LCOV - code coverage report
Current view: top level - src/backend/optimizer/util - pathnode.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 1400 1543 90.7 %
Date: 2025-11-06 22:17:43 Functions: 63 63 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * pathnode.c
       4             :  *    Routines to manipulate pathlists and create path nodes
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/optimizer/util/pathnode.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include <math.h>
      18             : 
      19             : #include "access/htup_details.h"
      20             : #include "executor/nodeSetOp.h"
      21             : #include "foreign/fdwapi.h"
      22             : #include "miscadmin.h"
      23             : #include "nodes/extensible.h"
      24             : #include "optimizer/appendinfo.h"
      25             : #include "optimizer/clauses.h"
      26             : #include "optimizer/cost.h"
      27             : #include "optimizer/optimizer.h"
      28             : #include "optimizer/pathnode.h"
      29             : #include "optimizer/paths.h"
      30             : #include "optimizer/planmain.h"
      31             : #include "optimizer/tlist.h"
      32             : #include "parser/parsetree.h"
      33             : #include "utils/memutils.h"
      34             : #include "utils/selfuncs.h"
      35             : 
      36             : typedef enum
      37             : {
      38             :     COSTS_EQUAL,                /* path costs are fuzzily equal */
      39             :     COSTS_BETTER1,              /* first path is cheaper than second */
      40             :     COSTS_BETTER2,              /* second path is cheaper than first */
      41             :     COSTS_DIFFERENT,            /* neither path dominates the other on cost */
      42             : } PathCostComparison;
      43             : 
      44             : /*
      45             :  * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
      46             :  * XXX is it worth making this user-controllable?  It provides a tradeoff
      47             :  * between planner runtime and the accuracy of path cost comparisons.
      48             :  */
      49             : #define STD_FUZZ_FACTOR 1.01
      50             : 
      51             : static int  append_total_cost_compare(const ListCell *a, const ListCell *b);
      52             : static int  append_startup_cost_compare(const ListCell *a, const ListCell *b);
      53             : static List *reparameterize_pathlist_by_child(PlannerInfo *root,
      54             :                                               List *pathlist,
      55             :                                               RelOptInfo *child_rel);
      56             : static bool pathlist_is_reparameterizable_by_child(List *pathlist,
      57             :                                                    RelOptInfo *child_rel);
      58             : 
      59             : 
      60             : /*****************************************************************************
      61             :  *      MISC. PATH UTILITIES
      62             :  *****************************************************************************/
      63             : 
      64             : /*
      65             :  * compare_path_costs
      66             :  *    Return -1, 0, or +1 according as path1 is cheaper, the same cost,
      67             :  *    or more expensive than path2 for the specified criterion.
      68             :  */
      69             : int
      70     1120536 : compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
      71             : {
      72             :     /* Number of disabled nodes, if different, trumps all else. */
      73     1120536 :     if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
      74             :     {
      75        2712 :         if (path1->disabled_nodes < path2->disabled_nodes)
      76        2712 :             return -1;
      77             :         else
      78           0 :             return +1;
      79             :     }
      80             : 
      81     1117824 :     if (criterion == STARTUP_COST)
      82             :     {
      83      562854 :         if (path1->startup_cost < path2->startup_cost)
      84      343288 :             return -1;
      85      219566 :         if (path1->startup_cost > path2->startup_cost)
      86      112884 :             return +1;
      87             : 
      88             :         /*
      89             :          * If paths have the same startup cost (not at all unlikely), order
      90             :          * them by total cost.
      91             :          */
      92      106682 :         if (path1->total_cost < path2->total_cost)
      93       55008 :             return -1;
      94       51674 :         if (path1->total_cost > path2->total_cost)
      95        5114 :             return +1;
      96             :     }
      97             :     else
      98             :     {
      99      554970 :         if (path1->total_cost < path2->total_cost)
     100      518204 :             return -1;
     101       36766 :         if (path1->total_cost > path2->total_cost)
     102       10708 :             return +1;
     103             : 
     104             :         /*
     105             :          * If paths have the same total cost, order them by startup cost.
     106             :          */
     107       26058 :         if (path1->startup_cost < path2->startup_cost)
     108        2594 :             return -1;
     109       23464 :         if (path1->startup_cost > path2->startup_cost)
     110          30 :             return +1;
     111             :     }
     112       69994 :     return 0;
     113             : }
     114             : 
     115             : /*
     116             :  * compare_fractional_path_costs
     117             :  *    Return -1, 0, or +1 according as path1 is cheaper, the same cost,
     118             :  *    or more expensive than path2 for fetching the specified fraction
     119             :  *    of the total tuples.
     120             :  *
     121             :  * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
     122             :  * path with the cheaper total_cost.
     123             :  */
     124             : int
     125        6334 : compare_fractional_path_costs(Path *path1, Path *path2,
     126             :                               double fraction)
     127             : {
     128             :     Cost        cost1,
     129             :                 cost2;
     130             : 
     131             :     /* Number of disabled nodes, if different, trumps all else. */
     132        6334 :     if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
     133             :     {
     134          36 :         if (path1->disabled_nodes < path2->disabled_nodes)
     135          36 :             return -1;
     136             :         else
     137           0 :             return +1;
     138             :     }
     139             : 
     140        6298 :     if (fraction <= 0.0 || fraction >= 1.0)
     141        1962 :         return compare_path_costs(path1, path2, TOTAL_COST);
     142        4336 :     cost1 = path1->startup_cost +
     143        4336 :         fraction * (path1->total_cost - path1->startup_cost);
     144        4336 :     cost2 = path2->startup_cost +
     145        4336 :         fraction * (path2->total_cost - path2->startup_cost);
     146        4336 :     if (cost1 < cost2)
     147        3586 :         return -1;
     148         750 :     if (cost1 > cost2)
     149         750 :         return +1;
     150           0 :     return 0;
     151             : }
     152             : 
     153             : /*
     154             :  * compare_path_costs_fuzzily
     155             :  *    Compare the costs of two paths to see if either can be said to
     156             :  *    dominate the other.
     157             :  *
     158             :  * We use fuzzy comparisons so that add_path() can avoid keeping both of
     159             :  * a pair of paths that really have insignificantly different cost.
     160             :  *
     161             :  * The fuzz_factor argument must be 1.0 plus delta, where delta is the
     162             :  * fraction of the smaller cost that is considered to be a significant
     163             :  * difference.  For example, fuzz_factor = 1.01 makes the fuzziness limit
     164             :  * be 1% of the smaller cost.
     165             :  *
     166             :  * The two paths are said to have "equal" costs if both startup and total
     167             :  * costs are fuzzily the same.  Path1 is said to be better than path2 if
     168             :  * it has fuzzily better startup cost and fuzzily no worse total cost,
     169             :  * or if it has fuzzily better total cost and fuzzily no worse startup cost.
     170             :  * Path2 is better than path1 if the reverse holds.  Finally, if one path
     171             :  * is fuzzily better than the other on startup cost and fuzzily worse on
     172             :  * total cost, we just say that their costs are "different", since neither
     173             :  * dominates the other across the whole performance spectrum.
     174             :  *
     175             :  * This function also enforces a policy rule that paths for which the relevant
     176             :  * one of parent->consider_startup and parent->consider_param_startup is false
     177             :  * cannot survive comparisons solely on the grounds of good startup cost, so
     178             :  * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
     179             :  * (But if total costs are fuzzily equal, we compare startup costs anyway,
     180             :  * in hopes of eliminating one path or the other.)
     181             :  */
     182             : static PathCostComparison
     183     4609090 : compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
     184             : {
     185             : #define CONSIDER_PATH_STARTUP_COST(p)  \
     186             :     ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
     187             : 
     188             :     /* Number of disabled nodes, if different, trumps all else. */
     189     4609090 :     if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
     190             :     {
     191       31104 :         if (path1->disabled_nodes < path2->disabled_nodes)
     192       16900 :             return COSTS_BETTER1;
     193             :         else
     194       14204 :             return COSTS_BETTER2;
     195             :     }
     196             : 
     197             :     /*
     198             :      * Check total cost first since it's more likely to be different; many
     199             :      * paths have zero startup cost.
     200             :      */
     201     4577986 :     if (path1->total_cost > path2->total_cost * fuzz_factor)
     202             :     {
     203             :         /* path1 fuzzily worse on total cost */
     204     2399304 :         if (CONSIDER_PATH_STARTUP_COST(path1) &&
     205      137478 :             path2->startup_cost > path1->startup_cost * fuzz_factor)
     206             :         {
     207             :             /* ... but path2 fuzzily worse on startup, so DIFFERENT */
     208       92784 :             return COSTS_DIFFERENT;
     209             :         }
     210             :         /* else path2 dominates */
     211     2306520 :         return COSTS_BETTER2;
     212             :     }
     213     2178682 :     if (path2->total_cost > path1->total_cost * fuzz_factor)
     214             :     {
     215             :         /* path2 fuzzily worse on total cost */
     216     1142848 :         if (CONSIDER_PATH_STARTUP_COST(path2) &&
     217       61352 :             path1->startup_cost > path2->startup_cost * fuzz_factor)
     218             :         {
     219             :             /* ... but path1 fuzzily worse on startup, so DIFFERENT */
     220       40712 :             return COSTS_DIFFERENT;
     221             :         }
     222             :         /* else path1 dominates */
     223     1102136 :         return COSTS_BETTER1;
     224             :     }
     225             :     /* fuzzily the same on total cost ... */
     226     1035834 :     if (path1->startup_cost > path2->startup_cost * fuzz_factor)
     227             :     {
     228             :         /* ... but path1 fuzzily worse on startup, so path2 wins */
     229      376852 :         return COSTS_BETTER2;
     230             :     }
     231      658982 :     if (path2->startup_cost > path1->startup_cost * fuzz_factor)
     232             :     {
     233             :         /* ... but path2 fuzzily worse on startup, so path1 wins */
     234       65720 :         return COSTS_BETTER1;
     235             :     }
     236             :     /* fuzzily the same on both costs */
     237      593262 :     return COSTS_EQUAL;
     238             : 
     239             : #undef CONSIDER_PATH_STARTUP_COST
     240             : }
     241             : 
     242             : /*
     243             :  * set_cheapest
     244             :  *    Find the minimum-cost paths from among a relation's paths,
     245             :  *    and save them in the rel's cheapest-path fields.
     246             :  *
     247             :  * cheapest_total_path is normally the cheapest-total-cost unparameterized
     248             :  * path; but if there are no unparameterized paths, we assign it to be the
     249             :  * best (cheapest least-parameterized) parameterized path.  However, only
     250             :  * unparameterized paths are considered candidates for cheapest_startup_path,
     251             :  * so that will be NULL if there are no unparameterized paths.
     252             :  *
     253             :  * The cheapest_parameterized_paths list collects all parameterized paths
     254             :  * that have survived the add_path() tournament for this relation.  (Since
     255             :  * add_path ignores pathkeys for a parameterized path, these will be paths
     256             :  * that have best cost or best row count for their parameterization.  We
     257             :  * may also have both a parallel-safe and a non-parallel-safe path in some
     258             :  * cases for the same parameterization in some cases, but this should be
     259             :  * relatively rare since, most typically, all paths for the same relation
     260             :  * will be parallel-safe or none of them will.)
     261             :  *
     262             :  * cheapest_parameterized_paths always includes the cheapest-total
     263             :  * unparameterized path, too, if there is one; the users of that list find
     264             :  * it more convenient if that's included.
     265             :  *
     266             :  * This is normally called only after we've finished constructing the path
     267             :  * list for the rel node.
     268             :  */
     269             : void
     270     2093516 : set_cheapest(RelOptInfo *parent_rel)
     271             : {
     272             :     Path       *cheapest_startup_path;
     273             :     Path       *cheapest_total_path;
     274             :     Path       *best_param_path;
     275             :     List       *parameterized_paths;
     276             :     ListCell   *p;
     277             : 
     278             :     Assert(IsA(parent_rel, RelOptInfo));
     279             : 
     280     2093516 :     if (parent_rel->pathlist == NIL)
     281           0 :         elog(ERROR, "could not devise a query plan for the given query");
     282             : 
     283     2093516 :     cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
     284     2093516 :     parameterized_paths = NIL;
     285             : 
     286     4761214 :     foreach(p, parent_rel->pathlist)
     287             :     {
     288     2667698 :         Path       *path = (Path *) lfirst(p);
     289             :         int         cmp;
     290             : 
     291     2667698 :         if (path->param_info)
     292             :         {
     293             :             /* Parameterized path, so add it to parameterized_paths */
     294      142420 :             parameterized_paths = lappend(parameterized_paths, path);
     295             : 
     296             :             /*
     297             :              * If we have an unparameterized cheapest-total, we no longer care
     298             :              * about finding the best parameterized path, so move on.
     299             :              */
     300      142420 :             if (cheapest_total_path)
     301       29918 :                 continue;
     302             : 
     303             :             /*
     304             :              * Otherwise, track the best parameterized path, which is the one
     305             :              * with least total cost among those of the minimum
     306             :              * parameterization.
     307             :              */
     308      112502 :             if (best_param_path == NULL)
     309      102616 :                 best_param_path = path;
     310             :             else
     311             :             {
     312        9886 :                 switch (bms_subset_compare(PATH_REQ_OUTER(path),
     313        9886 :                                            PATH_REQ_OUTER(best_param_path)))
     314             :                 {
     315          60 :                     case BMS_EQUAL:
     316             :                         /* keep the cheaper one */
     317          60 :                         if (compare_path_costs(path, best_param_path,
     318             :                                                TOTAL_COST) < 0)
     319           0 :                             best_param_path = path;
     320          60 :                         break;
     321         768 :                     case BMS_SUBSET1:
     322             :                         /* new path is less-parameterized */
     323         768 :                         best_param_path = path;
     324         768 :                         break;
     325           6 :                     case BMS_SUBSET2:
     326             :                         /* old path is less-parameterized, keep it */
     327           6 :                         break;
     328        9052 :                     case BMS_DIFFERENT:
     329             : 
     330             :                         /*
     331             :                          * This means that neither path has the least possible
     332             :                          * parameterization for the rel.  We'll sit on the old
     333             :                          * path until something better comes along.
     334             :                          */
     335        9052 :                         break;
     336             :                 }
     337             :             }
     338             :         }
     339             :         else
     340             :         {
     341             :             /* Unparameterized path, so consider it for cheapest slots */
     342     2525278 :             if (cheapest_total_path == NULL)
     343             :             {
     344     2080798 :                 cheapest_startup_path = cheapest_total_path = path;
     345     2080798 :                 continue;
     346             :             }
     347             : 
     348             :             /*
     349             :              * If we find two paths of identical costs, try to keep the
     350             :              * better-sorted one.  The paths might have unrelated sort
     351             :              * orderings, in which case we can only guess which might be
     352             :              * better to keep, but if one is superior then we definitely
     353             :              * should keep that one.
     354             :              */
     355      444480 :             cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
     356      444480 :             if (cmp > 0 ||
     357         384 :                 (cmp == 0 &&
     358         384 :                  compare_pathkeys(cheapest_startup_path->pathkeys,
     359             :                                   path->pathkeys) == PATHKEYS_BETTER2))
     360       83058 :                 cheapest_startup_path = path;
     361             : 
     362      444480 :             cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
     363      444480 :             if (cmp > 0 ||
     364          48 :                 (cmp == 0 &&
     365          48 :                  compare_pathkeys(cheapest_total_path->pathkeys,
     366             :                                   path->pathkeys) == PATHKEYS_BETTER2))
     367           0 :                 cheapest_total_path = path;
     368             :         }
     369             :     }
     370             : 
     371             :     /* Add cheapest unparameterized path, if any, to parameterized_paths */
     372     2093516 :     if (cheapest_total_path)
     373     2080798 :         parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
     374             : 
     375             :     /*
     376             :      * If there is no unparameterized path, use the best parameterized path as
     377             :      * cheapest_total_path (but not as cheapest_startup_path).
     378             :      */
     379     2093516 :     if (cheapest_total_path == NULL)
     380       12718 :         cheapest_total_path = best_param_path;
     381             :     Assert(cheapest_total_path != NULL);
     382             : 
     383     2093516 :     parent_rel->cheapest_startup_path = cheapest_startup_path;
     384     2093516 :     parent_rel->cheapest_total_path = cheapest_total_path;
     385     2093516 :     parent_rel->cheapest_parameterized_paths = parameterized_paths;
     386     2093516 : }
     387             : 
     388             : /*
     389             :  * add_path
     390             :  *    Consider a potential implementation path for the specified parent rel,
     391             :  *    and add it to the rel's pathlist if it is worthy of consideration.
     392             :  *
     393             :  *    A path is worthy if it has a better sort order (better pathkeys) or
     394             :  *    cheaper cost (as defined below), or generates fewer rows, than any
     395             :  *    existing path that has the same or superset parameterization rels.  We
     396             :  *    also consider parallel-safe paths more worthy than others.
     397             :  *
     398             :  *    Cheaper cost can mean either a cheaper total cost or a cheaper startup
     399             :  *    cost; if one path is cheaper in one of these aspects and another is
     400             :  *    cheaper in the other, we keep both. However, when some path type is
     401             :  *    disabled (e.g. due to enable_seqscan=false), the number of times that
     402             :  *    a disabled path type is used is considered to be a higher-order
     403             :  *    component of the cost. Hence, if path A uses no disabled path type,
     404             :  *    and path B uses 1 or more disabled path types, A is cheaper, no matter
     405             :  *    what we estimate for the startup and total costs. The startup and total
     406             :  *    cost essentially act as a tiebreak when comparing paths that use equal
     407             :  *    numbers of disabled path nodes; but in practice this tiebreak is almost
     408             :  *    always used, since normally no path types are disabled.
     409             :  *
     410             :  *    In addition to possibly adding new_path, we also remove from the rel's
     411             :  *    pathlist any old paths that are dominated by new_path --- that is,
     412             :  *    new_path is cheaper, at least as well ordered, generates no more rows,
     413             :  *    requires no outer rels not required by the old path, and is no less
     414             :  *    parallel-safe.
     415             :  *
     416             :  *    In most cases, a path with a superset parameterization will generate
     417             :  *    fewer rows (since it has more join clauses to apply), so that those two
     418             :  *    figures of merit move in opposite directions; this means that a path of
     419             :  *    one parameterization can seldom dominate a path of another.  But such
     420             :  *    cases do arise, so we make the full set of checks anyway.
     421             :  *
     422             :  *    There are two policy decisions embedded in this function, along with
     423             :  *    its sibling add_path_precheck.  First, we treat all parameterized paths
     424             :  *    as having NIL pathkeys, so that they cannot win comparisons on the
     425             :  *    basis of sort order.  This is to reduce the number of parameterized
     426             :  *    paths that are kept; see discussion in src/backend/optimizer/README.
     427             :  *
     428             :  *    Second, we only consider cheap startup cost to be interesting if
     429             :  *    parent_rel->consider_startup is true for an unparameterized path, or
     430             :  *    parent_rel->consider_param_startup is true for a parameterized one.
     431             :  *    Again, this allows discarding useless paths sooner.
     432             :  *
     433             :  *    The pathlist is kept sorted by disabled_nodes and then by total_cost,
     434             :  *    with cheaper paths at the front.  Within this routine, that's simply a
     435             :  *    speed hack: doing it that way makes it more likely that we will reject
     436             :  *    an inferior path after a few comparisons, rather than many comparisons.
     437             :  *    However, add_path_precheck relies on this ordering to exit early
     438             :  *    when possible.
     439             :  *
     440             :  *    NOTE: discarded Path objects are immediately pfree'd to reduce planner
     441             :  *    memory consumption.  We dare not try to free the substructure of a Path,
     442             :  *    since much of it may be shared with other Paths or the query tree itself;
     443             :  *    but just recycling discarded Path nodes is a very useful savings in
     444             :  *    a large join tree.  We can recycle the List nodes of pathlist, too.
     445             :  *
     446             :  *    As noted in optimizer/README, deleting a previously-accepted Path is
     447             :  *    safe because we know that Paths of this rel cannot yet be referenced
     448             :  *    from any other rel, such as a higher-level join.  However, in some cases
     449             :  *    it is possible that a Path is referenced by another Path for its own
     450             :  *    rel; we must not delete such a Path, even if it is dominated by the new
     451             :  *    Path.  Currently this occurs only for IndexPath objects, which may be
     452             :  *    referenced as children of BitmapHeapPaths as well as being paths in
     453             :  *    their own right.  Hence, we don't pfree IndexPaths when rejecting them.
     454             :  *
     455             :  * 'parent_rel' is the relation entry to which the path corresponds.
     456             :  * 'new_path' is a potential path for parent_rel.
     457             :  *
     458             :  * Returns nothing, but modifies parent_rel->pathlist.
     459             :  */
     460             : void
     461     4593618 : add_path(RelOptInfo *parent_rel, Path *new_path)
     462             : {
     463     4593618 :     bool        accept_new = true;  /* unless we find a superior old path */
     464     4593618 :     int         insert_at = 0;  /* where to insert new item */
     465             :     List       *new_path_pathkeys;
     466             :     ListCell   *p1;
     467             : 
     468             :     /*
     469             :      * This is a convenient place to check for query cancel --- no part of the
     470             :      * planner goes very long without calling add_path().
     471             :      */
     472     4593618 :     CHECK_FOR_INTERRUPTS();
     473             : 
     474             :     /* Pretend parameterized paths have no pathkeys, per comment above */
     475     4593618 :     new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
     476             : 
     477             :     /*
     478             :      * Loop to check proposed new path against old paths.  Note it is possible
     479             :      * for more than one old path to be tossed out because new_path dominates
     480             :      * it.
     481             :      */
     482     7114032 :     foreach(p1, parent_rel->pathlist)
     483             :     {
     484     4240842 :         Path       *old_path = (Path *) lfirst(p1);
     485     4240842 :         bool        remove_old = false; /* unless new proves superior */
     486             :         PathCostComparison costcmp;
     487             :         PathKeysComparison keyscmp;
     488             :         BMS_Comparison outercmp;
     489             : 
     490             :         /*
     491             :          * Do a fuzzy cost comparison with standard fuzziness limit.
     492             :          */
     493     4240842 :         costcmp = compare_path_costs_fuzzily(new_path, old_path,
     494             :                                              STD_FUZZ_FACTOR);
     495             : 
     496             :         /*
     497             :          * If the two paths compare differently for startup and total cost,
     498             :          * then we want to keep both, and we can skip comparing pathkeys and
     499             :          * required_outer rels.  If they compare the same, proceed with the
     500             :          * other comparisons.  Row count is checked last.  (We make the tests
     501             :          * in this order because the cost comparison is most likely to turn
     502             :          * out "different", and the pathkeys comparison next most likely.  As
     503             :          * explained above, row count very seldom makes a difference, so even
     504             :          * though it's cheap to compare there's not much point in checking it
     505             :          * earlier.)
     506             :          */
     507     4240842 :         if (costcmp != COSTS_DIFFERENT)
     508             :         {
     509             :             /* Similarly check to see if either dominates on pathkeys */
     510             :             List       *old_path_pathkeys;
     511             : 
     512     4107412 :             old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
     513     4107412 :             keyscmp = compare_pathkeys(new_path_pathkeys,
     514             :                                        old_path_pathkeys);
     515     4107412 :             if (keyscmp != PATHKEYS_DIFFERENT)
     516             :             {
     517     3920374 :                 switch (costcmp)
     518             :                 {
     519      400932 :                     case COSTS_EQUAL:
     520      400932 :                         outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
     521      400932 :                                                       PATH_REQ_OUTER(old_path));
     522      400932 :                         if (keyscmp == PATHKEYS_BETTER1)
     523             :                         {
     524        6988 :                             if ((outercmp == BMS_EQUAL ||
     525        6988 :                                  outercmp == BMS_SUBSET1) &&
     526        6988 :                                 new_path->rows <= old_path->rows &&
     527        6980 :                                 new_path->parallel_safe >= old_path->parallel_safe)
     528        6980 :                                 remove_old = true;  /* new dominates old */
     529             :                         }
     530      393944 :                         else if (keyscmp == PATHKEYS_BETTER2)
     531             :                         {
     532       19992 :                             if ((outercmp == BMS_EQUAL ||
     533       19992 :                                  outercmp == BMS_SUBSET2) &&
     534       19992 :                                 new_path->rows >= old_path->rows &&
     535       19988 :                                 new_path->parallel_safe <= old_path->parallel_safe)
     536       19988 :                                 accept_new = false; /* old dominates new */
     537             :                         }
     538             :                         else    /* keyscmp == PATHKEYS_EQUAL */
     539             :                         {
     540      373952 :                             if (outercmp == BMS_EQUAL)
     541             :                             {
     542             :                                 /*
     543             :                                  * Same pathkeys and outer rels, and fuzzily
     544             :                                  * the same cost, so keep just one; to decide
     545             :                                  * which, first check parallel-safety, then
     546             :                                  * rows, then do a fuzzy cost comparison with
     547             :                                  * very small fuzz limit.  (We used to do an
     548             :                                  * exact cost comparison, but that results in
     549             :                                  * annoying platform-specific plan variations
     550             :                                  * due to roundoff in the cost estimates.)  If
     551             :                                  * things are still tied, arbitrarily keep
     552             :                                  * only the old path.  Notice that we will
     553             :                                  * keep only the old path even if the
     554             :                                  * less-fuzzy comparison decides the startup
     555             :                                  * and total costs compare differently.
