Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/cost.h"
40 : #include "optimizer/optimizer.h"
41 : #include "optimizer/plancat.h"
42 : #include "parser/parse_relation.h"
43 : #include "parser/parsetree.h"
44 : #include "partitioning/partdesc.h"
45 : #include "rewrite/rewriteHandler.h"
46 : #include "rewrite/rewriteManip.h"
47 : #include "statistics/statistics.h"
48 : #include "storage/bufmgr.h"
49 : #include "tcop/tcopprot.h"
50 : #include "utils/builtins.h"
51 : #include "utils/lsyscache.h"
52 : #include "utils/partcache.h"
53 : #include "utils/rel.h"
54 : #include "utils/snapmgr.h"
55 : #include "utils/syscache.h"
56 :
57 : /* GUC parameter */
58 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
59 :
60 : /* Hook for plugins to get control in get_relation_info() */
61 : get_relation_info_hook_type get_relation_info_hook = NULL;
62 :
63 : typedef struct NotnullHashEntry
64 : {
65 : Oid relid; /* OID of the relation */
66 : Bitmapset *notnullattnums; /* attnums of NOT NULL columns */
67 : } NotnullHashEntry;
68 :
69 :
70 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
71 : Relation relation, bool inhparent);
72 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
73 : List *idxExprs);
74 : static List *get_relation_constraints(PlannerInfo *root,
75 : Oid relationObjectId, RelOptInfo *rel,
76 : bool include_noinherit,
77 : bool include_notnull,
78 : bool include_partition);
79 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
80 : Relation heapRelation);
81 : static List *get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
82 : Relation relation);
83 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
84 : Relation relation);
85 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
86 : Relation relation);
87 : static void set_baserel_partition_key_exprs(Relation relation,
88 : RelOptInfo *rel);
89 : static void set_baserel_partition_constraint(Relation relation,
90 : RelOptInfo *rel);
91 :
92 :
93 : /*
94 : * get_relation_info -
95 : * Retrieves catalog information for a given relation.
96 : *
97 : * Given the Oid of the relation, return the following info into fields
98 : * of the RelOptInfo struct:
99 : *
100 : * min_attr lowest valid AttrNumber
101 : * max_attr highest valid AttrNumber
102 : * indexlist list of IndexOptInfos for relation's indexes
103 : * statlist list of StatisticExtInfo for relation's statistic objects
104 : * serverid if it's a foreign table, the server OID
105 : * fdwroutine if it's a foreign table, the FDW function pointers
106 : * pages number of pages
107 : * tuples number of tuples
108 : * rel_parallel_workers user-defined number of parallel workers
109 : *
110 : * Also, add information about the relation's foreign keys to root->fkey_list.
111 : *
112 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
113 : * cases these are left as zeroes, but sometimes we need to compute attr
114 : * widths here, and we may as well cache the results for costsize.c.
115 : *
116 : * If inhparent is true, all we need to do is set up the attr arrays:
117 : * the RelOptInfo actually represents the appendrel formed by an inheritance
118 : * tree, and so the parent rel's physical size and index information isn't
119 : * important for it, however, for partitioned tables, we do populate the
120 : * indexlist as the planner uses unique indexes as unique proofs for certain
121 : * optimizations.
122 : */
123 : void
124 492682 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
125 : RelOptInfo *rel)
126 : {
127 492682 : Index varno = rel->relid;
128 : Relation relation;
129 : bool hasindex;
130 492682 : List *indexinfos = NIL;
131 :
132 : /*
133 : * We need not lock the relation since it was already locked, either by
134 : * the rewriter or when expand_inherited_rtentry() added it to the query's
135 : * rangetable.
136 : */
137 492682 : relation = table_open(relationObjectId, NoLock);
138 :
139 : /*
140 : * Relations without a table AM can be used in a query only if they are of
141 : * special-cased relkinds. This check prevents us from crashing later if,
142 : * for example, a view's ON SELECT rule has gone missing. Note that
143 : * table_open() already rejected indexes and composite types; spell the
144 : * error the same way it does.
145 : */
146 492682 : if (!relation->rd_tableam)
147 : {
148 20656 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
149 18130 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
150 0 : ereport(ERROR,
151 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
152 : errmsg("cannot open relation \"%s\"",
153 : RelationGetRelationName(relation)),
154 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
155 : }
156 :
157 : /* Temporary and unlogged relations are inaccessible during recovery. */
158 492682 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
159 0 : ereport(ERROR,
160 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
161 : errmsg("cannot access temporary or unlogged relations during recovery")));
162 :
163 492682 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
164 492682 : rel->max_attr = RelationGetNumberOfAttributes(relation);
165 492682 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
166 :
167 : Assert(rel->max_attr >= rel->min_attr);
168 492682 : rel->attr_needed = (Relids *)
169 492682 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
170 492682 : rel->attr_widths = (int32 *)
171 492682 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
172 :
173 : /*
174 : * Record which columns are defined as NOT NULL. We leave this
175 : * unpopulated for non-partitioned inheritance parent relations as it's
176 : * ambiguous as to what it means. Some child tables may have a NOT NULL
177 : * constraint for a column while others may not. We could work harder and
178 : * build a unioned set of all child relations notnullattnums, but there's
179 : * currently no need. The RelOptInfo corresponding to the !inh
180 : * RangeTblEntry does get populated.
181 : */
182 492682 : if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
183 453808 : rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
184 :
185 : /*
186 : * Estimate relation size --- unless it's an inheritance parent, in which
187 : * case the size we want is not the rel's own size but the size of its
188 : * inheritance tree. That will be computed in set_append_rel_size().
189 : */
190 492682 : if (!inhparent)
191 435718 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
192 435718 : &rel->pages, &rel->tuples, &rel->allvisfrac);
193 :
194 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
195 492682 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
196 :
197 : /*
198 : * Make list of indexes. Ignore indexes on system catalogs if told to.
199 : * Don't bother with indexes from traditional inheritance parents. For
200 : * partitioned tables, we need a list of at least unique indexes as these
201 : * serve as unique proofs for certain planner optimizations. However,
202 : * let's not discriminate here and just record all partitioned indexes
203 : * whether they're unique indexes or not.
204 : */
205 492682 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
206 453808 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
207 38874 : hasindex = false;
208 : else
209 453808 : hasindex = relation->rd_rel->relhasindex;
210 :
211 492682 : if (hasindex)
212 : {
213 : List *indexoidlist;
214 : LOCKMODE lmode;
215 : ListCell *l;
216 :
217 367170 : indexoidlist = RelationGetIndexList(relation);
218 :
219 : /*
220 : * For each index, we get the same type of lock that the executor will
221 : * need, and do not release it. This saves a couple of trips to the
222 : * shared lock manager while not creating any real loss of
223 : * concurrency, because no schema changes could be happening on the
224 : * index while we hold lock on the parent rel, and no lock type used
225 : * for queries blocks any other kind of index operation.
226 : */
227 367170 : lmode = root->simple_rte_array[varno]->rellockmode;
228 :
229 1136500 : foreach(l, indexoidlist)
230 : {
231 769330 : Oid indexoid = lfirst_oid(l);
232 : Relation indexRelation;
233 : Form_pg_index index;
234 769330 : const IndexAmRoutine *amroutine = NULL;
235 : IndexOptInfo *info;
236 : int ncolumns,
237 : nkeycolumns;
238 : int i;
239 :
240 : /*
241 : * Extract info from the relation descriptor for the index.
242 : */
243 769330 : indexRelation = index_open(indexoid, lmode);
244 769330 : index = indexRelation->rd_index;
245 :
246 : /*
247 : * Ignore invalid indexes, since they can't safely be used for
248 : * queries. Note that this is OK because the data structure we
249 : * are constructing is only used by the planner --- the executor
250 : * still needs to insert into "invalid" indexes, if they're marked
251 : * indisready.
252 : */
253 769330 : if (!index->indisvalid)
254 : {
255 22 : index_close(indexRelation, NoLock);
256 22 : continue;
257 : }
258 :
259 : /*
260 : * If the index is valid, but cannot yet be used, ignore it; but
261 : * mark the plan we are generating as transient. See
262 : * src/backend/access/heap/README.HOT for discussion.
263 : */
264 769308 : if (index->indcheckxmin &&
265 270 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
266 : TransactionXmin))
267 : {
268 222 : root->glob->transientPlan = true;
269 222 : index_close(indexRelation, NoLock);
270 222 : continue;
271 : }
272 :
273 769086 : info = makeNode(IndexOptInfo);
274 :
275 769086 : info->indexoid = index->indexrelid;
276 769086 : info->reltablespace =
277 769086 : RelationGetForm(indexRelation)->reltablespace;
278 769086 : info->rel = rel;
279 769086 : info->ncolumns = ncolumns = index->indnatts;
280 769086 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
281 :
282 769086 : info->indexkeys = palloc_array(int, ncolumns);
283 769086 : info->indexcollations = palloc_array(Oid, nkeycolumns);
284 769086 : info->opfamily = palloc_array(Oid, nkeycolumns);
285 769086 : info->opcintype = palloc_array(Oid, nkeycolumns);
286 769086 : info->canreturn = palloc_array(bool, ncolumns);
287 :
288 2205216 : for (i = 0; i < ncolumns; i++)
289 : {
290 1436130 : info->indexkeys[i] = index->indkey.values[i];
291 1436130 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
292 : }
293 :
294 2204798 : for (i = 0; i < nkeycolumns; i++)
295 : {
296 1435712 : info->opfamily[i] = indexRelation->rd_opfamily[i];
297 1435712 : info->opcintype[i] = indexRelation->rd_opcintype[i];
298 1435712 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
299 : }
300 :
301 769086 : info->relam = indexRelation->rd_rel->relam;
302 :
303 : /*
304 : * We don't have an AM for partitioned indexes, so we'll just
305 : * NULLify the AM related fields for those.
306 : */
307 769086 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
308 : {
309 : /* We copy just the fields we need, not all of rd_indam */
310 762146 : amroutine = indexRelation->rd_indam;
311 762146 : info->amcanorderbyop = amroutine->amcanorderbyop;
312 762146 : info->amoptionalkey = amroutine->amoptionalkey;
313 762146 : info->amsearcharray = amroutine->amsearcharray;
314 762146 : info->amsearchnulls = amroutine->amsearchnulls;
315 762146 : info->amcanparallel = amroutine->amcanparallel;
316 762146 : info->amhasgettuple = (amroutine->amgettuple != NULL);
317 1524292 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
318 762146 : relation->rd_tableam->scan_bitmap_next_tuple != NULL;
319 1502112 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
320 739966 : amroutine->amrestrpos != NULL);
321 762146 : info->amcostestimate = amroutine->amcostestimate;
322 : Assert(info->amcostestimate != NULL);
323 :
324 : /* Fetch index opclass options */
325 762146 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
326 :
327 : /*
328 : * Fetch the ordering information for the index, if any.
329 : */
330 762146 : if (info->relam == BTREE_AM_OID)
331 : {
332 : /*
333 : * If it's a btree index, we can use its opfamily OIDs
334 : * directly as the sort ordering opfamily OIDs.
335 : */
336 : Assert(amroutine->amcanorder);
337 :
338 739966 : info->sortopfamily = info->opfamily;
339 739966 : info->reverse_sort = palloc_array(bool, nkeycolumns);
340 739966 : info->nulls_first = palloc_array(bool, nkeycolumns);
341 :
342 1885738 : for (i = 0; i < nkeycolumns; i++)
343 : {
344 1145772 : int16 opt = indexRelation->rd_indoption[i];
345 :
346 1145772 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
347 1145772 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
348 : }
349 : }
350 22180 : else if (amroutine->amcanorder)
351 : {
352 : /*
353 : * Otherwise, identify the corresponding btree opfamilies
354 : * by trying to map this index's "<" operators into btree.
355 : * Since "<" uniquely defines the behavior of a sort
356 : * order, this is a sufficient test.
357 : *
358 : * XXX This method is rather slow and complicated. It'd
359 : * be better to have a way to explicitly declare the
360 : * corresponding btree opfamily for each opfamily of the
361 : * other index type.
