Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * createplan.c
4 : * Routines to create the desired plan for processing a query.
5 : * Planning is complete, we just need to convert the selected
6 : * Path into a Plan.
7 : *
8 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
9 : * Portions Copyright (c) 1994, Regents of the University of California
10 : *
11 : *
12 : * IDENTIFICATION
13 : * src/backend/optimizer/plan/createplan.c
14 : *
15 : *-------------------------------------------------------------------------
16 : */
17 : #include "postgres.h"
18 :
19 : #include <math.h>
20 :
21 : #include "access/sysattr.h"
22 : #include "catalog/pg_class.h"
23 : #include "foreign/fdwapi.h"
24 : #include "miscadmin.h"
25 : #include "nodes/extensible.h"
26 : #include "nodes/makefuncs.h"
27 : #include "nodes/nodeFuncs.h"
28 : #include "optimizer/clauses.h"
29 : #include "optimizer/cost.h"
30 : #include "optimizer/optimizer.h"
31 : #include "optimizer/paramassign.h"
32 : #include "optimizer/pathnode.h"
33 : #include "optimizer/paths.h"
34 : #include "optimizer/placeholder.h"
35 : #include "optimizer/plancat.h"
36 : #include "optimizer/planmain.h"
37 : #include "optimizer/prep.h"
38 : #include "optimizer/restrictinfo.h"
39 : #include "optimizer/subselect.h"
40 : #include "optimizer/tlist.h"
41 : #include "parser/parse_clause.h"
42 : #include "parser/parsetree.h"
43 : #include "partitioning/partprune.h"
44 : #include "tcop/tcopprot.h"
45 : #include "utils/lsyscache.h"
46 :
47 :
48 : /*
49 : * Flag bits that can appear in the flags argument of create_plan_recurse().
50 : * These can be OR-ed together.
51 : *
52 : * CP_EXACT_TLIST specifies that the generated plan node must return exactly
53 : * the tlist specified by the path's pathtarget (this overrides both
54 : * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set). Otherwise, the
55 : * plan node is allowed to return just the Vars and PlaceHolderVars needed
56 : * to evaluate the pathtarget.
57 : *
58 : * CP_SMALL_TLIST specifies that a narrower tlist is preferred. This is
59 : * passed down by parent nodes such as Sort and Hash, which will have to
60 : * store the returned tuples.
61 : *
62 : * CP_LABEL_TLIST specifies that the plan node must return columns matching
63 : * any sortgrouprefs specified in its pathtarget, with appropriate
64 : * ressortgroupref labels. This is passed down by parent nodes such as Sort
65 : * and Group, which need these values to be available in their inputs.
66 : *
67 : * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist,
68 : * and therefore it doesn't matter a bit what target list gets generated.
69 : */
70 : #define CP_EXACT_TLIST 0x0001 /* Plan must return specified tlist */
71 : #define CP_SMALL_TLIST 0x0002 /* Prefer narrower tlists */
72 : #define CP_LABEL_TLIST 0x0004 /* tlist must contain sortgrouprefs */
73 : #define CP_IGNORE_TLIST 0x0008 /* caller will replace tlist */
74 :
75 :
76 : static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path,
77 : int flags);
78 : static Plan *create_scan_plan(PlannerInfo *root, Path *best_path,
79 : int flags);
80 : static List *build_path_tlist(PlannerInfo *root, Path *path);
81 : static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags);
82 : static List *get_gating_quals(PlannerInfo *root, List *quals);
83 : static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
84 : List *gating_quals);
85 : static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
86 : static bool mark_async_capable_plan(Plan *plan, Path *path);
87 : static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path,
88 : int flags);
89 : static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
90 : int flags);
91 : static Result *create_group_result_plan(PlannerInfo *root,
92 : GroupResultPath *best_path);
93 : static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path);
94 : static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path,
95 : int flags);
96 : static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path,
97 : int flags);
98 : static Plan *create_unique_plan(PlannerInfo *root, UniquePath *best_path,
99 : int flags);
100 : static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path);
101 : static Plan *create_projection_plan(PlannerInfo *root,
102 : ProjectionPath *best_path,
103 : int flags);
104 : static Plan *inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe);
105 : static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags);
106 : static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root,
107 : IncrementalSortPath *best_path, int flags);
108 : static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path);
109 : static Unique *create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path,
110 : int flags);
111 : static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path);
112 : static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path);
113 : static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path);
114 : static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path);
115 : static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path,
116 : int flags);
117 : static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path);
118 : static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
119 : int flags);
120 : static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path);
121 : static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path,
122 : int flags);
123 : static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
124 : List *tlist, List *scan_clauses);
125 : static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
126 : List *tlist, List *scan_clauses);
127 : static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
128 : List *tlist, List *scan_clauses, bool indexonly);
129 : static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
130 : BitmapHeapPath *best_path,
131 : List *tlist, List *scan_clauses);
132 : static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
133 : List **qual, List **indexqual, List **indexECs);
134 : static void bitmap_subplan_mark_shared(Plan *plan);
135 : static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
136 : List *tlist, List *scan_clauses);
137 : static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root,
138 : TidRangePath *best_path,
139 : List *tlist,
140 : List *scan_clauses);
141 : static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root,
142 : SubqueryScanPath *best_path,
143 : List *tlist, List *scan_clauses);
144 : static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
145 : List *tlist, List *scan_clauses);
146 : static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
147 : List *tlist, List *scan_clauses);
148 : static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
149 : List *tlist, List *scan_clauses);
150 : static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
151 : List *tlist, List *scan_clauses);
152 : static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root,
153 : Path *best_path, List *tlist, List *scan_clauses);
154 : static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path,
155 : List *tlist, List *scan_clauses);
156 : static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
157 : List *tlist, List *scan_clauses);
158 : static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
159 : List *tlist, List *scan_clauses);
160 : static CustomScan *create_customscan_plan(PlannerInfo *root,
161 : CustomPath *best_path,
162 : List *tlist, List *scan_clauses);
163 : static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path);
164 : static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path);
165 : static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path);
166 : static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
167 : static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
168 : static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
169 : List **stripped_indexquals_p,
170 : List **fixed_indexquals_p);
171 : static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
172 : static Node *fix_indexqual_clause(PlannerInfo *root,
173 : IndexOptInfo *index, int indexcol,
174 : Node *clause, List *indexcolnos);
175 : static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
176 : static List *get_switched_clauses(List *clauses, Relids outerrelids);
177 : static List *order_qual_clauses(PlannerInfo *root, List *clauses);
178 : static void copy_generic_path_info(Plan *dest, Path *src);
179 : static void copy_plan_costsize(Plan *dest, Plan *src);
180 : static void label_sort_with_costsize(PlannerInfo *root, Sort *plan,
181 : double limit_tuples);
182 : static void label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
183 : List *pathkeys, double limit_tuples);
184 : static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
185 : static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
186 : TableSampleClause *tsc);
187 : static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
188 : Oid indexid, List *indexqual, List *indexqualorig,
189 : List *indexorderby, List *indexorderbyorig,
190 : List *indexorderbyops,
191 : ScanDirection indexscandir);
192 : static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
193 : Index scanrelid, Oid indexid,
194 : List *indexqual, List *recheckqual,
195 : List *indexorderby,
196 : List *indextlist,
197 : ScanDirection indexscandir);
198 : static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
199 : List *indexqual,
200 : List *indexqualorig);
201 : static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
202 : List *qpqual,
203 : Plan *lefttree,
204 : List *bitmapqualorig,
205 : Index scanrelid);
206 : static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
207 : List *tidquals);
208 : static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual,
209 : Index scanrelid, List *tidrangequals);
210 : static SubqueryScan *make_subqueryscan(List *qptlist,
211 : List *qpqual,
212 : Index scanrelid,
213 : Plan *subplan);
214 : static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
215 : Index scanrelid, List *functions, bool funcordinality);
216 : static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
217 : Index scanrelid, List *values_lists);
218 : static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual,
219 : Index scanrelid, TableFunc *tablefunc);
220 : static CteScan *make_ctescan(List *qptlist, List *qpqual,
221 : Index scanrelid, int ctePlanId, int cteParam);
222 : static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual,
223 : Index scanrelid, char *enrname);
224 : static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
225 : Index scanrelid, int wtParam);
226 : static RecursiveUnion *make_recursive_union(List *tlist,
227 : Plan *lefttree,
228 : Plan *righttree,
229 : int wtParam,
230 : List *distinctList,
231 : long numGroups);
232 : static BitmapAnd *make_bitmap_and(List *bitmapplans);
233 : static BitmapOr *make_bitmap_or(List *bitmapplans);
234 : static NestLoop *make_nestloop(List *tlist,
235 : List *joinclauses, List *otherclauses, List *nestParams,
236 : Plan *lefttree, Plan *righttree,
237 : JoinType jointype, bool inner_unique);
238 : static HashJoin *make_hashjoin(List *tlist,
239 : List *joinclauses, List *otherclauses,
240 : List *hashclauses,
241 : List *hashoperators, List *hashcollations,
242 : List *hashkeys,
243 : Plan *lefttree, Plan *righttree,
244 : JoinType jointype, bool inner_unique);
245 : static Hash *make_hash(Plan *lefttree,
246 : List *hashkeys,
247 : Oid skewTable,
248 : AttrNumber skewColumn,
249 : bool skewInherit);
250 : static MergeJoin *make_mergejoin(List *tlist,
251 : List *joinclauses, List *otherclauses,
252 : List *mergeclauses,
253 : Oid *mergefamilies,
254 : Oid *mergecollations,
255 : bool *mergereversals,
256 : bool *mergenullsfirst,
257 : Plan *lefttree, Plan *righttree,
258 : JoinType jointype, bool inner_unique,
259 : bool skip_mark_restore);
260 : static Sort *make_sort(Plan *lefttree, int numCols,
261 : AttrNumber *sortColIdx, Oid *sortOperators,
262 : Oid *collations, bool *nullsFirst);
263 : static IncrementalSort *make_incrementalsort(Plan *lefttree,
264 : int numCols, int nPresortedCols,
265 : AttrNumber *sortColIdx, Oid *sortOperators,
266 : Oid *collations, bool *nullsFirst);
267 : static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
268 : Relids relids,
269 : const AttrNumber *reqColIdx,
270 : bool adjust_tlist_in_place,
271 : int *p_numsortkeys,
272 : AttrNumber **p_sortColIdx,
273 : Oid **p_sortOperators,
274 : Oid **p_collations,
275 : bool **p_nullsFirst);
276 : static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
277 : Relids relids);
278 : static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree,
279 : List *pathkeys, Relids relids, int nPresortedCols);
280 : static Sort *make_sort_from_groupcols(List *groupcls,
281 : AttrNumber *grpColIdx,
282 : Plan *lefttree);
283 : static Material *make_material(Plan *lefttree);
284 : static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators,
285 : Oid *collations, List *param_exprs,
286 : bool singlerow, bool binary_mode,
287 : uint32 est_entries, Bitmapset *keyparamids);
288 : static WindowAgg *make_windowagg(List *tlist, WindowClause *wc,
289 : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
290 : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
291 : List *runCondition, List *qual, bool topWindow,
292 : Plan *lefttree);
293 : static Group *make_group(List *tlist, List *qual, int numGroupCols,
294 : AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
295 : Plan *lefttree);
296 : static Unique *make_unique_from_sortclauses(Plan *lefttree, List *distinctList);
297 : static Unique *make_unique_from_pathkeys(Plan *lefttree,
298 : List *pathkeys, int numCols);
299 : static Gather *make_gather(List *qptlist, List *qpqual,
300 : int nworkers, int rescan_param, bool single_copy, Plan *subplan);
301 : static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy,
302 : List *tlist, Plan *lefttree, Plan *righttree,
303 : List *groupList, long numGroups);
304 : static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam);
305 : static Result *make_result(List *tlist, Node *resconstantqual, Plan *subplan);
306 : static ProjectSet *make_project_set(List *tlist, Plan *subplan);
307 : static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan,
308 : CmdType operation, bool canSetTag,
309 : Index nominalRelation, Index rootRelation,
310 : bool partColsUpdated,
311 : List *resultRelations,
312 : List *updateColnosLists,
313 : List *withCheckOptionLists, List *returningLists,
314 : List *rowMarks, OnConflictExpr *onconflict,
315 : List *mergeActionLists, List *mergeJoinConditions,
316 : int epqParam);
317 : static GatherMerge *create_gather_merge_plan(PlannerInfo *root,
318 : GatherMergePath *best_path);
319 :
320 :
321 : /*
322 : * create_plan
323 : * Creates the access plan for a query by recursively processing the
324 : * desired tree of pathnodes, starting at the node 'best_path'. For
325 : * every pathnode found, we create a corresponding plan node containing
326 : * appropriate id, target list, and qualification information.
327 : *
328 : * The tlists and quals in the plan tree are still in planner format,
329 : * ie, Vars still correspond to the parser's numbering. This will be
330 : * fixed later by setrefs.c.
331 : *
332 : * best_path is the best access path
333 : *
334 : * Returns a Plan tree.
335 : */
336 : Plan *
337 538406 : create_plan(PlannerInfo *root, Path *best_path)
338 : {
339 : Plan *plan;
340 :
341 : /* plan_params should not be in use in current query level */
342 : Assert(root->plan_params == NIL);
343 :
344 : /* Initialize this module's workspace in PlannerInfo */
345 538406 : root->curOuterRels = NULL;
346 538406 : root->curOuterParams = NIL;
347 :
348 : /* Recursively process the path tree, demanding the correct tlist result */
349 538406 : plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
350 :
351 : /*
352 : * Make sure the topmost plan node's targetlist exposes the original
353 : * column names and other decorative info. Targetlists generated within
354 : * the planner don't bother with that stuff, but we must have it on the
355 : * top-level tlist seen at execution time. However, ModifyTable plan
356 : * nodes don't have a tlist matching the querytree targetlist.
357 : */
358 538010 : if (!IsA(plan, ModifyTable))
359 446128 : apply_tlist_labeling(plan->targetlist, root->processed_tlist);
360 :
361 : /*
362 : * Attach any initPlans created in this query level to the topmost plan
363 : * node. (In principle the initplans could go in any plan node at or
364 : * above where they're referenced, but there seems no reason to put them
365 : * any lower than the topmost node for the query level. Also, see
366 : * comments for SS_finalize_plan before you try to change this.)
367 : */
368 538010 : SS_attach_initplans(root, plan);
369 :
370 : /* Check we successfully assigned all NestLoopParams to plan nodes */
371 538010 : if (root->curOuterParams != NIL)
372 0 : elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
373 :
374 : /*
375 : * Reset plan_params to ensure param IDs used for nestloop params are not
376 : * re-used later
377 : */
378 538010 : root->plan_params = NIL;
379 :
380 538010 : return plan;
381 : }
382 :
383 : /*
384 : * create_plan_recurse
385 : * Recursive guts of create_plan().
386 : */
387 : static Plan *
388 1438150 : create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
389 : {
390 : Plan *plan;
391 :
392 : /* Guard against stack overflow due to overly complex plans */
393 1438150 : check_stack_depth();
394 :
395 1438150 : switch (best_path->pathtype)
396 : {
397 476554 : case T_SeqScan:
398 : case T_SampleScan:
399 : case T_IndexScan:
400 : case T_IndexOnlyScan:
401 : case T_BitmapHeapScan:
402 : case T_TidScan:
403 : case T_TidRangeScan:
404 : case T_SubqueryScan:
405 : case T_FunctionScan:
406 : case T_TableFuncScan:
407 : case T_ValuesScan:
408 : case T_CteScan:
409 : case T_WorkTableScan:
410 : case T_NamedTuplestoreScan:
411 : case T_ForeignScan:
412 : case T_CustomScan:
413 476554 : plan = create_scan_plan(root, best_path, flags);
414 476554 : break;
415 129912 : case T_HashJoin:
416 : case T_MergeJoin:
417 : case T_NestLoop:
418 129912 : plan = create_join_plan(root,
419 : (JoinPath *) best_path);
420 129912 : break;
421 21384 : case T_Append:
422 21384 : plan = create_append_plan(root,
423 : (AppendPath *) best_path,
424 : flags);
425 21384 : break;
426 524 : case T_MergeAppend:
427 524 : plan = create_merge_append_plan(root,
428 : (MergeAppendPath *) best_path,
429 : flags);
430 524 : break;
431 574796 : case T_Result:
432 574796 : if (IsA(best_path, ProjectionPath))
433 : {
434 354138 : plan = create_projection_plan(root,
435 : (ProjectionPath *) best_path,
436 : flags);
437 : }
438 220658 : else if (IsA(best_path, MinMaxAggPath))
439 : {
440 364 : plan = (Plan *) create_minmaxagg_plan(root,
441 : (MinMaxAggPath *) best_path);
442 : }
443 220294 : else if (IsA(best_path, GroupResultPath))
444 : {
445 218794 : plan = (Plan *) create_group_result_plan(root,
446 : (GroupResultPath *) best_path);
447 : }
448 : else
449 : {
450 : /* Simple RTE_RESULT base relation */
451 : Assert(IsA(best_path, Path));
452 1500 : plan = create_scan_plan(root, best_path, flags);
453 : }
454 574796 : break;
455 9064 : case T_ProjectSet:
456 9064 : plan = (Plan *) create_project_set_plan(root,
457 : (ProjectSetPath *) best_path);
458 9064 : break;
459 3966 : case T_Material:
460 3966 : plan = (Plan *) create_material_plan(root,
461 : (MaterialPath *) best_path,
462 : flags);
463 3966 : break;
464 1630 : case T_Memoize:
465 1630 : plan = (Plan *) create_memoize_plan(root,
466 : (MemoizePath *) best_path,
467 : flags);
468 1630 : break;
469 5924 : case T_Unique:
470 5924 : if (IsA(best_path, UpperUniquePath))
471 : {
472 5346 : plan = (Plan *) create_upper_unique_plan(root,
473 : (UpperUniquePath *) best_path,
474 : flags);
475 : }
476 : else
477 : {
478 : Assert(IsA(best_path, UniquePath));
479 578 : plan = create_unique_plan(root,
480 : (UniquePath *) best_path,
481 : flags);
482 : }
483 5924 : break;
484 948 : case T_Gather:
485 948 : plan = (Plan *) create_gather_plan(root,
486 : (GatherPath *) best_path);
487 948 : break;
488 63672 : case T_Sort:
489 63672 : plan = (Plan *) create_sort_plan(root,
490 : (SortPath *) best_path,
491 : flags);
492 63672 : break;
493 778 : case T_IncrementalSort:
494 778 : plan = (Plan *) create_incrementalsort_plan(root,
495 : (IncrementalSortPath *) best_path,
496 : flags);
497 778 : break;
498 246 : case T_Group:
499 246 : plan = (Plan *) create_group_plan(root,
500 : (GroupPath *) best_path);
501 246 : break;
502 40158 : case T_Agg:
503 40158 : if (IsA(best_path, GroupingSetsPath))
504 860 : plan = create_groupingsets_plan(root,
505 : (GroupingSetsPath *) best_path);
506 : else
507 : {
508 : Assert(IsA(best_path, AggPath));
509 39298 : plan = (Plan *) create_agg_plan(root,
510 : (AggPath *) best_path);
511 : }
512 40158 : break;
513 2546 : case T_WindowAgg:
514 2546 : plan = (Plan *) create_windowagg_plan(root,
515 : (WindowAggPath *) best_path);
516 2546 : break;
517 662 : case T_SetOp:
518 662 : plan = (Plan *) create_setop_plan(root,
519 : (SetOpPath *) best_path,
520 : flags);
521 662 : break;
522 896 : case T_RecursiveUnion:
523 896 : plan = (Plan *) create_recursiveunion_plan(root,
524 : (RecursiveUnionPath *) best_path);
525 896 : break;
526 7622 : case T_LockRows:
527 7622 : plan = (Plan *) create_lockrows_plan(root,
528 : (LockRowsPath *) best_path,
529 : flags);
530 7622 : break;
531 92278 : case T_ModifyTable:
532 92278 : plan = (Plan *) create_modifytable_plan(root,
533 : (ModifyTablePath *) best_path);
534 91882 : break;
535 4260 : case T_Limit:
536 4260 : plan = (Plan *) create_limit_plan(root,
537 : (LimitPath *) best_path,
538 : flags);
539 4260 : break;
540 330 : case T_GatherMerge:
541 330 : plan = (Plan *) create_gather_merge_plan(root,
542 : (GatherMergePath *) best_path);
543 330 : break;
544 0 : default:
545 0 : elog(ERROR, "unrecognized node type: %d",
546 : (int) best_path->pathtype);
547 : plan = NULL; /* keep compiler quiet */
548 : break;
549 : }
550 :
551 1437754 : return plan;
552 : }
553 :
554 : /*
555 : * create_scan_plan
556 : * Create a scan plan for the parent relation of 'best_path'.
557 : */
558 : static Plan *
559 478054 : create_scan_plan(PlannerInfo *root, Path *best_path, int flags)
560 : {
561 478054 : RelOptInfo *rel = best_path->parent;
562 : List *scan_clauses;
563 : List *gating_clauses;
564 : List *tlist;
565 : Plan *plan;
566 :
567 : /*
568 : * Extract the relevant restriction clauses from the parent relation. The
569 : * executor must apply all these restrictions during the scan, except for
570 : * pseudoconstants which we'll take care of below.
571 : *
572 : * If this is a plain indexscan or index-only scan, we need not consider
573 : * restriction clauses that are implied by the index's predicate, so use
574 : * indrestrictinfo not baserestrictinfo. Note that we can't do that for
575 : * bitmap indexscans, since there's not necessarily a single index
576 : * involved; but it doesn't matter since create_bitmap_scan_plan() will be
577 : * able to get rid of such clauses anyway via predicate proof.
578 : */
579 478054 : switch (best_path->pathtype)
580 : {
581 154302 : case T_IndexScan:
582 : case T_IndexOnlyScan:
583 154302 : scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo;
584 154302 : break;
585 323752 : default:
586 323752 : scan_clauses = rel->baserestrictinfo;
587 323752 : break;
588 : }
589 :
590 : /*
591 : * If this is a parameterized scan, we also need to enforce all the join
592 : * clauses available from the outer relation(s).
593 : *
594 : * For paranoia's sake, don't modify the stored baserestrictinfo list.
595 : */
596 478054 : if (best_path->param_info)
597 46860 : scan_clauses = list_concat_copy(scan_clauses,
598 46860 : best_path->param_info->ppi_clauses);
599 :
600 : /*
601 : * Detect whether we have any pseudoconstant quals to deal with. Then, if
602 : * we'll need a gating Result node, it will be able to project, so there
603 : * are no requirements on the child's tlist.
604 : *
605 : * If this replaces a join, it must be a foreign scan or a custom scan,
606 : * and the FDW or the custom scan provider would have stored in the best
607 : * path the list of RestrictInfo nodes to apply to the join; check against
608 : * that list in that case.
609 : */
610 478054 : if (IS_JOIN_REL(rel))
611 306 : {
612 : List *join_clauses;
613 :
614 : Assert(best_path->pathtype == T_ForeignScan ||
615 : best_path->pathtype == T_CustomScan);
616 306 : if (best_path->pathtype == T_ForeignScan)
617 306 : join_clauses = ((ForeignPath *) best_path)->fdw_restrictinfo;
618 : else
619 0 : join_clauses = ((CustomPath *) best_path)->custom_restrictinfo;
620 :
621 306 : gating_clauses = get_gating_quals(root, join_clauses);
622 : }
623 : else
624 477748 : gating_clauses = get_gating_quals(root, scan_clauses);
625 478054 : if (gating_clauses)
626 6580 : flags = 0;
627 :
628 : /*
629 : * For table scans, rather than using the relation targetlist (which is
630 : * only those Vars actually needed by the query), we prefer to generate a
631 : * tlist containing all Vars in order. This will allow the executor to
632 : * optimize away projection of the table tuples, if possible.
633 : *
634 : * But if the caller is going to ignore our tlist anyway, then don't
635 : * bother generating one at all. We use an exact equality test here, so
636 : * that this only applies when CP_IGNORE_TLIST is the only flag set.
637 : */
638 478054 : if (flags == CP_IGNORE_TLIST)
639 : {
640 73636 : tlist = NULL;
641 : }
642 404418 : else if (use_physical_tlist(root, best_path, flags))
643 : {
644 189222 : if (best_path->pathtype == T_IndexOnlyScan)
645 : {
646 : /* For index-only scan, the preferred tlist is the index's */
647 8488 : tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
648 :
649 : /*
650 : * Transfer sortgroupref data to the replacement tlist, if
651 : * requested (use_physical_tlist checked that this will work).
652 : */
653 8488 : if (flags & CP_LABEL_TLIST)
654 1940 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
655 : }
656 : else
657 : {
658 180734 : tlist = build_physical_tlist(root, rel);
659 180734 : if (tlist == NIL)
660 : {
661 : /* Failed because of dropped cols, so use regular method */
662 160 : tlist = build_path_tlist(root, best_path);
663 : }
664 : else
665 : {
666 : /* As above, transfer sortgroupref data to replacement tlist */
667 180574 : if (flags & CP_LABEL_TLIST)
668 13060 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
669 : }
670 : }
671 : }
672 : else
673 : {
674 215196 : tlist = build_path_tlist(root, best_path);
675 : }
676 :
677 478054 : switch (best_path->pathtype)
678 : {
679 204462 : case T_SeqScan:
680 204462 : plan = (Plan *) create_seqscan_plan(root,
681 : best_path,
682 : tlist,
683 : scan_clauses);
684 204462 : break;
685 :
686 306 : case T_SampleScan:
687 306 : plan = (Plan *) create_samplescan_plan(root,
688 : best_path,
689 : tlist,
690 : scan_clauses);
691 306 : break;
692 :
693 138438 : case T_IndexScan:
694 138438 : plan = (Plan *) create_indexscan_plan(root,
695 : (IndexPath *) best_path,
696 : tlist,
697 : scan_clauses,
698 : false);
699 138438 : break;
700 :
701 15864 : case T_IndexOnlyScan:
702 15864 : plan = (Plan *) create_indexscan_plan(root,
703 : (IndexPath *) best_path,
704 : tlist,
705 : scan_clauses,
706 : true);
707 15864 : break;
708 :
709 21372 : case T_BitmapHeapScan:
710 21372 : plan = (Plan *) create_bitmap_scan_plan(root,
711 : (BitmapHeapPath *) best_path,
712 : tlist,
713 : scan_clauses);
714 21372 : break;
715 :
716 732 : case T_TidScan:
717 732 : plan = (Plan *) create_tidscan_plan(root,
718 : (TidPath *) best_path,
719 : tlist,
720 : scan_clauses);
721 732 : break;
722 :
723 1940 : case T_TidRangeScan:
724 1940 : plan = (Plan *) create_tidrangescan_plan(root,
725 : (TidRangePath *) best_path,
726 : tlist,
727 : scan_clauses);
728 1940 : break;
729 :
730 25190 : case T_SubqueryScan:
731 25190 : plan = (Plan *) create_subqueryscan_plan(root,
732 : (SubqueryScanPath *) best_path,
733 : tlist,
734 : scan_clauses);
735 25190 : break;
736 :
737 52090 : case T_FunctionScan:
738 52090 : plan = (Plan *) create_functionscan_plan(root,
739 : best_path,
740 : tlist,
741 : scan_clauses);
742 52090 : break;
743 :
744 626 : case T_TableFuncScan:
745 626 : plan = (Plan *) create_tablefuncscan_plan(root,
746 : best_path,
747 : tlist,
748 : scan_clauses);
749 626 : break;
750 :
751 8160 : case T_ValuesScan:
752 8160 : plan = (Plan *) create_valuesscan_plan(root,
753 : best_path,
754 : tlist,
755 : scan_clauses);
756 8160 : break;
757 :
758 3986 : case T_CteScan:
759 3986 : plan = (Plan *) create_ctescan_plan(root,
760 : best_path,
761 : tlist,
762 : scan_clauses);
763 3986 : break;
764 :
765 462 : case T_NamedTuplestoreScan:
766 462 : plan = (Plan *) create_namedtuplestorescan_plan(root,
767 : best_path,
768 : tlist,
769 : scan_clauses);
770 462 : break;
771 :
772 1500 : case T_Result:
773 1500 : plan = (Plan *) create_resultscan_plan(root,
774 : best_path,
775 : tlist,
776 : scan_clauses);
777 1500 : break;
778 :
779 896 : case T_WorkTableScan:
780 896 : plan = (Plan *) create_worktablescan_plan(root,
781 : best_path,
782 : tlist,
783 : scan_clauses);
784 896 : break;
785 :
786 2030 : case T_ForeignScan:
787 2030 : plan = (Plan *) create_foreignscan_plan(root,
788 : (ForeignPath *) best_path,
789 : tlist,
790 : scan_clauses);
791 2030 : break;
792 :
793 0 : case T_CustomScan:
794 0 : plan = (Plan *) create_customscan_plan(root,
795 : (CustomPath *) best_path,
796 : tlist,
797 : scan_clauses);
798 0 : break;
799 :
800 0 : default:
801 0 : elog(ERROR, "unrecognized node type: %d",
802 : (int) best_path->pathtype);
803 : plan = NULL; /* keep compiler quiet */
804 : break;
805 : }
806 :
807 : /*
808 : * If there are any pseudoconstant clauses attached to this node, insert a
809 : * gating Result node that evaluates the pseudoconstants as one-time
810 : * quals.
811 : */
812 478054 : if (gating_clauses)
813 6580 : plan = create_gating_plan(root, best_path, plan, gating_clauses);
814 :
815 478054 : return plan;
816 : }
817 :
818 : /*
819 : * Build a target list (ie, a list of TargetEntry) for the Path's output.
820 : *
821 : * This is almost just make_tlist_from_pathtarget(), but we also have to
822 : * deal with replacing nestloop params.
823 : */
824 : static List *
825 1005044 : build_path_tlist(PlannerInfo *root, Path *path)
826 : {
827 1005044 : List *tlist = NIL;
828 1005044 : Index *sortgrouprefs = path->pathtarget->sortgrouprefs;
829 1005044 : int resno = 1;
830 : ListCell *v;
831 :
832 3333458 : foreach(v, path->pathtarget->exprs)
833 : {
834 2328414 : Node *node = (Node *) lfirst(v);
835 : TargetEntry *tle;
836 :
837 : /*
838 : * If it's a parameterized path, there might be lateral references in
839 : * the tlist, which need to be replaced with Params. There's no need
840 : * to remake the TargetEntry nodes, so apply this to each list item
841 : * separately.
842 : */
843 2328414 : if (path->param_info)
844 16214 : node = replace_nestloop_params(root, node);
845 :
846 2328414 : tle = makeTargetEntry((Expr *) node,
847 : resno,
848 : NULL,
849 : false);
850 2328414 : if (sortgrouprefs)
851 1481984 : tle->ressortgroupref = sortgrouprefs[resno - 1];
852 :
853 2328414 : tlist = lappend(tlist, tle);
854 2328414 : resno++;
855 : }
856 1005044 : return tlist;
857 : }
858 :
859 : /*
860 : * use_physical_tlist
861 : * Decide whether to use a tlist matching relation structure,
862 : * rather than only those Vars actually referenced.
863 : */
864 : static bool
865 758556 : use_physical_tlist(PlannerInfo *root, Path *path, int flags)
866 : {
867 758556 : RelOptInfo *rel = path->parent;
868 : int i;
869 : ListCell *lc;
870 :
871 : /*
872 : * Forget it if either exact tlist or small tlist is demanded.
873 : */
874 758556 : if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))
875 533042 : return false;
876 :
877 : /*
878 : * We can do this for real relation scans, subquery scans, function scans,
879 : * tablefunc scans, values scans, and CTE scans (but not for, eg, joins).
880 : */
881 225514 : if (rel->rtekind != RTE_RELATION &&
882 34470 : rel->rtekind != RTE_SUBQUERY &&
883 32230 : rel->rtekind != RTE_FUNCTION &&
884 11448 : rel->rtekind != RTE_TABLEFUNC &&
885 11214 : rel->rtekind != RTE_VALUES &&
886 9934 : rel->rtekind != RTE_CTE)
887 8878 : return false;
888 :
889 : /*
890 : * Can't do it with inheritance cases either (mainly because Append
891 : * doesn't project; this test may be unnecessary now that
892 : * create_append_plan instructs its children to return an exact tlist).
893 : */
894 216636 : if (rel->reloptkind != RELOPT_BASEREL)
895 4724 : return false;
896 :
897 : /*
898 : * Also, don't do it to a CustomPath; the premise that we're extracting
899 : * columns from a simple physical tuple is unlikely to hold for those.
900 : * (When it does make sense, the custom path creator can set up the path's
901 : * pathtarget that way.)
902 : */
903 211912 : if (IsA(path, CustomPath))
904 0 : return false;
905 :
906 : /*
907 : * If a bitmap scan's tlist is empty, keep it as-is. This may allow the
908 : * executor to skip heap page fetches, and in any case, the benefit of
909 : * using a physical tlist instead would be minimal.
910 : */
911 211912 : if (IsA(path, BitmapHeapPath) &&
912 11282 : path->pathtarget->exprs == NIL)
913 3136 : return false;
914 :
915 : /*
916 : * Can't do it if any system columns or whole-row Vars are requested.
917 : * (This could possibly be fixed but would take some fragile assumptions
918 : * in setrefs.c, I think.)
919 : */
920 1464274 : for (i = rel->min_attr; i <= 0; i++)
921 : {
922 1272900 : if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
923 17402 : return false;
924 : }
925 :
926 : /*
927 : * Can't do it if the rel is required to emit any placeholder expressions,
928 : * either.
929 : */
930 192874 : foreach(lc, root->placeholder_list)
931 : {
932 1852 : PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
933 :
934 3662 : if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
935 1810 : bms_is_subset(phinfo->ph_eval_at, rel->relids))
936 352 : return false;
937 : }
938 :
939 : /*
940 : * For an index-only scan, the "physical tlist" is the index's indextlist.
941 : * We can only return that without a projection if all the index's columns
942 : * are returnable.
943 : */
944 191022 : if (path->pathtype == T_IndexOnlyScan)
945 : {
946 8504 : IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo;
947 :
948 18398 : for (i = 0; i < indexinfo->ncolumns; i++)
949 : {
950 9910 : if (!indexinfo->canreturn[i])
951 16 : return false;
952 : }
953 : }
954 :
955 : /*
956 : * Also, can't do it if CP_LABEL_TLIST is specified and path is requested
957 : * to emit any sort/group columns that are not simple Vars. (If they are
958 : * simple Vars, they should appear in the physical tlist, and
959 : * apply_pathtarget_labeling_to_tlist will take care of getting them
960 : * labeled again.) We also have to check that no two sort/group columns
961 : * are the same Var, else that element of the physical tlist would need
962 : * conflicting ressortgroupref labels.
