but it seems cheap enough to be worth doing anyway.
1733 : * (Without this, we'd miss some optimizations that 9.5 and earlier found
1734 : * via much more roundabout methods.)
1735 : */
1736 707004 : foreach(lc, rel->baserestrictinfo)
1737 : {
1738 424288 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1739 424288 : Expr *clause = rinfo->clause;
1740 :
1741 424288 : if (clause && IsA(clause, Const) &&
1742 580 : (((Const *) clause)->constisnull ||
1743 574 : !DatumGetBool(((Const *) clause)->constvalue)))
1744 580 : return true;
1745 : }
1746 :
1747 : /*
1748 : * Skip further tests, depending on constraint_exclusion.
1749 : */
1750 282716 : switch (constraint_exclusion)
1751 : {
1752 54 : case CONSTRAINT_EXCLUSION_OFF:
1753 : /* In 'off' mode, never make any further tests */
1754 54 : return false;
1755 :
1756 282518 : case CONSTRAINT_EXCLUSION_PARTITION:
1757 :
1758 : /*
1759 : * When constraint_exclusion is set to 'partition' we only handle
1760 : * appendrel members. Partition pruning has already been applied,
1761 : * so there is no need to consider the rel's partition constraints
1762 : * here.
1763 : */
1764 282518 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1765 21580 : break; /* appendrel member, so process it */
1766 260938 : return false;
1767 :
1768 144 : case CONSTRAINT_EXCLUSION_ON:
1769 :
1770 : /*
1771 : * In 'on' mode, always apply constraint exclusion. If we are
1772 : * considering a baserel that is a partition (i.e., it was
1773 : * directly named rather than expanded from a parent table), then
1774 : * its partition constraints haven't been considered yet, so
1775 : * include them in the processing here.
1776 : */
1777 144 : if (rel->reloptkind == RELOPT_BASEREL)
1778 114 : include_partition = true;
1779 144 : break; /* always try to exclude */
1780 : }
1781 :
1782 : /*
1783 : * Check for self-contradictory restriction clauses. We dare not make
1784 : * deductions with non-immutable functions, but any immutable clauses that
1785 : * are self-contradictory allow us to conclude the scan is unnecessary.
1786 : *
1787 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1788 : * expecting to see any in its predicate argument.
1789 : */
1790 21724 : safe_restrictions = NIL;
1791 51258 : foreach(lc, rel->baserestrictinfo)
1792 : {
1793 29534 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1794 :
1795 29534 : if (!contain_mutable_functions((Node *) rinfo->clause))
1796 27994 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1797 : }
1798 :
1799 : /*
1800 : * We can use weak refutation here, since we're comparing restriction
1801 : * clauses with restriction clauses.
1802 : */
1803 21724 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1804 72 : return true;
1805 :
1806 : /*
1807 : * Only plain relations have constraints, so stop here for other rtekinds.
1808 : */
1809 21652 : if (rte->rtekind != RTE_RELATION)
1810 286 : return false;
1811 :
1812 : /*
1813 : * If we are scanning just this table, we can use NO INHERIT constraints,
1814 : * but not if we're scanning its children too. (Note that partitioned
1815 : * tables should never have NO INHERIT constraints; but it's not necessary
1816 : * for us to assume that here.)
1817 : */
1818 21366 : include_noinherit = !rte->inh;
1819 :
1820 : /*
1821 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1822 : * this is a partitioned table. In future we might track their
1823 : * inheritance status more accurately, allowing this to be refined.
1824 : *
1825 : * XXX do we need/want to change this?
1826 : */
1827 21366 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1828 :
1829 : /*
1830 : * Fetch the appropriate set of constraint expressions.
1831 : */
1832 21366 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1833 : include_noinherit,
1834 : include_notnull,
1835 : include_partition);
1836 :
1837 : /*
1838 : * We do not currently enforce that CHECK constraints contain only
1839 : * immutable functions, so it's necessary to check here. We daren't draw
1840 : * conclusions from plan-time evaluation of non-immutable functions. Since
1841 : * they're ANDed, we can just ignore any mutable constraints in the list,
1842 : * and reason about the rest.
1843 : */
1844 21366 : safe_constraints = NIL;
1845 31450 : foreach(lc, constraint_pred)
1846 : {
1847 10084 : Node *pred = (Node *) lfirst(lc);
1848 :
1849 10084 : if (!contain_mutable_functions(pred))
1850 10084 : safe_constraints = lappend(safe_constraints, pred);
1851 : }
1852 :
1853 : /*
1854 : * The constraints are effectively ANDed together, so we can just try to
1855 : * refute the entire collection at once. This may allow us to make proofs
1856 : * that would fail if we took them individually.
