Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/cost.h"
40 : #include "optimizer/optimizer.h"
41 : #include "optimizer/plancat.h"
42 : #include "parser/parse_relation.h"
43 : #include "parser/parsetree.h"
44 : #include "partitioning/partdesc.h"
45 : #include "rewrite/rewriteManip.h"
46 : #include "statistics/statistics.h"
47 : #include "storage/bufmgr.h"
48 : #include "tcop/tcopprot.h"
49 : #include "utils/builtins.h"
50 : #include "utils/lsyscache.h"
51 : #include "utils/partcache.h"
52 : #include "utils/rel.h"
53 : #include "utils/snapmgr.h"
54 : #include "utils/syscache.h"
55 :
56 : /* GUC parameter */
57 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
58 :
59 : /* Hook for plugins to get control in get_relation_info() */
60 : get_relation_info_hook_type get_relation_info_hook = NULL;
61 :
62 :
63 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
64 : Relation relation, bool inhparent);
65 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
66 : List *idxExprs);
67 : static List *get_relation_constraints(PlannerInfo *root,
68 : Oid relationObjectId, RelOptInfo *rel,
69 : bool include_noinherit,
70 : bool include_notnull,
71 : bool include_partition);
72 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
73 : Relation heapRelation);
74 : static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
75 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
76 : Relation relation);
77 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
78 : Relation relation);
79 : static void set_baserel_partition_key_exprs(Relation relation,
80 : RelOptInfo *rel);
81 : static void set_baserel_partition_constraint(Relation relation,
82 : RelOptInfo *rel);
83 :
84 :
85 : /*
86 : * get_relation_info -
87 : * Retrieves catalog information for a given relation.
88 : *
89 : * Given the Oid of the relation, return the following info into fields
90 : * of the RelOptInfo struct:
91 : *
92 : * min_attr lowest valid AttrNumber
93 : * max_attr highest valid AttrNumber
94 : * indexlist list of IndexOptInfos for relation's indexes
95 : * statlist list of StatisticExtInfo for relation's statistic objects
96 : * serverid if it's a foreign table, the server OID
97 : * fdwroutine if it's a foreign table, the FDW function pointers
98 : * pages number of pages
99 : * tuples number of tuples
100 : * rel_parallel_workers user-defined number of parallel workers
101 : *
102 : * Also, add information about the relation's foreign keys to root->fkey_list.
103 : *
104 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
105 : * cases these are left as zeroes, but sometimes we need to compute attr
106 : * widths here, and we may as well cache the results for costsize.c.
107 : *
108 : * If inhparent is true, all we need to do is set up the attr arrays:
109 : * the RelOptInfo actually represents the appendrel formed by an inheritance
110 : * tree, and so the parent rel's physical size and index information isn't
111 : * important for it, however, for partitioned tables, we do populate the
112 : * indexlist as the planner uses unique indexes as unique proofs for certain
113 : * optimizations.
114 : */
115 : void
116 426792 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
117 : RelOptInfo *rel)
118 : {
119 426792 : Index varno = rel->relid;
120 : Relation relation;
121 : bool hasindex;
122 426792 : List *indexinfos = NIL;
123 :
124 : /*
125 : * We need not lock the relation since it was already locked, either by
126 : * the rewriter or when expand_inherited_rtentry() added it to the query's
127 : * rangetable.
128 : */
129 426792 : relation = table_open(relationObjectId, NoLock);
130 :
131 : /*
132 : * Relations without a table AM can be used in a query only if they are of
133 : * special-cased relkinds. This check prevents us from crashing later if,
134 : * for example, a view's ON SELECT rule has gone missing. Note that
135 : * table_open() already rejected indexes and composite types; spell the
136 : * error the same way it does.
137 : */
138 426792 : if (!relation->rd_tableam)
139 : {
140 18998 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
141 16578 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
142 0 : ereport(ERROR,
143 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
144 : errmsg("cannot open relation \"%s\"",
145 : RelationGetRelationName(relation)),
146 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
147 : }
148 :
149 : /* Temporary and unlogged relations are inaccessible during recovery. */
150 426792 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
151 0 : ereport(ERROR,
152 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
153 : errmsg("cannot access temporary or unlogged relations during recovery")));
154 :
155 426792 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
156 426792 : rel->max_attr = RelationGetNumberOfAttributes(relation);
157 426792 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
158 :
159 : Assert(rel->max_attr >= rel->min_attr);
160 426792 : rel->attr_needed = (Relids *)
161 426792 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
162 426792 : rel->attr_widths = (int32 *)
163 426792 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
164 :
165 : /*
166 : * Record which columns are defined as NOT NULL. We leave this
167 : * unpopulated for non-partitioned inheritance parent relations as it's
168 : * ambiguous as to what it means. Some child tables may have a NOT NULL
169 : * constraint for a column while others may not. We could work harder and
170 : * build a unioned set of all child relations notnullattnums, but there's
171 : * currently no need. The RelOptInfo corresponding to the !inh
172 : * RangeTblEntry does get populated.
173 : */
174 426792 : if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
175 : {
176 5139588 : for (int i = 0; i < relation->rd_att->natts; i++)
177 : {
178 4748014 : Form_pg_attribute attr = TupleDescAttr(relation->rd_att, i);
179 :
180 4748014 : if (attr->attnotnull)
181 : {
182 3570770 : rel->notnullattnums = bms_add_member(rel->notnullattnums,
183 3570770 : attr->attnum);
184 :
185 : /*
186 : * Per RemoveAttributeById(), dropped columns will have their
187 : * attnotnull unset, so we needn't check for dropped columns
188 : * in the above condition.
189 : */
190 : Assert(!attr->attisdropped);
191 : }
192 : }
193 : }
194 :
195 : /*
196 : * Estimate relation size --- unless it's an inheritance parent, in which
197 : * case the size we want is not the rel's own size but the size of its
198 : * inheritance tree. That will be computed in set_append_rel_size().
199 : */
200 426792 : if (!inhparent)
201 375036 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
202 375036 : &rel->pages, &rel->tuples, &rel->allvisfrac);
203 :
204 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
205 426792 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
206 :
207 : /*
208 : * Make list of indexes. Ignore indexes on system catalogs if told to.
209 : * Don't bother with indexes from traditional inheritance parents. For
210 : * partitioned tables, we need a list of at least unique indexes as these
211 : * serve as unique proofs for certain planner optimizations. However,
212 : * let's not discriminate here and just record all partitioned indexes
213 : * whether they're unique indexes or not.
214 : */
215 426792 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
216 391574 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
217 35218 : hasindex = false;
218 : else
219 391574 : hasindex = relation->rd_rel->relhasindex;
220 :
221 426792 : if (hasindex)
222 : {
223 : List *indexoidlist;
224 : LOCKMODE lmode;
225 : ListCell *l;
226 :
227 312064 : indexoidlist = RelationGetIndexList(relation);
228 :
229 : /*
230 : * For each index, we get the same type of lock that the executor will
231 : * need, and do not release it. This saves a couple of trips to the
232 : * shared lock manager while not creating any real loss of
233 : * concurrency, because no schema changes could be happening on the
234 : * index while we hold lock on the parent rel, and no lock type used
235 : * for queries blocks any other kind of index operation.
236 : */
237 312064 : lmode = root->simple_rte_array[varno]->rellockmode;
238 :
239 959212 : foreach(l, indexoidlist)
240 : {
241 647148 : Oid indexoid = lfirst_oid(l);
242 : Relation indexRelation;
243 : Form_pg_index index;
244 647148 : IndexAmRoutine *amroutine = NULL;
245 : IndexOptInfo *info;
246 : int ncolumns,
247 : nkeycolumns;
248 : int i;
249 :
250 : /*
251 : * Extract info from the relation descriptor for the index.
252 : */
253 647148 : indexRelation = index_open(indexoid, lmode);
254 647148 : index = indexRelation->rd_index;
255 :
256 : /*
257 : * Ignore invalid indexes, since they can't safely be used for
258 : * queries. Note that this is OK because the data structure we
259 : * are constructing is only used by the planner --- the executor
260 : * still needs to insert into "invalid" indexes, if they're marked
261 : * indisready.
262 : */
263 647148 : if (!index->indisvalid)
264 : {
265 22 : index_close(indexRelation, NoLock);
266 22 : continue;
267 : }
268 :
269 : /*
270 : * If the index is valid, but cannot yet be used, ignore it; but
271 : * mark the plan we are generating as transient. See
272 : * src/backend/access/heap/README.HOT for discussion.
273 : */
274 647126 : if (index->indcheckxmin &&
275 270 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
276 : TransactionXmin))
277 : {
278 148 : root->glob->transientPlan = true;
279 148 : index_close(indexRelation, NoLock);
280 148 : continue;
281 : }
282 :
283 646978 : info = makeNode(IndexOptInfo);
284 :
285 646978 : info->indexoid = index->indexrelid;
286 646978 : info->reltablespace =
287 646978 : RelationGetForm(indexRelation)->reltablespace;
288 646978 : info->rel = rel;
289 646978 : info->ncolumns = ncolumns = index->indnatts;
290 646978 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
291 :
292 646978 : info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
293 646978 : info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
294 646978 : info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
295 646978 : info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
296 646978 : info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
297 :
298 1898292 : for (i = 0; i < ncolumns; i++)
299 : {
300 1251314 : info->indexkeys[i] = index->indkey.values[i];
301 1251314 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
302 : }
303 :
304 1897874 : for (i = 0; i < nkeycolumns; i++)
305 : {
306 1250896 : info->opfamily[i] = indexRelation->rd_opfamily[i];
307 1250896 : info->opcintype[i] = indexRelation->rd_opcintype[i];
308 1250896 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
309 : }
310 :
311 646978 : info->relam = indexRelation->rd_rel->relam;
312 :
313 : /*
314 : * We don't have an AM for partitioned indexes, so we'll just
315 : * NULLify the AM related fields for those.
316 : */
317 646978 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
318 : {
319 : /* We copy just the fields we need, not all of rd_indam */
320 640514 : amroutine = indexRelation->rd_indam;
321 640514 : info->amcanorderbyop = amroutine->amcanorderbyop;
322 640514 : info->amoptionalkey = amroutine->amoptionalkey;
323 640514 : info->amsearcharray = amroutine->amsearcharray;
324 640514 : info->amsearchnulls = amroutine->amsearchnulls;
325 640514 : info->amcanparallel = amroutine->amcanparallel;
326 640514 : info->amhasgettuple = (amroutine->amgettuple != NULL);
327 1281028 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
328 640514 : relation->rd_tableam->scan_bitmap_next_block != NULL;
329 1259188 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
330 618674 : amroutine->amrestrpos != NULL);
331 640514 : info->amcostestimate = amroutine->amcostestimate;
332 : Assert(info->amcostestimate != NULL);
333 :
334 : /* Fetch index opclass options */
335 640514 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
336 :
337 : /*
338 : * Fetch the ordering information for the index, if any.
339 : */
340 640514 : if (info->relam == BTREE_AM_OID)
341 : {
342 : /*
343 : * If it's a btree index, we can use its opfamily OIDs
344 : * directly as the sort ordering opfamily OIDs.
