Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/cost.h"
40 : #include "optimizer/optimizer.h"
41 : #include "optimizer/plancat.h"
42 : #include "parser/parse_relation.h"
43 : #include "parser/parsetree.h"
44 : #include "partitioning/partdesc.h"
45 : #include "rewrite/rewriteHandler.h"
46 : #include "rewrite/rewriteManip.h"
47 : #include "statistics/statistics.h"
48 : #include "storage/bufmgr.h"
49 : #include "tcop/tcopprot.h"
50 : #include "utils/builtins.h"
51 : #include "utils/lsyscache.h"
52 : #include "utils/partcache.h"
53 : #include "utils/rel.h"
54 : #include "utils/snapmgr.h"
55 : #include "utils/syscache.h"
56 :
57 : /* GUC parameter */
58 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
59 :
60 : /* Hook for plugins to get control in get_relation_info() */
61 : get_relation_info_hook_type get_relation_info_hook = NULL;
62 :
63 : typedef struct NotnullHashEntry
64 : {
65 : Oid relid; /* OID of the relation */
66 : Bitmapset *notnullattnums; /* attnums of NOT NULL columns */
67 : } NotnullHashEntry;
68 :
69 :
70 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
71 : Relation relation, bool inhparent);
72 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
73 : List *idxExprs);
74 : static List *get_relation_constraints(PlannerInfo *root,
75 : Oid relationObjectId, RelOptInfo *rel,
76 : bool include_noinherit,
77 : bool include_notnull,
78 : bool include_partition);
79 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
80 : Relation heapRelation);
81 : static List *get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
82 : Relation relation);
83 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
84 : Relation relation);
85 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
86 : Relation relation);
87 : static void set_baserel_partition_key_exprs(Relation relation,
88 : RelOptInfo *rel);
89 : static void set_baserel_partition_constraint(Relation relation,
90 : RelOptInfo *rel);
91 :
92 :
93 : /*
94 : * get_relation_info -
95 : * Retrieves catalog information for a given relation.
96 : *
97 : * Given the Oid of the relation, return the following info into fields
98 : * of the RelOptInfo struct:
99 : *
100 : * min_attr lowest valid AttrNumber
101 : * max_attr highest valid AttrNumber
102 : * indexlist list of IndexOptInfos for relation's indexes
103 : * statlist list of StatisticExtInfo for relation's statistic objects
104 : * serverid if it's a foreign table, the server OID
105 : * fdwroutine if it's a foreign table, the FDW function pointers
106 : * pages number of pages
107 : * tuples number of tuples
108 : * rel_parallel_workers user-defined number of parallel workers
109 : *
110 : * Also, add information about the relation's foreign keys to root->fkey_list.
111 : *
112 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
113 : * cases these are left as zeroes, but sometimes we need to compute attr
114 : * widths here, and we may as well cache the results for costsize.c.
115 : *
116 : * If inhparent is true, all we need to do is set up the attr arrays:
117 : * the RelOptInfo actually represents the appendrel formed by an inheritance
118 : * tree, and so the parent rel's physical size and index information isn't
119 : * important for it, however, for partitioned tables, we do populate the
120 : * indexlist as the planner uses unique indexes as unique proofs for certain
121 : * optimizations.
122 : */
123 : void
124 476154 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
125 : RelOptInfo *rel)
126 : {
127 476154 : Index varno = rel->relid;
128 : Relation relation;
129 : bool hasindex;
130 476154 : List *indexinfos = NIL;
131 :
132 : /*
133 : * We need not lock the relation since it was already locked, either by
134 : * the rewriter or when expand_inherited_rtentry() added it to the query's
135 : * rangetable.
136 : */
137 476154 : relation = table_open(relationObjectId, NoLock);
138 :
139 : /*
140 : * Relations without a table AM can be used in a query only if they are of
141 : * special-cased relkinds. This check prevents us from crashing later if,
142 : * for example, a view's ON SELECT rule has gone missing. Note that
143 : * table_open() already rejected indexes and composite types; spell the
144 : * error the same way it does.
145 : */
146 476154 : if (!relation->rd_tableam)
147 : {
148 20172 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
149 17656 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
150 0 : ereport(ERROR,
151 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
152 : errmsg("cannot open relation \"%s\"",
153 : RelationGetRelationName(relation)),
154 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
155 : }
156 :
157 : /* Temporary and unlogged relations are inaccessible during recovery. */
158 476154 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
159 0 : ereport(ERROR,
160 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
161 : errmsg("cannot access temporary or unlogged relations during recovery")));
162 :
163 476154 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
164 476154 : rel->max_attr = RelationGetNumberOfAttributes(relation);
165 476154 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
166 :
167 : Assert(rel->max_attr >= rel->min_attr);
168 476154 : rel->attr_needed = (Relids *)
169 476154 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
170 476154 : rel->attr_widths = (int32 *)
171 476154 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
172 :
173 : /*
174 : * Record which columns are defined as NOT NULL. We leave this
175 : * unpopulated for non-partitioned inheritance parent relations as it's
176 : * ambiguous as to what it means. Some child tables may have a NOT NULL
177 : * constraint for a column while others may not. We could work harder and
178 : * build a unioned set of all child relations notnullattnums, but there's
179 : * currently no need. The RelOptInfo corresponding to the !inh
180 : * RangeTblEntry does get populated.
181 : */
182 476154 : if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
183 438322 : rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
184 :
185 : /*
186 : * Estimate relation size --- unless it's an inheritance parent, in which
187 : * case the size we want is not the rel's own size but the size of its
188 : * inheritance tree. That will be computed in set_append_rel_size().
189 : */
190 476154 : if (!inhparent)
191 420706 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
192 420706 : &rel->pages, &rel->tuples, &rel->allvisfrac);
193 :
194 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
195 476154 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
196 :
197 : /*
198 : * Make list of indexes. Ignore indexes on system catalogs if told to.
199 : * Don't bother with indexes from traditional inheritance parents. For
200 : * partitioned tables, we need a list of at least unique indexes as these
201 : * serve as unique proofs for certain planner optimizations. However,
202 : * let's not discriminate here and just record all partitioned indexes
203 : * whether they're unique indexes or not.
204 : */
205 476154 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
206 438322 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
207 37832 : hasindex = false;
208 : else
209 438322 : hasindex = relation->rd_rel->relhasindex;
210 :
211 476154 : if (hasindex)
212 : {
213 : List *indexoidlist;
214 : LOCKMODE lmode;
215 : ListCell *l;
216 :
217 352756 : indexoidlist = RelationGetIndexList(relation);
218 :
219 : /*
220 : * For each index, we get the same type of lock that the executor will
221 : * need, and do not release it. This saves a couple of trips to the
222 : * shared lock manager while not creating any real loss of
223 : * concurrency, because no schema changes could be happening on the
224 : * index while we hold lock on the parent rel, and no lock type used
225 : * for queries blocks any other kind of index operation.
226 : */
227 352756 : lmode = root->simple_rte_array[varno]->rellockmode;
228 :
229 1097578 : foreach(l, indexoidlist)
230 : {
231 744822 : Oid indexoid = lfirst_oid(l);
232 : Relation indexRelation;
233 : Form_pg_index index;
234 744822 : IndexAmRoutine *amroutine = NULL;
235 : IndexOptInfo *info;
236 : int ncolumns,
237 : nkeycolumns;
238 : int i;
239 :
240 : /*
241 : * Extract info from the relation descriptor for the index.
242 : */
243 744822 : indexRelation = index_open(indexoid, lmode);
244 744822 : index = indexRelation->rd_index;
245 :
246 : /*
247 : * Ignore invalid indexes, since they can't safely be used for
248 : * queries. Note that this is OK because the data structure we
249 : * are constructing is only used by the planner --- the executor
250 : * still needs to insert into "invalid" indexes, if they're marked
251 : * indisready.
252 : */
253 744822 : if (!index->indisvalid)
254 : {
255 22 : index_close(indexRelation, NoLock);
256 22 : continue;
257 : }
258 :
259 : /*
260 : * If the index is valid, but cannot yet be used, ignore it; but
261 : * mark the plan we are generating as transient. See
262 : * src/backend/access/heap/README.HOT for discussion.
263 : */
264 744800 : if (index->indcheckxmin &&
265 294 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
266 : TransactionXmin))
267 : {
268 294 : root->glob->transientPlan = true;
269 294 : index_close(indexRelation, NoLock);
270 294 : continue;
271 : }
272 :
273 744506 : info = makeNode(IndexOptInfo);
274 :
275 744506 : info->indexoid = index->indexrelid;
276 744506 : info->reltablespace =
277 744506 : RelationGetForm(indexRelation)->reltablespace;
278 744506 : info->rel = rel;
279 744506 : info->ncolumns = ncolumns = index->indnatts;
280 744506 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
281 :
282 744506 : info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
283 744506 : info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
284 744506 : info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
285 744506 : info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
286 744506 : info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
287 :
288 2147612 : for (i = 0; i < ncolumns; i++)
289 : {
290 1403106 : info->indexkeys[i] = index->indkey.values[i];
291 1403106 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
292 : }
293 :
294 2147194 : for (i = 0; i < nkeycolumns; i++)
295 : {
296 1402688 : info->opfamily[i] = indexRelation->rd_opfamily[i];
297 1402688 : info->opcintype[i] = indexRelation->rd_opcintype[i];
298 1402688 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
299 : }
300 :
301 744506 : info->relam = indexRelation->rd_rel->relam;
302 :
303 : /*
304 : * We don't have an AM for partitioned indexes, so we'll just
305 : * NULLify the AM related fields for those.
306 : */
307 744506 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
308 : {
309 : /* We copy just the fields we need, not all of rd_indam */
310 737864 : amroutine = indexRelation->rd_indam;
311 737864 : info->amcanorderbyop = amroutine->amcanorderbyop;
312 737864 : info->amoptionalkey = amroutine->amoptionalkey;
313 737864 : info->amsearcharray = amroutine->amsearcharray;
314 737864 : info->amsearchnulls = amroutine->amsearchnulls;
315 737864 : info->amcanparallel = amroutine->amcanparallel;
316 737864 : info->amhasgettuple = (amroutine->amgettuple != NULL);
317 1475728 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
318 737864 : relation->rd_tableam->scan_bitmap_next_tuple != NULL;
319 1453580 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
320 715716 : amroutine->amrestrpos != NULL);
321 737864 : info->amcostestimate = amroutine->amcostestimate;
322 : Assert(info->amcostestimate != NULL);
323 :
324 : /* Fetch index opclass options */
325 737864 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
326 :
327 : /*
328 : * Fetch the ordering information for the index, if any.
329 : */
330 737864 : if (info->relam == BTREE_AM_OID)
331 : {
332 : /*
333 : * If it's a btree index, we can use its opfamily OIDs
334 : * directly as the sort ordering opfamily OIDs.
335 : */
336 : Assert(amroutine->amcanorder);
337 :
338 715716 : info->sortopfamily = info->opfamily;
339 715716 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
340 715716 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
341 :
342 1828802 : for (i = 0; i < nkeycolumns; i++)
343 : {
344 1113086 : int16 opt = indexRelation->rd_indoption[i];
345 :
346 1113086 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
347 1113086 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
348 : }
349 : }
350 22148 : else if (amroutine->amcanorder)
351 : {
352 : /*
353 : * Otherwise, identify the corresponding btree opfamilies
354 : * by trying to map this index's "<" operators into btree.
355 : * Since "<" uniquely defines the behavior of a sort
356 : * order, this is a sufficient test.
357 : *
358 : * XXX This method is rather slow and complicated. It'd
359 : * be better to have a way to explicitly declare the
360 : * corresponding btree opfamily for each opfamily of the
361 : * other index type.
