Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * createplan.c
4 : * Routines to create the desired plan for processing a query.
5 : * Planning is complete, we just need to convert the selected
6 : * Path into a Plan.
7 : *
8 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
9 : * Portions Copyright (c) 1994, Regents of the University of California
10 : *
11 : *
12 : * IDENTIFICATION
13 : * src/backend/optimizer/plan/createplan.c
14 : *
15 : *-------------------------------------------------------------------------
16 : */
17 : #include "postgres.h"
18 :
19 : #include <math.h>
20 :
21 : #include "access/sysattr.h"
22 : #include "catalog/pg_class.h"
23 : #include "foreign/fdwapi.h"
24 : #include "miscadmin.h"
25 : #include "nodes/extensible.h"
26 : #include "nodes/makefuncs.h"
27 : #include "nodes/nodeFuncs.h"
28 : #include "optimizer/clauses.h"
29 : #include "optimizer/cost.h"
30 : #include "optimizer/optimizer.h"
31 : #include "optimizer/paramassign.h"
32 : #include "optimizer/pathnode.h"
33 : #include "optimizer/paths.h"
34 : #include "optimizer/placeholder.h"
35 : #include "optimizer/plancat.h"
36 : #include "optimizer/planmain.h"
37 : #include "optimizer/prep.h"
38 : #include "optimizer/restrictinfo.h"
39 : #include "optimizer/subselect.h"
40 : #include "optimizer/tlist.h"
41 : #include "parser/parse_clause.h"
42 : #include "parser/parsetree.h"
43 : #include "partitioning/partprune.h"
44 : #include "tcop/tcopprot.h"
45 : #include "utils/lsyscache.h"
46 :
47 :
48 : /*
49 : * Flag bits that can appear in the flags argument of create_plan_recurse().
50 : * These can be OR-ed together.
51 : *
52 : * CP_EXACT_TLIST specifies that the generated plan node must return exactly
53 : * the tlist specified by the path's pathtarget (this overrides both
54 : * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set). Otherwise, the
55 : * plan node is allowed to return just the Vars and PlaceHolderVars needed
56 : * to evaluate the pathtarget.
57 : *
58 : * CP_SMALL_TLIST specifies that a narrower tlist is preferred. This is
59 : * passed down by parent nodes such as Sort and Hash, which will have to
60 : * store the returned tuples.
61 : *
62 : * CP_LABEL_TLIST specifies that the plan node must return columns matching
63 : * any sortgrouprefs specified in its pathtarget, with appropriate
64 : * ressortgroupref labels. This is passed down by parent nodes such as Sort
65 : * and Group, which need these values to be available in their inputs.
66 : *
67 : * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist,
68 : * and therefore it doesn't matter a bit what target list gets generated.
69 : */
70 : #define CP_EXACT_TLIST 0x0001 /* Plan must return specified tlist */
71 : #define CP_SMALL_TLIST 0x0002 /* Prefer narrower tlists */
72 : #define CP_LABEL_TLIST 0x0004 /* tlist must contain sortgrouprefs */
73 : #define CP_IGNORE_TLIST 0x0008 /* caller will replace tlist */
74 :
75 :
76 : static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path,
77 : int flags);
78 : static Plan *create_scan_plan(PlannerInfo *root, Path *best_path,
79 : int flags);
80 : static List *build_path_tlist(PlannerInfo *root, Path *path);
81 : static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags);
82 : static List *get_gating_quals(PlannerInfo *root, List *quals);
83 : static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
84 : List *gating_quals);
85 : static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
86 : static bool mark_async_capable_plan(Plan *plan, Path *path);
87 : static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path,
88 : int flags);
89 : static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
90 : int flags);
91 : static Result *create_group_result_plan(PlannerInfo *root,
92 : GroupResultPath *best_path);
93 : static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path);
94 : static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path,
95 : int flags);
96 : static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path,
97 : int flags);
98 : static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path);
99 : static Plan *create_projection_plan(PlannerInfo *root,
100 : ProjectionPath *best_path,
101 : int flags);
102 : static Plan *inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe);
103 : static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags);
104 : static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root,
105 : IncrementalSortPath *best_path, int flags);
106 : static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path);
107 : static Unique *create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags);
108 : static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path);
109 : static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path);
110 : static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path);
111 : static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path);
112 : static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path,
113 : int flags);
114 : static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path);