     556             :                                  */
     557      368534 :                                 if (new_path->parallel_safe >
     558      368534 :                                     old_path->parallel_safe)
     559          42 :                                     remove_old = true;  /* new dominates old */
     560      368492 :                                 else if (new_path->parallel_safe <
     561      368492 :                                          old_path->parallel_safe)
     562          54 :                                     accept_new = false; /* old dominates new */
     563      368438 :                                 else if (new_path->rows < old_path->rows)
     564           0 :                                     remove_old = true;  /* new dominates old */
     565      368438 :                                 else if (new_path->rows > old_path->rows)
     566         190 :                                     accept_new = false; /* old dominates new */
     567      368248 :                                 else if (compare_path_costs_fuzzily(new_path,
     568             :                                                                     old_path,
     569             :                                                                     1.0000000001) == COSTS_BETTER1)
     570       16338 :                                     remove_old = true;  /* new dominates old */
     571             :                                 else
     572      351910 :                                     accept_new = false; /* old equals or
     573             :                                                          * dominates new */
     574             :                             }
     575        5418 :                             else if (outercmp == BMS_SUBSET1 &&
     576        1194 :                                      new_path->rows <= old_path->rows &&
     577        1174 :                                      new_path->parallel_safe >= old_path->parallel_safe)
     578        1174 :                                 remove_old = true;  /* new dominates old */
     579        4244 :                             else if (outercmp == BMS_SUBSET2 &&
     580        3522 :                                      new_path->rows >= old_path->rows &&
     581        3486 :                                      new_path->parallel_safe <= old_path->parallel_safe)
     582        3486 :                                 accept_new = false; /* old dominates new */
     583             :                             /* else different parameterizations, keep both */
     584             :                         }
     585      400932 :                         break;
     586     1141198 :                     case COSTS_BETTER1:
     587     1141198 :                         if (keyscmp != PATHKEYS_BETTER2)
     588             :                         {
     589      774006 :                             outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
     590      774006 :                                                           PATH_REQ_OUTER(old_path));
     591      774006 :                             if ((outercmp == BMS_EQUAL ||
     592      661914 :                                  outercmp == BMS_SUBSET1) &&
     593      661914 :                                 new_path->rows <= old_path->rows &&
     594      656298 :                                 new_path->parallel_safe >= old_path->parallel_safe)
     595      653712 :                                 remove_old = true;  /* new dominates old */
     596             :                         }
     597     1141198 :                         break;
     598     2378244 :                     case COSTS_BETTER2:
     599     2378244 :                         if (keyscmp != PATHKEYS_BETTER1)
     600             :                         {
     601     1512064 :                             outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
     602     1512064 :                                                           PATH_REQ_OUTER(old_path));
     603     1512064 :                             if ((outercmp == BMS_EQUAL ||
     604     1424190 :                                  outercmp == BMS_SUBSET2) &&
     605     1424190 :                                 new_path->rows >= old_path->rows &&
     606     1346526 :                                 new_path->parallel_safe <= old_path->parallel_safe)
     607     1344800 :                                 accept_new = false; /* old dominates new */
     608             :                         }
     609     2378244 :                         break;
     610           0 :                     case COSTS_DIFFERENT:
     611             : 
     612             :                         /*
     613             :                          * can't get here, but keep this case to keep compiler
     614             :                          * quiet
     615             :                          */
     616           0 :                         break;
     617             :                 }
     618             :             }
     619             :         }
     620             : 
     621             :         /*
     622             :          * Remove current element from pathlist if dominated by new.
     623             :          */
     624     4240842 :         if (remove_old)
     625             :         {
     626      678246 :             parent_rel->pathlist = foreach_delete_current(parent_rel->pathlist,
     627             :                                                           p1);
     628             : 
     629             :             /*
     630             :              * Delete the data pointed-to by the deleted cell, if possible
     631             :              */
     632      678246 :             if (!IsA(old_path, IndexPath))
     633      658594 :                 pfree(old_path);
     634             :         }
     635             :         else
     636             :         {
     637             :             /*
     638             :              * new belongs after this old path if it has more disabled nodes
     639             :              * or if it has the same number of nodes but a greater total cost
     640             :              */
     641     3562596 :             if (new_path->disabled_nodes > old_path->disabled_nodes ||
     642     3548392 :                 (new_path->disabled_nodes == old_path->disabled_nodes &&
     643     3547426 :                  new_path->total_cost >= old_path->total_cost))
     644     2953438 :                 insert_at = foreach_current_index(p1) + 1;
     645             :         }
     646             : 
     647             :         /*
     648             :          * If we found an old path that dominates new_path, we can quit
     649             :          * scanning the pathlist; we will not add new_path, and we assume
     650             :          * new_path cannot dominate any other elements of the pathlist.
     651             :          */
     652     4240842 :         if (!accept_new)
     653     1720428 :             break;
     654             :     }
     655             : 
     656     4593618 :     if (accept_new)
     657             :     {
     658             :         /* Accept the new path: insert it at proper place in pathlist */
     659     2873190 :         parent_rel->pathlist =
     660     2873190 :             list_insert_nth(parent_rel->pathlist, insert_at, new_path);
     661             :     }
     662             :     else
     663             :     {
     664             :         /* Reject and recycle the new path */
     665     1720428 :         if (!IsA(new_path, IndexPath))
     666     1618222 :             pfree(new_path);
     667             :     }
     668     4593618 : }
     669             : 
     670             : /*
     671             :  * add_path_precheck
     672             :  *    Check whether a proposed new path could possibly get accepted.
     673             :  *    We assume we know the path's pathkeys and parameterization accurately,
     674             :  *    and have lower bounds for its costs.
     675             :  *
     676             :  * Note that we do not know the path's rowcount, since getting an estimate for
     677             :  * that is too expensive to do before prechecking.  We assume here that paths
     678             :  * of a superset parameterization will generate fewer rows; if that holds,
     679             :  * then paths with different parameterizations cannot dominate each other
     680             :  * and so we can simply ignore existing paths of another parameterization.
     681             :  * (In the infrequent cases where that rule of thumb fails, add_path will
     682             :  * get rid of the inferior path.)
     683             :  *
     684             :  * At the time this is called, we haven't actually built a Path structure,
     685             :  * so the required information has to be passed piecemeal.
     686             :  */
     687             : bool
     688     5260226 : add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
     689             :                   Cost startup_cost, Cost total_cost,
     690             :                   List *pathkeys, Relids required_outer)
     691             : {
     692             :     List       *new_path_pathkeys;
     693             :     bool        consider_startup;
     694             :     ListCell   *p1;
     695             : 
     696             :     /* Pretend parameterized paths have no pathkeys, per add_path policy */
     697     5260226 :     new_path_pathkeys = required_outer ? NIL : pathkeys;
     698             : 
     699             :     /* Decide whether new path's startup cost is interesting */
     700     5260226 :     consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
     701             : 
     702     6733608 :     foreach(p1, parent_rel->pathlist)
     703             :     {
     704     6388956 :         Path       *old_path = (Path *) lfirst(p1);
     705             :         PathKeysComparison keyscmp;
     706             : 
     707             :         /*
     708             :          * Since the pathlist is sorted by disabled_nodes and then by
     709             :          * total_cost, we can stop looking once we reach a path with more
     710             :          * disabled nodes, or the same number of disabled nodes plus a
     711             :          * total_cost larger than the new path's.
     712             :          */
     713     6388956 :         if (unlikely(old_path->disabled_nodes != disabled_nodes))
     714             :         {
     715       12966 :             if (disabled_nodes < old_path->disabled_nodes)
     716         318 :                 break;
     717             :         }
     718     6375990 :         else if (total_cost <= old_path->total_cost * STD_FUZZ_FACTOR)
     719     1908670 :             break;
     720             : 
     721             :         /*
     722             :          * We are looking for an old_path with the same parameterization (and
     723             :          * by assumption the same rowcount) that dominates the new path on
     724             :          * pathkeys as well as both cost metrics.  If we find one, we can
     725             :          * reject the new path.
     726             :          *
     727             :          * Cost comparisons here should match compare_path_costs_fuzzily.
     728             :          */
     729             :         /* new path can win on startup cost only if consider_startup */
     730     4479968 :         if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
     731     2108632 :             !consider_startup)
     732             :         {
     733             :             /* new path loses on cost, so check pathkeys... */
     734             :             List       *old_path_pathkeys;
     735             : 
     736     4376566 :             old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
     737     4376566 :             keyscmp = compare_pathkeys(new_path_pathkeys,
     738             :                                        old_path_pathkeys);
     739     4376566 :             if (keyscmp == PATHKEYS_EQUAL ||
     740             :                 keyscmp == PATHKEYS_BETTER2)
     741             :             {
     742             :                 /* new path does not win on pathkeys... */
     743     3072880 :                 if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
     744             :                 {
     745             :                     /* Found an old path that dominates the new one */
     746     3006586 :                     return false;
     747             :                 }
     748             :             }
     749             :         }
     750             :     }
     751             : 
     752     2253640 :     return true;
     753             : }
     754             : 
     755             : /*
     756             :  * add_partial_path
     757             :  *    Like add_path, our goal here is to consider whether a path is worthy
     758             :  *    of being kept around, but the considerations here are a bit different.
     759             :  *    A partial path is one which can be executed in any number of workers in
     760             :  *    parallel such that each worker will generate a subset of the path's
     761             :  *    overall result.
     762             :  *
     763             :  *    As in add_path, the partial_pathlist is kept sorted with the cheapest
     764             :  *    total path in front.  This is depended on by multiple places, which
     765             :  *    just take the front entry as the cheapest path without searching.
     766             :  *
     767             :  *    We don't generate parameterized partial paths for several reasons.  Most
     768             :  *    importantly, they're not safe to execute, because there's nothing to
     769             :  *    make sure that a parallel scan within the parameterized portion of the
     770             :  *    plan is running with the same value in every worker at the same time.
     771             :  *    Fortunately, it seems unlikely to be worthwhile anyway, because having
     772             :  *    each worker scan the entire outer relation and a subset of the inner
     773             :  *    relation will generally be a terrible plan.  The inner (parameterized)
     774             :  *    side of the plan will be small anyway.  There could be rare cases where
     775             :  *    this wins big - e.g. if join order constraints put a 1-row relation on
     776             :  *    the outer side of the topmost join with a parameterized plan on the inner
     777             :  *    side - but we'll have to be content not to handle such cases until
     778             :  *    somebody builds an executor infrastructure that can cope with them.
     779             :  *
     780             :  *    Because we don't consider parameterized paths here, we also don't
     781             :  *    need to consider the row counts as a measure of quality: every path will
     782             :  *    produce the same number of rows.  Neither do we need to consider startup
     783             :  *    costs: parallelism is only used for plans that will be run to completion.
     784             :  *    Therefore, this routine is much simpler than add_path: it needs to
     785             :  *    consider only disabled nodes, pathkeys and total cost.
     786             :  *
     787             :  *    As with add_path, we pfree paths that are found to be dominated by
     788             :  *    another partial path; this requires that there be no other references to
     789             :  *    such paths yet.  Hence, GatherPaths must not be created for a rel until
     790             :  *    we're done creating all partial paths for it.  Unlike add_path, we don't
     791             :  *    take an exception for IndexPaths as partial index paths won't be
     792             :  *    referenced by partial BitmapHeapPaths.
     793             :  */
     794             : void
     795      307306 : add_partial_path(RelOptInfo *parent_rel, Path *new_path)
     796             : {
     797      307306 :     bool        accept_new = true;  /* unless we find a superior old path */
     798      307306 :     int         insert_at = 0;  /* where to insert new item */
     799             :     ListCell   *p1;
     800             : 
     801             :     /* Check for query cancel. */
     802      307306 :     CHECK_FOR_INTERRUPTS();
     803             : 
     804             :     /* Path to be added must be parallel safe. */
     805             :     Assert(new_path->parallel_safe);
     806             : 
     807             :     /* Relation should be OK for parallelism, too. */
     808             :     Assert(parent_rel->consider_parallel);
     809             : 
     810             :     /*
     811             :      * As in add_path, throw out any paths which are dominated by the new
     812             :      * path, but throw out the new path if some existing path dominates it.
     813             :      */
     814      428252 :     foreach(p1, parent_rel->partial_pathlist)
     815             :     {
     816      252186 :         Path       *old_path = (Path *) lfirst(p1);
     817      252186 :         bool        remove_old = false; /* unless new proves superior */
     818             :         PathKeysComparison keyscmp;
     819             : 
     820             :         /* Compare pathkeys. */
     821      252186 :         keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
     822             : 
     823             :         /* Unless pathkeys are incompatible, keep just one of the two paths. */
     824      252186 :         if (keyscmp != PATHKEYS_DIFFERENT)
     825             :         {
     826      251976 :             if (unlikely(new_path->disabled_nodes != old_path->disabled_nodes))
     827             :             {
     828        1484 :                 if (new_path->disabled_nodes > old_path->disabled_nodes)
     829         956 :                     accept_new = false;
     830             :                 else
     831         528 :                     remove_old = true;
     832             :             }
     833      250492 :             else if (new_path->total_cost > old_path->total_cost
     834      250492 :                      * STD_FUZZ_FACTOR)
     835             :             {
     836             :                 /* New path costs more; keep it only if pathkeys are better. */
     837      123394 :                 if (keyscmp != PATHKEYS_BETTER1)
     838       89314 :                     accept_new = false;
     839             :             }
     840      127098 :             else if (old_path->total_cost > new_path->total_cost
     841      127098 :                      * STD_FUZZ_FACTOR)
     842             :             {
     843             :                 /* Old path costs more; keep it only if pathkeys are better. */
     844       85490 :                 if (keyscmp != PATHKEYS_BETTER2)
     845       30120 :                     remove_old = true;
     846             :             }
     847       41608 :             else if (keyscmp == PATHKEYS_BETTER1)
     848             :             {
     849             :                 /* Costs are about the same, new path has better pathkeys. */
     850          24 :                 remove_old = true;
     851             :             }
     852       41584 :             else if (keyscmp == PATHKEYS_BETTER2)
     853             :             {
     854             :                 /* Costs are about the same, old path has better pathkeys. */
     855        2034 :                 accept_new = false;
     856             :             }
     857       39550 :             else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
     858             :             {
     859             :                 /* Pathkeys are the same, and the old path costs more. */
     860         614 :                 remove_old = true;
     861             :             }
     862             :             else
     863             :             {
     864             :                 /*
     865             :                  * Pathkeys are the same, and new path isn't materially
     866             :                  * cheaper.
     867             :                  */
     868       38936 :                 accept_new = false;
     869             :             }
     870             :         }
     871             : 
     872             :         /*
     873             :          * Remove current element from partial_pathlist if dominated by new.
     874             :          */
     875      252186 :         if (remove_old)
     876             :         {
     877       31286 :             parent_rel->partial_pathlist =
     878       31286 :                 foreach_delete_current(parent_rel->partial_pathlist, p1);
     879       31286 :             pfree(old_path);
     880             :         }
     881             :         else
     882             :         {
     883             :             /* new belongs after this old path if it has cost >= old's */
     884      220900 :             if (new_path->total_cost >= old_path->total_cost)
     885      164358 :                 insert_at = foreach_current_index(p1) + 1;
     886             :         }
     887             : 
     888             :         /*
     889             :          * If we found an old path that dominates new_path, we can quit
     890             :          * scanning the partial_pathlist; we will not add new_path, and we
     891             :          * assume new_path cannot dominate any later path.
     892             :          */
     893      252186 :         if (!accept_new)
     894      131240 :             break;
     895             :     }
     896             : 
     897      307306 :     if (accept_new)
     898             :     {
     899             :         /* Accept the new path: insert it at proper place */
     900      176066 :         parent_rel->partial_pathlist =
     901      176066 :             list_insert_nth(parent_rel->partial_pathlist, insert_at, new_path);
     902             :     }
     903             :     else
     904             :     {
     905             :         /* Reject and recycle the new path */
     906      131240 :         pfree(new_path);
     907             :     }
     908      307306 : }
     909             : 
     910             : /*
     911             :  * add_partial_path_precheck
     912             :  *    Check whether a proposed new partial path could possibly get accepted.
     913             :  *
     914             :  * Unlike add_path_precheck, we can ignore startup cost and parameterization,
     915             :  * since they don't matter for partial paths (see add_partial_path).  But
     916             :  * we do want to make sure we don't add a partial path if there's already
     917             :  * a complete path that dominates it, since in that case the proposed path
     918             :  * is surely a loser.
     919             :  */
     920             : bool
     921      449104 : add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
     922             :                           Cost total_cost, List *pathkeys)
     923             : {
     924             :     ListCell   *p1;
     925             : 
     926             :     /*
     927             :      * Our goal here is twofold.  First, we want to find out whether this path
     928             :      * is clearly inferior to some existing partial path.  If so, we want to
     929             :      * reject it immediately.  Second, we want to find out whether this path
     930             :      * is clearly superior to some existing partial path -- at least, modulo
     931             :      * final cost computations.  If so, we definitely want to consider it.
     932             :      *
     933             :      * Unlike add_path(), we always compare pathkeys here.  This is because we
     934             :      * expect partial_pathlist to be very short, and getting a definitive
     935             :      * answer at this stage avoids the need to call add_path_precheck.
     936             :      */
     937      573278 :     foreach(p1, parent_rel->partial_pathlist)
     938             :     {
     939      466844 :         Path       *old_path = (Path *) lfirst(p1);
     940             :         PathKeysComparison keyscmp;
     941             : 
     942      466844 :         keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
     943      466844 :         if (keyscmp != PATHKEYS_DIFFERENT)
     944             :         {
     945      466652 :             if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
     946             :                 keyscmp != PATHKEYS_BETTER1)
     947      342670 :                 return false;
     948      237234 :             if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
     949             :                 keyscmp != PATHKEYS_BETTER2)
     950      113252 :                 return true;
     951             :         }
     952             :     }
     953             : 
     954             :     /*
     955             :      * This path is neither clearly inferior to an existing partial path nor
     956             :      * clearly good enough that it might replace one.  Compare it to
     957             :      * non-parallel plans.  If it loses even before accounting for the cost of
     958             :      * the Gather node, we should definitely reject it.
     959             :      *
     960             :      * Note that we pass the total_cost to add_path_precheck twice.  This is
     961             :      * because it's never advantageous to consider the startup cost of a
     962             :      * partial path; the resulting plans, if run in parallel, will be run to
     963             :      * completion.
     964             :      */
     965      106434 :     if (!add_path_precheck(parent_rel, disabled_nodes, total_cost, total_cost,
     966             :                            pathkeys, NULL))
     967        2734 :         return false;
     968             : 
     969      103700 :     return true;
     970             : }
     971             : 
     972             : 
     973             : /*****************************************************************************
     974             :  *      PATH NODE CREATION ROUTINES
     975             :  *****************************************************************************/
     976             : 
     977             : /*
     978             :  * create_seqscan_path
     979             :  *    Creates a path corresponding to a sequential scan, returning the
     980             :  *    pathnode.
     981             :  */
     982             : Path *
     983      432608 : create_seqscan_path(PlannerInfo *root, RelOptInfo *rel,
     984             :                     Relids required_outer, int parallel_workers)
     985             : {
     986      432608 :     Path       *pathnode = makeNode(Path);
     987             : 
     988      432608 :     pathnode->pathtype = T_SeqScan;
     989      432608 :     pathnode->parent = rel;
     990      432608 :     pathnode->pathtarget = rel->reltarget;
     991      432608 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
     992             :                                                      required_outer);
     993      432608 :     pathnode->parallel_aware = (parallel_workers > 0);
     994      432608 :     pathnode->parallel_safe = rel->consider_parallel;
     995      432608 :     pathnode->parallel_workers = parallel_workers;
     996      432608 :     pathnode->pathkeys = NIL;    /* seqscan has unordered result */
     997             : 
     998      432608 :     cost_seqscan(pathnode, root, rel, pathnode->param_info);
     999             : 
    1000      432608 :     return pathnode;
    1001             : }
    1002             : 
    1003             : /*
    1004             :  * create_samplescan_path
    1005             :  *    Creates a path node for a sampled table scan.
    1006             :  */
    1007             : Path *
    1008         306 : create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
    1009             : {
    1010         306 :     Path       *pathnode = makeNode(Path);
    1011             : 
    1012         306 :     pathnode->pathtype = T_SampleScan;
    1013         306 :     pathnode->parent = rel;
    1014         306 :     pathnode->pathtarget = rel->reltarget;
    1015         306 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    1016             :                                                      required_outer);
    1017         306 :     pathnode->parallel_aware = false;
    1018         306 :     pathnode->parallel_safe = rel->consider_parallel;
    1019         306 :     pathnode->parallel_workers = 0;
    1020         306 :     pathnode->pathkeys = NIL;    /* samplescan has unordered result */
    1021             : 
    1022         306 :     cost_samplescan(pathnode, root, rel, pathnode->param_info);
    1023             : 
    1024         306 :     return pathnode;
    1025             : }
    1026             : 
    1027             : /*
    1028             :  * create_index_path
    1029             :  *    Creates a path node for an index scan.
    1030             :  *
    1031             :  * 'index' is a usable index.
    1032             :  * 'indexclauses' is a list of IndexClause nodes representing clauses
    1033             :  *          to be enforced as qual conditions in the scan.
    1034             :  * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
    1035             :  *          to be used as index ordering operators in the scan.
    1036             :  * 'indexorderbycols' is an integer list of index column numbers (zero based)
    1037             :  *          the ordering operators can be used with.
    1038             :  * 'pathkeys' describes the ordering of the path.
    1039             :  * 'indexscandir' is either ForwardScanDirection or BackwardScanDirection.
    1040             :  * 'indexonly' is true if an index-only scan is wanted.
    1041             :  * 'required_outer' is the set of outer relids for a parameterized path.
    1042             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
    1043             :  *      estimates of caching behavior.
    1044             :  * 'partial_path' is true if constructing a parallel index scan path.
    1045             :  *
    1046             :  * Returns the new path node.
    1047             :  */
    1048             : IndexPath *
    1049      801052 : create_index_path(PlannerInfo *root,
    1050             :                   IndexOptInfo *index,
    1051             :                   List *indexclauses,
    1052             :                   List *indexorderbys,
    1053             :                   List *indexorderbycols,
    1054             :                   List *pathkeys,
    1055             :                   ScanDirection indexscandir,
    1056             :                   bool indexonly,
    1057             :                   Relids required_outer,
    1058             :                   double loop_count,
    1059             :                   bool partial_path)
    1060             : {
    1061      801052 :     IndexPath  *pathnode = makeNode(IndexPath);
    1062      801052 :     RelOptInfo *rel = index->rel;
    1063             : 
    1064      801052 :     pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
    1065      801052 :     pathnode->path.parent = rel;
    1066      801052 :     pathnode->path.pathtarget = rel->reltarget;
    1067      801052 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1068             :                                                           required_outer);
    1069      801052 :     pathnode->path.parallel_aware = false;
    1070      801052 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1071      801052 :     pathnode->path.parallel_workers = 0;
    1072      801052 :     pathnode->path.pathkeys = pathkeys;
    1073             : 
    1074      801052 :     pathnode->indexinfo = index;
    1075      801052 :     pathnode->indexclauses = indexclauses;
    1076      801052 :     pathnode->indexorderbys = indexorderbys;
    1077      801052 :     pathnode->indexorderbycols = indexorderbycols;
    1078      801052 :     pathnode->indexscandir = indexscandir;
    1079             : 
    1080      801052 :     cost_index(pathnode, root, loop_count, partial_path);
    1081             : 
    1082      801052 :     return pathnode;
    1083             : }
    1084             : 
    1085             : /*
    1086             :  * create_bitmap_heap_path
    1087             :  *    Creates a path node for a bitmap scan.
    1088             :  *
    1089             :  * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
    1090             :  * 'required_outer' is the set of outer relids for a parameterized path.
    1091             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
    1092             :  *      estimates of caching behavior.
    1093             :  *
    1094             :  * loop_count should match the value used when creating the component
    1095             :  * IndexPaths.
    1096             :  */
    1097             : BitmapHeapPath *
    1098      350356 : create_bitmap_heap_path(PlannerInfo *root,
    1099             :                         RelOptInfo *rel,
    1100             :                         Path *bitmapqual,
    1101             :                         Relids required_outer,
    1102             :                         double loop_count,
    1103             :                         int parallel_degree)
    1104             : {
    1105      350356 :     BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);
    1106             : 
    1107      350356 :     pathnode->path.pathtype = T_BitmapHeapScan;
    1108      350356 :     pathnode->path.parent = rel;
    1109      350356 :     pathnode->path.pathtarget = rel->reltarget;
    1110      350356 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1111             :                                                           required_outer);
    1112      350356 :     pathnode->path.parallel_aware = (parallel_degree > 0);
    1113      350356 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1114      350356 :     pathnode->path.parallel_workers = parallel_degree;
    1115      350356 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1116             : 
    1117      350356 :     pathnode->bitmapqual = bitmapqual;
    1118             : 
    1119      350356 :     cost_bitmap_heap_scan(&pathnode->path, root, rel,
    1120             :                           pathnode->path.param_info,
    1121             :                           bitmapqual, loop_count);
    1122             : 
    1123      350356 :     return pathnode;
    1124             : }
    1125             : 
    1126             : /*
    1127             :  * create_bitmap_and_path
    1128             :  *    Creates a path node representing a BitmapAnd.
    1129             :  */
    1130             : BitmapAndPath *
    1131       49644 : create_bitmap_and_path(PlannerInfo *root,
    1132             :                        RelOptInfo *rel,
    1133             :                        List *bitmapquals)
    1134             : {
    1135       49644 :     BitmapAndPath *pathnode = makeNode(BitmapAndPath);
    1136       49644 :     Relids      required_outer = NULL;
    1137             :     ListCell   *lc;
    1138             : 
    1139       49644 :     pathnode->path.pathtype = T_BitmapAnd;
    1140       49644 :     pathnode->path.parent = rel;
    1141       49644 :     pathnode->path.pathtarget = rel->reltarget;
    1142             : 
    1143             :     /*
    1144             :      * Identify the required outer rels as the union of what the child paths
    1145             :      * depend on.  (Alternatively, we could insist that the caller pass this
    1146             :      * in, but it's more convenient and reliable to compute it here.)