963 : */
964 191006 : if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs)
965 : {
966 2090 : Bitmapset *sortgroupatts = NULL;
967 :
968 2090 : i = 0;
969 5186 : foreach(lc, path->pathtarget->exprs)
970 : {
971 3760 : Expr *expr = (Expr *) lfirst(lc);
972 :
973 3760 : if (path->pathtarget->sortgrouprefs[i])
974 : {
975 3076 : if (expr && IsA(expr, Var))
976 2412 : {
977 2424 : int attno = ((Var *) expr)->varattno;
978 :
979 2424 : attno -= FirstLowInvalidHeapAttributeNumber;
980 2424 : if (bms_is_member(attno, sortgroupatts))
981 664 : return false;
982 2412 : sortgroupatts = bms_add_member(sortgroupatts, attno);
983 : }
984 : else
985 652 : return false;
986 : }
987 3096 : i++;
988 : }
989 : }
990 :
991 190342 : return true;
992 : }
993 :
994 : /*
995 : * get_gating_quals
996 : * See if there are pseudoconstant quals in a node's quals list
997 : *
998 : * If the node's quals list includes any pseudoconstant quals,
999 : * return just those quals.
1000 : */
1001 : static List *
1002 607966 : get_gating_quals(PlannerInfo *root, List *quals)
1003 : {
1004 : /* No need to look if we know there are no pseudoconstants */
1005 607966 : if (!root->hasPseudoConstantQuals)
1006 585684 : return NIL;
1007 :
1008 : /* Sort into desirable execution order while still in RestrictInfo form */
1009 22282 : quals = order_qual_clauses(root, quals);
1010 :
1011 : /* Pull out any pseudoconstant quals from the RestrictInfo list */
1012 22282 : return extract_actual_clauses(quals, true);
1013 : }
1014 :
1015 : /*
1016 : * create_gating_plan
1017 : * Deal with pseudoconstant qual clauses
1018 : *
1019 : * Add a gating Result node atop the already-built plan.
1020 : */
1021 : static Plan *
1022 9688 : create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
1023 : List *gating_quals)
1024 : {
1025 : Plan *gplan;
1026 : Plan *splan;
1027 :
1028 : Assert(gating_quals);
1029 :
1030 : /*
1031 : * We might have a trivial Result plan already. Stacking one Result atop
1032 : * another is silly, so if that applies, just discard the input plan.
1033 : * (We're assuming its targetlist is uninteresting; it should be either
1034 : * the same as the result of build_path_tlist, or a simplified version.)
1035 : */
1036 9688 : splan = plan;
1037 9688 : if (IsA(plan, Result))
1038 : {
1039 24 : Result *rplan = (Result *) plan;
1040 :
1041 24 : if (rplan->plan.lefttree == NULL &&
1042 24 : rplan->resconstantqual == NULL)
1043 24 : splan = NULL;
1044 : }
1045 :
1046 : /*
1047 : * Since we need a Result node anyway, always return the path's requested
1048 : * tlist; that's never a wrong choice, even if the parent node didn't ask
1049 : * for CP_EXACT_TLIST.
1050 : */
1051 9688 : gplan = (Plan *) make_result(build_path_tlist(root, path),
1052 : (Node *) gating_quals,
1053 : splan);
1054 :
1055 : /*
1056 : * Notice that we don't change cost or size estimates when doing gating.
1057 : * The costs of qual eval were already included in the subplan's cost.
1058 : * Leaving the size alone amounts to assuming that the gating qual will
1059 : * succeed, which is the conservative estimate for planning upper queries.
1060 : * We certainly don't want to assume the output size is zero (unless the
1061 : * gating qual is actually constant FALSE, and that case is dealt with in
1062 : * clausesel.c). Interpolating between the two cases is silly, because it
1063 : * doesn't reflect what will really happen at runtime, and besides which
1064 : * in most cases we have only a very bad idea of the probability of the
1065 : * gating qual being true.
1066 : */
1067 9688 : copy_plan_costsize(gplan, plan);
1068 :
1069 : /* Gating quals could be unsafe, so better use the Path's safety flag */
1070 9688 : gplan->parallel_safe = path->parallel_safe;
1071 :
1072 9688 : return gplan;
1073 : }
1074 :
1075 : /*
1076 : * create_join_plan
1077 : * Create a join plan for 'best_path' and (recursively) plans for its
1078 : * inner and outer paths.
1079 : */
1080 : static Plan *
1081 129912 : create_join_plan(PlannerInfo *root, JoinPath *best_path)
1082 : {
1083 : Plan *plan;
1084 : List *gating_clauses;
1085 :
1086 129912 : switch (best_path->path.pathtype)
1087 : {
1088 7776 : case T_MergeJoin:
1089 7776 : plan = (Plan *) create_mergejoin_plan(root,
1090 : (MergePath *) best_path);
1091 7776 : break;
1092 30940 : case T_HashJoin:
1093 30940 : plan = (Plan *) create_hashjoin_plan(root,
1094 : (HashPath *) best_path);
1095 30940 : break;
1096 91196 : case T_NestLoop:
1097 91196 : plan = (Plan *) create_nestloop_plan(root,
1098 : (NestPath *) best_path);
1099 91196 : break;
1100 0 : default:
1101 0 : elog(ERROR, "unrecognized node type: %d",
1102 : (int) best_path->path.pathtype);
1103 : plan = NULL; /* keep compiler quiet */
1104 : break;
1105 : }
1106 :
1107 : /*
1108 : * If there are any pseudoconstant clauses attached to this node, insert a
1109 : * gating Result node that evaluates the pseudoconstants as one-time
1110 : * quals.
1111 : */
1112 129912 : gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo);
1113 129912 : if (gating_clauses)
1114 3108 : plan = create_gating_plan(root, (Path *) best_path, plan,
1115 : gating_clauses);
1116 :
1117 : #ifdef NOT_USED
1118 :
1119 : /*
1120 : * * Expensive function pullups may have pulled local predicates * into
1121 : * this path node. Put them in the qpqual of the plan node. * JMH,
1122 : * 6/15/92
1123 : */
1124 : if (get_loc_restrictinfo(best_path) != NIL)
1125 : set_qpqual((Plan) plan,
1126 : list_concat(get_qpqual((Plan) plan),
1127 : get_actual_clauses(get_loc_restrictinfo(best_path))));
1128 : #endif
1129 :
1130 129912 : return plan;
1131 : }
1132 :
1133 : /*
1134 : * mark_async_capable_plan
1135 : * Check whether the Plan node created from a Path node is async-capable,
1136 : * and if so, mark the Plan node as such and return true, otherwise
1137 : * return false.
1138 : */
1139 : static bool
1140 29388 : mark_async_capable_plan(Plan *plan, Path *path)
1141 : {
1142 29388 : switch (nodeTag(path))
1143 : {
1144 10824 : case T_SubqueryScanPath:
1145 : {
1146 10824 : SubqueryScan *scan_plan = (SubqueryScan *) plan;
1147 :
1148 : /*
1149 : * If the generated plan node includes a gating Result node,
1150 : * we can't execute it asynchronously.
1151 : */
1152 10824 : if (IsA(plan, Result))
1153 4 : return false;
1154 :
1155 : /*
1156 : * If a SubqueryScan node atop of an async-capable plan node
1157 : * is deletable, consider it as async-capable.
1158 : */
1159 15108 : if (trivial_subqueryscan(scan_plan) &&
1160 4288 : mark_async_capable_plan(scan_plan->subplan,
1161 : ((SubqueryScanPath *) path)->subpath))
1162 16 : break;
1163 10804 : return false;
1164 : }
1165 480 : case T_ForeignPath:
1166 : {
1167 480 : FdwRoutine *fdwroutine = path->parent->fdwroutine;
1168 :
1169 : /*
1170 : * If the generated plan node includes a gating Result node,
1171 : * we can't execute it asynchronously.
1172 : */
1173 480 : if (IsA(plan, Result))
1174 8 : return false;
1175 :
1176 : Assert(fdwroutine != NULL);
1177 938 : if (fdwroutine->IsForeignPathAsyncCapable != NULL &&
1178 466 : fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path))
1179 194 : break;
1180 278 : return false;
1181 : }
1182 5140 : case T_ProjectionPath:
1183 :
1184 : /*
1185 : * If the generated plan node includes a Result node for the
1186 : * projection, we can't execute it asynchronously.
1187 : */
1188 5140 : if (IsA(plan, Result))
1189 188 : return false;
1190 :
1191 : /*
1192 : * create_projection_plan() would have pulled up the subplan, so
1193 : * check the capability using the subpath.
1194 : */
1195 4952 : if (mark_async_capable_plan(plan,
1196 : ((ProjectionPath *) path)->subpath))
1197 32 : return true;
1198 4920 : return false;
1199 12944 : default:
1200 12944 : return false;
1201 : }
1202 :
1203 210 : plan->async_capable = true;
1204 :
1205 210 : return true;
1206 : }
1207 :
1208 : /*
1209 : * create_append_plan
1210 : * Create an Append plan for 'best_path' and (recursively) plans
1211 : * for its subpaths.
1212 : *
1213 : * Returns a Plan node.
1214 : */
1215 : static Plan *
1216 21384 : create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags)
1217 : {
1218 : Append *plan;
1219 21384 : List *tlist = build_path_tlist(root, &best_path->path);
1220 21384 : int orig_tlist_length = list_length(tlist);
1221 21384 : bool tlist_was_changed = false;
1222 21384 : List *pathkeys = best_path->path.pathkeys;
1223 21384 : List *subplans = NIL;
1224 : ListCell *subpaths;
1225 21384 : int nasyncplans = 0;
1226 21384 : RelOptInfo *rel = best_path->path.parent;
1227 21384 : int nodenumsortkeys = 0;
1228 21384 : AttrNumber *nodeSortColIdx = NULL;
1229 21384 : Oid *nodeSortOperators = NULL;
1230 21384 : Oid *nodeCollations = NULL;
1231 21384 : bool *nodeNullsFirst = NULL;
1232 21384 : bool consider_async = false;
1233 :
1234 : /*
1235 : * The subpaths list could be empty, if every child was proven empty by
1236 : * constraint exclusion. In that case generate a dummy plan that returns
1237 : * no rows.
1238 : *
1239 : * Note that an AppendPath with no members is also generated in certain
1240 : * cases where there was no appending construct at all, but we know the
1241 : * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel).
1242 : */
1243 21384 : if (best_path->subpaths == NIL)
1244 : {
1245 : /* Generate a Result plan with constant-FALSE gating qual */
1246 : Plan *plan;
1247 :
1248 1012 : plan = (Plan *) make_result(tlist,
1249 1012 : (Node *) list_make1(makeBoolConst(false,
1250 : false)),
1251 : NULL);
1252 :
1253 1012 : copy_generic_path_info(plan, (Path *) best_path);
1254 :
1255 1012 : return plan;
1256 : }
1257 :
1258 : /*
1259 : * Otherwise build an Append plan. Note that if there's just one child,
1260 : * the Append is pretty useless; but we wait till setrefs.c to get rid of
1261 : * it. Doing so here doesn't work because the varno of the child scan
1262 : * plan won't match the parent-rel Vars it'll be asked to emit.
1263 : *
1264 : * We don't have the actual creation of the Append node split out into a
1265 : * separate make_xxx function. This is because we want to run
1266 : * prepare_sort_from_pathkeys on it before we do so on the individual
1267 : * child plans, to make cross-checking the sort info easier.
1268 : */
1269 20372 : plan = makeNode(Append);
1270 20372 : plan->plan.targetlist = tlist;
1271 20372 : plan->plan.qual = NIL;
1272 20372 : plan->plan.lefttree = NULL;
1273 20372 : plan->plan.righttree = NULL;
1274 20372 : plan->apprelids = rel->relids;
1275 :
1276 20372 : if (pathkeys != NIL)
1277 : {
1278 : /*
1279 : * Compute sort column info, and adjust the Append's tlist as needed.
1280 : * Because we pass adjust_tlist_in_place = true, we may ignore the
1281 : * function result; it must be the same plan node. However, we then
1282 : * need to detect whether any tlist entries were added.
1283 : */
1284 284 : (void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys,
1285 284 : best_path->path.parent->relids,
1286 : NULL,
1287 : true,
1288 : &nodenumsortkeys,
1289 : &nodeSortColIdx,
1290 : &nodeSortOperators,
1291 : &nodeCollations,
1292 : &nodeNullsFirst);
1293 284 : tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist));
1294 : }
1295 :
1296 : /* If appropriate, consider async append */
1297 20372 : consider_async = (enable_async_append && pathkeys == NIL &&
1298 50686 : !best_path->path.parallel_safe &&
1299 9942 : list_length(best_path->subpaths) > 1);
1300 :
1301 : /* Build the plan for each child */
1302 68100 : foreach(subpaths, best_path->subpaths)
1303 : {
1304 47728 : Path *subpath = (Path *) lfirst(subpaths);
1305 : Plan *subplan;
1306 :
1307 : /* Must insist that all children return the same tlist */
1308 47728 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1309 :
1310 : /*
1311 : * For ordered Appends, we must insert a Sort node if subplan isn't
1312 : * sufficiently ordered.
1313 : */
1314 47728 : if (pathkeys != NIL)
1315 : {
1316 : int numsortkeys;
1317 : AttrNumber *sortColIdx;
1318 : Oid *sortOperators;
1319 : Oid *collations;
1320 : bool *nullsFirst;
1321 :
1322 : /*
1323 : * Compute sort column info, and adjust subplan's tlist as needed.
1324 : * We must apply prepare_sort_from_pathkeys even to subplans that
1325 : * don't need an explicit sort, to make sure they are returning
1326 : * the same sort key columns the Append expects.
1327 : */
1328 704 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1329 704 : subpath->parent->relids,
1330 : nodeSortColIdx,
1331 : false,
1332 : &numsortkeys,
1333 : &sortColIdx,
1334 : &sortOperators,
1335 : &collations,
1336 : &nullsFirst);
1337 :
1338 : /*
1339 : * Check that we got the same sort key information. We just
1340 : * Assert that the sortops match, since those depend only on the
1341 : * pathkeys; but it seems like a good idea to check the sort
1342 : * column numbers explicitly, to ensure the tlists match up.
1343 : */
1344 : Assert(numsortkeys == nodenumsortkeys);
1345 704 : if (memcmp(sortColIdx, nodeSortColIdx,
1346 : numsortkeys * sizeof(AttrNumber)) != 0)
1347 0 : elog(ERROR, "Append child's targetlist doesn't match Append");
1348 : Assert(memcmp(sortOperators, nodeSortOperators,
1349 : numsortkeys * sizeof(Oid)) == 0);
1350 : Assert(memcmp(collations, nodeCollations,
1351 : numsortkeys * sizeof(Oid)) == 0);
1352 : Assert(memcmp(nullsFirst, nodeNullsFirst,
1353 : numsortkeys * sizeof(bool)) == 0);
1354 :
1355 : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1356 704 : if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
1357 : {
1358 6 : Sort *sort = make_sort(subplan, numsortkeys,
1359 : sortColIdx, sortOperators,
1360 : collations, nullsFirst);
1361 :
1362 6 : label_sort_with_costsize(root, sort, best_path->limit_tuples);
1363 6 : subplan = (Plan *) sort;
1364 : }
1365 : }
1366 :
1367 : /* If needed, check to see if subplan can be executed asynchronously */
1368 47728 : if (consider_async && mark_async_capable_plan(subplan, subpath))
1369 : {
1370 : Assert(subplan->async_capable);
1371 194 : ++nasyncplans;
1372 : }
1373 :
1374 47728 : subplans = lappend(subplans, subplan);
1375 : }
1376 :
1377 : /* Set below if we find quals that we can use to run-time prune */
1378 20372 : plan->part_prune_index = -1;
1379 :
1380 : /*
1381 : * If any quals exist, they may be useful to perform further partition
1382 : * pruning during execution. Gather information needed by the executor to
1383 : * do partition pruning.
1384 : */
1385 20372 : if (enable_partition_pruning)
1386 : {
1387 : List *prunequal;
1388 :
1389 20318 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1390 :
1391 20318 : if (best_path->path.param_info)
1392 : {
1393 344 : List *prmquals = best_path->path.param_info->ppi_clauses;
1394 :
1395 344 : prmquals = extract_actual_clauses(prmquals, false);
1396 344 : prmquals = (List *) replace_nestloop_params(root,
1397 : (Node *) prmquals);
1398 :
1399 344 : prunequal = list_concat(prunequal, prmquals);
1400 : }
1401 :
1402 20318 : if (prunequal != NIL)
1403 8828 : plan->part_prune_index = make_partition_pruneinfo(root, rel,
1404 : best_path->subpaths,
1405 : prunequal);
1406 : }
1407 :
1408 20372 : plan->appendplans = subplans;
1409 20372 : plan->nasyncplans = nasyncplans;
1410 20372 : plan->first_partial_plan = best_path->first_partial_path;
1411 :
1412 20372 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1413 :
1414 : /*
1415 : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1416 : * produce either the exact tlist or a narrow tlist, we should get rid of
1417 : * the sort columns again. We must inject a projection node to do so.
1418 : */
1419 20372 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1420 : {
1421 0 : tlist = list_copy_head(plan->plan.targetlist, orig_tlist_length);
1422 0 : return inject_projection_plan((Plan *) plan, tlist,
1423 0 : plan->plan.parallel_safe);
1424 : }
1425 : else
1426 20372 : return (Plan *) plan;
1427 : }
1428 :
1429 : /*
1430 : * create_merge_append_plan
1431 : * Create a MergeAppend plan for 'best_path' and (recursively) plans
1432 : * for its subpaths.
1433 : *
1434 : * Returns a Plan node.
1435 : */
1436 : static Plan *
1437 524 : create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
1438 : int flags)
1439 : {
1440 524 : MergeAppend *node = makeNode(MergeAppend);
1441 524 : Plan *plan = &node->plan;
1442 524 : List *tlist = build_path_tlist(root, &best_path->path);
1443 524 : int orig_tlist_length = list_length(tlist);
1444 : bool tlist_was_changed;
1445 524 : List *pathkeys = best_path->path.pathkeys;
1446 524 : List *subplans = NIL;
1447 : ListCell *subpaths;
1448 524 : RelOptInfo *rel = best_path->path.parent;
1449 :
1450 : /*
1451 : * We don't have the actual creation of the MergeAppend node split out
1452 : * into a separate make_xxx function. This is because we want to run
1453 : * prepare_sort_from_pathkeys on it before we do so on the individual
1454 : * child plans, to make cross-checking the sort info easier.
1455 : */
1456 524 : copy_generic_path_info(plan, (Path *) best_path);
1457 524 : plan->targetlist = tlist;
1458 524 : plan->qual = NIL;
1459 524 : plan->lefttree = NULL;
1460 524 : plan->righttree = NULL;
1461 524 : node->apprelids = rel->relids;
1462 :
1463 : /*
1464 : * Compute sort column info, and adjust MergeAppend's tlist as needed.
1465 : * Because we pass adjust_tlist_in_place = true, we may ignore the
1466 : * function result; it must be the same plan node. However, we then need
1467 : * to detect whether any tlist entries were added.
1468 : */
1469 524 : (void) prepare_sort_from_pathkeys(plan, pathkeys,
1470 524 : best_path->path.parent->relids,
1471 : NULL,
1472 : true,
1473 : &node->numCols,
1474 : &node->sortColIdx,
1475 : &node->sortOperators,
1476 : &node->collations,
1477 : &node->nullsFirst);
1478 524 : tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist));
1479 :
1480 : /*
1481 : * Now prepare the child plans. We must apply prepare_sort_from_pathkeys
1482 : * even to subplans that don't need an explicit sort, to make sure they
1483 : * are returning the same sort key columns the MergeAppend expects.
1484 : */
1485 1996 : foreach(subpaths, best_path->subpaths)
1486 : {
1487 1472 : Path *subpath = (Path *) lfirst(subpaths);
1488 : Plan *subplan;
1489 : int numsortkeys;
1490 : AttrNumber *sortColIdx;
1491 : Oid *sortOperators;
1492 : Oid *collations;
1493 : bool *nullsFirst;
1494 :
1495 : /* Build the child plan */
1496 : /* Must insist that all children return the same tlist */
1497 1472 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1498 :
1499 : /* Compute sort column info, and adjust subplan's tlist as needed */
1500 1472 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1501 1472 : subpath->parent->relids,
1502 1472 : node->sortColIdx,
1503 : false,
1504 : &numsortkeys,
1505 : &sortColIdx,
1506 : &sortOperators,
1507 : &collations,
1508 : &nullsFirst);
1509 :
1510 : /*
1511 : * Check that we got the same sort key information. We just Assert
1512 : * that the sortops match, since those depend only on the pathkeys;
1513 : * but it seems like a good idea to check the sort column numbers
1514 : * explicitly, to ensure the tlists really do match up.
1515 : */
1516 : Assert(numsortkeys == node->numCols);
1517 1472 : if (memcmp(sortColIdx, node->sortColIdx,
1518 : numsortkeys * sizeof(AttrNumber)) != 0)
1519 0 : elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
1520 : Assert(memcmp(sortOperators, node->sortOperators,
1521 : numsortkeys * sizeof(Oid)) == 0);
1522 : Assert(memcmp(collations, node->collations,
1523 : numsortkeys * sizeof(Oid)) == 0);
1524 : Assert(memcmp(nullsFirst, node->nullsFirst,
1525 : numsortkeys * sizeof(bool)) == 0);
1526 :
1527 : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1528 1472 : if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
1529 : {
1530 78 : Sort *sort = make_sort(subplan, numsortkeys,
1531 : sortColIdx, sortOperators,
1532 : collations, nullsFirst);
1533 :
1534 78 : label_sort_with_costsize(root, sort, best_path->limit_tuples);
1535 78 : subplan = (Plan *) sort;
1536 : }
1537 :
1538 1472 : subplans = lappend(subplans, subplan);
1539 : }
1540 :
1541 : /* Set below if we find quals that we can use to run-time prune */
1542 524 : node->part_prune_index = -1;
1543 :
1544 : /*
1545 : * If any quals exist, they may be useful to perform further partition
1546 : * pruning during execution. Gather information needed by the executor to
1547 : * do partition pruning.
1548 : */
1549 524 : if (enable_partition_pruning)
1550 : {
1551 : List *prunequal;
1552 :
1553 524 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1554 :
1555 : /* We don't currently generate any parameterized MergeAppend paths */
1556 : Assert(best_path->path.param_info == NULL);
1557 :
1558 524 : if (prunequal != NIL)
1559 168 : node->part_prune_index = make_partition_pruneinfo(root, rel,
1560 : best_path->subpaths,
1561 : prunequal);
1562 : }
1563 :
1564 524 : node->mergeplans = subplans;
1565 :
1566 : /*
1567 : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1568 : * produce either the exact tlist or a narrow tlist, we should get rid of
1569 : * the sort columns again. We must inject a projection node to do so.
1570 : */
1571 524 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1572 : {
1573 0 : tlist = list_copy_head(plan->targetlist, orig_tlist_length);
1574 0 : return inject_projection_plan(plan, tlist, plan->parallel_safe);
1575 : }
1576 : else
1577 524 : return plan;
1578 : }
1579 :
1580 : /*
1581 : * create_group_result_plan
1582 : * Create a Result plan for 'best_path'.
1583 : * This is only used for degenerate grouping cases.
1584 : *
1585 : * Returns a Plan node.
1586 : */
1587 : static Result *
1588 218794 : create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path)
1589 : {
1590 : Result *plan;
1591 : List *tlist;
1592 : List *quals;
1593 :
1594 218794 : tlist = build_path_tlist(root, &best_path->path);
1595 :
1596 : /* best_path->quals is just bare clauses */
1597 218794 : quals = order_qual_clauses(root, best_path->quals);
1598 :
1599 218794 : plan = make_result(tlist, (Node *) quals, NULL);
1600 :
1601 218794 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1602 :
1603 218794 : return plan;
1604 : }
1605 :
1606 : /*
1607 : * create_project_set_plan
1608 : * Create a ProjectSet plan for 'best_path'.
1609 : *
1610 : * Returns a Plan node.
1611 : */
1612 : static ProjectSet *
1613 9064 : create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path)
1614 : {
1615 : ProjectSet *plan;
1616 : Plan *subplan;
1617 : List *tlist;
1618 :
1619 : /* Since we intend to project, we don't need to constrain child tlist */
1620 9064 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1621 :
1622 9064 : tlist = build_path_tlist(root, &best_path->path);
1623 :
1624 9064 : plan = make_project_set(tlist, subplan);
1625 :
1626 9064 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1627 :
1628 9064 : return plan;
1629 : }
1630 :
1631 : /*
1632 : * create_material_plan
1633 : * Create a Material plan for 'best_path' and (recursively) plans
1634 : * for its subpaths.
1635 : *
1636 : * Returns a Plan node.
1637 : */
1638 : static Material *
1639 3966 : create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags)
1640 : {
1641 : Material *plan;
1642 : Plan *subplan;
1643 :
1644 : /*
1645 : * We don't want any excess columns in the materialized tuples, so request
1646 : * a smaller tlist. Otherwise, since Material doesn't project, tlist
1647 : * requirements pass through.
1648 : */
1649 3966 : subplan = create_plan_recurse(root, best_path->subpath,
1650 : flags | CP_SMALL_TLIST);
1651 :
1652 3966 : plan = make_material(subplan);
1653 :
1654 3966 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1655 :
1656 3966 : return plan;
1657 : }
1658 :
1659 : /*
1660 : * create_memoize_plan
1661 : * Create a Memoize plan for 'best_path' and (recursively) plans for its
1662 : * subpaths.
1663 : *
1664 : * Returns a Plan node.
1665 : */
1666 : static Memoize *
1667 1630 : create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags)
1668 : {
1669 : Memoize *plan;
1670 : Bitmapset *keyparamids;
1671 : Plan *subplan;
1672 : Oid *operators;
1673 : Oid *collations;
1674 1630 : List *param_exprs = NIL;
1675 : ListCell *lc;
1676 : ListCell *lc2;
1677 : int nkeys;
1678 : int i;
1679 :
1680 1630 : subplan = create_plan_recurse(root, best_path->subpath,
1681 : flags | CP_SMALL_TLIST);
1682 :
1683 1630 : param_exprs = (List *) replace_nestloop_params(root, (Node *)
1684 1630 : best_path->param_exprs);
1685 :
1686 1630 : nkeys = list_length(param_exprs);
1687 : Assert(nkeys > 0);
1688 1630 : operators = palloc(nkeys * sizeof(Oid));
1689 1630 : collations = palloc(nkeys * sizeof(Oid));
1690 :
1691 1630 : i = 0;
1692 3308 : forboth(lc, param_exprs, lc2, best_path->hash_operators)
1693 : {
1694 1678 : Expr *param_expr = (Expr *) lfirst(lc);
1695 1678 : Oid opno = lfirst_oid(lc2);
1696 :
1697 1678 : operators[i] = opno;
1698 1678 : collations[i] = exprCollation((Node *) param_expr);
1699 1678 : i++;
1700 : }
1701 :
1702 1630 : keyparamids = pull_paramids((Expr *) param_exprs);
1703 :
1704 1630 : plan = make_memoize(subplan, operators, collations, param_exprs,
1705 1630 : best_path->singlerow, best_path->binary_mode,
1706 : best_path->est_entries, keyparamids);
1707 :
1708 1630 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1709 :
1710 1630 : return plan;
1711 : }
1712 :
1713 : /*
1714 : * create_unique_plan
1715 : * Create a Unique plan for 'best_path' and (recursively) plans
1716 : * for its subpaths.
1717 : *
1718 : * Returns a Plan node.
1719 : */
1720 : static Plan *
1721 578 : create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags)
1722 : {
1723 : Plan *plan;
1724 : Plan *subplan;
1725 : List *in_operators;
1726 : List *uniq_exprs;
1727 : List *newtlist;
1728 : int nextresno;
1729 : bool newitems;
1730 : int numGroupCols;
1731 : AttrNumber *groupColIdx;
1732 : Oid *groupCollations;
1733 : int groupColPos;
1734 : ListCell *l;
1735 :
1736 : /* Unique doesn't project, so tlist requirements pass through */
1737 578 : subplan = create_plan_recurse(root, best_path->subpath, flags);
1738 :
1739 : /* Done if we don't need to do any actual unique-ifying */
1740 578 : if (best_path->umethod == UNIQUE_PATH_NOOP)
1741 0 : return subplan;
1742 :
1743 : /*
1744 : * As constructed, the subplan has a "flat" tlist containing just the Vars
1745 : * needed here and at upper levels. The values we are supposed to
1746 : * unique-ify may be expressions in these variables. We have to add any
1747 : * such expressions to the subplan's tlist.
1748 : *
1749 : * The subplan may have a "physical" tlist if it is a simple scan plan. If
1750 : * we're going to sort, this should be reduced to the regular tlist, so
1751 : * that we don't sort more data than we need to. For hashing, the tlist
1752 : * should be left as-is if we don't need to add any expressions; but if we
1753 : * do have to add expressions, then a projection step will be needed at
1754 : * runtime anyway, so we may as well remove unneeded items. Therefore
1755 : * newtlist starts from build_path_tlist() not just a copy of the
1756 : * subplan's tlist; and we don't install it into the subplan unless we are
1757 : * sorting or stuff has to be added.
1758 : */
1759 578 : in_operators = best_path->in_operators;
1760 578 : uniq_exprs = best_path->uniq_exprs;
1761 :
1762 : /* initialize modified subplan tlist as just the "required" vars */
1763 578 : newtlist = build_path_tlist(root, &best_path->path);
1764 578 : nextresno = list_length(newtlist) + 1;
1765 578 : newitems = false;
1766 :
1767 1210 : foreach(l, uniq_exprs)
1768 : {
1769 632 : Expr *uniqexpr = lfirst(l);
1770 : TargetEntry *tle;
1771 :
1772 632 : tle = tlist_member(uniqexpr, newtlist);
1773 632 : if (!tle)
1774 : {
1775 84 : tle = makeTargetEntry((Expr *) uniqexpr,
1776 : nextresno,
1777 : NULL,
1778 : false);
1779 84 : newtlist = lappend(newtlist, tle);
1780 84 : nextresno++;
1781 84 : newitems = true;
1782 : }
1783 : }
1784 :
1785 : /* Use change_plan_targetlist in case we need to insert a Result node */
1786 578 : if (newitems || best_path->umethod == UNIQUE_PATH_SORT)
1787 86 : subplan = change_plan_targetlist(subplan, newtlist,
1788 86 : best_path->path.parallel_safe);
1789 :
1790 : /*
1791 : * Build control information showing which subplan output columns are to
1792 : * be examined by the grouping step. Unfortunately we can't merge this
1793 : * with the previous loop, since we didn't then know which version of the
1794 : * subplan tlist we'd end up using.
1795 : */
1796 578 : newtlist = subplan->targetlist;
1797 578 : numGroupCols = list_length(uniq_exprs);
1798 578 : groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber));
1799 578 : groupCollations = (Oid *) palloc(numGroupCols * sizeof(Oid));
1800 :
1801 578 : groupColPos = 0;
1802 1210 : foreach(l, uniq_exprs)
1803 : {
1804 632 : Expr *uniqexpr = lfirst(l);
1805 : TargetEntry *tle;
1806 :
1807 632 : tle = tlist_member(uniqexpr, newtlist);
1808 632 : if (!tle) /* shouldn't happen */
1809 0 : elog(ERROR, "failed to find unique expression in subplan tlist");
1810 632 : groupColIdx[groupColPos] = tle->resno;
1811 632 : groupCollations[groupColPos] = exprCollation((Node *) tle->expr);
1812 632 : groupColPos++;
1813 : }
1814 :
1815 578 : if (best_path->umethod == UNIQUE_PATH_HASH)
1816 : {
1817 : Oid *groupOperators;
1818 :
1819 : /*
1820 : * Get the hashable equality operators for the Agg node to use.
1821 : * Normally these are the same as the IN clause operators, but if
1822 : * those are cross-type operators then the equality operators are the
1823 : * ones for the IN clause operators' RHS datatype.
1824 : */
1825 576 : groupOperators = (Oid *) palloc(numGroupCols * sizeof(Oid));
1826 576 : groupColPos = 0;
1827 1206 : foreach(l, in_operators)
1828 : {
1829 630 : Oid in_oper = lfirst_oid(l);
1830 : Oid eq_oper;
1831 :
1832 630 : if (!get_compatible_hash_operators(in_oper, NULL, &eq_oper))
1833 0 : elog(ERROR, "could not find compatible hash operator for operator %u",
1834 : in_oper);
1835 630 : groupOperators[groupColPos++] = eq_oper;
1836 : }
1837 :
1838 : /*
1839 : * Since the Agg node is going to project anyway, we can give it the
1840 : * minimum output tlist, without any stuff we might have added to the
1841 : * subplan tlist.
1842 : */
1843 576 : plan = (Plan *) make_agg(build_path_tlist(root, &best_path->path),
1844 : NIL,
1845 : AGG_HASHED,
1846 : AGGSPLIT_SIMPLE,
1847 : numGroupCols,
1848 : groupColIdx,
1849 : groupOperators,
1850 : groupCollations,
1851 : NIL,
1852 : NIL,
1853 : best_path->path.rows,
1854 : 0,
1855 : subplan);
1856 : }
1857 : else
1858 : {
1859 2 : List *sortList = NIL;
1860 : Sort *sort;
1861 :
1862 : /* Create an ORDER BY list to sort the input compatibly */
1863 2 : groupColPos = 0;
1864 4 : foreach(l, in_operators)
1865 : {
1866 2 : Oid in_oper = lfirst_oid(l);
1867 : Oid sortop;
1868 : Oid eqop;
1869 : TargetEntry *tle;
1870 : SortGroupClause *sortcl;
1871 :
1872 2 : sortop = get_ordering_op_for_equality_op(in_oper, false);
1873 2 : if (!OidIsValid(sortop)) /* shouldn't happen */
1874 0 : elog(ERROR, "could not find ordering operator for equality operator %u",
1875 : in_oper);
1876 :
1877 : /*
1878 : * The Unique node will need equality operators. Normally these
1879 : * are the same as the IN clause operators, but if those are
1880 : * cross-type operators then the equality operators are the ones
1881 : * for the IN clause operators' RHS datatype.
1882 : */
1883 2 : eqop = get_equality_op_for_ordering_op(sortop, NULL);
1884 2 : if (!OidIsValid(eqop)) /* shouldn't happen */
1885 0 : elog(ERROR, "could not find equality operator for ordering operator %u",
1886 : sortop);
1887 :
1888 2 : tle = get_tle_by_resno(subplan->targetlist,
1889 2 : groupColIdx[groupColPos]);
1890 : Assert(tle != NULL);
1891 :
1892 2 : sortcl = makeNode(SortGroupClause);
1893 2 : sortcl->tleSortGroupRef = assignSortGroupRef(tle,
1894 : subplan->targetlist);
1895 2 : sortcl->eqop = eqop;
1896 2 : sortcl->sortop = sortop;
1897 2 : sortcl->reverse_sort = false;
1898 2 : sortcl->nulls_first = false;
1899 2 : sortcl->hashable = false; /* no need to make this accurate */
1900 2 : sortList = lappend(sortList, sortcl);
1901 2 : groupColPos++;
1902 : }
1903 2 : sort = make_sort_from_sortclauses(sortList, subplan);
1904 2 : label_sort_with_costsize(root, sort, -1.0);
1905 2 : plan = (Plan *) make_unique_from_sortclauses((Plan *) sort, sortList);
1906 : }
1907 :
1908 : /* Copy cost data from Path to Plan */
1909 578 : copy_generic_path_info(plan, &best_path->path);
1910 :
1911 578 : return plan;
1912 : }
1913 :
1914 : /*
1915 : * create_gather_plan
1916 : *
1917 : * Create a Gather plan for 'best_path' and (recursively) plans
1918 : * for its subpaths.
