Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/clauses.h"
40 : #include "optimizer/cost.h"
41 : #include "optimizer/optimizer.h"
42 : #include "optimizer/plancat.h"
43 : #include "optimizer/prep.h"
44 : #include "parser/parse_relation.h"
45 : #include "parser/parsetree.h"
46 : #include "partitioning/partdesc.h"
47 : #include "rewrite/rewriteManip.h"
48 : #include "statistics/statistics.h"
49 : #include "storage/bufmgr.h"
50 : #include "utils/builtins.h"
51 : #include "utils/lsyscache.h"
52 : #include "utils/partcache.h"
53 : #include "utils/rel.h"
54 : #include "utils/snapmgr.h"
55 : #include "utils/syscache.h"
56 :
57 : /* GUC parameter */
58 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
59 :
60 : /* Hook for plugins to get control in get_relation_info() */
61 : get_relation_info_hook_type get_relation_info_hook = NULL;
62 :
63 :
64 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
65 : Relation relation, bool inhparent);
66 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
67 : List *idxExprs);
68 : static List *get_relation_constraints(PlannerInfo *root,
69 : Oid relationObjectId, RelOptInfo *rel,
70 : bool include_noinherit,
71 : bool include_notnull,
72 : bool include_partition);
73 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
74 : Relation heapRelation);
75 : static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
76 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
77 : Relation relation);
78 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
79 : Relation relation);
80 : static void set_baserel_partition_key_exprs(Relation relation,
81 : RelOptInfo *rel);
82 : static void set_baserel_partition_constraint(Relation relation,
83 : RelOptInfo *rel);
84 :
85 :
86 : /*
87 : * get_relation_info -
88 : * Retrieves catalog information for a given relation.
89 : *
90 : * Given the Oid of the relation, return the following info into fields
91 : * of the RelOptInfo struct:
92 : *
93 : * min_attr lowest valid AttrNumber
94 : * max_attr highest valid AttrNumber
95 : * indexlist list of IndexOptInfos for relation's indexes
96 : * statlist list of StatisticExtInfo for relation's statistic objects
97 : * serverid if it's a foreign table, the server OID
98 : * fdwroutine if it's a foreign table, the FDW function pointers
99 : * pages number of pages
100 : * tuples number of tuples
101 : * rel_parallel_workers user-defined number of parallel workers
102 : *
103 : * Also, add information about the relation's foreign keys to root->fkey_list.
104 : *
105 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
106 : * cases these are left as zeroes, but sometimes we need to compute attr
107 : * widths here, and we may as well cache the results for costsize.c.
108 : *
109 : * If inhparent is true, all we need to do is set up the attr arrays:
110 : * the RelOptInfo actually represents the appendrel formed by an inheritance
111 : * tree, and so the parent rel's physical size and index information isn't
112 : * important for it, however, for partitioned tables, we do populate the
113 : * indexlist as the planner uses unique indexes as unique proofs for certain
114 : * optimizations.
115 : */
116 : void
117 367156 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
118 : RelOptInfo *rel)
119 : {
120 367156 : Index varno = rel->relid;
121 : Relation relation;
122 : bool hasindex;
123 367156 : List *indexinfos = NIL;
124 :
125 : /*
126 : * We need not lock the relation since it was already locked, either by
127 : * the rewriter or when expand_inherited_rtentry() added it to the query's
128 : * rangetable.
129 : */
130 367156 : relation = table_open(relationObjectId, NoLock);
131 :
132 : /*
133 : * Relations without a table AM can be used in a query only if they are of
134 : * special-cased relkinds. This check prevents us from crashing later if,
135 : * for example, a view's ON SELECT rule has gone missing. Note that
136 : * table_open() already rejected indexes and composite types; spell the
137 : * error the same way it does.
138 : */
139 367156 : if (!relation->rd_tableam)
140 : {
141 17250 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
142 15004 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
143 0 : ereport(ERROR,
144 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
145 : errmsg("cannot open relation \"%s\"",
146 : RelationGetRelationName(relation)),
147 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
148 : }
149 :
150 : /* Temporary and unlogged relations are inaccessible during recovery. */
151 367156 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
152 0 : ereport(ERROR,
153 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
154 : errmsg("cannot access temporary or unlogged relations during recovery")));
155 :
156 367156 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
157 367156 : rel->max_attr = RelationGetNumberOfAttributes(relation);
158 367156 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
159 :
160 : Assert(rel->max_attr >= rel->min_attr);
161 367156 : rel->attr_needed = (Relids *)
162 367156 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
163 367156 : rel->attr_widths = (int32 *)
164 367156 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
165 :
166 : /*
167 : * Estimate relation size --- unless it's an inheritance parent, in which
168 : * case the size we want is not the rel's own size but the size of its
169 : * inheritance tree. That will be computed in set_append_rel_size().
170 : */
171 367156 : if (!inhparent)
172 321858 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
173 321858 : &rel->pages, &rel->tuples, &rel->allvisfrac);
174 :
175 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
176 367156 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
177 :
178 : /*
179 : * Make list of indexes. Ignore indexes on system catalogs if told to.
180 : * Don't bother with indexes from traditional inheritance parents. For
181 : * partitioned tables, we need a list of at least unique indexes as these
182 : * serve as unique proofs for certain planner optimizations. However,
183 : * let's not discriminate here and just record all partitioned indexes
184 : * whether they're unique indexes or not.
185 : */
186 367156 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
187 336822 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
188 30334 : hasindex = false;
189 : else
190 336822 : hasindex = relation->rd_rel->relhasindex;
191 :
192 367156 : if (hasindex)
193 : {
194 : List *indexoidlist;
195 : LOCKMODE lmode;
196 : ListCell *l;
197 :
198 260512 : indexoidlist = RelationGetIndexList(relation);
199 :
200 : /*
201 : * For each index, we get the same type of lock that the executor will
202 : * need, and do not release it. This saves a couple of trips to the
203 : * shared lock manager while not creating any real loss of
204 : * concurrency, because no schema changes could be happening on the
205 : * index while we hold lock on the parent rel, and no lock type used
206 : * for queries blocks any other kind of index operation.
207 : */
208 260512 : lmode = root->simple_rte_array[varno]->rellockmode;
209 :
210 799748 : foreach(l, indexoidlist)
211 : {
212 539236 : Oid indexoid = lfirst_oid(l);
213 : Relation indexRelation;
214 : Form_pg_index index;
215 : IndexAmRoutine *amroutine;
216 : IndexOptInfo *info;
217 : int ncolumns,
218 : nkeycolumns;
219 : int i;
220 :
221 : /*
222 : * Extract info from the relation descriptor for the index.
223 : */
224 539236 : indexRelation = index_open(indexoid, lmode);
225 539236 : index = indexRelation->rd_index;
226 :
227 : /*
228 : * Ignore invalid indexes, since they can't safely be used for
229 : * queries. Note that this is OK because the data structure we
230 : * are constructing is only used by the planner --- the executor
231 : * still needs to insert into "invalid" indexes, if they're marked
232 : * indisready.
233 : */
234 539236 : if (!index->indisvalid)
235 : {
236 22 : index_close(indexRelation, NoLock);
237 22 : continue;
238 : }
239 :
240 : /*
241 : * If the index is valid, but cannot yet be used, ignore it; but
242 : * mark the plan we are generating as transient. See
243 : * src/backend/access/heap/README.HOT for discussion.
244 : */
245 539214 : if (index->indcheckxmin &&
246 6 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
247 : TransactionXmin))
248 : {
249 0 : root->glob->transientPlan = true;
250 0 : index_close(indexRelation, NoLock);
251 0 : continue;
252 : }
253 :
254 539214 : info = makeNode(IndexOptInfo);
255 :
256 539214 : info->indexoid = index->indexrelid;
257 539214 : info->reltablespace =
258 539214 : RelationGetForm(indexRelation)->reltablespace;
259 539214 : info->rel = rel;
260 539214 : info->ncolumns = ncolumns = index->indnatts;
261 539214 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
262 :
263 539214 : info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
264 539214 : info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
265 539214 : info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
266 539214 : info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
267 539214 : info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
268 :
269 1599034 : for (i = 0; i < ncolumns; i++)
270 : {
271 1059820 : info->indexkeys[i] = index->indkey.values[i];
272 1059820 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
273 : }
274 :
275 1598628 : for (i = 0; i < nkeycolumns; i++)
276 : {
277 1059414 : info->opfamily[i] = indexRelation->rd_opfamily[i];
278 1059414 : info->opcintype[i] = indexRelation->rd_opcintype[i];
279 1059414 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
280 : }
281 :
282 539214 : info->relam = indexRelation->rd_rel->relam;
283 :
284 : /*
285 : * We don't have an AM for partitioned indexes, so we'll just
286 : * NULLify the AM related fields for those.
287 : */
288 539214 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
289 : {
290 : /* We copy just the fields we need, not all of rd_indam */
291 533344 : amroutine = indexRelation->rd_indam;
292 533344 : info->amcanorderbyop = amroutine->amcanorderbyop;
293 533344 : info->amoptionalkey = amroutine->amoptionalkey;
294 533344 : info->amsearcharray = amroutine->amsearcharray;
295 533344 : info->amsearchnulls = amroutine->amsearchnulls;
296 533344 : info->amcanparallel = amroutine->amcanparallel;
297 533344 : info->amhasgettuple = (amroutine->amgettuple != NULL);
298 1066688 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
299 533344 : relation->rd_tableam->scan_bitmap_next_block != NULL;
300 1047638 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
301 514294 : amroutine->amrestrpos != NULL);
302 533344 : info->amcostestimate = amroutine->amcostestimate;
303 : Assert(info->amcostestimate != NULL);
304 :
305 : /* Fetch index opclass options */
306 533344 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
307 :
308 : /*
309 : * Fetch the ordering information for the index, if any.
310 : */
311 533344 : if (info->relam == BTREE_AM_OID)
312 : {
313 : /*
314 : * If it's a btree index, we can use its opfamily OIDs
315 : * directly as the sort ordering opfamily OIDs.
316 : */
317 : Assert(amroutine->amcanorder);
318 :
319 514294 : info->sortopfamily = info->opfamily;
320 514294 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
321 514294 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
322 :
323 1290300 : for (i = 0; i < nkeycolumns; i++)
324 : {
325 776006 : int16 opt = indexRelation->rd_indoption[i];
326 :
327 776006 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
328 776006 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
329 : }
330 : }
331 19050 : else if (amroutine->amcanorder)
332 : {
333 : /*
334 : * Otherwise, identify the corresponding btree opfamilies
335 : * by trying to map this index's "<" operators into btree.
336 : * Since "<" uniquely defines the behavior of a sort
337 : * order, this is a sufficient test.
338 : *
339 : * XXX This method is rather slow and also requires the
340 : * undesirable assumption that the other index AM numbers
341 : * its strategies the same as btree. It'd be better to
342 : * have a way to explicitly declare the corresponding
343 : * btree opfamily for each opfamily of the other index
344 : * type. But given the lack of current or foreseeable
345 : * amcanorder index types, it's not worth expending more
346 : * effort on now.