    1147             :      */
    1148      148932 :     foreach(lc, bitmapquals)
    1149             :     {
    1150       99288 :         Path       *bitmapqual = (Path *) lfirst(lc);
    1151             : 
    1152       99288 :         required_outer = bms_add_members(required_outer,
    1153       99288 :                                          PATH_REQ_OUTER(bitmapqual));
    1154             :     }
    1155       49644 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1156             :                                                           required_outer);
    1157             : 
    1158             :     /*
    1159             :      * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
    1160             :      * parallel-safe if and only if rel->consider_parallel is set.  So, we can
    1161             :      * set the flag for this path based only on the relation-level flag,
    1162             :      * without actually iterating over the list of children.
    1163             :      */
    1164       49644 :     pathnode->path.parallel_aware = false;
    1165       49644 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1166       49644 :     pathnode->path.parallel_workers = 0;
    1167             : 
    1168       49644 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1169             : 
    1170       49644 :     pathnode->bitmapquals = bitmapquals;
    1171             : 
    1172             :     /* this sets bitmapselectivity as well as the regular cost fields: */
    1173       49644 :     cost_bitmap_and_node(pathnode, root);
    1174             : 
    1175       49644 :     return pathnode;
    1176             : }
    1177             : 
    1178             : /*
    1179             :  * create_bitmap_or_path
    1180             :  *    Creates a path node representing a BitmapOr.
    1181             :  */
    1182             : BitmapOrPath *
    1183        1016 : create_bitmap_or_path(PlannerInfo *root,
    1184             :                       RelOptInfo *rel,
    1185             :                       List *bitmapquals)
    1186             : {
    1187        1016 :     BitmapOrPath *pathnode = makeNode(BitmapOrPath);
    1188        1016 :     Relids      required_outer = NULL;
    1189             :     ListCell   *lc;
    1190             : 
    1191        1016 :     pathnode->path.pathtype = T_BitmapOr;
    1192        1016 :     pathnode->path.parent = rel;
    1193        1016 :     pathnode->path.pathtarget = rel->reltarget;
    1194             : 
    1195             :     /*
    1196             :      * Identify the required outer rels as the union of what the child paths
    1197             :      * depend on.  (Alternatively, we could insist that the caller pass this
    1198             :      * in, but it's more convenient and reliable to compute it here.)
    1199             :      */
    1200        2850 :     foreach(lc, bitmapquals)
    1201             :     {
    1202        1834 :         Path       *bitmapqual = (Path *) lfirst(lc);
    1203             : 
    1204        1834 :         required_outer = bms_add_members(required_outer,
    1205        1834 :                                          PATH_REQ_OUTER(bitmapqual));
    1206             :     }
    1207        1016 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1208             :                                                           required_outer);
    1209             : 
    1210             :     /*
    1211             :      * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
    1212             :      * parallel-safe if and only if rel->consider_parallel is set.  So, we can
    1213             :      * set the flag for this path based only on the relation-level flag,
    1214             :      * without actually iterating over the list of children.
    1215             :      */
    1216        1016 :     pathnode->path.parallel_aware = false;
    1217        1016 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1218        1016 :     pathnode->path.parallel_workers = 0;
    1219             : 
    1220        1016 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1221             : 
    1222        1016 :     pathnode->bitmapquals = bitmapquals;
    1223             : 
    1224             :     /* this sets bitmapselectivity as well as the regular cost fields: */
    1225        1016 :     cost_bitmap_or_node(pathnode, root);
    1226             : 
    1227        1016 :     return pathnode;
    1228             : }
    1229             : 
    1230             : /*
    1231             :  * create_tidscan_path
    1232             :  *    Creates a path corresponding to a scan by TID, returning the pathnode.
    1233             :  */
    1234             : TidPath *
    1235         872 : create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals,
    1236             :                     Relids required_outer)
    1237             : {
    1238         872 :     TidPath    *pathnode = makeNode(TidPath);
    1239             : 
    1240         872 :     pathnode->path.pathtype = T_TidScan;
    1241         872 :     pathnode->path.parent = rel;
    1242         872 :     pathnode->path.pathtarget = rel->reltarget;
    1243         872 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1244             :                                                           required_outer);
    1245         872 :     pathnode->path.parallel_aware = false;
    1246         872 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1247         872 :     pathnode->path.parallel_workers = 0;
    1248         872 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1249             : 
    1250         872 :     pathnode->tidquals = tidquals;
    1251             : 
    1252         872 :     cost_tidscan(&pathnode->path, root, rel, tidquals,
    1253             :                  pathnode->path.param_info);
    1254             : 
    1255         872 :     return pathnode;
    1256             : }
    1257             : 
    1258             : /*
    1259             :  * create_tidrangescan_path
    1260             :  *    Creates a path corresponding to a scan by a range of TIDs, returning
    1261             :  *    the pathnode.
    1262             :  */
    1263             : TidRangePath *
    1264        1944 : create_tidrangescan_path(PlannerInfo *root, RelOptInfo *rel,
    1265             :                          List *tidrangequals, Relids required_outer)
    1266             : {
    1267        1944 :     TidRangePath *pathnode = makeNode(TidRangePath);
    1268             : 
    1269        1944 :     pathnode->path.pathtype = T_TidRangeScan;
    1270        1944 :     pathnode->path.parent = rel;
    1271        1944 :     pathnode->path.pathtarget = rel->reltarget;
    1272        1944 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1273             :                                                           required_outer);
    1274        1944 :     pathnode->path.parallel_aware = false;
    1275        1944 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1276        1944 :     pathnode->path.parallel_workers = 0;
    1277        1944 :     pathnode->path.pathkeys = NIL;   /* always unordered */
    1278             : 
    1279        1944 :     pathnode->tidrangequals = tidrangequals;
    1280             : 
    1281        1944 :     cost_tidrangescan(&pathnode->path, root, rel, tidrangequals,
    1282             :                       pathnode->path.param_info);
    1283             : 
    1284        1944 :     return pathnode;
    1285             : }
    1286             : 
    1287             : /*
    1288             :  * create_append_path
    1289             :  *    Creates a path corresponding to an Append plan, returning the
    1290             :  *    pathnode.
    1291             :  *
    1292             :  * Note that we must handle subpaths = NIL, representing a dummy access path.
    1293             :  * Also, there are callers that pass root = NULL.
    1294             :  *
    1295             :  * 'rows', when passed as a non-negative number, will be used to overwrite the
    1296             :  * returned path's row estimate.  Otherwise, the row estimate is calculated
    1297             :  * by totalling the row estimates from the 'subpaths' list.
    1298             :  */
    1299             : AppendPath *
    1300       91696 : create_append_path(PlannerInfo *root,
    1301             :                    RelOptInfo *rel,
    1302             :                    List *subpaths, List *partial_subpaths,
    1303             :                    List *pathkeys, Relids required_outer,
    1304             :                    int parallel_workers, bool parallel_aware,
    1305             :                    double rows)
    1306             : {
    1307       91696 :     AppendPath *pathnode = makeNode(AppendPath);
    1308             :     ListCell   *l;
    1309             : 
    1310             :     Assert(!parallel_aware || parallel_workers > 0);
    1311             : 
    1312       91696 :     pathnode->path.pathtype = T_Append;
    1313       91696 :     pathnode->path.parent = rel;
    1314       91696 :     pathnode->path.pathtarget = rel->reltarget;
    1315             : 
    1316             :     /*
    1317             :      * If this is for a baserel (not a join or non-leaf partition), we prefer
    1318             :      * to apply get_baserel_parampathinfo to construct a full ParamPathInfo
    1319             :      * for the path.  This supports building a Memoize path atop this path,
    1320             :      * and if this is a partitioned table the info may be useful for run-time
    1321             :      * pruning (cf make_partition_pruneinfo()).
    1322             :      *
    1323             :      * However, if we don't have "root" then that won't work and we fall back
    1324             :      * on the simpler get_appendrel_parampathinfo.  There's no point in doing
    1325             :      * the more expensive thing for a dummy path, either.
    1326             :      */
    1327       91696 :     if (rel->reloptkind == RELOPT_BASEREL && root && subpaths != NIL)
    1328       40006 :         pathnode->path.param_info = get_baserel_parampathinfo(root,
    1329             :                                                               rel,
    1330             :                                                               required_outer);
    1331             :     else
    1332       51690 :         pathnode->path.param_info = get_appendrel_parampathinfo(rel,
    1333             :                                                                 required_outer);
    1334             : 
    1335       91696 :     pathnode->path.parallel_aware = parallel_aware;
    1336       91696 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1337       91696 :     pathnode->path.parallel_workers = parallel_workers;
    1338       91696 :     pathnode->path.pathkeys = pathkeys;
    1339             : 
    1340             :     /*
    1341             :      * For parallel append, non-partial paths are sorted by descending total
    1342             :      * costs. That way, the total time to finish all non-partial paths is
    1343             :      * minimized.  Also, the partial paths are sorted by descending startup
    1344             :      * costs.  There may be some paths that require to do startup work by a
    1345             :      * single worker.  In such case, it's better for workers to choose the
    1346             :      * expensive ones first, whereas the leader should choose the cheapest
    1347             :      * startup plan.
    1348             :      */
    1349       91696 :     if (pathnode->path.parallel_aware)
    1350             :     {
    1351             :         /*
    1352             :          * We mustn't fiddle with the order of subpaths when the Append has
    1353             :          * pathkeys.  The order they're listed in is critical to keeping the
    1354             :          * pathkeys valid.
    1355             :          */
    1356             :         Assert(pathkeys == NIL);
    1357             : 
    1358       33018 :         list_sort(subpaths, append_total_cost_compare);
    1359       33018 :         list_sort(partial_subpaths, append_startup_cost_compare);
    1360             :     }
    1361       91696 :     pathnode->first_partial_path = list_length(subpaths);
    1362       91696 :     pathnode->subpaths = list_concat(subpaths, partial_subpaths);
    1363             : 
    1364             :     /*
    1365             :      * Apply query-wide LIMIT if known and path is for sole base relation.
    1366             :      * (Handling this at this low level is a bit klugy.)
    1367             :      */
    1368       91696 :     if (root != NULL && bms_equal(rel->relids, root->all_query_rels))
    1369       46278 :         pathnode->limit_tuples = root->limit_tuples;
    1370             :     else
    1371       45418 :         pathnode->limit_tuples = -1.0;
    1372             : 
    1373      311462 :     foreach(l, pathnode->subpaths)
    1374             :     {
    1375      219766 :         Path       *subpath = (Path *) lfirst(l);
    1376             : 
    1377      399486 :         pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
    1378      179720 :             subpath->parallel_safe;
    1379             : 
    1380             :         /* All child paths must have same parameterization */
    1381             :         Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
    1382             :     }
    1383             : 
    1384             :     Assert(!parallel_aware || pathnode->path.parallel_safe);
    1385             : 
    1386             :     /*
    1387             :      * If there's exactly one child path then the output of the Append is
    1388             :      * necessarily ordered the same as the child's, so we can inherit the
    1389             :      * child's pathkeys if any, overriding whatever the caller might've said.
    1390             :      * Furthermore, if the child's parallel awareness matches the Append's,
    1391             :      * then the Append is a no-op and will be discarded later (in setrefs.c).
    1392             :      * Then we can inherit the child's size and cost too, effectively charging
    1393             :      * zero for the Append.  Otherwise, we must do the normal costsize
    1394             :      * calculation.
    1395             :      */
    1396       91696 :     if (list_length(pathnode->subpaths) == 1)
    1397             :     {
    1398       22492 :         Path       *child = (Path *) linitial(pathnode->subpaths);
    1399             : 
    1400       22492 :         if (child->parallel_aware == parallel_aware)
    1401             :         {
    1402       22054 :             pathnode->path.rows = child->rows;
    1403       22054 :             pathnode->path.startup_cost = child->startup_cost;
    1404       22054 :             pathnode->path.total_cost = child->total_cost;
    1405             :         }
    1406             :         else
    1407         438 :             cost_append(pathnode, root);
    1408             :         /* Must do this last, else cost_append complains */
    1409       22492 :         pathnode->path.pathkeys = child->pathkeys;
    1410             :     }
    1411             :     else
    1412       69204 :         cost_append(pathnode, root);
    1413             : 
    1414             :     /* If the caller provided a row estimate, override the computed value. */
    1415       91696 :     if (rows >= 0)
    1416         576 :         pathnode->path.rows = rows;
    1417             : 
    1418       91696 :     return pathnode;
    1419             : }
    1420             : 
    1421             : /*
    1422             :  * append_total_cost_compare
    1423             :  *    list_sort comparator for sorting append child paths
    1424             :  *    by total_cost descending
    1425             :  *
    1426             :  * For equal total costs, we fall back to comparing startup costs; if those
    1427             :  * are equal too, break ties using bms_compare on the paths' relids.
    1428             :  * (This is to avoid getting unpredictable results from list_sort.)
    1429             :  */
    1430             : static int
    1431       21796 : append_total_cost_compare(const ListCell *a, const ListCell *b)
    1432             : {
    1433       21796 :     Path       *path1 = (Path *) lfirst(a);
    1434       21796 :     Path       *path2 = (Path *) lfirst(b);
    1435             :     int         cmp;
    1436             : 
    1437       21796 :     cmp = compare_path_costs(path1, path2, TOTAL_COST);
    1438       21796 :     if (cmp != 0)
    1439       19428 :         return -cmp;
    1440        2368 :     return bms_compare(path1->parent->relids, path2->parent->relids);
    1441             : }
    1442             : 
    1443             : /*
    1444             :  * append_startup_cost_compare
    1445             :  *    list_sort comparator for sorting append child paths
    1446             :  *    by startup_cost descending
    1447             :  *
    1448             :  * For equal startup costs, we fall back to comparing total costs; if those
    1449             :  * are equal too, break ties using bms_compare on the paths' relids.
    1450             :  * (This is to avoid getting unpredictable results from list_sort.)
    1451             :  */
    1452             : static int
    1453       44184 : append_startup_cost_compare(const ListCell *a, const ListCell *b)
    1454             : {
    1455       44184 :     Path       *path1 = (Path *) lfirst(a);
    1456       44184 :     Path       *path2 = (Path *) lfirst(b);
    1457             :     int         cmp;
    1458             : 
    1459       44184 :     cmp = compare_path_costs(path1, path2, STARTUP_COST);
    1460       44184 :     if (cmp != 0)
    1461       21462 :         return -cmp;
    1462       22722 :     return bms_compare(path1->parent->relids, path2->parent->relids);
    1463             : }
    1464             : 
    1465             : /*
    1466             :  * create_merge_append_path
    1467             :  *    Creates a path corresponding to a MergeAppend plan, returning the
    1468             :  *    pathnode.
    1469             :  */
    1470             : MergeAppendPath *
    1471       10036 : create_merge_append_path(PlannerInfo *root,
    1472             :                          RelOptInfo *rel,
    1473             :                          List *subpaths,
    1474             :                          List *pathkeys,
    1475             :                          Relids required_outer)
    1476             : {
    1477       10036 :     MergeAppendPath *pathnode = makeNode(MergeAppendPath);
    1478             :     int         input_disabled_nodes;
    1479             :     Cost        input_startup_cost;
    1480             :     Cost        input_total_cost;
    1481             :     ListCell   *l;
    1482             : 
    1483             :     /*
    1484             :      * We don't currently support parameterized MergeAppend paths, as
    1485             :      * explained in the comments for generate_orderedappend_paths.
    1486             :      */
    1487             :     Assert(bms_is_empty(rel->lateral_relids) && bms_is_empty(required_outer));
    1488             : 
    1489       10036 :     pathnode->path.pathtype = T_MergeAppend;
    1490       10036 :     pathnode->path.parent = rel;
    1491       10036 :     pathnode->path.pathtarget = rel->reltarget;
    1492       10036 :     pathnode->path.param_info = NULL;
    1493       10036 :     pathnode->path.parallel_aware = false;
    1494       10036 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1495       10036 :     pathnode->path.parallel_workers = 0;
    1496       10036 :     pathnode->path.pathkeys = pathkeys;
    1497       10036 :     pathnode->subpaths = subpaths;
    1498             : 
    1499             :     /*
    1500             :      * Apply query-wide LIMIT if known and path is for sole base relation.
    1501             :      * (Handling this at this low level is a bit klugy.)
    1502             :      */
    1503       10036 :     if (bms_equal(rel->relids, root->all_query_rels))
    1504        4638 :         pathnode->limit_tuples = root->limit_tuples;
    1505             :     else
    1506        5398 :         pathnode->limit_tuples = -1.0;
    1507             : 
    1508             :     /*
    1509             :      * Add up the sizes and costs of the input paths.
    1510             :      */
    1511       10036 :     pathnode->path.rows = 0;
    1512       10036 :     input_disabled_nodes = 0;
    1513       10036 :     input_startup_cost = 0;
    1514       10036 :     input_total_cost = 0;
    1515       36252 :     foreach(l, subpaths)
    1516             :     {
    1517       26216 :         Path       *subpath = (Path *) lfirst(l);
    1518             :         int         presorted_keys;
    1519             :         Path        sort_path;  /* dummy for result of
    1520             :                                  * cost_sort/cost_incremental_sort */
    1521             : 
    1522             :         /* All child paths should be unparameterized */
    1523             :         Assert(bms_is_empty(PATH_REQ_OUTER(subpath)));
    1524             : 
    1525       26216 :         pathnode->path.rows += subpath->rows;
    1526       49728 :         pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
    1527       23512 :             subpath->parallel_safe;
    1528             : 
    1529       26216 :         if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
    1530             :                                          &presorted_keys))
    1531             :         {
    1532             :             /*
    1533             :              * We'll need to insert a Sort node, so include costs for that. We
    1534             :              * choose to use incremental sort if it is enabled and there are
    1535             :              * presorted keys; otherwise we use full sort.
    1536             :              *
    1537             :              * We can use the parent's LIMIT if any, since we certainly won't
    1538             :              * pull more than that many tuples from any child.
    1539             :              */
    1540         314 :             if (enable_incremental_sort && presorted_keys > 0)
    1541             :             {
    1542          18 :                 cost_incremental_sort(&sort_path,
    1543             :                                       root,
    1544             :                                       pathkeys,
    1545             :                                       presorted_keys,
    1546             :                                       subpath->disabled_nodes,
    1547             :                                       subpath->startup_cost,
    1548             :                                       subpath->total_cost,
    1549             :                                       subpath->rows,
    1550          18 :                                       subpath->pathtarget->width,
    1551             :                                       0.0,
    1552             :                                       work_mem,
    1553             :                                       pathnode->limit_tuples);
    1554             :             }
    1555             :             else
    1556             :             {
    1557         296 :                 cost_sort(&sort_path,
    1558             :                           root,
    1559             :                           pathkeys,
    1560             :                           subpath->disabled_nodes,
    1561             :                           subpath->total_cost,
    1562             :                           subpath->rows,
    1563         296 :                           subpath->pathtarget->width,
    1564             :                           0.0,
    1565             :                           work_mem,
    1566             :                           pathnode->limit_tuples);
    1567             :             }
    1568             : 
    1569         314 :             subpath = &sort_path;
    1570             :         }
    1571             : 
    1572       26216 :         input_disabled_nodes += subpath->disabled_nodes;
    1573       26216 :         input_startup_cost += subpath->startup_cost;
    1574       26216 :         input_total_cost += subpath->total_cost;
    1575             :     }
    1576             : 
    1577             :     /*
    1578             :      * Now we can compute total costs of the MergeAppend.  If there's exactly
    1579             :      * one child path and its parallel awareness matches that of the
    1580             :      * MergeAppend, then the MergeAppend is a no-op and will be discarded
    1581             :      * later (in setrefs.c); otherwise we do the normal cost calculation.
    1582             :      */
    1583       10036 :     if (list_length(subpaths) == 1 &&
    1584         128 :         ((Path *) linitial(subpaths))->parallel_aware ==
    1585         128 :         pathnode->path.parallel_aware)
    1586             :     {
    1587         128 :         pathnode->path.disabled_nodes = input_disabled_nodes;
    1588         128 :         pathnode->path.startup_cost = input_startup_cost;
    1589         128 :         pathnode->path.total_cost = input_total_cost;
    1590             :     }
    1591             :     else
    1592        9908 :         cost_merge_append(&pathnode->path, root,
    1593             :                           pathkeys, list_length(subpaths),
    1594             :                           input_disabled_nodes,
    1595             :                           input_startup_cost, input_total_cost,
    1596             :                           pathnode->path.rows);
    1597             : 
    1598       10036 :     return pathnode;
    1599             : }
    1600             : 
    1601             : /*
    1602             :  * create_group_result_path
    1603             :  *    Creates a path representing a Result-and-nothing-else plan.
    1604             :  *
    1605             :  * This is only used for degenerate grouping cases, in which we know we
    1606             :  * need to produce one result row, possibly filtered by a HAVING qual.
    1607             :  */
    1608             : GroupResultPath *
    1609      190976 : create_group_result_path(PlannerInfo *root, RelOptInfo *rel,
    1610             :                          PathTarget *target, List *havingqual)
    1611             : {
    1612      190976 :     GroupResultPath *pathnode = makeNode(GroupResultPath);
    1613             : 
    1614      190976 :     pathnode->path.pathtype = T_Result;
    1615      190976 :     pathnode->path.parent = rel;
    1616      190976 :     pathnode->path.pathtarget = target;
    1617      190976 :     pathnode->path.param_info = NULL;    /* there are no other rels... */
    1618      190976 :     pathnode->path.parallel_aware = false;
    1619      190976 :     pathnode->path.parallel_safe = rel->consider_parallel;
    1620      190976 :     pathnode->path.parallel_workers = 0;
    1621      190976 :     pathnode->path.pathkeys = NIL;
    1622      190976 :     pathnode->quals = havingqual;
    1623             : 
    1624             :     /*
    1625             :      * We can't quite use cost_resultscan() because the quals we want to
    1626             :      * account for are not baserestrict quals of the rel.  Might as well just
    1627             :      * hack it here.
    1628             :      */
    1629      190976 :     pathnode->path.rows = 1;
    1630      190976 :     pathnode->path.startup_cost = target->cost.startup;
    1631      190976 :     pathnode->path.total_cost = target->cost.startup +
    1632      190976 :         cpu_tuple_cost + target->cost.per_tuple;
    1633             : 
    1634             :     /*
    1635             :      * Add cost of qual, if any --- but we ignore its selectivity, since our
    1636             :      * rowcount estimate should be 1 no matter what the qual is.
    1637             :      */
    1638      190976 :     if (havingqual)
    1639             :     {
    1640             :         QualCost    qual_cost;
    1641             : 
    1642         628 :         cost_qual_eval(&qual_cost, havingqual, root);
    1643             :         /* havingqual is evaluated once at startup */
    1644         628 :         pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
    1645         628 :         pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
    1646             :     }
    1647             : 
    1648      190976 :     return pathnode;
    1649             : }
    1650             : 
    1651             : /*
    1652             :  * create_material_path
    1653             :  *    Creates a path corresponding to a Material plan, returning the
    1654             :  *    pathnode.
    1655             :  */
    1656             : MaterialPath *
    1657      672702 : create_material_path(RelOptInfo *rel, Path *subpath)
    1658             : {
    1659      672702 :     MaterialPath *pathnode = makeNode(MaterialPath);
    1660             : 
    1661             :     Assert(subpath->parent == rel);
    1662             : 
    1663      672702 :     pathnode->path.pathtype = T_Material;
    1664      672702 :     pathnode->path.parent = rel;
    1665      672702 :     pathnode->path.pathtarget = rel->reltarget;
    1666      672702 :     pathnode->path.param_info = subpath->param_info;
    1667      672702 :     pathnode->path.parallel_aware = false;
    1668     1288928 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    1669      616226 :         subpath->parallel_safe;
    1670      672702 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    1671      672702 :     pathnode->path.pathkeys = subpath->pathkeys;
    1672             : 
    1673      672702 :     pathnode->subpath = subpath;
    1674             : 
    1675      672702 :     cost_material(&pathnode->path,
    1676             :                   subpath->disabled_nodes,
    1677             :                   subpath->startup_cost,
    1678             :                   subpath->total_cost,
    1679             :                   subpath->rows,
    1680      672702 :                   subpath->pathtarget->width);
    1681             : 
    1682      672702 :     return pathnode;
    1683             : }
    1684             : 
    1685             : /*
    1686             :  * create_memoize_path
    1687             :  *    Creates a path corresponding to a Memoize plan, returning the pathnode.
    1688             :  */
    1689             : MemoizePath *
    1690      315470 : create_memoize_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    1691             :                     List *param_exprs, List *hash_operators,
    1692             :                     bool singlerow, bool binary_mode, Cardinality est_calls)
    1693             : {
    1694      315470 :     MemoizePath *pathnode = makeNode(MemoizePath);
    1695             : 
    1696             :     Assert(subpath->parent == rel);
    1697             : 
    1698      315470 :     pathnode->path.pathtype = T_Memoize;
    1699      315470 :     pathnode->path.parent = rel;
    1700      315470 :     pathnode->path.pathtarget = rel->reltarget;
    1701      315470 :     pathnode->path.param_info = subpath->param_info;
    1702      315470 :     pathnode->path.parallel_aware = false;
    1703      616796 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    1704      301326 :         subpath->parallel_safe;
    1705      315470 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    1706      315470 :     pathnode->path.pathkeys = subpath->pathkeys;
    1707             : 
    1708      315470 :     pathnode->subpath = subpath;
    1709      315470 :     pathnode->hash_operators = hash_operators;
    1710      315470 :     pathnode->param_exprs = param_exprs;
    1711      315470 :     pathnode->singlerow = singlerow;
    1712      315470 :     pathnode->binary_mode = binary_mode;
    1713             : 
    1714             :     /*
    1715             :      * For now we set est_entries to 0.  cost_memoize_rescan() does all the
    1716             :      * hard work to determine how many cache entries there are likely to be,
    1717             :      * so it seems best to leave it up to that function to fill this field in.
    1718             :      * If left at 0, the executor will make a guess at a good value.