1919 : */
1920 : static Gather *
1921 948 : create_gather_plan(PlannerInfo *root, GatherPath *best_path)
1922 : {
1923 : Gather *gather_plan;
1924 : Plan *subplan;
1925 : List *tlist;
1926 :
1927 : /*
1928 : * Push projection down to the child node. That way, the projection work
1929 : * is parallelized, and there can be no system columns in the result (they
1930 : * can't travel through a tuple queue because it uses MinimalTuple
1931 : * representation).
1932 : */
1933 948 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1934 :
1935 948 : tlist = build_path_tlist(root, &best_path->path);
1936 :
1937 948 : gather_plan = make_gather(tlist,
1938 : NIL,
1939 : best_path->num_workers,
1940 : assign_special_exec_param(root),
1941 948 : best_path->single_copy,
1942 : subplan);
1943 :
1944 948 : copy_generic_path_info(&gather_plan->plan, &best_path->path);
1945 :
1946 : /* use parallel mode for parallel plans. */
1947 948 : root->glob->parallelModeNeeded = true;
1948 :
1949 948 : return gather_plan;
1950 : }
1951 :
1952 : /*
1953 : * create_gather_merge_plan
1954 : *
1955 : * Create a Gather Merge plan for 'best_path' and (recursively)
1956 : * plans for its subpaths.
1957 : */
1958 : static GatherMerge *
1959 330 : create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path)
1960 : {
1961 : GatherMerge *gm_plan;
1962 : Plan *subplan;
1963 330 : List *pathkeys = best_path->path.pathkeys;
1964 330 : List *tlist = build_path_tlist(root, &best_path->path);
1965 :
1966 : /* As with Gather, project away columns in the workers. */
1967 330 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1968 :
1969 : /* Create a shell for a GatherMerge plan. */
1970 330 : gm_plan = makeNode(GatherMerge);
1971 330 : gm_plan->plan.targetlist = tlist;
1972 330 : gm_plan->num_workers = best_path->num_workers;
1973 330 : copy_generic_path_info(&gm_plan->plan, &best_path->path);
1974 :
1975 : /* Assign the rescan Param. */
1976 330 : gm_plan->rescan_param = assign_special_exec_param(root);
1977 :
1978 : /* Gather Merge is pointless with no pathkeys; use Gather instead. */
1979 : Assert(pathkeys != NIL);
1980 :
1981 : /* Compute sort column info, and adjust subplan's tlist as needed */
1982 330 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1983 330 : best_path->subpath->parent->relids,
1984 330 : gm_plan->sortColIdx,
1985 : false,
1986 : &gm_plan->numCols,
1987 : &gm_plan->sortColIdx,
1988 : &gm_plan->sortOperators,
1989 : &gm_plan->collations,
1990 : &gm_plan->nullsFirst);
1991 :
1992 : /*
1993 : * All gather merge paths should have already guaranteed the necessary
1994 : * sort order. See create_gather_merge_path.
1995 : */
1996 : Assert(pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys));
1997 :
1998 : /* Now insert the subplan under GatherMerge. */
1999 330 : gm_plan->plan.lefttree = subplan;
2000 :
2001 : /* use parallel mode for parallel plans. */
2002 330 : root->glob->parallelModeNeeded = true;
2003 :
2004 330 : return gm_plan;
2005 : }
2006 :
2007 : /*
2008 : * create_projection_plan
2009 : *
2010 : * Create a plan tree to do a projection step and (recursively) plans
2011 : * for its subpaths. We may need a Result node for the projection,
2012 : * but sometimes we can just let the subplan do the work.
2013 : */
2014 : static Plan *
2015 354138 : create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags)
2016 : {
2017 : Plan *plan;
2018 : Plan *subplan;
2019 : List *tlist;
2020 354138 : bool needs_result_node = false;
2021 :
2022 : /*
2023 : * Convert our subpath to a Plan and determine whether we need a Result
2024 : * node.
2025 : *
2026 : * In most cases where we don't need to project, create_projection_path
2027 : * will have set dummypp, but not always. First, some createplan.c
2028 : * routines change the tlists of their nodes. (An example is that
2029 : * create_merge_append_plan might add resjunk sort columns to a
2030 : * MergeAppend.) Second, create_projection_path has no way of knowing
2031 : * what path node will be placed on top of the projection path and
2032 : * therefore can't predict whether it will require an exact tlist. For
2033 : * both of these reasons, we have to recheck here.
2034 : */
2035 354138 : if (use_physical_tlist(root, &best_path->path, flags))
2036 : {
2037 : /*
2038 : * Our caller doesn't really care what tlist we return, so we don't
2039 : * actually need to project. However, we may still need to ensure
2040 : * proper sortgroupref labels, if the caller cares about those.
2041 : */
2042 1120 : subplan = create_plan_recurse(root, best_path->subpath, 0);
2043 1120 : tlist = subplan->targetlist;
2044 1120 : if (flags & CP_LABEL_TLIST)
2045 498 : apply_pathtarget_labeling_to_tlist(tlist,
2046 : best_path->path.pathtarget);
2047 : }
2048 353018 : else if (is_projection_capable_path(best_path->subpath))
2049 : {
2050 : /*
2051 : * Our caller requires that we return the exact tlist, but no separate
2052 : * result node is needed because the subpath is projection-capable.
2053 : * Tell create_plan_recurse that we're going to ignore the tlist it
2054 : * produces.
2055 : */
2056 351164 : subplan = create_plan_recurse(root, best_path->subpath,
2057 : CP_IGNORE_TLIST);
2058 : Assert(is_projection_capable_plan(subplan));
2059 351164 : tlist = build_path_tlist(root, &best_path->path);
2060 : }
2061 : else
2062 : {
2063 : /*
2064 : * It looks like we need a result node, unless by good fortune the
2065 : * requested tlist is exactly the one the child wants to produce.
2066 : */
2067 1854 : subplan = create_plan_recurse(root, best_path->subpath, 0);
2068 1854 : tlist = build_path_tlist(root, &best_path->path);
2069 1854 : needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist);
2070 : }
2071 :
2072 : /*
2073 : * If we make a different decision about whether to include a Result node
2074 : * than create_projection_path did, we'll have made slightly wrong cost
2075 : * estimates; but label the plan with the cost estimates we actually used,
2076 : * not "corrected" ones. (XXX this could be cleaned up if we moved more
2077 : * of the sortcolumn setup logic into Path creation, but that would add
2078 : * expense to creating Paths we might end up not using.)
2079 : */
2080 354138 : if (!needs_result_node)
2081 : {
2082 : /* Don't need a separate Result, just assign tlist to subplan */
2083 352422 : plan = subplan;
2084 352422 : plan->targetlist = tlist;
2085 :
2086 : /* Label plan with the estimated costs we actually used */
2087 352422 : plan->startup_cost = best_path->path.startup_cost;
2088 352422 : plan->total_cost = best_path->path.total_cost;
2089 352422 : plan->plan_rows = best_path->path.rows;
2090 352422 : plan->plan_width = best_path->path.pathtarget->width;
2091 352422 : plan->parallel_safe = best_path->path.parallel_safe;
2092 : /* ... but don't change subplan's parallel_aware flag */
2093 : }
2094 : else
2095 : {
2096 : /* We need a Result node */
2097 1716 : plan = (Plan *) make_result(tlist, NULL, subplan);
2098 :
2099 1716 : copy_generic_path_info(plan, (Path *) best_path);
2100 : }
2101 :
2102 354138 : return plan;
2103 : }
2104 :
2105 : /*
2106 : * inject_projection_plan
2107 : * Insert a Result node to do a projection step.
2108 : *
2109 : * This is used in a few places where we decide on-the-fly that we need a
2110 : * projection step as part of the tree generated for some Path node.
2111 : * We should try to get rid of this in favor of doing it more honestly.
2112 : *
2113 : * One reason it's ugly is we have to be told the right parallel_safe marking
2114 : * to apply (since the tlist might be unsafe even if the child plan is safe).
2115 : */
2116 : static Plan *
2117 28 : inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
2118 : {
2119 : Plan *plan;
2120 :
2121 28 : plan = (Plan *) make_result(tlist, NULL, subplan);
2122 :
2123 : /*
2124 : * In principle, we should charge tlist eval cost plus cpu_per_tuple per
2125 : * row for the Result node. But the former has probably been factored in
2126 : * already and the latter was not accounted for during Path construction,
2127 : * so being formally correct might just make the EXPLAIN output look less
2128 : * consistent not more so. Hence, just copy the subplan's cost.
2129 : */
2130 28 : copy_plan_costsize(plan, subplan);
2131 28 : plan->parallel_safe = parallel_safe;
2132 :
2133 28 : return plan;
2134 : }
2135 :
2136 : /*
2137 : * change_plan_targetlist
2138 : * Externally available wrapper for inject_projection_plan.
2139 : *
2140 : * This is meant for use by FDW plan-generation functions, which might
2141 : * want to adjust the tlist computed by some subplan tree. In general,
2142 : * a Result node is needed to compute the new tlist, but we can optimize
2143 : * some cases.
2144 : *
2145 : * In most cases, tlist_parallel_safe can just be passed as the parallel_safe
2146 : * flag of the FDW's own Path node.
2147 : */
2148 : Plan *
2149 130 : change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe)
2150 : {
2151 : /*
2152 : * If the top plan node can't do projections and its existing target list
2153 : * isn't already what we need, we need to add a Result node to help it
2154 : * along.
2155 : */
2156 130 : if (!is_projection_capable_plan(subplan) &&
2157 10 : !tlist_same_exprs(tlist, subplan->targetlist))
2158 2 : subplan = inject_projection_plan(subplan, tlist,
2159 2 : subplan->parallel_safe &&
2160 : tlist_parallel_safe);
2161 : else
2162 : {
2163 : /* Else we can just replace the plan node's tlist */
2164 128 : subplan->targetlist = tlist;
2165 128 : subplan->parallel_safe &= tlist_parallel_safe;
2166 : }
2167 130 : return subplan;
2168 : }
2169 :
2170 : /*
2171 : * create_sort_plan
2172 : *
2173 : * Create a Sort plan for 'best_path' and (recursively) plans
2174 : * for its subpaths.
2175 : */
2176 : static Sort *
2177 63672 : create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags)
2178 : {
2179 : Sort *plan;
2180 : Plan *subplan;
2181 :
2182 : /*
2183 : * We don't want any excess columns in the sorted tuples, so request a
2184 : * smaller tlist. Otherwise, since Sort doesn't project, tlist
2185 : * requirements pass through.
2186 : */
2187 63672 : subplan = create_plan_recurse(root, best_path->subpath,
2188 : flags | CP_SMALL_TLIST);
2189 :
2190 : /*
2191 : * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr,
2192 : * which will ignore any child EC members that don't belong to the given
2193 : * relids. Thus, if this sort path is based on a child relation, we must
2194 : * pass its relids.
2195 : */
2196 63672 : plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys,
2197 63672 : IS_OTHER_REL(best_path->subpath->parent) ?
2198 348 : best_path->path.parent->relids : NULL);
2199 :
2200 63672 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2201 :
2202 63672 : return plan;
2203 : }
2204 :
2205 : /*
2206 : * create_incrementalsort_plan
2207 : *
2208 : * Do the same as create_sort_plan, but create IncrementalSort plan.
2209 : */
2210 : static IncrementalSort *
2211 778 : create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path,
2212 : int flags)
2213 : {
2214 : IncrementalSort *plan;
2215 : Plan *subplan;
2216 :
2217 : /* See comments in create_sort_plan() above */
2218 778 : subplan = create_plan_recurse(root, best_path->spath.subpath,
2219 : flags | CP_SMALL_TLIST);
2220 778 : plan = make_incrementalsort_from_pathkeys(subplan,
2221 : best_path->spath.path.pathkeys,
2222 778 : IS_OTHER_REL(best_path->spath.subpath->parent) ?
2223 0 : best_path->spath.path.parent->relids : NULL,
2224 : best_path->nPresortedCols);
2225 :
2226 778 : copy_generic_path_info(&plan->sort.plan, (Path *) best_path);
2227 :
2228 778 : return plan;
2229 : }
2230 :
2231 : /*
2232 : * create_group_plan
2233 : *
2234 : * Create a Group plan for 'best_path' and (recursively) plans
2235 : * for its subpaths.
2236 : */
2237 : static Group *
2238 246 : create_group_plan(PlannerInfo *root, GroupPath *best_path)
2239 : {
2240 : Group *plan;
2241 : Plan *subplan;
2242 : List *tlist;
2243 : List *quals;
2244 :
2245 : /*
2246 : * Group can project, so no need to be terribly picky about child tlist,
2247 : * but we do need grouping columns to be available
2248 : */
2249 246 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2250 :
2251 246 : tlist = build_path_tlist(root, &best_path->path);
2252 :
2253 246 : quals = order_qual_clauses(root, best_path->qual);
2254 :
2255 492 : plan = make_group(tlist,
2256 : quals,
2257 246 : list_length(best_path->groupClause),
2258 : extract_grouping_cols(best_path->groupClause,
2259 : subplan->targetlist),
2260 : extract_grouping_ops(best_path->groupClause),
2261 : extract_grouping_collations(best_path->groupClause,
2262 : subplan->targetlist),
2263 : subplan);
2264 :
2265 246 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2266 :
2267 246 : return plan;
2268 : }
2269 :
2270 : /*
2271 : * create_upper_unique_plan
2272 : *
2273 : * Create a Unique plan for 'best_path' and (recursively) plans
2274 : * for its subpaths.
2275 : */
2276 : static Unique *
2277 5346 : create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path, int flags)
2278 : {
2279 : Unique *plan;
2280 : Plan *subplan;
2281 :
2282 : /*
2283 : * Unique doesn't project, so tlist requirements pass through; moreover we
2284 : * need grouping columns to be labeled.
2285 : */
2286 5346 : subplan = create_plan_recurse(root, best_path->subpath,
2287 : flags | CP_LABEL_TLIST);
2288 :
2289 5346 : plan = make_unique_from_pathkeys(subplan,
2290 : best_path->path.pathkeys,
2291 : best_path->numkeys);
2292 :
2293 5346 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2294 :
2295 5346 : return plan;
2296 : }
2297 :
2298 : /*
2299 : * create_agg_plan
2300 : *
2301 : * Create an Agg plan for 'best_path' and (recursively) plans
2302 : * for its subpaths.
2303 : */
2304 : static Agg *
2305 39298 : create_agg_plan(PlannerInfo *root, AggPath *best_path)
2306 : {
2307 : Agg *plan;
2308 : Plan *subplan;
2309 : List *tlist;
2310 : List *quals;
2311 :
2312 : /*
2313 : * Agg can project, so no need to be terribly picky about child tlist, but
2314 : * we do need grouping columns to be available
2315 : */
2316 39298 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2317 :
2318 39298 : tlist = build_path_tlist(root, &best_path->path);
2319 :
2320 39298 : quals = order_qual_clauses(root, best_path->qual);
2321 :
2322 78596 : plan = make_agg(tlist, quals,
2323 : best_path->aggstrategy,
2324 : best_path->aggsplit,
2325 39298 : list_length(best_path->groupClause),
2326 : extract_grouping_cols(best_path->groupClause,
2327 : subplan->targetlist),
2328 : extract_grouping_ops(best_path->groupClause),
2329 : extract_grouping_collations(best_path->groupClause,
2330 : subplan->targetlist),
2331 : NIL,
2332 : NIL,
2333 : best_path->numGroups,
2334 : best_path->transitionSpace,
2335 : subplan);
2336 :
2337 39298 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2338 :
2339 39298 : return plan;
2340 : }
2341 :
2342 : /*
2343 : * Given a groupclause for a collection of grouping sets, produce the
2344 : * corresponding groupColIdx.
2345 : *
2346 : * root->grouping_map maps the tleSortGroupRef to the actual column position in
2347 : * the input tuple. So we get the ref from the entries in the groupclause and
2348 : * look them up there.
2349 : */
2350 : static AttrNumber *
2351 1834 : remap_groupColIdx(PlannerInfo *root, List *groupClause)
2352 : {
2353 1834 : AttrNumber *grouping_map = root->grouping_map;
2354 : AttrNumber *new_grpColIdx;
2355 : ListCell *lc;
2356 : int i;
2357 :
2358 : Assert(grouping_map);
2359 :
2360 1834 : new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));
2361 :
2362 1834 : i = 0;
2363 4280 : foreach(lc, groupClause)
2364 : {
2365 2446 : SortGroupClause *clause = lfirst(lc);
2366 :
2367 2446 : new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
2368 : }
2369 :
2370 1834 : return new_grpColIdx;
2371 : }
2372 :
2373 : /*
2374 : * create_groupingsets_plan
2375 : * Create a plan for 'best_path' and (recursively) plans
2376 : * for its subpaths.
2377 : *
2378 : * What we emit is an Agg plan with some vestigial Agg and Sort nodes
2379 : * hanging off the side. The top Agg implements the last grouping set
2380 : * specified in the GroupingSetsPath, and any additional grouping sets
2381 : * each give rise to a subsidiary Agg and Sort node in the top Agg's
2382 : * "chain" list. These nodes don't participate in the plan directly,
2383 : * but they are a convenient way to represent the required data for
2384 : * the extra steps.
2385 : *
2386 : * Returns a Plan node.
2387 : */
2388 : static Plan *
2389 860 : create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path)
2390 : {
2391 : Agg *plan;
2392 : Plan *subplan;
2393 860 : List *rollups = best_path->rollups;
2394 : AttrNumber *grouping_map;
2395 : int maxref;
2396 : List *chain;
2397 : ListCell *lc;
2398 :
2399 : /* Shouldn't get here without grouping sets */
2400 : Assert(root->parse->groupingSets);
2401 : Assert(rollups != NIL);
2402 :
2403 : /*
2404 : * Agg can project, so no need to be terribly picky about child tlist, but
2405 : * we do need grouping columns to be available
2406 : */
2407 860 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2408 :
2409 : /*
2410 : * Compute the mapping from tleSortGroupRef to column index in the child's
2411 : * tlist. First, identify max SortGroupRef in groupClause, for array
2412 : * sizing.
2413 : */
2414 860 : maxref = 0;
2415 2672 : foreach(lc, root->processed_groupClause)
2416 : {
2417 1812 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2418 :
2419 1812 : if (gc->tleSortGroupRef > maxref)
2420 1776 : maxref = gc->tleSortGroupRef;
2421 : }
2422 :
2423 860 : grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber));
2424 :
2425 : /* Now look up the column numbers in the child's tlist */
2426 2672 : foreach(lc, root->processed_groupClause)
2427 : {
2428 1812 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2429 1812 : TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist);
2430 :
2431 1812 : grouping_map[gc->tleSortGroupRef] = tle->resno;
2432 : }
2433 :
2434 : /*
2435 : * During setrefs.c, we'll need the grouping_map to fix up the cols lists
2436 : * in GroupingFunc nodes. Save it for setrefs.c to use.
2437 : */
2438 : Assert(root->grouping_map == NULL);
2439 860 : root->grouping_map = grouping_map;
2440 :
2441 : /*
2442 : * Generate the side nodes that describe the other sort and group
2443 : * operations besides the top one. Note that we don't worry about putting
2444 : * accurate cost estimates in the side nodes; only the topmost Agg node's
2445 : * costs will be shown by EXPLAIN.
2446 : */
2447 860 : chain = NIL;
2448 860 : if (list_length(rollups) > 1)
2449 : {
2450 584 : bool is_first_sort = ((RollupData *) linitial(rollups))->is_hashed;
2451 :
2452 1558 : for_each_from(lc, rollups, 1)
2453 : {
2454 974 : RollupData *rollup = lfirst(lc);
2455 : AttrNumber *new_grpColIdx;
2456 974 : Plan *sort_plan = NULL;
2457 : Plan *agg_plan;
2458 : AggStrategy strat;
2459 :
2460 974 : new_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2461 :
2462 974 : if (!rollup->is_hashed && !is_first_sort)
2463 : {
2464 : sort_plan = (Plan *)
2465 240 : make_sort_from_groupcols(rollup->groupClause,
2466 : new_grpColIdx,
2467 : subplan);
2468 : }
2469 :
2470 974 : if (!rollup->is_hashed)
2471 472 : is_first_sort = false;
2472 :
2473 974 : if (rollup->is_hashed)
2474 502 : strat = AGG_HASHED;
2475 472 : else if (linitial(rollup->gsets) == NIL)
2476 170 : strat = AGG_PLAIN;
2477 : else
2478 302 : strat = AGG_SORTED;
2479 :
2480 1948 : agg_plan = (Plan *) make_agg(NIL,
2481 : NIL,
2482 : strat,
2483 : AGGSPLIT_SIMPLE,
2484 974 : list_length((List *) linitial(rollup->gsets)),
2485 : new_grpColIdx,
2486 : extract_grouping_ops(rollup->groupClause),
2487 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2488 : rollup->gsets,
2489 : NIL,
2490 : rollup->numGroups,
2491 : best_path->transitionSpace,
2492 : sort_plan);
2493 :
2494 : /*
2495 : * Remove stuff we don't need to avoid bloating debug output.
2496 : */
2497 974 : if (sort_plan)
2498 : {
2499 240 : sort_plan->targetlist = NIL;
2500 240 : sort_plan->lefttree = NULL;
2501 : }
2502 :
2503 974 : chain = lappend(chain, agg_plan);
2504 : }
2505 : }
2506 :
2507 : /*
2508 : * Now make the real Agg node
2509 : */
2510 : {
2511 860 : RollupData *rollup = linitial(rollups);
2512 : AttrNumber *top_grpColIdx;
2513 : int numGroupCols;
2514 :
2515 860 : top_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2516 :
2517 860 : numGroupCols = list_length((List *) linitial(rollup->gsets));
2518 :
2519 860 : plan = make_agg(build_path_tlist(root, &best_path->path),
2520 : best_path->qual,
2521 : best_path->aggstrategy,
2522 : AGGSPLIT_SIMPLE,
2523 : numGroupCols,
2524 : top_grpColIdx,
2525 : extract_grouping_ops(rollup->groupClause),
2526 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2527 : rollup->gsets,
2528 : chain,
2529 : rollup->numGroups,
2530 : best_path->transitionSpace,
2531 : subplan);
2532 :
2533 : /* Copy cost data from Path to Plan */
2534 860 : copy_generic_path_info(&plan->plan, &best_path->path);
2535 : }
2536 :
2537 860 : return (Plan *) plan;
2538 : }
2539 :
2540 : /*
2541 : * create_minmaxagg_plan
2542 : *
2543 : * Create a Result plan for 'best_path' and (recursively) plans
2544 : * for its subpaths.
2545 : */
2546 : static Result *
2547 364 : create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path)
2548 : {
2549 : Result *plan;
2550 : List *tlist;
2551 : ListCell *lc;
2552 :
2553 : /* Prepare an InitPlan for each aggregate's subquery. */
2554 764 : foreach(lc, best_path->mmaggregates)
2555 : {
2556 400 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
2557 400 : PlannerInfo *subroot = mminfo->subroot;
2558 400 : Query *subparse = subroot->parse;
2559 : Plan *plan;
2560 :
2561 : /*
2562 : * Generate the plan for the subquery. We already have a Path, but we
2563 : * have to convert it to a Plan and attach a LIMIT node above it.
2564 : * Since we are entering a different planner context (subroot),
2565 : * recurse to create_plan not create_plan_recurse.
2566 : */
2567 400 : plan = create_plan(subroot, mminfo->path);
2568 :
2569 400 : plan = (Plan *) make_limit(plan,
2570 : subparse->limitOffset,
2571 : subparse->limitCount,
2572 : subparse->limitOption,
2573 : 0, NULL, NULL, NULL);
2574 :
2575 : /* Must apply correct cost/width data to Limit node */
2576 400 : plan->disabled_nodes = mminfo->path->disabled_nodes;
2577 400 : plan->startup_cost = mminfo->path->startup_cost;
2578 400 : plan->total_cost = mminfo->pathcost;
2579 400 : plan->plan_rows = 1;
2580 400 : plan->plan_width = mminfo->path->pathtarget->width;
2581 400 : plan->parallel_aware = false;
2582 400 : plan->parallel_safe = mminfo->path->parallel_safe;
2583 :
2584 : /* Convert the plan into an InitPlan in the outer query. */
2585 400 : SS_make_initplan_from_plan(root, subroot, plan, mminfo->param);
2586 : }
2587 :
2588 : /* Generate the output plan --- basically just a Result */
2589 364 : tlist = build_path_tlist(root, &best_path->path);
2590 :
2591 364 : plan = make_result(tlist, (Node *) best_path->quals, NULL);
2592 :
2593 364 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2594 :
2595 : /*
2596 : * During setrefs.c, we'll need to replace references to the Agg nodes
2597 : * with InitPlan output params. (We can't just do that locally in the
2598 : * MinMaxAgg node, because path nodes above here may have Agg references
2599 : * as well.) Save the mmaggregates list to tell setrefs.c to do that.
2600 : */
2601 : Assert(root->minmax_aggs == NIL);
2602 364 : root->minmax_aggs = best_path->mmaggregates;
2603 :
2604 364 : return plan;
2605 : }
2606 :
2607 : /*
2608 : * create_windowagg_plan
2609 : *
2610 : * Create a WindowAgg plan for 'best_path' and (recursively) plans
2611 : * for its subpaths.
2612 : */
2613 : static WindowAgg *
2614 2546 : create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path)
2615 : {
2616 : WindowAgg *plan;
2617 2546 : WindowClause *wc = best_path->winclause;
2618 2546 : int numPart = list_length(wc->partitionClause);
2619 2546 : int numOrder = list_length(wc->orderClause);
2620 : Plan *subplan;
2621 : List *tlist;
2622 : int partNumCols;
2623 : AttrNumber *partColIdx;
2624 : Oid *partOperators;
2625 : Oid *partCollations;
2626 : int ordNumCols;
2627 : AttrNumber *ordColIdx;
2628 : Oid *ordOperators;
2629 : Oid *ordCollations;
2630 : ListCell *lc;
2631 :
2632 : /*
2633 : * Choice of tlist here is motivated by the fact that WindowAgg will be
2634 : * storing the input rows of window frames in a tuplestore; it therefore
2635 : * behooves us to request a small tlist to avoid wasting space. We do of
2636 : * course need grouping columns to be available.
2637 : */
2638 2546 : subplan = create_plan_recurse(root, best_path->subpath,
2639 : CP_LABEL_TLIST | CP_SMALL_TLIST);
2640 :
2641 2546 : tlist = build_path_tlist(root, &best_path->path);
2642 :
2643 : /*
2644 : * Convert SortGroupClause lists into arrays of attr indexes and equality
2645 : * operators, as wanted by executor.
2646 : */
2647 2546 : partColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numPart);
2648 2546 : partOperators = (Oid *) palloc(sizeof(Oid) * numPart);
2649 2546 : partCollations = (Oid *) palloc(sizeof(Oid) * numPart);
2650 :
2651 2546 : partNumCols = 0;
2652 3298 : foreach(lc, wc->partitionClause)
2653 : {
2654 752 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2655 752 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2656 :
2657 : Assert(OidIsValid(sgc->eqop));
2658 752 : partColIdx[partNumCols] = tle->resno;
2659 752 : partOperators[partNumCols] = sgc->eqop;
2660 752 : partCollations[partNumCols] = exprCollation((Node *) tle->expr);
2661 752 : partNumCols++;
2662 : }
2663 :
2664 2546 : ordColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numOrder);
2665 2546 : ordOperators = (Oid *) palloc(sizeof(Oid) * numOrder);
2666 2546 : ordCollations = (Oid *) palloc(sizeof(Oid) * numOrder);
2667 :
2668 2546 : ordNumCols = 0;
2669 4726 : foreach(lc, wc->orderClause)
2670 : {
2671 2180 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2672 2180 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2673 :
2674 : Assert(OidIsValid(sgc->eqop));
2675 2180 : ordColIdx[ordNumCols] = tle->resno;
2676 2180 : ordOperators[ordNumCols] = sgc->eqop;
2677 2180 : ordCollations[ordNumCols] = exprCollation((Node *) tle->expr);
2678 2180 : ordNumCols++;
2679 : }
2680 :
2681 : /* And finally we can make the WindowAgg node */
2682 2546 : plan = make_windowagg(tlist,
2683 : wc,
2684 : partNumCols,
2685 : partColIdx,
2686 : partOperators,
2687 : partCollations,
2688 : ordNumCols,
2689 : ordColIdx,
2690 : ordOperators,
2691 : ordCollations,
2692 : best_path->runCondition,
2693 : best_path->qual,
2694 2546 : best_path->topwindow,
2695 : subplan);
2696 :
2697 2546 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2698 :
2699 2546 : return plan;
2700 : }
2701 :
2702 : /*
2703 : * create_setop_plan
2704 : *
2705 : * Create a SetOp plan for 'best_path' and (recursively) plans
2706 : * for its subpaths.
2707 : */
2708 : static SetOp *
2709 662 : create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags)
2710 : {
2711 : SetOp *plan;
2712 662 : List *tlist = build_path_tlist(root, &best_path->path);
2713 : Plan *leftplan;
2714 : Plan *rightplan;
2715 : long numGroups;
2716 :
2717 : /*
2718 : * SetOp doesn't project, so tlist requirements pass through; moreover we
2719 : * need grouping columns to be labeled.
2720 : */
2721 662 : leftplan = create_plan_recurse(root, best_path->leftpath,
2722 : flags | CP_LABEL_TLIST);
2723 662 : rightplan = create_plan_recurse(root, best_path->rightpath,
2724 : flags | CP_LABEL_TLIST);
2725 :
2726 : /* Convert numGroups to long int --- but 'ware overflow! */
2727 662 : numGroups = clamp_cardinality_to_long(best_path->numGroups);
2728 :
2729 662 : plan = make_setop(best_path->cmd,
2730 : best_path->strategy,
2731 : tlist,
2732 : leftplan,
2733 : rightplan,
2734 : best_path->groupList,
2735 : numGroups);
2736 :
2737 662 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2738 :
2739 662 : return plan;
2740 : }
2741 :
2742 : /*
2743 : * create_recursiveunion_plan
2744 : *
2745 : * Create a RecursiveUnion plan for 'best_path' and (recursively) plans
2746 : * for its subpaths.
2747 : */
2748 : static RecursiveUnion *
2749 896 : create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path)
2750 : {
2751 : RecursiveUnion *plan;
2752 : Plan *leftplan;
2753 : Plan *rightplan;
2754 : List *tlist;
2755 : long numGroups;
2756 :
2757 : /* Need both children to produce same tlist, so force it */
2758 896 : leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST);
2759 896 : rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST);
2760 :
2761 896 : tlist = build_path_tlist(root, &best_path->path);
2762 :
2763 : /* Convert numGroups to long int --- but 'ware overflow! */
2764 896 : numGroups = clamp_cardinality_to_long(best_path->numGroups);
2765 :
2766 896 : plan = make_recursive_union(tlist,
2767 : leftplan,
2768 : rightplan,
2769 : best_path->wtParam,
2770 : best_path->distinctList,
2771 : numGroups);
2772 :
2773 896 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2774 :
2775 896 : return plan;
2776 : }
2777 :
2778 : /*
2779 : * create_lockrows_plan
2780 : *
2781 : * Create a LockRows plan for 'best_path' and (recursively) plans
2782 : * for its subpaths.
2783 : */
2784 : static LockRows *
2785 7622 : create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
2786 : int flags)
2787 : {
2788 : LockRows *plan;
2789 : Plan *subplan;
2790 :
2791 : /* LockRows doesn't project, so tlist requirements pass through */
2792 7622 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2793 :
2794 7622 : plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam);
2795 :
2796 7622 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2797 :
2798 7622 : return plan;
2799 : }
2800 :
2801 : /*
2802 : * create_modifytable_plan
2803 : * Create a ModifyTable plan for 'best_path'.
2804 : *
2805 : * Returns a Plan node.
2806 : */
2807 : static ModifyTable *
2808 92278 : create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path)
2809 : {
2810 : ModifyTable *plan;
2811 92278 : Path *subpath = best_path->subpath;
2812 : Plan *subplan;
2813 :
2814 : /* Subplan must produce exactly the specified tlist */
2815 92278 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
2816 :
2817 : /* Transfer resname/resjunk labeling, too, to keep executor happy */
2818 92278 : apply_tlist_labeling(subplan->targetlist, root->processed_tlist);
2819 :
2820 92278 : plan = make_modifytable(root,
2821 : subplan,
2822 : best_path->operation,
2823 92278 : best_path->canSetTag,
2824 : best_path->nominalRelation,
2825 : best_path->rootRelation,
2826 92278 : best_path->partColsUpdated,
2827 : best_path->resultRelations,
2828 : best_path->updateColnosLists,
2829 : best_path->withCheckOptionLists,
2830 : best_path->returningLists,
2831 : best_path->rowMarks,
2832 : best_path->onconflict,
2833 : best_path->mergeActionLists,
2834 : best_path->mergeJoinConditions,
2835 : best_path->epqParam);
2836 :
2837 91882 : copy_generic_path_info(&plan->plan, &best_path->path);
2838 :
2839 91882 : return plan;
2840 : }
2841 :
2842 : /*
2843 : * create_limit_plan
2844 : *
2845 : * Create a Limit plan for 'best_path' and (recursively) plans
2846 : * for its subpaths.