115 : static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
116 : int flags);
117 : static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path);
118 : static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path,
119 : int flags);
120 : static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
121 : List *tlist, List *scan_clauses);
122 : static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
123 : List *tlist, List *scan_clauses);
124 : static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
125 : List *tlist, List *scan_clauses, bool indexonly);
126 : static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
127 : BitmapHeapPath *best_path,
128 : List *tlist, List *scan_clauses);
129 : static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
130 : List **qual, List **indexqual, List **indexECs);
131 : static void bitmap_subplan_mark_shared(Plan *plan);
132 : static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
133 : List *tlist, List *scan_clauses);
134 : static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root,
135 : TidRangePath *best_path,
136 : List *tlist,
137 : List *scan_clauses);
138 : static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root,
139 : SubqueryScanPath *best_path,
140 : List *tlist, List *scan_clauses);
141 : static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
142 : List *tlist, List *scan_clauses);
143 : static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
144 : List *tlist, List *scan_clauses);
145 : static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
146 : List *tlist, List *scan_clauses);
147 : static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
148 : List *tlist, List *scan_clauses);
149 : static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root,
150 : Path *best_path, List *tlist, List *scan_clauses);
151 : static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path,
152 : List *tlist, List *scan_clauses);
153 : static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
154 : List *tlist, List *scan_clauses);
155 : static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
156 : List *tlist, List *scan_clauses);
157 : static CustomScan *create_customscan_plan(PlannerInfo *root,
158 : CustomPath *best_path,
159 : List *tlist, List *scan_clauses);
160 : static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path);
161 : static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path);
162 : static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path);
163 : static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
164 : static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
165 : static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
166 : List **stripped_indexquals_p,
167 : List **fixed_indexquals_p);
168 : static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
169 : static Node *fix_indexqual_clause(PlannerInfo *root,
170 : IndexOptInfo *index, int indexcol,
171 : Node *clause, List *indexcolnos);
172 : static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
173 : static List *get_switched_clauses(List *clauses, Relids outerrelids);
174 : static List *order_qual_clauses(PlannerInfo *root, List *clauses);
175 : static void copy_generic_path_info(Plan *dest, Path *src);
176 : static void copy_plan_costsize(Plan *dest, Plan *src);
177 : static void label_sort_with_costsize(PlannerInfo *root, Sort *plan,
178 : double limit_tuples);
179 : static void label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
180 : List *pathkeys, double limit_tuples);
181 : static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
182 : static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
183 : TableSampleClause *tsc);
184 : static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
185 : Oid indexid, List *indexqual, List *indexqualorig,
186 : List *indexorderby, List *indexorderbyorig,
187 : List *indexorderbyops,
188 : ScanDirection indexscandir);
189 : static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
190 : Index scanrelid, Oid indexid,
191 : List *indexqual, List *recheckqual,
192 : List *indexorderby,
193 : List *indextlist,
194 : ScanDirection indexscandir);
195 : static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
196 : List *indexqual,
197 : List *indexqualorig);
198 : static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
199 : List *qpqual,
200 : Plan *lefttree,
201 : List *bitmapqualorig,
202 : Index scanrelid);
203 : static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
204 : List *tidquals);
205 : static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual,
206 : Index scanrelid, List *tidrangequals);
207 : static SubqueryScan *make_subqueryscan(List *qptlist,
208 : List *qpqual,
209 : Index scanrelid,
210 : Plan *subplan);
211 : static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
212 : Index scanrelid, List *functions, bool funcordinality);
213 : static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
214 : Index scanrelid, List *values_lists);
215 : static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual,