    1719             :      */
    1720      315470 :     pathnode->est_entries = 0;
    1721             : 
    1722      315470 :     pathnode->est_calls = clamp_row_est(est_calls);
    1723             : 
    1724             :     /* These will also be set later in cost_memoize_rescan() */
    1725      315470 :     pathnode->est_unique_keys = 0.0;
    1726      315470 :     pathnode->est_hit_ratio = 0.0;
    1727             : 
    1728             :     /* we should not generate this path type when enable_memoize=false */
    1729             :     Assert(enable_memoize);
    1730      315470 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    1731             : 
    1732             :     /*
    1733             :      * Add a small additional charge for caching the first entry.  All the
    1734             :      * harder calculations for rescans are performed in cost_memoize_rescan().
    1735             :      */
    1736      315470 :     pathnode->path.startup_cost = subpath->startup_cost + cpu_tuple_cost;
    1737      315470 :     pathnode->path.total_cost = subpath->total_cost + cpu_tuple_cost;
    1738      315470 :     pathnode->path.rows = subpath->rows;
    1739             : 
    1740      315470 :     return pathnode;
    1741             : }
    1742             : 
    1743             : /*
    1744             :  * create_gather_merge_path
    1745             :  *
    1746             :  *    Creates a path corresponding to a gather merge scan, returning
    1747             :  *    the pathnode.
    1748             :  */
    1749             : GatherMergePath *
    1750       17524 : create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    1751             :                          PathTarget *target, List *pathkeys,
    1752             :                          Relids required_outer, double *rows)
    1753             : {
    1754       17524 :     GatherMergePath *pathnode = makeNode(GatherMergePath);
    1755       17524 :     int         input_disabled_nodes = 0;
    1756       17524 :     Cost        input_startup_cost = 0;
    1757       17524 :     Cost        input_total_cost = 0;
    1758             : 
    1759             :     Assert(subpath->parallel_safe);
    1760             :     Assert(pathkeys);
    1761             : 
    1762             :     /*
    1763             :      * The subpath should guarantee that it is adequately ordered either by
    1764             :      * adding an explicit sort node or by using presorted input.  We cannot
    1765             :      * add an explicit Sort node for the subpath in createplan.c on additional
    1766             :      * pathkeys, because we can't guarantee the sort would be safe.  For
    1767             :      * example, expressions may be volatile or otherwise parallel unsafe.
    1768             :      */
    1769       17524 :     if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
    1770           0 :         elog(ERROR, "gather merge input not sufficiently sorted");
    1771             : 
    1772       17524 :     pathnode->path.pathtype = T_GatherMerge;
    1773       17524 :     pathnode->path.parent = rel;
    1774       17524 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1775             :                                                           required_outer);
    1776       17524 :     pathnode->path.parallel_aware = false;
    1777             : 
    1778       17524 :     pathnode->subpath = subpath;
    1779       17524 :     pathnode->num_workers = subpath->parallel_workers;
    1780       17524 :     pathnode->path.pathkeys = pathkeys;
    1781       17524 :     pathnode->path.pathtarget = target ? target : rel->reltarget;
    1782             : 
    1783       17524 :     input_disabled_nodes += subpath->disabled_nodes;
    1784       17524 :     input_startup_cost += subpath->startup_cost;
    1785       17524 :     input_total_cost += subpath->total_cost;
    1786             : 
    1787       17524 :     cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
    1788             :                       input_disabled_nodes, input_startup_cost,
    1789             :                       input_total_cost, rows);
    1790             : 
    1791       17524 :     return pathnode;
    1792             : }
    1793             : 
    1794             : /*
    1795             :  * create_gather_path
    1796             :  *    Creates a path corresponding to a gather scan, returning the
    1797             :  *    pathnode.
    1798             :  *
    1799             :  * 'rows' may optionally be set to override row estimates from other sources.
    1800             :  */
    1801             : GatherPath *
    1802       24820 : create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    1803             :                    PathTarget *target, Relids required_outer, double *rows)
    1804             : {
    1805       24820 :     GatherPath *pathnode = makeNode(GatherPath);
    1806             : 
    1807             :     Assert(subpath->parallel_safe);
    1808             : 
    1809       24820 :     pathnode->path.pathtype = T_Gather;
    1810       24820 :     pathnode->path.parent = rel;
    1811       24820 :     pathnode->path.pathtarget = target;
    1812       24820 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1813             :                                                           required_outer);
    1814       24820 :     pathnode->path.parallel_aware = false;
    1815       24820 :     pathnode->path.parallel_safe = false;
    1816       24820 :     pathnode->path.parallel_workers = 0;
    1817       24820 :     pathnode->path.pathkeys = NIL;   /* Gather has unordered result */
    1818             : 
    1819       24820 :     pathnode->subpath = subpath;
    1820       24820 :     pathnode->num_workers = subpath->parallel_workers;
    1821       24820 :     pathnode->single_copy = false;
    1822             : 
    1823       24820 :     if (pathnode->num_workers == 0)
    1824             :     {
    1825           0 :         pathnode->path.pathkeys = subpath->pathkeys;
    1826           0 :         pathnode->num_workers = 1;
    1827           0 :         pathnode->single_copy = true;
    1828             :     }
    1829             : 
    1830       24820 :     cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
    1831             : 
    1832       24820 :     return pathnode;
    1833             : }
    1834             : 
    1835             : /*
    1836             :  * create_subqueryscan_path
    1837             :  *    Creates a path corresponding to a scan of a subquery,
    1838             :  *    returning the pathnode.
    1839             :  *
    1840             :  * Caller must pass trivial_pathtarget = true if it believes rel->reltarget to
    1841             :  * be trivial, ie just a fetch of all the subquery output columns in order.
    1842             :  * While we could determine that here, the caller can usually do it more
    1843             :  * efficiently (or at least amortize it over multiple calls).
    1844             :  */
    1845             : SubqueryScanPath *
    1846       55688 : create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
    1847             :                          bool trivial_pathtarget,
    1848             :                          List *pathkeys, Relids required_outer)
    1849             : {
    1850       55688 :     SubqueryScanPath *pathnode = makeNode(SubqueryScanPath);
    1851             : 
    1852       55688 :     pathnode->path.pathtype = T_SubqueryScan;
    1853       55688 :     pathnode->path.parent = rel;
    1854       55688 :     pathnode->path.pathtarget = rel->reltarget;
    1855       55688 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    1856             :                                                           required_outer);
    1857       55688 :     pathnode->path.parallel_aware = false;
    1858       96024 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    1859       40336 :         subpath->parallel_safe;
    1860       55688 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    1861       55688 :     pathnode->path.pathkeys = pathkeys;
    1862       55688 :     pathnode->subpath = subpath;
    1863             : 
    1864       55688 :     cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info,
    1865             :                       trivial_pathtarget);
    1866             : 
    1867       55688 :     return pathnode;
    1868             : }
    1869             : 
    1870             : /*
    1871             :  * create_functionscan_path
    1872             :  *    Creates a path corresponding to a sequential scan of a function,
    1873             :  *    returning the pathnode.
    1874             :  */
    1875             : Path *
    1876       51322 : create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
    1877             :                          List *pathkeys, Relids required_outer)
    1878             : {
    1879       51322 :     Path       *pathnode = makeNode(Path);
    1880             : 
    1881       51322 :     pathnode->pathtype = T_FunctionScan;
    1882       51322 :     pathnode->parent = rel;
    1883       51322 :     pathnode->pathtarget = rel->reltarget;
    1884       51322 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    1885             :                                                      required_outer);
    1886       51322 :     pathnode->parallel_aware = false;
    1887       51322 :     pathnode->parallel_safe = rel->consider_parallel;
    1888       51322 :     pathnode->parallel_workers = 0;
    1889       51322 :     pathnode->pathkeys = pathkeys;
    1890             : 
    1891       51322 :     cost_functionscan(pathnode, root, rel, pathnode->param_info);
    1892             : 
    1893       51322 :     return pathnode;
    1894             : }
    1895             : 
    1896             : /*
    1897             :  * create_tablefuncscan_path
    1898             :  *    Creates a path corresponding to a sequential scan of a table function,
    1899             :  *    returning the pathnode.
    1900             :  */
    1901             : Path *
    1902         626 : create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel,
    1903             :                           Relids required_outer)
    1904             : {
    1905         626 :     Path       *pathnode = makeNode(Path);
    1906             : 
    1907         626 :     pathnode->pathtype = T_TableFuncScan;
    1908         626 :     pathnode->parent = rel;
    1909         626 :     pathnode->pathtarget = rel->reltarget;
    1910         626 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    1911             :                                                      required_outer);
    1912         626 :     pathnode->parallel_aware = false;
    1913         626 :     pathnode->parallel_safe = rel->consider_parallel;
    1914         626 :     pathnode->parallel_workers = 0;
    1915         626 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    1916             : 
    1917         626 :     cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
    1918             : 
    1919         626 :     return pathnode;
    1920             : }
    1921             : 
    1922             : /*
    1923             :  * create_valuesscan_path
    1924             :  *    Creates a path corresponding to a scan of a VALUES list,
    1925             :  *    returning the pathnode.
    1926             :  */
    1927             : Path *
    1928        8268 : create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel,
    1929             :                        Relids required_outer)
    1930             : {
    1931        8268 :     Path       *pathnode = makeNode(Path);
    1932             : 
    1933        8268 :     pathnode->pathtype = T_ValuesScan;
    1934        8268 :     pathnode->parent = rel;
    1935        8268 :     pathnode->pathtarget = rel->reltarget;
    1936        8268 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    1937             :                                                      required_outer);
    1938        8268 :     pathnode->parallel_aware = false;
    1939        8268 :     pathnode->parallel_safe = rel->consider_parallel;
    1940        8268 :     pathnode->parallel_workers = 0;
    1941        8268 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    1942             : 
    1943        8268 :     cost_valuesscan(pathnode, root, rel, pathnode->param_info);
    1944             : 
    1945        8268 :     return pathnode;
    1946             : }
    1947             : 
    1948             : /*
    1949             :  * create_ctescan_path
    1950             :  *    Creates a path corresponding to a scan of a non-self-reference CTE,
    1951             :  *    returning the pathnode.
    1952             :  */
    1953             : Path *
    1954        4242 : create_ctescan_path(PlannerInfo *root, RelOptInfo *rel,
    1955             :                     List *pathkeys, Relids required_outer)
    1956             : {
    1957        4242 :     Path       *pathnode = makeNode(Path);
    1958             : 
    1959        4242 :     pathnode->pathtype = T_CteScan;
    1960        4242 :     pathnode->parent = rel;
    1961        4242 :     pathnode->pathtarget = rel->reltarget;
    1962        4242 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    1963             :                                                      required_outer);
    1964        4242 :     pathnode->parallel_aware = false;
    1965        4242 :     pathnode->parallel_safe = rel->consider_parallel;
    1966        4242 :     pathnode->parallel_workers = 0;
    1967        4242 :     pathnode->pathkeys = pathkeys;
    1968             : 
    1969        4242 :     cost_ctescan(pathnode, root, rel, pathnode->param_info);
    1970             : 
    1971        4242 :     return pathnode;
    1972             : }
    1973             : 
    1974             : /*
    1975             :  * create_namedtuplestorescan_path
    1976             :  *    Creates a path corresponding to a scan of a named tuplestore, returning
    1977             :  *    the pathnode.
    1978             :  */
    1979             : Path *
    1980         474 : create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel,
    1981             :                                 Relids required_outer)
    1982             : {
    1983         474 :     Path       *pathnode = makeNode(Path);
    1984             : 
    1985         474 :     pathnode->pathtype = T_NamedTuplestoreScan;
    1986         474 :     pathnode->parent = rel;
    1987         474 :     pathnode->pathtarget = rel->reltarget;
    1988         474 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    1989             :                                                      required_outer);
    1990         474 :     pathnode->parallel_aware = false;
    1991         474 :     pathnode->parallel_safe = rel->consider_parallel;
    1992         474 :     pathnode->parallel_workers = 0;
    1993         474 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    1994             : 
    1995         474 :     cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
    1996             : 
    1997         474 :     return pathnode;
    1998             : }
    1999             : 
    2000             : /*
    2001             :  * create_resultscan_path
    2002             :  *    Creates a path corresponding to a scan of an RTE_RESULT relation,
    2003             :  *    returning the pathnode.
    2004             :  */
    2005             : Path *
    2006        4256 : create_resultscan_path(PlannerInfo *root, RelOptInfo *rel,
    2007             :                        Relids required_outer)
    2008             : {
    2009        4256 :     Path       *pathnode = makeNode(Path);
    2010             : 
    2011        4256 :     pathnode->pathtype = T_Result;
    2012        4256 :     pathnode->parent = rel;
    2013        4256 :     pathnode->pathtarget = rel->reltarget;
    2014        4256 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2015             :                                                      required_outer);
    2016        4256 :     pathnode->parallel_aware = false;
    2017        4256 :     pathnode->parallel_safe = rel->consider_parallel;
    2018        4256 :     pathnode->parallel_workers = 0;
    2019        4256 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    2020             : 
    2021        4256 :     cost_resultscan(pathnode, root, rel, pathnode->param_info);
    2022             : 
    2023        4256 :     return pathnode;
    2024             : }
    2025             : 
    2026             : /*
    2027             :  * create_worktablescan_path
    2028             :  *    Creates a path corresponding to a scan of a self-reference CTE,
    2029             :  *    returning the pathnode.
    2030             :  */
    2031             : Path *
    2032         934 : create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel,
    2033             :                           Relids required_outer)
    2034             : {
    2035         934 :     Path       *pathnode = makeNode(Path);
    2036             : 
    2037         934 :     pathnode->pathtype = T_WorkTableScan;
    2038         934 :     pathnode->parent = rel;
    2039         934 :     pathnode->pathtarget = rel->reltarget;
    2040         934 :     pathnode->param_info = get_baserel_parampathinfo(root, rel,
    2041             :                                                      required_outer);
    2042         934 :     pathnode->parallel_aware = false;
    2043         934 :     pathnode->parallel_safe = rel->consider_parallel;
    2044         934 :     pathnode->parallel_workers = 0;
    2045         934 :     pathnode->pathkeys = NIL;    /* result is always unordered */
    2046             : 
    2047             :     /* Cost is the same as for a regular CTE scan */
    2048         934 :     cost_ctescan(pathnode, root, rel, pathnode->param_info);
    2049             : 
    2050         934 :     return pathnode;
    2051             : }
    2052             : 
    2053             : /*
    2054             :  * create_foreignscan_path
    2055             :  *    Creates a path corresponding to a scan of a foreign base table,
    2056             :  *    returning the pathnode.
    2057             :  *
    2058             :  * This function is never called from core Postgres; rather, it's expected
    2059             :  * to be called by the GetForeignPaths function of a foreign data wrapper.
    2060             :  * We make the FDW supply all fields of the path, since we do not have any way
    2061             :  * to calculate them in core.  However, there is a usually-sane default for
    2062             :  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
    2063             :  */
    2064             : ForeignPath *
    2065        3722 : create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel,
    2066             :                         PathTarget *target,
    2067             :                         double rows, int disabled_nodes,
    2068             :                         Cost startup_cost, Cost total_cost,
    2069             :                         List *pathkeys,
    2070             :                         Relids required_outer,
    2071             :                         Path *fdw_outerpath,
    2072             :                         List *fdw_restrictinfo,
    2073             :                         List *fdw_private)
    2074             : {
    2075        3722 :     ForeignPath *pathnode = makeNode(ForeignPath);
    2076             : 
    2077             :     /* Historically some FDWs were confused about when to use this */
    2078             :     Assert(IS_SIMPLE_REL(rel));
    2079             : 
    2080        3722 :     pathnode->path.pathtype = T_ForeignScan;
    2081        3722 :     pathnode->path.parent = rel;
    2082        3722 :     pathnode->path.pathtarget = target ? target : rel->reltarget;
    2083        3722 :     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
    2084             :                                                           required_outer);
    2085        3722 :     pathnode->path.parallel_aware = false;
    2086        3722 :     pathnode->path.parallel_safe = rel->consider_parallel;
    2087        3722 :     pathnode->path.parallel_workers = 0;
    2088        3722 :     pathnode->path.rows = rows;
    2089        3722 :     pathnode->path.disabled_nodes = disabled_nodes;
    2090        3722 :     pathnode->path.startup_cost = startup_cost;
    2091        3722 :     pathnode->path.total_cost = total_cost;
    2092        3722 :     pathnode->path.pathkeys = pathkeys;
    2093             : 
    2094        3722 :     pathnode->fdw_outerpath = fdw_outerpath;
    2095        3722 :     pathnode->fdw_restrictinfo = fdw_restrictinfo;
    2096        3722 :     pathnode->fdw_private = fdw_private;
    2097             : 
    2098        3722 :     return pathnode;
    2099             : }
    2100             : 
    2101             : /*
    2102             :  * create_foreign_join_path
    2103             :  *    Creates a path corresponding to a scan of a foreign join,
    2104             :  *    returning the pathnode.
    2105             :  *
    2106             :  * This function is never called from core Postgres; rather, it's expected
    2107             :  * to be called by the GetForeignJoinPaths function of a foreign data wrapper.
    2108             :  * We make the FDW supply all fields of the path, since we do not have any way
    2109             :  * to calculate them in core.  However, there is a usually-sane default for
    2110             :  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
    2111             :  */
    2112             : ForeignPath *
    2113        1212 : create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel,
    2114             :                          PathTarget *target,
    2115             :                          double rows, int disabled_nodes,
    2116             :                          Cost startup_cost, Cost total_cost,
    2117             :                          List *pathkeys,
    2118             :                          Relids required_outer,
    2119             :                          Path *fdw_outerpath,
    2120             :                          List *fdw_restrictinfo,
    2121             :                          List *fdw_private)
    2122             : {
    2123        1212 :     ForeignPath *pathnode = makeNode(ForeignPath);
    2124             : 
    2125             :     /*
    2126             :      * We should use get_joinrel_parampathinfo to handle parameterized paths,
    2127             :      * but the API of this function doesn't support it, and existing
    2128             :      * extensions aren't yet trying to build such paths anyway.  For the
    2129             :      * moment just throw an error if someone tries it; eventually we should
    2130             :      * revisit this.
    2131             :      */
    2132        1212 :     if (!bms_is_empty(required_outer) || !bms_is_empty(rel->lateral_relids))
    2133           0 :         elog(ERROR, "parameterized foreign joins are not supported yet");
    2134             : 
    2135        1212 :     pathnode->path.pathtype = T_ForeignScan;
    2136        1212 :     pathnode->path.parent = rel;
    2137        1212 :     pathnode->path.pathtarget = target ? target : rel->reltarget;
    2138        1212 :     pathnode->path.param_info = NULL;    /* XXX see above */
    2139        1212 :     pathnode->path.parallel_aware = false;
    2140        1212 :     pathnode->path.parallel_safe = rel->consider_parallel;
    2141        1212 :     pathnode->path.parallel_workers = 0;
    2142        1212 :     pathnode->path.rows = rows;
    2143        1212 :     pathnode->path.disabled_nodes = disabled_nodes;
    2144        1212 :     pathnode->path.startup_cost = startup_cost;
    2145        1212 :     pathnode->path.total_cost = total_cost;
    2146        1212 :     pathnode->path.pathkeys = pathkeys;
    2147             : 
    2148        1212 :     pathnode->fdw_outerpath = fdw_outerpath;
    2149        1212 :     pathnode->fdw_restrictinfo = fdw_restrictinfo;
    2150        1212 :     pathnode->fdw_private = fdw_private;
    2151             : 
    2152        1212 :     return pathnode;
    2153             : }
    2154             : 
    2155             : /*
    2156             :  * create_foreign_upper_path
    2157             :  *    Creates a path corresponding to an upper relation that's computed
    2158             :  *    directly by an FDW, returning the pathnode.
    2159             :  *
    2160             :  * This function is never called from core Postgres; rather, it's expected to
    2161             :  * be called by the GetForeignUpperPaths function of a foreign data wrapper.
    2162             :  * We make the FDW supply all fields of the path, since we do not have any way
    2163             :  * to calculate them in core.  However, there is a usually-sane default for
    2164             :  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
    2165             :  */
    2166             : ForeignPath *
    2167         588 : create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel,
    2168             :                           PathTarget *target,
    2169             :                           double rows, int disabled_nodes,
    2170             :                           Cost startup_cost, Cost total_cost,
    2171             :                           List *pathkeys,
    2172             :                           Path *fdw_outerpath,
    2173             :                           List *fdw_restrictinfo,
    2174             :                           List *fdw_private)
    2175             : {
    2176         588 :     ForeignPath *pathnode = makeNode(ForeignPath);
    2177             : 
    2178             :     /*
    2179             :      * Upper relations should never have any lateral references, since joining
    2180             :      * is complete.
    2181             :      */
    2182             :     Assert(bms_is_empty(rel->lateral_relids));
    2183             : 
    2184         588 :     pathnode->path.pathtype = T_ForeignScan;
    2185         588 :     pathnode->path.parent = rel;
    2186         588 :     pathnode->path.pathtarget = target ? target : rel->reltarget;
    2187         588 :     pathnode->path.param_info = NULL;
    2188         588 :     pathnode->path.parallel_aware = false;
    2189         588 :     pathnode->path.parallel_safe = rel->consider_parallel;
    2190         588 :     pathnode->path.parallel_workers = 0;
    2191         588 :     pathnode->path.rows = rows;
    2192         588 :     pathnode->path.disabled_nodes = disabled_nodes;
    2193         588 :     pathnode->path.startup_cost = startup_cost;
    2194         588 :     pathnode->path.total_cost = total_cost;
    2195         588 :     pathnode->path.pathkeys = pathkeys;
    2196             : 
    2197         588 :     pathnode->fdw_outerpath = fdw_outerpath;
    2198         588 :     pathnode->fdw_restrictinfo = fdw_restrictinfo;
    2199         588 :     pathnode->fdw_private = fdw_private;
    2200             : 
    2201         588 :     return pathnode;
    2202             : }
    2203             : 
    2204             : /*
    2205             :  * calc_nestloop_required_outer
    2206             :  *    Compute the required_outer set for a nestloop join path
    2207             :  *
    2208             :  * Note: when considering a child join, the inputs nonetheless use top-level
    2209             :  * parent relids
    2210             :  *
    2211             :  * Note: result must not share storage with either input
    2212             :  */
    2213             : Relids
    2214     3365942 : calc_nestloop_required_outer(Relids outerrelids,
    2215             :                              Relids outer_paramrels,
    2216             :                              Relids innerrelids,
    2217             :                              Relids inner_paramrels)
    2218             : {
    2219             :     Relids      required_outer;
    2220             : 
    2221             :     /* inner_path can require rels from outer path, but not vice versa */
    2222             :     Assert(!bms_overlap(outer_paramrels, innerrelids));
    2223             :     /* easy case if inner path is not parameterized */
    2224     3365942 :     if (!inner_paramrels)
    2225     2333932 :         return bms_copy(outer_paramrels);
    2226             :     /* else, form the union ... */
    2227     1032010 :     required_outer = bms_union(outer_paramrels, inner_paramrels);
    2228             :     /* ... and remove any mention of now-satisfied outer rels */
    2229     1032010 :     required_outer = bms_del_members(required_outer,
    2230             :                                      outerrelids);
    2231     1032010 :     return required_outer;
    2232             : }
    2233             : 
    2234             : /*
    2235             :  * calc_non_nestloop_required_outer
    2236             :  *    Compute the required_outer set for a merge or hash join path
    2237             :  *
    2238             :  * Note: result must not share storage with either input
    2239             :  */
    2240             : Relids
    2241     2264142 : calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
    2242             : {
    2243     2264142 :     Relids      outer_paramrels = PATH_REQ_OUTER(outer_path);
    2244     2264142 :     Relids      inner_paramrels = PATH_REQ_OUTER(inner_path);
    2245             :     Relids      innerrelids PG_USED_FOR_ASSERTS_ONLY;
    2246             :     Relids      outerrelids PG_USED_FOR_ASSERTS_ONLY;
    2247             :     Relids      required_outer;
    2248             : 
    2249             :     /*
    2250             :      * Any parameterization of the input paths refers to topmost parents of
    2251             :      * the relevant relations, because reparameterize_path_by_child() hasn't
    2252             :      * been called yet.  So we must consider topmost parents of the relations
    2253             :      * being joined, too, while checking for disallowed parameterization
    2254             :      * cases.
    2255             :      */
    2256     2264142 :     if (inner_path->parent->top_parent_relids)
    2257      159758 :         innerrelids = inner_path->parent->top_parent_relids;
    2258             :     else
    2259     2104384 :         innerrelids = inner_path->parent->relids;
    2260             : 
    2261     2264142 :     if (outer_path->parent->top_parent_relids)
    2262      159758 :         outerrelids = outer_path->parent->top_parent_relids;
    2263             :     else
    2264     2104384 :         outerrelids = outer_path->parent->relids;
    2265             : 
    2266             :     /* neither path can require rels from the other */
    2267             :     Assert(!bms_overlap(outer_paramrels, innerrelids));
    2268             :     Assert(!bms_overlap(inner_paramrels, outerrelids));
    2269             :     /* form the union ... */
    2270     2264142 :     required_outer = bms_union(outer_paramrels, inner_paramrels);
    2271             :     /* we do not need an explicit test for empty; bms_union gets it right */
    2272     2264142 :     return required_outer;
    2273             : }
    2274             : 
    2275             : /*
    2276             :  * create_nestloop_path
    2277             :  *    Creates a pathnode corresponding to a nestloop join between two
    2278             :  *    relations.
    2279             :  *
    2280             :  * 'joinrel' is the join relation.
    2281             :  * 'jointype' is the type of join required
    2282             :  * 'workspace' is the result from initial_cost_nestloop
    2283             :  * 'extra' contains various information about the join
    2284             :  * 'outer_path' is the outer path
    2285             :  * 'inner_path' is the inner path
    2286             :  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
    2287             :  * 'pathkeys' are the path keys of the new join path
    2288             :  * 'required_outer' is the set of required outer rels
    2289             :  *
    2290             :  * Returns the resulting path node.