1857 : *
1858 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1859 : * an obvious optimization. Some of the clauses might be OR clauses that
1860 : * have volatile and nonvolatile subclauses, and it's OK to make
1861 : * deductions with the nonvolatile parts.
1862 : *
1863 : * We need strong refutation because we have to prove that the constraints
1864 : * would yield false, not just NULL.
1865 : */
1866 21366 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1867 192 : return true;
1868 :
1869 21174 : return false;
1870 : }
1871 :
1872 :
1873 : /*
1874 : * build_physical_tlist
1875 : *
1876 : * Build a targetlist consisting of exactly the relation's user attributes,
1877 : * in order. The executor can special-case such tlists to avoid a projection
1878 : * step at runtime, so we use such tlists preferentially for scan nodes.
1879 : *
1880 : * Exception: if there are any dropped or missing columns, we punt and return
1881 : * NIL. Ideally we would like to handle these cases too. However this
1882 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1883 : * for a tlist that includes vars of no-longer-existent types. In theory we
1884 : * could dig out the required info from the pg_attribute entries of the
1885 : * relation, but that data is not readily available to ExecTypeFromTL.
1886 : * For now, we don't apply the physical-tlist optimization when there are
1887 : * dropped cols.
1888 : *
1889 : * We also support building a "physical" tlist for subqueries, functions,
1890 : * values lists, table expressions, and CTEs, since the same optimization can
1891 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1892 : * NamedTuplestoreScan, and WorkTableScan nodes.
1893 : */
1894 : List *
1895 188216 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
1896 : {
1897 188216 : List *tlist = NIL;
1898 188216 : Index varno = rel->relid;
1899 188216 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
1900 : Relation relation;
1901 : Query *subquery;
1902 : Var *var;
1903 : ListCell *l;
1904 : int attrno,
1905 : numattrs;
1906 : List *colvars;
1907 :
1908 188216 : switch (rte->rtekind)
1909 : {
1910 161308 : case RTE_RELATION:
1911 : /* Assume we already have adequate lock */
1912 161308 : relation = table_open(rte->relid, NoLock);
1913 :
1914 161308 : numattrs = RelationGetNumberOfAttributes(relation);
1915 2862220 : for (attrno = 1; attrno <= numattrs; attrno++)
1916 : {
1917 2701050 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1918 : attrno - 1);
1919 :
1920 2701050 : if (att_tup->attisdropped || att_tup->atthasmissing)
1921 : {
1922 : /* found a dropped or missing col, so punt */
1923 138 : tlist = NIL;
1924 138 : break;
1925 : }
1926 :
1927 2700912 : var = makeVar(varno,
1928 : attrno,
1929 : att_tup->atttypid,
1930 : att_tup->atttypmod,
1931 : att_tup->attcollation,
1932 : 0);
1933 :
1934 2700912 : tlist = lappend(tlist,
1935 2700912 : makeTargetEntry((Expr *) var,
1936 : attrno,
1937 : NULL,
1938 : false));
1939 : }
1940 :
1941 161308 : table_close(relation, NoLock);
1942 161308 : break;
1943 :
1944 2362 : case RTE_SUBQUERY:
1945 2362 : subquery = rte->subquery;
1946 8826 : foreach(l, subquery->targetList)
1947 : {
1948 6464 : TargetEntry *tle = (TargetEntry *) lfirst(l);
1949 :
1950 : /*
1951 : * A resjunk column of the subquery can be reflected as
1952 : * resjunk in the physical tlist; we need not punt.
1953 : */
1954 6464 : var = makeVarFromTargetEntry(varno, tle);
1955 :
1956 6464 : tlist = lappend(tlist,
1957 6464 : makeTargetEntry((Expr *) var,
1958 6464 : tle->resno,
1959 : NULL,
1960 6464 : tle->resjunk));
1961 : }
1962 2362 : break;
1963 :
1964 24546 : case RTE_FUNCTION:
1965 : case RTE_TABLEFUNC:
1966 : case RTE_VALUES:
1967 : case RTE_CTE:
1968 : case RTE_NAMEDTUPLESTORE:
1969 : case RTE_RESULT:
1970 : /* Not all of these can have dropped cols, but share code anyway */
1971 24546 : expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
1972 : true /* include dropped */ , NULL, &colvars);
1973 125462 : foreach(l, colvars)
1974 : {
1975 100916 : var = (Var *) lfirst(l);
1976 :
1977 : /*
1978 : * A non-Var in expandRTE's output means a dropped column;
1979 : * must punt.