362 : */
363 0 : info->sortopfamily = palloc_array(Oid, nkeycolumns);
364 0 : info->reverse_sort = palloc_array(bool, nkeycolumns);
365 0 : info->nulls_first = palloc_array(bool, nkeycolumns);
366 :
367 0 : for (i = 0; i < nkeycolumns; i++)
368 : {
369 0 : int16 opt = indexRelation->rd_indoption[i];
370 : Oid ltopr;
371 : Oid opfamily;
372 : Oid opcintype;
373 : CompareType cmptype;
374 :
375 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
376 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
377 :
378 0 : ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
379 0 : info->opcintype[i],
380 0 : info->opcintype[i],
381 : COMPARE_LT);
382 0 : if (OidIsValid(ltopr) &&
383 0 : get_ordering_op_properties(ltopr,
384 : &opfamily,
385 : &opcintype,
386 0 : &cmptype) &&
387 0 : opcintype == info->opcintype[i] &&
388 0 : cmptype == COMPARE_LT)
389 : {
390 : /* Successful mapping */
391 0 : info->sortopfamily[i] = opfamily;
392 : }
393 : else
394 : {
395 : /* Fail ... quietly treat index as unordered */
396 0 : info->sortopfamily = NULL;
397 0 : info->reverse_sort = NULL;
398 0 : info->nulls_first = NULL;
399 0 : break;
400 : }
401 : }
402 : }
403 : else
404 : {
405 22180 : info->sortopfamily = NULL;
406 22180 : info->reverse_sort = NULL;
407 22180 : info->nulls_first = NULL;
408 : }
409 : }
410 : else
411 : {
412 6940 : info->amcanorderbyop = false;
413 6940 : info->amoptionalkey = false;
414 6940 : info->amsearcharray = false;
415 6940 : info->amsearchnulls = false;
416 6940 : info->amcanparallel = false;
417 6940 : info->amhasgettuple = false;
418 6940 : info->amhasgetbitmap = false;
419 6940 : info->amcanmarkpos = false;
420 6940 : info->amcostestimate = NULL;
421 :
422 6940 : info->sortopfamily = NULL;
423 6940 : info->reverse_sort = NULL;
424 6940 : info->nulls_first = NULL;
425 : }
426 :
427 : /*
428 : * Fetch the index expressions and predicate, if any. We must
429 : * modify the copies we obtain from the relcache to have the
430 : * correct varno for the parent relation, so that they match up
431 : * correctly against qual clauses.
432 : *
433 : * After fixing the varnos, we need to run the index expressions
434 : * and predicate through const-simplification again, using a valid
435 : * "root". This ensures that NullTest quals for Vars can be
436 : * properly reduced.
437 : */
438 769086 : info->indexprs = RelationGetIndexExpressions(indexRelation);
439 769086 : info->indpred = RelationGetIndexPredicate(indexRelation);
440 769086 : if (info->indexprs)
441 : {
442 3032 : if (varno != 1)
443 1938 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
444 :
445 3032 : info->indexprs = (List *)
446 3032 : eval_const_expressions(root, (Node *) info->indexprs);
447 : }
448 769086 : if (info->indpred)
449 : {
450 1076 : if (varno != 1)
451 126 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
452 :
453 1076 : info->indpred = (List *)
454 1076 : eval_const_expressions(root,
455 1076 : (Node *) make_ands_explicit(info->indpred));
456 1076 : info->indpred = make_ands_implicit((Expr *) info->indpred);
457 : }
458 :
459 : /* Build targetlist using the completed indexprs data */
460 769086 : info->indextlist = build_index_tlist(root, info, relation);
461 :
462 769086 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
463 769086 : info->predOK = false; /* set later, in indxpath.c */
464 769086 : info->unique = index->indisunique;
465 769086 : info->nullsnotdistinct = index->indnullsnotdistinct;
466 769086 : info->immediate = index->indimmediate;
467 769086 : info->hypothetical = false;
468 :
469 : /*
470 : * Estimate the index size. If it's not a partial index, we lock
471 : * the number-of-tuples estimate to equal the parent table; if it
472 : * is partial then we have to use the same methods as we would for
473 : * a table, except we can be sure that the index is not larger
474 : * than the table. We must ignore partitioned indexes here as
475 : * there are not physical indexes.
476 : */
477 769086 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
478 : {
479 762146 : if (info->indpred == NIL)
480 : {
481 761094 : info->pages = RelationGetNumberOfBlocks(indexRelation);
482 761094 : info->tuples = rel->tuples;
483 : }
484 : else
485 : {
486 : double allvisfrac; /* dummy */
487 :
488 1052 : estimate_rel_size(indexRelation, NULL,
489 1052 : &info->pages, &info->tuples, &allvisfrac);
490 1052 : if (info->tuples > rel->tuples)
491 18 : info->tuples = rel->tuples;
492 : }
493 :
494 : /*
495 : * Get tree height while we have the index open
496 : */
497 762146 : if (amroutine->amgettreeheight)
498 : {
499 739966 : info->tree_height = amroutine->amgettreeheight(indexRelation);
500 : }
501 : else
502 : {
503 : /* For other index types, just set it to "unknown" for now */
504 22180 : info->tree_height = -1;
505 : }
506 : }
507 : else
508 : {
509 : /* Zero these out for partitioned indexes */
510 6940 : info->pages = 0;
511 6940 : info->tuples = 0.0;
512 6940 : info->tree_height = -1;
513 : }
514 :
515 769086 : index_close(indexRelation, NoLock);
516 :
517 : /*
518 : * We've historically used lcons() here. It'd make more sense to
519 : * use lappend(), but that causes the planner to change behavior
520 : * in cases where two indexes seem equally attractive. For now,
521 : * stick with lcons() --- few tables should have so many indexes
522 : * that the O(N^2) behavior of lcons() is really a problem.
523 : */
524 769086 : indexinfos = lcons(info, indexinfos);
525 : }
526 :
527 367170 : list_free(indexoidlist);
528 : }
529 :
530 492682 : rel->indexlist = indexinfos;
531 :
532 492682 : rel->statlist = get_relation_statistics(root, rel, relation);
533 :
534 : /* Grab foreign-table info using the relcache, while we have it */
535 492682 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
536 : {
537 : /* Check if the access to foreign tables is restricted */
538 2526 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
539 : {
540 : /* there must not be built-in foreign tables */
541 : Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
542 :
543 4 : ereport(ERROR,
544 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
545 : errmsg("access to non-system foreign table is restricted")));
546 : }
547 :
548 2522 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
549 2522 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
550 : }
551 : else
552 : {
553 490156 : rel->serverid = InvalidOid;
554 490156 : rel->fdwroutine = NULL;
555 : }
556 :
557 : /* Collect info about relation's foreign keys, if relevant */
558 492664 : get_relation_foreign_keys(root, rel, relation, inhparent);
559 :
560 : /* Collect info about functions implemented by the rel's table AM. */
561 492664 : if (relation->rd_tableam &&
562 472026 : relation->rd_tableam->scan_set_tidrange != NULL &&
563 472026 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
564 472026 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
565 :
566 : /*
567 : * Collect info about relation's partitioning scheme, if any. Only
568 : * inheritance parents may be partitioned.
569 : */
570 492664 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
571 18090 : set_relation_partition_info(root, rel, relation);
572 :
573 492664 : table_close(relation, NoLock);
574 :
575 : /*
576 : * Allow a plugin to editorialize on the info we obtained from the
577 : * catalogs. Actions might include altering the assumed relation size,
578 : * removing an index, or adding a hypothetical index to the indexlist.
579 : *
580 : * An extension can also modify rel->pgs_mask here to control path
581 : * generation.
582 : */
583 492664 : if (get_relation_info_hook)
584 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
585 492664 : }
586 :
587 : /*
588 : * get_relation_foreign_keys -
589 : * Retrieves foreign key information for a given relation.
590 : *
591 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
592 : * root->fkey_list. We do this now while we have the relcache entry open.
593 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
594 : * until all RelOptInfos have been built, but the cost of re-opening the
595 : * relcache entries would probably exceed any savings.
596 : */
597 : static void
598 492664 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
599 : Relation relation, bool inhparent)
600 : {
601 492664 : List *rtable = root->parse->rtable;
602 : List *cachedfkeys;
603 : ListCell *lc;
604 :
605 : /*
606 : * If it's not a baserel, we don't care about its FKs. Also, if the query
607 : * references only a single relation, we can skip the lookup since no FKs
608 : * could satisfy the requirements below.
609 : */
610 940794 : if (rel->reloptkind != RELOPT_BASEREL ||
611 448130 : list_length(rtable) < 2)
612 254466 : return;
613 :
614 : /*
615 : * If it's the parent of an inheritance tree, ignore its FKs. We could
616 : * make useful FK-based deductions if we found that all members of the
617 : * inheritance tree have equivalent FK constraints, but detecting that
618 : * would require code that hasn't been written.
619 : */
620 238198 : if (inhparent)
621 5978 : return;
622 :
623 : /*
624 : * Extract data about relation's FKs from the relcache. Note that this
625 : * list belongs to the relcache and might disappear in a cache flush, so
626 : * we must not do any further catalog access within this function.
627 : */
628 232220 : cachedfkeys = RelationGetFKeyList(relation);
629 :
630 : /*
631 : * Figure out which FKs are of interest for this query, and create
632 : * ForeignKeyOptInfos for them. We want only FKs that reference some
633 : * other RTE of the current query. In queries containing self-joins,
634 : * there might be more than one other RTE for a referenced table, and we
635 : * should make a ForeignKeyOptInfo for each occurrence.
636 : *
637 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
638 : * too hard to identify those here, so we might end up making some useless
639 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
640 : * them again.
641 : */
642 234838 : foreach(lc, cachedfkeys)
643 : {
644 2618 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
645 : Index rti;
646 : ListCell *lc2;
647 :
648 : /* conrelid should always be that of the table we're considering */
649 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
650 :
651 : /* skip constraints currently not enforced */
652 2618 : if (!cachedfk->conenforced)
653 18 : continue;
654 :
655 : /* Scan to find other RTEs matching confrelid */
656 2600 : rti = 0;
657 11492 : foreach(lc2, rtable)
658 : {
659 8892 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
660 : ForeignKeyOptInfo *info;
661 :
662 8892 : rti++;
663 : /* Ignore if not the correct table */
664 8892 : if (rte->rtekind != RTE_RELATION ||
665 5542 : rte->relid != cachedfk->confrelid)
666 6710 : continue;
667 : /* Ignore if it's an inheritance parent; doesn't really match */
668 2182 : if (rte->inh)
669 270 : continue;
670 : /* Ignore self-referential FKs; we only care about joins */
671 1912 : if (rti == rel->relid)
672 132 : continue;
673 :
674 : /* OK, let's make an entry */
675 1780 : info = makeNode(ForeignKeyOptInfo);
676 1780 : info->con_relid = rel->relid;
677 1780 : info->ref_relid = rti;
678 1780 : info->nkeys = cachedfk->nkeys;
679 1780 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
680 1780 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
681 1780 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
682 : /* zero out fields to be filled by match_foreign_keys_to_quals */
683 1780 : info->nmatched_ec = 0;
684 1780 : info->nconst_ec = 0;
685 1780 : info->nmatched_rcols = 0;
686 1780 : info->nmatched_ri = 0;
687 1780 : memset(info->eclass, 0, sizeof(info->eclass));
688 1780 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
689 1780 : memset(info->rinfos, 0, sizeof(info->rinfos));
690 :
691 1780 : root->fkey_list = lappend(root->fkey_list, info);
692 : }
693 : }
694 : }
695 :
696 : /*
697 : * get_relation_notnullatts -
698 : * Retrieves column not-null constraint information for a given relation.
699 : *
700 : * We do this while we have the relcache entry open, and store the column
701 : * not-null constraint information in a hash table based on the relation OID.
702 : */
703 : void
704 534220 : get_relation_notnullatts(PlannerInfo *root, Relation relation)
705 : {
706 534220 : Oid relid = RelationGetRelid(relation);
707 : NotnullHashEntry *hentry;
708 : bool found;
709 534220 : Bitmapset *notnullattnums = NULL;
710 :
711 : /* bail out if the relation has no not-null constraints */
712 534220 : if (relation->rd_att->constr == NULL ||
713 357460 : !relation->rd_att->constr->has_not_null)
714 222592 : return;
715 :
716 : /* create the hash table if it hasn't been created yet */
717 351830 : if (root->glob->rel_notnullatts_hash == NULL)
718 : {
719 : HTAB *hashtab;
720 : HASHCTL hash_ctl;
721 :
722 180190 : hash_ctl.keysize = sizeof(Oid);
723 180190 : hash_ctl.entrysize = sizeof(NotnullHashEntry);
724 180190 : hash_ctl.hcxt = CurrentMemoryContext;
725 :
726 180190 : hashtab = hash_create("Relation NOT NULL attnums",
727 : 64L, /* arbitrary initial size */
728 : &hash_ctl,
729 : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
730 :
731 180190 : root->glob->rel_notnullatts_hash = hashtab;
732 : }
733 :
734 : /*
735 : * Create a hash entry for this relation OID, if we don't have one
736 : * already.