345 : */
346 : Assert(amroutine->amcanorder);
347 :
348 618674 : info->sortopfamily = info->opfamily;
349 618674 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
350 618674 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
351 :
352 1580092 : for (i = 0; i < nkeycolumns; i++)
353 : {
354 961418 : int16 opt = indexRelation->rd_indoption[i];
355 :
356 961418 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
357 961418 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
358 : }
359 : }
360 21840 : else if (amroutine->amcanorder)
361 : {
362 : /*
363 : * Otherwise, identify the corresponding btree opfamilies
364 : * by trying to map this index's "<" operators into btree.
365 : * Since "<" uniquely defines the behavior of a sort
366 : * order, this is a sufficient test.
367 : *
368 : * XXX This method is rather slow and also requires the
369 : * undesirable assumption that the other index AM numbers
370 : * its strategies the same as btree. It'd be better to
371 : * have a way to explicitly declare the corresponding
372 : * btree opfamily for each opfamily of the other index
373 : * type. But given the lack of current or foreseeable
374 : * amcanorder index types, it's not worth expending more
375 : * effort on now.
376 : */
377 0 : info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
378 0 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
379 0 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
380 :
381 0 : for (i = 0; i < nkeycolumns; i++)
382 : {
383 0 : int16 opt = indexRelation->rd_indoption[i];
384 : Oid ltopr;
385 : Oid btopfamily;
386 : Oid btopcintype;
387 : int16 btstrategy;
388 :
389 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
390 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
391 :
392 0 : ltopr = get_opfamily_member(info->opfamily[i],
393 0 : info->opcintype[i],
394 0 : info->opcintype[i],
395 : BTLessStrategyNumber);
396 0 : if (OidIsValid(ltopr) &&
397 0 : get_ordering_op_properties(ltopr,
398 : &btopfamily,
399 : &btopcintype,
400 0 : &btstrategy) &&
401 0 : btopcintype == info->opcintype[i] &&
402 0 : btstrategy == BTLessStrategyNumber)
403 : {
404 : /* Successful mapping */
405 0 : info->sortopfamily[i] = btopfamily;
406 : }
407 : else
408 : {
409 : /* Fail ... quietly treat index as unordered */
410 0 : info->sortopfamily = NULL;
411 0 : info->reverse_sort = NULL;
412 0 : info->nulls_first = NULL;
413 0 : break;
414 : }
415 : }
416 : }
417 : else
418 : {
419 21840 : info->sortopfamily = NULL;
420 21840 : info->reverse_sort = NULL;
421 21840 : info->nulls_first = NULL;
422 : }
423 : }
424 : else
425 : {
426 6464 : info->amcanorderbyop = false;
427 6464 : info->amoptionalkey = false;
428 6464 : info->amsearcharray = false;
429 6464 : info->amsearchnulls = false;
430 6464 : info->amcanparallel = false;
431 6464 : info->amhasgettuple = false;
432 6464 : info->amhasgetbitmap = false;
433 6464 : info->amcanmarkpos = false;
434 6464 : info->amcostestimate = NULL;
435 :
436 6464 : info->sortopfamily = NULL;
437 6464 : info->reverse_sort = NULL;
438 6464 : info->nulls_first = NULL;
439 : }
440 :
441 : /*
442 : * Fetch the index expressions and predicate, if any. We must
443 : * modify the copies we obtain from the relcache to have the
444 : * correct varno for the parent relation, so that they match up
445 : * correctly against qual clauses.
446 : */
447 646978 : info->indexprs = RelationGetIndexExpressions(indexRelation);
448 646978 : info->indpred = RelationGetIndexPredicate(indexRelation);
449 646978 : if (info->indexprs && varno != 1)
450 1662 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
451 646978 : if (info->indpred && varno != 1)
452 126 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
453 :
454 : /* Build targetlist using the completed indexprs data */
455 646978 : info->indextlist = build_index_tlist(root, info, relation);
456 :
457 646978 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
458 646978 : info->predOK = false; /* set later, in indxpath.c */
459 646978 : info->unique = index->indisunique;
460 646978 : info->immediate = index->indimmediate;
461 646978 : info->hypothetical = false;
462 :
463 : /*
464 : * Estimate the index size. If it's not a partial index, we lock
465 : * the number-of-tuples estimate to equal the parent table; if it
466 : * is partial then we have to use the same methods as we would for
467 : * a table, except we can be sure that the index is not larger
468 : * than the table. We must ignore partitioned indexes here as
469 : * there are not physical indexes.
470 : */
471 646978 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
472 : {
473 640514 : if (info->indpred == NIL)
474 : {
475 639548 : info->pages = RelationGetNumberOfBlocks(indexRelation);
476 639548 : info->tuples = rel->tuples;
477 : }
478 : else
479 : {
480 : double allvisfrac; /* dummy */
481 :
482 966 : estimate_rel_size(indexRelation, NULL,
483 966 : &info->pages, &info->tuples, &allvisfrac);
484 966 : if (info->tuples > rel->tuples)
485 18 : info->tuples = rel->tuples;
486 : }
487 :
488 : /*
489 : * Get tree height while we have the index open
490 : */
491 640514 : if (amroutine->amgettreeheight)
492 : {
493 618674 : info->tree_height = amroutine->amgettreeheight(indexRelation);
494 : }
495 : else
496 : {
497 : /* For other index types, just set it to "unknown" for now */
498 21840 : info->tree_height = -1;
499 : }
500 : }
501 : else
502 : {
503 : /* Zero these out for partitioned indexes */
504 6464 : info->pages = 0;
505 6464 : info->tuples = 0.0;
506 6464 : info->tree_height = -1;
507 : }
508 :
509 646978 : index_close(indexRelation, NoLock);
510 :
511 : /*
512 : * We've historically used lcons() here. It'd make more sense to
513 : * use lappend(), but that causes the planner to change behavior
514 : * in cases where two indexes seem equally attractive. For now,
515 : * stick with lcons() --- few tables should have so many indexes
516 : * that the O(N^2) behavior of lcons() is really a problem.
517 : */
518 646978 : indexinfos = lcons(info, indexinfos);
519 : }
520 :
521 312064 : list_free(indexoidlist);
522 : }
523 :
524 426792 : rel->indexlist = indexinfos;
525 :
526 426792 : rel->statlist = get_relation_statistics(rel, relation);
527 :
528 : /* Grab foreign-table info using the relcache, while we have it */
529 426792 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
530 : {
531 : /* Check if the access to foreign tables is restricted */
532 2420 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
533 : {
534 : /* there must not be built-in foreign tables */
535 : Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
536 :
537 4 : ereport(ERROR,
538 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
539 : errmsg("access to non-system foreign table is restricted")));
540 : }
541 :
542 2416 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
543 2416 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
544 : }
545 : else
546 : {
547 424372 : rel->serverid = InvalidOid;
548 424372 : rel->fdwroutine = NULL;
549 : }
550 :
551 : /* Collect info about relation's foreign keys, if relevant */
552 426774 : get_relation_foreign_keys(root, rel, relation, inhparent);
553 :
554 : /* Collect info about functions implemented by the rel's table AM. */
555 426774 : if (relation->rd_tableam &&
556 407794 : relation->rd_tableam->scan_set_tidrange != NULL &&
557 407794 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
558 407794 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
559 :
560 : /*
561 : * Collect info about relation's partitioning scheme, if any. Only
562 : * inheritance parents may be partitioned.
563 : */
564 426774 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
565 16538 : set_relation_partition_info(root, rel, relation);
566 :
567 426774 : table_close(relation, NoLock);
568 :
569 : /*
570 : * Allow a plugin to editorialize on the info we obtained from the
571 : * catalogs. Actions might include altering the assumed relation size,
572 : * removing an index, or adding a hypothetical index to the indexlist.
573 : */
574 426774 : if (get_relation_info_hook)
575 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
576 426774 : }
577 :
578 : /*
579 : * get_relation_foreign_keys -
580 : * Retrieves foreign key information for a given relation.
581 : *
582 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
583 : * root->fkey_list. We do this now while we have the relcache entry open.
584 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
585 : * until all RelOptInfos have been built, but the cost of re-opening the
586 : * relcache entries would probably exceed any savings.
587 : */
588 : static void
589 426774 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
590 : Relation relation, bool inhparent)
591 : {
592 426774 : List *rtable = root->parse->rtable;
593 : List *cachedfkeys;
594 : ListCell *lc;
595 :
596 : /*
597 : * If it's not a baserel, we don't care about its FKs. Also, if the query
598 : * references only a single relation, we can skip the lookup since no FKs
599 : * could satisfy the requirements below.
600 : */
601 813446 : if (rel->reloptkind != RELOPT_BASEREL ||
602 386672 : list_length(rtable) < 2)
603 226914 : return;
604 :
605 : /*
606 : * If it's the parent of an inheritance tree, ignore its FKs. We could
607 : * make useful FK-based deductions if we found that all members of the
608 : * inheritance tree have equivalent FK constraints, but detecting that
609 : * would require code that hasn't been written.
610 : */
611 199860 : if (inhparent)
612 5150 : return;
613 :
614 : /*
615 : * Extract data about relation's FKs from the relcache. Note that this
616 : * list belongs to the relcache and might disappear in a cache flush, so
617 : * we must not do any further catalog access within this function.
618 : */
619 194710 : cachedfkeys = RelationGetFKeyList(relation);
620 :
621 : /*
622 : * Figure out which FKs are of interest for this query, and create
623 : * ForeignKeyOptInfos for them. We want only FKs that reference some
624 : * other RTE of the current query. In queries containing self-joins,
625 : * there might be more than one other RTE for a referenced table, and we
626 : * should make a ForeignKeyOptInfo for each occurrence.
627 : *
628 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
629 : * too hard to identify those here, so we might end up making some useless
630 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
631 : * them again.
632 : */
633 197064 : foreach(lc, cachedfkeys)
634 : {
635 2354 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
636 : Index rti;
637 : ListCell *lc2;
638 :
639 : /* conrelid should always be that of the table we're considering */
640 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
641 :
642 : /* Scan to find other RTEs matching confrelid */
643 2354 : rti = 0;
644 10508 : foreach(lc2, rtable)
645 : {
646 8154 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
647 : ForeignKeyOptInfo *info;
648 :
649 8154 : rti++;
650 : /* Ignore if not the correct table */
651 8154 : if (rte->rtekind != RTE_RELATION ||
652 5056 : rte->relid != cachedfk->confrelid)
653 6128 : continue;
654 : /* Ignore if it's an inheritance parent; doesn't really match */
655 2026 : if (rte->inh)
656 192 : continue;
657 : /* Ignore self-referential FKs; we only care about joins */
658 1834 : if (rti == rel->relid)
659 126 : continue;
660 :
661 : /* OK, let's make an entry */
662 1708 : info = makeNode(ForeignKeyOptInfo);
663 1708 : info->con_relid = rel->relid;
664 1708 : info->ref_relid = rti;
665 1708 : info->nkeys = cachedfk->nkeys;
666 1708 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
667 1708 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
668 1708 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
669 : /* zero out fields to be filled by match_foreign_keys_to_quals */
670 1708 : info->nmatched_ec = 0;
671 1708 : info->nconst_ec = 0;
672 1708 : info->nmatched_rcols = 0;
673 1708 : info->nmatched_ri = 0;
674 1708 : memset(info->eclass, 0, sizeof(info->eclass));
675 1708 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
676 1708 : memset(info->rinfos, 0, sizeof(info->rinfos));
677 :
678 1708 : root->fkey_list = lappend(root->fkey_list, info);
679 : }
680 : }
681 : }
682 :
683 : /*
684 : * infer_arbiter_indexes -
685 : * Determine the unique indexes used to arbitrate speculative insertion.