362 : */
363 0 : info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
364 0 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
365 0 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
366 :
367 0 : for (i = 0; i < nkeycolumns; i++)
368 : {
369 0 : int16 opt = indexRelation->rd_indoption[i];
370 : Oid ltopr;
371 : Oid opfamily;
372 : Oid opcintype;
373 : CompareType cmptype;
374 :
375 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
376 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
377 :
378 0 : ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
379 0 : info->opcintype[i],
380 0 : info->opcintype[i],
381 : COMPARE_LT);
382 0 : if (OidIsValid(ltopr) &&
383 0 : get_ordering_op_properties(ltopr,
384 : &opfamily,
385 : &opcintype,
386 0 : &cmptype) &&
387 0 : opcintype == info->opcintype[i] &&
388 0 : cmptype == COMPARE_LT)
389 : {
390 : /* Successful mapping */
391 0 : info->sortopfamily[i] = opfamily;
392 : }
393 : else
394 : {
395 : /* Fail ... quietly treat index as unordered */
396 0 : info->sortopfamily = NULL;
397 0 : info->reverse_sort = NULL;
398 0 : info->nulls_first = NULL;
399 0 : break;
400 : }
401 : }
402 : }
403 : else
404 : {
405 22148 : info->sortopfamily = NULL;
406 22148 : info->reverse_sort = NULL;
407 22148 : info->nulls_first = NULL;
408 : }
409 : }
410 : else
411 : {
412 6642 : info->amcanorderbyop = false;
413 6642 : info->amoptionalkey = false;
414 6642 : info->amsearcharray = false;
415 6642 : info->amsearchnulls = false;
416 6642 : info->amcanparallel = false;
417 6642 : info->amhasgettuple = false;
418 6642 : info->amhasgetbitmap = false;
419 6642 : info->amcanmarkpos = false;
420 6642 : info->amcostestimate = NULL;
421 :
422 6642 : info->sortopfamily = NULL;
423 6642 : info->reverse_sort = NULL;
424 6642 : info->nulls_first = NULL;
425 : }
426 :
427 : /*
428 : * Fetch the index expressions and predicate, if any. We must
429 : * modify the copies we obtain from the relcache to have the
430 : * correct varno for the parent relation, so that they match up
431 : * correctly against qual clauses.
432 : */
433 744506 : info->indexprs = RelationGetIndexExpressions(indexRelation);
434 744506 : info->indpred = RelationGetIndexPredicate(indexRelation);
435 744506 : if (info->indexprs && varno != 1)
436 1938 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
437 744506 : if (info->indpred && varno != 1)
438 126 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
439 :
440 : /* Build targetlist using the completed indexprs data */
441 744506 : info->indextlist = build_index_tlist(root, info, relation);
442 :
443 744506 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
444 744506 : info->predOK = false; /* set later, in indxpath.c */
445 744506 : info->unique = index->indisunique;
446 744506 : info->nullsnotdistinct = index->indnullsnotdistinct;
447 744506 : info->immediate = index->indimmediate;
448 744506 : info->hypothetical = false;
449 :
450 : /*
451 : * Estimate the index size. If it's not a partial index, we lock
452 : * the number-of-tuples estimate to equal the parent table; if it
453 : * is partial then we have to use the same methods as we would for
454 : * a table, except we can be sure that the index is not larger
455 : * than the table. We must ignore partitioned indexes here as
456 : * there are not physical indexes.
457 : */
458 744506 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
459 : {
460 737864 : if (info->indpred == NIL)
461 : {
462 736832 : info->pages = RelationGetNumberOfBlocks(indexRelation);
463 736832 : info->tuples = rel->tuples;
464 : }
465 : else
466 : {
467 : double allvisfrac; /* dummy */
468 :
469 1032 : estimate_rel_size(indexRelation, NULL,
470 1032 : &info->pages, &info->tuples, &allvisfrac);
471 1032 : if (info->tuples > rel->tuples)
472 18 : info->tuples = rel->tuples;
473 : }
474 :
475 : /*
476 : * Get tree height while we have the index open
477 : */
478 737864 : if (amroutine->amgettreeheight)
479 : {
480 715716 : info->tree_height = amroutine->amgettreeheight(indexRelation);
481 : }
482 : else
483 : {
484 : /* For other index types, just set it to "unknown" for now */
485 22148 : info->tree_height = -1;
486 : }
487 : }
488 : else
489 : {
490 : /* Zero these out for partitioned indexes */
491 6642 : info->pages = 0;
492 6642 : info->tuples = 0.0;
493 6642 : info->tree_height = -1;
494 : }
495 :
496 744506 : index_close(indexRelation, NoLock);
497 :
498 : /*
499 : * We've historically used lcons() here. It'd make more sense to
500 : * use lappend(), but that causes the planner to change behavior
501 : * in cases where two indexes seem equally attractive. For now,
502 : * stick with lcons() --- few tables should have so many indexes
503 : * that the O(N^2) behavior of lcons() is really a problem.
504 : */
505 744506 : indexinfos = lcons(info, indexinfos);
506 : }
507 :
508 352756 : list_free(indexoidlist);
509 : }
510 :
511 476154 : rel->indexlist = indexinfos;
512 :
513 476154 : rel->statlist = get_relation_statistics(root, rel, relation);
514 :
515 : /* Grab foreign-table info using the relcache, while we have it */
516 476154 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
517 : {
518 : /* Check if the access to foreign tables is restricted */
519 2516 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
520 : {
521 : /* there must not be built-in foreign tables */
522 : Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
523 :
524 4 : ereport(ERROR,
525 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
526 : errmsg("access to non-system foreign table is restricted")));
527 : }
528 :
529 2512 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
530 2512 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
531 : }
532 : else
533 : {
534 473638 : rel->serverid = InvalidOid;
535 473638 : rel->fdwroutine = NULL;
536 : }
537 :
538 : /* Collect info about relation's foreign keys, if relevant */
539 476136 : get_relation_foreign_keys(root, rel, relation, inhparent);
540 :
541 : /* Collect info about functions implemented by the rel's table AM. */
542 476136 : if (relation->rd_tableam &&
543 455982 : relation->rd_tableam->scan_set_tidrange != NULL &&
544 455982 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
545 455982 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
546 :
547 : /*
548 : * Collect info about relation's partitioning scheme, if any. Only
549 : * inheritance parents may be partitioned.
550 : */
551 476136 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
552 17616 : set_relation_partition_info(root, rel, relation);
553 :
554 476136 : table_close(relation, NoLock);
555 :
556 : /*
557 : * Allow a plugin to editorialize on the info we obtained from the
558 : * catalogs. Actions might include altering the assumed relation size,
559 : * removing an index, or adding a hypothetical index to the indexlist.
560 : */
561 476136 : if (get_relation_info_hook)
562 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
563 476136 : }
564 :
565 : /*
566 : * get_relation_foreign_keys -
567 : * Retrieves foreign key information for a given relation.
568 : *
569 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
570 : * root->fkey_list. We do this now while we have the relcache entry open.
571 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
572 : * until all RelOptInfos have been built, but the cost of re-opening the
573 : * relcache entries would probably exceed any savings.
574 : */
575 : static void
576 476136 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
577 : Relation relation, bool inhparent)
578 : {
579 476136 : List *rtable = root->parse->rtable;
580 : List *cachedfkeys;
581 : ListCell *lc;
582 :
583 : /*
584 : * If it's not a baserel, we don't care about its FKs. Also, if the query
585 : * references only a single relation, we can skip the lookup since no FKs
586 : * could satisfy the requirements below.
587 : */
588 908832 : if (rel->reloptkind != RELOPT_BASEREL ||
589 432696 : list_length(rtable) < 2)
590 244270 : return;
591 :
592 : /*
593 : * If it's the parent of an inheritance tree, ignore its FKs. We could
594 : * make useful FK-based deductions if we found that all members of the
595 : * inheritance tree have equivalent FK constraints, but detecting that
596 : * would require code that hasn't been written.
597 : */
598 231866 : if (inhparent)
599 5902 : return;
600 :
601 : /*
602 : * Extract data about relation's FKs from the relcache. Note that this
603 : * list belongs to the relcache and might disappear in a cache flush, so
604 : * we must not do any further catalog access within this function.
605 : */
606 225964 : cachedfkeys = RelationGetFKeyList(relation);
607 :
608 : /*
609 : * Figure out which FKs are of interest for this query, and create
610 : * ForeignKeyOptInfos for them. We want only FKs that reference some
611 : * other RTE of the current query. In queries containing self-joins,
612 : * there might be more than one other RTE for a referenced table, and we
613 : * should make a ForeignKeyOptInfo for each occurrence.
614 : *
615 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
616 : * too hard to identify those here, so we might end up making some useless
617 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
618 : * them again.
619 : */
620 228558 : foreach(lc, cachedfkeys)
621 : {
622 2594 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
623 : Index rti;
624 : ListCell *lc2;
625 :
626 : /* conrelid should always be that of the table we're considering */
627 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
628 :
629 : /* skip constraints currently not enforced */
630 2594 : if (!cachedfk->conenforced)
631 18 : continue;
632 :
633 : /* Scan to find other RTEs matching confrelid */
634 2576 : rti = 0;
635 11396 : foreach(lc2, rtable)
636 : {
637 8820 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
638 : ForeignKeyOptInfo *info;
639 :
640 8820 : rti++;
641 : /* Ignore if not the correct table */
642 8820 : if (rte->rtekind != RTE_RELATION ||
643 5494 : rte->relid != cachedfk->confrelid)
644 6650 : continue;
645 : /* Ignore if it's an inheritance parent; doesn't really match */
646 2170 : if (rte->inh)
647 258 : continue;
648 : /* Ignore self-referential FKs; we only care about joins */
649 1912 : if (rti == rel->relid)
650 132 : continue;
651 :
652 : /* OK, let's make an entry */
653 1780 : info = makeNode(ForeignKeyOptInfo);
654 1780 : info->con_relid = rel->relid;
655 1780 : info->ref_relid = rti;
656 1780 : info->nkeys = cachedfk->nkeys;
657 1780 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
658 1780 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
659 1780 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
660 : /* zero out fields to be filled by match_foreign_keys_to_quals */
661 1780 : info->nmatched_ec = 0;
662 1780 : info->nconst_ec = 0;
663 1780 : info->nmatched_rcols = 0;
664 1780 : info->nmatched_ri = 0;
665 1780 : memset(info->eclass, 0, sizeof(info->eclass));
666 1780 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
667 1780 : memset(info->rinfos, 0, sizeof(info->rinfos));
668 :
669 1780 : root->fkey_list = lappend(root->fkey_list, info);
670 : }
671 : }
672 : }
673 :
674 : /*
675 : * get_relation_notnullatts -
676 : * Retrieves column not-null constraint information for a given relation.
677 : *
678 : * We do this while we have the relcache entry open, and store the column
679 : * not-null constraint information in a hash table based on the relation OID.
680 : */
681 : void
682 514182 : get_relation_notnullatts(PlannerInfo *root, Relation relation)
683 : {
684 514182 : Oid relid = RelationGetRelid(relation);
685 : NotnullHashEntry *hentry;
686 : bool found;
687 514182 : Bitmapset *notnullattnums = NULL;
688 :
689 : /* bail out if the relation has no not-null constraints */
690 514182 : if (relation->rd_att->constr == NULL ||
691 342646 : !relation->rd_att->constr->has_not_null)
692 215866 : return;
693 :
694 : /* create the hash table if it hasn't been created yet */
695 337350 : if (root->glob->rel_notnullatts_hash == NULL)
696 : {
697 : HTAB *hashtab;
698 : HASHCTL hash_ctl;
699 :
700 170740 : hash_ctl.keysize = sizeof(Oid);
701 170740 : hash_ctl.entrysize = sizeof(NotnullHashEntry);
702 170740 : hash_ctl.hcxt = CurrentMemoryContext;
703 :
704 170740 : hashtab = hash_create("Relation NOT NULL attnums",
705 : 64L, /* arbitrary initial size */
706 : &hash_ctl,
707 : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
708 :
709 170740 : root->glob->rel_notnullatts_hash = hashtab;
710 : }
711 :
712 : /*
713 : * Create a hash entry for this relation OID, if we don't have one
714 : * already.
715 : */
716 337350 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
717 : &relid,
718 : HASH_ENTER,
719 : &found);
720 :
721 : /* bail out if a hash entry already exists for this relation OID */
722 337350 : if (found)
723 39034 : return;
724 :
725 : /* collect the column not-null constraint information for this relation */
726 4460758 : for (int i = 0; i < relation->rd_att->natts; i++)
727 : {
728 4162442 : CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
729 :
730 : Assert(attr->attnullability != ATTNULLABLE_UNKNOWN);
731 :
732 4162442 : if (attr->attnullability == ATTNULLABLE_VALID)
733 : {
734 3523516 : notnullattnums = bms_add_member(notnullattnums, i + 1);
735 :
736 : /*
737 : * Per RemoveAttributeById(), dropped columns will have their
738 : * attnotnull unset, so we needn't check for dropped columns in
739 : * the above condition.
