Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * setrefs.c
4 : * Post-processing of a completed plan tree: fix references to subplan
5 : * vars, compute regproc values for operators, etc
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/plan/setrefs.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include "access/transam.h"
19 : #include "catalog/pg_type.h"
20 : #include "nodes/makefuncs.h"
21 : #include "nodes/nodeFuncs.h"
22 : #include "optimizer/optimizer.h"
23 : #include "optimizer/pathnode.h"
24 : #include "optimizer/planmain.h"
25 : #include "optimizer/planner.h"
26 : #include "optimizer/subselect.h"
27 : #include "optimizer/tlist.h"
28 : #include "parser/parse_relation.h"
29 : #include "rewrite/rewriteManip.h"
30 : #include "tcop/utility.h"
31 : #include "utils/syscache.h"
32 :
33 :
34 : typedef enum
35 : {
36 : NRM_EQUAL, /* expect exact match of nullingrels */
37 : NRM_SUBSET, /* actual Var may have a subset of input */
38 : NRM_SUPERSET, /* actual Var may have a superset of input */
39 : } NullingRelsMatch;
40 :
41 : typedef struct
42 : {
43 : int varno; /* RT index of Var */
44 : AttrNumber varattno; /* attr number of Var */
45 : AttrNumber resno; /* TLE position of Var */
46 : Bitmapset *varnullingrels; /* Var's varnullingrels */
47 : } tlist_vinfo;
48 :
49 : typedef struct
50 : {
51 : List *tlist; /* underlying target list */
52 : int num_vars; /* number of plain Var tlist entries */
53 : bool has_ph_vars; /* are there PlaceHolderVar entries? */
54 : bool has_non_vars; /* are there other entries? */
55 : tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */
56 : } indexed_tlist;
57 :
58 : typedef struct
59 : {
60 : PlannerInfo *root;
61 : int rtoffset;
62 : double num_exec;
63 : } fix_scan_expr_context;
64 :
65 : typedef struct
66 : {
67 : PlannerInfo *root;
68 : indexed_tlist *outer_itlist;
69 : indexed_tlist *inner_itlist;
70 : Index acceptable_rel;
71 : int rtoffset;
72 : NullingRelsMatch nrm_match;
73 : double num_exec;
74 : } fix_join_expr_context;
75 :
76 : typedef struct
77 : {
78 : PlannerInfo *root;
79 : indexed_tlist *subplan_itlist;
80 : int newvarno;
81 : int rtoffset;
82 : NullingRelsMatch nrm_match;
83 : double num_exec;
84 : } fix_upper_expr_context;
85 :
86 : typedef struct
87 : {
88 : PlannerInfo *root;
89 : indexed_tlist *subplan_itlist;
90 : int newvarno;
91 : } fix_windowagg_cond_context;
92 :
93 : /* Context info for flatten_rtes_walker() */
94 : typedef struct
95 : {
96 : PlannerGlobal *glob;
97 : Query *query;
98 : } flatten_rtes_walker_context;
99 :
100 : /*
101 : * Selecting the best alternative in an AlternativeSubPlan expression requires
102 : * estimating how many times that expression will be evaluated. For an
103 : * expression in a plan node's targetlist, the plan's estimated number of
104 : * output rows is clearly what to use, but for an expression in a qual it's
105 : * far less clear. Since AlternativeSubPlans aren't heavily used, we don't
106 : * want to expend a lot of cycles making such estimates. What we use is twice
107 : * the number of output rows. That's not entirely unfounded: we know that
108 : * clause_selectivity() would fall back to a default selectivity estimate
109 : * of 0.5 for any SubPlan, so if the qual containing the SubPlan is the last
110 : * to be applied (which it likely would be, thanks to order_qual_clauses()),
111 : * this matches what we could have estimated in a far more laborious fashion.
112 : * Obviously there are many other scenarios, but it's probably not worth the
113 : * trouble to try to improve on this estimate, especially not when we don't
114 : * have a better estimate for the selectivity of the SubPlan qual itself.
115 : */
116 : #define NUM_EXEC_TLIST(parentplan) ((parentplan)->plan_rows)
117 : #define NUM_EXEC_QUAL(parentplan) ((parentplan)->plan_rows * 2.0)
118 :
119 : /*
120 : * Check if a Const node is a regclass value. We accept plain OID too,
121 : * since a regclass Const will get folded to that type if it's an argument
122 : * to oideq or similar operators. (This might result in some extraneous
123 : * values in a plan's list of relation dependencies, but the worst result
124 : * would be occasional useless replans.)
125 : */
126 : #define ISREGCLASSCONST(con) \
127 : (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \
128 : !(con)->constisnull)
129 :
130 : #define fix_scan_list(root, lst, rtoffset, num_exec) \
131 : ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset, num_exec))
132 :
133 : static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing);
134 : static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte);
135 : static bool flatten_rtes_walker(Node *node, flatten_rtes_walker_context *cxt);
136 : static void add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos,
137 : RangeTblEntry *rte);
138 : static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset);
139 : static Plan *set_indexonlyscan_references(PlannerInfo *root,
140 : IndexOnlyScan *plan,
141 : int rtoffset);
142 : static Plan *set_subqueryscan_references(PlannerInfo *root,
143 : SubqueryScan *plan,
144 : int rtoffset);
145 : static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child);
146 : static void set_foreignscan_references(PlannerInfo *root,
147 : ForeignScan *fscan,
148 : int rtoffset);
149 : static void set_customscan_references(PlannerInfo *root,
150 : CustomScan *cscan,
151 : int rtoffset);
152 : static Plan *set_append_references(PlannerInfo *root,
153 : Append *aplan,
154 : int rtoffset);
155 : static Plan *set_mergeappend_references(PlannerInfo *root,
156 : MergeAppend *mplan,
157 : int rtoffset);
158 : static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset);
159 : static Relids offset_relid_set(Relids relids, int rtoffset);
160 : static Node *fix_scan_expr(PlannerInfo *root, Node *node,
161 : int rtoffset, double num_exec);
162 : static Node *fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context);
163 : static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context);
164 : static void set_join_references(PlannerInfo *root, Join *join, int rtoffset);
165 : static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset);
166 : static void set_param_references(PlannerInfo *root, Plan *plan);
167 : static Node *convert_combining_aggrefs(Node *node, void *context);
168 : static void set_dummy_tlist_references(Plan *plan, int rtoffset);
169 : static indexed_tlist *build_tlist_index(List *tlist);
170 : static Var *search_indexed_tlist_for_var(Var *var,
171 : indexed_tlist *itlist,
172 : int newvarno,
173 : int rtoffset,
174 : NullingRelsMatch nrm_match);
175 : static Var *search_indexed_tlist_for_phv(PlaceHolderVar *phv,
176 : indexed_tlist *itlist,
177 : int newvarno,
178 : NullingRelsMatch nrm_match);
179 : static Var *search_indexed_tlist_for_non_var(Expr *node,
180 : indexed_tlist *itlist,
181 : int newvarno);
182 : static Var *search_indexed_tlist_for_sortgroupref(Expr *node,
183 : Index sortgroupref,
184 : indexed_tlist *itlist,
185 : int newvarno);
186 : static List *fix_join_expr(PlannerInfo *root,
187 : List *clauses,
188 : indexed_tlist *outer_itlist,
189 : indexed_tlist *inner_itlist,
190 : Index acceptable_rel,
191 : int rtoffset,
192 : NullingRelsMatch nrm_match,
193 : double num_exec);
194 : static Node *fix_join_expr_mutator(Node *node,
195 : fix_join_expr_context *context);
196 : static Node *fix_upper_expr(PlannerInfo *root,
197 : Node *node,
198 : indexed_tlist *subplan_itlist,
199 : int newvarno,
200 : int rtoffset,
201 : NullingRelsMatch nrm_match,
202 : double num_exec);
203 : static Node *fix_upper_expr_mutator(Node *node,
204 : fix_upper_expr_context *context);
205 : static List *set_returning_clause_references(PlannerInfo *root,
206 : List *rlist,
207 : Plan *topplan,
208 : Index resultRelation,
209 : int rtoffset);
210 : static List *set_windowagg_runcondition_references(PlannerInfo *root,
211 : List *runcondition,
212 : Plan *plan);
213 :
214 :
215 : /*****************************************************************************
216 : *
217 : * SUBPLAN REFERENCES
218 : *
219 : *****************************************************************************/
220 :
221 : /*
222 : * set_plan_references
223 : *
224 : * This is the final processing pass of the planner/optimizer. The plan
225 : * tree is complete; we just have to adjust some representational details
226 : * for the convenience of the executor:
227 : *
228 : * 1. We flatten the various subquery rangetables into a single list, and
229 : * zero out RangeTblEntry fields that are not useful to the executor.
230 : *
231 : * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable.
232 : *
233 : * 3. We adjust Vars in upper plan nodes to refer to the outputs of their
234 : * subplans.
235 : *
236 : * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving
237 : * partial aggregation or minmax aggregate optimization.
238 : *
239 : * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params,
240 : * now that we have finished planning all MULTIEXPR subplans.
241 : *
242 : * 6. AlternativeSubPlan expressions are replaced by just one of their
243 : * alternatives, using an estimate of how many times they'll be executed.
244 : *
245 : * 7. We compute regproc OIDs for operators (ie, we look up the function
246 : * that implements each op).
247 : *
248 : * 8. We create lists of specific objects that the plan depends on.
249 : * This will be used by plancache.c to drive invalidation of cached plans.
250 : * Relation dependencies are represented by OIDs, and everything else by
251 : * PlanInvalItems (this distinction is motivated by the shared-inval APIs).
252 : * Currently, relations, user-defined functions, and domains are the only
253 : * types of objects that are explicitly tracked this way.
254 : *
255 : * 9. We assign every plan node in the tree a unique ID.
256 : *
257 : * We also perform one final optimization step, which is to delete
258 : * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing
259 : * anything useful. The reason for doing this last is that
260 : * it can't readily be done before set_plan_references, because it would
261 : * break set_upper_references: the Vars in the child plan's top tlist
262 : * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan
263 : * serves a necessary function as a buffer between outer query and subquery
264 : * variable numbering ... but after we've flattened the rangetable this is
265 : * no longer a problem, since then there's only one rtindex namespace.
266 : * Likewise, Append and MergeAppend buffer between the parent and child vars
267 : * of an appendrel, but we don't need to worry about that once we've done
268 : * set_plan_references.
269 : *
270 : * set_plan_references recursively traverses the whole plan tree.
271 : *
272 : * The return value is normally the same Plan node passed in, but can be
273 : * different when the passed-in Plan is a node we decide isn't needed.
274 : *
275 : * The flattened rangetable entries are appended to root->glob->finalrtable.
276 : * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the
277 : * RT indexes of ModifyTable result relations to root->glob->resultRelations,
278 : * and flattened AppendRelInfos are appended to root->glob->appendRelations.
279 : * Plan dependencies are appended to root->glob->relationOids (for relations)
280 : * and root->glob->invalItems (for everything else).
281 : *
282 : * Notice that we modify Plan nodes in-place, but use expression_tree_mutator
283 : * to process targetlist and qual expressions. We can assume that the Plan
284 : * nodes were just built by the planner and are not multiply referenced, but
285 : * it's not so safe to assume that for expression tree nodes.
286 : */
287 : Plan *
288 526920 : set_plan_references(PlannerInfo *root, Plan *plan)
289 : {
290 : Plan *result;
291 526920 : PlannerGlobal *glob = root->glob;
292 526920 : int rtoffset = list_length(glob->finalrtable);
293 : ListCell *lc;
294 :
295 : /*
296 : * Add all the query's RTEs to the flattened rangetable. The live ones
297 : * will have their rangetable indexes increased by rtoffset. (Additional
298 : * RTEs, not referenced by the Plan tree, might get added after those.)
299 : */
300 526920 : add_rtes_to_flat_rtable(root, false);
301 :
302 : /*
303 : * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
304 : */
305 540026 : foreach(lc, root->rowMarks)
306 : {
307 13106 : PlanRowMark *rc = lfirst_node(PlanRowMark, lc);
308 : PlanRowMark *newrc;
309 :
310 : /* sanity check on existing row marks */
311 : Assert(root->simple_rel_array[rc->rti] != NULL &&
312 : root->simple_rte_array[rc->rti] != NULL);
313 :
314 : /* flat copy is enough since all fields are scalars */
315 13106 : newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
316 13106 : memcpy(newrc, rc, sizeof(PlanRowMark));
317 :
318 : /* adjust indexes ... but *not* the rowmarkId */
319 13106 : newrc->rti += rtoffset;
320 13106 : newrc->prti += rtoffset;
321 :
322 13106 : glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
323 : }
324 :
325 : /*
326 : * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
327 : * We assume the AppendRelInfos were built during planning and don't need
328 : * to be copied.
329 : */
330 584038 : foreach(lc, root->append_rel_list)
331 : {
332 57118 : AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
333 :
334 : /* adjust RT indexes */
335 57118 : appinfo->parent_relid += rtoffset;
336 57118 : appinfo->child_relid += rtoffset;
337 :
338 : /*
339 : * Rather than adjust the translated_vars entries, just drop 'em.
340 : * Neither the executor nor EXPLAIN currently need that data.
341 : */
342 57118 : appinfo->translated_vars = NIL;
343 :
344 57118 : glob->appendRelations = lappend(glob->appendRelations, appinfo);
345 : }
346 :
347 : /* If needed, create workspace for processing AlternativeSubPlans */
348 526920 : if (root->hasAlternativeSubPlans)
349 : {
350 1086 : root->isAltSubplan = (bool *)
351 1086 : palloc0(list_length(glob->subplans) * sizeof(bool));
352 1086 : root->isUsedSubplan = (bool *)
353 1086 : palloc0(list_length(glob->subplans) * sizeof(bool));
354 : }
355 :
356 : /* Now fix the Plan tree */
357 526920 : result = set_plan_refs(root, plan, rtoffset);
358 :
359 : /*
360 : * If we have AlternativeSubPlans, it is likely that we now have some
361 : * unreferenced subplans in glob->subplans. To avoid expending cycles on
362 : * those subplans later, get rid of them by setting those list entries to
363 : * NULL. (Note: we can't do this immediately upon processing an
364 : * AlternativeSubPlan, because there may be multiple copies of the
365 : * AlternativeSubPlan, and they can get resolved differently.)
366 : */
367 526920 : if (root->hasAlternativeSubPlans)
368 : {
369 5274 : foreach(lc, glob->subplans)
370 : {
371 4188 : int ndx = foreach_current_index(lc);
372 :
373 : /*
374 : * If it was used by some AlternativeSubPlan in this query level,
375 : * but wasn't selected as best by any AlternativeSubPlan, then we
376 : * don't need it. Do not touch subplans that aren't parts of
377 : * AlternativeSubPlans.
378 : */
379 4188 : if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
380 1672 : lfirst(lc) = NULL;
381 : }
382 : }
383 :
384 526920 : return result;
385 : }
386 :
387 : /*
388 : * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable
389 : *
390 : * This can recurse into subquery plans; "recursing" is true if so.
391 : *
392 : * This also seems like a good place to add the query's RTEPermissionInfos to
393 : * the flat rteperminfos.
394 : */
395 : static void
396 527176 : add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
397 : {
398 527176 : PlannerGlobal *glob = root->glob;
399 : Index rti;
400 : ListCell *lc;
401 :
402 : /*
403 : * Add the query's own RTEs to the flattened rangetable.
404 : *
405 : * At top level, we must add all RTEs so that their indexes in the
406 : * flattened rangetable match up with their original indexes. When
407 : * recursing, we only care about extracting relation RTEs (and subquery
408 : * RTEs that were once relation RTEs).
409 : */
410 1486598 : foreach(lc, root->parse->rtable)
411 : {
412 959422 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
413 :
414 959422 : if (!recursing || rte->rtekind == RTE_RELATION ||
415 246 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
416 959176 : add_rte_to_flat_rtable(glob, root->parse->rteperminfos, rte);
417 : }
418 :
419 : /*
420 : * If there are any dead subqueries, they are not referenced in the Plan
421 : * tree, so we must add RTEs contained in them to the flattened rtable
422 : * separately. (If we failed to do this, the executor would not perform
423 : * expected permission checks for tables mentioned in such subqueries.)
424 : *
425 : * Note: this pass over the rangetable can't be combined with the previous
426 : * one, because that would mess up the numbering of the live RTEs in the
427 : * flattened rangetable.
428 : */
429 527176 : rti = 1;
430 1486598 : foreach(lc, root->parse->rtable)
431 : {
432 959422 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
433 :
434 : /*
435 : * We should ignore inheritance-parent RTEs: their contents have been
436 : * pulled up into our rangetable already. Also ignore any subquery
437 : * RTEs without matching RelOptInfos, as they likewise have been
438 : * pulled up.
439 : */
440 959422 : if (rte->rtekind == RTE_SUBQUERY && !rte->inh &&
441 69128 : rti < root->simple_rel_array_size)
442 : {
443 69128 : RelOptInfo *rel = root->simple_rel_array[rti];
444 :
445 69128 : if (rel != NULL)
446 : {
447 : Assert(rel->relid == rti); /* sanity check on array */
448 :
449 : /*
450 : * The subquery might never have been planned at all, if it
451 : * was excluded on the basis of self-contradictory constraints
452 : * in our query level. In this case apply
453 : * flatten_unplanned_rtes.
454 : *
455 : * If it was planned but the result rel is dummy, we assume
456 : * that it has been omitted from our plan tree (see
457 : * set_subquery_pathlist), and recurse to pull up its RTEs.
458 : *
459 : * Otherwise, it should be represented by a SubqueryScan node
460 : * somewhere in our plan tree, and we'll pull up its RTEs when
461 : * we process that plan node.
462 : *
463 : * However, if we're recursing, then we should pull up RTEs
464 : * whether the subquery is dummy or not, because we've found
465 : * that some upper query level is treating this one as dummy,
466 : * and so we won't scan this level's plan tree at all.
467 : */
468 32866 : if (rel->subroot == NULL)
469 24 : flatten_unplanned_rtes(glob, rte);
470 65636 : else if (recursing ||
471 32794 : IS_DUMMY_REL(fetch_upper_rel(rel->subroot,
472 : UPPERREL_FINAL, NULL)))
473 256 : add_rtes_to_flat_rtable(rel->subroot, true);
474 : }
475 : }
476 959422 : rti++;
477 : }
478 527176 : }
479 :
480 : /*
481 : * Extract RangeTblEntries from a subquery that was never planned at all
482 : */
483 :
484 : static void
485 24 : flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte)
486 : {
487 24 : flatten_rtes_walker_context cxt = {glob, rte->subquery};
488 :
489 : /* Use query_tree_walker to find all RTEs in the parse tree */
490 24 : (void) query_tree_walker(rte->subquery,
491 : flatten_rtes_walker,
492 : &cxt,
493 : QTW_EXAMINE_RTES_BEFORE);
494 24 : }
495 :
496 : static bool
497 600 : flatten_rtes_walker(Node *node, flatten_rtes_walker_context *cxt)
498 : {
499 600 : if (node == NULL)
500 348 : return false;
501 252 : if (IsA(node, RangeTblEntry))
502 : {
503 18 : RangeTblEntry *rte = (RangeTblEntry *) node;
504 :
505 : /* As above, we need only save relation RTEs and former relations */
506 18 : if (rte->rtekind == RTE_RELATION ||
507 0 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
508 18 : add_rte_to_flat_rtable(cxt->glob, cxt->query->rteperminfos, rte);
509 18 : return false;
510 : }
511 234 : if (IsA(node, Query))
512 : {
513 : /*
514 : * Recurse into subselects. Must update cxt->query to this query so
515 : * that the rtable and rteperminfos correspond with each other.