216 : Index scanrelid, TableFunc *tablefunc);
217 : static CteScan *make_ctescan(List *qptlist, List *qpqual,
218 : Index scanrelid, int ctePlanId, int cteParam);
219 : static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual,
220 : Index scanrelid, char *enrname);
221 : static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
222 : Index scanrelid, int wtParam);
223 : static RecursiveUnion *make_recursive_union(List *tlist,
224 : Plan *lefttree,
225 : Plan *righttree,
226 : int wtParam,
227 : List *distinctList,
228 : long numGroups);
229 : static BitmapAnd *make_bitmap_and(List *bitmapplans);
230 : static BitmapOr *make_bitmap_or(List *bitmapplans);
231 : static NestLoop *make_nestloop(List *tlist,
232 : List *joinclauses, List *otherclauses, List *nestParams,
233 : Plan *lefttree, Plan *righttree,
234 : JoinType jointype, bool inner_unique);
235 : static HashJoin *make_hashjoin(List *tlist,
236 : List *joinclauses, List *otherclauses,
237 : List *hashclauses,
238 : List *hashoperators, List *hashcollations,
239 : List *hashkeys,
240 : Plan *lefttree, Plan *righttree,
241 : JoinType jointype, bool inner_unique);
242 : static Hash *make_hash(Plan *lefttree,
243 : List *hashkeys,
244 : Oid skewTable,
245 : AttrNumber skewColumn,
246 : bool skewInherit);
247 : static MergeJoin *make_mergejoin(List *tlist,
248 : List *joinclauses, List *otherclauses,
249 : List *mergeclauses,
250 : Oid *mergefamilies,
251 : Oid *mergecollations,
252 : bool *mergereversals,
253 : bool *mergenullsfirst,
254 : Plan *lefttree, Plan *righttree,
255 : JoinType jointype, bool inner_unique,
256 : bool skip_mark_restore);
257 : static Sort *make_sort(Plan *lefttree, int numCols,
258 : AttrNumber *sortColIdx, Oid *sortOperators,
259 : Oid *collations, bool *nullsFirst);
260 : static IncrementalSort *make_incrementalsort(Plan *lefttree,
261 : int numCols, int nPresortedCols,
262 : AttrNumber *sortColIdx, Oid *sortOperators,
263 : Oid *collations, bool *nullsFirst);
264 : static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
265 : Relids relids,
266 : const AttrNumber *reqColIdx,
267 : bool adjust_tlist_in_place,
268 : int *p_numsortkeys,
269 : AttrNumber **p_sortColIdx,
270 : Oid **p_sortOperators,
271 : Oid **p_collations,
272 : bool **p_nullsFirst);
273 : static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
274 : Relids relids);
275 : static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree,
276 : List *pathkeys, Relids relids, int nPresortedCols);
277 : static Sort *make_sort_from_groupcols(List *groupcls,
278 : AttrNumber *grpColIdx,
279 : Plan *lefttree);
280 : static Material *make_material(Plan *lefttree);
281 : static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators,
282 : Oid *collations, List *param_exprs,
283 : bool singlerow, bool binary_mode,
284 : uint32 est_entries, Bitmapset *keyparamids,
285 : Cardinality est_calls,
286 : Cardinality est_unique_keys,
287 : double est_hit_ratio);
288 : static WindowAgg *make_windowagg(List *tlist, WindowClause *wc,
289 : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
290 : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
291 : List *runCondition, List *qual, bool topWindow,
292 : Plan *lefttree);
293 : static Group *make_group(List *tlist, List *qual, int numGroupCols,
294 : AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
295 : Plan *lefttree);
296 : static Unique *make_unique_from_pathkeys(Plan *lefttree,
297 : List *pathkeys, int numCols,
298 : Relids relids);
299 : static Gather *make_gather(List *qptlist, List *qpqual,
300 : int nworkers, int rescan_param, bool single_copy, Plan *subplan);
301 : static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy,
302 : List *tlist, Plan *lefttree, Plan *righttree,
303 : List *groupList, long numGroups);
304 : static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam);
305 : static Result *make_result(List *tlist, Node *resconstantqual, Plan *subplan);
306 : static ProjectSet *make_project_set(List *tlist, Plan *subplan);
307 : static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan,
308 : CmdType operation, bool canSetTag,
309 : Index nominalRelation, Index rootRelation,
310 : bool partColsUpdated,
311 : List *resultRelations,
312 : List *updateColnosLists,
313 : List *withCheckOptionLists, List *returningLists,
314 : List *rowMarks, OnConflictExpr *onconflict,
315 : List *mergeActionLists, List *mergeJoinConditions,
316 : int epqParam);
317 : static GatherMerge *create_gather_merge_plan(PlannerInfo *root,
318 : GatherMergePath *best_path);
319 :
320 :
321 : /*
322 : * create_plan
323 : * Creates the access plan for a query by recursively processing the
324 : * desired tree of pathnodes, starting at the node 'best_path'. For
325 : * every pathnode found, we create a corresponding plan node containing
326 : * appropriate id, target list, and qualification information.
327 : *
328 : * The tlists and quals in the plan tree are still in planner format,
329 : * ie, Vars still correspond to the parser's numbering. This will be
330 : * fixed later by setrefs.c.
