LCOV - code coverage report
Current view: top level - src/backend/optimizer/plan - initsplan.c (source / functions) Hit Total Coverage
Test: PostgreSQL 17devel Lines: 910 936 97.2 %
Date: 2024-04-25 17:11:05 Functions: 30 30 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * initsplan.c
       4             :  *    Target list, qualification, joininfo initialization routines
       5             :  *
       6             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/optimizer/plan/initsplan.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include "catalog/pg_type.h"
      18             : #include "nodes/makefuncs.h"
      19             : #include "nodes/nodeFuncs.h"
      20             : #include "optimizer/clauses.h"
      21             : #include "optimizer/cost.h"
      22             : #include "optimizer/inherit.h"
      23             : #include "optimizer/joininfo.h"
      24             : #include "optimizer/optimizer.h"
      25             : #include "optimizer/pathnode.h"
      26             : #include "optimizer/paths.h"
      27             : #include "optimizer/placeholder.h"
      28             : #include "optimizer/planmain.h"
      29             : #include "optimizer/planner.h"
      30             : #include "optimizer/restrictinfo.h"
      31             : #include "parser/analyze.h"
      32             : #include "rewrite/rewriteManip.h"
      33             : #include "utils/lsyscache.h"
      34             : #include "utils/rel.h"
      35             : #include "utils/typcache.h"
      36             : 
      37             : /* These parameters are set by GUC */
      38             : int         from_collapse_limit;
      39             : int         join_collapse_limit;
      40             : 
      41             : 
      42             : /*
      43             :  * deconstruct_jointree requires multiple passes over the join tree, because we
      44             :  * need to finish computing JoinDomains before we start distributing quals.
      45             :  * As long as we have to do that, other information such as the relevant
      46             :  * qualscopes might as well be computed in the first pass too.
      47             :  *
      48             :  * deconstruct_recurse recursively examines the join tree and builds a List
      49             :  * (in depth-first traversal order) of JoinTreeItem structs, which are then
      50             :  * processed iteratively by deconstruct_distribute.  If there are outer
      51             :  * joins, non-degenerate outer join clauses are processed in a third pass
      52             :  * deconstruct_distribute_oj_quals.
      53             :  *
      54             :  * The JoinTreeItem structs themselves can be freed at the end of
      55             :  * deconstruct_jointree, but do not modify or free their substructure,
      56             :  * as the relid sets may also be pointed to by RestrictInfo and
      57             :  * SpecialJoinInfo nodes.
      58             :  */
      59             : typedef struct JoinTreeItem
      60             : {
      61             :     /* Fields filled during deconstruct_recurse: */
      62             :     Node       *jtnode;         /* jointree node to examine */
      63             :     JoinDomain *jdomain;        /* join domain for its ON/WHERE clauses */
      64             :     struct JoinTreeItem *jti_parent;    /* JoinTreeItem for this node's
      65             :                                          * parent, or NULL if it's the top */
      66             :     Relids      qualscope;      /* base+OJ Relids syntactically included in
      67             :                                  * this jointree node */
      68             :     Relids      inner_join_rels;    /* base+OJ Relids syntactically included
      69             :                                      * in inner joins appearing at or below
      70             :                                      * this jointree node */
      71             :     Relids      left_rels;      /* if join node, Relids of the left side */
      72             :     Relids      right_rels;     /* if join node, Relids of the right side */
      73             :     Relids      nonnullable_rels;   /* if outer join, Relids of the
      74             :                                      * non-nullable side */
      75             :     /* Fields filled during deconstruct_distribute: */
      76             :     SpecialJoinInfo *sjinfo;    /* if outer join, its SpecialJoinInfo */
      77             :     List       *oj_joinclauses; /* outer join quals not yet distributed */
      78             :     List       *lateral_clauses;    /* quals postponed from children due to
      79             :                                      * lateral references */
      80             : } JoinTreeItem;
      81             : 
      82             : 
      83             : static void extract_lateral_references(PlannerInfo *root, RelOptInfo *brel,
      84             :                                        Index rtindex);
      85             : static List *deconstruct_recurse(PlannerInfo *root, Node *jtnode,
      86             :                                  JoinDomain *parent_domain,
      87             :                                  JoinTreeItem *parent_jtitem,
      88             :                                  List **item_list);
      89             : static void deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem);
      90             : static void process_security_barrier_quals(PlannerInfo *root,
      91             :                                            int rti, JoinTreeItem *jtitem);
      92             : static void mark_rels_nulled_by_join(PlannerInfo *root, Index ojrelid,
      93             :                                      Relids lower_rels);
      94             : static SpecialJoinInfo *make_outerjoininfo(PlannerInfo *root,
      95             :                                            Relids left_rels, Relids right_rels,
      96             :                                            Relids inner_join_rels,
      97             :                                            JoinType jointype, Index ojrelid,
      98             :                                            List *clause);
      99             : static void compute_semijoin_info(PlannerInfo *root, SpecialJoinInfo *sjinfo,
     100             :                                   List *clause);
     101             : static void deconstruct_distribute_oj_quals(PlannerInfo *root,
     102             :                                             List *jtitems,
     103             :                                             JoinTreeItem *jtitem);
     104             : static void distribute_quals_to_rels(PlannerInfo *root, List *clauses,
     105             :                                      JoinTreeItem *jtitem,
     106             :                                      SpecialJoinInfo *sjinfo,
     107             :                                      Index security_level,
     108             :                                      Relids qualscope,
     109             :                                      Relids ojscope,
     110             :                                      Relids outerjoin_nonnullable,
     111             :                                      Relids incompatible_relids,
     112             :                                      bool allow_equivalence,
     113             :                                      bool has_clone,
     114             :                                      bool is_clone,
     115             :                                      List **postponed_oj_qual_list);
     116             : static void distribute_qual_to_rels(PlannerInfo *root, Node *clause,
     117             :                                     JoinTreeItem *jtitem,
     118             :                                     SpecialJoinInfo *sjinfo,
     119             :                                     Index security_level,
     120             :                                     Relids qualscope,
     121             :                                     Relids ojscope,
     122             :                                     Relids outerjoin_nonnullable,
     123             :                                     Relids incompatible_relids,
     124             :                                     bool allow_equivalence,
     125             :                                     bool has_clone,
     126             :                                     bool is_clone,
     127             :                                     List **postponed_oj_qual_list);
     128             : static bool check_redundant_nullability_qual(PlannerInfo *root, Node *clause);
     129             : static Relids get_join_domain_min_rels(PlannerInfo *root, Relids domain_relids);
     130             : static void check_mergejoinable(RestrictInfo *restrictinfo);
     131             : static void check_hashjoinable(RestrictInfo *restrictinfo);
     132             : static void check_memoizable(RestrictInfo *restrictinfo);
     133             : 
     134             : 
     135             : /*****************************************************************************
     136             :  *
     137             :  *   JOIN TREES
     138             :  *
     139             :  *****************************************************************************/
     140             : 
     141             : /*
     142             :  * add_base_rels_to_query
     143             :  *
     144             :  *    Scan the query's jointree and create baserel RelOptInfos for all
     145             :  *    the base relations (e.g., table, subquery, and function RTEs)
     146             :  *    appearing in the jointree.
     147             :  *
     148             :  * The initial invocation must pass root->parse->jointree as the value of
     149             :  * jtnode.  Internally, the function recurses through the jointree.
     150             :  *
     151             :  * At the end of this process, there should be one baserel RelOptInfo for
     152             :  * every non-join RTE that is used in the query.  Some of the baserels
     153             :  * may be appendrel parents, which will require additional "otherrel"
     154             :  * RelOptInfos for their member rels, but those are added later.
     155             :  */
     156             : void
     157      768844 : add_base_rels_to_query(PlannerInfo *root, Node *jtnode)
     158             : {
     159      768844 :     if (jtnode == NULL)
     160           0 :         return;
     161      768844 :     if (IsA(jtnode, RangeTblRef))
     162             :     {
     163      402704 :         int         varno = ((RangeTblRef *) jtnode)->rtindex;
     164             : 
     165      402704 :         (void) build_simple_rel(root, varno, NULL);
     166             :     }
     167      366140 :     else if (IsA(jtnode, FromExpr))
     168             :     {
     169      286556 :         FromExpr   *f = (FromExpr *) jtnode;
     170             :         ListCell   *l;
     171             : 
     172      618022 :         foreach(l, f->fromlist)
     173      331480 :             add_base_rels_to_query(root, lfirst(l));
     174             :     }
     175       79584 :     else if (IsA(jtnode, JoinExpr))
     176             :     {
     177       79584 :         JoinExpr   *j = (JoinExpr *) jtnode;
     178             : 
     179       79584 :         add_base_rels_to_query(root, j->larg);
     180       79584 :         add_base_rels_to_query(root, j->rarg);
     181             :     }
     182             :     else
     183           0 :         elog(ERROR, "unrecognized node type: %d",
     184             :              (int) nodeTag(jtnode));
     185             : }
     186             : 
     187             : /*
     188             :  * add_other_rels_to_query
     189             :  *    create "otherrel" RelOptInfos for the children of appendrel baserels
     190             :  *
     191             :  * At the end of this process, there should be RelOptInfos for all relations
     192             :  * that will be scanned by the query.
     193             :  */
     194             : void
     195      278182 : add_other_rels_to_query(PlannerInfo *root)
     196             : {
     197             :     int         rti;
     198             : 
     199      843464 :     for (rti = 1; rti < root->simple_rel_array_size; rti++)
     200             :     {
     201      565284 :         RelOptInfo *rel = root->simple_rel_array[rti];
     202      565284 :         RangeTblEntry *rte = root->simple_rte_array[rti];
     203             : 
     204             :         /* there may be empty slots corresponding to non-baserel RTEs */
     205      565284 :         if (rel == NULL)
     206      129556 :             continue;
     207             : 
     208             :         /* Ignore any "otherrels" that were already added. */
     209      435728 :         if (rel->reloptkind != RELOPT_BASEREL)
     210       42772 :             continue;
     211             : 
     212             :         /* If it's marked as inheritable, look for children. */
     213      392956 :         if (rte->inh)
     214       17046 :             expand_inherited_rtentry(root, rel, rte, rti);
     215             :     }
     216      278180 : }
     217             : 
     218             : 
     219             : /*****************************************************************************
     220             :  *
     221             :  *   TARGET LISTS
     222             :  *
     223             :  *****************************************************************************/
     224             : 
     225             : /*
     226             :  * build_base_rel_tlists
     227             :  *    Add targetlist entries for each var needed in the query's final tlist
     228             :  *    (and HAVING clause, if any) to the appropriate base relations.
     229             :  *
     230             :  * We mark such vars as needed by "relation 0" to ensure that they will
     231             :  * propagate up through all join plan steps.
     232             :  */
     233             : void
     234      278212 : build_base_rel_tlists(PlannerInfo *root, List *final_tlist)
     235             : {
     236      278212 :     List       *tlist_vars = pull_var_clause((Node *) final_tlist,
     237             :                                              PVC_RECURSE_AGGREGATES |
     238             :                                              PVC_RECURSE_WINDOWFUNCS |
     239             :                                              PVC_INCLUDE_PLACEHOLDERS);
     240             : 
     241      278212 :     if (tlist_vars != NIL)
     242             :     {
     243      262268 :         add_vars_to_targetlist(root, tlist_vars, bms_make_singleton(0));
     244      262268 :         list_free(tlist_vars);
     245             :     }
     246             : 
     247             :     /*
     248             :      * If there's a HAVING clause, we'll need the Vars it uses, too.  Note
     249             :      * that HAVING can contain Aggrefs but not WindowFuncs.
     250             :      */
     251      278212 :     if (root->parse->havingQual)
     252             :     {
     253         990 :         List       *having_vars = pull_var_clause(root->parse->havingQual,
     254             :                                                   PVC_RECURSE_AGGREGATES |
     255             :                                                   PVC_INCLUDE_PLACEHOLDERS);
     256             : 
     257         990 :         if (having_vars != NIL)
     258             :         {
     259         894 :             add_vars_to_targetlist(root, having_vars,
     260             :                                    bms_make_singleton(0));
     261         894 :             list_free(having_vars);
     262             :         }
     263             :     }
     264      278212 : }
     265             : 
     266             : /*
     267             :  * add_vars_to_targetlist
     268             :  *    For each variable appearing in the list, add it to the owning
     269             :  *    relation's targetlist if not already present, and mark the variable
     270             :  *    as being needed for the indicated join (or for final output if
     271             :  *    where_needed includes "relation 0").
     272             :  *
     273             :  *    The list may also contain PlaceHolderVars.  These don't necessarily
     274             :  *    have a single owning relation; we keep their attr_needed info in
     275             :  *    root->placeholder_list instead.  Find or create the associated
     276             :  *    PlaceHolderInfo entry, and update its ph_needed.
     277             :  */
     278             : void
     279      505458 : add_vars_to_targetlist(PlannerInfo *root, List *vars,
     280             :                        Relids where_needed)
     281             : {
     282             :     ListCell   *temp;
     283             : 
     284             :     Assert(!bms_is_empty(where_needed));
     285             : 
     286     1775522 :     foreach(temp, vars)
     287             :     {
     288     1270064 :         Node       *node = (Node *) lfirst(temp);
     289             : 
     290     1270064 :         if (IsA(node, Var))
     291             :         {
     292     1268510 :             Var        *var = (Var *) node;
     293     1268510 :             RelOptInfo *rel = find_base_rel(root, var->varno);
     294     1268510 :             int         attno = var->varattno;
     295             : 
     296     1268510 :             if (bms_is_subset(where_needed, rel->relids))
     297         634 :                 continue;
     298             :             Assert(attno >= rel->min_attr && attno <= rel->max_attr);
     299     1267876 :             attno -= rel->min_attr;
     300     1267876 :             if (rel->attr_needed[attno] == NULL)
     301             :             {
     302             :                 /*
     303             :                  * Variable not yet requested, so add to rel's targetlist.
     304             :                  *
     305             :                  * The value available at the rel's scan level has not been
     306             :                  * nulled by any outer join, so drop its varnullingrels.
     307             :                  * (We'll put those back as we climb up the join tree.)
     308             :                  */
     309      978142 :                 var = copyObject(var);
     310      978142 :                 var->varnullingrels = NULL;
     311      978142 :                 rel->reltarget->exprs = lappend(rel->reltarget->exprs, var);
     312             :                 /* reltarget cost and width will be computed later */
     313             :             }
     314     1267876 :             rel->attr_needed[attno] = bms_add_members(rel->attr_needed[attno],
     315             :                                                       where_needed);
     316             :         }
     317        1554 :         else if (IsA(node, PlaceHolderVar))
     318             :         {
     319        1554 :             PlaceHolderVar *phv = (PlaceHolderVar *) node;
     320        1554 :             PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
     321             : 
     322        1554 :             phinfo->ph_needed = bms_add_members(phinfo->ph_needed,
     323             :                                                 where_needed);
     324             :         }
     325             :         else
     326           0 :             elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
     327             :     }
     328      505458 : }
     329             : 
     330             : 
     331             : /*****************************************************************************
     332             :  *
     333             :  *    LATERAL REFERENCES
     334             :  *
     335             :  *****************************************************************************/
     336             : 
     337             : /*
     338             :  * find_lateral_references
     339             :  *    For each LATERAL subquery, extract all its references to Vars and
     340             :  *    PlaceHolderVars of the current query level, and make sure those values
     341             :  *    will be available for evaluation of the subquery.
     342             :  *
     343             :  * While later planning steps ensure that the Var/PHV source rels are on the
     344             :  * outside of nestloops relative to the LATERAL subquery, we also need to
     345             :  * ensure that the Vars/PHVs propagate up to the nestloop join level; this
     346             :  * means setting suitable where_needed values for them.
     347             :  *
     348             :  * Note that this only deals with lateral references in unflattened LATERAL
     349             :  * subqueries.  When we flatten a LATERAL subquery, its lateral references
     350             :  * become plain Vars in the parent query, but they may have to be wrapped in
     351             :  * PlaceHolderVars if they need to be forced NULL by outer joins that don't
     352             :  * also null the LATERAL subquery.  That's all handled elsewhere.
     353             :  *
     354             :  * This has to run before deconstruct_jointree, since it might result in
     355             :  * creation of PlaceHolderInfos.
     356             :  */
     357             : void
     358      278182 : find_lateral_references(PlannerInfo *root)
     359             : {
     360             :     Index       rti;
     361             : 
     362             :     /* We need do nothing if the query contains no LATERAL RTEs */
     363      278182 :     if (!root->hasLateralRTEs)
     364      268554 :         return;
     365             : 
     366             :     /*
     367             :      * Examine all baserels (the rel array has been set up by now).
     368             :      */
     369       33982 :     for (rti = 1; rti < root->simple_rel_array_size; rti++)
     370             :     {
     371       24354 :         RelOptInfo *brel = root->simple_rel_array[rti];
     372             : 
     373             :         /* there may be empty slots corresponding to non-baserel RTEs */
     374       24354 :         if (brel == NULL)
     375        3778 :             continue;
     376             : 
     377             :         Assert(brel->relid == rti); /* sanity check on array */
     378             : 
     379             :         /*
     380             :          * This bit is less obvious than it might look.  We ignore appendrel
     381             :          * otherrels and consider only their parent baserels.  In a case where
     382             :          * a LATERAL-containing UNION ALL subquery was pulled up, it is the
     383             :          * otherrel that is actually going to be in the plan.  However, we
     384             :          * want to mark all its lateral references as needed by the parent,
     385             :          * because it is the parent's relid that will be used for join
     386             :          * planning purposes.  And the parent's RTE will contain all the
     387             :          * lateral references we need to know, since the pulled-up member is
     388             :          * nothing but a copy of parts of the original RTE's subquery.  We
     389             :          * could visit the parent's children instead and transform their
     390             :          * references back to the parent's relid, but it would be much more
     391             :          * complicated for no real gain.  (Important here is that the child
     392             :          * members have not yet received any processing beyond being pulled
     393             :          * up.)  Similarly, in appendrels created by inheritance expansion,
     394             :          * it's sufficient to look at the parent relation.
     395             :          */
     396             : 
     397             :         /* ignore RTEs that are "other rels" */
     398       20576 :         if (brel->reloptkind != RELOPT_BASEREL)
     399           0 :             continue;
     400             : 
     401       20576 :         extract_lateral_references(root, brel, rti);
     402             :     }
     403             : }
     404             : 
     405             : static void
     406       20576 : extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex)
     407             : {
     408       20576 :     RangeTblEntry *rte = root->simple_rte_array[rtindex];
     409             :     List       *vars;
     410             :     List       *newvars;
     411             :     Relids      where_needed;
     412             :     ListCell   *lc;
     413             : 
     414             :     /* No cross-references are possible if it's not LATERAL */
     415       20576 :     if (!rte->lateral)
     416       11340 :         return;
     417             : 
     418             :     /* Fetch the appropriate variables */
     419        9236 :     if (rte->rtekind == RTE_RELATION)
     420          30 :         vars = pull_vars_of_level((Node *) rte->tablesample, 0);
     421        9206 :     else if (rte->rtekind == RTE_SUBQUERY)
     422         530 :         vars = pull_vars_of_level((Node *) rte->subquery, 1);
     423        8676 :     else if (rte->rtekind == RTE_FUNCTION)
     424        8388 :         vars = pull_vars_of_level((Node *) rte->functions, 0);
     425         288 :     else if (rte->rtekind == RTE_TABLEFUNC)
     426         234 :         vars = pull_vars_of_level((Node *) rte->tablefunc, 0);
     427          54 :     else if (rte->rtekind == RTE_VALUES)
     428          54 :         vars = pull_vars_of_level((Node *) rte->values_lists, 0);
     429             :     else
     430             :     {
     431             :         Assert(false);
     432           0 :         return;                 /* keep compiler quiet */
     433             :     }
     434             : 
     435        9236 :     if (vars == NIL)
     436          94 :         return;                 /* nothing to do */
     437             : 
     438             :     /* Copy each Var (or PlaceHolderVar) and adjust it to match our level */
     439        9142 :     newvars = NIL;
     440       19056 :     foreach(lc, vars)
     441             :     {
     442        9914 :         Node       *node = (Node *) lfirst(lc);
     443             : 
     444        9914 :         node = copyObject(node);
     445        9914 :         if (IsA(node, Var))
     446             :         {
     447        9842 :             Var        *var = (Var *) node;
     448             : 
     449             :             /* Adjustment is easy since it's just one node */
     450        9842 :             var->varlevelsup = 0;
     451             :         }
     452          72 :         else if (IsA(node, PlaceHolderVar))
     453             :         {
     454          72 :             PlaceHolderVar *phv = (PlaceHolderVar *) node;
     455          72 :             int         levelsup = phv->phlevelsup;
     456             : 
     457             :             /* Have to work harder to adjust the contained expression too */
     458          72 :             if (levelsup != 0)
     459          72 :                 IncrementVarSublevelsUp(node, -levelsup, 0);
     460             : 
     461             :             /*
     462             :              * If we pulled the PHV out of a subquery RTE, its expression
     463             :              * needs to be preprocessed.  subquery_planner() already did this
     464             :              * for level-zero PHVs in function and values RTEs, though.