    2291             :  */
    2292             : NestPath *
    2293     1456540 : create_nestloop_path(PlannerInfo *root,
    2294             :                      RelOptInfo *joinrel,
    2295             :                      JoinType jointype,
    2296             :                      JoinCostWorkspace *workspace,
    2297             :                      JoinPathExtraData *extra,
    2298             :                      Path *outer_path,
    2299             :                      Path *inner_path,
    2300             :                      List *restrict_clauses,
    2301             :                      List *pathkeys,
    2302             :                      Relids required_outer)
    2303             : {
    2304     1456540 :     NestPath   *pathnode = makeNode(NestPath);
    2305     1456540 :     Relids      inner_req_outer = PATH_REQ_OUTER(inner_path);
    2306             :     Relids      outerrelids;
    2307             : 
    2308             :     /*
    2309             :      * Paths are parameterized by top-level parents, so run parameterization
    2310             :      * tests on the parent relids.
    2311             :      */
    2312     1456540 :     if (outer_path->parent->top_parent_relids)
    2313       76102 :         outerrelids = outer_path->parent->top_parent_relids;
    2314             :     else
    2315     1380438 :         outerrelids = outer_path->parent->relids;
    2316             : 
    2317             :     /*
    2318             :      * If the inner path is parameterized by the outer, we must drop any
    2319             :      * restrict_clauses that are due to be moved into the inner path.  We have
    2320             :      * to do this now, rather than postpone the work till createplan time,
    2321             :      * because the restrict_clauses list can affect the size and cost
    2322             :      * estimates for this path.  We detect such clauses by checking for serial
    2323             :      * number match to clauses already enforced in the inner path.
    2324             :      */
    2325     1456540 :     if (bms_overlap(inner_req_outer, outerrelids))
    2326             :     {
    2327      394636 :         Bitmapset  *enforced_serials = get_param_path_clause_serials(inner_path);
    2328      394636 :         List       *jclauses = NIL;
    2329             :         ListCell   *lc;
    2330             : 
    2331      875938 :         foreach(lc, restrict_clauses)
    2332             :         {
    2333      481302 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    2334             : 
    2335      481302 :             if (!bms_is_member(rinfo->rinfo_serial, enforced_serials))
    2336       60252 :                 jclauses = lappend(jclauses, rinfo);
    2337             :         }
    2338      394636 :         restrict_clauses = jclauses;
    2339             :     }
    2340             : 
    2341     1456540 :     pathnode->jpath.path.pathtype = T_NestLoop;
    2342     1456540 :     pathnode->jpath.path.parent = joinrel;
    2343     1456540 :     pathnode->jpath.path.pathtarget = joinrel->reltarget;
    2344     1456540 :     pathnode->jpath.path.param_info =
    2345     1456540 :         get_joinrel_parampathinfo(root,
    2346             :                                   joinrel,
    2347             :                                   outer_path,
    2348             :                                   inner_path,
    2349             :                                   extra->sjinfo,
    2350             :                                   required_outer,
    2351             :                                   &restrict_clauses);
    2352     1456540 :     pathnode->jpath.path.parallel_aware = false;
    2353     4242218 :     pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
    2354     1456540 :         outer_path->parallel_safe && inner_path->parallel_safe;
    2355             :     /* This is a foolish way to estimate parallel_workers, but for now... */
    2356     1456540 :     pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
    2357     1456540 :     pathnode->jpath.path.pathkeys = pathkeys;
    2358     1456540 :     pathnode->jpath.jointype = jointype;
    2359     1456540 :     pathnode->jpath.inner_unique = extra->inner_unique;
    2360     1456540 :     pathnode->jpath.outerjoinpath = outer_path;
    2361     1456540 :     pathnode->jpath.innerjoinpath = inner_path;
    2362     1456540 :     pathnode->jpath.joinrestrictinfo = restrict_clauses;
    2363             : 
    2364     1456540 :     final_cost_nestloop(root, pathnode, workspace, extra);
    2365             : 
    2366     1456540 :     return pathnode;
    2367             : }
    2368             : 
    2369             : /*
    2370             :  * create_mergejoin_path
    2371             :  *    Creates a pathnode corresponding to a mergejoin join between
    2372             :  *    two relations
    2373             :  *
    2374             :  * 'joinrel' is the join relation
    2375             :  * 'jointype' is the type of join required
    2376             :  * 'workspace' is the result from initial_cost_mergejoin
    2377             :  * 'extra' contains various information about the join
    2378             :  * 'outer_path' is the outer path
    2379             :  * 'inner_path' is the inner path
    2380             :  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
    2381             :  * 'pathkeys' are the path keys of the new join path
    2382             :  * 'required_outer' is the set of required outer rels
    2383             :  * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
    2384             :  *      (this should be a subset of the restrict_clauses list)
    2385             :  * 'outersortkeys' are the sort varkeys for the outer relation
    2386             :  * 'innersortkeys' are the sort varkeys for the inner relation
    2387             :  * 'outer_presorted_keys' is the number of presorted keys of the outer path
    2388             :  */
    2389             : MergePath *
    2390      457384 : create_mergejoin_path(PlannerInfo *root,
    2391             :                       RelOptInfo *joinrel,
    2392             :                       JoinType jointype,
    2393             :                       JoinCostWorkspace *workspace,
    2394             :                       JoinPathExtraData *extra,
    2395             :                       Path *outer_path,
    2396             :                       Path *inner_path,
    2397             :                       List *restrict_clauses,
    2398             :                       List *pathkeys,
    2399             :                       Relids required_outer,
    2400             :                       List *mergeclauses,
    2401             :                       List *outersortkeys,
    2402             :                       List *innersortkeys,
    2403             :                       int outer_presorted_keys)
    2404             : {
    2405      457384 :     MergePath  *pathnode = makeNode(MergePath);
    2406             : 
    2407      457384 :     pathnode->jpath.path.pathtype = T_MergeJoin;
    2408      457384 :     pathnode->jpath.path.parent = joinrel;
    2409      457384 :     pathnode->jpath.path.pathtarget = joinrel->reltarget;
    2410      457384 :     pathnode->jpath.path.param_info =
    2411      457384 :         get_joinrel_parampathinfo(root,
    2412             :                                   joinrel,
    2413             :                                   outer_path,
    2414             :                                   inner_path,
    2415             :                                   extra->sjinfo,
    2416             :                                   required_outer,
    2417             :                                   &restrict_clauses);
    2418      457384 :     pathnode->jpath.path.parallel_aware = false;
    2419     1334858 :     pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
    2420      457384 :         outer_path->parallel_safe && inner_path->parallel_safe;
    2421             :     /* This is a foolish way to estimate parallel_workers, but for now... */
    2422      457384 :     pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
    2423      457384 :     pathnode->jpath.path.pathkeys = pathkeys;
    2424      457384 :     pathnode->jpath.jointype = jointype;
    2425      457384 :     pathnode->jpath.inner_unique = extra->inner_unique;
    2426      457384 :     pathnode->jpath.outerjoinpath = outer_path;
    2427      457384 :     pathnode->jpath.innerjoinpath = inner_path;
    2428      457384 :     pathnode->jpath.joinrestrictinfo = restrict_clauses;
    2429      457384 :     pathnode->path_mergeclauses = mergeclauses;
    2430      457384 :     pathnode->outersortkeys = outersortkeys;
    2431      457384 :     pathnode->innersortkeys = innersortkeys;
    2432      457384 :     pathnode->outer_presorted_keys = outer_presorted_keys;
    2433             :     /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
    2434             :     /* pathnode->materialize_inner will be set by final_cost_mergejoin */
    2435             : 
    2436      457384 :     final_cost_mergejoin(root, pathnode, workspace, extra);
    2437             : 
    2438      457384 :     return pathnode;
    2439             : }
    2440             : 
    2441             : /*
    2442             :  * create_hashjoin_path
    2443             :  *    Creates a pathnode corresponding to a hash join between two relations.
    2444             :  *
    2445             :  * 'joinrel' is the join relation
    2446             :  * 'jointype' is the type of join required
    2447             :  * 'workspace' is the result from initial_cost_hashjoin
    2448             :  * 'extra' contains various information about the join
    2449             :  * 'outer_path' is the cheapest outer path
    2450             :  * 'inner_path' is the cheapest inner path
    2451             :  * 'parallel_hash' to select Parallel Hash of inner path (shared hash table)
    2452             :  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
    2453             :  * 'required_outer' is the set of required outer rels
    2454             :  * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
    2455             :  *      (this should be a subset of the restrict_clauses list)
    2456             :  */
    2457             : HashPath *
    2458      452968 : create_hashjoin_path(PlannerInfo *root,
    2459             :                      RelOptInfo *joinrel,
    2460             :                      JoinType jointype,
    2461             :                      JoinCostWorkspace *workspace,
    2462             :                      JoinPathExtraData *extra,
    2463             :                      Path *outer_path,
    2464             :                      Path *inner_path,
    2465             :                      bool parallel_hash,
    2466             :                      List *restrict_clauses,
    2467             :                      Relids required_outer,
    2468             :                      List *hashclauses)
    2469             : {
    2470      452968 :     HashPath   *pathnode = makeNode(HashPath);
    2471             : 
    2472      452968 :     pathnode->jpath.path.pathtype = T_HashJoin;
    2473      452968 :     pathnode->jpath.path.parent = joinrel;
    2474      452968 :     pathnode->jpath.path.pathtarget = joinrel->reltarget;
    2475      452968 :     pathnode->jpath.path.param_info =
    2476      452968 :         get_joinrel_parampathinfo(root,
    2477             :                                   joinrel,
    2478             :                                   outer_path,
    2479             :                                   inner_path,
    2480             :                                   extra->sjinfo,
    2481             :                                   required_outer,
    2482             :                                   &restrict_clauses);
    2483      452968 :     pathnode->jpath.path.parallel_aware =
    2484      452968 :         joinrel->consider_parallel && parallel_hash;
    2485     1322358 :     pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
    2486      452968 :         outer_path->parallel_safe && inner_path->parallel_safe;
    2487             :     /* This is a foolish way to estimate parallel_workers, but for now... */
    2488      452968 :     pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
    2489             : 
    2490             :     /*
    2491             :      * A hashjoin never has pathkeys, since its output ordering is
    2492             :      * unpredictable due to possible batching.  XXX If the inner relation is
    2493             :      * small enough, we could instruct the executor that it must not batch,
    2494             :      * and then we could assume that the output inherits the outer relation's
    2495             :      * ordering, which might save a sort step.  However there is considerable
    2496             :      * downside if our estimate of the inner relation size is badly off. For
    2497             :      * the moment we don't risk it.  (Note also that if we wanted to take this
    2498             :      * seriously, joinpath.c would have to consider many more paths for the
    2499             :      * outer rel than it does now.)
    2500             :      */
    2501      452968 :     pathnode->jpath.path.pathkeys = NIL;
    2502      452968 :     pathnode->jpath.jointype = jointype;
    2503      452968 :     pathnode->jpath.inner_unique = extra->inner_unique;
    2504      452968 :     pathnode->jpath.outerjoinpath = outer_path;
    2505      452968 :     pathnode->jpath.innerjoinpath = inner_path;
    2506      452968 :     pathnode->jpath.joinrestrictinfo = restrict_clauses;
    2507      452968 :     pathnode->path_hashclauses = hashclauses;
    2508             :     /* final_cost_hashjoin will fill in pathnode->num_batches */
    2509             : 
    2510      452968 :     final_cost_hashjoin(root, pathnode, workspace, extra);
    2511             : 
    2512      452968 :     return pathnode;
    2513             : }
    2514             : 
    2515             : /*
    2516             :  * create_projection_path
    2517             :  *    Creates a pathnode that represents performing a projection.
    2518             :  *
    2519             :  * 'rel' is the parent relation associated with the result
    2520             :  * 'subpath' is the path representing the source of data
    2521             :  * 'target' is the PathTarget to be computed
    2522             :  */
    2523             : ProjectionPath *
    2524      412080 : create_projection_path(PlannerInfo *root,
    2525             :                        RelOptInfo *rel,
    2526             :                        Path *subpath,
    2527             :                        PathTarget *target)
    2528             : {
    2529      412080 :     ProjectionPath *pathnode = makeNode(ProjectionPath);
    2530             :     PathTarget *oldtarget;
    2531             : 
    2532             :     /*
    2533             :      * We mustn't put a ProjectionPath directly above another; it's useless
    2534             :      * and will confuse create_projection_plan.  Rather than making sure all
    2535             :      * callers handle that, let's implement it here, by stripping off any
    2536             :      * ProjectionPath in what we're given.  Given this rule, there won't be
    2537             :      * more than one.
    2538             :      */
    2539      412080 :     if (IsA(subpath, ProjectionPath))
    2540             :     {
    2541          12 :         ProjectionPath *subpp = (ProjectionPath *) subpath;
    2542             : 
    2543             :         Assert(subpp->path.parent == rel);
    2544          12 :         subpath = subpp->subpath;
    2545             :         Assert(!IsA(subpath, ProjectionPath));
    2546             :     }
    2547             : 
    2548      412080 :     pathnode->path.pathtype = T_Result;
    2549      412080 :     pathnode->path.parent = rel;
    2550      412080 :     pathnode->path.pathtarget = target;
    2551      412080 :     pathnode->path.param_info = subpath->param_info;
    2552      412080 :     pathnode->path.parallel_aware = false;
    2553      963754 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    2554      543676 :         subpath->parallel_safe &&
    2555      131596 :         is_parallel_safe(root, (Node *) target->exprs);
    2556      412080 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    2557             :     /* Projection does not change the sort order */
    2558      412080 :     pathnode->path.pathkeys = subpath->pathkeys;
    2559             : 
    2560      412080 :     pathnode->subpath = subpath;
    2561             : 
    2562             :     /*
    2563             :      * We might not need a separate Result node.  If the input plan node type
    2564             :      * can project, we can just tell it to project something else.  Or, if it
    2565             :      * can't project but the desired target has the same expression list as
    2566             :      * what the input will produce anyway, we can still give it the desired
    2567             :      * tlist (possibly changing its ressortgroupref labels, but nothing else).
    2568             :      * Note: in the latter case, create_projection_plan has to recheck our
    2569             :      * conclusion; see comments therein.
    2570             :      */
    2571      412080 :     oldtarget = subpath->pathtarget;
    2572      428430 :     if (is_projection_capable_path(subpath) ||
    2573       16350 :         equal(oldtarget->exprs, target->exprs))
    2574             :     {
    2575             :         /* No separate Result node needed */
    2576      397612 :         pathnode->dummypp = true;
    2577             : 
    2578             :         /*
    2579             :          * Set cost of plan as subpath's cost, adjusted for tlist replacement.
    2580             :          */
    2581      397612 :         pathnode->path.rows = subpath->rows;
    2582      397612 :         pathnode->path.disabled_nodes = subpath->disabled_nodes;
    2583      397612 :         pathnode->path.startup_cost = subpath->startup_cost +
    2584      397612 :             (target->cost.startup - oldtarget->cost.startup);
    2585      397612 :         pathnode->path.total_cost = subpath->total_cost +
    2586      397612 :             (target->cost.startup - oldtarget->cost.startup) +
    2587      397612 :             (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
    2588             :     }
    2589             :     else
    2590             :     {
    2591             :         /* We really do need the Result node */
    2592       14468 :         pathnode->dummypp = false;
    2593             : 
    2594             :         /*
    2595             :          * The Result node's cost is cpu_tuple_cost per row, plus the cost of
    2596             :          * evaluating the tlist.  There is no qual to worry about.
    2597             :          */
    2598       14468 :         pathnode->path.rows = subpath->rows;
    2599       14468 :         pathnode->path.disabled_nodes = subpath->disabled_nodes;
    2600       14468 :         pathnode->path.startup_cost = subpath->startup_cost +
    2601       14468 :             target->cost.startup;
    2602       14468 :         pathnode->path.total_cost = subpath->total_cost +
    2603       14468 :             target->cost.startup +
    2604       14468 :             (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
    2605             :     }
    2606             : 
    2607      412080 :     return pathnode;
    2608             : }
    2609             : 
    2610             : /*
    2611             :  * apply_projection_to_path
    2612             :  *    Add a projection step, or just apply the target directly to given path.
    2613             :  *
    2614             :  * This has the same net effect as create_projection_path(), except that if
    2615             :  * a separate Result plan node isn't needed, we just replace the given path's
    2616             :  * pathtarget with the desired one.  This must be used only when the caller
    2617             :  * knows that the given path isn't referenced elsewhere and so can be modified
    2618             :  * in-place.
    2619             :  *
    2620             :  * If the input path is a GatherPath or GatherMergePath, we try to push the
    2621             :  * new target down to its input as well; this is a yet more invasive
    2622             :  * modification of the input path, which create_projection_path() can't do.
    2623             :  *
    2624             :  * Note that we mustn't change the source path's parent link; so when it is
    2625             :  * add_path'd to "rel" things will be a bit inconsistent.  So far that has
    2626             :  * not caused any trouble.
    2627             :  *
    2628             :  * 'rel' is the parent relation associated with the result
    2629             :  * 'path' is the path representing the source of data
    2630             :  * 'target' is the PathTarget to be computed
    2631             :  */
    2632             : Path *
    2633       13636 : apply_projection_to_path(PlannerInfo *root,
    2634             :                          RelOptInfo *rel,
    2635             :                          Path *path,
    2636             :                          PathTarget *target)
    2637             : {
    2638             :     QualCost    oldcost;
    2639             : 
    2640             :     /*
    2641             :      * If given path can't project, we might need a Result node, so make a
    2642             :      * separate ProjectionPath.
    2643             :      */
    2644       13636 :     if (!is_projection_capable_path(path))
    2645        1482 :         return (Path *) create_projection_path(root, rel, path, target);
    2646             : 
    2647             :     /*
    2648             :      * We can just jam the desired tlist into the existing path, being sure to
    2649             :      * update its cost estimates appropriately.
    2650             :      */
    2651       12154 :     oldcost = path->pathtarget->cost;
    2652       12154 :     path->pathtarget = target;
    2653             : 
    2654       12154 :     path->startup_cost += target->cost.startup - oldcost.startup;
    2655       12154 :     path->total_cost += target->cost.startup - oldcost.startup +
    2656       12154 :         (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
    2657             : 
    2658             :     /*
    2659             :      * If the path happens to be a Gather or GatherMerge path, we'd like to
    2660             :      * arrange for the subpath to return the required target list so that
    2661             :      * workers can help project.  But if there is something that is not
    2662             :      * parallel-safe in the target expressions, then we can't.
    2663             :      */
    2664       12178 :     if ((IsA(path, GatherPath) || IsA(path, GatherMergePath)) &&
    2665          24 :         is_parallel_safe(root, (Node *) target->exprs))
    2666             :     {
    2667             :         /*
    2668             :          * We always use create_projection_path here, even if the subpath is
    2669             :          * projection-capable, so as to avoid modifying the subpath in place.
    2670             :          * It seems unlikely at present that there could be any other
    2671             :          * references to the subpath, but better safe than sorry.
    2672             :          *
    2673             :          * Note that we don't change the parallel path's cost estimates; it
    2674             :          * might be appropriate to do so, to reflect the fact that the bulk of
    2675             :          * the target evaluation will happen in workers.
    2676             :          */
    2677          24 :         if (IsA(path, GatherPath))
    2678             :         {
    2679           0 :             GatherPath *gpath = (GatherPath *) path;
    2680             : 
    2681           0 :             gpath->subpath = (Path *)
    2682           0 :                 create_projection_path(root,
    2683           0 :                                        gpath->subpath->parent,
    2684             :                                        gpath->subpath,
    2685             :                                        target);
    2686             :         }
    2687             :         else
    2688             :         {
    2689          24 :             GatherMergePath *gmpath = (GatherMergePath *) path;
    2690             : 
    2691          24 :             gmpath->subpath = (Path *)
    2692          24 :                 create_projection_path(root,
    2693          24 :                                        gmpath->subpath->parent,
    2694             :                                        gmpath->subpath,
    2695             :                                        target);
    2696             :         }
    2697             :     }
    2698       12130 :     else if (path->parallel_safe &&
    2699        4614 :              !is_parallel_safe(root, (Node *) target->exprs))
    2700             :     {
    2701             :         /*
    2702             :          * We're inserting a parallel-restricted target list into a path
    2703             :          * currently marked parallel-safe, so we have to mark it as no longer
    2704             :          * safe.
    2705             :          */
    2706          12 :         path->parallel_safe = false;
    2707             :     }
    2708             : 
    2709       12154 :     return path;
    2710             : }
    2711             : 
    2712             : /*
    2713             :  * create_set_projection_path
    2714             :  *    Creates a pathnode that represents performing a projection that
    2715             :  *    includes set-returning functions.
    2716             :  *
    2717             :  * 'rel' is the parent relation associated with the result
    2718             :  * 'subpath' is the path representing the source of data
    2719             :  * 'target' is the PathTarget to be computed
    2720             :  */
    2721             : ProjectSetPath *
    2722       11810 : create_set_projection_path(PlannerInfo *root,
    2723             :                            RelOptInfo *rel,
    2724             :                            Path *subpath,
    2725             :                            PathTarget *target)
    2726             : {
    2727       11810 :     ProjectSetPath *pathnode = makeNode(ProjectSetPath);
    2728             :     double      tlist_rows;
    2729             :     ListCell   *lc;
    2730             : 
    2731       11810 :     pathnode->path.pathtype = T_ProjectSet;
    2732       11810 :     pathnode->path.parent = rel;
    2733       11810 :     pathnode->path.pathtarget = target;
    2734             :     /* For now, assume we are above any joins, so no parameterization */
    2735       11810 :     pathnode->path.param_info = NULL;
    2736       11810 :     pathnode->path.parallel_aware = false;
    2737       28066 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    2738       16220 :         subpath->parallel_safe &&
    2739        4410 :         is_parallel_safe(root, (Node *) target->exprs);
    2740       11810 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    2741             :     /* Projection does not change the sort order XXX? */
    2742       11810 :     pathnode->path.pathkeys = subpath->pathkeys;
    2743             : 
    2744       11810 :     pathnode->subpath = subpath;
    2745             : 
    2746             :     /*
    2747             :      * Estimate number of rows produced by SRFs for each row of input; if
    2748             :      * there's more than one in this node, use the maximum.
    2749             :      */
    2750       11810 :     tlist_rows = 1;
    2751       25616 :     foreach(lc, target->exprs)
    2752             :     {
    2753       13806 :         Node       *node = (Node *) lfirst(lc);
    2754             :         double      itemrows;
    2755             : 
    2756       13806 :         itemrows = expression_returns_set_rows(root, node);
    2757       13806 :         if (tlist_rows < itemrows)
    2758       11496 :             tlist_rows = itemrows;
    2759             :     }
    2760             : 
    2761             :     /*
    2762             :      * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
    2763             :      * per input row, and half of cpu_tuple_cost for each added output row.
    2764             :      * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
    2765             :      * this estimate later.
    2766             :      */
    2767       11810 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    2768       11810 :     pathnode->path.rows = subpath->rows * tlist_rows;
    2769       11810 :     pathnode->path.startup_cost = subpath->startup_cost +
    2770       11810 :         target->cost.startup;
    2771       11810 :     pathnode->path.total_cost = subpath->total_cost +
    2772       11810 :         target->cost.startup +
    2773       11810 :         (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
    2774       11810 :         (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
    2775             : 
    2776       11810 :     return pathnode;
    2777             : }
    2778             : 
    2779             : /*
    2780             :  * create_incremental_sort_path
    2781             :  *    Creates a pathnode that represents performing an incremental sort.
    2782             :  *
    2783             :  * 'rel' is the parent relation associated with the result
    2784             :  * 'subpath' is the path representing the source of data
    2785             :  * 'pathkeys' represents the desired sort order
    2786             :  * 'presorted_keys' is the number of keys by which the input path is
    2787             :  *      already sorted
    2788             :  * 'limit_tuples' is the estimated bound on the number of output tuples,
    2789             :  *      or -1 if no LIMIT or couldn't estimate
    2790             :  */
    2791             : IncrementalSortPath *
    2792       10256 : create_incremental_sort_path(PlannerInfo *root,
    2793             :                              RelOptInfo *rel,
    2794             :                              Path *subpath,
    2795             :                              List *pathkeys,
    2796             :                              int presorted_keys,
    2797             :                              double limit_tuples)
    2798             : {
    2799       10256 :     IncrementalSortPath *sort = makeNode(IncrementalSortPath);
    2800       10256 :     SortPath   *pathnode = &sort->spath;
    2801             : 
    2802       10256 :     pathnode->path.pathtype = T_IncrementalSort;
    2803       10256 :     pathnode->path.parent = rel;
    2804             :     /* Sort doesn't project, so use source path's pathtarget */
    2805       10256 :     pathnode->path.pathtarget = subpath->pathtarget;
    2806       10256 :     pathnode->path.param_info = subpath->param_info;
    2807       10256 :     pathnode->path.parallel_aware = false;
    2808       15726 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    2809        5470 :         subpath->parallel_safe;
    2810       10256 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    2811       10256 :     pathnode->path.pathkeys = pathkeys;
    2812             : 
    2813       10256 :     pathnode->subpath = subpath;
    2814             : 
    2815       10256 :     cost_incremental_sort(&pathnode->path,
    2816             :                           root, pathkeys, presorted_keys,
    2817             :                           subpath->disabled_nodes,
    2818             :                           subpath->startup_cost,
    2819             :                           subpath->total_cost,
    2820             :                           subpath->rows,
    2821       10256 :                           subpath->pathtarget->width,
    2822             :                           0.0,  /* XXX comparison_cost shouldn't be 0? */
    2823             :                           work_mem, limit_tuples);
    2824             : 
    2825       10256 :     sort->nPresortedCols = presorted_keys;
    2826             : 
    2827       10256 :     return sort;
    2828             : }
    2829             : 
    2830             : /*
    2831             :  * create_sort_path
    2832             :  *    Creates a pathnode that represents performing an explicit sort.