331 : *
332 : * best_path is the best access path
333 : *
334 : * Returns a Plan tree.
335 : */
336 : Plan *
337 516428 : create_plan(PlannerInfo *root, Path *best_path)
338 : {
339 : Plan *plan;
340 :
341 : /* plan_params should not be in use in current query level */
342 : Assert(root->plan_params == NIL);
343 :
344 : /* Initialize this module's workspace in PlannerInfo */
345 516428 : root->curOuterRels = NULL;
346 516428 : root->curOuterParams = NIL;
347 :
348 : /* Recursively process the path tree, demanding the correct tlist result */
349 516428 : plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
350 :
351 : /*
352 : * Make sure the topmost plan node's targetlist exposes the original
353 : * column names and other decorative info. Targetlists generated within
354 : * the planner don't bother with that stuff, but we must have it on the
355 : * top-level tlist seen at execution time. However, ModifyTable plan
356 : * nodes don't have a tlist matching the querytree targetlist.
357 : */
358 516032 : if (!IsA(plan, ModifyTable))
359 425812 : apply_tlist_labeling(plan->targetlist, root->processed_tlist);
360 :
361 : /*
362 : * Attach any initPlans created in this query level to the topmost plan
363 : * node. (In principle the initplans could go in any plan node at or
364 : * above where they're referenced, but there seems no reason to put them
365 : * any lower than the topmost node for the query level. Also, see
366 : * comments for SS_finalize_plan before you try to change this.)
367 : */
368 516032 : SS_attach_initplans(root, plan);
369 :
370 : /* Check we successfully assigned all NestLoopParams to plan nodes */
371 516032 : if (root->curOuterParams != NIL)
372 0 : elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
373 :
374 : /*
375 : * Reset plan_params to ensure param IDs used for nestloop params are not
376 : * re-used later
377 : */
378 516032 : root->plan_params = NIL;
379 :
380 516032 : return plan;
381 : }
382 :
383 : /*
384 : * create_plan_recurse
385 : * Recursive guts of create_plan().
386 : */
387 : static Plan *
388 1414356 : create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
389 : {
390 : Plan *plan;
391 :
392 : /* Guard against stack overflow due to overly complex plans */
393 1414356 : check_stack_depth();
394 :
395 1414356 : switch (best_path->pathtype)
396 : {
397 482216 : case T_SeqScan:
398 : case T_SampleScan:
399 : case T_IndexScan:
400 : case T_IndexOnlyScan:
401 : case T_BitmapHeapScan:
402 : case T_TidScan:
403 : case T_TidRangeScan:
404 : case T_SubqueryScan:
405 : case T_FunctionScan:
406 : case T_TableFuncScan:
407 : case T_ValuesScan:
408 : case T_CteScan:
409 : case T_WorkTableScan:
410 : case T_NamedTuplestoreScan:
411 : case T_ForeignScan:
412 : case T_CustomScan:
413 482216 : plan = create_scan_plan(root, best_path, flags);
414 482216 : break;
415 131856 : case T_HashJoin:
416 : case T_MergeJoin:
417 : case T_NestLoop:
418 131856 : plan = create_join_plan(root,
419 : (JoinPath *) best_path);
420 131856 : break;
421 24348 : case T_Append:
422 24348 : plan = create_append_plan(root,
423 : (AppendPath *) best_path,
424 : flags);
425 24348 : break;
426 566 : case T_MergeAppend:
427 566 : plan = create_merge_append_plan(root,
428 : (MergeAppendPath *) best_path,
429 : flags);
430 566 : break;
431 533276 : case T_Result:
432 533276 : if (IsA(best_path, ProjectionPath))
433 : {
434 335222 : plan = create_projection_plan(root,
435 : (ProjectionPath *) best_path,
436 : flags);
437 : }
438 198054 : else if (IsA(best_path, MinMaxAggPath))
439 : {
440 364 : plan = (Plan *) create_minmaxagg_plan(root,
441 : (MinMaxAggPath *) best_path);
442 : }
443 197690 : else if (IsA(best_path, GroupResultPath))
444 : {
445 193622 : plan = (Plan *) create_group_result_plan(root,
446 : (GroupResultPath *) best_path);
447 : }
448 : else
449 : {
450 : /* Simple RTE_RESULT base relation */