516 : */
517 6 : Query *save_query = cxt->query;
518 : bool result;
519 :
520 6 : cxt->query = (Query *) node;
521 6 : result = query_tree_walker((Query *) node,
522 : flatten_rtes_walker,
523 : cxt,
524 : QTW_EXAMINE_RTES_BEFORE);
525 6 : cxt->query = save_query;
526 6 : return result;
527 : }
528 228 : return expression_tree_walker(node, flatten_rtes_walker, cxt);
529 : }
530 :
531 : /*
532 : * Add (a copy of) the given RTE to the final rangetable and also the
533 : * corresponding RTEPermissionInfo, if any, to final rteperminfos.
534 : *
535 : * In the flat rangetable, we zero out substructure pointers that are not
536 : * needed by the executor; this reduces the storage space and copying cost
537 : * for cached plans. We keep only the ctename, alias, eref Alias fields,
538 : * which are needed by EXPLAIN, and perminfoindex which is needed by the
539 : * executor to fetch the RTE's RTEPermissionInfo.
540 : */
541 : static void
542 959194 : add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos,
543 : RangeTblEntry *rte)
544 : {
545 : RangeTblEntry *newrte;
546 :
547 : /* flat copy to duplicate all the scalar fields */
548 959194 : newrte = (RangeTblEntry *) palloc(sizeof(RangeTblEntry));
549 959194 : memcpy(newrte, rte, sizeof(RangeTblEntry));
550 :
551 : /* zap unneeded sub-structure */
552 959194 : newrte->tablesample = NULL;
553 959194 : newrte->subquery = NULL;
554 959194 : newrte->joinaliasvars = NIL;
555 959194 : newrte->joinleftcols = NIL;
556 959194 : newrte->joinrightcols = NIL;
557 959194 : newrte->join_using_alias = NULL;
558 959194 : newrte->functions = NIL;
559 959194 : newrte->tablefunc = NULL;
560 959194 : newrte->values_lists = NIL;
561 959194 : newrte->coltypes = NIL;
562 959194 : newrte->coltypmods = NIL;
563 959194 : newrte->colcollations = NIL;
564 959194 : newrte->groupexprs = NIL;
565 959194 : newrte->securityQuals = NIL;
566 :
567 959194 : glob->finalrtable = lappend(glob->finalrtable, newrte);
568 :
569 : /*
570 : * If it's a plain relation RTE (or a subquery that was once a view
571 : * reference), add the relation OID to relationOids. Also add its new RT
572 : * index to the set of relations to be potentially accessed during
573 : * execution.
574 : *
575 : * We do this even though the RTE might be unreferenced in the plan tree;
576 : * this would correspond to cases such as views that were expanded, child
577 : * tables that were eliminated by constraint exclusion, etc. Schema
578 : * invalidation on such a rel must still force rebuilding of the plan.
579 : *
580 : * Note we don't bother to avoid making duplicate list entries. We could,
581 : * but it would probably cost more cycles than it would save.
582 : */
583 959194 : if (newrte->rtekind == RTE_RELATION ||
584 439520 : (newrte->rtekind == RTE_SUBQUERY && OidIsValid(newrte->relid)))
585 : {
586 535318 : glob->relationOids = lappend_oid(glob->relationOids, newrte->relid);
587 535318 : glob->allRelids = bms_add_member(glob->allRelids,
588 535318 : list_length(glob->finalrtable));
589 : }
590 :
591 : /*
592 : * Add a copy of the RTEPermissionInfo, if any, corresponding to this RTE
593 : * to the flattened global list.
594 : */
595 959194 : if (rte->perminfoindex > 0)
596 : {
597 : RTEPermissionInfo *perminfo;
598 : RTEPermissionInfo *newperminfo;
599 :
600 : /* Get the existing one from this query's rteperminfos. */
601 493096 : perminfo = getRTEPermissionInfo(rteperminfos, newrte);
602 :
603 : /*
604 : * Add a new one to finalrteperminfos and copy the contents of the
605 : * existing one into it. Note that addRTEPermissionInfo() also
606 : * updates newrte->perminfoindex to point to newperminfo in
607 : * finalrteperminfos.
608 : */
609 493096 : newrte->perminfoindex = 0; /* expected by addRTEPermissionInfo() */
610 493096 : newperminfo = addRTEPermissionInfo(&glob->finalrteperminfos, newrte);
611 493096 : memcpy(newperminfo, perminfo, sizeof(RTEPermissionInfo));
612 : }
613 959194 : }
614 :
615 : /*
616 : * set_plan_refs: recurse through the Plan nodes of a single subquery level
617 : */
618 : static Plan *
619 2827824 : set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
620 : {
621 : ListCell *l;
622 :
623 2827824 : if (plan == NULL)
624 1633192 : return NULL;
625 :
626 : /* Assign this node a unique ID. */
627 1194632 : plan->plan_node_id = root->glob->lastPlanNodeId++;
628 :
629 : /*
630 : * Plan-type-specific fixes
631 : */
632 1194632 : switch (nodeTag(plan))
633 : {
634 218222 : case T_SeqScan:
635 : {
636 218222 : SeqScan *splan = (SeqScan *) plan;
637 :
638 218222 : splan->scan.scanrelid += rtoffset;
639 218222 : splan->scan.plan.targetlist =
640 218222 : fix_scan_list(root, splan->scan.plan.targetlist,
641 : rtoffset, NUM_EXEC_TLIST(plan));
642 218222 : splan->scan.plan.qual =
643 218222 : fix_scan_list(root, splan->scan.plan.qual,
644 : rtoffset, NUM_EXEC_QUAL(plan));
645 : }
646 218222 : break;
647 306 : case T_SampleScan:
648 : {
649 306 : SampleScan *splan = (SampleScan *) plan;
650 :
651 306 : splan->scan.scanrelid += rtoffset;
652 306 : splan->scan.plan.targetlist =
653 306 : fix_scan_list(root, splan->scan.plan.targetlist,
654 : rtoffset, NUM_EXEC_TLIST(plan));
655 306 : splan->scan.plan.qual =
656 306 : fix_scan_list(root, splan->scan.plan.qual,
657 : rtoffset, NUM_EXEC_QUAL(plan));
658 306 : splan->tablesample = (TableSampleClause *)
659 306 : fix_scan_expr(root, (Node *) splan->tablesample,
660 : rtoffset, 1);
661 : }
662 306 : break;
663 140280 : case T_IndexScan:
664 : {
665 140280 : IndexScan *splan = (IndexScan *) plan;
666 :
667 140280 : splan->scan.scanrelid += rtoffset;
668 140280 : splan->scan.plan.targetlist =
669 140280 : fix_scan_list(root, splan->scan.plan.targetlist,
670 : rtoffset, NUM_EXEC_TLIST(plan));
671 140280 : splan->scan.plan.qual =
672 140280 : fix_scan_list(root, splan->scan.plan.qual,
673 : rtoffset, NUM_EXEC_QUAL(plan));
674 140280 : splan->indexqual =
675 140280 : fix_scan_list(root, splan->indexqual,
676 : rtoffset, 1);
677 140280 : splan->indexqualorig =
678 140280 : fix_scan_list(root, splan->indexqualorig,
679 : rtoffset, NUM_EXEC_QUAL(plan));
680 140280 : splan->indexorderby =
681 140280 : fix_scan_list(root, splan->indexorderby,
682 : rtoffset, 1);
683 140280 : splan->indexorderbyorig =
684 140280 : fix_scan_list(root, splan->indexorderbyorig,
685 : rtoffset, NUM_EXEC_QUAL(plan));
686 : }
687 140280 : break;
688 18180 : case T_IndexOnlyScan:
689 : {
690 18180 : IndexOnlyScan *splan = (IndexOnlyScan *) plan;
691 :
692 18180 : return set_indexonlyscan_references(root, splan, rtoffset);
693 : }
694 : break;
695 21728 : case T_BitmapIndexScan:
696 : {
697 21728 : BitmapIndexScan *splan = (BitmapIndexScan *) plan;
698 :
699 21728 : splan->scan.scanrelid += rtoffset;
700 : /* no need to fix targetlist and qual */
701 : Assert(splan->scan.plan.targetlist == NIL);
702 : Assert(splan->scan.plan.qual == NIL);
703 21728 : splan->indexqual =
704 21728 : fix_scan_list(root, splan->indexqual, rtoffset, 1);
705 21728 : splan->indexqualorig =
706 21728 : fix_scan_list(root, splan->indexqualorig,
707 : rtoffset, NUM_EXEC_QUAL(plan));
708 : }
709 21728 : break;
710 21054 : case T_BitmapHeapScan:
711 : {
712 21054 : BitmapHeapScan *splan = (BitmapHeapScan *) plan;
713 :
714 21054 : splan->scan.scanrelid += rtoffset;
715 21054 : splan->scan.plan.targetlist =
716 21054 : fix_scan_list(root, splan->scan.plan.targetlist,
717 : rtoffset, NUM_EXEC_TLIST(plan));
718 21054 : splan->scan.plan.qual =
719 21054 : fix_scan_list(root, splan->scan.plan.qual,
720 : rtoffset, NUM_EXEC_QUAL(plan));
721 21054 : splan->bitmapqualorig =
722 21054 : fix_scan_list(root, splan->bitmapqualorig,
723 : rtoffset, NUM_EXEC_QUAL(plan));
724 : }
725 21054 : break;
726 752 : case T_TidScan:
727 : {
728 752 : TidScan *splan = (TidScan *) plan;
729 :
730 752 : splan->scan.scanrelid += rtoffset;
731 752 : splan->scan.plan.targetlist =
732 752 : fix_scan_list(root, splan->scan.plan.targetlist,
733 : rtoffset, NUM_EXEC_TLIST(plan));
734 752 : splan->scan.plan.qual =
735 752 : fix_scan_list(root, splan->scan.plan.qual,
736 : rtoffset, NUM_EXEC_QUAL(plan));
737 752 : splan->tidquals =
738 752 : fix_scan_list(root, splan->tidquals,
739 : rtoffset, 1);
740 : }
741 752 : break;
742 1944 : case T_TidRangeScan:
743 : {
744 1944 : TidRangeScan *splan = (TidRangeScan *) plan;
745 :
746 1944 : splan->scan.scanrelid += rtoffset;
747 1944 : splan->scan.plan.targetlist =
748 1944 : fix_scan_list(root, splan->scan.plan.targetlist,
749 : rtoffset, NUM_EXEC_TLIST(plan));
750 1944 : splan->scan.plan.qual =
751 1944 : fix_scan_list(root, splan->scan.plan.qual,
752 : rtoffset, NUM_EXEC_QUAL(plan));
753 1944 : splan->tidrangequals =
754 1944 : fix_scan_list(root, splan->tidrangequals,
755 : rtoffset, 1);
756 : }
757 1944 : break;
758 32550 : case T_SubqueryScan:
759 : /* Needs special treatment, see comments below */
760 32550 : return set_subqueryscan_references(root,
761 : (SubqueryScan *) plan,
762 : rtoffset);
763 50806 : case T_FunctionScan:
764 : {
765 50806 : FunctionScan *splan = (FunctionScan *) plan;
766 :
767 50806 : splan->scan.scanrelid += rtoffset;
768 50806 : splan->scan.plan.targetlist =
769 50806 : fix_scan_list(root, splan->scan.plan.targetlist,
770 : rtoffset, NUM_EXEC_TLIST(plan));
771 50806 : splan->scan.plan.qual =
772 50806 : fix_scan_list(root, splan->scan.plan.qual,
773 : rtoffset, NUM_EXEC_QUAL(plan));
774 50806 : splan->functions =
775 50806 : fix_scan_list(root, splan->functions, rtoffset, 1);
776 : }
777 50806 : break;
778 626 : case T_TableFuncScan:
779 : {
780 626 : TableFuncScan *splan = (TableFuncScan *) plan;
781 :
782 626 : splan->scan.scanrelid += rtoffset;
783 626 : splan->scan.plan.targetlist =
784 626 : fix_scan_list(root, splan->scan.plan.targetlist,
785 : rtoffset, NUM_EXEC_TLIST(plan));
786 626 : splan->scan.plan.qual =
787 626 : fix_scan_list(root, splan->scan.plan.qual,
788 : rtoffset, NUM_EXEC_QUAL(plan));
789 626 : splan->tablefunc = (TableFunc *)
790 626 : fix_scan_expr(root, (Node *) splan->tablefunc,
791 : rtoffset, 1);
792 : }
793 626 : break;
794 8278 : case T_ValuesScan:
795 : {
796 8278 : ValuesScan *splan = (ValuesScan *) plan;
797 :
798 8278 : splan->scan.scanrelid += rtoffset;
799 8278 : splan->scan.plan.targetlist =
800 8278 : fix_scan_list(root, splan->scan.plan.targetlist,
801 : rtoffset, NUM_EXEC_TLIST(plan));
802 8278 : splan->scan.plan.qual =
803 8278 : fix_scan_list(root, splan->scan.plan.qual,
804 : rtoffset, NUM_EXEC_QUAL(plan));
805 8278 : splan->values_lists =
806 8278 : fix_scan_list(root, splan->values_lists,
807 : rtoffset, 1);
808 : }
809 8278 : break;
810 4244 : case T_CteScan:
811 : {
812 4244 : CteScan *splan = (CteScan *) plan;
813 :
814 4244 : splan->scan.scanrelid += rtoffset;
815 4244 : splan->scan.plan.targetlist =
816 4244 : fix_scan_list(root, splan->scan.plan.targetlist,
817 : rtoffset, NUM_EXEC_TLIST(plan));
818 4244 : splan->scan.plan.qual =
819 4244 : fix_scan_list(root, splan->scan.plan.qual,
820 : rtoffset, NUM_EXEC_QUAL(plan));
821 : }
822 4244 : break;
823 478 : case T_NamedTuplestoreScan:
824 : {
825 478 : NamedTuplestoreScan *splan = (NamedTuplestoreScan *) plan;
826 :
827 478 : splan->scan.scanrelid += rtoffset;
828 478 : splan->scan.plan.targetlist =
829 478 : fix_scan_list(root, splan->scan.plan.targetlist,
830 : rtoffset, NUM_EXEC_TLIST(plan));
831 478 : splan->scan.plan.qual =
832 478 : fix_scan_list(root, splan->scan.plan.qual,
833 : rtoffset, NUM_EXEC_QUAL(plan));
834 : }
835 478 : break;
836 926 : case T_WorkTableScan:
837 : {
838 926 : WorkTableScan *splan = (WorkTableScan *) plan;
839 :
840 926 : splan->scan.scanrelid += rtoffset;
841 926 : splan->scan.plan.targetlist =
842 926 : fix_scan_list(root, splan->scan.plan.targetlist,
843 : rtoffset, NUM_EXEC_TLIST(plan));
844 926 : splan->scan.plan.qual =
845 926 : fix_scan_list(root, splan->scan.plan.qual,
846 : rtoffset, NUM_EXEC_QUAL(plan));
847 : }
848 926 : break;
849 2020 : case T_ForeignScan:
850 2020 : set_foreignscan_references(root, (ForeignScan *) plan, rtoffset);
851 2020 : break;
852 0 : case T_CustomScan:
853 0 : set_customscan_references(root, (CustomScan *) plan, rtoffset);
854 0 : break;
855 :
856 139866 : case T_NestLoop:
857 : case T_MergeJoin:
858 : case T_HashJoin:
859 139866 : set_join_references(root, (Join *) plan, rtoffset);
860 139866 : break;
861 :
862 1430 : case T_Gather:
863 : case T_GatherMerge:
864 : {
865 1430 : set_upper_references(root, plan, rtoffset);
866 1430 : set_param_references(root, plan);
867 : }
868 1430 : break;
869 :
870 34638 : case T_Hash:
871 34638 : set_hash_references(root, plan, rtoffset);
872 34638 : break;
873 :
874 1988 : case T_Memoize:
875 : {
876 1988 : Memoize *mplan = (Memoize *) plan;
877 :
878 : /*
879 : * Memoize does not evaluate its targetlist. It just uses the
880 : * same targetlist from its outer subnode.
881 : */
882 1988 : set_dummy_tlist_references(plan, rtoffset);
883 :
884 1988 : mplan->param_exprs = fix_scan_list(root, mplan->param_exprs,
885 : rtoffset,
886 : NUM_EXEC_TLIST(plan));
887 1988 : break;
888 : }
889 :
890 91534 : case T_Material:
891 : case T_Sort:
892 : case T_IncrementalSort:
893 : case T_Unique:
894 : case T_SetOp:
895 :
896 : /*
897 : * These plan types don't actually bother to evaluate their
898 : * targetlists, because they just return their unmodified input
899 : * tuples. Even though the targetlist won't be used by the
900 : * executor, we fix it up for possible use by EXPLAIN (not to
901 : * mention ease of debugging --- wrong varnos are very confusing).
902 : */
903 91534 : set_dummy_tlist_references(plan, rtoffset);
904 :
905 : /*
906 : * Since these plan types don't check quals either, we should not
907 : * find any qual expression attached to them.
908 : */
909 : Assert(plan->qual == NIL);
910 91534 : break;
911 7804 : case T_LockRows:
912 : {
913 7804 : LockRows *splan = (LockRows *) plan;
914 :
915 : /*
916 : * Like the plan types above, LockRows doesn't evaluate its
917 : * tlist or quals. But we have to fix up the RT indexes in
918 : * its rowmarks.
919 : */
920 7804 : set_dummy_tlist_references(plan, rtoffset);
921 : Assert(splan->plan.qual == NIL);
922 :
923 17970 : foreach(l, splan->rowMarks)
924 : {
925 10166 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
926 :
927 10166 : rc->rti += rtoffset;
928 10166 : rc->prti += rtoffset;
929 : }
930 : }
931 7804 : break;
932 4814 : case T_Limit:
933 : {
934 4814 : Limit *splan = (Limit *) plan;
935 :
936 : /*
937 : * Like the plan types above, Limit doesn't evaluate its tlist
938 : * or quals. It does have live expressions for limit/offset,
939 : * however; and those cannot contain subplan variable refs, so
940 : * fix_scan_expr works for them.