737 : */
738 351830 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
739 : &relid,
740 : HASH_ENTER,
741 : &found);
742 :
743 : /* bail out if a hash entry already exists for this relation OID */
744 351830 : if (found)
745 40202 : return;
746 :
747 : /* collect the column not-null constraint information for this relation */
748 4588684 : for (int i = 0; i < relation->rd_att->natts; i++)
749 : {
750 4277056 : CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
751 :
752 : Assert(attr->attnullability != ATTNULLABLE_UNKNOWN);
753 :
754 4277056 : if (attr->attnullability == ATTNULLABLE_VALID)
755 : {
756 3614814 : notnullattnums = bms_add_member(notnullattnums, i + 1);
757 :
758 : /*
759 : * Per RemoveAttributeById(), dropped columns will have their
760 : * attnotnull unset, so we needn't check for dropped columns in
761 : * the above condition.
762 : */
763 : Assert(!attr->attisdropped);
764 : }
765 : }
766 :
767 : /* ... and initialize the new hash entry */
768 311628 : hentry->notnullattnums = notnullattnums;
769 : }
770 :
771 : /*
772 : * find_relation_notnullatts -
773 : * Searches the hash table and returns the column not-null constraint
774 : * information for a given relation.
775 : */
776 : Bitmapset *
777 470670 : find_relation_notnullatts(PlannerInfo *root, Oid relid)
778 : {
779 : NotnullHashEntry *hentry;
780 : bool found;
781 :
782 470670 : if (root->glob->rel_notnullatts_hash == NULL)
783 122810 : return NULL;
784 :
785 347860 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
786 : &relid,
787 : HASH_FIND,
788 : &found);
789 347860 : if (!found)
790 5238 : return NULL;
791 :
792 342622 : return hentry->notnullattnums;
793 : }
794 :
795 : /*
796 : * infer_arbiter_indexes -
797 : * Determine the unique indexes used to arbitrate speculative insertion.
798 : *
799 : * Uses user-supplied inference clause expressions and predicate to match a
800 : * unique index from those defined and ready on the heap relation (target).
801 : * An exact match is required on columns/expressions (although they can appear
802 : * in any order). However, the predicate given by the user need only restrict
803 : * insertion to a subset of some part of the table covered by some particular
804 : * unique index (in particular, a partial unique index) in order to be
805 : * inferred.
806 : *
807 : * The implementation does not consider which B-Tree operator class any
808 : * particular available unique index attribute uses, unless one was specified
809 : * in the inference specification. The same is true of collations. In
810 : * particular, there is no system dependency on the default operator class for
811 : * the purposes of inference. If no opclass (or collation) is specified, then
812 : * all matching indexes (that may or may not match the default in terms of
813 : * each attribute opclass/collation) are used for inference.
814 : */
815 : List *
816 1914 : infer_arbiter_indexes(PlannerInfo *root)
817 : {
818 1914 : OnConflictExpr *onconflict = root->parse->onConflict;
819 :
820 : /* Iteration state */
821 : Index varno;
822 : RangeTblEntry *rte;
823 : Relation relation;
824 1914 : Oid indexOidFromConstraint = InvalidOid;
825 : List *indexList;
826 1914 : List *indexRelList = NIL;
827 :
828 : /*
829 : * Required attributes and expressions used to match indexes to the clause
830 : * given by the user. In the ON CONFLICT ON CONSTRAINT case, we compute
831 : * these from that constraint's index to match all other indexes, to
832 : * account for the case where that index is being concurrently reindexed.
833 : */
834 1914 : List *inferIndexExprs = (List *) onconflict->arbiterWhere;
835 1914 : Bitmapset *inferAttrs = NULL;
836 1914 : List *inferElems = NIL;
837 :
838 : /* Results */
839 1914 : List *results = NIL;
840 1914 : bool foundValid = false;
841 :
842 : /*
843 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
844 : * specification or named constraint. ON CONFLICT DO UPDATE statements
845 : * must always provide one or the other (but parser ought to have caught
846 : * that already).
847 : */
848 1914 : if (onconflict->arbiterElems == NIL &&
849 438 : onconflict->constraint == InvalidOid)
850 234 : return NIL;
851 :
852 : /*
853 : * We need not lock the relation since it was already locked, either by
854 : * the rewriter or when expand_inherited_rtentry() added it to the query's
855 : * rangetable.
856 : */
857 1680 : varno = root->parse->resultRelation;
858 1680 : rte = rt_fetch(varno, root->parse->rtable);
859 :
860 1680 : relation = table_open(rte->relid, NoLock);
861 :
862 : /*
863 : * Build normalized/BMS representation of plain indexed attributes, as
864 : * well as a separate list of expression items. This simplifies matching
865 : * the cataloged definition of indexes.
866 : */
867 5290 : foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
868 : {
869 : Var *var;
870 : int attno;
871 :
872 : /* we cannot also have a constraint name, per grammar */
873 : Assert(!OidIsValid(onconflict->constraint));
874 :
875 1930 : if (!IsA(elem->expr, Var))
876 : {
877 : /* If not a plain Var, just shove it in inferElems for now */
878 174 : inferElems = lappend(inferElems, elem->expr);
879 174 : continue;
880 : }
881 :
882 1756 : var = (Var *) elem->expr;
883 1756 : attno = var->varattno;
884 :
885 1756 : if (attno == 0)
886 0 : ereport(ERROR,
887 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
888 : errmsg("whole row unique index inference specifications are not supported")));
889 :
890 1756 : inferAttrs = bms_add_member(inferAttrs,
891 : attno - FirstLowInvalidHeapAttributeNumber);
892 : }
893 :
894 : /*
895 : * Next, open all the indexes. We need this list for two things: first,
896 : * if an ON CONSTRAINT clause was given, and that constraint's index is
897 : * undergoing REINDEX CONCURRENTLY, then we need to consider all matches
898 : * for that index. Second, if an attribute list was specified in the ON
899 : * CONFLICT clause, we use the list to find the indexes whose attributes
900 : * match that list.
901 : */
902 1680 : indexList = RelationGetIndexList(relation);
903 5508 : foreach_oid(indexoid, indexList)
904 : {
905 : Relation idxRel;
906 :
907 : /* obtain the same lock type that the executor will ultimately use */
908 2148 : idxRel = index_open(indexoid, rte->rellockmode);
909 2148 : indexRelList = lappend(indexRelList, idxRel);
910 : }
911 :
912 : /*
913 : * If a constraint was named in the command, look up its index. We don't
914 : * return it immediately because we need some additional sanity checks,
915 : * and also because we need to include other indexes as arbiters to
916 : * account for REINDEX CONCURRENTLY processing it.
917 : */
918 1680 : if (onconflict->constraint != InvalidOid)
919 : {
920 : /* we cannot also have an explicit list of elements, per grammar */
921 : Assert(onconflict->arbiterElems == NIL);
922 :
923 204 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
924 204 : if (indexOidFromConstraint == InvalidOid)
925 0 : ereport(ERROR,
926 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
927 : errmsg("constraint in ON CONFLICT clause has no associated index")));
928 :
929 : /*
930 : * Find the named constraint index to extract its attributes and
931 : * predicates.
932 : */
933 436 : foreach_ptr(RelationData, idxRel, indexRelList)
934 : {
935 232 : Form_pg_index idxForm = idxRel->rd_index;
936 :
937 232 : if (indexOidFromConstraint == idxForm->indexrelid)
938 : {
939 : /* Found it. */
940 : Assert(idxForm->indisready);
941 :
942 : /*
943 : * Set up inferElems and inferIndexExprs to match the
944 : * constraint index, so that we can match them in the loop
945 : * below.
946 : */
947 564 : for (int natt = 0; natt < idxForm->indnkeyatts; natt++)
948 : {
949 : int attno;
950 :
951 360 : attno = idxRel->rd_index->indkey.values[natt];
952 360 : if (attno != InvalidAttrNumber)
953 : inferAttrs =
954 348 : bms_add_member(inferAttrs,
955 : attno - FirstLowInvalidHeapAttributeNumber);
956 : }
957 :
958 204 : inferElems = RelationGetIndexExpressions(idxRel);
959 204 : inferIndexExprs = RelationGetIndexPredicate(idxRel);
960 204 : break;
961 : }
962 : }
963 : }
964 :
965 : /*
966 : * Using that representation, iterate through the list of indexes on the
967 : * target relation to find matches.
968 : */
969 5352 : foreach_ptr(RelationData, idxRel, indexRelList)
970 : {
971 : Form_pg_index idxForm;
972 : Bitmapset *indexedAttrs;
973 : List *idxExprs;
974 : List *predExprs;
975 : AttrNumber natt;
976 : bool match;
977 :
978 : /*
979 : * Extract info from the relation descriptor for the index.
980 : *
981 : * Let executor complain about !indimmediate case directly, because
982 : * enforcement needs to occur there anyway when an inference clause is
983 : * omitted.
984 : */
985 2148 : idxForm = idxRel->rd_index;
986 :
987 : /*
988 : * Ignore indexes that aren't indisready, because we cannot trust
989 : * their catalog structure yet. However, if any indexes are marked
990 : * indisready but not yet indisvalid, we still consider them, because
991 : * they might turn valid while we're running. Doing it this way
992 : * allows a concurrent transaction with a slightly later catalog
993 : * snapshot infer the same set of indexes, which is critical to
994 : * prevent spurious 'duplicate key' errors.
995 : *
996 : * However, another critical aspect is that a unique index that isn't
997 : * yet marked indisvalid=true might not be complete yet, meaning it
998 : * wouldn't detect possible duplicate rows. In order to prevent false
999 : * negatives, we require that we include in the set of inferred
1000 : * indexes at least one index that is marked valid.
1001 : */
1002 2148 : if (!idxForm->indisready)
1003 0 : continue;
1004 :
1005 : /*
1006 : * Ignore invalid indexes for partitioned tables. It's possible that
1007 : * some partitions don't have the index (yet), and then we would not
1008 : * find a match during ExecInitPartitionInfo.
1009 : */
1010 2148 : if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
1011 168 : !idxForm->indisvalid)
1012 12 : continue;
1013 :
1014 : /*
1015 : * Note that we do not perform a check against indcheckxmin (like e.g.
1016 : * get_relation_info()) here to eliminate candidates, because
1017 : * uniqueness checking only cares about the most recently committed
1018 : * tuple versions.
1019 : */
1020 :
1021 : /*
1022 : * Look for match for "ON constraint_name" variant, which may not be a
1023 : * unique constraint. This can only be a constraint name.
1024 : */
1025 2136 : if (indexOidFromConstraint == idxForm->indexrelid)
1026 : {
1027 204 : if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
1028 78 : ereport(ERROR,
1029 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1030 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
1031 :
1032 : /* Consider this one a match already */
1033 126 : results = lappend_oid(results, idxForm->indexrelid);
1034 126 : foundValid |= idxForm->indisvalid;
1035 126 : continue;
1036 : }
1037 1932 : else if (indexOidFromConstraint != InvalidOid)
1038 : {
1039 : /*
1040 : * In the case of "ON constraint_name DO UPDATE" we need to skip
1041 : * non-unique candidates.
1042 : */
1043 36 : if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
1044 0 : continue;
1045 : }
1046 : else
1047 : {
1048 : /*
1049 : * Only considering conventional inference at this point (not
1050 : * named constraints), so index under consideration can be
1051 : * immediately skipped if it's not unique.
1052 : */
1053 1896 : if (!idxForm->indisunique)
1054 4 : continue;
1055 : }
1056 :
1057 : /*
1058 : * So-called unique constraints with WITHOUT OVERLAPS are really
1059 : * exclusion constraints, so skip those too.
1060 : */
1061 1928 : if (idxForm->indisexclusion)
1062 150 : continue;
1063 :
1064 : /* Build BMS representation of plain (non expression) index attrs */
1065 1778 : indexedAttrs = NULL;
1066 4120 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
1067 : {
1068 2342 : int attno = idxRel->rd_index->indkey.values[natt];
1069 :
1070 2342 : if (attno != 0)
1071 2030 : indexedAttrs = bms_add_member(indexedAttrs,
1072 : attno - FirstLowInvalidHeapAttributeNumber);
1073 : }
1074 :
1075 : /* Non-expression attributes (if any) must match */
1076 1778 : if (!bms_equal(indexedAttrs, inferAttrs))
1077 396 : continue;
1078 :
1079 : /* Expression attributes (if any) must match */
1080 1382 : idxExprs = RelationGetIndexExpressions(idxRel);
1081 1382 : if (idxExprs)
1082 : {
1083 174 : if (varno != 1)
1084 6 : ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
1085 :
1086 174 : idxExprs = (List *) eval_const_expressions(root, (Node *) idxExprs);
1087 : }
1088 :
1089 : /*
1090 : * If arbiterElems are present, check them. (Note that if a
1091 : * constraint name was given in the command line, this list is NIL.)
