LCOV - code coverage report
Current view: top level - src/backend/optimizer/util - plancat.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 833 903 92.2 %
Date: 2025-12-23 11:18:02 Functions: 29 29 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * plancat.c
       4             :  *     routines for accessing the system catalogs
       5             :  *
       6             :  *
       7             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       8             :  * Portions Copyright (c) 1994, Regents of the University of California
       9             :  *
      10             :  *
      11             :  * IDENTIFICATION
      12             :  *    src/backend/optimizer/util/plancat.c
      13             :  *
      14             :  *-------------------------------------------------------------------------
      15             :  */
      16             : #include "postgres.h"
      17             : 
      18             : #include <math.h>
      19             : 
      20             : #include "access/genam.h"
      21             : #include "access/htup_details.h"
      22             : #include "access/nbtree.h"
      23             : #include "access/sysattr.h"
      24             : #include "access/table.h"
      25             : #include "access/tableam.h"
      26             : #include "access/transam.h"
      27             : #include "access/xlog.h"
      28             : #include "catalog/catalog.h"
      29             : #include "catalog/heap.h"
      30             : #include "catalog/pg_am.h"
      31             : #include "catalog/pg_proc.h"
      32             : #include "catalog/pg_statistic_ext.h"
      33             : #include "catalog/pg_statistic_ext_data.h"
      34             : #include "foreign/fdwapi.h"
      35             : #include "miscadmin.h"
      36             : #include "nodes/makefuncs.h"
      37             : #include "nodes/nodeFuncs.h"
      38             : #include "nodes/supportnodes.h"
      39             : #include "optimizer/cost.h"
      40             : #include "optimizer/optimizer.h"
      41             : #include "optimizer/plancat.h"
      42             : #include "parser/parse_relation.h"
      43             : #include "parser/parsetree.h"
      44             : #include "partitioning/partdesc.h"
      45             : #include "rewrite/rewriteHandler.h"
      46             : #include "rewrite/rewriteManip.h"
      47             : #include "statistics/statistics.h"
      48             : #include "storage/bufmgr.h"
      49             : #include "tcop/tcopprot.h"
      50             : #include "utils/builtins.h"
      51             : #include "utils/lsyscache.h"
      52             : #include "utils/partcache.h"
      53             : #include "utils/rel.h"
      54             : #include "utils/snapmgr.h"
      55             : #include "utils/syscache.h"
      56             : 
      57             : /* GUC parameter */
      58             : int         constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
      59             : 
      60             : /* Hook for plugins to get control in get_relation_info() */
      61             : get_relation_info_hook_type get_relation_info_hook = NULL;
      62             : 
      63             : typedef struct NotnullHashEntry
      64             : {
      65             :     Oid         relid;          /* OID of the relation */
      66             :     Bitmapset  *notnullattnums; /* attnums of NOT NULL columns */
      67             : } NotnullHashEntry;
      68             : 
      69             : 
      70             : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
      71             :                                       Relation relation, bool inhparent);
      72             : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
      73             :                                           List *idxExprs);
      74             : static List *get_relation_constraints(PlannerInfo *root,
      75             :                                       Oid relationObjectId, RelOptInfo *rel,
      76             :                                       bool include_noinherit,
      77             :                                       bool include_notnull,
      78             :                                       bool include_partition);
      79             : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
      80             :                                Relation heapRelation);
      81             : static List *get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
      82             :                                      Relation relation);
      83             : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
      84             :                                         Relation relation);
      85             : static PartitionScheme find_partition_scheme(PlannerInfo *root,
      86             :                                              Relation relation);
      87             : static void set_baserel_partition_key_exprs(Relation relation,
      88             :                                             RelOptInfo *rel);
      89             : static void set_baserel_partition_constraint(Relation relation,
      90             :                                              RelOptInfo *rel);
      91             : 
      92             : 
      93             : /*
      94             :  * get_relation_info -
      95             :  *    Retrieves catalog information for a given relation.
      96             :  *
      97             :  * Given the Oid of the relation, return the following info into fields
      98             :  * of the RelOptInfo struct:
      99             :  *
     100             :  *  min_attr    lowest valid AttrNumber
     101             :  *  max_attr    highest valid AttrNumber
     102             :  *  indexlist   list of IndexOptInfos for relation's indexes
     103             :  *  statlist    list of StatisticExtInfo for relation's statistic objects
     104             :  *  serverid    if it's a foreign table, the server OID
     105             :  *  fdwroutine  if it's a foreign table, the FDW function pointers
     106             :  *  pages       number of pages
     107             :  *  tuples      number of tuples
     108             :  *  rel_parallel_workers user-defined number of parallel workers
     109             :  *
     110             :  * Also, add information about the relation's foreign keys to root->fkey_list.
     111             :  *
     112             :  * Also, initialize the attr_needed[] and attr_widths[] arrays.  In most
     113             :  * cases these are left as zeroes, but sometimes we need to compute attr
     114             :  * widths here, and we may as well cache the results for costsize.c.
     115             :  *
     116             :  * If inhparent is true, all we need to do is set up the attr arrays:
     117             :  * the RelOptInfo actually represents the appendrel formed by an inheritance
     118             :  * tree, and so the parent rel's physical size and index information isn't
     119             :  * important for it, however, for partitioned tables, we do populate the
     120             :  * indexlist as the planner uses unique indexes as unique proofs for certain
     121             :  * optimizations.
     122             :  */
     123             : void
     124      489282 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
     125             :                   RelOptInfo *rel)
     126             : {
     127      489282 :     Index       varno = rel->relid;
     128             :     Relation    relation;
     129             :     bool        hasindex;
     130      489282 :     List       *indexinfos = NIL;
     131             : 
     132             :     /*
     133             :      * We need not lock the relation since it was already locked, either by
     134             :      * the rewriter or when expand_inherited_rtentry() added it to the query's
     135             :      * rangetable.
     136             :      */
     137      489282 :     relation = table_open(relationObjectId, NoLock);
     138             : 
     139             :     /*
     140             :      * Relations without a table AM can be used in a query only if they are of
     141             :      * special-cased relkinds.  This check prevents us from crashing later if,
     142             :      * for example, a view's ON SELECT rule has gone missing.  Note that
     143             :      * table_open() already rejected indexes and composite types; spell the
     144             :      * error the same way it does.
     145             :      */
     146      489282 :     if (!relation->rd_tableam)
     147             :     {
     148       20612 :         if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
     149       18096 :               relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
     150           0 :             ereport(ERROR,
     151             :                     (errcode(ERRCODE_WRONG_OBJECT_TYPE),
     152             :                      errmsg("cannot open relation \"%s\"",
     153             :                             RelationGetRelationName(relation)),
     154             :                      errdetail_relkind_not_supported(relation->rd_rel->relkind)));
     155             :     }
     156             : 
     157             :     /* Temporary and unlogged relations are inaccessible during recovery. */
     158      489282 :     if (!RelationIsPermanent(relation) && RecoveryInProgress())
     159           0 :         ereport(ERROR,
     160             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     161             :                  errmsg("cannot access temporary or unlogged relations during recovery")));
     162             : 
     163      489282 :     rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
     164      489282 :     rel->max_attr = RelationGetNumberOfAttributes(relation);
     165      489282 :     rel->reltablespace = RelationGetForm(relation)->reltablespace;
     166             : 
     167             :     Assert(rel->max_attr >= rel->min_attr);
     168      489282 :     rel->attr_needed = (Relids *)
     169      489282 :         palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
     170      489282 :     rel->attr_widths = (int32 *)
     171      489282 :         palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
     172             : 
     173             :     /*
     174             :      * Record which columns are defined as NOT NULL.  We leave this
     175             :      * unpopulated for non-partitioned inheritance parent relations as it's
     176             :      * ambiguous as to what it means.  Some child tables may have a NOT NULL
     177             :      * constraint for a column while others may not.  We could work harder and
     178             :      * build a unioned set of all child relations notnullattnums, but there's
     179             :      * currently no need.  The RelOptInfo corresponding to the !inh
     180             :      * RangeTblEntry does get populated.
     181             :      */
     182      489282 :     if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     183      450606 :         rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
     184             : 
     185             :     /*
     186             :      * Estimate relation size --- unless it's an inheritance parent, in which
     187             :      * case the size we want is not the rel's own size but the size of its
     188             :      * inheritance tree.  That will be computed in set_append_rel_size().
     189             :      */
     190      489282 :     if (!inhparent)
     191      432550 :         estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
     192      432550 :                           &rel->pages, &rel->tuples, &rel->allvisfrac);
     193             : 
     194             :     /* Retrieve the parallel_workers reloption, or -1 if not set. */
     195      489282 :     rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
     196             : 
     197             :     /*
     198             :      * Make list of indexes.  Ignore indexes on system catalogs if told to.
     199             :      * Don't bother with indexes from traditional inheritance parents.  For
     200             :      * partitioned tables, we need a list of at least unique indexes as these
     201             :      * serve as unique proofs for certain planner optimizations.  However,
     202             :      * let's not discriminate here and just record all partitioned indexes
     203             :      * whether they're unique indexes or not.
     204             :      */
     205      489282 :     if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
     206      450606 :         || (IgnoreSystemIndexes && IsSystemRelation(relation)))
     207       38676 :         hasindex = false;
     208             :     else
     209      450606 :         hasindex = relation->rd_rel->relhasindex;
     210             : 
     211      489282 :     if (hasindex)
     212             :     {
     213             :         List       *indexoidlist;
     214             :         LOCKMODE    lmode;
     215             :         ListCell   *l;
     216             : 
     217      364218 :         indexoidlist = RelationGetIndexList(relation);
     218             : 
     219             :         /*
     220             :          * For each index, we get the same type of lock that the executor will
     221             :          * need, and do not release it.  This saves a couple of trips to the
     222             :          * shared lock manager while not creating any real loss of
     223             :          * concurrency, because no schema changes could be happening on the
     224             :          * index while we hold lock on the parent rel, and no lock type used
     225             :          * for queries blocks any other kind of index operation.
     226             :          */
     227      364218 :         lmode = root->simple_rte_array[varno]->rellockmode;
     228             : 
     229     1127154 :         foreach(l, indexoidlist)
     230             :         {
     231      762936 :             Oid         indexoid = lfirst_oid(l);
     232             :             Relation    indexRelation;
     233             :             Form_pg_index index;
     234      762936 :             IndexAmRoutine *amroutine = NULL;
     235             :             IndexOptInfo *info;
     236             :             int         ncolumns,
     237             :                         nkeycolumns;
     238             :             int         i;
     239             : 
     240             :             /*
     241             :              * Extract info from the relation descriptor for the index.
     242             :              */
     243      762936 :             indexRelation = index_open(indexoid, lmode);
     244      762936 :             index = indexRelation->rd_index;
     245             : 
     246             :             /*
     247             :              * Ignore invalid indexes, since they can't safely be used for
     248             :              * queries.  Note that this is OK because the data structure we
     249             :              * are constructing is only used by the planner --- the executor
     250             :              * still needs to insert into "invalid" indexes, if they're marked
     251             :              * indisready.
     252             :              */
     253      762936 :             if (!index->indisvalid)
     254             :             {
     255          22 :                 index_close(indexRelation, NoLock);
     256          22 :                 continue;
     257             :             }
     258             : 
     259             :             /*
     260             :              * If the index is valid, but cannot yet be used, ignore it; but
     261             :              * mark the plan we are generating as transient. See
     262             :              * src/backend/access/heap/README.HOT for discussion.
     263             :              */
     264      762914 :             if (index->indcheckxmin &&
     265         294 :                 !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
     266             :                                        TransactionXmin))
     267             :             {
     268         294 :                 root->glob->transientPlan = true;
     269         294 :                 index_close(indexRelation, NoLock);
     270         294 :                 continue;
     271             :             }
     272             : 
     273      762620 :             info = makeNode(IndexOptInfo);
     274             : 
     275      762620 :             info->indexoid = index->indexrelid;
     276      762620 :             info->reltablespace =
     277      762620 :                 RelationGetForm(indexRelation)->reltablespace;
     278      762620 :             info->rel = rel;
     279      762620 :             info->ncolumns = ncolumns = index->indnatts;
     280      762620 :             info->nkeycolumns = nkeycolumns = index->indnkeyatts;
     281             : 
     282      762620 :             info->indexkeys = palloc_array(int, ncolumns);
     283      762620 :             info->indexcollations = palloc_array(Oid, nkeycolumns);
     284      762620 :             info->opfamily = palloc_array(Oid, nkeycolumns);
     285      762620 :             info->opcintype = palloc_array(Oid, nkeycolumns);
     286      762620 :             info->canreturn = palloc_array(bool, ncolumns);
     287             : 
     288     2189830 :             for (i = 0; i < ncolumns; i++)
     289             :             {
     290     1427210 :                 info->indexkeys[i] = index->indkey.values[i];
     291     1427210 :                 info->canreturn[i] = index_can_return(indexRelation, i + 1);
     292             :             }
     293             : 
     294     2189412 :             for (i = 0; i < nkeycolumns; i++)
     295             :             {
     296     1426792 :                 info->opfamily[i] = indexRelation->rd_opfamily[i];
     297     1426792 :                 info->opcintype[i] = indexRelation->rd_opcintype[i];
     298     1426792 :                 info->indexcollations[i] = indexRelation->rd_indcollation[i];
     299             :             }
     300             : 
     301      762620 :             info->relam = indexRelation->rd_rel->relam;
     302             : 
     303             :             /*
     304             :              * We don't have an AM for partitioned indexes, so we'll just
     305             :              * NULLify the AM related fields for those.
     306             :              */
     307      762620 :             if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
     308             :             {
     309             :                 /* We copy just the fields we need, not all of rd_indam */
     310      755696 :                 amroutine = indexRelation->rd_indam;
     311      755696 :                 info->amcanorderbyop = amroutine->amcanorderbyop;
     312      755696 :                 info->amoptionalkey = amroutine->amoptionalkey;
     313      755696 :                 info->amsearcharray = amroutine->amsearcharray;
     314      755696 :                 info->amsearchnulls = amroutine->amsearchnulls;
     315      755696 :                 info->amcanparallel = amroutine->amcanparallel;
     316      755696 :                 info->amhasgettuple = (amroutine->amgettuple != NULL);
     317     1511392 :                 info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
     318      755696 :                     relation->rd_tableam->scan_bitmap_next_tuple != NULL;
     319     1489236 :                 info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
     320      733540 :                                       amroutine->amrestrpos != NULL);
     321      755696 :                 info->amcostestimate = amroutine->amcostestimate;
     322             :                 Assert(info->amcostestimate != NULL);
     323             : 
     324             :                 /* Fetch index opclass options */
     325      755696 :                 info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
     326             : 
     327             :                 /*
     328             :                  * Fetch the ordering information for the index, if any.
     329             :                  */
     330      755696 :                 if (info->relam == BTREE_AM_OID)
     331             :                 {
     332             :                     /*
     333             :                      * If it's a btree index, we can use its opfamily OIDs
     334             :                      * directly as the sort ordering opfamily OIDs.
     335             :                      */
     336             :                     Assert(amroutine->amcanorder);
     337             : 
     338      733540 :                     info->sortopfamily = info->opfamily;
     339      733540 :                     info->reverse_sort = palloc_array(bool, nkeycolumns);
     340      733540 :                     info->nulls_first = palloc_array(bool, nkeycolumns);
     341             : 
     342     1870432 :                     for (i = 0; i < nkeycolumns; i++)
     343             :                     {
     344     1136892 :                         int16       opt = indexRelation->rd_indoption[i];
     345             : 
     346     1136892 :                         info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
     347     1136892 :                         info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
     348             :                     }
     349             :                 }
     350       22156 :                 else if (amroutine->amcanorder)
     351             :                 {
     352             :                     /*
     353             :                      * Otherwise, identify the corresponding btree opfamilies
     354             :                      * by trying to map this index's "<" operators into btree.