941 : */
942 4814 : set_dummy_tlist_references(plan, rtoffset);
943 : Assert(splan->plan.qual == NIL);
944 :
945 4814 : splan->limitOffset =
946 4814 : fix_scan_expr(root, splan->limitOffset, rtoffset, 1);
947 4814 : splan->limitCount =
948 4814 : fix_scan_expr(root, splan->limitCount, rtoffset, 1);
949 : }
950 4814 : break;
951 42526 : case T_Agg:
952 : {
953 42526 : Agg *agg = (Agg *) plan;
954 :
955 : /*
956 : * If this node is combining partial-aggregation results, we
957 : * must convert its Aggrefs to contain references to the
958 : * partial-aggregate subexpressions that will be available
959 : * from the child plan node.
960 : */
961 42526 : if (DO_AGGSPLIT_COMBINE(agg->aggsplit))
962 : {
963 1354 : plan->targetlist = (List *)
964 1354 : convert_combining_aggrefs((Node *) plan->targetlist,
965 : NULL);
966 1354 : plan->qual = (List *)
967 1354 : convert_combining_aggrefs((Node *) plan->qual,
968 : NULL);
969 : }
970 :
971 42526 : set_upper_references(root, plan, rtoffset);
972 : }
973 42526 : break;
974 246 : case T_Group:
975 246 : set_upper_references(root, plan, rtoffset);
976 246 : break;
977 2750 : case T_WindowAgg:
978 : {
979 2750 : WindowAgg *wplan = (WindowAgg *) plan;
980 :
981 : /*
982 : * Adjust the WindowAgg's run conditions by swapping the
983 : * WindowFuncs references out to instead reference the Var in
984 : * the scan slot so that when the executor evaluates the
985 : * runCondition, it receives the WindowFunc's value from the
986 : * slot that the result has just been stored into rather than
987 : * evaluating the WindowFunc all over again.
988 : */
989 2750 : wplan->runCondition = set_windowagg_runcondition_references(root,
990 : wplan->runCondition,
991 : (Plan *) wplan);
992 :
993 2750 : set_upper_references(root, plan, rtoffset);
994 :
995 : /*
996 : * Like Limit node limit/offset expressions, WindowAgg has
997 : * frame offset expressions, which cannot contain subplan
998 : * variable refs, so fix_scan_expr works for them.
999 : */
1000 2750 : wplan->startOffset =
1001 2750 : fix_scan_expr(root, wplan->startOffset, rtoffset, 1);
1002 2750 : wplan->endOffset =
1003 2750 : fix_scan_expr(root, wplan->endOffset, rtoffset, 1);
1004 2750 : wplan->runCondition = fix_scan_list(root,
1005 : wplan->runCondition,
1006 : rtoffset,
1007 : NUM_EXEC_TLIST(plan));
1008 2750 : wplan->runConditionOrig = fix_scan_list(root,
1009 : wplan->runConditionOrig,
1010 : rtoffset,
1011 : NUM_EXEC_TLIST(plan));
1012 : }
1013 2750 : break;
1014 214056 : case T_Result:
1015 : {
1016 214056 : Result *splan = (Result *) plan;
1017 :
1018 : /*
1019 : * Result may or may not have a subplan; if not, it's more
1020 : * like a scan node than an upper node.
1021 : */
1022 214056 : if (splan->plan.lefttree != NULL)
1023 11758 : set_upper_references(root, plan, rtoffset);
1024 : else
1025 : {
1026 : /*
1027 : * The tlist of a childless Result could contain
1028 : * unresolved ROWID_VAR Vars, in case it's representing a
1029 : * target relation which is completely empty because of
1030 : * constraint exclusion. Replace any such Vars by null
1031 : * constants, as though they'd been resolved for a leaf
1032 : * scan node that doesn't support them. We could have
1033 : * fix_scan_expr do this, but since the case is only
1034 : * expected to occur here, it seems safer to special-case
1035 : * it here and keep the assertions that ROWID_VARs
1036 : * shouldn't be seen by fix_scan_expr.
1037 : *
1038 : * We also must handle the case where set operations have
1039 : * been short-circuited resulting in a dummy Result node.
1040 : * prepunion.c uses varno==0 for the set op targetlist.
1041 : * See generate_setop_tlist() and generate_setop_tlist().
1042 : * Here we rewrite these to use varno==1, which is the
1043 : * varno of the first set-op child. Without this, EXPLAIN
1044 : * will have trouble displaying targetlists of dummy set
1045 : * operations.
1046 : */
1047 472610 : foreach(l, splan->plan.targetlist)
1048 : {
1049 270312 : TargetEntry *tle = (TargetEntry *) lfirst(l);
1050 270312 : Var *var = (Var *) tle->expr;
1051 :
1052 270312 : if (var && IsA(var, Var))
1053 : {
1054 1622 : if (var->varno == ROWID_VAR)
1055 72 : tle->expr = (Expr *) makeNullConst(var->vartype,
1056 : var->vartypmod,
1057 : var->varcollid);
1058 1550 : else if (var->varno == 0)
1059 30 : tle->expr = (Expr *) makeVar(1,
1060 30 : var->varattno,
1061 : var->vartype,
1062 : var->vartypmod,
1063 : var->varcollid,
1064 : var->varlevelsup);
1065 : }
1066 : }
1067 :
1068 202298 : splan->plan.targetlist =
1069 202298 : fix_scan_list(root, splan->plan.targetlist,
1070 : rtoffset, NUM_EXEC_TLIST(plan));
1071 202298 : splan->plan.qual =
1072 202298 : fix_scan_list(root, splan->plan.qual,
1073 : rtoffset, NUM_EXEC_QUAL(plan));
1074 : }
1075 : /* resconstantqual can't contain any subplan variable refs */
1076 214056 : splan->resconstantqual =
1077 214056 : fix_scan_expr(root, splan->resconstantqual, rtoffset, 1);
1078 : /* adjust the relids set */
1079 214056 : splan->relids = offset_relid_set(splan->relids, rtoffset);
1080 : }
1081 214056 : break;
1082 11716 : case T_ProjectSet:
1083 11716 : set_upper_references(root, plan, rtoffset);
1084 11716 : break;
1085 92804 : case T_ModifyTable:
1086 : {
1087 92804 : ModifyTable *splan = (ModifyTable *) plan;
1088 92804 : Plan *subplan = outerPlan(splan);
1089 :
1090 : Assert(splan->plan.targetlist == NIL);
1091 : Assert(splan->plan.qual == NIL);
1092 :
1093 92804 : splan->withCheckOptionLists =
1094 92804 : fix_scan_list(root, splan->withCheckOptionLists,
1095 : rtoffset, 1);
1096 :
1097 92804 : if (splan->returningLists)
1098 : {
1099 2900 : List *newRL = NIL;
1100 : ListCell *lcrl,
1101 : *lcrr;
1102 :
1103 : /*
1104 : * Pass each per-resultrel returningList through
1105 : * set_returning_clause_references().
1106 : */
1107 : Assert(list_length(splan->returningLists) == list_length(splan->resultRelations));
1108 6188 : forboth(lcrl, splan->returningLists,
1109 : lcrr, splan->resultRelations)
1110 : {
1111 3288 : List *rlist = (List *) lfirst(lcrl);
1112 3288 : Index resultrel = lfirst_int(lcrr);
1113 :
1114 3288 : rlist = set_returning_clause_references(root,
1115 : rlist,
1116 : subplan,
1117 : resultrel,
1118 : rtoffset);
1119 3288 : newRL = lappend(newRL, rlist);
1120 : }
1121 2900 : splan->returningLists = newRL;
1122 :
1123 : /*
1124 : * Set up the visible plan targetlist as being the same as
1125 : * the first RETURNING list. This is mostly for the use
1126 : * of EXPLAIN; the executor won't execute that targetlist,
1127 : * although it does use it to prepare the node's result
1128 : * tuple slot. We postpone this step until here so that
1129 : * we don't have to do set_returning_clause_references()
1130 : * twice on identical targetlists.
1131 : */
1132 2900 : splan->plan.targetlist = copyObject(linitial(newRL));
1133 : }
1134 :
1135 : /*
1136 : * We treat ModifyTable with ON CONFLICT as a form of 'pseudo
1137 : * join', where the inner side is the EXCLUDED tuple.
1138 : * Therefore use fix_join_expr to setup the relevant variables
1139 : * to INNER_VAR. We explicitly don't create any OUTER_VARs as
1140 : * those are already used by RETURNING and it seems better to
1141 : * be non-conflicting.
1142 : */
1143 92804 : if (splan->onConflictSet)
1144 : {
1145 : indexed_tlist *itlist;
1146 :
1147 972 : itlist = build_tlist_index(splan->exclRelTlist);
1148 :
1149 972 : splan->onConflictSet =
1150 1944 : fix_join_expr(root, splan->onConflictSet,
1151 : NULL, itlist,
1152 972 : linitial_int(splan->resultRelations),
1153 972 : rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1154 :
1155 972 : splan->onConflictWhere = (Node *)
1156 1944 : fix_join_expr(root, (List *) splan->onConflictWhere,
1157 : NULL, itlist,
1158 972 : linitial_int(splan->resultRelations),
1159 972 : rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1160 :
1161 972 : pfree(itlist);
1162 :
1163 972 : splan->exclRelTlist =
1164 972 : fix_scan_list(root, splan->exclRelTlist, rtoffset, 1);
1165 : }
1166 :
1167 : /*
1168 : * The MERGE statement produces the target rows by performing
1169 : * a right join between the target relation and the source
1170 : * relation (which could be a plain relation or a subquery).
1171 : * The INSERT and UPDATE actions of the MERGE statement
1172 : * require access to the columns from the source relation. We
1173 : * arrange things so that the source relation attributes are
1174 : * available as INNER_VAR and the target relation attributes
1175 : * are available from the scan tuple.
1176 : */
1177 92804 : if (splan->mergeActionLists != NIL)
1178 : {
1179 1786 : List *newMJC = NIL;
1180 : ListCell *lca,
1181 : *lcj,
1182 : *lcr;
1183 :
1184 : /*
1185 : * Fix the targetList of individual action nodes so that
1186 : * the so-called "source relation" Vars are referenced as
1187 : * INNER_VAR. Note that for this to work correctly during
1188 : * execution, the ecxt_innertuple must be set to the tuple
1189 : * obtained by executing the subplan, which is what
1190 : * constitutes the "source relation".
1191 : *
1192 : * We leave the Vars from the result relation (i.e. the
1193 : * target relation) unchanged i.e. those Vars would be
1194 : * picked from the scan slot. So during execution, we must
1195 : * ensure that ecxt_scantuple is setup correctly to refer
1196 : * to the tuple from the target relation.
1197 : */
1198 : indexed_tlist *itlist;
1199 :
1200 1786 : itlist = build_tlist_index(subplan->targetlist);
1201 :
1202 3858 : forthree(lca, splan->mergeActionLists,
1203 : lcj, splan->mergeJoinConditions,
1204 : lcr, splan->resultRelations)
1205 : {
1206 2072 : List *mergeActionList = lfirst(lca);
1207 2072 : Node *mergeJoinCondition = lfirst(lcj);
1208 2072 : Index resultrel = lfirst_int(lcr);
1209 :
1210 5552 : foreach(l, mergeActionList)
1211 : {
1212 3480 : MergeAction *action = (MergeAction *) lfirst(l);
1213 :
1214 : /* Fix targetList of each action. */
1215 3480 : action->targetList = fix_join_expr(root,
1216 : action->targetList,
1217 : NULL, itlist,
1218 : resultrel,
1219 : rtoffset,
1220 : NRM_EQUAL,
1221 : NUM_EXEC_TLIST(plan));
1222 :
1223 : /* Fix quals too. */
1224 3480 : action->qual = (Node *) fix_join_expr(root,
1225 3480 : (List *) action->qual,
1226 : NULL, itlist,
1227 : resultrel,
1228 : rtoffset,
1229 : NRM_EQUAL,
1230 3480 : NUM_EXEC_QUAL(plan));
1231 : }
1232 :
1233 : /* Fix join condition too. */
1234 : mergeJoinCondition = (Node *)
1235 2072 : fix_join_expr(root,
1236 : (List *) mergeJoinCondition,
1237 : NULL, itlist,
1238 : resultrel,
1239 : rtoffset,
1240 : NRM_EQUAL,
1241 2072 : NUM_EXEC_QUAL(plan));
1242 2072 : newMJC = lappend(newMJC, mergeJoinCondition);
1243 : }
1244 1786 : splan->mergeJoinConditions = newMJC;
1245 : }
1246 :
1247 92804 : splan->nominalRelation += rtoffset;
1248 92804 : if (splan->rootRelation)
1249 2862 : splan->rootRelation += rtoffset;
1250 92804 : splan->exclRelRTI += rtoffset;
1251 :
1252 188098 : foreach(l, splan->resultRelations)
1253 : {
1254 95294 : lfirst_int(l) += rtoffset;
1255 : }
1256 95704 : foreach(l, splan->rowMarks)
1257 : {
1258 2900 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
1259 :
1260 2900 : rc->rti += rtoffset;
1261 2900 : rc->prti += rtoffset;
1262 : }
1263 :
1264 : /*
1265 : * Append this ModifyTable node's final result relation RT
1266 : * index(es) to the global list for the plan.
1267 : */
1268 185608 : root->glob->resultRelations =
1269 92804 : list_concat(root->glob->resultRelations,
1270 92804 : splan->resultRelations);
1271 92804 : if (splan->rootRelation)
1272 : {
1273 2862 : root->glob->resultRelations =
1274 2862 : lappend_int(root->glob->resultRelations,
1275 2862 : splan->rootRelation);
1276 : }
1277 : }
1278 92804 : break;
1279 23906 : case T_Append:
1280 : /* Needs special treatment, see comments below */
1281 23906 : return set_append_references(root,
1282 : (Append *) plan,
1283 : rtoffset);
1284 566 : case T_MergeAppend:
1285 : /* Needs special treatment, see comments below */
1286 566 : return set_mergeappend_references(root,
1287 : (MergeAppend *) plan,
1288 : rtoffset);
1289 926 : case T_RecursiveUnion:
1290 : /* This doesn't evaluate targetlist or check quals either */
1291 926 : set_dummy_tlist_references(plan, rtoffset);
1292 : Assert(plan->qual == NIL);
1293 926 : break;
1294 246 : case T_BitmapAnd:
1295 : {
1296 246 : BitmapAnd *splan = (BitmapAnd *) plan;
1297 :
1298 : /* BitmapAnd works like Append, but has no tlist */
1299 : Assert(splan->plan.targetlist == NIL);
1300 : Assert(splan->plan.qual == NIL);
1301 738 : foreach(l, splan->bitmapplans)
1302 : {
1303 492 : lfirst(l) = set_plan_refs(root,
1304 492 : (Plan *) lfirst(l),
1305 : rtoffset);
1306 : }
1307 : }
1308 246 : break;
1309 422 : case T_BitmapOr:
1310 : {
1311 422 : BitmapOr *splan = (BitmapOr *) plan;
1312 :
1313 : /* BitmapOr works like Append, but has no tlist */
1314 : Assert(splan->plan.targetlist == NIL);
1315 : Assert(splan->plan.qual == NIL);
1316 1272 : foreach(l, splan->bitmapplans)
1317 : {
1318 850 : lfirst(l) = set_plan_refs(root,
1319 850 : (Plan *) lfirst(l),
1320 : rtoffset);
1321 : }
1322 : }
1323 422 : break;
1324 0 : default:
1325 0 : elog(ERROR, "unrecognized node type: %d",
1326 : (int) nodeTag(plan));
1327 : break;
1328 : }
1329 :
1330 : /*
1331 : * Now recurse into child plans, if any
1332 : *
1333 : * NOTE: it is essential that we recurse into child plans AFTER we set
1334 : * subplan references in this plan's tlist and quals. If we did the
1335 : * reference-adjustments bottom-up, then we would fail to match this
1336 : * plan's var nodes against the already-modified nodes of the children.
1337 : */
1338 1119430 : plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset);
1339 1119430 : plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
1340 :
1341 1119430 : return plan;
1342 : }
1343 :
1344 : /*
1345 : * set_indexonlyscan_references
1346 : * Do set_plan_references processing on an IndexOnlyScan
1347 : *
1348 : * This is unlike the handling of a plain IndexScan because we have to
1349 : * convert Vars referencing the heap into Vars referencing the index.
1350 : * We can use the fix_upper_expr machinery for that, by working from a
1351 : * targetlist describing the index columns.
1352 : */
1353 : static Plan *
1354 18180 : set_indexonlyscan_references(PlannerInfo *root,
1355 : IndexOnlyScan *plan,
1356 : int rtoffset)
1357 : {
1358 : indexed_tlist *index_itlist;
1359 : List *stripped_indextlist;
1360 : ListCell *lc;
1361 :
1362 : /*
1363 : * Vars in the plan node's targetlist, qual, and recheckqual must only
1364 : * reference columns that the index AM can actually return. To ensure
1365 : * this, remove non-returnable columns (which are marked as resjunk) from
1366 : * the indexed tlist. We can just drop them because the indexed_tlist
1367 : * machinery pays attention to TLE resnos, not physical list position.
1368 : */
1369 18180 : stripped_indextlist = NIL;
1370 42684 : foreach(lc, plan->indextlist)
1371 : {
1372 24504 : TargetEntry *indextle = (TargetEntry *) lfirst(lc);
1373 :
1374 24504 : if (!indextle->resjunk)
1375 24452 : stripped_indextlist = lappend(stripped_indextlist, indextle);
1376 : }
1377 :
1378 18180 : index_itlist = build_tlist_index(stripped_indextlist);
1379 :
1380 18180 : plan->scan.scanrelid += rtoffset;
1381 18180 : plan->scan.plan.targetlist = (List *)
1382 18180 : fix_upper_expr(root,
1383 18180 : (Node *) plan->scan.plan.targetlist,
1384 : index_itlist,
1385 : INDEX_VAR,
1386 : rtoffset,
1387 : NRM_EQUAL,
1388 : NUM_EXEC_TLIST((Plan *) plan));
1389 18180 : plan->scan.plan.qual = (List *)
1390 18180 : fix_upper_expr(root,
1391 18180 : (Node *) plan->scan.plan.qual,
1392 : index_itlist,
1393 : INDEX_VAR,
1394 : rtoffset,
1395 : NRM_EQUAL,
1396 18180 : NUM_EXEC_QUAL((Plan *) plan));
1397 18180 : plan->recheckqual = (List *)
1398 18180 : fix_upper_expr(root,
1399 18180 : (Node *) plan->recheckqual,
1400 : index_itlist,
1401 : INDEX_VAR,
1402 : rtoffset,
1403 : NRM_EQUAL,
1404 18180 : NUM_EXEC_QUAL((Plan *) plan));
1405 : /* indexqual is already transformed to reference index columns */
1406 18180 : plan->indexqual = fix_scan_list(root, plan->indexqual,
1407 : rtoffset, 1);
1408 : /* indexorderby is already transformed to reference index columns */
1409 18180 : plan->indexorderby = fix_scan_list(root, plan->indexorderby,
1410 : rtoffset, 1);
1411 : /* indextlist must NOT be transformed to reference index columns */
1412 18180 : plan->indextlist = fix_scan_list(root, plan->indextlist,
1413 : rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1414 :
1415 18180 : pfree(index_itlist);
1416 :
1417 18180 : return (Plan *) plan;
1418 : }
1419 :
1420 : /*
1421 : * set_subqueryscan_references
1422 : * Do set_plan_references processing on a SubqueryScan
1423 : *
1424 : * We try to strip out the SubqueryScan entirely; if we can't, we have
1425 : * to do the normal processing on it.
