Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * plancat.c
4 : * routines for accessing the system catalogs
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/util/plancat.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include <math.h>
19 :
20 : #include "access/genam.h"
21 : #include "access/htup_details.h"
22 : #include "access/nbtree.h"
23 : #include "access/sysattr.h"
24 : #include "access/table.h"
25 : #include "access/tableam.h"
26 : #include "access/transam.h"
27 : #include "access/xlog.h"
28 : #include "catalog/catalog.h"
29 : #include "catalog/heap.h"
30 : #include "catalog/pg_am.h"
31 : #include "catalog/pg_proc.h"
32 : #include "catalog/pg_statistic_ext.h"
33 : #include "catalog/pg_statistic_ext_data.h"
34 : #include "foreign/fdwapi.h"
35 : #include "miscadmin.h"
36 : #include "nodes/makefuncs.h"
37 : #include "nodes/nodeFuncs.h"
38 : #include "nodes/supportnodes.h"
39 : #include "optimizer/cost.h"
40 : #include "optimizer/optimizer.h"
41 : #include "optimizer/plancat.h"
42 : #include "parser/parse_relation.h"
43 : #include "parser/parsetree.h"
44 : #include "partitioning/partdesc.h"
45 : #include "rewrite/rewriteManip.h"
46 : #include "statistics/statistics.h"
47 : #include "storage/bufmgr.h"
48 : #include "tcop/tcopprot.h"
49 : #include "utils/builtins.h"
50 : #include "utils/lsyscache.h"
51 : #include "utils/partcache.h"
52 : #include "utils/rel.h"
53 : #include "utils/snapmgr.h"
54 : #include "utils/syscache.h"
55 :
56 : /* GUC parameter */
57 : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
58 :
59 : /* Hook for plugins to get control in get_relation_info() */
60 : get_relation_info_hook_type get_relation_info_hook = NULL;
61 :
62 : typedef struct NotnullHashEntry
63 : {
64 : Oid relid; /* OID of the relation */
65 : Relids notnullattnums; /* attnums of NOT NULL columns */
66 : } NotnullHashEntry;
67 :
68 :
69 : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
70 : Relation relation, bool inhparent);
71 : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
72 : List *idxExprs);
73 : static List *get_relation_constraints(PlannerInfo *root,
74 : Oid relationObjectId, RelOptInfo *rel,
75 : bool include_noinherit,
76 : bool include_notnull,
77 : bool include_partition);
78 : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
79 : Relation heapRelation);
80 : static List *get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
81 : Relation relation);
82 : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
83 : Relation relation);
84 : static PartitionScheme find_partition_scheme(PlannerInfo *root,
85 : Relation relation);
86 : static void set_baserel_partition_key_exprs(Relation relation,
87 : RelOptInfo *rel);
88 : static void set_baserel_partition_constraint(Relation relation,
89 : RelOptInfo *rel);
90 :
91 :
92 : /*
93 : * get_relation_info -
94 : * Retrieves catalog information for a given relation.
95 : *
96 : * Given the Oid of the relation, return the following info into fields
97 : * of the RelOptInfo struct:
98 : *
99 : * min_attr lowest valid AttrNumber
100 : * max_attr highest valid AttrNumber
101 : * indexlist list of IndexOptInfos for relation's indexes
102 : * statlist list of StatisticExtInfo for relation's statistic objects
103 : * serverid if it's a foreign table, the server OID
104 : * fdwroutine if it's a foreign table, the FDW function pointers
105 : * pages number of pages
106 : * tuples number of tuples
107 : * rel_parallel_workers user-defined number of parallel workers
108 : *
109 : * Also, add information about the relation's foreign keys to root->fkey_list.
110 : *
111 : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
112 : * cases these are left as zeroes, but sometimes we need to compute attr
113 : * widths here, and we may as well cache the results for costsize.c.
114 : *
115 : * If inhparent is true, all we need to do is set up the attr arrays:
116 : * the RelOptInfo actually represents the appendrel formed by an inheritance
117 : * tree, and so the parent rel's physical size and index information isn't
118 : * important for it, however, for partitioned tables, we do populate the
119 : * indexlist as the planner uses unique indexes as unique proofs for certain
120 : * optimizations.
121 : */
122 : void
123 459790 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
124 : RelOptInfo *rel)
125 : {
126 459790 : Index varno = rel->relid;
127 : Relation relation;
128 : bool hasindex;
129 459790 : List *indexinfos = NIL;
130 :
131 : /*
132 : * We need not lock the relation since it was already locked, either by
133 : * the rewriter or when expand_inherited_rtentry() added it to the query's
134 : * rangetable.
135 : */
136 459790 : relation = table_open(relationObjectId, NoLock);
137 :
138 : /*
139 : * Relations without a table AM can be used in a query only if they are of
140 : * special-cased relkinds. This check prevents us from crashing later if,
141 : * for example, a view's ON SELECT rule has gone missing. Note that
142 : * table_open() already rejected indexes and composite types; spell the
143 : * error the same way it does.
144 : */
145 459790 : if (!relation->rd_tableam)
146 : {
147 19518 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
148 17026 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
149 0 : ereport(ERROR,
150 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
151 : errmsg("cannot open relation \"%s\"",
152 : RelationGetRelationName(relation)),
153 : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
154 : }
155 :
156 : /* Temporary and unlogged relations are inaccessible during recovery. */
157 459790 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
158 0 : ereport(ERROR,
159 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
160 : errmsg("cannot access temporary or unlogged relations during recovery")));
161 :
162 459790 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
163 459790 : rel->max_attr = RelationGetNumberOfAttributes(relation);
164 459790 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
165 :
166 : Assert(rel->max_attr >= rel->min_attr);
167 459790 : rel->attr_needed = (Relids *)
168 459790 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
169 459790 : rel->attr_widths = (int32 *)
170 459790 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
171 :
172 : /*
173 : * Record which columns are defined as NOT NULL. We leave this
174 : * unpopulated for non-partitioned inheritance parent relations as it's
175 : * ambiguous as to what it means. Some child tables may have a NOT NULL
176 : * constraint for a column while others may not. We could work harder and
177 : * build a unioned set of all child relations notnullattnums, but there's
178 : * currently no need. The RelOptInfo corresponding to the !inh
179 : * RangeTblEntry does get populated.
180 : */
181 459790 : if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
182 422376 : rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
183 :
184 : /*
185 : * Estimate relation size --- unless it's an inheritance parent, in which
186 : * case the size we want is not the rel's own size but the size of its
187 : * inheritance tree. That will be computed in set_append_rel_size().
188 : */
189 459790 : if (!inhparent)
190 405390 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
191 405390 : &rel->pages, &rel->tuples, &rel->allvisfrac);
192 :
193 : /* Retrieve the parallel_workers reloption, or -1 if not set. */
194 459790 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
195 :
196 : /*
197 : * Make list of indexes. Ignore indexes on system catalogs if told to.
198 : * Don't bother with indexes from traditional inheritance parents. For
199 : * partitioned tables, we need a list of at least unique indexes as these
200 : * serve as unique proofs for certain planner optimizations. However,
201 : * let's not discriminate here and just record all partitioned indexes
202 : * whether they're unique indexes or not.
203 : */
204 459790 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
205 422376 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
206 37414 : hasindex = false;
207 : else
208 422376 : hasindex = relation->rd_rel->relhasindex;
209 :
210 459790 : if (hasindex)
211 : {
212 : List *indexoidlist;
213 : LOCKMODE lmode;
214 : ListCell *l;
215 :
216 339714 : indexoidlist = RelationGetIndexList(relation);
217 :
218 : /*
219 : * For each index, we get the same type of lock that the executor will
220 : * need, and do not release it. This saves a couple of trips to the
221 : * shared lock manager while not creating any real loss of
222 : * concurrency, because no schema changes could be happening on the
223 : * index while we hold lock on the parent rel, and no lock type used
224 : * for queries blocks any other kind of index operation.
225 : */
226 339714 : lmode = root->simple_rte_array[varno]->rellockmode;
227 :
228 1062294 : foreach(l, indexoidlist)
229 : {
230 722580 : Oid indexoid = lfirst_oid(l);
231 : Relation indexRelation;
232 : Form_pg_index index;
233 722580 : IndexAmRoutine *amroutine = NULL;
234 : IndexOptInfo *info;
235 : int ncolumns,
236 : nkeycolumns;
237 : int i;
238 :
239 : /*
240 : * Extract info from the relation descriptor for the index.
241 : */
242 722580 : indexRelation = index_open(indexoid, lmode);
243 722580 : index = indexRelation->rd_index;
244 :
245 : /*
246 : * Ignore invalid indexes, since they can't safely be used for
247 : * queries. Note that this is OK because the data structure we
248 : * are constructing is only used by the planner --- the executor
249 : * still needs to insert into "invalid" indexes, if they're marked
250 : * indisready.
251 : */
252 722580 : if (!index->indisvalid)
253 : {
254 22 : index_close(indexRelation, NoLock);
255 22 : continue;
256 : }
257 :
258 : /*
259 : * If the index is valid, but cannot yet be used, ignore it; but
260 : * mark the plan we are generating as transient. See
261 : * src/backend/access/heap/README.HOT for discussion.
262 : */
263 722558 : if (index->indcheckxmin &&
264 298 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
265 : TransactionXmin))
266 : {
267 294 : root->glob->transientPlan = true;
268 294 : index_close(indexRelation, NoLock);
269 294 : continue;
270 : }
271 :
272 722264 : info = makeNode(IndexOptInfo);
273 :
274 722264 : info->indexoid = index->indexrelid;
275 722264 : info->reltablespace =
276 722264 : RelationGetForm(indexRelation)->reltablespace;
277 722264 : info->rel = rel;
278 722264 : info->ncolumns = ncolumns = index->indnatts;
279 722264 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
280 :
281 722264 : info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
282 722264 : info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
283 722264 : info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
284 722264 : info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
285 722264 : info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
286 :
287 2086728 : for (i = 0; i < ncolumns; i++)
288 : {
289 1364464 : info->indexkeys[i] = index->indkey.values[i];
290 1364464 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
291 : }
292 :
293 2086310 : for (i = 0; i < nkeycolumns; i++)
294 : {
295 1364046 : info->opfamily[i] = indexRelation->rd_opfamily[i];
296 1364046 : info->opcintype[i] = indexRelation->rd_opcintype[i];
297 1364046 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
298 : }
299 :
300 722264 : info->relam = indexRelation->rd_rel->relam;
301 :
302 : /*
303 : * We don't have an AM for partitioned indexes, so we'll just
304 : * NULLify the AM related fields for those.
305 : */
306 722264 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
307 : {
308 : /* We copy just the fields we need, not all of rd_indam */
309 715622 : amroutine = indexRelation->rd_indam;
310 715622 : info->amcanorderbyop = amroutine->amcanorderbyop;
311 715622 : info->amoptionalkey = amroutine->amoptionalkey;
312 715622 : info->amsearcharray = amroutine->amsearcharray;
313 715622 : info->amsearchnulls = amroutine->amsearchnulls;
314 715622 : info->amcanparallel = amroutine->amcanparallel;
315 715622 : info->amhasgettuple = (amroutine->amgettuple != NULL);
316 1431244 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
317 715622 : relation->rd_tableam->scan_bitmap_next_tuple != NULL;
318 1409264 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
319 693642 : amroutine->amrestrpos != NULL);
320 715622 : info->amcostestimate = amroutine->amcostestimate;
321 : Assert(info->amcostestimate != NULL);
322 :
323 : /* Fetch index opclass options */
324 715622 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
325 :
326 : /*
327 : * Fetch the ordering information for the index, if any.
328 : */
329 715622 : if (info->relam == BTREE_AM_OID)
330 : {
331 : /*
332 : * If it's a btree index, we can use its opfamily OIDs
333 : * directly as the sort ordering opfamily OIDs.