686 : *
687 : * Uses user-supplied inference clause expressions and predicate to match a
688 : * unique index from those defined and ready on the heap relation (target).
689 : * An exact match is required on columns/expressions (although they can appear
690 : * in any order). However, the predicate given by the user need only restrict
691 : * insertion to a subset of some part of the table covered by some particular
692 : * unique index (in particular, a partial unique index) in order to be
693 : * inferred.
694 : *
695 : * The implementation does not consider which B-Tree operator class any
696 : * particular available unique index attribute uses, unless one was specified
697 : * in the inference specification. The same is true of collations. In
698 : * particular, there is no system dependency on the default operator class for
699 : * the purposes of inference. If no opclass (or collation) is specified, then
700 : * all matching indexes (that may or may not match the default in terms of
701 : * each attribute opclass/collation) are used for inference.
702 : */
703 : List *
704 1802 : infer_arbiter_indexes(PlannerInfo *root)
705 : {
706 1802 : OnConflictExpr *onconflict = root->parse->onConflict;
707 :
708 : /* Iteration state */
709 : Index varno;
710 : RangeTblEntry *rte;
711 : Relation relation;
712 1802 : Oid indexOidFromConstraint = InvalidOid;
713 : List *indexList;
714 : ListCell *l;
715 :
716 : /* Normalized inference attributes and inference expressions: */
717 1802 : Bitmapset *inferAttrs = NULL;
718 1802 : List *inferElems = NIL;
719 :
720 : /* Results */
721 1802 : List *results = NIL;
722 :
723 : /*
724 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
725 : * specification or named constraint. ON CONFLICT DO UPDATE statements
726 : * must always provide one or the other (but parser ought to have caught
727 : * that already).
728 : */
729 1802 : if (onconflict->arbiterElems == NIL &&
730 408 : onconflict->constraint == InvalidOid)
731 216 : return NIL;
732 :
733 : /*
734 : * We need not lock the relation since it was already locked, either by
735 : * the rewriter or when expand_inherited_rtentry() added it to the query's
736 : * rangetable.
737 : */
738 1586 : varno = root->parse->resultRelation;
739 1586 : rte = rt_fetch(varno, root->parse->rtable);
740 :
741 1586 : relation = table_open(rte->relid, NoLock);
742 :
743 : /*
744 : * Build normalized/BMS representation of plain indexed attributes, as
745 : * well as a separate list of expression items. This simplifies matching
746 : * the cataloged definition of indexes.
747 : */
748 3434 : foreach(l, onconflict->arbiterElems)
749 : {
750 1848 : InferenceElem *elem = (InferenceElem *) lfirst(l);
751 : Var *var;
752 : int attno;
753 :
754 1848 : if (!IsA(elem->expr, Var))
755 : {
756 : /* If not a plain Var, just shove it in inferElems for now */
757 174 : inferElems = lappend(inferElems, elem->expr);
758 174 : continue;
759 : }
760 :
761 1674 : var = (Var *) elem->expr;
762 1674 : attno = var->varattno;
763 :
764 1674 : if (attno == 0)
765 0 : ereport(ERROR,
766 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
767 : errmsg("whole row unique index inference specifications are not supported")));
768 :
769 1674 : inferAttrs = bms_add_member(inferAttrs,
770 : attno - FirstLowInvalidHeapAttributeNumber);
771 : }
772 :
773 : /*
774 : * Lookup named constraint's index. This is not immediately returned
775 : * because some additional sanity checks are required.
776 : */
777 1586 : if (onconflict->constraint != InvalidOid)
778 : {
779 192 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
780 :
781 192 : if (indexOidFromConstraint == InvalidOid)
782 0 : ereport(ERROR,
783 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
784 : errmsg("constraint in ON CONFLICT clause has no associated index")));
785 : }
786 :
787 : /*
788 : * Using that representation, iterate through the list of indexes on the
789 : * target relation to try and find a match
790 : */
791 1586 : indexList = RelationGetIndexList(relation);
792 :
793 3408 : foreach(l, indexList)
794 : {
795 2014 : Oid indexoid = lfirst_oid(l);
796 : Relation idxRel;
797 : Form_pg_index idxForm;
798 : Bitmapset *indexedAttrs;
799 : List *idxExprs;
800 : List *predExprs;
801 : AttrNumber natt;
802 : ListCell *el;
803 :
804 : /*
805 : * Extract info from the relation descriptor for the index. Obtain
806 : * the same lock type that the executor will ultimately use.
807 : *
808 : * Let executor complain about !indimmediate case directly, because
809 : * enforcement needs to occur there anyway when an inference clause is
810 : * omitted.
811 : */
812 2014 : idxRel = index_open(indexoid, rte->rellockmode);
813 2014 : idxForm = idxRel->rd_index;
814 :
815 2014 : if (!idxForm->indisvalid)
816 6 : goto next;
817 :
818 : /*
819 : * Note that we do not perform a check against indcheckxmin (like e.g.
820 : * get_relation_info()) here to eliminate candidates, because
821 : * uniqueness checking only cares about the most recently committed
822 : * tuple versions.
823 : */
824 :
825 : /*
826 : * Look for match on "ON constraint_name" variant, which may not be
827 : * unique constraint. This can only be a constraint name.
828 : */
829 2008 : if (indexOidFromConstraint == idxForm->indexrelid)
830 : {
831 192 : if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
832 78 : ereport(ERROR,
833 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
834 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
835 :
836 114 : results = lappend_oid(results, idxForm->indexrelid);
837 114 : list_free(indexList);
838 114 : index_close(idxRel, NoLock);
839 114 : table_close(relation, NoLock);
840 114 : return results;
841 : }
842 1816 : else if (indexOidFromConstraint != InvalidOid)
843 : {
844 : /* No point in further work for index in named constraint case */
845 18 : goto next;
846 : }
847 :
848 : /*
849 : * Only considering conventional inference at this point (not named
850 : * constraints), so index under consideration can be immediately
851 : * skipped if it's not unique
852 : */
853 1798 : if (!idxForm->indisunique)
854 4 : goto next;
855 :
856 : /*
857 : * So-called unique constraints with WITHOUT OVERLAPS are really
858 : * exclusion constraints, so skip those too.
859 : */
860 1794 : if (idxForm->indisexclusion)
861 144 : goto next;
862 :
863 : /* Build BMS representation of plain (non expression) index attrs */
864 1650 : indexedAttrs = NULL;
865 3864 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
866 : {
867 2214 : int attno = idxRel->rd_index->indkey.values[natt];
868 :
869 2214 : if (attno != 0)
870 1902 : indexedAttrs = bms_add_member(indexedAttrs,
871 : attno - FirstLowInvalidHeapAttributeNumber);
872 : }
873 :
874 : /* Non-expression attributes (if any) must match */
875 1650 : if (!bms_equal(indexedAttrs, inferAttrs))
876 378 : goto next;
877 :
878 : /* Expression attributes (if any) must match */
879 1272 : idxExprs = RelationGetIndexExpressions(idxRel);
880 1272 : if (idxExprs && varno != 1)
881 6 : ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
882 :
883 2904 : foreach(el, onconflict->arbiterElems)
884 : {
885 1680 : InferenceElem *elem = (InferenceElem *) lfirst(el);
886 :
887 : /*
888 : * Ensure that collation/opclass aspects of inference expression
889 : * element match. Even though this loop is primarily concerned
890 : * with matching expressions, it is a convenient point to check
891 : * this for both expressions and ordinary (non-expression)
892 : * attributes appearing as inference elements.
893 : */
894 1680 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
895 48 : goto next;
896 :
897 : /*
898 : * Plain Vars don't factor into count of expression elements, and
899 : * the question of whether or not they satisfy the index
900 : * definition has already been considered (they must).
901 : */
902 1644 : if (IsA(elem->expr, Var))
903 1470 : continue;
904 :
905 : /*
906 : * Might as well avoid redundant check in the rare cases where
907 : * infer_collation_opclass_match() is required to do real work.
908 : * Otherwise, check that element expression appears in cataloged
909 : * index definition.
910 : */
911 174 : if (elem->infercollid != InvalidOid ||
912 306 : elem->inferopclass != InvalidOid ||
913 150 : list_member(idxExprs, elem->expr))
914 162 : continue;
915 :
916 12 : goto next;
917 : }
918 :
919 : /*
920 : * Now that all inference elements were matched, ensure that the
921 : * expression elements from inference clause are not missing any
922 : * cataloged expressions. This does the right thing when unique
923 : * indexes redundantly repeat the same attribute, or if attributes
924 : * redundantly appear multiple times within an inference clause.
925 : */
926 1224 : if (list_difference(idxExprs, inferElems) != NIL)
927 54 : goto next;
928 :
929 : /*
930 : * If it's a partial index, its predicate must be implied by the ON
931 : * CONFLICT's WHERE clause.
932 : */
933 1170 : predExprs = RelationGetIndexPredicate(idxRel);
934 1170 : if (predExprs && varno != 1)
935 6 : ChangeVarNodes((Node *) predExprs, 1, varno, 0);
936 :
937 1170 : if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
938 36 : goto next;
939 :
940 1134 : results = lappend_oid(results, idxForm->indexrelid);
941 1822 : next:
942 1822 : index_close(idxRel, NoLock);
943 : }
944 :
945 1394 : list_free(indexList);
946 1394 : table_close(relation, NoLock);
947 :
948 1394 : if (results == NIL)
949 314 : ereport(ERROR,
950 : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
951 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
952 :
953 1080 : return results;
954 : }
955 :
956 : /*
957 : * infer_collation_opclass_match - ensure infer element opclass/collation match
958 : *
959 : * Given unique index inference element from inference specification, if
960 : * collation was specified, or if opclass was specified, verify that there is
961 : * at least one matching indexed attribute (occasionally, there may be more).
962 : * Skip this in the common case where inference specification does not include
963 : * collation or opclass (instead matching everything, regardless of cataloged
964 : * collation/opclass of indexed attribute).
965 : *
966 : * At least historically, Postgres has not offered collations or opclasses
967 : * with alternative-to-default notions of equality, so these additional
968 : * criteria should only be required infrequently.
969 : *
970 : * Don't give up immediately when an inference element matches some attribute
971 : * cataloged as indexed but not matching additional opclass/collation
972 : * criteria. This is done so that the implementation is as forgiving as
973 : * possible of redundancy within cataloged index attributes (or, less
974 : * usefully, within inference specification elements). If collations actually
975 : * differ between apparently redundantly indexed attributes (redundant within
976 : * or across indexes), then there really is no redundancy as such.
977 : *
978 : * Note that if an inference element specifies an opclass and a collation at
979 : * once, both must match in at least one particular attribute within index
980 : * catalog definition in order for that inference element to be considered
981 : * inferred/satisfied.