     465             :              */
     466          72 :             if (levelsup > 0)
     467          72 :                 phv->phexpr = preprocess_phv_expression(root, phv->phexpr);
     468             :         }
     469             :         else
     470             :             Assert(false);
     471        9914 :         newvars = lappend(newvars, node);
     472             :     }
     473             : 
     474        9142 :     list_free(vars);
     475             : 
     476             :     /*
     477             :      * We mark the Vars as being "needed" at the LATERAL RTE.  This is a bit
     478             :      * of a cheat: a more formal approach would be to mark each one as needed
     479             :      * at the join of the LATERAL RTE with its source RTE.  But it will work,
     480             :      * and it's much less tedious than computing a separate where_needed for
     481             :      * each Var.
     482             :      */
     483        9142 :     where_needed = bms_make_singleton(rtindex);
     484             : 
     485             :     /*
     486             :      * Push Vars into their source relations' targetlists, and PHVs into
     487             :      * root->placeholder_list.
     488             :      */
     489        9142 :     add_vars_to_targetlist(root, newvars, where_needed);
     490             : 
     491             :     /* Remember the lateral references for create_lateral_join_info */
     492        9142 :     brel->lateral_vars = newvars;
     493             : }
     494             : 
     495             : /*
     496             :  * create_lateral_join_info
     497             :  *    Fill in the per-base-relation direct_lateral_relids, lateral_relids
     498             :  *    and lateral_referencers sets.
     499             :  */
     500             : void
     501      278182 : create_lateral_join_info(PlannerInfo *root)
     502             : {
     503      278182 :     bool        found_laterals = false;
     504             :     Index       rti;
     505             :     ListCell   *lc;
     506             : 
     507             :     /* We need do nothing if the query contains no LATERAL RTEs */
     508      278182 :     if (!root->hasLateralRTEs)
     509      268554 :         return;
     510             : 
     511             :     /* We'll need to have the ph_eval_at values for PlaceHolderVars */
     512             :     Assert(root->placeholdersFrozen);
     513             : 
     514             :     /*
     515             :      * Examine all baserels (the rel array has been set up by now).
     516             :      */
     517       33982 :     for (rti = 1; rti < root->simple_rel_array_size; rti++)
     518             :     {
     519       24354 :         RelOptInfo *brel = root->simple_rel_array[rti];
     520             :         Relids      lateral_relids;
     521             : 
     522             :         /* there may be empty slots corresponding to non-baserel RTEs */
     523       24354 :         if (brel == NULL)
     524        3934 :             continue;
     525             : 
     526             :         Assert(brel->relid == rti); /* sanity check on array */
     527             : 
     528             :         /* ignore RTEs that are "other rels" */
     529       20420 :         if (brel->reloptkind != RELOPT_BASEREL)
     530           0 :             continue;
     531             : 
     532       20420 :         lateral_relids = NULL;
     533             : 
     534             :         /* consider each laterally-referenced Var or PHV */
     535       30310 :         foreach(lc, brel->lateral_vars)
     536             :         {
     537        9890 :             Node       *node = (Node *) lfirst(lc);
     538             : 
     539        9890 :             if (IsA(node, Var))
     540             :             {
     541        9818 :                 Var        *var = (Var *) node;
     542             : 
     543        9818 :                 found_laterals = true;
     544        9818 :                 lateral_relids = bms_add_member(lateral_relids,
     545             :                                                 var->varno);
     546             :             }
     547          72 :             else if (IsA(node, PlaceHolderVar))
     548             :             {
     549          72 :                 PlaceHolderVar *phv = (PlaceHolderVar *) node;
     550          72 :                 PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
     551             : 
     552          72 :                 found_laterals = true;
     553          72 :                 lateral_relids = bms_add_members(lateral_relids,
     554          72 :                                                  phinfo->ph_eval_at);
     555             :             }
     556             :             else
     557             :                 Assert(false);
     558             :         }
     559             : 
     560             :         /* We now have all the simple lateral refs from this rel */
     561       20420 :         brel->direct_lateral_relids = lateral_relids;
     562       20420 :         brel->lateral_relids = bms_copy(lateral_relids);
     563             :     }
     564             : 
     565             :     /*
     566             :      * Now check for lateral references within PlaceHolderVars, and mark their
     567             :      * eval_at rels as having lateral references to the source rels.
     568             :      *
     569             :      * For a PHV that is due to be evaluated at a baserel, mark its source(s)
     570             :      * as direct lateral dependencies of the baserel (adding onto the ones
     571             :      * recorded above).  If it's due to be evaluated at a join, mark its
     572             :      * source(s) as indirect lateral dependencies of each baserel in the join,
     573             :      * ie put them into lateral_relids but not direct_lateral_relids.  This is
     574             :      * appropriate because we can't put any such baserel on the outside of a
     575             :      * join to one of the PHV's lateral dependencies, but on the other hand we
     576             :      * also can't yet join it directly to the dependency.
     577             :      */
     578        9950 :     foreach(lc, root->placeholder_list)
     579             :     {
     580         322 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
     581         322 :         Relids      eval_at = phinfo->ph_eval_at;
     582             :         Relids      lateral_refs;
     583             :         int         varno;
     584             : 
     585         322 :         if (phinfo->ph_lateral == NULL)
     586         120 :             continue;           /* PHV is uninteresting if no lateral refs */
     587             : 
     588         202 :         found_laterals = true;
     589             : 
     590             :         /*
     591             :          * Include only baserels not outer joins in the evaluation sites'
     592             :          * lateral relids.  This avoids problems when outer join order gets
     593             :          * rearranged, and it should still ensure that the lateral values are
     594             :          * available when needed.
     595             :          */
     596         202 :         lateral_refs = bms_intersect(phinfo->ph_lateral, root->all_baserels);
     597             :         Assert(!bms_is_empty(lateral_refs));
     598             : 
     599         202 :         if (bms_get_singleton_member(eval_at, &varno))
     600             :         {
     601             :             /* Evaluation site is a baserel */
     602         136 :             RelOptInfo *brel = find_base_rel(root, varno);
     603             : 
     604         136 :             brel->direct_lateral_relids =
     605         136 :                 bms_add_members(brel->direct_lateral_relids,
     606             :                                 lateral_refs);
     607         136 :             brel->lateral_relids =
     608         136 :                 bms_add_members(brel->lateral_relids,
     609             :                                 lateral_refs);
     610             :         }
     611             :         else
     612             :         {
     613             :             /* Evaluation site is a join */
     614          66 :             varno = -1;
     615         198 :             while ((varno = bms_next_member(eval_at, varno)) >= 0)
     616             :             {
     617         132 :                 RelOptInfo *brel = find_base_rel_ignore_join(root, varno);
     618             : 
     619         132 :                 if (brel == NULL)
     620           0 :                     continue;   /* ignore outer joins in eval_at */
     621         132 :                 brel->lateral_relids = bms_add_members(brel->lateral_relids,
     622             :                                                        lateral_refs);
     623             :             }
     624             :         }
     625             :     }
     626             : 
     627             :     /*
     628             :      * If we found no actual lateral references, we're done; but reset the
     629             :      * hasLateralRTEs flag to avoid useless work later.
     630             :      */
     631        9628 :     if (!found_laterals)
     632             :     {
     633         392 :         root->hasLateralRTEs = false;
     634         392 :         return;
     635             :     }
     636             : 
     637             :     /*
     638             :      * Calculate the transitive closure of the lateral_relids sets, so that
     639             :      * they describe both direct and indirect lateral references.  If relation
     640             :      * X references Y laterally, and Y references Z laterally, then we will
     641             :      * have to scan X on the inside of a nestloop with Z, so for all intents
     642             :      * and purposes X is laterally dependent on Z too.
     643             :      *
     644             :      * This code is essentially Warshall's algorithm for transitive closure.
     645             :      * The outer loop considers each baserel, and propagates its lateral
     646             :      * dependencies to those baserels that have a lateral dependency on it.
     647             :      */
     648       31778 :     for (rti = 1; rti < root->simple_rel_array_size; rti++)
     649             :     {
     650       22542 :         RelOptInfo *brel = root->simple_rel_array[rti];
     651             :         Relids      outer_lateral_relids;
     652             :         Index       rti2;
     653             : 
     654       22542 :         if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
     655        2918 :             continue;
     656             : 
     657             :         /* need not consider baserel further if it has no lateral refs */
     658       19624 :         outer_lateral_relids = brel->lateral_relids;
     659       19624 :         if (outer_lateral_relids == NULL)
     660       10238 :             continue;
     661             : 
     662             :         /* else scan all baserels */
     663       32858 :         for (rti2 = 1; rti2 < root->simple_rel_array_size; rti2++)
     664             :         {
     665       23472 :             RelOptInfo *brel2 = root->simple_rel_array[rti2];
     666             : 
     667       23472 :             if (brel2 == NULL || brel2->reloptkind != RELOPT_BASEREL)
     668        3302 :                 continue;
     669             : 
     670             :             /* if brel2 has lateral ref to brel, propagate brel's refs */
     671       20170 :             if (bms_is_member(rti, brel2->lateral_relids))
     672          66 :                 brel2->lateral_relids = bms_add_members(brel2->lateral_relids,
     673             :                                                         outer_lateral_relids);
     674             :         }
     675             :     }
     676             : 
     677             :     /*
     678             :      * Now that we've identified all lateral references, mark each baserel
     679             :      * with the set of relids of rels that reference it laterally (possibly
     680             :      * indirectly) --- that is, the inverse mapping of lateral_relids.
     681             :      */
     682       31778 :     for (rti = 1; rti < root->simple_rel_array_size; rti++)
     683             :     {
     684       22542 :         RelOptInfo *brel = root->simple_rel_array[rti];
     685             :         Relids      lateral_relids;
     686             :         int         rti2;
     687             : 
     688       22542 :         if (brel == NULL || brel->reloptkind != RELOPT_BASEREL)
     689        2918 :             continue;
     690             : 
     691             :         /* Nothing to do at rels with no lateral refs */
     692       19624 :         lateral_relids = brel->lateral_relids;
     693       19624 :         if (bms_is_empty(lateral_relids))
     694       10238 :             continue;
     695             : 
     696             :         /* No rel should have a lateral dependency on itself */
     697             :         Assert(!bms_is_member(rti, lateral_relids));
     698             : 
     699             :         /* Mark this rel's referencees */
     700        9386 :         rti2 = -1;
     701       18988 :         while ((rti2 = bms_next_member(lateral_relids, rti2)) >= 0)
     702             :         {
     703        9602 :             RelOptInfo *brel2 = root->simple_rel_array[rti2];
     704             : 
     705        9602 :             if (brel2 == NULL)
     706          12 :                 continue;       /* must be an OJ */
     707             : 
     708             :             Assert(brel2->reloptkind == RELOPT_BASEREL);
     709        9590 :             brel2->lateral_referencers =
     710        9590 :                 bms_add_member(brel2->lateral_referencers, rti);
     711             :         }
     712             :     }
     713             : }
     714             : 
     715             : 
     716             : /*****************************************************************************
     717             :  *
     718             :  *    JOIN TREE PROCESSING
     719             :  *
     720             :  *****************************************************************************/
     721             : 
     722             : /*
     723             :  * deconstruct_jointree
     724             :  *    Recursively scan the query's join tree for WHERE and JOIN/ON qual
     725             :  *    clauses, and add these to the appropriate restrictinfo and joininfo
     726             :  *    lists belonging to base RelOptInfos.  Also, add SpecialJoinInfo nodes
     727             :  *    to root->join_info_list for any outer joins appearing in the query tree.
     728             :  *    Return a "joinlist" data structure showing the join order decisions
     729             :  *    that need to be made by make_one_rel().
     730             :  *
     731             :  * The "joinlist" result is a list of items that are either RangeTblRef
     732             :  * jointree nodes or sub-joinlists.  All the items at the same level of
     733             :  * joinlist must be joined in an order to be determined by make_one_rel()
     734             :  * (note that legal orders may be constrained by SpecialJoinInfo nodes).
     735             :  * A sub-joinlist represents a subproblem to be planned separately. Currently
     736             :  * sub-joinlists arise only from FULL OUTER JOIN or when collapsing of
     737             :  * subproblems is stopped by join_collapse_limit or from_collapse_limit.
     738             :  */
     739             : List *
     740      278182 : deconstruct_jointree(PlannerInfo *root)
     741             : {
     742             :     List       *result;
     743             :     JoinDomain *top_jdomain;
     744      278182 :     List       *item_list = NIL;
     745             :     ListCell   *lc;
     746             : 
     747             :     /*
     748             :      * After this point, no more PlaceHolderInfos may be made, because
     749             :      * make_outerjoininfo requires all active placeholders to be present in
     750             :      * root->placeholder_list while we crawl up the join tree.
     751             :      */
     752      278182 :     root->placeholdersFrozen = true;
     753             : 
     754             :     /* Fetch the already-created top-level join domain for the query */
     755      278182 :     top_jdomain = linitial_node(JoinDomain, root->join_domains);
     756      278182 :     top_jdomain->jd_relids = NULL;   /* filled during deconstruct_recurse */
     757             : 
     758             :     /* Start recursion at top of jointree */
     759             :     Assert(root->parse->jointree != NULL &&
     760             :            IsA(root->parse->jointree, FromExpr));
     761             : 
     762             :     /* These are filled as we scan the jointree */
     763      278182 :     root->all_baserels = NULL;
     764      278182 :     root->outer_join_rels = NULL;
     765             : 
     766             :     /* Perform the initial scan of the jointree */
     767      278182 :     result = deconstruct_recurse(root, (Node *) root->parse->jointree,
     768             :                                  top_jdomain, NULL,
     769             :                                  &item_list);
     770             : 
     771             :     /* Now we can form the value of all_query_rels, too */
     772      278182 :     root->all_query_rels = bms_union(root->all_baserels, root->outer_join_rels);
     773             : 
     774             :     /* ... which should match what we computed for the top join domain */
     775             :     Assert(bms_equal(root->all_query_rels, top_jdomain->jd_relids));
     776             : 
     777             :     /* Now scan all the jointree nodes again, and distribute quals */
     778     1046998 :     foreach(lc, item_list)
     779             :     {
     780      768816 :         JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
     781             : 
     782      768816 :         deconstruct_distribute(root, jtitem);
     783             :     }
     784             : 
     785             :     /*
     786             :      * If there were any special joins then we may have some postponed LEFT
     787             :      * JOIN clauses to deal with.
     788             :      */
     789      278182 :     if (root->join_info_list)
     790             :     {
     791      214900 :         foreach(lc, item_list)
     792             :         {
     793      182704 :             JoinTreeItem *jtitem = (JoinTreeItem *) lfirst(lc);
     794             : 
     795      182704 :             if (jtitem->oj_joinclauses != NIL)
     796       39664 :                 deconstruct_distribute_oj_quals(root, item_list, jtitem);
     797             :         }
     798             :     }
     799             : 
     800             :     /* Don't need the JoinTreeItems any more */
     801      278182 :     list_free_deep(item_list);
     802             : 
     803      278182 :     return result;
     804             : }
     805             : 
     806             : /*
     807             :  * deconstruct_recurse
     808             :  *    One recursion level of deconstruct_jointree's initial jointree scan.
     809             :  *
     810             :  * jtnode is the jointree node to examine, and parent_domain is the
     811             :  * enclosing join domain.  (We must add all base+OJ relids appearing
     812             :  * here or below to parent_domain.)  parent_jtitem is the JoinTreeItem
     813             :  * for the parent jointree node, or NULL at the top of the recursion.
     814             :  *
     815             :  * item_list is an in/out parameter: we add a JoinTreeItem struct to
     816             :  * that list for each jointree node, in depth-first traversal order.
     817             :  * (Hence, after each call, the last list item corresponds to its jtnode.)
     818             :  *
     819             :  * Return value is the appropriate joinlist for this jointree node.
     820             :  */
     821             : static List *
     822      768816 : deconstruct_recurse(PlannerInfo *root, Node *jtnode,
     823             :                     JoinDomain *parent_domain,
     824             :                     JoinTreeItem *parent_jtitem,
     825             :                     List **item_list)
     826             : {
     827             :     List       *joinlist;
     828             :     JoinTreeItem *jtitem;
     829             : 
     830             :     Assert(jtnode != NULL);
     831             : 
     832             :     /* Make the new JoinTreeItem, but don't add it to item_list yet */
     833      768816 :     jtitem = palloc0_object(JoinTreeItem);
     834      768816 :     jtitem->jtnode = jtnode;
     835      768816 :     jtitem->jti_parent = parent_jtitem;
     836             : 
     837      768816 :     if (IsA(jtnode, RangeTblRef))
     838             :     {
     839      402690 :         int         varno = ((RangeTblRef *) jtnode)->rtindex;
     840             : 
     841             :         /* Fill all_baserels as we encounter baserel jointree nodes */
     842      402690 :         root->all_baserels = bms_add_member(root->all_baserels, varno);
     843             :         /* This node belongs to parent_domain */
     844      402690 :         jtitem->jdomain = parent_domain;
     845      402690 :         parent_domain->jd_relids = bms_add_member(parent_domain->jd_relids,
     846             :                                                   varno);
     847             :         /* qualscope is just the one RTE */
     848      402690 :         jtitem->qualscope = bms_make_singleton(varno);
     849             :         /* A single baserel does not create an inner join */
     850      402690 :         jtitem->inner_join_rels = NULL;
     851      402690 :         joinlist = list_make1(jtnode);
     852             :     }
     853      366126 :     else if (IsA(jtnode, FromExpr))
     854             :     {
     855      286542 :         FromExpr   *f = (FromExpr *) jtnode;
     856             :         int         remaining;
     857             :         ListCell   *l;
     858             : 
     859             :         /* This node belongs to parent_domain, as do its children */
     860      286542 :         jtitem->jdomain = parent_domain;
     861             : 
     862             :         /*
     863             :          * Recurse to handle child nodes, and compute output joinlist.  We
     864             :          * collapse subproblems into a single joinlist whenever the resulting
     865             :          * joinlist wouldn't exceed from_collapse_limit members.  Also, always
     866             :          * collapse one-element subproblems, since that won't lengthen the
     867             :          * joinlist anyway.
     868             :          */
     869      286542 :         jtitem->qualscope = NULL;
     870      286542 :         jtitem->inner_join_rels = NULL;
     871      286542 :         joinlist = NIL;
     872      286542 :         remaining = list_length(f->fromlist);
     873      618008 :         foreach(l, f->fromlist)
     874             :         {
     875             :             JoinTreeItem *sub_item;
     876             :             List       *sub_joinlist;
     877             :             int         sub_members;
     878             : 
     879      331466 :             sub_joinlist = deconstruct_recurse(root, lfirst(l),
     880             :                                                parent_domain,
     881             :                                                jtitem,
     882             :                                                item_list);
     883      331466 :             sub_item = (JoinTreeItem *) llast(*item_list);
     884      662932 :             jtitem->qualscope = bms_add_members(jtitem->qualscope,
     885      331466 :                                                 sub_item->qualscope);
     886      331466 :             jtitem->inner_join_rels = sub_item->inner_join_rels;
     887      331466 :             sub_members = list_length(sub_joinlist);
     888      331466 :             remaining--;
     889      331466 :             if (sub_members <= 1 ||
     890       49310 :                 list_length(joinlist) + sub_members + remaining <= from_collapse_limit)
     891      331466 :                 joinlist = list_concat(joinlist, sub_joinlist);
     892             :             else
     893           0 :                 joinlist = lappend(joinlist, sub_joinlist);
     894             :         }
     895             : 
     896             :         /*
     897             :          * A FROM with more than one list element is an inner join subsuming
     898             :          * all below it, so we should report inner_join_rels = qualscope. If
     899             :          * there was exactly one element, we should (and already did) report
     900             :          * whatever its inner_join_rels were.  If there were no elements (is
     901             :          * that still possible?) the initialization before the loop fixed it.