1092 : */
1093 1382 : match = true;
1094 4494 : foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
1095 : {
1096 : /*
1097 : * Ensure that collation/opclass aspects of inference expression
1098 : * element match. Even though this loop is primarily concerned
1099 : * with matching expressions, it is a convenient point to check
1100 : * this for both expressions and ordinary (non-expression)
1101 : * attributes appearing as inference elements.
1102 : */
1103 1778 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
1104 : {
1105 36 : match = false;
1106 36 : break;
1107 : }
1108 :
1109 : /*
1110 : * Plain Vars don't factor into count of expression elements, and
1111 : * the question of whether or not they satisfy the index
1112 : * definition has already been considered (they must).
1113 : */
1114 1742 : if (IsA(elem->expr, Var))
1115 1568 : continue;
1116 :
1117 : /*
1118 : * Might as well avoid redundant check in the rare cases where
1119 : * infer_collation_opclass_match() is required to do real work.
1120 : * Otherwise, check that element expression appears in cataloged
1121 : * index definition.
1122 : */
1123 174 : if (elem->infercollid != InvalidOid ||
1124 306 : elem->inferopclass != InvalidOid ||
1125 150 : list_member(idxExprs, elem->expr))
1126 162 : continue;
1127 :
1128 12 : match = false;
1129 12 : break;
1130 : }
1131 1382 : if (!match)
1132 48 : continue;
1133 :
1134 : /*
1135 : * In case of inference from an attribute list, ensure that the
1136 : * expression elements from inference clause are not missing any
1137 : * cataloged expressions. This does the right thing when unique
1138 : * indexes redundantly repeat the same attribute, or if attributes
1139 : * redundantly appear multiple times within an inference clause.
1140 : *
1141 : * In case a constraint was named, ensure the candidate has an equal
1142 : * set of expressions as the named constraint's index.
1143 : */
1144 1334 : if (list_difference(idxExprs, inferElems) != NIL)
1145 54 : continue;
1146 :
1147 1280 : predExprs = RelationGetIndexPredicate(idxRel);
1148 1280 : if (predExprs)
1149 : {
1150 66 : if (varno != 1)
1151 6 : ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1152 :
1153 : predExprs = (List *)
1154 66 : eval_const_expressions(root,
1155 66 : (Node *) make_ands_explicit(predExprs));
1156 66 : predExprs = make_ands_implicit((Expr *) predExprs);
1157 : }
1158 :
1159 : /*
1160 : * Partial indexes affect each form of ON CONFLICT differently: if a
1161 : * constraint was named, then the predicates must be identical. In
1162 : * conventional inference, the index's predicate must be implied by
1163 : * the WHERE clause.
1164 : */
1165 1280 : if (OidIsValid(indexOidFromConstraint))
1166 : {
1167 12 : if (list_difference(predExprs, inferIndexExprs) != NIL)
1168 0 : continue;
1169 : }
1170 : else
1171 : {
1172 1268 : if (!predicate_implied_by(predExprs, inferIndexExprs, false))
1173 36 : continue;
1174 : }
1175 :
1176 : /* All good -- consider this index a match */
1177 1244 : results = lappend_oid(results, idxForm->indexrelid);
1178 1244 : foundValid |= idxForm->indisvalid;
1179 : }
1180 :
1181 : /* Close all indexes */
1182 5274 : foreach_ptr(RelationData, idxRel, indexRelList)
1183 : {
1184 2070 : index_close(idxRel, NoLock);
1185 : }
1186 :
1187 1602 : list_free(indexList);
1188 1602 : list_free(indexRelList);
1189 1602 : table_close(relation, NoLock);
1190 :
1191 : /* We require at least one indisvalid index */
1192 1602 : if (results == NIL || !foundValid)
1193 314 : ereport(ERROR,
1194 : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1195 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1196 :
1197 1288 : return results;
1198 : }
1199 :
1200 : /*
1201 : * infer_collation_opclass_match - ensure infer element opclass/collation match
1202 : *
1203 : * Given unique index inference element from inference specification, if
1204 : * collation was specified, or if opclass was specified, verify that there is
1205 : * at least one matching indexed attribute (occasionally, there may be more).
1206 : * Skip this in the common case where inference specification does not include
1207 : * collation or opclass (instead matching everything, regardless of cataloged
1208 : * collation/opclass of indexed attribute).
1209 : *
1210 : * At least historically, Postgres has not offered collations or opclasses
1211 : * with alternative-to-default notions of equality, so these additional
1212 : * criteria should only be required infrequently.
1213 : *
1214 : * Don't give up immediately when an inference element matches some attribute
1215 : * cataloged as indexed but not matching additional opclass/collation
1216 : * criteria. This is done so that the implementation is as forgiving as
1217 : * possible of redundancy within cataloged index attributes (or, less
1218 : * usefully, within inference specification elements). If collations actually
1219 : * differ between apparently redundantly indexed attributes (redundant within
1220 : * or across indexes), then there really is no redundancy as such.
1221 : *
1222 : * Note that if an inference element specifies an opclass and a collation at
1223 : * once, both must match in at least one particular attribute within index
1224 : * catalog definition in order for that inference element to be considered
1225 : * inferred/satisfied.
1226 : */
1227 : static bool
1228 1778 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
1229 : List *idxExprs)
1230 : {
1231 : AttrNumber natt;
1232 1778 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1233 1778 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1234 1778 : int nplain = 0; /* # plain attrs observed */
1235 :
1236 : /*
1237 : * If inference specification element lacks collation/opclass, then no
1238 : * need to check for exact match.
1239 : */
1240 1778 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1241 1664 : return true;
1242 :
1243 : /*
1244 : * Lookup opfamily and input type, for matching indexes
1245 : */
1246 114 : if (elem->inferopclass)
1247 : {
1248 84 : inferopfamily = get_opclass_family(elem->inferopclass);
1249 84 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1250 : }
1251 :
1252 246 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1253 : {
1254 210 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
1255 210 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1256 210 : Oid collation = idxRel->rd_indcollation[natt - 1];
1257 210 : int attno = idxRel->rd_index->indkey.values[natt - 1];
1258 :
1259 210 : if (attno != 0)
1260 168 : nplain++;
1261 :
1262 210 : if (elem->inferopclass != InvalidOid &&
1263 66 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1264 : {
1265 : /* Attribute needed to match opclass, but didn't */
1266 90 : continue;
1267 : }
1268 :
1269 120 : if (elem->infercollid != InvalidOid &&
1270 84 : elem->infercollid != collation)
1271 : {
1272 : /* Attribute needed to match collation, but didn't */
1273 36 : continue;
1274 : }
1275 :
1276 : /* If one matching index att found, good enough -- return true */
1277 84 : if (IsA(elem->expr, Var))
1278 : {
1279 54 : if (((Var *) elem->expr)->varattno == attno)
1280 54 : return true;
1281 : }
1282 30 : else if (attno == 0)
1283 : {
1284 30 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1285 :
1286 : /*
1287 : * Note that unlike routines like match_index_to_operand() we
1288 : * don't need to care about RelabelType. Neither the index
1289 : * definition nor the inference clause should contain them.
1290 : */
1291 30 : if (equal(elem->expr, nattExpr))
1292 24 : return true;
1293 : }
1294 : }
1295 :
1296 36 : return false;
1297 : }
1298 :
1299 : /*
1300 : * estimate_rel_size - estimate # pages and # tuples in a table or index
1301 : *
1302 : * We also estimate the fraction of the pages that are marked all-visible in
1303 : * the visibility map, for use in estimation of index-only scans.
1304 : *
1305 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1306 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1307 : * the attribute widths for estimation purposes.
1308 : */
1309 : void
1310 470864 : estimate_rel_size(Relation rel, int32 *attr_widths,
1311 : BlockNumber *pages, double *tuples, double *allvisfrac)
1312 : {
1313 : BlockNumber curpages;
1314 : BlockNumber relpages;
1315 : double reltuples;
1316 : BlockNumber relallvisible;
1317 : double density;
1318 :
1319 470864 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1320 : {
1321 467228 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1322 : allvisfrac);
1323 : }
1324 3636 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1325 : {
1326 : /*
1327 : * XXX: It'd probably be good to move this into a callback, individual
1328 : * index types e.g. know if they have a metapage.
1329 : */
1330 :
1331 : /* it has storage, ok to call the smgr */
1332 1052 : curpages = RelationGetNumberOfBlocks(rel);
1333 :
1334 : /* report estimated # pages */
1335 1052 : *pages = curpages;
1336 : /* quick exit if rel is clearly empty */
1337 1052 : if (curpages == 0)
1338 : {
1339 0 : *tuples = 0;
1340 0 : *allvisfrac = 0;
1341 0 : return;
1342 : }
1343 :
1344 : /* coerce values in pg_class to more desirable types */
1345 1052 : relpages = (BlockNumber) rel->rd_rel->relpages;
1346 1052 : reltuples = (double) rel->rd_rel->reltuples;
1347 1052 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1348 :
1349 : /*
1350 : * Discount the metapage while estimating the number of tuples. This
1351 : * is a kluge because it assumes more than it ought to about index
1352 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1353 : * suspect for GiST indexes.
1354 : */
1355 1052 : if (relpages > 0)
1356 : {
1357 1034 : curpages--;
1358 1034 : relpages--;
1359 : }
1360 :
1361 : /* estimate number of tuples from previous tuple density */
1362 1052 : if (reltuples >= 0 && relpages > 0)
1363 714 : density = reltuples / (double) relpages;
1364 : else
1365 : {
1366 : /*
1367 : * If we have no data because the relation was never vacuumed,
1368 : * estimate tuple width from attribute datatypes. We assume here
1369 : * that the pages are completely full, which is OK for tables
1370 : * (since they've presumably not been VACUUMed yet) but is
1371 : * probably an overestimate for indexes. Fortunately
1372 : * get_relation_info() can clamp the overestimate to the parent
1373 : * table's size.
1374 : *
1375 : * Note: this code intentionally disregards alignment
1376 : * considerations, because (a) that would be gilding the lily
1377 : * considering how crude the estimate is, and (b) it creates
1378 : * platform dependencies in the default plans which are kind of a
1379 : * headache for regression testing.
1380 : *
1381 : * XXX: Should this logic be more index specific?
1382 : */
1383 : int32 tuple_width;
1384 :
1385 338 : tuple_width = get_rel_data_width(rel, attr_widths);
1386 338 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1387 338 : tuple_width += sizeof(ItemIdData);
1388 : /* note: integer division is intentional here */
1389 338 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1390 : }
1391 1052 : *tuples = rint(density * (double) curpages);
1392 :
1393 : /*
1394 : * We use relallvisible as-is, rather than scaling it up like we do
1395 : * for the pages and tuples counts, on the theory that any pages added
1396 : * since the last VACUUM are most likely not marked all-visible. But
1397 : * costsize.c wants it converted to a fraction.
1398 : */
1399 1052 : if (relallvisible == 0 || curpages <= 0)
1400 1052 : *allvisfrac = 0;
1401 0 : else if ((double) relallvisible >= curpages)
1402 0 : *allvisfrac = 1;
1403 : else
1404 0 : *allvisfrac = (double) relallvisible / curpages;
1405 : }
1406 : else
1407 : {
1408 : /*
1409 : * Just use whatever's in pg_class. This covers foreign tables,
1410 : * sequences, and also relkinds without storage (shouldn't get here?);
1411 : * see initializations in AddNewRelationTuple(). Note that FDW must
1412 : * cope if reltuples is -1!
1413 : */
1414 2584 : *pages = rel->rd_rel->relpages;
1415 2584 : *tuples = rel->rd_rel->reltuples;
1416 2584 : *allvisfrac = 0;
1417 : }
1418 : }
1419 :
1420 :
1421 : /*
1422 : * get_rel_data_width
1423 : *
1424 : * Estimate the average width of (the data part of) the relation's tuples.
1425 : *
1426 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1427 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1428 : *
1429 : * Currently we ignore dropped columns. Ideally those should be included
1430 : * in the result, but we haven't got any way to get info about them; and
1431 : * since they might be mostly NULLs, treating them as zero-width is not
1432 : * necessarily the wrong thing anyway.