     355             :                      * Since "<" uniquely defines the behavior of a sort
     356             :                      * order, this is a sufficient test.
     357             :                      *
     358             :                      * XXX This method is rather slow and complicated.  It'd
     359             :                      * be better to have a way to explicitly declare the
     360             :                      * corresponding btree opfamily for each opfamily of the
     361             :                      * other index type.
     362             :                      */
     363           0 :                     info->sortopfamily = palloc_array(Oid, nkeycolumns);
     364           0 :                     info->reverse_sort = palloc_array(bool, nkeycolumns);
     365           0 :                     info->nulls_first = palloc_array(bool, nkeycolumns);
     366             : 
     367           0 :                     for (i = 0; i < nkeycolumns; i++)
     368             :                     {
     369           0 :                         int16       opt = indexRelation->rd_indoption[i];
     370             :                         Oid         ltopr;
     371             :                         Oid         opfamily;
     372             :                         Oid         opcintype;
     373             :                         CompareType cmptype;
     374             : 
     375           0 :                         info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
     376           0 :                         info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
     377             : 
     378           0 :                         ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
     379           0 :                                                                 info->opcintype[i],
     380           0 :                                                                 info->opcintype[i],
     381             :                                                                 COMPARE_LT);
     382           0 :                         if (OidIsValid(ltopr) &&
     383           0 :                             get_ordering_op_properties(ltopr,
     384             :                                                        &opfamily,
     385             :                                                        &opcintype,
     386           0 :                                                        &cmptype) &&
     387           0 :                             opcintype == info->opcintype[i] &&
     388           0 :                             cmptype == COMPARE_LT)
     389             :                         {
     390             :                             /* Successful mapping */
     391           0 :                             info->sortopfamily[i] = opfamily;
     392             :                         }
     393             :                         else
     394             :                         {
     395             :                             /* Fail ... quietly treat index as unordered */
     396           0 :                             info->sortopfamily = NULL;
     397           0 :                             info->reverse_sort = NULL;
     398           0 :                             info->nulls_first = NULL;
     399           0 :                             break;
     400             :                         }
     401             :                     }
     402             :                 }
     403             :                 else
     404             :                 {
     405       22156 :                     info->sortopfamily = NULL;
     406       22156 :                     info->reverse_sort = NULL;
     407       22156 :                     info->nulls_first = NULL;
     408             :                 }
     409             :             }
     410             :             else
     411             :             {
     412        6924 :                 info->amcanorderbyop = false;
     413        6924 :                 info->amoptionalkey = false;
     414        6924 :                 info->amsearcharray = false;
     415        6924 :                 info->amsearchnulls = false;
     416        6924 :                 info->amcanparallel = false;
     417        6924 :                 info->amhasgettuple = false;
     418        6924 :                 info->amhasgetbitmap = false;
     419        6924 :                 info->amcanmarkpos = false;
     420        6924 :                 info->amcostestimate = NULL;
     421             : 
     422        6924 :                 info->sortopfamily = NULL;
     423        6924 :                 info->reverse_sort = NULL;
     424        6924 :                 info->nulls_first = NULL;
     425             :             }
     426             : 
     427             :             /*
     428             :              * Fetch the index expressions and predicate, if any.  We must
     429             :              * modify the copies we obtain from the relcache to have the
     430             :              * correct varno for the parent relation, so that they match up
     431             :              * correctly against qual clauses.
     432             :              *
     433             :              * After fixing the varnos, we need to run the index expressions
     434             :              * and predicate through const-simplification again, using a valid
     435             :              * "root".  This ensures that NullTest quals for Vars can be
     436             :              * properly reduced.
     437             :              */
     438      762620 :             info->indexprs = RelationGetIndexExpressions(indexRelation);
     439      762620 :             info->indpred = RelationGetIndexPredicate(indexRelation);
     440      762620 :             if (info->indexprs)
     441             :             {
     442        3032 :                 if (varno != 1)
     443        1938 :                     ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
     444             : 
     445        3032 :                 info->indexprs = (List *)
     446        3032 :                     eval_const_expressions(root, (Node *) info->indexprs);
     447             :             }
     448      762620 :             if (info->indpred)
     449             :             {
     450        1056 :                 if (varno != 1)
     451         126 :                     ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
     452             : 
     453        1056 :                 info->indpred = (List *)
     454        1056 :                     eval_const_expressions(root,
     455        1056 :                                            (Node *) make_ands_explicit(info->indpred));
     456        1056 :                 info->indpred = make_ands_implicit((Expr *) info->indpred);
     457             :             }
     458             : 
     459             :             /* Build targetlist using the completed indexprs data */
     460      762620 :             info->indextlist = build_index_tlist(root, info, relation);
     461             : 
     462      762620 :             info->indrestrictinfo = NIL; /* set later, in indxpath.c */
     463      762620 :             info->predOK = false;    /* set later, in indxpath.c */
     464      762620 :             info->unique = index->indisunique;
     465      762620 :             info->nullsnotdistinct = index->indnullsnotdistinct;
     466      762620 :             info->immediate = index->indimmediate;
     467      762620 :             info->hypothetical = false;
     468             : 
     469             :             /*
     470             :              * Estimate the index size.  If it's not a partial index, we lock
     471             :              * the number-of-tuples estimate to equal the parent table; if it
     472             :              * is partial then we have to use the same methods as we would for
     473             :              * a table, except we can be sure that the index is not larger
     474             :              * than the table.  We must ignore partitioned indexes here as
     475             :              * there are not physical indexes.
     476             :              */
     477      762620 :             if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
     478             :             {
     479      755696 :                 if (info->indpred == NIL)
     480             :                 {
     481      754664 :                     info->pages = RelationGetNumberOfBlocks(indexRelation);
     482      754664 :                     info->tuples = rel->tuples;
     483             :                 }
     484             :                 else
     485             :                 {
     486             :                     double      allvisfrac; /* dummy */
     487             : 
     488        1032 :                     estimate_rel_size(indexRelation, NULL,
     489        1032 :                                       &info->pages, &info->tuples, &allvisfrac);
     490        1032 :                     if (info->tuples > rel->tuples)
     491          18 :                         info->tuples = rel->tuples;
     492             :                 }
     493             : 
     494             :                 /*
     495             :                  * Get tree height while we have the index open
     496             :                  */
     497      755696 :                 if (amroutine->amgettreeheight)
     498             :                 {
     499      733540 :                     info->tree_height = amroutine->amgettreeheight(indexRelation);
     500             :                 }
     501             :                 else
     502             :                 {
     503             :                     /* For other index types, just set it to "unknown" for now */
     504       22156 :                     info->tree_height = -1;
     505             :                 }
     506             :             }
     507             :             else
     508             :             {
     509             :                 /* Zero these out for partitioned indexes */
     510        6924 :                 info->pages = 0;
     511        6924 :                 info->tuples = 0.0;
     512        6924 :                 info->tree_height = -1;
     513             :             }
     514             : 
     515      762620 :             index_close(indexRelation, NoLock);
     516             : 
     517             :             /*
     518             :              * We've historically used lcons() here.  It'd make more sense to
     519             :              * use lappend(), but that causes the planner to change behavior
     520             :              * in cases where two indexes seem equally attractive.  For now,
     521             :              * stick with lcons() --- few tables should have so many indexes
     522             :              * that the O(N^2) behavior of lcons() is really a problem.
     523             :              */
     524      762620 :             indexinfos = lcons(info, indexinfos);
     525             :         }
     526             : 
     527      364218 :         list_free(indexoidlist);
     528             :     }
     529             : 
     530      489282 :     rel->indexlist = indexinfos;
     531             : 
     532      489282 :     rel->statlist = get_relation_statistics(root, rel, relation);
     533             : 
     534             :     /* Grab foreign-table info using the relcache, while we have it */
     535      489282 :     if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
     536             :     {
     537             :         /* Check if the access to foreign tables is restricted */
     538        2516 :         if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
     539             :         {
     540             :             /* there must not be built-in foreign tables */
     541             :             Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
     542             : 
     543           4 :             ereport(ERROR,
     544             :                     (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
     545             :                      errmsg("access to non-system foreign table is restricted")));
     546             :         }
     547             : 
     548        2512 :         rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
     549        2512 :         rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
     550             :     }
     551             :     else
     552             :     {
     553      486766 :         rel->serverid = InvalidOid;
     554      486766 :         rel->fdwroutine = NULL;
     555             :     }
     556             : 
     557             :     /* Collect info about relation's foreign keys, if relevant */
     558      489264 :     get_relation_foreign_keys(root, rel, relation, inhparent);
     559             : 
     560             :     /* Collect info about functions implemented by the rel's table AM. */
     561      489264 :     if (relation->rd_tableam &&
     562      468670 :         relation->rd_tableam->scan_set_tidrange != NULL &&
     563      468670 :         relation->rd_tableam->scan_getnextslot_tidrange != NULL)
     564      468670 :         rel->amflags |= AMFLAG_HAS_TID_RANGE;
     565             : 
     566             :     /*
     567             :      * Collect info about relation's partitioning scheme, if any. Only
     568             :      * inheritance parents may be partitioned.
     569             :      */
     570      489264 :     if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     571       18056 :         set_relation_partition_info(root, rel, relation);
     572             : 
     573      489264 :     table_close(relation, NoLock);
     574             : 
     575             :     /*
     576             :      * Allow a plugin to editorialize on the info we obtained from the
     577             :      * catalogs.  Actions might include altering the assumed relation size,
     578             :      * removing an index, or adding a hypothetical index to the indexlist.
     579             :      */
     580      489264 :     if (get_relation_info_hook)
     581           0 :         (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
     582      489264 : }
     583             : 
     584             : /*
     585             :  * get_relation_foreign_keys -
     586             :  *    Retrieves foreign key information for a given relation.
     587             :  *
     588             :  * ForeignKeyOptInfos for relevant foreign keys are created and added to
     589             :  * root->fkey_list.  We do this now while we have the relcache entry open.
     590             :  * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
     591             :  * until all RelOptInfos have been built, but the cost of re-opening the
     592             :  * relcache entries would probably exceed any savings.
     593             :  */
     594             : static void
     595      489264 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
     596             :                           Relation relation, bool inhparent)
     597             : {
     598      489264 :     List       *rtable = root->parse->rtable;
     599             :     List       *cachedfkeys;
     600             :     ListCell   *lc;
     601             : 
     602             :     /*
     603             :      * If it's not a baserel, we don't care about its FKs.  Also, if the query
     604             :      * references only a single relation, we can skip the lookup since no FKs
     605             :      * could satisfy the requirements below.
     606             :      */
     607      934028 :     if (rel->reloptkind != RELOPT_BASEREL ||
     608      444764 :         list_length(rtable) < 2)
     609      253826 :         return;
     610             : 
     611             :     /*
     612             :      * If it's the parent of an inheritance tree, ignore its FKs.  We could
     613             :      * make useful FK-based deductions if we found that all members of the
     614             :      * inheritance tree have equivalent FK constraints, but detecting that
     615             :      * would require code that hasn't been written.
     616             :      */
     617      235438 :     if (inhparent)
     618        5974 :         return;
     619             : 
     620             :     /*
     621             :      * Extract data about relation's FKs from the relcache.  Note that this
     622             :      * list belongs to the relcache and might disappear in a cache flush, so
     623             :      * we must not do any further catalog access within this function.
     624             :      */
     625      229464 :     cachedfkeys = RelationGetFKeyList(relation);
     626             : 
     627             :     /*
     628             :      * Figure out which FKs are of interest for this query, and create
     629             :      * ForeignKeyOptInfos for them.  We want only FKs that reference some
     630             :      * other RTE of the current query.  In queries containing self-joins,
     631             :      * there might be more than one other RTE for a referenced table, and we
     632             :      * should make a ForeignKeyOptInfo for each occurrence.
     633             :      *
     634             :      * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
     635             :      * too hard to identify those here, so we might end up making some useless
     636             :      * ForeignKeyOptInfos.  If so, match_foreign_keys_to_quals() will remove
     637             :      * them again.
     638             :      */
     639      232082 :     foreach(lc, cachedfkeys)
     640             :     {
     641        2618 :         ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
     642             :         Index       rti;
     643             :         ListCell   *lc2;
     644             : 
     645             :         /* conrelid should always be that of the table we're considering */
     646             :         Assert(cachedfk->conrelid == RelationGetRelid(relation));
     647             : 
     648             :         /* skip constraints currently not enforced */
     649        2618 :         if (!cachedfk->conenforced)
     650          18 :             continue;
     651             : 
     652             :         /* Scan to find other RTEs matching confrelid */
     653        2600 :         rti = 0;
     654       11492 :         foreach(lc2, rtable)
     655             :         {
     656        8892 :             RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
     657             :             ForeignKeyOptInfo *info;
     658             : 
     659        8892 :             rti++;
     660             :             /* Ignore if not the correct table */
     661        8892 :             if (rte->rtekind != RTE_RELATION ||
     662        5542 :                 rte->relid != cachedfk->confrelid)
     663        6710 :                 continue;
     664             :             /* Ignore if it's an inheritance parent; doesn't really match */
     665        2182 :             if (rte->inh)
     666         270 :                 continue;
     667             :             /* Ignore self-referential FKs; we only care about joins */
     668        1912 :             if (rti == rel->relid)
     669         132 :                 continue;
     670             : 
     671             :             /* OK, let's make an entry */
     672        1780 :             info = makeNode(ForeignKeyOptInfo);
     673        1780 :             info->con_relid = rel->relid;
     674        1780 :             info->ref_relid = rti;
     675        1780 :             info->nkeys = cachedfk->nkeys;
     676        1780 :             memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
     677        1780 :             memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
     678        1780 :             memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
     679             :             /* zero out fields to be filled by match_foreign_keys_to_quals */
     680        1780 :             info->nmatched_ec = 0;
     681        1780 :             info->nconst_ec = 0;
     682        1780 :             info->nmatched_rcols = 0;
     683        1780 :             info->nmatched_ri = 0;
     684        1780 :             memset(info->eclass, 0, sizeof(info->eclass));
     685        1780 :             memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
     686        1780 :             memset(info->rinfos, 0, sizeof(info->rinfos));
     687             : 
     688        1780 :             root->fkey_list = lappend(root->fkey_list, info);
     689             :         }
     690             :     }
     691             : }
     692             : 
     693             : /*
     694             :  * get_relation_notnullatts -
     695             :  *    Retrieves column not-null constraint information for a given relation.
     696             :  *
     697             :  * We do this while we have the relcache entry open, and store the column
     698             :  * not-null constraint information in a hash table based on the relation OID.