740 : */
741 : Assert(!attr->attisdropped);
742 : }
743 : }
744 :
745 : /* ... and initialize the new hash entry */
746 298316 : hentry->notnullattnums = notnullattnums;
747 : }
748 :
749 : /*
750 : * find_relation_notnullatts -
751 : * Searches the hash table and returns the column not-null constraint
752 : * information for a given relation.
753 : */
754 : Bitmapset *
755 453060 : find_relation_notnullatts(PlannerInfo *root, Oid relid)
756 : {
757 : NotnullHashEntry *hentry;
758 : bool found;
759 :
760 453060 : if (root->glob->rel_notnullatts_hash == NULL)
761 120788 : return NULL;
762 :
763 332272 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
764 : &relid,
765 : HASH_FIND,
766 : &found);
767 332272 : if (!found)
768 5090 : return NULL;
769 :
770 327182 : return hentry->notnullattnums;
771 : }
772 :
773 : /*
774 : * infer_arbiter_indexes -
775 : * Determine the unique indexes used to arbitrate speculative insertion.
776 : *
777 : * Uses user-supplied inference clause expressions and predicate to match a
778 : * unique index from those defined and ready on the heap relation (target).
779 : * An exact match is required on columns/expressions (although they can appear
780 : * in any order). However, the predicate given by the user need only restrict
781 : * insertion to a subset of some part of the table covered by some particular
782 : * unique index (in particular, a partial unique index) in order to be
783 : * inferred.
784 : *
785 : * The implementation does not consider which B-Tree operator class any
786 : * particular available unique index attribute uses, unless one was specified
787 : * in the inference specification. The same is true of collations. In
788 : * particular, there is no system dependency on the default operator class for
789 : * the purposes of inference. If no opclass (or collation) is specified, then
790 : * all matching indexes (that may or may not match the default in terms of
791 : * each attribute opclass/collation) are used for inference.
792 : */
793 : List *
794 1906 : infer_arbiter_indexes(PlannerInfo *root)
795 : {
796 1906 : OnConflictExpr *onconflict = root->parse->onConflict;
797 :
798 : /* Iteration state */
799 : Index varno;
800 : RangeTblEntry *rte;
801 : Relation relation;
802 1906 : Oid indexOidFromConstraint = InvalidOid;
803 : List *indexList;
804 1906 : List *indexRelList = NIL;
805 :
806 : /*
807 : * Required attributes and expressions used to match indexes to the clause
808 : * given by the user. In the ON CONFLICT ON CONSTRAINT case, we compute
809 : * these from that constraint's index to match all other indexes, to
810 : * account for the case where that index is being concurrently reindexed.
811 : */
812 1906 : List *inferIndexExprs = (List *) onconflict->arbiterWhere;
813 1906 : Bitmapset *inferAttrs = NULL;
814 1906 : List *inferElems = NIL;
815 :
816 : /* Results */
817 1906 : List *results = NIL;
818 1906 : bool foundValid = false;
819 :
820 : /*
821 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
822 : * specification or named constraint. ON CONFLICT DO UPDATE statements
823 : * must always provide one or the other (but parser ought to have caught
824 : * that already).
825 : */
826 1906 : if (onconflict->arbiterElems == NIL &&
827 438 : onconflict->constraint == InvalidOid)
828 234 : return NIL;
829 :
830 : /*
831 : * We need not lock the relation since it was already locked, either by
832 : * the rewriter or when expand_inherited_rtentry() added it to the query's
833 : * rangetable.
834 : */
835 1672 : varno = root->parse->resultRelation;
836 1672 : rte = rt_fetch(varno, root->parse->rtable);
837 :
838 1672 : relation = table_open(rte->relid, NoLock);
839 :
840 : /*
841 : * Build normalized/BMS representation of plain indexed attributes, as
842 : * well as a separate list of expression items. This simplifies matching
843 : * the cataloged definition of indexes.
844 : */
845 5266 : foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
846 : {
847 : Var *var;
848 : int attno;
849 :
850 : /* we cannot also have a constraint name, per grammar */
851 : Assert(!OidIsValid(onconflict->constraint));
852 :
853 1922 : if (!IsA(elem->expr, Var))
854 : {
855 : /* If not a plain Var, just shove it in inferElems for now */
856 178 : inferElems = lappend(inferElems, elem->expr);
857 178 : continue;
858 : }
859 :
860 1744 : var = (Var *) elem->expr;
861 1744 : attno = var->varattno;
862 :
863 1744 : if (attno == 0)
864 0 : ereport(ERROR,
865 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
866 : errmsg("whole row unique index inference specifications are not supported")));
867 :
868 1744 : inferAttrs = bms_add_member(inferAttrs,
869 : attno - FirstLowInvalidHeapAttributeNumber);
870 : }
871 :
872 : /*
873 : * Next, open all the indexes. We need this list for two things: first,
874 : * if an ON CONSTRAINT clause was given, and that constraint's index is
875 : * undergoing REINDEX CONCURRENTLY, then we need to consider all matches
876 : * for that index. Second, if an attribute list was specified in the ON
877 : * CONFLICT clause, we use the list to find the indexes whose attributes
878 : * match that list.
879 : */
880 1672 : indexList = RelationGetIndexList(relation);
881 5482 : foreach_oid(indexoid, indexList)
882 : {
883 : Relation idxRel;
884 :
885 : /* obtain the same lock type that the executor will ultimately use */
886 2138 : idxRel = index_open(indexoid, rte->rellockmode);
887 2138 : indexRelList = lappend(indexRelList, idxRel);
888 : }
889 :
890 : /*
891 : * If a constraint was named in the command, look up its index. We don't
892 : * return it immediately because we need some additional sanity checks,
893 : * and also because we need to include other indexes as arbiters to
894 : * account for REINDEX CONCURRENTLY processing it.
895 : */
896 1672 : if (onconflict->constraint != InvalidOid)
897 : {
898 : /* we cannot also have an explicit list of elements, per grammar */
899 : Assert(onconflict->arbiterElems == NIL);
900 :
901 204 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
902 204 : if (indexOidFromConstraint == InvalidOid)
903 0 : ereport(ERROR,
904 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
905 : errmsg("constraint in ON CONFLICT clause has no associated index")));
906 :
907 : /*
908 : * Find the named constraint index to extract its attributes and
909 : * predicates.
910 : */
911 436 : foreach_ptr(RelationData, idxRel, indexRelList)
912 : {
913 232 : Form_pg_index idxForm = idxRel->rd_index;
914 :
915 232 : if (indexOidFromConstraint == idxForm->indexrelid)
916 : {
917 : /* Found it. */
918 : Assert(idxForm->indisready);
919 :
920 : /*
921 : * Set up inferElems and inferPredExprs to match the
922 : * constraint index, so that we can match them in the loop
923 : * below.
924 : */
925 564 : for (int natt = 0; natt < idxForm->indnkeyatts; natt++)
926 : {
927 : int attno;
928 :
929 360 : attno = idxRel->rd_index->indkey.values[natt];
930 360 : if (attno != InvalidAttrNumber)
931 : inferAttrs =
932 348 : bms_add_member(inferAttrs,
933 : attno - FirstLowInvalidHeapAttributeNumber);
934 : }
935 :
936 204 : inferElems = RelationGetIndexExpressions(idxRel);
937 204 : inferIndexExprs = RelationGetIndexPredicate(idxRel);
938 204 : break;
939 : }
940 : }
941 : }
942 :
943 : /*
944 : * Using that representation, iterate through the list of indexes on the
945 : * target relation to find matches.
946 : */
947 5326 : foreach_ptr(RelationData, idxRel, indexRelList)
948 : {
949 : Form_pg_index idxForm;
950 : Bitmapset *indexedAttrs;
951 : List *idxExprs;
952 : List *predExprs;
953 : AttrNumber natt;
954 : bool match;
955 :
956 : /*
957 : * Extract info from the relation descriptor for the index.
958 : *
959 : * Let executor complain about !indimmediate case directly, because
960 : * enforcement needs to occur there anyway when an inference clause is
961 : * omitted.
962 : */
963 2138 : idxForm = idxRel->rd_index;
964 :
965 : /*
966 : * Ignore indexes that aren't indisready, because we cannot trust
967 : * their catalog structure yet. However, if any indexes are marked
968 : * indisready but not yet indisvalid, we still consider them, because
969 : * they might turn valid while we're running. Doing it this way
970 : * allows a concurrent transaction with a slightly later catalog
971 : * snapshot infer the same set of indexes, which is critical to
972 : * prevent spurious 'duplicate key' errors.
973 : *
974 : * However, another critical aspect is that a unique index that isn't
975 : * yet marked indisvalid=true might not be complete yet, meaning it
976 : * wouldn't detect possible duplicate rows. In order to prevent false
977 : * negatives, we require that we include in the set of inferred
978 : * indexes at least one index that is marked valid.
979 : */
980 2138 : if (!idxForm->indisready)
981 0 : continue;
982 :
983 : /*
984 : * Note that we do not perform a check against indcheckxmin (like e.g.
985 : * get_relation_info()) here to eliminate candidates, because
986 : * uniqueness checking only cares about the most recently committed
987 : * tuple versions.
988 : */
989 :
990 : /*
991 : * Look for match for "ON constraint_name" variant, which may not be a
992 : * unique constraint. This can only be a constraint name.
993 : */
994 2138 : if (indexOidFromConstraint == idxForm->indexrelid)
995 : {
996 204 : if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
997 78 : ereport(ERROR,
998 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
999 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
1000 :
1001 : /* Consider this one a match already */
1002 126 : results = lappend_oid(results, idxForm->indexrelid);
1003 126 : foundValid |= idxForm->indisvalid;
1004 126 : continue;
1005 : }
1006 1934 : else if (indexOidFromConstraint != InvalidOid)
1007 : {
1008 : /*
1009 : * In the case of "ON constraint_name DO UPDATE" we need to skip
1010 : * non-unique candidates.
1011 : */
1012 36 : if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
1013 0 : continue;
1014 : }
1015 : else
1016 : {
1017 : /*
1018 : * Only considering conventional inference at this point (not
1019 : * named constraints), so index under consideration can be
1020 : * immediately skipped if it's not unique.
1021 : */
1022 1898 : if (!idxForm->indisunique)
1023 4 : continue;
1024 : }
1025 :
1026 : /*
1027 : * So-called unique constraints with WITHOUT OVERLAPS are really
1028 : * exclusion constraints, so skip those too.
1029 : */
1030 1930 : if (idxForm->indisexclusion)
1031 150 : continue;
1032 :
1033 : /* Build BMS representation of plain (non expression) index attrs */
1034 1780 : indexedAttrs = NULL;
1035 4124 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
1036 : {
1037 2344 : int attno = idxRel->rd_index->indkey.values[natt];
1038 :
1039 2344 : if (attno != 0)
1040 2024 : indexedAttrs = bms_add_member(indexedAttrs,
1041 : attno - FirstLowInvalidHeapAttributeNumber);
1042 : }
1043 :
1044 : /* Non-expression attributes (if any) must match */
1045 1780 : if (!bms_equal(indexedAttrs, inferAttrs))
1046 396 : continue;
1047 :
1048 : /* Expression attributes (if any) must match */
1049 1384 : idxExprs = RelationGetIndexExpressions(idxRel);
1050 1384 : if (idxExprs && varno != 1)
1051 6 : ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
1052 :
1053 : /*
1054 : * If arbiterElems are present, check them. (Note that if a
1055 : * constraint name was given in the command line, this list is NIL.)
1056 : */
1057 1384 : match = true;
1058 4500 : foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
1059 : {
1060 : /*
1061 : * Ensure that collation/opclass aspects of inference expression
1062 : * element match. Even though this loop is primarily concerned
1063 : * with matching expressions, it is a convenient point to check
1064 : * this for both expressions and ordinary (non-expression)
1065 : * attributes appearing as inference elements.
1066 : */
1067 1780 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
1068 : {
1069 36 : match = false;
1070 36 : break;
1071 : }
1072 :
1073 : /*
1074 : * Plain Vars don't factor into count of expression elements, and
1075 : * the question of whether or not they satisfy the index
1076 : * definition has already been considered (they must).
1077 : */
1078 1744 : if (IsA(elem->expr, Var))
1079 1562 : continue;
1080 :
1081 : /*
1082 : * Might as well avoid redundant check in the rare cases where
1083 : * infer_collation_opclass_match() is required to do real work.