2847 : */
2848 : static Limit *
2849 4260 : create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags)
2850 : {
2851 : Limit *plan;
2852 : Plan *subplan;
2853 4260 : int numUniqkeys = 0;
2854 4260 : AttrNumber *uniqColIdx = NULL;
2855 4260 : Oid *uniqOperators = NULL;
2856 4260 : Oid *uniqCollations = NULL;
2857 :
2858 : /* Limit doesn't project, so tlist requirements pass through */
2859 4260 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2860 :
2861 : /* Extract information necessary for comparing rows for WITH TIES. */
2862 4260 : if (best_path->limitOption == LIMIT_OPTION_WITH_TIES)
2863 : {
2864 30 : Query *parse = root->parse;
2865 : ListCell *l;
2866 :
2867 30 : numUniqkeys = list_length(parse->sortClause);
2868 30 : uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber));
2869 30 : uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2870 30 : uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2871 :
2872 30 : numUniqkeys = 0;
2873 60 : foreach(l, parse->sortClause)
2874 : {
2875 30 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
2876 30 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList);
2877 :
2878 30 : uniqColIdx[numUniqkeys] = tle->resno;
2879 30 : uniqOperators[numUniqkeys] = sortcl->eqop;
2880 30 : uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr);
2881 30 : numUniqkeys++;
2882 : }
2883 : }
2884 :
2885 4260 : plan = make_limit(subplan,
2886 : best_path->limitOffset,
2887 : best_path->limitCount,
2888 : best_path->limitOption,
2889 : numUniqkeys, uniqColIdx, uniqOperators, uniqCollations);
2890 :
2891 4260 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2892 :
2893 4260 : return plan;
2894 : }
2895 :
2896 :
2897 : /*****************************************************************************
2898 : *
2899 : * BASE-RELATION SCAN METHODS
2900 : *
2901 : *****************************************************************************/
2902 :
2903 :
2904 : /*
2905 : * create_seqscan_plan
2906 : * Returns a seqscan plan for the base relation scanned by 'best_path'
2907 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2908 : */
2909 : static SeqScan *
2910 204462 : create_seqscan_plan(PlannerInfo *root, Path *best_path,
2911 : List *tlist, List *scan_clauses)
2912 : {
2913 : SeqScan *scan_plan;
2914 204462 : Index scan_relid = best_path->parent->relid;
2915 :
2916 : /* it should be a base rel... */
2917 : Assert(scan_relid > 0);
2918 : Assert(best_path->parent->rtekind == RTE_RELATION);
2919 :
2920 : /* Sort clauses into best execution order */
2921 204462 : scan_clauses = order_qual_clauses(root, scan_clauses);
2922 :
2923 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2924 204462 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2925 :
2926 : /* Replace any outer-relation variables with nestloop params */
2927 204462 : if (best_path->param_info)
2928 : {
2929 : scan_clauses = (List *)
2930 474 : replace_nestloop_params(root, (Node *) scan_clauses);
2931 : }
2932 :
2933 204462 : scan_plan = make_seqscan(tlist,
2934 : scan_clauses,
2935 : scan_relid);
2936 :
2937 204462 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2938 :
2939 204462 : return scan_plan;
2940 : }
2941 :
2942 : /*
2943 : * create_samplescan_plan
2944 : * Returns a samplescan plan for the base relation scanned by 'best_path'
2945 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2946 : */
2947 : static SampleScan *
2948 306 : create_samplescan_plan(PlannerInfo *root, Path *best_path,
2949 : List *tlist, List *scan_clauses)
2950 : {
2951 : SampleScan *scan_plan;
2952 306 : Index scan_relid = best_path->parent->relid;
2953 : RangeTblEntry *rte;
2954 : TableSampleClause *tsc;
2955 :
2956 : /* it should be a base rel with a tablesample clause... */
2957 : Assert(scan_relid > 0);
2958 306 : rte = planner_rt_fetch(scan_relid, root);
2959 : Assert(rte->rtekind == RTE_RELATION);
2960 306 : tsc = rte->tablesample;
2961 : Assert(tsc != NULL);
2962 :
2963 : /* Sort clauses into best execution order */
2964 306 : scan_clauses = order_qual_clauses(root, scan_clauses);
2965 :
2966 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2967 306 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2968 :
2969 : /* Replace any outer-relation variables with nestloop params */
2970 306 : if (best_path->param_info)
2971 : {
2972 : scan_clauses = (List *)
2973 72 : replace_nestloop_params(root, (Node *) scan_clauses);
2974 : tsc = (TableSampleClause *)
2975 72 : replace_nestloop_params(root, (Node *) tsc);
2976 : }
2977 :
2978 306 : scan_plan = make_samplescan(tlist,
2979 : scan_clauses,
2980 : scan_relid,
2981 : tsc);
2982 :
2983 306 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2984 :
2985 306 : return scan_plan;
2986 : }
2987 :
2988 : /*
2989 : * create_indexscan_plan
2990 : * Returns an indexscan plan for the base relation scanned by 'best_path'
2991 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2992 : *
2993 : * We use this for both plain IndexScans and IndexOnlyScans, because the
2994 : * qual preprocessing work is the same for both. Note that the caller tells
2995 : * us which to build --- we don't look at best_path->path.pathtype, because
2996 : * create_bitmap_subplan needs to be able to override the prior decision.
2997 : */
2998 : static Scan *
2999 176290 : create_indexscan_plan(PlannerInfo *root,
3000 : IndexPath *best_path,
3001 : List *tlist,
3002 : List *scan_clauses,
3003 : bool indexonly)
3004 : {
3005 : Scan *scan_plan;
3006 176290 : List *indexclauses = best_path->indexclauses;
3007 176290 : List *indexorderbys = best_path->indexorderbys;
3008 176290 : Index baserelid = best_path->path.parent->relid;
3009 176290 : IndexOptInfo *indexinfo = best_path->indexinfo;
3010 176290 : Oid indexoid = indexinfo->indexoid;
3011 : List *qpqual;
3012 : List *stripped_indexquals;
3013 : List *fixed_indexquals;
3014 : List *fixed_indexorderbys;
3015 176290 : List *indexorderbyops = NIL;
3016 : ListCell *l;
3017 :
3018 : /* it should be a base rel... */
3019 : Assert(baserelid > 0);
3020 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3021 : /* check the scan direction is valid */
3022 : Assert(best_path->indexscandir == ForwardScanDirection ||
3023 : best_path->indexscandir == BackwardScanDirection);
3024 :
3025 : /*
3026 : * Extract the index qual expressions (stripped of RestrictInfos) from the
3027 : * IndexClauses list, and prepare a copy with index Vars substituted for
3028 : * table Vars. (This step also does replace_nestloop_params on the
3029 : * fixed_indexquals.)
3030 : */
3031 176290 : fix_indexqual_references(root, best_path,
3032 : &stripped_indexquals,
3033 : &fixed_indexquals);
3034 :
3035 : /*
3036 : * Likewise fix up index attr references in the ORDER BY expressions.
3037 : */
3038 176290 : fixed_indexorderbys = fix_indexorderby_references(root, best_path);
3039 :
3040 : /*
3041 : * The qpqual list must contain all restrictions not automatically handled
3042 : * by the index, other than pseudoconstant clauses which will be handled
3043 : * by a separate gating plan node. All the predicates in the indexquals
3044 : * will be checked (either by the index itself, or by nodeIndexscan.c),
3045 : * but if there are any "special" operators involved then they must be
3046 : * included in qpqual. The upshot is that qpqual must contain
3047 : * scan_clauses minus whatever appears in indexquals.
3048 : *
3049 : * is_redundant_with_indexclauses() detects cases where a scan clause is
3050 : * present in the indexclauses list or is generated from the same
3051 : * EquivalenceClass as some indexclause, and is therefore redundant with
3052 : * it, though not equal. (The latter happens when indxpath.c prefers a
3053 : * different derived equality than what generate_join_implied_equalities
3054 : * picked for a parameterized scan's ppi_clauses.) Note that it will not
3055 : * match to lossy index clauses, which is critical because we have to
3056 : * include the original clause in qpqual in that case.
3057 : *
3058 : * In some situations (particularly with OR'd index conditions) we may
3059 : * have scan_clauses that are not equal to, but are logically implied by,
3060 : * the index quals; so we also try a predicate_implied_by() check to see
3061 : * if we can discard quals that way. (predicate_implied_by assumes its
3062 : * first input contains only immutable functions, so we have to check
3063 : * that.)
3064 : *
3065 : * Note: if you change this bit of code you should also look at
3066 : * extract_nonindex_conditions() in costsize.c.
3067 : */
3068 176290 : qpqual = NIL;
3069 421930 : foreach(l, scan_clauses)
3070 : {
3071 245640 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3072 :
3073 245640 : if (rinfo->pseudoconstant)
3074 1976 : continue; /* we may drop pseudoconstants here */
3075 243664 : if (is_redundant_with_indexclauses(rinfo, indexclauses))
3076 165858 : continue; /* dup or derived from same EquivalenceClass */
3077 153254 : if (!contain_mutable_functions((Node *) rinfo->clause) &&
3078 75448 : predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals,
3079 : false))
3080 174 : continue; /* provably implied by indexquals */
3081 77632 : qpqual = lappend(qpqual, rinfo);
3082 : }
3083 :
3084 : /* Sort clauses into best execution order */
3085 176290 : qpqual = order_qual_clauses(root, qpqual);
3086 :
3087 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3088 176290 : qpqual = extract_actual_clauses(qpqual, false);
3089 :
3090 : /*
3091 : * We have to replace any outer-relation variables with nestloop params in
3092 : * the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
3093 : * annoying to have to do this separately from the processing in
3094 : * fix_indexqual_references --- rethink this when generalizing the inner
3095 : * indexscan support. But note we can't really do this earlier because
3096 : * it'd break the comparisons to predicates above ... (or would it? Those
3097 : * wouldn't have outer refs)
3098 : */
3099 176290 : if (best_path->path.param_info)
3100 : {
3101 36768 : stripped_indexquals = (List *)
3102 36768 : replace_nestloop_params(root, (Node *) stripped_indexquals);
3103 : qpqual = (List *)
3104 36768 : replace_nestloop_params(root, (Node *) qpqual);
3105 : indexorderbys = (List *)
3106 36768 : replace_nestloop_params(root, (Node *) indexorderbys);
3107 : }
3108 :
3109 : /*
3110 : * If there are ORDER BY expressions, look up the sort operators for their
3111 : * result datatypes.
3112 : */
3113 176290 : if (indexorderbys)
3114 : {
3115 : ListCell *pathkeyCell,
3116 : *exprCell;
3117 :
3118 : /*
3119 : * PathKey contains OID of the btree opfamily we're sorting by, but
3120 : * that's not quite enough because we need the expression's datatype
3121 : * to look up the sort operator in the operator family.
3122 : */
3123 : Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
3124 766 : forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
3125 : {
3126 386 : PathKey *pathkey = (PathKey *) lfirst(pathkeyCell);
3127 386 : Node *expr = (Node *) lfirst(exprCell);
3128 386 : Oid exprtype = exprType(expr);
3129 : Oid sortop;
3130 :
3131 : /* Get sort operator from opfamily */
3132 386 : sortop = get_opfamily_member(pathkey->pk_opfamily,
3133 : exprtype,
3134 : exprtype,
3135 386 : pathkey->pk_strategy);
3136 386 : if (!OidIsValid(sortop))
3137 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
3138 : pathkey->pk_strategy, exprtype, exprtype, pathkey->pk_opfamily);
3139 386 : indexorderbyops = lappend_oid(indexorderbyops, sortop);
3140 : }
3141 : }
3142 :
3143 : /*
3144 : * For an index-only scan, we must mark indextlist entries as resjunk if
3145 : * they are columns that the index AM can't return; this cues setrefs.c to
3146 : * not generate references to those columns.
3147 : */
3148 176290 : if (indexonly)
3149 : {
3150 15864 : int i = 0;
3151 :
3152 37392 : foreach(l, indexinfo->indextlist)
3153 : {
3154 21528 : TargetEntry *indextle = (TargetEntry *) lfirst(l);
3155 :
3156 21528 : indextle->resjunk = !indexinfo->canreturn[i];
3157 21528 : i++;
3158 : }
3159 : }
3160 :
3161 : /* Finally ready to build the plan node */
3162 176290 : if (indexonly)
3163 15864 : scan_plan = (Scan *) make_indexonlyscan(tlist,
3164 : qpqual,
3165 : baserelid,
3166 : indexoid,
3167 : fixed_indexquals,
3168 : stripped_indexquals,
3169 : fixed_indexorderbys,
3170 : indexinfo->indextlist,
3171 : best_path->indexscandir);
3172 : else
3173 160426 : scan_plan = (Scan *) make_indexscan(tlist,
3174 : qpqual,
3175 : baserelid,
3176 : indexoid,
3177 : fixed_indexquals,
3178 : stripped_indexquals,
3179 : fixed_indexorderbys,
3180 : indexorderbys,
3181 : indexorderbyops,
3182 : best_path->indexscandir);
3183 :
3184 176290 : copy_generic_path_info(&scan_plan->plan, &best_path->path);
3185 :
3186 176290 : return scan_plan;
3187 : }
3188 :
3189 : /*
3190 : * create_bitmap_scan_plan
3191 : * Returns a bitmap scan plan for the base relation scanned by 'best_path'
3192 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3193 : */
3194 : static BitmapHeapScan *
3195 21372 : create_bitmap_scan_plan(PlannerInfo *root,
3196 : BitmapHeapPath *best_path,
3197 : List *tlist,
3198 : List *scan_clauses)
3199 : {
3200 21372 : Index baserelid = best_path->path.parent->relid;
3201 : Plan *bitmapqualplan;
3202 : List *bitmapqualorig;
3203 : List *indexquals;
3204 : List *indexECs;
3205 : List *qpqual;
3206 : ListCell *l;
3207 : BitmapHeapScan *scan_plan;
3208 :
3209 : /* it should be a base rel... */
3210 : Assert(baserelid > 0);
3211 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3212 :
3213 : /* Process the bitmapqual tree into a Plan tree and qual lists */
3214 21372 : bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
3215 : &bitmapqualorig, &indexquals,
3216 : &indexECs);
3217 :
3218 21372 : if (best_path->path.parallel_aware)
3219 30 : bitmap_subplan_mark_shared(bitmapqualplan);
3220 :
3221 : /*
3222 : * The qpqual list must contain all restrictions not automatically handled
3223 : * by the index, other than pseudoconstant clauses which will be handled
3224 : * by a separate gating plan node. All the predicates in the indexquals
3225 : * will be checked (either by the index itself, or by
3226 : * nodeBitmapHeapscan.c), but if there are any "special" operators
3227 : * involved then they must be added to qpqual. The upshot is that qpqual
3228 : * must contain scan_clauses minus whatever appears in indexquals.
3229 : *
3230 : * This loop is similar to the comparable code in create_indexscan_plan(),
3231 : * but with some differences because it has to compare the scan clauses to
3232 : * stripped (no RestrictInfos) indexquals. See comments there for more
3233 : * info.
3234 : *
3235 : * In normal cases simple equal() checks will be enough to spot duplicate
3236 : * clauses, so we try that first. We next see if the scan clause is
3237 : * redundant with any top-level indexqual by virtue of being generated
3238 : * from the same EC. After that, try predicate_implied_by().
3239 : *
3240 : * Unlike create_indexscan_plan(), the predicate_implied_by() test here is
3241 : * useful for getting rid of qpquals that are implied by index predicates,
3242 : * because the predicate conditions are included in the "indexquals"
3243 : * returned by create_bitmap_subplan(). Bitmap scans have to do it that
3244 : * way because predicate conditions need to be rechecked if the scan
3245 : * becomes lossy, so they have to be included in bitmapqualorig.
3246 : */
3247 21372 : qpqual = NIL;
3248 49378 : foreach(l, scan_clauses)
3249 : {
3250 28006 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3251 28006 : Node *clause = (Node *) rinfo->clause;
3252 :
3253 28006 : if (rinfo->pseudoconstant)
3254 24 : continue; /* we may drop pseudoconstants here */
3255 27982 : if (list_member(indexquals, clause))
3256 21846 : continue; /* simple duplicate */
3257 6136 : if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
3258 16 : continue; /* derived from same EquivalenceClass */
3259 12096 : if (!contain_mutable_functions(clause) &&
3260 5976 : predicate_implied_by(list_make1(clause), indexquals, false))
3261 734 : continue; /* provably implied by indexquals */
3262 5386 : qpqual = lappend(qpqual, rinfo);
3263 : }
3264 :
3265 : /* Sort clauses into best execution order */
3266 21372 : qpqual = order_qual_clauses(root, qpqual);
3267 :
3268 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3269 21372 : qpqual = extract_actual_clauses(qpqual, false);
3270 :
3271 : /*
3272 : * When dealing with special operators, we will at this point have
3273 : * duplicate clauses in qpqual and bitmapqualorig. We may as well drop
3274 : * 'em from bitmapqualorig, since there's no point in making the tests
3275 : * twice.
3276 : */
3277 21372 : bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
3278 :
3279 : /*
3280 : * We have to replace any outer-relation variables with nestloop params in
3281 : * the qpqual and bitmapqualorig expressions. (This was already done for
3282 : * expressions attached to plan nodes in the bitmapqualplan tree.)
3283 : */
3284 21372 : if (best_path->path.param_info)
3285 : {
3286 : qpqual = (List *)
3287 1572 : replace_nestloop_params(root, (Node *) qpqual);
3288 1572 : bitmapqualorig = (List *)
3289 1572 : replace_nestloop_params(root, (Node *) bitmapqualorig);
3290 : }
3291 :
3292 : /* Finally ready to build the plan node */
3293 21372 : scan_plan = make_bitmap_heapscan(tlist,
3294 : qpqual,
3295 : bitmapqualplan,
3296 : bitmapqualorig,
3297 : baserelid);
3298 :
3299 21372 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3300 :
3301 21372 : return scan_plan;
3302 : }
3303 :
3304 : /*
3305 : * Given a bitmapqual tree, generate the Plan tree that implements it
3306 : *
3307 : * As byproducts, we also return in *qual and *indexqual the qual lists
3308 : * (in implicit-AND form, without RestrictInfos) describing the original index
3309 : * conditions and the generated indexqual conditions. (These are the same in
3310 : * simple cases, but when special index operators are involved, the former
3311 : * list includes the special conditions while the latter includes the actual
3312 : * indexable conditions derived from them.) Both lists include partial-index
3313 : * predicates, because we have to recheck predicates as well as index
3314 : * conditions if the bitmap scan becomes lossy.
3315 : *
3316 : * In addition, we return a list of EquivalenceClass pointers for all the
3317 : * top-level indexquals that were possibly-redundantly derived from ECs.
3318 : * This allows removal of scan_clauses that are redundant with such quals.
3319 : * (We do not attempt to detect such redundancies for quals that are within
3320 : * OR subtrees. This could be done in a less hacky way if we returned the
3321 : * indexquals in RestrictInfo form, but that would be slower and still pretty
3322 : * messy, since we'd have to build new RestrictInfos in many cases.)
3323 : */
3324 : static Plan *
3325 22598 : create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
3326 : List **qual, List **indexqual, List **indexECs)
3327 : {
3328 : Plan *plan;
3329 :
3330 22598 : if (IsA(bitmapqual, BitmapAndPath))
3331 : {
3332 222 : BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
3333 222 : List *subplans = NIL;
3334 222 : List *subquals = NIL;
3335 222 : List *subindexquals = NIL;
3336 222 : List *subindexECs = NIL;
3337 : ListCell *l;
3338 :
3339 : /*
3340 : * There may well be redundant quals among the subplans, since a
3341 : * top-level WHERE qual might have gotten used to form several
3342 : * different index quals. We don't try exceedingly hard to eliminate
3343 : * redundancies, but we do eliminate obvious duplicates by using
3344 : * list_concat_unique.
3345 : */
3346 666 : foreach(l, apath->bitmapquals)
3347 : {
3348 : Plan *subplan;
3349 : List *subqual;
3350 : List *subindexqual;
3351 : List *subindexEC;
3352 :
3353 444 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3354 : &subqual, &subindexqual,
3355 : &subindexEC);
3356 444 : subplans = lappend(subplans, subplan);
3357 444 : subquals = list_concat_unique(subquals, subqual);
3358 444 : subindexquals = list_concat_unique(subindexquals, subindexqual);
3359 : /* Duplicates in indexECs aren't worth getting rid of */
3360 444 : subindexECs = list_concat(subindexECs, subindexEC);
3361 : }
3362 222 : plan = (Plan *) make_bitmap_and(subplans);
3363 222 : plan->startup_cost = apath->path.startup_cost;
3364 222 : plan->total_cost = apath->path.total_cost;
3365 222 : plan->plan_rows =
3366 222 : clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
3367 222 : plan->plan_width = 0; /* meaningless */
3368 222 : plan->parallel_aware = false;
3369 222 : plan->parallel_safe = apath->path.parallel_safe;
3370 222 : *qual = subquals;
3371 222 : *indexqual = subindexquals;
3372 222 : *indexECs = subindexECs;
3373 : }
3374 22376 : else if (IsA(bitmapqual, BitmapOrPath))
3375 : {
3376 388 : BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
3377 388 : List *subplans = NIL;
3378 388 : List *subquals = NIL;
3379 388 : List *subindexquals = NIL;
3380 388 : bool const_true_subqual = false;
3381 388 : bool const_true_subindexqual = false;
3382 : ListCell *l;
3383 :
3384 : /*
3385 : * Here, we only detect qual-free subplans. A qual-free subplan would
3386 : * cause us to generate "... OR true ..." which we may as well reduce
3387 : * to just "true". We do not try to eliminate redundant subclauses
3388 : * because (a) it's not as likely as in the AND case, and (b) we might
3389 : * well be working with hundreds or even thousands of OR conditions,
3390 : * perhaps from a long IN list. The performance of list_append_unique
3391 : * would be unacceptable.
3392 : */
3393 1170 : foreach(l, opath->bitmapquals)
3394 : {
3395 : Plan *subplan;
3396 : List *subqual;
3397 : List *subindexqual;
3398 : List *subindexEC;
3399 :
3400 782 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3401 : &subqual, &subindexqual,
3402 : &subindexEC);
3403 782 : subplans = lappend(subplans, subplan);
3404 782 : if (subqual == NIL)
3405 0 : const_true_subqual = true;
3406 782 : else if (!const_true_subqual)
3407 782 : subquals = lappend(subquals,
3408 782 : make_ands_explicit(subqual));
3409 782 : if (subindexqual == NIL)
3410 0 : const_true_subindexqual = true;
3411 782 : else if (!const_true_subindexqual)
3412 782 : subindexquals = lappend(subindexquals,
3413 782 : make_ands_explicit(subindexqual));
3414 : }
3415 :
3416 : /*
3417 : * In the presence of ScalarArrayOpExpr quals, we might have built
3418 : * BitmapOrPaths with just one subpath; don't add an OR step.
3419 : */
3420 388 : if (list_length(subplans) == 1)
3421 : {
3422 0 : plan = (Plan *) linitial(subplans);
3423 : }
3424 : else
3425 : {
3426 388 : plan = (Plan *) make_bitmap_or(subplans);
3427 388 : plan->startup_cost = opath->path.startup_cost;
3428 388 : plan->total_cost = opath->path.total_cost;
3429 388 : plan->plan_rows =
3430 388 : clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
3431 388 : plan->plan_width = 0; /* meaningless */
3432 388 : plan->parallel_aware = false;
3433 388 : plan->parallel_safe = opath->path.parallel_safe;
3434 : }
3435 :
3436 : /*
3437 : * If there were constant-TRUE subquals, the OR reduces to constant
3438 : * TRUE. Also, avoid generating one-element ORs, which could happen
3439 : * due to redundancy elimination or ScalarArrayOpExpr quals.
3440 : */
3441 388 : if (const_true_subqual)
3442 0 : *qual = NIL;
3443 388 : else if (list_length(subquals) <= 1)
3444 0 : *qual = subquals;
3445 : else
3446 388 : *qual = list_make1(make_orclause(subquals));
3447 388 : if (const_true_subindexqual)
3448 0 : *indexqual = NIL;
3449 388 : else if (list_length(subindexquals) <= 1)
3450 0 : *indexqual = subindexquals;
3451 : else
3452 388 : *indexqual = list_make1(make_orclause(subindexquals));
3453 388 : *indexECs = NIL;
3454 : }
3455 21988 : else if (IsA(bitmapqual, IndexPath))
3456 : {
3457 21988 : IndexPath *ipath = (IndexPath *) bitmapqual;
3458 : IndexScan *iscan;
3459 : List *subquals;
3460 : List *subindexquals;
3461 : List *subindexECs;
3462 : ListCell *l;
3463 :
3464 : /* Use the regular indexscan plan build machinery... */
3465 21988 : iscan = castNode(IndexScan,
3466 : create_indexscan_plan(root, ipath,
3467 : NIL, NIL, false));
3468 : /* then convert to a bitmap indexscan */
3469 21988 : plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
3470 : iscan->indexid,
3471 : iscan->indexqual,
3472 : iscan->indexqualorig);
3473 : /* and set its cost/width fields appropriately */
3474 21988 : plan->startup_cost = 0.0;
3475 21988 : plan->total_cost = ipath->indextotalcost;
3476 21988 : plan->plan_rows =
3477 21988 : clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
3478 21988 : plan->plan_width = 0; /* meaningless */
3479 21988 : plan->parallel_aware = false;
3480 21988 : plan->parallel_safe = ipath->path.parallel_safe;
3481 : /* Extract original index clauses, actual index quals, relevant ECs */
3482 21988 : subquals = NIL;
3483 21988 : subindexquals = NIL;
3484 21988 : subindexECs = NIL;
3485 45200 : foreach(l, ipath->indexclauses)
3486 : {
3487 23212 : IndexClause *iclause = (IndexClause *) lfirst(l);
3488 23212 : RestrictInfo *rinfo = iclause->rinfo;
3489 :
3490 : Assert(!rinfo->pseudoconstant);
3491 23212 : subquals = lappend(subquals, rinfo->clause);
3492 23212 : subindexquals = list_concat(subindexquals,
3493 23212 : get_actual_clauses(iclause->indexquals));
3494 23212 : if (rinfo->parent_ec)
3495 1422 : subindexECs = lappend(subindexECs, rinfo->parent_ec);
3496 : }
3497 : /* We can add any index predicate conditions, too */
3498 22158 : foreach(l, ipath->indexinfo->indpred)
3499 : {
3500 170 : Expr *pred = (Expr *) lfirst(l);
3501 :
3502 : /*
3503 : * We know that the index predicate must have been implied by the
3504 : * query condition as a whole, but it may or may not be implied by
3505 : * the conditions that got pushed into the bitmapqual. Avoid
3506 : * generating redundant conditions.
3507 : */
3508 170 : if (!predicate_implied_by(list_make1(pred), subquals, false))
3509 : {
3510 140 : subquals = lappend(subquals, pred);
3511 140 : subindexquals = lappend(subindexquals, pred);
3512 : }
3513 : }
3514 21988 : *qual = subquals;
3515 21988 : *indexqual = subindexquals;
3516 21988 : *indexECs = subindexECs;
3517 : }
3518 : else
3519 : {
3520 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
3521 : plan = NULL; /* keep compiler quiet */
3522 : }
3523 :
3524 22598 : return plan;
3525 : }
3526 :
3527 : /*
3528 : * create_tidscan_plan
3529 : * Returns a tidscan plan for the base relation scanned by 'best_path'
3530 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3531 : */
3532 : static TidScan *
3533 732 : create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
3534 : List *tlist, List *scan_clauses)
3535 : {
3536 : TidScan *scan_plan;
3537 732 : Index scan_relid = best_path->path.parent->relid;
3538 732 : List *tidquals = best_path->tidquals;
3539 :
3540 : /* it should be a base rel... */
3541 : Assert(scan_relid > 0);
3542 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3543 :
3544 : /*
3545 : * The qpqual list must contain all restrictions not enforced by the
3546 : * tidquals list. Since tidquals has OR semantics, we have to be careful
3547 : * about matching it up to scan_clauses. It's convenient to handle the
3548 : * single-tidqual case separately from the multiple-tidqual case. In the
3549 : * single-tidqual case, we look through the scan_clauses while they are
3550 : * still in RestrictInfo form, and drop any that are redundant with the
3551 : * tidqual.
3552 : *
3553 : * In normal cases simple pointer equality checks will be enough to spot
3554 : * duplicate RestrictInfos, so we try that first.
3555 : *
3556 : * Another common case is that a scan_clauses entry is generated from the
3557 : * same EquivalenceClass as some tidqual, and is therefore redundant with
3558 : * it, though not equal.
3559 : *
3560 : * Unlike indexpaths, we don't bother with predicate_implied_by(); the
3561 : * number of cases where it could win are pretty small.
3562 : */
3563 732 : if (list_length(tidquals) == 1)
3564 : {
3565 708 : List *qpqual = NIL;
3566 : ListCell *l;
3567 :
3568 1500 : foreach(l, scan_clauses)
3569 : {
3570 792 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3571 :
3572 792 : if (rinfo->pseudoconstant)
3573 0 : continue; /* we may drop pseudoconstants here */
3574 792 : if (list_member_ptr(tidquals, rinfo))
3575 708 : continue; /* simple duplicate */
3576 84 : if (is_redundant_derived_clause(rinfo, tidquals))
3577 0 : continue; /* derived from same EquivalenceClass */
3578 84 : qpqual = lappend(qpqual, rinfo);
3579 : }
3580 708 : scan_clauses = qpqual;
3581 : }
3582 :
3583 : /* Sort clauses into best execution order */
3584 732 : scan_clauses = order_qual_clauses(root, scan_clauses);
3585 :
3586 : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3587 732 : tidquals = extract_actual_clauses(tidquals, false);
3588 732 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3589 :
3590 : /*
3591 : * If we have multiple tidquals, it's more convenient to remove duplicate
3592 : * scan_clauses after stripping the RestrictInfos. In this situation,
3593 : * because the tidquals represent OR sub-clauses, they could not have come
3594 : * from EquivalenceClasses so we don't have to worry about matching up
3595 : * non-identical clauses. On the other hand, because tidpath.c will have
3596 : * extracted those sub-clauses from some OR clause and built its own list,
3597 : * we will certainly not have pointer equality to any scan clause. So
3598 : * convert the tidquals list to an explicit OR clause and see if we can
3599 : * match it via equal() to any scan clause.
3600 : */
3601 732 : if (list_length(tidquals) > 1)
3602 24 : scan_clauses = list_difference(scan_clauses,
3603 24 : list_make1(make_orclause(tidquals)));
3604 :
3605 : /* Replace any outer-relation variables with nestloop params */
3606 732 : if (best_path->path.param_info)
3607 : {
3608 : tidquals = (List *)
3609 24 : replace_nestloop_params(root, (Node *) tidquals);
3610 : scan_clauses = (List *)
3611 24 : replace_nestloop_params(root, (Node *) scan_clauses);
3612 : }
3613 :
3614 732 : scan_plan = make_tidscan(tlist,
3615 : scan_clauses,
3616 : scan_relid,
3617 : tidquals);
3618 :
3619 732 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3620 :
3621 732 : return scan_plan;
3622 : }
3623 :
3624 : /*
3625 : * create_tidrangescan_plan
3626 : * Returns a tidrangescan plan for the base relation scanned by 'best_path'
3627 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3628 : */
3629 : static TidRangeScan *
3630 1940 : create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path,
3631 : List *tlist, List *scan_clauses)
3632 : {
3633 : TidRangeScan *scan_plan;
3634 1940 : Index scan_relid = best_path->path.parent->relid;
3635 1940 : List *tidrangequals = best_path->tidrangequals;
3636 :
3637 : /* it should be a base rel... */
3638 : Assert(scan_relid > 0);
3639 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3640 :
3641 : /*
3642 : * The qpqual list must contain all restrictions not enforced by the
3643 : * tidrangequals list. tidrangequals has AND semantics, so we can simply
3644 : * remove any qual that appears in it.
3645 : */
3646 : {
3647 1940 : List *qpqual = NIL;
3648 : ListCell *l;
3649 :
3650 3910 : foreach(l, scan_clauses)
3651 : {
3652 1970 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3653 :
3654 1970 : if (rinfo->pseudoconstant)
3655 0 : continue; /* we may drop pseudoconstants here */
3656 1970 : if (list_member_ptr(tidrangequals, rinfo))
3657 1970 : continue; /* simple duplicate */
3658 0 : qpqual = lappend(qpqual, rinfo);
3659 : }
3660 1940 : scan_clauses = qpqual;
3661 : }
3662 :
3663 : /* Sort clauses into best execution order */
3664 1940 : scan_clauses = order_qual_clauses(root, scan_clauses);
3665 :
3666 : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3667 1940 : tidrangequals = extract_actual_clauses(tidrangequals, false);
3668 1940 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3669 :
3670 : /* Replace any outer-relation variables with nestloop params */
3671 1940 : if (best_path->path.param_info)
3672 : {
3673 : tidrangequals = (List *)
3674 0 : replace_nestloop_params(root, (Node *) tidrangequals);
3675 : scan_clauses = (List *)
3676 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3677 : }
3678 :
3679 1940 : scan_plan = make_tidrangescan(tlist,
3680 : scan_clauses,
3681 : scan_relid,
3682 : tidrangequals);
3683 :
3684 1940 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3685 :
3686 1940 : return scan_plan;
3687 : }
3688 :
3689 : /*
3690 : * create_subqueryscan_plan
3691 : * Returns a subqueryscan plan for the base relation scanned by 'best_path'
3692 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3693 : */
3694 : static SubqueryScan *
3695 25190 : create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path,
3696 : List *tlist, List *scan_clauses)
3697 : {
3698 : SubqueryScan *scan_plan;
3699 25190 : RelOptInfo *rel = best_path->path.parent;
3700 25190 : Index scan_relid = rel->relid;
3701 : Plan *subplan;
3702 :
3703 : /* it should be a subquery base rel... */
3704 : Assert(scan_relid > 0);
3705 : Assert(rel->rtekind == RTE_SUBQUERY);
3706 :
3707 : /*
3708 : * Recursively create Plan from Path for subquery. Since we are entering
3709 : * a different planner context (subroot), recurse to create_plan not
3710 : * create_plan_recurse.
3711 : */
3712 25190 : subplan = create_plan(rel->subroot, best_path->subpath);
3713 :
3714 : /* Sort clauses into best execution order */
3715 25190 : scan_clauses = order_qual_clauses(root, scan_clauses);
3716 :
3717 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3718 25190 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3719 :
3720 : /*
3721 : * Replace any outer-relation variables with nestloop params.
3722 : *
3723 : * We must provide nestloop params for both lateral references of the
3724 : * subquery and outer vars in the scan_clauses. It's better to assign the
3725 : * former first, because that code path requires specific param IDs, while
3726 : * replace_nestloop_params can adapt to the IDs assigned by
3727 : * process_subquery_nestloop_params. This avoids possibly duplicating
3728 : * nestloop params when the same Var is needed for both reasons.