347 : */
348 0 : info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
349 0 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
350 0 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
351 :
352 0 : for (i = 0; i < nkeycolumns; i++)
353 : {
354 0 : int16 opt = indexRelation->rd_indoption[i];
355 : Oid ltopr;
356 : Oid btopfamily;
357 : Oid btopcintype;
358 : int16 btstrategy;
359 :
360 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
361 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
362 :
363 0 : ltopr = get_opfamily_member(info->opfamily[i],
364 0 : info->opcintype[i],
365 0 : info->opcintype[i],
366 : BTLessStrategyNumber);
367 0 : if (OidIsValid(ltopr) &&
368 0 : get_ordering_op_properties(ltopr,
369 : &btopfamily,
370 : &btopcintype,
371 0 : &btstrategy) &&
372 0 : btopcintype == info->opcintype[i] &&
373 0 : btstrategy == BTLessStrategyNumber)
374 : {
375 : /* Successful mapping */
376 0 : info->sortopfamily[i] = btopfamily;
377 : }
378 : else
379 : {
380 : /* Fail ... quietly treat index as unordered */
381 0 : info->sortopfamily = NULL;
382 0 : info->reverse_sort = NULL;
383 0 : info->nulls_first = NULL;
384 0 : break;
385 : }
386 : }
387 : }
388 : else
389 : {
390 19050 : info->sortopfamily = NULL;
391 19050 : info->reverse_sort = NULL;
392 19050 : info->nulls_first = NULL;
393 : }
394 : }
395 : else
396 : {
397 5870 : info->amcanorderbyop = false;
398 5870 : info->amoptionalkey = false;
399 5870 : info->amsearcharray = false;
400 5870 : info->amsearchnulls = false;
401 5870 : info->amcanparallel = false;
402 5870 : info->amhasgettuple = false;
403 5870 : info->amhasgetbitmap = false;
404 5870 : info->amcanmarkpos = false;
405 5870 : info->amcostestimate = NULL;
406 :
407 5870 : info->sortopfamily = NULL;
408 5870 : info->reverse_sort = NULL;
409 5870 : info->nulls_first = NULL;
410 : }
411 :
412 : /*
413 : * Fetch the index expressions and predicate, if any. We must
414 : * modify the copies we obtain from the relcache to have the
415 : * correct varno for the parent relation, so that they match up
416 : * correctly against qual clauses.
417 : */
418 539214 : info->indexprs = RelationGetIndexExpressions(indexRelation);
419 539214 : info->indpred = RelationGetIndexPredicate(indexRelation);
420 539214 : if (info->indexprs && varno != 1)
421 1632 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
422 539214 : if (info->indpred && varno != 1)
423 126 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
424 :
425 : /* Build targetlist using the completed indexprs data */
426 539214 : info->indextlist = build_index_tlist(root, info, relation);
427 :
428 539214 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
429 539214 : info->predOK = false; /* set later, in indxpath.c */
430 539214 : info->unique = index->indisunique;
431 539214 : info->immediate = index->indimmediate;
432 539214 : info->hypothetical = false;
433 :
434 : /*
435 : * Estimate the index size. If it's not a partial index, we lock
436 : * the number-of-tuples estimate to equal the parent table; if it
437 : * is partial then we have to use the same methods as we would for
438 : * a table, except we can be sure that the index is not larger
439 : * than the table. We must ignore partitioned indexes here as
440 : * there are not physical indexes.
441 : */
442 539214 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
443 : {
444 533344 : if (info->indpred == NIL)
445 : {
446 532418 : info->pages = RelationGetNumberOfBlocks(indexRelation);
447 532418 : info->tuples = rel->tuples;
448 : }
449 : else
450 : {
451 : double allvisfrac; /* dummy */
452 :
453 926 : estimate_rel_size(indexRelation, NULL,
454 926 : &info->pages, &info->tuples, &allvisfrac);
455 926 : if (info->tuples > rel->tuples)
456 18 : info->tuples = rel->tuples;
457 : }
458 :
459 533344 : if (info->relam == BTREE_AM_OID)
460 : {
461 : /*
462 : * For btrees, get tree height while we have the index
463 : * open
464 : */
465 514294 : info->tree_height = _bt_getrootheight(indexRelation, relation);
466 : }
467 : else
468 : {
469 : /* For other index types, just set it to "unknown" for now */
470 19050 : info->tree_height = -1;
471 : }
472 : }
473 : else
474 : {
475 : /* Zero these out for partitioned indexes */
476 5870 : info->pages = 0;
477 5870 : info->tuples = 0.0;
478 5870 : info->tree_height = -1;
479 : }
480 :
481 539214 : index_close(indexRelation, NoLock);
482 :
483 : /*
484 : * We've historically used lcons() here. It'd make more sense to
485 : * use lappend(), but that causes the planner to change behavior
486 : * in cases where two indexes seem equally attractive. For now,
487 : * stick with lcons() --- few tables should have so many indexes
488 : * that the O(N^2) behavior of lcons() is really a problem.
489 : */
490 539214 : indexinfos = lcons(info, indexinfos);
491 : }
492 :
493 260512 : list_free(indexoidlist);
494 : }
495 :
496 367156 : rel->indexlist = indexinfos;
497 :
498 367156 : rel->statlist = get_relation_statistics(rel, relation);
499 :
500 : /* Grab foreign-table info using the relcache, while we have it */
501 367156 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
502 : {
503 2246 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
504 2246 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
505 : }
506 : else
507 : {
508 364910 : rel->serverid = InvalidOid;
509 364910 : rel->fdwroutine = NULL;
510 : }
511 :
512 : /* Collect info about relation's foreign keys, if relevant */
513 367142 : get_relation_foreign_keys(root, rel, relation, inhparent);
514 :
515 : /* Collect info about functions implemented by the rel's table AM. */
516 367142 : if (relation->rd_tableam &&
517 349906 : relation->rd_tableam->scan_set_tidrange != NULL &&
518 349906 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
519 349906 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
520 :
521 : /*
522 : * Collect info about relation's partitioning scheme, if any. Only
523 : * inheritance parents may be partitioned.
524 : */
525 367142 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
526 14964 : set_relation_partition_info(root, rel, relation);
527 :
528 367142 : table_close(relation, NoLock);
529 :
530 : /*
531 : * Allow a plugin to editorialize on the info we obtained from the
532 : * catalogs. Actions might include altering the assumed relation size,
533 : * removing an index, or adding a hypothetical index to the indexlist.
534 : */
535 367142 : if (get_relation_info_hook)
536 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
537 367142 : }
538 :
539 : /*
540 : * get_relation_foreign_keys -
541 : * Retrieves foreign key information for a given relation.
542 : *
543 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
544 : * root->fkey_list. We do this now while we have the relcache entry open.
545 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
546 : * until all RelOptInfos have been built, but the cost of re-opening the
547 : * relcache entries would probably exceed any savings.
548 : */
549 : static void
550 367142 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
551 : Relation relation, bool inhparent)
552 : {
553 367142 : List *rtable = root->parse->rtable;
554 : List *cachedfkeys;
555 : ListCell *lc;
556 :
557 : /*
558 : * If it's not a baserel, we don't care about its FKs. Also, if the query
559 : * references only a single relation, we can skip the lookup since no FKs
560 : * could satisfy the requirements below.
561 : */
562 697222 : if (rel->reloptkind != RELOPT_BASEREL ||
563 330080 : list_length(rtable) < 2)
564 207462 : return;
565 :
566 : /*
567 : * If it's the parent of an inheritance tree, ignore its FKs. We could
568 : * make useful FK-based deductions if we found that all members of the
569 : * inheritance tree have equivalent FK constraints, but detecting that
570 : * would require code that hasn't been written.
571 : */
572 159680 : if (inhparent)
573 4296 : return;
574 :
575 : /*
576 : * Extract data about relation's FKs from the relcache. Note that this
577 : * list belongs to the relcache and might disappear in a cache flush, so
578 : * we must not do any further catalog access within this function.
579 : */
580 155384 : cachedfkeys = RelationGetFKeyList(relation);
581 :
582 : /*
583 : * Figure out which FKs are of interest for this query, and create
584 : * ForeignKeyOptInfos for them. We want only FKs that reference some
585 : * other RTE of the current query. In queries containing self-joins,
586 : * there might be more than one other RTE for a referenced table, and we
587 : * should make a ForeignKeyOptInfo for each occurrence.
588 : *
589 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
590 : * too hard to identify those here, so we might end up making some useless
591 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
592 : * them again.
593 : */
594 157666 : foreach(lc, cachedfkeys)
595 : {
596 2282 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
597 : Index rti;
598 : ListCell *lc2;
599 :
600 : /* conrelid should always be that of the table we're considering */
601 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
602 :
603 : /* Scan to find other RTEs matching confrelid */
604 2282 : rti = 0;
605 10184 : foreach(lc2, rtable)
606 : {
607 7902 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
608 : ForeignKeyOptInfo *info;
609 :
610 7902 : rti++;
611 : /* Ignore if not the correct table */
612 7902 : if (rte->rtekind != RTE_RELATION ||
613 4948 : rte->relid != cachedfk->confrelid)
614 5924 : continue;
615 : /* Ignore if it's an inheritance parent; doesn't really match */
616 1978 : if (rte->inh)
617 180 : continue;
618 : /* Ignore self-referential FKs; we only care about joins */
619 1798 : if (rti == rel->relid)
620 114 : continue;
621 :
622 : /* OK, let's make an entry */
623 1684 : info = makeNode(ForeignKeyOptInfo);
624 1684 : info->con_relid = rel->relid;
625 1684 : info->ref_relid = rti;
626 1684 : info->nkeys = cachedfk->nkeys;
627 1684 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
628 1684 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
629 1684 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
630 : /* zero out fields to be filled by match_foreign_keys_to_quals */
631 1684 : info->nmatched_ec = 0;
632 1684 : info->nconst_ec = 0;
633 1684 : info->nmatched_rcols = 0;
634 1684 : info->nmatched_ri = 0;
635 1684 : memset(info->eclass, 0, sizeof(info->eclass));
636 1684 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
637 1684 : memset(info->rinfos, 0, sizeof(info->rinfos));
638 :
639 1684 : root->fkey_list = lappend(root->fkey_list, info);
640 : }
641 : }
642 : }
643 :
644 : /*
645 : * infer_arbiter_indexes -
646 : * Determine the unique indexes used to arbitrate speculative insertion.
647 : *
648 : * Uses user-supplied inference clause expressions and predicate to match a
649 : * unique index from those defined and ready on the heap relation (target).
650 : * An exact match is required on columns/expressions (although they can appear
651 : * in any order). However, the predicate given by the user need only restrict
652 : * insertion to a subset of some part of the table covered by some particular
653 : * unique index (in particular, a partial unique index) in order to be
654 : * inferred.