     699             :  */
     700             : void
     701      527088 : get_relation_notnullatts(PlannerInfo *root, Relation relation)
     702             : {
     703      527088 :     Oid         relid = RelationGetRelid(relation);
     704             :     NotnullHashEntry *hentry;
     705             :     bool        found;
     706      527088 :     Bitmapset  *notnullattnums = NULL;
     707             : 
     708             :     /* bail out if the relation has no not-null constraints */
     709      527088 :     if (relation->rd_att->constr == NULL ||
     710      354422 :         !relation->rd_att->constr->has_not_null)
     711      217976 :         return;
     712             : 
     713             :     /* create the hash table if it hasn't been created yet */
     714      348814 :     if (root->glob->rel_notnullatts_hash == NULL)
     715             :     {
     716             :         HTAB       *hashtab;
     717             :         HASHCTL     hash_ctl;
     718             : 
     719      179186 :         hash_ctl.keysize = sizeof(Oid);
     720      179186 :         hash_ctl.entrysize = sizeof(NotnullHashEntry);
     721      179186 :         hash_ctl.hcxt = CurrentMemoryContext;
     722             : 
     723      179186 :         hashtab = hash_create("Relation NOT NULL attnums",
     724             :                               64L,  /* arbitrary initial size */
     725             :                               &hash_ctl,
     726             :                               HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     727             : 
     728      179186 :         root->glob->rel_notnullatts_hash = hashtab;
     729             :     }
     730             : 
     731             :     /*
     732             :      * Create a hash entry for this relation OID, if we don't have one
     733             :      * already.
     734             :      */
     735      348814 :     hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
     736             :                                               &relid,
     737             :                                               HASH_ENTER,
     738             :                                               &found);
     739             : 
     740             :     /* bail out if a hash entry already exists for this relation OID */
     741      348814 :     if (found)
     742       39702 :         return;
     743             : 
     744             :     /* collect the column not-null constraint information for this relation */
     745     4550608 :     for (int i = 0; i < relation->rd_att->natts; i++)
     746             :     {
     747     4241496 :         CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
     748             : 
     749             :         Assert(attr->attnullability != ATTNULLABLE_UNKNOWN);
     750             : 
     751     4241496 :         if (attr->attnullability == ATTNULLABLE_VALID)
     752             :         {
     753     3585164 :             notnullattnums = bms_add_member(notnullattnums, i + 1);
     754             : 
     755             :             /*
     756             :              * Per RemoveAttributeById(), dropped columns will have their
     757             :              * attnotnull unset, so we needn't check for dropped columns in
     758             :              * the above condition.
     759             :              */
     760             :             Assert(!attr->attisdropped);
     761             :         }
     762             :     }
     763             : 
     764             :     /* ... and initialize the new hash entry */
     765      309112 :     hentry->notnullattnums = notnullattnums;
     766             : }
     767             : 
     768             : /*
     769             :  * find_relation_notnullatts -
     770             :  *    Searches the hash table and returns the column not-null constraint
     771             :  *    information for a given relation.
     772             :  */
     773             : Bitmapset *
     774      465688 : find_relation_notnullatts(PlannerInfo *root, Oid relid)
     775             : {
     776             :     NotnullHashEntry *hentry;
     777             :     bool        found;
     778             : 
     779      465688 :     if (root->glob->rel_notnullatts_hash == NULL)
     780      121828 :         return NULL;
     781             : 
     782      343860 :     hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
     783             :                                               &relid,
     784             :                                               HASH_FIND,
     785             :                                               &found);
     786      343860 :     if (!found)
     787        5100 :         return NULL;
     788             : 
     789      338760 :     return hentry->notnullattnums;
     790             : }
     791             : 
     792             : /*
     793             :  * infer_arbiter_indexes -
     794             :  *    Determine the unique indexes used to arbitrate speculative insertion.
     795             :  *
     796             :  * Uses user-supplied inference clause expressions and predicate to match a
     797             :  * unique index from those defined and ready on the heap relation (target).
     798             :  * An exact match is required on columns/expressions (although they can appear
     799             :  * in any order).  However, the predicate given by the user need only restrict
     800             :  * insertion to a subset of some part of the table covered by some particular
     801             :  * unique index (in particular, a partial unique index) in order to be
     802             :  * inferred.
     803             :  *
     804             :  * The implementation does not consider which B-Tree operator class any
     805             :  * particular available unique index attribute uses, unless one was specified
     806             :  * in the inference specification. The same is true of collations.  In
     807             :  * particular, there is no system dependency on the default operator class for
     808             :  * the purposes of inference.  If no opclass (or collation) is specified, then
     809             :  * all matching indexes (that may or may not match the default in terms of
     810             :  * each attribute opclass/collation) are used for inference.
     811             :  */
     812             : List *
     813        1868 : infer_arbiter_indexes(PlannerInfo *root)
     814             : {
     815        1868 :     OnConflictExpr *onconflict = root->parse->onConflict;
     816             : 
     817             :     /* Iteration state */
     818             :     Index       varno;
     819             :     RangeTblEntry *rte;
     820             :     Relation    relation;
     821        1868 :     Oid         indexOidFromConstraint = InvalidOid;
     822             :     List       *indexList;
     823        1868 :     List       *indexRelList = NIL;
     824             : 
     825             :     /*
     826             :      * Required attributes and expressions used to match indexes to the clause
     827             :      * given by the user.  In the ON CONFLICT ON CONSTRAINT case, we compute
     828             :      * these from that constraint's index to match all other indexes, to
     829             :      * account for the case where that index is being concurrently reindexed.
     830             :      */
     831        1868 :     List       *inferIndexExprs = (List *) onconflict->arbiterWhere;
     832        1868 :     Bitmapset  *inferAttrs = NULL;
     833        1868 :     List       *inferElems = NIL;
     834             : 
     835             :     /* Results */
     836        1868 :     List       *results = NIL;
     837        1868 :     bool        foundValid = false;
     838             : 
     839             :     /*
     840             :      * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
     841             :      * specification or named constraint.  ON CONFLICT DO UPDATE statements
     842             :      * must always provide one or the other (but parser ought to have caught
     843             :      * that already).
     844             :      */
     845        1868 :     if (onconflict->arbiterElems == NIL &&
     846         426 :         onconflict->constraint == InvalidOid)
     847         234 :         return NIL;
     848             : 
     849             :     /*
     850             :      * We need not lock the relation since it was already locked, either by
     851             :      * the rewriter or when expand_inherited_rtentry() added it to the query's
     852             :      * rangetable.
     853             :      */
     854        1634 :     varno = root->parse->resultRelation;
     855        1634 :     rte = rt_fetch(varno, root->parse->rtable);
     856             : 
     857        1634 :     relation = table_open(rte->relid, NoLock);
     858             : 
     859             :     /*
     860             :      * Build normalized/BMS representation of plain indexed attributes, as
     861             :      * well as a separate list of expression items.  This simplifies matching
     862             :      * the cataloged definition of indexes.
     863             :      */
     864        5164 :     foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
     865             :     {
     866             :         Var        *var;
     867             :         int         attno;
     868             : 
     869             :         /* we cannot also have a constraint name, per grammar */
     870             :         Assert(!OidIsValid(onconflict->constraint));
     871             : 
     872        1896 :         if (!IsA(elem->expr, Var))
     873             :         {
     874             :             /* If not a plain Var, just shove it in inferElems for now */
     875         174 :             inferElems = lappend(inferElems, elem->expr);
     876         174 :             continue;
     877             :         }
     878             : 
     879        1722 :         var = (Var *) elem->expr;
     880        1722 :         attno = var->varattno;
     881             : 
     882        1722 :         if (attno == 0)
     883           0 :             ereport(ERROR,
     884             :                     (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     885             :                      errmsg("whole row unique index inference specifications are not supported")));
     886             : 
     887        1722 :         inferAttrs = bms_add_member(inferAttrs,
     888             :                                     attno - FirstLowInvalidHeapAttributeNumber);
     889             :     }
     890             : 
     891             :     /*
     892             :      * Next, open all the indexes.  We need this list for two things: first,
     893             :      * if an ON CONSTRAINT clause was given, and that constraint's index is
     894             :      * undergoing REINDEX CONCURRENTLY, then we need to consider all matches
     895             :      * for that index.  Second, if an attribute list was specified in the ON
     896             :      * CONFLICT clause, we use the list to find the indexes whose attributes
     897             :      * match that list.
     898             :      */
     899        1634 :     indexList = RelationGetIndexList(relation);
     900        5342 :     foreach_oid(indexoid, indexList)
     901             :     {
     902             :         Relation    idxRel;
     903             : 
     904             :         /* obtain the same lock type that the executor will ultimately use */
     905        2074 :         idxRel = index_open(indexoid, rte->rellockmode);
     906        2074 :         indexRelList = lappend(indexRelList, idxRel);
     907             :     }
     908             : 
     909             :     /*
     910             :      * If a constraint was named in the command, look up its index.  We don't
     911             :      * return it immediately because we need some additional sanity checks,
     912             :      * and also because we need to include other indexes as arbiters to
     913             :      * account for REINDEX CONCURRENTLY processing it.
     914             :      */
     915        1634 :     if (onconflict->constraint != InvalidOid)
     916             :     {
     917             :         /* we cannot also have an explicit list of elements, per grammar */
     918             :         Assert(onconflict->arbiterElems == NIL);
     919             : 
     920         192 :         indexOidFromConstraint = get_constraint_index(onconflict->constraint);
     921         192 :         if (indexOidFromConstraint == InvalidOid)
     922           0 :             ereport(ERROR,
     923             :                     (errcode(ERRCODE_WRONG_OBJECT_TYPE),
     924             :                      errmsg("constraint in ON CONFLICT clause has no associated index")));
     925             : 
     926             :         /*
     927             :          * Find the named constraint index to extract its attributes and
     928             :          * predicates.
     929             :          */
     930         402 :         foreach_ptr(RelationData, idxRel, indexRelList)
     931             :         {
     932         210 :             Form_pg_index idxForm = idxRel->rd_index;
     933             : 
     934         210 :             if (indexOidFromConstraint == idxForm->indexrelid)
     935             :             {
     936             :                 /* Found it. */
     937             :                 Assert(idxForm->indisready);
     938             : 
     939             :                 /*
     940             :                  * Set up inferElems and inferPredExprs to match the
     941             :                  * constraint index, so that we can match them in the loop
     942             :                  * below.
     943             :                  */
     944         540 :                 for (int natt = 0; natt < idxForm->indnkeyatts; natt++)
     945             :                 {
     946             :                     int         attno;
     947             : 
     948         348 :                     attno = idxRel->rd_index->indkey.values[natt];
     949         348 :                     if (attno != InvalidAttrNumber)
     950             :                         inferAttrs =
     951         336 :                             bms_add_member(inferAttrs,
     952             :                                            attno - FirstLowInvalidHeapAttributeNumber);
     953             :                 }
     954             : 
     955         192 :                 inferElems = RelationGetIndexExpressions(idxRel);
     956         192 :                 inferIndexExprs = RelationGetIndexPredicate(idxRel);
     957         192 :                 break;
     958             :             }
     959             :         }
     960             :     }
     961             : 
     962             :     /*
     963             :      * Using that representation, iterate through the list of indexes on the
     964             :      * target relation to find matches.
     965             :      */
     966        5186 :     foreach_ptr(RelationData, idxRel, indexRelList)
     967             :     {
     968             :         Form_pg_index idxForm;
     969             :         Bitmapset  *indexedAttrs;
     970             :         List       *idxExprs;
     971             :         List       *predExprs;
     972             :         AttrNumber  natt;
     973             :         bool        match;
     974             : 
     975             :         /*
     976             :          * Extract info from the relation descriptor for the index.
     977             :          *
     978             :          * Let executor complain about !indimmediate case directly, because
     979             :          * enforcement needs to occur there anyway when an inference clause is
     980             :          * omitted.
     981             :          */
     982        2074 :         idxForm = idxRel->rd_index;
     983             : 
     984             :         /*
     985             :          * Ignore indexes that aren't indisready, because we cannot trust
     986             :          * their catalog structure yet.  However, if any indexes are marked
     987             :          * indisready but not yet indisvalid, we still consider them, because
     988             :          * they might turn valid while we're running.  Doing it this way
     989             :          * allows a concurrent transaction with a slightly later catalog
     990             :          * snapshot infer the same set of indexes, which is critical to
     991             :          * prevent spurious 'duplicate key' errors.
     992             :          *
     993             :          * However, another critical aspect is that a unique index that isn't
     994             :          * yet marked indisvalid=true might not be complete yet, meaning it
     995             :          * wouldn't detect possible duplicate rows.  In order to prevent false
     996             :          * negatives, we require that we include in the set of inferred
     997             :          * indexes at least one index that is marked valid.
     998             :          */
     999        2074 :         if (!idxForm->indisready)
    1000           0 :             continue;
    1001             : 
    1002             :         /*
    1003             :          * Ignore invalid indexes for partitioned tables.  It's possible that
    1004             :          * some partitions don't have the index (yet), and then we would not
    1005             :          * find a match during ExecInitPartitionInfo.
    1006             :          */
    1007        2074 :         if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
    1008         148 :             !idxForm->indisvalid)
    1009          12 :             continue;
    1010             : 
    1011             :         /*
    1012             :          * Note that we do not perform a check against indcheckxmin (like e.g.
    1013             :          * get_relation_info()) here to eliminate candidates, because
    1014             :          * uniqueness checking only cares about the most recently committed
    1015             :          * tuple versions.
    1016             :          */
    1017             : 
    1018             :         /*
    1019             :          * Look for match for "ON constraint_name" variant, which may not be a
    1020             :          * unique constraint.  This can only be a constraint name.
    1021             :          */
    1022        2062 :         if (indexOidFromConstraint == idxForm->indexrelid)
    1023             :         {
    1024         192 :             if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
    1025          78 :                 ereport(ERROR,
    1026             :                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
    1027             :                          errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
    1028             : 
    1029             :             /* Consider this one a match already */
    1030         114 :             results = lappend_oid(results, idxForm->indexrelid);
    1031         114 :             foundValid |= idxForm->indisvalid;
    1032         114 :             continue;
    1033             :         }
    1034        1870 :         else if (indexOidFromConstraint != InvalidOid)
    1035             :         {
    1036             :             /*
    1037             :              * In the case of "ON constraint_name DO UPDATE" we need to skip
    1038             :              * non-unique candidates.
    1039             :              */
    1040          24 :             if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
    1041           0 :                 continue;
    1042             :         }
    1043             :         else
    1044             :         {
    1045             :             /*
    1046             :              * Only considering conventional inference at this point (not
    1047             :              * named constraints), so index under consideration can be
    1048             :              * immediately skipped if it's not unique.
    1049             :              */
    1050        1846 :             if (!idxForm->indisunique)
    1051           4 :                 continue;
    1052             :         }
    1053             : 
    1054             :         /*
    1055             :          * So-called unique constraints with WITHOUT OVERLAPS are really
    1056             :          * exclusion constraints, so skip those too.
    1057             :          */
    1058        1866 :         if (idxForm->indisexclusion)
    1059         150 :             continue;
    1060             : 
    1061             :         /* Build BMS representation of plain (non expression) index attrs */
    1062        1716 :         indexedAttrs = NULL;
    1063        3996 :         for (natt = 0; natt < idxForm->indnkeyatts; natt++)
    1064             :         {
    1065        2280 :             int         attno = idxRel->rd_index->indkey.values[natt];
    1066             : 
    1067        2280 :             if (attno != 0)
    1068        1968 :                 indexedAttrs = bms_add_member(indexedAttrs,
    1069             :                                               attno - FirstLowInvalidHeapAttributeNumber);
    1070             :         }
    1071             : 
    1072             :         /* Non-expression attributes (if any) must match */
    1073        1716 :         if (!bms_equal(indexedAttrs, inferAttrs))
    1074         396 :             continue;
    1075             : 
    1076             :         /* Expression attributes (if any) must match */
    1077        1320 :         idxExprs = RelationGetIndexExpressions(idxRel);
    1078        1320 :         if (idxExprs)
    1079             :         {
    1080         174 :             if (varno != 1)
    1081           6 :                 ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
    1082             : 
    1083         174 :             idxExprs = (List *) eval_const_expressions(root, (Node *) idxExprs);
    1084             :         }
    1085             : 
    1086             :         /*
    1087             :          * If arbiterElems are present, check them.  (Note that if a
    1088             :          * constraint name was given in the command line, this list is NIL.)