1980 : */
1981 100916 : if (!IsA(var, Var))
1982 : {
1983 0 : tlist = NIL;
1984 0 : break;
1985 : }
1986 :
1987 100916 : tlist = lappend(tlist,
1988 100916 : makeTargetEntry((Expr *) var,
1989 100916 : var->varattno,
1990 : NULL,
1991 : false));
1992 : }
1993 24546 : break;
1994 :
1995 0 : default:
1996 : /* caller error */
1997 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1998 : (int) rte->rtekind);
1999 : break;
2000 : }
2001 :
2002 188216 : return tlist;
2003 : }
2004 :
2005 : /*
2006 : * build_index_tlist
2007 : *
2008 : * Build a targetlist representing the columns of the specified index.
2009 : * Each column is represented by a Var for the corresponding base-relation
2010 : * column, or an expression in base-relation Vars, as appropriate.
2011 : *
2012 : * There are never any dropped columns in indexes, so unlike
2013 : * build_physical_tlist, we need no failure case.
2014 : */
2015 : static List *
2016 745570 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
2017 : Relation heapRelation)
2018 : {
2019 745570 : List *tlist = NIL;
2020 745570 : Index varno = index->rel->relid;
2021 : ListCell *indexpr_item;
2022 : int i;
2023 :
2024 745570 : indexpr_item = list_head(index->indexprs);
2025 2150120 : for (i = 0; i < index->ncolumns; i++)
2026 : {
2027 1404550 : int indexkey = index->indexkeys[i];
2028 : Expr *indexvar;
2029 :
2030 1404550 : if (indexkey != 0)
2031 : {
2032 : /* simple column */
2033 : const FormData_pg_attribute *att_tup;
2034 :
2035 1401534 : if (indexkey < 0)
2036 0 : att_tup = SystemAttributeDefinition(indexkey);
2037 : else
2038 1401534 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2039 :
2040 1401534 : indexvar = (Expr *) makeVar(varno,
2041 : indexkey,
2042 1401534 : att_tup->atttypid,
2043 1401534 : att_tup->atttypmod,
2044 1401534 : att_tup->attcollation,
2045 : 0);
2046 : }
2047 : else
2048 : {
2049 : /* expression column */
2050 3016 : if (indexpr_item == NULL)
2051 0 : elog(ERROR, "wrong number of index expressions");
2052 3016 : indexvar = (Expr *) lfirst(indexpr_item);
2053 3016 : indexpr_item = lnext(index->indexprs, indexpr_item);
2054 : }
2055 :
2056 1404550 : tlist = lappend(tlist,
2057 1404550 : makeTargetEntry(indexvar,
2058 1404550 : i + 1,
2059 : NULL,
2060 : false));
2061 : }
2062 745570 : if (indexpr_item != NULL)
2063 0 : elog(ERROR, "wrong number of index expressions");
2064 :
2065 745570 : return tlist;
2066 : }
2067 :
2068 : /*
2069 : * restriction_selectivity
2070 : *
2071 : * Returns the selectivity of a specified restriction operator clause.
2072 : * This code executes registered procedures stored in the
2073 : * operator relation, by calling the function manager.
2074 : *
2075 : * See clause_selectivity() for the meaning of the additional parameters.
2076 : */
2077 : Selectivity
2078 739098 : restriction_selectivity(PlannerInfo *root,
2079 : Oid operatorid,
2080 : List *args,
2081 : Oid inputcollid,
2082 : int varRelid)
2083 : {
2084 739098 : RegProcedure oprrest = get_oprrest(operatorid);
2085 : float8 result;
2086 :
2087 : /*
2088 : * if the oprrest procedure is missing for whatever reason, use a
2089 : * selectivity of 0.5
2090 : */
2091 739098 : if (!oprrest)
2092 160 : return (Selectivity) 0.5;
2093 :
2094 738938 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
2095 : inputcollid,
2096 : PointerGetDatum(root),
2097 : ObjectIdGetDatum(operatorid),
2098 : PointerGetDatum(args),
2099 : Int32GetDatum(varRelid)));
2100 :
2101 738908 : if (result < 0.0 || result > 1.0)
2102 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
2103 :
2104 738908 : return (Selectivity) result;
2105 : }
2106 :
2107 : /*
2108 : * join_selectivity
2109 : *
2110 : * Returns the selectivity of a specified join operator clause.
2111 : * This code executes registered procedures stored in the
2112 : * operator relation, by calling the function manager.
2113 : *
2114 : * See clause_selectivity() for the meaning of the additional parameters.