655 : *
656 : * The implementation does not consider which B-Tree operator class any
657 : * particular available unique index attribute uses, unless one was specified
658 : * in the inference specification. The same is true of collations. In
659 : * particular, there is no system dependency on the default operator class for
660 : * the purposes of inference. If no opclass (or collation) is specified, then
661 : * all matching indexes (that may or may not match the default in terms of
662 : * each attribute opclass/collation) are used for inference.
663 : */
664 : List *
665 1430 : infer_arbiter_indexes(PlannerInfo *root)
666 : {
667 1430 : OnConflictExpr *onconflict = root->parse->onConflict;
668 :
669 : /* Iteration state */
670 : RangeTblEntry *rte;
671 : Relation relation;
672 1430 : Oid indexOidFromConstraint = InvalidOid;
673 : List *indexList;
674 : ListCell *l;
675 :
676 : /* Normalized inference attributes and inference expressions: */
677 1430 : Bitmapset *inferAttrs = NULL;
678 1430 : List *inferElems = NIL;
679 :
680 : /* Results */
681 1430 : List *results = NIL;
682 :
683 : /*
684 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
685 : * specification or named constraint. ON CONFLICT DO UPDATE statements
686 : * must always provide one or the other (but parser ought to have caught
687 : * that already).
688 : */
689 1430 : if (onconflict->arbiterElems == NIL &&
690 192 : onconflict->constraint == InvalidOid)
691 144 : return NIL;
692 :
693 : /*
694 : * We need not lock the relation since it was already locked, either by
695 : * the rewriter or when expand_inherited_rtentry() added it to the query's
696 : * rangetable.
697 : */
698 1286 : rte = rt_fetch(root->parse->resultRelation, root->parse->rtable);
699 :
700 1286 : relation = table_open(rte->relid, NoLock);
701 :
702 : /*
703 : * Build normalized/BMS representation of plain indexed attributes, as
704 : * well as a separate list of expression items. This simplifies matching
705 : * the cataloged definition of indexes.
706 : */
707 2816 : foreach(l, onconflict->arbiterElems)
708 : {
709 1530 : InferenceElem *elem = (InferenceElem *) lfirst(l);
710 : Var *var;
711 : int attno;
712 :
713 1530 : if (!IsA(elem->expr, Var))
714 : {
715 : /* If not a plain Var, just shove it in inferElems for now */
716 162 : inferElems = lappend(inferElems, elem->expr);
717 162 : continue;
718 : }
719 :
720 1368 : var = (Var *) elem->expr;
721 1368 : attno = var->varattno;
722 :
723 1368 : if (attno == 0)
724 0 : ereport(ERROR,
725 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
726 : errmsg("whole row unique index inference specifications are not supported")));
727 :
728 1368 : inferAttrs = bms_add_member(inferAttrs,
729 : attno - FirstLowInvalidHeapAttributeNumber);
730 : }
731 :
732 : /*
733 : * Lookup named constraint's index. This is not immediately returned
734 : * because some additional sanity checks are required.
735 : */
736 1286 : if (onconflict->constraint != InvalidOid)
737 : {
738 48 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
739 :
740 48 : if (indexOidFromConstraint == InvalidOid)
741 0 : ereport(ERROR,
742 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
743 : errmsg("constraint in ON CONFLICT clause has no associated index")));
744 : }
745 :
746 : /*
747 : * Using that representation, iterate through the list of indexes on the
748 : * target relation to try and find a match
749 : */
750 1286 : indexList = RelationGetIndexList(relation);
751 :
752 2934 : foreach(l, indexList)
753 : {
754 1696 : Oid indexoid = lfirst_oid(l);
755 : Relation idxRel;
756 : Form_pg_index idxForm;
757 : Bitmapset *indexedAttrs;
758 : List *idxExprs;
759 : List *predExprs;
760 : AttrNumber natt;
761 : ListCell *el;
762 :
763 : /*
764 : * Extract info from the relation descriptor for the index. Obtain
765 : * the same lock type that the executor will ultimately use.
766 : *
767 : * Let executor complain about !indimmediate case directly, because
768 : * enforcement needs to occur there anyway when an inference clause is
769 : * omitted.
770 : */
771 1696 : idxRel = index_open(indexoid, rte->rellockmode);
772 1696 : idxForm = idxRel->rd_index;
773 :
774 1696 : if (!idxForm->indisvalid)
775 6 : goto next;
776 :
777 : /*
778 : * Note that we do not perform a check against indcheckxmin (like e.g.
779 : * get_relation_info()) here to eliminate candidates, because
780 : * uniqueness checking only cares about the most recently committed
781 : * tuple versions.
782 : */
783 :
784 : /*
785 : * Look for match on "ON constraint_name" variant, which may not be
786 : * unique constraint. This can only be a constraint name.
787 : */
788 1690 : if (indexOidFromConstraint == idxForm->indexrelid)
789 : {
790 48 : if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
791 6 : ereport(ERROR,
792 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
793 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
794 :
795 42 : results = lappend_oid(results, idxForm->indexrelid);
796 42 : list_free(indexList);
797 42 : index_close(idxRel, NoLock);
798 42 : table_close(relation, NoLock);
799 42 : return results;
800 : }
801 1642 : else if (indexOidFromConstraint != InvalidOid)
802 : {
803 : /* No point in further work for index in named constraint case */
804 18 : goto next;
805 : }
806 :
807 : /*
808 : * Only considering conventional inference at this point (not named
809 : * constraints), so index under consideration can be immediately
810 : * skipped if it's not unique
811 : */
812 1624 : if (!idxForm->indisunique)
813 4 : goto next;
814 :
815 : /* Build BMS representation of plain (non expression) index attrs */
816 1620 : indexedAttrs = NULL;
817 3780 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
818 : {
819 2160 : int attno = idxRel->rd_index->indkey.values[natt];
820 :
821 2160 : if (attno != 0)
822 1854 : indexedAttrs = bms_add_member(indexedAttrs,
823 : attno - FirstLowInvalidHeapAttributeNumber);
824 : }
825 :
826 : /* Non-expression attributes (if any) must match */
827 1620 : if (!bms_equal(indexedAttrs, inferAttrs))
828 360 : goto next;
829 :
830 : /* Expression attributes (if any) must match */
831 1260 : idxExprs = RelationGetIndexExpressions(idxRel);
832 2862 : foreach(el, onconflict->arbiterElems)
833 : {
834 1650 : InferenceElem *elem = (InferenceElem *) lfirst(el);
835 :
836 : /*
837 : * Ensure that collation/opclass aspects of inference expression
838 : * element match. Even though this loop is primarily concerned
839 : * with matching expressions, it is a convenient point to check
840 : * this for both expressions and ordinary (non-expression)
841 : * attributes appearing as inference elements.
842 : */
843 1650 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
844 48 : goto next;
845 :
846 : /*
847 : * Plain Vars don't factor into count of expression elements, and
848 : * the question of whether or not they satisfy the index
849 : * definition has already been considered (they must).
850 : */
851 1614 : if (IsA(elem->expr, Var))
852 1452 : continue;
853 :
854 : /*
855 : * Might as well avoid redundant check in the rare cases where
856 : * infer_collation_opclass_match() is required to do real work.
857 : * Otherwise, check that element expression appears in cataloged
858 : * index definition.
859 : */
860 162 : if (elem->infercollid != InvalidOid ||
861 282 : elem->inferopclass != InvalidOid ||
862 138 : list_member(idxExprs, elem->expr))
863 150 : continue;
864 :
865 12 : goto next;
866 : }
867 :
868 : /*
869 : * Now that all inference elements were matched, ensure that the
870 : * expression elements from inference clause are not missing any
871 : * cataloged expressions. This does the right thing when unique
872 : * indexes redundantly repeat the same attribute, or if attributes
873 : * redundantly appear multiple times within an inference clause.
874 : */
875 1212 : if (list_difference(idxExprs, inferElems) != NIL)
876 54 : goto next;
877 :
878 : /*
879 : * If it's a partial index, its predicate must be implied by the ON
880 : * CONFLICT's WHERE clause.
881 : */
882 1158 : predExprs = RelationGetIndexPredicate(idxRel);
883 :
884 1158 : if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
885 36 : goto next;
886 :
887 1122 : results = lappend_oid(results, idxForm->indexrelid);
888 1648 : next:
889 1648 : index_close(idxRel, NoLock);
890 : }
891 :
892 1238 : list_free(indexList);
893 1238 : table_close(relation, NoLock);
894 :
895 1238 : if (results == NIL)
896 170 : ereport(ERROR,
897 : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
898 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
899 :
900 1068 : return results;
901 : }
902 :
903 : /*
904 : * infer_collation_opclass_match - ensure infer element opclass/collation match
905 : *
906 : * Given unique index inference element from inference specification, if
907 : * collation was specified, or if opclass was specified, verify that there is
908 : * at least one matching indexed attribute (occasionally, there may be more).
909 : * Skip this in the common case where inference specification does not include
910 : * collation or opclass (instead matching everything, regardless of cataloged
911 : * collation/opclass of indexed attribute).
912 : *
913 : * At least historically, Postgres has not offered collations or opclasses
914 : * with alternative-to-default notions of equality, so these additional
915 : * criteria should only be required infrequently.
916 : *
917 : * Don't give up immediately when an inference element matches some attribute
918 : * cataloged as indexed but not matching additional opclass/collation
919 : * criteria. This is done so that the implementation is as forgiving as
920 : * possible of redundancy within cataloged index attributes (or, less
921 : * usefully, within inference specification elements). If collations actually
922 : * differ between apparently redundantly indexed attributes (redundant within
923 : * or across indexes), then there really is no redundancy as such.
924 : *
925 : * Note that if an inference element specifies an opclass and a collation at
926 : * once, both must match in at least one particular attribute within index
927 : * catalog definition in order for that inference element to be considered
928 : * inferred/satisfied.
929 : */
930 : static bool
931 1650 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
932 : List *idxExprs)
933 : {
934 : AttrNumber natt;
935 1650 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
936 1650 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
937 1650 : int nplain = 0; /* # plain attrs observed */
938 :
939 : /*
940 : * If inference specification element lacks collation/opclass, then no
941 : * need to check for exact match.