    1089             :          */
    1090        1320 :         match = true;
    1091        4320 :         foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
    1092             :         {
    1093             :             /*
    1094             :              * Ensure that collation/opclass aspects of inference expression
    1095             :              * element match.  Even though this loop is primarily concerned
    1096             :              * with matching expressions, it is a convenient point to check
    1097             :              * this for both expressions and ordinary (non-expression)
    1098             :              * attributes appearing as inference elements.
    1099             :              */
    1100        1728 :             if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
    1101             :             {
    1102          36 :                 match = false;
    1103          36 :                 break;
    1104             :             }
    1105             : 
    1106             :             /*
    1107             :              * Plain Vars don't factor into count of expression elements, and
    1108             :              * the question of whether or not they satisfy the index
    1109             :              * definition has already been considered (they must).
    1110             :              */
    1111        1692 :             if (IsA(elem->expr, Var))
    1112        1518 :                 continue;
    1113             : 
    1114             :             /*
    1115             :              * Might as well avoid redundant check in the rare cases where
    1116             :              * infer_collation_opclass_match() is required to do real work.
    1117             :              * Otherwise, check that element expression appears in cataloged
    1118             :              * index definition.
    1119             :              */
    1120         174 :             if (elem->infercollid != InvalidOid ||
    1121         306 :                 elem->inferopclass != InvalidOid ||
    1122         150 :                 list_member(idxExprs, elem->expr))
    1123         162 :                 continue;
    1124             : 
    1125          12 :             match = false;
    1126          12 :             break;
    1127             :         }
    1128        1320 :         if (!match)
    1129          48 :             continue;
    1130             : 
    1131             :         /*
    1132             :          * In case of inference from an attribute list, ensure that the
    1133             :          * expression elements from inference clause are not missing any
    1134             :          * cataloged expressions.  This does the right thing when unique
    1135             :          * indexes redundantly repeat the same attribute, or if attributes
    1136             :          * redundantly appear multiple times within an inference clause.
    1137             :          *
    1138             :          * In case a constraint was named, ensure the candidate has an equal
    1139             :          * set of expressions as the named constraint's index.
    1140             :          */
    1141        1272 :         if (list_difference(idxExprs, inferElems) != NIL)
    1142          54 :             continue;
    1143             : 
    1144        1218 :         predExprs = RelationGetIndexPredicate(idxRel);
    1145        1218 :         if (predExprs)
    1146             :         {
    1147          66 :             if (varno != 1)
    1148           6 :                 ChangeVarNodes((Node *) predExprs, 1, varno, 0);
    1149             : 
    1150             :             predExprs = (List *)
    1151          66 :                 eval_const_expressions(root,
    1152          66 :                                        (Node *) make_ands_explicit(predExprs));
    1153          66 :             predExprs = make_ands_implicit((Expr *) predExprs);
    1154             :         }
    1155             : 
    1156             :         /*
    1157             :          * Partial indexes affect each form of ON CONFLICT differently: if a
    1158             :          * constraint was named, then the predicates must be identical.  In
    1159             :          * conventional inference, the index's predicate must be implied by
    1160             :          * the WHERE clause.
    1161             :          */
    1162        1218 :         if (OidIsValid(indexOidFromConstraint))
    1163             :         {
    1164           0 :             if (list_difference(predExprs, inferIndexExprs) != NIL)
    1165           0 :                 continue;
    1166             :         }
    1167             :         else
    1168             :         {
    1169        1218 :             if (!predicate_implied_by(predExprs, inferIndexExprs, false))
    1170          36 :                 continue;
    1171             :         }
    1172             : 
    1173             :         /* All good -- consider this index a match */
    1174        1182 :         results = lappend_oid(results, idxForm->indexrelid);
    1175        1182 :         foundValid |= idxForm->indisvalid;
    1176             :     }
    1177             : 
    1178             :     /* Close all indexes */
    1179        5108 :     foreach_ptr(RelationData, idxRel, indexRelList)
    1180             :     {
    1181        1996 :         index_close(idxRel, NoLock);
    1182             :     }
    1183             : 
    1184        1556 :     list_free(indexList);
    1185        1556 :     list_free(indexRelList);
    1186        1556 :     table_close(relation, NoLock);
    1187             : 
    1188             :     /* We require at least one indisvalid index */
    1189        1556 :     if (results == NIL || !foundValid)
    1190         314 :         ereport(ERROR,
    1191             :                 (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
    1192             :                  errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
    1193             : 
    1194        1242 :     return results;
    1195             : }
    1196             : 
    1197             : /*
    1198             :  * infer_collation_opclass_match - ensure infer element opclass/collation match
    1199             :  *
    1200             :  * Given unique index inference element from inference specification, if
    1201             :  * collation was specified, or if opclass was specified, verify that there is
    1202             :  * at least one matching indexed attribute (occasionally, there may be more).
    1203             :  * Skip this in the common case where inference specification does not include
    1204             :  * collation or opclass (instead matching everything, regardless of cataloged
    1205             :  * collation/opclass of indexed attribute).
    1206             :  *
    1207             :  * At least historically, Postgres has not offered collations or opclasses
    1208             :  * with alternative-to-default notions of equality, so these additional
    1209             :  * criteria should only be required infrequently.
    1210             :  *
    1211             :  * Don't give up immediately when an inference element matches some attribute
    1212             :  * cataloged as indexed but not matching additional opclass/collation
    1213             :  * criteria.  This is done so that the implementation is as forgiving as
    1214             :  * possible of redundancy within cataloged index attributes (or, less
    1215             :  * usefully, within inference specification elements).  If collations actually
    1216             :  * differ between apparently redundantly indexed attributes (redundant within
    1217             :  * or across indexes), then there really is no redundancy as such.
    1218             :  *
    1219             :  * Note that if an inference element specifies an opclass and a collation at
    1220             :  * once, both must match in at least one particular attribute within index
    1221             :  * catalog definition in order for that inference element to be considered
    1222             :  * inferred/satisfied.
    1223             :  */
    1224             : static bool
    1225        1728 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
    1226             :                               List *idxExprs)
    1227             : {
    1228             :     AttrNumber  natt;
    1229        1728 :     Oid         inferopfamily = InvalidOid; /* OID of opclass opfamily */
    1230        1728 :     Oid         inferopcinputtype = InvalidOid; /* OID of opclass input type */
    1231        1728 :     int         nplain = 0;     /* # plain attrs observed */
    1232             : 
    1233             :     /*
    1234             :      * If inference specification element lacks collation/opclass, then no
    1235             :      * need to check for exact match.
    1236             :      */
    1237        1728 :     if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
    1238        1614 :         return true;
    1239             : 
    1240             :     /*
    1241             :      * Lookup opfamily and input type, for matching indexes
    1242             :      */
    1243         114 :     if (elem->inferopclass)
    1244             :     {
    1245          84 :         inferopfamily = get_opclass_family(elem->inferopclass);
    1246          84 :         inferopcinputtype = get_opclass_input_type(elem->inferopclass);
    1247             :     }
    1248             : 
    1249         246 :     for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
    1250             :     {
    1251         210 :         Oid         opfamily = idxRel->rd_opfamily[natt - 1];
    1252         210 :         Oid         opcinputtype = idxRel->rd_opcintype[natt - 1];
    1253         210 :         Oid         collation = idxRel->rd_indcollation[natt - 1];
    1254         210 :         int         attno = idxRel->rd_index->indkey.values[natt - 1];
    1255             : 
    1256         210 :         if (attno != 0)
    1257         168 :             nplain++;
    1258             : 
    1259         210 :         if (elem->inferopclass != InvalidOid &&
    1260          66 :             (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
    1261             :         {
    1262             :             /* Attribute needed to match opclass, but didn't */
    1263          90 :             continue;
    1264             :         }
    1265             : 
    1266         120 :         if (elem->infercollid != InvalidOid &&
    1267          84 :             elem->infercollid != collation)
    1268             :         {
    1269             :             /* Attribute needed to match collation, but didn't */
    1270          36 :             continue;
    1271             :         }
    1272             : 
    1273             :         /* If one matching index att found, good enough -- return true */
    1274          84 :         if (IsA(elem->expr, Var))
    1275             :         {
    1276          54 :             if (((Var *) elem->expr)->varattno == attno)
    1277          54 :                 return true;
    1278             :         }
    1279          30 :         else if (attno == 0)
    1280             :         {
    1281          30 :             Node       *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
    1282             : 
    1283             :             /*
    1284             :              * Note that unlike routines like match_index_to_operand() we
    1285             :              * don't need to care about RelabelType.  Neither the index
    1286             :              * definition nor the inference clause should contain them.
    1287             :              */
    1288          30 :             if (equal(elem->expr, nattExpr))
    1289          24 :                 return true;
    1290             :         }
    1291             :     }
    1292             : 
    1293          36 :     return false;
    1294             : }
    1295             : 
    1296             : /*
    1297             :  * estimate_rel_size - estimate # pages and # tuples in a table or index
    1298             :  *
    1299             :  * We also estimate the fraction of the pages that are marked all-visible in
    1300             :  * the visibility map, for use in estimation of index-only scans.
    1301             :  *
    1302             :  * If attr_widths isn't NULL, it points to the zero-index entry of the
    1303             :  * relation's attr_widths[] cache; we fill this in if we have need to compute
    1304             :  * the attribute widths for estimation purposes.
    1305             :  */
    1306             : void
    1307      467550 : estimate_rel_size(Relation rel, int32 *attr_widths,
    1308             :                   BlockNumber *pages, double *tuples, double *allvisfrac)
    1309             : {
    1310             :     BlockNumber curpages;
    1311             :     BlockNumber relpages;
    1312             :     double      reltuples;
    1313             :     BlockNumber relallvisible;
    1314             :     double      density;
    1315             : 
    1316      467550 :     if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
    1317             :     {
    1318      463944 :         table_relation_estimate_size(rel, attr_widths, pages, tuples,
    1319             :                                      allvisfrac);
    1320             :     }
    1321        3606 :     else if (rel->rd_rel->relkind == RELKIND_INDEX)
    1322             :     {
    1323             :         /*
    1324             :          * XXX: It'd probably be good to move this into a callback, individual
    1325             :          * index types e.g. know if they have a metapage.
    1326             :          */
    1327             : 
    1328             :         /* it has storage, ok to call the smgr */
    1329        1032 :         curpages = RelationGetNumberOfBlocks(rel);
    1330             : 
    1331             :         /* report estimated # pages */
    1332        1032 :         *pages = curpages;
    1333             :         /* quick exit if rel is clearly empty */
    1334        1032 :         if (curpages == 0)
    1335             :         {
    1336           0 :             *tuples = 0;
    1337           0 :             *allvisfrac = 0;
    1338           0 :             return;
    1339             :         }
    1340             : 
    1341             :         /* coerce values in pg_class to more desirable types */
    1342        1032 :         relpages = (BlockNumber) rel->rd_rel->relpages;
    1343        1032 :         reltuples = (double) rel->rd_rel->reltuples;
    1344        1032 :         relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
    1345             : 
    1346             :         /*
    1347             :          * Discount the metapage while estimating the number of tuples. This
    1348             :          * is a kluge because it assumes more than it ought to about index
    1349             :          * structure.  Currently it's OK for btree, hash, and GIN indexes but
    1350             :          * suspect for GiST indexes.
    1351             :          */
    1352        1032 :         if (relpages > 0)
    1353             :         {
    1354        1014 :             curpages--;
    1355        1014 :             relpages--;
    1356             :         }
    1357             : 
    1358             :         /* estimate number of tuples from previous tuple density */
    1359        1032 :         if (reltuples >= 0 && relpages > 0)
    1360         714 :             density = reltuples / (double) relpages;
    1361             :         else
    1362             :         {
    1363             :             /*
    1364             :              * If we have no data because the relation was never vacuumed,
    1365             :              * estimate tuple width from attribute datatypes.  We assume here
    1366             :              * that the pages are completely full, which is OK for tables
    1367             :              * (since they've presumably not been VACUUMed yet) but is
    1368             :              * probably an overestimate for indexes.  Fortunately
    1369             :              * get_relation_info() can clamp the overestimate to the parent
    1370             :              * table's size.
    1371             :              *
    1372             :              * Note: this code intentionally disregards alignment
    1373             :              * considerations, because (a) that would be gilding the lily
    1374             :              * considering how crude the estimate is, and (b) it creates
    1375             :              * platform dependencies in the default plans which are kind of a
    1376             :              * headache for regression testing.
    1377             :              *
    1378             :              * XXX: Should this logic be more index specific?
    1379             :              */
    1380             :             int32       tuple_width;
    1381             : 
    1382         318 :             tuple_width = get_rel_data_width(rel, attr_widths);
    1383         318 :             tuple_width += MAXALIGN(SizeofHeapTupleHeader);
    1384         318 :             tuple_width += sizeof(ItemIdData);
    1385             :             /* note: integer division is intentional here */
    1386         318 :             density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
    1387             :         }
    1388        1032 :         *tuples = rint(density * (double) curpages);
    1389             : 
    1390             :         /*
    1391             :          * We use relallvisible as-is, rather than scaling it up like we do
    1392             :          * for the pages and tuples counts, on the theory that any pages added
    1393             :          * since the last VACUUM are most likely not marked all-visible.  But
    1394             :          * costsize.c wants it converted to a fraction.
    1395             :          */
    1396        1032 :         if (relallvisible == 0 || curpages <= 0)
    1397        1032 :             *allvisfrac = 0;
    1398           0 :         else if ((double) relallvisible >= curpages)
    1399           0 :             *allvisfrac = 1;
    1400             :         else
    1401           0 :             *allvisfrac = (double) relallvisible / curpages;
    1402             :     }
    1403             :     else
    1404             :     {
    1405             :         /*
    1406             :          * Just use whatever's in pg_class.  This covers foreign tables,
    1407             :          * sequences, and also relkinds without storage (shouldn't get here?);
    1408             :          * see initializations in AddNewRelationTuple().  Note that FDW must
    1409             :          * cope if reltuples is -1!
    1410             :          */
    1411        2574 :         *pages = rel->rd_rel->relpages;
    1412        2574 :         *tuples = rel->rd_rel->reltuples;
    1413        2574 :         *allvisfrac = 0;
    1414             :     }
    1415             : }
    1416             : 
    1417             : 
    1418             : /*
    1419             :  * get_rel_data_width
    1420             :  *
    1421             :  * Estimate the average width of (the data part of) the relation's tuples.
    1422             :  *
    1423             :  * If attr_widths isn't NULL, it points to the zero-index entry of the
    1424             :  * relation's attr_widths[] cache; use and update that cache as appropriate.
    1425             :  *
    1426             :  * Currently we ignore dropped columns.  Ideally those should be included
    1427             :  * in the result, but we haven't got any way to get info about them; and
    1428             :  * since they might be mostly NULLs, treating them as zero-width is not
    1429             :  * necessarily the wrong thing anyway.