1084 : * Otherwise, check that element expression appears in cataloged
1085 : * index definition.
1086 : */
1087 182 : if (elem->infercollid != InvalidOid ||
1088 322 : elem->inferopclass != InvalidOid ||
1089 158 : list_member(idxExprs, elem->expr))
1090 170 : continue;
1091 :
1092 12 : match = false;
1093 12 : break;
1094 : }
1095 1384 : if (!match)
1096 48 : continue;
1097 :
1098 : /*
1099 : * In case of inference from an attribute list, ensure that the
1100 : * expression elements from inference clause are not missing any
1101 : * cataloged expressions. This does the right thing when unique
1102 : * indexes redundantly repeat the same attribute, or if attributes
1103 : * redundantly appear multiple times within an inference clause.
1104 : *
1105 : * In case a constraint was named, ensure the candidate has an equal
1106 : * set of expressions as the named constraint's index.
1107 : */
1108 1336 : if (list_difference(idxExprs, inferElems) != NIL)
1109 54 : continue;
1110 :
1111 1282 : predExprs = RelationGetIndexPredicate(idxRel);
1112 1282 : if (predExprs && varno != 1)
1113 6 : ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1114 :
1115 : /*
1116 : * Partial indexes affect each form of ON CONFLICT differently: if a
1117 : * constraint was named, then the predicates must be identical. In
1118 : * conventional inference, the index's predicate must be implied by
1119 : * the WHERE clause.
1120 : */
1121 1282 : if (OidIsValid(indexOidFromConstraint))
1122 : {
1123 12 : if (list_difference(predExprs, inferIndexExprs) != NIL)
1124 0 : continue;
1125 : }
1126 : else
1127 : {
1128 1270 : if (!predicate_implied_by(predExprs, inferIndexExprs, false))
1129 36 : continue;
1130 : }
1131 :
1132 : /* All good -- consider this index a match */
1133 1246 : results = lappend_oid(results, idxForm->indexrelid);
1134 1246 : foundValid |= idxForm->indisvalid;
1135 : }
1136 :
1137 : /* Close all indexes */
1138 5248 : foreach_ptr(RelationData, idxRel, indexRelList)
1139 : {
1140 2060 : index_close(idxRel, NoLock);
1141 : }
1142 :
1143 1594 : list_free(indexList);
1144 1594 : list_free(indexRelList);
1145 1594 : table_close(relation, NoLock);
1146 :
1147 : /* We require at least one indisvalid index */
1148 1594 : if (results == NIL || !foundValid)
1149 314 : ereport(ERROR,
1150 : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1151 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1152 :
1153 1280 : return results;
1154 : }
1155 :
1156 : /*
1157 : * infer_collation_opclass_match - ensure infer element opclass/collation match
1158 : *
1159 : * Given unique index inference element from inference specification, if
1160 : * collation was specified, or if opclass was specified, verify that there is
1161 : * at least one matching indexed attribute (occasionally, there may be more).
1162 : * Skip this in the common case where inference specification does not include
1163 : * collation or opclass (instead matching everything, regardless of cataloged
1164 : * collation/opclass of indexed attribute).
1165 : *
1166 : * At least historically, Postgres has not offered collations or opclasses
1167 : * with alternative-to-default notions of equality, so these additional
1168 : * criteria should only be required infrequently.
1169 : *
1170 : * Don't give up immediately when an inference element matches some attribute
1171 : * cataloged as indexed but not matching additional opclass/collation
1172 : * criteria. This is done so that the implementation is as forgiving as
1173 : * possible of redundancy within cataloged index attributes (or, less
1174 : * usefully, within inference specification elements). If collations actually
1175 : * differ between apparently redundantly indexed attributes (redundant within
1176 : * or across indexes), then there really is no redundancy as such.
1177 : *
1178 : * Note that if an inference element specifies an opclass and a collation at
1179 : * once, both must match in at least one particular attribute within index
1180 : * catalog definition in order for that inference element to be considered
1181 : * inferred/satisfied.
1182 : */
1183 : static bool
1184 1780 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
1185 : List *idxExprs)
1186 : {
1187 : AttrNumber natt;
1188 1780 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1189 1780 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1190 1780 : int nplain = 0; /* # plain attrs observed */
1191 :
1192 : /*
1193 : * If inference specification element lacks collation/opclass, then no
1194 : * need to check for exact match.
1195 : */
1196 1780 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1197 1666 : return true;
1198 :
1199 : /*
1200 : * Lookup opfamily and input type, for matching indexes
1201 : */
1202 114 : if (elem->inferopclass)
1203 : {
1204 84 : inferopfamily = get_opclass_family(elem->inferopclass);
1205 84 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1206 : }
1207 :
1208 246 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1209 : {
1210 210 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
1211 210 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1212 210 : Oid collation = idxRel->rd_indcollation[natt - 1];
1213 210 : int attno = idxRel->rd_index->indkey.values[natt - 1];
1214 :
1215 210 : if (attno != 0)
1216 168 : nplain++;
1217 :
1218 210 : if (elem->inferopclass != InvalidOid &&
1219 66 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1220 : {
1221 : /* Attribute needed to match opclass, but didn't */
1222 90 : continue;
1223 : }
1224 :
1225 120 : if (elem->infercollid != InvalidOid &&
1226 84 : elem->infercollid != collation)
1227 : {
1228 : /* Attribute needed to match collation, but didn't */
1229 36 : continue;
1230 : }
1231 :
1232 : /* If one matching index att found, good enough -- return true */
1233 84 : if (IsA(elem->expr, Var))
1234 : {
1235 54 : if (((Var *) elem->expr)->varattno == attno)
1236 54 : return true;
1237 : }
1238 30 : else if (attno == 0)
1239 : {
1240 30 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1241 :
1242 : /*
1243 : * Note that unlike routines like match_index_to_operand() we
1244 : * don't need to care about RelabelType. Neither the index
1245 : * definition nor the inference clause should contain them.
1246 : */
1247 30 : if (equal(elem->expr, nattExpr))
1248 24 : return true;
1249 : }
1250 : }
1251 :
1252 36 : return false;
1253 : }
1254 :
1255 : /*
1256 : * estimate_rel_size - estimate # pages and # tuples in a table or index
1257 : *
1258 : * We also estimate the fraction of the pages that are marked all-visible in
1259 : * the visibility map, for use in estimation of index-only scans.
1260 : *
1261 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1262 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1263 : * the attribute widths for estimation purposes.
1264 : */
1265 : void
1266 454854 : estimate_rel_size(Relation rel, int32 *attr_widths,
1267 : BlockNumber *pages, double *tuples, double *allvisfrac)
1268 : {
1269 : BlockNumber curpages;
1270 : BlockNumber relpages;
1271 : double reltuples;
1272 : BlockNumber relallvisible;
1273 : double density;
1274 :
1275 454854 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1276 : {
1277 451248 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1278 : allvisfrac);
1279 : }
1280 3606 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1281 : {
1282 : /*
1283 : * XXX: It'd probably be good to move this into a callback, individual
1284 : * index types e.g. know if they have a metapage.
1285 : */
1286 :
1287 : /* it has storage, ok to call the smgr */
1288 1032 : curpages = RelationGetNumberOfBlocks(rel);
1289 :
1290 : /* report estimated # pages */
1291 1032 : *pages = curpages;
1292 : /* quick exit if rel is clearly empty */
1293 1032 : if (curpages == 0)
1294 : {
1295 0 : *tuples = 0;
1296 0 : *allvisfrac = 0;
1297 0 : return;
1298 : }
1299 :
1300 : /* coerce values in pg_class to more desirable types */
1301 1032 : relpages = (BlockNumber) rel->rd_rel->relpages;
1302 1032 : reltuples = (double) rel->rd_rel->reltuples;
1303 1032 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1304 :
1305 : /*
1306 : * Discount the metapage while estimating the number of tuples. This
1307 : * is a kluge because it assumes more than it ought to about index
1308 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1309 : * suspect for GiST indexes.
1310 : */
1311 1032 : if (relpages > 0)
1312 : {
1313 1014 : curpages--;
1314 1014 : relpages--;
1315 : }
1316 :
1317 : /* estimate number of tuples from previous tuple density */
1318 1032 : if (reltuples >= 0 && relpages > 0)
1319 714 : density = reltuples / (double) relpages;
1320 : else
1321 : {
1322 : /*
1323 : * If we have no data because the relation was never vacuumed,
1324 : * estimate tuple width from attribute datatypes. We assume here
1325 : * that the pages are completely full, which is OK for tables
1326 : * (since they've presumably not been VACUUMed yet) but is
1327 : * probably an overestimate for indexes. Fortunately
1328 : * get_relation_info() can clamp the overestimate to the parent
1329 : * table's size.
1330 : *
1331 : * Note: this code intentionally disregards alignment
1332 : * considerations, because (a) that would be gilding the lily
1333 : * considering how crude the estimate is, and (b) it creates
1334 : * platform dependencies in the default plans which are kind of a
1335 : * headache for regression testing.
1336 : *
1337 : * XXX: Should this logic be more index specific?
1338 : */
1339 : int32 tuple_width;
1340 :
1341 318 : tuple_width = get_rel_data_width(rel, attr_widths);
1342 318 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1343 318 : tuple_width += sizeof(ItemIdData);
1344 : /* note: integer division is intentional here */
1345 318 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1346 : }
1347 1032 : *tuples = rint(density * (double) curpages);
1348 :
1349 : /*
1350 : * We use relallvisible as-is, rather than scaling it up like we do
1351 : * for the pages and tuples counts, on the theory that any pages added
1352 : * since the last VACUUM are most likely not marked all-visible. But
1353 : * costsize.c wants it converted to a fraction.
1354 : */
1355 1032 : if (relallvisible == 0 || curpages <= 0)
1356 1032 : *allvisfrac = 0;
1357 0 : else if ((double) relallvisible >= curpages)
1358 0 : *allvisfrac = 1;
1359 : else
1360 0 : *allvisfrac = (double) relallvisible / curpages;
1361 : }
1362 : else
1363 : {
1364 : /*
1365 : * Just use whatever's in pg_class. This covers foreign tables,
1366 : * sequences, and also relkinds without storage (shouldn't get here?);
1367 : * see initializations in AddNewRelationTuple(). Note that FDW must
1368 : * cope if reltuples is -1!
1369 : */
1370 2574 : *pages = rel->rd_rel->relpages;
1371 2574 : *tuples = rel->rd_rel->reltuples;
1372 2574 : *allvisfrac = 0;
1373 : }
1374 : }
1375 :
1376 :
1377 : /*
1378 : * get_rel_data_width
1379 : *
1380 : * Estimate the average width of (the data part of) the relation's tuples.
1381 : *
1382 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1383 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1384 : *
1385 : * Currently we ignore dropped columns. Ideally those should be included
1386 : * in the result, but we haven't got any way to get info about them; and
1387 : * since they might be mostly NULLs, treating them as zero-width is not
1388 : * necessarily the wrong thing anyway.
1389 : */
1390 : int32
1391 152668 : get_rel_data_width(Relation rel, int32 *attr_widths)
1392 : {
1393 152668 : int64 tuple_width = 0;
1394 : int i;
1395 :
1396 840562 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1397 : {
1398 687894 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1399 : int32 item_width;
1400 :
1401 687894 : if (att->attisdropped)
1402 2672 : continue;
1403 :
1404 : /* use previously cached data, if any */
1405 685222 : if (attr_widths != NULL && attr_widths[i] > 0)
1406 : {
1407 5852 : tuple_width += attr_widths[i];
1408 5852 : continue;
1409 : }
1410 :
1411 : /* This should match set_rel_width() in costsize.c */
1412 679370 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1413 679370 : if (item_width <= 0)
1414 : {
1415 677508 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1416 : Assert(item_width > 0);
1417 : }
1418 679370 : if (attr_widths != NULL)
1419 604320 : attr_widths[i] = item_width;
1420 679370 : tuple_width += item_width;
1421 : }
1422 :
1423 152668 : return clamp_width_est(tuple_width);
1424 : }
1425 :
1426 : /*
1427 : * get_relation_data_width
1428 : *
1429 : * External API for get_rel_data_width: same behavior except we have to
1430 : * open the relcache entry.