942 : */
943 1650 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
944 1536 : return true;
945 :
946 : /*
947 : * Lookup opfamily and input type, for matching indexes
948 : */
949 114 : if (elem->inferopclass)
950 : {
951 84 : inferopfamily = get_opclass_family(elem->inferopclass);
952 84 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
953 : }
954 :
955 246 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
956 : {
957 210 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
958 210 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
959 210 : Oid collation = idxRel->rd_indcollation[natt - 1];
960 210 : int attno = idxRel->rd_index->indkey.values[natt - 1];
961 :
962 210 : if (attno != 0)
963 168 : nplain++;
964 :
965 210 : if (elem->inferopclass != InvalidOid &&
966 66 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
967 : {
968 : /* Attribute needed to match opclass, but didn't */
969 90 : continue;
970 : }
971 :
972 120 : if (elem->infercollid != InvalidOid &&
973 84 : elem->infercollid != collation)
974 : {
975 : /* Attribute needed to match collation, but didn't */
976 36 : continue;
977 : }
978 :
979 : /* If one matching index att found, good enough -- return true */
980 84 : if (IsA(elem->expr, Var))
981 : {
982 54 : if (((Var *) elem->expr)->varattno == attno)
983 54 : return true;
984 : }
985 30 : else if (attno == 0)
986 : {
987 30 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
988 :
989 : /*
990 : * Note that unlike routines like match_index_to_operand() we
991 : * don't need to care about RelabelType. Neither the index
992 : * definition nor the inference clause should contain them.
993 : */
994 30 : if (equal(elem->expr, nattExpr))
995 24 : return true;
996 : }
997 : }
998 :
999 36 : return false;
1000 : }
1001 :
1002 : /*
1003 : * estimate_rel_size - estimate # pages and # tuples in a table or index
1004 : *
1005 : * We also estimate the fraction of the pages that are marked all-visible in
1006 : * the visibility map, for use in estimation of index-only scans.
1007 : *
1008 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1009 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1010 : * the attribute widths for estimation purposes.
1011 : */
1012 : void
1013 349136 : estimate_rel_size(Relation rel, int32 *attr_widths,
1014 : BlockNumber *pages, double *tuples, double *allvisfrac)
1015 : {
1016 : BlockNumber curpages;
1017 : BlockNumber relpages;
1018 : double reltuples;
1019 : BlockNumber relallvisible;
1020 : double density;
1021 :
1022 349136 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1023 : {
1024 345266 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1025 : allvisfrac);
1026 : }
1027 3870 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1028 : {
1029 : /*
1030 : * XXX: It'd probably be good to move this into a callback, individual
1031 : * index types e.g. know if they have a metapage.
1032 : */
1033 :
1034 : /* it has storage, ok to call the smgr */
1035 926 : curpages = RelationGetNumberOfBlocks(rel);
1036 :
1037 : /* report estimated # pages */
1038 926 : *pages = curpages;
1039 : /* quick exit if rel is clearly empty */
1040 926 : if (curpages == 0)
1041 : {
1042 0 : *tuples = 0;
1043 0 : *allvisfrac = 0;
1044 0 : return;
1045 : }
1046 :
1047 : /* coerce values in pg_class to more desirable types */
1048 926 : relpages = (BlockNumber) rel->rd_rel->relpages;
1049 926 : reltuples = (double) rel->rd_rel->reltuples;
1050 926 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1051 :
1052 : /*
1053 : * Discount the metapage while estimating the number of tuples. This
1054 : * is a kluge because it assumes more than it ought to about index
1055 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1056 : * suspect for GiST indexes.
1057 : */
1058 926 : if (relpages > 0)
1059 : {
1060 908 : curpages--;
1061 908 : relpages--;
1062 : }
1063 :
1064 : /* estimate number of tuples from previous tuple density */
1065 926 : if (reltuples >= 0 && relpages > 0)
1066 612 : density = reltuples / (double) relpages;
1067 : else
1068 : {
1069 : /*
1070 : * If we have no data because the relation was never vacuumed,
1071 : * estimate tuple width from attribute datatypes. We assume here
1072 : * that the pages are completely full, which is OK for tables
1073 : * (since they've presumably not been VACUUMed yet) but is
1074 : * probably an overestimate for indexes. Fortunately
1075 : * get_relation_info() can clamp the overestimate to the parent
1076 : * table's size.
1077 : *
1078 : * Note: this code intentionally disregards alignment
1079 : * considerations, because (a) that would be gilding the lily
1080 : * considering how crude the estimate is, and (b) it creates
1081 : * platform dependencies in the default plans which are kind of a
1082 : * headache for regression testing.
1083 : *
1084 : * XXX: Should this logic be more index specific?
1085 : */
1086 : int32 tuple_width;
1087 :
1088 314 : tuple_width = get_rel_data_width(rel, attr_widths);
1089 314 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1090 314 : tuple_width += sizeof(ItemIdData);
1091 : /* note: integer division is intentional here */
1092 314 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1093 : }
1094 926 : *tuples = rint(density * (double) curpages);
1095 :
1096 : /*
1097 : * We use relallvisible as-is, rather than scaling it up like we do
1098 : * for the pages and tuples counts, on the theory that any pages added
1099 : * since the last VACUUM are most likely not marked all-visible. But
1100 : * costsize.c wants it converted to a fraction.
1101 : */
1102 926 : if (relallvisible == 0 || curpages <= 0)
1103 926 : *allvisfrac = 0;
1104 0 : else if ((double) relallvisible >= curpages)
1105 0 : *allvisfrac = 1;
1106 : else
1107 0 : *allvisfrac = (double) relallvisible / curpages;
1108 : }
1109 : else
1110 : {
1111 : /*
1112 : * Just use whatever's in pg_class. This covers foreign tables,
1113 : * sequences, and also relkinds without storage (shouldn't get here?);
1114 : * see initializations in AddNewRelationTuple(). Note that FDW must
1115 : * cope if reltuples is -1!
1116 : */
1117 2944 : *pages = rel->rd_rel->relpages;
1118 2944 : *tuples = rel->rd_rel->reltuples;
1119 2944 : *allvisfrac = 0;
1120 : }
1121 : }
1122 :
1123 :
1124 : /*
1125 : * get_rel_data_width
1126 : *
1127 : * Estimate the average width of (the data part of) the relation's tuples.
1128 : *
1129 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1130 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1131 : *
1132 : * Currently we ignore dropped columns. Ideally those should be included
1133 : * in the result, but we haven't got any way to get info about them; and
1134 : * since they might be mostly NULLs, treating them as zero-width is not
1135 : * necessarily the wrong thing anyway.
1136 : */
1137 : int32
1138 125436 : get_rel_data_width(Relation rel, int32 *attr_widths)
1139 : {
1140 125436 : int32 tuple_width = 0;
1141 : int i;
1142 :
1143 545664 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1144 : {
1145 420228 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1146 : int32 item_width;
1147 :
1148 420228 : if (att->attisdropped)
1149 2384 : continue;
1150 :
1151 : /* use previously cached data, if any */
1152 417844 : if (attr_widths != NULL && attr_widths[i] > 0)
1153 : {
1154 5566 : tuple_width += attr_widths[i];
1155 5566 : continue;
1156 : }
1157 :
1158 : /* This should match set_rel_width() in costsize.c */
1159 412278 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1160 412278 : if (item_width <= 0)
1161 : {
1162 410578 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1163 : Assert(item_width > 0);
1164 : }
1165 412278 : if (attr_widths != NULL)
1166 349474 : attr_widths[i] = item_width;
1167 412278 : tuple_width += item_width;
1168 : }
1169 :
1170 125436 : return tuple_width;
1171 : }
1172 :
1173 : /*
1174 : * get_relation_data_width
1175 : *
1176 : * External API for get_rel_data_width: same behavior except we have to
1177 : * open the relcache entry.
1178 : */
1179 : int32
1180 2272 : get_relation_data_width(Oid relid, int32 *attr_widths)
1181 : {
1182 : int32 result;
1183 : Relation relation;
1184 :
1185 : /* As above, assume relation is already locked */
1186 2272 : relation = table_open(relid, NoLock);
1187 :
1188 2272 : result = get_rel_data_width(relation, attr_widths);
1189 :
1190 2272 : table_close(relation, NoLock);
1191 :
1192 2272 : return result;
1193 : }
1194 :
1195 :
1196 : /*
1197 : * get_relation_constraints
1198 : *
1199 : * Retrieve the applicable constraint expressions of the given relation.
1200 : *
1201 : * Returns a List (possibly empty) of constraint expressions. Each one
1202 : * has been canonicalized, and its Vars are changed to have the varno
1203 : * indicated by rel->relid. This allows the expressions to be easily
1204 : * compared to expressions taken from WHERE.
1205 : *
1206 : * If include_noinherit is true, it's okay to include constraints that
1207 : * are marked NO INHERIT.
1208 : *
1209 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1210 : * and added to the result for each column that's marked attnotnull.
1211 : *
1212 : * If include_partition is true, and the relation is a partition,
1213 : * also include the partitioning constraints.
1214 : *
1215 : * Note: at present this is invoked at most once per relation per planner
1216 : * run, and in many cases it won't be invoked at all, so there seems no
1217 : * point in caching the data in RelOptInfo.
1218 : */
1219 : static List *
1220 18858 : get_relation_constraints(PlannerInfo *root,
1221 : Oid relationObjectId, RelOptInfo *rel,
1222 : bool include_noinherit,
1223 : bool include_notnull,
1224 : bool include_partition)
1225 : {
1226 18858 : List *result = NIL;
1227 18858 : Index varno = rel->relid;
1228 : Relation relation;
1229 : TupleConstr *constr;
1230 :
1231 : /*
1232 : * We assume the relation has already been safely locked.
1233 : */
1234 18858 : relation = table_open(relationObjectId, NoLock);
1235 :
1236 18858 : constr = relation->rd_att->constr;
1237 18858 : if (constr != NULL)
1238 : {
1239 6962 : int num_check = constr->num_check;
1240 : int i;
1241 :
1242 7374 : for (i = 0; i < num_check; i++)
1243 : {
1244 : Node *cexpr;
1245 :
1246 : /*
1247 : * If this constraint hasn't been fully validated yet, we must
1248 : * ignore it here. Also ignore if NO INHERIT and we weren't told
1249 : * that that's safe.
1250 : */
1251 412 : if (!constr->check[i].ccvalid)
1252 42 : continue;
1253 370 : if (constr->check[i].ccnoinherit && !include_noinherit)
1254 0 : continue;
1255 :
1256 370 : cexpr = stringToNode(constr->check[i].ccbin);
1257 :
1258 : /*
1259 : * Run each expression through const-simplification and
1260 : * canonicalization. This is not just an optimization, but is
1261 : * necessary, because we will be comparing it to
1262 : * similarly-processed qual clauses, and may fail to detect valid
1263 : * matches without this. This must match the processing done to
1264 : * qual clauses in preprocess_expression()! (We can skip the
1265 : * stuff involving subqueries, however, since we don't allow any
1266 : * in check constraints.)
1267 : */
1268 370 : cexpr = eval_const_expressions(root, cexpr);
1269 :
1270 370 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1271 :
1272 : /* Fix Vars to have the desired varno */
1273 370 : if (varno != 1)
1274 358 : ChangeVarNodes(cexpr, 1, varno, 0);
1275 :
1276 : /*
1277 : * Finally, convert to implicit-AND format (that is, a List) and
1278 : * append the resulting item(s) to our output list.
