Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * setrefs.c
4 : * Post-processing of a completed plan tree: fix references to subplan
5 : * vars, compute regproc values for operators, etc
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/plan/setrefs.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include "access/transam.h"
19 : #include "catalog/pg_type.h"
20 : #include "nodes/makefuncs.h"
21 : #include "nodes/nodeFuncs.h"
22 : #include "optimizer/optimizer.h"
23 : #include "optimizer/pathnode.h"
24 : #include "optimizer/planmain.h"
25 : #include "optimizer/planner.h"
26 : #include "optimizer/subselect.h"
27 : #include "optimizer/tlist.h"
28 : #include "parser/parse_relation.h"
29 : #include "rewrite/rewriteManip.h"
30 : #include "tcop/utility.h"
31 : #include "utils/syscache.h"
32 :
33 :
34 : typedef enum
35 : {
36 : NRM_EQUAL, /* expect exact match of nullingrels */
37 : NRM_SUBSET, /* actual Var may have a subset of input */
38 : NRM_SUPERSET, /* actual Var may have a superset of input */
39 : } NullingRelsMatch;
40 :
41 : typedef struct
42 : {
43 : int varno; /* RT index of Var */
44 : AttrNumber varattno; /* attr number of Var */
45 : AttrNumber resno; /* TLE position of Var */
46 : Bitmapset *varnullingrels; /* Var's varnullingrels */
47 : } tlist_vinfo;
48 :
49 : typedef struct
50 : {
51 : List *tlist; /* underlying target list */
52 : int num_vars; /* number of plain Var tlist entries */
53 : bool has_ph_vars; /* are there PlaceHolderVar entries? */
54 : bool has_non_vars; /* are there other entries? */
55 : tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */
56 : } indexed_tlist;
57 :
58 : typedef struct
59 : {
60 : PlannerInfo *root;
61 : int rtoffset;
62 : double num_exec;
63 : } fix_scan_expr_context;
64 :
65 : typedef struct
66 : {
67 : PlannerInfo *root;
68 : indexed_tlist *outer_itlist;
69 : indexed_tlist *inner_itlist;
70 : Index acceptable_rel;
71 : int rtoffset;
72 : NullingRelsMatch nrm_match;
73 : double num_exec;
74 : } fix_join_expr_context;
75 :
76 : typedef struct
77 : {
78 : PlannerInfo *root;
79 : indexed_tlist *subplan_itlist;
80 : int newvarno;
81 : int rtoffset;
82 : NullingRelsMatch nrm_match;
83 : double num_exec;
84 : } fix_upper_expr_context;
85 :
86 : typedef struct
87 : {
88 : PlannerInfo *root;
89 : indexed_tlist *subplan_itlist;
90 : int newvarno;
91 : } fix_windowagg_cond_context;
92 :
93 : /* Context info for flatten_rtes_walker() */
94 : typedef struct
95 : {
96 : PlannerGlobal *glob;
97 : Query *query;
98 : } flatten_rtes_walker_context;
99 :
100 : /*
101 : * Selecting the best alternative in an AlternativeSubPlan expression requires
102 : * estimating how many times that expression will be evaluated. For an
103 : * expression in a plan node's targetlist, the plan's estimated number of
104 : * output rows is clearly what to use, but for an expression in a qual it's
105 : * far less clear. Since AlternativeSubPlans aren't heavily used, we don't
106 : * want to expend a lot of cycles making such estimates. What we use is twice
107 : * the number of output rows. That's not entirely unfounded: we know that
108 : * clause_selectivity() would fall back to a default selectivity estimate
109 : * of 0.5 for any SubPlan, so if the qual containing the SubPlan is the last
110 : * to be applied (which it likely would be, thanks to order_qual_clauses()),
111 : * this matches what we could have estimated in a far more laborious fashion.
112 : * Obviously there are many other scenarios, but it's probably not worth the
113 : * trouble to try to improve on this estimate, especially not when we don't
114 : * have a better estimate for the selectivity of the SubPlan qual itself.
115 : */
116 : #define NUM_EXEC_TLIST(parentplan) ((parentplan)->plan_rows)
117 : #define NUM_EXEC_QUAL(parentplan) ((parentplan)->plan_rows * 2.0)
118 :
119 : /*
120 : * Check if a Const node is a regclass value. We accept plain OID too,
121 : * since a regclass Const will get folded to that type if it's an argument
122 : * to oideq or similar operators. (This might result in some extraneous
123 : * values in a plan's list of relation dependencies, but the worst result
124 : * would be occasional useless replans.)
125 : */
126 : #define ISREGCLASSCONST(con) \
127 : (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \
128 : !(con)->constisnull)
129 :
130 : #define fix_scan_list(root, lst, rtoffset, num_exec) \
131 : ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset, num_exec))
132 :
133 : static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing);
134 : static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte);
135 : static bool flatten_rtes_walker(Node *node, flatten_rtes_walker_context *cxt);
136 : static void add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos,
137 : RangeTblEntry *rte);
138 : static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset);
139 : static Plan *set_indexonlyscan_references(PlannerInfo *root,
140 : IndexOnlyScan *plan,
141 : int rtoffset);
142 : static Plan *set_subqueryscan_references(PlannerInfo *root,
143 : SubqueryScan *plan,
144 : int rtoffset);
145 : static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child);
146 : static void set_foreignscan_references(PlannerInfo *root,
147 : ForeignScan *fscan,
148 : int rtoffset);
149 : static void set_customscan_references(PlannerInfo *root,
150 : CustomScan *cscan,
151 : int rtoffset);
152 : static Plan *set_append_references(PlannerInfo *root,
153 : Append *aplan,
154 : int rtoffset);
155 : static Plan *set_mergeappend_references(PlannerInfo *root,
156 : MergeAppend *mplan,
157 : int rtoffset);
158 : static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset);
159 : static Relids offset_relid_set(Relids relids, int rtoffset);
160 : static Node *fix_scan_expr(PlannerInfo *root, Node *node,
161 : int rtoffset, double num_exec);
162 : static Node *fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context);
163 : static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context);
164 : static void set_join_references(PlannerInfo *root, Join *join, int rtoffset);
165 : static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset);
166 : static void set_param_references(PlannerInfo *root, Plan *plan);
167 : static Node *convert_combining_aggrefs(Node *node, void *context);
168 : static void set_dummy_tlist_references(Plan *plan, int rtoffset);
169 : static indexed_tlist *build_tlist_index(List *tlist);
170 : static Var *search_indexed_tlist_for_var(Var *var,
171 : indexed_tlist *itlist,
172 : int newvarno,
173 : int rtoffset,
174 : NullingRelsMatch nrm_match);
175 : static Var *search_indexed_tlist_for_phv(PlaceHolderVar *phv,
176 : indexed_tlist *itlist,
177 : int newvarno,
178 : NullingRelsMatch nrm_match);
179 : static Var *search_indexed_tlist_for_non_var(Expr *node,
180 : indexed_tlist *itlist,
181 : int newvarno);
182 : static Var *search_indexed_tlist_for_sortgroupref(Expr *node,
183 : Index sortgroupref,
184 : indexed_tlist *itlist,
185 : int newvarno);
186 : static List *fix_join_expr(PlannerInfo *root,
187 : List *clauses,
188 : indexed_tlist *outer_itlist,
189 : indexed_tlist *inner_itlist,
190 : Index acceptable_rel,
191 : int rtoffset,
192 : NullingRelsMatch nrm_match,
193 : double num_exec);
194 : static Node *fix_join_expr_mutator(Node *node,
195 : fix_join_expr_context *context);
196 : static Node *fix_upper_expr(PlannerInfo *root,
197 : Node *node,
198 : indexed_tlist *subplan_itlist,
199 : int newvarno,
200 : int rtoffset,
201 : NullingRelsMatch nrm_match,
202 : double num_exec);
203 : static Node *fix_upper_expr_mutator(Node *node,
204 : fix_upper_expr_context *context);
205 : static List *set_returning_clause_references(PlannerInfo *root,
206 : List *rlist,
207 : Plan *topplan,
208 : Index resultRelation,
209 : int rtoffset);
210 : static List *set_windowagg_runcondition_references(PlannerInfo *root,
211 : List *runcondition,
212 : Plan *plan);
213 :
214 :
215 : /*****************************************************************************
216 : *
217 : * SUBPLAN REFERENCES
218 : *
219 : *****************************************************************************/
220 :
221 : /*
222 : * set_plan_references
223 : *
224 : * This is the final processing pass of the planner/optimizer. The plan
225 : * tree is complete; we just have to adjust some representational details
226 : * for the convenience of the executor:
227 : *
228 : * 1. We flatten the various subquery rangetables into a single list, and
229 : * zero out RangeTblEntry fields that are not useful to the executor.
230 : *
231 : * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable.
232 : *
233 : * 3. We adjust Vars in upper plan nodes to refer to the outputs of their
234 : * subplans.
235 : *
236 : * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving
237 : * partial aggregation or minmax aggregate optimization.
238 : *
239 : * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params,
240 : * now that we have finished planning all MULTIEXPR subplans.
241 : *
242 : * 6. AlternativeSubPlan expressions are replaced by just one of their
243 : * alternatives, using an estimate of how many times they'll be executed.
244 : *
245 : * 7. We compute regproc OIDs for operators (ie, we look up the function
246 : * that implements each op).
247 : *
248 : * 8. We create lists of specific objects that the plan depends on.
249 : * This will be used by plancache.c to drive invalidation of cached plans.
250 : * Relation dependencies are represented by OIDs, and everything else by
251 : * PlanInvalItems (this distinction is motivated by the shared-inval APIs).
252 : * Currently, relations, user-defined functions, and domains are the only
253 : * types of objects that are explicitly tracked this way.
254 : *
255 : * 9. We assign every plan node in the tree a unique ID.
256 : *
257 : * We also perform one final optimization step, which is to delete
258 : * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing
259 : * anything useful. The reason for doing this last is that
260 : * it can't readily be done before set_plan_references, because it would
261 : * break set_upper_references: the Vars in the child plan's top tlist
262 : * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan
263 : * serves a necessary function as a buffer between outer query and subquery
264 : * variable numbering ... but after we've flattened the rangetable this is
265 : * no longer a problem, since then there's only one rtindex namespace.
266 : * Likewise, Append and MergeAppend buffer between the parent and child vars
267 : * of an appendrel, but we don't need to worry about that once we've done
268 : * set_plan_references.
269 : *
270 : * set_plan_references recursively traverses the whole plan tree.
271 : *
272 : * The return value is normally the same Plan node passed in, but can be
273 : * different when the passed-in Plan is a node we decide isn't needed.
274 : *
275 : * The flattened rangetable entries are appended to root->glob->finalrtable.
276 : * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the
277 : * RT indexes of ModifyTable result relations to root->glob->resultRelations,
278 : * and flattened AppendRelInfos are appended to root->glob->appendRelations.
279 : * Plan dependencies are appended to root->glob->relationOids (for relations)
280 : * and root->glob->invalItems (for everything else).
281 : *
282 : * Notice that we modify Plan nodes in-place, but use expression_tree_mutator
283 : * to process targetlist and qual expressions. We can assume that the Plan
284 : * nodes were just built by the planner and are not multiply referenced, but
285 : * it's not so safe to assume that for expression tree nodes.
286 : */
287 : Plan *
288 506232 : set_plan_references(PlannerInfo *root, Plan *plan)
289 : {
290 : Plan *result;
291 506232 : PlannerGlobal *glob = root->glob;
292 506232 : int rtoffset = list_length(glob->finalrtable);
293 : ListCell *lc;
294 :
295 : /*
296 : * Add all the query's RTEs to the flattened rangetable. The live ones
297 : * will have their rangetable indexes increased by rtoffset. (Additional
298 : * RTEs, not referenced by the Plan tree, might get added after those.)
299 : */
300 506232 : add_rtes_to_flat_rtable(root, false);
301 :
302 : /*
303 : * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
304 : */
305 519322 : foreach(lc, root->rowMarks)
306 : {
307 13090 : PlanRowMark *rc = lfirst_node(PlanRowMark, lc);
308 : PlanRowMark *newrc;
309 :
310 : /* flat copy is enough since all fields are scalars */
311 13090 : newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
312 13090 : memcpy(newrc, rc, sizeof(PlanRowMark));
313 :
314 : /* adjust indexes ... but *not* the rowmarkId */
315 13090 : newrc->rti += rtoffset;
316 13090 : newrc->prti += rtoffset;
317 :
318 13090 : glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
319 : }
320 :
321 : /*
322 : * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
323 : * We assume the AppendRelInfos were built during planning and don't need
324 : * to be copied.
325 : */
326 549406 : foreach(lc, root->append_rel_list)
327 : {
328 43174 : AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
329 :
330 : /* adjust RT indexes */
331 43174 : appinfo->parent_relid += rtoffset;
332 43174 : appinfo->child_relid += rtoffset;
333 :
334 : /*
335 : * Rather than adjust the translated_vars entries, just drop 'em.
336 : * Neither the executor nor EXPLAIN currently need that data.
337 : */
338 43174 : appinfo->translated_vars = NIL;
339 :
340 43174 : glob->appendRelations = lappend(glob->appendRelations, appinfo);
341 : }
342 :
343 : /* If needed, create workspace for processing AlternativeSubPlans */
344 506232 : if (root->hasAlternativeSubPlans)
345 : {
346 962 : root->isAltSubplan = (bool *)
347 962 : palloc0(list_length(glob->subplans) * sizeof(bool));
348 962 : root->isUsedSubplan = (bool *)
349 962 : palloc0(list_length(glob->subplans) * sizeof(bool));
350 : }
351 :
352 : /* Now fix the Plan tree */
353 506232 : result = set_plan_refs(root, plan, rtoffset);
354 :
355 : /*
356 : * If we have AlternativeSubPlans, it is likely that we now have some
357 : * unreferenced subplans in glob->subplans. To avoid expending cycles on
358 : * those subplans later, get rid of them by setting those list entries to
359 : * NULL. (Note: we can't do this immediately upon processing an
360 : * AlternativeSubPlan, because there may be multiple copies of the
361 : * AlternativeSubPlan, and they can get resolved differently.)
362 : */
363 506232 : if (root->hasAlternativeSubPlans)
364 : {
365 4622 : foreach(lc, glob->subplans)
366 : {
367 3660 : int ndx = foreach_current_index(lc);
368 :
369 : /*
370 : * If it was used by some AlternativeSubPlan in this query level,
371 : * but wasn't selected as best by any AlternativeSubPlan, then we
372 : * don't need it. Do not touch subplans that aren't parts of
373 : * AlternativeSubPlans.
374 : */
375 3660 : if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
376 1492 : lfirst(lc) = NULL;
377 : }
378 : }
379 :
380 506232 : return result;
381 : }
382 :
383 : /*
384 : * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable
385 : *
386 : * This can recurse into subquery plans; "recursing" is true if so.
387 : *
388 : * This also seems like a good place to add the query's RTEPermissionInfos to
389 : * the flat rteperminfos.
390 : */
391 : static void
392 506400 : add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
393 : {
394 506400 : PlannerGlobal *glob = root->glob;
395 : Index rti;
396 : ListCell *lc;
397 :
398 : /*
399 : * Add the query's own RTEs to the flattened rangetable.
400 : *
401 : * At top level, we must add all RTEs so that their indexes in the
402 : * flattened rangetable match up with their original indexes. When
403 : * recursing, we only care about extracting relation RTEs (and subquery
404 : * RTEs that were once relation RTEs).
405 : */
406 1385044 : foreach(lc, root->parse->rtable)
407 : {
408 878644 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
409 :
410 878644 : if (!recursing || rte->rtekind == RTE_RELATION ||
411 246 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
412 878398 : add_rte_to_flat_rtable(glob, root->parse->rteperminfos, rte);
413 : }
414 :
415 : /*
416 : * If there are any dead subqueries, they are not referenced in the Plan
417 : * tree, so we must add RTEs contained in them to the flattened rtable
418 : * separately. (If we failed to do this, the executor would not perform
419 : * expected permission checks for tables mentioned in such subqueries.)
420 : *
421 : * Note: this pass over the rangetable can't be combined with the previous
422 : * one, because that would mess up the numbering of the live RTEs in the
423 : * flattened rangetable.
424 : */
425 506400 : rti = 1;
426 1385044 : foreach(lc, root->parse->rtable)
427 : {
428 878644 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
429 :
430 : /*
431 : * We should ignore inheritance-parent RTEs: their contents have been
432 : * pulled up into our rangetable already. Also ignore any subquery
433 : * RTEs without matching RelOptInfos, as they likewise have been
434 : * pulled up.
435 : */
436 878644 : if (rte->rtekind == RTE_SUBQUERY && !rte->inh &&
437 53232 : rti < root->simple_rel_array_size)
438 : {
439 53232 : RelOptInfo *rel = root->simple_rel_array[rti];
440 :
441 53232 : if (rel != NULL)
442 : {
443 : Assert(rel->relid == rti); /* sanity check on array */
444 :
445 : /*
446 : * The subquery might never have been planned at all, if it
447 : * was excluded on the basis of self-contradictory constraints
448 : * in our query level. In this case apply
449 : * flatten_unplanned_rtes.
450 : *
451 : * If it was planned but the result rel is dummy, we assume
452 : * that it has been omitted from our plan tree (see
453 : * set_subquery_pathlist), and recurse to pull up its RTEs.
454 : *
455 : * Otherwise, it should be represented by a SubqueryScan node
456 : * somewhere in our plan tree, and we'll pull up its RTEs when
457 : * we process that plan node.
458 : *
459 : * However, if we're recursing, then we should pull up RTEs
460 : * whether the subquery is dummy or not, because we've found
461 : * that some upper query level is treating this one as dummy,
462 : * and so we won't scan this level's plan tree at all.