1433 : */
1434 : int32
1435 160302 : get_rel_data_width(Relation rel, int32 *attr_widths)
1436 : {
1437 160302 : int64 tuple_width = 0;
1438 : int i;
1439 :
1440 862480 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1441 : {
1442 702178 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1443 : int32 item_width;
1444 :
1445 702178 : if (att->attisdropped)
1446 2684 : continue;
1447 :
1448 : /* use previously cached data, if any */
1449 699494 : if (attr_widths != NULL && attr_widths[i] > 0)
1450 : {
1451 5848 : tuple_width += attr_widths[i];
1452 5848 : continue;
1453 : }
1454 :
1455 : /* This should match set_rel_width() in costsize.c */
1456 693646 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1457 693646 : if (item_width <= 0)
1458 : {
1459 691778 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1460 : Assert(item_width > 0);
1461 : }
1462 693646 : if (attr_widths != NULL)
1463 615702 : attr_widths[i] = item_width;
1464 693646 : tuple_width += item_width;
1465 : }
1466 :
1467 160302 : return clamp_width_est(tuple_width);
1468 : }
1469 :
1470 : /*
1471 : * get_relation_data_width
1472 : *
1473 : * External API for get_rel_data_width: same behavior except we have to
1474 : * open the relcache entry.
1475 : */
1476 : int32
1477 2554 : get_relation_data_width(Oid relid, int32 *attr_widths)
1478 : {
1479 : int32 result;
1480 : Relation relation;
1481 :
1482 : /* As above, assume relation is already locked */
1483 2554 : relation = table_open(relid, NoLock);
1484 :
1485 2554 : result = get_rel_data_width(relation, attr_widths);
1486 :
1487 2554 : table_close(relation, NoLock);
1488 :
1489 2554 : return result;
1490 : }
1491 :
1492 :
1493 : /*
1494 : * get_relation_constraints
1495 : *
1496 : * Retrieve the applicable constraint expressions of the given relation.
1497 : * Only constraints that have been validated are considered.
1498 : *
1499 : * Returns a List (possibly empty) of constraint expressions. Each one
1500 : * has been canonicalized, and its Vars are changed to have the varno
1501 : * indicated by rel->relid. This allows the expressions to be easily
1502 : * compared to expressions taken from WHERE.
1503 : *
1504 : * If include_noinherit is true, it's okay to include constraints that
1505 : * are marked NO INHERIT.
1506 : *
1507 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1508 : * and added to the result for each column that's marked attnotnull.
1509 : *
1510 : * If include_partition is true, and the relation is a partition,
1511 : * also include the partitioning constraints.
1512 : *
1513 : * Note: at present this is invoked at most once per relation per planner
1514 : * run, and in many cases it won't be invoked at all, so there seems no
1515 : * point in caching the data in RelOptInfo.
1516 : */
1517 : static List *
1518 21688 : get_relation_constraints(PlannerInfo *root,
1519 : Oid relationObjectId, RelOptInfo *rel,
1520 : bool include_noinherit,
1521 : bool include_notnull,
1522 : bool include_partition)
1523 : {
1524 21688 : List *result = NIL;
1525 21688 : Index varno = rel->relid;
1526 : Relation relation;
1527 : TupleConstr *constr;
1528 :
1529 : /*
1530 : * We assume the relation has already been safely locked.
1531 : */
1532 21688 : relation = table_open(relationObjectId, NoLock);
1533 :
1534 21688 : constr = relation->rd_att->constr;
1535 21688 : if (constr != NULL)
1536 : {
1537 8386 : int num_check = constr->num_check;
1538 : int i;
1539 :
1540 9024 : for (i = 0; i < num_check; i++)
1541 : {
1542 : Node *cexpr;
1543 :
1544 : /*
1545 : * If this constraint hasn't been fully validated yet, we must
1546 : * ignore it here.
1547 : */
1548 638 : if (!constr->check[i].ccvalid)
1549 54 : continue;
1550 :
1551 : /*
1552 : * NOT ENFORCED constraints are always marked as invalid, which
1553 : * should have been ignored.
1554 : */
1555 : Assert(constr->check[i].ccenforced);
1556 :
1557 : /*
1558 : * Also ignore if NO INHERIT and we weren't told that that's safe.
1559 : */
1560 584 : if (constr->check[i].ccnoinherit && !include_noinherit)
1561 0 : continue;
1562 :
1563 584 : cexpr = stringToNode(constr->check[i].ccbin);
1564 :
1565 : /*
1566 : * Fix Vars to have the desired varno. This must be done before
1567 : * const-simplification because eval_const_expressions reduces
1568 : * NullTest for Vars based on varno.
1569 : */
1570 584 : if (varno != 1)
1571 560 : ChangeVarNodes(cexpr, 1, varno, 0);
1572 :
1573 : /*
1574 : * Run each expression through const-simplification and
1575 : * canonicalization. This is not just an optimization, but is
1576 : * necessary, because we will be comparing it to
1577 : * similarly-processed qual clauses, and may fail to detect valid
1578 : * matches without this. This must match the processing done to
1579 : * qual clauses in preprocess_expression()! (We can skip the
1580 : * stuff involving subqueries, however, since we don't allow any
1581 : * in check constraints.)
1582 : */
1583 584 : cexpr = eval_const_expressions(root, cexpr);
1584 :
1585 584 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1586 :
1587 : /*
1588 : * Finally, convert to implicit-AND format (that is, a List) and
1589 : * append the resulting item(s) to our output list.
1590 : */
1591 584 : result = list_concat(result,
1592 584 : make_ands_implicit((Expr *) cexpr));
1593 : }
1594 :
1595 : /* Add NOT NULL constraints in expression form, if requested */
1596 8386 : if (include_notnull && constr->has_not_null)
1597 : {
1598 7896 : int natts = relation->rd_att->natts;
1599 :
1600 32250 : for (i = 1; i <= natts; i++)
1601 : {
1602 24354 : CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
1603 :
1604 24354 : if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1605 : {
1606 9716 : Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
1607 9716 : NullTest *ntest = makeNode(NullTest);
1608 :
1609 9716 : ntest->arg = (Expr *) makeVar(varno,
1610 : i,
1611 : wholeatt->atttypid,
1612 : wholeatt->atttypmod,
1613 : wholeatt->attcollation,
1614 : 0);
1615 9716 : ntest->nulltesttype = IS_NOT_NULL;
1616 :
1617 : /*
1618 : * argisrow=false is correct even for a composite column,
1619 : * because attnotnull does not represent a SQL-spec IS NOT
1620 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1621 : */
1622 9716 : ntest->argisrow = false;
1623 9716 : ntest->location = -1;
1624 9716 : result = lappend(result, ntest);
1625 : }
1626 : }
1627 : }
1628 : }
1629 :
1630 : /*
1631 : * Add partitioning constraints, if requested.
1632 : */
1633 21688 : if (include_partition && relation->rd_rel->relispartition)
1634 : {
1635 : /* make sure rel->partition_qual is set */
1636 12 : set_baserel_partition_constraint(relation, rel);
1637 12 : result = list_concat(result, rel->partition_qual);
1638 : }
1639 :
1640 : /*
1641 : * Expand virtual generated columns in the constraint expressions.
1642 : */
1643 21688 : if (result)
1644 8124 : result = (List *) expand_generated_columns_in_expr((Node *) result,
1645 : relation,
1646 : varno);
1647 :
1648 21688 : table_close(relation, NoLock);
1649 :
1650 21688 : return result;
1651 : }
1652 :
1653 : /*
1654 : * Try loading data for the statistics object.
1655 : *
1656 : * We don't know if the data (specified by statOid and inh value) exist.
1657 : * The result is stored in stainfos list.
1658 : */
1659 : static void
1660 4056 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1661 : Oid statOid, bool inh,
1662 : Bitmapset *keys, List *exprs)
1663 : {
1664 : Form_pg_statistic_ext_data dataForm;
1665 : HeapTuple dtup;
1666 :
1667 4056 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1668 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1669 4056 : if (!HeapTupleIsValid(dtup))
1670 2048 : return;
1671 :
1672 2008 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1673 :
1674 : /* add one StatisticExtInfo for each kind built */
1675 2008 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1676 : {
1677 718 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1678 :
1679 718 : info->statOid = statOid;
1680 718 : info->inherit = dataForm->stxdinherit;
1681 718 : info->rel = rel;
1682 718 : info->kind = STATS_EXT_NDISTINCT;
1683 718 : info->keys = bms_copy(keys);
1684 718 : info->exprs = exprs;
1685 :
1686 718 : *stainfos = lappend(*stainfos, info);
1687 : }
1688 :
1689 2008 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1690 : {
1691 532 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1692 :
1693 532 : info->statOid = statOid;
1694 532 : info->inherit = dataForm->stxdinherit;
1695 532 : info->rel = rel;
1696 532 : info->kind = STATS_EXT_DEPENDENCIES;
1697 532 : info->keys = bms_copy(keys);
1698 532 : info->exprs = exprs;
1699 :
1700 532 : *stainfos = lappend(*stainfos, info);
1701 : }
1702 :
1703 2008 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1704 : {
1705 886 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1706 :
1707 886 : info->statOid = statOid;
1708 886 : info->inherit = dataForm->stxdinherit;
1709 886 : info->rel = rel;
1710 886 : info->kind = STATS_EXT_MCV;
1711 886 : info->keys = bms_copy(keys);
1712 886 : info->exprs = exprs;
1713 :
1714 886 : *stainfos = lappend(*stainfos, info);
1715 : }
1716 :
1717 2008 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1718 : {
1719 814 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1720 :
1721 814 : info->statOid = statOid;
1722 814 : info->inherit = dataForm->stxdinherit;
1723 814 : info->rel = rel;
1724 814 : info->kind = STATS_EXT_EXPRESSIONS;
1725 814 : info->keys = bms_copy(keys);
1726 814 : info->exprs = exprs;
1727 :
1728 814 : *stainfos = lappend(*stainfos, info);
1729 : }
1730 :
1731 2008 : ReleaseSysCache(dtup);
1732 : }
1733 :
1734 : /*
1735 : * get_relation_statistics
1736 : * Retrieve extended statistics defined on the table.
1737 : *
1738 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1739 : * the statistics. Note that this doesn't load the actual statistics data,
1740 : * just the identifying metadata. Only stats actually built are considered.
1741 : */
1742 : static List *
1743 492682 : get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
1744 : Relation relation)
1745 : {
1746 492682 : Index varno = rel->relid;
1747 : List *statoidlist;
1748 492682 : List *stainfos = NIL;
1749 : ListCell *l;
1750 :
1751 492682 : statoidlist = RelationGetStatExtList(relation);
1752 :
1753 494710 : foreach(l, statoidlist)
1754 : {
1755 2028 : Oid statOid = lfirst_oid(l);
1756 : Form_pg_statistic_ext staForm;
1757 : HeapTuple htup;
1758 2028 : Bitmapset *keys = NULL;
1759 2028 : List *exprs = NIL;
1760 : int i;
1761 :
1762 2028 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1763 2028 : if (!HeapTupleIsValid(htup))
1764 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1765 2028 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1766 :
1767 : /*
1768 : * First, build the array of columns covered. This is ultimately
1769 : * wasted if no stats within the object have actually been built, but
1770 : * it doesn't seem worth troubling over that case.
1771 : */
1772 5754 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1773 3726 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1774 :
1775 : /*
1776 : * Preprocess expressions (if any). We read the expressions, fix the
1777 : * varnos, and run them through eval_const_expressions.
1778 : *
1779 : * XXX We don't know yet if there are any data for this stats object,
1780 : * with either stxdinherit value. But it's reasonable to assume there
1781 : * is at least one of those, possibly both. So it's better to process
1782 : * keys and expressions here.
1783 : */
1784 : {
1785 : bool isnull;
1786 : Datum datum;
1787 :
1788 : /* decode expression (if any) */
1789 2028 : datum = SysCacheGetAttr(STATEXTOID, htup,
1790 : Anum_pg_statistic_ext_stxexprs, &isnull);
1791 :
1792 2028 : if (!isnull)
1793 : {
1794 : char *exprsString;
1795 :
1796 824 : exprsString = TextDatumGetCString(datum);
1797 824 : exprs = (List *) stringToNode(exprsString);
1798 824 : pfree(exprsString);
1799 :
1800 : /*
1801 : * Modify the copies we obtain from the relcache to have the
1802 : * correct varno for the parent relation, so that they match
1803 : * up correctly against qual clauses.
1804 : *
1805 : * This must be done before const-simplification because
1806 : * eval_const_expressions reduces NullTest for Vars based on
1807 : * varno.
1808 : */
1809 824 : if (varno != 1)
1810 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1811 :
1812 : /*
1813 : * Run the expressions through eval_const_expressions. This is
1814 : * not just an optimization, but is necessary, because the
1815 : * planner will be comparing them to similarly-processed qual
1816 : * clauses, and may fail to detect valid matches without this.
1817 : * We must not use canonicalize_qual, however, since these
1818 : * aren't qual expressions.