334 : */
335 : Assert(amroutine->amcanorder);
336 :
337 693642 : info->sortopfamily = info->opfamily;
338 693642 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
339 693642 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
340 :
341 1768362 : for (i = 0; i < nkeycolumns; i++)
342 : {
343 1074720 : int16 opt = indexRelation->rd_indoption[i];
344 :
345 1074720 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
346 1074720 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
347 : }
348 : }
349 21980 : else if (amroutine->amcanorder)
350 : {
351 : /*
352 : * Otherwise, identify the corresponding btree opfamilies
353 : * by trying to map this index's "<" operators into btree.
354 : * Since "<" uniquely defines the behavior of a sort
355 : * order, this is a sufficient test.
356 : *
357 : * XXX This method is rather slow and complicated. It'd
358 : * be better to have a way to explicitly declare the
359 : * corresponding btree opfamily for each opfamily of the
360 : * other index type.
361 : */
362 0 : info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
363 0 : info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
364 0 : info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
365 :
366 0 : for (i = 0; i < nkeycolumns; i++)
367 : {
368 0 : int16 opt = indexRelation->rd_indoption[i];
369 : Oid ltopr;
370 : Oid opfamily;
371 : Oid opcintype;
372 : CompareType cmptype;
373 :
374 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
375 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
376 :
377 0 : ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
378 0 : info->opcintype[i],
379 0 : info->opcintype[i],
380 : COMPARE_LT);
381 0 : if (OidIsValid(ltopr) &&
382 0 : get_ordering_op_properties(ltopr,
383 : &opfamily,
384 : &opcintype,
385 0 : &cmptype) &&
386 0 : opcintype == info->opcintype[i] &&
387 0 : cmptype == COMPARE_LT)
388 : {
389 : /* Successful mapping */
390 0 : info->sortopfamily[i] = opfamily;
391 : }
392 : else
393 : {
394 : /* Fail ... quietly treat index as unordered */
395 0 : info->sortopfamily = NULL;
396 0 : info->reverse_sort = NULL;
397 0 : info->nulls_first = NULL;
398 0 : break;
399 : }
400 : }
401 : }
402 : else
403 : {
404 21980 : info->sortopfamily = NULL;
405 21980 : info->reverse_sort = NULL;
406 21980 : info->nulls_first = NULL;
407 : }
408 : }
409 : else
410 : {
411 6642 : info->amcanorderbyop = false;
412 6642 : info->amoptionalkey = false;
413 6642 : info->amsearcharray = false;
414 6642 : info->amsearchnulls = false;
415 6642 : info->amcanparallel = false;
416 6642 : info->amhasgettuple = false;
417 6642 : info->amhasgetbitmap = false;
418 6642 : info->amcanmarkpos = false;
419 6642 : info->amcostestimate = NULL;
420 :
421 6642 : info->sortopfamily = NULL;
422 6642 : info->reverse_sort = NULL;
423 6642 : info->nulls_first = NULL;
424 : }
425 :
426 : /*
427 : * Fetch the index expressions and predicate, if any. We must
428 : * modify the copies we obtain from the relcache to have the
429 : * correct varno for the parent relation, so that they match up
430 : * correctly against qual clauses.
431 : */
432 722264 : info->indexprs = RelationGetIndexExpressions(indexRelation);
433 722264 : info->indpred = RelationGetIndexPredicate(indexRelation);
434 722264 : if (info->indexprs && varno != 1)
435 1938 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
436 722264 : if (info->indpred && varno != 1)
437 126 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
438 :
439 : /* Build targetlist using the completed indexprs data */
440 722264 : info->indextlist = build_index_tlist(root, info, relation);
441 :
442 722264 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
443 722264 : info->predOK = false; /* set later, in indxpath.c */
444 722264 : info->unique = index->indisunique;
445 722264 : info->nullsnotdistinct = index->indnullsnotdistinct;
446 722264 : info->immediate = index->indimmediate;
447 722264 : info->hypothetical = false;
448 :
449 : /*
450 : * Estimate the index size. If it's not a partial index, we lock
451 : * the number-of-tuples estimate to equal the parent table; if it
452 : * is partial then we have to use the same methods as we would for
453 : * a table, except we can be sure that the index is not larger
454 : * than the table. We must ignore partitioned indexes here as
455 : * there are not physical indexes.
456 : */
457 722264 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
458 : {
459 715622 : if (info->indpred == NIL)
460 : {
461 714638 : info->pages = RelationGetNumberOfBlocks(indexRelation);
462 714638 : info->tuples = rel->tuples;
463 : }
464 : else
465 : {
466 : double allvisfrac; /* dummy */
467 :
468 984 : estimate_rel_size(indexRelation, NULL,
469 984 : &info->pages, &info->tuples, &allvisfrac);
470 984 : if (info->tuples > rel->tuples)
471 18 : info->tuples = rel->tuples;
472 : }
473 :
474 : /*
475 : * Get tree height while we have the index open
476 : */
477 715622 : if (amroutine->amgettreeheight)
478 : {
479 693642 : info->tree_height = amroutine->amgettreeheight(indexRelation);
480 : }
481 : else
482 : {
483 : /* For other index types, just set it to "unknown" for now */
484 21980 : info->tree_height = -1;
485 : }
486 : }
487 : else
488 : {
489 : /* Zero these out for partitioned indexes */
490 6642 : info->pages = 0;
491 6642 : info->tuples = 0.0;
492 6642 : info->tree_height = -1;
493 : }
494 :
495 722264 : index_close(indexRelation, NoLock);
496 :
497 : /*
498 : * We've historically used lcons() here. It'd make more sense to
499 : * use lappend(), but that causes the planner to change behavior
500 : * in cases where two indexes seem equally attractive. For now,
501 : * stick with lcons() --- few tables should have so many indexes
502 : * that the O(N^2) behavior of lcons() is really a problem.
503 : */
504 722264 : indexinfos = lcons(info, indexinfos);
505 : }
506 :
507 339714 : list_free(indexoidlist);
508 : }
509 :
510 459790 : rel->indexlist = indexinfos;
511 :
512 459790 : rel->statlist = get_relation_statistics(root, rel, relation);
513 :
514 : /* Grab foreign-table info using the relcache, while we have it */
515 459790 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
516 : {
517 : /* Check if the access to foreign tables is restricted */
518 2492 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
519 : {
520 : /* there must not be built-in foreign tables */
521 : Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
522 :
523 4 : ereport(ERROR,
524 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
525 : errmsg("access to non-system foreign table is restricted")));
526 : }
527 :
528 2488 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
529 2488 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
530 : }
531 : else
532 : {
533 457298 : rel->serverid = InvalidOid;
534 457298 : rel->fdwroutine = NULL;
535 : }
536 :
537 : /* Collect info about relation's foreign keys, if relevant */
538 459772 : get_relation_foreign_keys(root, rel, relation, inhparent);
539 :
540 : /* Collect info about functions implemented by the rel's table AM. */
541 459772 : if (relation->rd_tableam &&
542 440272 : relation->rd_tableam->scan_set_tidrange != NULL &&
543 440272 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
544 440272 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
545 :
546 : /*
547 : * Collect info about relation's partitioning scheme, if any. Only
548 : * inheritance parents may be partitioned.
549 : */
550 459772 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
551 16986 : set_relation_partition_info(root, rel, relation);
552 :
553 459772 : table_close(relation, NoLock);
554 :
555 : /*
556 : * Allow a plugin to editorialize on the info we obtained from the
557 : * catalogs. Actions might include altering the assumed relation size,
558 : * removing an index, or adding a hypothetical index to the indexlist.
559 : */
560 459772 : if (get_relation_info_hook)
561 0 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
562 459772 : }
563 :
564 : /*
565 : * get_relation_foreign_keys -
566 : * Retrieves foreign key information for a given relation.
567 : *
568 : * ForeignKeyOptInfos for relevant foreign keys are created and added to
569 : * root->fkey_list. We do this now while we have the relcache entry open.
570 : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
571 : * until all RelOptInfos have been built, but the cost of re-opening the
572 : * relcache entries would probably exceed any savings.
573 : */
574 : static void
575 459772 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
576 : Relation relation, bool inhparent)
577 : {
578 459772 : List *rtable = root->parse->rtable;
579 : List *cachedfkeys;
580 : ListCell *lc;
581 :
582 : /*
583 : * If it's not a baserel, we don't care about its FKs. Also, if the query
584 : * references only a single relation, we can skip the lookup since no FKs
585 : * could satisfy the requirements below.
586 : */
587 877692 : if (rel->reloptkind != RELOPT_BASEREL ||
588 417920 : list_length(rtable) < 2)
589 241308 : return;
590 :
591 : /*
592 : * If it's the parent of an inheritance tree, ignore its FKs. We could
593 : * make useful FK-based deductions if we found that all members of the
594 : * inheritance tree have equivalent FK constraints, but detecting that
595 : * would require code that hasn't been written.
596 : */
597 218464 : if (inhparent)
598 5574 : return;
599 :
600 : /*
601 : * Extract data about relation's FKs from the relcache. Note that this
602 : * list belongs to the relcache and might disappear in a cache flush, so
603 : * we must not do any further catalog access within this function.
604 : */
605 212890 : cachedfkeys = RelationGetFKeyList(relation);
606 :
607 : /*
608 : * Figure out which FKs are of interest for this query, and create
609 : * ForeignKeyOptInfos for them. We want only FKs that reference some
610 : * other RTE of the current query. In queries containing self-joins,
611 : * there might be more than one other RTE for a referenced table, and we
612 : * should make a ForeignKeyOptInfo for each occurrence.
613 : *
614 : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
615 : * too hard to identify those here, so we might end up making some useless
616 : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
617 : * them again.
618 : */
619 215484 : foreach(lc, cachedfkeys)
620 : {
621 2594 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
622 : Index rti;
623 : ListCell *lc2;
624 :
625 : /* conrelid should always be that of the table we're considering */
626 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
627 :
628 : /* skip constraints currently not enforced */
629 2594 : if (!cachedfk->conenforced)
630 18 : continue;
631 :
632 : /* Scan to find other RTEs matching confrelid */
633 2576 : rti = 0;
634 11396 : foreach(lc2, rtable)
635 : {
636 8820 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
637 : ForeignKeyOptInfo *info;
638 :
639 8820 : rti++;
640 : /* Ignore if not the correct table */
641 8820 : if (rte->rtekind != RTE_RELATION ||
642 5494 : rte->relid != cachedfk->confrelid)
643 6650 : continue;
644 : /* Ignore if it's an inheritance parent; doesn't really match */
645 2170 : if (rte->inh)
646 258 : continue;
647 : /* Ignore self-referential FKs; we only care about joins */
648 1912 : if (rti == rel->relid)
649 132 : continue;
650 :
651 : /* OK, let's make an entry */
652 1780 : info = makeNode(ForeignKeyOptInfo);
653 1780 : info->con_relid = rel->relid;
654 1780 : info->ref_relid = rti;
655 1780 : info->nkeys = cachedfk->nkeys;
656 1780 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
657 1780 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
658 1780 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
659 : /* zero out fields to be filled by match_foreign_keys_to_quals */
660 1780 : info->nmatched_ec = 0;
661 1780 : info->nconst_ec = 0;
662 1780 : info->nmatched_rcols = 0;
663 1780 : info->nmatched_ri = 0;
664 1780 : memset(info->eclass, 0, sizeof(info->eclass));
665 1780 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
666 1780 : memset(info->rinfos, 0, sizeof(info->rinfos));
667 :
668 1780 : root->fkey_list = lappend(root->fkey_list, info);
669 : }
670 : }
671 : }
672 :
673 : /*
674 : * get_relation_notnullatts -
675 : * Retrieves column not-null constraint information for a given relation.
676 : *
677 : * We do this while we have the relcache entry open, and store the column
678 : * not-null constraint information in a hash table based on the relation OID.