463 : */
464 22784 : if (rel->subroot == NULL)
465 24 : flatten_unplanned_rtes(glob, rte);
466 45472 : else if (recursing ||
467 22712 : IS_DUMMY_REL(fetch_upper_rel(rel->subroot,
468 : UPPERREL_FINAL, NULL)))
469 168 : add_rtes_to_flat_rtable(rel->subroot, true);
470 : }
471 : }
472 878644 : rti++;
473 : }
474 506400 : }
475 :
476 : /*
477 : * Extract RangeTblEntries from a subquery that was never planned at all
478 : */
479 :
480 : static void
481 24 : flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte)
482 : {
483 24 : flatten_rtes_walker_context cxt = {glob, rte->subquery};
484 :
485 : /* Use query_tree_walker to find all RTEs in the parse tree */
486 24 : (void) query_tree_walker(rte->subquery,
487 : flatten_rtes_walker,
488 : &cxt,
489 : QTW_EXAMINE_RTES_BEFORE);
490 24 : }
491 :
492 : static bool
493 600 : flatten_rtes_walker(Node *node, flatten_rtes_walker_context *cxt)
494 : {
495 600 : if (node == NULL)
496 348 : return false;
497 252 : if (IsA(node, RangeTblEntry))
498 : {
499 18 : RangeTblEntry *rte = (RangeTblEntry *) node;
500 :
501 : /* As above, we need only save relation RTEs and former relations */
502 18 : if (rte->rtekind == RTE_RELATION ||
503 0 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
504 18 : add_rte_to_flat_rtable(cxt->glob, cxt->query->rteperminfos, rte);
505 18 : return false;
506 : }
507 234 : if (IsA(node, Query))
508 : {
509 : /*
510 : * Recurse into subselects. Must update cxt->query to this query so
511 : * that the rtable and rteperminfos correspond with each other.
512 : */
513 6 : Query *save_query = cxt->query;
514 : bool result;
515 :
516 6 : cxt->query = (Query *) node;
517 6 : result = query_tree_walker((Query *) node,
518 : flatten_rtes_walker,
519 : cxt,
520 : QTW_EXAMINE_RTES_BEFORE);
521 6 : cxt->query = save_query;
522 6 : return result;
523 : }
524 228 : return expression_tree_walker(node, flatten_rtes_walker, cxt);
525 : }
526 :
527 : /*
528 : * Add (a copy of) the given RTE to the final rangetable and also the
529 : * corresponding RTEPermissionInfo, if any, to final rteperminfos.
530 : *
531 : * In the flat rangetable, we zero out substructure pointers that are not
532 : * needed by the executor; this reduces the storage space and copying cost
533 : * for cached plans. We keep only the ctename, alias, eref Alias fields,
534 : * which are needed by EXPLAIN, and perminfoindex which is needed by the
535 : * executor to fetch the RTE's RTEPermissionInfo.
536 : */
537 : static void
538 878416 : add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos,
539 : RangeTblEntry *rte)
540 : {
541 : RangeTblEntry *newrte;
542 :
543 : /* flat copy to duplicate all the scalar fields */
544 878416 : newrte = (RangeTblEntry *) palloc(sizeof(RangeTblEntry));
545 878416 : memcpy(newrte, rte, sizeof(RangeTblEntry));
546 :
547 : /* zap unneeded sub-structure */
548 878416 : newrte->tablesample = NULL;
549 878416 : newrte->subquery = NULL;
550 878416 : newrte->joinaliasvars = NIL;
551 878416 : newrte->joinleftcols = NIL;
552 878416 : newrte->joinrightcols = NIL;
553 878416 : newrte->join_using_alias = NULL;
554 878416 : newrte->functions = NIL;
555 878416 : newrte->tablefunc = NULL;
556 878416 : newrte->values_lists = NIL;
557 878416 : newrte->coltypes = NIL;
558 878416 : newrte->coltypmods = NIL;
559 878416 : newrte->colcollations = NIL;
560 878416 : newrte->groupexprs = NIL;
561 878416 : newrte->securityQuals = NIL;
562 :
563 878416 : glob->finalrtable = lappend(glob->finalrtable, newrte);
564 :
565 : /*
566 : * If it's a plain relation RTE (or a subquery that was once a view
567 : * reference), add the relation OID to relationOids.
568 : *
569 : * We do this even though the RTE might be unreferenced in the plan tree;
570 : * this would correspond to cases such as views that were expanded, child
571 : * tables that were eliminated by constraint exclusion, etc. Schema
572 : * invalidation on such a rel must still force rebuilding of the plan.
573 : *
574 : * Note we don't bother to avoid making duplicate list entries. We could,
575 : * but it would probably cost more cycles than it would save.
576 : */
577 878416 : if (newrte->rtekind == RTE_RELATION ||
578 407138 : (newrte->rtekind == RTE_SUBQUERY && OidIsValid(newrte->relid)))
579 484908 : glob->relationOids = lappend_oid(glob->relationOids, newrte->relid);
580 :
581 : /*
582 : * Add a copy of the RTEPermissionInfo, if any, corresponding to this RTE
583 : * to the flattened global list.
584 : */
585 878416 : if (rte->perminfoindex > 0)
586 : {
587 : RTEPermissionInfo *perminfo;
588 : RTEPermissionInfo *newperminfo;
589 :
590 : /* Get the existing one from this query's rteperminfos. */
591 445666 : perminfo = getRTEPermissionInfo(rteperminfos, newrte);
592 :
593 : /*
594 : * Add a new one to finalrteperminfos and copy the contents of the
595 : * existing one into it. Note that addRTEPermissionInfo() also
596 : * updates newrte->perminfoindex to point to newperminfo in
597 : * finalrteperminfos.
598 : */
599 445666 : newrte->perminfoindex = 0; /* expected by addRTEPermissionInfo() */
600 445666 : newperminfo = addRTEPermissionInfo(&glob->finalrteperminfos, newrte);
601 445666 : memcpy(newperminfo, perminfo, sizeof(RTEPermissionInfo));
602 : }
603 878416 : }
604 :
605 : /*
606 : * set_plan_refs: recurse through the Plan nodes of a single subquery level
607 : */
608 : static Plan *
609 2617378 : set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
610 : {
611 : ListCell *l;
612 :
613 2617378 : if (plan == NULL)
614 1527764 : return NULL;
615 :
616 : /* Assign this node a unique ID. */
617 1089614 : plan->plan_node_id = root->glob->lastPlanNodeId++;
618 :
619 : /*
620 : * Plan-type-specific fixes
621 : */
622 1089614 : switch (nodeTag(plan))
623 : {
624 190480 : case T_SeqScan:
625 : {
626 190480 : SeqScan *splan = (SeqScan *) plan;
627 :
628 190480 : splan->scan.scanrelid += rtoffset;
629 190480 : splan->scan.plan.targetlist =
630 190480 : fix_scan_list(root, splan->scan.plan.targetlist,
631 : rtoffset, NUM_EXEC_TLIST(plan));
632 190480 : splan->scan.plan.qual =
633 190480 : fix_scan_list(root, splan->scan.plan.qual,
634 : rtoffset, NUM_EXEC_QUAL(plan));
635 : }
636 190480 : break;
637 300 : case T_SampleScan:
638 : {
639 300 : SampleScan *splan = (SampleScan *) plan;
640 :
641 300 : splan->scan.scanrelid += rtoffset;
642 300 : splan->scan.plan.targetlist =
643 300 : fix_scan_list(root, splan->scan.plan.targetlist,
644 : rtoffset, NUM_EXEC_TLIST(plan));
645 300 : splan->scan.plan.qual =
646 300 : fix_scan_list(root, splan->scan.plan.qual,
647 : rtoffset, NUM_EXEC_QUAL(plan));
648 300 : splan->tablesample = (TableSampleClause *)
649 300 : fix_scan_expr(root, (Node *) splan->tablesample,
650 : rtoffset, 1);
651 : }
652 300 : break;
653 130192 : case T_IndexScan:
654 : {
655 130192 : IndexScan *splan = (IndexScan *) plan;
656 :
657 130192 : splan->scan.scanrelid += rtoffset;
658 130192 : splan->scan.plan.targetlist =
659 130192 : fix_scan_list(root, splan->scan.plan.targetlist,
660 : rtoffset, NUM_EXEC_TLIST(plan));
661 130192 : splan->scan.plan.qual =
662 130192 : fix_scan_list(root, splan->scan.plan.qual,
663 : rtoffset, NUM_EXEC_QUAL(plan));
664 130192 : splan->indexqual =
665 130192 : fix_scan_list(root, splan->indexqual,
666 : rtoffset, 1);
667 130192 : splan->indexqualorig =
668 130192 : fix_scan_list(root, splan->indexqualorig,
669 : rtoffset, NUM_EXEC_QUAL(plan));
670 130192 : splan->indexorderby =
671 130192 : fix_scan_list(root, splan->indexorderby,
672 : rtoffset, 1);
673 130192 : splan->indexorderbyorig =
674 130192 : fix_scan_list(root, splan->indexorderbyorig,
675 : rtoffset, NUM_EXEC_QUAL(plan));
676 : }
677 130192 : break;
678 15266 : case T_IndexOnlyScan:
679 : {
680 15266 : IndexOnlyScan *splan = (IndexOnlyScan *) plan;
681 :
682 15266 : return set_indexonlyscan_references(root, splan, rtoffset);
683 : }
684 : break;
685 20614 : case T_BitmapIndexScan:
686 : {
687 20614 : BitmapIndexScan *splan = (BitmapIndexScan *) plan;
688 :
689 20614 : splan->scan.scanrelid += rtoffset;
690 : /* no need to fix targetlist and qual */
691 : Assert(splan->scan.plan.targetlist == NIL);
692 : Assert(splan->scan.plan.qual == NIL);
693 20614 : splan->indexqual =
694 20614 : fix_scan_list(root, splan->indexqual, rtoffset, 1);
695 20614 : splan->indexqualorig =
696 20614 : fix_scan_list(root, splan->indexqualorig,
697 : rtoffset, NUM_EXEC_QUAL(plan));
698 : }
699 20614 : break;
700 20156 : case T_BitmapHeapScan:
701 : {
702 20156 : BitmapHeapScan *splan = (BitmapHeapScan *) plan;
703 :
704 20156 : splan->scan.scanrelid += rtoffset;
705 20156 : splan->scan.plan.targetlist =
706 20156 : fix_scan_list(root, splan->scan.plan.targetlist,
707 : rtoffset, NUM_EXEC_TLIST(plan));
708 20156 : splan->scan.plan.qual =
709 20156 : fix_scan_list(root, splan->scan.plan.qual,
710 : rtoffset, NUM_EXEC_QUAL(plan));
711 20156 : splan->bitmapqualorig =
712 20156 : fix_scan_list(root, splan->bitmapqualorig,
713 : rtoffset, NUM_EXEC_QUAL(plan));
714 : }
715 20156 : break;
716 700 : case T_TidScan:
717 : {
718 700 : TidScan *splan = (TidScan *) plan;
719 :
720 700 : splan->scan.scanrelid += rtoffset;
721 700 : splan->scan.plan.targetlist =
722 700 : fix_scan_list(root, splan->scan.plan.targetlist,
723 : rtoffset, NUM_EXEC_TLIST(plan));
724 700 : splan->scan.plan.qual =
725 700 : fix_scan_list(root, splan->scan.plan.qual,
726 : rtoffset, NUM_EXEC_QUAL(plan));
727 700 : splan->tidquals =
728 700 : fix_scan_list(root, splan->tidquals,
729 : rtoffset, 1);
730 : }
731 700 : break;
732 202 : case T_TidRangeScan:
733 : {
734 202 : TidRangeScan *splan = (TidRangeScan *) plan;
735 :
736 202 : splan->scan.scanrelid += rtoffset;
737 202 : splan->scan.plan.targetlist =
738 202 : fix_scan_list(root, splan->scan.plan.targetlist,
739 : rtoffset, NUM_EXEC_TLIST(plan));
740 202 : splan->scan.plan.qual =
741 202 : fix_scan_list(root, splan->scan.plan.qual,
742 : rtoffset, NUM_EXEC_QUAL(plan));
743 202 : splan->tidrangequals =
744 202 : fix_scan_list(root, splan->tidrangequals,
745 : rtoffset, 1);
746 : }
747 202 : break;
748 22574 : case T_SubqueryScan:
749 : /* Needs special treatment, see comments below */
750 22574 : return set_subqueryscan_references(root,
751 : (SubqueryScan *) plan,
752 : rtoffset);
753 44178 : case T_FunctionScan:
754 : {
755 44178 : FunctionScan *splan = (FunctionScan *) plan;
756 :
757 44178 : splan->scan.scanrelid += rtoffset;
758 44178 : splan->scan.plan.targetlist =
759 44178 : fix_scan_list(root, splan->scan.plan.targetlist,
760 : rtoffset, NUM_EXEC_TLIST(plan));
761 44178 : splan->scan.plan.qual =
762 44178 : fix_scan_list(root, splan->scan.plan.qual,
763 : rtoffset, NUM_EXEC_QUAL(plan));
764 44178 : splan->functions =
765 44178 : fix_scan_list(root, splan->functions, rtoffset, 1);
766 : }
767 44178 : break;
768 626 : case T_TableFuncScan:
769 : {
770 626 : TableFuncScan *splan = (TableFuncScan *) plan;
771 :
772 626 : splan->scan.scanrelid += rtoffset;
773 626 : splan->scan.plan.targetlist =
774 626 : fix_scan_list(root, splan->scan.plan.targetlist,
775 : rtoffset, NUM_EXEC_TLIST(plan));
776 626 : splan->scan.plan.qual =
777 626 : fix_scan_list(root, splan->scan.plan.qual,
778 : rtoffset, NUM_EXEC_QUAL(plan));
779 626 : splan->tablefunc = (TableFunc *)
780 626 : fix_scan_expr(root, (Node *) splan->tablefunc,
781 : rtoffset, 1);
782 : }
783 626 : break;
784 7980 : case T_ValuesScan:
785 : {
786 7980 : ValuesScan *splan = (ValuesScan *) plan;
787 :
788 7980 : splan->scan.scanrelid += rtoffset;
789 7980 : splan->scan.plan.targetlist =
790 7980 : fix_scan_list(root, splan->scan.plan.targetlist,
791 : rtoffset, NUM_EXEC_TLIST(plan));
792 7980 : splan->scan.plan.qual =
793 7980 : fix_scan_list(root, splan->scan.plan.qual,
794 : rtoffset, NUM_EXEC_QUAL(plan));
795 7980 : splan->values_lists =
796 7980 : fix_scan_list(root, splan->values_lists,
797 : rtoffset, 1);
798 : }
799 7980 : break;
800 3186 : case T_CteScan:
801 : {
802 3186 : CteScan *splan = (CteScan *) plan;
803 :
804 3186 : splan->scan.scanrelid += rtoffset;
805 3186 : splan->scan.plan.targetlist =
806 3186 : fix_scan_list(root, splan->scan.plan.targetlist,
807 : rtoffset, NUM_EXEC_TLIST(plan));
808 3186 : splan->scan.plan.qual =
809 3186 : fix_scan_list(root, splan->scan.plan.qual,
810 : rtoffset, NUM_EXEC_QUAL(plan));
811 : }
812 3186 : break;
813 438 : case T_NamedTuplestoreScan:
814 : {
815 438 : NamedTuplestoreScan *splan = (NamedTuplestoreScan *) plan;
816 :
817 438 : splan->scan.scanrelid += rtoffset;
818 438 : splan->scan.plan.targetlist =
819 438 : fix_scan_list(root, splan->scan.plan.targetlist,
820 : rtoffset, NUM_EXEC_TLIST(plan));
821 438 : splan->scan.plan.qual =
822 438 : fix_scan_list(root, splan->scan.plan.qual,
823 : rtoffset, NUM_EXEC_QUAL(plan));
824 : }
825 438 : break;
826 816 : case T_WorkTableScan:
827 : {
828 816 : WorkTableScan *splan = (WorkTableScan *) plan;
829 :
830 816 : splan->scan.scanrelid += rtoffset;
831 816 : splan->scan.plan.targetlist =
832 816 : fix_scan_list(root, splan->scan.plan.targetlist,
833 : rtoffset, NUM_EXEC_TLIST(plan));
834 816 : splan->scan.plan.qual =
835 816 : fix_scan_list(root, splan->scan.plan.qual,
836 : rtoffset, NUM_EXEC_QUAL(plan));
837 : }
838 816 : break;
839 1980 : case T_ForeignScan:
840 1980 : set_foreignscan_references(root, (ForeignScan *) plan, rtoffset);
841 1980 : break;
842 0 : case T_CustomScan:
843 0 : set_customscan_references(root, (CustomScan *) plan, rtoffset);
844 0 : break;
845 :
846 119750 : case T_NestLoop:
847 : case T_MergeJoin:
848 : case T_HashJoin:
849 119750 : set_join_references(root, (Join *) plan, rtoffset);
850 119750 : break;
851 :
852 1348 : case T_Gather:
853 : case T_GatherMerge:
854 : {
855 1348 : set_upper_references(root, plan, rtoffset);
856 1348 : set_param_references(root, plan);
857 : }
858 1348 : break;
859 :
860 28866 : case T_Hash:
861 28866 : set_hash_references(root, plan, rtoffset);
862 28866 : break;
863 :
864 1374 : case T_Memoize:
865 : {
866 1374 : Memoize *mplan = (Memoize *) plan;
867 :
868 : /*
869 : * Memoize does not evaluate its targetlist. It just uses the
870 : * same targetlist from its outer subnode.
871 : */
872 1374 : set_dummy_tlist_references(plan, rtoffset);
873 :
874 1374 : mplan->param_exprs = fix_scan_list(root, mplan->param_exprs,
875 : rtoffset,
876 : NUM_EXEC_TLIST(plan));
877 1374 : break;
878 : }
879 :
880 79024 : case T_Material:
881 : case T_Sort:
882 : case T_IncrementalSort:
883 : case T_Unique:
884 : case T_SetOp:
885 :
886 : /*
887 : * These plan types don't actually bother to evaluate their
888 : * targetlists, because they just return their unmodified input
889 : * tuples. Even though the targetlist won't be used by the
890 : * executor, we fix it up for possible use by EXPLAIN (not to
891 : * mention ease of debugging --- wrong varnos are very confusing).
892 : */
893 79024 : set_dummy_tlist_references(plan, rtoffset);
894 :
895 : /*
896 : * Since these plan types don't check quals either, we should not
897 : * find any qual expression attached to them.
898 : */
899 : Assert(plan->qual == NIL);
900 79024 : break;
901 7846 : case T_LockRows:
902 : {
903 7846 : LockRows *splan = (LockRows *) plan;
904 :
905 : /*
906 : * Like the plan types above, LockRows doesn't evaluate its
907 : * tlist or quals. But we have to fix up the RT indexes in
908 : * its rowmarks.
909 : */
910 7846 : set_dummy_tlist_references(plan, rtoffset);
911 : Assert(splan->plan.qual == NIL);
912 :
913 18124 : foreach(l, splan->rowMarks)
914 : {
915 10278 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
916 :
917 10278 : rc->rti += rtoffset;
918 10278 : rc->prti += rtoffset;
919 : }
920 : }
921 7846 : break;
922 4560 : case T_Limit:
923 : {
924 4560 : Limit *splan = (Limit *) plan;
925 :
926 : /*
927 : * Like the plan types above, Limit doesn't evaluate its tlist
928 : * or quals. It does have live expressions for limit/offset,
929 : * however; and those cannot contain subplan variable refs, so
930 : * fix_scan_expr works for them.