    1430             :  */
    1431             : int32
    1432      160486 : get_rel_data_width(Relation rel, int32 *attr_widths)
    1433             : {
    1434      160486 :     int64       tuple_width = 0;
    1435             :     int         i;
    1436             : 
    1437      862546 :     for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
    1438             :     {
    1439      702060 :         Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
    1440             :         int32       item_width;
    1441             : 
    1442      702060 :         if (att->attisdropped)
    1443        2684 :             continue;
    1444             : 
    1445             :         /* use previously cached data, if any */
    1446      699376 :         if (attr_widths != NULL && attr_widths[i] > 0)
    1447             :         {
    1448        5848 :             tuple_width += attr_widths[i];
    1449        5848 :             continue;
    1450             :         }
    1451             : 
    1452             :         /* This should match set_rel_width() in costsize.c */
    1453      693528 :         item_width = get_attavgwidth(RelationGetRelid(rel), i);
    1454      693528 :         if (item_width <= 0)
    1455             :         {
    1456      691680 :             item_width = get_typavgwidth(att->atttypid, att->atttypmod);
    1457             :             Assert(item_width > 0);
    1458             :         }
    1459      693528 :         if (attr_widths != NULL)
    1460      615848 :             attr_widths[i] = item_width;
    1461      693528 :         tuple_width += item_width;
    1462             :     }
    1463             : 
    1464      160486 :     return clamp_width_est(tuple_width);
    1465             : }
    1466             : 
    1467             : /*
    1468             :  * get_relation_data_width
    1469             :  *
    1470             :  * External API for get_rel_data_width: same behavior except we have to
    1471             :  * open the relcache entry.
    1472             :  */
    1473             : int32
    1474        2554 : get_relation_data_width(Oid relid, int32 *attr_widths)
    1475             : {
    1476             :     int32       result;
    1477             :     Relation    relation;
    1478             : 
    1479             :     /* As above, assume relation is already locked */
    1480        2554 :     relation = table_open(relid, NoLock);
    1481             : 
    1482        2554 :     result = get_rel_data_width(relation, attr_widths);
    1483             : 
    1484        2554 :     table_close(relation, NoLock);
    1485             : 
    1486        2554 :     return result;
    1487             : }
    1488             : 
    1489             : 
    1490             : /*
    1491             :  * get_relation_constraints
    1492             :  *
    1493             :  * Retrieve the applicable constraint expressions of the given relation.
    1494             :  * Only constraints that have been validated are considered.
    1495             :  *
    1496             :  * Returns a List (possibly empty) of constraint expressions.  Each one
    1497             :  * has been canonicalized, and its Vars are changed to have the varno
    1498             :  * indicated by rel->relid.  This allows the expressions to be easily
    1499             :  * compared to expressions taken from WHERE.
    1500             :  *
    1501             :  * If include_noinherit is true, it's okay to include constraints that
    1502             :  * are marked NO INHERIT.
    1503             :  *
    1504             :  * If include_notnull is true, "col IS NOT NULL" expressions are generated
    1505             :  * and added to the result for each column that's marked attnotnull.
    1506             :  *
    1507             :  * If include_partition is true, and the relation is a partition,
    1508             :  * also include the partitioning constraints.
    1509             :  *
    1510             :  * Note: at present this is invoked at most once per relation per planner
    1511             :  * run, and in many cases it won't be invoked at all, so there seems no
    1512             :  * point in caching the data in RelOptInfo.
    1513             :  */
    1514             : static List *
    1515       21678 : get_relation_constraints(PlannerInfo *root,
    1516             :                          Oid relationObjectId, RelOptInfo *rel,
    1517             :                          bool include_noinherit,
    1518             :                          bool include_notnull,
    1519             :                          bool include_partition)
    1520             : {
    1521       21678 :     List       *result = NIL;
    1522       21678 :     Index       varno = rel->relid;
    1523             :     Relation    relation;
    1524             :     TupleConstr *constr;
    1525             : 
    1526             :     /*
    1527             :      * We assume the relation has already been safely locked.
    1528             :      */
    1529       21678 :     relation = table_open(relationObjectId, NoLock);
    1530             : 
    1531       21678 :     constr = relation->rd_att->constr;
    1532       21678 :     if (constr != NULL)
    1533             :     {
    1534        8388 :         int         num_check = constr->num_check;
    1535             :         int         i;
    1536             : 
    1537        9026 :         for (i = 0; i < num_check; i++)
    1538             :         {
    1539             :             Node       *cexpr;
    1540             : 
    1541             :             /*
    1542             :              * If this constraint hasn't been fully validated yet, we must
    1543             :              * ignore it here.
    1544             :              */
    1545         638 :             if (!constr->check[i].ccvalid)
    1546          54 :                 continue;
    1547             : 
    1548             :             /*
    1549             :              * NOT ENFORCED constraints are always marked as invalid, which
    1550             :              * should have been ignored.
    1551             :              */
    1552             :             Assert(constr->check[i].ccenforced);
    1553             : 
    1554             :             /*
    1555             :              * Also ignore if NO INHERIT and we weren't told that that's safe.
    1556             :              */
    1557         584 :             if (constr->check[i].ccnoinherit && !include_noinherit)
    1558           0 :                 continue;
    1559             : 
    1560         584 :             cexpr = stringToNode(constr->check[i].ccbin);
    1561             : 
    1562             :             /*
    1563             :              * Fix Vars to have the desired varno.  This must be done before
    1564             :              * const-simplification because eval_const_expressions reduces
    1565             :              * NullTest for Vars based on varno.
    1566             :              */
    1567         584 :             if (varno != 1)
    1568         560 :                 ChangeVarNodes(cexpr, 1, varno, 0);
    1569             : 
    1570             :             /*
    1571             :              * Run each expression through const-simplification and
    1572             :              * canonicalization.  This is not just an optimization, but is
    1573             :              * necessary, because we will be comparing it to
    1574             :              * similarly-processed qual clauses, and may fail to detect valid
    1575             :              * matches without this.  This must match the processing done to
    1576             :              * qual clauses in preprocess_expression()!  (We can skip the
    1577             :              * stuff involving subqueries, however, since we don't allow any
    1578             :              * in check constraints.)
    1579             :              */
    1580         584 :             cexpr = eval_const_expressions(root, cexpr);
    1581             : 
    1582         584 :             cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
    1583             : 
    1584             :             /*
    1585             :              * Finally, convert to implicit-AND format (that is, a List) and
    1586             :              * append the resulting item(s) to our output list.
    1587             :              */
    1588         584 :             result = list_concat(result,
    1589         584 :                                  make_ands_implicit((Expr *) cexpr));
    1590             :         }
    1591             : 
    1592             :         /* Add NOT NULL constraints in expression form, if requested */
    1593        8388 :         if (include_notnull && constr->has_not_null)
    1594             :         {
    1595        7898 :             int         natts = relation->rd_att->natts;
    1596             : 
    1597       32260 :             for (i = 1; i <= natts; i++)
    1598             :             {
    1599       24362 :                 CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
    1600             : 
    1601       24362 :                 if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
    1602             :                 {
    1603        9724 :                     Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
    1604        9724 :                     NullTest   *ntest = makeNode(NullTest);
    1605             : 
    1606        9724 :                     ntest->arg = (Expr *) makeVar(varno,
    1607             :                                                   i,
    1608             :                                                   wholeatt->atttypid,
    1609             :                                                   wholeatt->atttypmod,
    1610             :                                                   wholeatt->attcollation,
    1611             :                                                   0);
    1612        9724 :                     ntest->nulltesttype = IS_NOT_NULL;
    1613             : 
    1614             :                     /*
    1615             :                      * argisrow=false is correct even for a composite column,
    1616             :                      * because attnotnull does not represent a SQL-spec IS NOT
    1617             :                      * NULL test in such a case, just IS DISTINCT FROM NULL.
    1618             :                      */
    1619        9724 :                     ntest->argisrow = false;
    1620        9724 :                     ntest->location = -1;
    1621        9724 :                     result = lappend(result, ntest);
    1622             :                 }
    1623             :             }
    1624             :         }
    1625             :     }
    1626             : 
    1627             :     /*
    1628             :      * Add partitioning constraints, if requested.
    1629             :      */
    1630       21678 :     if (include_partition && relation->rd_rel->relispartition)
    1631             :     {
    1632             :         /* make sure rel->partition_qual is set */
    1633          12 :         set_baserel_partition_constraint(relation, rel);
    1634          12 :         result = list_concat(result, rel->partition_qual);
    1635             :     }
    1636             : 
    1637             :     /*
    1638             :      * Expand virtual generated columns in the constraint expressions.
    1639             :      */
    1640       21678 :     if (result)
    1641        8126 :         result = (List *) expand_generated_columns_in_expr((Node *) result,
    1642             :                                                            relation,
    1643             :                                                            varno);
    1644             : 
    1645       21678 :     table_close(relation, NoLock);
    1646             : 
    1647       21678 :     return result;
    1648             : }
    1649             : 
    1650             : /*
    1651             :  * Try loading data for the statistics object.
    1652             :  *
    1653             :  * We don't know if the data (specified by statOid and inh value) exist.
    1654             :  * The result is stored in stainfos list.
    1655             :  */
    1656             : static void
    1657        4036 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
    1658             :                                Oid statOid, bool inh,
    1659             :                                Bitmapset *keys, List *exprs)
    1660             : {
    1661             :     Form_pg_statistic_ext_data dataForm;
    1662             :     HeapTuple   dtup;
    1663             : 
    1664        4036 :     dtup = SearchSysCache2(STATEXTDATASTXOID,
    1665             :                            ObjectIdGetDatum(statOid), BoolGetDatum(inh));
    1666        4036 :     if (!HeapTupleIsValid(dtup))
    1667        2032 :         return;
    1668             : 
    1669        2004 :     dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
    1670             : 
    1671             :     /* add one StatisticExtInfo for each kind built */
    1672        2004 :     if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
    1673             :     {
    1674         714 :         StatisticExtInfo *info = makeNode(StatisticExtInfo);
    1675             : 
    1676         714 :         info->statOid = statOid;
    1677         714 :         info->inherit = dataForm->stxdinherit;
    1678         714 :         info->rel = rel;
    1679         714 :         info->kind = STATS_EXT_NDISTINCT;
    1680         714 :         info->keys = bms_copy(keys);
    1681         714 :         info->exprs = exprs;
    1682             : 
    1683         714 :         *stainfos = lappend(*stainfos, info);
    1684             :     }
    1685             : 
    1686        2004 :     if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
    1687             :     {
    1688         528 :         StatisticExtInfo *info = makeNode(StatisticExtInfo);
    1689             : 
    1690         528 :         info->statOid = statOid;
    1691         528 :         info->inherit = dataForm->stxdinherit;
    1692         528 :         info->rel = rel;
    1693         528 :         info->kind = STATS_EXT_DEPENDENCIES;
    1694         528 :         info->keys = bms_copy(keys);
    1695         528 :         info->exprs = exprs;
    1696             : 
    1697         528 :         *stainfos = lappend(*stainfos, info);
    1698             :     }
    1699             : 
    1700        2004 :     if (statext_is_kind_built(dtup, STATS_EXT_MCV))
    1701             :     {
    1702         882 :         StatisticExtInfo *info = makeNode(StatisticExtInfo);
    1703             : 
    1704         882 :         info->statOid = statOid;
    1705         882 :         info->inherit = dataForm->stxdinherit;
    1706         882 :         info->rel = rel;
    1707         882 :         info->kind = STATS_EXT_MCV;
    1708         882 :         info->keys = bms_copy(keys);
    1709         882 :         info->exprs = exprs;
    1710             : 
    1711         882 :         *stainfos = lappend(*stainfos, info);
    1712             :     }
    1713             : 
    1714        2004 :     if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
    1715             :     {
    1716         810 :         StatisticExtInfo *info = makeNode(StatisticExtInfo);
    1717             : 
    1718         810 :         info->statOid = statOid;
    1719         810 :         info->inherit = dataForm->stxdinherit;
    1720         810 :         info->rel = rel;
    1721         810 :         info->kind = STATS_EXT_EXPRESSIONS;
    1722         810 :         info->keys = bms_copy(keys);
    1723         810 :         info->exprs = exprs;
    1724             : 
    1725         810 :         *stainfos = lappend(*stainfos, info);
    1726             :     }
    1727             : 
    1728        2004 :     ReleaseSysCache(dtup);
    1729             : }
    1730             : 
    1731             : /*
    1732             :  * get_relation_statistics
    1733             :  *      Retrieve extended statistics defined on the table.
    1734             :  *
    1735             :  * Returns a List (possibly empty) of StatisticExtInfo objects describing
    1736             :  * the statistics.  Note that this doesn't load the actual statistics data,
    1737             :  * just the identifying metadata.  Only stats actually built are considered.
    1738             :  */
    1739             : static List *
    1740      489282 : get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
    1741             :                         Relation relation)
    1742             : {
    1743      489282 :     Index       varno = rel->relid;
    1744             :     List       *statoidlist;
    1745      489282 :     List       *stainfos = NIL;
    1746             :     ListCell   *l;
    1747             : 
    1748      489282 :     statoidlist = RelationGetStatExtList(relation);
    1749             : 
    1750      491300 :     foreach(l, statoidlist)
    1751             :     {
    1752        2018 :         Oid         statOid = lfirst_oid(l);
    1753             :         Form_pg_statistic_ext staForm;
    1754             :         HeapTuple   htup;
    1755        2018 :         Bitmapset  *keys = NULL;
    1756        2018 :         List       *exprs = NIL;
    1757             :         int         i;
    1758             : 
    1759        2018 :         htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
    1760        2018 :         if (!HeapTupleIsValid(htup))
    1761           0 :             elog(ERROR, "cache lookup failed for statistics object %u", statOid);
    1762        2018 :         staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
    1763             : 
    1764             :         /*
    1765             :          * First, build the array of columns covered.  This is ultimately
    1766             :          * wasted if no stats within the object have actually been built, but
    1767             :          * it doesn't seem worth troubling over that case.
    1768             :          */
    1769        5734 :         for (i = 0; i < staForm->stxkeys.dim1; i++)
    1770        3716 :             keys = bms_add_member(keys, staForm->stxkeys.values[i]);
    1771             : 
    1772             :         /*
    1773             :          * Preprocess expressions (if any). We read the expressions, fix the
    1774             :          * varnos, and run them through eval_const_expressions.
    1775             :          *
    1776             :          * XXX We don't know yet if there are any data for this stats object,
    1777             :          * with either stxdinherit value. But it's reasonable to assume there
    1778             :          * is at least one of those, possibly both. So it's better to process
    1779             :          * keys and expressions here.
    1780             :          */
    1781             :         {
    1782             :             bool        isnull;
    1783             :             Datum       datum;
    1784             : 
    1785             :             /* decode expression (if any) */
    1786        2018 :             datum = SysCacheGetAttr(STATEXTOID, htup,
    1787             :                                     Anum_pg_statistic_ext_stxexprs, &isnull);
    1788             : 
    1789        2018 :             if (!isnull)
    1790             :             {
    1791             :                 char       *exprsString;
    1792             : 
    1793         814 :                 exprsString = TextDatumGetCString(datum);
    1794         814 :                 exprs = (List *) stringToNode(exprsString);
    1795         814 :                 pfree(exprsString);
    1796             : 
    1797             :                 /*
    1798             :                  * Modify the copies we obtain from the relcache to have the
    1799             :                  * correct varno for the parent relation, so that they match
    1800             :                  * up correctly against qual clauses.
    1801             :                  *
    1802             :                  * This must be done before const-simplification because
    1803             :                  * eval_const_expressions reduces NullTest for Vars based on
    1804             :                  * varno.
    1805             :                  */
    1806         814 :                 if (varno != 1)
    1807           0 :                     ChangeVarNodes((Node *) exprs, 1, varno, 0);
    1808             : 
    1809             :                 /*
    1810             :                  * Run the expressions through eval_const_expressions. This is
    1811             :                  * not just an optimization, but is necessary, because the
    1812             :                  * planner will be comparing them to similarly-processed qual
    1813             :                  * clauses, and may fail to detect valid matches without this.