3729 : */
3730 25190 : if (best_path->path.param_info)
3731 : {
3732 496 : process_subquery_nestloop_params(root,
3733 : rel->subplan_params);
3734 : scan_clauses = (List *)
3735 496 : replace_nestloop_params(root, (Node *) scan_clauses);
3736 : }
3737 :
3738 25190 : scan_plan = make_subqueryscan(tlist,
3739 : scan_clauses,
3740 : scan_relid,
3741 : subplan);
3742 :
3743 25190 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3744 :
3745 25190 : return scan_plan;
3746 : }
3747 :
3748 : /*
3749 : * create_functionscan_plan
3750 : * Returns a functionscan plan for the base relation scanned by 'best_path'
3751 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3752 : */
3753 : static FunctionScan *
3754 52090 : create_functionscan_plan(PlannerInfo *root, Path *best_path,
3755 : List *tlist, List *scan_clauses)
3756 : {
3757 : FunctionScan *scan_plan;
3758 52090 : Index scan_relid = best_path->parent->relid;
3759 : RangeTblEntry *rte;
3760 : List *functions;
3761 :
3762 : /* it should be a function base rel... */
3763 : Assert(scan_relid > 0);
3764 52090 : rte = planner_rt_fetch(scan_relid, root);
3765 : Assert(rte->rtekind == RTE_FUNCTION);
3766 52090 : functions = rte->functions;
3767 :
3768 : /* Sort clauses into best execution order */
3769 52090 : scan_clauses = order_qual_clauses(root, scan_clauses);
3770 :
3771 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3772 52090 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3773 :
3774 : /* Replace any outer-relation variables with nestloop params */
3775 52090 : if (best_path->param_info)
3776 : {
3777 : scan_clauses = (List *)
3778 8586 : replace_nestloop_params(root, (Node *) scan_clauses);
3779 : /* The function expressions could contain nestloop params, too */
3780 8586 : functions = (List *) replace_nestloop_params(root, (Node *) functions);
3781 : }
3782 :
3783 52090 : scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
3784 52090 : functions, rte->funcordinality);
3785 :
3786 52090 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3787 :
3788 52090 : return scan_plan;
3789 : }
3790 :
3791 : /*
3792 : * create_tablefuncscan_plan
3793 : * Returns a tablefuncscan plan for the base relation scanned by 'best_path'
3794 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3795 : */
3796 : static TableFuncScan *
3797 626 : create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
3798 : List *tlist, List *scan_clauses)
3799 : {
3800 : TableFuncScan *scan_plan;
3801 626 : Index scan_relid = best_path->parent->relid;
3802 : RangeTblEntry *rte;
3803 : TableFunc *tablefunc;
3804 :
3805 : /* it should be a function base rel... */
3806 : Assert(scan_relid > 0);
3807 626 : rte = planner_rt_fetch(scan_relid, root);
3808 : Assert(rte->rtekind == RTE_TABLEFUNC);
3809 626 : tablefunc = rte->tablefunc;
3810 :
3811 : /* Sort clauses into best execution order */
3812 626 : scan_clauses = order_qual_clauses(root, scan_clauses);
3813 :
3814 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3815 626 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3816 :
3817 : /* Replace any outer-relation variables with nestloop params */
3818 626 : if (best_path->param_info)
3819 : {
3820 : scan_clauses = (List *)
3821 234 : replace_nestloop_params(root, (Node *) scan_clauses);
3822 : /* The function expressions could contain nestloop params, too */
3823 234 : tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc);
3824 : }
3825 :
3826 626 : scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid,
3827 : tablefunc);
3828 :
3829 626 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3830 :
3831 626 : return scan_plan;
3832 : }
3833 :
3834 : /*
3835 : * create_valuesscan_plan
3836 : * Returns a valuesscan plan for the base relation scanned by 'best_path'
3837 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3838 : */
3839 : static ValuesScan *
3840 8160 : create_valuesscan_plan(PlannerInfo *root, Path *best_path,
3841 : List *tlist, List *scan_clauses)
3842 : {
3843 : ValuesScan *scan_plan;
3844 8160 : Index scan_relid = best_path->parent->relid;
3845 : RangeTblEntry *rte;
3846 : List *values_lists;
3847 :
3848 : /* it should be a values base rel... */
3849 : Assert(scan_relid > 0);
3850 8160 : rte = planner_rt_fetch(scan_relid, root);
3851 : Assert(rte->rtekind == RTE_VALUES);
3852 8160 : values_lists = rte->values_lists;
3853 :
3854 : /* Sort clauses into best execution order */
3855 8160 : scan_clauses = order_qual_clauses(root, scan_clauses);
3856 :
3857 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3858 8160 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3859 :
3860 : /* Replace any outer-relation variables with nestloop params */
3861 8160 : if (best_path->param_info)
3862 : {
3863 : scan_clauses = (List *)
3864 48 : replace_nestloop_params(root, (Node *) scan_clauses);
3865 : /* The values lists could contain nestloop params, too */
3866 : values_lists = (List *)
3867 48 : replace_nestloop_params(root, (Node *) values_lists);
3868 : }
3869 :
3870 8160 : scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
3871 : values_lists);
3872 :
3873 8160 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3874 :
3875 8160 : return scan_plan;
3876 : }
3877 :
3878 : /*
3879 : * create_ctescan_plan
3880 : * Returns a ctescan plan for the base relation scanned by 'best_path'
3881 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3882 : */
3883 : static CteScan *
3884 3986 : create_ctescan_plan(PlannerInfo *root, Path *best_path,
3885 : List *tlist, List *scan_clauses)
3886 : {
3887 : CteScan *scan_plan;
3888 3986 : Index scan_relid = best_path->parent->relid;
3889 : RangeTblEntry *rte;
3890 3986 : SubPlan *ctesplan = NULL;
3891 : int plan_id;
3892 : int cte_param_id;
3893 : PlannerInfo *cteroot;
3894 : Index levelsup;
3895 : int ndx;
3896 : ListCell *lc;
3897 :
3898 : Assert(scan_relid > 0);
3899 3986 : rte = planner_rt_fetch(scan_relid, root);
3900 : Assert(rte->rtekind == RTE_CTE);
3901 : Assert(!rte->self_reference);
3902 :
3903 : /*
3904 : * Find the referenced CTE, and locate the SubPlan previously made for it.
3905 : */
3906 3986 : levelsup = rte->ctelevelsup;
3907 3986 : cteroot = root;
3908 6988 : while (levelsup-- > 0)
3909 : {
3910 3002 : cteroot = cteroot->parent_root;
3911 3002 : if (!cteroot) /* shouldn't happen */
3912 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3913 : }
3914 :
3915 : /*
3916 : * Note: cte_plan_ids can be shorter than cteList, if we are still working
3917 : * on planning the CTEs (ie, this is a side-reference from another CTE).
3918 : * So we mustn't use forboth here.
3919 : */
3920 3986 : ndx = 0;
3921 5574 : foreach(lc, cteroot->parse->cteList)
3922 : {
3923 5574 : CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
3924 :
3925 5574 : if (strcmp(cte->ctename, rte->ctename) == 0)
3926 3986 : break;
3927 1588 : ndx++;
3928 : }
3929 3986 : if (lc == NULL) /* shouldn't happen */
3930 0 : elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
3931 3986 : if (ndx >= list_length(cteroot->cte_plan_ids))
3932 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3933 3986 : plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
3934 3986 : if (plan_id <= 0)
3935 0 : elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
3936 4768 : foreach(lc, cteroot->init_plans)
3937 : {
3938 4768 : ctesplan = (SubPlan *) lfirst(lc);
3939 4768 : if (ctesplan->plan_id == plan_id)
3940 3986 : break;
3941 : }
3942 3986 : if (lc == NULL) /* shouldn't happen */
3943 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3944 :
3945 : /*
3946 : * We need the CTE param ID, which is the sole member of the SubPlan's
3947 : * setParam list.
3948 : */
3949 3986 : cte_param_id = linitial_int(ctesplan->setParam);
3950 :
3951 : /* Sort clauses into best execution order */
3952 3986 : scan_clauses = order_qual_clauses(root, scan_clauses);
3953 :
3954 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3955 3986 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3956 :
3957 : /* Replace any outer-relation variables with nestloop params */
3958 3986 : if (best_path->param_info)
3959 : {
3960 : scan_clauses = (List *)
3961 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3962 : }
3963 :
3964 3986 : scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
3965 : plan_id, cte_param_id);
3966 :
3967 3986 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3968 :
3969 3986 : return scan_plan;
3970 : }
3971 :
3972 : /*
3973 : * create_namedtuplestorescan_plan
3974 : * Returns a tuplestorescan plan for the base relation scanned by
3975 : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3976 : * 'tlist'.
3977 : */
3978 : static NamedTuplestoreScan *
3979 462 : create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path,
3980 : List *tlist, List *scan_clauses)
3981 : {
3982 : NamedTuplestoreScan *scan_plan;
3983 462 : Index scan_relid = best_path->parent->relid;
3984 : RangeTblEntry *rte;
3985 :
3986 : Assert(scan_relid > 0);
3987 462 : rte = planner_rt_fetch(scan_relid, root);
3988 : Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
3989 :
3990 : /* Sort clauses into best execution order */
3991 462 : scan_clauses = order_qual_clauses(root, scan_clauses);
3992 :
3993 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3994 462 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3995 :
3996 : /* Replace any outer-relation variables with nestloop params */
3997 462 : if (best_path->param_info)
3998 : {
3999 : scan_clauses = (List *)
4000 0 : replace_nestloop_params(root, (Node *) scan_clauses);
4001 : }
4002 :
4003 462 : scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid,
4004 : rte->enrname);
4005 :
4006 462 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
4007 :
4008 462 : return scan_plan;
4009 : }
4010 :
4011 : /*
4012 : * create_resultscan_plan
4013 : * Returns a Result plan for the RTE_RESULT base relation scanned by
4014 : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
4015 : * 'tlist'.
4016 : */
4017 : static Result *
4018 1500 : create_resultscan_plan(PlannerInfo *root, Path *best_path,
4019 : List *tlist, List *scan_clauses)
4020 : {
4021 : Result *scan_plan;
4022 1500 : Index scan_relid = best_path->parent->relid;
4023 : RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
4024 :
4025 : Assert(scan_relid > 0);
4026 1500 : rte = planner_rt_fetch(scan_relid, root);
4027 : Assert(rte->rtekind == RTE_RESULT);
4028 :
4029 : /* Sort clauses into best execution order */
4030 1500 : scan_clauses = order_qual_clauses(root, scan_clauses);
4031 :
4032 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
4033 1500 : scan_clauses = extract_actual_clauses(scan_clauses, false);
4034 :
4035 : /* Replace any outer-relation variables with nestloop params */
4036 1500 : if (best_path->param_info)
4037 : {
4038 : scan_clauses = (List *)
4039 132 : replace_nestloop_params(root, (Node *) scan_clauses);
4040 : }
4041 :
4042 1500 : scan_plan = make_result(tlist, (Node *) scan_clauses, NULL);
4043 :
4044 1500 : copy_generic_path_info(&scan_plan->plan, best_path);
4045 :
4046 1500 : return scan_plan;
4047 : }
4048 :
4049 : /*
4050 : * create_worktablescan_plan
4051 : * Returns a worktablescan plan for the base relation scanned by 'best_path'
4052 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
4053 : */
4054 : static WorkTableScan *
4055 896 : create_worktablescan_plan(PlannerInfo *root, Path *best_path,
4056 : List *tlist, List *scan_clauses)
4057 : {
4058 : WorkTableScan *scan_plan;
4059 896 : Index scan_relid = best_path->parent->relid;
4060 : RangeTblEntry *rte;
4061 : Index levelsup;
4062 : PlannerInfo *cteroot;
4063 :
4064 : Assert(scan_relid > 0);
4065 896 : rte = planner_rt_fetch(scan_relid, root);
4066 : Assert(rte->rtekind == RTE_CTE);
4067 : Assert(rte->self_reference);
4068 :
4069 : /*
4070 : * We need to find the worktable param ID, which is in the plan level
4071 : * that's processing the recursive UNION, which is one level *below* where
4072 : * the CTE comes from.
4073 : */
4074 896 : levelsup = rte->ctelevelsup;
4075 896 : if (levelsup == 0) /* shouldn't happen */
4076 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
4077 896 : levelsup--;
4078 896 : cteroot = root;
4079 2148 : while (levelsup-- > 0)
4080 : {
4081 1252 : cteroot = cteroot->parent_root;
4082 1252 : if (!cteroot) /* shouldn't happen */
4083 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
4084 : }
4085 896 : if (cteroot->wt_param_id < 0) /* shouldn't happen */
4086 0 : elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
4087 :
4088 : /* Sort clauses into best execution order */
4089 896 : scan_clauses = order_qual_clauses(root, scan_clauses);
4090 :
4091 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
4092 896 : scan_clauses = extract_actual_clauses(scan_clauses, false);
4093 :
4094 : /* Replace any outer-relation variables with nestloop params */
4095 896 : if (best_path->param_info)
4096 : {
4097 : scan_clauses = (List *)
4098 0 : replace_nestloop_params(root, (Node *) scan_clauses);
4099 : }
4100 :
4101 896 : scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
4102 : cteroot->wt_param_id);
4103 :
4104 896 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
4105 :
4106 896 : return scan_plan;
4107 : }
4108 :
4109 : /*
4110 : * create_foreignscan_plan
4111 : * Returns a foreignscan plan for the relation scanned by 'best_path'
4112 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
4113 : */
4114 : static ForeignScan *
4115 2030 : create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
4116 : List *tlist, List *scan_clauses)
4117 : {
4118 : ForeignScan *scan_plan;
4119 2030 : RelOptInfo *rel = best_path->path.parent;
4120 2030 : Index scan_relid = rel->relid;
4121 2030 : Oid rel_oid = InvalidOid;
4122 2030 : Plan *outer_plan = NULL;
4123 :
4124 : Assert(rel->fdwroutine != NULL);
4125 :
4126 : /* transform the child path if any */
4127 2030 : if (best_path->fdw_outerpath)
4128 44 : outer_plan = create_plan_recurse(root, best_path->fdw_outerpath,
4129 : CP_EXACT_TLIST);
4130 :
4131 : /*
4132 : * If we're scanning a base relation, fetch its OID. (Irrelevant if
4133 : * scanning a join relation.)
4134 : */
4135 2030 : if (scan_relid > 0)
4136 : {
4137 : RangeTblEntry *rte;
4138 :
4139 : Assert(rel->rtekind == RTE_RELATION);
4140 1472 : rte = planner_rt_fetch(scan_relid, root);
4141 : Assert(rte->rtekind == RTE_RELATION);
4142 1472 : rel_oid = rte->relid;
4143 : }
4144 :
4145 : /*
4146 : * Sort clauses into best execution order. We do this first since the FDW
4147 : * might have more info than we do and wish to adjust the ordering.
4148 : */
4149 2030 : scan_clauses = order_qual_clauses(root, scan_clauses);
4150 :
4151 : /*
4152 : * Let the FDW perform its processing on the restriction clauses and
4153 : * generate the plan node. Note that the FDW might remove restriction
4154 : * clauses that it intends to execute remotely, or even add more (if it
4155 : * has selected some join clauses for remote use but also wants them
4156 : * rechecked locally).
4157 : */
4158 2030 : scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
4159 : best_path,
4160 : tlist, scan_clauses,
4161 : outer_plan);
4162 :
4163 : /* Copy cost data from Path to Plan; no need to make FDW do this */
4164 2030 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
4165 :
4166 : /* Copy user OID to access as; likewise no need to make FDW do this */
4167 2030 : scan_plan->checkAsUser = rel->userid;
4168 :
4169 : /* Copy foreign server OID; likewise, no need to make FDW do this */
4170 2030 : scan_plan->fs_server = rel->serverid;
4171 :
4172 : /*
4173 : * Likewise, copy the relids that are represented by this foreign scan. An
4174 : * upper rel doesn't have relids set, but it covers all the relations
4175 : * participating in the underlying scan/join, so use root->all_query_rels.
4176 : */
4177 2030 : if (rel->reloptkind == RELOPT_UPPER_REL)
4178 240 : scan_plan->fs_relids = root->all_query_rels;
4179 : else
4180 1790 : scan_plan->fs_relids = best_path->path.parent->relids;
4181 :
4182 : /*
4183 : * Join relid sets include relevant outer joins, but FDWs may need to know
4184 : * which are the included base rels. That's a bit tedious to get without
4185 : * access to the plan-time data structures, so compute it here.
4186 : */
4187 4060 : scan_plan->fs_base_relids = bms_difference(scan_plan->fs_relids,
4188 2030 : root->outer_join_rels);
4189 :
4190 : /*
4191 : * If this is a foreign join, and to make it valid to push down we had to
4192 : * assume that the current user is the same as some user explicitly named
4193 : * in the query, mark the finished plan as depending on the current user.
4194 : */
4195 2030 : if (rel->useridiscurrent)
4196 4 : root->glob->dependsOnRole = true;
4197 :
4198 : /*
4199 : * Replace any outer-relation variables with nestloop params in the qual,
4200 : * fdw_exprs and fdw_recheck_quals expressions. We do this last so that
4201 : * the FDW doesn't have to be involved. (Note that parts of fdw_exprs or
4202 : * fdw_recheck_quals could have come from join clauses, so doing this
4203 : * beforehand on the scan_clauses wouldn't work.) We assume
4204 : * fdw_scan_tlist contains no such variables.
4205 : */
4206 2030 : if (best_path->path.param_info)
4207 : {
4208 26 : scan_plan->scan.plan.qual = (List *)
4209 26 : replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
4210 26 : scan_plan->fdw_exprs = (List *)
4211 26 : replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
4212 26 : scan_plan->fdw_recheck_quals = (List *)
4213 26 : replace_nestloop_params(root,
4214 26 : (Node *) scan_plan->fdw_recheck_quals);
4215 : }
4216 :
4217 : /*
4218 : * If rel is a base relation, detect whether any system columns are
4219 : * requested from the rel. (If rel is a join relation, rel->relid will be
4220 : * 0, but there can be no Var with relid 0 in the rel's targetlist or the
4221 : * restriction clauses, so we skip this in that case. Note that any such
4222 : * columns in base relations that were joined are assumed to be contained
4223 : * in fdw_scan_tlist.) This is a bit of a kluge and might go away
4224 : * someday, so we intentionally leave it out of the API presented to FDWs.
4225 : */
4226 2030 : scan_plan->fsSystemCol = false;
4227 2030 : if (scan_relid > 0)
4228 : {
4229 1472 : Bitmapset *attrs_used = NULL;
4230 : ListCell *lc;
4231 : int i;
4232 :
4233 : /*
4234 : * First, examine all the attributes needed for joins or final output.
4235 : * Note: we must look at rel's targetlist, not the attr_needed data,
4236 : * because attr_needed isn't computed for inheritance child rels.
4237 : */
4238 1472 : pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used);
4239 :
4240 : /* Add all the attributes used by restriction clauses. */
4241 2168 : foreach(lc, rel->baserestrictinfo)
4242 : {
4243 696 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
4244 :
4245 696 : pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used);
4246 : }
4247 :
4248 : /* Now, are any system columns requested from rel? */
4249 8358 : for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
4250 : {
4251 7412 : if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
4252 : {
4253 526 : scan_plan->fsSystemCol = true;
4254 526 : break;
4255 : }
4256 : }
4257 :
4258 1472 : bms_free(attrs_used);
4259 : }
4260 :
4261 2030 : return scan_plan;
4262 : }
4263 :
4264 : /*
4265 : * create_customscan_plan
4266 : *
4267 : * Transform a CustomPath into a Plan.
4268 : */
4269 : static CustomScan *
4270 0 : create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
4271 : List *tlist, List *scan_clauses)
4272 : {
4273 : CustomScan *cplan;
4274 0 : RelOptInfo *rel = best_path->path.parent;
4275 0 : List *custom_plans = NIL;
4276 : ListCell *lc;
4277 :
4278 : /* Recursively transform child paths. */
4279 0 : foreach(lc, best_path->custom_paths)
4280 : {
4281 0 : Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc),
4282 : CP_EXACT_TLIST);
4283 :
4284 0 : custom_plans = lappend(custom_plans, plan);
4285 : }
4286 :
4287 : /*
4288 : * Sort clauses into the best execution order, although custom-scan
4289 : * provider can reorder them again.
4290 : */
4291 0 : scan_clauses = order_qual_clauses(root, scan_clauses);
4292 :
4293 : /*
4294 : * Invoke custom plan provider to create the Plan node represented by the
4295 : * CustomPath.
4296 : */
4297 0 : cplan = castNode(CustomScan,
4298 : best_path->methods->PlanCustomPath(root,
4299 : rel,
4300 : best_path,
4301 : tlist,
4302 : scan_clauses,
4303 : custom_plans));
4304 :
4305 : /*
4306 : * Copy cost data from Path to Plan; no need to make custom-plan providers
4307 : * do this
4308 : */
4309 0 : copy_generic_path_info(&cplan->scan.plan, &best_path->path);
4310 :
4311 : /* Likewise, copy the relids that are represented by this custom scan */
4312 0 : cplan->custom_relids = best_path->path.parent->relids;
4313 :
4314 : /*
4315 : * Replace any outer-relation variables with nestloop params in the qual
4316 : * and custom_exprs expressions. We do this last so that the custom-plan
4317 : * provider doesn't have to be involved. (Note that parts of custom_exprs
4318 : * could have come from join clauses, so doing this beforehand on the
4319 : * scan_clauses wouldn't work.) We assume custom_scan_tlist contains no
4320 : * such variables.
4321 : */
4322 0 : if (best_path->path.param_info)
4323 : {
4324 0 : cplan->scan.plan.qual = (List *)
4325 0 : replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
4326 0 : cplan->custom_exprs = (List *)
4327 0 : replace_nestloop_params(root, (Node *) cplan->custom_exprs);
4328 : }
4329 :
4330 0 : return cplan;
4331 : }
4332 :
4333 :
4334 : /*****************************************************************************
4335 : *
4336 : * JOIN METHODS
4337 : *
4338 : *****************************************************************************/
4339 :
4340 : static NestLoop *
4341 91196 : create_nestloop_plan(PlannerInfo *root,
4342 : NestPath *best_path)
4343 : {
4344 : NestLoop *join_plan;
4345 : Plan *outer_plan;
4346 : Plan *inner_plan;
4347 91196 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4348 91196 : List *joinrestrictclauses = best_path->jpath.joinrestrictinfo;
4349 : List *joinclauses;
4350 : List *otherclauses;
4351 : Relids outerrelids;
4352 : List *nestParams;
4353 91196 : Relids saveOuterRels = root->curOuterRels;
4354 :
4355 : /*
4356 : * If the inner path is parameterized by the topmost parent of the outer
4357 : * rel rather than the outer rel itself, fix that. (Nothing happens here
4358 : * if it is not so parameterized.)
4359 : */
4360 91196 : best_path->jpath.innerjoinpath =
4361 91196 : reparameterize_path_by_child(root,
4362 : best_path->jpath.innerjoinpath,
4363 91196 : best_path->jpath.outerjoinpath->parent);
4364 :
4365 : /*
4366 : * Failure here probably means that reparameterize_path_by_child() is not
4367 : * in sync with path_is_reparameterizable_by_child().
4368 : */
4369 : Assert(best_path->jpath.innerjoinpath != NULL);
4370 :
4371 : /* NestLoop can project, so no need to be picky about child tlists */
4372 91196 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath, 0);
4373 :
4374 : /* For a nestloop, include outer relids in curOuterRels for inner side */
4375 182392 : root->curOuterRels = bms_union(root->curOuterRels,
4376 91196 : best_path->jpath.outerjoinpath->parent->relids);
4377 :
4378 91196 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath, 0);
4379 :
4380 : /* Restore curOuterRels */
4381 91196 : bms_free(root->curOuterRels);
4382 91196 : root->curOuterRels = saveOuterRels;
4383 :
4384 : /* Sort join qual clauses into best execution order */
4385 91196 : joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
4386 :
4387 : /* Get the join qual clauses (in plain expression form) */
4388 : /* Any pseudoconstant clauses are ignored here */
4389 91196 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4390 : {
4391 21472 : extract_actual_join_clauses(joinrestrictclauses,
4392 21472 : best_path->jpath.path.parent->relids,
4393 : &joinclauses, &otherclauses);
4394 : }
4395 : else
4396 : {
4397 : /* We can treat all clauses alike for an inner join */
4398 69724 : joinclauses = extract_actual_clauses(joinrestrictclauses, false);
4399 69724 : otherclauses = NIL;
4400 : }
4401 :
4402 : /* Replace any outer-relation variables with nestloop params */
4403 91196 : if (best_path->jpath.path.param_info)
4404 : {
4405 870 : joinclauses = (List *)
4406 870 : replace_nestloop_params(root, (Node *) joinclauses);
4407 870 : otherclauses = (List *)
4408 870 : replace_nestloop_params(root, (Node *) otherclauses);
4409 : }
4410 :
4411 : /*
4412 : * Identify any nestloop parameters that should be supplied by this join
4413 : * node, and remove them from root->curOuterParams.
4414 : */
4415 91196 : outerrelids = best_path->jpath.outerjoinpath->parent->relids;
4416 91196 : nestParams = identify_current_nestloop_params(root, outerrelids);
4417 :
4418 91196 : join_plan = make_nestloop(tlist,
4419 : joinclauses,
4420 : otherclauses,
4421 : nestParams,
4422 : outer_plan,
4423 : inner_plan,
4424 : best_path->jpath.jointype,
4425 91196 : best_path->jpath.inner_unique);
4426 :
4427 91196 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4428 :
4429 91196 : return join_plan;
4430 : }
4431 :
4432 : static MergeJoin *
4433 7776 : create_mergejoin_plan(PlannerInfo *root,
4434 : MergePath *best_path)
4435 : {
4436 : MergeJoin *join_plan;
4437 : Plan *outer_plan;
4438 : Plan *inner_plan;
4439 7776 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4440 : List *joinclauses;
4441 : List *otherclauses;
4442 : List *mergeclauses;
4443 : List *outerpathkeys;
4444 : List *innerpathkeys;
4445 : int nClauses;
4446 : Oid *mergefamilies;
4447 : Oid *mergecollations;
4448 : bool *mergereversals;
4449 : bool *mergenullsfirst;
4450 : PathKey *opathkey;
4451 : EquivalenceClass *opeclass;
4452 : int i;
4453 : ListCell *lc;
4454 : ListCell *lop;
4455 : ListCell *lip;
4456 7776 : Path *outer_path = best_path->jpath.outerjoinpath;
4457 7776 : Path *inner_path = best_path->jpath.innerjoinpath;
4458 :
4459 : /*
4460 : * MergeJoin can project, so we don't have to demand exact tlists from the
4461 : * inputs. However, if we're intending to sort an input's result, it's
4462 : * best to request a small tlist so we aren't sorting more data than
4463 : * necessary.
4464 : */
4465 7776 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4466 7776 : (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4467 :
4468 7776 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4469 7776 : (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4470 :
4471 : /* Sort join qual clauses into best execution order */
4472 : /* NB: do NOT reorder the mergeclauses */
4473 7776 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4474 :
4475 : /* Get the join qual clauses (in plain expression form) */
4476 : /* Any pseudoconstant clauses are ignored here */
4477 7776 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4478 : {
4479 5342 : extract_actual_join_clauses(joinclauses,
4480 5342 : best_path->jpath.path.parent->relids,
4481 : &joinclauses, &otherclauses);
4482 : }
4483 : else
4484 : {
4485 : /* We can treat all clauses alike for an inner join */
4486 2434 : joinclauses = extract_actual_clauses(joinclauses, false);
4487 2434 : otherclauses = NIL;
4488 : }
4489 :
4490 : /*
4491 : * Remove the mergeclauses from the list of join qual clauses, leaving the
4492 : * list of quals that must be checked as qpquals.
4493 : */
4494 7776 : mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
4495 7776 : joinclauses = list_difference(joinclauses, mergeclauses);
4496 :
4497 : /*
4498 : * Replace any outer-relation variables with nestloop params. There
4499 : * should not be any in the mergeclauses.
4500 : */
4501 7776 : if (best_path->jpath.path.param_info)
4502 : {
4503 6 : joinclauses = (List *)
4504 6 : replace_nestloop_params(root, (Node *) joinclauses);
4505 6 : otherclauses = (List *)
4506 6 : replace_nestloop_params(root, (Node *) otherclauses);
4507 : }
4508 :
4509 : /*
4510 : * Rearrange mergeclauses, if needed, so that the outer variable is always
4511 : * on the left; mark the mergeclause restrictinfos with correct
4512 : * outer_is_left status.
4513 : */
4514 7776 : mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
4515 7776 : best_path->jpath.outerjoinpath->parent->relids);
4516 :
4517 : /*
4518 : * Create explicit sort nodes for the outer and inner paths if necessary.
4519 : */
4520 7776 : if (best_path->outersortkeys)
4521 : {
4522 3032 : Relids outer_relids = outer_path->parent->relids;
4523 : Plan *sort_plan;
4524 3032 : bool use_incremental_sort = false;
4525 : int presorted_keys;
4526 :
4527 : /*
4528 : * We choose to use incremental sort if it is enabled and there are
4529 : * presorted keys; otherwise we use full sort.
4530 : */
4531 3032 : if (enable_incremental_sort)
4532 : {
4533 : bool is_sorted PG_USED_FOR_ASSERTS_ONLY;
4534 :
4535 3032 : is_sorted = pathkeys_count_contained_in(best_path->outersortkeys,
4536 : outer_path->pathkeys,
4537 : &presorted_keys);
4538 : Assert(!is_sorted);
4539 :
4540 3032 : if (presorted_keys > 0)
4541 12 : use_incremental_sort = true;
4542 : }
4543 :
4544 3032 : if (!use_incremental_sort)
4545 : {
4546 : sort_plan = (Plan *)
4547 3020 : make_sort_from_pathkeys(outer_plan,
4548 : best_path->outersortkeys,
4549 : outer_relids);
4550 :
4551 3020 : label_sort_with_costsize(root, (Sort *) sort_plan, -1.0);
4552 : }
4553 : else
4554 : {
4555 : sort_plan = (Plan *)
4556 12 : make_incrementalsort_from_pathkeys(outer_plan,
4557 : best_path->outersortkeys,
4558 : outer_relids,
4559 : presorted_keys);
4560 :
4561 12 : label_incrementalsort_with_costsize(root,
4562 : (IncrementalSort *) sort_plan,
4563 : best_path->outersortkeys,
4564 : -1.0);
4565 : }
4566 :
4567 3032 : outer_plan = sort_plan;
4568 3032 : outerpathkeys = best_path->outersortkeys;
4569 : }
4570 : else
4571 4744 : outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
4572 :
4573 7776 : if (best_path->innersortkeys)
4574 : {
4575 : /*
4576 : * We do not consider incremental sort for inner path, because
4577 : * incremental sort does not support mark/restore.
4578 : */
4579 :
4580 7272 : Relids inner_relids = inner_path->parent->relids;
4581 7272 : Sort *sort = make_sort_from_pathkeys(inner_plan,
4582 : best_path->innersortkeys,
4583 : inner_relids);
4584 :
4585 7272 : label_sort_with_costsize(root, sort, -1.0);
4586 7272 : inner_plan = (Plan *) sort;
4587 7272 : innerpathkeys = best_path->innersortkeys;
4588 : }
4589 : else
4590 504 : innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
4591 :
4592 : /*
4593 : * If specified, add a materialize node to shield the inner plan from the
4594 : * need to handle mark/restore.
4595 : */
4596 7776 : if (best_path->materialize_inner)
4597 : {
4598 170 : Plan *matplan = (Plan *) make_material(inner_plan);
4599 :
4600 : /*
4601 : * We assume the materialize will not spill to disk, and therefore
4602 : * charge just cpu_operator_cost per tuple. (Keep this estimate in
4603 : * sync with final_cost_mergejoin.)
4604 : */
4605 170 : copy_plan_costsize(matplan, inner_plan);
4606 170 : matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
4607 :
4608 170 : inner_plan = matplan;
4609 : }
4610 :
4611 : /*
4612 : * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
4613 : * executor. The information is in the pathkeys for the two inputs, but
4614 : * we need to be careful about the possibility of mergeclauses sharing a
4615 : * pathkey, as well as the possibility that the inner pathkeys are not in
4616 : * an order matching the mergeclauses.
4617 : */
4618 7776 : nClauses = list_length(mergeclauses);
4619 : Assert(nClauses == list_length(best_path->path_mergeclauses));
4620 7776 : mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
4621 7776 : mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
4622 7776 : mergereversals = (bool *) palloc(nClauses * sizeof(bool));
4623 7776 : mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
4624 :
4625 7776 : opathkey = NULL;
4626 7776 : opeclass = NULL;
4627 7776 : lop = list_head(outerpathkeys);
4628 7776 : lip = list_head(innerpathkeys);
4629 7776 : i = 0;
4630 16466 : foreach(lc, best_path->path_mergeclauses)
4631 : {
4632 8690 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
4633 : EquivalenceClass *oeclass;
4634 : EquivalenceClass *ieclass;
4635 8690 : PathKey *ipathkey = NULL;
4636 8690 : EquivalenceClass *ipeclass = NULL;
4637 8690 : bool first_inner_match = false;
4638 :
4639 : /* fetch outer/inner eclass from mergeclause */
4640 8690 : if (rinfo->outer_is_left)
4641 : {
4642 7012 : oeclass = rinfo->left_ec;
4643 7012 : ieclass = rinfo->right_ec;
4644 : }
4645 : else
4646 : {
4647 1678 : oeclass = rinfo->right_ec;
4648 1678 : ieclass = rinfo->left_ec;
4649 : }
4650 : Assert(oeclass != NULL);
4651 : Assert(ieclass != NULL);
4652 :
4653 : /*
4654 : * We must identify the pathkey elements associated with this clause
4655 : * by matching the eclasses (which should give a unique match, since
4656 : * the pathkey lists should be canonical). In typical cases the merge
4657 : * clauses are one-to-one with the pathkeys, but when dealing with
4658 : * partially redundant query conditions, things are more complicated.
4659 : *
4660 : * lop and lip reference the first as-yet-unmatched pathkey elements.
4661 : * If they're NULL then all pathkey elements have been matched.
4662 : *
4663 : * The ordering of the outer pathkeys should match the mergeclauses,
4664 : * by construction (see find_mergeclauses_for_outer_pathkeys()). There
4665 : * could be more than one mergeclause for the same outer pathkey, but
4666 : * no pathkey may be entirely skipped over.
4667 : */
4668 8690 : if (oeclass != opeclass) /* multiple matches are not interesting */
4669 : {
4670 : /* doesn't match the current opathkey, so must match the next */
4671 8678 : if (lop == NULL)
4672 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4673 8678 : opathkey = (PathKey *) lfirst(lop);
4674 8678 : opeclass = opathkey->pk_eclass;
4675 8678 : lop = lnext(outerpathkeys, lop);
4676 8678 : if (oeclass != opeclass)
4677 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4678 : }
4679 :
4680 : /*
4681 : * The inner pathkeys likewise should not have skipped-over keys, but
4682 : * it's possible for a mergeclause to reference some earlier inner
4683 : * pathkey if we had redundant pathkeys. For example we might have
4684 : * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x". The
4685 : * implied inner ordering is then "ORDER BY x, y, x", but the pathkey
4686 : * mechanism drops the second sort by x as redundant, and this code
4687 : * must cope.
4688 : *
4689 : * It's also possible for the implied inner-rel ordering to be like
4690 : * "ORDER BY x, y, x DESC". We still drop the second instance of x as
4691 : * redundant; but this means that the sort ordering of a redundant
4692 : * inner pathkey should not be considered significant. So we must
4693 : * detect whether this is the first clause matching an inner pathkey.