931 : */
932 4560 : set_dummy_tlist_references(plan, rtoffset);
933 : Assert(splan->plan.qual == NIL);
934 :
935 4560 : splan->limitOffset =
936 4560 : fix_scan_expr(root, splan->limitOffset, rtoffset, 1);
937 4560 : splan->limitCount =
938 4560 : fix_scan_expr(root, splan->limitCount, rtoffset, 1);
939 : }
940 4560 : break;
941 39424 : case T_Agg:
942 : {
943 39424 : Agg *agg = (Agg *) plan;
944 :
945 : /*
946 : * If this node is combining partial-aggregation results, we
947 : * must convert its Aggrefs to contain references to the
948 : * partial-aggregate subexpressions that will be available
949 : * from the child plan node.
950 : */
951 39424 : if (DO_AGGSPLIT_COMBINE(agg->aggsplit))
952 : {
953 850 : plan->targetlist = (List *)
954 850 : convert_combining_aggrefs((Node *) plan->targetlist,
955 : NULL);
956 850 : plan->qual = (List *)
957 850 : convert_combining_aggrefs((Node *) plan->qual,
958 : NULL);
959 : }
960 :
961 39424 : set_upper_references(root, plan, rtoffset);
962 : }
963 39424 : break;
964 246 : case T_Group:
965 246 : set_upper_references(root, plan, rtoffset);
966 246 : break;
967 2486 : case T_WindowAgg:
968 : {
969 2486 : WindowAgg *wplan = (WindowAgg *) plan;
970 :
971 : /*
972 : * Adjust the WindowAgg's run conditions by swapping the
973 : * WindowFuncs references out to instead reference the Var in
974 : * the scan slot so that when the executor evaluates the
975 : * runCondition, it receives the WindowFunc's value from the
976 : * slot that the result has just been stored into rather than
977 : * evaluating the WindowFunc all over again.
978 : */
979 2486 : wplan->runCondition = set_windowagg_runcondition_references(root,
980 : wplan->runCondition,
981 : (Plan *) wplan);
982 :
983 2486 : set_upper_references(root, plan, rtoffset);
984 :
985 : /*
986 : * Like Limit node limit/offset expressions, WindowAgg has
987 : * frame offset expressions, which cannot contain subplan
988 : * variable refs, so fix_scan_expr works for them.
989 : */
990 2486 : wplan->startOffset =
991 2486 : fix_scan_expr(root, wplan->startOffset, rtoffset, 1);
992 2486 : wplan->endOffset =
993 2486 : fix_scan_expr(root, wplan->endOffset, rtoffset, 1);
994 2486 : wplan->runCondition = fix_scan_list(root,
995 : wplan->runCondition,
996 : rtoffset,
997 : NUM_EXEC_TLIST(plan));
998 2486 : wplan->runConditionOrig = fix_scan_list(root,
999 : wplan->runConditionOrig,
1000 : rtoffset,
1001 : NUM_EXEC_TLIST(plan));
1002 : }
1003 2486 : break;
1004 224394 : case T_Result:
1005 : {
1006 224394 : Result *splan = (Result *) plan;
1007 :
1008 : /*
1009 : * Result may or may not have a subplan; if not, it's more
1010 : * like a scan node than an upper node.
1011 : */
1012 224394 : if (splan->plan.lefttree != NULL)
1013 10676 : set_upper_references(root, plan, rtoffset);
1014 : else
1015 : {
1016 : /*
1017 : * The tlist of a childless Result could contain
1018 : * unresolved ROWID_VAR Vars, in case it's representing a
1019 : * target relation which is completely empty because of
1020 : * constraint exclusion. Replace any such Vars by null
1021 : * constants, as though they'd been resolved for a leaf
1022 : * scan node that doesn't support them. We could have
1023 : * fix_scan_expr do this, but since the case is only
1024 : * expected to occur here, it seems safer to special-case
1025 : * it here and keep the assertions that ROWID_VARs
1026 : * shouldn't be seen by fix_scan_expr.
1027 : */
1028 494590 : foreach(l, splan->plan.targetlist)
1029 : {
1030 280872 : TargetEntry *tle = (TargetEntry *) lfirst(l);
1031 280872 : Var *var = (Var *) tle->expr;
1032 :
1033 280872 : if (var && IsA(var, Var) && var->varno == ROWID_VAR)
1034 72 : tle->expr = (Expr *) makeNullConst(var->vartype,
1035 : var->vartypmod,
1036 : var->varcollid);
1037 : }
1038 :
1039 213718 : splan->plan.targetlist =
1040 213718 : fix_scan_list(root, splan->plan.targetlist,
1041 : rtoffset, NUM_EXEC_TLIST(plan));
1042 213718 : splan->plan.qual =
1043 213718 : fix_scan_list(root, splan->plan.qual,
1044 : rtoffset, NUM_EXEC_QUAL(plan));
1045 : }
1046 : /* resconstantqual can't contain any subplan variable refs */
1047 224394 : splan->resconstantqual =
1048 224394 : fix_scan_expr(root, splan->resconstantqual, rtoffset, 1);
1049 : }
1050 224394 : break;
1051 8734 : case T_ProjectSet:
1052 8734 : set_upper_references(root, plan, rtoffset);
1053 8734 : break;
1054 90516 : case T_ModifyTable:
1055 : {
1056 90516 : ModifyTable *splan = (ModifyTable *) plan;
1057 90516 : Plan *subplan = outerPlan(splan);
1058 :
1059 : Assert(splan->plan.targetlist == NIL);
1060 : Assert(splan->plan.qual == NIL);
1061 :
1062 90516 : splan->withCheckOptionLists =
1063 90516 : fix_scan_list(root, splan->withCheckOptionLists,
1064 : rtoffset, 1);
1065 :
1066 90516 : if (splan->returningLists)
1067 : {
1068 2710 : List *newRL = NIL;
1069 : ListCell *lcrl,
1070 : *lcrr;
1071 :
1072 : /*
1073 : * Pass each per-resultrel returningList through
1074 : * set_returning_clause_references().
1075 : */
1076 : Assert(list_length(splan->returningLists) == list_length(splan->resultRelations));
1077 5754 : forboth(lcrl, splan->returningLists,
1078 : lcrr, splan->resultRelations)
1079 : {
1080 3044 : List *rlist = (List *) lfirst(lcrl);
1081 3044 : Index resultrel = lfirst_int(lcrr);
1082 :
1083 3044 : rlist = set_returning_clause_references(root,
1084 : rlist,
1085 : subplan,
1086 : resultrel,
1087 : rtoffset);
1088 3044 : newRL = lappend(newRL, rlist);
1089 : }
1090 2710 : splan->returningLists = newRL;
1091 :
1092 : /*
1093 : * Set up the visible plan targetlist as being the same as
1094 : * the first RETURNING list. This is for the use of
1095 : * EXPLAIN; the executor won't pay any attention to the
1096 : * targetlist. We postpone this step until here so that
1097 : * we don't have to do set_returning_clause_references()
1098 : * twice on identical targetlists.
1099 : */
1100 2710 : splan->plan.targetlist = copyObject(linitial(newRL));
1101 : }
1102 :
1103 : /*
1104 : * We treat ModifyTable with ON CONFLICT as a form of 'pseudo
1105 : * join', where the inner side is the EXCLUDED tuple.
1106 : * Therefore use fix_join_expr to setup the relevant variables
1107 : * to INNER_VAR. We explicitly don't create any OUTER_VARs as
1108 : * those are already used by RETURNING and it seems better to
1109 : * be non-conflicting.
1110 : */
1111 90516 : if (splan->onConflictSet)
1112 : {
1113 : indexed_tlist *itlist;
1114 :
1115 978 : itlist = build_tlist_index(splan->exclRelTlist);
1116 :
1117 978 : splan->onConflictSet =
1118 1956 : fix_join_expr(root, splan->onConflictSet,
1119 : NULL, itlist,
1120 978 : linitial_int(splan->resultRelations),
1121 978 : rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1122 :
1123 978 : splan->onConflictWhere = (Node *)
1124 1956 : fix_join_expr(root, (List *) splan->onConflictWhere,
1125 : NULL, itlist,
1126 978 : linitial_int(splan->resultRelations),
1127 978 : rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1128 :
1129 978 : pfree(itlist);
1130 :
1131 978 : splan->exclRelTlist =
1132 978 : fix_scan_list(root, splan->exclRelTlist, rtoffset, 1);
1133 : }
1134 :
1135 : /*
1136 : * The MERGE statement produces the target rows by performing
1137 : * a right join between the target relation and the source
1138 : * relation (which could be a plain relation or a subquery).
1139 : * The INSERT and UPDATE actions of the MERGE statement
1140 : * require access to the columns from the source relation. We
1141 : * arrange things so that the source relation attributes are
1142 : * available as INNER_VAR and the target relation attributes
1143 : * are available from the scan tuple.
1144 : */
1145 90516 : if (splan->mergeActionLists != NIL)
1146 : {
1147 1756 : List *newMJC = NIL;
1148 : ListCell *lca,
1149 : *lcj,
1150 : *lcr;
1151 :
1152 : /*
1153 : * Fix the targetList of individual action nodes so that
1154 : * the so-called "source relation" Vars are referenced as
1155 : * INNER_VAR. Note that for this to work correctly during
1156 : * execution, the ecxt_innertuple must be set to the tuple
1157 : * obtained by executing the subplan, which is what
1158 : * constitutes the "source relation".
1159 : *
1160 : * We leave the Vars from the result relation (i.e. the
1161 : * target relation) unchanged i.e. those Vars would be
1162 : * picked from the scan slot. So during execution, we must
1163 : * ensure that ecxt_scantuple is setup correctly to refer
1164 : * to the tuple from the target relation.
1165 : */
1166 : indexed_tlist *itlist;
1167 :
1168 1756 : itlist = build_tlist_index(subplan->targetlist);
1169 :
1170 3744 : forthree(lca, splan->mergeActionLists,
1171 : lcj, splan->mergeJoinConditions,
1172 : lcr, splan->resultRelations)
1173 : {
1174 1988 : List *mergeActionList = lfirst(lca);
1175 1988 : Node *mergeJoinCondition = lfirst(lcj);
1176 1988 : Index resultrel = lfirst_int(lcr);
1177 :
1178 5300 : foreach(l, mergeActionList)
1179 : {
1180 3312 : MergeAction *action = (MergeAction *) lfirst(l);
1181 :
1182 : /* Fix targetList of each action. */
1183 3312 : action->targetList = fix_join_expr(root,
1184 : action->targetList,
1185 : NULL, itlist,
1186 : resultrel,
1187 : rtoffset,
1188 : NRM_EQUAL,
1189 : NUM_EXEC_TLIST(plan));
1190 :
1191 : /* Fix quals too. */
1192 3312 : action->qual = (Node *) fix_join_expr(root,
1193 3312 : (List *) action->qual,
1194 : NULL, itlist,
1195 : resultrel,
1196 : rtoffset,
1197 : NRM_EQUAL,
1198 3312 : NUM_EXEC_QUAL(plan));
1199 : }
1200 :
1201 : /* Fix join condition too. */
1202 : mergeJoinCondition = (Node *)
1203 1988 : fix_join_expr(root,
1204 : (List *) mergeJoinCondition,
1205 : NULL, itlist,
1206 : resultrel,
1207 : rtoffset,
1208 : NRM_EQUAL,
1209 1988 : NUM_EXEC_QUAL(plan));
1210 1988 : newMJC = lappend(newMJC, mergeJoinCondition);
1211 : }
1212 1756 : splan->mergeJoinConditions = newMJC;
1213 : }
1214 :
1215 90516 : splan->nominalRelation += rtoffset;
1216 90516 : if (splan->rootRelation)
1217 2712 : splan->rootRelation += rtoffset;
1218 90516 : splan->exclRelRTI += rtoffset;
1219 :
1220 183394 : foreach(l, splan->resultRelations)
1221 : {
1222 92878 : lfirst_int(l) += rtoffset;
1223 : }
1224 93288 : foreach(l, splan->rowMarks)
1225 : {
1226 2772 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
1227 :
1228 2772 : rc->rti += rtoffset;
1229 2772 : rc->prti += rtoffset;
1230 : }
1231 :
1232 : /*
1233 : * Append this ModifyTable node's final result relation RT
1234 : * index(es) to the global list for the plan.
1235 : */
1236 181032 : root->glob->resultRelations =
1237 90516 : list_concat(root->glob->resultRelations,
1238 90516 : splan->resultRelations);
1239 90516 : if (splan->rootRelation)
1240 : {
1241 2712 : root->glob->resultRelations =
1242 2712 : lappend_int(root->glob->resultRelations,
1243 2712 : splan->rootRelation);
1244 : }
1245 : }
1246 90516 : break;
1247 19578 : case T_Append:
1248 : /* Needs special treatment, see comments below */
1249 19578 : return set_append_references(root,
1250 : (Append *) plan,
1251 : rtoffset);
1252 512 : case T_MergeAppend:
1253 : /* Needs special treatment, see comments below */
1254 512 : return set_mergeappend_references(root,
1255 : (MergeAppend *) plan,
1256 : rtoffset);
1257 816 : case T_RecursiveUnion:
1258 : /* This doesn't evaluate targetlist or check quals either */
1259 816 : set_dummy_tlist_references(plan, rtoffset);
1260 : Assert(plan->qual == NIL);
1261 816 : break;
1262 152 : case T_BitmapAnd:
1263 : {
1264 152 : BitmapAnd *splan = (BitmapAnd *) plan;
1265 :
1266 : /* BitmapAnd works like Append, but has no tlist */
1267 : Assert(splan->plan.targetlist == NIL);
1268 : Assert(splan->plan.qual == NIL);
1269 456 : foreach(l, splan->bitmapplans)
1270 : {
1271 304 : lfirst(l) = set_plan_refs(root,
1272 304 : (Plan *) lfirst(l),
1273 : rtoffset);
1274 : }
1275 : }
1276 152 : break;
1277 300 : case T_BitmapOr:
1278 : {
1279 300 : BitmapOr *splan = (BitmapOr *) plan;
1280 :
1281 : /* BitmapOr works like Append, but has no tlist */
1282 : Assert(splan->plan.targetlist == NIL);
1283 : Assert(splan->plan.qual == NIL);
1284 906 : foreach(l, splan->bitmapplans)
1285 : {
1286 606 : lfirst(l) = set_plan_refs(root,
1287 606 : (Plan *) lfirst(l),
1288 : rtoffset);
1289 : }
1290 : }
1291 300 : break;
1292 0 : default:
1293 0 : elog(ERROR, "unrecognized node type: %d",
1294 : (int) nodeTag(plan));
1295 : break;
1296 : }
1297 :
1298 : /*
1299 : * Now recurse into child plans, if any
1300 : *
1301 : * NOTE: it is essential that we recurse into child plans AFTER we set
1302 : * subplan references in this plan's tlist and quals. If we did the
1303 : * reference-adjustments bottom-up, then we would fail to match this
1304 : * plan's var nodes against the already-modified nodes of the children.
1305 : */
1306 1031684 : plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset);
1307 1031684 : plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
1308 :
1309 1031684 : return plan;
1310 : }
1311 :
1312 : /*
1313 : * set_indexonlyscan_references
1314 : * Do set_plan_references processing on an IndexOnlyScan
1315 : *
1316 : * This is unlike the handling of a plain IndexScan because we have to
1317 : * convert Vars referencing the heap into Vars referencing the index.
1318 : * We can use the fix_upper_expr machinery for that, by working from a
1319 : * targetlist describing the index columns.
1320 : */
1321 : static Plan *
1322 15266 : set_indexonlyscan_references(PlannerInfo *root,
1323 : IndexOnlyScan *plan,
1324 : int rtoffset)
1325 : {
1326 : indexed_tlist *index_itlist;
1327 : List *stripped_indextlist;
1328 : ListCell *lc;
1329 :
1330 : /*
1331 : * Vars in the plan node's targetlist, qual, and recheckqual must only
1332 : * reference columns that the index AM can actually return. To ensure
1333 : * this, remove non-returnable columns (which are marked as resjunk) from
1334 : * the indexed tlist. We can just drop them because the indexed_tlist
1335 : * machinery pays attention to TLE resnos, not physical list position.
1336 : */
1337 15266 : stripped_indextlist = NIL;
1338 35966 : foreach(lc, plan->indextlist)
1339 : {
1340 20700 : TargetEntry *indextle = (TargetEntry *) lfirst(lc);
1341 :
1342 20700 : if (!indextle->resjunk)
1343 20648 : stripped_indextlist = lappend(stripped_indextlist, indextle);
1344 : }
1345 :
1346 15266 : index_itlist = build_tlist_index(stripped_indextlist);
1347 :
1348 15266 : plan->scan.scanrelid += rtoffset;
1349 15266 : plan->scan.plan.targetlist = (List *)
1350 15266 : fix_upper_expr(root,
1351 15266 : (Node *) plan->scan.plan.targetlist,
1352 : index_itlist,
1353 : INDEX_VAR,
1354 : rtoffset,
1355 : NRM_EQUAL,
1356 : NUM_EXEC_TLIST((Plan *) plan));
1357 15266 : plan->scan.plan.qual = (List *)
1358 15266 : fix_upper_expr(root,
1359 15266 : (Node *) plan->scan.plan.qual,
1360 : index_itlist,
1361 : INDEX_VAR,
1362 : rtoffset,
1363 : NRM_EQUAL,
1364 15266 : NUM_EXEC_QUAL((Plan *) plan));
1365 15266 : plan->recheckqual = (List *)
1366 15266 : fix_upper_expr(root,
1367 15266 : (Node *) plan->recheckqual,
1368 : index_itlist,
1369 : INDEX_VAR,
1370 : rtoffset,
1371 : NRM_EQUAL,
1372 15266 : NUM_EXEC_QUAL((Plan *) plan));
1373 : /* indexqual is already transformed to reference index columns */
1374 15266 : plan->indexqual = fix_scan_list(root, plan->indexqual,
1375 : rtoffset, 1);
1376 : /* indexorderby is already transformed to reference index columns */
1377 15266 : plan->indexorderby = fix_scan_list(root, plan->indexorderby,
1378 : rtoffset, 1);
1379 : /* indextlist must NOT be transformed to reference index columns */
1380 15266 : plan->indextlist = fix_scan_list(root, plan->indextlist,
1381 : rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1382 :
1383 15266 : pfree(index_itlist);
1384 :
1385 15266 : return (Plan *) plan;
1386 : }
1387 :
1388 : /*
1389 : * set_subqueryscan_references
1390 : * Do set_plan_references processing on a SubqueryScan
1391 : *
1392 : * We try to strip out the SubqueryScan entirely; if we can't, we have
1393 : * to do the normal processing on it.