1819 : */
1820 824 : exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1821 :
1822 : /* May as well fix opfuncids too */
1823 824 : fix_opfuncids((Node *) exprs);
1824 : }
1825 : }
1826 :
1827 : /* extract statistics for possible values of stxdinherit flag */
1828 :
1829 2028 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1830 :
1831 2028 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1832 :
1833 2028 : ReleaseSysCache(htup);
1834 2028 : bms_free(keys);
1835 : }
1836 :
1837 492682 : list_free(statoidlist);
1838 :
1839 492682 : return stainfos;
1840 : }
1841 :
1842 : /*
1843 : * relation_excluded_by_constraints
1844 : *
1845 : * Detect whether the relation need not be scanned because it has either
1846 : * self-inconsistent restrictions, or restrictions inconsistent with the
1847 : * relation's applicable constraints.
1848 : *
1849 : * Note: this examines only rel->relid, rel->reloptkind, and
1850 : * rel->baserestrictinfo; therefore it can be called before filling in
1851 : * other fields of the RelOptInfo.
1852 : */
1853 : bool
1854 545892 : relation_excluded_by_constraints(PlannerInfo *root,
1855 : RelOptInfo *rel, RangeTblEntry *rte)
1856 : {
1857 : bool include_noinherit;
1858 : bool include_notnull;
1859 545892 : bool include_partition = false;
1860 : List *safe_restrictions;
1861 : List *constraint_pred;
1862 : List *safe_constraints;
1863 : ListCell *lc;
1864 :
1865 : /* As of now, constraint exclusion works only with simple relations. */
1866 : Assert(IS_SIMPLE_REL(rel));
1867 :
1868 : /*
1869 : * If there are no base restriction clauses, we have no hope of proving
1870 : * anything below, so fall out quickly.
1871 : */
1872 545892 : if (rel->baserestrictinfo == NIL)
1873 250800 : return false;
1874 :
1875 : /*
1876 : * Regardless of the setting of constraint_exclusion, detect
1877 : * constant-FALSE-or-NULL restriction clauses. Although const-folding
1878 : * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1879 : * list can still have other members besides the FALSE constant, due to
1880 : * qual pushdown and other mechanisms; so check them all. This doesn't
1881 : * fire very often, but it seems cheap enough to be worth doing anyway.
1882 : * (Without this, we'd miss some optimizations that 9.5 and earlier found
1883 : * via much more roundabout methods.)
1884 : */
1885 733212 : foreach(lc, rel->baserestrictinfo)
1886 : {
1887 438760 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1888 438760 : Expr *clause = rinfo->clause;
1889 :
1890 438760 : if (clause && IsA(clause, Const) &&
1891 640 : (((Const *) clause)->constisnull ||
1892 634 : !DatumGetBool(((Const *) clause)->constvalue)))
1893 640 : return true;
1894 : }
1895 :
1896 : /*
1897 : * Skip further tests, depending on constraint_exclusion.
1898 : */
1899 294452 : switch (constraint_exclusion)
1900 : {
1901 54 : case CONSTRAINT_EXCLUSION_OFF:
1902 : /* In 'off' mode, never make any further tests */
1903 54 : return false;
1904 :
1905 294254 : case CONSTRAINT_EXCLUSION_PARTITION:
1906 :
1907 : /*
1908 : * When constraint_exclusion is set to 'partition' we only handle
1909 : * appendrel members. Partition pruning has already been applied,
1910 : * so there is no need to consider the rel's partition constraints
1911 : * here.
1912 : */
1913 294254 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1914 21904 : break; /* appendrel member, so process it */
1915 272350 : return false;
1916 :
1917 144 : case CONSTRAINT_EXCLUSION_ON:
1918 :
1919 : /*
1920 : * In 'on' mode, always apply constraint exclusion. If we are
1921 : * considering a baserel that is a partition (i.e., it was
1922 : * directly named rather than expanded from a parent table), then
1923 : * its partition constraints haven't been considered yet, so
1924 : * include them in the processing here.
1925 : */
1926 144 : if (rel->reloptkind == RELOPT_BASEREL)
1927 114 : include_partition = true;
1928 144 : break; /* always try to exclude */
1929 : }
1930 :
1931 : /*
1932 : * Check for self-contradictory restriction clauses. We dare not make
1933 : * deductions with non-immutable functions, but any immutable clauses that
1934 : * are self-contradictory allow us to conclude the scan is unnecessary.
1935 : *
1936 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1937 : * expecting to see any in its predicate argument.
1938 : */
1939 22048 : safe_restrictions = NIL;
1940 52018 : foreach(lc, rel->baserestrictinfo)
1941 : {
1942 29970 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1943 :
1944 29970 : if (!contain_mutable_functions((Node *) rinfo->clause))
1945 28430 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1946 : }
1947 :
1948 : /*
1949 : * We can use weak refutation here, since we're comparing restriction
1950 : * clauses with restriction clauses.
1951 : */
1952 22048 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1953 72 : return true;
1954 :
1955 : /*
1956 : * Only plain relations have constraints, so stop here for other rtekinds.
1957 : */
1958 21976 : if (rte->rtekind != RTE_RELATION)
1959 288 : return false;
1960 :
1961 : /*
1962 : * If we are scanning just this table, we can use NO INHERIT constraints,
1963 : * but not if we're scanning its children too. (Note that partitioned
1964 : * tables should never have NO INHERIT constraints; but it's not necessary
1965 : * for us to assume that here.)
1966 : */
1967 21688 : include_noinherit = !rte->inh;
1968 :
1969 : /*
1970 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1971 : * this is a partitioned table. In future we might track their
1972 : * inheritance status more accurately, allowing this to be refined.
1973 : *
1974 : * XXX do we need/want to change this?
1975 : */
1976 21688 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1977 :
1978 : /*
1979 : * Fetch the appropriate set of constraint expressions.
1980 : */
1981 21688 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1982 : include_noinherit,
1983 : include_notnull,
1984 : include_partition);
1985 :
1986 : /*
1987 : * We do not currently enforce that CHECK constraints contain only
1988 : * immutable functions, so it's necessary to check here. We daren't draw
1989 : * conclusions from plan-time evaluation of non-immutable functions. Since
1990 : * they're ANDed, we can just ignore any mutable constraints in the list,
1991 : * and reason about the rest.
1992 : */
1993 21688 : safe_constraints = NIL;
1994 32168 : foreach(lc, constraint_pred)
1995 : {
1996 10480 : Node *pred = (Node *) lfirst(lc);
1997 :
1998 10480 : if (!contain_mutable_functions(pred))
1999 10480 : safe_constraints = lappend(safe_constraints, pred);
2000 : }
2001 :
2002 : /*
2003 : * The constraints are effectively ANDed together, so we can just try to
2004 : * refute the entire collection at once. This may allow us to make proofs
2005 : * that would fail if we took them individually.
2006 : *
2007 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
2008 : * an obvious optimization. Some of the clauses might be OR clauses that
2009 : * have volatile and nonvolatile subclauses, and it's OK to make
2010 : * deductions with the nonvolatile parts.
2011 : *
2012 : * We need strong refutation because we have to prove that the constraints
2013 : * would yield false, not just NULL.
2014 : */
2015 21688 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
2016 192 : return true;
2017 :
2018 21496 : return false;
2019 : }
2020 :
2021 :
2022 : /*
2023 : * build_physical_tlist
2024 : *
2025 : * Build a targetlist consisting of exactly the relation's user attributes,
2026 : * in order. The executor can special-case such tlists to avoid a projection
2027 : * step at runtime, so we use such tlists preferentially for scan nodes.
2028 : *
2029 : * Exception: if there are any dropped or missing columns, we punt and return
2030 : * NIL. Ideally we would like to handle these cases too. However this
2031 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
2032 : * for a tlist that includes vars of no-longer-existent types. In theory we
2033 : * could dig out the required info from the pg_attribute entries of the
2034 : * relation, but that data is not readily available to ExecTypeFromTL.
2035 : * For now, we don't apply the physical-tlist optimization when there are
2036 : * dropped cols.
2037 : *
2038 : * We also support building a "physical" tlist for subqueries, functions,
2039 : * values lists, table expressions, and CTEs, since the same optimization can
2040 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
2041 : * NamedTuplestoreScan, and WorkTableScan nodes.
2042 : */
2043 : List *
2044 198358 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
2045 : {
2046 198358 : List *tlist = NIL;
2047 198358 : Index varno = rel->relid;
2048 198358 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
2049 : Relation relation;
2050 : Query *subquery;
2051 : Var *var;
2052 : ListCell *l;
2053 : int attrno,
2054 : numattrs;
2055 : List *colvars;
2056 :
2057 198358 : switch (rte->rtekind)
2058 : {
2059 165400 : case RTE_RELATION:
2060 : /* Assume we already have adequate lock */
2061 165400 : relation = table_open(rte->relid, NoLock);
2062 :
2063 165400 : numattrs = RelationGetNumberOfAttributes(relation);
2064 2932292 : for (attrno = 1; attrno <= numattrs; attrno++)
2065 : {
2066 2767030 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
2067 : attrno - 1);
2068 :
2069 2767030 : if (att_tup->attisdropped || att_tup->atthasmissing)
2070 : {
2071 : /* found a dropped or missing col, so punt */
2072 138 : tlist = NIL;
2073 138 : break;
2074 : }
2075 :
2076 2766892 : var = makeVar(varno,
2077 : attrno,
2078 : att_tup->atttypid,
2079 : att_tup->atttypmod,
2080 : att_tup->attcollation,
2081 : 0);
2082 :
2083 2766892 : tlist = lappend(tlist,
2084 2766892 : makeTargetEntry((Expr *) var,
2085 : attrno,
2086 : NULL,
2087 : false));
2088 : }
2089 :
2090 165400 : table_close(relation, NoLock);
2091 165400 : break;
2092 :
2093 8252 : case RTE_SUBQUERY:
2094 8252 : subquery = rte->subquery;
2095 27280 : foreach(l, subquery->targetList)
2096 : {
2097 19028 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2098 :
2099 : /*
2100 : * A resjunk column of the subquery can be reflected as
2101 : * resjunk in the physical tlist; we need not punt.
2102 : */
2103 19028 : var = makeVarFromTargetEntry(varno, tle);
2104 :
2105 19028 : tlist = lappend(tlist,
2106 19028 : makeTargetEntry((Expr *) var,
2107 19028 : tle->resno,
2108 : NULL,
2109 19028 : tle->resjunk));
2110 : }
2111 8252 : break;
2112 :
2113 24706 : case RTE_FUNCTION:
2114 : case RTE_TABLEFUNC:
2115 : case RTE_VALUES:
2116 : case RTE_CTE:
2117 : case RTE_NAMEDTUPLESTORE:
2118 : case RTE_RESULT:
2119 : /* Not all of these can have dropped cols, but share code anyway */
2120 24706 : expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
2121 : true /* include dropped */ , NULL, &colvars);
2122 125960 : foreach(l, colvars)
2123 : {
2124 101254 : var = (Var *) lfirst(l);
2125 :
2126 : /*
2127 : * A non-Var in expandRTE's output means a dropped column;
2128 : * must punt.
2129 : */
2130 101254 : if (!IsA(var, Var))
2131 : {
2132 0 : tlist = NIL;
2133 0 : break;
2134 : }
2135 :
2136 101254 : tlist = lappend(tlist,
2137 101254 : makeTargetEntry((Expr *) var,
2138 101254 : var->varattno,
2139 : NULL,
2140 : false));
2141 : }
2142 24706 : break;
2143 :
2144 0 : default:
2145 : /* caller error */
2146 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
2147 : (int) rte->rtekind);
2148 : break;
2149 : }
2150 :
2151 198358 : return tlist;
2152 : }
2153 :
2154 : /*
2155 : * build_index_tlist
2156 : *
2157 : * Build a targetlist representing the columns of the specified index.
2158 : * Each column is represented by a Var for the corresponding base-relation
2159 : * column, or an expression in base-relation Vars, as appropriate.
2160 : *
2161 : * There are never any dropped columns in indexes, so unlike
2162 : * build_physical_tlist, we need no failure case.