1426 : */
1427 : static Plan *
1428 32550 : set_subqueryscan_references(PlannerInfo *root,
1429 : SubqueryScan *plan,
1430 : int rtoffset)
1431 : {
1432 : RelOptInfo *rel;
1433 : Plan *result;
1434 :
1435 : /* Need to look up the subquery's RelOptInfo, since we need its subroot */
1436 32550 : rel = find_base_rel(root, plan->scan.scanrelid);
1437 :
1438 : /* Recursively process the subplan */
1439 32550 : plan->subplan = set_plan_references(rel->subroot, plan->subplan);
1440 :
1441 32550 : if (trivial_subqueryscan(plan))
1442 : {
1443 : /*
1444 : * We can omit the SubqueryScan node and just pull up the subplan.
1445 : */
1446 17012 : result = clean_up_removed_plan_level((Plan *) plan, plan->subplan);
1447 : }
1448 : else
1449 : {
1450 : /*
1451 : * Keep the SubqueryScan node. We have to do the processing that
1452 : * set_plan_references would otherwise have done on it. Notice we do
1453 : * not do set_upper_references() here, because a SubqueryScan will
1454 : * always have been created with correct references to its subplan's
1455 : * outputs to begin with.
1456 : */
1457 15538 : plan->scan.scanrelid += rtoffset;
1458 15538 : plan->scan.plan.targetlist =
1459 15538 : fix_scan_list(root, plan->scan.plan.targetlist,
1460 : rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1461 15538 : plan->scan.plan.qual =
1462 15538 : fix_scan_list(root, plan->scan.plan.qual,
1463 : rtoffset, NUM_EXEC_QUAL((Plan *) plan));
1464 :
1465 15538 : result = (Plan *) plan;
1466 : }
1467 :
1468 32550 : return result;
1469 : }
1470 :
1471 : /*
1472 : * trivial_subqueryscan
1473 : * Detect whether a SubqueryScan can be deleted from the plan tree.
1474 : *
1475 : * We can delete it if it has no qual to check and the targetlist just
1476 : * regurgitates the output of the child plan.
1477 : *
1478 : * This can be called from mark_async_capable_plan(), a helper function for
1479 : * create_append_plan(), before set_subqueryscan_references(), to determine
1480 : * triviality of a SubqueryScan that is a child of an Append node. So we
1481 : * cache the result in the SubqueryScan node to avoid repeated computation.
1482 : *
1483 : * Note: when called from mark_async_capable_plan(), we determine the result
1484 : * before running finalize_plan() on the SubqueryScan node (if needed) and
1485 : * set_plan_references() on the subplan tree, but this would be safe, because
1486 : * 1) finalize_plan() doesn't modify the tlist or quals for the SubqueryScan
1487 : * node (or that for any plan node in the subplan tree), and
1488 : * 2) set_plan_references() modifies the tlist for every plan node in the
1489 : * subplan tree, but keeps const/resjunk columns as const/resjunk ones and
1490 : * preserves the length and order of the tlist, and
1491 : * 3) set_plan_references() might delete the topmost plan node like an Append
1492 : * or MergeAppend from the subplan tree and pull up the child plan node,
1493 : * but in that case, the tlist for the child plan node exactly matches the
1494 : * parent.
1495 : */
1496 : bool
1497 43668 : trivial_subqueryscan(SubqueryScan *plan)
1498 : {
1499 : int attrno;
1500 : ListCell *lp,
1501 : *lc;
1502 :
1503 : /* We might have detected this already; in which case reuse the result */
1504 43668 : if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1505 4506 : return true;
1506 39162 : if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1507 6612 : return false;
1508 : Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1509 : /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1510 32550 : plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1511 :
1512 32550 : if (plan->scan.plan.qual != NIL)
1513 688 : return false;
1514 :
1515 63724 : if (list_length(plan->scan.plan.targetlist) !=
1516 31862 : list_length(plan->subplan->targetlist))
1517 6746 : return false; /* tlists not same length */
1518 :
1519 25116 : attrno = 1;
1520 76078 : forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1521 : {
1522 59066 : TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1523 59066 : TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1524 :
1525 59066 : if (ptle->resjunk != ctle->resjunk)
1526 8104 : return false; /* tlist doesn't match junk status */
1527 :
1528 : /*
1529 : * We accept either a Var referencing the corresponding element of the
1530 : * subplan tlist, or a Const equaling the subplan element. See
1531 : * generate_setop_tlist() for motivation.
1532 : */
1533 59042 : if (ptle->expr && IsA(ptle->expr, Var))
1534 48540 : {
1535 48732 : Var *var = (Var *) ptle->expr;
1536 :
1537 : Assert(var->varno == plan->scan.scanrelid);
1538 : Assert(var->varlevelsup == 0);
1539 48732 : if (var->varattno != attrno)
1540 192 : return false; /* out of order */
1541 : }
1542 10310 : else if (ptle->expr && IsA(ptle->expr, Const))
1543 : {
1544 8862 : if (!equal(ptle->expr, ctle->expr))
1545 6440 : return false;
1546 : }
1547 : else
1548 1448 : return false;
1549 :
1550 50962 : attrno++;
1551 : }
1552 :
1553 : /* Re-mark the SubqueryScan as deletable from the plan tree */
1554 17012 : plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1555 :
1556 17012 : return true;
1557 : }
1558 :
1559 : /*
1560 : * clean_up_removed_plan_level
1561 : * Do necessary cleanup when we strip out a SubqueryScan, Append, etc
1562 : *
1563 : * We are dropping the "parent" plan in favor of returning just its "child".
1564 : * A few small tweaks are needed.
1565 : */
1566 : static Plan *
1567 23506 : clean_up_removed_plan_level(Plan *parent, Plan *child)
1568 : {
1569 : /*
1570 : * We have to be sure we don't lose any initplans, so move any that were
1571 : * attached to the parent plan to the child. If any are parallel-unsafe,
1572 : * the child is no longer parallel-safe. As a cosmetic matter, also add
1573 : * the initplans' run costs to the child's costs.
1574 : */
1575 23506 : if (parent->initPlan)
1576 : {
1577 : Cost initplan_cost;
1578 : bool unsafe_initplans;
1579 :
1580 36 : SS_compute_initplan_cost(parent->initPlan,
1581 : &initplan_cost, &unsafe_initplans);
1582 36 : child->startup_cost += initplan_cost;
1583 36 : child->total_cost += initplan_cost;
1584 36 : if (unsafe_initplans)
1585 18 : child->parallel_safe = false;
1586 :
1587 : /*
1588 : * Attach plans this way so that parent's initplans are processed
1589 : * before any pre-existing initplans of the child. Probably doesn't
1590 : * matter, but let's preserve the ordering just in case.
1591 : */
1592 36 : child->initPlan = list_concat(parent->initPlan,
1593 36 : child->initPlan);
1594 : }
1595 :
1596 : /*
1597 : * We also have to transfer the parent's column labeling info into the
1598 : * child, else columns sent to client will be improperly labeled if this
1599 : * is the topmost plan level. resjunk and so on may be important too.
1600 : */
1601 23506 : apply_tlist_labeling(child->targetlist, parent->targetlist);
1602 :
1603 23506 : return child;
1604 : }
1605 :
1606 : /*
1607 : * set_foreignscan_references
1608 : * Do set_plan_references processing on a ForeignScan
1609 : */
1610 : static void
1611 2020 : set_foreignscan_references(PlannerInfo *root,
1612 : ForeignScan *fscan,
1613 : int rtoffset)
1614 : {
1615 : /* Adjust scanrelid if it's valid */
1616 2020 : if (fscan->scan.scanrelid > 0)
1617 1456 : fscan->scan.scanrelid += rtoffset;
1618 :
1619 2020 : if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0)
1620 564 : {
1621 : /*
1622 : * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference
1623 : * foreign scan tuple
1624 : */
1625 564 : indexed_tlist *itlist = build_tlist_index(fscan->fdw_scan_tlist);
1626 :
1627 564 : fscan->scan.plan.targetlist = (List *)
1628 564 : fix_upper_expr(root,
1629 564 : (Node *) fscan->scan.plan.targetlist,
1630 : itlist,
1631 : INDEX_VAR,
1632 : rtoffset,
1633 : NRM_EQUAL,
1634 : NUM_EXEC_TLIST((Plan *) fscan));
1635 564 : fscan->scan.plan.qual = (List *)
1636 564 : fix_upper_expr(root,
1637 564 : (Node *) fscan->scan.plan.qual,
1638 : itlist,
1639 : INDEX_VAR,
1640 : rtoffset,
1641 : NRM_EQUAL,
1642 564 : NUM_EXEC_QUAL((Plan *) fscan));
1643 564 : fscan->fdw_exprs = (List *)
1644 564 : fix_upper_expr(root,
1645 564 : (Node *) fscan->fdw_exprs,
1646 : itlist,
1647 : INDEX_VAR,
1648 : rtoffset,
1649 : NRM_EQUAL,
1650 564 : NUM_EXEC_QUAL((Plan *) fscan));
1651 564 : fscan->fdw_recheck_quals = (List *)
1652 564 : fix_upper_expr(root,
1653 564 : (Node *) fscan->fdw_recheck_quals,
1654 : itlist,
1655 : INDEX_VAR,
1656 : rtoffset,
1657 : NRM_EQUAL,
1658 564 : NUM_EXEC_QUAL((Plan *) fscan));
1659 564 : pfree(itlist);
1660 : /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */
1661 564 : fscan->fdw_scan_tlist =
1662 564 : fix_scan_list(root, fscan->fdw_scan_tlist,
1663 : rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1664 : }
1665 : else
1666 : {
1667 : /*
1668 : * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard
1669 : * way
1670 : */
1671 1456 : fscan->scan.plan.targetlist =
1672 1456 : fix_scan_list(root, fscan->scan.plan.targetlist,
1673 : rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1674 1456 : fscan->scan.plan.qual =
1675 1456 : fix_scan_list(root, fscan->scan.plan.qual,
1676 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1677 1456 : fscan->fdw_exprs =
1678 1456 : fix_scan_list(root, fscan->fdw_exprs,
1679 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1680 1456 : fscan->fdw_recheck_quals =
1681 1456 : fix_scan_list(root, fscan->fdw_recheck_quals,
1682 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1683 : }
1684 :
1685 2020 : fscan->fs_relids = offset_relid_set(fscan->fs_relids, rtoffset);
1686 2020 : fscan->fs_base_relids = offset_relid_set(fscan->fs_base_relids, rtoffset);
1687 :
1688 : /* Adjust resultRelation if it's valid */
1689 2020 : if (fscan->resultRelation > 0)
1690 208 : fscan->resultRelation += rtoffset;
1691 2020 : }
1692 :
1693 : /*
1694 : * set_customscan_references
1695 : * Do set_plan_references processing on a CustomScan
1696 : */
1697 : static void
1698 0 : set_customscan_references(PlannerInfo *root,
1699 : CustomScan *cscan,
1700 : int rtoffset)
1701 : {
1702 : ListCell *lc;
1703 :
1704 : /* Adjust scanrelid if it's valid */
1705 0 : if (cscan->scan.scanrelid > 0)
1706 0 : cscan->scan.scanrelid += rtoffset;
1707 :
1708 0 : if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0)
1709 0 : {
1710 : /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */
1711 0 : indexed_tlist *itlist = build_tlist_index(cscan->custom_scan_tlist);
1712 :
1713 0 : cscan->scan.plan.targetlist = (List *)
1714 0 : fix_upper_expr(root,
1715 0 : (Node *) cscan->scan.plan.targetlist,
1716 : itlist,
1717 : INDEX_VAR,
1718 : rtoffset,
1719 : NRM_EQUAL,
1720 : NUM_EXEC_TLIST((Plan *) cscan));
1721 0 : cscan->scan.plan.qual = (List *)
1722 0 : fix_upper_expr(root,
1723 0 : (Node *) cscan->scan.plan.qual,
1724 : itlist,
1725 : INDEX_VAR,
1726 : rtoffset,
1727 : NRM_EQUAL,
1728 0 : NUM_EXEC_QUAL((Plan *) cscan));
1729 0 : cscan->custom_exprs = (List *)
1730 0 : fix_upper_expr(root,
1731 0 : (Node *) cscan->custom_exprs,
1732 : itlist,
1733 : INDEX_VAR,
1734 : rtoffset,
1735 : NRM_EQUAL,
1736 0 : NUM_EXEC_QUAL((Plan *) cscan));
1737 0 : pfree(itlist);
1738 : /* custom_scan_tlist itself just needs fix_scan_list() adjustments */
1739 0 : cscan->custom_scan_tlist =
1740 0 : fix_scan_list(root, cscan->custom_scan_tlist,
1741 : rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1742 : }
1743 : else
1744 : {
1745 : /* Adjust tlist, qual, custom_exprs in the standard way */
1746 0 : cscan->scan.plan.targetlist =
1747 0 : fix_scan_list(root, cscan->scan.plan.targetlist,
1748 : rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1749 0 : cscan->scan.plan.qual =
1750 0 : fix_scan_list(root, cscan->scan.plan.qual,
1751 : rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1752 0 : cscan->custom_exprs =
1753 0 : fix_scan_list(root, cscan->custom_exprs,
1754 : rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1755 : }
1756 :
1757 : /* Adjust child plan-nodes recursively, if needed */
1758 0 : foreach(lc, cscan->custom_plans)
1759 : {
1760 0 : lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset);
1761 : }
1762 :
1763 0 : cscan->custom_relids = offset_relid_set(cscan->custom_relids, rtoffset);
1764 0 : }
1765 :
1766 : /*
1767 : * register_partpruneinfo
1768 : * Subroutine for set_append_references and set_mergeappend_references
1769 : *
1770 : * Add the PartitionPruneInfo from root->partPruneInfos at the given index
1771 : * into PlannerGlobal->partPruneInfos and return its index there.
1772 : *
1773 : * Also update the RT indexes present in PartitionedRelPruneInfos to add the
1774 : * offset.
1775 : *
1776 : * Finally, if there are initial pruning steps, add the RT indexes of the
1777 : * leaf partitions to the set of relations that are prunable at execution
1778 : * startup time.
1779 : */
1780 : static int
1781 554 : register_partpruneinfo(PlannerInfo *root, int part_prune_index, int rtoffset)
1782 : {
1783 554 : PlannerGlobal *glob = root->glob;
1784 : PartitionPruneInfo *pinfo;
1785 : ListCell *l;
1786 :
1787 : Assert(part_prune_index >= 0 &&
1788 : part_prune_index < list_length(root->partPruneInfos));
1789 554 : pinfo = list_nth_node(PartitionPruneInfo, root->partPruneInfos,
1790 : part_prune_index);
1791 :
1792 554 : pinfo->relids = offset_relid_set(pinfo->relids, rtoffset);
1793 1120 : foreach(l, pinfo->prune_infos)
1794 : {
1795 566 : List *prune_infos = lfirst(l);
1796 : ListCell *l2;
1797 :
1798 1534 : foreach(l2, prune_infos)
1799 : {
1800 968 : PartitionedRelPruneInfo *prelinfo = lfirst(l2);
1801 : int i;
1802 :
1803 968 : prelinfo->rtindex += rtoffset;
1804 968 : prelinfo->initial_pruning_steps =
1805 968 : fix_scan_list(root, prelinfo->initial_pruning_steps,
1806 : rtoffset, 1);
1807 968 : prelinfo->exec_pruning_steps =
1808 968 : fix_scan_list(root, prelinfo->exec_pruning_steps,
1809 : rtoffset, 1);
1810 :
1811 3834 : for (i = 0; i < prelinfo->nparts; i++)
1812 : {
1813 : /*
1814 : * Non-leaf partitions and partitions that do not have a
1815 : * subplan are not included in this map as mentioned in
1816 : * make_partitionedrel_pruneinfo().
1817 : */
1818 2866 : if (prelinfo->leafpart_rti_map[i])
1819 : {
1820 2322 : prelinfo->leafpart_rti_map[i] += rtoffset;
1821 2322 : if (prelinfo->initial_pruning_steps)
1822 736 : glob->prunableRelids = bms_add_member(glob->prunableRelids,
1823 736 : prelinfo->leafpart_rti_map[i]);
1824 : }
1825 : }
1826 : }
1827 : }
1828 :
1829 554 : glob->partPruneInfos = lappend(glob->partPruneInfos, pinfo);
1830 :
1831 554 : return list_length(glob->partPruneInfos) - 1;
1832 : }
1833 :
1834 : /*
1835 : * set_append_references
1836 : * Do set_plan_references processing on an Append
1837 : *
1838 : * We try to strip out the Append entirely; if we can't, we have
1839 : * to do the normal processing on it.
1840 : */
1841 : static Plan *
1842 23906 : set_append_references(PlannerInfo *root,
1843 : Append *aplan,
1844 : int rtoffset)
1845 : {
1846 : ListCell *l;
1847 :
1848 : /*
1849 : * Append, like Sort et al, doesn't actually evaluate its targetlist or
1850 : * check quals. If it's got exactly one child plan, then it's not doing
1851 : * anything useful at all, and we can strip it out.
1852 : */
1853 : Assert(aplan->plan.qual == NIL);
1854 :
1855 : /* First, we gotta recurse on the children */
1856 83022 : foreach(l, aplan->appendplans)
1857 : {
1858 59116 : lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1859 : }
1860 :
1861 : /*
1862 : * See if it's safe to get rid of the Append entirely. For this to be
1863 : * safe, there must be only one child plan and that child plan's parallel
1864 : * awareness must match the Append's. The reason for the latter is that
1865 : * if the Append is parallel aware and the child is not, then the calling
1866 : * plan may execute the non-parallel aware child multiple times. (If you
1867 : * change these rules, update create_append_path to match.)
1868 : */
1869 23906 : if (list_length(aplan->appendplans) == 1)
1870 : {
1871 6490 : Plan *p = (Plan *) linitial(aplan->appendplans);
1872 :
1873 6490 : if (p->parallel_aware == aplan->plan.parallel_aware)
1874 6490 : return clean_up_removed_plan_level((Plan *) aplan, p);
1875 : }
1876 :
1877 : /*
1878 : * Otherwise, clean up the Append as needed. It's okay to do this after
1879 : * recursing to the children, because set_dummy_tlist_references doesn't
1880 : * look at those.
1881 : */
1882 17416 : set_dummy_tlist_references((Plan *) aplan, rtoffset);
1883 :
1884 17416 : aplan->apprelids = offset_relid_set(aplan->apprelids, rtoffset);
1885 :
1886 : /*
1887 : * Add PartitionPruneInfo, if any, to PlannerGlobal and update the index.
1888 : * Also update the RT indexes present in it to add the offset.