2115 : */
2116 : Selectivity
2117 267550 : join_selectivity(PlannerInfo *root,
2118 : Oid operatorid,
2119 : List *args,
2120 : Oid inputcollid,
2121 : JoinType jointype,
2122 : SpecialJoinInfo *sjinfo)
2123 : {
2124 267550 : RegProcedure oprjoin = get_oprjoin(operatorid);
2125 : float8 result;
2126 :
2127 : /*
2128 : * if the oprjoin procedure is missing for whatever reason, use a
2129 : * selectivity of 0.5
2130 : */
2131 267550 : if (!oprjoin)
2132 146 : return (Selectivity) 0.5;
2133 :
2134 267404 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2135 : inputcollid,
2136 : PointerGetDatum(root),
2137 : ObjectIdGetDatum(operatorid),
2138 : PointerGetDatum(args),
2139 : Int16GetDatum(jointype),
2140 : PointerGetDatum(sjinfo)));
2141 :
2142 267404 : if (result < 0.0 || result > 1.0)
2143 0 : elog(ERROR, "invalid join selectivity: %f", result);
2144 :
2145 267404 : return (Selectivity) result;
2146 : }
2147 :
2148 : /*
2149 : * function_selectivity
2150 : *
2151 : * Attempt to estimate the selectivity of a specified boolean function clause
2152 : * by asking its support function. If the function lacks support, return -1.
2153 : *
2154 : * See clause_selectivity() for the meaning of the additional parameters.
2155 : */
2156 : Selectivity
2157 12370 : function_selectivity(PlannerInfo *root,
2158 : Oid funcid,
2159 : List *args,
2160 : Oid inputcollid,
2161 : bool is_join,
2162 : int varRelid,
2163 : JoinType jointype,
2164 : SpecialJoinInfo *sjinfo)
2165 : {
2166 12370 : RegProcedure prosupport = get_func_support(funcid);
2167 : SupportRequestSelectivity req;
2168 : SupportRequestSelectivity *sresult;
2169 :
2170 12370 : if (!prosupport)
2171 12340 : return (Selectivity) -1; /* no support function */
2172 :
2173 30 : req.type = T_SupportRequestSelectivity;
2174 30 : req.root = root;
2175 30 : req.funcid = funcid;
2176 30 : req.args = args;
2177 30 : req.inputcollid = inputcollid;
2178 30 : req.is_join = is_join;
2179 30 : req.varRelid = varRelid;
2180 30 : req.jointype = jointype;
2181 30 : req.sjinfo = sjinfo;
2182 30 : req.selectivity = -1; /* to catch failure to set the value */
2183 :
2184 : sresult = (SupportRequestSelectivity *)
2185 30 : DatumGetPointer(OidFunctionCall1(prosupport,
2186 : PointerGetDatum(&req)));
2187 :
2188 30 : if (sresult != &req)
2189 0 : return (Selectivity) -1; /* function did not honor request */
2190 :
2191 30 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2192 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2193 :
2194 30 : return (Selectivity) req.selectivity;
2195 : }
2196 :
2197 : /*
2198 : * add_function_cost
2199 : *
2200 : * Get an estimate of the execution cost of a function, and *add* it to
2201 : * the contents of *cost. The estimate may include both one-time and
2202 : * per-tuple components, since QualCost does.
2203 : *
2204 : * The funcid must always be supplied. If it is being called as the
2205 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2206 : * WindowFunc, etc), pass that as "node", else pass NULL.
2207 : *
2208 : * In some usages root might be NULL, too.
2209 : */
2210 : void
2211 1162190 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2212 : QualCost *cost)
2213 : {
2214 : HeapTuple proctup;
2215 : Form_pg_proc procform;
2216 :
2217 1162190 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2218 1162190 : if (!HeapTupleIsValid(proctup))
2219 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2220 1162190 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2221 :
2222 1162190 : if (OidIsValid(procform->prosupport))
2223 : {
2224 : SupportRequestCost req;
2225 : SupportRequestCost *sresult;
2226 :
2227 35326 : req.type = T_SupportRequestCost;
2228 35326 : req.root = root;
2229 35326 : req.funcid = funcid;
2230 35326 : req.node = node;
2231 :
2232 : /* Initialize cost fields so that support function doesn't have to */
2233 35326 : req.startup = 0;
2234 35326 : req.per_tuple = 0;
2235 :
2236 : sresult = (SupportRequestCost *)
2237 35326 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2238 : PointerGetDatum(&req)));
2239 :
2240 35326 : if (sresult == &req)
2241 : {
2242 : /* Success, so accumulate support function's estimate into *cost */
2243 18 : cost->startup += req.startup;
2244 18 : cost->per_tuple += req.per_tuple;
2245 18 : ReleaseSysCache(proctup);
2246 18 : return;
2247 : }
2248 : }
2249 :
2250 : /* No support function, or it failed, so rely on procost */
2251 1162172 : cost->per_tuple += procform->procost * cpu_operator_cost;
2252 :
2253 1162172 : ReleaseSysCache(proctup);
2254 : }
2255 :
2256 : /*
2257 : * get_function_rows
2258 : *
2259 : * Get an estimate of the number of rows returned by a set-returning function.