    1814             :                  * We must not use canonicalize_qual, however, since these
    1815             :                  * aren't qual expressions.
    1816             :                  */
    1817         814 :                 exprs = (List *) eval_const_expressions(root, (Node *) exprs);
    1818             : 
    1819             :                 /* May as well fix opfuncids too */
    1820         814 :                 fix_opfuncids((Node *) exprs);
    1821             :             }
    1822             :         }
    1823             : 
    1824             :         /* extract statistics for possible values of stxdinherit flag */
    1825             : 
    1826        2018 :         get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
    1827             : 
    1828        2018 :         get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
    1829             : 
    1830        2018 :         ReleaseSysCache(htup);
    1831        2018 :         bms_free(keys);
    1832             :     }
    1833             : 
    1834      489282 :     list_free(statoidlist);
    1835             : 
    1836      489282 :     return stainfos;
    1837             : }
    1838             : 
    1839             : /*
    1840             :  * relation_excluded_by_constraints
    1841             :  *
    1842             :  * Detect whether the relation need not be scanned because it has either
    1843             :  * self-inconsistent restrictions, or restrictions inconsistent with the
    1844             :  * relation's applicable constraints.
    1845             :  *
    1846             :  * Note: this examines only rel->relid, rel->reloptkind, and
    1847             :  * rel->baserestrictinfo; therefore it can be called before filling in
    1848             :  * other fields of the RelOptInfo.
    1849             :  */
    1850             : bool
    1851      541870 : relation_excluded_by_constraints(PlannerInfo *root,
    1852             :                                  RelOptInfo *rel, RangeTblEntry *rte)
    1853             : {
    1854             :     bool        include_noinherit;
    1855             :     bool        include_notnull;
    1856      541870 :     bool        include_partition = false;
    1857             :     List       *safe_restrictions;
    1858             :     List       *constraint_pred;
    1859             :     List       *safe_constraints;
    1860             :     ListCell   *lc;
    1861             : 
    1862             :     /* As of now, constraint exclusion works only with simple relations. */
    1863             :     Assert(IS_SIMPLE_REL(rel));
    1864             : 
    1865             :     /*
    1866             :      * If there are no base restriction clauses, we have no hope of proving
    1867             :      * anything below, so fall out quickly.
    1868             :      */
    1869      541870 :     if (rel->baserestrictinfo == NIL)
    1870      249192 :         return false;
    1871             : 
    1872             :     /*
    1873             :      * Regardless of the setting of constraint_exclusion, detect
    1874             :      * constant-FALSE-or-NULL restriction clauses.  Although const-folding
    1875             :      * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
    1876             :      * list can still have other members besides the FALSE constant, due to
    1877             :      * qual pushdown and other mechanisms; so check them all.  This doesn't
    1878             :      * fire very often, but it seems cheap enough to be worth doing anyway.
    1879             :      * (Without this, we'd miss some optimizations that 9.5 and earlier found
    1880             :      * via much more roundabout methods.)
    1881             :      */
    1882      727334 :     foreach(lc, rel->baserestrictinfo)
    1883             :     {
    1884      435236 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1885      435236 :         Expr       *clause = rinfo->clause;
    1886             : 
    1887      435236 :         if (clause && IsA(clause, Const) &&
    1888         580 :             (((Const *) clause)->constisnull ||
    1889         574 :              !DatumGetBool(((Const *) clause)->constvalue)))
    1890         580 :             return true;
    1891             :     }
    1892             : 
    1893             :     /*
    1894             :      * Skip further tests, depending on constraint_exclusion.
    1895             :      */
    1896      292098 :     switch (constraint_exclusion)
    1897             :     {
    1898          54 :         case CONSTRAINT_EXCLUSION_OFF:
    1899             :             /* In 'off' mode, never make any further tests */
    1900          54 :             return false;
    1901             : 
    1902      291900 :         case CONSTRAINT_EXCLUSION_PARTITION:
    1903             : 
    1904             :             /*
    1905             :              * When constraint_exclusion is set to 'partition' we only handle
    1906             :              * appendrel members.  Partition pruning has already been applied,
    1907             :              * so there is no need to consider the rel's partition constraints
    1908             :              * here.
    1909             :              */
    1910      291900 :             if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
    1911       21892 :                 break;          /* appendrel member, so process it */
    1912      270008 :             return false;
    1913             : 
    1914         144 :         case CONSTRAINT_EXCLUSION_ON:
    1915             : 
    1916             :             /*
    1917             :              * In 'on' mode, always apply constraint exclusion.  If we are
    1918             :              * considering a baserel that is a partition (i.e., it was
    1919             :              * directly named rather than expanded from a parent table), then
    1920             :              * its partition constraints haven't been considered yet, so
    1921             :              * include them in the processing here.
    1922             :              */
    1923         144 :             if (rel->reloptkind == RELOPT_BASEREL)
    1924         114 :                 include_partition = true;
    1925         144 :             break;              /* always try to exclude */
    1926             :     }
    1927             : 
    1928             :     /*
    1929             :      * Check for self-contradictory restriction clauses.  We dare not make
    1930             :      * deductions with non-immutable functions, but any immutable clauses that
    1931             :      * are self-contradictory allow us to conclude the scan is unnecessary.
    1932             :      *
    1933             :      * Note: strip off RestrictInfo because predicate_refuted_by() isn't
    1934             :      * expecting to see any in its predicate argument.
    1935             :      */
    1936       22036 :     safe_restrictions = NIL;
    1937       51954 :     foreach(lc, rel->baserestrictinfo)
    1938             :     {
    1939       29918 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    1940             : 
    1941       29918 :         if (!contain_mutable_functions((Node *) rinfo->clause))
    1942       28378 :             safe_restrictions = lappend(safe_restrictions, rinfo->clause);
    1943             :     }
    1944             : 
    1945             :     /*
    1946             :      * We can use weak refutation here, since we're comparing restriction
    1947             :      * clauses with restriction clauses.
    1948             :      */
    1949       22036 :     if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
    1950          72 :         return true;
    1951             : 
    1952             :     /*
    1953             :      * Only plain relations have constraints, so stop here for other rtekinds.
    1954             :      */
    1955       21964 :     if (rte->rtekind != RTE_RELATION)
    1956         286 :         return false;
    1957             : 
    1958             :     /*
    1959             :      * If we are scanning just this table, we can use NO INHERIT constraints,
    1960             :      * but not if we're scanning its children too.  (Note that partitioned
    1961             :      * tables should never have NO INHERIT constraints; but it's not necessary
    1962             :      * for us to assume that here.)
    1963             :      */
    1964       21678 :     include_noinherit = !rte->inh;
    1965             : 
    1966             :     /*
    1967             :      * Currently, attnotnull constraints must be treated as NO INHERIT unless
    1968             :      * this is a partitioned table.  In future we might track their
    1969             :      * inheritance status more accurately, allowing this to be refined.
    1970             :      *
    1971             :      * XXX do we need/want to change this?
    1972             :      */
    1973       21678 :     include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
    1974             : 
    1975             :     /*
    1976             :      * Fetch the appropriate set of constraint expressions.
    1977             :      */
    1978       21678 :     constraint_pred = get_relation_constraints(root, rte->relid, rel,
    1979             :                                                include_noinherit,
    1980             :                                                include_notnull,
    1981             :                                                include_partition);
    1982             : 
    1983             :     /*
    1984             :      * We do not currently enforce that CHECK constraints contain only
    1985             :      * immutable functions, so it's necessary to check here. We daren't draw
    1986             :      * conclusions from plan-time evaluation of non-immutable functions. Since
    1987             :      * they're ANDed, we can just ignore any mutable constraints in the list,
    1988             :      * and reason about the rest.
    1989             :      */
    1990       21678 :     safe_constraints = NIL;
    1991       32166 :     foreach(lc, constraint_pred)
    1992             :     {
    1993       10488 :         Node       *pred = (Node *) lfirst(lc);
    1994             : 
    1995       10488 :         if (!contain_mutable_functions(pred))
    1996       10488 :             safe_constraints = lappend(safe_constraints, pred);
    1997             :     }
    1998             : 
    1999             :     /*
    2000             :      * The constraints are effectively ANDed together, so we can just try to
    2001             :      * refute the entire collection at once.  This may allow us to make proofs
    2002             :      * that would fail if we took them individually.
    2003             :      *
    2004             :      * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
    2005             :      * an obvious optimization.  Some of the clauses might be OR clauses that
    2006             :      * have volatile and nonvolatile subclauses, and it's OK to make
    2007             :      * deductions with the nonvolatile parts.
    2008             :      *
    2009             :      * We need strong refutation because we have to prove that the constraints
    2010             :      * would yield false, not just NULL.
    2011             :      */
    2012       21678 :     if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
    2013         192 :         return true;
    2014             : 
    2015       21486 :     return false;
    2016             : }
    2017             : 
    2018             : 
    2019             : /*
    2020             :  * build_physical_tlist
    2021             :  *
    2022             :  * Build a targetlist consisting of exactly the relation's user attributes,
    2023             :  * in order.  The executor can special-case such tlists to avoid a projection
    2024             :  * step at runtime, so we use such tlists preferentially for scan nodes.
    2025             :  *
    2026             :  * Exception: if there are any dropped or missing columns, we punt and return
    2027             :  * NIL.  Ideally we would like to handle these cases too.  However this
    2028             :  * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
    2029             :  * for a tlist that includes vars of no-longer-existent types.  In theory we
    2030             :  * could dig out the required info from the pg_attribute entries of the
    2031             :  * relation, but that data is not readily available to ExecTypeFromTL.
    2032             :  * For now, we don't apply the physical-tlist optimization when there are
    2033             :  * dropped cols.
    2034             :  *
    2035             :  * We also support building a "physical" tlist for subqueries, functions,
    2036             :  * values lists, table expressions, and CTEs, since the same optimization can
    2037             :  * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
    2038             :  * NamedTuplestoreScan, and WorkTableScan nodes.
    2039             :  */
    2040             : List *
    2041      196318 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
    2042             : {
    2043      196318 :     List       *tlist = NIL;
    2044      196318 :     Index       varno = rel->relid;
    2045      196318 :     RangeTblEntry *rte = planner_rt_fetch(varno, root);
    2046             :     Relation    relation;
    2047             :     Query      *subquery;
    2048             :     Var        *var;
    2049             :     ListCell   *l;
    2050             :     int         attrno,
    2051             :                 numattrs;
    2052             :     List       *colvars;
    2053             : 
    2054      196318 :     switch (rte->rtekind)
    2055             :     {
    2056      163778 :         case RTE_RELATION:
    2057             :             /* Assume we already have adequate lock */
    2058      163778 :             relation = table_open(rte->relid, NoLock);
    2059             : 
    2060      163778 :             numattrs = RelationGetNumberOfAttributes(relation);
    2061     2902822 :             for (attrno = 1; attrno <= numattrs; attrno++)
    2062             :             {
    2063     2739182 :                 Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
    2064             :                                                           attrno - 1);
    2065             : 
    2066     2739182 :                 if (att_tup->attisdropped || att_tup->atthasmissing)
    2067             :                 {
    2068             :                     /* found a dropped or missing col, so punt */
    2069         138 :                     tlist = NIL;
    2070         138 :                     break;
    2071             :                 }
    2072             : 
    2073     2739044 :                 var = makeVar(varno,
    2074             :                               attrno,
    2075             :                               att_tup->atttypid,
    2076             :                               att_tup->atttypmod,
    2077             :                               att_tup->attcollation,
    2078             :                               0);
    2079             : 
    2080     2739044 :                 tlist = lappend(tlist,
    2081     2739044 :                                 makeTargetEntry((Expr *) var,
    2082             :                                                 attrno,
    2083             :                                                 NULL,
    2084             :                                                 false));
    2085             :             }
    2086             : 
    2087      163778 :             table_close(relation, NoLock);
    2088      163778 :             break;
    2089             : 
    2090        7916 :         case RTE_SUBQUERY:
    2091        7916 :             subquery = rte->subquery;
    2092       25470 :             foreach(l, subquery->targetList)
    2093             :             {
    2094       17554 :                 TargetEntry *tle = (TargetEntry *) lfirst(l);
    2095             : 
    2096             :                 /*
    2097             :                  * A resjunk column of the subquery can be reflected as
    2098             :                  * resjunk in the physical tlist; we need not punt.
    2099             :                  */
    2100       17554 :                 var = makeVarFromTargetEntry(varno, tle);
    2101             : 
    2102       17554 :                 tlist = lappend(tlist,
    2103       17554 :                                 makeTargetEntry((Expr *) var,
    2104       17554 :                                                 tle->resno,
    2105             :                                                 NULL,
    2106       17554 :                                                 tle->resjunk));
    2107             :             }
    2108        7916 :             break;
    2109             : 
    2110       24624 :         case RTE_FUNCTION:
    2111             :         case RTE_TABLEFUNC:
    2112             :         case RTE_VALUES:
    2113             :         case RTE_CTE:
    2114             :         case RTE_NAMEDTUPLESTORE:
    2115             :         case RTE_RESULT:
    2116             :             /* Not all of these can have dropped cols, but share code anyway */
    2117       24624 :             expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
    2118             :                       true /* include dropped */ , NULL, &colvars);
    2119      124008 :             foreach(l, colvars)
    2120             :             {
    2121       99384 :                 var = (Var *) lfirst(l);
    2122             : 
    2123             :                 /*
    2124             :                  * A non-Var in expandRTE's output means a dropped column;
    2125             :                  * must punt.
    2126             :                  */
    2127       99384 :                 if (!IsA(var, Var))
    2128             :                 {
    2129           0 :                     tlist = NIL;
    2130           0 :                     break;
    2131             :                 }
    2132             : 
    2133       99384 :                 tlist = lappend(tlist,
    2134       99384 :                                 makeTargetEntry((Expr *) var,
    2135       99384 :                                                 var->varattno,
    2136             :                                                 NULL,
    2137             :                                                 false));
    2138             :             }
    2139       24624 :             break;
    2140             : 
    2141           0 :         default:
    2142             :             /* caller error */
    2143           0 :             elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
    2144             :                  (int) rte->rtekind);
    2145             :             break;
    2146             :     }
    2147             : 
    2148      196318 :     return tlist;
    2149             : }
    2150             : 
    2151             : /*
    2152             :  * build_index_tlist
    2153             :  *
    2154             :  * Build a targetlist representing the columns of the specified index.
    2155             :  * Each column is represented by a Var for the corresponding base-relation
    2156             :  * column, or an expression in base-relation Vars, as appropriate.
    2157             :  *
    2158             :  * There are never any dropped columns in indexes, so unlike
    2159             :  * build_physical_tlist, we need no failure case.