451 : Assert(IsA(best_path, Path));
452 4068 : plan = create_scan_plan(root, best_path, flags);
453 : }
454 533276 : break;
455 11674 : case T_ProjectSet:
456 11674 : plan = (Plan *) create_project_set_plan(root,
457 : (ProjectSetPath *) best_path);
458 11674 : break;
459 4348 : case T_Material:
460 4348 : plan = (Plan *) create_material_plan(root,
461 : (MaterialPath *) best_path,
462 : flags);
463 4348 : break;
464 1988 : case T_Memoize:
465 1988 : plan = (Plan *) create_memoize_plan(root,
466 : (MemoizePath *) best_path,
467 : flags);
468 1988 : break;
469 5626 : case T_Unique:
470 5626 : plan = (Plan *) create_unique_plan(root,
471 : (UniquePath *) best_path,
472 : flags);
473 5626 : break;
474 950 : case T_Gather:
475 950 : plan = (Plan *) create_gather_plan(root,
476 : (GatherPath *) best_path);
477 950 : break;
478 67908 : case T_Sort:
479 67908 : plan = (Plan *) create_sort_plan(root,
480 : (SortPath *) best_path,
481 : flags);
482 67908 : break;
483 956 : case T_IncrementalSort:
484 956 : plan = (Plan *) create_incrementalsort_plan(root,
485 : (IncrementalSortPath *) best_path,
486 : flags);
487 956 : break;
488 246 : case T_Group:
489 246 : plan = (Plan *) create_group_plan(root,
490 : (GroupPath *) best_path);
491 246 : break;
492 41166 : case T_Agg:
493 41166 : if (IsA(best_path, GroupingSetsPath))
494 860 : plan = create_groupingsets_plan(root,
495 : (GroupingSetsPath *) best_path);
496 : else
497 : {
498 : Assert(IsA(best_path, AggPath));
499 40306 : plan = (Plan *) create_agg_plan(root,
500 : (AggPath *) best_path);
501 : }
502 41166 : break;
503 2546 : case T_WindowAgg:
504 2546 : plan = (Plan *) create_windowagg_plan(root,
505 : (WindowAggPath *) best_path);
506 2546 : break;
507 662 : case T_SetOp:
508 662 : plan = (Plan *) create_setop_plan(root,
509 : (SetOpPath *) best_path,
510 : flags);
511 662 : break;
512 920 : case T_RecursiveUnion:
513 920 : plan = (Plan *) create_recursiveunion_plan(root,
514 : (RecursiveUnionPath *) best_path);
515 920 : break;
516 7734 : case T_LockRows:
517 7734 : plan = (Plan *) create_lockrows_plan(root,
518 : (LockRowsPath *) best_path,
519 : flags);
520 7734 : break;
521 90616 : case T_ModifyTable:
522 90616 : plan = (Plan *) create_modifytable_plan(root,
523 : (ModifyTablePath *) best_path);
524 90220 : break;
525 4412 : case T_Limit:
526 4412 : plan = (Plan *) create_limit_plan(root,
527 : (LimitPath *) best_path,
528 : flags);
529 4412 : break;
530 342 : case T_GatherMerge:
531 342 : plan = (Plan *) create_gather_merge_plan(root,
532 : (GatherMergePath *) best_path);
533 342 : break;
534 0 : default:
535 0 : elog(ERROR, "unrecognized node type: %d",
536 : (int) best_path->pathtype);
537 : plan = NULL; /* keep compiler quiet */
538 : break;
539 : }
540 :
541 1413960 : return plan;
542 : }
543 :
544 : /*
545 : * create_scan_plan
546 : * Create a scan plan for the parent relation of 'best_path'.
547 : */
548 : static Plan *
549 486284 : create_scan_plan(PlannerInfo *root, Path *best_path, int flags)
550 : {
551 486284 : RelOptInfo *rel = best_path->parent;
552 : List *scan_clauses;
553 : List *gating_clauses;
554 : List *tlist;
555 : Plan *plan;
556 :
557 : /*
558 : * Extract the relevant restriction clauses from the parent relation. The
559 : * executor must apply all these restrictions during the scan, except for
560 : * pseudoconstants which we'll take care of below.
561 : *
562 : * If this is a plain indexscan or index-only scan, we need not consider
563 : * restriction clauses that are implied by the index's predicate, so use
564 : * indrestrictinfo not baserestrictinfo. Note that we can't do that for
565 : * bitmap indexscans, since there's not necessarily a single index
566 : * involved; but it doesn't matter since create_bitmap_scan_plan() will be
567 : * able to get rid of such clauses anyway via predicate proof.