2260 : *
2261 : * The funcid must always be supplied. In current usage, the calling node
2262 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2263 : * But it's a good idea to not fail if it's NULL.
2264 : *
2265 : * In some usages root might be NULL, too.
2266 : *
2267 : * Note: this returns the unfiltered result of the support function, if any.
2268 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2269 : * leave it to the caller to do so.
2270 : */
2271 : double
2272 56316 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2273 : {
2274 : HeapTuple proctup;
2275 : Form_pg_proc procform;
2276 : double result;
2277 :
2278 56316 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2279 56316 : if (!HeapTupleIsValid(proctup))
2280 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2281 56316 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2282 :
2283 : Assert(procform->proretset); /* else caller error */
2284 :
2285 56316 : if (OidIsValid(procform->prosupport))
2286 : {
2287 : SupportRequestRows req;
2288 : SupportRequestRows *sresult;
2289 :
2290 21070 : req.type = T_SupportRequestRows;
2291 21070 : req.root = root;
2292 21070 : req.funcid = funcid;
2293 21070 : req.node = node;
2294 :
2295 21070 : req.rows = 0; /* just for sanity */
2296 :
2297 : sresult = (SupportRequestRows *)
2298 21070 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2299 : PointerGetDatum(&req)));
2300 :
2301 21070 : if (sresult == &req)
2302 : {
2303 : /* Success */
2304 17030 : ReleaseSysCache(proctup);
2305 17030 : return req.rows;
2306 : }
2307 : }
2308 :
2309 : /* No support function, or it failed, so rely on prorows */
2310 39286 : result = procform->prorows;
2311 :
2312 39286 : ReleaseSysCache(proctup);
2313 :
2314 39286 : return result;
2315 : }
2316 :
2317 : /*
2318 : * has_unique_index
2319 : *
2320 : * Detect whether there is a unique index on the specified attribute
2321 : * of the specified relation, thus allowing us to conclude that all
2322 : * the (non-null) values of the attribute are distinct.
2323 : *
2324 : * This function does not check the index's indimmediate property, which
2325 : * means that uniqueness may transiently fail to hold intra-transaction.
2326 : * That's appropriate when we are making statistical estimates, but beware
2327 : * of using this for any correctness proofs.
2328 : */
2329 : bool
2330 2321306 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2331 : {
2332 : ListCell *ilist;
2333 :
2334 5661358 : foreach(ilist, rel->indexlist)
2335 : {
2336 4055482 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2337 :
2338 : /*
2339 : * Note: ignore partial indexes, since they don't allow us to conclude
2340 : * that all attr values are distinct, *unless* they are marked predOK
2341 : * which means we know the index's predicate is satisfied by the
2342 : * query. We don't take any interest in expressional indexes either.
2343 : * Also, a multicolumn unique index doesn't allow us to conclude that
2344 : * just the specified attr is unique.
2345 : */
2346 4055482 : if (index->unique &&
2347 2827934 : index->nkeycolumns == 1 &&
2348 1531972 : index->indexkeys[0] == attno &&
2349 715466 : (index->indpred == NIL || index->predOK))
2350 715430 : return true;
2351 : }
2352 1605876 : return false;
2353 : }
2354 :
2355 :
2356 : /*
2357 : * has_row_triggers
2358 : *
2359 : * Detect whether the specified relation has any row-level triggers for event.