1889 : */
1890 17416 : if (aplan->part_prune_index >= 0)
1891 518 : aplan->part_prune_index =
1892 518 : register_partpruneinfo(root, aplan->part_prune_index, rtoffset);
1893 :
1894 : /* We don't need to recurse to lefttree or righttree ... */
1895 : Assert(aplan->plan.lefttree == NULL);
1896 : Assert(aplan->plan.righttree == NULL);
1897 :
1898 17416 : return (Plan *) aplan;
1899 : }
1900 :
1901 : /*
1902 : * set_mergeappend_references
1903 : * Do set_plan_references processing on a MergeAppend
1904 : *
1905 : * We try to strip out the MergeAppend entirely; if we can't, we have
1906 : * to do the normal processing on it.
1907 : */
1908 : static Plan *
1909 566 : set_mergeappend_references(PlannerInfo *root,
1910 : MergeAppend *mplan,
1911 : int rtoffset)
1912 : {
1913 : ListCell *l;
1914 :
1915 : /*
1916 : * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist
1917 : * or check quals. If it's got exactly one child plan, then it's not
1918 : * doing anything useful at all, and we can strip it out.
1919 : */
1920 : Assert(mplan->plan.qual == NIL);
1921 :
1922 : /* First, we gotta recurse on the children */
1923 2152 : foreach(l, mplan->mergeplans)
1924 : {
1925 1586 : lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1926 : }
1927 :
1928 : /*
1929 : * See if it's safe to get rid of the MergeAppend entirely. For this to
1930 : * be safe, there must be only one child plan and that child plan's
1931 : * parallel awareness must match the MergeAppend's. The reason for the
1932 : * latter is that if the MergeAppend is parallel aware and the child is
1933 : * not, then the calling plan may execute the non-parallel aware child
1934 : * multiple times. (If you change these rules, update
1935 : * create_merge_append_path to match.)
1936 : */
1937 566 : if (list_length(mplan->mergeplans) == 1)
1938 : {
1939 4 : Plan *p = (Plan *) linitial(mplan->mergeplans);
1940 :
1941 4 : if (p->parallel_aware == mplan->plan.parallel_aware)
1942 4 : return clean_up_removed_plan_level((Plan *) mplan, p);
1943 : }
1944 :
1945 : /*
1946 : * Otherwise, clean up the MergeAppend as needed. It's okay to do this
1947 : * after recursing to the children, because set_dummy_tlist_references
1948 : * doesn't look at those.
1949 : */
1950 562 : set_dummy_tlist_references((Plan *) mplan, rtoffset);
1951 :
1952 562 : mplan->apprelids = offset_relid_set(mplan->apprelids, rtoffset);
1953 :
1954 : /*
1955 : * Add PartitionPruneInfo, if any, to PlannerGlobal and update the index.
1956 : * Also update the RT indexes present in it to add the offset.
1957 : */
1958 562 : if (mplan->part_prune_index >= 0)
1959 36 : mplan->part_prune_index =
1960 36 : register_partpruneinfo(root, mplan->part_prune_index, rtoffset);
1961 :
1962 : /* We don't need to recurse to lefttree or righttree ... */
1963 : Assert(mplan->plan.lefttree == NULL);
1964 : Assert(mplan->plan.righttree == NULL);
1965 :
1966 562 : return (Plan *) mplan;
1967 : }
1968 :
1969 : /*
1970 : * set_hash_references
1971 : * Do set_plan_references processing on a Hash node
1972 : */
1973 : static void
1974 34638 : set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset)
1975 : {
1976 34638 : Hash *hplan = (Hash *) plan;
1977 34638 : Plan *outer_plan = plan->lefttree;
1978 : indexed_tlist *outer_itlist;
1979 :
1980 : /*
1981 : * Hash's hashkeys are used when feeding tuples into the hashtable,
1982 : * therefore have them reference Hash's outer plan (which itself is the
1983 : * inner plan of the HashJoin).
1984 : */
1985 34638 : outer_itlist = build_tlist_index(outer_plan->targetlist);
1986 34638 : hplan->hashkeys = (List *)
1987 34638 : fix_upper_expr(root,
1988 34638 : (Node *) hplan->hashkeys,
1989 : outer_itlist,
1990 : OUTER_VAR,
1991 : rtoffset,
1992 : NRM_EQUAL,
1993 34638 : NUM_EXEC_QUAL(plan));
1994 :
1995 : /* Hash doesn't project */
1996 34638 : set_dummy_tlist_references(plan, rtoffset);
1997 :
1998 : /* Hash nodes don't have their own quals */
1999 : Assert(plan->qual == NIL);
2000 34638 : }
2001 :
2002 : /*
2003 : * offset_relid_set
2004 : * Apply rtoffset to the members of a Relids set.
2005 : */
2006 : static Relids
2007 236628 : offset_relid_set(Relids relids, int rtoffset)
2008 : {
2009 236628 : Relids result = NULL;
2010 : int rtindex;
2011 :
2012 : /* If there's no offset to apply, we needn't recompute the value */
2013 236628 : if (rtoffset == 0)
2014 216310 : return relids;
2015 20318 : rtindex = -1;
2016 30972 : while ((rtindex = bms_next_member(relids, rtindex)) >= 0)
2017 10654 : result = bms_add_member(result, rtindex + rtoffset);
2018 20318 : return result;
2019 : }
2020 :
2021 : /*
2022 : * copyVar
2023 : * Copy a Var node.
2024 : *
2025 : * fix_scan_expr and friends do this enough times that it's worth having
2026 : * a bespoke routine instead of using the generic copyObject() function.
2027 : */
2028 : static inline Var *
2029 2074490 : copyVar(Var *var)
2030 : {
2031 2074490 : Var *newvar = (Var *) palloc(sizeof(Var));
2032 :
2033 2074490 : *newvar = *var;
2034 2074490 : return newvar;
2035 : }
2036 :
2037 : /*
2038 : * fix_expr_common
2039 : * Do generic set_plan_references processing on an expression node
2040 : *
2041 : * This is code that is common to all variants of expression-fixing.
2042 : * We must look up operator opcode info for OpExpr and related nodes,
2043 : * add OIDs from regclass Const nodes into root->glob->relationOids, and
2044 : * add PlanInvalItems for user-defined functions into root->glob->invalItems.
2045 : * We also fill in column index lists for GROUPING() expressions.
2046 : *
2047 : * We assume it's okay to update opcode info in-place. So this could possibly
2048 : * scribble on the planner's input data structures, but it's OK.
2049 : */
2050 : static void
2051 14173600 : fix_expr_common(PlannerInfo *root, Node *node)
2052 : {
2053 : /* We assume callers won't call us on a NULL pointer */
2054 14173600 : if (IsA(node, Aggref))
2055 : {
2056 55992 : record_plan_function_dependency(root,
2057 : ((Aggref *) node)->aggfnoid);
2058 : }
2059 14117608 : else if (IsA(node, WindowFunc))
2060 : {
2061 3878 : record_plan_function_dependency(root,
2062 : ((WindowFunc *) node)->winfnoid);
2063 : }
2064 14113730 : else if (IsA(node, FuncExpr))
2065 : {
2066 301616 : record_plan_function_dependency(root,
2067 : ((FuncExpr *) node)->funcid);
2068 : }
2069 13812114 : else if (IsA(node, OpExpr))
2070 : {
2071 854034 : set_opfuncid((OpExpr *) node);
2072 854034 : record_plan_function_dependency(root,
2073 : ((OpExpr *) node)->opfuncid);
2074 : }
2075 12958080 : else if (IsA(node, DistinctExpr))
2076 : {
2077 1074 : set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2078 1074 : record_plan_function_dependency(root,
2079 : ((DistinctExpr *) node)->opfuncid);
2080 : }
2081 12957006 : else if (IsA(node, NullIfExpr))
2082 : {
2083 130 : set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2084 130 : record_plan_function_dependency(root,
2085 : ((NullIfExpr *) node)->opfuncid);
2086 : }
2087 12956876 : else if (IsA(node, ScalarArrayOpExpr))
2088 : {
2089 38044 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
2090 :
2091 38044 : set_sa_opfuncid(saop);
2092 38044 : record_plan_function_dependency(root, saop->opfuncid);
2093 :
2094 38044 : if (OidIsValid(saop->hashfuncid))
2095 664 : record_plan_function_dependency(root, saop->hashfuncid);
2096 :
2097 38044 : if (OidIsValid(saop->negfuncid))
2098 70 : record_plan_function_dependency(root, saop->negfuncid);
2099 : }
2100 12918832 : else if (IsA(node, Const))
2101 : {
2102 1398874 : Const *con = (Const *) node;
2103 :
2104 : /* Check for regclass reference */
2105 1398874 : if (ISREGCLASSCONST(con))
2106 263464 : root->glob->relationOids =
2107 263464 : lappend_oid(root->glob->relationOids,
2108 : DatumGetObjectId(con->constvalue));
2109 : }
2110 11519958 : else if (IsA(node, GroupingFunc))
2111 : {
2112 350 : GroupingFunc *g = (GroupingFunc *) node;
2113 350 : AttrNumber *grouping_map = root->grouping_map;
2114 :
2115 : /* If there are no grouping sets, we don't need this. */
2116 :
2117 : Assert(grouping_map || g->cols == NIL);
2118 :
2119 350 : if (grouping_map)
2120 : {
2121 : ListCell *lc;
2122 260 : List *cols = NIL;
2123 :
2124 684 : foreach(lc, g->refs)
2125 : {
2126 424 : cols = lappend_int(cols, grouping_map[lfirst_int(lc)]);
2127 : }
2128 :
2129 : Assert(!g->cols || equal(cols, g->cols));
2130 :
2131 260 : if (!g->cols)
2132 260 : g->cols = cols;
2133 : }
2134 : }
2135 14173600 : }
2136 :
2137 : /*
2138 : * fix_param_node
2139 : * Do set_plan_references processing on a Param
2140 : *
2141 : * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from
2142 : * root->multiexpr_params; otherwise no change is needed.
2143 : * Just for paranoia's sake, we make a copy of the node in either case.
2144 : */
2145 : static Node *
2146 108752 : fix_param_node(PlannerInfo *root, Param *p)
2147 : {
2148 108752 : if (p->paramkind == PARAM_MULTIEXPR)
2149 : {
2150 286 : int subqueryid = p->paramid >> 16;
2151 286 : int colno = p->paramid & 0xFFFF;
2152 : List *params;
2153 :
2154 572 : if (subqueryid <= 0 ||
2155 286 : subqueryid > list_length(root->multiexpr_params))
2156 0 : elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2157 286 : params = (List *) list_nth(root->multiexpr_params, subqueryid - 1);
2158 286 : if (colno <= 0 || colno > list_length(params))
2159 0 : elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2160 286 : return copyObject(list_nth(params, colno - 1));
2161 : }
2162 108466 : return (Node *) copyObject(p);
2163 : }
2164 :
2165 : /*
2166 : * fix_alternative_subplan
2167 : * Do set_plan_references processing on an AlternativeSubPlan
2168 : *
2169 : * Choose one of the alternative implementations and return just that one,
2170 : * discarding the rest of the AlternativeSubPlan structure.
2171 : * Note: caller must still recurse into the result!
2172 : *
2173 : * We don't make any attempt to fix up cost estimates in the parent plan
2174 : * node or higher-level nodes.
2175 : */
2176 : static Node *
2177 1816 : fix_alternative_subplan(PlannerInfo *root, AlternativeSubPlan *asplan,
2178 : double num_exec)
2179 : {
2180 1816 : SubPlan *bestplan = NULL;
2181 1816 : Cost bestcost = 0;
2182 : ListCell *lc;
2183 :
2184 : /*
2185 : * Compute the estimated cost of each subplan assuming num_exec
2186 : * executions, and keep the cheapest one. In event of exact equality of
2187 : * estimates, we prefer the later plan; this is a bit arbitrary, but in
2188 : * current usage it biases us to break ties against fast-start subplans.
2189 : */
2190 : Assert(asplan->subplans != NIL);
2191 :
2192 5448 : foreach(lc, asplan->subplans)
2193 : {
2194 3632 : SubPlan *curplan = (SubPlan *) lfirst(lc);
2195 : Cost curcost;
2196 :
2197 3632 : curcost = curplan->startup_cost + num_exec * curplan->per_call_cost;
2198 3632 : if (bestplan == NULL || curcost <= bestcost)
2199 : {
2200 2552 : bestplan = curplan;
2201 2552 : bestcost = curcost;
2202 : }
2203 :
2204 : /* Also mark all subplans that are in AlternativeSubPlans */
2205 3632 : root->isAltSubplan[curplan->plan_id - 1] = true;
2206 : }
2207 :
2208 : /* Mark the subplan we selected */
2209 1816 : root->isUsedSubplan[bestplan->plan_id - 1] = true;
2210 :
2211 1816 : return (Node *) bestplan;
2212 : }
2213 :
2214 : /*
2215 : * fix_scan_expr
2216 : * Do set_plan_references processing on a scan-level expression
2217 : *
2218 : * This consists of incrementing all Vars' varnos by rtoffset,
2219 : * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars,
2220 : * replacing Aggref nodes that should be replaced by initplan output Params,
2221 : * choosing the best implementation for AlternativeSubPlans,
2222 : * looking up operator opcode info for OpExpr and related nodes,
2223 : * and adding OIDs from regclass Const nodes into root->glob->relationOids.
2224 : *
2225 : * 'node': the expression to be modified
2226 : * 'rtoffset': how much to increment varnos by
2227 : * 'num_exec': estimated number of executions of expression
2228 : *
2229 : * The expression tree is either copied-and-modified, or modified in-place
2230 : * if that seems safe.
2231 : */
2232 : static Node *
2233 2413164 : fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset, double num_exec)
2234 : {
2235 : fix_scan_expr_context context;
2236 :
2237 2413164 : context.root = root;
2238 2413164 : context.rtoffset = rtoffset;
2239 2413164 : context.num_exec = num_exec;
2240 :
2241 2413164 : if (rtoffset != 0 ||
2242 2019752 : root->multiexpr_params != NIL ||
2243 2019170 : root->glob->lastPHId != 0 ||
2244 2008534 : root->minmax_aggs != NIL ||
2245 2007760 : root->hasAlternativeSubPlans)
2246 : {
2247 418734 : return fix_scan_expr_mutator(node, &context);
2248 : }
2249 : else
2250 : {
2251 : /*
2252 : * If rtoffset == 0, we don't need to change any Vars, and if there
2253 : * are no MULTIEXPR subqueries then we don't need to replace
2254 : * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere
2255 : * we won't need to remove them, and if there are no minmax Aggrefs we
2256 : * won't need to replace them, and if there are no AlternativeSubPlans
2257 : * we won't need to remove them. Then it's OK to just scribble on the
2258 : * input node tree instead of copying (since the only change, filling
2259 : * in any unset opfuncid fields, is harmless). This saves just enough
2260 : * cycles to be noticeable on trivial queries.
2261 : */
2262 1994430 : (void) fix_scan_expr_walker(node, &context);
2263 1994430 : return node;
2264 : }
2265 : }
2266 :
2267 : static Node *
2268 2613908 : fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context)
2269 : {
2270 2613908 : if (node == NULL)
2271 164614 : return NULL;
2272 2449294 : if (IsA(node, Var))
2273 : {
2274 855206 : Var *var = copyVar((Var *) node);
2275 :
2276 : Assert(var->varlevelsup == 0);
2277 :
2278 : /*
2279 : * We should not see Vars marked INNER_VAR, OUTER_VAR, or ROWID_VAR.
2280 : * But an indexqual expression could contain INDEX_VAR Vars.
2281 : */
2282 : Assert(var->varno != INNER_VAR);
2283 : Assert(var->varno != OUTER_VAR);
2284 : Assert(var->varno != ROWID_VAR);
2285 855206 : if (!IS_SPECIAL_VARNO(var->varno))
2286 807346 : var->varno += context->rtoffset;
2287 855206 : if (var->varnosyn > 0)
2288 854270 : var->varnosyn += context->rtoffset;
2289 855206 : return (Node *) var;
2290 : }
2291 1594088 : if (IsA(node, Param))
2292 93482 : return fix_param_node(context->root, (Param *) node);
2293 1500606 : if (IsA(node, Aggref))
2294 : {
2295 442 : Aggref *aggref = (Aggref *) node;
2296 : Param *aggparam;
2297 :
2298 : /* See if the Aggref should be replaced by a Param */
2299 442 : aggparam = find_minmax_agg_replacement_param(context->root, aggref);
2300 442 : if (aggparam != NULL)
2301 : {
2302 : /* Make a copy of the Param for paranoia's sake */
2303 412 : return (Node *) copyObject(aggparam);
2304 : }
2305 : /* If no match, just fall through to process it normally */
2306 : }
2307 1500194 : if (IsA(node, CurrentOfExpr))
2308 : {
2309 0 : CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node);
2310 :
2311 : Assert(!IS_SPECIAL_VARNO(cexpr->cvarno));
2312 0 : cexpr->cvarno += context->rtoffset;
2313 0 : return (Node *) cexpr;
2314 : }
2315 1500194 : if (IsA(node, PlaceHolderVar))
2316 : {
2317 : /* At scan level, we should always just evaluate the contained expr */
2318 2466 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
2319 :
2320 : /* XXX can we assert something about phnullingrels? */
2321 2466 : return fix_scan_expr_mutator((Node *) phv->phexpr, context);
2322 : }
2323 1497728 : if (IsA(node, AlternativeSubPlan))
2324 294 : return fix_scan_expr_mutator(fix_alternative_subplan(context->root,
2325 : (AlternativeSubPlan *) node,
2326 : context->num_exec),
2327 : context);
2328 1497434 : fix_expr_common(context->root, node);
2329 1497434 : return expression_tree_mutator(node, fix_scan_expr_mutator, context);
2330 : }
2331 :
2332 : static bool
2333 10708278 : fix_scan_expr_walker(Node *node, fix_scan_expr_context *context)
2334 : {
2335 10708278 : if (node == NULL)
2336 1017722 : return false;
2337 : Assert(!(IsA(node, Var) && ((Var *) node)->varno == ROWID_VAR));
2338 : Assert(!IsA(node, PlaceHolderVar));
2339 : Assert(!IsA(node, AlternativeSubPlan));
2340 9690556 : fix_expr_common(context->root, node);
2341 9690556 : return expression_tree_walker(node, fix_scan_expr_walker, context);
2342 : }
2343 :
2344 : /*
2345 : * set_join_references
2346 : * Modify the target list and quals of a join node to reference its
2347 : * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting
2348 : * attno values to the result domain number of either the corresponding
2349 : * outer or inner join tuple item. Also perform opcode lookup for these
2350 : * expressions, and add regclass OIDs to root->glob->relationOids.
2351 : */
2352 : static void
2353 139866 : set_join_references(PlannerInfo *root, Join *join, int rtoffset)
2354 : {
2355 139866 : Plan *outer_plan = join->plan.lefttree;
2356 139866 : Plan *inner_plan = join->plan.righttree;
2357 : indexed_tlist *outer_itlist;
2358 : indexed_tlist *inner_itlist;
2359 :
2360 139866 : outer_itlist = build_tlist_index(outer_plan->targetlist);
2361 139866 : inner_itlist = build_tlist_index(inner_plan->targetlist);
2362 :
2363 : /*
2364 : * First process the joinquals (including merge or hash clauses). These
2365 : * are logically below the join so they can always use all values
2366 : * available from the input tlists. It's okay to also handle
2367 : * NestLoopParams now, because those couldn't refer to nullable
2368 : * subexpressions.