2163 : */
2164 : static List *
2165 769086 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
2166 : Relation heapRelation)
2167 : {
2168 769086 : List *tlist = NIL;
2169 769086 : Index varno = index->rel->relid;
2170 : ListCell *indexpr_item;
2171 : int i;
2172 :
2173 769086 : indexpr_item = list_head(index->indexprs);
2174 2205216 : for (i = 0; i < index->ncolumns; i++)
2175 : {
2176 1436130 : int indexkey = index->indexkeys[i];
2177 : Expr *indexvar;
2178 :
2179 1436130 : if (indexkey != 0)
2180 : {
2181 : /* simple column */
2182 : const FormData_pg_attribute *att_tup;
2183 :
2184 1433090 : if (indexkey < 0)
2185 0 : att_tup = SystemAttributeDefinition(indexkey);
2186 : else
2187 1433090 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2188 :
2189 1433090 : indexvar = (Expr *) makeVar(varno,
2190 : indexkey,
2191 1433090 : att_tup->atttypid,
2192 1433090 : att_tup->atttypmod,
2193 1433090 : att_tup->attcollation,
2194 : 0);
2195 : }
2196 : else
2197 : {
2198 : /* expression column */
2199 3040 : if (indexpr_item == NULL)
2200 0 : elog(ERROR, "wrong number of index expressions");
2201 3040 : indexvar = (Expr *) lfirst(indexpr_item);
2202 3040 : indexpr_item = lnext(index->indexprs, indexpr_item);
2203 : }
2204 :
2205 1436130 : tlist = lappend(tlist,
2206 1436130 : makeTargetEntry(indexvar,
2207 1436130 : i + 1,
2208 : NULL,
2209 : false));
2210 : }
2211 769086 : if (indexpr_item != NULL)
2212 0 : elog(ERROR, "wrong number of index expressions");
2213 :
2214 769086 : return tlist;
2215 : }
2216 :
2217 : /*
2218 : * restriction_selectivity
2219 : *
2220 : * Returns the selectivity of a specified restriction operator clause.
2221 : * This code executes registered procedures stored in the
2222 : * operator relation, by calling the function manager.
2223 : *
2224 : * See clause_selectivity() for the meaning of the additional parameters.
2225 : */
2226 : Selectivity
2227 763562 : restriction_selectivity(PlannerInfo *root,
2228 : Oid operatorid,
2229 : List *args,
2230 : Oid inputcollid,
2231 : int varRelid)
2232 : {
2233 763562 : RegProcedure oprrest = get_oprrest(operatorid);
2234 : float8 result;
2235 :
2236 : /*
2237 : * if the oprrest procedure is missing for whatever reason, use a
2238 : * selectivity of 0.5
2239 : */
2240 763562 : if (!oprrest)
2241 160 : return (Selectivity) 0.5;
2242 :
2243 763402 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
2244 : inputcollid,
2245 : PointerGetDatum(root),
2246 : ObjectIdGetDatum(operatorid),
2247 : PointerGetDatum(args),
2248 : Int32GetDatum(varRelid)));
2249 :
2250 763372 : if (result < 0.0 || result > 1.0)
2251 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
2252 :
2253 763372 : return (Selectivity) result;
2254 : }
2255 :
2256 : /*
2257 : * join_selectivity
2258 : *
2259 : * Returns the selectivity of a specified join operator clause.
2260 : * This code executes registered procedures stored in the
2261 : * operator relation, by calling the function manager.
2262 : *
2263 : * See clause_selectivity() for the meaning of the additional parameters.
2264 : */
2265 : Selectivity
2266 274070 : join_selectivity(PlannerInfo *root,
2267 : Oid operatorid,
2268 : List *args,
2269 : Oid inputcollid,
2270 : JoinType jointype,
2271 : SpecialJoinInfo *sjinfo)
2272 : {
2273 274070 : RegProcedure oprjoin = get_oprjoin(operatorid);
2274 : float8 result;
2275 :
2276 : /*
2277 : * if the oprjoin procedure is missing for whatever reason, use a
2278 : * selectivity of 0.5
2279 : */
2280 274070 : if (!oprjoin)
2281 146 : return (Selectivity) 0.5;
2282 :
2283 273924 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2284 : inputcollid,
2285 : PointerGetDatum(root),
2286 : ObjectIdGetDatum(operatorid),
2287 : PointerGetDatum(args),
2288 : Int16GetDatum(jointype),
2289 : PointerGetDatum(sjinfo)));
2290 :
2291 273924 : if (result < 0.0 || result > 1.0)
2292 0 : elog(ERROR, "invalid join selectivity: %f", result);
2293 :
2294 273924 : return (Selectivity) result;
2295 : }
2296 :
2297 : /*
2298 : * function_selectivity
2299 : *
2300 : * Attempt to estimate the selectivity of a specified boolean function clause
2301 : * by asking its support function. If the function lacks support, return -1.
2302 : *
2303 : * See clause_selectivity() for the meaning of the additional parameters.
2304 : */
2305 : Selectivity
2306 13260 : function_selectivity(PlannerInfo *root,
2307 : Oid funcid,
2308 : List *args,
2309 : Oid inputcollid,
2310 : bool is_join,
2311 : int varRelid,
2312 : JoinType jointype,
2313 : SpecialJoinInfo *sjinfo)
2314 : {
2315 13260 : RegProcedure prosupport = get_func_support(funcid);
2316 : SupportRequestSelectivity req;
2317 : SupportRequestSelectivity *sresult;
2318 :
2319 13260 : if (!prosupport)
2320 13230 : return (Selectivity) -1; /* no support function */
2321 :
2322 30 : req.type = T_SupportRequestSelectivity;
2323 30 : req.root = root;
2324 30 : req.funcid = funcid;
2325 30 : req.args = args;
2326 30 : req.inputcollid = inputcollid;
2327 30 : req.is_join = is_join;
2328 30 : req.varRelid = varRelid;
2329 30 : req.jointype = jointype;
2330 30 : req.sjinfo = sjinfo;
2331 30 : req.selectivity = -1; /* to catch failure to set the value */
2332 :
2333 : sresult = (SupportRequestSelectivity *)
2334 30 : DatumGetPointer(OidFunctionCall1(prosupport,
2335 : PointerGetDatum(&req)));
2336 :
2337 30 : if (sresult != &req)
2338 0 : return (Selectivity) -1; /* function did not honor request */
2339 :
2340 30 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2341 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2342 :
2343 30 : return (Selectivity) req.selectivity;
2344 : }
2345 :
2346 : /*
2347 : * add_function_cost
2348 : *
2349 : * Get an estimate of the execution cost of a function, and *add* it to
2350 : * the contents of *cost. The estimate may include both one-time and
2351 : * per-tuple components, since QualCost does.
2352 : *
2353 : * The funcid must always be supplied. If it is being called as the
2354 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2355 : * WindowFunc, etc), pass that as "node", else pass NULL.
2356 : *
2357 : * In some usages root might be NULL, too.
2358 : */
2359 : void
2360 1200628 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2361 : QualCost *cost)
2362 : {
2363 : HeapTuple proctup;
2364 : Form_pg_proc procform;
2365 :
2366 1200628 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2367 1200628 : if (!HeapTupleIsValid(proctup))
2368 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2369 1200628 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2370 :
2371 1200628 : if (OidIsValid(procform->prosupport))
2372 : {
2373 : SupportRequestCost req;
2374 : SupportRequestCost *sresult;
2375 :
2376 35978 : req.type = T_SupportRequestCost;
2377 35978 : req.root = root;
2378 35978 : req.funcid = funcid;
2379 35978 : req.node = node;
2380 :
2381 : /* Initialize cost fields so that support function doesn't have to */
2382 35978 : req.startup = 0;
2383 35978 : req.per_tuple = 0;
2384 :
2385 : sresult = (SupportRequestCost *)
2386 35978 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2387 : PointerGetDatum(&req)));
2388 :
2389 35978 : if (sresult == &req)
2390 : {
2391 : /* Success, so accumulate support function's estimate into *cost */
2392 18 : cost->startup += req.startup;
2393 18 : cost->per_tuple += req.per_tuple;
2394 18 : ReleaseSysCache(proctup);
2395 18 : return;
2396 : }
2397 : }
2398 :
2399 : /* No support function, or it failed, so rely on procost */
2400 1200610 : cost->per_tuple += procform->procost * cpu_operator_cost;
2401 :
2402 1200610 : ReleaseSysCache(proctup);
2403 : }
2404 :
2405 : /*
2406 : * get_function_rows
2407 : *
2408 : * Get an estimate of the number of rows returned by a set-returning function.
2409 : *
2410 : * The funcid must always be supplied. In current usage, the calling node
2411 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2412 : * But it's a good idea to not fail if it's NULL.
2413 : *
2414 : * In some usages root might be NULL, too.
2415 : *
2416 : * Note: this returns the unfiltered result of the support function, if any.
2417 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2418 : * leave it to the caller to do so.
2419 : */
2420 : double
2421 57198 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2422 : {
2423 : HeapTuple proctup;
2424 : Form_pg_proc procform;
2425 : double result;
2426 :
2427 57198 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2428 57198 : if (!HeapTupleIsValid(proctup))
2429 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2430 57198 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2431 :
2432 : Assert(procform->proretset); /* else caller error */
2433 :
2434 57198 : if (OidIsValid(procform->prosupport))
2435 : {
2436 : SupportRequestRows req;
2437 : SupportRequestRows *sresult;
2438 :
2439 21526 : req.type = T_SupportRequestRows;
2440 21526 : req.root = root;
2441 21526 : req.funcid = funcid;
2442 21526 : req.node = node;
2443 :
2444 21526 : req.rows = 0; /* just for sanity */
2445 :
2446 : sresult = (SupportRequestRows *)
2447 21526 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2448 : PointerGetDatum(&req)));
2449 :
2450 21526 : if (sresult == &req)
2451 : {
2452 : /* Success */
2453 17332 : ReleaseSysCache(proctup);
2454 17332 : return req.rows;
2455 : }
2456 : }
2457 :
2458 : /* No support function, or it failed, so rely on prorows */
2459 39866 : result = procform->prorows;
2460 :
2461 39866 : ReleaseSysCache(proctup);
2462 :
2463 39866 : return result;
2464 : }
2465 :
2466 : /*
2467 : * has_unique_index
2468 : *
2469 : * Detect whether there is a unique index on the specified attribute
2470 : * of the specified relation, thus allowing us to conclude that all
2471 : * the (non-null) values of the attribute are distinct.
2472 : *
2473 : * This function does not check the index's indimmediate property, which
2474 : * means that uniqueness may transiently fail to hold intra-transaction.
2475 : * That's appropriate when we are making statistical estimates, but beware
2476 : * of using this for any correctness proofs.
2477 : */
2478 : bool
2479 2378122 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2480 : {
2481 : ListCell *ilist;
2482 :
2483 5811362 : foreach(ilist, rel->indexlist)
2484 : {
2485 4172858 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2486 :
2487 : /*
2488 : * Note: ignore partial indexes, since they don't allow us to conclude
2489 : * that all attr values are distinct, *unless* they are marked predOK
2490 : * which means we know the index's predicate is satisfied by the
2491 : * query. We don't take any interest in expressional indexes either.
2492 : * Also, a multicolumn unique index doesn't allow us to conclude that
2493 : * just the specified attr is unique.
2494 : */
2495 4172858 : if (index->unique &&
2496 2915246 : index->nkeycolumns == 1 &&
2497 1578688 : index->indexkeys[0] == attno &&
2498 739700 : (index->indpred == NIL || index->predOK))
2499 739618 : return true;
2500 : }
2501 1638504 : return false;
2502 : }
2503 :
2504 :
2505 : /*
2506 : * has_row_triggers
2507 : *
2508 : * Detect whether the specified relation has any row-level triggers for event.
2509 : */
2510 : bool
2511 516 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2512 : {
2513 516 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2514 : Relation relation;
2515 : TriggerDesc *trigDesc;
2516 516 : bool result = false;
2517 :
2518 : /* Assume we already have adequate lock */
2519 516 : relation = table_open(rte->relid, NoLock);
2520 :
2521 516 : trigDesc = relation->trigdesc;
2522 516 : switch (event)
2523 : {
2524 164 : case CMD_INSERT:
2525 164 : if (trigDesc &&
2526 26 : (trigDesc->trig_insert_after_row ||
2527 14 : trigDesc->trig_insert_before_row))
2528 26 : result = true;
2529 164 : break;
2530 190 : case CMD_UPDATE:
2531 190 : if (trigDesc &&
2532 48 : (trigDesc->trig_update_after_row ||
2533 28 : trigDesc->trig_update_before_row))
2534 36 : result = true;
2535 190 : break;
2536 162 : case CMD_DELETE:
2537 162 : if (trigDesc &&
2538 30 : (trigDesc->trig_delete_after_row ||
2539 18 : trigDesc->trig_delete_before_row))
2540 16 : result = true;
2541 162 : break;
2542 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2543 0 : case CMD_MERGE:
2544 0 : result = false;
2545 0 : break;
2546 0 : default:
2547 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2548 : break;
2549 : }
2550 :
2551 516 : table_close(relation, NoLock);
2552 516 : return result;
2553 : }
2554 :
2555 : /*
2556 : * has_transition_tables
2557 : *
2558 : * Detect whether the specified relation has any transition tables for event.