568 : */
569 486284 : switch (best_path->pathtype)
570 : {
571 156082 : case T_IndexScan:
572 : case T_IndexOnlyScan:
573 156082 : scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo;
574 156082 : break;
575 330202 : default:
576 330202 : scan_clauses = rel->baserestrictinfo;
577 330202 : break;
578 : }
579 :
580 : /*
581 : * If this is a parameterized scan, we also need to enforce all the join
582 : * clauses available from the outer relation(s).
583 : *
584 : * For paranoia's sake, don't modify the stored baserestrictinfo list.
585 : */
586 486284 : if (best_path->param_info)
587 46386 : scan_clauses = list_concat_copy(scan_clauses,
588 46386 : best_path->param_info->ppi_clauses);
589 :
590 : /*
591 : * Detect whether we have any pseudoconstant quals to deal with. Then, if
592 : * we'll need a gating Result node, it will be able to project, so there
593 : * are no requirements on the child's tlist.
594 : *
595 : * If this replaces a join, it must be a foreign scan or a custom scan,
596 : * and the FDW or the custom scan provider would have stored in the best
597 : * path the list of RestrictInfo nodes to apply to the join; check against
598 : * that list in that case.
599 : */
600 486284 : if (IS_JOIN_REL(rel))
601 310 : {
602 : List *join_clauses;
603 :
604 : Assert(best_path->pathtype == T_ForeignScan ||
605 : best_path->pathtype == T_CustomScan);
606 310 : if (best_path->pathtype == T_ForeignScan)
607 310 : join_clauses = ((ForeignPath *) best_path)->fdw_restrictinfo;
608 : else
609 0 : join_clauses = ((CustomPath *) best_path)->custom_restrictinfo;
610 :
611 310 : gating_clauses = get_gating_quals(root, join_clauses);
612 : }
613 : else
614 485974 : gating_clauses = get_gating_quals(root, scan_clauses);
615 486284 : if (gating_clauses)
616 6690 : flags = 0;
617 :
618 : /*
619 : * For table scans, rather than using the relation targetlist (which is
620 : * only those Vars actually needed by the query), we prefer to generate a
621 : * tlist containing all Vars in order. This will allow the executor to
622 : * optimize away projection of the table tuples, if possible.
623 : *
624 : * But if the caller is going to ignore our tlist anyway, then don't
625 : * bother generating one at all. We use an exact equality test here, so
626 : * that this only applies when CP_IGNORE_TLIST is the only flag set.
627 : */
628 486284 : if (flags == CP_IGNORE_TLIST)
629 : {
630 76792 : tlist = NULL;
631 : }
632 409492 : else if (use_physical_tlist(root, best_path, flags))
633 : {
634 189990 : if (best_path->pathtype == T_IndexOnlyScan)
635 : {
636 : /* For index-only scan, the preferred tlist is the index's */
637 8420 : tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
638 :
639 : /*
640 : * Transfer sortgroupref data to the replacement tlist, if
641 : * requested (use_physical_tlist checked that this will work).
642 : */
643 8420 : if (flags & CP_LABEL_TLIST)
644 1910 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
645 : }
646 : else
647 : {
648 181570 : tlist = build_physical_tlist(root, rel);
649 181570 : if (tlist == NIL)
650 : {
651 : /* Failed because of dropped cols, so use regular method */
652 160 : tlist = build_path_tlist(root, best_path);
653 : }
654 : else
655 : {
656 : /* As above, transfer sortgroupref data to replacement tlist */
657 181410 : if (flags & CP_LABEL_TLIST)
658 13318 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
659 : }
660 : }
661 : }
662 : else
663 : {
664 219502 : tlist = build_path_tlist(root, best_path);
665 : }
666 :
667 486284 : switch (best_path->pathtype)
668 : {
669 207932 : case T_SeqScan:
670 207932 : plan = (Plan *) create_seqscan_plan(root,
671 : best_path,
672 : tlist,
673 : scan_clauses);
674 207932 : break;
675 :