1279 : */
1280 370 : result = list_concat(result,
1281 370 : make_ands_implicit((Expr *) cexpr));
1282 : }
1283 :
1284 : /* Add NOT NULL constraints in expression form, if requested */
1285 6962 : if (include_notnull && constr->has_not_null)
1286 : {
1287 6536 : int natts = relation->rd_att->natts;
1288 :
1289 26742 : for (i = 1; i <= natts; i++)
1290 : {
1291 20206 : Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1292 :
1293 20206 : if (att->attnotnull && !att->attisdropped)
1294 : {
1295 7726 : NullTest *ntest = makeNode(NullTest);
1296 :
1297 7726 : ntest->arg = (Expr *) makeVar(varno,
1298 : i,
1299 : att->atttypid,
1300 : att->atttypmod,
1301 : att->attcollation,
1302 : 0);
1303 7726 : ntest->nulltesttype = IS_NOT_NULL;
1304 :
1305 : /*
1306 : * argisrow=false is correct even for a composite column,
1307 : * because attnotnull does not represent a SQL-spec IS NOT
1308 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1309 : */
1310 7726 : ntest->argisrow = false;
1311 7726 : ntest->location = -1;
1312 7726 : result = lappend(result, ntest);
1313 : }
1314 : }
1315 : }
1316 : }
1317 :
1318 : /*
1319 : * Add partitioning constraints, if requested.
1320 : */
1321 18858 : if (include_partition && relation->rd_rel->relispartition)
1322 : {
1323 : /* make sure rel->partition_qual is set */
1324 12 : set_baserel_partition_constraint(relation, rel);
1325 12 : result = list_concat(result, rel->partition_qual);
1326 : }
1327 :
1328 18858 : table_close(relation, NoLock);
1329 :
1330 18858 : return result;
1331 : }
1332 :
1333 : /*
1334 : * Try loading data for the statistics object.
1335 : *
1336 : * We don't know if the data (specified by statOid and inh value) exist.
1337 : * The result is stored in stainfos list.
1338 : */
1339 : static void
1340 3672 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1341 : Oid statOid, bool inh,
1342 : Bitmapset *keys, List *exprs)
1343 : {
1344 : Form_pg_statistic_ext_data dataForm;
1345 : HeapTuple dtup;
1346 :
1347 3672 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1348 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1349 3672 : if (!HeapTupleIsValid(dtup))
1350 1836 : return;
1351 :
1352 1836 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1353 :
1354 : /* add one StatisticExtInfo for each kind built */
1355 1836 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1356 : {
1357 672 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1358 :
1359 672 : info->statOid = statOid;
1360 672 : info->inherit = dataForm->stxdinherit;
1361 672 : info->rel = rel;
1362 672 : info->kind = STATS_EXT_NDISTINCT;
1363 672 : info->keys = bms_copy(keys);
1364 672 : info->exprs = exprs;
1365 :
1366 672 : *stainfos = lappend(*stainfos, info);
1367 : }
1368 :
1369 1836 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1370 : {
1371 528 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1372 :
1373 528 : info->statOid = statOid;
1374 528 : info->inherit = dataForm->stxdinherit;
1375 528 : info->rel = rel;
1376 528 : info->kind = STATS_EXT_DEPENDENCIES;
1377 528 : info->keys = bms_copy(keys);
1378 528 : info->exprs = exprs;
1379 :
1380 528 : *stainfos = lappend(*stainfos, info);
1381 : }
1382 :
1383 1836 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1384 : {
1385 762 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1386 :
1387 762 : info->statOid = statOid;
1388 762 : info->inherit = dataForm->stxdinherit;
1389 762 : info->rel = rel;
1390 762 : info->kind = STATS_EXT_MCV;
1391 762 : info->keys = bms_copy(keys);
1392 762 : info->exprs = exprs;
1393 :
1394 762 : *stainfos = lappend(*stainfos, info);
1395 : }
1396 :
1397 1836 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1398 : {
1399 804 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1400 :
1401 804 : info->statOid = statOid;
1402 804 : info->inherit = dataForm->stxdinherit;
1403 804 : info->rel = rel;
1404 804 : info->kind = STATS_EXT_EXPRESSIONS;
1405 804 : info->keys = bms_copy(keys);
1406 804 : info->exprs = exprs;
1407 :
1408 804 : *stainfos = lappend(*stainfos, info);
1409 : }
1410 :
1411 1836 : ReleaseSysCache(dtup);
1412 : }
1413 :
1414 : /*
1415 : * get_relation_statistics
1416 : * Retrieve extended statistics defined on the table.
1417 : *
1418 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1419 : * the statistics. Note that this doesn't load the actual statistics data,
1420 : * just the identifying metadata. Only stats actually built are considered.
1421 : */
1422 : static List *
1423 367156 : get_relation_statistics(RelOptInfo *rel, Relation relation)
1424 : {
1425 367156 : Index varno = rel->relid;
1426 : List *statoidlist;
1427 367156 : List *stainfos = NIL;
1428 : ListCell *l;
1429 :
1430 367156 : statoidlist = RelationGetStatExtList(relation);
1431 :
1432 368992 : foreach(l, statoidlist)
1433 : {
1434 1836 : Oid statOid = lfirst_oid(l);
1435 : Form_pg_statistic_ext staForm;
1436 : HeapTuple htup;
1437 1836 : Bitmapset *keys = NULL;
1438 1836 : List *exprs = NIL;
1439 : int i;
1440 :
1441 1836 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1442 1836 : if (!HeapTupleIsValid(htup))
1443 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1444 1836 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1445 :
1446 : /*
1447 : * First, build the array of columns covered. This is ultimately
1448 : * wasted if no stats within the object have actually been built, but
1449 : * it doesn't seem worth troubling over that case.
1450 : */
1451 5170 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1452 3334 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1453 :
1454 : /*
1455 : * Preprocess expressions (if any). We read the expressions, run them
1456 : * through eval_const_expressions, and fix the varnos.
1457 : *
1458 : * XXX We don't know yet if there are any data for this stats object,
1459 : * with either stxdinherit value. But it's reasonable to assume there
1460 : * is at least one of those, possibly both. So it's better to process
1461 : * keys and expressions here.
1462 : */
1463 : {
1464 : bool isnull;
1465 : Datum datum;
1466 :
1467 : /* decode expression (if any) */
1468 1836 : datum = SysCacheGetAttr(STATEXTOID, htup,
1469 : Anum_pg_statistic_ext_stxexprs, &isnull);
1470 :
1471 1836 : if (!isnull)
1472 : {
1473 : char *exprsString;
1474 :
1475 808 : exprsString = TextDatumGetCString(datum);
1476 808 : exprs = (List *) stringToNode(exprsString);
1477 808 : pfree(exprsString);
1478 :
1479 : /*
1480 : * Run the expressions through eval_const_expressions. This is
1481 : * not just an optimization, but is necessary, because the
1482 : * planner will be comparing them to similarly-processed qual
1483 : * clauses, and may fail to detect valid matches without this.
1484 : * We must not use canonicalize_qual, however, since these
1485 : * aren't qual expressions.
1486 : */
1487 808 : exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1488 :
1489 : /* May as well fix opfuncids too */
1490 808 : fix_opfuncids((Node *) exprs);
1491 :
1492 : /*
1493 : * Modify the copies we obtain from the relcache to have the
1494 : * correct varno for the parent relation, so that they match
1495 : * up correctly against qual clauses.
1496 : */
1497 808 : if (varno != 1)
1498 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1499 : }
1500 : }
1501 :
1502 : /* extract statistics for possible values of stxdinherit flag */
1503 :
1504 1836 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1505 :
1506 1836 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1507 :
1508 1836 : ReleaseSysCache(htup);
1509 1836 : bms_free(keys);
1510 : }
1511 :
1512 367156 : list_free(statoidlist);
1513 :
1514 367156 : return stainfos;
1515 : }
1516 :
1517 : /*
1518 : * relation_excluded_by_constraints
1519 : *
1520 : * Detect whether the relation need not be scanned because it has either
1521 : * self-inconsistent restrictions, or restrictions inconsistent with the
1522 : * relation's applicable constraints.
1523 : *
1524 : * Note: this examines only rel->relid, rel->reloptkind, and
1525 : * rel->baserestrictinfo; therefore it can be called before filling in
1526 : * other fields of the RelOptInfo.
1527 : */
1528 : bool
1529 387522 : relation_excluded_by_constraints(PlannerInfo *root,
1530 : RelOptInfo *rel, RangeTblEntry *rte)
1531 : {
1532 : bool include_noinherit;
1533 : bool include_notnull;
1534 387522 : bool include_partition = false;
1535 : List *safe_restrictions;
1536 : List *constraint_pred;
1537 : List *safe_constraints;
1538 : ListCell *lc;
1539 :
1540 : /* As of now, constraint exclusion works only with simple relations. */
1541 : Assert(IS_SIMPLE_REL(rel));
1542 :
1543 : /*
1544 : * If there are no base restriction clauses, we have no hope of proving
1545 : * anything below, so fall out quickly.
1546 : */
1547 387522 : if (rel->baserestrictinfo == NIL)
1548 166460 : return false;
1549 :
1550 : /*
1551 : * Regardless of the setting of constraint_exclusion, detect
1552 : * constant-FALSE-or-NULL restriction clauses. Because const-folding will
1553 : * reduce "anything AND FALSE" to just "FALSE", any such case should
1554 : * result in exactly one baserestrictinfo entry. This doesn't fire very
1555 : * often, but it seems cheap enough to be worth doing anyway. (Without
1556 : * this, we'd miss some optimizations that 9.5 and earlier found via much
1557 : * more roundabout methods.)
1558 : */
1559 221062 : if (list_length(rel->baserestrictinfo) == 1)
1560 : {
1561 155520 : RestrictInfo *rinfo = (RestrictInfo *) linitial(rel->baserestrictinfo);
1562 155520 : Expr *clause = rinfo->clause;
1563 :
1564 155520 : if (clause && IsA(clause, Const) &&
1565 288 : (((Const *) clause)->constisnull ||
1566 288 : !DatumGetBool(((Const *) clause)->constvalue)))
1567 288 : return true;
1568 : }
1569 :
1570 : /*
1571 : * Skip further tests, depending on constraint_exclusion.
1572 : */
1573 220774 : switch (constraint_exclusion)
1574 : {
1575 54 : case CONSTRAINT_EXCLUSION_OFF:
1576 : /* In 'off' mode, never make any further tests */
1577 54 : return false;
1578 :
1579 220600 : case CONSTRAINT_EXCLUSION_PARTITION:
1580 :
1581 : /*
1582 : * When constraint_exclusion is set to 'partition' we only handle
1583 : * appendrel members. Partition pruning has already been applied,
1584 : * so there is no need to consider the rel's partition constraints
1585 : * here.
1586 : */
1587 220600 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1588 19084 : break; /* appendrel member, so process it */
1589 201516 : return false;
1590 :
1591 120 : case CONSTRAINT_EXCLUSION_ON:
1592 :
1593 : /*
1594 : * In 'on' mode, always apply constraint exclusion. If we are
1595 : * considering a baserel that is a partition (i.e., it was
1596 : * directly named rather than expanded from a parent table), then
1597 : * its partition constraints haven't been considered yet, so
1598 : * include them in the processing here.