4694 : */
4695 8690 : if (lip)
4696 : {
4697 8672 : ipathkey = (PathKey *) lfirst(lip);
4698 8672 : ipeclass = ipathkey->pk_eclass;
4699 8672 : if (ieclass == ipeclass)
4700 : {
4701 : /* successful first match to this inner pathkey */
4702 8672 : lip = lnext(innerpathkeys, lip);
4703 8672 : first_inner_match = true;
4704 : }
4705 : }
4706 8690 : if (!first_inner_match)
4707 : {
4708 : /* redundant clause ... must match something before lip */
4709 : ListCell *l2;
4710 :
4711 18 : foreach(l2, innerpathkeys)
4712 : {
4713 18 : if (l2 == lip)
4714 0 : break;
4715 18 : ipathkey = (PathKey *) lfirst(l2);
4716 18 : ipeclass = ipathkey->pk_eclass;
4717 18 : if (ieclass == ipeclass)
4718 18 : break;
4719 : }
4720 18 : if (ieclass != ipeclass)
4721 0 : elog(ERROR, "inner pathkeys do not match mergeclauses");
4722 : }
4723 :
4724 : /*
4725 : * The pathkeys should always match each other as to opfamily and
4726 : * collation (which affect equality), but if we're considering a
4727 : * redundant inner pathkey, its sort ordering might not match. In
4728 : * such cases we may ignore the inner pathkey's sort ordering and use
4729 : * the outer's. (In effect, we're lying to the executor about the
4730 : * sort direction of this inner column, but it does not matter since
4731 : * the run-time row comparisons would only reach this column when
4732 : * there's equality for the earlier column containing the same eclass.
4733 : * There could be only one value in this column for the range of inner
4734 : * rows having a given value in the earlier column, so it does not
4735 : * matter which way we imagine this column to be ordered.) But a
4736 : * non-redundant inner pathkey had better match outer's ordering too.
4737 : */
4738 8690 : if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
4739 8690 : opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation)
4740 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4741 8690 : if (first_inner_match &&
4742 8672 : (opathkey->pk_strategy != ipathkey->pk_strategy ||
4743 8672 : opathkey->pk_nulls_first != ipathkey->pk_nulls_first))
4744 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4745 :
4746 : /* OK, save info for executor */
4747 8690 : mergefamilies[i] = opathkey->pk_opfamily;
4748 8690 : mergecollations[i] = opathkey->pk_eclass->ec_collation;
4749 8690 : mergereversals[i] = (opathkey->pk_strategy == BTGreaterStrategyNumber ? true : false);
4750 8690 : mergenullsfirst[i] = opathkey->pk_nulls_first;
4751 8690 : i++;
4752 : }
4753 :
4754 : /*
4755 : * Note: it is not an error if we have additional pathkey elements (i.e.,
4756 : * lop or lip isn't NULL here). The input paths might be better-sorted
4757 : * than we need for the current mergejoin.
4758 : */
4759 :
4760 : /*
4761 : * Now we can build the mergejoin node.
4762 : */
4763 7776 : join_plan = make_mergejoin(tlist,
4764 : joinclauses,
4765 : otherclauses,
4766 : mergeclauses,
4767 : mergefamilies,
4768 : mergecollations,
4769 : mergereversals,
4770 : mergenullsfirst,
4771 : outer_plan,
4772 : inner_plan,
4773 : best_path->jpath.jointype,
4774 7776 : best_path->jpath.inner_unique,
4775 7776 : best_path->skip_mark_restore);
4776 :
4777 : /* Costs of sort and material steps are included in path cost already */
4778 7776 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4779 :
4780 7776 : return join_plan;
4781 : }
4782 :
4783 : static HashJoin *
4784 30940 : create_hashjoin_plan(PlannerInfo *root,
4785 : HashPath *best_path)
4786 : {
4787 : HashJoin *join_plan;
4788 : Hash *hash_plan;
4789 : Plan *outer_plan;
4790 : Plan *inner_plan;
4791 30940 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4792 : List *joinclauses;
4793 : List *otherclauses;
4794 : List *hashclauses;
4795 30940 : List *hashoperators = NIL;
4796 30940 : List *hashcollations = NIL;
4797 30940 : List *inner_hashkeys = NIL;
4798 30940 : List *outer_hashkeys = NIL;
4799 30940 : Oid skewTable = InvalidOid;
4800 30940 : AttrNumber skewColumn = InvalidAttrNumber;
4801 30940 : bool skewInherit = false;
4802 : ListCell *lc;
4803 :
4804 : /*
4805 : * HashJoin can project, so we don't have to demand exact tlists from the
4806 : * inputs. However, it's best to request a small tlist from the inner
4807 : * side, so that we aren't storing more data than necessary. Likewise, if
4808 : * we anticipate batching, request a small tlist from the outer side so
4809 : * that we don't put extra data in the outer batch files.
4810 : */
4811 30940 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4812 30940 : (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0);
4813 :
4814 30940 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4815 : CP_SMALL_TLIST);
4816 :
4817 : /* Sort join qual clauses into best execution order */
4818 30940 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4819 : /* There's no point in sorting the hash clauses ... */
4820 :
4821 : /* Get the join qual clauses (in plain expression form) */
4822 : /* Any pseudoconstant clauses are ignored here */
4823 30940 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4824 : {
4825 10928 : extract_actual_join_clauses(joinclauses,
4826 10928 : best_path->jpath.path.parent->relids,
4827 : &joinclauses, &otherclauses);
4828 : }
4829 : else
4830 : {
4831 : /* We can treat all clauses alike for an inner join */
4832 20012 : joinclauses = extract_actual_clauses(joinclauses, false);
4833 20012 : otherclauses = NIL;
4834 : }
4835 :
4836 : /*
4837 : * Remove the hashclauses from the list of join qual clauses, leaving the
4838 : * list of quals that must be checked as qpquals.
4839 : */
4840 30940 : hashclauses = get_actual_clauses(best_path->path_hashclauses);
4841 30940 : joinclauses = list_difference(joinclauses, hashclauses);
4842 :
4843 : /*
4844 : * Replace any outer-relation variables with nestloop params. There
4845 : * should not be any in the hashclauses.
4846 : */
4847 30940 : if (best_path->jpath.path.param_info)
4848 : {
4849 166 : joinclauses = (List *)
4850 166 : replace_nestloop_params(root, (Node *) joinclauses);
4851 166 : otherclauses = (List *)
4852 166 : replace_nestloop_params(root, (Node *) otherclauses);
4853 : }
4854 :
4855 : /*
4856 : * Rearrange hashclauses, if needed, so that the outer variable is always
4857 : * on the left.
4858 : */
4859 30940 : hashclauses = get_switched_clauses(best_path->path_hashclauses,
4860 30940 : best_path->jpath.outerjoinpath->parent->relids);
4861 :
4862 : /*
4863 : * If there is a single join clause and we can identify the outer variable
4864 : * as a simple column reference, supply its identity for possible use in
4865 : * skew optimization. (Note: in principle we could do skew optimization
4866 : * with multiple join clauses, but we'd have to be able to determine the
4867 : * most common combinations of outer values, which we don't currently have
4868 : * enough stats for.)
4869 : */
4870 30940 : if (list_length(hashclauses) == 1)
4871 : {
4872 28602 : OpExpr *clause = (OpExpr *) linitial(hashclauses);
4873 : Node *node;
4874 :
4875 : Assert(is_opclause(clause));
4876 28602 : node = (Node *) linitial(clause->args);
4877 28602 : if (IsA(node, RelabelType))
4878 596 : node = (Node *) ((RelabelType *) node)->arg;
4879 28602 : if (IsA(node, Var))
4880 : {
4881 24664 : Var *var = (Var *) node;
4882 : RangeTblEntry *rte;
4883 :
4884 24664 : rte = root->simple_rte_array[var->varno];
4885 24664 : if (rte->rtekind == RTE_RELATION)
4886 : {
4887 21846 : skewTable = rte->relid;
4888 21846 : skewColumn = var->varattno;
4889 21846 : skewInherit = rte->inh;
4890 : }
4891 : }
4892 : }
4893 :
4894 : /*
4895 : * Collect hash related information. The hashed expressions are
4896 : * deconstructed into outer/inner expressions, so they can be computed
4897 : * separately (inner expressions are used to build the hashtable via Hash,
4898 : * outer expressions to perform lookups of tuples from HashJoin's outer
4899 : * plan in the hashtable). Also collect operator information necessary to
4900 : * build the hashtable.
4901 : */
4902 64314 : foreach(lc, hashclauses)
4903 : {
4904 33374 : OpExpr *hclause = lfirst_node(OpExpr, lc);
4905 :
4906 33374 : hashoperators = lappend_oid(hashoperators, hclause->opno);
4907 33374 : hashcollations = lappend_oid(hashcollations, hclause->inputcollid);
4908 33374 : outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args));
4909 33374 : inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args));
4910 : }
4911 :
4912 : /*
4913 : * Build the hash node and hash join node.
4914 : */
4915 30940 : hash_plan = make_hash(inner_plan,
4916 : inner_hashkeys,
4917 : skewTable,
4918 : skewColumn,
4919 : skewInherit);
4920 :
4921 : /*
4922 : * Set Hash node's startup & total costs equal to total cost of input
4923 : * plan; this only affects EXPLAIN display not decisions.
4924 : */
4925 30940 : copy_plan_costsize(&hash_plan->plan, inner_plan);
4926 30940 : hash_plan->plan.startup_cost = hash_plan->plan.total_cost;
4927 :
4928 : /*
4929 : * If parallel-aware, the executor will also need an estimate of the total
4930 : * number of rows expected from all participants so that it can size the
4931 : * shared hash table.
4932 : */
4933 30940 : if (best_path->jpath.path.parallel_aware)
4934 : {
4935 186 : hash_plan->plan.parallel_aware = true;
4936 186 : hash_plan->rows_total = best_path->inner_rows_total;
4937 : }
4938 :
4939 30940 : join_plan = make_hashjoin(tlist,
4940 : joinclauses,
4941 : otherclauses,
4942 : hashclauses,
4943 : hashoperators,
4944 : hashcollations,
4945 : outer_hashkeys,
4946 : outer_plan,
4947 : (Plan *) hash_plan,
4948 : best_path->jpath.jointype,
4949 30940 : best_path->jpath.inner_unique);
4950 :
4951 30940 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4952 :
4953 30940 : return join_plan;
4954 : }
4955 :
4956 :
4957 : /*****************************************************************************
4958 : *
4959 : * SUPPORTING ROUTINES
4960 : *
4961 : *****************************************************************************/
4962 :
4963 : /*
4964 : * replace_nestloop_params
4965 : * Replace outer-relation Vars and PlaceHolderVars in the given expression
4966 : * with nestloop Params
4967 : *
4968 : * All Vars and PlaceHolderVars belonging to the relation(s) identified by
4969 : * root->curOuterRels are replaced by Params, and entries are added to
4970 : * root->curOuterParams if not already present.
4971 : */
4972 : static Node *
4973 344486 : replace_nestloop_params(PlannerInfo *root, Node *expr)
4974 : {
4975 : /* No setup needed for tree walk, so away we go */
4976 344486 : return replace_nestloop_params_mutator(expr, root);
4977 : }
4978 :
4979 : static Node *
4980 1282784 : replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
4981 : {
4982 1282784 : if (node == NULL)
4983 84154 : return NULL;
4984 1198630 : if (IsA(node, Var))
4985 : {
4986 362824 : Var *var = (Var *) node;
4987 :
4988 : /* Upper-level Vars should be long gone at this point */
4989 : Assert(var->varlevelsup == 0);
4990 : /* If not to be replaced, we can just return the Var unmodified */
4991 362824 : if (IS_SPECIAL_VARNO(var->varno) ||
4992 362812 : !bms_is_member(var->varno, root->curOuterRels))
4993 268684 : return node;
4994 : /* Replace the Var with a nestloop Param */
4995 94140 : return (Node *) replace_nestloop_param_var(root, var);
4996 : }
4997 835806 : if (IsA(node, PlaceHolderVar))
4998 : {
4999 880 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
5000 :
5001 : /* Upper-level PlaceHolderVars should be long gone at this point */
5002 : Assert(phv->phlevelsup == 0);
5003 :
5004 : /* Check whether we need to replace the PHV */
5005 880 : if (!bms_is_subset(find_placeholder_info(root, phv)->ph_eval_at,
5006 880 : root->curOuterRels))
5007 : {
5008 : /*
5009 : * We can't replace the whole PHV, but we might still need to
5010 : * replace Vars or PHVs within its expression, in case it ends up
5011 : * actually getting evaluated here. (It might get evaluated in
5012 : * this plan node, or some child node; in the latter case we don't
5013 : * really need to process the expression here, but we haven't got
5014 : * enough info to tell if that's the case.) Flat-copy the PHV
5015 : * node and then recurse on its expression.
5016 : *
5017 : * Note that after doing this, we might have different
5018 : * representations of the contents of the same PHV in different
5019 : * parts of the plan tree. This is OK because equal() will just
5020 : * match on phid/phlevelsup, so setrefs.c will still recognize an
5021 : * upper-level reference to a lower-level copy of the same PHV.
5022 : */
5023 586 : PlaceHolderVar *newphv = makeNode(PlaceHolderVar);
5024 :
5025 586 : memcpy(newphv, phv, sizeof(PlaceHolderVar));
5026 586 : newphv->phexpr = (Expr *)
5027 586 : replace_nestloop_params_mutator((Node *) phv->phexpr,
5028 : root);
5029 586 : return (Node *) newphv;
5030 : }
5031 : /* Replace the PlaceHolderVar with a nestloop Param */
5032 294 : return (Node *) replace_nestloop_param_placeholdervar(root, phv);
5033 : }
5034 834926 : return expression_tree_mutator(node, replace_nestloop_params_mutator, root);
5035 : }
5036 :
5037 : /*
5038 : * fix_indexqual_references
5039 : * Adjust indexqual clauses to the form the executor's indexqual
5040 : * machinery needs.
5041 : *
5042 : * We have three tasks here:
5043 : * * Select the actual qual clauses out of the input IndexClause list,
5044 : * and remove RestrictInfo nodes from the qual clauses.
5045 : * * Replace any outer-relation Var or PHV nodes with nestloop Params.
5046 : * (XXX eventually, that responsibility should go elsewhere?)
5047 : * * Index keys must be represented by Var nodes with varattno set to the
5048 : * index's attribute number, not the attribute number in the original rel.
5049 : *
5050 : * *stripped_indexquals_p receives a list of the actual qual clauses.
5051 : *
5052 : * *fixed_indexquals_p receives a list of the adjusted quals. This is a copy
5053 : * that shares no substructure with the original; this is needed in case there
5054 : * are subplans in it (we need two separate copies of the subplan tree, or
5055 : * things will go awry).
5056 : */
5057 : static void
5058 176290 : fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
5059 : List **stripped_indexquals_p, List **fixed_indexquals_p)
5060 : {
5061 176290 : IndexOptInfo *index = index_path->indexinfo;
5062 : List *stripped_indexquals;
5063 : List *fixed_indexquals;
5064 : ListCell *lc;
5065 :
5066 176290 : stripped_indexquals = fixed_indexquals = NIL;
5067 :
5068 366512 : foreach(lc, index_path->indexclauses)
5069 : {
5070 190222 : IndexClause *iclause = lfirst_node(IndexClause, lc);
5071 190222 : int indexcol = iclause->indexcol;
5072 : ListCell *lc2;
5073 :
5074 381494 : foreach(lc2, iclause->indexquals)
5075 : {
5076 191272 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
5077 191272 : Node *clause = (Node *) rinfo->clause;
5078 :
5079 191272 : stripped_indexquals = lappend(stripped_indexquals, clause);
5080 191272 : clause = fix_indexqual_clause(root, index, indexcol,
5081 : clause, iclause->indexcols);
5082 191272 : fixed_indexquals = lappend(fixed_indexquals, clause);
5083 : }
5084 : }
5085 :
5086 176290 : *stripped_indexquals_p = stripped_indexquals;
5087 176290 : *fixed_indexquals_p = fixed_indexquals;
5088 176290 : }
5089 :
5090 : /*
5091 : * fix_indexorderby_references
5092 : * Adjust indexorderby clauses to the form the executor's index
5093 : * machinery needs.
5094 : *
5095 : * This is a simplified version of fix_indexqual_references. The input is
5096 : * bare clauses and a separate indexcol list, instead of IndexClauses.
5097 : */
5098 : static List *
5099 176290 : fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
5100 : {
5101 176290 : IndexOptInfo *index = index_path->indexinfo;
5102 : List *fixed_indexorderbys;
5103 : ListCell *lcc,
5104 : *lci;
5105 :
5106 176290 : fixed_indexorderbys = NIL;
5107 :
5108 176676 : forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
5109 : {
5110 386 : Node *clause = (Node *) lfirst(lcc);
5111 386 : int indexcol = lfirst_int(lci);
5112 :
5113 386 : clause = fix_indexqual_clause(root, index, indexcol, clause, NIL);
5114 386 : fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
5115 : }
5116 :
5117 176290 : return fixed_indexorderbys;
5118 : }
5119 :
5120 : /*
5121 : * fix_indexqual_clause
5122 : * Convert a single indexqual clause to the form needed by the executor.
5123 : *
5124 : * We replace nestloop params here, and replace the index key variables
5125 : * or expressions by index Var nodes.
5126 : */
5127 : static Node *
5128 191658 : fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol,
5129 : Node *clause, List *indexcolnos)
5130 : {
5131 : /*
5132 : * Replace any outer-relation variables with nestloop params.
5133 : *
5134 : * This also makes a copy of the clause, so it's safe to modify it
5135 : * in-place below.
5136 : */
5137 191658 : clause = replace_nestloop_params(root, clause);
5138 :
5139 191658 : if (IsA(clause, OpExpr))
5140 : {
5141 188910 : OpExpr *op = (OpExpr *) clause;
5142 :
5143 : /* Replace the indexkey expression with an index Var. */
5144 188910 : linitial(op->args) = fix_indexqual_operand(linitial(op->args),
5145 : index,
5146 : indexcol);
5147 : }
5148 2748 : else if (IsA(clause, RowCompareExpr))
5149 : {
5150 132 : RowCompareExpr *rc = (RowCompareExpr *) clause;
5151 : ListCell *lca,
5152 : *lcai;
5153 :
5154 : /* Replace the indexkey expressions with index Vars. */
5155 : Assert(list_length(rc->largs) == list_length(indexcolnos));
5156 396 : forboth(lca, rc->largs, lcai, indexcolnos)
5157 : {
5158 264 : lfirst(lca) = fix_indexqual_operand(lfirst(lca),
5159 : index,
5160 : lfirst_int(lcai));
5161 : }
5162 : }
5163 2616 : else if (IsA(clause, ScalarArrayOpExpr))
5164 : {
5165 1746 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
5166 :
5167 : /* Replace the indexkey expression with an index Var. */
5168 1746 : linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
5169 : index,
5170 : indexcol);
5171 : }
5172 870 : else if (IsA(clause, NullTest))
5173 : {
5174 870 : NullTest *nt = (NullTest *) clause;
5175 :
5176 : /* Replace the indexkey expression with an index Var. */
5177 870 : nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
5178 : index,
5179 : indexcol);
5180 : }
5181 : else
5182 0 : elog(ERROR, "unsupported indexqual type: %d",
5183 : (int) nodeTag(clause));
5184 :
5185 191658 : return clause;
5186 : }
5187 :
5188 : /*
5189 : * fix_indexqual_operand
5190 : * Convert an indexqual expression to a Var referencing the index column.
5191 : *
5192 : * We represent index keys by Var nodes having varno == INDEX_VAR and varattno
5193 : * equal to the index's attribute number (index column position).
5194 : *
5195 : * Most of the code here is just for sanity cross-checking that the given
5196 : * expression actually matches the index column it's claimed to.
5197 : */
5198 : static Node *
5199 191790 : fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
5200 : {
5201 : Var *result;
5202 : int pos;
5203 : ListCell *indexpr_item;
5204 :
5205 : /*
5206 : * Remove any binary-compatible relabeling of the indexkey
5207 : */
5208 191790 : if (IsA(node, RelabelType))
5209 626 : node = (Node *) ((RelabelType *) node)->arg;
5210 :
5211 : Assert(indexcol >= 0 && indexcol < index->ncolumns);
5212 :
5213 191790 : if (index->indexkeys[indexcol] != 0)
5214 : {
5215 : /* It's a simple index column */
5216 191426 : if (IsA(node, Var) &&
5217 191426 : ((Var *) node)->varno == index->rel->relid &&
5218 191426 : ((Var *) node)->varattno == index->indexkeys[indexcol])
5219 : {
5220 191426 : result = (Var *) copyObject(node);
5221 191426 : result->varno = INDEX_VAR;
5222 191426 : result->varattno = indexcol + 1;
5223 191426 : return (Node *) result;
5224 : }
5225 : else
5226 0 : elog(ERROR, "index key does not match expected index column");
5227 : }
5228 :
5229 : /* It's an index expression, so find and cross-check the expression */
5230 364 : indexpr_item = list_head(index->indexprs);
5231 364 : for (pos = 0; pos < index->ncolumns; pos++)
5232 : {
5233 364 : if (index->indexkeys[pos] == 0)
5234 : {
5235 364 : if (indexpr_item == NULL)
5236 0 : elog(ERROR, "too few entries in indexprs list");
5237 364 : if (pos == indexcol)
5238 : {
5239 : Node *indexkey;
5240 :
5241 364 : indexkey = (Node *) lfirst(indexpr_item);
5242 364 : if (indexkey && IsA(indexkey, RelabelType))
5243 10 : indexkey = (Node *) ((RelabelType *) indexkey)->arg;
5244 364 : if (equal(node, indexkey))
5245 : {
5246 364 : result = makeVar(INDEX_VAR, indexcol + 1,
5247 364 : exprType(lfirst(indexpr_item)), -1,
5248 364 : exprCollation(lfirst(indexpr_item)),
5249 : 0);
5250 364 : return (Node *) result;
5251 : }
5252 : else
5253 0 : elog(ERROR, "index key does not match expected index column");
5254 : }
5255 0 : indexpr_item = lnext(index->indexprs, indexpr_item);
5256 : }
5257 : }
5258 :
5259 : /* Oops... */
5260 0 : elog(ERROR, "index key does not match expected index column");
5261 : return NULL; /* keep compiler quiet */
5262 : }
5263 :
5264 : /*
5265 : * get_switched_clauses
5266 : * Given a list of merge or hash joinclauses (as RestrictInfo nodes),
5267 : * extract the bare clauses, and rearrange the elements within the
5268 : * clauses, if needed, so the outer join variable is on the left and
5269 : * the inner is on the right. The original clause data structure is not
5270 : * touched; a modified list is returned. We do, however, set the transient
5271 : * outer_is_left field in each RestrictInfo to show which side was which.
5272 : */
5273 : static List *
5274 38716 : get_switched_clauses(List *clauses, Relids outerrelids)
5275 : {
5276 38716 : List *t_list = NIL;
5277 : ListCell *l;
5278 :
5279 80780 : foreach(l, clauses)
5280 : {
5281 42064 : RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
5282 42064 : OpExpr *clause = (OpExpr *) restrictinfo->clause;
5283 :
5284 : Assert(is_opclause(clause));
5285 42064 : if (bms_is_subset(restrictinfo->right_relids, outerrelids))
5286 : {
5287 : /*
5288 : * Duplicate just enough of the structure to allow commuting the
5289 : * clause without changing the original list. Could use
5290 : * copyObject, but a complete deep copy is overkill.
5291 : */
5292 17652 : OpExpr *temp = makeNode(OpExpr);
5293 :
5294 17652 : temp->opno = clause->opno;
5295 17652 : temp->opfuncid = InvalidOid;
5296 17652 : temp->opresulttype = clause->opresulttype;
5297 17652 : temp->opretset = clause->opretset;
5298 17652 : temp->opcollid = clause->opcollid;
5299 17652 : temp->inputcollid = clause->inputcollid;
5300 17652 : temp->args = list_copy(clause->args);
5301 17652 : temp->location = clause->location;
5302 : /* Commute it --- note this modifies the temp node in-place. */
5303 17652 : CommuteOpExpr(temp);
5304 17652 : t_list = lappend(t_list, temp);
5305 17652 : restrictinfo->outer_is_left = false;
5306 : }
5307 : else
5308 : {
5309 : Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
5310 24412 : t_list = lappend(t_list, clause);
5311 24412 : restrictinfo->outer_is_left = true;
5312 : }
5313 : }
5314 38716 : return t_list;
5315 : }
5316 :
5317 : /*
5318 : * order_qual_clauses
5319 : * Given a list of qual clauses that will all be evaluated at the same
5320 : * plan node, sort the list into the order we want to check the quals
5321 : * in at runtime.
5322 : *
5323 : * When security barrier quals are used in the query, we may have quals with
5324 : * different security levels in the list. Quals of lower security_level
5325 : * must go before quals of higher security_level, except that we can grant
5326 : * exceptions to move up quals that are leakproof. When security level
5327 : * doesn't force the decision, we prefer to order clauses by estimated
5328 : * execution cost, cheapest first.
5329 : *
5330 : * Ideally the order should be driven by a combination of execution cost and
5331 : * selectivity, but it's not immediately clear how to account for both,
5332 : * and given the uncertainty of the estimates the reliability of the decisions
5333 : * would be doubtful anyway. So we just order by security level then
5334 : * estimated per-tuple cost, being careful not to change the order when
5335 : * (as is often the case) the estimates are identical.
5336 : *
5337 : * Although this will work on either bare clauses or RestrictInfos, it's
5338 : * much faster to apply it to RestrictInfos, since it can re-use cost
5339 : * information that is cached in RestrictInfos. XXX in the bare-clause
5340 : * case, we are also not able to apply security considerations. That is
5341 : * all right for the moment, because the bare-clause case doesn't occur
5342 : * anywhere that barrier quals could be present, but it would be better to
5343 : * get rid of it.
5344 : *
5345 : * Note: some callers pass lists that contain entries that will later be
5346 : * removed; this is the easiest way to let this routine see RestrictInfos
5347 : * instead of bare clauses. This is another reason why trying to consider
5348 : * selectivity in the ordering would likely do the wrong thing.
5349 : */
5350 : static List *
5351 910574 : order_qual_clauses(PlannerInfo *root, List *clauses)
5352 : {
5353 : typedef struct
5354 : {
5355 : Node *clause;
5356 : Cost cost;
5357 : Index security_level;
5358 : } QualItem;
5359 910574 : int nitems = list_length(clauses);
5360 : QualItem *items;
5361 : ListCell *lc;
5362 : int i;
5363 : List *result;
5364 :
5365 : /* No need to work hard for 0 or 1 clause */
5366 910574 : if (nitems <= 1)
5367 843686 : return clauses;
5368 :
5369 : /*
5370 : * Collect the items and costs into an array. This is to avoid repeated
5371 : * cost_qual_eval work if the inputs aren't RestrictInfos.
5372 : */
5373 66888 : items = (QualItem *) palloc(nitems * sizeof(QualItem));
5374 66888 : i = 0;
5375 224456 : foreach(lc, clauses)
5376 : {
5377 157568 : Node *clause = (Node *) lfirst(lc);
5378 : QualCost qcost;
5379 :
5380 157568 : cost_qual_eval_node(&qcost, clause, root);
5381 157568 : items[i].clause = clause;
5382 157568 : items[i].cost = qcost.per_tuple;
5383 157568 : if (IsA(clause, RestrictInfo))
5384 : {
5385 157476 : RestrictInfo *rinfo = (RestrictInfo *) clause;
5386 :
5387 : /*
5388 : * If a clause is leakproof, it doesn't have to be constrained by
5389 : * its nominal security level. If it's also reasonably cheap
5390 : * (here defined as 10X cpu_operator_cost), pretend it has
5391 : * security_level 0, which will allow it to go in front of
5392 : * more-expensive quals of lower security levels. Of course, that
5393 : * will also force it to go in front of cheaper quals of its own
5394 : * security level, which is not so great, but we can alleviate
5395 : * that risk by applying the cost limit cutoff.
5396 : */
5397 157476 : if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost)
5398 1164 : items[i].security_level = 0;
5399 : else
5400 156312 : items[i].security_level = rinfo->security_level;
5401 : }
5402 : else
5403 92 : items[i].security_level = 0;
5404 157568 : i++;
5405 : }
5406 :
5407 : /*
5408 : * Sort. We don't use qsort() because it's not guaranteed stable for
5409 : * equal keys. The expected number of entries is small enough that a
5410 : * simple insertion sort should be good enough.
5411 : */
5412 157568 : for (i = 1; i < nitems; i++)
5413 : {
5414 90680 : QualItem newitem = items[i];
5415 : int j;
5416 :
5417 : /* insert newitem into the already-sorted subarray */
5418 100974 : for (j = i; j > 0; j--)
5419 : {
5420 92842 : QualItem *olditem = &items[j - 1];
5421 :
5422 92842 : if (newitem.security_level > olditem->security_level ||
5423 92110 : (newitem.security_level == olditem->security_level &&
5424 90722 : newitem.cost >= olditem->cost))
5425 : break;
5426 10294 : items[j] = *olditem;
5427 : }
5428 90680 : items[j] = newitem;
5429 : }
5430 :
5431 : /* Convert back to a list */
5432 66888 : result = NIL;
5433 224456 : for (i = 0; i < nitems; i++)
5434 157568 : result = lappend(result, items[i].clause);
5435 :
5436 66888 : return result;
5437 : }
5438 :
5439 : /*
5440 : * Copy cost and size info from a Path node to the Plan node created from it.
5441 : * The executor usually won't use this info, but it's needed by EXPLAIN.
5442 : * Also copy the parallel-related flags, which the executor *will* use.
5443 : */
5444 : static void
5445 1107320 : copy_generic_path_info(Plan *dest, Path *src)
5446 : {
5447 1107320 : dest->disabled_nodes = src->disabled_nodes;
5448 1107320 : dest->startup_cost = src->startup_cost;
5449 1107320 : dest->total_cost = src->total_cost;
5450 1107320 : dest->plan_rows = src->rows;
5451 1107320 : dest->plan_width = src->pathtarget->width;
5452 1107320 : dest->parallel_aware = src->parallel_aware;
5453 1107320 : dest->parallel_safe = src->parallel_safe;
5454 1107320 : }
5455 :
5456 : /*
5457 : * Copy cost and size info from a lower plan node to an inserted node.
5458 : * (Most callers alter the info after copying it.)
5459 : */
5460 : static void
5461 40826 : copy_plan_costsize(Plan *dest, Plan *src)
5462 : {
5463 40826 : dest->disabled_nodes = src->disabled_nodes;
5464 40826 : dest->startup_cost = src->startup_cost;
5465 40826 : dest->total_cost = src->total_cost;
5466 40826 : dest->plan_rows = src->plan_rows;
5467 40826 : dest->plan_width = src->plan_width;
5468 : /* Assume the inserted node is not parallel-aware. */
5469 40826 : dest->parallel_aware = false;
5470 : /* Assume the inserted node is parallel-safe, if child plan is. */
5471 40826 : dest->parallel_safe = src->parallel_safe;
5472 40826 : }
5473 :
5474 : /*
5475 : * Some places in this file build Sort nodes that don't have a directly
5476 : * corresponding Path node. The cost of the sort is, or should have been,
5477 : * included in the cost of the Path node we're working from, but since it's
5478 : * not split out, we have to re-figure it using cost_sort(). This is just
5479 : * to label the Sort node nicely for EXPLAIN.
5480 : *
5481 : * limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
5482 : */
5483 : static void
5484 10378 : label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples)
5485 : {
5486 10378 : Plan *lefttree = plan->plan.lefttree;
5487 : Path sort_path; /* dummy for result of cost_sort */
5488 :
5489 : Assert(IsA(plan, Sort));
5490 :
5491 10378 : cost_sort(&sort_path, root, NIL,
5492 : plan->plan.disabled_nodes,
5493 : lefttree->total_cost,
5494 : lefttree->plan_rows,
5495 : lefttree->plan_width,
5496 : 0.0,
5497 : work_mem,
5498 : limit_tuples);
5499 10378 : plan->plan.startup_cost = sort_path.startup_cost;
5500 10378 : plan->plan.total_cost = sort_path.total_cost;
5501 10378 : plan->plan.plan_rows = lefttree->plan_rows;
5502 10378 : plan->plan.plan_width = lefttree->plan_width;
5503 10378 : plan->plan.parallel_aware = false;
5504 10378 : plan->plan.parallel_safe = lefttree->parallel_safe;
5505 10378 : }
5506 :
5507 : /*
5508 : * Same as label_sort_with_costsize, but labels the IncrementalSort node
5509 : * instead.
5510 : */
5511 : static void
5512 12 : label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
5513 : List *pathkeys, double limit_tuples)
5514 : {
5515 12 : Plan *lefttree = plan->sort.plan.lefttree;
5516 : Path sort_path; /* dummy for result of cost_incremental_sort */
5517 :
5518 : Assert(IsA(plan, IncrementalSort));
5519 :
5520 12 : cost_incremental_sort(&sort_path, root, pathkeys,
5521 : plan->nPresortedCols,
5522 : plan->sort.plan.disabled_nodes,
5523 : lefttree->startup_cost,
5524 : lefttree->total_cost,
5525 : lefttree->plan_rows,
5526 : lefttree->plan_width,
5527 : 0.0,
5528 : work_mem,
5529 : limit_tuples);
5530 12 : plan->sort.plan.startup_cost = sort_path.startup_cost;
5531 12 : plan->sort.plan.total_cost = sort_path.total_cost;
5532 12 : plan->sort.plan.plan_rows = lefttree->plan_rows;
5533 12 : plan->sort.plan.plan_width = lefttree->plan_width;
5534 12 : plan->sort.plan.parallel_aware = false;
5535 12 : plan->sort.plan.parallel_safe = lefttree->parallel_safe;
5536 12 : }
5537 :
5538 : /*
5539 : * bitmap_subplan_mark_shared
5540 : * Set isshared flag in bitmap subplan so that it will be created in
5541 : * shared memory.
5542 : */
5543 : static void
5544 30 : bitmap_subplan_mark_shared(Plan *plan)
5545 : {
5546 30 : if (IsA(plan, BitmapAnd))
5547 0 : bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans));
5548 30 : else if (IsA(plan, BitmapOr))
5549 : {
5550 0 : ((BitmapOr *) plan)->isshared = true;
5551 0 : bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans));
5552 : }
5553 30 : else if (IsA(plan, BitmapIndexScan))
5554 30 : ((BitmapIndexScan *) plan)->isshared = true;
5555 : else
5556 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(plan));
5557 30 : }
5558 :
5559 : /*****************************************************************************
5560 : *
5561 : * PLAN NODE BUILDING ROUTINES
5562 : *
5563 : * In general, these functions are not passed the original Path and therefore
5564 : * leave it to the caller to fill in the cost/width fields from the Path,
5565 : * typically by calling copy_generic_path_info(). This convention is
5566 : * somewhat historical, but it does support a few places above where we build
5567 : * a plan node without having an exactly corresponding Path node. Under no
5568 : * circumstances should one of these functions do its own cost calculations,
5569 : * as that would be redundant with calculations done while building Paths.