679 : */
680 : void
681 500566 : get_relation_notnullatts(PlannerInfo *root, Relation relation)
682 : {
683 500566 : Oid relid = RelationGetRelid(relation);
684 : NotnullHashEntry *hentry;
685 : bool found;
686 500566 : Relids notnullattnums = NULL;
687 :
688 : /* bail out if the relation has no not-null constraints */
689 500566 : if (relation->rd_att->constr == NULL ||
690 329304 : !relation->rd_att->constr->has_not_null)
691 208676 : return;
692 :
693 : /* create the hash table if it hasn't been created yet */
694 323970 : if (root->glob->rel_notnullatts_hash == NULL)
695 : {
696 : HTAB *hashtab;
697 : HASHCTL hash_ctl;
698 :
699 169856 : hash_ctl.keysize = sizeof(Oid);
700 169856 : hash_ctl.entrysize = sizeof(NotnullHashEntry);
701 169856 : hash_ctl.hcxt = CurrentMemoryContext;
702 :
703 169856 : hashtab = hash_create("Relation NOT NULL attnums",
704 : 64L, /* arbitrary initial size */
705 : &hash_ctl,
706 : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
707 :
708 169856 : root->glob->rel_notnullatts_hash = hashtab;
709 : }
710 :
711 : /*
712 : * Create a hash entry for this relation OID, if we don't have one
713 : * already.
714 : */
715 323970 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
716 : &relid,
717 : HASH_ENTER,
718 : &found);
719 :
720 : /* bail out if a hash entry already exists for this relation OID */
721 323970 : if (found)
722 32080 : return;
723 :
724 : /* collect the column not-null constraint information for this relation */
725 4360354 : for (int i = 0; i < relation->rd_att->natts; i++)
726 : {
727 4068464 : CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
728 :
729 : Assert(attr->attnullability != ATTNULLABLE_UNKNOWN);
730 :
731 4068464 : if (attr->attnullability == ATTNULLABLE_VALID)
732 : {
733 3443102 : notnullattnums = bms_add_member(notnullattnums, i + 1);
734 :
735 : /*
736 : * Per RemoveAttributeById(), dropped columns will have their
737 : * attnotnull unset, so we needn't check for dropped columns in
738 : * the above condition.
739 : */
740 : Assert(!attr->attisdropped);
741 : }
742 : }
743 :
744 : /* ... and initialize the new hash entry */
745 291890 : hentry->notnullattnums = notnullattnums;
746 : }
747 :
748 : /*
749 : * find_relation_notnullatts -
750 : * Searches the hash table and returns the column not-null constraint
751 : * information for a given relation.
752 : */
753 : Relids
754 436328 : find_relation_notnullatts(PlannerInfo *root, Oid relid)
755 : {
756 : NotnullHashEntry *hentry;
757 : bool found;
758 :
759 436328 : if (root->glob->rel_notnullatts_hash == NULL)
760 117300 : return NULL;
761 :
762 319028 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
763 : &relid,
764 : HASH_FIND,
765 : &found);
766 319028 : if (!found)
767 5068 : return NULL;
768 :
769 313960 : return hentry->notnullattnums;
770 : }
771 :
772 : /*
773 : * infer_arbiter_indexes -
774 : * Determine the unique indexes used to arbitrate speculative insertion.
775 : *
776 : * Uses user-supplied inference clause expressions and predicate to match a
777 : * unique index from those defined and ready on the heap relation (target).
778 : * An exact match is required on columns/expressions (although they can appear
779 : * in any order). However, the predicate given by the user need only restrict
780 : * insertion to a subset of some part of the table covered by some particular
781 : * unique index (in particular, a partial unique index) in order to be
782 : * inferred.
783 : *
784 : * The implementation does not consider which B-Tree operator class any
785 : * particular available unique index attribute uses, unless one was specified
786 : * in the inference specification. The same is true of collations. In
787 : * particular, there is no system dependency on the default operator class for
788 : * the purposes of inference. If no opclass (or collation) is specified, then
789 : * all matching indexes (that may or may not match the default in terms of
790 : * each attribute opclass/collation) are used for inference.
791 : */
792 : List *
793 1818 : infer_arbiter_indexes(PlannerInfo *root)
794 : {
795 1818 : OnConflictExpr *onconflict = root->parse->onConflict;
796 :
797 : /* Iteration state */
798 : Index varno;
799 : RangeTblEntry *rte;
800 : Relation relation;
801 1818 : Oid indexOidFromConstraint = InvalidOid;
802 : List *indexList;
803 : ListCell *l;
804 :
805 : /* Normalized inference attributes and inference expressions: */
806 1818 : Bitmapset *inferAttrs = NULL;
807 1818 : List *inferElems = NIL;
808 :
809 : /* Results */
810 1818 : List *results = NIL;
811 :
812 : /*
813 : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
814 : * specification or named constraint. ON CONFLICT DO UPDATE statements
815 : * must always provide one or the other (but parser ought to have caught
816 : * that already).
817 : */
818 1818 : if (onconflict->arbiterElems == NIL &&
819 420 : onconflict->constraint == InvalidOid)
820 228 : return NIL;
821 :
822 : /*
823 : * We need not lock the relation since it was already locked, either by
824 : * the rewriter or when expand_inherited_rtentry() added it to the query's
825 : * rangetable.
826 : */
827 1590 : varno = root->parse->resultRelation;
828 1590 : rte = rt_fetch(varno, root->parse->rtable);
829 :
830 1590 : relation = table_open(rte->relid, NoLock);
831 :
832 : /*
833 : * Build normalized/BMS representation of plain indexed attributes, as
834 : * well as a separate list of expression items. This simplifies matching
835 : * the cataloged definition of indexes.
836 : */
837 3442 : foreach(l, onconflict->arbiterElems)
838 : {
839 1852 : InferenceElem *elem = (InferenceElem *) lfirst(l);
840 : Var *var;
841 : int attno;
842 :
843 1852 : if (!IsA(elem->expr, Var))
844 : {
845 : /* If not a plain Var, just shove it in inferElems for now */
846 174 : inferElems = lappend(inferElems, elem->expr);
847 174 : continue;
848 : }
849 :
850 1678 : var = (Var *) elem->expr;
851 1678 : attno = var->varattno;
852 :
853 1678 : if (attno == 0)
854 0 : ereport(ERROR,
855 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
856 : errmsg("whole row unique index inference specifications are not supported")));
857 :
858 1678 : inferAttrs = bms_add_member(inferAttrs,
859 : attno - FirstLowInvalidHeapAttributeNumber);
860 : }
861 :
862 : /*
863 : * Lookup named constraint's index. This is not immediately returned
864 : * because some additional sanity checks are required.
865 : */
866 1590 : if (onconflict->constraint != InvalidOid)
867 : {
868 192 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
869 :
870 192 : if (indexOidFromConstraint == InvalidOid)
871 0 : ereport(ERROR,
872 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
873 : errmsg("constraint in ON CONFLICT clause has no associated index")));
874 : }
875 :
876 : /*
877 : * Using that representation, iterate through the list of indexes on the
878 : * target relation to try and find a match
879 : */
880 1590 : indexList = RelationGetIndexList(relation);
881 :
882 3416 : foreach(l, indexList)
883 : {
884 2018 : Oid indexoid = lfirst_oid(l);
885 : Relation idxRel;
886 : Form_pg_index idxForm;
887 : Bitmapset *indexedAttrs;
888 : List *idxExprs;
889 : List *predExprs;
890 : AttrNumber natt;
891 : ListCell *el;
892 :
893 : /*
894 : * Extract info from the relation descriptor for the index. Obtain
895 : * the same lock type that the executor will ultimately use.
896 : *
897 : * Let executor complain about !indimmediate case directly, because
898 : * enforcement needs to occur there anyway when an inference clause is
899 : * omitted.
900 : */
901 2018 : idxRel = index_open(indexoid, rte->rellockmode);
902 2018 : idxForm = idxRel->rd_index;
903 :
904 2018 : if (!idxForm->indisvalid)
905 6 : goto next;
906 :
907 : /*
908 : * Note that we do not perform a check against indcheckxmin (like e.g.
909 : * get_relation_info()) here to eliminate candidates, because
910 : * uniqueness checking only cares about the most recently committed
911 : * tuple versions.
912 : */
913 :
914 : /*
915 : * Look for match on "ON constraint_name" variant, which may not be
916 : * unique constraint. This can only be a constraint name.
917 : */
918 2012 : if (indexOidFromConstraint == idxForm->indexrelid)
919 : {
920 192 : if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
921 78 : ereport(ERROR,
922 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
923 : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
924 :
925 114 : results = lappend_oid(results, idxForm->indexrelid);
926 114 : list_free(indexList);
927 114 : index_close(idxRel, NoLock);
928 114 : table_close(relation, NoLock);
929 114 : return results;
930 : }
931 1820 : else if (indexOidFromConstraint != InvalidOid)
932 : {
933 : /* No point in further work for index in named constraint case */
934 18 : goto next;
935 : }
936 :
937 : /*
938 : * Only considering conventional inference at this point (not named
939 : * constraints), so index under consideration can be immediately
940 : * skipped if it's not unique
941 : */
942 1802 : if (!idxForm->indisunique)
943 4 : goto next;
944 :
945 : /*
946 : * So-called unique constraints with WITHOUT OVERLAPS are really
947 : * exclusion constraints, so skip those too.
948 : */
949 1798 : if (idxForm->indisexclusion)
950 144 : goto next;
951 :
952 : /* Build BMS representation of plain (non expression) index attrs */
953 1654 : indexedAttrs = NULL;
954 3872 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
955 : {
956 2218 : int attno = idxRel->rd_index->indkey.values[natt];
957 :
958 2218 : if (attno != 0)
959 1906 : indexedAttrs = bms_add_member(indexedAttrs,
960 : attno - FirstLowInvalidHeapAttributeNumber);
961 : }
962 :
963 : /* Non-expression attributes (if any) must match */
964 1654 : if (!bms_equal(indexedAttrs, inferAttrs))
965 378 : goto next;
966 :
967 : /* Expression attributes (if any) must match */
968 1276 : idxExprs = RelationGetIndexExpressions(idxRel);
969 1276 : if (idxExprs && varno != 1)
970 6 : ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
971 :
972 2912 : foreach(el, onconflict->arbiterElems)
973 : {
974 1684 : InferenceElem *elem = (InferenceElem *) lfirst(el);
975 :
976 : /*
977 : * Ensure that collation/opclass aspects of inference expression
978 : * element match. Even though this loop is primarily concerned
979 : * with matching expressions, it is a convenient point to check
980 : * this for both expressions and ordinary (non-expression)
981 : * attributes appearing as inference elements.
982 : */
983 1684 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
984 48 : goto next;
985 :
986 : /*
987 : * Plain Vars don't factor into count of expression elements, and
988 : * the question of whether or not they satisfy the index
989 : * definition has already been considered (they must).
990 : */
991 1648 : if (IsA(elem->expr, Var))
992 1474 : continue;
993 :
994 : /*
995 : * Might as well avoid redundant check in the rare cases where
996 : * infer_collation_opclass_match() is required to do real work.
997 : * Otherwise, check that element expression appears in cataloged
998 : * index definition.
999 : */
1000 174 : if (elem->infercollid != InvalidOid ||
1001 306 : elem->inferopclass != InvalidOid ||
1002 150 : list_member(idxExprs, elem->expr))
1003 162 : continue;
1004 :
1005 12 : goto next;
1006 : }
1007 :
1008 : /*
1009 : * Now that all inference elements were matched, ensure that the
1010 : * expression elements from inference clause are not missing any
1011 : * cataloged expressions. This does the right thing when unique
1012 : * indexes redundantly repeat the same attribute, or if attributes
1013 : * redundantly appear multiple times within an inference clause.
1014 : */
1015 1228 : if (list_difference(idxExprs, inferElems) != NIL)
1016 54 : goto next;
1017 :
1018 : /*
1019 : * If it's a partial index, its predicate must be implied by the ON
1020 : * CONFLICT's WHERE clause.