1431 : */
1432 : int32
1433 2558 : get_relation_data_width(Oid relid, int32 *attr_widths)
1434 : {
1435 : int32 result;
1436 : Relation relation;
1437 :
1438 : /* As above, assume relation is already locked */
1439 2558 : relation = table_open(relid, NoLock);
1440 :
1441 2558 : result = get_rel_data_width(relation, attr_widths);
1442 :
1443 2558 : table_close(relation, NoLock);
1444 :
1445 2558 : return result;
1446 : }
1447 :
1448 :
1449 : /*
1450 : * get_relation_constraints
1451 : *
1452 : * Retrieve the applicable constraint expressions of the given relation.
1453 : * Only constraints that have been validated are considered.
1454 : *
1455 : * Returns a List (possibly empty) of constraint expressions. Each one
1456 : * has been canonicalized, and its Vars are changed to have the varno
1457 : * indicated by rel->relid. This allows the expressions to be easily
1458 : * compared to expressions taken from WHERE.
1459 : *
1460 : * If include_noinherit is true, it's okay to include constraints that
1461 : * are marked NO INHERIT.
1462 : *
1463 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1464 : * and added to the result for each column that's marked attnotnull.
1465 : *
1466 : * If include_partition is true, and the relation is a partition,
1467 : * also include the partitioning constraints.
1468 : *
1469 : * Note: at present this is invoked at most once per relation per planner
1470 : * run, and in many cases it won't be invoked at all, so there seems no
1471 : * point in caching the data in RelOptInfo.
1472 : */
1473 : static List *
1474 21388 : get_relation_constraints(PlannerInfo *root,
1475 : Oid relationObjectId, RelOptInfo *rel,
1476 : bool include_noinherit,
1477 : bool include_notnull,
1478 : bool include_partition)
1479 : {
1480 21388 : List *result = NIL;
1481 21388 : Index varno = rel->relid;
1482 : Relation relation;
1483 : TupleConstr *constr;
1484 :
1485 : /*
1486 : * We assume the relation has already been safely locked.
1487 : */
1488 21388 : relation = table_open(relationObjectId, NoLock);
1489 :
1490 21388 : constr = relation->rd_att->constr;
1491 21388 : if (constr != NULL)
1492 : {
1493 8088 : int num_check = constr->num_check;
1494 : int i;
1495 :
1496 8654 : for (i = 0; i < num_check; i++)
1497 : {
1498 : Node *cexpr;
1499 :
1500 : /*
1501 : * If this constraint hasn't been fully validated yet, we must
1502 : * ignore it here.
1503 : */
1504 566 : if (!constr->check[i].ccvalid)
1505 54 : continue;
1506 :
1507 : /*
1508 : * NOT ENFORCED constraints are always marked as invalid, which
1509 : * should have been ignored.
1510 : */
1511 : Assert(constr->check[i].ccenforced);
1512 :
1513 : /*
1514 : * Also ignore if NO INHERIT and we weren't told that that's safe.
1515 : */
1516 512 : if (constr->check[i].ccnoinherit && !include_noinherit)
1517 0 : continue;
1518 :
1519 512 : cexpr = stringToNode(constr->check[i].ccbin);
1520 :
1521 : /*
1522 : * Fix Vars to have the desired varno. This must be done before
1523 : * const-simplification because eval_const_expressions reduces
1524 : * NullTest for Vars based on varno.
1525 : */
1526 512 : if (varno != 1)
1527 488 : ChangeVarNodes(cexpr, 1, varno, 0);
1528 :
1529 : /*
1530 : * Run each expression through const-simplification and
1531 : * canonicalization. This is not just an optimization, but is
1532 : * necessary, because we will be comparing it to
1533 : * similarly-processed qual clauses, and may fail to detect valid
1534 : * matches without this. This must match the processing done to
1535 : * qual clauses in preprocess_expression()! (We can skip the
1536 : * stuff involving subqueries, however, since we don't allow any
1537 : * in check constraints.)
1538 : */
1539 512 : cexpr = eval_const_expressions(root, cexpr);
1540 :
1541 512 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1542 :
1543 : /*
1544 : * Finally, convert to implicit-AND format (that is, a List) and
1545 : * append the resulting item(s) to our output list.
1546 : */
1547 512 : result = list_concat(result,
1548 512 : make_ands_implicit((Expr *) cexpr));
1549 : }
1550 :
1551 : /* Add NOT NULL constraints in expression form, if requested */
1552 8088 : if (include_notnull && constr->has_not_null)
1553 : {
1554 7658 : int natts = relation->rd_att->natts;
1555 :
1556 31168 : for (i = 1; i <= natts; i++)
1557 : {
1558 23510 : CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
1559 :
1560 23510 : if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1561 : {
1562 9436 : Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
1563 9436 : NullTest *ntest = makeNode(NullTest);
1564 :
1565 9436 : ntest->arg = (Expr *) makeVar(varno,
1566 : i,
1567 : wholeatt->atttypid,
1568 : wholeatt->atttypmod,
1569 : wholeatt->attcollation,
1570 : 0);
1571 9436 : ntest->nulltesttype = IS_NOT_NULL;
1572 :
1573 : /*
1574 : * argisrow=false is correct even for a composite column,
1575 : * because attnotnull does not represent a SQL-spec IS NOT
1576 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1577 : */
1578 9436 : ntest->argisrow = false;
1579 9436 : ntest->location = -1;
1580 9436 : result = lappend(result, ntest);
1581 : }
1582 : }
1583 : }
1584 : }
1585 :
1586 : /*
1587 : * Add partitioning constraints, if requested.
1588 : */
1589 21388 : if (include_partition && relation->rd_rel->relispartition)
1590 : {
1591 : /* make sure rel->partition_qual is set */
1592 12 : set_baserel_partition_constraint(relation, rel);
1593 12 : result = list_concat(result, rel->partition_qual);
1594 : }
1595 :
1596 : /*
1597 : * Expand virtual generated columns in the constraint expressions.
1598 : */
1599 21388 : if (result)
1600 7826 : result = (List *) expand_generated_columns_in_expr((Node *) result,
1601 : relation,
1602 : varno);
1603 :
1604 21388 : table_close(relation, NoLock);
1605 :
1606 21388 : return result;
1607 : }
1608 :
1609 : /*
1610 : * Try loading data for the statistics object.
1611 : *
1612 : * We don't know if the data (specified by statOid and inh value) exist.
1613 : * The result is stored in stainfos list.
1614 : */
1615 : static void
1616 4012 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1617 : Oid statOid, bool inh,
1618 : Bitmapset *keys, List *exprs)
1619 : {
1620 : Form_pg_statistic_ext_data dataForm;
1621 : HeapTuple dtup;
1622 :
1623 4012 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1624 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1625 4012 : if (!HeapTupleIsValid(dtup))
1626 2008 : return;
1627 :
1628 2004 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1629 :
1630 : /* add one StatisticExtInfo for each kind built */
1631 2004 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1632 : {
1633 714 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1634 :
1635 714 : info->statOid = statOid;
1636 714 : info->inherit = dataForm->stxdinherit;
1637 714 : info->rel = rel;
1638 714 : info->kind = STATS_EXT_NDISTINCT;
1639 714 : info->keys = bms_copy(keys);
1640 714 : info->exprs = exprs;
1641 :
1642 714 : *stainfos = lappend(*stainfos, info);
1643 : }
1644 :
1645 2004 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1646 : {
1647 528 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1648 :
1649 528 : info->statOid = statOid;
1650 528 : info->inherit = dataForm->stxdinherit;
1651 528 : info->rel = rel;
1652 528 : info->kind = STATS_EXT_DEPENDENCIES;
1653 528 : info->keys = bms_copy(keys);
1654 528 : info->exprs = exprs;
1655 :
1656 528 : *stainfos = lappend(*stainfos, info);
1657 : }
1658 :
1659 2004 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1660 : {
1661 882 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1662 :
1663 882 : info->statOid = statOid;
1664 882 : info->inherit = dataForm->stxdinherit;
1665 882 : info->rel = rel;
1666 882 : info->kind = STATS_EXT_MCV;
1667 882 : info->keys = bms_copy(keys);
1668 882 : info->exprs = exprs;
1669 :
1670 882 : *stainfos = lappend(*stainfos, info);
1671 : }
1672 :
1673 2004 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1674 : {
1675 810 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1676 :
1677 810 : info->statOid = statOid;
1678 810 : info->inherit = dataForm->stxdinherit;
1679 810 : info->rel = rel;
1680 810 : info->kind = STATS_EXT_EXPRESSIONS;
1681 810 : info->keys = bms_copy(keys);
1682 810 : info->exprs = exprs;
1683 :
1684 810 : *stainfos = lappend(*stainfos, info);
1685 : }
1686 :
1687 2004 : ReleaseSysCache(dtup);
1688 : }
1689 :
1690 : /*
1691 : * get_relation_statistics
1692 : * Retrieve extended statistics defined on the table.
1693 : *
1694 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1695 : * the statistics. Note that this doesn't load the actual statistics data,
1696 : * just the identifying metadata. Only stats actually built are considered.
1697 : */
1698 : static List *
1699 476156 : get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
1700 : Relation relation)
1701 : {
1702 476156 : Index varno = rel->relid;
1703 : List *statoidlist;
1704 476156 : List *stainfos = NIL;
1705 : ListCell *l;
1706 :
1707 476156 : statoidlist = RelationGetStatExtList(relation);
1708 :
1709 478162 : foreach(l, statoidlist)
1710 : {
1711 2006 : Oid statOid = lfirst_oid(l);
1712 : Form_pg_statistic_ext staForm;
1713 : HeapTuple htup;
1714 2006 : Bitmapset *keys = NULL;
1715 2006 : List *exprs = NIL;
1716 : int i;
1717 :
1718 2006 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1719 2006 : if (!HeapTupleIsValid(htup))
1720 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1721 2006 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1722 :
1723 : /*
1724 : * First, build the array of columns covered. This is ultimately
1725 : * wasted if no stats within the object have actually been built, but
1726 : * it doesn't seem worth troubling over that case.
1727 : */
1728 5698 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1729 3692 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1730 :
1731 : /*
1732 : * Preprocess expressions (if any). We read the expressions, fix the
1733 : * varnos, and run them through eval_const_expressions.
1734 : *
1735 : * XXX We don't know yet if there are any data for this stats object,
1736 : * with either stxdinherit value. But it's reasonable to assume there
1737 : * is at least one of those, possibly both. So it's better to process
1738 : * keys and expressions here.
1739 : */
1740 : {
1741 : bool isnull;
1742 : Datum datum;
1743 :
1744 : /* decode expression (if any) */
1745 2006 : datum = SysCacheGetAttr(STATEXTOID, htup,
1746 : Anum_pg_statistic_ext_stxexprs, &isnull);
1747 :
1748 2006 : if (!isnull)
1749 : {
1750 : char *exprsString;
1751 :
1752 814 : exprsString = TextDatumGetCString(datum);
1753 814 : exprs = (List *) stringToNode(exprsString);
1754 814 : pfree(exprsString);
1755 :
1756 : /*
1757 : * Modify the copies we obtain from the relcache to have the
1758 : * correct varno for the parent relation, so that they match
1759 : * up correctly against qual clauses.
1760 : *
1761 : * This must be done before const-simplification because
1762 : * eval_const_expressions reduces NullTest for Vars based on
1763 : * varno.
1764 : */
1765 814 : if (varno != 1)
1766 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1767 :
1768 : /*
1769 : * Run the expressions through eval_const_expressions. This is
1770 : * not just an optimization, but is necessary, because the
1771 : * planner will be comparing them to similarly-processed qual
1772 : * clauses, and may fail to detect valid matches without this.
1773 : * We must not use canonicalize_qual, however, since these
1774 : * aren't qual expressions.
1775 : */
1776 814 : exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1777 :
1778 : /* May as well fix opfuncids too */
1779 814 : fix_opfuncids((Node *) exprs);
1780 : }
1781 : }
1782 :
1783 : /* extract statistics for possible values of stxdinherit flag */
1784 :
1785 2006 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1786 :
1787 2006 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1788 :
1789 2006 : ReleaseSysCache(htup);
1790 2006 : bms_free(keys);
1791 : }
1792 :
1793 476156 : list_free(statoidlist);
1794 :
1795 476156 : return stainfos;
1796 : }
1797 :
1798 : /*
1799 : * relation_excluded_by_constraints
1800 : *
1801 : * Detect whether the relation need not be scanned because it has either
1802 : * self-inconsistent restrictions, or restrictions inconsistent with the
1803 : * relation's applicable constraints.