    2833             :  *
    2834             :  * 'rel' is the parent relation associated with the result
    2835             :  * 'subpath' is the path representing the source of data
    2836             :  * 'pathkeys' represents the desired sort order
    2837             :  * 'limit_tuples' is the estimated bound on the number of output tuples,
    2838             :  *      or -1 if no LIMIT or couldn't estimate
    2839             :  */
    2840             : SortPath *
    2841      116190 : create_sort_path(PlannerInfo *root,
    2842             :                  RelOptInfo *rel,
    2843             :                  Path *subpath,
    2844             :                  List *pathkeys,
    2845             :                  double limit_tuples)
    2846             : {
    2847      116190 :     SortPath   *pathnode = makeNode(SortPath);
    2848             : 
    2849      116190 :     pathnode->path.pathtype = T_Sort;
    2850      116190 :     pathnode->path.parent = rel;
    2851             :     /* Sort doesn't project, so use source path's pathtarget */
    2852      116190 :     pathnode->path.pathtarget = subpath->pathtarget;
    2853      116190 :     pathnode->path.param_info = subpath->param_info;
    2854      116190 :     pathnode->path.parallel_aware = false;
    2855      202690 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    2856       86500 :         subpath->parallel_safe;
    2857      116190 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    2858      116190 :     pathnode->path.pathkeys = pathkeys;
    2859             : 
    2860      116190 :     pathnode->subpath = subpath;
    2861             : 
    2862      116190 :     cost_sort(&pathnode->path, root, pathkeys,
    2863             :               subpath->disabled_nodes,
    2864             :               subpath->total_cost,
    2865             :               subpath->rows,
    2866      116190 :               subpath->pathtarget->width,
    2867             :               0.0,              /* XXX comparison_cost shouldn't be 0? */
    2868             :               work_mem, limit_tuples);
    2869             : 
    2870      116190 :     return pathnode;
    2871             : }
    2872             : 
    2873             : /*
    2874             :  * create_group_path
    2875             :  *    Creates a pathnode that represents performing grouping of presorted input
    2876             :  *
    2877             :  * 'rel' is the parent relation associated with the result
    2878             :  * 'subpath' is the path representing the source of data
    2879             :  * 'target' is the PathTarget to be computed
    2880             :  * 'groupClause' is a list of SortGroupClause's representing the grouping
    2881             :  * 'qual' is the HAVING quals if any
    2882             :  * 'numGroups' is the estimated number of groups
    2883             :  */
    2884             : GroupPath *
    2885        1226 : create_group_path(PlannerInfo *root,
    2886             :                   RelOptInfo *rel,
    2887             :                   Path *subpath,
    2888             :                   List *groupClause,
    2889             :                   List *qual,
    2890             :                   double numGroups)
    2891             : {
    2892        1226 :     GroupPath  *pathnode = makeNode(GroupPath);
    2893        1226 :     PathTarget *target = rel->reltarget;
    2894             : 
    2895        1226 :     pathnode->path.pathtype = T_Group;
    2896        1226 :     pathnode->path.parent = rel;
    2897        1226 :     pathnode->path.pathtarget = target;
    2898             :     /* For now, assume we are above any joins, so no parameterization */
    2899        1226 :     pathnode->path.param_info = NULL;
    2900        1226 :     pathnode->path.parallel_aware = false;
    2901        1970 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    2902         744 :         subpath->parallel_safe;
    2903        1226 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    2904             :     /* Group doesn't change sort ordering */
    2905        1226 :     pathnode->path.pathkeys = subpath->pathkeys;
    2906             : 
    2907        1226 :     pathnode->subpath = subpath;
    2908             : 
    2909        1226 :     pathnode->groupClause = groupClause;
    2910        1226 :     pathnode->qual = qual;
    2911             : 
    2912        1226 :     cost_group(&pathnode->path, root,
    2913             :                list_length(groupClause),
    2914             :                numGroups,
    2915             :                qual,
    2916             :                subpath->disabled_nodes,
    2917             :                subpath->startup_cost, subpath->total_cost,
    2918             :                subpath->rows);
    2919             : 
    2920             :     /* add tlist eval cost for each output row */
    2921        1226 :     pathnode->path.startup_cost += target->cost.startup;
    2922        1226 :     pathnode->path.total_cost += target->cost.startup +
    2923        1226 :         target->cost.per_tuple * pathnode->path.rows;
    2924             : 
    2925        1226 :     return pathnode;
    2926             : }
    2927             : 
    2928             : /*
    2929             :  * create_unique_path
    2930             :  *    Creates a pathnode that represents performing an explicit Unique step
    2931             :  *    on presorted input.
    2932             :  *
    2933             :  * 'rel' is the parent relation associated with the result
    2934             :  * 'subpath' is the path representing the source of data
    2935             :  * 'numCols' is the number of grouping columns
    2936             :  * 'numGroups' is the estimated number of groups
    2937             :  *
    2938             :  * The input path must be sorted on the grouping columns, plus possibly
    2939             :  * additional columns; so the first numCols pathkeys are the grouping columns
    2940             :  */
    2941             : UniquePath *
    2942       22386 : create_unique_path(PlannerInfo *root,
    2943             :                    RelOptInfo *rel,
    2944             :                    Path *subpath,
    2945             :                    int numCols,
    2946             :                    double numGroups)
    2947             : {
    2948       22386 :     UniquePath *pathnode = makeNode(UniquePath);
    2949             : 
    2950       22386 :     pathnode->path.pathtype = T_Unique;
    2951       22386 :     pathnode->path.parent = rel;
    2952             :     /* Unique doesn't project, so use source path's pathtarget */
    2953       22386 :     pathnode->path.pathtarget = subpath->pathtarget;
    2954       22386 :     pathnode->path.param_info = subpath->param_info;
    2955       22386 :     pathnode->path.parallel_aware = false;
    2956       40522 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    2957       18136 :         subpath->parallel_safe;
    2958       22386 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    2959             :     /* Unique doesn't change the input ordering */
    2960       22386 :     pathnode->path.pathkeys = subpath->pathkeys;
    2961             : 
    2962       22386 :     pathnode->subpath = subpath;
    2963       22386 :     pathnode->numkeys = numCols;
    2964             : 
    2965             :     /*
    2966             :      * Charge one cpu_operator_cost per comparison per input tuple. We assume
    2967             :      * all columns get compared at most of the tuples.  (XXX probably this is
    2968             :      * an overestimate.)
    2969             :      */
    2970       22386 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    2971       22386 :     pathnode->path.startup_cost = subpath->startup_cost;
    2972       22386 :     pathnode->path.total_cost = subpath->total_cost +
    2973       22386 :         cpu_operator_cost * subpath->rows * numCols;
    2974       22386 :     pathnode->path.rows = numGroups;
    2975             : 
    2976       22386 :     return pathnode;
    2977             : }
    2978             : 
    2979             : /*
    2980             :  * create_agg_path
    2981             :  *    Creates a pathnode that represents performing aggregation/grouping
    2982             :  *
    2983             :  * 'rel' is the parent relation associated with the result
    2984             :  * 'subpath' is the path representing the source of data
    2985             :  * 'target' is the PathTarget to be computed
    2986             :  * 'aggstrategy' is the Agg node's basic implementation strategy
    2987             :  * 'aggsplit' is the Agg node's aggregate-splitting mode
    2988             :  * 'groupClause' is a list of SortGroupClause's representing the grouping
    2989             :  * 'qual' is the HAVING quals if any
    2990             :  * 'aggcosts' contains cost info about the aggregate functions to be computed
    2991             :  * 'numGroups' is the estimated number of groups (1 if not grouping)
    2992             :  */
    2993             : AggPath *
    2994       80410 : create_agg_path(PlannerInfo *root,
    2995             :                 RelOptInfo *rel,
    2996             :                 Path *subpath,
    2997             :                 PathTarget *target,
    2998             :                 AggStrategy aggstrategy,
    2999             :                 AggSplit aggsplit,
    3000             :                 List *groupClause,
    3001             :                 List *qual,
    3002             :                 const AggClauseCosts *aggcosts,
    3003             :                 double numGroups)
    3004             : {
    3005       80410 :     AggPath    *pathnode = makeNode(AggPath);
    3006             : 
    3007       80410 :     pathnode->path.pathtype = T_Agg;
    3008       80410 :     pathnode->path.parent = rel;
    3009       80410 :     pathnode->path.pathtarget = target;
    3010       80410 :     pathnode->path.param_info = subpath->param_info;
    3011       80410 :     pathnode->path.parallel_aware = false;
    3012      140828 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3013       60418 :         subpath->parallel_safe;
    3014       80410 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3015             : 
    3016       80410 :     if (aggstrategy == AGG_SORTED)
    3017             :     {
    3018             :         /*
    3019             :          * Attempt to preserve the order of the subpath.  Additional pathkeys
    3020             :          * may have been added in adjust_group_pathkeys_for_groupagg() to
    3021             :          * support ORDER BY / DISTINCT aggregates.  Pathkeys added there
    3022             :          * belong to columns within the aggregate function, so we must strip
    3023             :          * these additional pathkeys off as those columns are unavailable
    3024             :          * above the aggregate node.
    3025             :          */
    3026       14020 :         if (list_length(subpath->pathkeys) > root->num_groupby_pathkeys)
    3027         808 :             pathnode->path.pathkeys = list_copy_head(subpath->pathkeys,
    3028             :                                                      root->num_groupby_pathkeys);
    3029             :         else
    3030       13212 :             pathnode->path.pathkeys = subpath->pathkeys;  /* preserves order */
    3031             :     }
    3032             :     else
    3033       66390 :         pathnode->path.pathkeys = NIL;   /* output is unordered */
    3034             : 
    3035       80410 :     pathnode->subpath = subpath;
    3036             : 
    3037       80410 :     pathnode->aggstrategy = aggstrategy;
    3038       80410 :     pathnode->aggsplit = aggsplit;
    3039       80410 :     pathnode->numGroups = numGroups;
    3040       80410 :     pathnode->transitionSpace = aggcosts ? aggcosts->transitionSpace : 0;
    3041       80410 :     pathnode->groupClause = groupClause;
    3042       80410 :     pathnode->qual = qual;
    3043             : 
    3044       80410 :     cost_agg(&pathnode->path, root,
    3045             :              aggstrategy, aggcosts,
    3046             :              list_length(groupClause), numGroups,
    3047             :              qual,
    3048             :              subpath->disabled_nodes,
    3049             :              subpath->startup_cost, subpath->total_cost,
    3050       80410 :              subpath->rows, subpath->pathtarget->width);
    3051             : 
    3052             :     /* add tlist eval cost for each output row */
    3053       80410 :     pathnode->path.startup_cost += target->cost.startup;
    3054       80410 :     pathnode->path.total_cost += target->cost.startup +
    3055       80410 :         target->cost.per_tuple * pathnode->path.rows;
    3056             : 
    3057       80410 :     return pathnode;
    3058             : }
    3059             : 
    3060             : /*
    3061             :  * create_groupingsets_path
    3062             :  *    Creates a pathnode that represents performing GROUPING SETS aggregation
    3063             :  *
    3064             :  * GroupingSetsPath represents sorted grouping with one or more grouping sets.
    3065             :  * The input path's result must be sorted to match the last entry in
    3066             :  * rollup_groupclauses.
    3067             :  *
    3068             :  * 'rel' is the parent relation associated with the result
    3069             :  * 'subpath' is the path representing the source of data
    3070             :  * 'target' is the PathTarget to be computed
    3071             :  * 'having_qual' is the HAVING quals if any
    3072             :  * 'rollups' is a list of RollupData nodes
    3073             :  * 'agg_costs' contains cost info about the aggregate functions to be computed
    3074             :  */
    3075             : GroupingSetsPath *
    3076        2230 : create_groupingsets_path(PlannerInfo *root,
    3077             :                          RelOptInfo *rel,
    3078             :                          Path *subpath,
    3079             :                          List *having_qual,
    3080             :                          AggStrategy aggstrategy,
    3081             :                          List *rollups,
    3082             :                          const AggClauseCosts *agg_costs)
    3083             : {
    3084        2230 :     GroupingSetsPath *pathnode = makeNode(GroupingSetsPath);
    3085        2230 :     PathTarget *target = rel->reltarget;
    3086             :     ListCell   *lc;
    3087        2230 :     bool        is_first = true;
    3088        2230 :     bool        is_first_sort = true;
    3089             : 
    3090             :     /* The topmost generated Plan node will be an Agg */
    3091        2230 :     pathnode->path.pathtype = T_Agg;
    3092        2230 :     pathnode->path.parent = rel;
    3093        2230 :     pathnode->path.pathtarget = target;
    3094        2230 :     pathnode->path.param_info = subpath->param_info;
    3095        2230 :     pathnode->path.parallel_aware = false;
    3096        3220 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3097         990 :         subpath->parallel_safe;
    3098        2230 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3099        2230 :     pathnode->subpath = subpath;
    3100             : 
    3101             :     /*
    3102             :      * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
    3103             :      * to AGG_HASHED, here if possible.
    3104             :      */
    3105        3192 :     if (aggstrategy == AGG_SORTED &&
    3106         962 :         list_length(rollups) == 1 &&
    3107         500 :         ((RollupData *) linitial(rollups))->groupClause == NIL)
    3108          60 :         aggstrategy = AGG_PLAIN;
    3109             : 
    3110        3170 :     if (aggstrategy == AGG_MIXED &&
    3111         940 :         list_length(rollups) == 1)
    3112           0 :         aggstrategy = AGG_HASHED;
    3113             : 
    3114             :     /*
    3115             :      * Output will be in sorted order by group_pathkeys if, and only if, there
    3116             :      * is a single rollup operation on a non-empty list of grouping
    3117             :      * expressions.
    3118             :      */
    3119        2230 :     if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
    3120         440 :         pathnode->path.pathkeys = root->group_pathkeys;
    3121             :     else
    3122        1790 :         pathnode->path.pathkeys = NIL;
    3123             : 
    3124        2230 :     pathnode->aggstrategy = aggstrategy;
    3125        2230 :     pathnode->rollups = rollups;
    3126        2230 :     pathnode->qual = having_qual;
    3127        2230 :     pathnode->transitionSpace = agg_costs ? agg_costs->transitionSpace : 0;
    3128             : 
    3129             :     Assert(rollups != NIL);
    3130             :     Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
    3131             :     Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
    3132             : 
    3133        7680 :     foreach(lc, rollups)
    3134             :     {
    3135        5450 :         RollupData *rollup = lfirst(lc);
    3136        5450 :         List       *gsets = rollup->gsets;
    3137        5450 :         int         numGroupCols = list_length(linitial(gsets));
    3138             : 
    3139             :         /*
    3140             :          * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
    3141             :          * (already-sorted) input, and following ones do their own sort.
    3142             :          *
    3143             :          * In AGG_HASHED mode, there is one rollup for each grouping set.
    3144             :          *
    3145             :          * In AGG_MIXED mode, the first rollups are hashed, the first
    3146             :          * non-hashed one takes the (already-sorted) input, and following ones
    3147             :          * do their own sort.
    3148             :          */
    3149        5450 :         if (is_first)
    3150             :         {
    3151        2230 :             cost_agg(&pathnode->path, root,
    3152             :                      aggstrategy,
    3153             :                      agg_costs,
    3154             :                      numGroupCols,
    3155             :                      rollup->numGroups,
    3156             :                      having_qual,
    3157             :                      subpath->disabled_nodes,
    3158             :                      subpath->startup_cost,
    3159             :                      subpath->total_cost,
    3160             :                      subpath->rows,
    3161        2230 :                      subpath->pathtarget->width);
    3162        2230 :             is_first = false;
    3163        2230 :             if (!rollup->is_hashed)
    3164         962 :                 is_first_sort = false;
    3165             :         }
    3166             :         else
    3167             :         {
    3168             :             Path        sort_path;  /* dummy for result of cost_sort */
    3169             :             Path        agg_path;   /* dummy for result of cost_agg */
    3170             : 
    3171        3220 :             if (rollup->is_hashed || is_first_sort)
    3172             :             {
    3173             :                 /*
    3174             :                  * Account for cost of aggregation, but don't charge input
    3175             :                  * cost again
    3176             :                  */
    3177        2470 :                 cost_agg(&agg_path, root,
    3178        2470 :                          rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
    3179             :                          agg_costs,
    3180             :                          numGroupCols,
    3181             :                          rollup->numGroups,
    3182             :                          having_qual,
    3183             :                          0, 0.0, 0.0,
    3184             :                          subpath->rows,
    3185        2470 :                          subpath->pathtarget->width);
    3186        2470 :                 if (!rollup->is_hashed)
    3187         940 :                     is_first_sort = false;
    3188             :             }
    3189             :             else
    3190             :             {
    3191             :                 /* Account for cost of sort, but don't charge input cost again */
    3192         750 :                 cost_sort(&sort_path, root, NIL, 0,
    3193             :                           0.0,
    3194             :                           subpath->rows,
    3195         750 :                           subpath->pathtarget->width,
    3196             :                           0.0,
    3197             :                           work_mem,
    3198             :                           -1.0);
    3199             : 
    3200             :                 /* Account for cost of aggregation */
    3201             : 
    3202         750 :                 cost_agg(&agg_path, root,
    3203             :                          AGG_SORTED,
    3204             :                          agg_costs,
    3205             :                          numGroupCols,
    3206             :                          rollup->numGroups,
    3207             :                          having_qual,
    3208             :                          sort_path.disabled_nodes,
    3209             :                          sort_path.startup_cost,
    3210             :                          sort_path.total_cost,
    3211             :                          sort_path.rows,
    3212         750 :                          subpath->pathtarget->width);
    3213             :             }
    3214             : 
    3215        3220 :             pathnode->path.disabled_nodes += agg_path.disabled_nodes;
    3216        3220 :             pathnode->path.total_cost += agg_path.total_cost;
    3217        3220 :             pathnode->path.rows += agg_path.rows;
    3218             :         }
    3219             :     }
    3220             : 
    3221             :     /* add tlist eval cost for each output row */
    3222        2230 :     pathnode->path.startup_cost += target->cost.startup;
    3223        2230 :     pathnode->path.total_cost += target->cost.startup +
    3224        2230 :         target->cost.per_tuple * pathnode->path.rows;
    3225             : 
    3226        2230 :     return pathnode;
    3227             : }
    3228             : 
    3229             : /*
    3230             :  * create_minmaxagg_path
    3231             :  *    Creates a pathnode that represents computation of MIN/MAX aggregates
    3232             :  *
    3233             :  * 'rel' is the parent relation associated with the result
    3234             :  * 'target' is the PathTarget to be computed
    3235             :  * 'mmaggregates' is a list of MinMaxAggInfo structs
    3236             :  * 'quals' is the HAVING quals if any
    3237             :  */
    3238             : MinMaxAggPath *
    3239         410 : create_minmaxagg_path(PlannerInfo *root,
    3240             :                       RelOptInfo *rel,
    3241             :                       PathTarget *target,
    3242             :                       List *mmaggregates,
    3243             :                       List *quals)
    3244             : {
    3245         410 :     MinMaxAggPath *pathnode = makeNode(MinMaxAggPath);
    3246             :     Cost        initplan_cost;
    3247         410 :     int         initplan_disabled_nodes = 0;
    3248             :     ListCell   *lc;
    3249             : 
    3250             :     /* The topmost generated Plan node will be a Result */
    3251         410 :     pathnode->path.pathtype = T_Result;
    3252         410 :     pathnode->path.parent = rel;
    3253         410 :     pathnode->path.pathtarget = target;
    3254             :     /* For now, assume we are above any joins, so no parameterization */
    3255         410 :     pathnode->path.param_info = NULL;
    3256         410 :     pathnode->path.parallel_aware = false;
    3257         410 :     pathnode->path.parallel_safe = true; /* might change below */
    3258         410 :     pathnode->path.parallel_workers = 0;
    3259             :     /* Result is one unordered row */
    3260         410 :     pathnode->path.rows = 1;
    3261         410 :     pathnode->path.pathkeys = NIL;
    3262             : 
    3263         410 :     pathnode->mmaggregates = mmaggregates;
    3264         410 :     pathnode->quals = quals;
    3265             : 
    3266             :     /* Calculate cost of all the initplans, and check parallel safety */
    3267         410 :     initplan_cost = 0;
    3268         856 :     foreach(lc, mmaggregates)
    3269             :     {
    3270         446 :         MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
    3271             : 
    3272         446 :         initplan_disabled_nodes += mminfo->path->disabled_nodes;
    3273         446 :         initplan_cost += mminfo->pathcost;
    3274         446 :         if (!mminfo->path->parallel_safe)
    3275         110 :             pathnode->path.parallel_safe = false;
    3276             :     }
    3277             : 
    3278             :     /* add tlist eval cost for each output row, plus cpu_tuple_cost */
    3279         410 :     pathnode->path.disabled_nodes = initplan_disabled_nodes;
    3280         410 :     pathnode->path.startup_cost = initplan_cost + target->cost.startup;
    3281         410 :     pathnode->path.total_cost = initplan_cost + target->cost.startup +
    3282         410 :         target->cost.per_tuple + cpu_tuple_cost;
    3283             : 
    3284             :     /*
    3285             :      * Add cost of qual, if any --- but we ignore its selectivity, since our
    3286             :      * rowcount estimate should be 1 no matter what the qual is.
    3287             :      */
    3288         410 :     if (quals)
    3289             :     {
    3290             :         QualCost    qual_cost;
    3291             : 
    3292           0 :         cost_qual_eval(&qual_cost, quals, root);
    3293           0 :         pathnode->path.startup_cost += qual_cost.startup;
    3294           0 :         pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
    3295             :     }
    3296             : 
    3297             :     /*
    3298             :      * If the initplans were all parallel-safe, also check safety of the
    3299             :      * target and quals.  (The Result node itself isn't parallelizable, but if
    3300             :      * we are in a subquery then it can be useful for the outer query to know
    3301             :      * that this one is parallel-safe.)
    3302             :      */
    3303         410 :     if (pathnode->path.parallel_safe)
    3304         300 :         pathnode->path.parallel_safe =
    3305         600 :             is_parallel_safe(root, (Node *) target->exprs) &&
    3306         300 :             is_parallel_safe(root, (Node *) quals);
    3307             : 
    3308         410 :     return pathnode;
    3309             : }
    3310             : 
    3311             : /*
    3312             :  * create_windowagg_path
    3313             :  *    Creates a pathnode that represents computation of window functions
    3314             :  *
    3315             :  * 'rel' is the parent relation associated with the result
    3316             :  * 'subpath' is the path representing the source of data
    3317             :  * 'target' is the PathTarget to be computed
    3318             :  * 'windowFuncs' is a list of WindowFunc structs
    3319             :  * 'runCondition' is a list of OpExprs to short-circuit WindowAgg execution
    3320             :  * 'winclause' is a WindowClause that is common to all the WindowFuncs
    3321             :  * 'qual' WindowClause.runconditions from lower-level WindowAggPaths.
    3322             :  *      Must always be NIL when topwindow == false
    3323             :  * 'topwindow' pass as true only for the top-level WindowAgg. False for all
    3324             :  *      intermediate WindowAggs.
    3325             :  *
    3326             :  * The input must be sorted according to the WindowClause's PARTITION keys
    3327             :  * plus ORDER BY keys.
    3328             :  */
    3329             : WindowAggPath *
    3330        2964 : create_windowagg_path(PlannerInfo *root,
    3331             :                       RelOptInfo *rel,
    3332             :                       Path *subpath,
    3333             :                       PathTarget *target,
    3334             :                       List *windowFuncs,
    3335             :                       List *runCondition,
    3336             :                       WindowClause *winclause,
    3337             :                       List *qual,
    3338             :                       bool topwindow)
    3339             : {
    3340        2964 :     WindowAggPath *pathnode = makeNode(WindowAggPath);
    3341             : 
    3342             :     /* qual can only be set for the topwindow */
    3343             :     Assert(qual == NIL || topwindow);
    3344             : 
    3345        2964 :     pathnode->path.pathtype = T_WindowAgg;
    3346        2964 :     pathnode->path.parent = rel;
    3347        2964 :     pathnode->path.pathtarget = target;
    3348             :     /* For now, assume we are above any joins, so no parameterization */
    3349        2964 :     pathnode->path.param_info = NULL;
    3350        2964 :     pathnode->path.parallel_aware = false;
    3351        2964 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3352           0 :         subpath->parallel_safe;
    3353        2964 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3354             :     /* WindowAgg preserves the input sort order */
    3355        2964 :     pathnode->path.pathkeys = subpath->pathkeys;
    3356             : 
    3357        2964 :     pathnode->subpath = subpath;
    3358        2964 :     pathnode->winclause = winclause;
    3359        2964 :     pathnode->qual = qual;
    3360        2964 :     pathnode->runCondition = runCondition;
    3361        2964 :     pathnode->topwindow = topwindow;
    3362             : 
    3363             :     /*
    3364             :      * For costing purposes, assume that there are no redundant partitioning
    3365             :      * or ordering columns; it's not worth the trouble to deal with that
    3366             :      * corner case here.  So we just pass the unmodified list lengths to
    3367             :      * cost_windowagg.