     902             :          */
     903      286542 :         if (list_length(f->fromlist) > 1)
     904       41006 :             jtitem->inner_join_rels = jtitem->qualscope;
     905             :     }
     906       79584 :     else if (IsA(jtnode, JoinExpr))
     907             :     {
     908       79584 :         JoinExpr   *j = (JoinExpr *) jtnode;
     909             :         JoinDomain *child_domain,
     910             :                    *fj_domain;
     911             :         JoinTreeItem *left_item,
     912             :                    *right_item;
     913             :         List       *leftjoinlist,
     914             :                    *rightjoinlist;
     915             : 
     916       79584 :         switch (j->jointype)
     917             :         {
     918       32194 :             case JOIN_INNER:
     919             :                 /* This node belongs to parent_domain, as do its children */
     920       32194 :                 jtitem->jdomain = parent_domain;
     921             :                 /* Recurse */
     922       32194 :                 leftjoinlist = deconstruct_recurse(root, j->larg,
     923             :                                                    parent_domain,
     924             :                                                    jtitem,
     925             :                                                    item_list);
     926       32194 :                 left_item = (JoinTreeItem *) llast(*item_list);
     927       32194 :                 rightjoinlist = deconstruct_recurse(root, j->rarg,
     928             :                                                     parent_domain,
     929             :                                                     jtitem,
     930             :                                                     item_list);
     931       32194 :                 right_item = (JoinTreeItem *) llast(*item_list);
     932             :                 /* Compute qualscope etc */
     933       64388 :                 jtitem->qualscope = bms_union(left_item->qualscope,
     934       32194 :                                               right_item->qualscope);
     935       32194 :                 jtitem->inner_join_rels = jtitem->qualscope;
     936       32194 :                 jtitem->left_rels = left_item->qualscope;
     937       32194 :                 jtitem->right_rels = right_item->qualscope;
     938             :                 /* Inner join adds no restrictions for quals */
     939       32194 :                 jtitem->nonnullable_rels = NULL;
     940       32194 :                 break;
     941       44434 :             case JOIN_LEFT:
     942             :             case JOIN_ANTI:
     943             :                 /* Make new join domain for my quals and the RHS */
     944       44434 :                 child_domain = makeNode(JoinDomain);
     945       44434 :                 child_domain->jd_relids = NULL; /* filled by recursion */
     946       44434 :                 root->join_domains = lappend(root->join_domains, child_domain);
     947       44434 :                 jtitem->jdomain = child_domain;
     948             :                 /* Recurse */
     949       44434 :                 leftjoinlist = deconstruct_recurse(root, j->larg,
     950             :                                                    parent_domain,
     951             :                                                    jtitem,
     952             :                                                    item_list);
     953       44434 :                 left_item = (JoinTreeItem *) llast(*item_list);
     954       44434 :                 rightjoinlist = deconstruct_recurse(root, j->rarg,
     955             :                                                     child_domain,
     956             :                                                     jtitem,
     957             :                                                     item_list);
     958       44434 :                 right_item = (JoinTreeItem *) llast(*item_list);
     959             :                 /* Compute join domain contents, qualscope etc */
     960       44434 :                 parent_domain->jd_relids =
     961       44434 :                     bms_add_members(parent_domain->jd_relids,
     962       44434 :                                     child_domain->jd_relids);
     963       88868 :                 jtitem->qualscope = bms_union(left_item->qualscope,
     964       44434 :                                               right_item->qualscope);
     965             :                 /* caution: ANTI join derived from SEMI will lack rtindex */
     966       44434 :                 if (j->rtindex != 0)
     967             :                 {
     968       42000 :                     parent_domain->jd_relids =
     969       42000 :                         bms_add_member(parent_domain->jd_relids,
     970             :                                        j->rtindex);
     971       42000 :                     jtitem->qualscope = bms_add_member(jtitem->qualscope,
     972             :                                                        j->rtindex);
     973       42000 :                     root->outer_join_rels = bms_add_member(root->outer_join_rels,
     974             :                                                            j->rtindex);
     975       42000 :                     mark_rels_nulled_by_join(root, j->rtindex,
     976             :                                              right_item->qualscope);
     977             :                 }
     978       88868 :                 jtitem->inner_join_rels = bms_union(left_item->inner_join_rels,
     979       44434 :                                                     right_item->inner_join_rels);
     980       44434 :                 jtitem->left_rels = left_item->qualscope;
     981       44434 :                 jtitem->right_rels = right_item->qualscope;
     982       44434 :                 jtitem->nonnullable_rels = left_item->qualscope;
     983       44434 :                 break;
     984        1952 :             case JOIN_SEMI:
     985             :                 /* This node belongs to parent_domain, as do its children */
     986        1952 :                 jtitem->jdomain = parent_domain;
     987             :                 /* Recurse */
     988        1952 :                 leftjoinlist = deconstruct_recurse(root, j->larg,
     989             :                                                    parent_domain,
     990             :                                                    jtitem,
     991             :                                                    item_list);
     992        1952 :                 left_item = (JoinTreeItem *) llast(*item_list);
     993        1952 :                 rightjoinlist = deconstruct_recurse(root, j->rarg,
     994             :                                                     parent_domain,
     995             :                                                     jtitem,
     996             :                                                     item_list);
     997        1952 :                 right_item = (JoinTreeItem *) llast(*item_list);
     998             :                 /* Compute qualscope etc */
     999        3904 :                 jtitem->qualscope = bms_union(left_item->qualscope,
    1000        1952 :                                               right_item->qualscope);
    1001             :                 /* SEMI join never has rtindex, so don't add to anything */
    1002             :                 Assert(j->rtindex == 0);
    1003        3904 :                 jtitem->inner_join_rels = bms_union(left_item->inner_join_rels,
    1004        1952 :                                                     right_item->inner_join_rels);
    1005        1952 :                 jtitem->left_rels = left_item->qualscope;
    1006        1952 :                 jtitem->right_rels = right_item->qualscope;
    1007             :                 /* Semi join adds no restrictions for quals */
    1008        1952 :                 jtitem->nonnullable_rels = NULL;
    1009        1952 :                 break;
    1010        1004 :             case JOIN_FULL:
    1011             :                 /* The FULL JOIN's quals need their very own domain */
    1012        1004 :                 fj_domain = makeNode(JoinDomain);
    1013        1004 :                 root->join_domains = lappend(root->join_domains, fj_domain);
    1014        1004 :                 jtitem->jdomain = fj_domain;
    1015             :                 /* Recurse, giving each side its own join domain */
    1016        1004 :                 child_domain = makeNode(JoinDomain);
    1017        1004 :                 child_domain->jd_relids = NULL; /* filled by recursion */
    1018        1004 :                 root->join_domains = lappend(root->join_domains, child_domain);
    1019        1004 :                 leftjoinlist = deconstruct_recurse(root, j->larg,
    1020             :                                                    child_domain,
    1021             :                                                    jtitem,
    1022             :                                                    item_list);
    1023        1004 :                 left_item = (JoinTreeItem *) llast(*item_list);
    1024        1004 :                 fj_domain->jd_relids = bms_copy(child_domain->jd_relids);
    1025        1004 :                 child_domain = makeNode(JoinDomain);
    1026        1004 :                 child_domain->jd_relids = NULL; /* filled by recursion */
    1027        1004 :                 root->join_domains = lappend(root->join_domains, child_domain);
    1028        1004 :                 rightjoinlist = deconstruct_recurse(root, j->rarg,
    1029             :                                                     child_domain,
    1030             :                                                     jtitem,
    1031             :                                                     item_list);
    1032        1004 :                 right_item = (JoinTreeItem *) llast(*item_list);
    1033             :                 /* Compute qualscope etc */
    1034        2008 :                 fj_domain->jd_relids = bms_add_members(fj_domain->jd_relids,
    1035        1004 :                                                        child_domain->jd_relids);
    1036        2008 :                 parent_domain->jd_relids = bms_add_members(parent_domain->jd_relids,
    1037        1004 :                                                            fj_domain->jd_relids);
    1038        2008 :                 jtitem->qualscope = bms_union(left_item->qualscope,
    1039        1004 :                                               right_item->qualscope);
    1040             :                 Assert(j->rtindex != 0);
    1041        1004 :                 parent_domain->jd_relids = bms_add_member(parent_domain->jd_relids,
    1042             :                                                           j->rtindex);
    1043        1004 :                 jtitem->qualscope = bms_add_member(jtitem->qualscope,
    1044             :                                                    j->rtindex);
    1045        1004 :                 root->outer_join_rels = bms_add_member(root->outer_join_rels,
    1046             :                                                        j->rtindex);
    1047        1004 :                 mark_rels_nulled_by_join(root, j->rtindex,
    1048             :                                          left_item->qualscope);
    1049        1004 :                 mark_rels_nulled_by_join(root, j->rtindex,
    1050             :                                          right_item->qualscope);
    1051        2008 :                 jtitem->inner_join_rels = bms_union(left_item->inner_join_rels,
    1052        1004 :                                                     right_item->inner_join_rels);
    1053        1004 :                 jtitem->left_rels = left_item->qualscope;
    1054        1004 :                 jtitem->right_rels = right_item->qualscope;
    1055             :                 /* each side is both outer and inner */
    1056        1004 :                 jtitem->nonnullable_rels = jtitem->qualscope;
    1057        1004 :                 break;
    1058           0 :             default:
    1059             :                 /* JOIN_RIGHT was eliminated during reduce_outer_joins() */
    1060           0 :                 elog(ERROR, "unrecognized join type: %d",
    1061             :                      (int) j->jointype);
    1062             :                 leftjoinlist = rightjoinlist = NIL; /* keep compiler quiet */
    1063             :                 break;
    1064             :         }
    1065             : 
    1066             :         /*
    1067             :          * Compute the output joinlist.  We fold subproblems together except
    1068             :          * at a FULL JOIN or where join_collapse_limit would be exceeded.
    1069             :          */
    1070       79584 :         if (j->jointype == JOIN_FULL)
    1071             :         {
    1072             :             /* force the join order exactly at this node */
    1073        1004 :             joinlist = list_make1(list_make2(leftjoinlist, rightjoinlist));
    1074             :         }
    1075       78580 :         else if (list_length(leftjoinlist) + list_length(rightjoinlist) <=
    1076             :                  join_collapse_limit)
    1077             :         {
    1078             :             /* OK to combine subproblems */
    1079       78418 :             joinlist = list_concat(leftjoinlist, rightjoinlist);
    1080             :         }
    1081             :         else
    1082             :         {
    1083             :             /* can't combine, but needn't force join order above here */
    1084             :             Node       *leftpart,
    1085             :                        *rightpart;
    1086             : 
    1087             :             /* avoid creating useless 1-element sublists */
    1088         162 :             if (list_length(leftjoinlist) == 1)
    1089          30 :                 leftpart = (Node *) linitial(leftjoinlist);
    1090             :             else
    1091         132 :                 leftpart = (Node *) leftjoinlist;
    1092         162 :             if (list_length(rightjoinlist) == 1)
    1093          24 :                 rightpart = (Node *) linitial(rightjoinlist);
    1094             :             else
    1095         138 :                 rightpart = (Node *) rightjoinlist;
    1096         162 :             joinlist = list_make2(leftpart, rightpart);
    1097             :         }
    1098             :     }
    1099             :     else
    1100             :     {
    1101           0 :         elog(ERROR, "unrecognized node type: %d",
    1102             :              (int) nodeTag(jtnode));
    1103             :         joinlist = NIL;         /* keep compiler quiet */
    1104             :     }
    1105             : 
    1106             :     /* Finally, we can add the new JoinTreeItem to item_list */
    1107      768816 :     *item_list = lappend(*item_list, jtitem);
    1108             : 
    1109      768816 :     return joinlist;
    1110             : }
    1111             : 
    1112             : /*
    1113             :  * deconstruct_distribute
    1114             :  *    Process one jointree node in phase 2 of deconstruct_jointree processing.
    1115             :  *
    1116             :  * Distribute quals of the node to appropriate restriction and join lists.
    1117             :  * In addition, entries will be added to root->join_info_list for outer joins.
    1118             :  */
    1119             : static void
    1120      768816 : deconstruct_distribute(PlannerInfo *root, JoinTreeItem *jtitem)
    1121             : {
    1122      768816 :     Node       *jtnode = jtitem->jtnode;
    1123             : 
    1124      768816 :     if (IsA(jtnode, RangeTblRef))
    1125             :     {
    1126      402690 :         int         varno = ((RangeTblRef *) jtnode)->rtindex;
    1127             : 
    1128             :         /* Deal with any securityQuals attached to the RTE */
    1129      402690 :         if (root->qual_security_level > 0)
    1130        2580 :             process_security_barrier_quals(root,
    1131             :                                            varno,
    1132             :                                            jtitem);
    1133             :     }
    1134      366126 :     else if (IsA(jtnode, FromExpr))
    1135             :     {
    1136      286542 :         FromExpr   *f = (FromExpr *) jtnode;
    1137             : 
    1138             :         /*
    1139             :          * Process any lateral-referencing quals that were postponed to this
    1140             :          * level by children.
    1141             :          */
    1142      286542 :         distribute_quals_to_rels(root, jtitem->lateral_clauses,
    1143             :                                  jtitem,
    1144             :                                  NULL,
    1145             :                                  root->qual_security_level,
    1146             :                                  jtitem->qualscope,
    1147             :                                  NULL, NULL, NULL,
    1148             :                                  true, false, false,
    1149             :                                  NULL);
    1150             : 
    1151             :         /*
    1152             :          * Now process the top-level quals.
    1153             :          */
    1154      286542 :         distribute_quals_to_rels(root, (List *) f->quals,
    1155             :                                  jtitem,
    1156             :                                  NULL,
    1157             :                                  root->qual_security_level,
    1158             :                                  jtitem->qualscope,
    1159             :                                  NULL, NULL, NULL,
    1160             :                                  true, false, false,
    1161             :                                  NULL);
    1162             :     }
    1163       79584 :     else if (IsA(jtnode, JoinExpr))
    1164             :     {
    1165       79584 :         JoinExpr   *j = (JoinExpr *) jtnode;
    1166             :         Relids      ojscope;
    1167             :         List       *my_quals;
    1168             :         SpecialJoinInfo *sjinfo;
    1169             :         List      **postponed_oj_qual_list;
    1170             : 
    1171             :         /*
    1172             :          * Include lateral-referencing quals postponed from children in
    1173             :          * my_quals, so that they'll be handled properly in
    1174             :          * make_outerjoininfo.  (This is destructive to
    1175             :          * jtitem->lateral_clauses, but we won't use that again.)
    1176             :          */
    1177       79584 :         my_quals = list_concat(jtitem->lateral_clauses,
    1178       79584 :                                (List *) j->quals);
    1179             : 
    1180             :         /*
    1181             :          * For an OJ, form the SpecialJoinInfo now, so that we can pass it to
    1182             :          * distribute_qual_to_rels.  We must compute its ojscope too.
    1183             :          *
    1184             :          * Semijoins are a bit of a hybrid: we build a SpecialJoinInfo, but we
    1185             :          * want ojscope = NULL for distribute_qual_to_rels.
    1186             :          */
    1187       79584 :         if (j->jointype != JOIN_INNER)
    1188             :         {
    1189       47390 :             sjinfo = make_outerjoininfo(root,
    1190             :                                         jtitem->left_rels,
    1191             :                                         jtitem->right_rels,
    1192             :                                         jtitem->inner_join_rels,
    1193             :                                         j->jointype,
    1194       47390 :                                         j->rtindex,
    1195             :                                         my_quals);
    1196       47390 :             jtitem->sjinfo = sjinfo;
    1197       47390 :             if (j->jointype == JOIN_SEMI)
    1198        1952 :                 ojscope = NULL;
    1199             :             else
    1200       45438 :                 ojscope = bms_union(sjinfo->min_lefthand,
    1201       45438 :                                     sjinfo->min_righthand);
    1202             :         }
    1203             :         else
    1204             :         {
    1205       32194 :             sjinfo = NULL;
    1206       32194 :             ojscope = NULL;
    1207             :         }
    1208             : 
    1209             :         /*
    1210             :          * If it's a left join with a join clause that is strict for the LHS,
    1211             :          * then we need to postpone handling of any non-degenerate join
    1212             :          * clauses, in case the join is able to commute with another left join
    1213             :          * per identity 3.  (Degenerate clauses need not be postponed, since
    1214             :          * they will drop down below this join anyway.)
    1215             :          */
    1216       79584 :         if (j->jointype == JOIN_LEFT && sjinfo->lhs_strict)
    1217             :         {
    1218       39664 :             postponed_oj_qual_list = &jtitem->oj_joinclauses;
    1219             : 
    1220             :             /*
    1221             :              * Add back any commutable lower OJ relids that were removed from
    1222             :              * min_lefthand or min_righthand, else the ojscope cross-check in
    1223             :              * distribute_qual_to_rels will complain.  Since we are postponing
    1224             :              * processing of non-degenerate clauses, this addition doesn't
    1225             :              * affect anything except that cross-check.  Real clause
    1226             :              * positioning decisions will be made later, when we revisit the
    1227             :              * postponed clauses.
    1228             :              */
    1229       39664 :             ojscope = bms_add_members(ojscope, sjinfo->commute_below_l);
    1230       39664 :             ojscope = bms_add_members(ojscope, sjinfo->commute_below_r);
    1231             :         }
    1232             :         else
    1233       39920 :             postponed_oj_qual_list = NULL;
    1234             : 
    1235             :         /* Process the JOIN's qual clauses */
    1236       79584 :         distribute_quals_to_rels(root, my_quals,
    1237             :                                  jtitem,
    1238             :                                  sjinfo,
    1239             :                                  root->qual_security_level,
    1240             :                                  jtitem->qualscope,
    1241             :                                  ojscope, jtitem->nonnullable_rels,
    1242             :                                  NULL,  /* incompatible_relids */
    1243             :                                  true,  /* allow_equivalence */
    1244             :                                  false, false,  /* not clones */
    1245             :                                  postponed_oj_qual_list);
    1246             : 
    1247             :         /* And add the SpecialJoinInfo to join_info_list */
    1248       79584 :         if (sjinfo)
    1249       47390 :             root->join_info_list = lappend(root->join_info_list, sjinfo);
    1250             :     }
    1251             :     else
    1252             :     {
    1253           0 :         elog(ERROR, "unrecognized node type: %d",
    1254             :              (int) nodeTag(jtnode));
    1255             :     }
    1256      768816 : }
    1257             : 
    1258             : /*
    1259             :  * process_security_barrier_quals
    1260             :  *    Transfer security-barrier quals into relation's baserestrictinfo list.
    1261             :  *
    1262             :  * The rewriter put any relevant security-barrier conditions into the RTE's
    1263             :  * securityQuals field, but it's now time to copy them into the rel's
    1264             :  * baserestrictinfo.
    1265             :  *
    1266             :  * In inheritance cases, we only consider quals attached to the parent rel
    1267             :  * here; they will be valid for all children too, so it's okay to consider
    1268             :  * them for purposes like equivalence class creation.  Quals attached to
    1269             :  * individual child rels will be dealt with during path creation.
    1270             :  */
    1271             : static void
    1272        2580 : process_security_barrier_quals(PlannerInfo *root,
    1273             :                                int rti, JoinTreeItem *jtitem)
    1274             : {
    1275        2580 :     RangeTblEntry *rte = root->simple_rte_array[rti];
    1276        2580 :     Index       security_level = 0;
    1277             :     ListCell   *lc;
    1278             : 
    1279             :     /*
    1280             :      * Each element of the securityQuals list has been preprocessed into an
    1281             :      * implicitly-ANDed list of clauses.  All the clauses in a given sublist
    1282             :      * should get the same security level, but successive sublists get higher
    1283             :      * levels.
    1284             :      */
    1285        5278 :     foreach(lc, rte->securityQuals)
    1286             :     {
    1287        2698 :         List       *qualset = (List *) lfirst(lc);
    1288             : 
    1289             :         /*
    1290             :          * We cheat to the extent of passing ojscope = qualscope rather than
    1291             :          * its more logical value of NULL.  The only effect this has is to
    1292             :          * force a Var-free qual to be evaluated at the rel rather than being
    1293             :          * pushed up to top of tree, which we don't want.