982 : */
983 : static bool
984 1680 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
985 : List *idxExprs)
986 : {
987 : AttrNumber natt;
988 1680 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
989 1680 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
990 1680 : int nplain = 0; /* # plain attrs observed */
991 :
992 : /*
993 : * If inference specification element lacks collation/opclass, then no
994 : * need to check for exact match.
995 : */
996 1680 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
997 1566 : return true;
998 :
999 : /*
1000 : * Lookup opfamily and input type, for matching indexes
1001 : */
1002 114 : if (elem->inferopclass)
1003 : {
1004 84 : inferopfamily = get_opclass_family(elem->inferopclass);
1005 84 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1006 : }
1007 :
1008 246 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1009 : {
1010 210 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
1011 210 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1012 210 : Oid collation = idxRel->rd_indcollation[natt - 1];
1013 210 : int attno = idxRel->rd_index->indkey.values[natt - 1];
1014 :
1015 210 : if (attno != 0)
1016 168 : nplain++;
1017 :
1018 210 : if (elem->inferopclass != InvalidOid &&
1019 66 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1020 : {
1021 : /* Attribute needed to match opclass, but didn't */
1022 90 : continue;
1023 : }
1024 :
1025 120 : if (elem->infercollid != InvalidOid &&
1026 84 : elem->infercollid != collation)
1027 : {
1028 : /* Attribute needed to match collation, but didn't */
1029 36 : continue;
1030 : }
1031 :
1032 : /* If one matching index att found, good enough -- return true */
1033 84 : if (IsA(elem->expr, Var))
1034 : {
1035 54 : if (((Var *) elem->expr)->varattno == attno)
1036 54 : return true;
1037 : }
1038 30 : else if (attno == 0)
1039 : {
1040 30 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1041 :
1042 : /*
1043 : * Note that unlike routines like match_index_to_operand() we
1044 : * don't need to care about RelabelType. Neither the index
1045 : * definition nor the inference clause should contain them.
1046 : */
1047 30 : if (equal(elem->expr, nattExpr))
1048 24 : return true;
1049 : }
1050 : }
1051 :
1052 36 : return false;
1053 : }
1054 :
1055 : /*
1056 : * estimate_rel_size - estimate # pages and # tuples in a table or index
1057 : *
1058 : * We also estimate the fraction of the pages that are marked all-visible in
1059 : * the visibility map, for use in estimation of index-only scans.
1060 : *
1061 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1062 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1063 : * the attribute widths for estimation purposes.
1064 : */
1065 : void
1066 407010 : estimate_rel_size(Relation rel, int32 *attr_widths,
1067 : BlockNumber *pages, double *tuples, double *allvisfrac)
1068 : {
1069 : BlockNumber curpages;
1070 : BlockNumber relpages;
1071 : double reltuples;
1072 : BlockNumber relallvisible;
1073 : double density;
1074 :
1075 407010 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1076 : {
1077 403584 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1078 : allvisfrac);
1079 : }
1080 3426 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1081 : {
1082 : /*
1083 : * XXX: It'd probably be good to move this into a callback, individual
1084 : * index types e.g. know if they have a metapage.
1085 : */
1086 :
1087 : /* it has storage, ok to call the smgr */
1088 966 : curpages = RelationGetNumberOfBlocks(rel);
1089 :
1090 : /* report estimated # pages */
1091 966 : *pages = curpages;
1092 : /* quick exit if rel is clearly empty */
1093 966 : if (curpages == 0)
1094 : {
1095 0 : *tuples = 0;
1096 0 : *allvisfrac = 0;
1097 0 : return;
1098 : }
1099 :
1100 : /* coerce values in pg_class to more desirable types */
1101 966 : relpages = (BlockNumber) rel->rd_rel->relpages;
1102 966 : reltuples = (double) rel->rd_rel->reltuples;
1103 966 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1104 :
1105 : /*
1106 : * Discount the metapage while estimating the number of tuples. This
1107 : * is a kluge because it assumes more than it ought to about index
1108 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1109 : * suspect for GiST indexes.
1110 : */
1111 966 : if (relpages > 0)
1112 : {
1113 948 : curpages--;
1114 948 : relpages--;
1115 : }
1116 :
1117 : /* estimate number of tuples from previous tuple density */
1118 966 : if (reltuples >= 0 && relpages > 0)
1119 654 : density = reltuples / (double) relpages;
1120 : else
1121 : {
1122 : /*
1123 : * If we have no data because the relation was never vacuumed,
1124 : * estimate tuple width from attribute datatypes. We assume here
1125 : * that the pages are completely full, which is OK for tables
1126 : * (since they've presumably not been VACUUMed yet) but is
1127 : * probably an overestimate for indexes. Fortunately
1128 : * get_relation_info() can clamp the overestimate to the parent
1129 : * table's size.
1130 : *
1131 : * Note: this code intentionally disregards alignment
1132 : * considerations, because (a) that would be gilding the lily
1133 : * considering how crude the estimate is, and (b) it creates
1134 : * platform dependencies in the default plans which are kind of a
1135 : * headache for regression testing.
1136 : *
1137 : * XXX: Should this logic be more index specific?
1138 : */
1139 : int32 tuple_width;
1140 :
1141 312 : tuple_width = get_rel_data_width(rel, attr_widths);
1142 312 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1143 312 : tuple_width += sizeof(ItemIdData);
1144 : /* note: integer division is intentional here */
1145 312 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1146 : }
1147 966 : *tuples = rint(density * (double) curpages);
1148 :
1149 : /*
1150 : * We use relallvisible as-is, rather than scaling it up like we do
1151 : * for the pages and tuples counts, on the theory that any pages added
1152 : * since the last VACUUM are most likely not marked all-visible. But
1153 : * costsize.c wants it converted to a fraction.
1154 : */
1155 966 : if (relallvisible == 0 || curpages <= 0)
1156 966 : *allvisfrac = 0;
1157 0 : else if ((double) relallvisible >= curpages)
1158 0 : *allvisfrac = 1;
1159 : else
1160 0 : *allvisfrac = (double) relallvisible / curpages;
1161 : }
1162 : else
1163 : {
1164 : /*
1165 : * Just use whatever's in pg_class. This covers foreign tables,
1166 : * sequences, and also relkinds without storage (shouldn't get here?);
1167 : * see initializations in AddNewRelationTuple(). Note that FDW must
1168 : * cope if reltuples is -1!
1169 : */
1170 2460 : *pages = rel->rd_rel->relpages;
1171 2460 : *tuples = rel->rd_rel->reltuples;
1172 2460 : *allvisfrac = 0;
1173 : }
1174 : }
1175 :
1176 :
1177 : /*
1178 : * get_rel_data_width
1179 : *
1180 : * Estimate the average width of (the data part of) the relation's tuples.
1181 : *
1182 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1183 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1184 : *
1185 : * Currently we ignore dropped columns. Ideally those should be included
1186 : * in the result, but we haven't got any way to get info about them; and
1187 : * since they might be mostly NULLs, treating them as zero-width is not
1188 : * necessarily the wrong thing anyway.
1189 : */
1190 : int32
1191 139082 : get_rel_data_width(Relation rel, int32 *attr_widths)
1192 : {
1193 139082 : int64 tuple_width = 0;
1194 : int i;
1195 :
1196 618126 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1197 : {
1198 479044 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1199 : int32 item_width;
1200 :
1201 479044 : if (att->attisdropped)
1202 2550 : continue;
1203 :
1204 : /* use previously cached data, if any */
1205 476494 : if (attr_widths != NULL && attr_widths[i] > 0)
1206 : {
1207 5858 : tuple_width += attr_widths[i];
1208 5858 : continue;
1209 : }
1210 :
1211 : /* This should match set_rel_width() in costsize.c */
1212 470636 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1213 470636 : if (item_width <= 0)
1214 : {
1215 468918 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1216 : Assert(item_width > 0);
1217 : }
1218 470636 : if (attr_widths != NULL)
1219 400488 : attr_widths[i] = item_width;
1220 470636 : tuple_width += item_width;
1221 : }
1222 :
1223 139082 : return clamp_width_est(tuple_width);
1224 : }
1225 :
1226 : /*
1227 : * get_relation_data_width
1228 : *
1229 : * External API for get_rel_data_width: same behavior except we have to
1230 : * open the relcache entry.
1231 : */
1232 : int32
1233 2426 : get_relation_data_width(Oid relid, int32 *attr_widths)
1234 : {
1235 : int32 result;
1236 : Relation relation;
1237 :
1238 : /* As above, assume relation is already locked */
1239 2426 : relation = table_open(relid, NoLock);
1240 :
1241 2426 : result = get_rel_data_width(relation, attr_widths);
1242 :
1243 2426 : table_close(relation, NoLock);
1244 :
1245 2426 : return result;
1246 : }
1247 :
1248 :
1249 : /*
1250 : * get_relation_constraints
1251 : *
1252 : * Retrieve the applicable constraint expressions of the given relation.
1253 : *
1254 : * Returns a List (possibly empty) of constraint expressions. Each one
1255 : * has been canonicalized, and its Vars are changed to have the varno
1256 : * indicated by rel->relid. This allows the expressions to be easily
1257 : * compared to expressions taken from WHERE.
1258 : *
1259 : * If include_noinherit is true, it's okay to include constraints that
1260 : * are marked NO INHERIT.
1261 : *
1262 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1263 : * and added to the result for each column that's marked attnotnull.
1264 : *
1265 : * If include_partition is true, and the relation is a partition,
1266 : * also include the partitioning constraints.
1267 : *
1268 : * Note: at present this is invoked at most once per relation per planner
1269 : * run, and in many cases it won't be invoked at all, so there seems no
1270 : * point in caching the data in RelOptInfo.
1271 : */
1272 : static List *
1273 20380 : get_relation_constraints(PlannerInfo *root,
1274 : Oid relationObjectId, RelOptInfo *rel,
1275 : bool include_noinherit,
1276 : bool include_notnull,
1277 : bool include_partition)
1278 : {
1279 20380 : List *result = NIL;
1280 20380 : Index varno = rel->relid;
1281 : Relation relation;
1282 : TupleConstr *constr;
1283 :
1284 : /*
1285 : * We assume the relation has already been safely locked.
1286 : */
1287 20380 : relation = table_open(relationObjectId, NoLock);
1288 :
1289 20380 : constr = relation->rd_att->constr;
1290 20380 : if (constr != NULL)
1291 : {
1292 7674 : int num_check = constr->num_check;
1293 : int i;
1294 :
1295 8098 : for (i = 0; i < num_check; i++)
1296 : {
1297 : Node *cexpr;
1298 :
1299 : /*
1300 : * If this constraint hasn't been fully validated yet, we must
1301 : * ignore it here. Also ignore if NO INHERIT and we weren't told
1302 : * that that's safe.