2559 : */
2560 : bool
2561 390 : has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
2562 : {
2563 390 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2564 : Relation relation;
2565 : TriggerDesc *trigDesc;
2566 390 : bool result = false;
2567 :
2568 : Assert(rte->rtekind == RTE_RELATION);
2569 :
2570 : /* Currently foreign tables cannot have transition tables */
2571 390 : if (rte->relkind == RELKIND_FOREIGN_TABLE)
2572 290 : return result;
2573 :
2574 : /* Assume we already have adequate lock */
2575 100 : relation = table_open(rte->relid, NoLock);
2576 :
2577 100 : trigDesc = relation->trigdesc;
2578 100 : switch (event)
2579 : {
2580 0 : case CMD_INSERT:
2581 0 : if (trigDesc &&
2582 0 : trigDesc->trig_insert_new_table)
2583 0 : result = true;
2584 0 : break;
2585 60 : case CMD_UPDATE:
2586 60 : if (trigDesc &&
2587 8 : (trigDesc->trig_update_old_table ||
2588 0 : trigDesc->trig_update_new_table))
2589 8 : result = true;
2590 60 : break;
2591 40 : case CMD_DELETE:
2592 40 : if (trigDesc &&
2593 8 : trigDesc->trig_delete_old_table)
2594 8 : result = true;
2595 40 : break;
2596 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2597 0 : case CMD_MERGE:
2598 0 : result = false;
2599 0 : break;
2600 0 : default:
2601 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2602 : break;
2603 : }
2604 :
2605 100 : table_close(relation, NoLock);
2606 100 : return result;
2607 : }
2608 :
2609 : /*
2610 : * has_stored_generated_columns
2611 : *
2612 : * Does table identified by RTI have any STORED GENERATED columns?
2613 : */
2614 : bool
2615 438 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2616 : {
2617 438 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2618 : Relation relation;
2619 : TupleDesc tupdesc;
2620 438 : bool result = false;
2621 :
2622 : /* Assume we already have adequate lock */
2623 438 : relation = table_open(rte->relid, NoLock);
2624 :
2625 438 : tupdesc = RelationGetDescr(relation);
2626 438 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2627 :
2628 438 : table_close(relation, NoLock);
2629 :
2630 438 : return result;
2631 : }
2632 :
2633 : /*
2634 : * get_dependent_generated_columns
2635 : *
2636 : * Get the column numbers of any STORED GENERATED columns of the relation
2637 : * that depend on any column listed in target_cols. Both the input and
2638 : * result bitmapsets contain column numbers offset by
2639 : * FirstLowInvalidHeapAttributeNumber.
2640 : */
2641 : Bitmapset *
2642 90 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2643 : Bitmapset *target_cols)
2644 : {
2645 90 : Bitmapset *dependentCols = NULL;
2646 90 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2647 : Relation relation;
2648 : TupleDesc tupdesc;
2649 : TupleConstr *constr;
2650 :
2651 : /* Assume we already have adequate lock */
2652 90 : relation = table_open(rte->relid, NoLock);
2653 :
2654 90 : tupdesc = RelationGetDescr(relation);
2655 90 : constr = tupdesc->constr;
2656 :
2657 90 : if (constr && constr->has_generated_stored)
2658 : {
2659 12 : for (int i = 0; i < constr->num_defval; i++)
2660 : {
2661 8 : AttrDefault *defval = &constr->defval[i];
2662 : Node *expr;
2663 8 : Bitmapset *attrs_used = NULL;
2664 :
2665 : /* skip if not generated column */
2666 8 : if (!TupleDescCompactAttr(tupdesc, defval->adnum - 1)->attgenerated)
2667 0 : continue;
2668 :
2669 : /* identify columns this generated column depends on */
2670 8 : expr = stringToNode(defval->adbin);
2671 8 : pull_varattnos(expr, 1, &attrs_used);
2672 :
2673 8 : if (bms_overlap(target_cols, attrs_used))
2674 8 : dependentCols = bms_add_member(dependentCols,
2675 8 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2676 : }
2677 : }
2678 :
2679 90 : table_close(relation, NoLock);
2680 :
2681 90 : return dependentCols;
2682 : }
2683 :
2684 : /*
2685 : * set_relation_partition_info
2686 : *
2687 : * Set partitioning scheme and related information for a partitioned table.
2688 : */
2689 : static void
2690 18090 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2691 : Relation relation)
2692 : {
2693 : PartitionDesc partdesc;
2694 :
2695 : /*
2696 : * Create the PartitionDirectory infrastructure if we didn't already.
2697 : */
2698 18090 : if (root->glob->partition_directory == NULL)
2699 : {
2700 12182 : root->glob->partition_directory =
2701 12182 : CreatePartitionDirectory(CurrentMemoryContext, true);
2702 : }
2703 :
2704 18090 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2705 : relation);
2706 18090 : rel->part_scheme = find_partition_scheme(root, relation);
2707 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2708 18090 : rel->boundinfo = partdesc->boundinfo;
2709 18090 : rel->nparts = partdesc->nparts;
2710 18090 : set_baserel_partition_key_exprs(relation, rel);
2711 18090 : set_baserel_partition_constraint(relation, rel);
2712 18090 : }
2713 :
2714 : /*
2715 : * find_partition_scheme
2716 : *
2717 : * Find or create a PartitionScheme for this Relation.
2718 : */
2719 : static PartitionScheme
2720 18090 : find_partition_scheme(PlannerInfo *root, Relation relation)
2721 : {
2722 18090 : PartitionKey partkey = RelationGetPartitionKey(relation);
2723 : ListCell *lc;
2724 : int partnatts,
2725 : i;
2726 : PartitionScheme part_scheme;
2727 :
2728 : /* A partitioned table should have a partition key. */
2729 : Assert(partkey != NULL);
2730 :
2731 18090 : partnatts = partkey->partnatts;
2732 :
2733 : /* Search for a matching partition scheme and return if found one. */
2734 19980 : foreach(lc, root->part_schemes)
2735 : {
2736 6500 : part_scheme = lfirst(lc);
2737 :
2738 : /* Match partitioning strategy and number of keys. */
2739 6500 : if (partkey->strategy != part_scheme->strategy ||
2740 5510 : partnatts != part_scheme->partnatts)
2741 1440 : continue;
2742 :
2743 : /* Match partition key type properties. */
2744 5060 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2745 4610 : sizeof(Oid) * partnatts) != 0 ||
2746 4610 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2747 4610 : sizeof(Oid) * partnatts) != 0 ||
2748 4610 : memcmp(partkey->partcollation, part_scheme->partcollation,
2749 : sizeof(Oid) * partnatts) != 0)
2750 450 : continue;
2751 :
2752 : /*
2753 : * Length and byval information should match when partopcintype
2754 : * matches.
2755 : */
2756 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2757 : sizeof(int16) * partnatts) == 0);
2758 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2759 : sizeof(bool) * partnatts) == 0);
2760 :
2761 : /*
2762 : * If partopfamily and partopcintype matched, must have the same
2763 : * partition comparison functions. Note that we cannot reliably
2764 : * Assert the equality of function structs themselves for they might
2765 : * be different across PartitionKey's, so just Assert for the function
2766 : * OIDs.
2767 : */
2768 : #ifdef USE_ASSERT_CHECKING
2769 : for (i = 0; i < partkey->partnatts; i++)
2770 : Assert(partkey->partsupfunc[i].fn_oid ==
2771 : part_scheme->partsupfunc[i].fn_oid);
2772 : #endif
2773 :
2774 : /* Found matching partition scheme. */
2775 4610 : return part_scheme;
2776 : }
2777 :
2778 : /*
2779 : * Did not find matching partition scheme. Create one copying relevant
2780 : * information from the relcache. We need to copy the contents of the
2781 : * array since the relcache entry may not survive after we have closed the
2782 : * relation.
2783 : */
2784 13480 : part_scheme = palloc0_object(PartitionSchemeData);
2785 13480 : part_scheme->strategy = partkey->strategy;
2786 13480 : part_scheme->partnatts = partkey->partnatts;
2787 :
2788 13480 : part_scheme->partopfamily = palloc_array(Oid, partnatts);
2789 13480 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2790 : sizeof(Oid) * partnatts);
2791 :
2792 13480 : part_scheme->partopcintype = palloc_array(Oid, partnatts);
2793 13480 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2794 : sizeof(Oid) * partnatts);
2795 :
2796 13480 : part_scheme->partcollation = palloc_array(Oid, partnatts);
2797 13480 : memcpy(part_scheme->partcollation, partkey->partcollation,
2798 : sizeof(Oid) * partnatts);
2799 :
2800 13480 : part_scheme->parttyplen = palloc_array(int16, partnatts);
2801 13480 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2802 : sizeof(int16) * partnatts);
2803 :
2804 13480 : part_scheme->parttypbyval = palloc_array(bool, partnatts);
2805 13480 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2806 : sizeof(bool) * partnatts);
2807 :
2808 13480 : part_scheme->partsupfunc = palloc_array(FmgrInfo, partnatts);
2809 28856 : for (i = 0; i < partnatts; i++)
2810 15376 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2811 : CurrentMemoryContext);
2812 :
2813 : /* Add the partitioning scheme to PlannerInfo. */
2814 13480 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2815 :
2816 13480 : return part_scheme;
2817 : }
2818 :
2819 : /*
2820 : * set_baserel_partition_key_exprs
2821 : *
2822 : * Builds partition key expressions for the given base relation and fills
2823 : * rel->partexprs.
2824 : */
2825 : static void
2826 18090 : set_baserel_partition_key_exprs(Relation relation,
2827 : RelOptInfo *rel)
2828 : {
2829 18090 : PartitionKey partkey = RelationGetPartitionKey(relation);
2830 : int partnatts;
2831 : int cnt;
2832 : List **partexprs;
2833 : ListCell *lc;
2834 18090 : Index varno = rel->relid;
2835 :
2836 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2837 :
2838 : /* A partitioned table should have a partition key. */
2839 : Assert(partkey != NULL);
2840 :
2841 18090 : partnatts = partkey->partnatts;
2842 18090 : partexprs = palloc_array(List *, partnatts);
2843 18090 : lc = list_head(partkey->partexprs);
2844 :
2845 38106 : for (cnt = 0; cnt < partnatts; cnt++)
2846 : {
2847 : Expr *partexpr;
2848 20016 : AttrNumber attno = partkey->partattrs[cnt];
2849 :
2850 20016 : if (attno != InvalidAttrNumber)
2851 : {
2852 : /* Single column partition key is stored as a Var node. */
2853 : Assert(attno > 0);
2854 :
2855 19074 : partexpr = (Expr *) makeVar(varno, attno,
2856 19074 : partkey->parttypid[cnt],
2857 19074 : partkey->parttypmod[cnt],
2858 19074 : partkey->parttypcoll[cnt], 0);
2859 : }
2860 : else
2861 : {
2862 942 : if (lc == NULL)
2863 0 : elog(ERROR, "wrong number of partition key expressions");
2864 :
2865 : /* Re-stamp the expression with given varno. */
2866 942 : partexpr = (Expr *) copyObject(lfirst(lc));
2867 942 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2868 942 : lc = lnext(partkey->partexprs, lc);
2869 : }
2870 :
2871 : /* Base relations have a single expression per key. */
2872 20016 : partexprs[cnt] = list_make1(partexpr);
2873 : }
2874 :
2875 18090 : rel->partexprs = partexprs;
2876 :
2877 : /*
2878 : * A base relation does not have nullable partition key expressions, since
2879 : * no outer join is involved. We still allocate an array of empty
2880 : * expression lists to keep partition key expression handling code simple.
2881 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2882 : */
2883 18090 : rel->nullable_partexprs = palloc0_array(List *, partnatts);
2884 18090 : }
2885 :
2886 : /*
2887 : * set_baserel_partition_constraint
2888 : *
2889 : * Builds the partition constraint for the given base relation and sets it
2890 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2891 : * given relation.
2892 : */
2893 : static void
2894 18102 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2895 : {
2896 : List *partconstr;
2897 :
2898 18102 : if (rel->partition_qual) /* already done */
2899 0 : return;
2900 :
2901 : /*
2902 : * Run the partition quals through const-simplification similar to check
2903 : * constraints. We skip canonicalize_qual, though, because partition
2904 : * quals should be in canonical form already; also, since the qual is in
2905 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2906 : * format and back again.
2907 : */
2908 18102 : partconstr = RelationGetPartitionQual(relation);
2909 18102 : if (partconstr)
2910 : {
2911 3750 : partconstr = (List *) expression_planner((Expr *) partconstr);
2912 3750 : if (rel->relid != 1)
2913 3660 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2914 3750 : rel->partition_qual = partconstr;
2915 : }
2916 : }
|