1394 : */
1395 : static Plan *
1396 22574 : set_subqueryscan_references(PlannerInfo *root,
1397 : SubqueryScan *plan,
1398 : int rtoffset)
1399 : {
1400 : RelOptInfo *rel;
1401 : Plan *result;
1402 :
1403 : /* Need to look up the subquery's RelOptInfo, since we need its subroot */
1404 22574 : rel = find_base_rel(root, plan->scan.scanrelid);
1405 :
1406 : /* Recursively process the subplan */
1407 22574 : plan->subplan = set_plan_references(rel->subroot, plan->subplan);
1408 :
1409 22574 : if (trivial_subqueryscan(plan))
1410 : {
1411 : /*
1412 : * We can omit the SubqueryScan node and just pull up the subplan.
1413 : */
1414 12596 : result = clean_up_removed_plan_level((Plan *) plan, plan->subplan);
1415 : }
1416 : else
1417 : {
1418 : /*
1419 : * Keep the SubqueryScan node. We have to do the processing that
1420 : * set_plan_references would otherwise have done on it. Notice we do
1421 : * not do set_upper_references() here, because a SubqueryScan will
1422 : * always have been created with correct references to its subplan's
1423 : * outputs to begin with.
1424 : */
1425 9978 : plan->scan.scanrelid += rtoffset;
1426 9978 : plan->scan.plan.targetlist =
1427 9978 : fix_scan_list(root, plan->scan.plan.targetlist,
1428 : rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1429 9978 : plan->scan.plan.qual =
1430 9978 : fix_scan_list(root, plan->scan.plan.qual,
1431 : rtoffset, NUM_EXEC_QUAL((Plan *) plan));
1432 :
1433 9978 : result = (Plan *) plan;
1434 : }
1435 :
1436 22574 : return result;
1437 : }
1438 :
1439 : /*
1440 : * trivial_subqueryscan
1441 : * Detect whether a SubqueryScan can be deleted from the plan tree.
1442 : *
1443 : * We can delete it if it has no qual to check and the targetlist just
1444 : * regurgitates the output of the child plan.
1445 : *
1446 : * This can be called from mark_async_capable_plan(), a helper function for
1447 : * create_append_plan(), before set_subqueryscan_references(), to determine
1448 : * triviality of a SubqueryScan that is a child of an Append node. So we
1449 : * cache the result in the SubqueryScan node to avoid repeated computation.
1450 : *
1451 : * Note: when called from mark_async_capable_plan(), we determine the result
1452 : * before running finalize_plan() on the SubqueryScan node (if needed) and
1453 : * set_plan_references() on the subplan tree, but this would be safe, because
1454 : * 1) finalize_plan() doesn't modify the tlist or quals for the SubqueryScan
1455 : * node (or that for any plan node in the subplan tree), and
1456 : * 2) set_plan_references() modifies the tlist for every plan node in the
1457 : * subplan tree, but keeps const/resjunk columns as const/resjunk ones and
1458 : * preserves the length and order of the tlist, and
1459 : * 3) set_plan_references() might delete the topmost plan node like an Append
1460 : * or MergeAppend from the subplan tree and pull up the child plan node,
1461 : * but in that case, the tlist for the child plan node exactly matches the
1462 : * parent.
1463 : */
1464 : bool
1465 32388 : trivial_subqueryscan(SubqueryScan *plan)
1466 : {
1467 : int attrno;
1468 : ListCell *lp,
1469 : *lc;
1470 :
1471 : /* We might have detected this already; in which case reuse the result */
1472 32388 : if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1473 3678 : return true;
1474 28710 : if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1475 6136 : return false;
1476 : Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1477 : /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1478 22574 : plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1479 :
1480 22574 : if (plan->scan.plan.qual != NIL)
1481 658 : return false;
1482 :
1483 43832 : if (list_length(plan->scan.plan.targetlist) !=
1484 21916 : list_length(plan->subplan->targetlist))
1485 1864 : return false; /* tlists not same length */
1486 :
1487 20052 : attrno = 1;
1488 63114 : forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1489 : {
1490 50518 : TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1491 50518 : TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1492 :
1493 50518 : if (ptle->resjunk != ctle->resjunk)
1494 7456 : return false; /* tlist doesn't match junk status */
1495 :
1496 : /*
1497 : * We accept either a Var referencing the corresponding element of the
1498 : * subplan tlist, or a Const equaling the subplan element. See
1499 : * generate_setop_tlist() for motivation.
1500 : */
1501 50494 : if (ptle->expr && IsA(ptle->expr, Var))
1502 40570 : {
1503 40766 : Var *var = (Var *) ptle->expr;
1504 :
1505 : Assert(var->varno == plan->scan.scanrelid);
1506 : Assert(var->varlevelsup == 0);
1507 40766 : if (var->varattno != attrno)
1508 196 : return false; /* out of order */
1509 : }
1510 9728 : else if (ptle->expr && IsA(ptle->expr, Const))
1511 : {
1512 8460 : if (!equal(ptle->expr, ctle->expr))
1513 5968 : return false;
1514 : }
1515 : else
1516 1268 : return false;
1517 :
1518 43062 : attrno++;
1519 : }
1520 :
1521 : /* Re-mark the SubqueryScan as deletable from the plan tree */
1522 12596 : plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1523 :
1524 12596 : return true;
1525 : }
1526 :
1527 : /*
1528 : * clean_up_removed_plan_level
1529 : * Do necessary cleanup when we strip out a SubqueryScan, Append, etc
1530 : *
1531 : * We are dropping the "parent" plan in favor of returning just its "child".
1532 : * A few small tweaks are needed.
1533 : */
1534 : static Plan *
1535 18960 : clean_up_removed_plan_level(Plan *parent, Plan *child)
1536 : {
1537 : /*
1538 : * We have to be sure we don't lose any initplans, so move any that were
1539 : * attached to the parent plan to the child. If any are parallel-unsafe,
1540 : * the child is no longer parallel-safe. As a cosmetic matter, also add
1541 : * the initplans' run costs to the child's costs.
1542 : */
1543 18960 : if (parent->initPlan)
1544 : {
1545 : Cost initplan_cost;
1546 : bool unsafe_initplans;
1547 :
1548 36 : SS_compute_initplan_cost(parent->initPlan,
1549 : &initplan_cost, &unsafe_initplans);
1550 36 : child->startup_cost += initplan_cost;
1551 36 : child->total_cost += initplan_cost;
1552 36 : if (unsafe_initplans)
1553 18 : child->parallel_safe = false;
1554 :
1555 : /*
1556 : * Attach plans this way so that parent's initplans are processed
1557 : * before any pre-existing initplans of the child. Probably doesn't
1558 : * matter, but let's preserve the ordering just in case.
1559 : */
1560 36 : child->initPlan = list_concat(parent->initPlan,
1561 36 : child->initPlan);
1562 : }
1563 :
1564 : /*
1565 : * We also have to transfer the parent's column labeling info into the
1566 : * child, else columns sent to client will be improperly labeled if this
1567 : * is the topmost plan level. resjunk and so on may be important too.
1568 : */
1569 18960 : apply_tlist_labeling(child->targetlist, parent->targetlist);
1570 :
1571 18960 : return child;
1572 : }
1573 :
1574 : /*
1575 : * set_foreignscan_references
1576 : * Do set_plan_references processing on a ForeignScan
1577 : */
1578 : static void
1579 1980 : set_foreignscan_references(PlannerInfo *root,
1580 : ForeignScan *fscan,
1581 : int rtoffset)
1582 : {
1583 : /* Adjust scanrelid if it's valid */
1584 1980 : if (fscan->scan.scanrelid > 0)
1585 1428 : fscan->scan.scanrelid += rtoffset;
1586 :
1587 1980 : if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0)
1588 552 : {
1589 : /*
1590 : * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference
1591 : * foreign scan tuple
1592 : */
1593 552 : indexed_tlist *itlist = build_tlist_index(fscan->fdw_scan_tlist);
1594 :
1595 552 : fscan->scan.plan.targetlist = (List *)
1596 552 : fix_upper_expr(root,
1597 552 : (Node *) fscan->scan.plan.targetlist,
1598 : itlist,
1599 : INDEX_VAR,
1600 : rtoffset,
1601 : NRM_EQUAL,
1602 : NUM_EXEC_TLIST((Plan *) fscan));
1603 552 : fscan->scan.plan.qual = (List *)
1604 552 : fix_upper_expr(root,
1605 552 : (Node *) fscan->scan.plan.qual,
1606 : itlist,
1607 : INDEX_VAR,
1608 : rtoffset,
1609 : NRM_EQUAL,
1610 552 : NUM_EXEC_QUAL((Plan *) fscan));
1611 552 : fscan->fdw_exprs = (List *)
1612 552 : fix_upper_expr(root,
1613 552 : (Node *) fscan->fdw_exprs,
1614 : itlist,
1615 : INDEX_VAR,
1616 : rtoffset,
1617 : NRM_EQUAL,
1618 552 : NUM_EXEC_QUAL((Plan *) fscan));
1619 552 : fscan->fdw_recheck_quals = (List *)
1620 552 : fix_upper_expr(root,
1621 552 : (Node *) fscan->fdw_recheck_quals,
1622 : itlist,
1623 : INDEX_VAR,
1624 : rtoffset,
1625 : NRM_EQUAL,
1626 552 : NUM_EXEC_QUAL((Plan *) fscan));
1627 552 : pfree(itlist);
1628 : /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */
1629 552 : fscan->fdw_scan_tlist =
1630 552 : fix_scan_list(root, fscan->fdw_scan_tlist,
1631 : rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1632 : }
1633 : else
1634 : {
1635 : /*
1636 : * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard
1637 : * way
1638 : */
1639 1428 : fscan->scan.plan.targetlist =
1640 1428 : fix_scan_list(root, fscan->scan.plan.targetlist,
1641 : rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1642 1428 : fscan->scan.plan.qual =
1643 1428 : fix_scan_list(root, fscan->scan.plan.qual,
1644 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1645 1428 : fscan->fdw_exprs =
1646 1428 : fix_scan_list(root, fscan->fdw_exprs,
1647 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1648 1428 : fscan->fdw_recheck_quals =
1649 1428 : fix_scan_list(root, fscan->fdw_recheck_quals,
1650 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1651 : }
1652 :
1653 1980 : fscan->fs_relids = offset_relid_set(fscan->fs_relids, rtoffset);
1654 1980 : fscan->fs_base_relids = offset_relid_set(fscan->fs_base_relids, rtoffset);
1655 :
1656 : /* Adjust resultRelation if it's valid */
1657 1980 : if (fscan->resultRelation > 0)
1658 208 : fscan->resultRelation += rtoffset;
1659 1980 : }
1660 :
1661 : /*
1662 : * set_customscan_references
1663 : * Do set_plan_references processing on a CustomScan
1664 : */
1665 : static void
1666 0 : set_customscan_references(PlannerInfo *root,
1667 : CustomScan *cscan,
1668 : int rtoffset)
1669 : {
1670 : ListCell *lc;
1671 :
1672 : /* Adjust scanrelid if it's valid */
1673 0 : if (cscan->scan.scanrelid > 0)
1674 0 : cscan->scan.scanrelid += rtoffset;
1675 :
1676 0 : if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0)
1677 0 : {
1678 : /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */
1679 0 : indexed_tlist *itlist = build_tlist_index(cscan->custom_scan_tlist);
1680 :
1681 0 : cscan->scan.plan.targetlist = (List *)
1682 0 : fix_upper_expr(root,
1683 0 : (Node *) cscan->scan.plan.targetlist,
1684 : itlist,
1685 : INDEX_VAR,
1686 : rtoffset,
1687 : NRM_EQUAL,
1688 : NUM_EXEC_TLIST((Plan *) cscan));
1689 0 : cscan->scan.plan.qual = (List *)
1690 0 : fix_upper_expr(root,
1691 0 : (Node *) cscan->scan.plan.qual,
1692 : itlist,
1693 : INDEX_VAR,
1694 : rtoffset,
1695 : NRM_EQUAL,
1696 0 : NUM_EXEC_QUAL((Plan *) cscan));
1697 0 : cscan->custom_exprs = (List *)
1698 0 : fix_upper_expr(root,
1699 0 : (Node *) cscan->custom_exprs,
1700 : itlist,
1701 : INDEX_VAR,
1702 : rtoffset,
1703 : NRM_EQUAL,
1704 0 : NUM_EXEC_QUAL((Plan *) cscan));
1705 0 : pfree(itlist);
1706 : /* custom_scan_tlist itself just needs fix_scan_list() adjustments */
1707 0 : cscan->custom_scan_tlist =
1708 0 : fix_scan_list(root, cscan->custom_scan_tlist,
1709 : rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1710 : }
1711 : else
1712 : {
1713 : /* Adjust tlist, qual, custom_exprs in the standard way */
1714 0 : cscan->scan.plan.targetlist =
1715 0 : fix_scan_list(root, cscan->scan.plan.targetlist,
1716 : rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1717 0 : cscan->scan.plan.qual =
1718 0 : fix_scan_list(root, cscan->scan.plan.qual,
1719 : rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1720 0 : cscan->custom_exprs =
1721 0 : fix_scan_list(root, cscan->custom_exprs,
1722 : rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1723 : }
1724 :
1725 : /* Adjust child plan-nodes recursively, if needed */
1726 0 : foreach(lc, cscan->custom_plans)
1727 : {
1728 0 : lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset);
1729 : }
1730 :
1731 0 : cscan->custom_relids = offset_relid_set(cscan->custom_relids, rtoffset);
1732 0 : }
1733 :
1734 : /*
1735 : * set_append_references
1736 : * Do set_plan_references processing on an Append
1737 : *
1738 : * We try to strip out the Append entirely; if we can't, we have
1739 : * to do the normal processing on it.
1740 : */
1741 : static Plan *
1742 19578 : set_append_references(PlannerInfo *root,
1743 : Append *aplan,
1744 : int rtoffset)
1745 : {
1746 : ListCell *l;
1747 :
1748 : /*
1749 : * Append, like Sort et al, doesn't actually evaluate its targetlist or
1750 : * check quals. If it's got exactly one child plan, then it's not doing
1751 : * anything useful at all, and we can strip it out.
1752 : */
1753 : Assert(aplan->plan.qual == NIL);
1754 :
1755 : /* First, we gotta recurse on the children */
1756 65010 : foreach(l, aplan->appendplans)
1757 : {
1758 45432 : lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1759 : }
1760 :
1761 : /*
1762 : * See if it's safe to get rid of the Append entirely. For this to be
1763 : * safe, there must be only one child plan and that child plan's parallel
1764 : * awareness must match the Append's. The reason for the latter is that
1765 : * if the Append is parallel aware and the child is not, then the calling
1766 : * plan may execute the non-parallel aware child multiple times. (If you
1767 : * change these rules, update create_append_path to match.)
1768 : */
1769 19578 : if (list_length(aplan->appendplans) == 1)
1770 : {
1771 6360 : Plan *p = (Plan *) linitial(aplan->appendplans);
1772 :
1773 6360 : if (p->parallel_aware == aplan->plan.parallel_aware)
1774 6360 : return clean_up_removed_plan_level((Plan *) aplan, p);
1775 : }
1776 :
1777 : /*
1778 : * Otherwise, clean up the Append as needed. It's okay to do this after
1779 : * recursing to the children, because set_dummy_tlist_references doesn't
1780 : * look at those.
1781 : */
1782 13218 : set_dummy_tlist_references((Plan *) aplan, rtoffset);
1783 :
1784 13218 : aplan->apprelids = offset_relid_set(aplan->apprelids, rtoffset);
1785 :
1786 13218 : if (aplan->part_prune_info)
1787 : {
1788 908 : foreach(l, aplan->part_prune_info->prune_infos)
1789 : {
1790 460 : List *prune_infos = lfirst(l);
1791 : ListCell *l2;
1792 :
1793 1316 : foreach(l2, prune_infos)
1794 : {
1795 856 : PartitionedRelPruneInfo *pinfo = lfirst(l2);
1796 :
1797 856 : pinfo->rtindex += rtoffset;
1798 856 : pinfo->initial_pruning_steps =
1799 856 : fix_scan_list(root, pinfo->initial_pruning_steps,
1800 : rtoffset, 1);
1801 856 : pinfo->exec_pruning_steps =
1802 856 : fix_scan_list(root, pinfo->exec_pruning_steps,
1803 : rtoffset, 1);
1804 : }
1805 : }
1806 : }
1807 :
1808 : /* We don't need to recurse to lefttree or righttree ... */
1809 : Assert(aplan->plan.lefttree == NULL);
1810 : Assert(aplan->plan.righttree == NULL);
1811 :
1812 13218 : return (Plan *) aplan;
1813 : }
1814 :
1815 : /*
1816 : * set_mergeappend_references
1817 : * Do set_plan_references processing on a MergeAppend
1818 : *
1819 : * We try to strip out the MergeAppend entirely; if we can't, we have
1820 : * to do the normal processing on it.
1821 : */
1822 : static Plan *
1823 512 : set_mergeappend_references(PlannerInfo *root,
1824 : MergeAppend *mplan,
1825 : int rtoffset)
1826 : {
1827 : ListCell *l;
1828 :
1829 : /*
1830 : * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist
1831 : * or check quals. If it's got exactly one child plan, then it's not
1832 : * doing anything useful at all, and we can strip it out.
1833 : */
1834 : Assert(mplan->plan.qual == NIL);
1835 :
1836 : /* First, we gotta recurse on the children */
1837 1948 : foreach(l, mplan->mergeplans)
1838 : {
1839 1436 : lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1840 : }
1841 :
1842 : /*
1843 : * See if it's safe to get rid of the MergeAppend entirely. For this to
1844 : * be safe, there must be only one child plan and that child plan's
1845 : * parallel awareness must match the MergeAppend's. The reason for the
1846 : * latter is that if the MergeAppend is parallel aware and the child is
1847 : * not, then the calling plan may execute the non-parallel aware child
1848 : * multiple times. (If you change these rules, update
1849 : * create_merge_append_path to match.)
1850 : */
1851 512 : if (list_length(mplan->mergeplans) == 1)
1852 : {
1853 4 : Plan *p = (Plan *) linitial(mplan->mergeplans);
1854 :
1855 4 : if (p->parallel_aware == mplan->plan.parallel_aware)
1856 4 : return clean_up_removed_plan_level((Plan *) mplan, p);
1857 : }
1858 :
1859 : /*
1860 : * Otherwise, clean up the MergeAppend as needed. It's okay to do this
1861 : * after recursing to the children, because set_dummy_tlist_references
1862 : * doesn't look at those.