1303 : */
1304 424 : if (!constr->check[i].ccvalid)
1305 42 : continue;
1306 382 : if (constr->check[i].ccnoinherit && !include_noinherit)
1307 0 : continue;
1308 :
1309 382 : cexpr = stringToNode(constr->check[i].ccbin);
1310 :
1311 : /*
1312 : * Run each expression through const-simplification and
1313 : * canonicalization. This is not just an optimization, but is
1314 : * necessary, because we will be comparing it to
1315 : * similarly-processed qual clauses, and may fail to detect valid
1316 : * matches without this. This must match the processing done to
1317 : * qual clauses in preprocess_expression()! (We can skip the
1318 : * stuff involving subqueries, however, since we don't allow any
1319 : * in check constraints.)
1320 : */
1321 382 : cexpr = eval_const_expressions(root, cexpr);
1322 :
1323 382 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1324 :
1325 : /* Fix Vars to have the desired varno */
1326 382 : if (varno != 1)
1327 370 : ChangeVarNodes(cexpr, 1, varno, 0);
1328 :
1329 : /*
1330 : * Finally, convert to implicit-AND format (that is, a List) and
1331 : * append the resulting item(s) to our output list.
1332 : */
1333 382 : result = list_concat(result,
1334 382 : make_ands_implicit((Expr *) cexpr));
1335 : }
1336 :
1337 : /* Add NOT NULL constraints in expression form, if requested */
1338 7674 : if (include_notnull && constr->has_not_null)
1339 : {
1340 7236 : int natts = relation->rd_att->natts;
1341 :
1342 29480 : for (i = 1; i <= natts; i++)
1343 : {
1344 22244 : Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1345 :
1346 22244 : if (att->attnotnull && !att->attisdropped)
1347 : {
1348 9086 : NullTest *ntest = makeNode(NullTest);
1349 :
1350 9086 : ntest->arg = (Expr *) makeVar(varno,
1351 : i,
1352 : att->atttypid,
1353 : att->atttypmod,
1354 : att->attcollation,
1355 : 0);
1356 9086 : ntest->nulltesttype = IS_NOT_NULL;
1357 :
1358 : /*
1359 : * argisrow=false is correct even for a composite column,
1360 : * because attnotnull does not represent a SQL-spec IS NOT
1361 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1362 : */
1363 9086 : ntest->argisrow = false;
1364 9086 : ntest->location = -1;
1365 9086 : result = lappend(result, ntest);
1366 : }
1367 : }
1368 : }
1369 : }
1370 :
1371 : /*
1372 : * Add partitioning constraints, if requested.
1373 : */
1374 20380 : if (include_partition && relation->rd_rel->relispartition)
1375 : {
1376 : /* make sure rel->partition_qual is set */
1377 12 : set_baserel_partition_constraint(relation, rel);
1378 12 : result = list_concat(result, rel->partition_qual);
1379 : }
1380 :
1381 20380 : table_close(relation, NoLock);
1382 :
1383 20380 : return result;
1384 : }
1385 :
1386 : /*
1387 : * Try loading data for the statistics object.
1388 : *
1389 : * We don't know if the data (specified by statOid and inh value) exist.
1390 : * The result is stored in stainfos list.
1391 : */
1392 : static void
1393 3676 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1394 : Oid statOid, bool inh,
1395 : Bitmapset *keys, List *exprs)
1396 : {
1397 : Form_pg_statistic_ext_data dataForm;
1398 : HeapTuple dtup;
1399 :
1400 3676 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1401 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1402 3676 : if (!HeapTupleIsValid(dtup))
1403 1840 : return;
1404 :
1405 1836 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1406 :
1407 : /* add one StatisticExtInfo for each kind built */
1408 1836 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1409 : {
1410 672 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1411 :
1412 672 : info->statOid = statOid;
1413 672 : info->inherit = dataForm->stxdinherit;
1414 672 : info->rel = rel;
1415 672 : info->kind = STATS_EXT_NDISTINCT;
1416 672 : info->keys = bms_copy(keys);
1417 672 : info->exprs = exprs;
1418 :
1419 672 : *stainfos = lappend(*stainfos, info);
1420 : }
1421 :
1422 1836 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1423 : {
1424 528 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1425 :
1426 528 : info->statOid = statOid;
1427 528 : info->inherit = dataForm->stxdinherit;
1428 528 : info->rel = rel;
1429 528 : info->kind = STATS_EXT_DEPENDENCIES;
1430 528 : info->keys = bms_copy(keys);
1431 528 : info->exprs = exprs;
1432 :
1433 528 : *stainfos = lappend(*stainfos, info);
1434 : }
1435 :
1436 1836 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1437 : {
1438 762 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1439 :
1440 762 : info->statOid = statOid;
1441 762 : info->inherit = dataForm->stxdinherit;
1442 762 : info->rel = rel;
1443 762 : info->kind = STATS_EXT_MCV;
1444 762 : info->keys = bms_copy(keys);
1445 762 : info->exprs = exprs;
1446 :
1447 762 : *stainfos = lappend(*stainfos, info);
1448 : }
1449 :
1450 1836 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1451 : {
1452 804 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1453 :
1454 804 : info->statOid = statOid;
1455 804 : info->inherit = dataForm->stxdinherit;
1456 804 : info->rel = rel;
1457 804 : info->kind = STATS_EXT_EXPRESSIONS;
1458 804 : info->keys = bms_copy(keys);
1459 804 : info->exprs = exprs;
1460 :
1461 804 : *stainfos = lappend(*stainfos, info);
1462 : }
1463 :
1464 1836 : ReleaseSysCache(dtup);
1465 : }
1466 :
1467 : /*
1468 : * get_relation_statistics
1469 : * Retrieve extended statistics defined on the table.
1470 : *
1471 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1472 : * the statistics. Note that this doesn't load the actual statistics data,
1473 : * just the identifying metadata. Only stats actually built are considered.
1474 : */
1475 : static List *
1476 426792 : get_relation_statistics(RelOptInfo *rel, Relation relation)
1477 : {
1478 426792 : Index varno = rel->relid;
1479 : List *statoidlist;
1480 426792 : List *stainfos = NIL;
1481 : ListCell *l;
1482 :
1483 426792 : statoidlist = RelationGetStatExtList(relation);
1484 :
1485 428630 : foreach(l, statoidlist)
1486 : {
1487 1838 : Oid statOid = lfirst_oid(l);
1488 : Form_pg_statistic_ext staForm;
1489 : HeapTuple htup;
1490 1838 : Bitmapset *keys = NULL;
1491 1838 : List *exprs = NIL;
1492 : int i;
1493 :
1494 1838 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1495 1838 : if (!HeapTupleIsValid(htup))
1496 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1497 1838 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1498 :
1499 : /*
1500 : * First, build the array of columns covered. This is ultimately
1501 : * wasted if no stats within the object have actually been built, but
1502 : * it doesn't seem worth troubling over that case.
1503 : */
1504 5176 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1505 3338 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1506 :
1507 : /*
1508 : * Preprocess expressions (if any). We read the expressions, run them
1509 : * through eval_const_expressions, and fix the varnos.
1510 : *
1511 : * XXX We don't know yet if there are any data for this stats object,
1512 : * with either stxdinherit value. But it's reasonable to assume there
1513 : * is at least one of those, possibly both. So it's better to process
1514 : * keys and expressions here.
1515 : */
1516 : {
1517 : bool isnull;
1518 : Datum datum;
1519 :
1520 : /* decode expression (if any) */
1521 1838 : datum = SysCacheGetAttr(STATEXTOID, htup,
1522 : Anum_pg_statistic_ext_stxexprs, &isnull);
1523 :
1524 1838 : if (!isnull)
1525 : {
1526 : char *exprsString;
1527 :
1528 808 : exprsString = TextDatumGetCString(datum);
1529 808 : exprs = (List *) stringToNode(exprsString);
1530 808 : pfree(exprsString);
1531 :
1532 : /*
1533 : * Run the expressions through eval_const_expressions. This is
1534 : * not just an optimization, but is necessary, because the
1535 : * planner will be comparing them to similarly-processed qual
1536 : * clauses, and may fail to detect valid matches without this.
1537 : * We must not use canonicalize_qual, however, since these
1538 : * aren't qual expressions.
1539 : */
1540 808 : exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1541 :
1542 : /* May as well fix opfuncids too */
1543 808 : fix_opfuncids((Node *) exprs);
1544 :
1545 : /*
1546 : * Modify the copies we obtain from the relcache to have the
1547 : * correct varno for the parent relation, so that they match
1548 : * up correctly against qual clauses.
1549 : */
1550 808 : if (varno != 1)
1551 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1552 : }
1553 : }
1554 :
1555 : /* extract statistics for possible values of stxdinherit flag */
1556 :
1557 1838 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1558 :
1559 1838 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1560 :
1561 1838 : ReleaseSysCache(htup);
1562 1838 : bms_free(keys);
1563 : }
1564 :
1565 426792 : list_free(statoidlist);
1566 :
1567 426792 : return stainfos;
1568 : }
1569 :
1570 : /*
1571 : * relation_excluded_by_constraints
1572 : *
1573 : * Detect whether the relation need not be scanned because it has either
1574 : * self-inconsistent restrictions, or restrictions inconsistent with the
1575 : * relation's applicable constraints.
1576 : *
1577 : * Note: this examines only rel->relid, rel->reloptkind, and
1578 : * rel->baserestrictinfo; therefore it can be called before filling in
1579 : * other fields of the RelOptInfo.
1580 : */
1581 : bool
1582 452706 : relation_excluded_by_constraints(PlannerInfo *root,
1583 : RelOptInfo *rel, RangeTblEntry *rte)
1584 : {
1585 : bool include_noinherit;
1586 : bool include_notnull;
1587 452706 : bool include_partition = false;
1588 : List *safe_restrictions;
1589 : List *constraint_pred;
1590 : List *safe_constraints;
1591 : ListCell *lc;
1592 :
1593 : /* As of now, constraint exclusion works only with simple relations. */
1594 : Assert(IS_SIMPLE_REL(rel));
1595 :
1596 : /*
1597 : * If there are no base restriction clauses, we have no hope of proving
1598 : * anything below, so fall out quickly.
1599 : */
1600 452706 : if (rel->baserestrictinfo == NIL)
1601 194174 : return false;
1602 :
1603 : /*
1604 : * Regardless of the setting of constraint_exclusion, detect
1605 : * constant-FALSE-or-NULL restriction clauses. Although const-folding
1606 : * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1607 : * list can still have other members besides the FALSE constant, due to
1608 : * qual pushdown and other mechanisms; so check them all. This doesn't
1609 : * fire very often, but it seems cheap enough to be worth doing anyway.
1610 : * (Without this, we'd miss some optimizations that 9.5 and earlier found
1611 : * via much more roundabout methods.)
1612 : */
1613 646822 : foreach(lc, rel->baserestrictinfo)
1614 : {
1615 388728 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1616 388728 : Expr *clause = rinfo->clause;
1617 :
1618 388728 : if (clause && IsA(clause, Const) &&
1619 438 : (((Const *) clause)->constisnull ||
1620 438 : !DatumGetBool(((Const *) clause)->constvalue)))
1621 438 : return true;
1622 : }
1623 :
1624 : /*
1625 : * Skip further tests, depending on constraint_exclusion.