1804 : *
1805 : * Note: this examines only rel->relid, rel->reloptkind, and
1806 : * rel->baserestrictinfo; therefore it can be called before filling in
1807 : * other fields of the RelOptInfo.
1808 : */
1809 : bool
1810 522830 : relation_excluded_by_constraints(PlannerInfo *root,
1811 : RelOptInfo *rel, RangeTblEntry *rte)
1812 : {
1813 : bool include_noinherit;
1814 : bool include_notnull;
1815 522830 : bool include_partition = false;
1816 : List *safe_restrictions;
1817 : List *constraint_pred;
1818 : List *safe_constraints;
1819 : ListCell *lc;
1820 :
1821 : /* As of now, constraint exclusion works only with simple relations. */
1822 : Assert(IS_SIMPLE_REL(rel));
1823 :
1824 : /*
1825 : * If there are no base restriction clauses, we have no hope of proving
1826 : * anything below, so fall out quickly.
1827 : */
1828 522830 : if (rel->baserestrictinfo == NIL)
1829 239944 : return false;
1830 :
1831 : /*
1832 : * Regardless of the setting of constraint_exclusion, detect
1833 : * constant-FALSE-or-NULL restriction clauses. Although const-folding
1834 : * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1835 : * list can still have other members besides the FALSE constant, due to
1836 : * qual pushdown and other mechanisms; so check them all. This doesn't
1837 : * fire very often, but it seems cheap enough to be worth doing anyway.
1838 : * (Without this, we'd miss some optimizations that 9.5 and earlier found
1839 : * via much more roundabout methods.)
1840 : */
1841 706140 : foreach(lc, rel->baserestrictinfo)
1842 : {
1843 423834 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1844 423834 : Expr *clause = rinfo->clause;
1845 :
1846 423834 : if (clause && IsA(clause, Const) &&
1847 580 : (((Const *) clause)->constisnull ||
1848 574 : !DatumGetBool(((Const *) clause)->constvalue)))
1849 580 : return true;
1850 : }
1851 :
1852 : /*
1853 : * Skip further tests, depending on constraint_exclusion.
1854 : */
1855 282306 : switch (constraint_exclusion)
1856 : {
1857 54 : case CONSTRAINT_EXCLUSION_OFF:
1858 : /* In 'off' mode, never make any further tests */
1859 54 : return false;
1860 :
1861 282108 : case CONSTRAINT_EXCLUSION_PARTITION:
1862 :
1863 : /*
1864 : * When constraint_exclusion is set to 'partition' we only handle
1865 : * appendrel members. Partition pruning has already been applied,
1866 : * so there is no need to consider the rel's partition constraints
1867 : * here.
1868 : */
1869 282108 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1870 21602 : break; /* appendrel member, so process it */
1871 260506 : return false;
1872 :
1873 144 : case CONSTRAINT_EXCLUSION_ON:
1874 :
1875 : /*
1876 : * In 'on' mode, always apply constraint exclusion. If we are
1877 : * considering a baserel that is a partition (i.e., it was
1878 : * directly named rather than expanded from a parent table), then
1879 : * its partition constraints haven't been considered yet, so
1880 : * include them in the processing here.
1881 : */
1882 144 : if (rel->reloptkind == RELOPT_BASEREL)
1883 114 : include_partition = true;
1884 144 : break; /* always try to exclude */
1885 : }
1886 :
1887 : /*
1888 : * Check for self-contradictory restriction clauses. We dare not make
1889 : * deductions with non-immutable functions, but any immutable clauses that
1890 : * are self-contradictory allow us to conclude the scan is unnecessary.
1891 : *
1892 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1893 : * expecting to see any in its predicate argument.
1894 : */
1895 21746 : safe_restrictions = NIL;
1896 51326 : foreach(lc, rel->baserestrictinfo)
1897 : {
1898 29580 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1899 :
1900 29580 : if (!contain_mutable_functions((Node *) rinfo->clause))
1901 28040 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1902 : }
1903 :
1904 : /*
1905 : * We can use weak refutation here, since we're comparing restriction
1906 : * clauses with restriction clauses.
1907 : */
1908 21746 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1909 72 : return true;
1910 :
1911 : /*
1912 : * Only plain relations have constraints, so stop here for other rtekinds.
1913 : */
1914 21674 : if (rte->rtekind != RTE_RELATION)
1915 286 : return false;
1916 :
1917 : /*
1918 : * If we are scanning just this table, we can use NO INHERIT constraints,
1919 : * but not if we're scanning its children too. (Note that partitioned
1920 : * tables should never have NO INHERIT constraints; but it's not necessary
1921 : * for us to assume that here.)
1922 : */
1923 21388 : include_noinherit = !rte->inh;
1924 :
1925 : /*
1926 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1927 : * this is a partitioned table. In future we might track their
1928 : * inheritance status more accurately, allowing this to be refined.
1929 : *
1930 : * XXX do we need/want to change this?
1931 : */
1932 21388 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1933 :
1934 : /*
1935 : * Fetch the appropriate set of constraint expressions.
1936 : */
1937 21388 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1938 : include_noinherit,
1939 : include_notnull,
1940 : include_partition);
1941 :
1942 : /*
1943 : * We do not currently enforce that CHECK constraints contain only
1944 : * immutable functions, so it's necessary to check here. We daren't draw
1945 : * conclusions from plan-time evaluation of non-immutable functions. Since
1946 : * they're ANDed, we can just ignore any mutable constraints in the list,
1947 : * and reason about the rest.
1948 : */
1949 21388 : safe_constraints = NIL;
1950 31516 : foreach(lc, constraint_pred)
1951 : {
1952 10128 : Node *pred = (Node *) lfirst(lc);
1953 :
1954 10128 : if (!contain_mutable_functions(pred))
1955 10128 : safe_constraints = lappend(safe_constraints, pred);
1956 : }
1957 :
1958 : /*
1959 : * The constraints are effectively ANDed together, so we can just try to
1960 : * refute the entire collection at once. This may allow us to make proofs
1961 : * that would fail if we took them individually.
1962 : *
1963 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1964 : * an obvious optimization. Some of the clauses might be OR clauses that
1965 : * have volatile and nonvolatile subclauses, and it's OK to make
1966 : * deductions with the nonvolatile parts.
1967 : *
1968 : * We need strong refutation because we have to prove that the constraints
1969 : * would yield false, not just NULL.
1970 : */
1971 21388 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1972 192 : return true;
1973 :
1974 21196 : return false;
1975 : }
1976 :
1977 :
1978 : /*
1979 : * build_physical_tlist
1980 : *
1981 : * Build a targetlist consisting of exactly the relation's user attributes,
1982 : * in order. The executor can special-case such tlists to avoid a projection
1983 : * step at runtime, so we use such tlists preferentially for scan nodes.
1984 : *
1985 : * Exception: if there are any dropped or missing columns, we punt and return
1986 : * NIL. Ideally we would like to handle these cases too. However this
1987 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1988 : * for a tlist that includes vars of no-longer-existent types. In theory we
1989 : * could dig out the required info from the pg_attribute entries of the
1990 : * relation, but that data is not readily available to ExecTypeFromTL.
1991 : * For now, we don't apply the physical-tlist optimization when there are
1992 : * dropped cols.
1993 : *
1994 : * We also support building a "physical" tlist for subqueries, functions,
1995 : * values lists, table expressions, and CTEs, since the same optimization can
1996 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1997 : * NamedTuplestoreScan, and WorkTableScan nodes.
1998 : */
1999 : List *
2000 187732 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
2001 : {
2002 187732 : List *tlist = NIL;
2003 187732 : Index varno = rel->relid;
2004 187732 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
2005 : Relation relation;
2006 : Query *subquery;
2007 : Var *var;
2008 : ListCell *l;
2009 : int attrno,
2010 : numattrs;
2011 : List *colvars;
2012 :
2013 187732 : switch (rte->rtekind)
2014 : {
2015 161218 : case RTE_RELATION:
2016 : /* Assume we already have adequate lock */
2017 161218 : relation = table_open(rte->relid, NoLock);
2018 :
2019 161218 : numattrs = RelationGetNumberOfAttributes(relation);
2020 2857808 : for (attrno = 1; attrno <= numattrs; attrno++)
2021 : {
2022 2696728 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
2023 : attrno - 1);
2024 :
2025 2696728 : if (att_tup->attisdropped || att_tup->atthasmissing)
2026 : {
2027 : /* found a dropped or missing col, so punt */
2028 138 : tlist = NIL;
2029 138 : break;
2030 : }
2031 :
2032 2696590 : var = makeVar(varno,
2033 : attrno,
2034 : att_tup->atttypid,
2035 : att_tup->atttypmod,
2036 : att_tup->attcollation,
2037 : 0);
2038 :
2039 2696590 : tlist = lappend(tlist,
2040 2696590 : makeTargetEntry((Expr *) var,
2041 : attrno,
2042 : NULL,
2043 : false));
2044 : }
2045 :
2046 161218 : table_close(relation, NoLock);
2047 161218 : break;
2048 :
2049 2370 : case RTE_SUBQUERY:
2050 2370 : subquery = rte->subquery;
2051 8842 : foreach(l, subquery->targetList)
2052 : {
2053 6472 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2054 :
2055 : /*
2056 : * A resjunk column of the subquery can be reflected as
2057 : * resjunk in the physical tlist; we need not punt.
2058 : */
2059 6472 : var = makeVarFromTargetEntry(varno, tle);
2060 :
2061 6472 : tlist = lappend(tlist,
2062 6472 : makeTargetEntry((Expr *) var,
2063 6472 : tle->resno,
2064 : NULL,
2065 6472 : tle->resjunk));
2066 : }
2067 2370 : break;
2068 :
2069 24144 : case RTE_FUNCTION:
2070 : case RTE_TABLEFUNC:
2071 : case RTE_VALUES:
2072 : case RTE_CTE:
2073 : case RTE_NAMEDTUPLESTORE:
2074 : case RTE_RESULT:
2075 : /* Not all of these can have dropped cols, but share code anyway */
2076 24144 : expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
2077 : true /* include dropped */ , NULL, &colvars);
2078 121334 : foreach(l, colvars)
2079 : {
2080 97190 : var = (Var *) lfirst(l);
2081 :
2082 : /*
2083 : * A non-Var in expandRTE's output means a dropped column;
2084 : * must punt.
2085 : */
2086 97190 : if (!IsA(var, Var))
2087 : {
2088 0 : tlist = NIL;
2089 0 : break;
2090 : }
2091 :
2092 97190 : tlist = lappend(tlist,
2093 97190 : makeTargetEntry((Expr *) var,
2094 97190 : var->varattno,
2095 : NULL,
2096 : false));
2097 : }
2098 24144 : break;
2099 :
2100 0 : default:
2101 : /* caller error */
2102 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
2103 : (int) rte->rtekind);
2104 : break;
2105 : }
2106 :
2107 187732 : return tlist;
2108 : }
2109 :
2110 : /*
2111 : * build_index_tlist
2112 : *
2113 : * Build a targetlist representing the columns of the specified index.
2114 : * Each column is represented by a Var for the corresponding base-relation
2115 : * column, or an expression in base-relation Vars, as appropriate.
2116 : *
2117 : * There are never any dropped columns in indexes, so unlike
2118 : * build_physical_tlist, we need no failure case.