1863 : */
1864 508 : set_dummy_tlist_references((Plan *) mplan, rtoffset);
1865 :
1866 508 : mplan->apprelids = offset_relid_set(mplan->apprelids, rtoffset);
1867 :
1868 508 : if (mplan->part_prune_info)
1869 : {
1870 48 : foreach(l, mplan->part_prune_info->prune_infos)
1871 : {
1872 24 : List *prune_infos = lfirst(l);
1873 : ListCell *l2;
1874 :
1875 48 : foreach(l2, prune_infos)
1876 : {
1877 24 : PartitionedRelPruneInfo *pinfo = lfirst(l2);
1878 :
1879 24 : pinfo->rtindex += rtoffset;
1880 24 : pinfo->initial_pruning_steps =
1881 24 : fix_scan_list(root, pinfo->initial_pruning_steps,
1882 : rtoffset, 1);
1883 24 : pinfo->exec_pruning_steps =
1884 24 : fix_scan_list(root, pinfo->exec_pruning_steps,
1885 : rtoffset, 1);
1886 : }
1887 : }
1888 : }
1889 :
1890 : /* We don't need to recurse to lefttree or righttree ... */
1891 : Assert(mplan->plan.lefttree == NULL);
1892 : Assert(mplan->plan.righttree == NULL);
1893 :
1894 508 : return (Plan *) mplan;
1895 : }
1896 :
1897 : /*
1898 : * set_hash_references
1899 : * Do set_plan_references processing on a Hash node
1900 : */
1901 : static void
1902 28866 : set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset)
1903 : {
1904 28866 : Hash *hplan = (Hash *) plan;
1905 28866 : Plan *outer_plan = plan->lefttree;
1906 : indexed_tlist *outer_itlist;
1907 :
1908 : /*
1909 : * Hash's hashkeys are used when feeding tuples into the hashtable,
1910 : * therefore have them reference Hash's outer plan (which itself is the
1911 : * inner plan of the HashJoin).
1912 : */
1913 28866 : outer_itlist = build_tlist_index(outer_plan->targetlist);
1914 28866 : hplan->hashkeys = (List *)
1915 28866 : fix_upper_expr(root,
1916 28866 : (Node *) hplan->hashkeys,
1917 : outer_itlist,
1918 : OUTER_VAR,
1919 : rtoffset,
1920 : NRM_EQUAL,
1921 28866 : NUM_EXEC_QUAL(plan));
1922 :
1923 : /* Hash doesn't project */
1924 28866 : set_dummy_tlist_references(plan, rtoffset);
1925 :
1926 : /* Hash nodes don't have their own quals */
1927 : Assert(plan->qual == NIL);
1928 28866 : }
1929 :
1930 : /*
1931 : * offset_relid_set
1932 : * Apply rtoffset to the members of a Relids set.
1933 : */
1934 : static Relids
1935 17686 : offset_relid_set(Relids relids, int rtoffset)
1936 : {
1937 17686 : Relids result = NULL;
1938 : int rtindex;
1939 :
1940 : /* If there's no offset to apply, we needn't recompute the value */
1941 17686 : if (rtoffset == 0)
1942 16292 : return relids;
1943 1394 : rtindex = -1;
1944 3562 : while ((rtindex = bms_next_member(relids, rtindex)) >= 0)
1945 2168 : result = bms_add_member(result, rtindex + rtoffset);
1946 1394 : return result;
1947 : }
1948 :
1949 : /*
1950 : * copyVar
1951 : * Copy a Var node.
1952 : *
1953 : * fix_scan_expr and friends do this enough times that it's worth having
1954 : * a bespoke routine instead of using the generic copyObject() function.
1955 : */
1956 : static inline Var *
1957 1691828 : copyVar(Var *var)
1958 : {
1959 1691828 : Var *newvar = (Var *) palloc(sizeof(Var));
1960 :
1961 1691828 : *newvar = *var;
1962 1691828 : return newvar;
1963 : }
1964 :
1965 : /*
1966 : * fix_expr_common
1967 : * Do generic set_plan_references processing on an expression node
1968 : *
1969 : * This is code that is common to all variants of expression-fixing.
1970 : * We must look up operator opcode info for OpExpr and related nodes,
1971 : * add OIDs from regclass Const nodes into root->glob->relationOids, and
1972 : * add PlanInvalItems for user-defined functions into root->glob->invalItems.
1973 : * We also fill in column index lists for GROUPING() expressions.
1974 : *
1975 : * We assume it's okay to update opcode info in-place. So this could possibly
1976 : * scribble on the planner's input data structures, but it's OK.
1977 : */
1978 : static void
1979 12775388 : fix_expr_common(PlannerInfo *root, Node *node)
1980 : {
1981 : /* We assume callers won't call us on a NULL pointer */
1982 12775388 : if (IsA(node, Aggref))
1983 : {
1984 51824 : record_plan_function_dependency(root,
1985 : ((Aggref *) node)->aggfnoid);
1986 : }
1987 12723564 : else if (IsA(node, WindowFunc))
1988 : {
1989 3392 : record_plan_function_dependency(root,
1990 : ((WindowFunc *) node)->winfnoid);
1991 : }
1992 12720172 : else if (IsA(node, FuncExpr))
1993 : {
1994 280222 : record_plan_function_dependency(root,
1995 : ((FuncExpr *) node)->funcid);
1996 : }
1997 12439950 : else if (IsA(node, OpExpr))
1998 : {
1999 797114 : set_opfuncid((OpExpr *) node);
2000 797114 : record_plan_function_dependency(root,
2001 : ((OpExpr *) node)->opfuncid);
2002 : }
2003 11642836 : else if (IsA(node, DistinctExpr))
2004 : {
2005 874 : set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2006 874 : record_plan_function_dependency(root,
2007 : ((DistinctExpr *) node)->opfuncid);
2008 : }
2009 11641962 : else if (IsA(node, NullIfExpr))
2010 : {
2011 106 : set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2012 106 : record_plan_function_dependency(root,
2013 : ((NullIfExpr *) node)->opfuncid);
2014 : }
2015 11641856 : else if (IsA(node, ScalarArrayOpExpr))
2016 : {
2017 32298 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
2018 :
2019 32298 : set_sa_opfuncid(saop);
2020 32298 : record_plan_function_dependency(root, saop->opfuncid);
2021 :
2022 32298 : if (OidIsValid(saop->hashfuncid))
2023 446 : record_plan_function_dependency(root, saop->hashfuncid);
2024 :
2025 32298 : if (OidIsValid(saop->negfuncid))
2026 70 : record_plan_function_dependency(root, saop->negfuncid);
2027 : }
2028 11609558 : else if (IsA(node, Const))
2029 : {
2030 1258836 : Const *con = (Const *) node;
2031 :
2032 : /* Check for regclass reference */
2033 1258836 : if (ISREGCLASSCONST(con))
2034 230468 : root->glob->relationOids =
2035 230468 : lappend_oid(root->glob->relationOids,
2036 : DatumGetObjectId(con->constvalue));
2037 : }
2038 10350722 : else if (IsA(node, GroupingFunc))
2039 : {
2040 350 : GroupingFunc *g = (GroupingFunc *) node;
2041 350 : AttrNumber *grouping_map = root->grouping_map;
2042 :
2043 : /* If there are no grouping sets, we don't need this. */
2044 :
2045 : Assert(grouping_map || g->cols == NIL);
2046 :
2047 350 : if (grouping_map)
2048 : {
2049 : ListCell *lc;
2050 260 : List *cols = NIL;
2051 :
2052 684 : foreach(lc, g->refs)
2053 : {
2054 424 : cols = lappend_int(cols, grouping_map[lfirst_int(lc)]);
2055 : }
2056 :
2057 : Assert(!g->cols || equal(cols, g->cols));
2058 :
2059 260 : if (!g->cols)
2060 260 : g->cols = cols;
2061 : }
2062 : }
2063 12775388 : }
2064 :
2065 : /*
2066 : * fix_param_node
2067 : * Do set_plan_references processing on a Param
2068 : *
2069 : * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from
2070 : * root->multiexpr_params; otherwise no change is needed.
2071 : * Just for paranoia's sake, we make a copy of the node in either case.
2072 : */
2073 : static Node *
2074 90414 : fix_param_node(PlannerInfo *root, Param *p)
2075 : {
2076 90414 : if (p->paramkind == PARAM_MULTIEXPR)
2077 : {
2078 286 : int subqueryid = p->paramid >> 16;
2079 286 : int colno = p->paramid & 0xFFFF;
2080 : List *params;
2081 :
2082 572 : if (subqueryid <= 0 ||
2083 286 : subqueryid > list_length(root->multiexpr_params))
2084 0 : elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2085 286 : params = (List *) list_nth(root->multiexpr_params, subqueryid - 1);
2086 286 : if (colno <= 0 || colno > list_length(params))
2087 0 : elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2088 286 : return copyObject(list_nth(params, colno - 1));
2089 : }
2090 90128 : return (Node *) copyObject(p);
2091 : }
2092 :
2093 : /*
2094 : * fix_alternative_subplan
2095 : * Do set_plan_references processing on an AlternativeSubPlan
2096 : *
2097 : * Choose one of the alternative implementations and return just that one,
2098 : * discarding the rest of the AlternativeSubPlan structure.
2099 : * Note: caller must still recurse into the result!
2100 : *
2101 : * We don't make any attempt to fix up cost estimates in the parent plan
2102 : * node or higher-level nodes.
2103 : */
2104 : static Node *
2105 1636 : fix_alternative_subplan(PlannerInfo *root, AlternativeSubPlan *asplan,
2106 : double num_exec)
2107 : {
2108 1636 : SubPlan *bestplan = NULL;
2109 1636 : Cost bestcost = 0;
2110 : ListCell *lc;
2111 :
2112 : /*
2113 : * Compute the estimated cost of each subplan assuming num_exec
2114 : * executions, and keep the cheapest one. In event of exact equality of
2115 : * estimates, we prefer the later plan; this is a bit arbitrary, but in
2116 : * current usage it biases us to break ties against fast-start subplans.
2117 : */
2118 : Assert(asplan->subplans != NIL);
2119 :
2120 4908 : foreach(lc, asplan->subplans)
2121 : {
2122 3272 : SubPlan *curplan = (SubPlan *) lfirst(lc);
2123 : Cost curcost;
2124 :
2125 3272 : curcost = curplan->startup_cost + num_exec * curplan->per_call_cost;
2126 3272 : if (bestplan == NULL || curcost <= bestcost)
2127 : {
2128 2216 : bestplan = curplan;
2129 2216 : bestcost = curcost;
2130 : }
2131 :
2132 : /* Also mark all subplans that are in AlternativeSubPlans */
2133 3272 : root->isAltSubplan[curplan->plan_id - 1] = true;
2134 : }
2135 :
2136 : /* Mark the subplan we selected */
2137 1636 : root->isUsedSubplan[bestplan->plan_id - 1] = true;
2138 :
2139 1636 : return (Node *) bestplan;
2140 : }
2141 :
2142 : /*
2143 : * fix_scan_expr
2144 : * Do set_plan_references processing on a scan-level expression
2145 : *
2146 : * This consists of incrementing all Vars' varnos by rtoffset,
2147 : * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars,
2148 : * replacing Aggref nodes that should be replaced by initplan output Params,
2149 : * choosing the best implementation for AlternativeSubPlans,
2150 : * looking up operator opcode info for OpExpr and related nodes,
2151 : * and adding OIDs from regclass Const nodes into root->glob->relationOids.
2152 : *
2153 : * 'node': the expression to be modified
2154 : * 'rtoffset': how much to increment varnos by
2155 : * 'num_exec': estimated number of executions of expression
2156 : *
2157 : * The expression tree is either copied-and-modified, or modified in-place
2158 : * if that seems safe.
2159 : */
2160 : static Node *
2161 2272186 : fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset, double num_exec)
2162 : {
2163 : fix_scan_expr_context context;
2164 :
2165 2272186 : context.root = root;
2166 2272186 : context.rtoffset = rtoffset;
2167 2272186 : context.num_exec = num_exec;
2168 :
2169 2272186 : if (rtoffset != 0 ||
2170 1956432 : root->multiexpr_params != NIL ||
2171 1955850 : root->glob->lastPHId != 0 ||
2172 1946842 : root->minmax_aggs != NIL ||
2173 1946068 : root->hasAlternativeSubPlans)
2174 : {
2175 338462 : return fix_scan_expr_mutator(node, &context);
2176 : }
2177 : else
2178 : {
2179 : /*
2180 : * If rtoffset == 0, we don't need to change any Vars, and if there
2181 : * are no MULTIEXPR subqueries then we don't need to replace
2182 : * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere
2183 : * we won't need to remove them, and if there are no minmax Aggrefs we
2184 : * won't need to replace them, and if there are no AlternativeSubPlans
2185 : * we won't need to remove them. Then it's OK to just scribble on the
2186 : * input node tree instead of copying (since the only change, filling
2187 : * in any unset opfuncid fields, is harmless). This saves just enough
2188 : * cycles to be noticeable on trivial queries.
2189 : */
2190 1933724 : (void) fix_scan_expr_walker(node, &context);
2191 1933724 : return node;
2192 : }
2193 : }
2194 :
2195 : static Node *
2196 2141748 : fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context)
2197 : {
2198 2141748 : if (node == NULL)
2199 131348 : return NULL;
2200 2010400 : if (IsA(node, Var))
2201 : {
2202 696394 : Var *var = copyVar((Var *) node);
2203 :
2204 : Assert(var->varlevelsup == 0);
2205 :
2206 : /*
2207 : * We should not see Vars marked INNER_VAR, OUTER_VAR, or ROWID_VAR.
2208 : * But an indexqual expression could contain INDEX_VAR Vars.
2209 : */
2210 : Assert(var->varno != INNER_VAR);
2211 : Assert(var->varno != OUTER_VAR);
2212 : Assert(var->varno != ROWID_VAR);
2213 696394 : if (!IS_SPECIAL_VARNO(var->varno))
2214 657592 : var->varno += context->rtoffset;
2215 696394 : if (var->varnosyn > 0)
2216 695458 : var->varnosyn += context->rtoffset;
2217 696394 : return (Node *) var;
2218 : }
2219 1314006 : if (IsA(node, Param))
2220 78756 : return fix_param_node(context->root, (Param *) node);
2221 1235250 : if (IsA(node, Aggref))
2222 : {
2223 442 : Aggref *aggref = (Aggref *) node;
2224 : Param *aggparam;
2225 :
2226 : /* See if the Aggref should be replaced by a Param */
2227 442 : aggparam = find_minmax_agg_replacement_param(context->root, aggref);
2228 442 : if (aggparam != NULL)
2229 : {
2230 : /* Make a copy of the Param for paranoia's sake */
2231 412 : return (Node *) copyObject(aggparam);
2232 : }
2233 : /* If no match, just fall through to process it normally */
2234 : }
2235 1234838 : if (IsA(node, CurrentOfExpr))
2236 : {
2237 0 : CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node);
2238 :
2239 : Assert(!IS_SPECIAL_VARNO(cexpr->cvarno));
2240 0 : cexpr->cvarno += context->rtoffset;
2241 0 : return (Node *) cexpr;
2242 : }
2243 1234838 : if (IsA(node, PlaceHolderVar))
2244 : {
2245 : /* At scan level, we should always just evaluate the contained expr */
2246 1530 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
2247 :
2248 : /* XXX can we assert something about phnullingrels? */
2249 1530 : return fix_scan_expr_mutator((Node *) phv->phexpr, context);
2250 : }
2251 1233308 : if (IsA(node, AlternativeSubPlan))
2252 288 : return fix_scan_expr_mutator(fix_alternative_subplan(context->root,
2253 : (AlternativeSubPlan *) node,
2254 : context->num_exec),
2255 : context);
2256 1233020 : fix_expr_common(context->root, node);
2257 1233020 : return expression_tree_mutator(node, fix_scan_expr_mutator, context);
2258 : }
2259 :
2260 : static bool
2261 10128844 : fix_scan_expr_walker(Node *node, fix_scan_expr_context *context)
2262 : {
2263 10128844 : if (node == NULL)
2264 1026780 : return false;
2265 : Assert(!(IsA(node, Var) && ((Var *) node)->varno == ROWID_VAR));
2266 : Assert(!IsA(node, PlaceHolderVar));
2267 : Assert(!IsA(node, AlternativeSubPlan));
2268 9102064 : fix_expr_common(context->root, node);
2269 9102064 : return expression_tree_walker(node, fix_scan_expr_walker, context);
2270 : }
2271 :
2272 : /*
2273 : * set_join_references
2274 : * Modify the target list and quals of a join node to reference its
2275 : * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting
2276 : * attno values to the result domain number of either the corresponding
2277 : * outer or inner join tuple item. Also perform opcode lookup for these
2278 : * expressions, and add regclass OIDs to root->glob->relationOids.
2279 : */
2280 : static void
2281 119750 : set_join_references(PlannerInfo *root, Join *join, int rtoffset)
2282 : {
2283 119750 : Plan *outer_plan = join->plan.lefttree;
2284 119750 : Plan *inner_plan = join->plan.righttree;
2285 : indexed_tlist *outer_itlist;
2286 : indexed_tlist *inner_itlist;
2287 :
2288 119750 : outer_itlist = build_tlist_index(outer_plan->targetlist);
2289 119750 : inner_itlist = build_tlist_index(inner_plan->targetlist);
2290 :
2291 : /*
2292 : * First process the joinquals (including merge or hash clauses). These
2293 : * are logically below the join so they can always use all values
2294 : * available from the input tlists. It's okay to also handle
2295 : * NestLoopParams now, because those couldn't refer to nullable
2296 : * subexpressions.
2297 : */
2298 239500 : join->joinqual = fix_join_expr(root,
2299 : join->joinqual,
2300 : outer_itlist,
2301 : inner_itlist,
2302 : (Index) 0,
2303 : rtoffset,
2304 : NRM_EQUAL,
2305 119750 : NUM_EXEC_QUAL((Plan *) join));
2306 :
2307 : /* Now do join-type-specific stuff */
2308 119750 : if (IsA(join, NestLoop))
2309 : {
2310 83790 : NestLoop *nl = (NestLoop *) join;
2311 : ListCell *lc;
2312 :
2313 130014 : foreach(lc, nl->nestParams)
2314 : {
2315 46224 : NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
2316 :
2317 : /*
2318 : * Because we don't reparameterize parameterized paths to match
2319 : * the outer-join level at which they are used, Vars seen in the
2320 : * NestLoopParam expression may have nullingrels that are just a
2321 : * subset of those in the Vars actually available from the outer
2322 : * side. (Lateral references can also cause this, as explained in
2323 : * the comments for identify_current_nestloop_params.) Not
2324 : * checking this exactly is a bit grotty, but the work needed to
2325 : * make things match up perfectly seems well out of proportion to
2326 : * the value.