1626 : */
1627 258094 : switch (constraint_exclusion)
1628 : {
1629 54 : case CONSTRAINT_EXCLUSION_OFF:
1630 : /* In 'off' mode, never make any further tests */
1631 54 : return false;
1632 :
1633 257920 : case CONSTRAINT_EXCLUSION_PARTITION:
1634 :
1635 : /*
1636 : * When constraint_exclusion is set to 'partition' we only handle
1637 : * appendrel members. Partition pruning has already been applied,
1638 : * so there is no need to consider the rel's partition constraints
1639 : * here.
1640 : */
1641 257920 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1642 20618 : break; /* appendrel member, so process it */
1643 237302 : return false;
1644 :
1645 120 : case CONSTRAINT_EXCLUSION_ON:
1646 :
1647 : /*
1648 : * In 'on' mode, always apply constraint exclusion. If we are
1649 : * considering a baserel that is a partition (i.e., it was
1650 : * directly named rather than expanded from a parent table), then
1651 : * its partition constraints haven't been considered yet, so
1652 : * include them in the processing here.
1653 : */
1654 120 : if (rel->reloptkind == RELOPT_BASEREL)
1655 90 : include_partition = true;
1656 120 : break; /* always try to exclude */
1657 : }
1658 :
1659 : /*
1660 : * Check for self-contradictory restriction clauses. We dare not make
1661 : * deductions with non-immutable functions, but any immutable clauses that
1662 : * are self-contradictory allow us to conclude the scan is unnecessary.
1663 : *
1664 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1665 : * expecting to see any in its predicate argument.
1666 : */
1667 20738 : safe_restrictions = NIL;
1668 48728 : foreach(lc, rel->baserestrictinfo)
1669 : {
1670 27990 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1671 :
1672 27990 : if (!contain_mutable_functions((Node *) rinfo->clause))
1673 26984 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1674 : }
1675 :
1676 : /*
1677 : * We can use weak refutation here, since we're comparing restriction
1678 : * clauses with restriction clauses.
1679 : */
1680 20738 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1681 72 : return true;
1682 :
1683 : /*
1684 : * Only plain relations have constraints, so stop here for other rtekinds.
1685 : */
1686 20666 : if (rte->rtekind != RTE_RELATION)
1687 286 : return false;
1688 :
1689 : /*
1690 : * If we are scanning just this table, we can use NO INHERIT constraints,
1691 : * but not if we're scanning its children too. (Note that partitioned
1692 : * tables should never have NO INHERIT constraints; but it's not necessary
1693 : * for us to assume that here.)
1694 : */
1695 20380 : include_noinherit = !rte->inh;
1696 :
1697 : /*
1698 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1699 : * this is a partitioned table. In future we might track their
1700 : * inheritance status more accurately, allowing this to be refined.
1701 : *
1702 : * XXX do we need/want to change this?
1703 : */
1704 20380 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1705 :
1706 : /*
1707 : * Fetch the appropriate set of constraint expressions.
1708 : */
1709 20380 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1710 : include_noinherit,
1711 : include_notnull,
1712 : include_partition);
1713 :
1714 : /*
1715 : * We do not currently enforce that CHECK constraints contain only
1716 : * immutable functions, so it's necessary to check here. We daren't draw
1717 : * conclusions from plan-time evaluation of non-immutable functions. Since
1718 : * they're ANDed, we can just ignore any mutable constraints in the list,
1719 : * and reason about the rest.
1720 : */
1721 20380 : safe_constraints = NIL;
1722 29960 : foreach(lc, constraint_pred)
1723 : {
1724 9580 : Node *pred = (Node *) lfirst(lc);
1725 :
1726 9580 : if (!contain_mutable_functions(pred))
1727 9580 : safe_constraints = lappend(safe_constraints, pred);
1728 : }
1729 :
1730 : /*
1731 : * The constraints are effectively ANDed together, so we can just try to
1732 : * refute the entire collection at once. This may allow us to make proofs
1733 : * that would fail if we took them individually.
1734 : *
1735 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1736 : * an obvious optimization. Some of the clauses might be OR clauses that
1737 : * have volatile and nonvolatile subclauses, and it's OK to make
1738 : * deductions with the nonvolatile parts.
1739 : *
1740 : * We need strong refutation because we have to prove that the constraints
1741 : * would yield false, not just NULL.
1742 : */
1743 20380 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1744 78 : return true;
1745 :
1746 20302 : return false;
1747 : }
1748 :
1749 :
1750 : /*
1751 : * build_physical_tlist
1752 : *
1753 : * Build a targetlist consisting of exactly the relation's user attributes,
1754 : * in order. The executor can special-case such tlists to avoid a projection
1755 : * step at runtime, so we use such tlists preferentially for scan nodes.
1756 : *
1757 : * Exception: if there are any dropped or missing columns, we punt and return
1758 : * NIL. Ideally we would like to handle these cases too. However this
1759 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1760 : * for a tlist that includes vars of no-longer-existent types. In theory we
1761 : * could dig out the required info from the pg_attribute entries of the
1762 : * relation, but that data is not readily available to ExecTypeFromTL.
1763 : * For now, we don't apply the physical-tlist optimization when there are
1764 : * dropped cols.
1765 : *
1766 : * We also support building a "physical" tlist for subqueries, functions,
1767 : * values lists, table expressions, and CTEs, since the same optimization can
1768 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1769 : * NamedTuplestoreScan, and WorkTableScan nodes.
1770 : */
1771 : List *
1772 168268 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
1773 : {
1774 168268 : List *tlist = NIL;
1775 168268 : Index varno = rel->relid;
1776 168268 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
1777 : Relation relation;
1778 : Query *subquery;
1779 : Var *var;
1780 : ListCell *l;
1781 : int attrno,
1782 : numattrs;
1783 : List *colvars;
1784 :
1785 168268 : switch (rte->rtekind)
1786 : {
1787 144226 : case RTE_RELATION:
1788 : /* Assume we already have adequate lock */
1789 144226 : relation = table_open(rte->relid, NoLock);
1790 :
1791 144226 : numattrs = RelationGetNumberOfAttributes(relation);
1792 2497856 : for (attrno = 1; attrno <= numattrs; attrno++)
1793 : {
1794 2353768 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1795 : attrno - 1);
1796 :
1797 2353768 : if (att_tup->attisdropped || att_tup->atthasmissing)
1798 : {
1799 : /* found a dropped or missing col, so punt */
1800 138 : tlist = NIL;
1801 138 : break;
1802 : }
1803 :
1804 2353630 : var = makeVar(varno,
1805 : attrno,
1806 : att_tup->atttypid,
1807 : att_tup->atttypmod,
1808 : att_tup->attcollation,
1809 : 0);
1810 :
1811 2353630 : tlist = lappend(tlist,
1812 2353630 : makeTargetEntry((Expr *) var,
1813 : attrno,
1814 : NULL,
1815 : false));
1816 : }
1817 :
1818 144226 : table_close(relation, NoLock);
1819 144226 : break;
1820 :
1821 2074 : case RTE_SUBQUERY:
1822 2074 : subquery = rte->subquery;
1823 7330 : foreach(l, subquery->targetList)
1824 : {
1825 5256 : TargetEntry *tle = (TargetEntry *) lfirst(l);
1826 :
1827 : /*
1828 : * A resjunk column of the subquery can be reflected as
1829 : * resjunk in the physical tlist; we need not punt.
1830 : */
1831 5256 : var = makeVarFromTargetEntry(varno, tle);
1832 :
1833 5256 : tlist = lappend(tlist,
1834 5256 : makeTargetEntry((Expr *) var,
1835 5256 : tle->resno,
1836 : NULL,
1837 5256 : tle->resjunk));
1838 : }
1839 2074 : break;
1840 :
1841 21968 : case RTE_FUNCTION:
1842 : case RTE_TABLEFUNC:
1843 : case RTE_VALUES:
1844 : case RTE_CTE:
1845 : case RTE_NAMEDTUPLESTORE:
1846 : case RTE_RESULT:
1847 : /* Not all of these can have dropped cols, but share code anyway */
1848 21968 : expandRTE(rte, varno, 0, -1, true /* include dropped */ ,
1849 : NULL, &colvars);
1850 106716 : foreach(l, colvars)
1851 : {
1852 84748 : var = (Var *) lfirst(l);
1853 :
1854 : /*
1855 : * A non-Var in expandRTE's output means a dropped column;
1856 : * must punt.
1857 : */
1858 84748 : if (!IsA(var, Var))
1859 : {
1860 0 : tlist = NIL;
1861 0 : break;
1862 : }
1863 :
1864 84748 : tlist = lappend(tlist,
1865 84748 : makeTargetEntry((Expr *) var,
1866 84748 : var->varattno,
1867 : NULL,
1868 : false));
1869 : }
1870 21968 : break;
1871 :
1872 0 : default:
1873 : /* caller error */
1874 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1875 : (int) rte->rtekind);
1876 : break;
1877 : }
1878 :
1879 168268 : return tlist;
1880 : }
1881 :
1882 : /*
1883 : * build_index_tlist
1884 : *
1885 : * Build a targetlist representing the columns of the specified index.
1886 : * Each column is represented by a Var for the corresponding base-relation
1887 : * column, or an expression in base-relation Vars, as appropriate.
1888 : *
1889 : * There are never any dropped columns in indexes, so unlike
1890 : * build_physical_tlist, we need no failure case.
1891 : */
1892 : static List *
1893 646978 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
1894 : Relation heapRelation)
1895 : {
1896 646978 : List *tlist = NIL;
1897 646978 : Index varno = index->rel->relid;
1898 : ListCell *indexpr_item;
1899 : int i;
1900 :
1901 646978 : indexpr_item = list_head(index->indexprs);
1902 1898292 : for (i = 0; i < index->ncolumns; i++)
1903 : {
1904 1251314 : int indexkey = index->indexkeys[i];
1905 : Expr *indexvar;
1906 :
1907 1251314 : if (indexkey != 0)
1908 : {
1909 : /* simple column */
1910 : const FormData_pg_attribute *att_tup;
1911 :
1912 1248740 : if (indexkey < 0)
1913 0 : att_tup = SystemAttributeDefinition(indexkey);
1914 : else
1915 1248740 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
1916 :
1917 1248740 : indexvar = (Expr *) makeVar(varno,
1918 : indexkey,
1919 : att_tup->atttypid,
1920 : att_tup->atttypmod,
1921 : att_tup->attcollation,
1922 : 0);
1923 : }
1924 : else
1925 : {
1926 : /* expression column */
1927 2574 : if (indexpr_item == NULL)
1928 0 : elog(ERROR, "wrong number of index expressions");
1929 2574 : indexvar = (Expr *) lfirst(indexpr_item);
1930 2574 : indexpr_item = lnext(index->indexprs, indexpr_item);
1931 : }
1932 :
1933 1251314 : tlist = lappend(tlist,
1934 1251314 : makeTargetEntry(indexvar,
1935 1251314 : i + 1,
1936 : NULL,
1937 : false));
1938 : }
1939 646978 : if (indexpr_item != NULL)
1940 0 : elog(ERROR, "wrong number of index expressions");
1941 :
1942 646978 : return tlist;
1943 : }
1944 :
1945 : /*
1946 : * restriction_selectivity
1947 : *
1948 : * Returns the selectivity of a specified restriction operator clause.