2119 : */
2120 : static List *
2121 744506 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
2122 : Relation heapRelation)
2123 : {
2124 744506 : List *tlist = NIL;
2125 744506 : Index varno = index->rel->relid;
2126 : ListCell *indexpr_item;
2127 : int i;
2128 :
2129 744506 : indexpr_item = list_head(index->indexprs);
2130 2147612 : for (i = 0; i < index->ncolumns; i++)
2131 : {
2132 1403106 : int indexkey = index->indexkeys[i];
2133 : Expr *indexvar;
2134 :
2135 1403106 : if (indexkey != 0)
2136 : {
2137 : /* simple column */
2138 : const FormData_pg_attribute *att_tup;
2139 :
2140 1400090 : if (indexkey < 0)
2141 0 : att_tup = SystemAttributeDefinition(indexkey);
2142 : else
2143 1400090 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2144 :
2145 1400090 : indexvar = (Expr *) makeVar(varno,
2146 : indexkey,
2147 1400090 : att_tup->atttypid,
2148 1400090 : att_tup->atttypmod,
2149 1400090 : att_tup->attcollation,
2150 : 0);
2151 : }
2152 : else
2153 : {
2154 : /* expression column */
2155 3016 : if (indexpr_item == NULL)
2156 0 : elog(ERROR, "wrong number of index expressions");
2157 3016 : indexvar = (Expr *) lfirst(indexpr_item);
2158 3016 : indexpr_item = lnext(index->indexprs, indexpr_item);
2159 : }
2160 :
2161 1403106 : tlist = lappend(tlist,
2162 1403106 : makeTargetEntry(indexvar,
2163 1403106 : i + 1,
2164 : NULL,
2165 : false));
2166 : }
2167 744506 : if (indexpr_item != NULL)
2168 0 : elog(ERROR, "wrong number of index expressions");
2169 :
2170 744506 : return tlist;
2171 : }
2172 :
2173 : /*
2174 : * restriction_selectivity
2175 : *
2176 : * Returns the selectivity of a specified restriction operator clause.
2177 : * This code executes registered procedures stored in the
2178 : * operator relation, by calling the function manager.
2179 : *
2180 : * See clause_selectivity() for the meaning of the additional parameters.
2181 : */
2182 : Selectivity
2183 738390 : restriction_selectivity(PlannerInfo *root,
2184 : Oid operatorid,
2185 : List *args,
2186 : Oid inputcollid,
2187 : int varRelid)
2188 : {
2189 738390 : RegProcedure oprrest = get_oprrest(operatorid);
2190 : float8 result;
2191 :
2192 : /*
2193 : * if the oprrest procedure is missing for whatever reason, use a
2194 : * selectivity of 0.5
2195 : */
2196 738390 : if (!oprrest)
2197 160 : return (Selectivity) 0.5;
2198 :
2199 738230 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
2200 : inputcollid,
2201 : PointerGetDatum(root),
2202 : ObjectIdGetDatum(operatorid),
2203 : PointerGetDatum(args),
2204 : Int32GetDatum(varRelid)));
2205 :
2206 738200 : if (result < 0.0 || result > 1.0)
2207 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
2208 :
2209 738200 : return (Selectivity) result;
2210 : }
2211 :
2212 : /*
2213 : * join_selectivity
2214 : *
2215 : * Returns the selectivity of a specified join operator clause.
2216 : * This code executes registered procedures stored in the
2217 : * operator relation, by calling the function manager.
2218 : *
2219 : * See clause_selectivity() for the meaning of the additional parameters.
2220 : */
2221 : Selectivity
2222 266926 : join_selectivity(PlannerInfo *root,
2223 : Oid operatorid,
2224 : List *args,
2225 : Oid inputcollid,
2226 : JoinType jointype,
2227 : SpecialJoinInfo *sjinfo)
2228 : {
2229 266926 : RegProcedure oprjoin = get_oprjoin(operatorid);
2230 : float8 result;
2231 :
2232 : /*
2233 : * if the oprjoin procedure is missing for whatever reason, use a
2234 : * selectivity of 0.5
2235 : */
2236 266926 : if (!oprjoin)
2237 146 : return (Selectivity) 0.5;
2238 :
2239 266780 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2240 : inputcollid,
2241 : PointerGetDatum(root),
2242 : ObjectIdGetDatum(operatorid),
2243 : PointerGetDatum(args),
2244 : Int16GetDatum(jointype),
2245 : PointerGetDatum(sjinfo)));
2246 :
2247 266780 : if (result < 0.0 || result > 1.0)
2248 0 : elog(ERROR, "invalid join selectivity: %f", result);
2249 :
2250 266780 : return (Selectivity) result;
2251 : }
2252 :
2253 : /*
2254 : * function_selectivity
2255 : *
2256 : * Attempt to estimate the selectivity of a specified boolean function clause
2257 : * by asking its support function. If the function lacks support, return -1.
2258 : *
2259 : * See clause_selectivity() for the meaning of the additional parameters.
2260 : */
2261 : Selectivity
2262 12368 : function_selectivity(PlannerInfo *root,
2263 : Oid funcid,
2264 : List *args,
2265 : Oid inputcollid,
2266 : bool is_join,
2267 : int varRelid,
2268 : JoinType jointype,
2269 : SpecialJoinInfo *sjinfo)
2270 : {
2271 12368 : RegProcedure prosupport = get_func_support(funcid);
2272 : SupportRequestSelectivity req;
2273 : SupportRequestSelectivity *sresult;
2274 :
2275 12368 : if (!prosupport)
2276 12338 : return (Selectivity) -1; /* no support function */
2277 :
2278 30 : req.type = T_SupportRequestSelectivity;
2279 30 : req.root = root;
2280 30 : req.funcid = funcid;
2281 30 : req.args = args;
2282 30 : req.inputcollid = inputcollid;
2283 30 : req.is_join = is_join;
2284 30 : req.varRelid = varRelid;
2285 30 : req.jointype = jointype;
2286 30 : req.sjinfo = sjinfo;
2287 30 : req.selectivity = -1; /* to catch failure to set the value */
2288 :
2289 : sresult = (SupportRequestSelectivity *)
2290 30 : DatumGetPointer(OidFunctionCall1(prosupport,
2291 : PointerGetDatum(&req)));
2292 :
2293 30 : if (sresult != &req)
2294 0 : return (Selectivity) -1; /* function did not honor request */
2295 :
2296 30 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2297 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2298 :
2299 30 : return (Selectivity) req.selectivity;
2300 : }
2301 :
2302 : /*
2303 : * add_function_cost
2304 : *
2305 : * Get an estimate of the execution cost of a function, and *add* it to
2306 : * the contents of *cost. The estimate may include both one-time and
2307 : * per-tuple components, since QualCost does.
2308 : *
2309 : * The funcid must always be supplied. If it is being called as the
2310 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2311 : * WindowFunc, etc), pass that as "node", else pass NULL.
2312 : *
2313 : * In some usages root might be NULL, too.
2314 : */
2315 : void
2316 1161584 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2317 : QualCost *cost)
2318 : {
2319 : HeapTuple proctup;
2320 : Form_pg_proc procform;
2321 :
2322 1161584 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2323 1161584 : if (!HeapTupleIsValid(proctup))
2324 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2325 1161584 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2326 :
2327 1161584 : if (OidIsValid(procform->prosupport))
2328 : {
2329 : SupportRequestCost req;
2330 : SupportRequestCost *sresult;
2331 :
2332 35344 : req.type = T_SupportRequestCost;
2333 35344 : req.root = root;
2334 35344 : req.funcid = funcid;
2335 35344 : req.node = node;
2336 :
2337 : /* Initialize cost fields so that support function doesn't have to */
2338 35344 : req.startup = 0;
2339 35344 : req.per_tuple = 0;
2340 :
2341 : sresult = (SupportRequestCost *)
2342 35344 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2343 : PointerGetDatum(&req)));
2344 :
2345 35344 : if (sresult == &req)
2346 : {
2347 : /* Success, so accumulate support function's estimate into *cost */
2348 18 : cost->startup += req.startup;
2349 18 : cost->per_tuple += req.per_tuple;
2350 18 : ReleaseSysCache(proctup);
2351 18 : return;
2352 : }
2353 : }
2354 :
2355 : /* No support function, or it failed, so rely on procost */
2356 1161566 : cost->per_tuple += procform->procost * cpu_operator_cost;
2357 :
2358 1161566 : ReleaseSysCache(proctup);
2359 : }
2360 :
2361 : /*
2362 : * get_function_rows
2363 : *
2364 : * Get an estimate of the number of rows returned by a set-returning function.
2365 : *
2366 : * The funcid must always be supplied. In current usage, the calling node
2367 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2368 : * But it's a good idea to not fail if it's NULL.
2369 : *
2370 : * In some usages root might be NULL, too.
2371 : *
2372 : * Note: this returns the unfiltered result of the support function, if any.
2373 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2374 : * leave it to the caller to do so.
2375 : */
2376 : double
2377 55818 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2378 : {
2379 : HeapTuple proctup;
2380 : Form_pg_proc procform;
2381 : double result;
2382 :
2383 55818 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2384 55818 : if (!HeapTupleIsValid(proctup))
2385 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2386 55818 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2387 :
2388 : Assert(procform->proretset); /* else caller error */
2389 :
2390 55818 : if (OidIsValid(procform->prosupport))
2391 : {
2392 : SupportRequestRows req;
2393 : SupportRequestRows *sresult;
2394 :
2395 21062 : req.type = T_SupportRequestRows;
2396 21062 : req.root = root;
2397 21062 : req.funcid = funcid;
2398 21062 : req.node = node;
2399 :
2400 21062 : req.rows = 0; /* just for sanity */
2401 :
2402 : sresult = (SupportRequestRows *)
2403 21062 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2404 : PointerGetDatum(&req)));
2405 :
2406 21062 : if (sresult == &req)
2407 : {
2408 : /* Success */
2409 17024 : ReleaseSysCache(proctup);
2410 17024 : return req.rows;
2411 : }
2412 : }
2413 :
2414 : /* No support function, or it failed, so rely on prorows */
2415 38794 : result = procform->prorows;
2416 :
2417 38794 : ReleaseSysCache(proctup);
2418 :
2419 38794 : return result;
2420 : }
2421 :
2422 : /*
2423 : * has_unique_index
2424 : *
2425 : * Detect whether there is a unique index on the specified attribute
2426 : * of the specified relation, thus allowing us to conclude that all
2427 : * the (non-null) values of the attribute are distinct.
2428 : *
2429 : * This function does not check the index's indimmediate property, which
2430 : * means that uniqueness may transiently fail to hold intra-transaction.
2431 : * That's appropriate when we are making statistical estimates, but beware
2432 : * of using this for any correctness proofs.
2433 : */
2434 : bool
2435 2315826 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2436 : {
2437 : ListCell *ilist;
2438 :
2439 5652636 : foreach(ilist, rel->indexlist)
2440 : {
2441 4050882 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2442 :
2443 : /*
2444 : * Note: ignore partial indexes, since they don't allow us to conclude
2445 : * that all attr values are distinct, *unless* they are marked predOK
2446 : * which means we know the index's predicate is satisfied by the
2447 : * query. We don't take any interest in expressional indexes either.
2448 : * Also, a multicolumn unique index doesn't allow us to conclude that
2449 : * just the specified attr is unique.
2450 : */
2451 4050882 : if (index->unique &&
2452 2824770 : index->nkeycolumns == 1 &&
2453 1530302 : index->indexkeys[0] == attno &&
2454 714108 : (index->indpred == NIL || index->predOK))
2455 714072 : return true;
2456 : }
2457 1601754 : return false;
2458 : }
2459 :
2460 :
2461 : /*
2462 : * has_row_triggers
2463 : *
2464 : * Detect whether the specified relation has any row-level triggers for event.
2465 : */
2466 : bool
2467 516 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2468 : {
2469 516 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2470 : Relation relation;
2471 : TriggerDesc *trigDesc;
2472 516 : bool result = false;
2473 :
2474 : /* Assume we already have adequate lock */
2475 516 : relation = table_open(rte->relid, NoLock);
2476 :
2477 516 : trigDesc = relation->trigdesc;
2478 516 : switch (event)
2479 : {
2480 164 : case CMD_INSERT:
2481 164 : if (trigDesc &&
2482 26 : (trigDesc->trig_insert_after_row ||
2483 14 : trigDesc->trig_insert_before_row))
2484 26 : result = true;
2485 164 : break;
2486 190 : case CMD_UPDATE:
2487 190 : if (trigDesc &&
2488 48 : (trigDesc->trig_update_after_row ||
2489 28 : trigDesc->trig_update_before_row))
2490 36 : result = true;
2491 190 : break;
2492 162 : case CMD_DELETE:
2493 162 : if (trigDesc &&
2494 30 : (trigDesc->trig_delete_after_row ||
2495 18 : trigDesc->trig_delete_before_row))
2496 16 : result = true;
2497 162 : break;
2498 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2499 0 : case CMD_MERGE:
2500 0 : result = false;
2501 0 : break;
2502 0 : default:
2503 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2504 : break;
2505 : }
2506 :
2507 516 : table_close(relation, NoLock);
2508 516 : return result;
2509 : }
2510 :
2511 : /*
2512 : * has_transition_tables
2513 : *
2514 : * Detect whether the specified relation has any transition tables for event.