1021 : */
1022 1174 : predExprs = RelationGetIndexPredicate(idxRel);
1023 1174 : if (predExprs && varno != 1)
1024 6 : ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1025 :
1026 1174 : if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
1027 36 : goto next;
1028 :
1029 1138 : results = lappend_oid(results, idxForm->indexrelid);
1030 1826 : next:
1031 1826 : index_close(idxRel, NoLock);
1032 : }
1033 :
1034 1398 : list_free(indexList);
1035 1398 : table_close(relation, NoLock);
1036 :
1037 1398 : if (results == NIL)
1038 314 : ereport(ERROR,
1039 : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1040 : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1041 :
1042 1084 : return results;
1043 : }
1044 :
1045 : /*
1046 : * infer_collation_opclass_match - ensure infer element opclass/collation match
1047 : *
1048 : * Given unique index inference element from inference specification, if
1049 : * collation was specified, or if opclass was specified, verify that there is
1050 : * at least one matching indexed attribute (occasionally, there may be more).
1051 : * Skip this in the common case where inference specification does not include
1052 : * collation or opclass (instead matching everything, regardless of cataloged
1053 : * collation/opclass of indexed attribute).
1054 : *
1055 : * At least historically, Postgres has not offered collations or opclasses
1056 : * with alternative-to-default notions of equality, so these additional
1057 : * criteria should only be required infrequently.
1058 : *
1059 : * Don't give up immediately when an inference element matches some attribute
1060 : * cataloged as indexed but not matching additional opclass/collation
1061 : * criteria. This is done so that the implementation is as forgiving as
1062 : * possible of redundancy within cataloged index attributes (or, less
1063 : * usefully, within inference specification elements). If collations actually
1064 : * differ between apparently redundantly indexed attributes (redundant within
1065 : * or across indexes), then there really is no redundancy as such.
1066 : *
1067 : * Note that if an inference element specifies an opclass and a collation at
1068 : * once, both must match in at least one particular attribute within index
1069 : * catalog definition in order for that inference element to be considered
1070 : * inferred/satisfied.
1071 : */
1072 : static bool
1073 1684 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
1074 : List *idxExprs)
1075 : {
1076 : AttrNumber natt;
1077 1684 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1078 1684 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1079 1684 : int nplain = 0; /* # plain attrs observed */
1080 :
1081 : /*
1082 : * If inference specification element lacks collation/opclass, then no
1083 : * need to check for exact match.
1084 : */
1085 1684 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1086 1570 : return true;
1087 :
1088 : /*
1089 : * Lookup opfamily and input type, for matching indexes
1090 : */
1091 114 : if (elem->inferopclass)
1092 : {
1093 84 : inferopfamily = get_opclass_family(elem->inferopclass);
1094 84 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1095 : }
1096 :
1097 246 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1098 : {
1099 210 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
1100 210 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1101 210 : Oid collation = idxRel->rd_indcollation[natt - 1];
1102 210 : int attno = idxRel->rd_index->indkey.values[natt - 1];
1103 :
1104 210 : if (attno != 0)
1105 168 : nplain++;
1106 :
1107 210 : if (elem->inferopclass != InvalidOid &&
1108 66 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1109 : {
1110 : /* Attribute needed to match opclass, but didn't */
1111 90 : continue;
1112 : }
1113 :
1114 120 : if (elem->infercollid != InvalidOid &&
1115 84 : elem->infercollid != collation)
1116 : {
1117 : /* Attribute needed to match collation, but didn't */
1118 36 : continue;
1119 : }
1120 :
1121 : /* If one matching index att found, good enough -- return true */
1122 84 : if (IsA(elem->expr, Var))
1123 : {
1124 54 : if (((Var *) elem->expr)->varattno == attno)
1125 54 : return true;
1126 : }
1127 30 : else if (attno == 0)
1128 : {
1129 30 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1130 :
1131 : /*
1132 : * Note that unlike routines like match_index_to_operand() we
1133 : * don't need to care about RelabelType. Neither the index
1134 : * definition nor the inference clause should contain them.
1135 : */
1136 30 : if (equal(elem->expr, nattExpr))
1137 24 : return true;
1138 : }
1139 : }
1140 :
1141 36 : return false;
1142 : }
1143 :
1144 : /*
1145 : * estimate_rel_size - estimate # pages and # tuples in a table or index
1146 : *
1147 : * We also estimate the fraction of the pages that are marked all-visible in
1148 : * the visibility map, for use in estimation of index-only scans.
1149 : *
1150 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1151 : * relation's attr_widths[] cache; we fill this in if we have need to compute
1152 : * the attribute widths for estimation purposes.
1153 : */
1154 : void
1155 439116 : estimate_rel_size(Relation rel, int32 *attr_widths,
1156 : BlockNumber *pages, double *tuples, double *allvisfrac)
1157 : {
1158 : BlockNumber curpages;
1159 : BlockNumber relpages;
1160 : double reltuples;
1161 : BlockNumber relallvisible;
1162 : double density;
1163 :
1164 439116 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1165 : {
1166 435600 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1167 : allvisfrac);
1168 : }
1169 3516 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1170 : {
1171 : /*
1172 : * XXX: It'd probably be good to move this into a callback, individual
1173 : * index types e.g. know if they have a metapage.
1174 : */
1175 :
1176 : /* it has storage, ok to call the smgr */
1177 984 : curpages = RelationGetNumberOfBlocks(rel);
1178 :
1179 : /* report estimated # pages */
1180 984 : *pages = curpages;
1181 : /* quick exit if rel is clearly empty */
1182 984 : if (curpages == 0)
1183 : {
1184 0 : *tuples = 0;
1185 0 : *allvisfrac = 0;
1186 0 : return;
1187 : }
1188 :
1189 : /* coerce values in pg_class to more desirable types */
1190 984 : relpages = (BlockNumber) rel->rd_rel->relpages;
1191 984 : reltuples = (double) rel->rd_rel->reltuples;
1192 984 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1193 :
1194 : /*
1195 : * Discount the metapage while estimating the number of tuples. This
1196 : * is a kluge because it assumes more than it ought to about index
1197 : * structure. Currently it's OK for btree, hash, and GIN indexes but
1198 : * suspect for GiST indexes.
1199 : */
1200 984 : if (relpages > 0)
1201 : {
1202 966 : curpages--;
1203 966 : relpages--;
1204 : }
1205 :
1206 : /* estimate number of tuples from previous tuple density */
1207 984 : if (reltuples >= 0 && relpages > 0)
1208 666 : density = reltuples / (double) relpages;
1209 : else
1210 : {
1211 : /*
1212 : * If we have no data because the relation was never vacuumed,
1213 : * estimate tuple width from attribute datatypes. We assume here
1214 : * that the pages are completely full, which is OK for tables
1215 : * (since they've presumably not been VACUUMed yet) but is
1216 : * probably an overestimate for indexes. Fortunately
1217 : * get_relation_info() can clamp the overestimate to the parent
1218 : * table's size.
1219 : *
1220 : * Note: this code intentionally disregards alignment
1221 : * considerations, because (a) that would be gilding the lily
1222 : * considering how crude the estimate is, and (b) it creates
1223 : * platform dependencies in the default plans which are kind of a
1224 : * headache for regression testing.
1225 : *
1226 : * XXX: Should this logic be more index specific?
1227 : */
1228 : int32 tuple_width;
1229 :
1230 318 : tuple_width = get_rel_data_width(rel, attr_widths);
1231 318 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1232 318 : tuple_width += sizeof(ItemIdData);
1233 : /* note: integer division is intentional here */
1234 318 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1235 : }
1236 984 : *tuples = rint(density * (double) curpages);
1237 :
1238 : /*
1239 : * We use relallvisible as-is, rather than scaling it up like we do
1240 : * for the pages and tuples counts, on the theory that any pages added
1241 : * since the last VACUUM are most likely not marked all-visible. But
1242 : * costsize.c wants it converted to a fraction.
1243 : */
1244 984 : if (relallvisible == 0 || curpages <= 0)
1245 984 : *allvisfrac = 0;
1246 0 : else if ((double) relallvisible >= curpages)
1247 0 : *allvisfrac = 1;
1248 : else
1249 0 : *allvisfrac = (double) relallvisible / curpages;
1250 : }
1251 : else
1252 : {
1253 : /*
1254 : * Just use whatever's in pg_class. This covers foreign tables,
1255 : * sequences, and also relkinds without storage (shouldn't get here?);
1256 : * see initializations in AddNewRelationTuple(). Note that FDW must
1257 : * cope if reltuples is -1!
1258 : */
1259 2532 : *pages = rel->rd_rel->relpages;
1260 2532 : *tuples = rel->rd_rel->reltuples;
1261 2532 : *allvisfrac = 0;
1262 : }
1263 : }
1264 :
1265 :
1266 : /*
1267 : * get_rel_data_width
1268 : *
1269 : * Estimate the average width of (the data part of) the relation's tuples.
1270 : *
1271 : * If attr_widths isn't NULL, it points to the zero-index entry of the
1272 : * relation's attr_widths[] cache; use and update that cache as appropriate.
1273 : *
1274 : * Currently we ignore dropped columns. Ideally those should be included
1275 : * in the result, but we haven't got any way to get info about them; and
1276 : * since they might be mostly NULLs, treating them as zero-width is not
1277 : * necessarily the wrong thing anyway.
1278 : */
1279 : int32
1280 150864 : get_rel_data_width(Relation rel, int32 *attr_widths)
1281 : {
1282 150864 : int64 tuple_width = 0;
1283 : int i;
1284 :
1285 820626 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1286 : {
1287 669762 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1288 : int32 item_width;
1289 :
1290 669762 : if (att->attisdropped)
1291 2660 : continue;
1292 :
1293 : /* use previously cached data, if any */
1294 667102 : if (attr_widths != NULL && attr_widths[i] > 0)
1295 : {
1296 5816 : tuple_width += attr_widths[i];
1297 5816 : continue;
1298 : }
1299 :
1300 : /* This should match set_rel_width() in costsize.c */
1301 661286 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1302 661286 : if (item_width <= 0)
1303 : {
1304 659438 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1305 : Assert(item_width > 0);
1306 : }
1307 661286 : if (attr_widths != NULL)
1308 587122 : attr_widths[i] = item_width;
1309 661286 : tuple_width += item_width;
1310 : }
1311 :
1312 150864 : return clamp_width_est(tuple_width);
1313 : }
1314 :
1315 : /*
1316 : * get_relation_data_width
1317 : *
1318 : * External API for get_rel_data_width: same behavior except we have to
1319 : * open the relcache entry.
1320 : */
1321 : int32
1322 2522 : get_relation_data_width(Oid relid, int32 *attr_widths)
1323 : {
1324 : int32 result;
1325 : Relation relation;
1326 :
1327 : /* As above, assume relation is already locked */
1328 2522 : relation = table_open(relid, NoLock);
1329 :
1330 2522 : result = get_rel_data_width(relation, attr_widths);
1331 :
1332 2522 : table_close(relation, NoLock);
1333 :
1334 2522 : return result;
1335 : }
1336 :
1337 :
1338 : /*
1339 : * get_relation_constraints
1340 : *
1341 : * Retrieve the applicable constraint expressions of the given relation.
1342 : * Only constraints that have been validated are considered.
1343 : *
1344 : * Returns a List (possibly empty) of constraint expressions. Each one
1345 : * has been canonicalized, and its Vars are changed to have the varno
1346 : * indicated by rel->relid. This allows the expressions to be easily
1347 : * compared to expressions taken from WHERE.
1348 : *
1349 : * If include_noinherit is true, it's okay to include constraints that
1350 : * are marked NO INHERIT.
1351 : *
1352 : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1353 : * and added to the result for each column that's marked attnotnull.
1354 : *
1355 : * If include_partition is true, and the relation is a partition,
1356 : * also include the partitioning constraints.
1357 : *
1358 : * Note: at present this is invoked at most once per relation per planner
1359 : * run, and in many cases it won't be invoked at all, so there seems no
1360 : * point in caching the data in RelOptInfo.
1361 : */
1362 : static List *
1363 21308 : get_relation_constraints(PlannerInfo *root,
1364 : Oid relationObjectId, RelOptInfo *rel,
1365 : bool include_noinherit,
1366 : bool include_notnull,
1367 : bool include_partition)
1368 : {
1369 21308 : List *result = NIL;
1370 21308 : Index varno = rel->relid;
1371 : Relation relation;
1372 : TupleConstr *constr;
1373 :
1374 : /*
1375 : * We assume the relation has already been safely locked.