5570 : *
5571 : *****************************************************************************/
5572 :
5573 : static SeqScan *
5574 204462 : make_seqscan(List *qptlist,
5575 : List *qpqual,
5576 : Index scanrelid)
5577 : {
5578 204462 : SeqScan *node = makeNode(SeqScan);
5579 204462 : Plan *plan = &node->scan.plan;
5580 :
5581 204462 : plan->targetlist = qptlist;
5582 204462 : plan->qual = qpqual;
5583 204462 : plan->lefttree = NULL;
5584 204462 : plan->righttree = NULL;
5585 204462 : node->scan.scanrelid = scanrelid;
5586 :
5587 204462 : return node;
5588 : }
5589 :
5590 : static SampleScan *
5591 306 : make_samplescan(List *qptlist,
5592 : List *qpqual,
5593 : Index scanrelid,
5594 : TableSampleClause *tsc)
5595 : {
5596 306 : SampleScan *node = makeNode(SampleScan);
5597 306 : Plan *plan = &node->scan.plan;
5598 :
5599 306 : plan->targetlist = qptlist;
5600 306 : plan->qual = qpqual;
5601 306 : plan->lefttree = NULL;
5602 306 : plan->righttree = NULL;
5603 306 : node->scan.scanrelid = scanrelid;
5604 306 : node->tablesample = tsc;
5605 :
5606 306 : return node;
5607 : }
5608 :
5609 : static IndexScan *
5610 160426 : make_indexscan(List *qptlist,
5611 : List *qpqual,
5612 : Index scanrelid,
5613 : Oid indexid,
5614 : List *indexqual,
5615 : List *indexqualorig,
5616 : List *indexorderby,
5617 : List *indexorderbyorig,
5618 : List *indexorderbyops,
5619 : ScanDirection indexscandir)
5620 : {
5621 160426 : IndexScan *node = makeNode(IndexScan);
5622 160426 : Plan *plan = &node->scan.plan;
5623 :
5624 160426 : plan->targetlist = qptlist;
5625 160426 : plan->qual = qpqual;
5626 160426 : plan->lefttree = NULL;
5627 160426 : plan->righttree = NULL;
5628 160426 : node->scan.scanrelid = scanrelid;
5629 160426 : node->indexid = indexid;
5630 160426 : node->indexqual = indexqual;
5631 160426 : node->indexqualorig = indexqualorig;
5632 160426 : node->indexorderby = indexorderby;
5633 160426 : node->indexorderbyorig = indexorderbyorig;
5634 160426 : node->indexorderbyops = indexorderbyops;
5635 160426 : node->indexorderdir = indexscandir;
5636 :
5637 160426 : return node;
5638 : }
5639 :
5640 : static IndexOnlyScan *
5641 15864 : make_indexonlyscan(List *qptlist,
5642 : List *qpqual,
5643 : Index scanrelid,
5644 : Oid indexid,
5645 : List *indexqual,
5646 : List *recheckqual,
5647 : List *indexorderby,
5648 : List *indextlist,
5649 : ScanDirection indexscandir)
5650 : {
5651 15864 : IndexOnlyScan *node = makeNode(IndexOnlyScan);
5652 15864 : Plan *plan = &node->scan.plan;
5653 :
5654 15864 : plan->targetlist = qptlist;
5655 15864 : plan->qual = qpqual;
5656 15864 : plan->lefttree = NULL;
5657 15864 : plan->righttree = NULL;
5658 15864 : node->scan.scanrelid = scanrelid;
5659 15864 : node->indexid = indexid;
5660 15864 : node->indexqual = indexqual;
5661 15864 : node->recheckqual = recheckqual;
5662 15864 : node->indexorderby = indexorderby;
5663 15864 : node->indextlist = indextlist;
5664 15864 : node->indexorderdir = indexscandir;
5665 :
5666 15864 : return node;
5667 : }
5668 :
5669 : static BitmapIndexScan *
5670 21988 : make_bitmap_indexscan(Index scanrelid,
5671 : Oid indexid,
5672 : List *indexqual,
5673 : List *indexqualorig)
5674 : {
5675 21988 : BitmapIndexScan *node = makeNode(BitmapIndexScan);
5676 21988 : Plan *plan = &node->scan.plan;
5677 :
5678 21988 : plan->targetlist = NIL; /* not used */
5679 21988 : plan->qual = NIL; /* not used */
5680 21988 : plan->lefttree = NULL;
5681 21988 : plan->righttree = NULL;
5682 21988 : node->scan.scanrelid = scanrelid;
5683 21988 : node->indexid = indexid;
5684 21988 : node->indexqual = indexqual;
5685 21988 : node->indexqualorig = indexqualorig;
5686 :
5687 21988 : return node;
5688 : }
5689 :
5690 : static BitmapHeapScan *
5691 21372 : make_bitmap_heapscan(List *qptlist,
5692 : List *qpqual,
5693 : Plan *lefttree,
5694 : List *bitmapqualorig,
5695 : Index scanrelid)
5696 : {
5697 21372 : BitmapHeapScan *node = makeNode(BitmapHeapScan);
5698 21372 : Plan *plan = &node->scan.plan;
5699 :
5700 21372 : plan->targetlist = qptlist;
5701 21372 : plan->qual = qpqual;
5702 21372 : plan->lefttree = lefttree;
5703 21372 : plan->righttree = NULL;
5704 21372 : node->scan.scanrelid = scanrelid;
5705 21372 : node->bitmapqualorig = bitmapqualorig;
5706 :
5707 21372 : return node;
5708 : }
5709 :
5710 : static TidScan *
5711 732 : make_tidscan(List *qptlist,
5712 : List *qpqual,
5713 : Index scanrelid,
5714 : List *tidquals)
5715 : {
5716 732 : TidScan *node = makeNode(TidScan);
5717 732 : Plan *plan = &node->scan.plan;
5718 :
5719 732 : plan->targetlist = qptlist;
5720 732 : plan->qual = qpqual;
5721 732 : plan->lefttree = NULL;
5722 732 : plan->righttree = NULL;
5723 732 : node->scan.scanrelid = scanrelid;
5724 732 : node->tidquals = tidquals;
5725 :
5726 732 : return node;
5727 : }
5728 :
5729 : static TidRangeScan *
5730 1940 : make_tidrangescan(List *qptlist,
5731 : List *qpqual,
5732 : Index scanrelid,
5733 : List *tidrangequals)
5734 : {
5735 1940 : TidRangeScan *node = makeNode(TidRangeScan);
5736 1940 : Plan *plan = &node->scan.plan;
5737 :
5738 1940 : plan->targetlist = qptlist;
5739 1940 : plan->qual = qpqual;
5740 1940 : plan->lefttree = NULL;
5741 1940 : plan->righttree = NULL;
5742 1940 : node->scan.scanrelid = scanrelid;
5743 1940 : node->tidrangequals = tidrangequals;
5744 :
5745 1940 : return node;
5746 : }
5747 :
5748 : static SubqueryScan *
5749 25190 : make_subqueryscan(List *qptlist,
5750 : List *qpqual,
5751 : Index scanrelid,
5752 : Plan *subplan)
5753 : {
5754 25190 : SubqueryScan *node = makeNode(SubqueryScan);
5755 25190 : Plan *plan = &node->scan.plan;
5756 :
5757 25190 : plan->targetlist = qptlist;
5758 25190 : plan->qual = qpqual;
5759 25190 : plan->lefttree = NULL;
5760 25190 : plan->righttree = NULL;
5761 25190 : node->scan.scanrelid = scanrelid;
5762 25190 : node->subplan = subplan;
5763 25190 : node->scanstatus = SUBQUERY_SCAN_UNKNOWN;
5764 :
5765 25190 : return node;
5766 : }
5767 :
5768 : static FunctionScan *
5769 52090 : make_functionscan(List *qptlist,
5770 : List *qpqual,
5771 : Index scanrelid,
5772 : List *functions,
5773 : bool funcordinality)
5774 : {
5775 52090 : FunctionScan *node = makeNode(FunctionScan);
5776 52090 : Plan *plan = &node->scan.plan;
5777 :
5778 52090 : plan->targetlist = qptlist;
5779 52090 : plan->qual = qpqual;
5780 52090 : plan->lefttree = NULL;
5781 52090 : plan->righttree = NULL;
5782 52090 : node->scan.scanrelid = scanrelid;
5783 52090 : node->functions = functions;
5784 52090 : node->funcordinality = funcordinality;
5785 :
5786 52090 : return node;
5787 : }
5788 :
5789 : static TableFuncScan *
5790 626 : make_tablefuncscan(List *qptlist,
5791 : List *qpqual,
5792 : Index scanrelid,
5793 : TableFunc *tablefunc)
5794 : {
5795 626 : TableFuncScan *node = makeNode(TableFuncScan);
5796 626 : Plan *plan = &node->scan.plan;
5797 :
5798 626 : plan->targetlist = qptlist;
5799 626 : plan->qual = qpqual;
5800 626 : plan->lefttree = NULL;
5801 626 : plan->righttree = NULL;
5802 626 : node->scan.scanrelid = scanrelid;
5803 626 : node->tablefunc = tablefunc;
5804 :
5805 626 : return node;
5806 : }
5807 :
5808 : static ValuesScan *
5809 8160 : make_valuesscan(List *qptlist,
5810 : List *qpqual,
5811 : Index scanrelid,
5812 : List *values_lists)
5813 : {
5814 8160 : ValuesScan *node = makeNode(ValuesScan);
5815 8160 : Plan *plan = &node->scan.plan;
5816 :
5817 8160 : plan->targetlist = qptlist;
5818 8160 : plan->qual = qpqual;
5819 8160 : plan->lefttree = NULL;
5820 8160 : plan->righttree = NULL;
5821 8160 : node->scan.scanrelid = scanrelid;
5822 8160 : node->values_lists = values_lists;
5823 :
5824 8160 : return node;
5825 : }
5826 :
5827 : static CteScan *
5828 3986 : make_ctescan(List *qptlist,
5829 : List *qpqual,
5830 : Index scanrelid,
5831 : int ctePlanId,
5832 : int cteParam)
5833 : {
5834 3986 : CteScan *node = makeNode(CteScan);
5835 3986 : Plan *plan = &node->scan.plan;
5836 :
5837 3986 : plan->targetlist = qptlist;
5838 3986 : plan->qual = qpqual;
5839 3986 : plan->lefttree = NULL;
5840 3986 : plan->righttree = NULL;
5841 3986 : node->scan.scanrelid = scanrelid;
5842 3986 : node->ctePlanId = ctePlanId;
5843 3986 : node->cteParam = cteParam;
5844 :
5845 3986 : return node;
5846 : }
5847 :
5848 : static NamedTuplestoreScan *
5849 462 : make_namedtuplestorescan(List *qptlist,
5850 : List *qpqual,
5851 : Index scanrelid,
5852 : char *enrname)
5853 : {
5854 462 : NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan);
5855 462 : Plan *plan = &node->scan.plan;
5856 :
5857 : /* cost should be inserted by caller */
5858 462 : plan->targetlist = qptlist;
5859 462 : plan->qual = qpqual;
5860 462 : plan->lefttree = NULL;
5861 462 : plan->righttree = NULL;
5862 462 : node->scan.scanrelid = scanrelid;
5863 462 : node->enrname = enrname;
5864 :
5865 462 : return node;
5866 : }
5867 :
5868 : static WorkTableScan *
5869 896 : make_worktablescan(List *qptlist,
5870 : List *qpqual,
5871 : Index scanrelid,
5872 : int wtParam)
5873 : {
5874 896 : WorkTableScan *node = makeNode(WorkTableScan);
5875 896 : Plan *plan = &node->scan.plan;
5876 :
5877 896 : plan->targetlist = qptlist;
5878 896 : plan->qual = qpqual;
5879 896 : plan->lefttree = NULL;
5880 896 : plan->righttree = NULL;
5881 896 : node->scan.scanrelid = scanrelid;
5882 896 : node->wtParam = wtParam;
5883 :
5884 896 : return node;
5885 : }
5886 :
5887 : ForeignScan *
5888 2030 : make_foreignscan(List *qptlist,
5889 : List *qpqual,
5890 : Index scanrelid,
5891 : List *fdw_exprs,
5892 : List *fdw_private,
5893 : List *fdw_scan_tlist,
5894 : List *fdw_recheck_quals,
5895 : Plan *outer_plan)
5896 : {
5897 2030 : ForeignScan *node = makeNode(ForeignScan);
5898 2030 : Plan *plan = &node->scan.plan;
5899 :
5900 : /* cost will be filled in by create_foreignscan_plan */
5901 2030 : plan->targetlist = qptlist;
5902 2030 : plan->qual = qpqual;
5903 2030 : plan->lefttree = outer_plan;
5904 2030 : plan->righttree = NULL;
5905 2030 : node->scan.scanrelid = scanrelid;
5906 :
5907 : /* these may be overridden by the FDW's PlanDirectModify callback. */
5908 2030 : node->operation = CMD_SELECT;
5909 2030 : node->resultRelation = 0;
5910 :
5911 : /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5912 2030 : node->checkAsUser = InvalidOid;
5913 2030 : node->fs_server = InvalidOid;
5914 2030 : node->fdw_exprs = fdw_exprs;
5915 2030 : node->fdw_private = fdw_private;
5916 2030 : node->fdw_scan_tlist = fdw_scan_tlist;
5917 2030 : node->fdw_recheck_quals = fdw_recheck_quals;
5918 : /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5919 2030 : node->fs_relids = NULL;
5920 2030 : node->fs_base_relids = NULL;
5921 : /* fsSystemCol will be filled in by create_foreignscan_plan */
5922 2030 : node->fsSystemCol = false;
5923 :
5924 2030 : return node;
5925 : }
5926 :
5927 : static RecursiveUnion *
5928 896 : make_recursive_union(List *tlist,
5929 : Plan *lefttree,
5930 : Plan *righttree,
5931 : int wtParam,
5932 : List *distinctList,
5933 : long numGroups)
5934 : {
5935 896 : RecursiveUnion *node = makeNode(RecursiveUnion);
5936 896 : Plan *plan = &node->plan;
5937 896 : int numCols = list_length(distinctList);
5938 :
5939 896 : plan->targetlist = tlist;
5940 896 : plan->qual = NIL;
5941 896 : plan->lefttree = lefttree;
5942 896 : plan->righttree = righttree;
5943 896 : node->wtParam = wtParam;
5944 :
5945 : /*
5946 : * convert SortGroupClause list into arrays of attr indexes and equality
5947 : * operators, as wanted by executor
5948 : */
5949 896 : node->numCols = numCols;
5950 896 : if (numCols > 0)
5951 : {
5952 376 : int keyno = 0;
5953 : AttrNumber *dupColIdx;
5954 : Oid *dupOperators;
5955 : Oid *dupCollations;
5956 : ListCell *slitem;
5957 :
5958 376 : dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
5959 376 : dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
5960 376 : dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);
5961 :
5962 1432 : foreach(slitem, distinctList)
5963 : {
5964 1056 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
5965 1056 : TargetEntry *tle = get_sortgroupclause_tle(sortcl,
5966 : plan->targetlist);
5967 :
5968 1056 : dupColIdx[keyno] = tle->resno;
5969 1056 : dupOperators[keyno] = sortcl->eqop;
5970 1056 : dupCollations[keyno] = exprCollation((Node *) tle->expr);
5971 : Assert(OidIsValid(dupOperators[keyno]));
5972 1056 : keyno++;
5973 : }
5974 376 : node->dupColIdx = dupColIdx;
5975 376 : node->dupOperators = dupOperators;
5976 376 : node->dupCollations = dupCollations;
5977 : }
5978 896 : node->numGroups = numGroups;
5979 :
5980 896 : return node;
5981 : }
5982 :
5983 : static BitmapAnd *
5984 222 : make_bitmap_and(List *bitmapplans)
5985 : {
5986 222 : BitmapAnd *node = makeNode(BitmapAnd);
5987 222 : Plan *plan = &node->plan;
5988 :
5989 222 : plan->targetlist = NIL;
5990 222 : plan->qual = NIL;
5991 222 : plan->lefttree = NULL;
5992 222 : plan->righttree = NULL;
5993 222 : node->bitmapplans = bitmapplans;
5994 :
5995 222 : return node;
5996 : }
5997 :
5998 : static BitmapOr *
5999 388 : make_bitmap_or(List *bitmapplans)
6000 : {
6001 388 : BitmapOr *node = makeNode(BitmapOr);
6002 388 : Plan *plan = &node->plan;
6003 :
6004 388 : plan->targetlist = NIL;
6005 388 : plan->qual = NIL;
6006 388 : plan->lefttree = NULL;
6007 388 : plan->righttree = NULL;
6008 388 : node->bitmapplans = bitmapplans;
6009 :
6010 388 : return node;
6011 : }
6012 :
6013 : static NestLoop *
6014 91196 : make_nestloop(List *tlist,
6015 : List *joinclauses,
6016 : List *otherclauses,
6017 : List *nestParams,
6018 : Plan *lefttree,
6019 : Plan *righttree,
6020 : JoinType jointype,
6021 : bool inner_unique)
6022 : {
6023 91196 : NestLoop *node = makeNode(NestLoop);
6024 91196 : Plan *plan = &node->join.plan;
6025 :
6026 91196 : plan->targetlist = tlist;
6027 91196 : plan->qual = otherclauses;
6028 91196 : plan->lefttree = lefttree;
6029 91196 : plan->righttree = righttree;
6030 91196 : node->join.jointype = jointype;
6031 91196 : node->join.inner_unique = inner_unique;
6032 91196 : node->join.joinqual = joinclauses;
6033 91196 : node->nestParams = nestParams;
6034 :
6035 91196 : return node;
6036 : }
6037 :
6038 : static HashJoin *
6039 30940 : make_hashjoin(List *tlist,
6040 : List *joinclauses,
6041 : List *otherclauses,
6042 : List *hashclauses,
6043 : List *hashoperators,
6044 : List *hashcollations,
6045 : List *hashkeys,
6046 : Plan *lefttree,
6047 : Plan *righttree,
6048 : JoinType jointype,
6049 : bool inner_unique)
6050 : {
6051 30940 : HashJoin *node = makeNode(HashJoin);
6052 30940 : Plan *plan = &node->join.plan;
6053 :
6054 30940 : plan->targetlist = tlist;
6055 30940 : plan->qual = otherclauses;
6056 30940 : plan->lefttree = lefttree;
6057 30940 : plan->righttree = righttree;
6058 30940 : node->hashclauses = hashclauses;
6059 30940 : node->hashoperators = hashoperators;
6060 30940 : node->hashcollations = hashcollations;
6061 30940 : node->hashkeys = hashkeys;
6062 30940 : node->join.jointype = jointype;
6063 30940 : node->join.inner_unique = inner_unique;
6064 30940 : node->join.joinqual = joinclauses;
6065 :
6066 30940 : return node;
6067 : }
6068 :
6069 : static Hash *
6070 30940 : make_hash(Plan *lefttree,
6071 : List *hashkeys,
6072 : Oid skewTable,
6073 : AttrNumber skewColumn,
6074 : bool skewInherit)
6075 : {
6076 30940 : Hash *node = makeNode(Hash);
6077 30940 : Plan *plan = &node->plan;
6078 :
6079 30940 : plan->targetlist = lefttree->targetlist;
6080 30940 : plan->qual = NIL;
6081 30940 : plan->lefttree = lefttree;
6082 30940 : plan->righttree = NULL;
6083 :
6084 30940 : node->hashkeys = hashkeys;
6085 30940 : node->skewTable = skewTable;
6086 30940 : node->skewColumn = skewColumn;
6087 30940 : node->skewInherit = skewInherit;
6088 :
6089 30940 : return node;
6090 : }
6091 :
6092 : static MergeJoin *
6093 7776 : make_mergejoin(List *tlist,
6094 : List *joinclauses,
6095 : List *otherclauses,
6096 : List *mergeclauses,
6097 : Oid *mergefamilies,
6098 : Oid *mergecollations,
6099 : bool *mergereversals,
6100 : bool *mergenullsfirst,
6101 : Plan *lefttree,
6102 : Plan *righttree,
6103 : JoinType jointype,
6104 : bool inner_unique,
6105 : bool skip_mark_restore)
6106 : {
6107 7776 : MergeJoin *node = makeNode(MergeJoin);
6108 7776 : Plan *plan = &node->join.plan;
6109 :
6110 7776 : plan->targetlist = tlist;
6111 7776 : plan->qual = otherclauses;
6112 7776 : plan->lefttree = lefttree;
6113 7776 : plan->righttree = righttree;
6114 7776 : node->skip_mark_restore = skip_mark_restore;
6115 7776 : node->mergeclauses = mergeclauses;
6116 7776 : node->mergeFamilies = mergefamilies;
6117 7776 : node->mergeCollations = mergecollations;
6118 7776 : node->mergeReversals = mergereversals;
6119 7776 : node->mergeNullsFirst = mergenullsfirst;
6120 7776 : node->join.jointype = jointype;
6121 7776 : node->join.inner_unique = inner_unique;
6122 7776 : node->join.joinqual = joinclauses;
6123 :
6124 7776 : return node;
6125 : }
6126 :
6127 : /*
6128 : * make_sort --- basic routine to build a Sort plan node
6129 : *
6130 : * Caller must have built the sortColIdx, sortOperators, collations, and
6131 : * nullsFirst arrays already.
6132 : */
6133 : static Sort *
6134 74290 : make_sort(Plan *lefttree, int numCols,
6135 : AttrNumber *sortColIdx, Oid *sortOperators,
6136 : Oid *collations, bool *nullsFirst)
6137 : {
6138 : Sort *node;
6139 : Plan *plan;
6140 :
6141 74290 : node = makeNode(Sort);
6142 :
6143 74290 : plan = &node->plan;
6144 74290 : plan->targetlist = lefttree->targetlist;
6145 74290 : plan->disabled_nodes = lefttree->disabled_nodes + (enable_sort == false);
6146 74290 : plan->qual = NIL;
6147 74290 : plan->lefttree = lefttree;
6148 74290 : plan->righttree = NULL;
6149 74290 : node->numCols = numCols;
6150 74290 : node->sortColIdx = sortColIdx;
6151 74290 : node->sortOperators = sortOperators;
6152 74290 : node->collations = collations;
6153 74290 : node->nullsFirst = nullsFirst;
6154 :
6155 74290 : return node;
6156 : }
6157 :
6158 : /*
6159 : * make_incrementalsort --- basic routine to build an IncrementalSort plan node
6160 : *
6161 : * Caller must have built the sortColIdx, sortOperators, collations, and
6162 : * nullsFirst arrays already.
6163 : */
6164 : static IncrementalSort *
6165 790 : make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols,
6166 : AttrNumber *sortColIdx, Oid *sortOperators,
6167 : Oid *collations, bool *nullsFirst)
6168 : {
6169 : IncrementalSort *node;
6170 : Plan *plan;
6171 :
6172 790 : node = makeNode(IncrementalSort);
6173 :
6174 790 : plan = &node->sort.plan;
6175 790 : plan->targetlist = lefttree->targetlist;
6176 790 : plan->qual = NIL;
6177 790 : plan->lefttree = lefttree;
6178 790 : plan->righttree = NULL;
6179 790 : node->nPresortedCols = nPresortedCols;
6180 790 : node->sort.numCols = numCols;
6181 790 : node->sort.sortColIdx = sortColIdx;
6182 790 : node->sort.sortOperators = sortOperators;
6183 790 : node->sort.collations = collations;
6184 790 : node->sort.nullsFirst = nullsFirst;
6185 :
6186 790 : return node;
6187 : }
6188 :
6189 : /*
6190 : * prepare_sort_from_pathkeys
6191 : * Prepare to sort according to given pathkeys
6192 : *
6193 : * This is used to set up for Sort, MergeAppend, and Gather Merge nodes. It
6194 : * calculates the executor's representation of the sort key information, and
6195 : * adjusts the plan targetlist if needed to add resjunk sort columns.
6196 : *
6197 : * Input parameters:
6198 : * 'lefttree' is the plan node which yields input tuples
6199 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6200 : * 'relids' identifies the child relation being sorted, if any
6201 : * 'reqColIdx' is NULL or an array of required sort key column numbers
6202 : * 'adjust_tlist_in_place' is true if lefttree must be modified in-place
6203 : *
6204 : * We must convert the pathkey information into arrays of sort key column
6205 : * numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
6206 : * which is the representation the executor wants. These are returned into
6207 : * the output parameters *p_numsortkeys etc.
6208 : *
6209 : * When looking for matches to an EquivalenceClass's members, we will only
6210 : * consider child EC members if they belong to given 'relids'. This protects
6211 : * against possible incorrect matches to child expressions that contain no
6212 : * Vars.
6213 : *
6214 : * If reqColIdx isn't NULL then it contains sort key column numbers that
6215 : * we should match. This is used when making child plans for a MergeAppend;
6216 : * it's an error if we can't match the columns.
6217 : *
6218 : * If the pathkeys include expressions that aren't simple Vars, we will
6219 : * usually need to add resjunk items to the input plan's targetlist to
6220 : * compute these expressions, since a Sort or MergeAppend node itself won't
6221 : * do any such calculations. If the input plan type isn't one that can do
6222 : * projections, this means adding a Result node just to do the projection.
6223 : * However, the caller can pass adjust_tlist_in_place = true to force the
6224 : * lefttree tlist to be modified in-place regardless of whether the node type
6225 : * can project --- we use this for fixing the tlist of MergeAppend itself.
6226 : *
6227 : * Returns the node which is to be the input to the Sort (either lefttree,
6228 : * or a Result stacked atop lefttree).
6229 : */
6230 : static Plan *
6231 78068 : prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
6232 : Relids relids,
6233 : const AttrNumber *reqColIdx,
6234 : bool adjust_tlist_in_place,
6235 : int *p_numsortkeys,
6236 : AttrNumber **p_sortColIdx,
6237 : Oid **p_sortOperators,
6238 : Oid **p_collations,
6239 : bool **p_nullsFirst)
6240 : {
6241 78068 : List *tlist = lefttree->targetlist;
6242 : ListCell *i;
6243 : int numsortkeys;
6244 : AttrNumber *sortColIdx;
6245 : Oid *sortOperators;
6246 : Oid *collations;
6247 : bool *nullsFirst;
6248 :
6249 : /*
6250 : * We will need at most list_length(pathkeys) sort columns; possibly less
6251 : */
6252 78068 : numsortkeys = list_length(pathkeys);
6253 78068 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6254 78068 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6255 78068 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6256 78068 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6257 :
6258 78068 : numsortkeys = 0;
6259 :
6260 194918 : foreach(i, pathkeys)
6261 : {
6262 116850 : PathKey *pathkey = (PathKey *) lfirst(i);
6263 116850 : EquivalenceClass *ec = pathkey->pk_eclass;
6264 : EquivalenceMember *em;
6265 116850 : TargetEntry *tle = NULL;
6266 116850 : Oid pk_datatype = InvalidOid;
6267 : Oid sortop;
6268 : ListCell *j;
6269 :
6270 116850 : if (ec->ec_has_volatile)
6271 : {
6272 : /*
6273 : * If the pathkey's EquivalenceClass is volatile, then it must
6274 : * have come from an ORDER BY clause, and we have to match it to
6275 : * that same targetlist entry.
6276 : */
6277 176 : if (ec->ec_sortref == 0) /* can't happen */
6278 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6279 176 : tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
6280 : Assert(tle);
6281 : Assert(list_length(ec->ec_members) == 1);
6282 176 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6283 : }
6284 116674 : else if (reqColIdx != NULL)
6285 : {
6286 : /*
6287 : * If we are given a sort column number to match, only consider
6288 : * the single TLE at that position. It's possible that there is
6289 : * no such TLE, in which case fall through and generate a resjunk
6290 : * targetentry (we assume this must have happened in the parent
6291 : * plan as well). If there is a TLE but it doesn't match the
6292 : * pathkey's EC, we do the same, which is probably the wrong thing
6293 : * but we'll leave it to caller to complain about the mismatch.
6294 : */
6295 2980 : tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
6296 2980 : if (tle)
6297 : {
6298 2860 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6299 2860 : if (em)
6300 : {
6301 : /* found expr at right place in tlist */
6302 2860 : pk_datatype = em->em_datatype;
6303 : }
6304 : else
6305 0 : tle = NULL;
6306 : }
6307 : }
6308 : else
6309 : {
6310 : /*
6311 : * Otherwise, we can sort by any non-constant expression listed in
6312 : * the pathkey's EquivalenceClass. For now, we take the first
6313 : * tlist item found in the EC. If there's no match, we'll generate
6314 : * a resjunk entry using the first EC member that is an expression
6315 : * in the input's vars.
6316 : *
6317 : * XXX if we have a choice, is there any way of figuring out which
6318 : * might be cheapest to execute? (For example, int4lt is likely
6319 : * much cheaper to execute than numericlt, but both might appear
6320 : * in the same equivalence class...) Not clear that we ever will
6321 : * have an interesting choice in practice, so it may not matter.
6322 : */
6323 284252 : foreach(j, tlist)
6324 : {
6325 284002 : tle = (TargetEntry *) lfirst(j);
6326 284002 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6327 284002 : if (em)
6328 : {
6329 : /* found expr already in tlist */
6330 113444 : pk_datatype = em->em_datatype;
6331 113444 : break;
6332 : }
6333 170558 : tle = NULL;
6334 : }
6335 : }
6336 :
6337 116850 : if (!tle)
6338 : {
6339 : /*
6340 : * No matching tlist item; look for a computable expression.
6341 : */
6342 370 : em = find_computable_ec_member(NULL, ec, tlist, relids, false);
6343 370 : if (!em)
6344 0 : elog(ERROR, "could not find pathkey item to sort");
6345 370 : pk_datatype = em->em_datatype;
6346 :
6347 : /*
6348 : * Do we need to insert a Result node?
6349 : */
6350 370 : if (!adjust_tlist_in_place &&
6351 334 : !is_projection_capable_plan(lefttree))
6352 : {
6353 : /* copy needed so we don't modify input's tlist below */
6354 26 : tlist = copyObject(tlist);
6355 26 : lefttree = inject_projection_plan(lefttree, tlist,
6356 26 : lefttree->parallel_safe);
6357 : }
6358 :
6359 : /* Don't bother testing is_projection_capable_plan again */
6360 370 : adjust_tlist_in_place = true;
6361 :
6362 : /*
6363 : * Add resjunk entry to input's tlist
6364 : */
6365 370 : tle = makeTargetEntry(copyObject(em->em_expr),
6366 370 : list_length(tlist) + 1,
6367 : NULL,
6368 : true);
6369 370 : tlist = lappend(tlist, tle);
6370 370 : lefttree->targetlist = tlist; /* just in case NIL before */
6371 : }
6372 :
6373 : /*
6374 : * Look up the correct sort operator from the PathKey's slightly
6375 : * abstracted representation.
6376 : */
6377 116850 : sortop = get_opfamily_member(pathkey->pk_opfamily,
6378 : pk_datatype,
6379 : pk_datatype,
6380 116850 : pathkey->pk_strategy);
6381 116850 : if (!OidIsValid(sortop)) /* should not happen */
6382 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6383 : pathkey->pk_strategy, pk_datatype, pk_datatype,
6384 : pathkey->pk_opfamily);
6385 :
6386 : /* Add the column to the sort arrays */
6387 116850 : sortColIdx[numsortkeys] = tle->resno;
6388 116850 : sortOperators[numsortkeys] = sortop;
6389 116850 : collations[numsortkeys] = ec->ec_collation;
6390 116850 : nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
6391 116850 : numsortkeys++;
6392 : }
6393 :
6394 : /* Return results */
6395 78068 : *p_numsortkeys = numsortkeys;
6396 78068 : *p_sortColIdx = sortColIdx;
6397 78068 : *p_sortOperators = sortOperators;
6398 78068 : *p_collations = collations;
6399 78068 : *p_nullsFirst = nullsFirst;
6400 :
6401 78068 : return lefttree;
6402 : }
6403 :
6404 : /*
6405 : * make_sort_from_pathkeys
6406 : * Create sort plan to sort according to given pathkeys
6407 : *
6408 : * 'lefttree' is the node which yields input tuples
6409 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6410 : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6411 : */
6412 : static Sort *
6413 73964 : make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids)
6414 : {
6415 : int numsortkeys;
6416 : AttrNumber *sortColIdx;
6417 : Oid *sortOperators;
6418 : Oid *collations;
6419 : bool *nullsFirst;
6420 :
6421 : /* Compute sort column info, and adjust lefttree as needed */
6422 73964 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6423 : relids,
6424 : NULL,
6425 : false,
6426 : &numsortkeys,
6427 : &sortColIdx,
6428 : &sortOperators,
6429 : &collations,
6430 : &nullsFirst);
6431 :
6432 : /* Now build the Sort node */
6433 73964 : return make_sort(lefttree, numsortkeys,
6434 : sortColIdx, sortOperators,
6435 : collations, nullsFirst);
6436 : }
6437 :
6438 : /*
6439 : * make_incrementalsort_from_pathkeys
6440 : * Create sort plan to sort according to given pathkeys
6441 : *
6442 : * 'lefttree' is the node which yields input tuples
6443 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6444 : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6445 : * 'nPresortedCols' is the number of presorted columns in input tuples
6446 : */
6447 : static IncrementalSort *
6448 790 : make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys,
6449 : Relids relids, int nPresortedCols)
6450 : {
6451 : int numsortkeys;
6452 : AttrNumber *sortColIdx;
6453 : Oid *sortOperators;
6454 : Oid *collations;
6455 : bool *nullsFirst;
6456 :
6457 : /* Compute sort column info, and adjust lefttree as needed */
6458 790 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6459 : relids,
6460 : NULL,
6461 : false,
6462 : &numsortkeys,
6463 : &sortColIdx,
6464 : &sortOperators,
6465 : &collations,
6466 : &nullsFirst);
6467 :
6468 : /* Now build the Sort node */
6469 790 : return make_incrementalsort(lefttree, numsortkeys, nPresortedCols,
6470 : sortColIdx, sortOperators,
6471 : collations, nullsFirst);
6472 : }
6473 :
6474 : /*
6475 : * make_sort_from_sortclauses
6476 : * Create sort plan to sort according to given sortclauses
6477 : *
6478 : * 'sortcls' is a list of SortGroupClauses
6479 : * 'lefttree' is the node which yields input tuples
6480 : */
6481 : Sort *
6482 2 : make_sort_from_sortclauses(List *sortcls, Plan *lefttree)
6483 : {
6484 2 : List *sub_tlist = lefttree->targetlist;
6485 : ListCell *l;
6486 : int numsortkeys;
6487 : AttrNumber *sortColIdx;
6488 : Oid *sortOperators;
6489 : Oid *collations;
6490 : bool *nullsFirst;
6491 :
6492 : /* Convert list-ish representation to arrays wanted by executor */
6493 2 : numsortkeys = list_length(sortcls);
6494 2 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6495 2 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6496 2 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6497 2 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6498 :
6499 2 : numsortkeys = 0;
6500 4 : foreach(l, sortcls)
6501 : {
6502 2 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6503 2 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6504 :
6505 2 : sortColIdx[numsortkeys] = tle->resno;
6506 2 : sortOperators[numsortkeys] = sortcl->sortop;
6507 2 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6508 2 : nullsFirst[numsortkeys] = sortcl->nulls_first;
6509 2 : numsortkeys++;
6510 : }
6511 :
6512 2 : return make_sort(lefttree, numsortkeys,
6513 : sortColIdx, sortOperators,
6514 : collations, nullsFirst);
6515 : }
6516 :
6517 : /*
6518 : * make_sort_from_groupcols
6519 : * Create sort plan to sort based on grouping columns
6520 : *
6521 : * 'groupcls' is the list of SortGroupClauses
6522 : * 'grpColIdx' gives the column numbers to use
6523 : *
6524 : * This might look like it could be merged with make_sort_from_sortclauses,
6525 : * but presently we *must* use the grpColIdx[] array to locate sort columns,
6526 : * because the child plan's tlist is not marked with ressortgroupref info
6527 : * appropriate to the grouping node. So, only the sort ordering info
6528 : * is used from the SortGroupClause entries.