    1294             :          */
    1295        2698 :         distribute_quals_to_rels(root, qualset,
    1296             :                                  jtitem,
    1297             :                                  NULL,
    1298             :                                  security_level,
    1299             :                                  jtitem->qualscope,
    1300             :                                  jtitem->qualscope,
    1301             :                                  NULL,
    1302             :                                  NULL,
    1303             :                                  true,
    1304             :                                  false, false,  /* not clones */
    1305             :                                  NULL);
    1306        2698 :         security_level++;
    1307             :     }
    1308             : 
    1309             :     /* Assert that qual_security_level is higher than anything we just used */
    1310             :     Assert(security_level <= root->qual_security_level);
    1311        2580 : }
    1312             : 
    1313             : /*
    1314             :  * mark_rels_nulled_by_join
    1315             :  *    Fill RelOptInfo.nulling_relids of baserels nulled by this outer join
    1316             :  *
    1317             :  * Inputs:
    1318             :  *  ojrelid: RT index of the join RTE (must not be 0)
    1319             :  *  lower_rels: the base+OJ Relids syntactically below nullable side of join
    1320             :  */
    1321             : static void
    1322       44008 : mark_rels_nulled_by_join(PlannerInfo *root, Index ojrelid,
    1323             :                          Relids lower_rels)
    1324             : {
    1325       44008 :     int         relid = -1;
    1326             : 
    1327       90526 :     while ((relid = bms_next_member(lower_rels, relid)) > 0)
    1328             :     {
    1329       46518 :         RelOptInfo *rel = root->simple_rel_array[relid];
    1330             : 
    1331       46518 :         if (rel == NULL)        /* must be an outer join */
    1332             :         {
    1333             :             Assert(bms_is_member(relid, root->outer_join_rels));
    1334         714 :             continue;
    1335             :         }
    1336       45804 :         rel->nulling_relids = bms_add_member(rel->nulling_relids, ojrelid);
    1337             :     }
    1338       44008 : }
    1339             : 
    1340             : /*
    1341             :  * make_outerjoininfo
    1342             :  *    Build a SpecialJoinInfo for the current outer join
    1343             :  *
    1344             :  * Inputs:
    1345             :  *  left_rels: the base+OJ Relids syntactically on outer side of join
    1346             :  *  right_rels: the base+OJ Relids syntactically on inner side of join
    1347             :  *  inner_join_rels: base+OJ Relids participating in inner joins below this one
    1348             :  *  jointype: what it says (must always be LEFT, FULL, SEMI, or ANTI)
    1349             :  *  ojrelid: RT index of the join RTE (0 for SEMI, which isn't in the RT list)
    1350             :  *  clause: the outer join's join condition (in implicit-AND format)
    1351             :  *
    1352             :  * The node should eventually be appended to root->join_info_list, but we
    1353             :  * do not do that here.
    1354             :  *
    1355             :  * Note: we assume that this function is invoked bottom-up, so that
    1356             :  * root->join_info_list already contains entries for all outer joins that are
    1357             :  * syntactically below this one.
    1358             :  */
    1359             : static SpecialJoinInfo *
    1360       47390 : make_outerjoininfo(PlannerInfo *root,
    1361             :                    Relids left_rels, Relids right_rels,
    1362             :                    Relids inner_join_rels,
    1363             :                    JoinType jointype, Index ojrelid,
    1364             :                    List *clause)
    1365             : {
    1366       47390 :     SpecialJoinInfo *sjinfo = makeNode(SpecialJoinInfo);
    1367             :     Relids      clause_relids;
    1368             :     Relids      strict_relids;
    1369             :     Relids      min_lefthand;
    1370             :     Relids      min_righthand;
    1371             :     Relids      commute_below_l;
    1372             :     Relids      commute_below_r;
    1373             :     ListCell   *l;
    1374             : 
    1375             :     /*
    1376             :      * We should not see RIGHT JOIN here because left/right were switched
    1377             :      * earlier
    1378             :      */
    1379             :     Assert(jointype != JOIN_INNER);
    1380             :     Assert(jointype != JOIN_RIGHT);
    1381             : 
    1382             :     /*
    1383             :      * Presently the executor cannot support FOR [KEY] UPDATE/SHARE marking of
    1384             :      * rels appearing on the nullable side of an outer join. (It's somewhat
    1385             :      * unclear what that would mean, anyway: what should we mark when a result
    1386             :      * row is generated from no element of the nullable relation?)  So,
    1387             :      * complain if any nullable rel is FOR [KEY] UPDATE/SHARE.
    1388             :      *
    1389             :      * You might be wondering why this test isn't made far upstream in the
    1390             :      * parser.  It's because the parser hasn't got enough info --- consider
    1391             :      * FOR UPDATE applied to a view.  Only after rewriting and flattening do
    1392             :      * we know whether the view contains an outer join.
    1393             :      *
    1394             :      * We use the original RowMarkClause list here; the PlanRowMark list would
    1395             :      * list everything.
    1396             :      */
    1397       47434 :     foreach(l, root->parse->rowMarks)
    1398             :     {
    1399          44 :         RowMarkClause *rc = (RowMarkClause *) lfirst(l);
    1400             : 
    1401          44 :         if (bms_is_member(rc->rti, right_rels) ||
    1402           8 :             (jointype == JOIN_FULL && bms_is_member(rc->rti, left_rels)))
    1403           0 :             ereport(ERROR,
    1404             :                     (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1405             :             /*------
    1406             :              translator: %s is a SQL row locking clause such as FOR UPDATE */
    1407             :                      errmsg("%s cannot be applied to the nullable side of an outer join",
    1408             :                             LCS_asString(rc->strength))));
    1409             :     }
    1410             : 
    1411       47390 :     sjinfo->syn_lefthand = left_rels;
    1412       47390 :     sjinfo->syn_righthand = right_rels;
    1413       47390 :     sjinfo->jointype = jointype;
    1414       47390 :     sjinfo->ojrelid = ojrelid;
    1415             :     /* these fields may get added to later: */
    1416       47390 :     sjinfo->commute_above_l = NULL;
    1417       47390 :     sjinfo->commute_above_r = NULL;
    1418       47390 :     sjinfo->commute_below_l = NULL;
    1419       47390 :     sjinfo->commute_below_r = NULL;
    1420             : 
    1421       47390 :     compute_semijoin_info(root, sjinfo, clause);
    1422             : 
    1423             :     /* If it's a full join, no need to be very smart */
    1424       47390 :     if (jointype == JOIN_FULL)
    1425             :     {
    1426        1004 :         sjinfo->min_lefthand = bms_copy(left_rels);
    1427        1004 :         sjinfo->min_righthand = bms_copy(right_rels);
    1428        1004 :         sjinfo->lhs_strict = false; /* don't care about this */
    1429        1004 :         return sjinfo;
    1430             :     }
    1431             : 
    1432             :     /*
    1433             :      * Retrieve all relids mentioned within the join clause.
    1434             :      */
    1435       46386 :     clause_relids = pull_varnos(root, (Node *) clause);
    1436             : 
    1437             :     /*
    1438             :      * For which relids is the clause strict, ie, it cannot succeed if the
    1439             :      * rel's columns are all NULL?
    1440             :      */
    1441       46386 :     strict_relids = find_nonnullable_rels((Node *) clause);
    1442             : 
    1443             :     /* Remember whether the clause is strict for any LHS relations */
    1444       46386 :     sjinfo->lhs_strict = bms_overlap(strict_relids, left_rels);
    1445             : 
    1446             :     /*
    1447             :      * Required LHS always includes the LHS rels mentioned in the clause. We
    1448             :      * may have to add more rels based on lower outer joins; see below.
    1449             :      */
    1450       46386 :     min_lefthand = bms_intersect(clause_relids, left_rels);
    1451             : 
    1452             :     /*
    1453             :      * Similarly for required RHS.  But here, we must also include any lower
    1454             :      * inner joins, to ensure we don't try to commute with any of them.
    1455             :      */
    1456       46386 :     min_righthand = bms_int_members(bms_union(clause_relids, inner_join_rels),
    1457             :                                     right_rels);
    1458             : 
    1459             :     /*
    1460             :      * Now check previous outer joins for ordering restrictions.
    1461             :      *
    1462             :      * commute_below_l and commute_below_r accumulate the relids of lower
    1463             :      * outer joins that we think this one can commute with.  These decisions
    1464             :      * are just tentative within this loop, since we might find an
    1465             :      * intermediate outer join that prevents commutation.  Surviving relids
    1466             :      * will get merged into the SpecialJoinInfo structs afterwards.
    1467             :      */
    1468       46386 :     commute_below_l = commute_below_r = NULL;
    1469       66034 :     foreach(l, root->join_info_list)
    1470             :     {
    1471       19648 :         SpecialJoinInfo *otherinfo = (SpecialJoinInfo *) lfirst(l);
    1472             :         bool        have_unsafe_phvs;
    1473             : 
    1474             :         /*
    1475             :          * A full join is an optimization barrier: we can't associate into or
    1476             :          * out of it.  Hence, if it overlaps either LHS or RHS of the current
    1477             :          * rel, expand that side's min relset to cover the whole full join.
    1478             :          */
    1479       19648 :         if (otherinfo->jointype == JOIN_FULL)
    1480             :         {
    1481             :             Assert(otherinfo->ojrelid != 0);
    1482          82 :             if (bms_overlap(left_rels, otherinfo->syn_lefthand) ||
    1483          30 :                 bms_overlap(left_rels, otherinfo->syn_righthand))
    1484             :             {
    1485          22 :                 min_lefthand = bms_add_members(min_lefthand,
    1486          22 :                                                otherinfo->syn_lefthand);
    1487          22 :                 min_lefthand = bms_add_members(min_lefthand,
    1488          22 :                                                otherinfo->syn_righthand);
    1489          22 :                 min_lefthand = bms_add_member(min_lefthand,
    1490          22 :                                               otherinfo->ojrelid);
    1491             :             }
    1492          74 :             if (bms_overlap(right_rels, otherinfo->syn_lefthand) ||
    1493          22 :                 bms_overlap(right_rels, otherinfo->syn_righthand))
    1494             :             {
    1495          30 :                 min_righthand = bms_add_members(min_righthand,
    1496          30 :                                                 otherinfo->syn_lefthand);
    1497          30 :                 min_righthand = bms_add_members(min_righthand,
    1498          30 :                                                 otherinfo->syn_righthand);
    1499          30 :                 min_righthand = bms_add_member(min_righthand,
    1500          30 :                                                otherinfo->ojrelid);
    1501             :             }
    1502             :             /* Needn't do anything else with the full join */
    1503          52 :             continue;
    1504             :         }
    1505             : 
    1506             :         /*
    1507             :          * If our join condition contains any PlaceHolderVars that need to be
    1508             :          * evaluated above the lower OJ, then we can't commute with it.
    1509             :          */
    1510       19596 :         if (otherinfo->ojrelid != 0)
    1511             :             have_unsafe_phvs =
    1512       19322 :                 contain_placeholder_references_to(root,
    1513             :                                                   (Node *) clause,
    1514       19322 :                                                   otherinfo->ojrelid);
    1515             :         else
    1516         274 :             have_unsafe_phvs = false;
    1517             : 
    1518             :         /*
    1519             :          * For a lower OJ in our LHS, if our join condition uses the lower
    1520             :          * join's RHS and is not strict for that rel, we must preserve the
    1521             :          * ordering of the two OJs, so add lower OJ's full syntactic relset to
    1522             :          * min_lefthand.  (We must use its full syntactic relset, not just its
    1523             :          * min_lefthand + min_righthand.  This is because there might be other
    1524             :          * OJs below this one that this one can commute with, but we cannot
    1525             :          * commute with them if we don't with this one.)  Also, if we have
    1526             :          * unsafe PHVs or the current join is a semijoin or antijoin, we must
    1527             :          * preserve ordering regardless of strictness.
    1528             :          *
    1529             :          * Note: I believe we have to insist on being strict for at least one
    1530             :          * rel in the lower OJ's min_righthand, not its whole syn_righthand.
    1531             :          *
    1532             :          * When we don't need to preserve ordering, check to see if outer join
    1533             :          * identity 3 applies, and if so, remove the lower OJ's ojrelid from
    1534             :          * our min_lefthand so that commutation is allowed.
    1535             :          */
    1536       19596 :         if (bms_overlap(left_rels, otherinfo->syn_righthand))
    1537             :         {
    1538       18842 :             if (bms_overlap(clause_relids, otherinfo->syn_righthand) &&
    1539        4572 :                 (have_unsafe_phvs ||
    1540        4572 :                  jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
    1541        4572 :                  !bms_overlap(strict_relids, otherinfo->min_righthand)))
    1542             :             {
    1543             :                 /* Preserve ordering */
    1544          42 :                 min_lefthand = bms_add_members(min_lefthand,
    1545          42 :                                                otherinfo->syn_lefthand);
    1546          42 :                 min_lefthand = bms_add_members(min_lefthand,
    1547          42 :                                                otherinfo->syn_righthand);
    1548          42 :                 if (otherinfo->ojrelid != 0)
    1549          42 :                     min_lefthand = bms_add_member(min_lefthand,
    1550          42 :                                                   otherinfo->ojrelid);
    1551             :             }
    1552       18800 :             else if (jointype == JOIN_LEFT &&
    1553       36600 :                      otherinfo->jointype == JOIN_LEFT &&
    1554       18300 :                      bms_overlap(strict_relids, otherinfo->min_righthand) &&
    1555        4542 :                      !bms_overlap(clause_relids, otherinfo->syn_lefthand))
    1556             :             {
    1557             :                 /* Identity 3 applies, so remove the ordering restriction */
    1558        4498 :                 min_lefthand = bms_del_member(min_lefthand, otherinfo->ojrelid);
    1559             :                 /* Record the (still tentative) commutability relationship */
    1560             :                 commute_below_l =
    1561        4498 :                     bms_add_member(commute_below_l, otherinfo->ojrelid);
    1562             :             }
    1563             :         }
    1564             : 
    1565             :         /*
    1566             :          * For a lower OJ in our RHS, if our join condition does not use the
    1567             :          * lower join's RHS and the lower OJ's join condition is strict, we
    1568             :          * can interchange the ordering of the two OJs; otherwise we must add
    1569             :          * the lower OJ's full syntactic relset to min_righthand.
    1570             :          *
    1571             :          * Also, if our join condition does not use the lower join's LHS
    1572             :          * either, force the ordering to be preserved.  Otherwise we can end
    1573             :          * up with SpecialJoinInfos with identical min_righthands, which can
    1574             :          * confuse join_is_legal (see discussion in backend/optimizer/README).
    1575             :          *
    1576             :          * Also, we must preserve ordering anyway if we have unsafe PHVs, or
    1577             :          * if either this join or the lower OJ is a semijoin or antijoin.
    1578             :          *
    1579             :          * When we don't need to preserve ordering, check to see if outer join
    1580             :          * identity 3 applies, and if so, remove the lower OJ's ojrelid from
    1581             :          * our min_righthand so that commutation is allowed.
    1582             :          */
    1583       19596 :         if (bms_overlap(right_rels, otherinfo->syn_righthand))
    1584             :         {
    1585         674 :             if (bms_overlap(clause_relids, otherinfo->syn_righthand) ||
    1586         626 :                 !bms_overlap(clause_relids, otherinfo->min_lefthand) ||
    1587         356 :                 have_unsafe_phvs ||
    1588         266 :                 jointype == JOIN_SEMI ||
    1589         260 :                 jointype == JOIN_ANTI ||
    1590         260 :                 otherinfo->jointype == JOIN_SEMI ||
    1591         230 :                 otherinfo->jointype == JOIN_ANTI ||
    1592         230 :                 !otherinfo->lhs_strict)
    1593             :             {
    1594             :                 /* Preserve ordering */
    1595         468 :                 min_righthand = bms_add_members(min_righthand,
    1596         468 :                                                 otherinfo->syn_lefthand);
    1597         468 :                 min_righthand = bms_add_members(min_righthand,
    1598         468 :                                                 otherinfo->syn_righthand);
    1599         468 :                 if (otherinfo->ojrelid != 0)
    1600         348 :                     min_righthand = bms_add_member(min_righthand,
    1601         348 :                                                    otherinfo->ojrelid);
    1602             :             }
    1603         206 :             else if (jointype == JOIN_LEFT &&
    1604         206 :                      otherinfo->jointype == JOIN_LEFT &&
    1605         206 :                      otherinfo->lhs_strict)
    1606             :             {
    1607             :                 /* Identity 3 applies, so remove the ordering restriction */
    1608         206 :                 min_righthand = bms_del_member(min_righthand,
    1609         206 :                                                otherinfo->ojrelid);
    1610             :                 /* Record the (still tentative) commutability relationship */
    1611             :                 commute_below_r =
    1612         206 :                     bms_add_member(commute_below_r, otherinfo->ojrelid);
    1613             :             }
    1614             :         }
    1615             :     }
    1616             : 
    1617             :     /*
    1618             :      * Examine PlaceHolderVars.  If a PHV is supposed to be evaluated within
    1619             :      * this join's nullable side, then ensure that min_righthand contains the
    1620             :      * full eval_at set of the PHV.  This ensures that the PHV actually can be
    1621             :      * evaluated within the RHS.  Note that this works only because we should
    1622             :      * already have determined the final eval_at level for any PHV
    1623             :      * syntactically within this join.
    1624             :      */
    1625       47546 :     foreach(l, root->placeholder_list)
    1626             :     {
    1627        1160 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
    1628        1160 :         Relids      ph_syn_level = phinfo->ph_var->phrels;
    1629             : 
    1630             :         /* Ignore placeholder if it didn't syntactically come from RHS */
    1631        1160 :         if (!bms_is_subset(ph_syn_level, right_rels))
    1632         442 :             continue;
    1633             : 
    1634             :         /* Else, prevent join from being formed before we eval the PHV */
    1635         718 :         min_righthand = bms_add_members(min_righthand, phinfo->ph_eval_at);
    1636             :     }
    1637             : 
    1638             :     /*
    1639             :      * If we found nothing to put in min_lefthand, punt and make it the full
    1640             :      * LHS, to avoid having an empty min_lefthand which will confuse later
    1641             :      * processing. (We don't try to be smart about such cases, just correct.)
    1642             :      * Likewise for min_righthand.
    1643             :      */
    1644       46386 :     if (bms_is_empty(min_lefthand))
    1645        1246 :         min_lefthand = bms_copy(left_rels);
    1646       46386 :     if (bms_is_empty(min_righthand))
    1647         482 :         min_righthand = bms_copy(right_rels);
    1648             : 
    1649             :     /* Now they'd better be nonempty */
    1650             :     Assert(!bms_is_empty(min_lefthand));
    1651             :     Assert(!bms_is_empty(min_righthand));
    1652             :     /* Shouldn't overlap either */
    1653             :     Assert(!bms_overlap(min_lefthand, min_righthand));
    1654             : 
    1655       46386 :     sjinfo->min_lefthand = min_lefthand;
    1656       46386 :     sjinfo->min_righthand = min_righthand;
    1657             : 
    1658             :     /*
    1659             :      * Now that we've identified the correct min_lefthand and min_righthand,
    1660             :      * any commute_below_l or commute_below_r relids that have not gotten
    1661             :      * added back into those sets (due to intervening outer joins) are indeed
    1662             :      * commutable with this one.
    1663             :      *
    1664             :      * First, delete any subsequently-added-back relids (this is easier than
    1665             :      * maintaining commute_below_l/r precisely through all the above).
    1666             :      */
    1667       46386 :     commute_below_l = bms_del_members(commute_below_l, min_lefthand);
    1668       46386 :     commute_below_r = bms_del_members(commute_below_r, min_righthand);
    1669             : 
    1670             :     /* Anything left? */
    1671       46386 :     if (commute_below_l || commute_below_r)
    1672             :     {
    1673             :         /* Yup, so we must update the derived data in the SpecialJoinInfos */
    1674        4626 :         sjinfo->commute_below_l = commute_below_l;
    1675        4626 :         sjinfo->commute_below_r = commute_below_r;
    1676       11866 :         foreach(l, root->join_info_list)
    1677             :         {
    1678        7240 :             SpecialJoinInfo *otherinfo = (SpecialJoinInfo *) lfirst(l);
    1679             : 
    1680        7240 :             if (bms_is_member(otherinfo->ojrelid, commute_below_l))
    1681        4498 :                 otherinfo->commute_above_l =
    1682        4498 :                     bms_add_member(otherinfo->commute_above_l, ojrelid);
    1683        2742 :             else if (bms_is_member(otherinfo->ojrelid, commute_below_r))
    1684         176 :                 otherinfo->commute_above_r =
    1685         176 :                     bms_add_member(otherinfo->commute_above_r, ojrelid);
    1686             :         }
    1687             :     }
    1688             : 
    1689       46386 :     return sjinfo;
    1690             : }
    1691             : 
    1692             : /*
    1693             :  * compute_semijoin_info
    1694             :  *    Fill semijoin-related fields of a new SpecialJoinInfo
    1695             :  *
    1696             :  * Note: this relies on only the jointype and syn_righthand fields of the
    1697             :  * SpecialJoinInfo; the rest may not be set yet.
    1698             :  */
    1699             : static void
    1700       47390 : compute_semijoin_info(PlannerInfo *root, SpecialJoinInfo *sjinfo, List *clause)
    1701             : {
    1702             :     List       *semi_operators;
    1703             :     List       *semi_rhs_exprs;
    1704             :     bool        all_btree;
    1705             :     bool        all_hash;
    1706             :     ListCell   *lc;
    1707             : 
    1708             :     /* Initialize semijoin-related fields in case we can't unique-ify */
    1709       47390 :     sjinfo->semi_can_btree = false;
    1710       47390 :     sjinfo->semi_can_hash = false;
    1711       47390 :     sjinfo->semi_operators = NIL;
    1712       47390 :     sjinfo->semi_rhs_exprs = NIL;
    1713             : 
    1714             :     /* Nothing more to do if it's not a semijoin */
    1715       47390 :     if (sjinfo->jointype != JOIN_SEMI)
    1716       45438 :         return;
    1717             : 
    1718             :     /*
    1719             :      * Look to see whether the semijoin's join quals consist of AND'ed
    1720             :      * equality operators, with (only) RHS variables on only one side of each
    1721             :      * one.  If so, we can figure out how to enforce uniqueness for the RHS.