1376 : */
1377 21308 : relation = table_open(relationObjectId, NoLock);
1378 :
1379 21308 : constr = relation->rd_att->constr;
1380 21308 : if (constr != NULL)
1381 : {
1382 8036 : int num_check = constr->num_check;
1383 : int i;
1384 :
1385 8604 : for (i = 0; i < num_check; i++)
1386 : {
1387 : Node *cexpr;
1388 :
1389 : /*
1390 : * If this constraint hasn't been fully validated yet, we must
1391 : * ignore it here.
1392 : */
1393 568 : if (!constr->check[i].ccvalid)
1394 54 : continue;
1395 :
1396 : /*
1397 : * NOT ENFORCED constraints are always marked as invalid, which
1398 : * should have been ignored.
1399 : */
1400 : Assert(constr->check[i].ccenforced);
1401 :
1402 : /*
1403 : * Also ignore if NO INHERIT and we weren't told that that's safe.
1404 : */
1405 514 : if (constr->check[i].ccnoinherit && !include_noinherit)
1406 0 : continue;
1407 :
1408 514 : cexpr = stringToNode(constr->check[i].ccbin);
1409 :
1410 : /*
1411 : * Fix Vars to have the desired varno. This must be done before
1412 : * const-simplification because eval_const_expressions reduces
1413 : * NullTest for Vars based on varno.
1414 : */
1415 514 : if (varno != 1)
1416 502 : ChangeVarNodes(cexpr, 1, varno, 0);
1417 :
1418 : /*
1419 : * Run each expression through const-simplification and
1420 : * canonicalization. This is not just an optimization, but is
1421 : * necessary, because we will be comparing it to
1422 : * similarly-processed qual clauses, and may fail to detect valid
1423 : * matches without this. This must match the processing done to
1424 : * qual clauses in preprocess_expression()! (We can skip the
1425 : * stuff involving subqueries, however, since we don't allow any
1426 : * in check constraints.)
1427 : */
1428 514 : cexpr = eval_const_expressions(root, cexpr);
1429 :
1430 514 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1431 :
1432 : /*
1433 : * Finally, convert to implicit-AND format (that is, a List) and
1434 : * append the resulting item(s) to our output list.
1435 : */
1436 514 : result = list_concat(result,
1437 514 : make_ands_implicit((Expr *) cexpr));
1438 : }
1439 :
1440 : /* Add NOT NULL constraints in expression form, if requested */
1441 8036 : if (include_notnull && constr->has_not_null)
1442 : {
1443 7592 : int natts = relation->rd_att->natts;
1444 :
1445 30862 : for (i = 1; i <= natts; i++)
1446 : {
1447 23270 : CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
1448 :
1449 23270 : if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1450 : {
1451 9370 : Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
1452 9370 : NullTest *ntest = makeNode(NullTest);
1453 :
1454 9370 : ntest->arg = (Expr *) makeVar(varno,
1455 : i,
1456 : wholeatt->atttypid,
1457 : wholeatt->atttypmod,
1458 : wholeatt->attcollation,
1459 : 0);
1460 9370 : ntest->nulltesttype = IS_NOT_NULL;
1461 :
1462 : /*
1463 : * argisrow=false is correct even for a composite column,
1464 : * because attnotnull does not represent a SQL-spec IS NOT
1465 : * NULL test in such a case, just IS DISTINCT FROM NULL.
1466 : */
1467 9370 : ntest->argisrow = false;
1468 9370 : ntest->location = -1;
1469 9370 : result = lappend(result, ntest);
1470 : }
1471 : }
1472 : }
1473 : }
1474 :
1475 : /*
1476 : * Add partitioning constraints, if requested.
1477 : */
1478 21308 : if (include_partition && relation->rd_rel->relispartition)
1479 : {
1480 : /* make sure rel->partition_qual is set */
1481 12 : set_baserel_partition_constraint(relation, rel);
1482 12 : result = list_concat(result, rel->partition_qual);
1483 : }
1484 :
1485 21308 : table_close(relation, NoLock);
1486 :
1487 21308 : return result;
1488 : }
1489 :
1490 : /*
1491 : * Try loading data for the statistics object.
1492 : *
1493 : * We don't know if the data (specified by statOid and inh value) exist.
1494 : * The result is stored in stainfos list.
1495 : */
1496 : static void
1497 3976 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1498 : Oid statOid, bool inh,
1499 : Bitmapset *keys, List *exprs)
1500 : {
1501 : Form_pg_statistic_ext_data dataForm;
1502 : HeapTuple dtup;
1503 :
1504 3976 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1505 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1506 3976 : if (!HeapTupleIsValid(dtup))
1507 1990 : return;
1508 :
1509 1986 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1510 :
1511 : /* add one StatisticExtInfo for each kind built */
1512 1986 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1513 : {
1514 702 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1515 :
1516 702 : info->statOid = statOid;
1517 702 : info->inherit = dataForm->stxdinherit;
1518 702 : info->rel = rel;
1519 702 : info->kind = STATS_EXT_NDISTINCT;
1520 702 : info->keys = bms_copy(keys);
1521 702 : info->exprs = exprs;
1522 :
1523 702 : *stainfos = lappend(*stainfos, info);
1524 : }
1525 :
1526 1986 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1527 : {
1528 528 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1529 :
1530 528 : info->statOid = statOid;
1531 528 : info->inherit = dataForm->stxdinherit;
1532 528 : info->rel = rel;
1533 528 : info->kind = STATS_EXT_DEPENDENCIES;
1534 528 : info->keys = bms_copy(keys);
1535 528 : info->exprs = exprs;
1536 :
1537 528 : *stainfos = lappend(*stainfos, info);
1538 : }
1539 :
1540 1986 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1541 : {
1542 882 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1543 :
1544 882 : info->statOid = statOid;
1545 882 : info->inherit = dataForm->stxdinherit;
1546 882 : info->rel = rel;
1547 882 : info->kind = STATS_EXT_MCV;
1548 882 : info->keys = bms_copy(keys);
1549 882 : info->exprs = exprs;
1550 :
1551 882 : *stainfos = lappend(*stainfos, info);
1552 : }
1553 :
1554 1986 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1555 : {
1556 804 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1557 :
1558 804 : info->statOid = statOid;
1559 804 : info->inherit = dataForm->stxdinherit;
1560 804 : info->rel = rel;
1561 804 : info->kind = STATS_EXT_EXPRESSIONS;
1562 804 : info->keys = bms_copy(keys);
1563 804 : info->exprs = exprs;
1564 :
1565 804 : *stainfos = lappend(*stainfos, info);
1566 : }
1567 :
1568 1986 : ReleaseSysCache(dtup);
1569 : }
1570 :
1571 : /*
1572 : * get_relation_statistics
1573 : * Retrieve extended statistics defined on the table.
1574 : *
1575 : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1576 : * the statistics. Note that this doesn't load the actual statistics data,
1577 : * just the identifying metadata. Only stats actually built are considered.
1578 : */
1579 : static List *
1580 459790 : get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
1581 : Relation relation)
1582 : {
1583 459790 : Index varno = rel->relid;
1584 : List *statoidlist;
1585 459790 : List *stainfos = NIL;
1586 : ListCell *l;
1587 :
1588 459790 : statoidlist = RelationGetStatExtList(relation);
1589 :
1590 461778 : foreach(l, statoidlist)
1591 : {
1592 1988 : Oid statOid = lfirst_oid(l);
1593 : Form_pg_statistic_ext staForm;
1594 : HeapTuple htup;
1595 1988 : Bitmapset *keys = NULL;
1596 1988 : List *exprs = NIL;
1597 : int i;
1598 :
1599 1988 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1600 1988 : if (!HeapTupleIsValid(htup))
1601 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1602 1988 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1603 :
1604 : /*
1605 : * First, build the array of columns covered. This is ultimately
1606 : * wasted if no stats within the object have actually been built, but
1607 : * it doesn't seem worth troubling over that case.
1608 : */
1609 5644 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1610 3656 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1611 :
1612 : /*
1613 : * Preprocess expressions (if any). We read the expressions, fix the
1614 : * varnos, and run them through eval_const_expressions.
1615 : *
1616 : * XXX We don't know yet if there are any data for this stats object,
1617 : * with either stxdinherit value. But it's reasonable to assume there
1618 : * is at least one of those, possibly both. So it's better to process
1619 : * keys and expressions here.
1620 : */
1621 : {
1622 : bool isnull;
1623 : Datum datum;
1624 :
1625 : /* decode expression (if any) */
1626 1988 : datum = SysCacheGetAttr(STATEXTOID, htup,
1627 : Anum_pg_statistic_ext_stxexprs, &isnull);
1628 :
1629 1988 : if (!isnull)
1630 : {
1631 : char *exprsString;
1632 :
1633 808 : exprsString = TextDatumGetCString(datum);
1634 808 : exprs = (List *) stringToNode(exprsString);
1635 808 : pfree(exprsString);
1636 :
1637 : /*
1638 : * Modify the copies we obtain from the relcache to have the
1639 : * correct varno for the parent relation, so that they match
1640 : * up correctly against qual clauses.
1641 : *
1642 : * This must be done before const-simplification because
1643 : * eval_const_expressions reduces NullTest for Vars based on
1644 : * varno.
1645 : */
1646 808 : if (varno != 1)
1647 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1648 :
1649 : /*
1650 : * Run the expressions through eval_const_expressions. This is
1651 : * not just an optimization, but is necessary, because the
1652 : * planner will be comparing them to similarly-processed qual
1653 : * clauses, and may fail to detect valid matches without this.
1654 : * We must not use canonicalize_qual, however, since these
1655 : * aren't qual expressions.
1656 : */
1657 808 : exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1658 :
1659 : /* May as well fix opfuncids too */
1660 808 : fix_opfuncids((Node *) exprs);
1661 : }
1662 : }
1663 :
1664 : /* extract statistics for possible values of stxdinherit flag */
1665 :
1666 1988 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1667 :
1668 1988 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1669 :
1670 1988 : ReleaseSysCache(htup);
1671 1988 : bms_free(keys);
1672 : }
1673 :
1674 459790 : list_free(statoidlist);
1675 :
1676 459790 : return stainfos;
1677 : }
1678 :
1679 : /*
1680 : * relation_excluded_by_constraints
1681 : *
1682 : * Detect whether the relation need not be scanned because it has either
1683 : * self-inconsistent restrictions, or restrictions inconsistent with the
1684 : * relation's applicable constraints.
1685 : *
1686 : * Note: this examines only rel->relid, rel->reloptkind, and
1687 : * rel->baserestrictinfo; therefore it can be called before filling in
1688 : * other fields of the RelOptInfo.
1689 : */
1690 : bool
1691 499612 : relation_excluded_by_constraints(PlannerInfo *root,
1692 : RelOptInfo *rel, RangeTblEntry *rte)
1693 : {
1694 : bool include_noinherit;
1695 : bool include_notnull;
1696 499612 : bool include_partition = false;
1697 : List *safe_restrictions;
1698 : List *constraint_pred;
1699 : List *safe_constraints;
1700 : ListCell *lc;
1701 :
1702 : /* As of now, constraint exclusion works only with simple relations. */
1703 : Assert(IS_SIMPLE_REL(rel));
1704 :
1705 : /*
1706 : * If there are no base restriction clauses, we have no hope of proving
1707 : * anything below, so fall out quickly.
1708 : */
1709 499612 : if (rel->baserestrictinfo == NIL)
1710 221440 : return false;
1711 :
1712 : /*
1713 : * Regardless of the setting of constraint_exclusion, detect
1714 : * constant-FALSE-or-NULL restriction clauses. Although const-folding
1715 : * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1716 : * list can still have other members besides the FALSE constant, due to
1717 : * qual pushdown and other mechanisms; so check them all. This doesn't
1718 : * fire very often, but it seems cheap enough to be worth doing anyway.