    3368             :      */
    3369        2964 :     cost_windowagg(&pathnode->path, root,
    3370             :                    windowFuncs,
    3371             :                    winclause,
    3372             :                    subpath->disabled_nodes,
    3373             :                    subpath->startup_cost,
    3374             :                    subpath->total_cost,
    3375             :                    subpath->rows);
    3376             : 
    3377             :     /* add tlist eval cost for each output row */
    3378        2964 :     pathnode->path.startup_cost += target->cost.startup;
    3379        2964 :     pathnode->path.total_cost += target->cost.startup +
    3380        2964 :         target->cost.per_tuple * pathnode->path.rows;
    3381             : 
    3382        2964 :     return pathnode;
    3383             : }
    3384             : 
    3385             : /*
    3386             :  * create_setop_path
    3387             :  *    Creates a pathnode that represents computation of INTERSECT or EXCEPT
    3388             :  *
    3389             :  * 'rel' is the parent relation associated with the result
    3390             :  * 'leftpath' is the path representing the left-hand source of data
    3391             :  * 'rightpath' is the path representing the right-hand source of data
    3392             :  * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
    3393             :  * 'strategy' is the implementation strategy (sorted or hashed)
    3394             :  * 'groupList' is a list of SortGroupClause's representing the grouping
    3395             :  * 'numGroups' is the estimated number of distinct groups in left-hand input
    3396             :  * 'outputRows' is the estimated number of output rows
    3397             :  *
    3398             :  * leftpath and rightpath must produce the same columns.  Moreover, if
    3399             :  * strategy is SETOP_SORTED, leftpath and rightpath must both be sorted
    3400             :  * by all the grouping columns.
    3401             :  */
    3402             : SetOpPath *
    3403        1276 : create_setop_path(PlannerInfo *root,
    3404             :                   RelOptInfo *rel,
    3405             :                   Path *leftpath,
    3406             :                   Path *rightpath,
    3407             :                   SetOpCmd cmd,
    3408             :                   SetOpStrategy strategy,
    3409             :                   List *groupList,
    3410             :                   double numGroups,
    3411             :                   double outputRows)
    3412             : {
    3413        1276 :     SetOpPath  *pathnode = makeNode(SetOpPath);
    3414             : 
    3415        1276 :     pathnode->path.pathtype = T_SetOp;
    3416        1276 :     pathnode->path.parent = rel;
    3417        1276 :     pathnode->path.pathtarget = rel->reltarget;
    3418             :     /* For now, assume we are above any joins, so no parameterization */
    3419        1276 :     pathnode->path.param_info = NULL;
    3420        1276 :     pathnode->path.parallel_aware = false;
    3421        2552 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3422        1276 :         leftpath->parallel_safe && rightpath->parallel_safe;
    3423        1276 :     pathnode->path.parallel_workers =
    3424        1276 :         leftpath->parallel_workers + rightpath->parallel_workers;
    3425             :     /* SetOp preserves the input sort order if in sort mode */
    3426        1276 :     pathnode->path.pathkeys =
    3427        1276 :         (strategy == SETOP_SORTED) ? leftpath->pathkeys : NIL;
    3428             : 
    3429        1276 :     pathnode->leftpath = leftpath;
    3430        1276 :     pathnode->rightpath = rightpath;
    3431        1276 :     pathnode->cmd = cmd;
    3432        1276 :     pathnode->strategy = strategy;
    3433        1276 :     pathnode->groupList = groupList;
    3434        1276 :     pathnode->numGroups = numGroups;
    3435             : 
    3436             :     /*
    3437             :      * Compute cost estimates.  As things stand, we end up with the same total
    3438             :      * cost in this node for sort and hash methods, but different startup
    3439             :      * costs.  This could be refined perhaps, but it'll do for now.
    3440             :      */
    3441        1276 :     pathnode->path.disabled_nodes =
    3442        1276 :         leftpath->disabled_nodes + rightpath->disabled_nodes;
    3443        1276 :     if (strategy == SETOP_SORTED)
    3444             :     {
    3445             :         /*
    3446             :          * In sorted mode, we can emit output incrementally.  Charge one
    3447             :          * cpu_operator_cost per comparison per input tuple.  Like cost_group,
    3448             :          * we assume all columns get compared at most of the tuples.
    3449             :          */
    3450         668 :         pathnode->path.startup_cost =
    3451         668 :             leftpath->startup_cost + rightpath->startup_cost;
    3452         668 :         pathnode->path.total_cost =
    3453        1336 :             leftpath->total_cost + rightpath->total_cost +
    3454         668 :             cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
    3455             : 
    3456             :         /*
    3457             :          * Also charge a small amount per extracted tuple.  Like cost_sort,
    3458             :          * charge only operator cost not cpu_tuple_cost, since SetOp does no
    3459             :          * qual-checking or projection.
    3460             :          */
    3461         668 :         pathnode->path.total_cost += cpu_operator_cost * outputRows;
    3462             :     }
    3463             :     else
    3464             :     {
    3465             :         Size        hashtablesize;
    3466             : 
    3467             :         /*
    3468             :          * In hashed mode, we must read all the input before we can emit
    3469             :          * anything.  Also charge comparison costs to represent the cost of
    3470             :          * hash table lookups.
    3471             :          */
    3472         608 :         pathnode->path.startup_cost =
    3473        1216 :             leftpath->total_cost + rightpath->total_cost +
    3474         608 :             cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
    3475         608 :         pathnode->path.total_cost = pathnode->path.startup_cost;
    3476             : 
    3477             :         /*
    3478             :          * Also charge a small amount per extracted tuple.  Like cost_sort,
    3479             :          * charge only operator cost not cpu_tuple_cost, since SetOp does no
    3480             :          * qual-checking or projection.
    3481             :          */
    3482         608 :         pathnode->path.total_cost += cpu_operator_cost * outputRows;
    3483             : 
    3484             :         /*
    3485             :          * Mark the path as disabled if enable_hashagg is off.  While this
    3486             :          * isn't exactly a HashAgg node, it seems close enough to justify
    3487             :          * letting that switch control it.
    3488             :          */
    3489         608 :         if (!enable_hashagg)
    3490         114 :             pathnode->path.disabled_nodes++;
    3491             : 
    3492             :         /*
    3493             :          * Also disable if it doesn't look like the hashtable will fit into
    3494             :          * hash_mem.  (Note: reject on equality, to ensure that an estimate of
    3495             :          * SIZE_MAX disables hashing regardless of the hash_mem limit.)
    3496             :          */
    3497         608 :         hashtablesize = EstimateSetOpHashTableSpace(numGroups,
    3498         608 :                                                     leftpath->pathtarget->width);
    3499         608 :         if (hashtablesize >= get_hash_memory_limit())
    3500           0 :             pathnode->path.disabled_nodes++;
    3501             :     }
    3502        1276 :     pathnode->path.rows = outputRows;
    3503             : 
    3504        1276 :     return pathnode;
    3505             : }
    3506             : 
    3507             : /*
    3508             :  * create_recursiveunion_path
    3509             :  *    Creates a pathnode that represents a recursive UNION node
    3510             :  *
    3511             :  * 'rel' is the parent relation associated with the result
    3512             :  * 'leftpath' is the source of data for the non-recursive term
    3513             :  * 'rightpath' is the source of data for the recursive term
    3514             :  * 'target' is the PathTarget to be computed
    3515             :  * 'distinctList' is a list of SortGroupClause's representing the grouping
    3516             :  * 'wtParam' is the ID of Param representing work table
    3517             :  * 'numGroups' is the estimated number of groups
    3518             :  *
    3519             :  * For recursive UNION ALL, distinctList is empty and numGroups is zero
    3520             :  */
    3521             : RecursiveUnionPath *
    3522         928 : create_recursiveunion_path(PlannerInfo *root,
    3523             :                            RelOptInfo *rel,
    3524             :                            Path *leftpath,
    3525             :                            Path *rightpath,
    3526             :                            PathTarget *target,
    3527             :                            List *distinctList,
    3528             :                            int wtParam,
    3529             :                            double numGroups)
    3530             : {
    3531         928 :     RecursiveUnionPath *pathnode = makeNode(RecursiveUnionPath);
    3532             : 
    3533         928 :     pathnode->path.pathtype = T_RecursiveUnion;
    3534         928 :     pathnode->path.parent = rel;
    3535         928 :     pathnode->path.pathtarget = target;
    3536             :     /* For now, assume we are above any joins, so no parameterization */
    3537         928 :     pathnode->path.param_info = NULL;
    3538         928 :     pathnode->path.parallel_aware = false;
    3539        1856 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3540         928 :         leftpath->parallel_safe && rightpath->parallel_safe;
    3541             :     /* Foolish, but we'll do it like joins for now: */
    3542         928 :     pathnode->path.parallel_workers = leftpath->parallel_workers;
    3543             :     /* RecursiveUnion result is always unsorted */
    3544         928 :     pathnode->path.pathkeys = NIL;
    3545             : 
    3546         928 :     pathnode->leftpath = leftpath;
    3547         928 :     pathnode->rightpath = rightpath;
    3548         928 :     pathnode->distinctList = distinctList;
    3549         928 :     pathnode->wtParam = wtParam;
    3550         928 :     pathnode->numGroups = numGroups;
    3551             : 
    3552         928 :     cost_recursive_union(&pathnode->path, leftpath, rightpath);
    3553             : 
    3554         928 :     return pathnode;
    3555             : }
    3556             : 
    3557             : /*
    3558             :  * create_lockrows_path
    3559             :  *    Creates a pathnode that represents acquiring row locks
    3560             :  *
    3561             :  * 'rel' is the parent relation associated with the result
    3562             :  * 'subpath' is the path representing the source of data
    3563             :  * 'rowMarks' is a list of PlanRowMark's
    3564             :  * 'epqParam' is the ID of Param for EvalPlanQual re-eval
    3565             :  */
    3566             : LockRowsPath *
    3567        8380 : create_lockrows_path(PlannerInfo *root, RelOptInfo *rel,
    3568             :                      Path *subpath, List *rowMarks, int epqParam)
    3569             : {
    3570        8380 :     LockRowsPath *pathnode = makeNode(LockRowsPath);
    3571             : 
    3572        8380 :     pathnode->path.pathtype = T_LockRows;
    3573        8380 :     pathnode->path.parent = rel;
    3574             :     /* LockRows doesn't project, so use source path's pathtarget */
    3575        8380 :     pathnode->path.pathtarget = subpath->pathtarget;
    3576             :     /* For now, assume we are above any joins, so no parameterization */
    3577        8380 :     pathnode->path.param_info = NULL;
    3578        8380 :     pathnode->path.parallel_aware = false;
    3579        8380 :     pathnode->path.parallel_safe = false;
    3580        8380 :     pathnode->path.parallel_workers = 0;
    3581        8380 :     pathnode->path.rows = subpath->rows;
    3582             : 
    3583             :     /*
    3584             :      * The result cannot be assumed sorted, since locking might cause the sort
    3585             :      * key columns to be replaced with new values.
    3586             :      */
    3587        8380 :     pathnode->path.pathkeys = NIL;
    3588             : 
    3589        8380 :     pathnode->subpath = subpath;
    3590        8380 :     pathnode->rowMarks = rowMarks;
    3591        8380 :     pathnode->epqParam = epqParam;
    3592             : 
    3593             :     /*
    3594             :      * We should charge something extra for the costs of row locking and
    3595             :      * possible refetches, but it's hard to say how much.  For now, use
    3596             :      * cpu_tuple_cost per row.
    3597             :      */
    3598        8380 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    3599        8380 :     pathnode->path.startup_cost = subpath->startup_cost;
    3600        8380 :     pathnode->path.total_cost = subpath->total_cost +
    3601        8380 :         cpu_tuple_cost * subpath->rows;
    3602             : 
    3603        8380 :     return pathnode;
    3604             : }
    3605             : 
    3606             : /*
    3607             :  * create_modifytable_path
    3608             :  *    Creates a pathnode that represents performing INSERT/UPDATE/DELETE/MERGE
    3609             :  *    mods
    3610             :  *
    3611             :  * 'rel' is the parent relation associated with the result
    3612             :  * 'subpath' is a Path producing source data
    3613             :  * 'operation' is the operation type
    3614             :  * 'canSetTag' is true if we set the command tag/es_processed
    3615             :  * 'nominalRelation' is the parent RT index for use of EXPLAIN
    3616             :  * 'rootRelation' is the partitioned/inherited table root RTI, or 0 if none
    3617             :  * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
    3618             :  * 'updateColnosLists' is a list of UPDATE target column number lists
    3619             :  *      (one sublist per rel); or NIL if not an UPDATE
    3620             :  * 'withCheckOptionLists' is a list of WCO lists (one per rel)
    3621             :  * 'returningLists' is a list of RETURNING tlists (one per rel)
    3622             :  * 'rowMarks' is a list of PlanRowMarks (non-locking only)
    3623             :  * 'onconflict' is the ON CONFLICT clause, or NULL
    3624             :  * 'epqParam' is the ID of Param for EvalPlanQual re-eval
    3625             :  * 'mergeActionLists' is a list of lists of MERGE actions (one per rel)
    3626             :  * 'mergeJoinConditions' is a list of join conditions for MERGE (one per rel)
    3627             :  */
    3628             : ModifyTablePath *
    3629       87510 : create_modifytable_path(PlannerInfo *root, RelOptInfo *rel,
    3630             :                         Path *subpath,
    3631             :                         CmdType operation, bool canSetTag,
    3632             :                         Index nominalRelation, Index rootRelation,
    3633             :                         List *resultRelations,
    3634             :                         List *updateColnosLists,
    3635             :                         List *withCheckOptionLists, List *returningLists,
    3636             :                         List *rowMarks, OnConflictExpr *onconflict,
    3637             :                         List *mergeActionLists, List *mergeJoinConditions,
    3638             :                         int epqParam)
    3639             : {
    3640       87510 :     ModifyTablePath *pathnode = makeNode(ModifyTablePath);
    3641             : 
    3642             :     Assert(operation == CMD_MERGE ||
    3643             :            (operation == CMD_UPDATE ?
    3644             :             list_length(resultRelations) == list_length(updateColnosLists) :
    3645             :             updateColnosLists == NIL));
    3646             :     Assert(withCheckOptionLists == NIL ||
    3647             :            list_length(resultRelations) == list_length(withCheckOptionLists));
    3648             :     Assert(returningLists == NIL ||
    3649             :            list_length(resultRelations) == list_length(returningLists));
    3650             : 
    3651       87510 :     pathnode->path.pathtype = T_ModifyTable;
    3652       87510 :     pathnode->path.parent = rel;
    3653             :     /* pathtarget is not interesting, just make it minimally valid */
    3654       87510 :     pathnode->path.pathtarget = rel->reltarget;
    3655             :     /* For now, assume we are above any joins, so no parameterization */
    3656       87510 :     pathnode->path.param_info = NULL;
    3657       87510 :     pathnode->path.parallel_aware = false;
    3658       87510 :     pathnode->path.parallel_safe = false;
    3659       87510 :     pathnode->path.parallel_workers = 0;
    3660       87510 :     pathnode->path.pathkeys = NIL;
    3661             : 
    3662             :     /*
    3663             :      * Compute cost & rowcount as subpath cost & rowcount (if RETURNING)
    3664             :      *
    3665             :      * Currently, we don't charge anything extra for the actual table
    3666             :      * modification work, nor for the WITH CHECK OPTIONS or RETURNING
    3667             :      * expressions if any.  It would only be window dressing, since
    3668             :      * ModifyTable is always a top-level node and there is no way for the
    3669             :      * costs to change any higher-level planning choices.  But we might want
    3670             :      * to make it look better sometime.
    3671             :      */
    3672       87510 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    3673       87510 :     pathnode->path.startup_cost = subpath->startup_cost;
    3674       87510 :     pathnode->path.total_cost = subpath->total_cost;
    3675       87510 :     if (returningLists != NIL)
    3676             :     {
    3677        2964 :         pathnode->path.rows = subpath->rows;
    3678             : 
    3679             :         /*
    3680             :          * Set width to match the subpath output.  XXX this is totally wrong:
    3681             :          * we should return an average of the RETURNING tlist widths.  But
    3682             :          * it's what happened historically, and improving it is a task for
    3683             :          * another day.  (Again, it's mostly window dressing.)
    3684             :          */
    3685        2964 :         pathnode->path.pathtarget->width = subpath->pathtarget->width;
    3686             :     }
    3687             :     else
    3688             :     {
    3689       84546 :         pathnode->path.rows = 0;
    3690       84546 :         pathnode->path.pathtarget->width = 0;
    3691             :     }
    3692             : 
    3693       87510 :     pathnode->subpath = subpath;
    3694       87510 :     pathnode->operation = operation;
    3695       87510 :     pathnode->canSetTag = canSetTag;
    3696       87510 :     pathnode->nominalRelation = nominalRelation;
    3697       87510 :     pathnode->rootRelation = rootRelation;
    3698       87510 :     pathnode->resultRelations = resultRelations;
    3699       87510 :     pathnode->updateColnosLists = updateColnosLists;
    3700       87510 :     pathnode->withCheckOptionLists = withCheckOptionLists;
    3701       87510 :     pathnode->returningLists = returningLists;
    3702       87510 :     pathnode->rowMarks = rowMarks;
    3703       87510 :     pathnode->onconflict = onconflict;
    3704       87510 :     pathnode->epqParam = epqParam;
    3705       87510 :     pathnode->mergeActionLists = mergeActionLists;
    3706       87510 :     pathnode->mergeJoinConditions = mergeJoinConditions;
    3707             : 
    3708       87510 :     return pathnode;
    3709             : }
    3710             : 
    3711             : /*
    3712             :  * create_limit_path
    3713             :  *    Creates a pathnode that represents performing LIMIT/OFFSET
    3714             :  *
    3715             :  * In addition to providing the actual OFFSET and LIMIT expressions,
    3716             :  * the caller must provide estimates of their values for costing purposes.
    3717             :  * The estimates are as computed by preprocess_limit(), ie, 0 represents
    3718             :  * the clause not being present, and -1 means it's present but we could
    3719             :  * not estimate its value.
    3720             :  *
    3721             :  * 'rel' is the parent relation associated with the result
    3722             :  * 'subpath' is the path representing the source of data
    3723             :  * 'limitOffset' is the actual OFFSET expression, or NULL
    3724             :  * 'limitCount' is the actual LIMIT expression, or NULL
    3725             :  * 'offset_est' is the estimated value of the OFFSET expression
    3726             :  * 'count_est' is the estimated value of the LIMIT expression
    3727             :  */
    3728             : LimitPath *
    3729        6080 : create_limit_path(PlannerInfo *root, RelOptInfo *rel,
    3730             :                   Path *subpath,
    3731             :                   Node *limitOffset, Node *limitCount,
    3732             :                   LimitOption limitOption,
    3733             :                   int64 offset_est, int64 count_est)
    3734             : {
    3735        6080 :     LimitPath  *pathnode = makeNode(LimitPath);
    3736             : 
    3737        6080 :     pathnode->path.pathtype = T_Limit;
    3738        6080 :     pathnode->path.parent = rel;
    3739             :     /* Limit doesn't project, so use source path's pathtarget */
    3740        6080 :     pathnode->path.pathtarget = subpath->pathtarget;
    3741             :     /* For now, assume we are above any joins, so no parameterization */
    3742        6080 :     pathnode->path.param_info = NULL;
    3743        6080 :     pathnode->path.parallel_aware = false;
    3744        8526 :     pathnode->path.parallel_safe = rel->consider_parallel &&
    3745        2446 :         subpath->parallel_safe;
    3746        6080 :     pathnode->path.parallel_workers = subpath->parallel_workers;
    3747        6080 :     pathnode->path.rows = subpath->rows;
    3748        6080 :     pathnode->path.disabled_nodes = subpath->disabled_nodes;
    3749        6080 :     pathnode->path.startup_cost = subpath->startup_cost;
    3750        6080 :     pathnode->path.total_cost = subpath->total_cost;
    3751        6080 :     pathnode->path.pathkeys = subpath->pathkeys;
    3752        6080 :     pathnode->subpath = subpath;
    3753        6080 :     pathnode->limitOffset = limitOffset;
    3754        6080 :     pathnode->limitCount = limitCount;
    3755        6080 :     pathnode->limitOption = limitOption;
    3756             : 
    3757             :     /*
    3758             :      * Adjust the output rows count and costs according to the offset/limit.
    3759             :      */
    3760        6080 :     adjust_limit_rows_costs(&pathnode->path.rows,
    3761             :                             &pathnode->path.startup_cost,
    3762             :                             &pathnode->path.total_cost,
    3763             :                             offset_est, count_est);
    3764             : 
    3765        6080 :     return pathnode;
    3766             : }
    3767             : 
    3768             : /*
    3769             :  * adjust_limit_rows_costs
    3770             :  *    Adjust the size and cost estimates for a LimitPath node according to the
    3771             :  *    offset/limit.
    3772             :  *
    3773             :  * This is only a cosmetic issue if we are at top level, but if we are
    3774             :  * building a subquery then it's important to report correct info to the outer
    3775             :  * planner.
    3776             :  *
    3777             :  * When the offset or count couldn't be estimated, use 10% of the estimated
    3778             :  * number of rows emitted from the subpath.
    3779             :  *
    3780             :  * XXX we don't bother to add eval costs of the offset/limit expressions
    3781             :  * themselves to the path costs.  In theory we should, but in most cases those
    3782             :  * expressions are trivial and it's just not worth the trouble.
    3783             :  */
    3784             : void
    3785        6264 : adjust_limit_rows_costs(double *rows,   /* in/out parameter */
    3786             :                         Cost *startup_cost, /* in/out parameter */
    3787             :                         Cost *total_cost,   /* in/out parameter */
    3788             :                         int64 offset_est,
    3789             :                         int64 count_est)
    3790             : {
    3791        6264 :     double      input_rows = *rows;
    3792        6264 :     Cost        input_startup_cost = *startup_cost;
    3793        6264 :     Cost        input_total_cost = *total_cost;
    3794             : 
    3795        6264 :     if (offset_est != 0)
    3796             :     {
    3797             :         double      offset_rows;
    3798             : 
    3799         710 :         if (offset_est > 0)
    3800         686 :             offset_rows = (double) offset_est;
    3801             :         else
    3802          24 :             offset_rows = clamp_row_est(input_rows * 0.10);
    3803         710 :         if (offset_rows > *rows)
    3804          38 :             offset_rows = *rows;
    3805         710 :         if (input_rows > 0)
    3806         710 :             *startup_cost +=
    3807         710 :                 (input_total_cost - input_startup_cost)
    3808         710 :                 * offset_rows / input_rows;
    3809         710 :         *rows -= offset_rows;
    3810         710 :         if (*rows < 1)
    3811          46 :             *rows = 1;
    3812             :     }
    3813             : 
    3814        6264 :     if (count_est != 0)
    3815             :     {
    3816             :         double      count_rows;
    3817             : 
    3818        6190 :         if (count_est > 0)
    3819        6184 :             count_rows = (double) count_est;
    3820             :         else
    3821           6 :             count_rows = clamp_row_est(input_rows * 0.10);
    3822        6190 :         if (count_rows > *rows)
    3823         248 :             count_rows = *rows;
    3824        6190 :         if (input_rows > 0)
    3825        6190 :             *total_cost = *startup_cost +
    3826        6190 :                 (input_total_cost - input_startup_cost)
    3827        6190 :                 * count_rows / input_rows;
    3828        6190 :         *rows = count_rows;
    3829        6190 :         if (*rows < 1)
    3830           0 :             *rows = 1;
    3831             :     }
    3832        6264 : }
    3833             : 
    3834             : 
    3835             : /*
    3836             :  * reparameterize_path
    3837             :  *      Attempt to modify a Path to have greater parameterization
    3838             :  *
    3839             :  * We use this to attempt to bring all child paths of an appendrel to the
    3840             :  * same parameterization level, ensuring that they all enforce the same set
    3841             :  * of join quals (and thus that that parameterization can be attributed to
    3842             :  * an append path built from such paths).  Currently, only a few path types
    3843             :  * are supported here, though more could be added at need.  We return NULL
    3844             :  * if we can't reparameterize the given path.
    3845             :  *
    3846             :  * Note: we intentionally do not pass created paths to add_path(); it would
    3847             :  * possibly try to delete them on the grounds of being cost-inferior to the
    3848             :  * paths they were made from, and we don't want that.  Paths made here are
    3849             :  * not necessarily of general-purpose usefulness, but they can be useful
    3850             :  * as members of an append path.
    3851             :  */
    3852             : Path *
    3853         356 : reparameterize_path(PlannerInfo *root, Path *path,
    3854             :                     Relids required_outer,
    3855             :                     double loop_count)
    3856             : {
    3857         356 :     RelOptInfo *rel = path->parent;
    3858             : 
    3859             :     /* Can only increase, not decrease, path's parameterization */
    3860         356 :     if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
    3861           0 :         return NULL;
    3862         356 :     switch (path->pathtype)
    3863             :     {
    3864         264 :         case T_SeqScan:
    3865         264 :             return create_seqscan_path(root, rel, required_outer, 0);
    3866           0 :         case T_SampleScan:
    3867           0 :             return (Path *) create_samplescan_path(root, rel, required_outer);
    3868           0 :         case T_IndexScan:
    3869             :         case T_IndexOnlyScan:
    3870             :             {
    3871           0 :                 IndexPath  *ipath = (IndexPath *) path;
    3872           0 :                 IndexPath  *newpath = makeNode(IndexPath);
    3873             : 
    3874             :                 /*
    3875             :                  * We can't use create_index_path directly, and would not want
    3876             :                  * to because it would re-compute the indexqual conditions
    3877             :                  * which is wasted effort.  Instead we hack things a bit:
    3878             :                  * flat-copy the path node, revise its param_info, and redo
    3879             :                  * the cost estimate.