    1722             :      *
    1723             :      * Note that the input clause list is the list of quals that are
    1724             :      * *syntactically* associated with the semijoin, which in practice means
    1725             :      * the synthesized comparison list for an IN or the WHERE of an EXISTS.
    1726             :      * Particularly in the latter case, it might contain clauses that aren't
    1727             :      * *semantically* associated with the join, but refer to just one side or
    1728             :      * the other.  We can ignore such clauses here, as they will just drop
    1729             :      * down to be processed within one side or the other.  (It is okay to
    1730             :      * consider only the syntactically-associated clauses here because for a
    1731             :      * semijoin, no higher-level quals could refer to the RHS, and so there
    1732             :      * can be no other quals that are semantically associated with this join.
    1733             :      * We do things this way because it is useful to have the set of potential
    1734             :      * unique-ification expressions before we can extract the list of quals
    1735             :      * that are actually semantically associated with the particular join.)
    1736             :      *
    1737             :      * Note that the semi_operators list consists of the joinqual operators
    1738             :      * themselves (but commuted if needed to put the RHS value on the right).
    1739             :      * These could be cross-type operators, in which case the operator
    1740             :      * actually needed for uniqueness is a related single-type operator. We
    1741             :      * assume here that that operator will be available from the btree or hash
    1742             :      * opclass when the time comes ... if not, create_unique_plan() will fail.
    1743             :      */
    1744        1952 :     semi_operators = NIL;
    1745        1952 :     semi_rhs_exprs = NIL;
    1746        1952 :     all_btree = true;
    1747        1952 :     all_hash = enable_hashagg;  /* don't consider hash if not enabled */
    1748        4176 :     foreach(lc, clause)
    1749             :     {
    1750        2326 :         OpExpr     *op = (OpExpr *) lfirst(lc);
    1751             :         Oid         opno;
    1752             :         Node       *left_expr;
    1753             :         Node       *right_expr;
    1754             :         Relids      left_varnos;
    1755             :         Relids      right_varnos;
    1756             :         Relids      all_varnos;
    1757             :         Oid         opinputtype;
    1758             : 
    1759             :         /* Is it a binary opclause? */
    1760        4544 :         if (!IsA(op, OpExpr) ||
    1761        2218 :             list_length(op->args) != 2)
    1762             :         {
    1763             :             /* No, but does it reference both sides? */
    1764         108 :             all_varnos = pull_varnos(root, (Node *) op);
    1765         204 :             if (!bms_overlap(all_varnos, sjinfo->syn_righthand) ||
    1766          96 :                 bms_is_subset(all_varnos, sjinfo->syn_righthand))
    1767             :             {
    1768             :                 /*
    1769             :                  * Clause refers to only one rel, so ignore it --- unless it
    1770             :                  * contains volatile functions, in which case we'd better
    1771             :                  * punt.
    1772             :                  */
    1773          96 :                 if (contain_volatile_functions((Node *) op))
    1774         102 :                     return;
    1775          96 :                 continue;
    1776             :             }
    1777             :             /* Non-operator clause referencing both sides, must punt */
    1778          12 :             return;
    1779             :         }
    1780             : 
    1781             :         /* Extract data from binary opclause */
    1782        2218 :         opno = op->opno;
    1783        2218 :         left_expr = linitial(op->args);
    1784        2218 :         right_expr = lsecond(op->args);
    1785        2218 :         left_varnos = pull_varnos(root, left_expr);
    1786        2218 :         right_varnos = pull_varnos(root, right_expr);
    1787        2218 :         all_varnos = bms_union(left_varnos, right_varnos);
    1788        2218 :         opinputtype = exprType(left_expr);
    1789             : 
    1790             :         /* Does it reference both sides? */
    1791        4436 :         if (!bms_overlap(all_varnos, sjinfo->syn_righthand) ||
    1792        2218 :             bms_is_subset(all_varnos, sjinfo->syn_righthand))
    1793             :         {
    1794             :             /*
    1795             :              * Clause refers to only one rel, so ignore it --- unless it
    1796             :              * contains volatile functions, in which case we'd better punt.
    1797             :              */
    1798          74 :             if (contain_volatile_functions((Node *) op))
    1799           0 :                 return;
    1800          74 :             continue;
    1801             :         }
    1802             : 
    1803             :         /* check rel membership of arguments */
    1804        4288 :         if (!bms_is_empty(right_varnos) &&
    1805        2144 :             bms_is_subset(right_varnos, sjinfo->syn_righthand) &&
    1806        1698 :             !bms_overlap(left_varnos, sjinfo->syn_righthand))
    1807             :         {
    1808             :             /* typical case, right_expr is RHS variable */
    1809             :         }
    1810         892 :         else if (!bms_is_empty(left_varnos) &&
    1811         446 :                  bms_is_subset(left_varnos, sjinfo->syn_righthand) &&
    1812         440 :                  !bms_overlap(right_varnos, sjinfo->syn_righthand))
    1813             :         {
    1814             :             /* flipped case, left_expr is RHS variable */
    1815         440 :             opno = get_commutator(opno);
    1816         440 :             if (!OidIsValid(opno))
    1817           0 :                 return;
    1818         440 :             right_expr = left_expr;
    1819             :         }
    1820             :         else
    1821             :         {
    1822             :             /* mixed membership of args, punt */
    1823           6 :             return;
    1824             :         }
    1825             : 
    1826             :         /* all operators must be btree equality or hash equality */
    1827        2138 :         if (all_btree)
    1828             :         {
    1829             :             /* oprcanmerge is considered a hint... */
    1830        4192 :             if (!op_mergejoinable(opno, opinputtype) ||
    1831        2054 :                 get_mergejoin_opfamilies(opno) == NIL)
    1832          84 :                 all_btree = false;
    1833             :         }
    1834        2138 :         if (all_hash)
    1835             :         {
    1836             :             /* ... but oprcanhash had better be correct */
    1837        2066 :             if (!op_hashjoinable(opno, opinputtype))
    1838          84 :                 all_hash = false;
    1839             :         }
    1840        2138 :         if (!(all_btree || all_hash))
    1841          84 :             return;
    1842             : 
    1843             :         /* so far so good, keep building lists */
    1844        2054 :         semi_operators = lappend_oid(semi_operators, opno);
    1845        2054 :         semi_rhs_exprs = lappend(semi_rhs_exprs, copyObject(right_expr));
    1846             :     }
    1847             : 
    1848             :     /* Punt if we didn't find at least one column to unique-ify */
    1849        1850 :     if (semi_rhs_exprs == NIL)
    1850          12 :         return;
    1851             : 
    1852             :     /*
    1853             :      * The expressions we'd need to unique-ify mustn't be volatile.
    1854             :      */
    1855        1838 :     if (contain_volatile_functions((Node *) semi_rhs_exprs))
    1856           0 :         return;
    1857             : 
    1858             :     /*
    1859             :      * If we get here, we can unique-ify the semijoin's RHS using at least one
    1860             :      * of sorting and hashing.  Save the information about how to do that.
    1861             :      */
    1862        1838 :     sjinfo->semi_can_btree = all_btree;
    1863        1838 :     sjinfo->semi_can_hash = all_hash;
    1864        1838 :     sjinfo->semi_operators = semi_operators;
    1865        1838 :     sjinfo->semi_rhs_exprs = semi_rhs_exprs;
    1866             : }
    1867             : 
    1868             : /*
    1869             :  * deconstruct_distribute_oj_quals
    1870             :  *    Adjust LEFT JOIN quals to be suitable for commuted-left-join cases,
    1871             :  *    then push them into the joinqual lists and EquivalenceClass structures.
    1872             :  *
    1873             :  * This runs immediately after we've completed the deconstruct_distribute scan.
    1874             :  * jtitems contains all the JoinTreeItems (in depth-first order), and jtitem
    1875             :  * is one that has postponed oj_joinclauses to deal with.
    1876             :  */
    1877             : static void
    1878       39664 : deconstruct_distribute_oj_quals(PlannerInfo *root,
    1879             :                                 List *jtitems,
    1880             :                                 JoinTreeItem *jtitem)
    1881             : {
    1882       39664 :     SpecialJoinInfo *sjinfo = jtitem->sjinfo;
    1883             :     Relids      qualscope,
    1884             :                 ojscope,
    1885             :                 nonnullable_rels;
    1886             : 
    1887             :     /* Recompute syntactic and semantic scopes of this left join */
    1888       39664 :     qualscope = bms_union(sjinfo->syn_lefthand, sjinfo->syn_righthand);
    1889       39664 :     qualscope = bms_add_member(qualscope, sjinfo->ojrelid);
    1890       39664 :     ojscope = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
    1891       39664 :     nonnullable_rels = sjinfo->syn_lefthand;
    1892             : 
    1893             :     /*
    1894             :      * If this join can commute with any other ones per outer-join identity 3,
    1895             :      * and it is the one providing the join clause with flexible semantics,
    1896             :      * then we have to generate variants of the join clause with different
    1897             :      * nullingrels labeling.  Otherwise, just push out the postponed clause
    1898             :      * as-is.
    1899             :      */
    1900             :     Assert(sjinfo->lhs_strict); /* else we shouldn't be here */
    1901       39664 :     if (sjinfo->commute_above_r || sjinfo->commute_below_l)
    1902        4638 :     {
    1903             :         Relids      joins_above;
    1904             :         Relids      joins_below;
    1905             :         Relids      incompatible_joins;
    1906             :         Relids      joins_so_far;
    1907             :         List       *quals;
    1908             :         int         save_last_rinfo_serial;
    1909             :         ListCell   *lc;
    1910             : 
    1911             :         /* Identify the outer joins this one commutes with */
    1912        4638 :         joins_above = sjinfo->commute_above_r;
    1913        4638 :         joins_below = sjinfo->commute_below_l;
    1914             : 
    1915             :         /*
    1916             :          * Generate qual variants with different sets of nullingrels bits.
    1917             :          *
    1918             :          * We only need bit-sets that correspond to the successively less
    1919             :          * deeply syntactically-nested subsets of this join and its
    1920             :          * commutators.  That's true first because obviously only those forms
    1921             :          * of the Vars and PHVs could appear elsewhere in the query, and
    1922             :          * second because the outer join identities do not provide a way to
    1923             :          * re-order such joins in a way that would require different marking.
    1924             :          * (That is, while the current join may commute with several others,
    1925             :          * none of those others can commute with each other.)  To visit the
    1926             :          * interesting joins in syntactic nesting order, we rely on the
    1927             :          * jtitems list to be ordered that way.
    1928             :          *
    1929             :          * We first strip out all the nullingrels bits corresponding to
    1930             :          * commuting joins below this one, and then successively put them back
    1931             :          * as we crawl up the join stack.
    1932             :          */
    1933        4638 :         quals = jtitem->oj_joinclauses;
    1934        4638 :         if (!bms_is_empty(joins_below))
    1935        4462 :             quals = (List *) remove_nulling_relids((Node *) quals,
    1936             :                                                    joins_below,
    1937             :                                                    NULL);
    1938             : 
    1939             :         /*
    1940             :          * We'll need to mark the lower versions of the quals as not safe to
    1941             :          * apply above not-yet-processed joins of the stack.  This prevents
    1942             :          * possibly applying a cloned qual at the wrong join level.
    1943             :          */
    1944        4638 :         incompatible_joins = bms_union(joins_below, joins_above);
    1945        4638 :         incompatible_joins = bms_add_member(incompatible_joins,
    1946        4638 :                                             sjinfo->ojrelid);
    1947             : 
    1948             :         /*
    1949             :          * Each time we produce RestrictInfo(s) from these quals, reset the
    1950             :          * last_rinfo_serial counter, so that the RestrictInfos for the "same"
    1951             :          * qual condition get identical serial numbers.  (This relies on the
    1952             :          * fact that we're not changing the qual list in any way that'd affect
    1953             :          * the number of RestrictInfos built from it.) This'll allow us to
    1954             :          * detect duplicative qual usage later.
    1955             :          */
    1956        4638 :         save_last_rinfo_serial = root->last_rinfo_serial;
    1957             : 
    1958        4638 :         joins_so_far = NULL;
    1959       40966 :         foreach(lc, jtitems)
    1960             :         {
    1961       36328 :             JoinTreeItem *otherjtitem = (JoinTreeItem *) lfirst(lc);
    1962       36328 :             SpecialJoinInfo *othersj = otherjtitem->sjinfo;
    1963       36328 :             bool        below_sjinfo = false;
    1964       36328 :             bool        above_sjinfo = false;
    1965             :             Relids      this_qualscope;
    1966             :             Relids      this_ojscope;
    1967             :             bool        allow_equivalence,
    1968             :                         has_clone,
    1969             :                         is_clone;
    1970             : 
    1971       36328 :             if (othersj == NULL)
    1972       24222 :                 continue;       /* not an outer-join item, ignore */
    1973             : 
    1974       12106 :             if (bms_is_member(othersj->ojrelid, joins_below))
    1975             :             {
    1976             :                 /* othersj commutes with sjinfo from below left */
    1977        4498 :                 below_sjinfo = true;
    1978             :             }
    1979        7608 :             else if (othersj == sjinfo)
    1980             :             {
    1981             :                 /* found our join in syntactic order */
    1982             :                 Assert(bms_equal(joins_so_far, joins_below));
    1983             :             }
    1984        2970 :             else if (bms_is_member(othersj->ojrelid, joins_above))
    1985             :             {
    1986             :                 /* othersj commutes with sjinfo from above */
    1987         176 :                 above_sjinfo = true;
    1988             :             }
    1989             :             else
    1990             :             {
    1991             :                 /* othersj is not relevant, ignore */
    1992        2794 :                 continue;
    1993             :             }
    1994             : 
    1995             :             /* Reset serial counter for this version of the quals */
    1996        9312 :             root->last_rinfo_serial = save_last_rinfo_serial;
    1997             : 
    1998             :             /*
    1999             :              * When we are looking at joins above sjinfo, we are envisioning
    2000             :              * pushing sjinfo to above othersj, so add othersj's nulling bit
    2001             :              * before distributing the quals.  We should add it to Vars coming
    2002             :              * from the current join's LHS: we want to transform the second
    2003             :              * form of OJ identity 3 to the first form, in which Vars of
    2004             :              * relation B will appear nulled by the syntactically-upper OJ
    2005             :              * within the Pbc clause, but those of relation C will not.  (In
    2006             :              * the notation used by optimizer/README, we're converting a qual
    2007             :              * of the form Pbc to Pb*c.)  Of course, we must also remove that
    2008             :              * bit from the incompatible_joins value, else we'll make a qual
    2009             :              * that can't be placed anywhere.
    2010             :              */
    2011        9312 :             if (above_sjinfo)
    2012             :             {
    2013             :                 quals = (List *)
    2014         176 :                     add_nulling_relids((Node *) quals,
    2015         176 :                                        sjinfo->syn_lefthand,
    2016         176 :                                        bms_make_singleton(othersj->ojrelid));
    2017         176 :                 incompatible_joins = bms_del_member(incompatible_joins,
    2018         176 :                                                     othersj->ojrelid);
    2019             :             }
    2020             : 
    2021             :             /* Compute qualscope and ojscope for this join level */
    2022        9312 :             this_qualscope = bms_union(qualscope, joins_so_far);
    2023        9312 :             this_ojscope = bms_union(ojscope, joins_so_far);
    2024        9312 :             if (above_sjinfo)
    2025             :             {
    2026             :                 /* othersj is not yet in joins_so_far, but we need it */
    2027         176 :                 this_qualscope = bms_add_member(this_qualscope,
    2028         176 :                                                 othersj->ojrelid);
    2029         176 :                 this_ojscope = bms_add_member(this_ojscope,
    2030         176 :                                               othersj->ojrelid);
    2031             :                 /* sjinfo is in joins_so_far, and we don't want it */
    2032         176 :                 this_ojscope = bms_del_member(this_ojscope,
    2033         176 :                                               sjinfo->ojrelid);
    2034             :             }
    2035             : 
    2036             :             /*
    2037             :              * We generate EquivalenceClasses only from the first form of the
    2038             :              * quals, with the fewest nullingrels bits set.  An EC made from
    2039             :              * this version of the quals can be useful below the outer-join
    2040             :              * nest, whereas versions with some nullingrels bits set would not
    2041             :              * be.  We cannot generate ECs from more than one version, or
    2042             :              * we'll make nonsensical conclusions that Vars with nullingrels
    2043             :              * bits set are equal to their versions without.  Fortunately,
    2044             :              * such ECs wouldn't be very useful anyway, because they'd equate
    2045             :              * values not observable outside the join nest.  (See
    2046             :              * optimizer/README.)
    2047             :              *
    2048             :              * The first form of the quals is also the only one marked as
    2049             :              * has_clone rather than is_clone.
    2050             :              */
    2051        9312 :             allow_equivalence = (joins_so_far == NULL);
    2052        9312 :             has_clone = allow_equivalence;
    2053        9312 :             is_clone = !has_clone;
    2054             : 
    2055        9312 :             distribute_quals_to_rels(root, quals,
    2056             :                                      otherjtitem,
    2057             :                                      sjinfo,
    2058             :                                      root->qual_security_level,
    2059             :                                      this_qualscope,
    2060             :                                      this_ojscope, nonnullable_rels,
    2061             :                                      bms_copy(incompatible_joins),
    2062             :                                      allow_equivalence,
    2063             :                                      has_clone,
    2064             :                                      is_clone,
    2065             :                                      NULL); /* no more postponement */
    2066             : 
    2067             :             /*
    2068             :              * Adjust qual nulling bits for next level up, if needed.  We
    2069             :              * don't want to put sjinfo's own bit in at all, and if we're
    2070             :              * above sjinfo then we did it already.  Here, we should mark all
    2071             :              * Vars coming from the lower join's RHS.  (Again, we are
    2072             :              * converting a qual of the form Pbc to Pb*c, but now we are
    2073             :              * putting back bits that were there in the parser output and were
    2074             :              * temporarily stripped above.)  Update incompatible_joins too.
    2075             :              */
    2076        9312 :             if (below_sjinfo)
    2077             :             {
    2078             :                 quals = (List *)
    2079        4498 :                     add_nulling_relids((Node *) quals,
    2080        4498 :                                        othersj->syn_righthand,
    2081        4498 :                                        bms_make_singleton(othersj->ojrelid));
    2082        4498 :                 incompatible_joins = bms_del_member(incompatible_joins,
    2083        4498 :                                                     othersj->ojrelid);
    2084             :             }
    2085             : 
    2086             :             /* ... and track joins processed so far */
    2087        9312 :             joins_so_far = bms_add_member(joins_so_far, othersj->ojrelid);
    2088             :         }
    2089             :     }
    2090             :     else
    2091             :     {
    2092             :         /* No commutation possible, just process the postponed clauses */
    2093       35026 :         distribute_quals_to_rels(root, jtitem->oj_joinclauses,
    2094             :                                  jtitem,
    2095             :                                  sjinfo,
    2096             :                                  root->qual_security_level,
    2097             :                                  qualscope,
    2098             :                                  ojscope, nonnullable_rels,
    2099             :                                  NULL,  /* incompatible_relids */
    2100             :                                  true,  /* allow_equivalence */
    2101             :                                  false, false,  /* not clones */
    2102             :                                  NULL); /* no more postponement */
    2103             :     }
    2104       39664 : }
    2105             : 
    2106             : 
    2107             : /*****************************************************************************
    2108             :  *
    2109             :  *    QUALIFICATIONS
    2110             :  *
    2111             :  *****************************************************************************/
    2112             : 
    2113             : /*
    2114             :  * distribute_quals_to_rels
    2115             :  *    Convenience routine to apply distribute_qual_to_rels to each element
    2116             :  *    of an AND'ed list of clauses.
    2117             :  */
    2118             : static void
    2119      699704 : distribute_quals_to_rels(PlannerInfo *root, List *clauses,
    2120             :                          JoinTreeItem *jtitem,
    2121             :                          SpecialJoinInfo *sjinfo,
    2122             :                          Index security_level,
    2123             :                          Relids qualscope,
    2124             :                          Relids ojscope,
    2125             :                          Relids outerjoin_nonnullable,
    2126             :                          Relids incompatible_relids,
    2127             :                          bool allow_equivalence,
    2128             :                          bool has_clone,
    2129             :                          bool is_clone,
    2130             :                          List **postponed_oj_qual_list)
    2131             : {
    2132             :     ListCell   *lc;
    2133             : 
    2134     1203690 :     foreach(lc, clauses)
    2135             :     {
    2136      503986 :         Node       *clause = (Node *) lfirst(lc);
    2137             : 
    2138      503986 :         distribute_qual_to_rels(root, clause,
    2139             :                                 jtitem,
    2140             :                                 sjinfo,
    2141             :                                 security_level,
    2142             :                                 qualscope,
    2143             :                                 ojscope,
    2144             :                                 outerjoin_nonnullable,
    2145             :                                 incompatible_relids,
    2146             :                                 allow_equivalence,
    2147             :                                 has_clone,
    2148             :                                 is_clone,
    2149             :                                 postponed_oj_qual_list);
    2150             :     }
    2151      699704 : }
    2152             : 
    2153             : /*
    2154             :  * distribute_qual_to_rels
    2155             :  *    Add clause information to either the baserestrictinfo or joininfo list
    2156             :  *    (depending on whether the clause is a join) of each base relation
    2157             :  *    mentioned in the clause.  A RestrictInfo node is created and added to
    2158             :  *    the appropriate list for each rel.  Alternatively, if the clause uses a
    2159             :  *    mergejoinable operator, enter its left- and right-side expressions into
    2160             :  *    the query's EquivalenceClasses.