1719 : * (Without this, we'd miss some optimizations that 9.5 and earlier found
1720 : * via much more roundabout methods.)
1721 : */
1722 695972 : foreach(lc, rel->baserestrictinfo)
1723 : {
1724 418272 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1725 418272 : Expr *clause = rinfo->clause;
1726 :
1727 418272 : if (clause && IsA(clause, Const) &&
1728 472 : (((Const *) clause)->constisnull ||
1729 466 : !DatumGetBool(((Const *) clause)->constvalue)))
1730 472 : return true;
1731 : }
1732 :
1733 : /*
1734 : * Skip further tests, depending on constraint_exclusion.
1735 : */
1736 277700 : switch (constraint_exclusion)
1737 : {
1738 54 : case CONSTRAINT_EXCLUSION_OFF:
1739 : /* In 'off' mode, never make any further tests */
1740 54 : return false;
1741 :
1742 277514 : case CONSTRAINT_EXCLUSION_PARTITION:
1743 :
1744 : /*
1745 : * When constraint_exclusion is set to 'partition' we only handle
1746 : * appendrel members. Partition pruning has already been applied,
1747 : * so there is no need to consider the rel's partition constraints
1748 : * here.
1749 : */
1750 277514 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1751 21534 : break; /* appendrel member, so process it */
1752 255980 : return false;
1753 :
1754 132 : case CONSTRAINT_EXCLUSION_ON:
1755 :
1756 : /*
1757 : * In 'on' mode, always apply constraint exclusion. If we are
1758 : * considering a baserel that is a partition (i.e., it was
1759 : * directly named rather than expanded from a parent table), then
1760 : * its partition constraints haven't been considered yet, so
1761 : * include them in the processing here.
1762 : */
1763 132 : if (rel->reloptkind == RELOPT_BASEREL)
1764 102 : include_partition = true;
1765 132 : break; /* always try to exclude */
1766 : }
1767 :
1768 : /*
1769 : * Check for self-contradictory restriction clauses. We dare not make
1770 : * deductions with non-immutable functions, but any immutable clauses that
1771 : * are self-contradictory allow us to conclude the scan is unnecessary.
1772 : *
1773 : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1774 : * expecting to see any in its predicate argument.
1775 : */
1776 21666 : safe_restrictions = NIL;
1777 51160 : foreach(lc, rel->baserestrictinfo)
1778 : {
1779 29494 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1780 :
1781 29494 : if (!contain_mutable_functions((Node *) rinfo->clause))
1782 27954 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1783 : }
1784 :
1785 : /*
1786 : * We can use weak refutation here, since we're comparing restriction
1787 : * clauses with restriction clauses.
1788 : */
1789 21666 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1790 72 : return true;
1791 :
1792 : /*
1793 : * Only plain relations have constraints, so stop here for other rtekinds.
1794 : */
1795 21594 : if (rte->rtekind != RTE_RELATION)
1796 286 : return false;
1797 :
1798 : /*
1799 : * If we are scanning just this table, we can use NO INHERIT constraints,
1800 : * but not if we're scanning its children too. (Note that partitioned
1801 : * tables should never have NO INHERIT constraints; but it's not necessary
1802 : * for us to assume that here.)
1803 : */
1804 21308 : include_noinherit = !rte->inh;
1805 :
1806 : /*
1807 : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1808 : * this is a partitioned table. In future we might track their
1809 : * inheritance status more accurately, allowing this to be refined.
1810 : *
1811 : * XXX do we need/want to change this?
1812 : */
1813 21308 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1814 :
1815 : /*
1816 : * Fetch the appropriate set of constraint expressions.
1817 : */
1818 21308 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1819 : include_noinherit,
1820 : include_notnull,
1821 : include_partition);
1822 :
1823 : /*
1824 : * We do not currently enforce that CHECK constraints contain only
1825 : * immutable functions, so it's necessary to check here. We daren't draw
1826 : * conclusions from plan-time evaluation of non-immutable functions. Since
1827 : * they're ANDed, we can just ignore any mutable constraints in the list,
1828 : * and reason about the rest.
1829 : */
1830 21308 : safe_constraints = NIL;
1831 31394 : foreach(lc, constraint_pred)
1832 : {
1833 10086 : Node *pred = (Node *) lfirst(lc);
1834 :
1835 10086 : if (!contain_mutable_functions(pred))
1836 10086 : safe_constraints = lappend(safe_constraints, pred);
1837 : }
1838 :
1839 : /*
1840 : * The constraints are effectively ANDed together, so we can just try to
1841 : * refute the entire collection at once. This may allow us to make proofs
1842 : * that would fail if we took them individually.
1843 : *
1844 : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1845 : * an obvious optimization. Some of the clauses might be OR clauses that
1846 : * have volatile and nonvolatile subclauses, and it's OK to make
1847 : * deductions with the nonvolatile parts.
1848 : *
1849 : * We need strong refutation because we have to prove that the constraints
1850 : * would yield false, not just NULL.
1851 : */
1852 21308 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1853 180 : return true;
1854 :
1855 21128 : return false;
1856 : }
1857 :
1858 :
1859 : /*
1860 : * build_physical_tlist
1861 : *
1862 : * Build a targetlist consisting of exactly the relation's user attributes,
1863 : * in order. The executor can special-case such tlists to avoid a projection
1864 : * step at runtime, so we use such tlists preferentially for scan nodes.
1865 : *
1866 : * Exception: if there are any dropped or missing columns, we punt and return
1867 : * NIL. Ideally we would like to handle these cases too. However this
1868 : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1869 : * for a tlist that includes vars of no-longer-existent types. In theory we
1870 : * could dig out the required info from the pg_attribute entries of the
1871 : * relation, but that data is not readily available to ExecTypeFromTL.
1872 : * For now, we don't apply the physical-tlist optimization when there are
1873 : * dropped cols.
1874 : *
1875 : * We also support building a "physical" tlist for subqueries, functions,
1876 : * values lists, table expressions, and CTEs, since the same optimization can
1877 : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1878 : * NamedTuplestoreScan, and WorkTableScan nodes.
1879 : */
1880 : List *
1881 181512 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
1882 : {
1883 181512 : List *tlist = NIL;
1884 181512 : Index varno = rel->relid;
1885 181512 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
1886 : Relation relation;
1887 : Query *subquery;
1888 : Var *var;
1889 : ListCell *l;
1890 : int attrno,
1891 : numattrs;
1892 : List *colvars;
1893 :
1894 181512 : switch (rte->rtekind)
1895 : {
1896 155316 : case RTE_RELATION:
1897 : /* Assume we already have adequate lock */
1898 155316 : relation = table_open(rte->relid, NoLock);
1899 :
1900 155316 : numattrs = RelationGetNumberOfAttributes(relation);
1901 2800330 : for (attrno = 1; attrno <= numattrs; attrno++)
1902 : {
1903 2645152 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1904 : attrno - 1);
1905 :
1906 2645152 : if (att_tup->attisdropped || att_tup->atthasmissing)
1907 : {
1908 : /* found a dropped or missing col, so punt */
1909 138 : tlist = NIL;
1910 138 : break;
1911 : }
1912 :
1913 2645014 : var = makeVar(varno,
1914 : attrno,
1915 : att_tup->atttypid,
1916 : att_tup->atttypmod,
1917 : att_tup->attcollation,
1918 : 0);
1919 :
1920 2645014 : tlist = lappend(tlist,
1921 2645014 : makeTargetEntry((Expr *) var,
1922 : attrno,
1923 : NULL,
1924 : false));
1925 : }
1926 :
1927 155316 : table_close(relation, NoLock);
1928 155316 : break;
1929 :
1930 2274 : case RTE_SUBQUERY:
1931 2274 : subquery = rte->subquery;
1932 8610 : foreach(l, subquery->targetList)
1933 : {
1934 6336 : TargetEntry *tle = (TargetEntry *) lfirst(l);
1935 :
1936 : /*
1937 : * A resjunk column of the subquery can be reflected as
1938 : * resjunk in the physical tlist; we need not punt.
1939 : */
1940 6336 : var = makeVarFromTargetEntry(varno, tle);
1941 :
1942 6336 : tlist = lappend(tlist,
1943 6336 : makeTargetEntry((Expr *) var,
1944 6336 : tle->resno,
1945 : NULL,
1946 6336 : tle->resjunk));
1947 : }
1948 2274 : break;
1949 :
1950 23922 : case RTE_FUNCTION:
1951 : case RTE_TABLEFUNC:
1952 : case RTE_VALUES:
1953 : case RTE_CTE:
1954 : case RTE_NAMEDTUPLESTORE:
1955 : case RTE_RESULT:
1956 : /* Not all of these can have dropped cols, but share code anyway */
1957 23922 : expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
1958 : true /* include dropped */ , NULL, &colvars);
1959 121322 : foreach(l, colvars)
1960 : {
1961 97400 : var = (Var *) lfirst(l);
1962 :
1963 : /*
1964 : * A non-Var in expandRTE's output means a dropped column;
1965 : * must punt.
1966 : */
1967 97400 : if (!IsA(var, Var))
1968 : {
1969 0 : tlist = NIL;
1970 0 : break;
1971 : }
1972 :
1973 97400 : tlist = lappend(tlist,
1974 97400 : makeTargetEntry((Expr *) var,
1975 97400 : var->varattno,
1976 : NULL,
1977 : false));
1978 : }
1979 23922 : break;
1980 :
1981 0 : default:
1982 : /* caller error */
1983 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1984 : (int) rte->rtekind);
1985 : break;
1986 : }
1987 :
1988 181512 : return tlist;
1989 : }
1990 :
1991 : /*
1992 : * build_index_tlist
1993 : *
1994 : * Build a targetlist representing the columns of the specified index.
1995 : * Each column is represented by a Var for the corresponding base-relation
1996 : * column, or an expression in base-relation Vars, as appropriate.
1997 : *
1998 : * There are never any dropped columns in indexes, so unlike
1999 : * build_physical_tlist, we need no failure case.
2000 : */
2001 : static List *
2002 722264 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
2003 : Relation heapRelation)
2004 : {
2005 722264 : List *tlist = NIL;
2006 722264 : Index varno = index->rel->relid;
2007 : ListCell *indexpr_item;
2008 : int i;
2009 :
2010 722264 : indexpr_item = list_head(index->indexprs);
2011 2086728 : for (i = 0; i < index->ncolumns; i++)
2012 : {
2013 1364464 : int indexkey = index->indexkeys[i];
2014 : Expr *indexvar;
2015 :
2016 1364464 : if (indexkey != 0)
2017 : {
2018 : /* simple column */
2019 : const FormData_pg_attribute *att_tup;
2020 :
2021 1361448 : if (indexkey < 0)
2022 0 : att_tup = SystemAttributeDefinition(indexkey);
2023 : else
2024 1361448 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2025 :
2026 1361448 : indexvar = (Expr *) makeVar(varno,
2027 : indexkey,
2028 1361448 : att_tup->atttypid,
2029 1361448 : att_tup->atttypmod,
2030 1361448 : att_tup->attcollation,
2031 : 0);
2032 : }
2033 : else
2034 : {
2035 : /* expression column */
2036 3016 : if (indexpr_item == NULL)
2037 0 : elog(ERROR, "wrong number of index expressions");
2038 3016 : indexvar = (Expr *) lfirst(indexpr_item);
2039 3016 : indexpr_item = lnext(index->indexprs, indexpr_item);
2040 : }
2041 :
2042 1364464 : tlist = lappend(tlist,
2043 1364464 : makeTargetEntry(indexvar,
2044 1364464 : i + 1,
2045 : NULL,
2046 : false));
2047 : }
2048 722264 : if (indexpr_item != NULL)
2049 0 : elog(ERROR, "wrong number of index expressions");
2050 :
2051 722264 : return tlist;
2052 : }
2053 :
2054 : /*
2055 : * restriction_selectivity
2056 : *
2057 : * Returns the selectivity of a specified restriction operator clause.
2058 : * This code executes registered procedures stored in the
2059 : * operator relation, by calling the function manager.