1599 : */
1600 120 : if (rel->reloptkind == RELOPT_BASEREL)
1601 90 : include_partition = true;
1602 120 : break; /* always try to exclude */
1603 : }
1604 :
1605 : /*
1606 : * Check for self-contradictory restriction clauses. We dare not make
1607 : * deductions with non-immutable functions, but any immutable clauses that
1608 : * are self-contradictory allow us to conclude the scan is unnecessary.
1609 : *
1610 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1611 : * expecting to see any in its predicate argument.
1612 : */
1613 19204 : safe_restrictions = NIL;
1614 44388 : foreach(lc, rel->baserestrictinfo)
1615 : {
1616 25184 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1617 :
1618 25184 : if (!contain_mutable_functions((Node *) rinfo->clause))
1619 24178 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1620 : }
1621 :
1622 : /*
1623 : * We can use weak refutation here, since we're comparing restriction
1624 : * clauses with restriction clauses.
1625 : */
1626 19204 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1627 72 : return true;
1628 :
1629 : /*
1630 : * Only plain relations have constraints, so stop here for other rtekinds.
1631 : */
1632 19132 : if (rte->rtekind != RTE_RELATION)
1633 274 : return false;
1634 :
1635 : /*
1636 : * If we are scanning just this table, we can use NO INHERIT constraints,
1637 : * but not if we're scanning its children too. (Note that partitioned
1638 : * tables should never have NO INHERIT constraints; but it's not necessary
1639 : * for us to assume that here.)
1640 : */
1641 18858 : include_noinherit = !rte->inh;
1642 :
1643 : /*
1644 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1645 : * this is a partitioned table. In future we might track their
1646 : * inheritance status more accurately, allowing this to be refined.
1647 : */
1648 18858 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1649 :
1650 : /*
1651 : * Fetch the appropriate set of constraint expressions.
1652 : */
1653 18858 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1654 : include_noinherit,
1655 : include_notnull,
1656 : include_partition);
1657 :
1658 : /*
1659 : * We do not currently enforce that CHECK constraints contain only
1660 : * immutable functions, so it's necessary to check here. We daren't draw
1661 : * conclusions from plan-time evaluation of non-immutable functions. Since
1662 : * they're ANDed, we can just ignore any mutable constraints in the list,
1663 : * and reason about the rest.
1664 : */
1665 18858 : safe_constraints = NIL;
1666 27066 : foreach(lc, constraint_pred)
1667 : {
1668 8208 : Node *pred = (Node *) lfirst(lc);
1669 :
1670 8208 : if (!contain_mutable_functions(pred))
1671 8208 : safe_constraints = lappend(safe_constraints, pred);
1672 : }
1673 :
1674 : /*
1675 : * The constraints are effectively ANDed together, so we can just try to
1676 : * refute the entire collection at once. This may allow us to make proofs
1677 : * that would fail if we took them individually.
1678 : *
1679 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1680 : * an obvious optimization. Some of the clauses might be OR clauses that
1681 : * have volatile and nonvolatile subclauses, and it's OK to make
1682 : * deductions with the nonvolatile parts.
1683 : *
1684 : * We need strong refutation because we have to prove that the constraints
1685 : * would yield false, not just NULL.
1686 : */
1687 18858 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1688 66 : return true;
1689 :
1690 18792 : return false;
1691 : }
1692 :
1693 :
1694 : /*
1695 : * build_physical_tlist
1696 : *
1697 : * Build a targetlist consisting of exactly the relation's user attributes,
1698 : * in order. The executor can special-case such tlists to avoid a projection
1699 : * step at runtime, so we use such tlists preferentially for scan nodes.
1700 : *
1701 : * Exception: if there are any dropped or missing columns, we punt and return
1702 : * NIL. Ideally we would like to handle these cases too. However this
1703 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1704 : * for a tlist that includes vars of no-longer-existent types. In theory we
1705 : * could dig out the required info from the pg_attribute entries of the
1706 : * relation, but that data is not readily available to ExecTypeFromTL.
1707 : * For now, we don't apply the physical-tlist optimization when there are
1708 : * dropped cols.
1709 : *
1710 : * We also support building a "physical" tlist for subqueries, functions,
1711 : * values lists, table expressions, and CTEs, since the same optimization can
1712 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1713 : * NamedTuplestoreScan, and WorkTableScan nodes.
1714 : */
1715 : List *
1716 126200 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
1717 : {
1718 126200 : List *tlist = NIL;
1719 126200 : Index varno = rel->relid;
1720 126200 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
1721 : Relation relation;
1722 : Query *subquery;
1723 : Var *var;
1724 : ListCell *l;
1725 : int attrno,
1726 : numattrs;
1727 : List *colvars;
1728 :
1729 126200 : switch (rte->rtekind)
1730 : {
1731 109180 : case RTE_RELATION:
1732 : /* Assume we already have adequate lock */
1733 109180 : relation = table_open(rte->relid, NoLock);
1734 :
1735 109180 : numattrs = RelationGetNumberOfAttributes(relation);
1736 2034830 : for (attrno = 1; attrno <= numattrs; attrno++)
1737 : {
1738 1925802 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1739 : attrno - 1);
1740 :
1741 1925802 : if (att_tup->attisdropped || att_tup->atthasmissing)
1742 : {
1743 : /* found a dropped or missing col, so punt */
1744 152 : tlist = NIL;
1745 152 : break;
1746 : }
1747 :
1748 1925650 : var = makeVar(varno,
1749 : attrno,
1750 : att_tup->atttypid,
1751 : att_tup->atttypmod,
1752 : att_tup->attcollation,
1753 : 0);
1754 :
1755 1925650 : tlist = lappend(tlist,
1756 1925650 : makeTargetEntry((Expr *) var,
1757 : attrno,
1758 : NULL,
1759 : false));
1760 : }
1761 :
1762 109180 : table_close(relation, NoLock);
1763 109180 : break;
1764 :
1765 1760 : case RTE_SUBQUERY:
1766 1760 : subquery = rte->subquery;
1767 6138 : foreach(l, subquery->targetList)
1768 : {
1769 4378 : TargetEntry *tle = (TargetEntry *) lfirst(l);
1770 :
1771 : /*
1772 : * A resjunk column of the subquery can be reflected as
1773 : * resjunk in the physical tlist; we need not punt.
1774 : */
1775 4378 : var = makeVarFromTargetEntry(varno, tle);
1776 :
1777 4378 : tlist = lappend(tlist,
1778 4378 : makeTargetEntry((Expr *) var,
1779 4378 : tle->resno,
1780 : NULL,
1781 4378 : tle->resjunk));
1782 : }
1783 1760 : break;
1784 :
1785 15260 : case RTE_FUNCTION:
1786 : case RTE_TABLEFUNC:
1787 : case RTE_VALUES:
1788 : case RTE_CTE:
1789 : case RTE_NAMEDTUPLESTORE:
1790 : case RTE_RESULT:
1791 : /* Not all of these can have dropped cols, but share code anyway */
1792 15260 : expandRTE(rte, varno, 0, -1, true /* include dropped */ ,
1793 : NULL, &colvars);
1794 76130 : foreach(l, colvars)
1795 : {
1796 60870 : var = (Var *) lfirst(l);
1797 :
1798 : /*
1799 : * A non-Var in expandRTE's output means a dropped column;
1800 : * must punt.
1801 : */
1802 60870 : if (!IsA(var, Var))
1803 : {
1804 0 : tlist = NIL;
1805 0 : break;
1806 : }
1807 :
1808 60870 : tlist = lappend(tlist,
1809 60870 : makeTargetEntry((Expr *) var,
1810 60870 : var->varattno,
1811 : NULL,
1812 : false));
1813 : }
1814 15260 : break;
1815 :
1816 0 : default:
1817 : /* caller error */
1818 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1819 : (int) rte->rtekind);
1820 : break;
1821 : }
1822 :
1823 126200 : return tlist;
1824 : }
1825 :
1826 : /*
1827 : * build_index_tlist
1828 : *
1829 : * Build a targetlist representing the columns of the specified index.
1830 : * Each column is represented by a Var for the corresponding base-relation
1831 : * column, or an expression in base-relation Vars, as appropriate.
1832 : *
1833 : * There are never any dropped columns in indexes, so unlike
1834 : * build_physical_tlist, we need no failure case.
1835 : */
1836 : static List *
1837 539214 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
1838 : Relation heapRelation)
1839 : {
1840 539214 : List *tlist = NIL;
1841 539214 : Index varno = index->rel->relid;
1842 : ListCell *indexpr_item;
1843 : int i;
1844 :
1845 539214 : indexpr_item = list_head(index->indexprs);
1846 1599034 : for (i = 0; i < index->ncolumns; i++)
1847 : {
1848 1059820 : int indexkey = index->indexkeys[i];
1849 : Expr *indexvar;
1850 :
1851 1059820 : if (indexkey != 0)
1852 : {
1853 : /* simple column */
1854 : const FormData_pg_attribute *att_tup;
1855 :
1856 1057336 : if (indexkey < 0)
1857 0 : att_tup = SystemAttributeDefinition(indexkey);
1858 : else
1859 1057336 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
1860 :
1861 1057336 : indexvar = (Expr *) makeVar(varno,
1862 : indexkey,
1863 : att_tup->atttypid,
1864 : att_tup->atttypmod,
1865 : att_tup->attcollation,
1866 : 0);
1867 : }
1868 : else
1869 : {
1870 : /* expression column */
1871 2484 : if (indexpr_item == NULL)
1872 0 : elog(ERROR, "wrong number of index expressions");
1873 2484 : indexvar = (Expr *) lfirst(indexpr_item);
1874 2484 : indexpr_item = lnext(index->indexprs, indexpr_item);
1875 : }
1876 :
1877 1059820 : tlist = lappend(tlist,
1878 1059820 : makeTargetEntry(indexvar,
1879 1059820 : i + 1,
1880 : NULL,
1881 : false));
1882 : }
1883 539214 : if (indexpr_item != NULL)
1884 0 : elog(ERROR, "wrong number of index expressions");
1885 :
1886 539214 : return tlist;
1887 : }
1888 :
1889 : /*
1890 : * restriction_selectivity
1891 : *
1892 : * Returns the selectivity of a specified restriction operator clause.
1893 : * This code executes registered procedures stored in the
1894 : * operator relation, by calling the function manager.
1895 : *
1896 : * See clause_selectivity() for the meaning of the additional parameters.