    2161             :  *
    2162             :  * In some cases, quals will be added to parent jtitems' lateral_clauses
    2163             :  * or to postponed_oj_qual_list instead of being processed right away.
    2164             :  * These will be dealt with in later calls of deconstruct_distribute.
    2165             :  *
    2166             :  * 'clause': the qual clause to be distributed
    2167             :  * 'jtitem': the JoinTreeItem for the containing jointree node
    2168             :  * 'sjinfo': join's SpecialJoinInfo (NULL for an inner join or WHERE clause)
    2169             :  * 'security_level': security_level to assign to the qual
    2170             :  * 'qualscope': set of base+OJ rels the qual's syntactic scope covers
    2171             :  * 'ojscope': NULL if not an outer-join qual, else the minimum set of base+OJ
    2172             :  *      rels needed to form this join
    2173             :  * 'outerjoin_nonnullable': NULL if not an outer-join qual, else the set of
    2174             :  *      base+OJ rels appearing on the outer (nonnullable) side of the join
    2175             :  *      (for FULL JOIN this includes both sides of the join, and must in fact
    2176             :  *      equal qualscope)
    2177             :  * 'incompatible_relids': the set of outer-join relid(s) that must not be
    2178             :  *      computed below this qual.  We only bother to compute this for
    2179             :  *      "clone" quals, otherwise it can be left NULL.
    2180             :  * 'allow_equivalence': true if it's okay to convert clause into an
    2181             :  *      EquivalenceClass
    2182             :  * 'has_clone': has_clone property to assign to the qual
    2183             :  * 'is_clone': is_clone property to assign to the qual
    2184             :  * 'postponed_oj_qual_list': if not NULL, non-degenerate outer join clauses
    2185             :  *      should be added to this list instead of being processed (list entries
    2186             :  *      are just the bare clauses)
    2187             :  *
    2188             :  * 'qualscope' identifies what level of JOIN the qual came from syntactically.
    2189             :  * 'ojscope' is needed if we decide to force the qual up to the outer-join
    2190             :  * level, which will be ojscope not necessarily qualscope.
    2191             :  *
    2192             :  * At the time this is called, root->join_info_list must contain entries for
    2193             :  * at least those special joins that are syntactically below this qual.
    2194             :  * (We now need that only for detection of redundant IS NULL quals.)
    2195             :  */
    2196             : static void
    2197      503986 : distribute_qual_to_rels(PlannerInfo *root, Node *clause,
    2198             :                         JoinTreeItem *jtitem,
    2199             :                         SpecialJoinInfo *sjinfo,
    2200             :                         Index security_level,
    2201             :                         Relids qualscope,
    2202             :                         Relids ojscope,
    2203             :                         Relids outerjoin_nonnullable,
    2204             :                         Relids incompatible_relids,
    2205             :                         bool allow_equivalence,
    2206             :                         bool has_clone,
    2207             :                         bool is_clone,
    2208             :                         List **postponed_oj_qual_list)
    2209             : {
    2210             :     Relids      relids;
    2211             :     bool        is_pushed_down;
    2212      503986 :     bool        pseudoconstant = false;
    2213             :     bool        maybe_equivalence;
    2214             :     bool        maybe_outer_join;
    2215             :     RestrictInfo *restrictinfo;
    2216             : 
    2217             :     /*
    2218             :      * Retrieve all relids mentioned within the clause.
    2219             :      */
    2220      503986 :     relids = pull_varnos(root, clause);
    2221             : 
    2222             :     /*
    2223             :      * In ordinary SQL, a WHERE or JOIN/ON clause can't reference any rels
    2224             :      * that aren't within its syntactic scope; however, if we pulled up a
    2225             :      * LATERAL subquery then we might find such references in quals that have
    2226             :      * been pulled up.  We need to treat such quals as belonging to the join
    2227             :      * level that includes every rel they reference.  Although we could make
    2228             :      * pull_up_subqueries() place such quals correctly to begin with, it's
    2229             :      * easier to handle it here.  When we find a clause that contains Vars
    2230             :      * outside its syntactic scope, locate the nearest parent join level that
    2231             :      * includes all the required rels and add the clause to that level's
    2232             :      * lateral_clauses list.  We'll process it when we reach that join level.
    2233             :      */
    2234      503986 :     if (!bms_is_subset(relids, qualscope))
    2235             :     {
    2236             :         JoinTreeItem *pitem;
    2237             : 
    2238             :         Assert(root->hasLateralRTEs);    /* shouldn't happen otherwise */
    2239             :         Assert(sjinfo == NULL); /* mustn't postpone past outer join */
    2240         116 :         for (pitem = jtitem->jti_parent; pitem; pitem = pitem->jti_parent)
    2241             :         {
    2242         116 :             if (bms_is_subset(relids, pitem->qualscope))
    2243             :             {
    2244         110 :                 pitem->lateral_clauses = lappend(pitem->lateral_clauses,
    2245             :                                                  clause);
    2246      344806 :                 return;
    2247             :             }
    2248             : 
    2249             :             /*
    2250             :              * We should not be postponing any quals past an outer join.  If
    2251             :              * this Assert fires, pull_up_subqueries() messed up.
    2252             :              */
    2253             :             Assert(pitem->sjinfo == NULL);
    2254             :         }
    2255           0 :         elog(ERROR, "failed to postpone qual containing lateral reference");
    2256             :     }
    2257             : 
    2258             :     /*
    2259             :      * If it's an outer-join clause, also check that relids is a subset of
    2260             :      * ojscope.  (This should not fail if the syntactic scope check passed.)
    2261             :      */
    2262      503876 :     if (ojscope && !bms_is_subset(relids, ojscope))
    2263           0 :         elog(ERROR, "JOIN qualification cannot refer to other relations");
    2264             : 
    2265             :     /*
    2266             :      * If the clause is variable-free, our normal heuristic for pushing it
    2267             :      * down to just the mentioned rels doesn't work, because there are none.
    2268             :      *
    2269             :      * If the clause is an outer-join clause, we must force it to the OJ's
    2270             :      * semantic level to preserve semantics.
    2271             :      *
    2272             :      * Otherwise, when the clause contains volatile functions, we force it to
    2273             :      * be evaluated at its original syntactic level.  This preserves the
    2274             :      * expected semantics.
    2275             :      *
    2276             :      * When the clause contains no volatile functions either, it is actually a
    2277             :      * pseudoconstant clause that will not change value during any one
    2278             :      * execution of the plan, and hence can be used as a one-time qual in a
    2279             :      * gating Result plan node.  We put such a clause into the regular
    2280             :      * RestrictInfo lists for the moment, but eventually createplan.c will
    2281             :      * pull it out and make a gating Result node immediately above whatever
    2282             :      * plan node the pseudoconstant clause is assigned to.  It's usually best
    2283             :      * to put a gating node as high in the plan tree as possible.
    2284             :      */
    2285      503876 :     if (bms_is_empty(relids))
    2286             :     {
    2287        9498 :         if (ojscope)
    2288             :         {
    2289             :             /* clause is attached to outer join, eval it there */
    2290         338 :             relids = bms_copy(ojscope);
    2291             :             /* mustn't use as gating qual, so don't mark pseudoconstant */
    2292             :         }
    2293        9160 :         else if (contain_volatile_functions(clause))
    2294             :         {
    2295             :             /* eval at original syntactic level */
    2296         174 :             relids = bms_copy(qualscope);
    2297             :             /* again, can't mark pseudoconstant */
    2298             :         }
    2299             :         else
    2300             :         {
    2301             :             /*
    2302             :              * If we are in the top-level join domain, we can push the qual to
    2303             :              * the top of the plan tree.  Otherwise, be conservative and eval
    2304             :              * it at original syntactic level.  (Ideally we'd push it to the
    2305             :              * top of the current join domain in all cases, but that causes
    2306             :              * problems if we later rearrange outer-join evaluation order.
    2307             :              * Pseudoconstant quals below the top level are a pretty odd case,
    2308             :              * so it's not clear that it's worth working hard on.)
    2309             :              */
    2310        8986 :             if (jtitem->jdomain == (JoinDomain *) linitial(root->join_domains))
    2311        8926 :                 relids = bms_copy(jtitem->jdomain->jd_relids);
    2312             :             else
    2313          60 :                 relids = bms_copy(qualscope);
    2314             :             /* mark as gating qual */
    2315        8986 :             pseudoconstant = true;
    2316             :             /* tell createplan.c to check for gating quals */
    2317        8986 :             root->hasPseudoConstantQuals = true;
    2318             :         }
    2319             :     }
    2320             : 
    2321             :     /*----------
    2322             :      * Check to see if clause application must be delayed by outer-join
    2323             :      * considerations.
    2324             :      *
    2325             :      * A word about is_pushed_down: we mark the qual as "pushed down" if
    2326             :      * it is (potentially) applicable at a level different from its original
    2327             :      * syntactic level.  This flag is used to distinguish OUTER JOIN ON quals
    2328             :      * from other quals pushed down to the same joinrel.  The rules are:
    2329             :      *      WHERE quals and INNER JOIN quals: is_pushed_down = true.
    2330             :      *      Non-degenerate OUTER JOIN quals: is_pushed_down = false.
    2331             :      *      Degenerate OUTER JOIN quals: is_pushed_down = true.
    2332             :      * A "degenerate" OUTER JOIN qual is one that doesn't mention the
    2333             :      * non-nullable side, and hence can be pushed down into the nullable side
    2334             :      * without changing the join result.  It is correct to treat it as a
    2335             :      * regular filter condition at the level where it is evaluated.
    2336             :      *
    2337             :      * Note: it is not immediately obvious that a simple boolean is enough
    2338             :      * for this: if for some reason we were to attach a degenerate qual to
    2339             :      * its original join level, it would need to be treated as an outer join
    2340             :      * qual there.  However, this cannot happen, because all the rels the
    2341             :      * clause mentions must be in the outer join's min_righthand, therefore
    2342             :      * the join it needs must be formed before the outer join; and we always
    2343             :      * attach quals to the lowest level where they can be evaluated.  But
    2344             :      * if we were ever to re-introduce a mechanism for delaying evaluation
    2345             :      * of "expensive" quals, this area would need work.
    2346             :      *
    2347             :      * Note: generally, use of is_pushed_down has to go through the macro
    2348             :      * RINFO_IS_PUSHED_DOWN, because that flag alone is not always sufficient
    2349             :      * to tell whether a clause must be treated as pushed-down in context.
    2350             :      * This seems like another reason why it should perhaps be rethought.
    2351             :      *----------
    2352             :      */
    2353      503876 :     if (bms_overlap(relids, outerjoin_nonnullable))
    2354             :     {
    2355             :         /*
    2356             :          * The qual is attached to an outer join and mentions (some of the)
    2357             :          * rels on the nonnullable side, so it's not degenerate.  If the
    2358             :          * caller wants to postpone handling such clauses, just add it to
    2359             :          * postponed_oj_qual_list and return.  (The work we've done up to here
    2360             :          * will have to be redone later, but there's not much of it.)
    2361             :          */
    2362       98048 :         if (postponed_oj_qual_list != NULL)
    2363             :         {
    2364       43724 :             *postponed_oj_qual_list = lappend(*postponed_oj_qual_list, clause);
    2365       43724 :             return;
    2366             :         }
    2367             : 
    2368             :         /*
    2369             :          * We can't use such a clause to deduce equivalence (the left and
    2370             :          * right sides might be unequal above the join because one of them has
    2371             :          * gone to NULL) ... but we might be able to use it for more limited
    2372             :          * deductions, if it is mergejoinable.  So consider adding it to the
    2373             :          * lists of set-aside outer-join clauses.
    2374             :          */
    2375       54324 :         is_pushed_down = false;
    2376       54324 :         maybe_equivalence = false;
    2377       54324 :         maybe_outer_join = true;
    2378             : 
    2379             :         /*
    2380             :          * Now force the qual to be evaluated exactly at the level of joining
    2381             :          * corresponding to the outer join.  We cannot let it get pushed down
    2382             :          * into the nonnullable side, since then we'd produce no output rows,
    2383             :          * rather than the intended single null-extended row, for any
    2384             :          * nonnullable-side rows failing the qual.
    2385             :          */
    2386             :         Assert(ojscope);
    2387       54324 :         relids = ojscope;
    2388             :         Assert(!pseudoconstant);
    2389             :     }
    2390             :     else
    2391             :     {
    2392             :         /*
    2393             :          * Normal qual clause or degenerate outer-join clause.  Either way, we
    2394             :          * can mark it as pushed-down.
    2395             :          */
    2396      405828 :         is_pushed_down = true;
    2397             : 
    2398             :         /*
    2399             :          * It's possible that this is an IS NULL clause that's redundant with
    2400             :          * a lower antijoin; if so we can just discard it.  We need not test
    2401             :          * in any of the other cases, because this will only be possible for
    2402             :          * pushed-down clauses.
    2403             :          */
    2404      405828 :         if (check_redundant_nullability_qual(root, clause))
    2405         996 :             return;
    2406             : 
    2407             :         /* Feed qual to the equivalence machinery, if allowed by caller */
    2408      404832 :         maybe_equivalence = allow_equivalence;
    2409             : 
    2410             :         /*
    2411             :          * Since it doesn't mention the LHS, it's certainly not useful as a
    2412             :          * set-aside OJ clause, even if it's in an OJ.
    2413             :          */
    2414      404832 :         maybe_outer_join = false;
    2415             :     }
    2416             : 
    2417             :     /*
    2418             :      * Build the RestrictInfo node itself.
    2419             :      */
    2420      459156 :     restrictinfo = make_restrictinfo(root,
    2421             :                                      (Expr *) clause,
    2422             :                                      is_pushed_down,
    2423             :                                      has_clone,
    2424             :                                      is_clone,
    2425             :                                      pseudoconstant,
    2426             :                                      security_level,
    2427             :                                      relids,
    2428             :                                      incompatible_relids,
    2429             :                                      outerjoin_nonnullable);
    2430             : 
    2431             :     /*
    2432             :      * If it's a join clause, add vars used in the clause to targetlists of
    2433             :      * their relations, so that they will be emitted by the plan nodes that
    2434             :      * scan those relations (else they won't be available at the join node!).
    2435             :      *
    2436             :      * Normally we mark the vars as needed at the join identified by "relids".
    2437             :      * However, if this is a clone clause then ignore the outer-join relids in
    2438             :      * that set.  Otherwise, vars appearing in a cloned clause would end up
    2439             :      * marked as having to propagate to the highest one of the commuting
    2440             :      * joins, which would often be an overestimate.  For such clauses, correct
    2441             :      * var propagation is ensured by making ojscope include input rels from
    2442             :      * both sides of the join.
    2443             :      *
    2444             :      * Note: if the clause gets absorbed into an EquivalenceClass then this
    2445             :      * may be unnecessary, but for now we have to do it to cover the case
    2446             :      * where the EC becomes ec_broken and we end up reinserting the original
    2447             :      * clauses into the plan.
    2448             :      */
    2449      459156 :     if (bms_membership(relids) == BMS_MULTIPLE)
    2450             :     {
    2451      128702 :         List       *vars = pull_var_clause(clause,
    2452             :                                            PVC_RECURSE_AGGREGATES |
    2453             :                                            PVC_RECURSE_WINDOWFUNCS |
    2454             :                                            PVC_INCLUDE_PLACEHOLDERS);
    2455             :         Relids      where_needed;
    2456             : 
    2457      128702 :         if (is_clone)
    2458        4716 :             where_needed = bms_intersect(relids, root->all_baserels);
    2459             :         else
    2460      123986 :             where_needed = relids;
    2461      128702 :         add_vars_to_targetlist(root, vars, where_needed);
    2462      128702 :         list_free(vars);
    2463             :     }
    2464             : 
    2465             :     /*
    2466             :      * We check "mergejoinability" of every clause, not only join clauses,
    2467             :      * because we want to know about equivalences between vars of the same
    2468             :      * relation, or between vars and consts.
    2469             :      */
    2470      459156 :     check_mergejoinable(restrictinfo);
    2471             : 
    2472             :     /*
    2473             :      * If it is a true equivalence clause, send it to the EquivalenceClass
    2474             :      * machinery.  We do *not* attach it directly to any restriction or join
    2475             :      * lists.  The EC code will propagate it to the appropriate places later.
    2476             :      *
    2477             :      * If the clause has a mergejoinable operator, yet isn't an equivalence
    2478             :      * because it is an outer-join clause, the EC code may still be able to do
    2479             :      * something with it.  We add it to appropriate lists for further
    2480             :      * consideration later.  Specifically:
    2481             :      *
    2482             :      * If it is a left or right outer-join qualification that relates the two
    2483             :      * sides of the outer join (no funny business like leftvar1 = leftvar2 +
    2484             :      * rightvar), we add it to root->left_join_clauses or
    2485             :      * root->right_join_clauses according to which side the nonnullable
    2486             :      * variable appears on.
    2487             :      *
    2488             :      * If it is a full outer-join qualification, we add it to
    2489             :      * root->full_join_clauses.  (Ideally we'd discard cases that aren't
    2490             :      * leftvar = rightvar, as we do for left/right joins, but this routine
    2491             :      * doesn't have the info needed to do that; and the current usage of the
    2492             :      * full_join_clauses list doesn't require that, so it's not currently
    2493             :      * worth complicating this routine's API to make it possible.)
    2494             :      *
    2495             :      * If none of the above hold, pass it off to
    2496             :      * distribute_restrictinfo_to_rels().
    2497             :      *
    2498             :      * In all cases, it's important to initialize the left_ec and right_ec
    2499             :      * fields of a mergejoinable clause, so that all possibly mergejoinable
    2500             :      * expressions have representations in EquivalenceClasses.  If
    2501             :      * process_equivalence is successful, it will take care of that;
    2502             :      * otherwise, we have to call initialize_mergeclause_eclasses to do it.
    2503             :      */
    2504      459156 :     if (restrictinfo->mergeopfamilies)
    2505             :     {
    2506      301072 :         if (maybe_equivalence)
    2507             :         {
    2508      248356 :             if (process_equivalence(root, &restrictinfo, jtitem->jdomain))
    2509      248100 :                 return;
    2510             :             /* EC rejected it, so set left_ec/right_ec the hard way ... */
    2511         256 :             if (restrictinfo->mergeopfamilies)   /* EC might have changed this */
    2512         202 :                 initialize_mergeclause_eclasses(root, restrictinfo);
    2513             :             /* ... and fall through to distribute_restrictinfo_to_rels */
    2514             :         }
    2515       52716 :         else if (maybe_outer_join && restrictinfo->can_join)
    2516             :         {
    2517             :             /* we need to set up left_ec/right_ec the hard way */
    2518       52058 :             initialize_mergeclause_eclasses(root, restrictinfo);
    2519             :             /* now see if it should go to any outer-join lists */
    2520             :             Assert(sjinfo != NULL);
    2521       52058 :             if (bms_is_subset(restrictinfo->left_relids,
    2522       32656 :                               outerjoin_nonnullable) &&
    2523       32656 :                 !bms_overlap(restrictinfo->right_relids,
    2524             :                              outerjoin_nonnullable))
    2525             :             {
    2526             :                 /* we have outervar = innervar */
    2527       31398 :                 OuterJoinClauseInfo *ojcinfo = makeNode(OuterJoinClauseInfo);
    2528             : 
    2529       31398 :                 ojcinfo->rinfo = restrictinfo;
    2530       31398 :                 ojcinfo->sjinfo = sjinfo;
    2531       31398 :                 root->left_join_clauses = lappend(root->left_join_clauses,
    2532             :                                                   ojcinfo);
    2533       31398 :                 return;
    2534             :             }
    2535       20660 :             if (bms_is_subset(restrictinfo->right_relids,
    2536       20514 :                               outerjoin_nonnullable) &&
    2537       20514 :                 !bms_overlap(restrictinfo->left_relids,
    2538             :                              outerjoin_nonnullable))
    2539             :             {
    2540             :                 /* we have innervar = outervar */
    2541       19256 :                 OuterJoinClauseInfo *ojcinfo = makeNode(OuterJoinClauseInfo);
    2542             : 
    2543       19256 :                 ojcinfo->rinfo = restrictinfo;
    2544       19256 :                 ojcinfo->sjinfo = sjinfo;
    2545       19256 :                 root->right_join_clauses = lappend(root->right_join_clauses,
    2546             :                                                    ojcinfo);
    2547       19256 :                 return;
    2548             :             }
    2549        1404 :             if (sjinfo->jointype == JOIN_FULL)
    2550             :             {
    2551             :                 /* FULL JOIN (above tests cannot match in this case) */
    2552        1222 :                 OuterJoinClauseInfo *ojcinfo = makeNode(OuterJoinClauseInfo);
    2553             : 
    2554        1222 :                 ojcinfo->rinfo = restrictinfo;
    2555        1222 :                 ojcinfo->sjinfo = sjinfo;
    2556        1222 :                 root->full_join_clauses = lappend(root->full_join_clauses,
    2557             :                                                   ojcinfo);
    2558        1222 :                 return;
    2559             :             }
    2560             :             /* nope, so fall through to distribute_restrictinfo_to_rels */
    2561             :         }
    2562             :         else
    2563             :         {
    2564             :             /* we still need to set up left_ec/right_ec */
    2565         658 :             initialize_mergeclause_eclasses(root, restrictinfo);
    2566             :         }
    2567             :     }
    2568             : 
    2569             :     /* No EC special case applies, so push it into the clause lists */
    2570      159180 :     distribute_restrictinfo_to_rels(root, restrictinfo);
    2571             : }
    2572             : 
    2573             : /*
    2574             :  * check_redundant_nullability_qual
    2575             :  *    Check to see if the qual is an IS NULL qual that is redundant with
    2576             :  *    a lower JOIN_ANTI join.