2360 : */
2361 : bool
2362 516 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2363 : {
2364 516 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2365 : Relation relation;
2366 : TriggerDesc *trigDesc;
2367 516 : bool result = false;
2368 :
2369 : /* Assume we already have adequate lock */
2370 516 : relation = table_open(rte->relid, NoLock);
2371 :
2372 516 : trigDesc = relation->trigdesc;
2373 516 : switch (event)
2374 : {
2375 164 : case CMD_INSERT:
2376 164 : if (trigDesc &&
2377 26 : (trigDesc->trig_insert_after_row ||
2378 14 : trigDesc->trig_insert_before_row))
2379 26 : result = true;
2380 164 : break;
2381 190 : case CMD_UPDATE:
2382 190 : if (trigDesc &&
2383 48 : (trigDesc->trig_update_after_row ||
2384 28 : trigDesc->trig_update_before_row))
2385 36 : result = true;
2386 190 : break;
2387 162 : case CMD_DELETE:
2388 162 : if (trigDesc &&
2389 30 : (trigDesc->trig_delete_after_row ||
2390 18 : trigDesc->trig_delete_before_row))
2391 16 : result = true;
2392 162 : break;
2393 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2394 0 : case CMD_MERGE:
2395 0 : result = false;
2396 0 : break;
2397 0 : default:
2398 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2399 : break;
2400 : }
2401 :
2402 516 : table_close(relation, NoLock);
2403 516 : return result;
2404 : }
2405 :
2406 : /*
2407 : * has_transition_tables
2408 : *
2409 : * Detect whether the specified relation has any transition tables for event.
2410 : */
2411 : bool
2412 390 : has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
2413 : {
2414 390 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2415 : Relation relation;
2416 : TriggerDesc *trigDesc;
2417 390 : bool result = false;
2418 :
2419 : Assert(rte->rtekind == RTE_RELATION);
2420 :
2421 : /* Currently foreign tables cannot have transition tables */
2422 390 : if (rte->relkind == RELKIND_FOREIGN_TABLE)
2423 290 : return result;
2424 :
2425 : /* Assume we already have adequate lock */
2426 100 : relation = table_open(rte->relid, NoLock);
2427 :
2428 100 : trigDesc = relation->trigdesc;
2429 100 : switch (event)
2430 : {
2431 0 : case CMD_INSERT:
2432 0 : if (trigDesc &&
2433 0 : trigDesc->trig_insert_new_table)
2434 0 : result = true;
2435 0 : break;
2436 60 : case CMD_UPDATE:
2437 60 : if (trigDesc &&
2438 8 : (trigDesc->trig_update_old_table ||
2439 0 : trigDesc->trig_update_new_table))
2440 8 : result = true;
2441 60 : break;
2442 40 : case CMD_DELETE:
2443 40 : if (trigDesc &&
2444 8 : trigDesc->trig_delete_old_table)
2445 8 : result = true;
2446 40 : break;
2447 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2448 0 : case CMD_MERGE:
2449 0 : result = false;
2450 0 : break;
2451 0 : default:
2452 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2453 : break;
2454 : }
2455 :
2456 100 : table_close(relation, NoLock);
2457 100 : return result;
2458 : }
2459 :
2460 : /*
2461 : * has_stored_generated_columns
2462 : *
2463 : * Does table identified by RTI have any STORED GENERATED columns?
2464 : */
2465 : bool
2466 438 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2467 : {
2468 438 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2469 : Relation relation;
2470 : TupleDesc tupdesc;
2471 438 : bool result = false;
2472 :
2473 : /* Assume we already have adequate lock */
2474 438 : relation = table_open(rte->relid, NoLock);
2475 :
2476 438 : tupdesc = RelationGetDescr(relation);
2477 438 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2478 :
2479 438 : table_close(relation, NoLock);
2480 :
2481 438 : return result;
2482 : }
2483 :
2484 : /*
2485 : * get_dependent_generated_columns
2486 : *
2487 : * Get the column numbers of any STORED GENERATED columns of the relation
2488 : * that depend on any column listed in target_cols. Both the input and
2489 : * result bitmapsets contain column numbers offset by
2490 : * FirstLowInvalidHeapAttributeNumber.
2491 : */
2492 : Bitmapset *
2493 90 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2494 : Bitmapset *target_cols)
2495 : {
2496 90 : Bitmapset *dependentCols = NULL;
2497 90 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2498 : Relation relation;
2499 : TupleDesc tupdesc;
2500 : TupleConstr *constr;
2501 :
2502 : /* Assume we already have adequate lock */
2503 90 : relation = table_open(rte->relid, NoLock);
2504 :
2505 90 : tupdesc = RelationGetDescr(relation);
2506 90 : constr = tupdesc->constr;
2507 :
2508 90 : if (constr && constr->has_generated_stored)
2509 : {
2510 12 : for (int i = 0; i < constr->num_defval; i++)
2511 : {
2512 8 : AttrDefault *defval = &constr->defval[i];
2513 : Node *expr;
2514 8 : Bitmapset *attrs_used = NULL;
2515 :
2516 : /* skip if not generated column */
2517 8 : if (!TupleDescCompactAttr(tupdesc, defval->adnum - 1)->attgenerated)
2518 0 : continue;
2519 :
2520 : /* identify columns this generated column depends on */
2521 8 : expr = stringToNode(defval->adbin);
2522 8 : pull_varattnos(expr, 1, &attrs_used);
2523 :
2524 8 : if (bms_overlap(target_cols, attrs_used))
2525 8 : dependentCols = bms_add_member(dependentCols,
2526 8 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2527 : }
2528 : }
2529 :
2530 90 : table_close(relation, NoLock);
2531 :
2532 90 : return dependentCols;
2533 : }
2534 :
2535 : /*
2536 : * set_relation_partition_info
2537 : *
2538 : * Set partitioning scheme and related information for a partitioned table.