1897 : */
1898 : Selectivity
1899 489814 : restriction_selectivity(PlannerInfo *root,
1900 : Oid operatorid,
1901 : List *args,
1902 : Oid inputcollid,
1903 : int varRelid)
1904 : {
1905 489814 : RegProcedure oprrest = get_oprrest(operatorid);
1906 : float8 result;
1907 :
1908 : /*
1909 : * if the oprrest procedure is missing for whatever reason, use a
1910 : * selectivity of 0.5
1911 : */
1912 489814 : if (!oprrest)
1913 160 : return (Selectivity) 0.5;
1914 :
1915 489654 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
1916 : inputcollid,
1917 : PointerGetDatum(root),
1918 : ObjectIdGetDatum(operatorid),
1919 : PointerGetDatum(args),
1920 : Int32GetDatum(varRelid)));
1921 :
1922 489630 : if (result < 0.0 || result > 1.0)
1923 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
1924 :
1925 489630 : return (Selectivity) result;
1926 : }
1927 :
1928 : /*
1929 : * join_selectivity
1930 : *
1931 : * Returns the selectivity of a specified join operator clause.
1932 : * This code executes registered procedures stored in the
1933 : * operator relation, by calling the function manager.
1934 : *
1935 : * See clause_selectivity() for the meaning of the additional parameters.
1936 : */
1937 : Selectivity
1938 162102 : join_selectivity(PlannerInfo *root,
1939 : Oid operatorid,
1940 : List *args,
1941 : Oid inputcollid,
1942 : JoinType jointype,
1943 : SpecialJoinInfo *sjinfo)
1944 : {
1945 162102 : RegProcedure oprjoin = get_oprjoin(operatorid);
1946 : float8 result;
1947 :
1948 : /*
1949 : * if the oprjoin procedure is missing for whatever reason, use a
1950 : * selectivity of 0.5
1951 : */
1952 162102 : if (!oprjoin)
1953 146 : return (Selectivity) 0.5;
1954 :
1955 161956 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
1956 : inputcollid,
1957 : PointerGetDatum(root),
1958 : ObjectIdGetDatum(operatorid),
1959 : PointerGetDatum(args),
1960 : Int16GetDatum(jointype),
1961 : PointerGetDatum(sjinfo)));
1962 :
1963 161956 : if (result < 0.0 || result > 1.0)
1964 0 : elog(ERROR, "invalid join selectivity: %f", result);
1965 :
1966 161956 : return (Selectivity) result;
1967 : }
1968 :
1969 : /*
1970 : * function_selectivity
1971 : *
1972 : * Returns the selectivity of a specified boolean function clause.
1973 : * This code executes registered procedures stored in the
1974 : * pg_proc relation, by calling the function manager.
1975 : *
1976 : * See clause_selectivity() for the meaning of the additional parameters.
1977 : */
1978 : Selectivity
1979 9128 : function_selectivity(PlannerInfo *root,
1980 : Oid funcid,
1981 : List *args,
1982 : Oid inputcollid,
1983 : bool is_join,
1984 : int varRelid,
1985 : JoinType jointype,
1986 : SpecialJoinInfo *sjinfo)
1987 : {
1988 9128 : RegProcedure prosupport = get_func_support(funcid);
1989 : SupportRequestSelectivity req;
1990 : SupportRequestSelectivity *sresult;
1991 :
1992 : /*
1993 : * If no support function is provided, use our historical default
1994 : * estimate, 0.3333333. This seems a pretty unprincipled choice, but
1995 : * Postgres has been using that estimate for function calls since 1992.
1996 : * The hoariness of this behavior suggests that we should not be in too
1997 : * much hurry to use another value.
1998 : */
1999 9128 : if (!prosupport)
2000 9098 : return (Selectivity) 0.3333333;
2001 :
2002 30 : req.type = T_SupportRequestSelectivity;
2003 30 : req.root = root;
2004 30 : req.funcid = funcid;
2005 30 : req.args = args;
2006 30 : req.inputcollid = inputcollid;
2007 30 : req.is_join = is_join;
2008 30 : req.varRelid = varRelid;
2009 30 : req.jointype = jointype;
2010 30 : req.sjinfo = sjinfo;
2011 30 : req.selectivity = -1; /* to catch failure to set the value */
2012 :
2013 : sresult = (SupportRequestSelectivity *)
2014 30 : DatumGetPointer(OidFunctionCall1(prosupport,
2015 : PointerGetDatum(&req)));
2016 :
2017 : /* If support function fails, use default */
2018 30 : if (sresult != &req)
2019 0 : return (Selectivity) 0.3333333;
2020 :
2021 30 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2022 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2023 :
2024 30 : return (Selectivity) req.selectivity;
2025 : }
2026 :
2027 : /*
2028 : * add_function_cost
2029 : *
2030 : * Get an estimate of the execution cost of a function, and *add* it to
2031 : * the contents of *cost. The estimate may include both one-time and
2032 : * per-tuple components, since QualCost does.
2033 : *
2034 : * The funcid must always be supplied. If it is being called as the
2035 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2036 : * WindowFunc, etc), pass that as "node", else pass NULL.
2037 : *
2038 : * In some usages root might be NULL, too.
2039 : */
2040 : void
2041 847518 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2042 : QualCost *cost)
2043 : {
2044 : HeapTuple proctup;
2045 : Form_pg_proc procform;
2046 :
2047 847518 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2048 847518 : if (!HeapTupleIsValid(proctup))
2049 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2050 847518 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2051 :
2052 847518 : if (OidIsValid(procform->prosupport))
2053 : {
2054 : SupportRequestCost req;
2055 : SupportRequestCost *sresult;
2056 :
2057 27176 : req.type = T_SupportRequestCost;
2058 27176 : req.root = root;
2059 27176 : req.funcid = funcid;
2060 27176 : req.node = node;
2061 :
2062 : /* Initialize cost fields so that support function doesn't have to */
2063 27176 : req.startup = 0;
2064 27176 : req.per_tuple = 0;
2065 :
2066 : sresult = (SupportRequestCost *)
2067 27176 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2068 : PointerGetDatum(&req)));
2069 :
2070 27176 : if (sresult == &req)
2071 : {
2072 : /* Success, so accumulate support function's estimate into *cost */
2073 18 : cost->startup += req.startup;
2074 18 : cost->per_tuple += req.per_tuple;
2075 18 : ReleaseSysCache(proctup);
2076 18 : return;
2077 : }
2078 : }
2079 :
2080 : /* No support function, or it failed, so rely on procost */
2081 847500 : cost->per_tuple += procform->procost * cpu_operator_cost;
2082 :
2083 847500 : ReleaseSysCache(proctup);
2084 : }
2085 :
2086 : /*
2087 : * get_function_rows
2088 : *
2089 : * Get an estimate of the number of rows returned by a set-returning function.
2090 : *
2091 : * The funcid must always be supplied. In current usage, the calling node
2092 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2093 : * But it's a good idea to not fail if it's NULL.
2094 : *
2095 : * In some usages root might be NULL, too.
2096 : *
2097 : * Note: this returns the unfiltered result of the support function, if any.
2098 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2099 : * leave it to the caller to do so.
2100 : */
2101 : double
2102 37896 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2103 : {
2104 : HeapTuple proctup;
2105 : Form_pg_proc procform;
2106 : double result;
2107 :
2108 37896 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2109 37896 : if (!HeapTupleIsValid(proctup))
2110 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2111 37896 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2112 :
2113 : Assert(procform->proretset); /* else caller error */
2114 :
2115 37896 : if (OidIsValid(procform->prosupport))
2116 : {
2117 : SupportRequestRows req;
2118 : SupportRequestRows *sresult;
2119 :
2120 14562 : req.type = T_SupportRequestRows;
2121 14562 : req.root = root;
2122 14562 : req.funcid = funcid;
2123 14562 : req.node = node;
2124 :
2125 14562 : req.rows = 0; /* just for sanity */
2126 :
2127 : sresult = (SupportRequestRows *)
2128 14562 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2129 : PointerGetDatum(&req)));
2130 :
2131 14562 : if (sresult == &req)
2132 : {
2133 : /* Success */
2134 11650 : ReleaseSysCache(proctup);
2135 11650 : return req.rows;
2136 : }
2137 : }
2138 :
2139 : /* No support function, or it failed, so rely on prorows */
2140 26246 : result = procform->prorows;
2141 :
2142 26246 : ReleaseSysCache(proctup);
2143 :
2144 26246 : return result;
2145 : }
2146 :
2147 : /*
2148 : * has_unique_index
2149 : *
2150 : * Detect whether there is a unique index on the specified attribute
2151 : * of the specified relation, thus allowing us to conclude that all
2152 : * the (non-null) values of the attribute are distinct.
2153 : *
2154 : * This function does not check the index's indimmediate property, which
2155 : * means that uniqueness may transiently fail to hold intra-transaction.
2156 : * That's appropriate when we are making statistical estimates, but beware
2157 : * of using this for any correctness proofs.
2158 : */
2159 : bool
2160 1389236 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2161 : {
2162 : ListCell *ilist;
2163 :
2164 3416544 : foreach(ilist, rel->indexlist)
2165 : {
2166 2507154 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2167 :
2168 : /*
2169 : * Note: ignore partial indexes, since they don't allow us to conclude
2170 : * that all attr values are distinct, *unless* they are marked predOK
2171 : * which means we know the index's predicate is satisfied by the
2172 : * query. We don't take any interest in expressional indexes either.
2173 : * Also, a multicolumn unique index doesn't allow us to conclude that
2174 : * just the specified attr is unique.
2175 : */
2176 2507154 : if (index->unique &&
2177 1767656 : index->nkeycolumns == 1 &&
2178 993924 : index->indexkeys[0] == attno &&
2179 479884 : (index->indpred == NIL || index->predOK))
2180 479846 : return true;
2181 : }
2182 909390 : return false;
2183 : }
2184 :
2185 :
2186 : /*
2187 : * has_row_triggers
2188 : *
2189 : * Detect whether the specified relation has any row-level triggers for event.
2190 : */
2191 : bool
2192 484 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2193 : {
2194 484 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2195 : Relation relation;
2196 : TriggerDesc *trigDesc;
2197 484 : bool result = false;
2198 :
2199 : /* Assume we already have adequate lock */
2200 484 : relation = table_open(rte->relid, NoLock);
2201 :
2202 484 : trigDesc = relation->trigdesc;
2203 484 : switch (event)
2204 : {
2205 164 : case CMD_INSERT:
2206 164 : if (trigDesc &&
2207 26 : (trigDesc->trig_insert_after_row ||
2208 14 : trigDesc->trig_insert_before_row))
2209 26 : result = true;
2210 164 : break;
2211 170 : case CMD_UPDATE:
2212 170 : if (trigDesc &&
2213 48 : (trigDesc->trig_update_after_row ||
2214 28 : trigDesc->trig_update_before_row))
2215 36 : result = true;
2216 170 : break;
2217 150 : case CMD_DELETE:
2218 150 : if (trigDesc &&
2219 30 : (trigDesc->trig_delete_after_row ||
2220 18 : trigDesc->trig_delete_before_row))
2221 16 : result = true;
2222 150 : break;
2223 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2224 0 : case CMD_MERGE:
2225 0 : result = false;
2226 0 : break;
2227 0 : default:
2228 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2229 : break;
2230 : }
2231 :
2232 484 : table_close(relation, NoLock);
2233 484 : return result;
2234 : }
2235 :
2236 : /*
2237 : * has_stored_generated_columns
2238 : *
2239 : * Does table identified by RTI have any STORED GENERATED columns?