2515 : */
2516 : bool
2517 390 : has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
2518 : {
2519 390 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2520 : Relation relation;
2521 : TriggerDesc *trigDesc;
2522 390 : bool result = false;
2523 :
2524 : Assert(rte->rtekind == RTE_RELATION);
2525 :
2526 : /* Currently foreign tables cannot have transition tables */
2527 390 : if (rte->relkind == RELKIND_FOREIGN_TABLE)
2528 290 : return result;
2529 :
2530 : /* Assume we already have adequate lock */
2531 100 : relation = table_open(rte->relid, NoLock);
2532 :
2533 100 : trigDesc = relation->trigdesc;
2534 100 : switch (event)
2535 : {
2536 0 : case CMD_INSERT:
2537 0 : if (trigDesc &&
2538 0 : trigDesc->trig_insert_new_table)
2539 0 : result = true;
2540 0 : break;
2541 60 : case CMD_UPDATE:
2542 60 : if (trigDesc &&
2543 8 : (trigDesc->trig_update_old_table ||
2544 0 : trigDesc->trig_update_new_table))
2545 8 : result = true;
2546 60 : break;
2547 40 : case CMD_DELETE:
2548 40 : if (trigDesc &&
2549 8 : trigDesc->trig_delete_old_table)
2550 8 : result = true;
2551 40 : break;
2552 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2553 0 : case CMD_MERGE:
2554 0 : result = false;
2555 0 : break;
2556 0 : default:
2557 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2558 : break;
2559 : }
2560 :
2561 100 : table_close(relation, NoLock);
2562 100 : return result;
2563 : }
2564 :
2565 : /*
2566 : * has_stored_generated_columns
2567 : *
2568 : * Does table identified by RTI have any STORED GENERATED columns?
2569 : */
2570 : bool
2571 438 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2572 : {
2573 438 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2574 : Relation relation;
2575 : TupleDesc tupdesc;
2576 438 : bool result = false;
2577 :
2578 : /* Assume we already have adequate lock */
2579 438 : relation = table_open(rte->relid, NoLock);
2580 :
2581 438 : tupdesc = RelationGetDescr(relation);
2582 438 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2583 :
2584 438 : table_close(relation, NoLock);
2585 :
2586 438 : return result;
2587 : }
2588 :
2589 : /*
2590 : * get_dependent_generated_columns
2591 : *
2592 : * Get the column numbers of any STORED GENERATED columns of the relation
2593 : * that depend on any column listed in target_cols. Both the input and
2594 : * result bitmapsets contain column numbers offset by
2595 : * FirstLowInvalidHeapAttributeNumber.
2596 : */
2597 : Bitmapset *
2598 90 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2599 : Bitmapset *target_cols)
2600 : {
2601 90 : Bitmapset *dependentCols = NULL;
2602 90 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2603 : Relation relation;
2604 : TupleDesc tupdesc;
2605 : TupleConstr *constr;
2606 :
2607 : /* Assume we already have adequate lock */
2608 90 : relation = table_open(rte->relid, NoLock);
2609 :
2610 90 : tupdesc = RelationGetDescr(relation);
2611 90 : constr = tupdesc->constr;
2612 :
2613 90 : if (constr && constr->has_generated_stored)
2614 : {
2615 12 : for (int i = 0; i < constr->num_defval; i++)
2616 : {
2617 8 : AttrDefault *defval = &constr->defval[i];
2618 : Node *expr;
2619 8 : Bitmapset *attrs_used = NULL;
2620 :
2621 : /* skip if not generated column */
2622 8 : if (!TupleDescCompactAttr(tupdesc, defval->adnum - 1)->attgenerated)
2623 0 : continue;
2624 :
2625 : /* identify columns this generated column depends on */
2626 8 : expr = stringToNode(defval->adbin);
2627 8 : pull_varattnos(expr, 1, &attrs_used);
2628 :
2629 8 : if (bms_overlap(target_cols, attrs_used))
2630 8 : dependentCols = bms_add_member(dependentCols,
2631 8 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2632 : }
2633 : }
2634 :
2635 90 : table_close(relation, NoLock);
2636 :
2637 90 : return dependentCols;
2638 : }
2639 :
2640 : /*
2641 : * set_relation_partition_info
2642 : *
2643 : * Set partitioning scheme and related information for a partitioned table.
2644 : */
2645 : static void
2646 17616 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2647 : Relation relation)
2648 : {
2649 : PartitionDesc partdesc;
2650 :
2651 : /*
2652 : * Create the PartitionDirectory infrastructure if we didn't already.
2653 : */
2654 17616 : if (root->glob->partition_directory == NULL)
2655 : {
2656 11766 : root->glob->partition_directory =
2657 11766 : CreatePartitionDirectory(CurrentMemoryContext, true);
2658 : }
2659 :
2660 17616 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2661 : relation);
2662 17616 : rel->part_scheme = find_partition_scheme(root, relation);
2663 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2664 17616 : rel->boundinfo = partdesc->boundinfo;
2665 17616 : rel->nparts = partdesc->nparts;
2666 17616 : set_baserel_partition_key_exprs(relation, rel);
2667 17616 : set_baserel_partition_constraint(relation, rel);
2668 17616 : }
2669 :
2670 : /*
2671 : * find_partition_scheme
2672 : *
2673 : * Find or create a PartitionScheme for this Relation.
2674 : */
2675 : static PartitionScheme
2676 17616 : find_partition_scheme(PlannerInfo *root, Relation relation)
2677 : {
2678 17616 : PartitionKey partkey = RelationGetPartitionKey(relation);
2679 : ListCell *lc;
2680 : int partnatts,
2681 : i;
2682 : PartitionScheme part_scheme;
2683 :
2684 : /* A partitioned table should have a partition key. */
2685 : Assert(partkey != NULL);
2686 :
2687 17616 : partnatts = partkey->partnatts;
2688 :
2689 : /* Search for a matching partition scheme and return if found one. */
2690 19506 : foreach(lc, root->part_schemes)
2691 : {
2692 6442 : part_scheme = lfirst(lc);
2693 :
2694 : /* Match partitioning strategy and number of keys. */
2695 6442 : if (partkey->strategy != part_scheme->strategy ||
2696 5452 : partnatts != part_scheme->partnatts)
2697 1440 : continue;
2698 :
2699 : /* Match partition key type properties. */
2700 5002 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2701 4552 : sizeof(Oid) * partnatts) != 0 ||
2702 4552 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2703 4552 : sizeof(Oid) * partnatts) != 0 ||
2704 4552 : memcmp(partkey->partcollation, part_scheme->partcollation,
2705 : sizeof(Oid) * partnatts) != 0)
2706 450 : continue;
2707 :
2708 : /*
2709 : * Length and byval information should match when partopcintype
2710 : * matches.
2711 : */
2712 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2713 : sizeof(int16) * partnatts) == 0);
2714 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2715 : sizeof(bool) * partnatts) == 0);
2716 :
2717 : /*
2718 : * If partopfamily and partopcintype matched, must have the same
2719 : * partition comparison functions. Note that we cannot reliably
2720 : * Assert the equality of function structs themselves for they might
2721 : * be different across PartitionKey's, so just Assert for the function
2722 : * OIDs.
2723 : */
2724 : #ifdef USE_ASSERT_CHECKING
2725 : for (i = 0; i < partkey->partnatts; i++)
2726 : Assert(partkey->partsupfunc[i].fn_oid ==
2727 : part_scheme->partsupfunc[i].fn_oid);
2728 : #endif
2729 :
2730 : /* Found matching partition scheme. */
2731 4552 : return part_scheme;
2732 : }
2733 :
2734 : /*
2735 : * Did not find matching partition scheme. Create one copying relevant
2736 : * information from the relcache. We need to copy the contents of the
2737 : * array since the relcache entry may not survive after we have closed the
2738 : * relation.
2739 : */
2740 13064 : part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2741 13064 : part_scheme->strategy = partkey->strategy;
2742 13064 : part_scheme->partnatts = partkey->partnatts;
2743 :
2744 13064 : part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2745 13064 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2746 : sizeof(Oid) * partnatts);
2747 :
2748 13064 : part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2749 13064 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2750 : sizeof(Oid) * partnatts);
2751 :
2752 13064 : part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2753 13064 : memcpy(part_scheme->partcollation, partkey->partcollation,
2754 : sizeof(Oid) * partnatts);
2755 :
2756 13064 : part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2757 13064 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2758 : sizeof(int16) * partnatts);
2759 :
2760 13064 : part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2761 13064 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2762 : sizeof(bool) * partnatts);
2763 :
2764 13064 : part_scheme->partsupfunc = (FmgrInfo *)
2765 13064 : palloc(sizeof(FmgrInfo) * partnatts);
2766 27976 : for (i = 0; i < partnatts; i++)
2767 14912 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2768 : CurrentMemoryContext);
2769 :
2770 : /* Add the partitioning scheme to PlannerInfo. */
2771 13064 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2772 :
2773 13064 : return part_scheme;
2774 : }
2775 :
2776 : /*
2777 : * set_baserel_partition_key_exprs
2778 : *
2779 : * Builds partition key expressions for the given base relation and fills
2780 : * rel->partexprs.
2781 : */
2782 : static void
2783 17616 : set_baserel_partition_key_exprs(Relation relation,
2784 : RelOptInfo *rel)
2785 : {
2786 17616 : PartitionKey partkey = RelationGetPartitionKey(relation);
2787 : int partnatts;
2788 : int cnt;
2789 : List **partexprs;
2790 : ListCell *lc;
2791 17616 : Index varno = rel->relid;
2792 :
2793 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2794 :
2795 : /* A partitioned table should have a partition key. */
2796 : Assert(partkey != NULL);
2797 :
2798 17616 : partnatts = partkey->partnatts;
2799 17616 : partexprs = (List **) palloc(sizeof(List *) * partnatts);
2800 17616 : lc = list_head(partkey->partexprs);
2801 :
2802 37110 : for (cnt = 0; cnt < partnatts; cnt++)
2803 : {
2804 : Expr *partexpr;
2805 19494 : AttrNumber attno = partkey->partattrs[cnt];
2806 :
2807 19494 : if (attno != InvalidAttrNumber)
2808 : {
2809 : /* Single column partition key is stored as a Var node. */
2810 : Assert(attno > 0);
2811 :
2812 18564 : partexpr = (Expr *) makeVar(varno, attno,
2813 18564 : partkey->parttypid[cnt],
2814 18564 : partkey->parttypmod[cnt],
2815 18564 : partkey->parttypcoll[cnt], 0);
2816 : }
2817 : else
2818 : {
2819 930 : if (lc == NULL)
2820 0 : elog(ERROR, "wrong number of partition key expressions");
2821 :
2822 : /* Re-stamp the expression with given varno. */
2823 930 : partexpr = (Expr *) copyObject(lfirst(lc));
2824 930 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2825 930 : lc = lnext(partkey->partexprs, lc);
2826 : }
2827 :
2828 : /* Base relations have a single expression per key. */
2829 19494 : partexprs[cnt] = list_make1(partexpr);
2830 : }
2831 :
2832 17616 : rel->partexprs = partexprs;
2833 :
2834 : /*
2835 : * A base relation does not have nullable partition key expressions, since
2836 : * no outer join is involved. We still allocate an array of empty
2837 : * expression lists to keep partition key expression handling code simple.
2838 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2839 : */
2840 17616 : rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2841 17616 : }
2842 :
2843 : /*
2844 : * set_baserel_partition_constraint
2845 : *
2846 : * Builds the partition constraint for the given base relation and sets it
2847 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2848 : * given relation.
2849 : */
2850 : static void
2851 17628 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2852 : {
2853 : List *partconstr;
2854 :
2855 17628 : if (rel->partition_qual) /* already done */
2856 0 : return;
2857 :
2858 : /*
2859 : * Run the partition quals through const-simplification similar to check
2860 : * constraints. We skip canonicalize_qual, though, because partition
2861 : * quals should be in canonical form already; also, since the qual is in
2862 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2863 : * format and back again.
2864 : */
2865 17628 : partconstr = RelationGetPartitionQual(relation);
2866 17628 : if (partconstr)
2867 : {
2868 3710 : partconstr = (List *) expression_planner((Expr *) partconstr);
2869 3710 : if (rel->relid != 1)
2870 3632 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2871 3710 : rel->partition_qual = partconstr;
2872 : }
2873 : }
|