    2160             :  */
    2161             : static List *
    2162      762620 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
    2163             :                   Relation heapRelation)
    2164             : {
    2165      762620 :     List       *tlist = NIL;
    2166      762620 :     Index       varno = index->rel->relid;
    2167             :     ListCell   *indexpr_item;
    2168             :     int         i;
    2169             : 
    2170      762620 :     indexpr_item = list_head(index->indexprs);
    2171     2189830 :     for (i = 0; i < index->ncolumns; i++)
    2172             :     {
    2173     1427210 :         int         indexkey = index->indexkeys[i];
    2174             :         Expr       *indexvar;
    2175             : 
    2176     1427210 :         if (indexkey != 0)
    2177             :         {
    2178             :             /* simple column */
    2179             :             const FormData_pg_attribute *att_tup;
    2180             : 
    2181     1424170 :             if (indexkey < 0)
    2182           0 :                 att_tup = SystemAttributeDefinition(indexkey);
    2183             :             else
    2184     1424170 :                 att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
    2185             : 
    2186     1424170 :             indexvar = (Expr *) makeVar(varno,
    2187             :                                         indexkey,
    2188     1424170 :                                         att_tup->atttypid,
    2189     1424170 :                                         att_tup->atttypmod,
    2190     1424170 :                                         att_tup->attcollation,
    2191             :                                         0);
    2192             :         }
    2193             :         else
    2194             :         {
    2195             :             /* expression column */
    2196        3040 :             if (indexpr_item == NULL)
    2197           0 :                 elog(ERROR, "wrong number of index expressions");
    2198        3040 :             indexvar = (Expr *) lfirst(indexpr_item);
    2199        3040 :             indexpr_item = lnext(index->indexprs, indexpr_item);
    2200             :         }
    2201             : 
    2202     1427210 :         tlist = lappend(tlist,
    2203     1427210 :                         makeTargetEntry(indexvar,
    2204     1427210 :                                         i + 1,
    2205             :                                         NULL,
    2206             :                                         false));
    2207             :     }
    2208      762620 :     if (indexpr_item != NULL)
    2209           0 :         elog(ERROR, "wrong number of index expressions");
    2210             : 
    2211      762620 :     return tlist;
    2212             : }
    2213             : 
    2214             : /*
    2215             :  * restriction_selectivity
    2216             :  *
    2217             :  * Returns the selectivity of a specified restriction operator clause.
    2218             :  * This code executes registered procedures stored in the
    2219             :  * operator relation, by calling the function manager.
    2220             :  *
    2221             :  * See clause_selectivity() for the meaning of the additional parameters.
    2222             :  */
    2223             : Selectivity
    2224      755358 : restriction_selectivity(PlannerInfo *root,
    2225             :                         Oid operatorid,
    2226             :                         List *args,
    2227             :                         Oid inputcollid,
    2228             :                         int varRelid)
    2229             : {
    2230      755358 :     RegProcedure oprrest = get_oprrest(operatorid);
    2231             :     float8      result;
    2232             : 
    2233             :     /*
    2234             :      * if the oprrest procedure is missing for whatever reason, use a
    2235             :      * selectivity of 0.5
    2236             :      */
    2237      755358 :     if (!oprrest)
    2238         160 :         return (Selectivity) 0.5;
    2239             : 
    2240      755198 :     result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
    2241             :                                                  inputcollid,
    2242             :                                                  PointerGetDatum(root),
    2243             :                                                  ObjectIdGetDatum(operatorid),
    2244             :                                                  PointerGetDatum(args),
    2245             :                                                  Int32GetDatum(varRelid)));
    2246             : 
    2247      755168 :     if (result < 0.0 || result > 1.0)
    2248           0 :         elog(ERROR, "invalid restriction selectivity: %f", result);
    2249             : 
    2250      755168 :     return (Selectivity) result;
    2251             : }
    2252             : 
    2253             : /*
    2254             :  * join_selectivity
    2255             :  *
    2256             :  * Returns the selectivity of a specified join operator clause.
    2257             :  * This code executes registered procedures stored in the
    2258             :  * operator relation, by calling the function manager.
    2259             :  *
    2260             :  * See clause_selectivity() for the meaning of the additional parameters.
    2261             :  */
    2262             : Selectivity
    2263      271052 : join_selectivity(PlannerInfo *root,
    2264             :                  Oid operatorid,
    2265             :                  List *args,
    2266             :                  Oid inputcollid,
    2267             :                  JoinType jointype,
    2268             :                  SpecialJoinInfo *sjinfo)
    2269             : {
    2270      271052 :     RegProcedure oprjoin = get_oprjoin(operatorid);
    2271             :     float8      result;
    2272             : 
    2273             :     /*
    2274             :      * if the oprjoin procedure is missing for whatever reason, use a
    2275             :      * selectivity of 0.5
    2276             :      */
    2277      271052 :     if (!oprjoin)
    2278         146 :         return (Selectivity) 0.5;
    2279             : 
    2280      270906 :     result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
    2281             :                                                  inputcollid,
    2282             :                                                  PointerGetDatum(root),
    2283             :                                                  ObjectIdGetDatum(operatorid),
    2284             :                                                  PointerGetDatum(args),
    2285             :                                                  Int16GetDatum(jointype),
    2286             :                                                  PointerGetDatum(sjinfo)));
    2287             : 
    2288      270906 :     if (result < 0.0 || result > 1.0)
    2289           0 :         elog(ERROR, "invalid join selectivity: %f", result);
    2290             : 
    2291      270906 :     return (Selectivity) result;
    2292             : }
    2293             : 
    2294             : /*
    2295             :  * function_selectivity
    2296             :  *
    2297             :  * Attempt to estimate the selectivity of a specified boolean function clause
    2298             :  * by asking its support function.  If the function lacks support, return -1.
    2299             :  *
    2300             :  * See clause_selectivity() for the meaning of the additional parameters.
    2301             :  */
    2302             : Selectivity
    2303       12488 : function_selectivity(PlannerInfo *root,
    2304             :                      Oid funcid,
    2305             :                      List *args,
    2306             :                      Oid inputcollid,
    2307             :                      bool is_join,
    2308             :                      int varRelid,
    2309             :                      JoinType jointype,
    2310             :                      SpecialJoinInfo *sjinfo)
    2311             : {
    2312       12488 :     RegProcedure prosupport = get_func_support(funcid);
    2313             :     SupportRequestSelectivity req;
    2314             :     SupportRequestSelectivity *sresult;
    2315             : 
    2316       12488 :     if (!prosupport)
    2317       12458 :         return (Selectivity) -1;    /* no support function */
    2318             : 
    2319          30 :     req.type = T_SupportRequestSelectivity;
    2320          30 :     req.root = root;
    2321          30 :     req.funcid = funcid;
    2322          30 :     req.args = args;
    2323          30 :     req.inputcollid = inputcollid;
    2324          30 :     req.is_join = is_join;
    2325          30 :     req.varRelid = varRelid;
    2326          30 :     req.jointype = jointype;
    2327          30 :     req.sjinfo = sjinfo;
    2328          30 :     req.selectivity = -1;       /* to catch failure to set the value */
    2329             : 
    2330             :     sresult = (SupportRequestSelectivity *)
    2331          30 :         DatumGetPointer(OidFunctionCall1(prosupport,
    2332             :                                          PointerGetDatum(&req)));
    2333             : 
    2334          30 :     if (sresult != &req)
    2335           0 :         return (Selectivity) -1;    /* function did not honor request */
    2336             : 
    2337          30 :     if (req.selectivity < 0.0 || req.selectivity > 1.0)
    2338           0 :         elog(ERROR, "invalid function selectivity: %f", req.selectivity);
    2339             : 
    2340          30 :     return (Selectivity) req.selectivity;
    2341             : }
    2342             : 
    2343             : /*
    2344             :  * add_function_cost
    2345             :  *
    2346             :  * Get an estimate of the execution cost of a function, and *add* it to
    2347             :  * the contents of *cost.  The estimate may include both one-time and
    2348             :  * per-tuple components, since QualCost does.
    2349             :  *
    2350             :  * The funcid must always be supplied.  If it is being called as the
    2351             :  * implementation of a specific parsetree node (FuncExpr, OpExpr,
    2352             :  * WindowFunc, etc), pass that as "node", else pass NULL.
    2353             :  *
    2354             :  * In some usages root might be NULL, too.
    2355             :  */
    2356             : void
    2357     1190252 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
    2358             :                   QualCost *cost)
    2359             : {
    2360             :     HeapTuple   proctup;
    2361             :     Form_pg_proc procform;
    2362             : 
    2363     1190252 :     proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
    2364     1190252 :     if (!HeapTupleIsValid(proctup))
    2365           0 :         elog(ERROR, "cache lookup failed for function %u", funcid);
    2366     1190252 :     procform = (Form_pg_proc) GETSTRUCT(proctup);
    2367             : 
    2368     1190252 :     if (OidIsValid(procform->prosupport))
    2369             :     {
    2370             :         SupportRequestCost req;
    2371             :         SupportRequestCost *sresult;
    2372             : 
    2373       35724 :         req.type = T_SupportRequestCost;
    2374       35724 :         req.root = root;
    2375       35724 :         req.funcid = funcid;
    2376       35724 :         req.node = node;
    2377             : 
    2378             :         /* Initialize cost fields so that support function doesn't have to */
    2379       35724 :         req.startup = 0;
    2380       35724 :         req.per_tuple = 0;
    2381             : 
    2382             :         sresult = (SupportRequestCost *)
    2383       35724 :             DatumGetPointer(OidFunctionCall1(procform->prosupport,
    2384             :                                              PointerGetDatum(&req)));
    2385             : 
    2386       35724 :         if (sresult == &req)
    2387             :         {
    2388             :             /* Success, so accumulate support function's estimate into *cost */
    2389          18 :             cost->startup += req.startup;
    2390          18 :             cost->per_tuple += req.per_tuple;
    2391          18 :             ReleaseSysCache(proctup);
    2392          18 :             return;
    2393             :         }
    2394             :     }
    2395             : 
    2396             :     /* No support function, or it failed, so rely on procost */
    2397     1190234 :     cost->per_tuple += procform->procost * cpu_operator_cost;
    2398             : 
    2399     1190234 :     ReleaseSysCache(proctup);
    2400             : }
    2401             : 
    2402             : /*
    2403             :  * get_function_rows
    2404             :  *
    2405             :  * Get an estimate of the number of rows returned by a set-returning function.
    2406             :  *
    2407             :  * The funcid must always be supplied.  In current usage, the calling node
    2408             :  * will always be supplied, and will be either a FuncExpr or OpExpr.
    2409             :  * But it's a good idea to not fail if it's NULL.
    2410             :  *
    2411             :  * In some usages root might be NULL, too.
    2412             :  *
    2413             :  * Note: this returns the unfiltered result of the support function, if any.
    2414             :  * It's usually a good idea to apply clamp_row_est() to the result, but we
    2415             :  * leave it to the caller to do so.
    2416             :  */
    2417             : double
    2418       56584 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
    2419             : {
    2420             :     HeapTuple   proctup;
    2421             :     Form_pg_proc procform;
    2422             :     double      result;
    2423             : 
    2424       56584 :     proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
    2425       56584 :     if (!HeapTupleIsValid(proctup))
    2426           0 :         elog(ERROR, "cache lookup failed for function %u", funcid);
    2427       56584 :     procform = (Form_pg_proc) GETSTRUCT(proctup);
    2428             : 
    2429             :     Assert(procform->proretset); /* else caller error */
    2430             : 
    2431       56584 :     if (OidIsValid(procform->prosupport))
    2432             :     {
    2433             :         SupportRequestRows req;
    2434             :         SupportRequestRows *sresult;
    2435             : 
    2436       21344 :         req.type = T_SupportRequestRows;
    2437       21344 :         req.root = root;
    2438       21344 :         req.funcid = funcid;
    2439       21344 :         req.node = node;
    2440             : 
    2441       21344 :         req.rows = 0;           /* just for sanity */
    2442             : 
    2443             :         sresult = (SupportRequestRows *)
    2444       21344 :             DatumGetPointer(OidFunctionCall1(procform->prosupport,
    2445             :                                              PointerGetDatum(&req)));
    2446             : 
    2447       21344 :         if (sresult == &req)
    2448             :         {
    2449             :             /* Success */
    2450       17222 :             ReleaseSysCache(proctup);
    2451       17222 :             return req.rows;
    2452             :         }
    2453             :     }
    2454             : 
    2455             :     /* No support function, or it failed, so rely on prorows */
    2456       39362 :     result = procform->prorows;
    2457             : 
    2458       39362 :     ReleaseSysCache(proctup);
    2459             : 
    2460       39362 :     return result;
    2461             : }
    2462             : 
    2463             : /*
    2464             :  * has_unique_index
    2465             :  *
    2466             :  * Detect whether there is a unique index on the specified attribute
    2467             :  * of the specified relation, thus allowing us to conclude that all
    2468             :  * the (non-null) values of the attribute are distinct.
    2469             :  *
    2470             :  * This function does not check the index's indimmediate property, which
    2471             :  * means that uniqueness may transiently fail to hold intra-transaction.
    2472             :  * That's appropriate when we are making statistical estimates, but beware
    2473             :  * of using this for any correctness proofs.
    2474             :  */
    2475             : bool
    2476     2353932 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
    2477             : {
    2478             :     ListCell   *ilist;
    2479             : 
    2480     5749704 :     foreach(ilist, rel->indexlist)
    2481             :     {
    2482     4123572 :         IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
    2483             : 
    2484             :         /*
    2485             :          * Note: ignore partial indexes, since they don't allow us to conclude
    2486             :          * that all attr values are distinct, *unless* they are marked predOK
    2487             :          * which means we know the index's predicate is satisfied by the
    2488             :          * query. We don't take any interest in expressional indexes either.
    2489             :          * Also, a multicolumn unique index doesn't allow us to conclude that
    2490             :          * just the specified attr is unique.
    2491             :          */
    2492     4123572 :         if (index->unique &&
    2493     2876976 :             index->nkeycolumns == 1 &&
    2494     1558068 :             index->indexkeys[0] == attno &&
    2495      727872 :             (index->indpred == NIL || index->predOK))
    2496      727800 :             return true;
    2497             :     }
    2498     1626132 :     return false;
    2499             : }
    2500             : 
    2501             : 
    2502             : /*
    2503             :  * has_row_triggers
    2504             :  *
    2505             :  * Detect whether the specified relation has any row-level triggers for event.
    2506             :  */
    2507             : bool
    2508         516 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
    2509             : {
    2510         516 :     RangeTblEntry *rte = planner_rt_fetch(rti, root);
    2511             :     Relation    relation;
    2512             :     TriggerDesc *trigDesc;
    2513         516 :     bool        result = false;
    2514             : 
    2515             :     /* Assume we already have adequate lock */
    2516         516 :     relation = table_open(rte->relid, NoLock);
    2517             : 
    2518         516 :     trigDesc = relation->trigdesc;
    2519         516 :     switch (event)
    2520             :     {
    2521         164 :         case CMD_INSERT:
    2522         164 :             if (trigDesc &&
    2523          26 :                 (trigDesc->trig_insert_after_row ||
    2524          14 :                  trigDesc->trig_insert_before_row))
    2525          26 :                 result = true;
    2526         164 :             break;
    2527         190 :         case CMD_UPDATE:
    2528         190 :             if (trigDesc &&
    2529          48 :                 (trigDesc->trig_update_after_row ||
    2530          28 :                  trigDesc->trig_update_before_row))
    2531          36 :                 result = true;
    2532         190 :             break;
    2533         162 :         case CMD_DELETE:
    2534         162 :             if (trigDesc &&
    2535          30 :                 (trigDesc->trig_delete_after_row ||
    2536          18 :                  trigDesc->trig_delete_before_row))
    2537          16 :                 result = true;
    2538         162 :             break;
    2539             :             /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
    2540           0 :         case CMD_MERGE:
    2541           0 :             result = false;
    2542           0 :             break;
    2543           0 :         default:
    2544           0 :             elog(ERROR, "unrecognized CmdType: %d", (int) event);
    2545             :             break;
    2546             :     }
    2547             : 
    2548         516 :     table_close(relation, NoLock);
    2549         516 :     return result;
    2550             : }
    2551             : 
    2552             : /*
    2553             :  * has_transition_tables
    2554             :  *
    2555             :  * Detect whether the specified relation has any transition tables for event.