6529 : */
6530 : static Sort *
6531 240 : make_sort_from_groupcols(List *groupcls,
6532 : AttrNumber *grpColIdx,
6533 : Plan *lefttree)
6534 : {
6535 240 : List *sub_tlist = lefttree->targetlist;
6536 : ListCell *l;
6537 : int numsortkeys;
6538 : AttrNumber *sortColIdx;
6539 : Oid *sortOperators;
6540 : Oid *collations;
6541 : bool *nullsFirst;
6542 :
6543 : /* Convert list-ish representation to arrays wanted by executor */
6544 240 : numsortkeys = list_length(groupcls);
6545 240 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6546 240 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6547 240 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6548 240 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6549 :
6550 240 : numsortkeys = 0;
6551 570 : foreach(l, groupcls)
6552 : {
6553 330 : SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
6554 330 : TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
6555 :
6556 330 : if (!tle)
6557 0 : elog(ERROR, "could not retrieve tle for sort-from-groupcols");
6558 :
6559 330 : sortColIdx[numsortkeys] = tle->resno;
6560 330 : sortOperators[numsortkeys] = grpcl->sortop;
6561 330 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6562 330 : nullsFirst[numsortkeys] = grpcl->nulls_first;
6563 330 : numsortkeys++;
6564 : }
6565 :
6566 240 : return make_sort(lefttree, numsortkeys,
6567 : sortColIdx, sortOperators,
6568 : collations, nullsFirst);
6569 : }
6570 :
6571 : static Material *
6572 4210 : make_material(Plan *lefttree)
6573 : {
6574 4210 : Material *node = makeNode(Material);
6575 4210 : Plan *plan = &node->plan;
6576 :
6577 4210 : plan->targetlist = lefttree->targetlist;
6578 4210 : plan->qual = NIL;
6579 4210 : plan->lefttree = lefttree;
6580 4210 : plan->righttree = NULL;
6581 :
6582 4210 : return node;
6583 : }
6584 :
6585 : /*
6586 : * materialize_finished_plan: stick a Material node atop a completed plan
6587 : *
6588 : * There are a couple of places where we want to attach a Material node
6589 : * after completion of create_plan(), without any MaterialPath path.
6590 : * Those places should probably be refactored someday to do this on the
6591 : * Path representation, but it's not worth the trouble yet.
6592 : */
6593 : Plan *
6594 74 : materialize_finished_plan(Plan *subplan)
6595 : {
6596 : Plan *matplan;
6597 : Path matpath; /* dummy for result of cost_material */
6598 : Cost initplan_cost;
6599 : bool unsafe_initplans;
6600 :
6601 74 : matplan = (Plan *) make_material(subplan);
6602 :
6603 : /*
6604 : * XXX horrid kluge: if there are any initPlans attached to the subplan,
6605 : * move them up to the Material node, which is now effectively the top
6606 : * plan node in its query level. This prevents failure in
6607 : * SS_finalize_plan(), which see for comments.
6608 : */
6609 74 : matplan->initPlan = subplan->initPlan;
6610 74 : subplan->initPlan = NIL;
6611 :
6612 : /* Move the initplans' cost delta, as well */
6613 74 : SS_compute_initplan_cost(matplan->initPlan,
6614 : &initplan_cost, &unsafe_initplans);
6615 74 : subplan->startup_cost -= initplan_cost;
6616 74 : subplan->total_cost -= initplan_cost;
6617 :
6618 : /* Set cost data */
6619 74 : cost_material(&matpath,
6620 : subplan->disabled_nodes,
6621 : subplan->startup_cost,
6622 : subplan->total_cost,
6623 : subplan->plan_rows,
6624 : subplan->plan_width);
6625 74 : matplan->disabled_nodes = subplan->disabled_nodes;
6626 74 : matplan->startup_cost = matpath.startup_cost + initplan_cost;
6627 74 : matplan->total_cost = matpath.total_cost + initplan_cost;
6628 74 : matplan->plan_rows = subplan->plan_rows;
6629 74 : matplan->plan_width = subplan->plan_width;
6630 74 : matplan->parallel_aware = false;
6631 74 : matplan->parallel_safe = subplan->parallel_safe;
6632 :
6633 74 : return matplan;
6634 : }
6635 :
6636 : static Memoize *
6637 1630 : make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations,
6638 : List *param_exprs, bool singlerow, bool binary_mode,
6639 : uint32 est_entries, Bitmapset *keyparamids)
6640 : {
6641 1630 : Memoize *node = makeNode(Memoize);
6642 1630 : Plan *plan = &node->plan;
6643 :
6644 1630 : plan->targetlist = lefttree->targetlist;
6645 1630 : plan->qual = NIL;
6646 1630 : plan->lefttree = lefttree;
6647 1630 : plan->righttree = NULL;
6648 :
6649 1630 : node->numKeys = list_length(param_exprs);
6650 1630 : node->hashOperators = hashoperators;
6651 1630 : node->collations = collations;
6652 1630 : node->param_exprs = param_exprs;
6653 1630 : node->singlerow = singlerow;
6654 1630 : node->binary_mode = binary_mode;
6655 1630 : node->est_entries = est_entries;
6656 1630 : node->keyparamids = keyparamids;
6657 :
6658 1630 : return node;
6659 : }
6660 :
6661 : Agg *
6662 41708 : make_agg(List *tlist, List *qual,
6663 : AggStrategy aggstrategy, AggSplit aggsplit,
6664 : int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
6665 : List *groupingSets, List *chain, double dNumGroups,
6666 : Size transitionSpace, Plan *lefttree)
6667 : {
6668 41708 : Agg *node = makeNode(Agg);
6669 41708 : Plan *plan = &node->plan;
6670 : long numGroups;
6671 :
6672 : /* Reduce to long, but 'ware overflow! */
6673 41708 : numGroups = clamp_cardinality_to_long(dNumGroups);
6674 :
6675 41708 : node->aggstrategy = aggstrategy;
6676 41708 : node->aggsplit = aggsplit;
6677 41708 : node->numCols = numGroupCols;
6678 41708 : node->grpColIdx = grpColIdx;
6679 41708 : node->grpOperators = grpOperators;
6680 41708 : node->grpCollations = grpCollations;
6681 41708 : node->numGroups = numGroups;
6682 41708 : node->transitionSpace = transitionSpace;
6683 41708 : node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6684 41708 : node->groupingSets = groupingSets;
6685 41708 : node->chain = chain;
6686 :
6687 41708 : plan->qual = qual;
6688 41708 : plan->targetlist = tlist;
6689 41708 : plan->lefttree = lefttree;
6690 41708 : plan->righttree = NULL;
6691 :
6692 41708 : return node;
6693 : }
6694 :
6695 : static WindowAgg *
6696 2546 : make_windowagg(List *tlist, WindowClause *wc,
6697 : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
6698 : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
6699 : List *runCondition, List *qual, bool topWindow, Plan *lefttree)
6700 : {
6701 2546 : WindowAgg *node = makeNode(WindowAgg);
6702 2546 : Plan *plan = &node->plan;
6703 :
6704 2546 : node->winname = wc->name;
6705 2546 : node->winref = wc->winref;
6706 2546 : node->partNumCols = partNumCols;
6707 2546 : node->partColIdx = partColIdx;
6708 2546 : node->partOperators = partOperators;
6709 2546 : node->partCollations = partCollations;
6710 2546 : node->ordNumCols = ordNumCols;
6711 2546 : node->ordColIdx = ordColIdx;
6712 2546 : node->ordOperators = ordOperators;
6713 2546 : node->ordCollations = ordCollations;
6714 2546 : node->frameOptions = wc->frameOptions;
6715 2546 : node->startOffset = wc->startOffset;
6716 2546 : node->endOffset = wc->endOffset;
6717 2546 : node->runCondition = runCondition;
6718 : /* a duplicate of the above for EXPLAIN */
6719 2546 : node->runConditionOrig = runCondition;
6720 2546 : node->startInRangeFunc = wc->startInRangeFunc;
6721 2546 : node->endInRangeFunc = wc->endInRangeFunc;
6722 2546 : node->inRangeColl = wc->inRangeColl;
6723 2546 : node->inRangeAsc = wc->inRangeAsc;
6724 2546 : node->inRangeNullsFirst = wc->inRangeNullsFirst;
6725 2546 : node->topWindow = topWindow;
6726 :
6727 2546 : plan->targetlist = tlist;
6728 2546 : plan->lefttree = lefttree;
6729 2546 : plan->righttree = NULL;
6730 2546 : plan->qual = qual;
6731 :
6732 2546 : return node;
6733 : }
6734 :
6735 : static Group *
6736 246 : make_group(List *tlist,
6737 : List *qual,
6738 : int numGroupCols,
6739 : AttrNumber *grpColIdx,
6740 : Oid *grpOperators,
6741 : Oid *grpCollations,
6742 : Plan *lefttree)
6743 : {
6744 246 : Group *node = makeNode(Group);
6745 246 : Plan *plan = &node->plan;
6746 :
6747 246 : node->numCols = numGroupCols;
6748 246 : node->grpColIdx = grpColIdx;
6749 246 : node->grpOperators = grpOperators;
6750 246 : node->grpCollations = grpCollations;
6751 :
6752 246 : plan->qual = qual;
6753 246 : plan->targetlist = tlist;
6754 246 : plan->lefttree = lefttree;
6755 246 : plan->righttree = NULL;
6756 :
6757 246 : return node;
6758 : }
6759 :
6760 : /*
6761 : * distinctList is a list of SortGroupClauses, identifying the targetlist items
6762 : * that should be considered by the Unique filter. The input path must
6763 : * already be sorted accordingly.
6764 : */
6765 : static Unique *
6766 2 : make_unique_from_sortclauses(Plan *lefttree, List *distinctList)
6767 : {
6768 2 : Unique *node = makeNode(Unique);
6769 2 : Plan *plan = &node->plan;
6770 2 : int numCols = list_length(distinctList);
6771 2 : int keyno = 0;
6772 : AttrNumber *uniqColIdx;
6773 : Oid *uniqOperators;
6774 : Oid *uniqCollations;
6775 : ListCell *slitem;
6776 :
6777 2 : plan->targetlist = lefttree->targetlist;
6778 2 : plan->qual = NIL;
6779 2 : plan->lefttree = lefttree;
6780 2 : plan->righttree = NULL;
6781 :
6782 : /*
6783 : * convert SortGroupClause list into arrays of attr indexes and equality
6784 : * operators, as wanted by executor
6785 : */
6786 : Assert(numCols > 0);
6787 2 : uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6788 2 : uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6789 2 : uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6790 :
6791 4 : foreach(slitem, distinctList)
6792 : {
6793 2 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
6794 2 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
6795 :
6796 2 : uniqColIdx[keyno] = tle->resno;
6797 2 : uniqOperators[keyno] = sortcl->eqop;
6798 2 : uniqCollations[keyno] = exprCollation((Node *) tle->expr);
6799 : Assert(OidIsValid(uniqOperators[keyno]));
6800 2 : keyno++;
6801 : }
6802 :
6803 2 : node->numCols = numCols;
6804 2 : node->uniqColIdx = uniqColIdx;
6805 2 : node->uniqOperators = uniqOperators;
6806 2 : node->uniqCollations = uniqCollations;
6807 :
6808 2 : return node;
6809 : }
6810 :
6811 : /*
6812 : * as above, but use pathkeys to identify the sort columns and semantics
6813 : */
6814 : static Unique *
6815 5346 : make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols)
6816 : {
6817 5346 : Unique *node = makeNode(Unique);
6818 5346 : Plan *plan = &node->plan;
6819 5346 : int keyno = 0;
6820 : AttrNumber *uniqColIdx;
6821 : Oid *uniqOperators;
6822 : Oid *uniqCollations;
6823 : ListCell *lc;
6824 :
6825 5346 : plan->targetlist = lefttree->targetlist;
6826 5346 : plan->qual = NIL;
6827 5346 : plan->lefttree = lefttree;
6828 5346 : plan->righttree = NULL;
6829 :
6830 : /*
6831 : * Convert pathkeys list into arrays of attr indexes and equality
6832 : * operators, as wanted by executor. This has a lot in common with
6833 : * prepare_sort_from_pathkeys ... maybe unify sometime?
6834 : */
6835 : Assert(numCols >= 0 && numCols <= list_length(pathkeys));
6836 5346 : uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6837 5346 : uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6838 5346 : uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6839 :
6840 17676 : foreach(lc, pathkeys)
6841 : {
6842 12372 : PathKey *pathkey = (PathKey *) lfirst(lc);
6843 12372 : EquivalenceClass *ec = pathkey->pk_eclass;
6844 : EquivalenceMember *em;
6845 12372 : TargetEntry *tle = NULL;
6846 12372 : Oid pk_datatype = InvalidOid;
6847 : Oid eqop;
6848 : ListCell *j;
6849 :
6850 : /* Ignore pathkeys beyond the specified number of columns */
6851 12372 : if (keyno >= numCols)
6852 42 : break;
6853 :
6854 12330 : if (ec->ec_has_volatile)
6855 : {
6856 : /*
6857 : * If the pathkey's EquivalenceClass is volatile, then it must
6858 : * have come from an ORDER BY clause, and we have to match it to
6859 : * that same targetlist entry.
6860 : */
6861 30 : if (ec->ec_sortref == 0) /* can't happen */
6862 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6863 30 : tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist);
6864 : Assert(tle);
6865 : Assert(list_length(ec->ec_members) == 1);
6866 30 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6867 : }
6868 : else
6869 : {
6870 : /*
6871 : * Otherwise, we can use any non-constant expression listed in the
6872 : * pathkey's EquivalenceClass. For now, we take the first tlist
6873 : * item found in the EC.
6874 : */
6875 23902 : foreach(j, plan->targetlist)
6876 : {
6877 23902 : tle = (TargetEntry *) lfirst(j);
6878 23902 : em = find_ec_member_matching_expr(ec, tle->expr, NULL);
6879 23902 : if (em)
6880 : {
6881 : /* found expr already in tlist */
6882 12300 : pk_datatype = em->em_datatype;
6883 12300 : break;
6884 : }
6885 11602 : tle = NULL;
6886 : }
6887 : }
6888 :
6889 12330 : if (!tle)
6890 0 : elog(ERROR, "could not find pathkey item to sort");
6891 :
6892 : /*
6893 : * Look up the correct equality operator from the PathKey's slightly
6894 : * abstracted representation.
6895 : */
6896 12330 : eqop = get_opfamily_member(pathkey->pk_opfamily,
6897 : pk_datatype,
6898 : pk_datatype,
6899 : BTEqualStrategyNumber);
6900 12330 : if (!OidIsValid(eqop)) /* should not happen */
6901 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6902 : BTEqualStrategyNumber, pk_datatype, pk_datatype,
6903 : pathkey->pk_opfamily);
6904 :
6905 12330 : uniqColIdx[keyno] = tle->resno;
6906 12330 : uniqOperators[keyno] = eqop;
6907 12330 : uniqCollations[keyno] = ec->ec_collation;
6908 :
6909 12330 : keyno++;
6910 : }
6911 :
6912 5346 : node->numCols = numCols;
6913 5346 : node->uniqColIdx = uniqColIdx;
6914 5346 : node->uniqOperators = uniqOperators;
6915 5346 : node->uniqCollations = uniqCollations;
6916 :
6917 5346 : return node;
6918 : }
6919 :
6920 : static Gather *
6921 948 : make_gather(List *qptlist,
6922 : List *qpqual,
6923 : int nworkers,
6924 : int rescan_param,
6925 : bool single_copy,
6926 : Plan *subplan)
6927 : {
6928 948 : Gather *node = makeNode(Gather);
6929 948 : Plan *plan = &node->plan;
6930 :
6931 948 : plan->targetlist = qptlist;
6932 948 : plan->qual = qpqual;
6933 948 : plan->lefttree = subplan;
6934 948 : plan->righttree = NULL;
6935 948 : node->num_workers = nworkers;
6936 948 : node->rescan_param = rescan_param;
6937 948 : node->single_copy = single_copy;
6938 948 : node->invisible = false;
6939 948 : node->initParam = NULL;
6940 :
6941 948 : return node;
6942 : }
6943 :
6944 : /*
6945 : * groupList is a list of SortGroupClauses, identifying the targetlist
6946 : * items that should be considered by the SetOp filter. The input plans must
6947 : * already be sorted accordingly, if we're doing SETOP_SORTED mode.
6948 : */
6949 : static SetOp *
6950 662 : make_setop(SetOpCmd cmd, SetOpStrategy strategy,
6951 : List *tlist, Plan *lefttree, Plan *righttree,
6952 : List *groupList, long numGroups)
6953 : {
6954 662 : SetOp *node = makeNode(SetOp);
6955 662 : Plan *plan = &node->plan;
6956 662 : int numCols = list_length(groupList);
6957 662 : int keyno = 0;
6958 : AttrNumber *cmpColIdx;
6959 : Oid *cmpOperators;
6960 : Oid *cmpCollations;
6961 : bool *cmpNullsFirst;
6962 : ListCell *slitem;
6963 :
6964 662 : plan->targetlist = tlist;
6965 662 : plan->qual = NIL;
6966 662 : plan->lefttree = lefttree;
6967 662 : plan->righttree = righttree;
6968 :
6969 : /*
6970 : * convert SortGroupClause list into arrays of attr indexes and comparison
6971 : * operators, as wanted by executor
6972 : */
6973 662 : cmpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6974 662 : cmpOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6975 662 : cmpCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6976 662 : cmpNullsFirst = (bool *) palloc(sizeof(bool) * numCols);
6977 :
6978 2910 : foreach(slitem, groupList)
6979 : {
6980 2248 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
6981 2248 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
6982 :
6983 2248 : cmpColIdx[keyno] = tle->resno;
6984 2248 : if (strategy == SETOP_HASHED)
6985 1090 : cmpOperators[keyno] = sortcl->eqop;
6986 : else
6987 1158 : cmpOperators[keyno] = sortcl->sortop;
6988 : Assert(OidIsValid(cmpOperators[keyno]));
6989 2248 : cmpCollations[keyno] = exprCollation((Node *) tle->expr);
6990 2248 : cmpNullsFirst[keyno] = sortcl->nulls_first;
6991 2248 : keyno++;
6992 : }
6993 :
6994 662 : node->cmd = cmd;
6995 662 : node->strategy = strategy;
6996 662 : node->numCols = numCols;
6997 662 : node->cmpColIdx = cmpColIdx;
6998 662 : node->cmpOperators = cmpOperators;
6999 662 : node->cmpCollations = cmpCollations;
7000 662 : node->cmpNullsFirst = cmpNullsFirst;
7001 662 : node->numGroups = numGroups;
7002 :
7003 662 : return node;
7004 : }
7005 :
7006 : /*
7007 : * make_lockrows
7008 : * Build a LockRows plan node
7009 : */
7010 : static LockRows *
7011 7622 : make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
7012 : {
7013 7622 : LockRows *node = makeNode(LockRows);
7014 7622 : Plan *plan = &node->plan;
7015 :
7016 7622 : plan->targetlist = lefttree->targetlist;
7017 7622 : plan->qual = NIL;
7018 7622 : plan->lefttree = lefttree;
7019 7622 : plan->righttree = NULL;
7020 :
7021 7622 : node->rowMarks = rowMarks;
7022 7622 : node->epqParam = epqParam;
7023 :
7024 7622 : return node;
7025 : }
7026 :
7027 : /*
7028 : * make_limit
7029 : * Build a Limit plan node
7030 : */
7031 : Limit *
7032 4660 : make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
7033 : LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx,
7034 : Oid *uniqOperators, Oid *uniqCollations)
7035 : {
7036 4660 : Limit *node = makeNode(Limit);
7037 4660 : Plan *plan = &node->plan;
7038 :
7039 4660 : plan->targetlist = lefttree->targetlist;
7040 4660 : plan->qual = NIL;
7041 4660 : plan->lefttree = lefttree;
7042 4660 : plan->righttree = NULL;
7043 :
7044 4660 : node->limitOffset = limitOffset;
7045 4660 : node->limitCount = limitCount;
7046 4660 : node->limitOption = limitOption;
7047 4660 : node->uniqNumCols = uniqNumCols;
7048 4660 : node->uniqColIdx = uniqColIdx;
7049 4660 : node->uniqOperators = uniqOperators;
7050 4660 : node->uniqCollations = uniqCollations;
7051 :
7052 4660 : return node;
7053 : }
7054 :
7055 : /*
7056 : * make_result
7057 : * Build a Result plan node
7058 : */
7059 : static Result *
7060 233102 : make_result(List *tlist,
7061 : Node *resconstantqual,
7062 : Plan *subplan)
7063 : {
7064 233102 : Result *node = makeNode(Result);
7065 233102 : Plan *plan = &node->plan;
7066 :
7067 233102 : plan->targetlist = tlist;
7068 233102 : plan->qual = NIL;
7069 233102 : plan->lefttree = subplan;
7070 233102 : plan->righttree = NULL;
7071 233102 : node->resconstantqual = resconstantqual;
7072 :
7073 233102 : return node;
7074 : }
7075 :
7076 : /*
7077 : * make_project_set
7078 : * Build a ProjectSet plan node
7079 : */
7080 : static ProjectSet *
7081 9064 : make_project_set(List *tlist,
7082 : Plan *subplan)
7083 : {
7084 9064 : ProjectSet *node = makeNode(ProjectSet);
7085 9064 : Plan *plan = &node->plan;
7086 :
7087 9064 : plan->targetlist = tlist;
7088 9064 : plan->qual = NIL;
7089 9064 : plan->lefttree = subplan;
7090 9064 : plan->righttree = NULL;
7091 :
7092 9064 : return node;
7093 : }
7094 :
7095 : /*
7096 : * make_modifytable
7097 : * Build a ModifyTable plan node
7098 : */
7099 : static ModifyTable *
7100 92278 : make_modifytable(PlannerInfo *root, Plan *subplan,
7101 : CmdType operation, bool canSetTag,
7102 : Index nominalRelation, Index rootRelation,
7103 : bool partColsUpdated,
7104 : List *resultRelations,
7105 : List *updateColnosLists,
7106 : List *withCheckOptionLists, List *returningLists,
7107 : List *rowMarks, OnConflictExpr *onconflict,
7108 : List *mergeActionLists, List *mergeJoinConditions,
7109 : int epqParam)
7110 : {
7111 92278 : ModifyTable *node = makeNode(ModifyTable);
7112 92278 : bool returning_old_or_new = false;
7113 92278 : bool returning_old_or_new_valid = false;
7114 : List *fdw_private_list;
7115 : Bitmapset *direct_modify_plans;
7116 : ListCell *lc;
7117 : int i;
7118 :
7119 : Assert(operation == CMD_MERGE ||
7120 : (operation == CMD_UPDATE ?
7121 : list_length(resultRelations) == list_length(updateColnosLists) :
7122 : updateColnosLists == NIL));
7123 : Assert(withCheckOptionLists == NIL ||
7124 : list_length(resultRelations) == list_length(withCheckOptionLists));
7125 : Assert(returningLists == NIL ||
7126 : list_length(resultRelations) == list_length(returningLists));
7127 :
7128 92278 : node->plan.lefttree = subplan;
7129 92278 : node->plan.righttree = NULL;
7130 92278 : node->plan.qual = NIL;
7131 : /* setrefs.c will fill in the targetlist, if needed */
7132 92278 : node->plan.targetlist = NIL;
7133 :
7134 92278 : node->operation = operation;
7135 92278 : node->canSetTag = canSetTag;
7136 92278 : node->nominalRelation = nominalRelation;
7137 92278 : node->rootRelation = rootRelation;
7138 92278 : node->partColsUpdated = partColsUpdated;
7139 92278 : node->resultRelations = resultRelations;
7140 92278 : if (!onconflict)
7141 : {
7142 90464 : node->onConflictAction = ONCONFLICT_NONE;
7143 90464 : node->onConflictSet = NIL;
7144 90464 : node->onConflictCols = NIL;
7145 90464 : node->onConflictWhere = NULL;
7146 90464 : node->arbiterIndexes = NIL;
7147 90464 : node->exclRelRTI = 0;
7148 90464 : node->exclRelTlist = NIL;
7149 : }
7150 : else
7151 : {
7152 1814 : node->onConflictAction = onconflict->action;
7153 :
7154 : /*
7155 : * Here we convert the ON CONFLICT UPDATE tlist, if any, to the
7156 : * executor's convention of having consecutive resno's. The actual
7157 : * target column numbers are saved in node->onConflictCols. (This
7158 : * could be done earlier, but there seems no need to.)
7159 : */
7160 1814 : node->onConflictSet = onconflict->onConflictSet;
7161 1814 : node->onConflictCols =
7162 1814 : extract_update_targetlist_colnos(node->onConflictSet);
7163 1814 : node->onConflictWhere = onconflict->onConflictWhere;
7164 :
7165 : /*
7166 : * If a set of unique index inference elements was provided (an
7167 : * INSERT...ON CONFLICT "inference specification"), then infer
7168 : * appropriate unique indexes (or throw an error if none are
7169 : * available).
7170 : */
7171 1814 : node->arbiterIndexes = infer_arbiter_indexes(root);
7172 :
7173 1422 : node->exclRelRTI = onconflict->exclRelIndex;
7174 1422 : node->exclRelTlist = onconflict->exclRelTlist;
7175 : }
7176 91886 : node->updateColnosLists = updateColnosLists;
7177 91886 : node->withCheckOptionLists = withCheckOptionLists;
7178 91886 : node->returningOldAlias = root->parse->returningOldAlias;
7179 91886 : node->returningNewAlias = root->parse->returningNewAlias;
7180 91886 : node->returningLists = returningLists;
7181 91886 : node->rowMarks = rowMarks;
7182 91886 : node->mergeActionLists = mergeActionLists;
7183 91886 : node->mergeJoinConditions = mergeJoinConditions;
7184 91886 : node->epqParam = epqParam;
7185 :
7186 : /*
7187 : * For each result relation that is a foreign table, allow the FDW to
7188 : * construct private plan data, and accumulate it all into a list.
7189 : */
7190 91886 : fdw_private_list = NIL;
7191 91886 : direct_modify_plans = NULL;
7192 91886 : i = 0;
7193 186208 : foreach(lc, resultRelations)
7194 : {
7195 94326 : Index rti = lfirst_int(lc);
7196 : FdwRoutine *fdwroutine;
7197 : List *fdw_private;
7198 : bool direct_modify;
7199 :
7200 : /*
7201 : * If possible, we want to get the FdwRoutine from our RelOptInfo for
7202 : * the table. But sometimes we don't have a RelOptInfo and must get
7203 : * it the hard way. (In INSERT, the target relation is not scanned,
7204 : * so it's not a baserel; and there are also corner cases for
7205 : * updatable views where the target rel isn't a baserel.)
7206 : */
7207 94326 : if (rti < root->simple_rel_array_size &&
7208 94326 : root->simple_rel_array[rti] != NULL)
7209 22136 : {
7210 22136 : RelOptInfo *resultRel = root->simple_rel_array[rti];
7211 :
7212 22136 : fdwroutine = resultRel->fdwroutine;
7213 : }
7214 : else
7215 : {
7216 72190 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7217 :
7218 72190 : if (rte->rtekind == RTE_RELATION &&
7219 72190 : rte->relkind == RELKIND_FOREIGN_TABLE)
7220 : {
7221 : /* Check if the access to foreign tables is restricted */
7222 178 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
7223 : {
7224 : /* there must not be built-in foreign tables */
7225 : Assert(rte->relid >= FirstNormalObjectId);
7226 2 : ereport(ERROR,
7227 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7228 : errmsg("access to non-system foreign table is restricted")));
7229 : }
7230 :
7231 176 : fdwroutine = GetFdwRoutineByRelId(rte->relid);
7232 : }
7233 : else
7234 72012 : fdwroutine = NULL;
7235 : }
7236 :
7237 : /*
7238 : * MERGE is not currently supported for foreign tables. We already
7239 : * checked that when the table mentioned in the query is foreign; but
7240 : * we can still get here if a partitioned table has a foreign table as
7241 : * partition. Disallow that now, to avoid an uglier error message
7242 : * later.
7243 : */
7244 94324 : if (operation == CMD_MERGE && fdwroutine != NULL)
7245 : {
7246 2 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7247 :
7248 2 : ereport(ERROR,
7249 : errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
7250 : errmsg("cannot execute MERGE on relation \"%s\"",
7251 : get_rel_name(rte->relid)),
7252 : errdetail_relkind_not_supported(rte->relkind));
7253 : }
7254 :
7255 : /*
7256 : * Try to modify the foreign table directly if (1) the FDW provides
7257 : * callback functions needed for that and (2) there are no local
7258 : * structures that need to be run for each modified row: row-level
7259 : * triggers on the foreign table, stored generated columns, WITH CHECK
7260 : * OPTIONs from parent views, or Vars returning OLD/NEW in the
7261 : * RETURNING list.
7262 : */
7263 94322 : direct_modify = false;
7264 94322 : if (fdwroutine != NULL &&
7265 540 : fdwroutine->PlanDirectModify != NULL &&
7266 530 : fdwroutine->BeginDirectModify != NULL &&
7267 530 : fdwroutine->IterateDirectModify != NULL &&
7268 530 : fdwroutine->EndDirectModify != NULL &&
7269 498 : withCheckOptionLists == NIL &&
7270 498 : !has_row_triggers(root, rti, operation) &&
7271 420 : !has_stored_generated_columns(root, rti))
7272 : {
7273 : /* returning_old_or_new is the same for all result relations */
7274 402 : if (!returning_old_or_new_valid)
7275 : {
7276 : returning_old_or_new =
7277 386 : contain_vars_returning_old_or_new((Node *)
7278 386 : root->parse->returningList);
7279 386 : returning_old_or_new_valid = true;
7280 : }
7281 402 : if (!returning_old_or_new)
7282 388 : direct_modify = fdwroutine->PlanDirectModify(root, node, rti, i);
7283 : }
7284 94322 : if (direct_modify)
7285 208 : direct_modify_plans = bms_add_member(direct_modify_plans, i);
7286 :
7287 94322 : if (!direct_modify &&
7288 332 : fdwroutine != NULL &&
7289 332 : fdwroutine->PlanForeignModify != NULL)
7290 322 : fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
7291 : else
7292 94000 : fdw_private = NIL;
7293 94322 : fdw_private_list = lappend(fdw_private_list, fdw_private);
7294 94322 : i++;
7295 : }
7296 91882 : node->fdwPrivLists = fdw_private_list;
7297 91882 : node->fdwDirectModifyPlans = direct_modify_plans;
7298 :
7299 91882 : return node;
7300 : }
7301 :
7302 : /*
7303 : * is_projection_capable_path
7304 : * Check whether a given Path node is able to do projection.
7305 : */
7306 : bool
7307 755120 : is_projection_capable_path(Path *path)
7308 : {
7309 : /* Most plan types can project, so just list the ones that can't */
7310 755120 : switch (path->pathtype)
7311 : {
7312 940 : case T_Hash:
7313 : case T_Material:
7314 : case T_Memoize:
7315 : case T_Sort:
7316 : case T_IncrementalSort:
7317 : case T_Unique:
7318 : case T_SetOp:
7319 : case T_LockRows:
7320 : case T_Limit:
7321 : case T_ModifyTable:
7322 : case T_MergeAppend:
7323 : case T_RecursiveUnion:
7324 940 : return false;
7325 0 : case T_CustomScan:
7326 0 : if (castNode(CustomPath, path)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7327 0 : return true;
7328 0 : return false;
7329 2044 : case T_Append:
7330 :
7331 : /*
7332 : * Append can't project, but if an AppendPath is being used to
7333 : * represent a dummy path, what will actually be generated is a
7334 : * Result which can project.
7335 : */
7336 2044 : return IS_DUMMY_APPEND(path);
7337 3286 : case T_ProjectSet:
7338 :
7339 : /*
7340 : * Although ProjectSet certainly projects, say "no" because we
7341 : * don't want the planner to randomly replace its tlist with
7342 : * something else; the SRFs have to stay at top level. This might
7343 : * get relaxed later.
7344 : */
7345 3286 : return false;
7346 748850 : default:
7347 748850 : break;
7348 : }
7349 748850 : return true;
7350 : }
7351 :
7352 : /*
7353 : * is_projection_capable_plan
7354 : * Check whether a given Plan node is able to do projection.
7355 : */
7356 : bool
7357 464 : is_projection_capable_plan(Plan *plan)
7358 : {
7359 : /* Most plan types can project, so just list the ones that can't */
7360 464 : switch (nodeTag(plan))
7361 : {
7362 36 : case T_Hash:
7363 : case T_Material:
7364 : case T_Memoize:
7365 : case T_Sort:
7366 : case T_Unique:
7367 : case T_SetOp:
7368 : case T_LockRows:
7369 : case T_Limit:
7370 : case T_ModifyTable:
7371 : case T_Append:
7372 : case T_MergeAppend:
7373 : case T_RecursiveUnion:
7374 36 : return false;
7375 0 : case T_CustomScan:
7376 0 : if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7377 0 : return true;
7378 0 : return false;
7379 0 : case T_ProjectSet:
7380 :
7381 : /*
7382 : * Although ProjectSet certainly projects, say "no" because we
7383 : * don't want the planner to randomly replace its tlist with
7384 : * something else; the SRFs have to stay at top level. This might
7385 : * get relaxed later.
7386 : */
7387 0 : return false;
7388 428 : default:
7389 428 : break;
7390 : }
7391 428 : return true;
7392 : }
|