    2577             :  *
    2578             :  * We want to suppress redundant IS NULL quals, not so much to save cycles
    2579             :  * as to avoid generating bogus selectivity estimates for them.  So if
    2580             :  * redundancy is detected here, distribute_qual_to_rels() just throws away
    2581             :  * the qual.
    2582             :  */
    2583             : static bool
    2584      405828 : check_redundant_nullability_qual(PlannerInfo *root, Node *clause)
    2585             : {
    2586             :     Var        *forced_null_var;
    2587             :     ListCell   *lc;
    2588             : 
    2589             :     /* Check for IS NULL, and identify the Var forced to NULL */
    2590      405828 :     forced_null_var = find_forced_null_var(clause);
    2591      405828 :     if (forced_null_var == NULL)
    2592      403400 :         return false;
    2593             : 
    2594             :     /*
    2595             :      * If the Var comes from the nullable side of a lower antijoin, the IS
    2596             :      * NULL condition is necessarily true.  If it's not nulled by anything,
    2597             :      * there is no point in searching the join_info_list.  Otherwise, we need
    2598             :      * to find out whether the nulling rel is an antijoin.
    2599             :      */
    2600        2428 :     if (forced_null_var->varnullingrels == NULL)
    2601        1320 :         return false;
    2602             : 
    2603        1264 :     foreach(lc, root->join_info_list)
    2604             :     {
    2605        1152 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
    2606             : 
    2607             :         /*
    2608             :          * This test will not succeed if sjinfo->ojrelid is zero, which is
    2609             :          * possible for an antijoin that was converted from a semijoin; but in
    2610             :          * such a case the Var couldn't have come from its nullable side.
    2611             :          */
    2612        2148 :         if (sjinfo->jointype == JOIN_ANTI && sjinfo->ojrelid != 0 &&
    2613         996 :             bms_is_member(sjinfo->ojrelid, forced_null_var->varnullingrels))
    2614         996 :             return true;
    2615             :     }
    2616             : 
    2617         112 :     return false;
    2618             : }
    2619             : 
    2620             : /*
    2621             :  * add_base_clause_to_rel
    2622             :  *      Add 'restrictinfo' as a baserestrictinfo to the base relation denoted
    2623             :  *      by 'relid'.  We offer some simple prechecks to try to determine if the
    2624             :  *      qual is always true, in which case we ignore it rather than add it.
    2625             :  *      If we detect the qual is always false, we replace it with
    2626             :  *      constant-FALSE.
    2627             :  */
    2628             : static void
    2629      346926 : add_base_clause_to_rel(PlannerInfo *root, Index relid,
    2630             :                        RestrictInfo *restrictinfo)
    2631             : {
    2632      346926 :     RelOptInfo *rel = find_base_rel(root, relid);
    2633      346926 :     RangeTblEntry *rte = root->simple_rte_array[relid];
    2634             : 
    2635             :     Assert(bms_membership(restrictinfo->required_relids) == BMS_SINGLETON);
    2636             : 
    2637             :     /*
    2638             :      * For inheritance parent tables, we must always record the RestrictInfo
    2639             :      * in baserestrictinfo as is.  If we were to transform or skip adding it,
    2640             :      * then the original wouldn't be available in apply_child_basequals. Since
    2641             :      * there are two RangeTblEntries for inheritance parents, one with
    2642             :      * inh==true and the other with inh==false, we're still able to apply this
    2643             :      * optimization to the inh==false one.  The inh==true one is what
    2644             :      * apply_child_basequals() sees, whereas the inh==false one is what's used
    2645             :      * for the scan node in the final plan.
    2646             :      *
    2647             :      * We make an exception to this for partitioned tables.  For these, we
    2648             :      * always apply the constant-TRUE and constant-FALSE transformations.  A
    2649             :      * qual which is either of these for a partitioned table must also be that
    2650             :      * for all of its child partitions.
    2651             :      */
    2652      346926 :     if (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE)
    2653             :     {
    2654             :         /* Don't add the clause if it is always true */
    2655      345280 :         if (restriction_is_always_true(root, restrictinfo))
    2656         644 :             return;
    2657             : 
    2658             :         /*
    2659             :          * Substitute the origin qual with constant-FALSE if it is provably
    2660             :          * always false.  Note that we keep the same rinfo_serial.
    2661             :          */
    2662      344636 :         if (restriction_is_always_false(root, restrictinfo))
    2663             :         {
    2664          18 :             int         save_rinfo_serial = restrictinfo->rinfo_serial;
    2665             : 
    2666          18 :             restrictinfo = make_restrictinfo(root,
    2667          18 :                                              (Expr *) makeBoolConst(false, false),
    2668          18 :                                              restrictinfo->is_pushed_down,
    2669          18 :                                              restrictinfo->has_clone,
    2670          18 :                                              restrictinfo->is_clone,
    2671          18 :                                              restrictinfo->pseudoconstant,
    2672             :                                              0, /* security_level */
    2673             :                                              restrictinfo->required_relids,
    2674             :                                              restrictinfo->incompatible_relids,
    2675             :                                              restrictinfo->outer_relids);
    2676          18 :             restrictinfo->rinfo_serial = save_rinfo_serial;
    2677             :         }
    2678             :     }
    2679             : 
    2680             :     /* Add clause to rel's restriction list */
    2681      346282 :     rel->baserestrictinfo = lappend(rel->baserestrictinfo, restrictinfo);
    2682             : 
    2683             :     /* Update security level info */
    2684      346282 :     rel->baserestrict_min_security = Min(rel->baserestrict_min_security,
    2685             :                                          restrictinfo->security_level);
    2686             : }
    2687             : 
    2688             : /*
    2689             :  * expr_is_nonnullable
    2690             :  *    Check to see if the Expr cannot be NULL
    2691             :  *
    2692             :  * If the Expr is a simple Var that is defined NOT NULL and meanwhile is not
    2693             :  * nulled by any outer joins, then we can know that it cannot be NULL.
    2694             :  */
    2695             : static bool
    2696       10126 : expr_is_nonnullable(PlannerInfo *root, Expr *expr)
    2697             : {
    2698             :     RelOptInfo *rel;
    2699             :     Var        *var;
    2700             : 
    2701             :     /* For now only check simple Vars */
    2702       10126 :     if (!IsA(expr, Var))
    2703         592 :         return false;
    2704             : 
    2705        9534 :     var = (Var *) expr;
    2706             : 
    2707             :     /* could the Var be nulled by any outer joins? */
    2708        9534 :     if (!bms_is_empty(var->varnullingrels))
    2709         800 :         return false;
    2710             : 
    2711             :     /* system columns cannot be NULL */
    2712        8734 :     if (var->varattno < 0)
    2713          24 :         return true;
    2714             : 
    2715             :     /* is the column defined NOT NULL? */
    2716        8710 :     rel = find_base_rel(root, var->varno);
    2717       17264 :     if (var->varattno > 0 &&
    2718        8554 :         bms_is_member(var->varattno, rel->notnullattnums))
    2719         728 :         return true;
    2720             : 
    2721        7982 :     return false;
    2722             : }
    2723             : 
    2724             : /*
    2725             :  * restriction_is_always_true
    2726             :  *    Check to see if the RestrictInfo is always true.
    2727             :  *
    2728             :  * Currently we only check for NullTest quals and OR clauses that include
    2729             :  * NullTest quals.  We may extend it in the future.
    2730             :  */
    2731             : bool
    2732      451570 : restriction_is_always_true(PlannerInfo *root,
    2733             :                            RestrictInfo *restrictinfo)
    2734             : {
    2735             :     /* Check for NullTest qual */
    2736      451570 :     if (IsA(restrictinfo->clause, NullTest))
    2737             :     {
    2738       10540 :         NullTest   *nulltest = (NullTest *) restrictinfo->clause;
    2739             : 
    2740             :         /* is this NullTest an IS_NOT_NULL qual? */
    2741       10540 :         if (nulltest->nulltesttype != IS_NOT_NULL)
    2742        3012 :             return false;
    2743             : 
    2744        7528 :         return expr_is_nonnullable(root, nulltest->arg);
    2745             :     }
    2746             : 
    2747             :     /* If it's an OR, check its sub-clauses */
    2748      441030 :     if (restriction_is_or_clause(restrictinfo))
    2749             :     {
    2750             :         ListCell   *lc;
    2751             : 
    2752             :         Assert(is_orclause(restrictinfo->orclause));
    2753             : 
    2754             :         /*
    2755             :          * if any of the given OR branches is provably always true then the
    2756             :          * entire condition is true.
    2757             :          */
    2758       26056 :         foreach(lc, ((BoolExpr *) restrictinfo->orclause)->args)
    2759             :         {
    2760       18278 :             Node       *orarg = (Node *) lfirst(lc);
    2761             : 
    2762       18278 :             if (!IsA(orarg, RestrictInfo))
    2763        2762 :                 continue;
    2764             : 
    2765       15516 :             if (restriction_is_always_true(root, (RestrictInfo *) orarg))
    2766          18 :                 return true;
    2767             :         }
    2768             :     }
    2769             : 
    2770      441012 :     return false;
    2771             : }
    2772             : 
    2773             : /*
    2774             :  * restriction_is_always_false
    2775             :  *    Check to see if the RestrictInfo is always false.
    2776             :  *
    2777             :  * Currently we only check for NullTest quals and OR clauses that include
    2778             :  * NullTest quals.  We may extend it in the future.
    2779             :  */
    2780             : bool
    2781      441956 : restriction_is_always_false(PlannerInfo *root,
    2782             :                             RestrictInfo *restrictinfo)
    2783             : {
    2784             :     /* Check for NullTest qual */
    2785      441956 :     if (IsA(restrictinfo->clause, NullTest))
    2786             :     {
    2787        8802 :         NullTest   *nulltest = (NullTest *) restrictinfo->clause;
    2788             : 
    2789             :         /* is this NullTest an IS_NULL qual? */
    2790        8802 :         if (nulltest->nulltesttype != IS_NULL)
    2791        6204 :             return false;
    2792             : 
    2793        2598 :         return expr_is_nonnullable(root, nulltest->arg);
    2794             :     }
    2795             : 
    2796             :     /* If it's an OR, check its sub-clauses */
    2797      433154 :     if (restriction_is_or_clause(restrictinfo))
    2798             :     {
    2799             :         ListCell   *lc;
    2800             : 
    2801             :         Assert(is_orclause(restrictinfo->orclause));
    2802             : 
    2803             :         /*
    2804             :          * Currently, when processing OR expressions, we only return true when
    2805             :          * all of the OR branches are always false.  This could perhaps be
    2806             :          * expanded to remove OR branches that are provably false.  This may
    2807             :          * be a useful thing to do as it could result in the OR being left
    2808             :          * with a single arg.  That's useful as it would allow the OR
    2809             :          * condition to be replaced with its single argument which may allow
    2810             :          * use of an index for faster filtering on the remaining condition.
    2811             :          */
    2812        7820 :         foreach(lc, ((BoolExpr *) restrictinfo->orclause)->args)
    2813             :         {
    2814        7808 :             Node       *orarg = (Node *) lfirst(lc);
    2815             : 
    2816        7808 :             if (!IsA(orarg, RestrictInfo) ||
    2817        6558 :                 !restriction_is_always_false(root, (RestrictInfo *) orarg))
    2818        7766 :                 return false;
    2819             :         }
    2820          12 :         return true;
    2821             :     }
    2822             : 
    2823      425376 :     return false;
    2824             : }
    2825             : 
    2826             : /*
    2827             :  * distribute_restrictinfo_to_rels
    2828             :  *    Push a completed RestrictInfo into the proper restriction or join
    2829             :  *    clause list(s).
    2830             :  *
    2831             :  * This is the last step of distribute_qual_to_rels() for ordinary qual
    2832             :  * clauses.  Clauses that are interesting for equivalence-class processing
    2833             :  * are diverted to the EC machinery, but may ultimately get fed back here.
    2834             :  */
    2835             : void
    2836      410408 : distribute_restrictinfo_to_rels(PlannerInfo *root,
    2837             :                                 RestrictInfo *restrictinfo)
    2838             : {
    2839      410408 :     Relids      relids = restrictinfo->required_relids;
    2840             : 
    2841      410408 :     if (!bms_is_empty(relids))
    2842             :     {
    2843             :         int         relid;
    2844             : 
    2845      410408 :         if (bms_get_singleton_member(relids, &relid))
    2846             :         {
    2847             :             /*
    2848             :              * There is only one relation participating in the clause, so it
    2849             :              * is a restriction clause for that relation.
    2850             :              */
    2851      346926 :             add_base_clause_to_rel(root, relid, restrictinfo);
    2852             :         }
    2853             :         else
    2854             :         {
    2855             :             /*
    2856             :              * The clause is a join clause, since there is more than one rel
    2857             :              * in its relid set.
    2858             :              */
    2859             : 
    2860             :             /*
    2861             :              * Check for hashjoinable operators.  (We don't bother setting the
    2862             :              * hashjoin info except in true join clauses.)
    2863             :              */
    2864       63482 :             check_hashjoinable(restrictinfo);
    2865             : 
    2866             :             /*
    2867             :              * Likewise, check if the clause is suitable to be used with a
    2868             :              * Memoize node to cache inner tuples during a parameterized
    2869             :              * nested loop.
    2870             :              */
    2871       63482 :             check_memoizable(restrictinfo);
    2872             : 
    2873             :             /*
    2874             :              * Add clause to the join lists of all the relevant relations.
    2875             :              */
    2876       63482 :             add_join_clause_to_rels(root, restrictinfo, relids);
    2877             :         }
    2878             :     }
    2879             :     else
    2880             :     {
    2881             :         /*
    2882             :          * clause references no rels, and therefore we have no place to attach
    2883             :          * it.  Shouldn't get here if callers are working properly.
    2884             :          */
    2885           0 :         elog(ERROR, "cannot cope with variable-free clause");
    2886             :     }
    2887      410408 : }
    2888             : 
    2889             : /*
    2890             :  * process_implied_equality
    2891             :  *    Create a restrictinfo item that says "item1 op item2", and push it
    2892             :  *    into the appropriate lists.  (In practice opno is always a btree
    2893             :  *    equality operator.)
    2894             :  *
    2895             :  * "qualscope" is the nominal syntactic level to impute to the restrictinfo.
    2896             :  * This must contain at least all the rels used in the expressions, but it
    2897             :  * is used only to set the qual application level when both exprs are
    2898             :  * variable-free.  (Hence, it should usually match the join domain in which
    2899             :  * the clause applies.)  Otherwise the qual is applied at the lowest join
    2900             :  * level that provides all its variables.
    2901             :  *
    2902             :  * "security_level" is the security level to assign to the new restrictinfo.
    2903             :  *
    2904             :  * "both_const" indicates whether both items are known pseudo-constant;
    2905             :  * in this case it is worth applying eval_const_expressions() in case we
    2906             :  * can produce constant TRUE or constant FALSE.  (Otherwise it's not,
    2907             :  * because the expressions went through eval_const_expressions already.)
    2908             :  *
    2909             :  * Returns the generated RestrictInfo, if any.  The result will be NULL
    2910             :  * if both_const is true and we successfully reduced the clause to
    2911             :  * constant TRUE.
    2912             :  *
    2913             :  * Note: this function will copy item1 and item2, but it is caller's
    2914             :  * responsibility to make sure that the Relids parameters are fresh copies
    2915             :  * not shared with other uses.
    2916             :  *
    2917             :  * Note: we do not do initialize_mergeclause_eclasses() here.  It is
    2918             :  * caller's responsibility that left_ec/right_ec be set as necessary.
    2919             :  */
    2920             : RestrictInfo *
    2921       35502 : process_implied_equality(PlannerInfo *root,
    2922             :                          Oid opno,
    2923             :                          Oid collation,
    2924             :                          Expr *item1,
    2925             :                          Expr *item2,
    2926             :                          Relids qualscope,
    2927             :                          Index security_level,
    2928             :                          bool both_const)
    2929             : {
    2930             :     RestrictInfo *restrictinfo;
    2931             :     Node       *clause;
    2932             :     Relids      relids;
    2933       35502 :     bool        pseudoconstant = false;
    2934             : 
    2935             :     /*
    2936             :      * Build the new clause.  Copy to ensure it shares no substructure with
    2937             :      * original (this is necessary in case there are subselects in there...)
    2938             :      */
    2939       35502 :     clause = (Node *) make_opclause(opno,
    2940             :                                     BOOLOID,    /* opresulttype */
    2941             :                                     false,  /* opretset */
    2942       35502 :                                     copyObject(item1),
    2943       35502 :                                     copyObject(item2),
    2944             :                                     InvalidOid,
    2945             :                                     collation);
    2946             : 
    2947             :     /* If both constant, try to reduce to a boolean constant. */
    2948       35502 :     if (both_const)
    2949             :     {
    2950         132 :         clause = eval_const_expressions(root, clause);
    2951             : 
    2952             :         /* If we produced const TRUE, just drop the clause */
    2953         132 :         if (clause && IsA(clause, Const))
    2954             :         {
    2955         126 :             Const      *cclause = (Const *) clause;
    2956             : 
    2957             :             Assert(cclause->consttype == BOOLOID);
    2958         126 :             if (!cclause->constisnull && DatumGetBool(cclause->constvalue))
    2959           0 :                 return NULL;
    2960             :         }
    2961             :     }
    2962             : 
    2963             :     /*
    2964             :      * The rest of this is a very cut-down version of distribute_qual_to_rels.
    2965             :      * We can skip most of the work therein, but there are a couple of special
    2966             :      * cases we still have to handle.
    2967             :      *
    2968             :      * Retrieve all relids mentioned within the possibly-simplified clause.
    2969             :      */
    2970       35502 :     relids = pull_varnos(root, clause);
    2971             :     Assert(bms_is_subset(relids, qualscope));
    2972             : 
    2973             :     /*
    2974             :      * If the clause is variable-free, our normal heuristic for pushing it
    2975             :      * down to just the mentioned rels doesn't work, because there are none.
    2976             :      * Apply it as a gating qual at the appropriate level (see comments for
    2977             :      * get_join_domain_min_rels).
    2978             :      */
    2979       35502 :     if (bms_is_empty(relids))
    2980             :     {
    2981             :         /* eval at join domain's safe level */
    2982         132 :         relids = get_join_domain_min_rels(root, qualscope);
    2983             :         /* mark as gating qual */
    2984         132 :         pseudoconstant = true;
    2985             :         /* tell createplan.c to check for gating quals */
    2986         132 :         root->hasPseudoConstantQuals = true;
    2987             :     }
    2988             : 
    2989             :     /*
    2990             :      * Build the RestrictInfo node itself.
    2991             :      */
    2992       35502 :     restrictinfo = make_restrictinfo(root,
    2993             :                                      (Expr *) clause,
    2994             :                                      true,  /* is_pushed_down */
    2995             :                                      false, /* !has_clone */
    2996             :                                      false, /* !is_clone */
    2997             :                                      pseudoconstant,
    2998             :                                      security_level,
    2999             :                                      relids,
    3000             :                                      NULL,  /* incompatible_relids */
    3001             :                                      NULL); /* outer_relids */
    3002             : 
    3003             :     /*
    3004             :      * If it's a join clause, add vars used in the clause to targetlists of
    3005             :      * their relations, so that they will be emitted by the plan nodes that
    3006             :      * scan those relations (else they won't be available at the join node!).