2327 : */
2328 92448 : nlp->paramval = (Var *) fix_upper_expr(root,
2329 46224 : (Node *) nlp->paramval,
2330 : outer_itlist,
2331 : OUTER_VAR,
2332 : rtoffset,
2333 : NRM_SUBSET,
2334 : NUM_EXEC_TLIST(outer_plan));
2335 : /* Check we replaced any PlaceHolderVar with simple Var */
2336 46224 : if (!(IsA(nlp->paramval, Var) &&
2337 46224 : nlp->paramval->varno == OUTER_VAR))
2338 0 : elog(ERROR, "NestLoopParam was not reduced to a simple Var");
2339 : }
2340 : }
2341 35960 : else if (IsA(join, MergeJoin))
2342 : {
2343 7094 : MergeJoin *mj = (MergeJoin *) join;
2344 :
2345 7094 : mj->mergeclauses = fix_join_expr(root,
2346 : mj->mergeclauses,
2347 : outer_itlist,
2348 : inner_itlist,
2349 : (Index) 0,
2350 : rtoffset,
2351 : NRM_EQUAL,
2352 7094 : NUM_EXEC_QUAL((Plan *) join));
2353 : }
2354 28866 : else if (IsA(join, HashJoin))
2355 : {
2356 28866 : HashJoin *hj = (HashJoin *) join;
2357 :
2358 57732 : hj->hashclauses = fix_join_expr(root,
2359 : hj->hashclauses,
2360 : outer_itlist,
2361 : inner_itlist,
2362 : (Index) 0,
2363 : rtoffset,
2364 : NRM_EQUAL,
2365 28866 : NUM_EXEC_QUAL((Plan *) join));
2366 :
2367 : /*
2368 : * HashJoin's hashkeys are used to look for matching tuples from its
2369 : * outer plan (not the Hash node!) in the hashtable.
2370 : */
2371 28866 : hj->hashkeys = (List *) fix_upper_expr(root,
2372 28866 : (Node *) hj->hashkeys,
2373 : outer_itlist,
2374 : OUTER_VAR,
2375 : rtoffset,
2376 : NRM_EQUAL,
2377 28866 : NUM_EXEC_QUAL((Plan *) join));
2378 : }
2379 :
2380 : /*
2381 : * Now we need to fix up the targetlist and qpqual, which are logically
2382 : * above the join. This means that, if it's not an inner join, any Vars
2383 : * and PHVs appearing here should have nullingrels that include the
2384 : * effects of the outer join, ie they will have nullingrels equal to the
2385 : * input Vars' nullingrels plus the bit added by the outer join. We don't
2386 : * currently have enough info available here to identify what that should
2387 : * be, so we just tell fix_join_expr to accept superset nullingrels
2388 : * matches instead of exact ones.
2389 : */
2390 119750 : join->plan.targetlist = fix_join_expr(root,
2391 : join->plan.targetlist,
2392 : outer_itlist,
2393 : inner_itlist,
2394 : (Index) 0,
2395 : rtoffset,
2396 119750 : (join->jointype == JOIN_INNER ? NRM_EQUAL : NRM_SUPERSET),
2397 : NUM_EXEC_TLIST((Plan *) join));
2398 119750 : join->plan.qual = fix_join_expr(root,
2399 : join->plan.qual,
2400 : outer_itlist,
2401 : inner_itlist,
2402 : (Index) 0,
2403 : rtoffset,
2404 119750 : (join->jointype == JOIN_INNER ? NRM_EQUAL : NRM_SUPERSET),
2405 119750 : NUM_EXEC_QUAL((Plan *) join));
2406 :
2407 119750 : pfree(outer_itlist);
2408 119750 : pfree(inner_itlist);
2409 119750 : }
2410 :
2411 : /*
2412 : * set_upper_references
2413 : * Update the targetlist and quals of an upper-level plan node
2414 : * to refer to the tuples returned by its lefttree subplan.
2415 : * Also perform opcode lookup for these expressions, and
2416 : * add regclass OIDs to root->glob->relationOids.
2417 : *
2418 : * This is used for single-input plan types like Agg, Group, Result.
2419 : *
2420 : * In most cases, we have to match up individual Vars in the tlist and
2421 : * qual expressions with elements of the subplan's tlist (which was
2422 : * generated by flattening these selfsame expressions, so it should have all
2423 : * the required variables). There is an important exception, however:
2424 : * depending on where we are in the plan tree, sort/group columns may have
2425 : * been pushed into the subplan tlist unflattened. If these values are also
2426 : * needed in the output then we want to reference the subplan tlist element
2427 : * rather than recomputing the expression.
2428 : */
2429 : static void
2430 62914 : set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset)
2431 : {
2432 62914 : Plan *subplan = plan->lefttree;
2433 : indexed_tlist *subplan_itlist;
2434 : List *output_targetlist;
2435 : ListCell *l;
2436 :
2437 62914 : subplan_itlist = build_tlist_index(subplan->targetlist);
2438 :
2439 : /*
2440 : * If it's a grouping node with grouping sets, any Vars and PHVs appearing
2441 : * in the targetlist and quals should have nullingrels that include the
2442 : * effects of the grouping step, ie they will have nullingrels equal to
2443 : * the input Vars/PHVs' nullingrels plus the RT index of the grouping
2444 : * step. In order to perform exact nullingrels matches, we remove the RT
2445 : * index of the grouping step first.
2446 : */
2447 62914 : if (IsA(plan, Agg) &&
2448 39424 : root->group_rtindex > 0 &&
2449 5288 : ((Agg *) plan)->groupingSets)
2450 : {
2451 800 : plan->targetlist = (List *)
2452 800 : remove_nulling_relids((Node *) plan->targetlist,
2453 800 : bms_make_singleton(root->group_rtindex),
2454 : NULL);
2455 800 : plan->qual = (List *)
2456 800 : remove_nulling_relids((Node *) plan->qual,
2457 800 : bms_make_singleton(root->group_rtindex),
2458 : NULL);
2459 : }
2460 :
2461 62914 : output_targetlist = NIL;
2462 168808 : foreach(l, plan->targetlist)
2463 : {
2464 105894 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2465 : Node *newexpr;
2466 :
2467 : /* If it's a sort/group item, first try to match by sortref */
2468 105894 : if (tle->ressortgroupref != 0)
2469 : {
2470 : newexpr = (Node *)
2471 33650 : search_indexed_tlist_for_sortgroupref(tle->expr,
2472 : tle->ressortgroupref,
2473 : subplan_itlist,
2474 : OUTER_VAR);
2475 33650 : if (!newexpr)
2476 19962 : newexpr = fix_upper_expr(root,
2477 19962 : (Node *) tle->expr,
2478 : subplan_itlist,
2479 : OUTER_VAR,
2480 : rtoffset,
2481 : NRM_EQUAL,
2482 : NUM_EXEC_TLIST(plan));
2483 : }
2484 : else
2485 72244 : newexpr = fix_upper_expr(root,
2486 72244 : (Node *) tle->expr,
2487 : subplan_itlist,
2488 : OUTER_VAR,
2489 : rtoffset,
2490 : NRM_EQUAL,
2491 : NUM_EXEC_TLIST(plan));
2492 105894 : tle = flatCopyTargetEntry(tle);
2493 105894 : tle->expr = (Expr *) newexpr;
2494 105894 : output_targetlist = lappend(output_targetlist, tle);
2495 : }
2496 62914 : plan->targetlist = output_targetlist;
2497 :
2498 62914 : plan->qual = (List *)
2499 62914 : fix_upper_expr(root,
2500 62914 : (Node *) plan->qual,
2501 : subplan_itlist,
2502 : OUTER_VAR,
2503 : rtoffset,
2504 : NRM_EQUAL,
2505 62914 : NUM_EXEC_QUAL(plan));
2506 :
2507 62914 : pfree(subplan_itlist);
2508 62914 : }
2509 :
2510 : /*
2511 : * set_param_references
2512 : * Initialize the initParam list in Gather or Gather merge node such that
2513 : * it contains reference of all the params that needs to be evaluated
2514 : * before execution of the node. It contains the initplan params that are
2515 : * being passed to the plan nodes below it.
2516 : */
2517 : static void
2518 1348 : set_param_references(PlannerInfo *root, Plan *plan)
2519 : {
2520 : Assert(IsA(plan, Gather) || IsA(plan, GatherMerge));
2521 :
2522 1348 : if (plan->lefttree->extParam)
2523 : {
2524 : PlannerInfo *proot;
2525 1264 : Bitmapset *initSetParam = NULL;
2526 : ListCell *l;
2527 :
2528 2702 : for (proot = root; proot != NULL; proot = proot->parent_root)
2529 : {
2530 1516 : foreach(l, proot->init_plans)
2531 : {
2532 78 : SubPlan *initsubplan = (SubPlan *) lfirst(l);
2533 : ListCell *l2;
2534 :
2535 156 : foreach(l2, initsubplan->setParam)
2536 : {
2537 78 : initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
2538 : }
2539 : }
2540 : }
2541 :
2542 : /*
2543 : * Remember the list of all external initplan params that are used by
2544 : * the children of Gather or Gather merge node.
2545 : */
2546 1264 : if (IsA(plan, Gather))
2547 934 : ((Gather *) plan)->initParam =
2548 934 : bms_intersect(plan->lefttree->extParam, initSetParam);
2549 : else
2550 330 : ((GatherMerge *) plan)->initParam =
2551 330 : bms_intersect(plan->lefttree->extParam, initSetParam);
2552 : }
2553 1348 : }
2554 :
2555 : /*
2556 : * Recursively scan an expression tree and convert Aggrefs to the proper
2557 : * intermediate form for combining aggregates. This means (1) replacing each
2558 : * one's argument list with a single argument that is the original Aggref
2559 : * modified to show partial aggregation and (2) changing the upper Aggref to
2560 : * show combining aggregation.
2561 : *
2562 : * After this step, set_upper_references will replace the partial Aggrefs
2563 : * with Vars referencing the lower Agg plan node's outputs, so that the final
2564 : * form seen by the executor is a combining Aggref with a Var as input.
2565 : *
2566 : * It's rather messy to postpone this step until setrefs.c; ideally it'd be
2567 : * done in createplan.c. The difficulty is that once we modify the Aggref
2568 : * expressions, they will no longer be equal() to their original form and
2569 : * so cross-plan-node-level matches will fail. So this has to happen after
2570 : * the plan node above the Agg has resolved its subplan references.
2571 : */
2572 : static Node *
2573 6126 : convert_combining_aggrefs(Node *node, void *context)
2574 : {
2575 6126 : if (node == NULL)
2576 680 : return NULL;
2577 5446 : if (IsA(node, Aggref))
2578 : {
2579 1402 : Aggref *orig_agg = (Aggref *) node;
2580 : Aggref *child_agg;
2581 : Aggref *parent_agg;
2582 :
2583 : /* Assert we've not chosen to partial-ize any unsupported cases */
2584 : Assert(orig_agg->aggorder == NIL);
2585 : Assert(orig_agg->aggdistinct == NIL);
2586 :
2587 : /*
2588 : * Since aggregate calls can't be nested, we needn't recurse into the
2589 : * arguments. But for safety, flat-copy the Aggref node itself rather
2590 : * than modifying it in-place.
2591 : */
2592 1402 : child_agg = makeNode(Aggref);
2593 1402 : memcpy(child_agg, orig_agg, sizeof(Aggref));
2594 :
2595 : /*
2596 : * For the parent Aggref, we want to copy all the fields of the
2597 : * original aggregate *except* the args list, which we'll replace
2598 : * below, and the aggfilter expression, which should be applied only
2599 : * by the child not the parent. Rather than explicitly knowing about
2600 : * all the other fields here, we can momentarily modify child_agg to
2601 : * provide a suitable source for copyObject.
2602 : */
2603 1402 : child_agg->args = NIL;
2604 1402 : child_agg->aggfilter = NULL;
2605 1402 : parent_agg = copyObject(child_agg);
2606 1402 : child_agg->args = orig_agg->args;
2607 1402 : child_agg->aggfilter = orig_agg->aggfilter;
2608 :
2609 : /*
2610 : * Now, set up child_agg to represent the first phase of partial
2611 : * aggregation. For now, assume serialization is required.
2612 : */
2613 1402 : mark_partial_aggref(child_agg, AGGSPLIT_INITIAL_SERIAL);
2614 :
2615 : /*
2616 : * And set up parent_agg to represent the second phase.
2617 : */
2618 1402 : parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg,
2619 : 1, NULL, false));
2620 1402 : mark_partial_aggref(parent_agg, AGGSPLIT_FINAL_DESERIAL);
2621 :
2622 1402 : return (Node *) parent_agg;
2623 : }
2624 4044 : return expression_tree_mutator(node, convert_combining_aggrefs, context);
2625 : }
2626 :
2627 : /*
2628 : * set_dummy_tlist_references
2629 : * Replace the targetlist of an upper-level plan node with a simple
2630 : * list of OUTER_VAR references to its child.
2631 : *
2632 : * This is used for plan types like Sort and Append that don't evaluate
2633 : * their targetlists. Although the executor doesn't care at all what's in
2634 : * the tlist, EXPLAIN needs it to be realistic.
2635 : *
2636 : * Note: we could almost use set_upper_references() here, but it fails for
2637 : * Append for lack of a lefttree subplan. Single-purpose code is faster
2638 : * anyway.
2639 : */
2640 : static void
2641 136212 : set_dummy_tlist_references(Plan *plan, int rtoffset)
2642 : {
2643 : List *output_targetlist;
2644 : ListCell *l;
2645 :
2646 136212 : output_targetlist = NIL;
2647 603950 : foreach(l, plan->targetlist)
2648 : {
2649 467738 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2650 467738 : Var *oldvar = (Var *) tle->expr;
2651 : Var *newvar;
2652 :
2653 : /*
2654 : * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts
2655 : * as Consts, not Vars referencing Consts. Here, there's no speed
2656 : * advantage to be had, but it makes EXPLAIN output look cleaner, and
2657 : * again it avoids confusing the executor.
2658 : */
2659 467738 : if (IsA(oldvar, Const))
2660 : {
2661 : /* just reuse the existing TLE node */
2662 8730 : output_targetlist = lappend(output_targetlist, tle);
2663 8730 : continue;
2664 : }
2665 :
2666 459008 : newvar = makeVar(OUTER_VAR,
2667 459008 : tle->resno,
2668 : exprType((Node *) oldvar),
2669 : exprTypmod((Node *) oldvar),
2670 : exprCollation((Node *) oldvar),
2671 : 0);
2672 459008 : if (IsA(oldvar, Var) &&
2673 366730 : oldvar->varnosyn > 0)
2674 : {
2675 329226 : newvar->varnosyn = oldvar->varnosyn + rtoffset;
2676 329226 : newvar->varattnosyn = oldvar->varattnosyn;
2677 : }
2678 : else
2679 : {
2680 129782 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
2681 129782 : newvar->varattnosyn = 0;
2682 : }
2683 :
2684 459008 : tle = flatCopyTargetEntry(tle);
2685 459008 : tle->expr = (Expr *) newvar;
2686 459008 : output_targetlist = lappend(output_targetlist, tle);
2687 : }
2688 136212 : plan->targetlist = output_targetlist;
2689 :
2690 : /* We don't touch plan->qual here */
2691 136212 : }
2692 :
2693 :
2694 : /*
2695 : * build_tlist_index --- build an index data structure for a child tlist
2696 : *
2697 : * In most cases, subplan tlists will be "flat" tlists with only Vars,
2698 : * so we try to optimize that case by extracting information about Vars
2699 : * in advance. Matching a parent tlist to a child is still an O(N^2)
2700 : * operation, but at least with a much smaller constant factor than plain
2701 : * tlist_member() searches.
2702 : *
2703 : * The result of this function is an indexed_tlist struct to pass to
2704 : * search_indexed_tlist_for_var() and siblings.
2705 : * When done, the indexed_tlist may be freed with a single pfree().
2706 : */
2707 : static indexed_tlist *
2708 352318 : build_tlist_index(List *tlist)
2709 : {
2710 : indexed_tlist *itlist;
2711 : tlist_vinfo *vinfo;
2712 : ListCell *l;
2713 :
2714 : /* Create data structure with enough slots for all tlist entries */
2715 : itlist = (indexed_tlist *)
2716 352318 : palloc(offsetof(indexed_tlist, vars) +
2717 352318 : list_length(tlist) * sizeof(tlist_vinfo));
2718 :
2719 352318 : itlist->tlist = tlist;
2720 352318 : itlist->has_ph_vars = false;
2721 352318 : itlist->has_non_vars = false;
2722 :
2723 : /* Find the Vars and fill in the index array */
2724 352318 : vinfo = itlist->vars;
2725 3376372 : foreach(l, tlist)
2726 : {
2727 3024054 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2728 :
2729 3024054 : if (tle->expr && IsA(tle->expr, Var))
2730 3009582 : {
2731 3009582 : Var *var = (Var *) tle->expr;
2732 :
2733 3009582 : vinfo->varno = var->varno;
2734 3009582 : vinfo->varattno = var->varattno;
2735 3009582 : vinfo->resno = tle->resno;
2736 3009582 : vinfo->varnullingrels = var->varnullingrels;
2737 3009582 : vinfo++;
2738 : }
2739 14472 : else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2740 2488 : itlist->has_ph_vars = true;
2741 : else
2742 11984 : itlist->has_non_vars = true;
2743 : }
2744 :
2745 352318 : itlist->num_vars = (vinfo - itlist->vars);
2746 :
2747 352318 : return itlist;
2748 : }
2749 :
2750 : /*
2751 : * build_tlist_index_other_vars --- build a restricted tlist index
2752 : *
2753 : * This is like build_tlist_index, but we only index tlist entries that
2754 : * are Vars belonging to some rel other than the one specified. We will set
2755 : * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars
2756 : * (so nothing other than Vars and PlaceHolderVars can be matched).