2539 : */
2540 : static void
2541 17638 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2542 : Relation relation)
2543 : {
2544 : PartitionDesc partdesc;
2545 :
2546 : /*
2547 : * Create the PartitionDirectory infrastructure if we didn't already.
2548 : */
2549 17638 : if (root->glob->partition_directory == NULL)
2550 : {
2551 11790 : root->glob->partition_directory =
2552 11790 : CreatePartitionDirectory(CurrentMemoryContext, true);
2553 : }
2554 :
2555 17638 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2556 : relation);
2557 17638 : rel->part_scheme = find_partition_scheme(root, relation);
2558 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2559 17638 : rel->boundinfo = partdesc->boundinfo;
2560 17638 : rel->nparts = partdesc->nparts;
2561 17638 : set_baserel_partition_key_exprs(relation, rel);
2562 17638 : set_baserel_partition_constraint(relation, rel);
2563 17638 : }
2564 :
2565 : /*
2566 : * find_partition_scheme
2567 : *
2568 : * Find or create a PartitionScheme for this Relation.
2569 : */
2570 : static PartitionScheme
2571 17638 : find_partition_scheme(PlannerInfo *root, Relation relation)
2572 : {
2573 17638 : PartitionKey partkey = RelationGetPartitionKey(relation);
2574 : ListCell *lc;
2575 : int partnatts,
2576 : i;
2577 : PartitionScheme part_scheme;
2578 :
2579 : /* A partitioned table should have a partition key. */
2580 : Assert(partkey != NULL);
2581 :
2582 17638 : partnatts = partkey->partnatts;
2583 :
2584 : /* Search for a matching partition scheme and return if found one. */
2585 19528 : foreach(lc, root->part_schemes)
2586 : {
2587 6440 : part_scheme = lfirst(lc);
2588 :
2589 : /* Match partitioning strategy and number of keys. */
2590 6440 : if (partkey->strategy != part_scheme->strategy ||
2591 5450 : partnatts != part_scheme->partnatts)
2592 1440 : continue;
2593 :
2594 : /* Match partition key type properties. */
2595 5000 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2596 4550 : sizeof(Oid) * partnatts) != 0 ||
2597 4550 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2598 4550 : sizeof(Oid) * partnatts) != 0 ||
2599 4550 : memcmp(partkey->partcollation, part_scheme->partcollation,
2600 : sizeof(Oid) * partnatts) != 0)
2601 450 : continue;
2602 :
2603 : /*
2604 : * Length and byval information should match when partopcintype
2605 : * matches.
2606 : */
2607 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2608 : sizeof(int16) * partnatts) == 0);
2609 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2610 : sizeof(bool) * partnatts) == 0);
2611 :
2612 : /*
2613 : * If partopfamily and partopcintype matched, must have the same
2614 : * partition comparison functions. Note that we cannot reliably
2615 : * Assert the equality of function structs themselves for they might
2616 : * be different across PartitionKey's, so just Assert for the function
2617 : * OIDs.
2618 : */
2619 : #ifdef USE_ASSERT_CHECKING
2620 : for (i = 0; i < partkey->partnatts; i++)
2621 : Assert(partkey->partsupfunc[i].fn_oid ==
2622 : part_scheme->partsupfunc[i].fn_oid);
2623 : #endif
2624 :
2625 : /* Found matching partition scheme. */
2626 4550 : return part_scheme;
2627 : }
2628 :
2629 : /*
2630 : * Did not find matching partition scheme. Create one copying relevant
2631 : * information from the relcache. We need to copy the contents of the
2632 : * array since the relcache entry may not survive after we have closed the
2633 : * relation.