2060 : *
2061 : * See clause_selectivity() for the meaning of the additional parameters.
2062 : */
2063 : Selectivity
2064 676216 : restriction_selectivity(PlannerInfo *root,
2065 : Oid operatorid,
2066 : List *args,
2067 : Oid inputcollid,
2068 : int varRelid)
2069 : {
2070 676216 : RegProcedure oprrest = get_oprrest(operatorid);
2071 : float8 result;
2072 :
2073 : /*
2074 : * if the oprrest procedure is missing for whatever reason, use a
2075 : * selectivity of 0.5
2076 : */
2077 676216 : if (!oprrest)
2078 160 : return (Selectivity) 0.5;
2079 :
2080 676056 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
2081 : inputcollid,
2082 : PointerGetDatum(root),
2083 : ObjectIdGetDatum(operatorid),
2084 : PointerGetDatum(args),
2085 : Int32GetDatum(varRelid)));
2086 :
2087 676026 : if (result < 0.0 || result > 1.0)
2088 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
2089 :
2090 676026 : return (Selectivity) result;
2091 : }
2092 :
2093 : /*
2094 : * join_selectivity
2095 : *
2096 : * Returns the selectivity of a specified join operator clause.
2097 : * This code executes registered procedures stored in the
2098 : * operator relation, by calling the function manager.
2099 : *
2100 : * See clause_selectivity() for the meaning of the additional parameters.
2101 : */
2102 : Selectivity
2103 227298 : join_selectivity(PlannerInfo *root,
2104 : Oid operatorid,
2105 : List *args,
2106 : Oid inputcollid,
2107 : JoinType jointype,
2108 : SpecialJoinInfo *sjinfo)
2109 : {
2110 227298 : RegProcedure oprjoin = get_oprjoin(operatorid);
2111 : float8 result;
2112 :
2113 : /*
2114 : * if the oprjoin procedure is missing for whatever reason, use a
2115 : * selectivity of 0.5
2116 : */
2117 227298 : if (!oprjoin)
2118 146 : return (Selectivity) 0.5;
2119 :
2120 227152 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2121 : inputcollid,
2122 : PointerGetDatum(root),
2123 : ObjectIdGetDatum(operatorid),
2124 : PointerGetDatum(args),
2125 : Int16GetDatum(jointype),
2126 : PointerGetDatum(sjinfo)));
2127 :
2128 227152 : if (result < 0.0 || result > 1.0)
2129 0 : elog(ERROR, "invalid join selectivity: %f", result);
2130 :
2131 227152 : return (Selectivity) result;
2132 : }
2133 :
2134 : /*
2135 : * function_selectivity
2136 : *
2137 : * Returns the selectivity of a specified boolean function clause.
2138 : * This code executes registered procedures stored in the
2139 : * pg_proc relation, by calling the function manager.
2140 : *
2141 : * See clause_selectivity() for the meaning of the additional parameters.
2142 : */
2143 : Selectivity
2144 12144 : function_selectivity(PlannerInfo *root,
2145 : Oid funcid,
2146 : List *args,
2147 : Oid inputcollid,
2148 : bool is_join,
2149 : int varRelid,
2150 : JoinType jointype,
2151 : SpecialJoinInfo *sjinfo)
2152 : {
2153 12144 : RegProcedure prosupport = get_func_support(funcid);
2154 : SupportRequestSelectivity req;
2155 : SupportRequestSelectivity *sresult;
2156 :
2157 : /*
2158 : * If no support function is provided, use our historical default
2159 : * estimate, 0.3333333. This seems a pretty unprincipled choice, but
2160 : * Postgres has been using that estimate for function calls since 1992.
2161 : * The hoariness of this behavior suggests that we should not be in too
2162 : * much hurry to use another value.
2163 : */
2164 12144 : if (!prosupport)
2165 12114 : return (Selectivity) 0.3333333;
2166 :
2167 30 : req.type = T_SupportRequestSelectivity;
2168 30 : req.root = root;
2169 30 : req.funcid = funcid;
2170 30 : req.args = args;
2171 30 : req.inputcollid = inputcollid;
2172 30 : req.is_join = is_join;
2173 30 : req.varRelid = varRelid;
2174 30 : req.jointype = jointype;
2175 30 : req.sjinfo = sjinfo;
2176 30 : req.selectivity = -1; /* to catch failure to set the value */
2177 :
2178 : sresult = (SupportRequestSelectivity *)
2179 30 : DatumGetPointer(OidFunctionCall1(prosupport,
2180 : PointerGetDatum(&req)));
2181 :
2182 : /* If support function fails, use default */
2183 30 : if (sresult != &req)
2184 0 : return (Selectivity) 0.3333333;
2185 :
2186 30 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2187 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2188 :
2189 30 : return (Selectivity) req.selectivity;
2190 : }
2191 :
2192 : /*
2193 : * add_function_cost
2194 : *
2195 : * Get an estimate of the execution cost of a function, and *add* it to
2196 : * the contents of *cost. The estimate may include both one-time and
2197 : * per-tuple components, since QualCost does.
2198 : *
2199 : * The funcid must always be supplied. If it is being called as the
2200 : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2201 : * WindowFunc, etc), pass that as "node", else pass NULL.
2202 : *
2203 : * In some usages root might be NULL, too.
2204 : */
2205 : void
2206 1121422 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2207 : QualCost *cost)
2208 : {
2209 : HeapTuple proctup;
2210 : Form_pg_proc procform;
2211 :
2212 1121422 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2213 1121422 : if (!HeapTupleIsValid(proctup))
2214 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2215 1121422 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2216 :
2217 1121422 : if (OidIsValid(procform->prosupport))
2218 : {
2219 : SupportRequestCost req;
2220 : SupportRequestCost *sresult;
2221 :
2222 35020 : req.type = T_SupportRequestCost;
2223 35020 : req.root = root;
2224 35020 : req.funcid = funcid;
2225 35020 : req.node = node;
2226 :
2227 : /* Initialize cost fields so that support function doesn't have to */
2228 35020 : req.startup = 0;
2229 35020 : req.per_tuple = 0;
2230 :
2231 : sresult = (SupportRequestCost *)
2232 35020 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2233 : PointerGetDatum(&req)));
2234 :
2235 35020 : if (sresult == &req)
2236 : {
2237 : /* Success, so accumulate support function's estimate into *cost */
2238 18 : cost->startup += req.startup;
2239 18 : cost->per_tuple += req.per_tuple;
2240 18 : ReleaseSysCache(proctup);
2241 18 : return;
2242 : }
2243 : }
2244 :
2245 : /* No support function, or it failed, so rely on procost */
2246 1121404 : cost->per_tuple += procform->procost * cpu_operator_cost;
2247 :
2248 1121404 : ReleaseSysCache(proctup);
2249 : }
2250 :
2251 : /*
2252 : * get_function_rows
2253 : *
2254 : * Get an estimate of the number of rows returned by a set-returning function.
2255 : *
2256 : * The funcid must always be supplied. In current usage, the calling node
2257 : * will always be supplied, and will be either a FuncExpr or OpExpr.
2258 : * But it's a good idea to not fail if it's NULL.
2259 : *
2260 : * In some usages root might be NULL, too.
2261 : *
2262 : * Note: this returns the unfiltered result of the support function, if any.
2263 : * It's usually a good idea to apply clamp_row_est() to the result, but we
2264 : * leave it to the caller to do so.
2265 : */
2266 : double
2267 55372 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2268 : {
2269 : HeapTuple proctup;
2270 : Form_pg_proc procform;
2271 : double result;
2272 :
2273 55372 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2274 55372 : if (!HeapTupleIsValid(proctup))
2275 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2276 55372 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2277 :
2278 : Assert(procform->proretset); /* else caller error */
2279 :
2280 55372 : if (OidIsValid(procform->prosupport))
2281 : {
2282 : SupportRequestRows req;
2283 : SupportRequestRows *sresult;
2284 :
2285 20876 : req.type = T_SupportRequestRows;
2286 20876 : req.root = root;
2287 20876 : req.funcid = funcid;
2288 20876 : req.node = node;
2289 :
2290 20876 : req.rows = 0; /* just for sanity */
2291 :
2292 : sresult = (SupportRequestRows *)
2293 20876 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2294 : PointerGetDatum(&req)));
2295 :
2296 20876 : if (sresult == &req)
2297 : {
2298 : /* Success */
2299 16838 : ReleaseSysCache(proctup);
2300 16838 : return req.rows;
2301 : }
2302 : }
2303 :
2304 : /* No support function, or it failed, so rely on prorows */
2305 38534 : result = procform->prorows;
2306 :
2307 38534 : ReleaseSysCache(proctup);
2308 :
2309 38534 : return result;
2310 : }
2311 :
2312 : /*
2313 : * has_unique_index
2314 : *
2315 : * Detect whether there is a unique index on the specified attribute
2316 : * of the specified relation, thus allowing us to conclude that all
2317 : * the (non-null) values of the attribute are distinct.
2318 : *
2319 : * This function does not check the index's indimmediate property, which
2320 : * means that uniqueness may transiently fail to hold intra-transaction.
2321 : * That's appropriate when we are making statistical estimates, but beware
2322 : * of using this for any correctness proofs.
2323 : */
2324 : bool
2325 2050182 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2326 : {
2327 : ListCell *ilist;
2328 :
2329 5172366 : foreach(ilist, rel->indexlist)
2330 : {
2331 3783316 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2332 :
2333 : /*
2334 : * Note: ignore partial indexes, since they don't allow us to conclude
2335 : * that all attr values are distinct, *unless* they are marked predOK
2336 : * which means we know the index's predicate is satisfied by the
2337 : * query. We don't take any interest in expressional indexes either.
2338 : * Also, a multicolumn unique index doesn't allow us to conclude that
2339 : * just the specified attr is unique.
2340 : */
2341 3783316 : if (index->unique &&
2342 2588064 : index->nkeycolumns == 1 &&
2343 1422050 : index->indexkeys[0] == attno &&
2344 661168 : (index->indpred == NIL || index->predOK))
2345 661132 : return true;
2346 : }
2347 1389050 : return false;
2348 : }
2349 :
2350 :
2351 : /*
2352 : * has_row_triggers
2353 : *
2354 : * Detect whether the specified relation has any row-level triggers for event.
2355 : */
2356 : bool
2357 516 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2358 : {
2359 516 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2360 : Relation relation;
2361 : TriggerDesc *trigDesc;
2362 516 : bool result = false;
2363 :
2364 : /* Assume we already have adequate lock */
2365 516 : relation = table_open(rte->relid, NoLock);
2366 :
2367 516 : trigDesc = relation->trigdesc;
2368 516 : switch (event)
2369 : {
2370 164 : case CMD_INSERT:
2371 164 : if (trigDesc &&
2372 26 : (trigDesc->trig_insert_after_row ||
2373 14 : trigDesc->trig_insert_before_row))
2374 26 : result = true;
2375 164 : break;
2376 190 : case CMD_UPDATE:
2377 190 : if (trigDesc &&
2378 48 : (trigDesc->trig_update_after_row ||
2379 28 : trigDesc->trig_update_before_row))
2380 36 : result = true;
2381 190 : break;
2382 162 : case CMD_DELETE:
2383 162 : if (trigDesc &&
2384 30 : (trigDesc->trig_delete_after_row ||
2385 18 : trigDesc->trig_delete_before_row))
2386 16 : result = true;
2387 162 : break;
2388 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2389 0 : case CMD_MERGE:
2390 0 : result = false;
2391 0 : break;
2392 0 : default:
2393 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2394 : break;
2395 : }
2396 :
2397 516 : table_close(relation, NoLock);
2398 516 : return result;
2399 : }
2400 :
2401 : /*
2402 : * has_transition_tables
2403 : *
2404 : * Detect whether the specified relation has any transition tables for event.