2757 : */
2758 : static indexed_tlist *
2759 3044 : build_tlist_index_other_vars(List *tlist, int ignore_rel)
2760 : {
2761 : indexed_tlist *itlist;
2762 : tlist_vinfo *vinfo;
2763 : ListCell *l;
2764 :
2765 : /* Create data structure with enough slots for all tlist entries */
2766 : itlist = (indexed_tlist *)
2767 3044 : palloc(offsetof(indexed_tlist, vars) +
2768 3044 : list_length(tlist) * sizeof(tlist_vinfo));
2769 :
2770 3044 : itlist->tlist = tlist;
2771 3044 : itlist->has_ph_vars = false;
2772 3044 : itlist->has_non_vars = false;
2773 :
2774 : /* Find the desired Vars and fill in the index array */
2775 3044 : vinfo = itlist->vars;
2776 11770 : foreach(l, tlist)
2777 : {
2778 8726 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2779 :
2780 8726 : if (tle->expr && IsA(tle->expr, Var))
2781 4756 : {
2782 4756 : Var *var = (Var *) tle->expr;
2783 :
2784 4756 : if (var->varno != ignore_rel)
2785 : {
2786 3564 : vinfo->varno = var->varno;
2787 3564 : vinfo->varattno = var->varattno;
2788 3564 : vinfo->resno = tle->resno;
2789 3564 : vinfo->varnullingrels = var->varnullingrels;
2790 3564 : vinfo++;
2791 : }
2792 : }
2793 3970 : else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2794 90 : itlist->has_ph_vars = true;
2795 : }
2796 :
2797 3044 : itlist->num_vars = (vinfo - itlist->vars);
2798 :
2799 3044 : return itlist;
2800 : }
2801 :
2802 : /*
2803 : * search_indexed_tlist_for_var --- find a Var in an indexed tlist
2804 : *
2805 : * If a match is found, return a copy of the given Var with suitably
2806 : * modified varno/varattno (to wit, newvarno and the resno of the TLE entry).
2807 : * Also ensure that varnosyn is incremented by rtoffset.
2808 : * If no match, return NULL.
2809 : *
2810 : * We cross-check the varnullingrels of the subplan output Var based on
2811 : * nrm_match. Most call sites should pass NRM_EQUAL indicating we expect
2812 : * an exact match. However, there are places where we haven't cleaned
2813 : * things up completely, and we have to settle for allowing subset or
2814 : * superset matches.
2815 : */
2816 : static Var *
2817 1291426 : search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist,
2818 : int newvarno, int rtoffset,
2819 : NullingRelsMatch nrm_match)
2820 : {
2821 1291426 : int varno = var->varno;
2822 1291426 : AttrNumber varattno = var->varattno;
2823 : tlist_vinfo *vinfo;
2824 : int i;
2825 :
2826 1291426 : vinfo = itlist->vars;
2827 1291426 : i = itlist->num_vars;
2828 9118302 : while (i-- > 0)
2829 : {
2830 8809084 : if (vinfo->varno == varno && vinfo->varattno == varattno)
2831 : {
2832 : /* Found a match */
2833 982208 : Var *newvar = copyVar(var);
2834 :
2835 : /*
2836 : * Verify that we kept all the nullingrels machinations straight.
2837 : *
2838 : * XXX we skip the check for system columns and whole-row Vars.
2839 : * That's because such Vars might be row identity Vars, which are
2840 : * generated without any varnullingrels. It'd be hard to do
2841 : * otherwise, since they're normally made very early in planning,
2842 : * when we haven't looked at the jointree yet and don't know which
2843 : * joins might null such Vars. Doesn't seem worth the expense to
2844 : * make them fully valid. (While it's slightly annoying that we
2845 : * thereby lose checking for user-written references to such
2846 : * columns, it seems unlikely that a bug in nullingrels logic
2847 : * would affect only system columns.)
2848 : */
2849 1936580 : if (!(varattno <= 0 ||
2850 : (nrm_match == NRM_SUBSET ?
2851 45684 : bms_is_subset(var->varnullingrels, vinfo->varnullingrels) :
2852 : nrm_match == NRM_SUPERSET ?
2853 285874 : bms_is_subset(vinfo->varnullingrels, var->varnullingrels) :
2854 622814 : bms_equal(vinfo->varnullingrels, var->varnullingrels))))
2855 0 : elog(ERROR, "wrong varnullingrels %s (expected %s) for Var %d/%d",
2856 : bmsToString(var->varnullingrels),
2857 : bmsToString(vinfo->varnullingrels),
2858 : varno, varattno);
2859 :
2860 982208 : newvar->varno = newvarno;
2861 982208 : newvar->varattno = vinfo->resno;
2862 982208 : if (newvar->varnosyn > 0)
2863 981628 : newvar->varnosyn += rtoffset;
2864 982208 : return newvar;
2865 : }
2866 7826876 : vinfo++;
2867 : }
2868 309218 : return NULL; /* no match */
2869 : }
2870 :
2871 : /*
2872 : * search_indexed_tlist_for_phv --- find a PlaceHolderVar in an indexed tlist
2873 : *
2874 : * If a match is found, return a Var constructed to reference the tlist item.
2875 : * If no match, return NULL.
2876 : *
2877 : * Cross-check phnullingrels as in search_indexed_tlist_for_var.
2878 : *
2879 : * NOTE: it is a waste of time to call this unless itlist->has_ph_vars.
2880 : */
2881 : static Var *
2882 2746 : search_indexed_tlist_for_phv(PlaceHolderVar *phv,
2883 : indexed_tlist *itlist, int newvarno,
2884 : NullingRelsMatch nrm_match)
2885 : {
2886 : ListCell *lc;
2887 :
2888 7224 : foreach(lc, itlist->tlist)
2889 : {
2890 6854 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
2891 :
2892 6854 : if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2893 : {
2894 3222 : PlaceHolderVar *subphv = (PlaceHolderVar *) tle->expr;
2895 : Var *newvar;
2896 :
2897 : /*
2898 : * Analogously to search_indexed_tlist_for_var, we match on phid
2899 : * only. We don't use equal(), partially for speed but mostly
2900 : * because phnullingrels might not be exactly equal.
2901 : */
2902 3222 : if (phv->phid != subphv->phid)
2903 846 : continue;
2904 :
2905 : /* Verify that we kept all the nullingrels machinations straight */
2906 4752 : if (!(nrm_match == NRM_SUBSET ?
2907 186 : bms_is_subset(phv->phnullingrels, subphv->phnullingrels) :
2908 : nrm_match == NRM_SUPERSET ?
2909 1542 : bms_is_subset(subphv->phnullingrels, phv->phnullingrels) :
2910 648 : bms_equal(subphv->phnullingrels, phv->phnullingrels)))
2911 0 : elog(ERROR, "wrong phnullingrels %s (expected %s) for PlaceHolderVar %d",
2912 : bmsToString(phv->phnullingrels),
2913 : bmsToString(subphv->phnullingrels),
2914 : phv->phid);
2915 :
2916 : /* Found a matching subplan output expression */
2917 2376 : newvar = makeVarFromTargetEntry(newvarno, tle);
2918 2376 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
2919 2376 : newvar->varattnosyn = 0;
2920 2376 : return newvar;
2921 : }
2922 : }
2923 370 : return NULL; /* no match */
2924 : }
2925 :
2926 : /*
2927 : * search_indexed_tlist_for_non_var --- find a non-Var/PHV in an indexed tlist
2928 : *
2929 : * If a match is found, return a Var constructed to reference the tlist item.
2930 : * If no match, return NULL.
2931 : *
2932 : * NOTE: it is a waste of time to call this unless itlist->has_non_vars.
2933 : */
2934 : static Var *
2935 26950 : search_indexed_tlist_for_non_var(Expr *node,
2936 : indexed_tlist *itlist, int newvarno)
2937 : {
2938 : TargetEntry *tle;
2939 :
2940 : /*
2941 : * If it's a simple Const, replacing it with a Var is silly, even if there
2942 : * happens to be an identical Const below; a Var is more expensive to
2943 : * execute than a Const. What's more, replacing it could confuse some
2944 : * places in the executor that expect to see simple Consts for, eg,
2945 : * dropped columns.
2946 : */
2947 26950 : if (IsA(node, Const))
2948 1928 : return NULL;
2949 :
2950 25022 : tle = tlist_member(node, itlist->tlist);
2951 25022 : if (tle)
2952 : {
2953 : /* Found a matching subplan output expression */
2954 : Var *newvar;
2955 :
2956 6858 : newvar = makeVarFromTargetEntry(newvarno, tle);
2957 6858 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
2958 6858 : newvar->varattnosyn = 0;
2959 6858 : return newvar;
2960 : }
2961 18164 : return NULL; /* no match */
2962 : }
2963 :
2964 : /*
2965 : * search_indexed_tlist_for_sortgroupref --- find a sort/group expression
2966 : *
2967 : * If a match is found, return a Var constructed to reference the tlist item.
2968 : * If no match, return NULL.
2969 : *
2970 : * This is needed to ensure that we select the right subplan TLE in cases
2971 : * where there are multiple textually-equal()-but-volatile sort expressions.
2972 : * And it's also faster than search_indexed_tlist_for_non_var.
2973 : */
2974 : static Var *
2975 33650 : search_indexed_tlist_for_sortgroupref(Expr *node,
2976 : Index sortgroupref,
2977 : indexed_tlist *itlist,
2978 : int newvarno)
2979 : {
2980 : ListCell *lc;
2981 :
2982 146752 : foreach(lc, itlist->tlist)
2983 : {
2984 126790 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
2985 :
2986 : /*
2987 : * Usually the equal() check is redundant, but in setop plans it may
2988 : * not be, since prepunion.c assigns ressortgroupref equal to the
2989 : * column resno without regard to whether that matches the topmost
2990 : * level's sortgrouprefs and without regard to whether any implicit
2991 : * coercions are added in the setop tree. We might have to clean that
2992 : * up someday; but for now, just ignore any false matches.
2993 : */
2994 140514 : if (tle->ressortgroupref == sortgroupref &&
2995 13724 : equal(node, tle->expr))
2996 : {
2997 : /* Found a matching subplan output expression */
2998 : Var *newvar;
2999 :
3000 13688 : newvar = makeVarFromTargetEntry(newvarno, tle);
3001 13688 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
3002 13688 : newvar->varattnosyn = 0;
3003 13688 : return newvar;
3004 : }
3005 : }
3006 19962 : return NULL; /* no match */
3007 : }
3008 :
3009 : /*
3010 : * fix_join_expr
3011 : * Create a new set of targetlist entries or join qual clauses by
3012 : * changing the varno/varattno values of variables in the clauses
3013 : * to reference target list values from the outer and inner join
3014 : * relation target lists. Also perform opcode lookup and add
3015 : * regclass OIDs to root->glob->relationOids.
3016 : *
3017 : * This is used in four different scenarios:
3018 : * 1) a normal join clause, where all the Vars in the clause *must* be
3019 : * replaced by OUTER_VAR or INNER_VAR references. In this case
3020 : * acceptable_rel should be zero so that any failure to match a Var will be
3021 : * reported as an error.
3022 : * 2) RETURNING clauses, which may contain both Vars of the target relation
3023 : * and Vars of other relations. In this case we want to replace the
3024 : * other-relation Vars by OUTER_VAR references, while leaving target Vars
3025 : * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the
3026 : * target relation should be passed.
3027 : * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are
3028 : * to be replaced with INNER_VAR references, while leaving target Vars (the
3029 : * to-be-updated relation) alone. Correspondingly inner_itlist is to be
3030 : * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target
3031 : * relation.
3032 : * 4) MERGE. In this case, references to the source relation are to be
3033 : * replaced with INNER_VAR references, leaving Vars of the target
3034 : * relation (the to-be-modified relation) alone. So inner_itlist is to be
3035 : * the source relation elements, outer_itlist = NULL and acceptable_rel
3036 : * the target relation.
3037 : *
3038 : * 'clauses' is the targetlist or list of join clauses
3039 : * 'outer_itlist' is the indexed target list of the outer join relation,
3040 : * or NULL
3041 : * 'inner_itlist' is the indexed target list of the inner join relation,
3042 : * or NULL
3043 : * 'acceptable_rel' is either zero or the rangetable index of a relation
3044 : * whose Vars may appear in the clause without provoking an error
3045 : * 'rtoffset': how much to increment varnos by
3046 : * 'nrm_match': as for search_indexed_tlist_for_var()
3047 : * 'num_exec': estimated number of executions of expression
3048 : *
3049 : * Returns the new expression tree. The original clause structure is
3050 : * not modified.
3051 : */
3052 : static List *
3053 408822 : fix_join_expr(PlannerInfo *root,
3054 : List *clauses,
3055 : indexed_tlist *outer_itlist,
3056 : indexed_tlist *inner_itlist,
3057 : Index acceptable_rel,
3058 : int rtoffset,
3059 : NullingRelsMatch nrm_match,
3060 : double num_exec)
3061 : {
3062 : fix_join_expr_context context;
3063 :
3064 408822 : context.root = root;
3065 408822 : context.outer_itlist = outer_itlist;
3066 408822 : context.inner_itlist = inner_itlist;
3067 408822 : context.acceptable_rel = acceptable_rel;
3068 408822 : context.rtoffset = rtoffset;
3069 408822 : context.nrm_match = nrm_match;
3070 408822 : context.num_exec = num_exec;
3071 408822 : return (List *) fix_join_expr_mutator((Node *) clauses, &context);
3072 : }
3073 :
3074 : static Node *
3075 2445430 : fix_join_expr_mutator(Node *node, fix_join_expr_context *context)
3076 : {
3077 : Var *newvar;
3078 :
3079 2445430 : if (node == NULL)
3080 255720 : return NULL;
3081 2189710 : if (IsA(node, Var))
3082 : {
3083 797190 : Var *var = (Var *) node;
3084 :
3085 : /*
3086 : * Verify that Vars with non-default varreturningtype only appear in
3087 : * the RETURNING list, and refer to the target relation.
3088 : */
3089 797190 : if (var->varreturningtype != VAR_RETURNING_DEFAULT)
3090 : {
3091 2518 : if (context->inner_itlist != NULL ||
3092 2518 : context->outer_itlist == NULL ||
3093 2518 : context->acceptable_rel == 0)
3094 0 : elog(ERROR, "variable returning old/new found outside RETURNING list");
3095 2518 : if (var->varno != context->acceptable_rel)
3096 0 : elog(ERROR, "wrong varno %d (expected %d) for variable returning old/new",
3097 : var->varno, context->acceptable_rel);
3098 : }
3099 :
3100 : /* Look for the var in the input tlists, first in the outer */
3101 797190 : if (context->outer_itlist)
3102 : {
3103 790226 : newvar = search_indexed_tlist_for_var(var,
3104 : context->outer_itlist,
3105 : OUTER_VAR,
3106 : context->rtoffset,
3107 : context->nrm_match);
3108 790226 : if (newvar)
3109 484172 : return (Node *) newvar;
3110 : }
3111 :
3112 : /* then in the inner. */
3113 313018 : if (context->inner_itlist)
3114 : {
3115 302956 : newvar = search_indexed_tlist_for_var(var,
3116 : context->inner_itlist,
3117 : INNER_VAR,
3118 : context->rtoffset,
3119 : context->nrm_match);
3120 302956 : if (newvar)
3121 299792 : return (Node *) newvar;
3122 : }
3123 :
3124 : /* If it's for acceptable_rel, adjust and return it */
3125 13226 : if (var->varno == context->acceptable_rel)
3126 : {
3127 13226 : var = copyVar(var);
3128 13226 : var->varno += context->rtoffset;
3129 13226 : if (var->varnosyn > 0)
3130 12564 : var->varnosyn += context->rtoffset;
3131 13226 : return (Node *) var;
3132 : }
3133 :
3134 : /* No referent found for Var */
3135 0 : elog(ERROR, "variable not found in subplan target lists");
3136 : }
3137 1392520 : if (IsA(node, PlaceHolderVar))
3138 : {
3139 2372 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
3140 :
3141 : /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3142 2372 : if (context->outer_itlist && context->outer_itlist->has_ph_vars)
3143 : {
3144 1002 : newvar = search_indexed_tlist_for_phv(phv,
3145 : context->outer_itlist,
3146 : OUTER_VAR,
3147 : context->nrm_match);
3148 1002 : if (newvar)
3149 686 : return (Node *) newvar;
3150 : }
3151 1686 : if (context->inner_itlist && context->inner_itlist->has_ph_vars)
3152 : {
3153 1392 : newvar = search_indexed_tlist_for_phv(phv,
3154 : context->inner_itlist,
3155 : INNER_VAR,
3156 : context->nrm_match);
3157 1392 : if (newvar)
3158 1338 : return (Node *) newvar;
3159 : }
3160 :
3161 : /* If not supplied by input plans, evaluate the contained expr */
3162 : /* XXX can we assert something about phnullingrels? */
3163 348 : return fix_join_expr_mutator((Node *) phv->phexpr, context);
3164 : }
3165 : /* Try matching more complex expressions too, if tlists have any */
3166 1390148 : if (context->outer_itlist && context->outer_itlist->has_non_vars)
3167 : {
3168 1200 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3169 : context->outer_itlist,
3170 : OUTER_VAR);
3171 1200 : if (newvar)
3172 78 : return (Node *) newvar;
3173 : }
3174 1390070 : if (context->inner_itlist && context->inner_itlist->has_non_vars)
3175 : {
3176 1156 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3177 : context->inner_itlist,
3178 : INNER_VAR);
3179 1156 : if (newvar)
3180 84 : return (Node *) newvar;
3181 : }
3182 : /* Special cases (apply only AFTER failing to match to lower tlist) */
3183 1389986 : if (IsA(node, Param))
3184 5244 : return fix_param_node(context->root, (Param *) node);
3185 1384742 : if (IsA(node, AlternativeSubPlan))
3186 1318 : return fix_join_expr_mutator(fix_alternative_subplan(context->root,
3187 : (AlternativeSubPlan *) node,
3188 : context->num_exec),
3189 : context);
3190 1383424 : fix_expr_common(context->root, node);
3191 1383424 : return expression_tree_mutator(node, fix_join_expr_mutator, context);
3192 : }
3193 :
3194 : /*
3195 : * fix_upper_expr
3196 : * Modifies an expression tree so that all Var nodes reference outputs
3197 : * of a subplan. Also looks for Aggref nodes that should be replaced
3198 : * by initplan output Params. Also performs opcode lookup, and adds
3199 : * regclass OIDs to root->glob->relationOids.
3200 : *
3201 : * This is used to fix up target and qual expressions of non-join upper-level
3202 : * plan nodes, as well as index-only scan nodes.
3203 : *
3204 : * An error is raised if no matching var can be found in the subplan tlist
3205 : * --- so this routine should only be applied to nodes whose subplans'
3206 : * targetlists were generated by flattening the expressions used in the
3207 : * parent node.
3208 : *
3209 : * If itlist->has_non_vars is true, then we try to match whole subexpressions
3210 : * against elements of the subplan tlist, so that we can avoid recomputing
3211 : * expressions that were already computed by the subplan. (This is relatively
3212 : * expensive, so we don't want to try it in the common case where the
3213 : * subplan tlist is just a flattened list of Vars.)