2634 : */
2635 13088 : part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2636 13088 : part_scheme->strategy = partkey->strategy;
2637 13088 : part_scheme->partnatts = partkey->partnatts;
2638 :
2639 13088 : part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2640 13088 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2641 : sizeof(Oid) * partnatts);
2642 :
2643 13088 : part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2644 13088 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2645 : sizeof(Oid) * partnatts);
2646 :
2647 13088 : part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2648 13088 : memcpy(part_scheme->partcollation, partkey->partcollation,
2649 : sizeof(Oid) * partnatts);
2650 :
2651 13088 : part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2652 13088 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2653 : sizeof(int16) * partnatts);
2654 :
2655 13088 : part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2656 13088 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2657 : sizeof(bool) * partnatts);
2658 :
2659 13088 : part_scheme->partsupfunc = (FmgrInfo *)
2660 13088 : palloc(sizeof(FmgrInfo) * partnatts);
2661 28024 : for (i = 0; i < partnatts; i++)
2662 14936 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2663 : CurrentMemoryContext);
2664 :
2665 : /* Add the partitioning scheme to PlannerInfo. */
2666 13088 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2667 :
2668 13088 : return part_scheme;
2669 : }
2670 :
2671 : /*
2672 : * set_baserel_partition_key_exprs
2673 : *
2674 : * Builds partition key expressions for the given base relation and fills
2675 : * rel->partexprs.
2676 : */
2677 : static void
2678 17638 : set_baserel_partition_key_exprs(Relation relation,
2679 : RelOptInfo *rel)
2680 : {
2681 17638 : PartitionKey partkey = RelationGetPartitionKey(relation);
2682 : int partnatts;
2683 : int cnt;
2684 : List **partexprs;
2685 : ListCell *lc;
2686 17638 : Index varno = rel->relid;
2687 :
2688 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2689 :
2690 : /* A partitioned table should have a partition key. */
2691 : Assert(partkey != NULL);
2692 :
2693 17638 : partnatts = partkey->partnatts;
2694 17638 : partexprs = (List **) palloc(sizeof(List *) * partnatts);
2695 17638 : lc = list_head(partkey->partexprs);
2696 :
2697 37154 : for (cnt = 0; cnt < partnatts; cnt++)
2698 : {
2699 : Expr *partexpr;
2700 19516 : AttrNumber attno = partkey->partattrs[cnt];
2701 :
2702 19516 : if (attno != InvalidAttrNumber)
2703 : {
2704 : /* Single column partition key is stored as a Var node. */
2705 : Assert(attno > 0);
2706 :
2707 18586 : partexpr = (Expr *) makeVar(varno, attno,
2708 18586 : partkey->parttypid[cnt],
2709 18586 : partkey->parttypmod[cnt],
2710 18586 : partkey->parttypcoll[cnt], 0);
2711 : }
2712 : else
2713 : {
2714 930 : if (lc == NULL)
2715 0 : elog(ERROR, "wrong number of partition key expressions");
2716 :
2717 : /* Re-stamp the expression with given varno. */
2718 930 : partexpr = (Expr *) copyObject(lfirst(lc));
2719 930 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2720 930 : lc = lnext(partkey->partexprs, lc);
2721 : }
2722 :
2723 : /* Base relations have a single expression per key. */
2724 19516 : partexprs[cnt] = list_make1(partexpr);
2725 : }
2726 :
2727 17638 : rel->partexprs = partexprs;
2728 :
2729 : /*
2730 : * A base relation does not have nullable partition key expressions, since
2731 : * no outer join is involved. We still allocate an array of empty
2732 : * expression lists to keep partition key expression handling code simple.
2733 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2734 : */
2735 17638 : rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2736 17638 : }
2737 :
2738 : /*
2739 : * set_baserel_partition_constraint
2740 : *
2741 : * Builds the partition constraint for the given base relation and sets it
2742 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2743 : * given relation.
2744 : */
2745 : static void
2746 17650 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2747 : {
2748 : List *partconstr;
2749 :
2750 17650 : if (rel->partition_qual) /* already done */
2751 0 : return;
2752 :
2753 : /*
2754 : * Run the partition quals through const-simplification similar to check
2755 : * constraints. We skip canonicalize_qual, though, because partition
2756 : * quals should be in canonical form already; also, since the qual is in
2757 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2758 : * format and back again.
2759 : */
2760 17650 : partconstr = RelationGetPartitionQual(relation);
2761 17650 : if (partconstr)
2762 : {
2763 3712 : partconstr = (List *) expression_planner((Expr *) partconstr);
2764 3712 : if (rel->relid != 1)
2765 3630 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2766 3712 : rel->partition_qual = partconstr;
2767 : }
2768 : }
|