2405 : */
2406 : bool
2407 390 : has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
2408 : {
2409 390 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2410 : Relation relation;
2411 : TriggerDesc *trigDesc;
2412 390 : bool result = false;
2413 :
2414 : Assert(rte->rtekind == RTE_RELATION);
2415 :
2416 : /* Currently foreign tables cannot have transition tables */
2417 390 : if (rte->relkind == RELKIND_FOREIGN_TABLE)
2418 290 : return result;
2419 :
2420 : /* Assume we already have adequate lock */
2421 100 : relation = table_open(rte->relid, NoLock);
2422 :
2423 100 : trigDesc = relation->trigdesc;
2424 100 : switch (event)
2425 : {
2426 0 : case CMD_INSERT:
2427 0 : if (trigDesc &&
2428 0 : trigDesc->trig_insert_new_table)
2429 0 : result = true;
2430 0 : break;
2431 60 : case CMD_UPDATE:
2432 60 : if (trigDesc &&
2433 8 : (trigDesc->trig_update_old_table ||
2434 0 : trigDesc->trig_update_new_table))
2435 8 : result = true;
2436 60 : break;
2437 40 : case CMD_DELETE:
2438 40 : if (trigDesc &&
2439 8 : trigDesc->trig_delete_old_table)
2440 8 : result = true;
2441 40 : break;
2442 : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2443 0 : case CMD_MERGE:
2444 0 : result = false;
2445 0 : break;
2446 0 : default:
2447 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2448 : break;
2449 : }
2450 :
2451 100 : table_close(relation, NoLock);
2452 100 : return result;
2453 : }
2454 :
2455 : /*
2456 : * has_stored_generated_columns
2457 : *
2458 : * Does table identified by RTI have any STORED GENERATED columns?
2459 : */
2460 : bool
2461 438 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2462 : {
2463 438 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2464 : Relation relation;
2465 : TupleDesc tupdesc;
2466 438 : bool result = false;
2467 :
2468 : /* Assume we already have adequate lock */
2469 438 : relation = table_open(rte->relid, NoLock);
2470 :
2471 438 : tupdesc = RelationGetDescr(relation);
2472 438 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2473 :
2474 438 : table_close(relation, NoLock);
2475 :
2476 438 : return result;
2477 : }
2478 :
2479 : /*
2480 : * get_dependent_generated_columns
2481 : *
2482 : * Get the column numbers of any STORED GENERATED columns of the relation
2483 : * that depend on any column listed in target_cols. Both the input and
2484 : * result bitmapsets contain column numbers offset by
2485 : * FirstLowInvalidHeapAttributeNumber.
2486 : */
2487 : Bitmapset *
2488 90 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2489 : Bitmapset *target_cols)
2490 : {
2491 90 : Bitmapset *dependentCols = NULL;
2492 90 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2493 : Relation relation;
2494 : TupleDesc tupdesc;
2495 : TupleConstr *constr;
2496 :
2497 : /* Assume we already have adequate lock */
2498 90 : relation = table_open(rte->relid, NoLock);
2499 :
2500 90 : tupdesc = RelationGetDescr(relation);
2501 90 : constr = tupdesc->constr;
2502 :
2503 90 : if (constr && constr->has_generated_stored)
2504 : {
2505 12 : for (int i = 0; i < constr->num_defval; i++)
2506 : {
2507 8 : AttrDefault *defval = &constr->defval[i];
2508 : Node *expr;
2509 8 : Bitmapset *attrs_used = NULL;
2510 :
2511 : /* skip if not generated column */
2512 8 : if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2513 0 : continue;
2514 :
2515 : /* identify columns this generated column depends on */
2516 8 : expr = stringToNode(defval->adbin);
2517 8 : pull_varattnos(expr, 1, &attrs_used);
2518 :
2519 8 : if (bms_overlap(target_cols, attrs_used))
2520 8 : dependentCols = bms_add_member(dependentCols,
2521 8 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2522 : }
2523 : }
2524 :
2525 90 : table_close(relation, NoLock);
2526 :
2527 90 : return dependentCols;
2528 : }
2529 :
2530 : /*
2531 : * set_relation_partition_info
2532 : *
2533 : * Set partitioning scheme and related information for a partitioned table.
2534 : */
2535 : static void
2536 16986 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2537 : Relation relation)
2538 : {
2539 : PartitionDesc partdesc;
2540 :
2541 : /*
2542 : * Create the PartitionDirectory infrastructure if we didn't already.
2543 : */
2544 16986 : if (root->glob->partition_directory == NULL)
2545 : {
2546 11600 : root->glob->partition_directory =
2547 11600 : CreatePartitionDirectory(CurrentMemoryContext, true);
2548 : }
2549 :
2550 16986 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2551 : relation);
2552 16986 : rel->part_scheme = find_partition_scheme(root, relation);
2553 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2554 16986 : rel->boundinfo = partdesc->boundinfo;
2555 16986 : rel->nparts = partdesc->nparts;
2556 16986 : set_baserel_partition_key_exprs(relation, rel);
2557 16986 : set_baserel_partition_constraint(relation, rel);
2558 16986 : }
2559 :
2560 : /*
2561 : * find_partition_scheme
2562 : *
2563 : * Find or create a PartitionScheme for this Relation.
2564 : */
2565 : static PartitionScheme
2566 16986 : find_partition_scheme(PlannerInfo *root, Relation relation)
2567 : {
2568 16986 : PartitionKey partkey = RelationGetPartitionKey(relation);
2569 : ListCell *lc;
2570 : int partnatts,
2571 : i;
2572 : PartitionScheme part_scheme;
2573 :
2574 : /* A partitioned table should have a partition key. */
2575 : Assert(partkey != NULL);
2576 :
2577 16986 : partnatts = partkey->partnatts;
2578 :
2579 : /* Search for a matching partition scheme and return if found one. */
2580 18876 : foreach(lc, root->part_schemes)
2581 : {
2582 5978 : part_scheme = lfirst(lc);
2583 :
2584 : /* Match partitioning strategy and number of keys. */
2585 5978 : if (partkey->strategy != part_scheme->strategy ||
2586 4988 : partnatts != part_scheme->partnatts)
2587 1440 : continue;
2588 :
2589 : /* Match partition key type properties. */
2590 4538 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2591 4088 : sizeof(Oid) * partnatts) != 0 ||
2592 4088 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2593 4088 : sizeof(Oid) * partnatts) != 0 ||
2594 4088 : memcmp(partkey->partcollation, part_scheme->partcollation,
2595 : sizeof(Oid) * partnatts) != 0)
2596 450 : continue;
2597 :
2598 : /*
2599 : * Length and byval information should match when partopcintype
2600 : * matches.
2601 : */
2602 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2603 : sizeof(int16) * partnatts) == 0);
2604 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2605 : sizeof(bool) * partnatts) == 0);
2606 :
2607 : /*
2608 : * If partopfamily and partopcintype matched, must have the same
2609 : * partition comparison functions. Note that we cannot reliably
2610 : * Assert the equality of function structs themselves for they might
2611 : * be different across PartitionKey's, so just Assert for the function
2612 : * OIDs.
2613 : */
2614 : #ifdef USE_ASSERT_CHECKING
2615 : for (i = 0; i < partkey->partnatts; i++)
2616 : Assert(partkey->partsupfunc[i].fn_oid ==
2617 : part_scheme->partsupfunc[i].fn_oid);
2618 : #endif
2619 :
2620 : /* Found matching partition scheme. */
2621 4088 : return part_scheme;
2622 : }
2623 :
2624 : /*
2625 : * Did not find matching partition scheme. Create one copying relevant
2626 : * information from the relcache. We need to copy the contents of the
2627 : * array since the relcache entry may not survive after we have closed the
2628 : * relation.
2629 : */
2630 12898 : part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2631 12898 : part_scheme->strategy = partkey->strategy;
2632 12898 : part_scheme->partnatts = partkey->partnatts;
2633 :
2634 12898 : part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2635 12898 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2636 : sizeof(Oid) * partnatts);
2637 :
2638 12898 : part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2639 12898 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2640 : sizeof(Oid) * partnatts);
2641 :
2642 12898 : part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2643 12898 : memcpy(part_scheme->partcollation, partkey->partcollation,
2644 : sizeof(Oid) * partnatts);
2645 :
2646 12898 : part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2647 12898 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2648 : sizeof(int16) * partnatts);
2649 :
2650 12898 : part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2651 12898 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2652 : sizeof(bool) * partnatts);
2653 :
2654 12898 : part_scheme->partsupfunc = (FmgrInfo *)
2655 12898 : palloc(sizeof(FmgrInfo) * partnatts);
2656 27644 : for (i = 0; i < partnatts; i++)
2657 14746 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2658 : CurrentMemoryContext);
2659 :
2660 : /* Add the partitioning scheme to PlannerInfo. */
2661 12898 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2662 :
2663 12898 : return part_scheme;
2664 : }
2665 :
2666 : /*
2667 : * set_baserel_partition_key_exprs
2668 : *
2669 : * Builds partition key expressions for the given base relation and fills
2670 : * rel->partexprs.
2671 : */
2672 : static void
2673 16986 : set_baserel_partition_key_exprs(Relation relation,
2674 : RelOptInfo *rel)
2675 : {
2676 16986 : PartitionKey partkey = RelationGetPartitionKey(relation);
2677 : int partnatts;
2678 : int cnt;
2679 : List **partexprs;
2680 : ListCell *lc;
2681 16986 : Index varno = rel->relid;
2682 :
2683 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2684 :
2685 : /* A partitioned table should have a partition key. */
2686 : Assert(partkey != NULL);
2687 :
2688 16986 : partnatts = partkey->partnatts;
2689 16986 : partexprs = (List **) palloc(sizeof(List *) * partnatts);
2690 16986 : lc = list_head(partkey->partexprs);
2691 :
2692 35850 : for (cnt = 0; cnt < partnatts; cnt++)
2693 : {
2694 : Expr *partexpr;
2695 18864 : AttrNumber attno = partkey->partattrs[cnt];
2696 :
2697 18864 : if (attno != InvalidAttrNumber)
2698 : {
2699 : /* Single column partition key is stored as a Var node. */
2700 : Assert(attno > 0);
2701 :
2702 17934 : partexpr = (Expr *) makeVar(varno, attno,
2703 17934 : partkey->parttypid[cnt],
2704 17934 : partkey->parttypmod[cnt],
2705 17934 : partkey->parttypcoll[cnt], 0);
2706 : }
2707 : else
2708 : {
2709 930 : if (lc == NULL)
2710 0 : elog(ERROR, "wrong number of partition key expressions");
2711 :
2712 : /* Re-stamp the expression with given varno. */
2713 930 : partexpr = (Expr *) copyObject(lfirst(lc));
2714 930 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2715 930 : lc = lnext(partkey->partexprs, lc);
2716 : }
2717 :
2718 : /* Base relations have a single expression per key. */
2719 18864 : partexprs[cnt] = list_make1(partexpr);
2720 : }
2721 :
2722 16986 : rel->partexprs = partexprs;
2723 :
2724 : /*
2725 : * A base relation does not have nullable partition key expressions, since
2726 : * no outer join is involved. We still allocate an array of empty
2727 : * expression lists to keep partition key expression handling code simple.
2728 : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2729 : */
2730 16986 : rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2731 16986 : }
2732 :
2733 : /*
2734 : * set_baserel_partition_constraint
2735 : *
2736 : * Builds the partition constraint for the given base relation and sets it
2737 : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2738 : * given relation.
2739 : */
2740 : static void
2741 16998 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2742 : {
2743 : List *partconstr;
2744 :
2745 16998 : if (rel->partition_qual) /* already done */
2746 0 : return;
2747 :
2748 : /*
2749 : * Run the partition quals through const-simplification similar to check
2750 : * constraints. We skip canonicalize_qual, though, because partition
2751 : * quals should be in canonical form already; also, since the qual is in
2752 : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2753 : * format and back again.
2754 : */
2755 16998 : partconstr = RelationGetPartitionQual(relation);
2756 16998 : if (partconstr)
2757 : {
2758 3430 : partconstr = (List *) expression_planner((Expr *) partconstr);
2759 3430 : if (rel->relid != 1)
2760 3348 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2761 3430 : rel->partition_qual = partconstr;
2762 : }
2763 : }
|