    3007             :      *
    3008             :      * Typically, we'd have already done this when the component expressions
    3009             :      * were first seen by distribute_qual_to_rels; but it is possible that
    3010             :      * some of the Vars could have missed having that done because they only
    3011             :      * appeared in single-relation clauses originally.  So do it here for
    3012             :      * safety.
    3013             :      */
    3014       35502 :     if (bms_membership(relids) == BMS_MULTIPLE)
    3015             :     {
    3016          60 :         List       *vars = pull_var_clause(clause,
    3017             :                                            PVC_RECURSE_AGGREGATES |
    3018             :                                            PVC_RECURSE_WINDOWFUNCS |
    3019             :                                            PVC_INCLUDE_PLACEHOLDERS);
    3020             : 
    3021          60 :         add_vars_to_targetlist(root, vars, relids);
    3022          60 :         list_free(vars);
    3023             :     }
    3024             : 
    3025             :     /*
    3026             :      * Check mergejoinability.  This will usually succeed, since the op came
    3027             :      * from an EquivalenceClass; but we could have reduced the original clause
    3028             :      * to a constant.
    3029             :      */
    3030       35502 :     check_mergejoinable(restrictinfo);
    3031             : 
    3032             :     /*
    3033             :      * Note we don't do initialize_mergeclause_eclasses(); the caller can
    3034             :      * handle that much more cheaply than we can.  It's okay to call
    3035             :      * distribute_restrictinfo_to_rels() before that happens.
    3036             :      */
    3037             : 
    3038             :     /*
    3039             :      * Push the new clause into all the appropriate restrictinfo lists.
    3040             :      */
    3041       35502 :     distribute_restrictinfo_to_rels(root, restrictinfo);
    3042             : 
    3043       35502 :     return restrictinfo;
    3044             : }
    3045             : 
    3046             : /*
    3047             :  * build_implied_join_equality --- build a RestrictInfo for a derived equality
    3048             :  *
    3049             :  * This overlaps the functionality of process_implied_equality(), but we
    3050             :  * must not push the RestrictInfo into the joininfo tree.
    3051             :  *
    3052             :  * Note: this function will copy item1 and item2, but it is caller's
    3053             :  * responsibility to make sure that the Relids parameters are fresh copies
    3054             :  * not shared with other uses.
    3055             :  *
    3056             :  * Note: we do not do initialize_mergeclause_eclasses() here.  It is
    3057             :  * caller's responsibility that left_ec/right_ec be set as necessary.
    3058             :  */
    3059             : RestrictInfo *
    3060       58072 : build_implied_join_equality(PlannerInfo *root,
    3061             :                             Oid opno,
    3062             :                             Oid collation,
    3063             :                             Expr *item1,
    3064             :                             Expr *item2,
    3065             :                             Relids qualscope,
    3066             :                             Index security_level)
    3067             : {
    3068             :     RestrictInfo *restrictinfo;
    3069             :     Expr       *clause;
    3070             : 
    3071             :     /*
    3072             :      * Build the new clause.  Copy to ensure it shares no substructure with
    3073             :      * original (this is necessary in case there are subselects in there...)
    3074             :      */
    3075       58072 :     clause = make_opclause(opno,
    3076             :                            BOOLOID, /* opresulttype */
    3077             :                            false,   /* opretset */
    3078       58072 :                            copyObject(item1),
    3079       58072 :                            copyObject(item2),
    3080             :                            InvalidOid,
    3081             :                            collation);
    3082             : 
    3083             :     /*
    3084             :      * Build the RestrictInfo node itself.
    3085             :      */
    3086       58072 :     restrictinfo = make_restrictinfo(root,
    3087             :                                      clause,
    3088             :                                      true,  /* is_pushed_down */
    3089             :                                      false, /* !has_clone */
    3090             :                                      false, /* !is_clone */
    3091             :                                      false, /* pseudoconstant */
    3092             :                                      security_level,    /* security_level */
    3093             :                                      qualscope, /* required_relids */
    3094             :                                      NULL,  /* incompatible_relids */
    3095             :                                      NULL); /* outer_relids */
    3096             : 
    3097             :     /* Set mergejoinability/hashjoinability flags */
    3098       58072 :     check_mergejoinable(restrictinfo);
    3099       58072 :     check_hashjoinable(restrictinfo);
    3100       58072 :     check_memoizable(restrictinfo);
    3101             : 
    3102       58072 :     return restrictinfo;
    3103             : }
    3104             : 
    3105             : /*
    3106             :  * get_join_domain_min_rels
    3107             :  *    Identify the appropriate join level for derived quals belonging
    3108             :  *    to the join domain with the given relids.
    3109             :  *
    3110             :  * When we derive a pseudoconstant (Var-free) clause from an EquivalenceClass,
    3111             :  * we'd ideally apply the clause at the top level of the EC's join domain.
    3112             :  * However, if there are any outer joins inside that domain that get commuted
    3113             :  * with joins outside it, that leads to not finding a correct place to apply
    3114             :  * the clause.  Instead, remove any lower outer joins from the relid set,
    3115             :  * and apply the clause to just the remaining rels.  This still results in a
    3116             :  * correct answer, since if the clause produces FALSE then the LHS of these
    3117             :  * joins will be empty leading to an empty join result.
    3118             :  *
    3119             :  * However, there's no need to remove outer joins if this is the top-level
    3120             :  * join domain of the query, since then there's nothing else to commute with.
    3121             :  *
    3122             :  * Note: it's tempting to use this in distribute_qual_to_rels where it's
    3123             :  * dealing with pseudoconstant quals; but we can't because the necessary
    3124             :  * SpecialJoinInfos aren't all formed at that point.
    3125             :  *
    3126             :  * The result is always freshly palloc'd; we do not modify domain_relids.
    3127             :  */
    3128             : static Relids
    3129         132 : get_join_domain_min_rels(PlannerInfo *root, Relids domain_relids)
    3130             : {
    3131         132 :     Relids      result = bms_copy(domain_relids);
    3132             :     ListCell   *lc;
    3133             : 
    3134             :     /* Top-level join domain? */
    3135         132 :     if (bms_equal(result, root->all_query_rels))
    3136          66 :         return result;
    3137             : 
    3138             :     /* Nope, look for lower outer joins that could potentially commute out */
    3139         138 :     foreach(lc, root->join_info_list)
    3140             :     {
    3141          72 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
    3142             : 
    3143         144 :         if (sjinfo->jointype == JOIN_LEFT &&
    3144          72 :             bms_is_member(sjinfo->ojrelid, result))
    3145             :         {
    3146           6 :             result = bms_del_member(result, sjinfo->ojrelid);
    3147           6 :             result = bms_del_members(result, sjinfo->syn_righthand);
    3148             :         }
    3149             :     }
    3150          66 :     return result;
    3151             : }
    3152             : 
    3153             : 
    3154             : /*
    3155             :  * match_foreign_keys_to_quals
    3156             :  *      Match foreign-key constraints to equivalence classes and join quals
    3157             :  *
    3158             :  * The idea here is to see which query join conditions match equality
    3159             :  * constraints of a foreign-key relationship.  For such join conditions,
    3160             :  * we can use the FK semantics to make selectivity estimates that are more
    3161             :  * reliable than estimating from statistics, especially for multiple-column
    3162             :  * FKs, where the normal assumption of independent conditions tends to fail.
    3163             :  *
    3164             :  * In this function we annotate the ForeignKeyOptInfos in root->fkey_list
    3165             :  * with info about which eclasses and join qual clauses they match, and
    3166             :  * discard any ForeignKeyOptInfos that are irrelevant for the query.
    3167             :  */
    3168             : void
    3169      278182 : match_foreign_keys_to_quals(PlannerInfo *root)
    3170             : {
    3171      278182 :     List       *newlist = NIL;
    3172             :     ListCell   *lc;
    3173             : 
    3174      279890 :     foreach(lc, root->fkey_list)
    3175             :     {
    3176        1708 :         ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
    3177             :         RelOptInfo *con_rel;
    3178             :         RelOptInfo *ref_rel;
    3179             :         int         colno;
    3180             : 
    3181             :         /*
    3182             :          * Either relid might identify a rel that is in the query's rtable but
    3183             :          * isn't referenced by the jointree, or has been removed by join
    3184             :          * removal, so that it won't have a RelOptInfo.  Hence don't use
    3185             :          * find_base_rel() here.  We can ignore such FKs.
    3186             :          */
    3187        1708 :         if (fkinfo->con_relid >= root->simple_rel_array_size ||
    3188        1708 :             fkinfo->ref_relid >= root->simple_rel_array_size)
    3189           0 :             continue;           /* just paranoia */
    3190        1708 :         con_rel = root->simple_rel_array[fkinfo->con_relid];
    3191        1708 :         if (con_rel == NULL)
    3192          12 :             continue;
    3193        1696 :         ref_rel = root->simple_rel_array[fkinfo->ref_relid];
    3194        1696 :         if (ref_rel == NULL)
    3195          30 :             continue;
    3196             : 
    3197             :         /*
    3198             :          * Ignore FK unless both rels are baserels.  This gets rid of FKs that
    3199             :          * link to inheritance child rels (otherrels).
    3200             :          */
    3201        1666 :         if (con_rel->reloptkind != RELOPT_BASEREL ||
    3202        1666 :             ref_rel->reloptkind != RELOPT_BASEREL)
    3203           0 :             continue;
    3204             : 
    3205             :         /*
    3206             :          * Scan the columns and try to match them to eclasses and quals.
    3207             :          *
    3208             :          * Note: for simple inner joins, any match should be in an eclass.
    3209             :          * "Loose" quals that syntactically match an FK equality must have
    3210             :          * been rejected for EC status because they are outer-join quals or
    3211             :          * similar.  We can still consider them to match the FK.
    3212             :          */
    3213        3828 :         for (colno = 0; colno < fkinfo->nkeys; colno++)
    3214             :         {
    3215             :             EquivalenceClass *ec;
    3216             :             AttrNumber  con_attno,
    3217             :                         ref_attno;
    3218             :             Oid         fpeqop;
    3219             :             ListCell   *lc2;
    3220             : 
    3221        2162 :             ec = match_eclasses_to_foreign_key_col(root, fkinfo, colno);
    3222             :             /* Don't bother looking for loose quals if we got an EC match */
    3223        2162 :             if (ec != NULL)
    3224             :             {
    3225         342 :                 fkinfo->nmatched_ec++;
    3226         342 :                 if (ec->ec_has_const)
    3227          74 :                     fkinfo->nconst_ec++;
    3228         342 :                 continue;
    3229             :             }
    3230             : 
    3231             :             /*
    3232             :              * Scan joininfo list for relevant clauses.  Either rel's joininfo
    3233             :              * list would do equally well; we use con_rel's.
    3234             :              */
    3235        1820 :             con_attno = fkinfo->conkey[colno];
    3236        1820 :             ref_attno = fkinfo->confkey[colno];
    3237        1820 :             fpeqop = InvalidOid;    /* we'll look this up only if needed */
    3238             : 
    3239        4722 :             foreach(lc2, con_rel->joininfo)
    3240             :             {
    3241        2902 :                 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc2);
    3242        2902 :                 OpExpr     *clause = (OpExpr *) rinfo->clause;
    3243             :                 Var        *leftvar;
    3244             :                 Var        *rightvar;
    3245             : 
    3246             :                 /* Only binary OpExprs are useful for consideration */
    3247        5804 :                 if (!IsA(clause, OpExpr) ||
    3248        2902 :                     list_length(clause->args) != 2)
    3249           0 :                     continue;
    3250        2902 :                 leftvar = (Var *) get_leftop((Expr *) clause);
    3251        2902 :                 rightvar = (Var *) get_rightop((Expr *) clause);
    3252             : 
    3253             :                 /* Operands must be Vars, possibly with RelabelType */
    3254        3148 :                 while (leftvar && IsA(leftvar, RelabelType))
    3255         246 :                     leftvar = (Var *) ((RelabelType *) leftvar)->arg;
    3256        2902 :                 if (!(leftvar && IsA(leftvar, Var)))
    3257           0 :                     continue;
    3258        3130 :                 while (rightvar && IsA(rightvar, RelabelType))
    3259         228 :                     rightvar = (Var *) ((RelabelType *) rightvar)->arg;
    3260        2902 :                 if (!(rightvar && IsA(rightvar, Var)))
    3261          30 :                     continue;
    3262             : 
    3263             :                 /* Now try to match the vars to the current foreign key cols */
    3264        2872 :                 if (fkinfo->ref_relid == leftvar->varno &&
    3265        2746 :                     ref_attno == leftvar->varattno &&
    3266        1580 :                     fkinfo->con_relid == rightvar->varno &&
    3267        1580 :                     con_attno == rightvar->varattno)
    3268             :                 {
    3269             :                     /* Vars match, but is it the right operator? */
    3270        1502 :                     if (clause->opno == fkinfo->conpfeqop[colno])
    3271             :                     {
    3272        1502 :                         fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
    3273             :                                                         rinfo);
    3274        1502 :                         fkinfo->nmatched_ri++;
    3275             :                     }
    3276             :                 }
    3277        1370 :                 else if (fkinfo->ref_relid == rightvar->varno &&
    3278          90 :                          ref_attno == rightvar->varattno &&
    3279          36 :                          fkinfo->con_relid == leftvar->varno &&
    3280          36 :                          con_attno == leftvar->varattno)
    3281             :                 {
    3282             :                     /*
    3283             :                      * Reverse match, must check commutator operator.  Look it
    3284             :                      * up if we didn't already.  (In the worst case we might
    3285             :                      * do multiple lookups here, but that would require an FK
    3286             :                      * equality operator without commutator, which is
    3287             :                      * unlikely.)
    3288             :                      */
    3289          36 :                     if (!OidIsValid(fpeqop))
    3290          36 :                         fpeqop = get_commutator(fkinfo->conpfeqop[colno]);
    3291          36 :                     if (clause->opno == fpeqop)
    3292             :                     {
    3293          36 :                         fkinfo->rinfos[colno] = lappend(fkinfo->rinfos[colno],
    3294             :                                                         rinfo);
    3295          36 :                         fkinfo->nmatched_ri++;
    3296             :                     }
    3297             :                 }
    3298             :             }
    3299             :             /* If we found any matching loose quals, count col as matched */
    3300        1820 :             if (fkinfo->rinfos[colno])
    3301        1538 :                 fkinfo->nmatched_rcols++;
    3302             :         }
    3303             : 
    3304             :         /*
    3305             :          * Currently, we drop multicolumn FKs that aren't fully matched to the
    3306             :          * query.  Later we might figure out how to derive some sort of
    3307             :          * estimate from them, in which case this test should be weakened to
    3308             :          * "if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) > 0)".
    3309             :          */
    3310        1666 :         if ((fkinfo->nmatched_ec + fkinfo->nmatched_rcols) == fkinfo->nkeys)
    3311        1408 :             newlist = lappend(newlist, fkinfo);
    3312             :     }
    3313             :     /* Replace fkey_list, thereby discarding any useless entries */
    3314      278182 :     root->fkey_list = newlist;
    3315      278182 : }
    3316             : 
    3317             : 
    3318             : /*****************************************************************************
    3319             :  *
    3320             :  *   CHECKS FOR MERGEJOINABLE AND HASHJOINABLE CLAUSES
    3321             :  *
    3322             :  *****************************************************************************/
    3323             : 
    3324             : /*
    3325             :  * check_mergejoinable
    3326             :  *    If the restrictinfo's clause is mergejoinable, set the mergejoin
    3327             :  *    info fields in the restrictinfo.
    3328             :  *
    3329             :  *    Currently, we support mergejoin for binary opclauses where
    3330             :  *    the operator is a mergejoinable operator.  The arguments can be
    3331             :  *    anything --- as long as there are no volatile functions in them.
    3332             :  */
    3333             : static void
    3334      552730 : check_mergejoinable(RestrictInfo *restrictinfo)
    3335             : {
    3336      552730 :     Expr       *clause = restrictinfo->clause;
    3337             :     Oid         opno;
    3338             :     Node       *leftarg;
    3339             : 
    3340      552730 :     if (restrictinfo->pseudoconstant)
    3341        9118 :         return;
    3342      543612 :     if (!is_opclause(clause))
    3343       76524 :         return;
    3344      467088 :     if (list_length(((OpExpr *) clause)->args) != 2)
    3345          24 :         return;
    3346             : 
    3347      467064 :     opno = ((OpExpr *) clause)->opno;
    3348      467064 :     leftarg = linitial(((OpExpr *) clause)->args);
    3349             : 
    3350      467064 :     if (op_mergejoinable(opno, exprType(leftarg)) &&
    3351      394546 :         !contain_volatile_functions((Node *) restrictinfo))
    3352      394514 :         restrictinfo->mergeopfamilies = get_mergejoin_opfamilies(opno);
    3353             : 
    3354             :     /*
    3355             :      * Note: op_mergejoinable is just a hint; if we fail to find the operator
    3356             :      * in any btree opfamilies, mergeopfamilies remains NIL and so the clause
    3357             :      * is not treated as mergejoinable.
    3358             :      */
    3359             : }
    3360             : 
    3361             : /*
    3362             :  * check_hashjoinable
    3363             :  *    If the restrictinfo's clause is hashjoinable, set the hashjoin
    3364             :  *    info fields in the restrictinfo.
    3365             :  *
    3366             :  *    Currently, we support hashjoin for binary opclauses where
    3367             :  *    the operator is a hashjoinable operator.  The arguments can be
    3368             :  *    anything --- as long as there are no volatile functions in them.
    3369             :  */
    3370             : static void
    3371      121554 : check_hashjoinable(RestrictInfo *restrictinfo)
    3372             : {
    3373      121554 :     Expr       *clause = restrictinfo->clause;
    3374             :     Oid         opno;
    3375             :     Node       *leftarg;
    3376             : 
    3377      121554 :     if (restrictinfo->pseudoconstant)
    3378        2982 :         return;
    3379      118572 :     if (!is_opclause(clause))
    3380        6070 :         return;
    3381      112502 :     if (list_length(((OpExpr *) clause)->args) != 2)
    3382           0 :         return;
    3383             : 
    3384      112502 :     opno = ((OpExpr *) clause)->opno;
    3385      112502 :     leftarg = linitial(((OpExpr *) clause)->args);
    3386             : 
    3387      112502 :     if (op_hashjoinable(opno, exprType(leftarg)) &&
    3388      109030 :         !contain_volatile_functions((Node *) restrictinfo))
    3389      109022 :         restrictinfo->hashjoinoperator = opno;
    3390             : }
    3391             : 
    3392             : /*
    3393             :  * check_memoizable
    3394             :  *    If the restrictinfo's clause is suitable to be used for a Memoize node,
    3395             :  *    set the left_hasheqoperator and right_hasheqoperator to the hash equality
    3396             :  *    operator that will be needed during caching.
    3397             :  */
    3398             : static void
    3399      121554 : check_memoizable(RestrictInfo *restrictinfo)
    3400             : {
    3401             :     TypeCacheEntry *typentry;
    3402      121554 :     Expr       *clause = restrictinfo->clause;
    3403             :     Oid         lefttype;
    3404             :     Oid         righttype;
    3405             : 
    3406      121554 :     if (restrictinfo->pseudoconstant)
    3407        2982 :         return;
    3408      118572 :     if (!is_opclause(clause))
    3409        6070 :         return;
    3410      112502 :     if (list_length(((OpExpr *) clause)->args) != 2)
    3411           0 :         return;
    3412             : 
    3413      112502 :     lefttype = exprType(linitial(((OpExpr *) clause)->args));
    3414             : 
    3415      112502 :     typentry = lookup_type_cache(lefttype, TYPECACHE_HASH_PROC |
    3416             :                                  TYPECACHE_EQ_OPR);
    3417             : 
    3418      112502 :     if (OidIsValid(typentry->hash_proc) && OidIsValid(typentry->eq_opr))
    3419      112094 :         restrictinfo->left_hasheqoperator = typentry->eq_opr;
    3420             : 
    3421      112502 :     righttype = exprType(lsecond(((OpExpr *) clause)->args));
    3422             : 
    3423             :     /*
    3424             :      * Lookup the right type, unless it's the same as the left type, in which
    3425             :      * case typentry is already pointing to the required TypeCacheEntry.
    3426             :      */
    3427      112502 :     if (lefttype != righttype)
    3428        1788 :         typentry = lookup_type_cache(righttype, TYPECACHE_HASH_PROC |
    3429             :                                      TYPECACHE_EQ_OPR);
    3430             : 
    3431      112502 :     if (OidIsValid(typentry->hash_proc) && OidIsValid(typentry->eq_opr))
    3432      111902 :         restrictinfo->right_hasheqoperator = typentry->eq_opr;
    3433             : }

Generated by: LCOV version 1.14