2240 : */
2241 : bool
2242 406 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2243 : {
2244 406 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2245 : Relation relation;
2246 : TupleDesc tupdesc;
2247 406 : bool result = false;
2248 :
2249 : /* Assume we already have adequate lock */
2250 406 : relation = table_open(rte->relid, NoLock);
2251 :
2252 406 : tupdesc = RelationGetDescr(relation);
2253 406 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2254 :
2255 406 : table_close(relation, NoLock);
2256 :
2257 406 : return result;
2258 : }
2259 :
2260 : /*
2261 : * get_dependent_generated_columns
2262 : *
2263 : * Get the column numbers of any STORED GENERATED columns of the relation
2264 : * that depend on any column listed in target_cols. Both the input and
2265 : * result bitmapsets contain column numbers offset by
2266 : * FirstLowInvalidHeapAttributeNumber.
2267 : */
2268 : Bitmapset *
2269 70 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2270 : Bitmapset *target_cols)
2271 : {
2272 70 : Bitmapset *dependentCols = NULL;
2273 70 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2274 : Relation relation;
2275 : TupleDesc tupdesc;
2276 : TupleConstr *constr;
2277 :
2278 : /* Assume we already have adequate lock */
2279 70 : relation = table_open(rte->relid, NoLock);
2280 :
2281 70 : tupdesc = RelationGetDescr(relation);
2282 70 : constr = tupdesc->constr;
2283 :
2284 70 : if (constr && constr->has_generated_stored)
2285 : {
2286 8 : for (int i = 0; i < constr->num_defval; i++)
2287 : {
2288 4 : AttrDefault *defval = &constr->defval[i];
2289 : Node *expr;
2290 4 : Bitmapset *attrs_used = NULL;
2291 :
2292 : /* skip if not generated column */
2293 4 : if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2294 0 : continue;
2295 :
2296 : /* identify columns this generated column depends on */
2297 4 : expr = stringToNode(defval->adbin);
2298 4 : pull_varattnos(expr, 1, &attrs_used);
2299 :
2300 4 : if (bms_overlap(target_cols, attrs_used))
2301 4 : dependentCols = bms_add_member(dependentCols,
2302 4 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2303 : }
2304 : }
2305 :
2306 70 : table_close(relation, NoLock);
2307 :
2308 70 : return dependentCols;
2309 : }
2310 :
2311 : /*
2312 : * set_relation_partition_info
2313 : *
2314 : * Set partitioning scheme and related information for a partitioned table.
2315 : */
2316 : static void
2317 14964 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2318 : Relation relation)
2319 : {
2320 : PartitionDesc partdesc;
2321 :
2322 : /*
2323 : * Create the PartitionDirectory infrastructure if we didn't already.
2324 : */
2325 14964 : if (root->glob->partition_directory == NULL)
2326 : {
2327 10144 : root->glob->partition_directory =
2328 10144 : CreatePartitionDirectory(CurrentMemoryContext, true);
2329 : }
2330 :
2331 14964 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2332 : relation);
2333 14964 : rel->part_scheme = find_partition_scheme(root, relation);
2334 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2335 14964 : rel->boundinfo = partdesc->boundinfo;
2336 14964 : rel->nparts = partdesc->nparts;
2337 14964 : set_baserel_partition_key_exprs(relation, rel);
2338 14964 : set_baserel_partition_constraint(relation, rel);
2339 14964 : }
2340 :
2341 : /*
2342 : * find_partition_scheme
2343 : *
2344 : * Find or create a PartitionScheme for this Relation.
2345 : */
2346 : static PartitionScheme
2347 14964 : find_partition_scheme(PlannerInfo *root, Relation relation)
2348 : {
2349 14964 : PartitionKey partkey = RelationGetPartitionKey(relation);
2350 : ListCell *lc;
2351 : int partnatts,
2352 : i;
2353 : PartitionScheme part_scheme;
2354 :
2355 : /* A partitioned table should have a partition key. */
2356 : Assert(partkey != NULL);
2357 :
2358 14964 : partnatts = partkey->partnatts;
2359 :
2360 : /* Search for a matching partition scheme and return if found one. */
2361 16740 : foreach(lc, root->part_schemes)
2362 : {
2363 5388 : part_scheme = lfirst(lc);
2364 :
2365 : /* Match partitioning strategy and number of keys. */
2366 5388 : if (partkey->strategy != part_scheme->strategy ||
2367 4470 : partnatts != part_scheme->partnatts)
2368 1326 : continue;
2369 :
2370 : /* Match partition key type properties. */
2371 4062 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2372 3612 : sizeof(Oid) * partnatts) != 0 ||
2373 3612 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2374 3612 : sizeof(Oid) * partnatts) != 0 ||
2375 3612 : memcmp(partkey->partcollation, part_scheme->partcollation,
2376 : sizeof(Oid) * partnatts) != 0)
2377 450 : continue;
2378 :
2379 : /*
2380 : * Length and byval information should match when partopcintype
2381 : * matches.
2382 : */
2383 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2384 : sizeof(int16) * partnatts) == 0);
2385 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2386 : sizeof(bool) * partnatts) == 0);
2387 :
2388 : /*
2389 : * If partopfamily and partopcintype matched, must have the same
2390 : * partition comparison functions. Note that we cannot reliably
2391 : * Assert the equality of function structs themselves for they might
2392 : * be different across PartitionKey's, so just Assert for the function
2393 : * OIDs.
2394 : */
2395 : #ifdef USE_ASSERT_CHECKING
2396 : for (i = 0; i < partkey->partnatts; i++)
2397 : Assert(partkey->partsupfunc[i].fn_oid ==
2398 : part_scheme->partsupfunc[i].fn_oid);
2399 : #endif
2400 :
2401 : /* Found matching partition scheme. */
2402 3612 : return part_scheme;
2403 : }
2404 :
2405 : /*
2406 : * Did not find matching partition scheme. Create one copying relevant
2407 : * information from the relcache. We need to copy the contents of the
2408 : * array since the relcache entry may not survive after we have closed the
2409 : * relation.
2410 : */
2411 11352 : part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2412 11352 : part_scheme->strategy = partkey->strategy;
2413 11352 : part_scheme->partnatts = partkey->partnatts;
2414 :
2415 11352 : part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2416 11352 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2417 : sizeof(Oid) * partnatts);
2418 :
2419 11352 : part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2420 11352 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2421 : sizeof(Oid) * partnatts);
2422 :
2423 11352 : part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2424 11352 : memcpy(part_scheme->partcollation, partkey->partcollation,
2425 : sizeof(Oid) * partnatts);
2426 :
2427 11352 : part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2428 11352 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2429 : sizeof(int16) * partnatts);
2430 :
2431 11352 : part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2432 11352 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2433 : sizeof(bool) * partnatts);
2434 :
2435 11352 : part_scheme->partsupfunc = (FmgrInfo *)
2436 11352 : palloc(sizeof(FmgrInfo) * partnatts);
2437 23910 : for (i = 0; i < partnatts; i++)
2438 12558 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2439 : CurrentMemoryContext);
2440 :
2441 : /* Add the partitioning scheme to PlannerInfo. */
2442 11352 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2443 :
2444 11352 : return part_scheme;
2445 : }
2446 :
2447 : /*
2448 : * set_baserel_partition_key_exprs
2449 : *
2450 : * Builds partition key expressions for the given base relation and fills
2451 : * rel->partexprs.
2452 : */
2453 : static void
2454 14964 : set_baserel_partition_key_exprs(Relation relation,
2455 : RelOptInfo *rel)
2456 : {
2457 14964 : PartitionKey partkey = RelationGetPartitionKey(relation);
2458 : int partnatts;
2459 : int cnt;
2460 : List **partexprs;
2461 : ListCell *lc;
2462 14964 : Index varno = rel->relid;
2463 :
2464 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2465 :
2466 : /* A partitioned table should have a partition key. */
2467 : Assert(partkey != NULL);
2468 :
2469 14964 : partnatts = partkey->partnatts;
2470 14964 : partexprs = (List **) palloc(sizeof(List *) * partnatts);
2471 14964 : lc = list_head(partkey->partexprs);
2472 :
2473 31164 : for (cnt = 0; cnt < partnatts; cnt++)
2474 : {
2475 : Expr *partexpr;
2476 16200 : AttrNumber attno = partkey->partattrs[cnt];
2477 :
2478 16200 : if (attno != InvalidAttrNumber)
2479 : {
2480 : /* Single column partition key is stored as a Var node. */
2481 : Assert(attno > 0);
2482 :
2483 15300 : partexpr = (Expr *) makeVar(varno, attno,
2484 15300 : partkey->parttypid[cnt],
2485 15300 : partkey->parttypmod[cnt],
2486 15300 : partkey->parttypcoll[cnt], 0);
2487 : }
2488 : else
2489 : {
2490 900 : if (lc == NULL)
2491 0 : elog(ERROR, "wrong number of partition key expressions");
2492 :
2493 : /* Re-stamp the expression with given varno. */
2494 900 : partexpr = (Expr *) copyObject(lfirst(lc));
2495 900 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2496 900 : lc = lnext(partkey->partexprs, lc);
2497 : }
2498 :
2499 : /* Base relations have a single expression per key. */
2500 16200 : partexprs[cnt] = list_make1(partexpr);
2501 : }
2502 :
2503 14964 : rel->partexprs = partexprs;
2504 :
2505 : /*
2506 : * A base relation does not have nullable partition key expressions, since
2507 : * no outer join is involved. We still allocate an array of empty
2508 : * expression lists to keep partition key expression handling code simple.
2509 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2510 : */
2511 14964 : rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2512 14964 : }
2513 :
2514 : /*
2515 : * set_baserel_partition_constraint
2516 : *
2517 : * Builds the partition constraint for the given base relation and sets it
2518 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2519 : * given relation.
2520 : */
2521 : static void
2522 14976 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2523 : {
2524 : List *partconstr;
2525 :
2526 14976 : if (rel->partition_qual) /* already done */
2527 0 : return;
2528 :
2529 : /*
2530 : * Run the partition quals through const-simplification similar to check
2531 : * constraints. We skip canonicalize_qual, though, because partition
2532 : * quals should be in canonical form already; also, since the qual is in
2533 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2534 : * format and back again.
2535 : */
2536 14976 : partconstr = RelationGetPartitionQual(relation);
2537 14976 : if (partconstr)
2538 : {
2539 3118 : partconstr = (List *) expression_planner((Expr *) partconstr);
2540 3118 : if (rel->relid != 1)
2541 3036 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2542 3118 : rel->partition_qual = partconstr;
2543 : }
2544 : }
|