    2556             :  */
    2557             : bool
    2558         390 : has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
    2559             : {
    2560         390 :     RangeTblEntry *rte = planner_rt_fetch(rti, root);
    2561             :     Relation    relation;
    2562             :     TriggerDesc *trigDesc;
    2563         390 :     bool        result = false;
    2564             : 
    2565             :     Assert(rte->rtekind == RTE_RELATION);
    2566             : 
    2567             :     /* Currently foreign tables cannot have transition tables */
    2568         390 :     if (rte->relkind == RELKIND_FOREIGN_TABLE)
    2569         290 :         return result;
    2570             : 
    2571             :     /* Assume we already have adequate lock */
    2572         100 :     relation = table_open(rte->relid, NoLock);
    2573             : 
    2574         100 :     trigDesc = relation->trigdesc;
    2575         100 :     switch (event)
    2576             :     {
    2577           0 :         case CMD_INSERT:
    2578           0 :             if (trigDesc &&
    2579           0 :                 trigDesc->trig_insert_new_table)
    2580           0 :                 result = true;
    2581           0 :             break;
    2582          60 :         case CMD_UPDATE:
    2583          60 :             if (trigDesc &&
    2584           8 :                 (trigDesc->trig_update_old_table ||
    2585           0 :                  trigDesc->trig_update_new_table))
    2586           8 :                 result = true;
    2587          60 :             break;
    2588          40 :         case CMD_DELETE:
    2589          40 :             if (trigDesc &&
    2590           8 :                 trigDesc->trig_delete_old_table)
    2591           8 :                 result = true;
    2592          40 :             break;
    2593             :             /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
    2594           0 :         case CMD_MERGE:
    2595           0 :             result = false;
    2596           0 :             break;
    2597           0 :         default:
    2598           0 :             elog(ERROR, "unrecognized CmdType: %d", (int) event);
    2599             :             break;
    2600             :     }
    2601             : 
    2602         100 :     table_close(relation, NoLock);
    2603         100 :     return result;
    2604             : }
    2605             : 
    2606             : /*
    2607             :  * has_stored_generated_columns
    2608             :  *
    2609             :  * Does table identified by RTI have any STORED GENERATED columns?
    2610             :  */
    2611             : bool
    2612         438 : has_stored_generated_columns(PlannerInfo *root, Index rti)
    2613             : {
    2614         438 :     RangeTblEntry *rte = planner_rt_fetch(rti, root);
    2615             :     Relation    relation;
    2616             :     TupleDesc   tupdesc;
    2617         438 :     bool        result = false;
    2618             : 
    2619             :     /* Assume we already have adequate lock */
    2620         438 :     relation = table_open(rte->relid, NoLock);
    2621             : 
    2622         438 :     tupdesc = RelationGetDescr(relation);
    2623         438 :     result = tupdesc->constr && tupdesc->constr->has_generated_stored;
    2624             : 
    2625         438 :     table_close(relation, NoLock);
    2626             : 
    2627         438 :     return result;
    2628             : }
    2629             : 
    2630             : /*
    2631             :  * get_dependent_generated_columns
    2632             :  *
    2633             :  * Get the column numbers of any STORED GENERATED columns of the relation
    2634             :  * that depend on any column listed in target_cols.  Both the input and
    2635             :  * result bitmapsets contain column numbers offset by
    2636             :  * FirstLowInvalidHeapAttributeNumber.
    2637             :  */
    2638             : Bitmapset *
    2639          90 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
    2640             :                                 Bitmapset *target_cols)
    2641             : {
    2642          90 :     Bitmapset  *dependentCols = NULL;
    2643          90 :     RangeTblEntry *rte = planner_rt_fetch(rti, root);
    2644             :     Relation    relation;
    2645             :     TupleDesc   tupdesc;
    2646             :     TupleConstr *constr;
    2647             : 
    2648             :     /* Assume we already have adequate lock */
    2649          90 :     relation = table_open(rte->relid, NoLock);
    2650             : 
    2651          90 :     tupdesc = RelationGetDescr(relation);
    2652          90 :     constr = tupdesc->constr;
    2653             : 
    2654          90 :     if (constr && constr->has_generated_stored)
    2655             :     {
    2656          12 :         for (int i = 0; i < constr->num_defval; i++)
    2657             :         {
    2658           8 :             AttrDefault *defval = &constr->defval[i];
    2659             :             Node       *expr;
    2660           8 :             Bitmapset  *attrs_used = NULL;
    2661             : 
    2662             :             /* skip if not generated column */
    2663           8 :             if (!TupleDescCompactAttr(tupdesc, defval->adnum - 1)->attgenerated)
    2664           0 :                 continue;
    2665             : 
    2666             :             /* identify columns this generated column depends on */
    2667           8 :             expr = stringToNode(defval->adbin);
    2668           8 :             pull_varattnos(expr, 1, &attrs_used);
    2669             : 
    2670           8 :             if (bms_overlap(target_cols, attrs_used))
    2671           8 :                 dependentCols = bms_add_member(dependentCols,
    2672           8 :                                                defval->adnum - FirstLowInvalidHeapAttributeNumber);
    2673             :         }
    2674             :     }
    2675             : 
    2676          90 :     table_close(relation, NoLock);
    2677             : 
    2678          90 :     return dependentCols;
    2679             : }
    2680             : 
    2681             : /*
    2682             :  * set_relation_partition_info
    2683             :  *
    2684             :  * Set partitioning scheme and related information for a partitioned table.
    2685             :  */
    2686             : static void
    2687       18056 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
    2688             :                             Relation relation)
    2689             : {
    2690             :     PartitionDesc partdesc;
    2691             : 
    2692             :     /*
    2693             :      * Create the PartitionDirectory infrastructure if we didn't already.
    2694             :      */
    2695       18056 :     if (root->glob->partition_directory == NULL)
    2696             :     {
    2697       12152 :         root->glob->partition_directory =
    2698       12152 :             CreatePartitionDirectory(CurrentMemoryContext, true);
    2699             :     }
    2700             : 
    2701       18056 :     partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
    2702             :                                         relation);
    2703       18056 :     rel->part_scheme = find_partition_scheme(root, relation);
    2704             :     Assert(partdesc != NULL && rel->part_scheme != NULL);
    2705       18056 :     rel->boundinfo = partdesc->boundinfo;
    2706       18056 :     rel->nparts = partdesc->nparts;
    2707       18056 :     set_baserel_partition_key_exprs(relation, rel);
    2708       18056 :     set_baserel_partition_constraint(relation, rel);
    2709       18056 : }
    2710             : 
    2711             : /*
    2712             :  * find_partition_scheme
    2713             :  *
    2714             :  * Find or create a PartitionScheme for this Relation.
    2715             :  */
    2716             : static PartitionScheme
    2717       18056 : find_partition_scheme(PlannerInfo *root, Relation relation)
    2718             : {
    2719       18056 :     PartitionKey partkey = RelationGetPartitionKey(relation);
    2720             :     ListCell   *lc;
    2721             :     int         partnatts,
    2722             :                 i;
    2723             :     PartitionScheme part_scheme;
    2724             : 
    2725             :     /* A partitioned table should have a partition key. */
    2726             :     Assert(partkey != NULL);
    2727             : 
    2728       18056 :     partnatts = partkey->partnatts;
    2729             : 
    2730             :     /* Search for a matching partition scheme and return if found one. */
    2731       19946 :     foreach(lc, root->part_schemes)
    2732             :     {
    2733        6496 :         part_scheme = lfirst(lc);
    2734             : 
    2735             :         /* Match partitioning strategy and number of keys. */
    2736        6496 :         if (partkey->strategy != part_scheme->strategy ||
    2737        5506 :             partnatts != part_scheme->partnatts)
    2738        1440 :             continue;
    2739             : 
    2740             :         /* Match partition key type properties. */
    2741        5056 :         if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
    2742        4606 :                    sizeof(Oid) * partnatts) != 0 ||
    2743        4606 :             memcmp(partkey->partopcintype, part_scheme->partopcintype,
    2744        4606 :                    sizeof(Oid) * partnatts) != 0 ||
    2745        4606 :             memcmp(partkey->partcollation, part_scheme->partcollation,
    2746             :                    sizeof(Oid) * partnatts) != 0)
    2747         450 :             continue;
    2748             : 
    2749             :         /*
    2750             :          * Length and byval information should match when partopcintype
    2751             :          * matches.
    2752             :          */
    2753             :         Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
    2754             :                       sizeof(int16) * partnatts) == 0);
    2755             :         Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
    2756             :                       sizeof(bool) * partnatts) == 0);
    2757             : 
    2758             :         /*
    2759             :          * If partopfamily and partopcintype matched, must have the same
    2760             :          * partition comparison functions.  Note that we cannot reliably
    2761             :          * Assert the equality of function structs themselves for they might
    2762             :          * be different across PartitionKey's, so just Assert for the function
    2763             :          * OIDs.
    2764             :          */
    2765             : #ifdef USE_ASSERT_CHECKING
    2766             :         for (i = 0; i < partkey->partnatts; i++)
    2767             :             Assert(partkey->partsupfunc[i].fn_oid ==
    2768             :                    part_scheme->partsupfunc[i].fn_oid);
    2769             : #endif
    2770             : 
    2771             :         /* Found matching partition scheme. */
    2772        4606 :         return part_scheme;
    2773             :     }
    2774             : 
    2775             :     /*
    2776             :      * Did not find matching partition scheme. Create one copying relevant
    2777             :      * information from the relcache. We need to copy the contents of the
    2778             :      * array since the relcache entry may not survive after we have closed the
    2779             :      * relation.
    2780             :      */
    2781       13450 :     part_scheme = palloc0_object(PartitionSchemeData);
    2782       13450 :     part_scheme->strategy = partkey->strategy;
    2783       13450 :     part_scheme->partnatts = partkey->partnatts;
    2784             : 
    2785       13450 :     part_scheme->partopfamily = palloc_array(Oid, partnatts);
    2786       13450 :     memcpy(part_scheme->partopfamily, partkey->partopfamily,
    2787             :            sizeof(Oid) * partnatts);
    2788             : 
    2789       13450 :     part_scheme->partopcintype = palloc_array(Oid, partnatts);
    2790       13450 :     memcpy(part_scheme->partopcintype, partkey->partopcintype,
    2791             :            sizeof(Oid) * partnatts);
    2792             : 
    2793       13450 :     part_scheme->partcollation = palloc_array(Oid, partnatts);
    2794       13450 :     memcpy(part_scheme->partcollation, partkey->partcollation,
    2795             :            sizeof(Oid) * partnatts);
    2796             : 
    2797       13450 :     part_scheme->parttyplen = palloc_array(int16, partnatts);
    2798       13450 :     memcpy(part_scheme->parttyplen, partkey->parttyplen,
    2799             :            sizeof(int16) * partnatts);
    2800             : 
    2801       13450 :     part_scheme->parttypbyval = palloc_array(bool, partnatts);
    2802       13450 :     memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
    2803             :            sizeof(bool) * partnatts);
    2804             : 
    2805       13450 :     part_scheme->partsupfunc = palloc_array(FmgrInfo, partnatts);
    2806       28796 :     for (i = 0; i < partnatts; i++)
    2807       15346 :         fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
    2808             :                        CurrentMemoryContext);
    2809             : 
    2810             :     /* Add the partitioning scheme to PlannerInfo. */
    2811       13450 :     root->part_schemes = lappend(root->part_schemes, part_scheme);
    2812             : 
    2813       13450 :     return part_scheme;
    2814             : }
    2815             : 
    2816             : /*
    2817             :  * set_baserel_partition_key_exprs
    2818             :  *
    2819             :  * Builds partition key expressions for the given base relation and fills
    2820             :  * rel->partexprs.
    2821             :  */
    2822             : static void
    2823       18056 : set_baserel_partition_key_exprs(Relation relation,
    2824             :                                 RelOptInfo *rel)
    2825             : {
    2826       18056 :     PartitionKey partkey = RelationGetPartitionKey(relation);
    2827             :     int         partnatts;
    2828             :     int         cnt;
    2829             :     List      **partexprs;
    2830             :     ListCell   *lc;
    2831       18056 :     Index       varno = rel->relid;
    2832             : 
    2833             :     Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
    2834             : 
    2835             :     /* A partitioned table should have a partition key. */
    2836             :     Assert(partkey != NULL);
    2837             : 
    2838       18056 :     partnatts = partkey->partnatts;
    2839       18056 :     partexprs = palloc_array(List *, partnatts);
    2840       18056 :     lc = list_head(partkey->partexprs);
    2841             : 
    2842       38038 :     for (cnt = 0; cnt < partnatts; cnt++)
    2843             :     {
    2844             :         Expr       *partexpr;
    2845       19982 :         AttrNumber  attno = partkey->partattrs[cnt];
    2846             : 
    2847       19982 :         if (attno != InvalidAttrNumber)
    2848             :         {
    2849             :             /* Single column partition key is stored as a Var node. */
    2850             :             Assert(attno > 0);
    2851             : 
    2852       19040 :             partexpr = (Expr *) makeVar(varno, attno,
    2853       19040 :                                         partkey->parttypid[cnt],
    2854       19040 :                                         partkey->parttypmod[cnt],
    2855       19040 :                                         partkey->parttypcoll[cnt], 0);
    2856             :         }
    2857             :         else
    2858             :         {
    2859         942 :             if (lc == NULL)
    2860           0 :                 elog(ERROR, "wrong number of partition key expressions");
    2861             : 
    2862             :             /* Re-stamp the expression with given varno. */
    2863         942 :             partexpr = (Expr *) copyObject(lfirst(lc));
    2864         942 :             ChangeVarNodes((Node *) partexpr, 1, varno, 0);
    2865         942 :             lc = lnext(partkey->partexprs, lc);
    2866             :         }
    2867             : 
    2868             :         /* Base relations have a single expression per key. */
    2869       19982 :         partexprs[cnt] = list_make1(partexpr);
    2870             :     }
    2871             : 
    2872       18056 :     rel->partexprs = partexprs;
    2873             : 
    2874             :     /*
    2875             :      * A base relation does not have nullable partition key expressions, since
    2876             :      * no outer join is involved.  We still allocate an array of empty
    2877             :      * expression lists to keep partition key expression handling code simple.
    2878             :      * See build_joinrel_partition_info() and match_expr_to_partition_keys().
    2879             :      */
    2880       18056 :     rel->nullable_partexprs = palloc0_array(List *, partnatts);
    2881       18056 : }
    2882             : 
    2883             : /*
    2884             :  * set_baserel_partition_constraint
    2885             :  *
    2886             :  * Builds the partition constraint for the given base relation and sets it
    2887             :  * in the given RelOptInfo.  All Var nodes are restamped with the relid of the
    2888             :  * given relation.
    2889             :  */
    2890             : static void
    2891       18068 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
    2892             : {
    2893             :     List       *partconstr;
    2894             : 
    2895       18068 :     if (rel->partition_qual) /* already done */
    2896           0 :         return;
    2897             : 
    2898             :     /*
    2899             :      * Run the partition quals through const-simplification similar to check
    2900             :      * constraints.  We skip canonicalize_qual, though, because partition
    2901             :      * quals should be in canonical form already; also, since the qual is in
    2902             :      * implicit-AND format, we'd have to explicitly convert it to explicit-AND
    2903             :      * format and back again.
    2904             :      */
    2905       18068 :     partconstr = RelationGetPartitionQual(relation);
    2906       18068 :     if (partconstr)
    2907             :     {
    2908        3746 :         partconstr = (List *) expression_planner((Expr *) partconstr);
    2909        3746 :         if (rel->relid != 1)
    2910        3656 :             ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
    2911        3746 :         rel->partition_qual = partconstr;
    2912             :     }
    2913             : }

Generated by: LCOV version 1.16