2369 : */
2370 279732 : join->joinqual = fix_join_expr(root,
2371 : join->joinqual,
2372 : outer_itlist,
2373 : inner_itlist,
2374 : (Index) 0,
2375 : rtoffset,
2376 : NRM_EQUAL,
2377 139866 : NUM_EXEC_QUAL((Plan *) join));
2378 :
2379 : /* Now do join-type-specific stuff */
2380 139866 : if (IsA(join, NestLoop))
2381 : {
2382 97488 : NestLoop *nl = (NestLoop *) join;
2383 : ListCell *lc;
2384 :
2385 152322 : foreach(lc, nl->nestParams)
2386 : {
2387 54834 : NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
2388 :
2389 : /*
2390 : * Because we don't reparameterize parameterized paths to match
2391 : * the outer-join level at which they are used, Vars seen in the
2392 : * NestLoopParam expression may have nullingrels that are just a
2393 : * subset of those in the Vars actually available from the outer
2394 : * side. (Lateral references can also cause this, as explained in
2395 : * the comments for identify_current_nestloop_params.) Not
2396 : * checking this exactly is a bit grotty, but the work needed to
2397 : * make things match up perfectly seems well out of proportion to
2398 : * the value.
2399 : */
2400 109668 : nlp->paramval = (Var *) fix_upper_expr(root,
2401 54834 : (Node *) nlp->paramval,
2402 : outer_itlist,
2403 : OUTER_VAR,
2404 : rtoffset,
2405 : NRM_SUBSET,
2406 : NUM_EXEC_TLIST(outer_plan));
2407 : /* Check we replaced any PlaceHolderVar with simple Var */
2408 54834 : if (!(IsA(nlp->paramval, Var) &&
2409 54834 : nlp->paramval->varno == OUTER_VAR))
2410 0 : elog(ERROR, "NestLoopParam was not reduced to a simple Var");
2411 : }
2412 : }
2413 42378 : else if (IsA(join, MergeJoin))
2414 : {
2415 7740 : MergeJoin *mj = (MergeJoin *) join;
2416 :
2417 7740 : mj->mergeclauses = fix_join_expr(root,
2418 : mj->mergeclauses,
2419 : outer_itlist,
2420 : inner_itlist,
2421 : (Index) 0,
2422 : rtoffset,
2423 : NRM_EQUAL,
2424 7740 : NUM_EXEC_QUAL((Plan *) join));
2425 : }
2426 34638 : else if (IsA(join, HashJoin))
2427 : {
2428 34638 : HashJoin *hj = (HashJoin *) join;
2429 :
2430 69276 : hj->hashclauses = fix_join_expr(root,
2431 : hj->hashclauses,
2432 : outer_itlist,
2433 : inner_itlist,
2434 : (Index) 0,
2435 : rtoffset,
2436 : NRM_EQUAL,
2437 34638 : NUM_EXEC_QUAL((Plan *) join));
2438 :
2439 : /*
2440 : * HashJoin's hashkeys are used to look for matching tuples from its
2441 : * outer plan (not the Hash node!) in the hashtable.
2442 : */
2443 34638 : hj->hashkeys = (List *) fix_upper_expr(root,
2444 34638 : (Node *) hj->hashkeys,
2445 : outer_itlist,
2446 : OUTER_VAR,
2447 : rtoffset,
2448 : NRM_EQUAL,
2449 34638 : NUM_EXEC_QUAL((Plan *) join));
2450 : }
2451 :
2452 : /*
2453 : * Now we need to fix up the targetlist and qpqual, which are logically
2454 : * above the join. This means that, if it's not an inner join, any Vars
2455 : * and PHVs appearing here should have nullingrels that include the
2456 : * effects of the outer join, ie they will have nullingrels equal to the
2457 : * input Vars' nullingrels plus the bit added by the outer join. We don't
2458 : * currently have enough info available here to identify what that should
2459 : * be, so we just tell fix_join_expr to accept superset nullingrels
2460 : * matches instead of exact ones.
2461 : */
2462 139866 : join->plan.targetlist = fix_join_expr(root,
2463 : join->plan.targetlist,
2464 : outer_itlist,
2465 : inner_itlist,
2466 : (Index) 0,
2467 : rtoffset,
2468 139866 : (join->jointype == JOIN_INNER ? NRM_EQUAL : NRM_SUPERSET),
2469 : NUM_EXEC_TLIST((Plan *) join));
2470 139866 : join->plan.qual = fix_join_expr(root,
2471 : join->plan.qual,
2472 : outer_itlist,
2473 : inner_itlist,
2474 : (Index) 0,
2475 : rtoffset,
2476 139866 : (join->jointype == JOIN_INNER ? NRM_EQUAL : NRM_SUPERSET),
2477 139866 : NUM_EXEC_QUAL((Plan *) join));
2478 :
2479 139866 : pfree(outer_itlist);
2480 139866 : pfree(inner_itlist);
2481 139866 : }
2482 :
2483 : /*
2484 : * set_upper_references
2485 : * Update the targetlist and quals of an upper-level plan node
2486 : * to refer to the tuples returned by its lefttree subplan.
2487 : * Also perform opcode lookup for these expressions, and
2488 : * add regclass OIDs to root->glob->relationOids.
2489 : *
2490 : * This is used for single-input plan types like Agg, Group, Result.
2491 : *
2492 : * In most cases, we have to match up individual Vars in the tlist and
2493 : * qual expressions with elements of the subplan's tlist (which was
2494 : * generated by flattening these selfsame expressions, so it should have all
2495 : * the required variables). There is an important exception, however:
2496 : * depending on where we are in the plan tree, sort/group columns may have
2497 : * been pushed into the subplan tlist unflattened. If these values are also
2498 : * needed in the output then we want to reference the subplan tlist element
2499 : * rather than recomputing the expression.
2500 : */
2501 : static void
2502 70426 : set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset)
2503 : {
2504 70426 : Plan *subplan = plan->lefttree;
2505 : indexed_tlist *subplan_itlist;
2506 : List *output_targetlist;
2507 : ListCell *l;
2508 :
2509 70426 : subplan_itlist = build_tlist_index(subplan->targetlist);
2510 :
2511 : /*
2512 : * If it's a grouping node with grouping sets, any Vars and PHVs appearing
2513 : * in the targetlist and quals should have nullingrels that include the
2514 : * effects of the grouping step, ie they will have nullingrels equal to
2515 : * the input Vars/PHVs' nullingrels plus the RT index of the grouping
2516 : * step. In order to perform exact nullingrels matches, we remove the RT
2517 : * index of the grouping step first.
2518 : */
2519 70426 : if (IsA(plan, Agg) &&
2520 42526 : root->group_rtindex > 0 &&
2521 6512 : ((Agg *) plan)->groupingSets)
2522 : {
2523 824 : plan->targetlist = (List *)
2524 824 : remove_nulling_relids((Node *) plan->targetlist,
2525 824 : bms_make_singleton(root->group_rtindex),
2526 : NULL);
2527 824 : plan->qual = (List *)
2528 824 : remove_nulling_relids((Node *) plan->qual,
2529 824 : bms_make_singleton(root->group_rtindex),
2530 : NULL);
2531 : }
2532 :
2533 70426 : output_targetlist = NIL;
2534 188878 : foreach(l, plan->targetlist)
2535 : {
2536 118452 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2537 : Node *newexpr;
2538 :
2539 : /* If it's a sort/group item, first try to match by sortref */
2540 118452 : if (tle->ressortgroupref != 0)
2541 : {
2542 : newexpr = (Node *)
2543 37216 : search_indexed_tlist_for_sortgroupref(tle->expr,
2544 : tle->ressortgroupref,
2545 : subplan_itlist,
2546 : OUTER_VAR);
2547 37216 : if (!newexpr)
2548 21672 : newexpr = fix_upper_expr(root,
2549 21672 : (Node *) tle->expr,
2550 : subplan_itlist,
2551 : OUTER_VAR,
2552 : rtoffset,
2553 : NRM_EQUAL,
2554 : NUM_EXEC_TLIST(plan));
2555 : }
2556 : else
2557 81236 : newexpr = fix_upper_expr(root,
2558 81236 : (Node *) tle->expr,
2559 : subplan_itlist,
2560 : OUTER_VAR,
2561 : rtoffset,
2562 : NRM_EQUAL,
2563 : NUM_EXEC_TLIST(plan));
2564 118452 : tle = flatCopyTargetEntry(tle);
2565 118452 : tle->expr = (Expr *) newexpr;
2566 118452 : output_targetlist = lappend(output_targetlist, tle);
2567 : }
2568 70426 : plan->targetlist = output_targetlist;
2569 :
2570 70426 : plan->qual = (List *)
2571 70426 : fix_upper_expr(root,
2572 70426 : (Node *) plan->qual,
2573 : subplan_itlist,
2574 : OUTER_VAR,
2575 : rtoffset,
2576 : NRM_EQUAL,
2577 70426 : NUM_EXEC_QUAL(plan));
2578 :
2579 70426 : pfree(subplan_itlist);
2580 70426 : }
2581 :
2582 : /*
2583 : * set_param_references
2584 : * Initialize the initParam list in Gather or Gather merge node such that
2585 : * it contains reference of all the params that needs to be evaluated
2586 : * before execution of the node. It contains the initplan params that are
2587 : * being passed to the plan nodes below it.
2588 : */
2589 : static void
2590 1430 : set_param_references(PlannerInfo *root, Plan *plan)
2591 : {
2592 : Assert(IsA(plan, Gather) || IsA(plan, GatherMerge));
2593 :
2594 1430 : if (plan->lefttree->extParam)
2595 : {
2596 : PlannerInfo *proot;
2597 1302 : Bitmapset *initSetParam = NULL;
2598 : ListCell *l;
2599 :
2600 2778 : for (proot = root; proot != NULL; proot = proot->parent_root)
2601 : {
2602 1554 : foreach(l, proot->init_plans)
2603 : {
2604 78 : SubPlan *initsubplan = (SubPlan *) lfirst(l);
2605 : ListCell *l2;
2606 :
2607 156 : foreach(l2, initsubplan->setParam)
2608 : {
2609 78 : initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
2610 : }
2611 : }
2612 : }
2613 :
2614 : /*
2615 : * Remember the list of all external initplan params that are used by
2616 : * the children of Gather or Gather merge node.
2617 : */
2618 1302 : if (IsA(plan, Gather))
2619 948 : ((Gather *) plan)->initParam =
2620 948 : bms_intersect(plan->lefttree->extParam, initSetParam);
2621 : else
2622 354 : ((GatherMerge *) plan)->initParam =
2623 354 : bms_intersect(plan->lefttree->extParam, initSetParam);
2624 : }
2625 1430 : }
2626 :
2627 : /*
2628 : * Recursively scan an expression tree and convert Aggrefs to the proper
2629 : * intermediate form for combining aggregates. This means (1) replacing each
2630 : * one's argument list with a single argument that is the original Aggref
2631 : * modified to show partial aggregation and (2) changing the upper Aggref to
2632 : * show combining aggregation.
2633 : *
2634 : * After this step, set_upper_references will replace the partial Aggrefs
2635 : * with Vars referencing the lower Agg plan node's outputs, so that the final
2636 : * form seen by the executor is a combining Aggref with a Var as input.
2637 : *
2638 : * It's rather messy to postpone this step until setrefs.c; ideally it'd be
2639 : * done in createplan.c. The difficulty is that once we modify the Aggref
2640 : * expressions, they will no longer be equal() to their original form and
2641 : * so cross-plan-node-level matches will fail. So this has to happen after
2642 : * the plan node above the Agg has resolved its subplan references.
2643 : */
2644 : static Node *
2645 9974 : convert_combining_aggrefs(Node *node, void *context)
2646 : {
2647 9974 : if (node == NULL)
2648 1166 : return NULL;
2649 8808 : if (IsA(node, Aggref))
2650 : {
2651 2248 : Aggref *orig_agg = (Aggref *) node;
2652 : Aggref *child_agg;
2653 : Aggref *parent_agg;
2654 :
2655 : /* Assert we've not chosen to partial-ize any unsupported cases */
2656 : Assert(orig_agg->aggorder == NIL);
2657 : Assert(orig_agg->aggdistinct == NIL);
2658 :
2659 : /*
2660 : * Since aggregate calls can't be nested, we needn't recurse into the
2661 : * arguments. But for safety, flat-copy the Aggref node itself rather
2662 : * than modifying it in-place.
2663 : */
2664 2248 : child_agg = makeNode(Aggref);
2665 2248 : memcpy(child_agg, orig_agg, sizeof(Aggref));
2666 :
2667 : /*
2668 : * For the parent Aggref, we want to copy all the fields of the
2669 : * original aggregate *except* the args list, which we'll replace
2670 : * below, and the aggfilter expression, which should be applied only
2671 : * by the child not the parent. Rather than explicitly knowing about
2672 : * all the other fields here, we can momentarily modify child_agg to
2673 : * provide a suitable source for copyObject.
2674 : */
2675 2248 : child_agg->args = NIL;
2676 2248 : child_agg->aggfilter = NULL;
2677 2248 : parent_agg = copyObject(child_agg);
2678 2248 : child_agg->args = orig_agg->args;
2679 2248 : child_agg->aggfilter = orig_agg->aggfilter;
2680 :
2681 : /*
2682 : * Now, set up child_agg to represent the first phase of partial
2683 : * aggregation. For now, assume serialization is required.
2684 : */
2685 2248 : mark_partial_aggref(child_agg, AGGSPLIT_INITIAL_SERIAL);
2686 :
2687 : /*
2688 : * And set up parent_agg to represent the second phase.
2689 : */
2690 2248 : parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg,
2691 : 1, NULL, false));
2692 2248 : mark_partial_aggref(parent_agg, AGGSPLIT_FINAL_DESERIAL);
2693 :
2694 2248 : return (Node *) parent_agg;
2695 : }
2696 6560 : return expression_tree_mutator(node, convert_combining_aggrefs, context);
2697 : }
2698 :
2699 : /*
2700 : * set_dummy_tlist_references
2701 : * Replace the targetlist of an upper-level plan node with a simple
2702 : * list of OUTER_VAR references to its child.
2703 : *
2704 : * This is used for plan types like Sort and Append that don't evaluate
2705 : * their targetlists. Although the executor doesn't care at all what's in
2706 : * the tlist, EXPLAIN needs it to be realistic.
2707 : *
2708 : * Note: we could almost use set_upper_references() here, but it fails for
2709 : * Append for lack of a lefttree subplan. Single-purpose code is faster
2710 : * anyway.
2711 : */
2712 : static void
2713 159682 : set_dummy_tlist_references(Plan *plan, int rtoffset)
2714 : {
2715 : List *output_targetlist;
2716 : ListCell *l;
2717 :
2718 159682 : output_targetlist = NIL;
2719 710240 : foreach(l, plan->targetlist)
2720 : {
2721 550558 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2722 550558 : Var *oldvar = (Var *) tle->expr;
2723 : Var *newvar;
2724 :
2725 : /*
2726 : * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts
2727 : * as Consts, not Vars referencing Consts. Here, there's no speed
2728 : * advantage to be had, but it makes EXPLAIN output look cleaner, and
2729 : * again it avoids confusing the executor.
2730 : */
2731 550558 : if (IsA(oldvar, Const))
2732 : {
2733 : /* just reuse the existing TLE node */
2734 11114 : output_targetlist = lappend(output_targetlist, tle);
2735 11114 : continue;
2736 : }
2737 :
2738 539444 : newvar = makeVar(OUTER_VAR,
2739 539444 : tle->resno,
2740 : exprType((Node *) oldvar),
2741 : exprTypmod((Node *) oldvar),
2742 : exprCollation((Node *) oldvar),
2743 : 0);
2744 539444 : if (IsA(oldvar, Var) &&
2745 427134 : oldvar->varnosyn > 0)
2746 : {
2747 387080 : newvar->varnosyn = oldvar->varnosyn + rtoffset;
2748 387080 : newvar->varattnosyn = oldvar->varattnosyn;
2749 : }
2750 : else
2751 : {
2752 152364 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
2753 152364 : newvar->varattnosyn = 0;
2754 : }
2755 :
2756 539444 : tle = flatCopyTargetEntry(tle);
2757 539444 : tle->expr = (Expr *) newvar;
2758 539444 : output_targetlist = lappend(output_targetlist, tle);
2759 : }
2760 159682 : plan->targetlist = output_targetlist;
2761 :
2762 : /* We don't touch plan->qual here */
2763 159682 : }
2764 :
2765 :
2766 : /*
2767 : * build_tlist_index --- build an index data structure for a child tlist
2768 : *
2769 : * In most cases, subplan tlists will be "flat" tlists with only Vars,
2770 : * so we try to optimize that case by extracting information about Vars
2771 : * in advance. Matching a parent tlist to a child is still an O(N^2)
2772 : * operation, but at least with a much smaller constant factor than plain
2773 : * tlist_member() searches.
2774 : *
2775 : * The result of this function is an indexed_tlist struct to pass to
2776 : * search_indexed_tlist_for_var() and siblings.
2777 : * When done, the indexed_tlist may be freed with a single pfree().
2778 : */
2779 : static indexed_tlist *
2780 409048 : build_tlist_index(List *tlist)
2781 : {
2782 : indexed_tlist *itlist;
2783 : tlist_vinfo *vinfo;
2784 : ListCell *l;
2785 :
2786 : /* Create data structure with enough slots for all tlist entries */
2787 : itlist = (indexed_tlist *)
2788 409048 : palloc(offsetof(indexed_tlist, vars) +
2789 409048 : list_length(tlist) * sizeof(tlist_vinfo));
2790 :
2791 409048 : itlist->tlist = tlist;
2792 409048 : itlist->has_ph_vars = false;
2793 409048 : itlist->has_non_vars = false;
2794 :
2795 : /* Find the Vars and fill in the index array */
2796 409048 : vinfo = itlist->vars;
2797 3858062 : foreach(l, tlist)
2798 : {
2799 3449014 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2800 :
2801 3449014 : if (tle->expr && IsA(tle->expr, Var))
2802 3429878 : {
2803 3429878 : Var *var = (Var *) tle->expr;
2804 :
2805 3429878 : vinfo->varno = var->varno;
2806 3429878 : vinfo->varattno = var->varattno;
2807 3429878 : vinfo->resno = tle->resno;
2808 3429878 : vinfo->varnullingrels = var->varnullingrels;
2809 3429878 : vinfo++;
2810 : }
2811 19136 : else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2812 3430 : itlist->has_ph_vars = true;
2813 : else
2814 15706 : itlist->has_non_vars = true;
2815 : }
2816 :
2817 409048 : itlist->num_vars = (vinfo - itlist->vars);
2818 :
2819 409048 : return itlist;
2820 : }
2821 :
2822 : /*
2823 : * build_tlist_index_other_vars --- build a restricted tlist index
2824 : *
2825 : * This is like build_tlist_index, but we only index tlist entries that
2826 : * are Vars belonging to some rel other than the one specified. We will set
2827 : * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars
2828 : * (so nothing other than Vars and PlaceHolderVars can be matched).