3214 : *
3215 : * 'node': the tree to be fixed (a target item or qual)
3216 : * 'subplan_itlist': indexed target list for subplan (or index)
3217 : * 'newvarno': varno to use for Vars referencing tlist elements
3218 : * 'rtoffset': how much to increment varnos by
3219 : * 'nrm_match': as for search_indexed_tlist_for_var()
3220 : * 'num_exec': estimated number of executions of expression
3221 : *
3222 : * The resulting tree is a copy of the original in which all Var nodes have
3223 : * varno = newvarno, varattno = resno of corresponding targetlist element.
3224 : * The original tree is not modified.
3225 : */
3226 : static Node *
3227 307082 : fix_upper_expr(PlannerInfo *root,
3228 : Node *node,
3229 : indexed_tlist *subplan_itlist,
3230 : int newvarno,
3231 : int rtoffset,
3232 : NullingRelsMatch nrm_match,
3233 : double num_exec)
3234 : {
3235 : fix_upper_expr_context context;
3236 :
3237 307082 : context.root = root;
3238 307082 : context.subplan_itlist = subplan_itlist;
3239 307082 : context.newvarno = newvarno;
3240 307082 : context.rtoffset = rtoffset;
3241 307082 : context.nrm_match = nrm_match;
3242 307082 : context.num_exec = num_exec;
3243 307082 : return fix_upper_expr_mutator(node, &context);
3244 : }
3245 :
3246 : static Node *
3247 889838 : fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context)
3248 : {
3249 : Var *newvar;
3250 :
3251 889838 : if (node == NULL)
3252 279932 : return NULL;
3253 609906 : if (IsA(node, Var))
3254 : {
3255 198244 : Var *var = (Var *) node;
3256 :
3257 198244 : newvar = search_indexed_tlist_for_var(var,
3258 : context->subplan_itlist,
3259 : context->newvarno,
3260 : context->rtoffset,
3261 : context->nrm_match);
3262 198244 : if (!newvar)
3263 0 : elog(ERROR, "variable not found in subplan target list");
3264 198244 : return (Node *) newvar;
3265 : }
3266 411662 : if (IsA(node, PlaceHolderVar))
3267 : {
3268 484 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
3269 :
3270 : /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3271 484 : if (context->subplan_itlist->has_ph_vars)
3272 : {
3273 352 : newvar = search_indexed_tlist_for_phv(phv,
3274 : context->subplan_itlist,
3275 : context->newvarno,
3276 : context->nrm_match);
3277 352 : if (newvar)
3278 352 : return (Node *) newvar;
3279 : }
3280 : /* If not supplied by input plan, evaluate the contained expr */
3281 : /* XXX can we assert something about phnullingrels? */
3282 132 : return fix_upper_expr_mutator((Node *) phv->phexpr, context);
3283 : }
3284 : /* Try matching more complex expressions too, if tlist has any */
3285 411178 : if (context->subplan_itlist->has_non_vars)
3286 : {
3287 24414 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3288 : context->subplan_itlist,
3289 : context->newvarno);
3290 24414 : if (newvar)
3291 6516 : return (Node *) newvar;
3292 : }
3293 : /* Special cases (apply only AFTER failing to match to lower tlist) */
3294 404662 : if (IsA(node, Param))
3295 6414 : return fix_param_node(context->root, (Param *) node);
3296 398248 : if (IsA(node, Aggref))
3297 : {
3298 44096 : Aggref *aggref = (Aggref *) node;
3299 : Param *aggparam;
3300 :
3301 : /* See if the Aggref should be replaced by a Param */
3302 44096 : aggparam = find_minmax_agg_replacement_param(context->root, aggref);
3303 44096 : if (aggparam != NULL)
3304 : {
3305 : /* Make a copy of the Param for paranoia's sake */
3306 0 : return (Node *) copyObject(aggparam);
3307 : }
3308 : /* If no match, just fall through to process it normally */
3309 : }
3310 398248 : if (IsA(node, AlternativeSubPlan))
3311 30 : return fix_upper_expr_mutator(fix_alternative_subplan(context->root,
3312 : (AlternativeSubPlan *) node,
3313 : context->num_exec),
3314 : context);
3315 398218 : fix_expr_common(context->root, node);
3316 398218 : return expression_tree_mutator(node, fix_upper_expr_mutator, context);
3317 : }
3318 :
3319 : /*
3320 : * set_returning_clause_references
3321 : * Perform setrefs.c's work on a RETURNING targetlist
3322 : *
3323 : * If the query involves more than just the result table, we have to
3324 : * adjust any Vars that refer to other tables to reference junk tlist
3325 : * entries in the top subplan's targetlist. Vars referencing the result
3326 : * table should be left alone, however (the executor will evaluate them
3327 : * using the actual heap tuple, after firing triggers if any). In the
3328 : * adjusted RETURNING list, result-table Vars will have their original
3329 : * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR.
3330 : *
3331 : * We also must perform opcode lookup and add regclass OIDs to
3332 : * root->glob->relationOids.
3333 : *
3334 : * 'rlist': the RETURNING targetlist to be fixed
3335 : * 'topplan': the top subplan node that will be just below the ModifyTable
3336 : * node (note it's not yet passed through set_plan_refs)
3337 : * 'resultRelation': RT index of the associated result relation
3338 : * 'rtoffset': how much to increment varnos by
3339 : *
3340 : * Note: the given 'root' is for the parent query level, not the 'topplan'.
3341 : * This does not matter currently since we only access the dependency-item
3342 : * lists in root->glob, but it would need some hacking if we wanted a root
3343 : * that actually matches the subplan.
3344 : *
3345 : * Note: resultRelation is not yet adjusted by rtoffset.
3346 : */
3347 : static List *
3348 3044 : set_returning_clause_references(PlannerInfo *root,
3349 : List *rlist,
3350 : Plan *topplan,
3351 : Index resultRelation,
3352 : int rtoffset)
3353 : {
3354 : indexed_tlist *itlist;
3355 :
3356 : /*
3357 : * We can perform the desired Var fixup by abusing the fix_join_expr
3358 : * machinery that formerly handled inner indexscan fixup. We search the
3359 : * top plan's targetlist for Vars of non-result relations, and use
3360 : * fix_join_expr to convert RETURNING Vars into references to those tlist
3361 : * entries, while leaving result-rel Vars as-is.
3362 : *
3363 : * PlaceHolderVars will also be sought in the targetlist, but no
3364 : * more-complex expressions will be. Note that it is not possible for a
3365 : * PlaceHolderVar to refer to the result relation, since the result is
3366 : * never below an outer join. If that case could happen, we'd have to be
3367 : * prepared to pick apart the PlaceHolderVar and evaluate its contained
3368 : * expression instead.
3369 : */
3370 3044 : itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation);
3371 :
3372 3044 : rlist = fix_join_expr(root,
3373 : rlist,
3374 : itlist,
3375 : NULL,
3376 : resultRelation,
3377 : rtoffset,
3378 : NRM_EQUAL,
3379 : NUM_EXEC_TLIST(topplan));
3380 :
3381 3044 : pfree(itlist);
3382 :
3383 3044 : return rlist;
3384 : }
3385 :
3386 : /*
3387 : * fix_windowagg_condition_expr_mutator
3388 : * Mutator function for replacing WindowFuncs with the corresponding Var
3389 : * in the targetlist which references that WindowFunc.
3390 : */
3391 : static Node *
3392 3206 : fix_windowagg_condition_expr_mutator(Node *node,
3393 : fix_windowagg_cond_context *context)
3394 : {
3395 3206 : if (node == NULL)
3396 2318 : return NULL;
3397 :
3398 888 : if (IsA(node, WindowFunc))
3399 : {
3400 : Var *newvar;
3401 :
3402 180 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3403 : context->subplan_itlist,
3404 : context->newvarno);
3405 180 : if (newvar)
3406 180 : return (Node *) newvar;
3407 0 : elog(ERROR, "WindowFunc not found in subplan target lists");
3408 : }
3409 :
3410 708 : return expression_tree_mutator(node,
3411 : fix_windowagg_condition_expr_mutator,
3412 : context);
3413 : }
3414 :
3415 : /*
3416 : * fix_windowagg_condition_expr
3417 : * Converts references in 'runcondition' so that any WindowFunc
3418 : * references are swapped out for a Var which references the matching
3419 : * WindowFunc in 'subplan_itlist'.
3420 : */
3421 : static List *
3422 2486 : fix_windowagg_condition_expr(PlannerInfo *root,
3423 : List *runcondition,
3424 : indexed_tlist *subplan_itlist)
3425 : {
3426 : fix_windowagg_cond_context context;
3427 :
3428 2486 : context.root = root;
3429 2486 : context.subplan_itlist = subplan_itlist;
3430 2486 : context.newvarno = 0;
3431 :
3432 2486 : return (List *) fix_windowagg_condition_expr_mutator((Node *) runcondition,
3433 : &context);
3434 : }
3435 :
3436 : /*
3437 : * set_windowagg_runcondition_references
3438 : * Converts references in 'runcondition' so that any WindowFunc
3439 : * references are swapped out for a Var which references the matching
3440 : * WindowFunc in 'plan' targetlist.
3441 : */
3442 : static List *
3443 2486 : set_windowagg_runcondition_references(PlannerInfo *root,
3444 : List *runcondition,
3445 : Plan *plan)
3446 : {
3447 : List *newlist;
3448 : indexed_tlist *itlist;
3449 :
3450 2486 : itlist = build_tlist_index(plan->targetlist);
3451 :
3452 2486 : newlist = fix_windowagg_condition_expr(root, runcondition, itlist);
3453 :
3454 2486 : pfree(itlist);
3455 :
3456 2486 : return newlist;
3457 : }
3458 :
3459 : /*
3460 : * find_minmax_agg_replacement_param
3461 : * If the given Aggref is one that we are optimizing into a subquery
3462 : * (cf. planagg.c), then return the Param that should replace it.
3463 : * Else return NULL.
3464 : *
3465 : * This is exported so that SS_finalize_plan can use it before setrefs.c runs.
3466 : * Note that it will not find anything until we have built a Plan from a
3467 : * MinMaxAggPath, as root->minmax_aggs will never be filled otherwise.
3468 : */
3469 : Param *
3470 57184 : find_minmax_agg_replacement_param(PlannerInfo *root, Aggref *aggref)
3471 : {
3472 58152 : if (root->minmax_aggs != NIL &&
3473 968 : list_length(aggref->args) == 1)
3474 : {
3475 968 : TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
3476 : ListCell *lc;
3477 :
3478 1064 : foreach(lc, root->minmax_aggs)
3479 : {
3480 1064 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3481 :
3482 2032 : if (mminfo->aggfnoid == aggref->aggfnoid &&
3483 968 : equal(mminfo->target, curTarget->expr))
3484 968 : return mminfo->param;
3485 : }
3486 : }
3487 56216 : return NULL;
3488 : }
3489 :
3490 :
3491 : /*****************************************************************************
3492 : * QUERY DEPENDENCY MANAGEMENT
3493 : *****************************************************************************/
3494 :
3495 : /*
3496 : * record_plan_function_dependency
3497 : * Mark the current plan as depending on a particular function.
3498 : *
3499 : * This is exported so that the function-inlining code can record a
3500 : * dependency on a function that it's removed from the plan tree.
3501 : */
3502 : void
3503 1185434 : record_plan_function_dependency(PlannerInfo *root, Oid funcid)
3504 : {
3505 : /*
3506 : * For performance reasons, we don't bother to track built-in functions;
3507 : * we just assume they'll never change (or at least not in ways that'd
3508 : * invalidate plans using them). For this purpose we can consider a
3509 : * built-in function to be one with OID less than FirstUnpinnedObjectId.
3510 : * Note that the OID generator guarantees never to generate such an OID
3511 : * after startup, even at OID wraparound.
3512 : */
3513 1185434 : if (funcid >= (Oid) FirstUnpinnedObjectId)
3514 : {
3515 65604 : PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3516 :
3517 : /*
3518 : * It would work to use any syscache on pg_proc, but the easiest is
3519 : * PROCOID since we already have the function's OID at hand. Note
3520 : * that plancache.c knows we use PROCOID.
3521 : */
3522 65604 : inval_item->cacheId = PROCOID;
3523 65604 : inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3524 : ObjectIdGetDatum(funcid));
3525 :
3526 65604 : root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3527 : }
3528 1185434 : }
3529 :
3530 : /*
3531 : * record_plan_type_dependency
3532 : * Mark the current plan as depending on a particular type.
3533 : *
3534 : * This is exported so that eval_const_expressions can record a
3535 : * dependency on a domain that it's removed a CoerceToDomain node for.
3536 : *
3537 : * We don't currently need to record dependencies on domains that the
3538 : * plan contains CoerceToDomain nodes for, though that might change in
3539 : * future. Hence, this isn't actually called in this module, though
3540 : * someday fix_expr_common might call it.
3541 : */
3542 : void
3543 16652 : record_plan_type_dependency(PlannerInfo *root, Oid typid)
3544 : {
3545 : /*
3546 : * As in record_plan_function_dependency, ignore the possibility that
3547 : * someone would change a built-in domain.
3548 : */
3549 16652 : if (typid >= (Oid) FirstUnpinnedObjectId)
3550 : {
3551 16652 : PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3552 :
3553 : /*
3554 : * It would work to use any syscache on pg_type, but the easiest is
3555 : * TYPEOID since we already have the type's OID at hand. Note that
3556 : * plancache.c knows we use TYPEOID.
3557 : */
3558 16652 : inval_item->cacheId = TYPEOID;
3559 16652 : inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3560 : ObjectIdGetDatum(typid));
3561 :
3562 16652 : root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3563 : }
3564 16652 : }
3565 :
3566 : /*
3567 : * extract_query_dependencies
3568 : * Given a rewritten, but not yet planned, query or queries
3569 : * (i.e. a Query node or list of Query nodes), extract dependencies
3570 : * just as set_plan_references would do. Also detect whether any
3571 : * rewrite steps were affected by RLS.
3572 : *
3573 : * This is needed by plancache.c to handle invalidation of cached unplanned
3574 : * queries.
3575 : *
3576 : * Note: this does not go through eval_const_expressions, and hence doesn't
3577 : * reflect its additions of inlined functions and elided CoerceToDomain nodes
3578 : * to the invalItems list. This is obviously OK for functions, since we'll
3579 : * see them in the original query tree anyway. For domains, it's OK because
3580 : * we don't care about domains unless they get elided. That is, a plan might
3581 : * have domain dependencies that the query tree doesn't.
3582 : */
3583 : void
3584 57486 : extract_query_dependencies(Node *query,
3585 : List **relationOids,
3586 : List **invalItems,
3587 : bool *hasRowSecurity)
3588 : {
3589 : PlannerGlobal glob;
3590 : PlannerInfo root;
3591 :
3592 : /* Make up dummy planner state so we can use this module's machinery */
3593 1092234 : MemSet(&glob, 0, sizeof(glob));
3594 57486 : glob.type = T_PlannerGlobal;
3595 57486 : glob.relationOids = NIL;
3596 57486 : glob.invalItems = NIL;
3597 : /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */
3598 57486 : glob.dependsOnRole = false;
3599 :
3600 5058768 : MemSet(&root, 0, sizeof(root));
3601 57486 : root.type = T_PlannerInfo;
3602 57486 : root.glob = &glob;
3603 :
3604 57486 : (void) extract_query_dependencies_walker(query, &root);
3605 :
3606 57486 : *relationOids = glob.relationOids;
3607 57486 : *invalItems = glob.invalItems;
3608 57486 : *hasRowSecurity = glob.dependsOnRole;
3609 57486 : }
3610 :
3611 : /*
3612 : * Tree walker for extract_query_dependencies.
3613 : *
3614 : * This is exported so that expression_planner_with_deps can call it on
3615 : * simple expressions (post-planning, not before planning, in that case).
3616 : * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids
3617 : * and invalItems lists are added to as needed.
3618 : */
3619 : bool
3620 1445088 : extract_query_dependencies_walker(Node *node, PlannerInfo *context)
3621 : {
3622 1445088 : if (node == NULL)
3623 725612 : return false;
3624 : Assert(!IsA(node, PlaceHolderVar));
3625 719476 : if (IsA(node, Query))
3626 : {
3627 60814 : Query *query = (Query *) node;
3628 : ListCell *lc;
3629 :
3630 60814 : if (query->commandType == CMD_UTILITY)
3631 : {
3632 : /*
3633 : * This logic must handle any utility command for which parse
3634 : * analysis was nontrivial (cf. stmt_requires_parse_analysis).
3635 : *
3636 : * Notably, CALL requires its own processing.
3637 : */
3638 9856 : if (IsA(query->utilityStmt, CallStmt))
3639 : {
3640 104 : CallStmt *callstmt = (CallStmt *) query->utilityStmt;
3641 :
3642 : /* We need not examine funccall, just the transformed exprs */
3643 104 : (void) extract_query_dependencies_walker((Node *) callstmt->funcexpr,
3644 : context);
3645 104 : (void) extract_query_dependencies_walker((Node *) callstmt->outargs,
3646 : context);
3647 104 : return false;
3648 : }
3649 :
3650 : /*
3651 : * Ignore other utility statements, except those (such as EXPLAIN)
3652 : * that contain a parsed-but-not-planned query. For those, we
3653 : * just need to transfer our attention to the contained query.
3654 : */
3655 9752 : query = UtilityContainsQuery(query->utilityStmt);
3656 9752 : if (query == NULL)
3657 36 : return false;
3658 : }
3659 :
3660 : /* Remember if any Query has RLS quals applied by rewriter */
3661 60674 : if (query->hasRowSecurity)
3662 190 : context->glob->dependsOnRole = true;
3663 :
3664 : /* Collect relation OIDs in this Query's rtable */
3665 96950 : foreach(lc, query->rtable)
3666 : {
3667 36276 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3668 :
3669 36276 : if (rte->rtekind == RTE_RELATION ||
3670 5448 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3671 5208 : (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3672 31504 : context->glob->relationOids =
3673 31504 : lappend_oid(context->glob->relationOids, rte->relid);
3674 : }
3675 :
3676 : /* And recurse into the query's subexpressions */
3677 60674 : return query_tree_walker(query, extract_query_dependencies_walker,
3678 : context, 0);
3679 : }
3680 : /* Extract function dependencies and check for regclass Consts */
3681 658662 : fix_expr_common(context, node);
3682 658662 : return expression_tree_walker(node, extract_query_dependencies_walker,
3683 : context);
3684 : }
|