1949 : * This code executes registered procedures stored in the
1950 : * operator relation, by calling the function manager.
1951 : *
1952 : * See clause_selectivity() for the meaning of the additional parameters.
1953 : */
1954 : Selectivity
1955 617078 : restriction_selectivity(PlannerInfo *root,
1956 : Oid operatorid,
1957 : List *args,
1958 : Oid inputcollid,
1959 : int varRelid)
1960 : {
1961 617078 : RegProcedure oprrest = get_oprrest(operatorid);
1962 : float8 result;
1963 :
1964 : /*
1965 : * if the oprrest procedure is missing for whatever reason, use a
1966 : * selectivity of 0.5
1967 : */
1968 617078 : if (!oprrest)
1969 160 : return (Selectivity) 0.5;
1970 :
1971 616918 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
1972 : inputcollid,
1973 : PointerGetDatum(root),
1974 : ObjectIdGetDatum(operatorid),
1975 : PointerGetDatum(args),
1976 : Int32GetDatum(varRelid)));
1977 :
1978 616894 : if (result < 0.0 || result > 1.0)
1979 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
1980 :
1981 616894 : return (Selectivity) result;
1982 : }
1983 :
1984 : /*
1985 : * join_selectivity
1986 : *
1987 : * Returns the selectivity of a specified join operator clause.
1988 : * This code executes registered procedures stored in the
1989 : * operator relation, by calling the function manager.
1990 : *
1991 : * See clause_selectivity() for the meaning of the additional parameters.
1992 : */
1993 : Selectivity
1994 199002 : join_selectivity(PlannerInfo *root,
1995 : Oid operatorid,
1996 : List *args,
1997 : Oid inputcollid,
1998 : JoinType jointype,
1999 : SpecialJoinInfo *sjinfo)
2000 : {
2001 199002 : RegProcedure oprjoin = get_oprjoin(operatorid);
2002 : float8 result;
2003 :
2004 : /*
2005 : * if the oprjoin procedure is missing for whatever reason, use a
2006 : * selectivity of 0.5
2007 : */
2008 199002 : if (!oprjoin)
2009 146 : return (Selectivity) 0.5;
2010 :
2011 198856 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2012 : inputcollid,
2013 : PointerGetDatum(root),
2014 : ObjectIdGetDatum(operatorid),
2015 : PointerGetDatum(args),
2016 : Int16GetDatum(jointype),
2017 : PointerGetDatum(sjinfo)));
2018 :
2019 198856 : if (result < 0.0 || result > 1.0)
2020 0 : elog(ERROR, "invalid join selectivity: %f", result);
2021 :
2022 198856 : return (Selectivity) result;
2023 : }
2024 :
2025 : /*
2026 : * function_selectivity
2027 : *
2028 : * Returns the selectivity of a specified boolean function clause.
2029 : * This code executes registered procedures stored in the
2030 : * pg_proc relation, by calling the function manager.
2031 : *
2032 : * See clause_selectivity() for the meaning of the additional parameters.
2033 : */
2034 : Selectivity
2035 10868 : function_selectivity(PlannerInfo *root,
2036 : Oid funcid,
2037 : List *args,
2038 : Oid inputcollid,
2039 : bool is_join,
2040 : int varRelid,
2041 : JoinType jointype,
2042 : SpecialJoinInfo *sjinfo)
2043 : {
2044 10868 : RegProcedure prosupport = get_func_support(funcid);
2045 : SupportRequestSelectivity req;
2046 : SupportRequestSelectivity *sresult;
2047 :
2048 : /*
2049 : * If no support function is provided, use our historical default
2050 : * estimate, 0.3333333. This seems a pretty unprincipled choice, but
2051 : * Postgres has been using that estimate for function calls since 1992.
2052 : * The hoariness of this behavior suggests that we should not be in too
2053 : * much hurry to use another value.
2054 : */
2055 10868 : if (!prosupport)
2056 10838 : return (Selectivity) 0.3333333;
2057 :
2058 30 : req.type = T_SupportRequestSelectivity;
2059 30 : req.root = root;
2060 30 : req.funcid = funcid;
2061 30 : req.args = args;
2062 30 : req.inputcollid = inputcollid;
2063 30 : req.is_join = is_join;
2064 30 : req.varRelid = varRelid;
2065 30 : req.jointype = jointype;
2066 30 : req.sjinfo = sjinfo;
2067 30 : req.selectivity = -1; /* to catch failure to set the value */
2068 :
2069 : sresult = (SupportRequestSelectivity *)
2070 30 : DatumGetPointer(OidFunctionCall1(prosupport,
2071 : PointerGetDatum(&req)));
2072 :
2073 : /* If support function fails, use default */
2074 30 : if (sresult != &req)
2075 0 : return (Selectivity) 0.3333333;
2076 :
2077 30 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2078 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2079 :
2080 30 : return (Selectivity) req.selectivity;
2081 : }
2082 :
2083 : /*
2084 : * add_function_cost
2085 : *
2086 : * Get an estimate of the execution cost of a function, and *add* it to
2087 : * the contents of *cost. The estimate may include both one-time and
2088 : * per-tuple components, since QualCost does.
2089 : *
2090 : * The funcid must always be supplied. If it is being called as the
2091 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2092 : * WindowFunc, etc), pass that as "node", else pass NULL.
2093 : *
2094 : * In some usages root might be NULL, too.
2095 : */
2096 : void
2097 1088674 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2098 : QualCost *cost)
2099 : {
2100 : HeapTuple proctup;
2101 : Form_pg_proc procform;
2102 :
2103 1088674 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2104 1088674 : if (!HeapTupleIsValid(proctup))
2105 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2106 1088674 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2107 :
2108 1088674 : if (OidIsValid(procform->prosupport))
2109 : {
2110 : SupportRequestCost req;
2111 : SupportRequestCost *sresult;
2112 :
2113 32114 : req.type = T_SupportRequestCost;
2114 32114 : req.root = root;
2115 32114 : req.funcid = funcid;
2116 32114 : req.node = node;
2117 :
2118 : /* Initialize cost fields so that support function doesn't have to */
2119 32114 : req.startup = 0;
2120 32114 : req.per_tuple = 0;
2121 :
2122 : sresult = (SupportRequestCost *)
2123 32114 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2124 : PointerGetDatum(&req)));
2125 :
2126 32114 : if (sresult == &req)
2127 : {
2128 : /* Success, so accumulate support function's estimate into *cost */
2129 18 : cost->startup += req.startup;
2130 18 : cost->per_tuple += req.per_tuple;
2131 18 : ReleaseSysCache(proctup);
2132 18 : return;
2133 : }
2134 : }
2135 :
2136 : /* No support function, or it failed, so rely on procost */
2137 1088656 : cost->per_tuple += procform->procost * cpu_operator_cost;
2138 :
2139 1088656 : ReleaseSysCache(proctup);
2140 : }
2141 :
2142 : /*
2143 : * get_function_rows
2144 : *
2145 : * Get an estimate of the number of rows returned by a set-returning function.
2146 : *
2147 : * The funcid must always be supplied. In current usage, the calling node
2148 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2149 : * But it's a good idea to not fail if it's NULL.
2150 : *
2151 : * In some usages root might be NULL, too.
2152 : *
2153 : * Note: this returns the unfiltered result of the support function, if any.
2154 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2155 : * leave it to the caller to do so.
2156 : */
2157 : double
2158 48668 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2159 : {
2160 : HeapTuple proctup;
2161 : Form_pg_proc procform;
2162 : double result;
2163 :
2164 48668 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2165 48668 : if (!HeapTupleIsValid(proctup))
2166 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2167 48668 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2168 :
2169 : Assert(procform->proretset); /* else caller error */
2170 :
2171 48668 : if (OidIsValid(procform->prosupport))
2172 : {
2173 : SupportRequestRows req;
2174 : SupportRequestRows *sresult;
2175 :
2176 18616 : req.type = T_SupportRequestRows;
2177 18616 : req.root = root;
2178 18616 : req.funcid = funcid;
2179 18616 : req.node = node;
2180 :
2181 18616 : req.rows = 0; /* just for sanity */
2182 :
2183 : sresult = (SupportRequestRows *)
2184 18616 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2185 : PointerGetDatum(&req)));
2186 :
2187 18616 : if (sresult == &req)
2188 : {
2189 : /* Success */
2190 13036 : ReleaseSysCache(proctup);
2191 13036 : return req.rows;
2192 : }
2193 : }
2194 :
2195 : /* No support function, or it failed, so rely on prorows */
2196 35632 : result = procform->prorows;
2197 :
2198 35632 : ReleaseSysCache(proctup);
2199 :
2200 35632 : return result;
2201 : }
2202 :
2203 : /*
2204 : * has_unique_index
2205 : *
2206 : * Detect whether there is a unique index on the specified attribute
2207 : * of the specified relation, thus allowing us to conclude that all
2208 : * the (non-null) values of the attribute are distinct.
2209 : *
2210 : * This function does not check the index's indimmediate property, which
2211 : * means that uniqueness may transiently fail to hold intra-transaction.
2212 : * That's appropriate when we are making statistical estimates, but beware
2213 : * of using this for any correctness proofs.
2214 : */
2215 : bool
2216 1783322 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2217 : {
2218 : ListCell *ilist;
2219 :
2220 4408934 : foreach(ilist, rel->indexlist)
2221 : {
2222 3224572 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2223 :
2224 : /*
2225 : * Note: ignore partial indexes, since they don't allow us to conclude
2226 : * that all attr values are distinct, *unless* they are marked predOK
2227 : * which means we know the index's predicate is satisfied by the
2228 : * query. We don't take any interest in expressional indexes either.
2229 : * Also, a multicolumn unique index doesn't allow us to conclude that
2230 : * just the specified attr is unique.
2231 : */
2232 3224572 : if (index->unique &&
2233 2249300 : index->nkeycolumns == 1 &&
2234 1253150 : index->indexkeys[0] == attno &&
2235 598996 : (index->indpred == NIL || index->predOK))
2236 598960 : return true;
2237 : }
2238 1184362 : return false;
2239 : }
2240 :
2241 :
2242 : /*
2243 : * has_row_triggers
2244 : *
2245 : * Detect whether the specified relation has any row-level triggers for event.
2246 : */
2247 : bool
2248 486 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2249 : {
2250 486 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2251 : Relation relation;
2252 : TriggerDesc *trigDesc;
2253 486 : bool result = false;
2254 :
2255 : /* Assume we already have adequate lock */
2256 486 : relation = table_open(rte->relid, NoLock);
2257 :
2258 486 : trigDesc = relation->trigdesc;
2259 486 : switch (event)
2260 : {
2261 162 : case CMD_INSERT:
2262 162 : if (trigDesc &&
2263 26 : (trigDesc->trig_insert_after_row ||
2264 14 : trigDesc->trig_insert_before_row))
2265 26 : result = true;
2266 162 : break;
2267 174 : case CMD_UPDATE:
2268 174 : if (trigDesc &&
2269 48 : (trigDesc->trig_update_after_row ||
2270 28 : trigDesc->trig_update_before_row))
2271 36 : result = true;
2272 174 : break;
2273 150 : case CMD_DELETE:
2274 150 : if (trigDesc &&
2275 30 : (trigDesc->trig_delete_after_row ||
2276 18 : trigDesc->trig_delete_before_row))
2277 16 : result = true;
2278 150 : break;
2279 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2280 0 : case CMD_MERGE:
2281 0 : result = false;
2282 0 : break;
2283 0 : default:
2284 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2285 : break;
2286 : }
2287 :
2288 486 : table_close(relation, NoLock);
2289 486 : return result;
2290 : }
2291 :
2292 : /*
2293 : * has_stored_generated_columns
2294 : *
2295 : * Does table identified by RTI have any STORED GENERATED columns?