2829 : */
2830 : static indexed_tlist *
2831 3288 : build_tlist_index_other_vars(List *tlist, int ignore_rel)
2832 : {
2833 : indexed_tlist *itlist;
2834 : tlist_vinfo *vinfo;
2835 : ListCell *l;
2836 :
2837 : /* Create data structure with enough slots for all tlist entries */
2838 : itlist = (indexed_tlist *)
2839 3288 : palloc(offsetof(indexed_tlist, vars) +
2840 3288 : list_length(tlist) * sizeof(tlist_vinfo));
2841 :
2842 3288 : itlist->tlist = tlist;
2843 3288 : itlist->has_ph_vars = false;
2844 3288 : itlist->has_non_vars = false;
2845 :
2846 : /* Find the desired Vars and fill in the index array */
2847 3288 : vinfo = itlist->vars;
2848 12722 : foreach(l, tlist)
2849 : {
2850 9434 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2851 :
2852 9434 : if (tle->expr && IsA(tle->expr, Var))
2853 5412 : {
2854 5412 : Var *var = (Var *) tle->expr;
2855 :
2856 5412 : if (var->varno != ignore_rel)
2857 : {
2858 4146 : vinfo->varno = var->varno;
2859 4146 : vinfo->varattno = var->varattno;
2860 4146 : vinfo->resno = tle->resno;
2861 4146 : vinfo->varnullingrels = var->varnullingrels;
2862 4146 : vinfo++;
2863 : }
2864 : }
2865 4022 : else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2866 90 : itlist->has_ph_vars = true;
2867 : }
2868 :
2869 3288 : itlist->num_vars = (vinfo - itlist->vars);
2870 :
2871 3288 : return itlist;
2872 : }
2873 :
2874 : /*
2875 : * search_indexed_tlist_for_var --- find a Var in an indexed tlist
2876 : *
2877 : * If a match is found, return a copy of the given Var with suitably
2878 : * modified varno/varattno (to wit, newvarno and the resno of the TLE entry).
2879 : * Also ensure that varnosyn is incremented by rtoffset.
2880 : * If no match, return NULL.
2881 : *
2882 : * We cross-check the varnullingrels of the subplan output Var based on
2883 : * nrm_match. Most call sites should pass NRM_EQUAL indicating we expect
2884 : * an exact match. However, there are places where we haven't cleaned
2885 : * things up completely, and we have to settle for allowing subset or
2886 : * superset matches.
2887 : */
2888 : static Var *
2889 1563064 : search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist,
2890 : int newvarno, int rtoffset,
2891 : NullingRelsMatch nrm_match)
2892 : {
2893 1563064 : int varno = var->varno;
2894 1563064 : AttrNumber varattno = var->varattno;
2895 : tlist_vinfo *vinfo;
2896 : int i;
2897 :
2898 1563064 : vinfo = itlist->vars;
2899 1563064 : i = itlist->num_vars;
2900 11228466 : while (i-- > 0)
2901 : {
2902 10870762 : if (vinfo->varno == varno && vinfo->varattno == varattno)
2903 : {
2904 : /* Found a match */
2905 1205360 : Var *newvar = copyVar(var);
2906 :
2907 : /*
2908 : * Verify that we kept all the nullingrels machinations straight.
2909 : *
2910 : * XXX we skip the check for system columns and whole-row Vars.
2911 : * That's because such Vars might be row identity Vars, which are
2912 : * generated without any varnullingrels. It'd be hard to do
2913 : * otherwise, since they're normally made very early in planning,
2914 : * when we haven't looked at the jointree yet and don't know which
2915 : * joins might null such Vars. Doesn't seem worth the expense to
2916 : * make them fully valid. (While it's slightly annoying that we
2917 : * thereby lose checking for user-written references to such
2918 : * columns, it seems unlikely that a bug in nullingrels logic
2919 : * would affect only system columns.)
2920 : */
2921 2376888 : if (!(varattno <= 0 ||
2922 : (nrm_match == NRM_SUBSET ?
2923 53990 : bms_is_subset(var->varnullingrels, vinfo->varnullingrels) :
2924 : nrm_match == NRM_SUPERSET ?
2925 361816 : bms_is_subset(vinfo->varnullingrels, var->varnullingrels) :
2926 755722 : bms_equal(vinfo->varnullingrels, var->varnullingrels))))
2927 0 : elog(ERROR, "wrong varnullingrels %s (expected %s) for Var %d/%d",
2928 : bmsToString(var->varnullingrels),
2929 : bmsToString(vinfo->varnullingrels),
2930 : varno, varattno);
2931 :
2932 1205360 : newvar->varno = newvarno;
2933 1205360 : newvar->varattno = vinfo->resno;
2934 1205360 : if (newvar->varnosyn > 0)
2935 1204770 : newvar->varnosyn += rtoffset;
2936 1205360 : return newvar;
2937 : }
2938 9665402 : vinfo++;
2939 : }
2940 357704 : return NULL; /* no match */
2941 : }
2942 :
2943 : /*
2944 : * search_indexed_tlist_for_phv --- find a PlaceHolderVar in an indexed tlist
2945 : *
2946 : * If a match is found, return a Var constructed to reference the tlist item.
2947 : * If no match, return NULL.
2948 : *
2949 : * Cross-check phnullingrels as in search_indexed_tlist_for_var.
2950 : *
2951 : * NOTE: it is a waste of time to call this unless itlist->has_ph_vars.
2952 : */
2953 : static Var *
2954 3562 : search_indexed_tlist_for_phv(PlaceHolderVar *phv,
2955 : indexed_tlist *itlist, int newvarno,
2956 : NullingRelsMatch nrm_match)
2957 : {
2958 : ListCell *lc;
2959 :
2960 9048 : foreach(lc, itlist->tlist)
2961 : {
2962 8672 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
2963 :
2964 8672 : if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2965 : {
2966 4650 : PlaceHolderVar *subphv = (PlaceHolderVar *) tle->expr;
2967 : Var *newvar;
2968 :
2969 : /*
2970 : * Analogously to search_indexed_tlist_for_var, we match on phid
2971 : * only. We don't use equal(), partially for speed but mostly
2972 : * because phnullingrels might not be exactly equal.
2973 : */
2974 4650 : if (phv->phid != subphv->phid)
2975 1464 : continue;
2976 :
2977 : /* Verify that we kept all the nullingrels machinations straight */
2978 6372 : if (!(nrm_match == NRM_SUBSET ?
2979 252 : bms_is_subset(phv->phnullingrels, subphv->phnullingrels) :
2980 : nrm_match == NRM_SUPERSET ?
2981 1674 : bms_is_subset(subphv->phnullingrels, phv->phnullingrels) :
2982 1260 : bms_equal(subphv->phnullingrels, phv->phnullingrels)))
2983 0 : elog(ERROR, "wrong phnullingrels %s (expected %s) for PlaceHolderVar %d",
2984 : bmsToString(phv->phnullingrels),
2985 : bmsToString(subphv->phnullingrels),
2986 : phv->phid);
2987 :
2988 : /* Found a matching subplan output expression */
2989 3186 : newvar = makeVarFromTargetEntry(newvarno, tle);
2990 3186 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
2991 3186 : newvar->varattnosyn = 0;
2992 3186 : return newvar;
2993 : }
2994 : }
2995 376 : return NULL; /* no match */
2996 : }
2997 :
2998 : /*
2999 : * search_indexed_tlist_for_non_var --- find a non-Var/PHV in an indexed tlist
3000 : *
3001 : * If a match is found, return a Var constructed to reference the tlist item.
3002 : * If no match, return NULL.
3003 : *
3004 : * NOTE: it is a waste of time to call this unless itlist->has_non_vars.
3005 : */
3006 : static Var *
3007 37256 : search_indexed_tlist_for_non_var(Expr *node,
3008 : indexed_tlist *itlist, int newvarno)
3009 : {
3010 : TargetEntry *tle;
3011 :
3012 : /*
3013 : * If it's a simple Const, replacing it with a Var is silly, even if there
3014 : * happens to be an identical Const below; a Var is more expensive to
3015 : * execute than a Const. What's more, replacing it could confuse some
3016 : * places in the executor that expect to see simple Consts for, eg,
3017 : * dropped columns.
3018 : */
3019 37256 : if (IsA(node, Const))
3020 1952 : return NULL;
3021 :
3022 35304 : tle = tlist_member(node, itlist->tlist);
3023 35304 : if (tle)
3024 : {
3025 : /* Found a matching subplan output expression */
3026 : Var *newvar;
3027 :
3028 9114 : newvar = makeVarFromTargetEntry(newvarno, tle);
3029 9114 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
3030 9114 : newvar->varattnosyn = 0;
3031 9114 : return newvar;
3032 : }
3033 26190 : return NULL; /* no match */
3034 : }
3035 :
3036 : /*
3037 : * search_indexed_tlist_for_sortgroupref --- find a sort/group expression
3038 : *
3039 : * If a match is found, return a Var constructed to reference the tlist item.
3040 : * If no match, return NULL.
3041 : *
3042 : * This is needed to ensure that we select the right subplan TLE in cases
3043 : * where there are multiple textually-equal()-but-volatile sort expressions.
3044 : * And it's also faster than search_indexed_tlist_for_non_var.
3045 : */
3046 : static Var *
3047 37216 : search_indexed_tlist_for_sortgroupref(Expr *node,
3048 : Index sortgroupref,
3049 : indexed_tlist *itlist,
3050 : int newvarno)
3051 : {
3052 : ListCell *lc;
3053 :
3054 171194 : foreach(lc, itlist->tlist)
3055 : {
3056 149522 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
3057 :
3058 : /*
3059 : * Usually the equal() check is redundant, but in setop plans it may
3060 : * not be, since prepunion.c assigns ressortgroupref equal to the
3061 : * column resno without regard to whether that matches the topmost
3062 : * level's sortgrouprefs and without regard to whether any implicit
3063 : * coercions are added in the setop tree. We might have to clean that
3064 : * up someday; but for now, just ignore any false matches.
3065 : */
3066 165198 : if (tle->ressortgroupref == sortgroupref &&
3067 15676 : equal(node, tle->expr))
3068 : {
3069 : /* Found a matching subplan output expression */
3070 : Var *newvar;
3071 :
3072 15544 : newvar = makeVarFromTargetEntry(newvarno, tle);
3073 15544 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
3074 15544 : newvar->varattnosyn = 0;
3075 15544 : return newvar;
3076 : }
3077 : }
3078 21672 : return NULL; /* no match */
3079 : }
3080 :
3081 : /*
3082 : * fix_join_expr
3083 : * Create a new set of targetlist entries or join qual clauses by
3084 : * changing the varno/varattno values of variables in the clauses
3085 : * to reference target list values from the outer and inner join
3086 : * relation target lists. Also perform opcode lookup and add
3087 : * regclass OIDs to root->glob->relationOids.
3088 : *
3089 : * This is used in four different scenarios:
3090 : * 1) a normal join clause, where all the Vars in the clause *must* be
3091 : * replaced by OUTER_VAR or INNER_VAR references. In this case
3092 : * acceptable_rel should be zero so that any failure to match a Var will be
3093 : * reported as an error.
3094 : * 2) RETURNING clauses, which may contain both Vars of the target relation
3095 : * and Vars of other relations. In this case we want to replace the
3096 : * other-relation Vars by OUTER_VAR references, while leaving target Vars
3097 : * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the
3098 : * target relation should be passed.
3099 : * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are
3100 : * to be replaced with INNER_VAR references, while leaving target Vars (the
3101 : * to-be-updated relation) alone. Correspondingly inner_itlist is to be
3102 : * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target
3103 : * relation.
3104 : * 4) MERGE. In this case, references to the source relation are to be
3105 : * replaced with INNER_VAR references, leaving Vars of the target
3106 : * relation (the to-be-modified relation) alone. So inner_itlist is to be
3107 : * the source relation elements, outer_itlist = NULL and acceptable_rel
3108 : * the target relation.
3109 : *
3110 : * 'clauses' is the targetlist or list of join clauses
3111 : * 'outer_itlist' is the indexed target list of the outer join relation,
3112 : * or NULL
3113 : * 'inner_itlist' is the indexed target list of the inner join relation,
3114 : * or NULL
3115 : * 'acceptable_rel' is either zero or the rangetable index of a relation
3116 : * whose Vars may appear in the clause without provoking an error
3117 : * 'rtoffset': how much to increment varnos by
3118 : * 'nrm_match': as for search_indexed_tlist_for_var()
3119 : * 'num_exec': estimated number of executions of expression
3120 : *
3121 : * Returns the new expression tree. The original clause structure is
3122 : * not modified.
3123 : */
3124 : static List *
3125 476240 : fix_join_expr(PlannerInfo *root,
3126 : List *clauses,
3127 : indexed_tlist *outer_itlist,
3128 : indexed_tlist *inner_itlist,
3129 : Index acceptable_rel,
3130 : int rtoffset,
3131 : NullingRelsMatch nrm_match,
3132 : double num_exec)
3133 : {
3134 : fix_join_expr_context context;
3135 :
3136 476240 : context.root = root;
3137 476240 : context.outer_itlist = outer_itlist;
3138 476240 : context.inner_itlist = inner_itlist;
3139 476240 : context.acceptable_rel = acceptable_rel;
3140 476240 : context.rtoffset = rtoffset;
3141 476240 : context.nrm_match = nrm_match;
3142 476240 : context.num_exec = num_exec;
3143 476240 : return (List *) fix_join_expr_mutator((Node *) clauses, &context);
3144 : }
3145 :
3146 : static Node *
3147 3019898 : fix_join_expr_mutator(Node *node, fix_join_expr_context *context)
3148 : {
3149 : Var *newvar;
3150 :
3151 3019898 : if (node == NULL)
3152 298190 : return NULL;
3153 2721708 : if (IsA(node, Var))
3154 : {
3155 987578 : Var *var = (Var *) node;
3156 :
3157 : /*
3158 : * Verify that Vars with non-default varreturningtype only appear in
3159 : * the RETURNING list, and refer to the target relation.
3160 : */
3161 987578 : if (var->varreturningtype != VAR_RETURNING_DEFAULT)
3162 : {
3163 2686 : if (context->inner_itlist != NULL ||
3164 2686 : context->outer_itlist == NULL ||
3165 2686 : context->acceptable_rel == 0)
3166 0 : elog(ERROR, "variable returning old/new found outside RETURNING list");
3167 2686 : if (var->varno != context->acceptable_rel)
3168 0 : elog(ERROR, "wrong varno %d (expected %d) for variable returning old/new",
3169 : var->varno, context->acceptable_rel);
3170 : }
3171 :
3172 : /* Look for the var in the input tlists, first in the outer */
3173 987578 : if (context->outer_itlist)
3174 : {
3175 980464 : newvar = search_indexed_tlist_for_var(var,
3176 : context->outer_itlist,
3177 : OUTER_VAR,
3178 : context->rtoffset,
3179 : context->nrm_match);
3180 980464 : if (newvar)
3181 626044 : return (Node *) newvar;
3182 : }
3183 :
3184 : /* then in the inner. */
3185 361534 : if (context->inner_itlist)
3186 : {
3187 350894 : newvar = search_indexed_tlist_for_var(var,
3188 : context->inner_itlist,
3189 : INNER_VAR,
3190 : context->rtoffset,
3191 : context->nrm_match);
3192 350894 : if (newvar)
3193 347610 : return (Node *) newvar;
3194 : }
3195 :
3196 : /* If it's for acceptable_rel, adjust and return it */
3197 13924 : if (var->varno == context->acceptable_rel)
3198 : {
3199 13924 : var = copyVar(var);
3200 13924 : var->varno += context->rtoffset;
3201 13924 : if (var->varnosyn > 0)
3202 13262 : var->varnosyn += context->rtoffset;
3203 13924 : return (Node *) var;
3204 : }
3205 :
3206 : /* No referent found for Var */
3207 0 : elog(ERROR, "variable not found in subplan target lists");
3208 : }
3209 1734130 : if (IsA(node, PlaceHolderVar))
3210 : {
3211 2682 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
3212 :
3213 : /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3214 2682 : if (context->outer_itlist && context->outer_itlist->has_ph_vars)
3215 : {
3216 1044 : newvar = search_indexed_tlist_for_phv(phv,
3217 : context->outer_itlist,
3218 : OUTER_VAR,
3219 : context->nrm_match);
3220 1044 : if (newvar)
3221 728 : return (Node *) newvar;
3222 : }
3223 1954 : if (context->inner_itlist && context->inner_itlist->has_ph_vars)
3224 : {
3225 1566 : newvar = search_indexed_tlist_for_phv(phv,
3226 : context->inner_itlist,
3227 : INNER_VAR,
3228 : context->nrm_match);
3229 1566 : if (newvar)
3230 1506 : return (Node *) newvar;
3231 : }
3232 :
3233 : /* If not supplied by input plans, evaluate the contained expr */
3234 : /* XXX can we assert something about phnullingrels? */
3235 448 : return fix_join_expr_mutator((Node *) phv->phexpr, context);
3236 : }
3237 : /* Try matching more complex expressions too, if tlists have any */
3238 1731448 : if (context->outer_itlist && context->outer_itlist->has_non_vars)
3239 : {
3240 1482 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3241 : context->outer_itlist,
3242 : OUTER_VAR);
3243 1482 : if (newvar)
3244 124 : return (Node *) newvar;
3245 : }
3246 1731324 : if (context->inner_itlist && context->inner_itlist->has_non_vars)
3247 : {
3248 6458 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3249 : context->inner_itlist,
3250 : INNER_VAR);
3251 6458 : if (newvar)
3252 1180 : return (Node *) newvar;
3253 : }
3254 : /* Special cases (apply only AFTER failing to match to lower tlist) */
3255 1730144 : if (IsA(node, Param))
3256 5870 : return fix_param_node(context->root, (Param *) node);
3257 1724274 : if (IsA(node, AlternativeSubPlan))
3258 1492 : return fix_join_expr_mutator(fix_alternative_subplan(context->root,
3259 : (AlternativeSubPlan *) node,
3260 : context->num_exec),
3261 : context);
3262 1722782 : fix_expr_common(context->root, node);
3263 1722782 : return expression_tree_mutator(node, fix_join_expr_mutator, context);
3264 : }
3265 :
3266 : /*
3267 : * fix_upper_expr
3268 : * Modifies an expression tree so that all Var nodes reference outputs
3269 : * of a subplan. Also looks for Aggref nodes that should be replaced
3270 : * by initplan output Params. Also performs opcode lookup, and adds
3271 : * regclass OIDs to root->glob->relationOids.
3272 : *
3273 : * This is used to fix up target and qual expressions of non-join upper-level
3274 : * plan nodes, as well as index-only scan nodes.