    3880             :                  */
    3881           0 :                 memcpy(newpath, ipath, sizeof(IndexPath));
    3882           0 :                 newpath->path.param_info =
    3883           0 :                     get_baserel_parampathinfo(root, rel, required_outer);
    3884           0 :                 cost_index(newpath, root, loop_count, false);
    3885           0 :                 return (Path *) newpath;
    3886             :             }
    3887           0 :         case T_BitmapHeapScan:
    3888             :             {
    3889           0 :                 BitmapHeapPath *bpath = (BitmapHeapPath *) path;
    3890             : 
    3891           0 :                 return (Path *) create_bitmap_heap_path(root,
    3892             :                                                         rel,
    3893             :                                                         bpath->bitmapqual,
    3894             :                                                         required_outer,
    3895             :                                                         loop_count, 0);
    3896             :             }
    3897           0 :         case T_SubqueryScan:
    3898             :             {
    3899           0 :                 SubqueryScanPath *spath = (SubqueryScanPath *) path;
    3900           0 :                 Path       *subpath = spath->subpath;
    3901             :                 bool        trivial_pathtarget;
    3902             : 
    3903             :                 /*
    3904             :                  * If existing node has zero extra cost, we must have decided
    3905             :                  * its target is trivial.  (The converse is not true, because
    3906             :                  * it might have a trivial target but quals to enforce; but in
    3907             :                  * that case the new node will too, so it doesn't matter
    3908             :                  * whether we get the right answer here.)
    3909             :                  */
    3910           0 :                 trivial_pathtarget =
    3911           0 :                     (subpath->total_cost == spath->path.total_cost);
    3912             : 
    3913           0 :                 return (Path *) create_subqueryscan_path(root,
    3914             :                                                          rel,
    3915             :                                                          subpath,
    3916             :                                                          trivial_pathtarget,
    3917             :                                                          spath->path.pathkeys,
    3918             :                                                          required_outer);
    3919             :             }
    3920          60 :         case T_Result:
    3921             :             /* Supported only for RTE_RESULT scan paths */
    3922          60 :             if (IsA(path, Path))
    3923          60 :                 return create_resultscan_path(root, rel, required_outer);
    3924           0 :             break;
    3925           0 :         case T_Append:
    3926             :             {
    3927           0 :                 AppendPath *apath = (AppendPath *) path;
    3928           0 :                 List       *childpaths = NIL;
    3929           0 :                 List       *partialpaths = NIL;
    3930             :                 int         i;
    3931             :                 ListCell   *lc;
    3932             : 
    3933             :                 /* Reparameterize the children */
    3934           0 :                 i = 0;
    3935           0 :                 foreach(lc, apath->subpaths)
    3936             :                 {
    3937           0 :                     Path       *spath = (Path *) lfirst(lc);
    3938             : 
    3939           0 :                     spath = reparameterize_path(root, spath,
    3940             :                                                 required_outer,
    3941             :                                                 loop_count);
    3942           0 :                     if (spath == NULL)
    3943           0 :                         return NULL;
    3944             :                     /* We have to re-split the regular and partial paths */
    3945           0 :                     if (i < apath->first_partial_path)
    3946           0 :                         childpaths = lappend(childpaths, spath);
    3947             :                     else
    3948           0 :                         partialpaths = lappend(partialpaths, spath);
    3949           0 :                     i++;
    3950             :                 }
    3951           0 :                 return (Path *)
    3952           0 :                     create_append_path(root, rel, childpaths, partialpaths,
    3953             :                                        apath->path.pathkeys, required_outer,
    3954             :                                        apath->path.parallel_workers,
    3955           0 :                                        apath->path.parallel_aware,
    3956             :                                        -1);
    3957             :             }
    3958           0 :         case T_Material:
    3959             :             {
    3960           0 :                 MaterialPath *mpath = (MaterialPath *) path;
    3961           0 :                 Path       *spath = mpath->subpath;
    3962             : 
    3963           0 :                 spath = reparameterize_path(root, spath,
    3964             :                                             required_outer,
    3965             :                                             loop_count);
    3966           0 :                 if (spath == NULL)
    3967           0 :                     return NULL;
    3968           0 :                 return (Path *) create_material_path(rel, spath);
    3969             :             }
    3970           0 :         case T_Memoize:
    3971             :             {
    3972           0 :                 MemoizePath *mpath = (MemoizePath *) path;
    3973           0 :                 Path       *spath = mpath->subpath;
    3974             : 
    3975           0 :                 spath = reparameterize_path(root, spath,
    3976             :                                             required_outer,
    3977             :                                             loop_count);
    3978           0 :                 if (spath == NULL)
    3979           0 :                     return NULL;
    3980           0 :                 return (Path *) create_memoize_path(root, rel,
    3981             :                                                     spath,
    3982             :                                                     mpath->param_exprs,
    3983             :                                                     mpath->hash_operators,
    3984           0 :                                                     mpath->singlerow,
    3985           0 :                                                     mpath->binary_mode,
    3986             :                                                     mpath->est_calls);
    3987             :             }
    3988          32 :         default:
    3989          32 :             break;
    3990             :     }
    3991          32 :     return NULL;
    3992             : }
    3993             : 
    3994             : /*
    3995             :  * reparameterize_path_by_child
    3996             :  *      Given a path parameterized by the parent of the given child relation,
    3997             :  *      translate the path to be parameterized by the given child relation.
    3998             :  *
    3999             :  * Most fields in the path are not changed, but any expressions must be
    4000             :  * adjusted to refer to the correct varnos, and any subpaths must be
    4001             :  * recursively reparameterized.  Other fields that refer to specific relids
    4002             :  * also need adjustment.
    4003             :  *
    4004             :  * The cost, number of rows, width and parallel path properties depend upon
    4005             :  * path->parent, which does not change during the translation.  So we need
    4006             :  * not change those.
    4007             :  *
    4008             :  * Currently, only a few path types are supported here, though more could be
    4009             :  * added at need.  We return NULL if we can't reparameterize the given path.
    4010             :  *
    4011             :  * Note that this function can change referenced RangeTblEntries, RelOptInfos
    4012             :  * and IndexOptInfos as well as the Path structures.  Therefore, it's only safe
    4013             :  * to call during create_plan(), when we have made a final choice of which Path
    4014             :  * to use for each RangeTblEntry/RelOptInfo/IndexOptInfo.
    4015             :  *
    4016             :  * Keep this code in sync with path_is_reparameterizable_by_child()!
    4017             :  */
    4018             : Path *
    4019       98272 : reparameterize_path_by_child(PlannerInfo *root, Path *path,
    4020             :                              RelOptInfo *child_rel)
    4021             : {
    4022             :     Path       *new_path;
    4023             :     ParamPathInfo *new_ppi;
    4024             :     ParamPathInfo *old_ppi;
    4025             :     Relids      required_outer;
    4026             : 
    4027             : #define ADJUST_CHILD_ATTRS(node) \
    4028             :     ((node) = (void *) adjust_appendrel_attrs_multilevel(root, \
    4029             :                                                          (Node *) (node), \
    4030             :                                                          child_rel, \
    4031             :                                                          child_rel->top_parent))
    4032             : 
    4033             : #define REPARAMETERIZE_CHILD_PATH(path) \
    4034             : do { \
    4035             :     (path) = reparameterize_path_by_child(root, (path), child_rel); \
    4036             :     if ((path) == NULL) \
    4037             :         return NULL; \
    4038             : } while(0)
    4039             : 
    4040             : #define REPARAMETERIZE_CHILD_PATH_LIST(pathlist) \
    4041             : do { \
    4042             :     if ((pathlist) != NIL) \
    4043             :     { \
    4044             :         (pathlist) = reparameterize_pathlist_by_child(root, (pathlist), \
    4045             :                                                       child_rel); \
    4046             :         if ((pathlist) == NIL) \
    4047             :             return NULL; \
    4048             :     } \
    4049             : } while(0)
    4050             : 
    4051             :     /*
    4052             :      * If the path is not parameterized by the parent of the given relation,
    4053             :      * it doesn't need reparameterization.
    4054             :      */
    4055       98272 :     if (!path->param_info ||
    4056       50008 :         !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
    4057       97246 :         return path;
    4058             : 
    4059             :     /*
    4060             :      * If possible, reparameterize the given path.
    4061             :      *
    4062             :      * This function is currently only applied to the inner side of a nestloop
    4063             :      * join that is being partitioned by the partitionwise-join code.  Hence,
    4064             :      * we need only support path types that plausibly arise in that context.
    4065             :      * (In particular, supporting sorted path types would be a waste of code
    4066             :      * and cycles: even if we translated them here, they'd just lose in
    4067             :      * subsequent cost comparisons.)  If we do see an unsupported path type,
    4068             :      * that just means we won't be able to generate a partitionwise-join plan
    4069             :      * using that path type.
    4070             :      */
    4071        1026 :     switch (nodeTag(path))
    4072             :     {
    4073         228 :         case T_Path:
    4074         228 :             new_path = path;
    4075         228 :             ADJUST_CHILD_ATTRS(new_path->parent->baserestrictinfo);
    4076         228 :             if (path->pathtype == T_SampleScan)
    4077             :             {
    4078          48 :                 Index       scan_relid = path->parent->relid;
    4079             :                 RangeTblEntry *rte;
    4080             : 
    4081             :                 /* it should be a base rel with a tablesample clause... */
    4082             :                 Assert(scan_relid > 0);
    4083          48 :                 rte = planner_rt_fetch(scan_relid, root);
    4084             :                 Assert(rte->rtekind == RTE_RELATION);
    4085             :                 Assert(rte->tablesample != NULL);
    4086             : 
    4087          48 :                 ADJUST_CHILD_ATTRS(rte->tablesample);
    4088             :             }
    4089         228 :             break;
    4090             : 
    4091         528 :         case T_IndexPath:
    4092             :             {
    4093         528 :                 IndexPath  *ipath = (IndexPath *) path;
    4094             : 
    4095         528 :                 ADJUST_CHILD_ATTRS(ipath->indexinfo->indrestrictinfo);
    4096         528 :                 ADJUST_CHILD_ATTRS(ipath->indexclauses);
    4097         528 :                 new_path = (Path *) ipath;
    4098             :             }
    4099         528 :             break;
    4100             : 
    4101          48 :         case T_BitmapHeapPath:
    4102             :             {
    4103          48 :                 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
    4104             : 
    4105          48 :                 ADJUST_CHILD_ATTRS(bhpath->path.parent->baserestrictinfo);
    4106          48 :                 REPARAMETERIZE_CHILD_PATH(bhpath->bitmapqual);
    4107          48 :                 new_path = (Path *) bhpath;
    4108             :             }
    4109          48 :             break;
    4110             : 
    4111          24 :         case T_BitmapAndPath:
    4112             :             {
    4113          24 :                 BitmapAndPath *bapath = (BitmapAndPath *) path;
    4114             : 
    4115          24 :                 REPARAMETERIZE_CHILD_PATH_LIST(bapath->bitmapquals);
    4116          24 :                 new_path = (Path *) bapath;
    4117             :             }
    4118          24 :             break;
    4119             : 
    4120          24 :         case T_BitmapOrPath:
    4121             :             {
    4122          24 :                 BitmapOrPath *bopath = (BitmapOrPath *) path;
    4123             : 
    4124          24 :                 REPARAMETERIZE_CHILD_PATH_LIST(bopath->bitmapquals);
    4125          24 :                 new_path = (Path *) bopath;
    4126             :             }
    4127          24 :             break;
    4128             : 
    4129           0 :         case T_ForeignPath:
    4130             :             {
    4131           0 :                 ForeignPath *fpath = (ForeignPath *) path;
    4132             :                 ReparameterizeForeignPathByChild_function rfpc_func;
    4133             : 
    4134           0 :                 ADJUST_CHILD_ATTRS(fpath->path.parent->baserestrictinfo);
    4135           0 :                 if (fpath->fdw_outerpath)
    4136           0 :                     REPARAMETERIZE_CHILD_PATH(fpath->fdw_outerpath);
    4137           0 :                 if (fpath->fdw_restrictinfo)
    4138           0 :                     ADJUST_CHILD_ATTRS(fpath->fdw_restrictinfo);
    4139             : 
    4140             :                 /* Hand over to FDW if needed. */
    4141           0 :                 rfpc_func =
    4142           0 :                     path->parent->fdwroutine->ReparameterizeForeignPathByChild;
    4143           0 :                 if (rfpc_func)
    4144           0 :                     fpath->fdw_private = rfpc_func(root, fpath->fdw_private,
    4145             :                                                    child_rel);
    4146           0 :                 new_path = (Path *) fpath;
    4147             :             }
    4148           0 :             break;
    4149             : 
    4150           0 :         case T_CustomPath:
    4151             :             {
    4152           0 :                 CustomPath *cpath = (CustomPath *) path;
    4153             : 
    4154           0 :                 ADJUST_CHILD_ATTRS(cpath->path.parent->baserestrictinfo);
    4155           0 :                 REPARAMETERIZE_CHILD_PATH_LIST(cpath->custom_paths);
    4156           0 :                 if (cpath->custom_restrictinfo)
    4157           0 :                     ADJUST_CHILD_ATTRS(cpath->custom_restrictinfo);
    4158           0 :                 if (cpath->methods &&
    4159           0 :                     cpath->methods->ReparameterizeCustomPathByChild)
    4160           0 :                     cpath->custom_private =
    4161           0 :                         cpath->methods->ReparameterizeCustomPathByChild(root,
    4162             :                                                                         cpath->custom_private,
    4163             :                                                                         child_rel);
    4164           0 :                 new_path = (Path *) cpath;
    4165             :             }
    4166           0 :             break;
    4167             : 
    4168          36 :         case T_NestPath:
    4169             :             {
    4170          36 :                 NestPath   *npath = (NestPath *) path;
    4171          36 :                 JoinPath   *jpath = (JoinPath *) npath;
    4172             : 
    4173          36 :                 REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
    4174          36 :                 REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
    4175          36 :                 ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
    4176          36 :                 new_path = (Path *) npath;
    4177             :             }
    4178          36 :             break;
    4179             : 
    4180           0 :         case T_MergePath:
    4181             :             {
    4182           0 :                 MergePath  *mpath = (MergePath *) path;
    4183           0 :                 JoinPath   *jpath = (JoinPath *) mpath;
    4184             : 
    4185           0 :                 REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
    4186           0 :                 REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
    4187           0 :                 ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
    4188           0 :                 ADJUST_CHILD_ATTRS(mpath->path_mergeclauses);
    4189           0 :                 new_path = (Path *) mpath;
    4190             :             }
    4191           0 :             break;
    4192             : 
    4193          48 :         case T_HashPath:
    4194             :             {
    4195          48 :                 HashPath   *hpath = (HashPath *) path;
    4196          48 :                 JoinPath   *jpath = (JoinPath *) hpath;
    4197             : 
    4198          48 :                 REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
    4199          48 :                 REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
    4200          48 :                 ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
    4201          48 :                 ADJUST_CHILD_ATTRS(hpath->path_hashclauses);
    4202          48 :                 new_path = (Path *) hpath;
    4203             :             }
    4204          48 :             break;
    4205             : 
    4206          24 :         case T_AppendPath:
    4207             :             {
    4208          24 :                 AppendPath *apath = (AppendPath *) path;
    4209             : 
    4210          24 :                 REPARAMETERIZE_CHILD_PATH_LIST(apath->subpaths);
    4211          24 :                 new_path = (Path *) apath;
    4212             :             }
    4213          24 :             break;
    4214             : 
    4215           0 :         case T_MaterialPath:
    4216             :             {
    4217           0 :                 MaterialPath *mpath = (MaterialPath *) path;
    4218             : 
    4219           0 :                 REPARAMETERIZE_CHILD_PATH(mpath->subpath);
    4220           0 :                 new_path = (Path *) mpath;
    4221             :             }
    4222           0 :             break;
    4223             : 
    4224          66 :         case T_MemoizePath:
    4225             :             {
    4226          66 :                 MemoizePath *mpath = (MemoizePath *) path;
    4227             : 
    4228          66 :                 REPARAMETERIZE_CHILD_PATH(mpath->subpath);
    4229          66 :                 ADJUST_CHILD_ATTRS(mpath->param_exprs);
    4230          66 :                 new_path = (Path *) mpath;
    4231             :             }
    4232          66 :             break;
    4233             : 
    4234           0 :         case T_GatherPath:
    4235             :             {
    4236           0 :                 GatherPath *gpath = (GatherPath *) path;
    4237             : 
    4238           0 :                 REPARAMETERIZE_CHILD_PATH(gpath->subpath);
    4239           0 :                 new_path = (Path *) gpath;
    4240             :             }
    4241           0 :             break;
    4242             : 
    4243           0 :         default:
    4244             :             /* We don't know how to reparameterize this path. */
    4245           0 :             return NULL;
    4246             :     }
    4247             : 
    4248             :     /*
    4249             :      * Adjust the parameterization information, which refers to the topmost
    4250             :      * parent. The topmost parent can be multiple levels away from the given
    4251             :      * child, hence use multi-level expression adjustment routines.
    4252             :      */
    4253        1026 :     old_ppi = new_path->param_info;
    4254             :     required_outer =
    4255        1026 :         adjust_child_relids_multilevel(root, old_ppi->ppi_req_outer,
    4256             :                                        child_rel,
    4257        1026 :                                        child_rel->top_parent);
    4258             : 
    4259             :     /* If we already have a PPI for this parameterization, just return it */
    4260        1026 :     new_ppi = find_param_path_info(new_path->parent, required_outer);
    4261             : 
    4262             :     /*
    4263             :      * If not, build a new one and link it to the list of PPIs. For the same
    4264             :      * reason as explained in mark_dummy_rel(), allocate new PPI in the same
    4265             :      * context the given RelOptInfo is in.
    4266             :      */
    4267        1026 :     if (new_ppi == NULL)
    4268             :     {
    4269             :         MemoryContext oldcontext;
    4270         864 :         RelOptInfo *rel = path->parent;
    4271             : 
    4272         864 :         oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
    4273             : 
    4274         864 :         new_ppi = makeNode(ParamPathInfo);
    4275         864 :         new_ppi->ppi_req_outer = bms_copy(required_outer);
    4276         864 :         new_ppi->ppi_rows = old_ppi->ppi_rows;
    4277         864 :         new_ppi->ppi_clauses = old_ppi->ppi_clauses;
    4278         864 :         ADJUST_CHILD_ATTRS(new_ppi->ppi_clauses);
    4279         864 :         new_ppi->ppi_serials = bms_copy(old_ppi->ppi_serials);
    4280         864 :         rel->ppilist = lappend(rel->ppilist, new_ppi);
    4281             : 
    4282         864 :         MemoryContextSwitchTo(oldcontext);
    4283             :     }
    4284        1026 :     bms_free(required_outer);
    4285             : 
    4286        1026 :     new_path->param_info = new_ppi;
    4287             : 
    4288             :     /*
    4289             :      * Adjust the path target if the parent of the outer relation is
    4290             :      * referenced in the targetlist. This can happen when only the parent of
    4291             :      * outer relation is laterally referenced in this relation.
    4292             :      */
    4293        1026 :     if (bms_overlap(path->parent->lateral_relids,
    4294        1026 :                     child_rel->top_parent_relids))
    4295             :     {
    4296         480 :         new_path->pathtarget = copy_pathtarget(new_path->pathtarget);
    4297         480 :         ADJUST_CHILD_ATTRS(new_path->pathtarget->exprs);
    4298             :     }
    4299             : 
    4300        1026 :     return new_path;
    4301             : }
    4302             : 
    4303             : /*
    4304             :  * path_is_reparameterizable_by_child
    4305             :  *      Given a path parameterized by the parent of the given child relation,
    4306             :  *      see if it can be translated to be parameterized by the child relation.
    4307             :  *
    4308             :  * This must return true if and only if reparameterize_path_by_child()
    4309             :  * would succeed on this path.  Currently it's sufficient to verify that
    4310             :  * the path and all of its subpaths (if any) are of the types handled by
    4311             :  * that function.  However, subpaths that are not parameterized can be
    4312             :  * disregarded since they won't require translation.
    4313             :  */
    4314             : bool
    4315       37224 : path_is_reparameterizable_by_child(Path *path, RelOptInfo *child_rel)
    4316             : {
    4317             : #define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path) \
    4318             : do { \
    4319             :     if (!path_is_reparameterizable_by_child(path, child_rel)) \
    4320             :         return false; \
    4321             : } while(0)
    4322             : 
    4323             : #define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist) \
    4324             : do { \
    4325             :     if (!pathlist_is_reparameterizable_by_child(pathlist, child_rel)) \
    4326             :         return false; \
    4327             : } while(0)
    4328             : 
    4329             :     /*
    4330             :      * If the path is not parameterized by the parent of the given relation,
    4331             :      * it doesn't need reparameterization.
    4332             :      */
    4333       37224 :     if (!path->param_info ||
    4334       36816 :         !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
    4335         984 :         return true;
    4336             : 
    4337             :     /*
    4338             :      * Check that the path type is one that reparameterize_path_by_child() can
    4339             :      * handle, and recursively check subpaths.
    4340             :      */
    4341       36240 :     switch (nodeTag(path))
    4342             :     {
    4343       24312 :         case T_Path:
    4344             :         case T_IndexPath:
    4345       24312 :             break;
    4346             : 
    4347          48 :         case T_BitmapHeapPath:
    4348             :             {
    4349          48 :                 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
    4350             : 
    4351          48 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(bhpath->bitmapqual);
    4352             :             }
    4353          48 :             break;
    4354             : 
    4355          24 :         case T_BitmapAndPath:
    4356             :             {
    4357          24 :                 BitmapAndPath *bapath = (BitmapAndPath *) path;
    4358             : 
    4359          24 :                 REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(bapath->bitmapquals);
    4360             :             }
    4361          24 :             break;
    4362             : 
    4363          24 :         case T_BitmapOrPath:
    4364             :             {
    4365          24 :                 BitmapOrPath *bopath = (BitmapOrPath *) path;
    4366             : 
    4367          24 :                 REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(bopath->bitmapquals);
    4368             :             }
    4369          24 :             break;
    4370             : 
    4371         148 :         case T_ForeignPath:
    4372             :             {
    4373         148 :                 ForeignPath *fpath = (ForeignPath *) path;
    4374             : 
    4375         148 :                 if (fpath->fdw_outerpath)
    4376           0 :                     REJECT_IF_PATH_NOT_REPARAMETERIZABLE(fpath->fdw_outerpath);
    4377             :             }
    4378         148 :             break;
    4379             : 
    4380           0 :         case T_CustomPath:
    4381             :             {
    4382           0 :                 CustomPath *cpath = (CustomPath *) path;
    4383             : 
    4384           0 :                 REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(cpath->custom_paths);
    4385             :             }
    4386           0 :             break;
    4387             : 
    4388        1248 :         case T_NestPath:
    4389             :         case T_MergePath:
    4390             :         case T_HashPath:
    4391             :             {
    4392        1248 :                 JoinPath   *jpath = (JoinPath *) path;
    4393             : 
    4394        1248 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(jpath->outerjoinpath);
    4395        1248 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(jpath->innerjoinpath);
    4396             :             }
    4397        1248 :             break;
    4398             : 
    4399         192 :         case T_AppendPath:
    4400             :             {
    4401         192 :                 AppendPath *apath = (AppendPath *) path;
    4402             : 
    4403         192 :                 REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(apath->subpaths);
    4404             :             }
    4405         192 :             break;
    4406             : 
    4407           0 :         case T_MaterialPath:
    4408             :             {
    4409           0 :                 MaterialPath *mpath = (MaterialPath *) path;
    4410             : 
    4411           0 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(mpath->subpath);
    4412             :             }
    4413           0 :             break;
    4414             : 
    4415       10244 :         case T_MemoizePath:
    4416             :             {
    4417       10244 :                 MemoizePath *mpath = (MemoizePath *) path;
    4418             : 
    4419       10244 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(mpath->subpath);
    4420             :             }
    4421       10244 :             break;
    4422             : 
    4423           0 :         case T_GatherPath:
    4424             :             {
    4425           0 :                 GatherPath *gpath = (GatherPath *) path;
    4426             : 
    4427           0 :                 REJECT_IF_PATH_NOT_REPARAMETERIZABLE(gpath->subpath);
    4428             :             }
    4429           0 :             break;
    4430             : 
    4431           0 :         default:
    4432             :             /* We don't know how to reparameterize this path. */
    4433           0 :             return false;
    4434             :     }
    4435             : 
    4436       36240 :     return true;
    4437             : }
    4438             : 
    4439             : /*
    4440             :  * reparameterize_pathlist_by_child
    4441             :  *      Helper function to reparameterize a list of paths by given child rel.
    4442             :  *
    4443             :  * Returns NIL to indicate failure, so pathlist had better not be NIL.
    4444             :  */
    4445             : static List *
    4446          72 : reparameterize_pathlist_by_child(PlannerInfo *root,
    4447             :                                  List *pathlist,
    4448             :                                  RelOptInfo *child_rel)
    4449             : {
    4450             :     ListCell   *lc;
    4451          72 :     List       *result = NIL;
    4452             : 
    4453         216 :     foreach(lc, pathlist)
    4454             :     {
    4455         144 :         Path       *path = reparameterize_path_by_child(root, lfirst(lc),
    4456             :                                                         child_rel);
    4457             : 
    4458         144 :         if (path == NULL)
    4459             :         {
    4460           0 :             list_free(result);
    4461           0 :             return NIL;
    4462             :         }
    4463             : 
    4464         144 :         result = lappend(result, path);
    4465             :     }
    4466             : 
    4467          72 :     return result;
    4468             : }
    4469             : 
    4470             : /*
    4471             :  * pathlist_is_reparameterizable_by_child
    4472             :  *      Helper function to check if a list of paths can be reparameterized.
    4473             :  */
    4474             : static bool
    4475         240 : pathlist_is_reparameterizable_by_child(List *pathlist, RelOptInfo *child_rel)
    4476             : {
    4477             :     ListCell   *lc;
    4478             : 
    4479         720 :     foreach(lc, pathlist)
    4480             :     {
    4481         480 :         Path       *path = (Path *) lfirst(lc);
    4482             : 
    4483         480 :         if (!path_is_reparameterizable_by_child(path, child_rel))
    4484           0 :             return false;
    4485             :     }
    4486             : 
    4487         240 :     return true;
    4488             : }

Generated by: LCOV version 1.16