2296 : */
2297 : bool
2298 408 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2299 : {
2300 408 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2301 : Relation relation;
2302 : TupleDesc tupdesc;
2303 408 : bool result = false;
2304 :
2305 : /* Assume we already have adequate lock */
2306 408 : relation = table_open(rte->relid, NoLock);
2307 :
2308 408 : tupdesc = RelationGetDescr(relation);
2309 408 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2310 :
2311 408 : table_close(relation, NoLock);
2312 :
2313 408 : return result;
2314 : }
2315 :
2316 : /*
2317 : * get_dependent_generated_columns
2318 : *
2319 : * Get the column numbers of any STORED GENERATED columns of the relation
2320 : * that depend on any column listed in target_cols. Both the input and
2321 : * result bitmapsets contain column numbers offset by
2322 : * FirstLowInvalidHeapAttributeNumber.
2323 : */
2324 : Bitmapset *
2325 74 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2326 : Bitmapset *target_cols)
2327 : {
2328 74 : Bitmapset *dependentCols = NULL;
2329 74 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2330 : Relation relation;
2331 : TupleDesc tupdesc;
2332 : TupleConstr *constr;
2333 :
2334 : /* Assume we already have adequate lock */
2335 74 : relation = table_open(rte->relid, NoLock);
2336 :
2337 74 : tupdesc = RelationGetDescr(relation);
2338 74 : constr = tupdesc->constr;
2339 :
2340 74 : if (constr && constr->has_generated_stored)
2341 : {
2342 8 : for (int i = 0; i < constr->num_defval; i++)
2343 : {
2344 4 : AttrDefault *defval = &constr->defval[i];
2345 : Node *expr;
2346 4 : Bitmapset *attrs_used = NULL;
2347 :
2348 : /* skip if not generated column */
2349 4 : if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2350 0 : continue;
2351 :
2352 : /* identify columns this generated column depends on */
2353 4 : expr = stringToNode(defval->adbin);
2354 4 : pull_varattnos(expr, 1, &attrs_used);
2355 :
2356 4 : if (bms_overlap(target_cols, attrs_used))
2357 4 : dependentCols = bms_add_member(dependentCols,
2358 4 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2359 : }
2360 : }
2361 :
2362 74 : table_close(relation, NoLock);
2363 :
2364 74 : return dependentCols;
2365 : }
2366 :
2367 : /*
2368 : * set_relation_partition_info
2369 : *
2370 : * Set partitioning scheme and related information for a partitioned table.
2371 : */
2372 : static void
2373 16538 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2374 : Relation relation)
2375 : {
2376 : PartitionDesc partdesc;
2377 :
2378 : /*
2379 : * Create the PartitionDirectory infrastructure if we didn't already.
2380 : */
2381 16538 : if (root->glob->partition_directory == NULL)
2382 : {
2383 11316 : root->glob->partition_directory =
2384 11316 : CreatePartitionDirectory(CurrentMemoryContext, true);
2385 : }
2386 :
2387 16538 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2388 : relation);
2389 16538 : rel->part_scheme = find_partition_scheme(root, relation);
2390 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2391 16538 : rel->boundinfo = partdesc->boundinfo;
2392 16538 : rel->nparts = partdesc->nparts;
2393 16538 : set_baserel_partition_key_exprs(relation, rel);
2394 16538 : set_baserel_partition_constraint(relation, rel);
2395 16538 : }
2396 :
2397 : /*
2398 : * find_partition_scheme
2399 : *
2400 : * Find or create a PartitionScheme for this Relation.
2401 : */
2402 : static PartitionScheme
2403 16538 : find_partition_scheme(PlannerInfo *root, Relation relation)
2404 : {
2405 16538 : PartitionKey partkey = RelationGetPartitionKey(relation);
2406 : ListCell *lc;
2407 : int partnatts,
2408 : i;
2409 : PartitionScheme part_scheme;
2410 :
2411 : /* A partitioned table should have a partition key. */
2412 : Assert(partkey != NULL);
2413 :
2414 16538 : partnatts = partkey->partnatts;
2415 :
2416 : /* Search for a matching partition scheme and return if found one. */
2417 18398 : foreach(lc, root->part_schemes)
2418 : {
2419 5820 : part_scheme = lfirst(lc);
2420 :
2421 : /* Match partitioning strategy and number of keys. */
2422 5820 : if (partkey->strategy != part_scheme->strategy ||
2423 4842 : partnatts != part_scheme->partnatts)
2424 1410 : continue;
2425 :
2426 : /* Match partition key type properties. */
2427 4410 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2428 3960 : sizeof(Oid) * partnatts) != 0 ||
2429 3960 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2430 3960 : sizeof(Oid) * partnatts) != 0 ||
2431 3960 : memcmp(partkey->partcollation, part_scheme->partcollation,
2432 : sizeof(Oid) * partnatts) != 0)
2433 450 : continue;
2434 :
2435 : /*
2436 : * Length and byval information should match when partopcintype
2437 : * matches.
2438 : */
2439 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2440 : sizeof(int16) * partnatts) == 0);
2441 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2442 : sizeof(bool) * partnatts) == 0);
2443 :
2444 : /*
2445 : * If partopfamily and partopcintype matched, must have the same
2446 : * partition comparison functions. Note that we cannot reliably
2447 : * Assert the equality of function structs themselves for they might
2448 : * be different across PartitionKey's, so just Assert for the function
2449 : * OIDs.
2450 : */
2451 : #ifdef USE_ASSERT_CHECKING
2452 : for (i = 0; i < partkey->partnatts; i++)
2453 : Assert(partkey->partsupfunc[i].fn_oid ==
2454 : part_scheme->partsupfunc[i].fn_oid);
2455 : #endif
2456 :
2457 : /* Found matching partition scheme. */
2458 3960 : return part_scheme;
2459 : }
2460 :
2461 : /*
2462 : * Did not find matching partition scheme. Create one copying relevant
2463 : * information from the relcache. We need to copy the contents of the
2464 : * array since the relcache entry may not survive after we have closed the
2465 : * relation.
2466 : */
2467 12578 : part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2468 12578 : part_scheme->strategy = partkey->strategy;
2469 12578 : part_scheme->partnatts = partkey->partnatts;
2470 :
2471 12578 : part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2472 12578 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2473 : sizeof(Oid) * partnatts);
2474 :
2475 12578 : part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2476 12578 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2477 : sizeof(Oid) * partnatts);
2478 :
2479 12578 : part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2480 12578 : memcpy(part_scheme->partcollation, partkey->partcollation,
2481 : sizeof(Oid) * partnatts);
2482 :
2483 12578 : part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2484 12578 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2485 : sizeof(int16) * partnatts);
2486 :
2487 12578 : part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2488 12578 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2489 : sizeof(bool) * partnatts);
2490 :
2491 12578 : part_scheme->partsupfunc = (FmgrInfo *)
2492 12578 : palloc(sizeof(FmgrInfo) * partnatts);
2493 26974 : for (i = 0; i < partnatts; i++)
2494 14396 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2495 : CurrentMemoryContext);
2496 :
2497 : /* Add the partitioning scheme to PlannerInfo. */
2498 12578 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2499 :
2500 12578 : return part_scheme;
2501 : }
2502 :
2503 : /*
2504 : * set_baserel_partition_key_exprs
2505 : *
2506 : * Builds partition key expressions for the given base relation and fills
2507 : * rel->partexprs.
2508 : */
2509 : static void
2510 16538 : set_baserel_partition_key_exprs(Relation relation,
2511 : RelOptInfo *rel)
2512 : {
2513 16538 : PartitionKey partkey = RelationGetPartitionKey(relation);
2514 : int partnatts;
2515 : int cnt;
2516 : List **partexprs;
2517 : ListCell *lc;
2518 16538 : Index varno = rel->relid;
2519 :
2520 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2521 :
2522 : /* A partitioned table should have a partition key. */
2523 : Assert(partkey != NULL);
2524 :
2525 16538 : partnatts = partkey->partnatts;
2526 16538 : partexprs = (List **) palloc(sizeof(List *) * partnatts);
2527 16538 : lc = list_head(partkey->partexprs);
2528 :
2529 34924 : for (cnt = 0; cnt < partnatts; cnt++)
2530 : {
2531 : Expr *partexpr;
2532 18386 : AttrNumber attno = partkey->partattrs[cnt];
2533 :
2534 18386 : if (attno != InvalidAttrNumber)
2535 : {
2536 : /* Single column partition key is stored as a Var node. */
2537 : Assert(attno > 0);
2538 :
2539 17456 : partexpr = (Expr *) makeVar(varno, attno,
2540 17456 : partkey->parttypid[cnt],
2541 17456 : partkey->parttypmod[cnt],
2542 17456 : partkey->parttypcoll[cnt], 0);
2543 : }
2544 : else
2545 : {
2546 930 : if (lc == NULL)
2547 0 : elog(ERROR, "wrong number of partition key expressions");
2548 :
2549 : /* Re-stamp the expression with given varno. */
2550 930 : partexpr = (Expr *) copyObject(lfirst(lc));
2551 930 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2552 930 : lc = lnext(partkey->partexprs, lc);
2553 : }
2554 :
2555 : /* Base relations have a single expression per key. */
2556 18386 : partexprs[cnt] = list_make1(partexpr);
2557 : }
2558 :
2559 16538 : rel->partexprs = partexprs;
2560 :
2561 : /*
2562 : * A base relation does not have nullable partition key expressions, since
2563 : * no outer join is involved. We still allocate an array of empty
2564 : * expression lists to keep partition key expression handling code simple.
2565 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2566 : */
2567 16538 : rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2568 16538 : }
2569 :
2570 : /*
2571 : * set_baserel_partition_constraint
2572 : *
2573 : * Builds the partition constraint for the given base relation and sets it
2574 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2575 : * given relation.
2576 : */
2577 : static void
2578 16550 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2579 : {
2580 : List *partconstr;
2581 :
2582 16550 : if (rel->partition_qual) /* already done */
2583 0 : return;
2584 :
2585 : /*
2586 : * Run the partition quals through const-simplification similar to check
2587 : * constraints. We skip canonicalize_qual, though, because partition
2588 : * quals should be in canonical form already; also, since the qual is in
2589 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2590 : * format and back again.
2591 : */
2592 16550 : partconstr = RelationGetPartitionQual(relation);
2593 16550 : if (partconstr)
2594 : {
2595 3340 : partconstr = (List *) expression_planner((Expr *) partconstr);
2596 3340 : if (rel->relid != 1)
2597 3258 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2598 3340 : rel->partition_qual = partconstr;
2599 : }
2600 : }
|