3275 : *
3276 : * An error is raised if no matching var can be found in the subplan tlist
3277 : * --- so this routine should only be applied to nodes whose subplans'
3278 : * targetlists were generated by flattening the expressions used in the
3279 : * parent node.
3280 : *
3281 : * If itlist->has_non_vars is true, then we try to match whole subexpressions
3282 : * against elements of the subplan tlist, so that we can avoid recomputing
3283 : * expressions that were already computed by the subplan. (This is relatively
3284 : * expensive, so we don't want to try it in the common case where the
3285 : * subplan tlist is just a flattened list of Vars.)
3286 : *
3287 : * 'node': the tree to be fixed (a target item or qual)
3288 : * 'subplan_itlist': indexed target list for subplan (or index)
3289 : * 'newvarno': varno to use for Vars referencing tlist elements
3290 : * 'rtoffset': how much to increment varnos by
3291 : * 'nrm_match': as for search_indexed_tlist_for_var()
3292 : * 'num_exec': estimated number of executions of expression
3293 : *
3294 : * The resulting tree is a copy of the original in which all Var nodes have
3295 : * varno = newvarno, varattno = resno of corresponding targetlist element.
3296 : * The original tree is not modified.
3297 : */
3298 : static Node *
3299 354240 : fix_upper_expr(PlannerInfo *root,
3300 : Node *node,
3301 : indexed_tlist *subplan_itlist,
3302 : int newvarno,
3303 : int rtoffset,
3304 : NullingRelsMatch nrm_match,
3305 : double num_exec)
3306 : {
3307 : fix_upper_expr_context context;
3308 :
3309 354240 : context.root = root;
3310 354240 : context.subplan_itlist = subplan_itlist;
3311 354240 : context.newvarno = newvarno;
3312 354240 : context.rtoffset = rtoffset;
3313 354240 : context.nrm_match = nrm_match;
3314 354240 : context.num_exec = num_exec;
3315 354240 : return fix_upper_expr_mutator(node, &context);
3316 : }
3317 :
3318 : static Node *
3319 1014384 : fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context)
3320 : {
3321 : Var *newvar;
3322 :
3323 1014384 : if (node == NULL)
3324 308390 : return NULL;
3325 705994 : if (IsA(node, Var))
3326 : {
3327 231706 : Var *var = (Var *) node;
3328 :
3329 231706 : newvar = search_indexed_tlist_for_var(var,
3330 : context->subplan_itlist,
3331 : context->newvarno,
3332 : context->rtoffset,
3333 : context->nrm_match);
3334 231706 : if (!newvar)
3335 0 : elog(ERROR, "variable not found in subplan target list");
3336 231706 : return (Node *) newvar;
3337 : }
3338 474288 : if (IsA(node, PlaceHolderVar))
3339 : {
3340 1090 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
3341 :
3342 : /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3343 1090 : if (context->subplan_itlist->has_ph_vars)
3344 : {
3345 952 : newvar = search_indexed_tlist_for_phv(phv,
3346 : context->subplan_itlist,
3347 : context->newvarno,
3348 : context->nrm_match);
3349 952 : if (newvar)
3350 952 : return (Node *) newvar;
3351 : }
3352 : /* If not supplied by input plan, evaluate the contained expr */
3353 : /* XXX can we assert something about phnullingrels? */
3354 138 : return fix_upper_expr_mutator((Node *) phv->phexpr, context);
3355 : }
3356 : /* Try matching more complex expressions too, if tlist has any */
3357 473198 : if (context->subplan_itlist->has_non_vars)
3358 : {
3359 29136 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3360 : context->subplan_itlist,
3361 : context->newvarno);
3362 29136 : if (newvar)
3363 7630 : return (Node *) newvar;
3364 : }
3365 : /* Special cases (apply only AFTER failing to match to lower tlist) */
3366 465568 : if (IsA(node, Param))
3367 9400 : return fix_param_node(context->root, (Param *) node);
3368 456168 : if (IsA(node, Aggref))
3369 : {
3370 48030 : Aggref *aggref = (Aggref *) node;
3371 : Param *aggparam;
3372 :
3373 : /* See if the Aggref should be replaced by a Param */
3374 48030 : aggparam = find_minmax_agg_replacement_param(context->root, aggref);
3375 48030 : if (aggparam != NULL)
3376 : {
3377 : /* Make a copy of the Param for paranoia's sake */
3378 0 : return (Node *) copyObject(aggparam);
3379 : }
3380 : /* If no match, just fall through to process it normally */
3381 : }
3382 456168 : if (IsA(node, AlternativeSubPlan))
3383 30 : return fix_upper_expr_mutator(fix_alternative_subplan(context->root,
3384 : (AlternativeSubPlan *) node,
3385 : context->num_exec),
3386 : context);
3387 456138 : fix_expr_common(context->root, node);
3388 456138 : return expression_tree_mutator(node, fix_upper_expr_mutator, context);
3389 : }
3390 :
3391 : /*
3392 : * set_returning_clause_references
3393 : * Perform setrefs.c's work on a RETURNING targetlist
3394 : *
3395 : * If the query involves more than just the result table, we have to
3396 : * adjust any Vars that refer to other tables to reference junk tlist
3397 : * entries in the top subplan's targetlist. Vars referencing the result
3398 : * table should be left alone, however (the executor will evaluate them
3399 : * using the actual heap tuple, after firing triggers if any). In the
3400 : * adjusted RETURNING list, result-table Vars will have their original
3401 : * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR.
3402 : *
3403 : * We also must perform opcode lookup and add regclass OIDs to
3404 : * root->glob->relationOids.
3405 : *
3406 : * 'rlist': the RETURNING targetlist to be fixed
3407 : * 'topplan': the top subplan node that will be just below the ModifyTable
3408 : * node (note it's not yet passed through set_plan_refs)
3409 : * 'resultRelation': RT index of the associated result relation
3410 : * 'rtoffset': how much to increment varnos by
3411 : *
3412 : * Note: the given 'root' is for the parent query level, not the 'topplan'.
3413 : * This does not matter currently since we only access the dependency-item
3414 : * lists in root->glob, but it would need some hacking if we wanted a root
3415 : * that actually matches the subplan.
3416 : *
3417 : * Note: resultRelation is not yet adjusted by rtoffset.
3418 : */
3419 : static List *
3420 3288 : set_returning_clause_references(PlannerInfo *root,
3421 : List *rlist,
3422 : Plan *topplan,
3423 : Index resultRelation,
3424 : int rtoffset)
3425 : {
3426 : indexed_tlist *itlist;
3427 :
3428 : /*
3429 : * We can perform the desired Var fixup by abusing the fix_join_expr
3430 : * machinery that formerly handled inner indexscan fixup. We search the
3431 : * top plan's targetlist for Vars of non-result relations, and use
3432 : * fix_join_expr to convert RETURNING Vars into references to those tlist
3433 : * entries, while leaving result-rel Vars as-is.
3434 : *
3435 : * PlaceHolderVars will also be sought in the targetlist, but no
3436 : * more-complex expressions will be. Note that it is not possible for a
3437 : * PlaceHolderVar to refer to the result relation, since the result is
3438 : * never below an outer join. If that case could happen, we'd have to be
3439 : * prepared to pick apart the PlaceHolderVar and evaluate its contained
3440 : * expression instead.
3441 : */
3442 3288 : itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation);
3443 :
3444 3288 : rlist = fix_join_expr(root,
3445 : rlist,
3446 : itlist,
3447 : NULL,
3448 : resultRelation,
3449 : rtoffset,
3450 : NRM_EQUAL,
3451 : NUM_EXEC_TLIST(topplan));
3452 :
3453 3288 : pfree(itlist);
3454 :
3455 3288 : return rlist;
3456 : }
3457 :
3458 : /*
3459 : * fix_windowagg_condition_expr_mutator
3460 : * Mutator function for replacing WindowFuncs with the corresponding Var
3461 : * in the targetlist which references that WindowFunc.
3462 : */
3463 : static Node *
3464 3470 : fix_windowagg_condition_expr_mutator(Node *node,
3465 : fix_windowagg_cond_context *context)
3466 : {
3467 3470 : if (node == NULL)
3468 2582 : return NULL;
3469 :
3470 888 : if (IsA(node, WindowFunc))
3471 : {
3472 : Var *newvar;
3473 :
3474 180 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3475 : context->subplan_itlist,
3476 : context->newvarno);
3477 180 : if (newvar)
3478 180 : return (Node *) newvar;
3479 0 : elog(ERROR, "WindowFunc not found in subplan target lists");
3480 : }
3481 :
3482 708 : return expression_tree_mutator(node,
3483 : fix_windowagg_condition_expr_mutator,
3484 : context);
3485 : }
3486 :
3487 : /*
3488 : * fix_windowagg_condition_expr
3489 : * Converts references in 'runcondition' so that any WindowFunc
3490 : * references are swapped out for a Var which references the matching
3491 : * WindowFunc in 'subplan_itlist'.
3492 : */
3493 : static List *
3494 2750 : fix_windowagg_condition_expr(PlannerInfo *root,
3495 : List *runcondition,
3496 : indexed_tlist *subplan_itlist)
3497 : {
3498 : fix_windowagg_cond_context context;
3499 :
3500 2750 : context.root = root;
3501 2750 : context.subplan_itlist = subplan_itlist;
3502 2750 : context.newvarno = 0;
3503 :
3504 2750 : return (List *) fix_windowagg_condition_expr_mutator((Node *) runcondition,
3505 : &context);
3506 : }
3507 :
3508 : /*
3509 : * set_windowagg_runcondition_references
3510 : * Converts references in 'runcondition' so that any WindowFunc
3511 : * references are swapped out for a Var which references the matching
3512 : * WindowFunc in 'plan' targetlist.
3513 : */
3514 : static List *
3515 2750 : set_windowagg_runcondition_references(PlannerInfo *root,
3516 : List *runcondition,
3517 : Plan *plan)
3518 : {
3519 : List *newlist;
3520 : indexed_tlist *itlist;
3521 :
3522 2750 : itlist = build_tlist_index(plan->targetlist);
3523 :
3524 2750 : newlist = fix_windowagg_condition_expr(root, runcondition, itlist);
3525 :
3526 2750 : pfree(itlist);
3527 :
3528 2750 : return newlist;
3529 : }
3530 :
3531 : /*
3532 : * find_minmax_agg_replacement_param
3533 : * If the given Aggref is one that we are optimizing into a subquery
3534 : * (cf. planagg.c), then return the Param that should replace it.
3535 : * Else return NULL.
3536 : *
3537 : * This is exported so that SS_finalize_plan can use it before setrefs.c runs.
3538 : * Note that it will not find anything until we have built a Plan from a
3539 : * MinMaxAggPath, as root->minmax_aggs will never be filled otherwise.
3540 : */
3541 : Param *
3542 62158 : find_minmax_agg_replacement_param(PlannerInfo *root, Aggref *aggref)
3543 : {
3544 63126 : if (root->minmax_aggs != NIL &&
3545 968 : list_length(aggref->args) == 1)
3546 : {
3547 968 : TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
3548 : ListCell *lc;
3549 :
3550 1064 : foreach(lc, root->minmax_aggs)
3551 : {
3552 1064 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3553 :
3554 2032 : if (mminfo->aggfnoid == aggref->aggfnoid &&
3555 968 : equal(mminfo->target, curTarget->expr))
3556 968 : return mminfo->param;
3557 : }
3558 : }
3559 61190 : return NULL;
3560 : }
3561 :
3562 :
3563 : /*****************************************************************************
3564 : * QUERY DEPENDENCY MANAGEMENT
3565 : *****************************************************************************/
3566 :
3567 : /*
3568 : * record_plan_function_dependency
3569 : * Mark the current plan as depending on a particular function.
3570 : *
3571 : * This is exported so that the function-inlining code can record a
3572 : * dependency on a function that it's removed from the plan tree.
3573 : */
3574 : void
3575 1258742 : record_plan_function_dependency(PlannerInfo *root, Oid funcid)
3576 : {
3577 : /*
3578 : * For performance reasons, we don't bother to track built-in functions;
3579 : * we just assume they'll never change (or at least not in ways that'd
3580 : * invalidate plans using them). For this purpose we can consider a
3581 : * built-in function to be one with OID less than FirstUnpinnedObjectId.
3582 : * Note that the OID generator guarantees never to generate such an OID
3583 : * after startup, even at OID wraparound.
3584 : */
3585 1258742 : if (funcid >= (Oid) FirstUnpinnedObjectId)
3586 : {
3587 42010 : PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3588 :
3589 : /*
3590 : * It would work to use any syscache on pg_proc, but the easiest is
3591 : * PROCOID since we already have the function's OID at hand. Note
3592 : * that plancache.c knows we use PROCOID.
3593 : */
3594 42010 : inval_item->cacheId = PROCOID;
3595 42010 : inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3596 : ObjectIdGetDatum(funcid));
3597 :
3598 42010 : root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3599 : }
3600 1258742 : }
3601 :
3602 : /*
3603 : * record_plan_type_dependency
3604 : * Mark the current plan as depending on a particular type.
3605 : *
3606 : * This is exported so that eval_const_expressions can record a
3607 : * dependency on a domain that it's removed a CoerceToDomain node for.
3608 : *
3609 : * We don't currently need to record dependencies on domains that the
3610 : * plan contains CoerceToDomain nodes for, though that might change in
3611 : * future. Hence, this isn't actually called in this module, though
3612 : * someday fix_expr_common might call it.
3613 : */
3614 : void
3615 18256 : record_plan_type_dependency(PlannerInfo *root, Oid typid)
3616 : {
3617 : /*
3618 : * As in record_plan_function_dependency, ignore the possibility that
3619 : * someone would change a built-in domain.
3620 : */
3621 18256 : if (typid >= (Oid) FirstUnpinnedObjectId)
3622 : {
3623 18256 : PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3624 :
3625 : /*
3626 : * It would work to use any syscache on pg_type, but the easiest is
3627 : * TYPEOID since we already have the type's OID at hand. Note that
3628 : * plancache.c knows we use TYPEOID.
3629 : */
3630 18256 : inval_item->cacheId = TYPEOID;
3631 18256 : inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3632 : ObjectIdGetDatum(typid));
3633 :
3634 18256 : root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3635 : }
3636 18256 : }
3637 :
3638 : /*
3639 : * extract_query_dependencies
3640 : * Given a rewritten, but not yet planned, query or queries
3641 : * (i.e. a Query node or list of Query nodes), extract dependencies
3642 : * just as set_plan_references would do. Also detect whether any
3643 : * rewrite steps were affected by RLS.
3644 : *
3645 : * This is needed by plancache.c to handle invalidation of cached unplanned
3646 : * queries.
3647 : *
3648 : * Note: this does not go through eval_const_expressions, and hence doesn't
3649 : * reflect its additions of inlined functions and elided CoerceToDomain nodes
3650 : * to the invalItems list. This is obviously OK for functions, since we'll
3651 : * see them in the original query tree anyway. For domains, it's OK because
3652 : * we don't care about domains unless they get elided. That is, a plan might
3653 : * have domain dependencies that the query tree doesn't.
3654 : */
3655 : void
3656 62158 : extract_query_dependencies(Node *query,
3657 : List **relationOids,
3658 : List **invalItems,
3659 : bool *hasRowSecurity)
3660 : {
3661 : PlannerGlobal glob;
3662 : PlannerInfo root;
3663 :
3664 : /* Make up dummy planner state so we can use this module's machinery */
3665 1616108 : MemSet(&glob, 0, sizeof(glob));
3666 62158 : glob.type = T_PlannerGlobal;
3667 62158 : glob.relationOids = NIL;
3668 62158 : glob.invalItems = NIL;
3669 : /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */
3670 62158 : glob.dependsOnRole = false;
3671 :
3672 5842852 : MemSet(&root, 0, sizeof(root));
3673 62158 : root.type = T_PlannerInfo;
3674 62158 : root.glob = &glob;
3675 :
3676 62158 : (void) extract_query_dependencies_walker(query, &root);
3677 :
3678 62158 : *relationOids = glob.relationOids;
3679 62158 : *invalItems = glob.invalItems;
3680 62158 : *hasRowSecurity = glob.dependsOnRole;
3681 62158 : }
3682 :
3683 : /*
3684 : * Tree walker for extract_query_dependencies.
3685 : *
3686 : * This is exported so that expression_planner_with_deps can call it on
3687 : * simple expressions (post-planning, not before planning, in that case).
3688 : * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids
3689 : * and invalItems lists are added to as needed.
3690 : */
3691 : bool
3692 1668014 : extract_query_dependencies_walker(Node *node, PlannerInfo *context)
3693 : {
3694 1668014 : if (node == NULL)
3695 795024 : return false;
3696 : Assert(!IsA(node, PlaceHolderVar));
3697 872990 : if (IsA(node, Query))
3698 : {
3699 66300 : Query *query = (Query *) node;
3700 : ListCell *lc;
3701 :
3702 66300 : if (query->commandType == CMD_UTILITY)
3703 : {
3704 : /*
3705 : * This logic must handle any utility command for which parse
3706 : * analysis was nontrivial (cf. stmt_requires_parse_analysis).
3707 : *
3708 : * Notably, CALL requires its own processing.
3709 : */
3710 9958 : if (IsA(query->utilityStmt, CallStmt))
3711 : {
3712 116 : CallStmt *callstmt = (CallStmt *) query->utilityStmt;
3713 :
3714 : /* We need not examine funccall, just the transformed exprs */
3715 116 : (void) extract_query_dependencies_walker((Node *) callstmt->funcexpr,
3716 : context);
3717 116 : (void) extract_query_dependencies_walker((Node *) callstmt->outargs,
3718 : context);
3719 116 : return false;
3720 : }
3721 :
3722 : /*
3723 : * Ignore other utility statements, except those (such as EXPLAIN)
3724 : * that contain a parsed-but-not-planned query. For those, we
3725 : * just need to transfer our attention to the contained query.
3726 : */
3727 9842 : query = UtilityContainsQuery(query->utilityStmt);
3728 9842 : if (query == NULL)
3729 36 : return false;
3730 : }
3731 :
3732 : /* Remember if any Query has RLS quals applied by rewriter */
3733 66148 : if (query->hasRowSecurity)
3734 222 : context->glob->dependsOnRole = true;
3735 :
3736 : /* Collect relation OIDs in this Query's rtable */
3737 106864 : foreach(lc, query->rtable)
3738 : {
3739 40716 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3740 :
3741 40716 : if (rte->rtekind == RTE_RELATION ||
3742 6956 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3743 6566 : (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3744 34626 : context->glob->relationOids =
3745 34626 : lappend_oid(context->glob->relationOids, rte->relid);
3746 : }
3747 :
3748 : /* And recurse into the query's subexpressions */
3749 66148 : return query_tree_walker(query, extract_query_dependencies_walker,
3750 : context, 0);
3751 : }
3752 : /* Extract function dependencies and check for regclass Consts */
3753 806690 : fix_expr_common(context, node);
3754 806690 : return expression_tree_walker(node, extract_query_dependencies_walker,
3755 : context);
3756 : }
|