676 306 : case T_SampleScan:
677 306 : plan = (Plan *) create_samplescan_plan(root,
678 : best_path,
679 : tlist,
680 : scan_clauses);
681 306 : break;
682 :
683 139684 : case T_IndexScan:
684 139684 : plan = (Plan *) create_indexscan_plan(root,
685 : (IndexPath *) best_path,
686 : tlist,
687 : scan_clauses,
688 : false);
689 139684 : break;
690 :
691 16398 : case T_IndexOnlyScan:
692 16398 : plan = (Plan *) create_indexscan_plan(root,
693 : (IndexPath *) best_path,
694 : tlist,
695 : scan_clauses,
696 : true);
697 16398 : break;
698 :
699 20322 : case T_BitmapHeapScan:
700 20322 : plan = (Plan *) create_bitmap_scan_plan(root,
701 : (BitmapHeapPath *) best_path,
702 : tlist,
703 : scan_clauses);
704 20322 : break;
705 :
706 740 : case T_TidScan:
707 740 : plan = (Plan *) create_tidscan_plan(root,
708 : (TidPath *) best_path,
709 : tlist,
710 : scan_clauses);
711 740 : break;
712 :
713 1940 : case T_TidRangeScan:
714 1940 : plan = (Plan *) create_tidrangescan_plan(root,
715 : (TidRangePath *) best_path,
716 : tlist,
717 : scan_clauses);
718 1940 : break;
719 :
720 27418 : case T_SubqueryScan:
721 27418 : plan = (Plan *) create_subqueryscan_plan(root,
722 : (SubqueryScanPath *) best_path,
723 : tlist,
724 : scan_clauses);
725 27418 : break;
726 :
727 50946 : case T_FunctionScan:
728 50946 : plan = (Plan *) create_functionscan_plan(root,
729 : best_path,
730 : tlist,
731 : scan_clauses);
732 50946 : break;
733 :
734 626 : case T_TableFuncScan:
735 626 : plan = (Plan *) create_tablefuncscan_plan(root,
736 : best_path,
737 : tlist,
738 : scan_clauses);
739 626 : break;
740 :
741 8222 : case T_ValuesScan:
742 8222 : plan = (Plan *) create_valuesscan_plan(root,
743 : best_path,
744 : tlist,
745 : scan_clauses);
746 8222 : break;
747 :
748 4224 : case T_CteScan:
749 4224 : plan = (Plan *) create_ctescan_plan(root,
750 : best_path,
751 : tlist,
752 : scan_clauses);
753 4224 : break;
754 :
755 474 : case T_NamedTuplestoreScan:
756 474 : plan = (Plan *) create_namedtuplestorescan_plan(root,
757 : best_path,
758 : tlist,
759 : scan_clauses);
760 474 : break;
761 :
762 4068 : case T_Result:
763 4068 : plan = (Plan *) create_resultscan_plan(root,
764 : best_path,
765 : tlist,
766 : scan_clauses);
767 4068 : break;
768 :
769 920 : case T_WorkTableScan:
770 920 : plan = (Plan *) create_worktablescan_plan(root,
771 : best_path,
772 : tlist,
773 : scan_clauses);
774 920 : break;
775 :
776 2064 : case T_ForeignScan:
777 2064 : plan = (Plan *) create_foreignscan_plan(root,
778 : (ForeignPath *) best_path,
779 : tlist,
780 : scan_clauses);
781 2064 : break;
782 :
783 0 : case T_CustomScan:
784 0 : plan = (Plan *) create_customscan_plan(root,
785 : (CustomPath *) best_path,
786 : tlist,
787 : scan_clauses);
788 0 : break;
789 :
790 0 : default:
791 0 : elog(ERROR, "unrecognized node type: %d",
792 : (int) best_path->pathtype);
793 : plan = NULL; /* keep compiler quiet */
794 : break;
795 : }
796 :
797 : /*
798 : * If there are any pseudoconstant clauses attached to this node, insert a
799 : * gating Result node that evaluates the pseudoconstants as one-time
800 : * quals.
801 : */
802 486284 : if (gating_clauses)
803 6690 : plan = create_gating_plan(root, best_path, plan, gating_clauses);
804 :
805 486284 : return plan;
806 : }
807 :
808 : /*
809 : * Build a target list (ie, a list of TargetEntry) for the Path's output.
810 : *
811 : * This is almost just make_tlist_from_pathtarget(), but we also have to
812 : * deal with replacing nestloop params.
813 : */
814 : static List *
815 972286 : build_path_tlist(PlannerInfo *root, Path *path)
816 : {
817 972286 : List *tlist = NIL;
818 972286 : Index *sortgrouprefs = path->pathtarget->sortgrouprefs;
819 972286 : int resno = 1;
820 : ListCell *v;
821 :
822 3270728 : foreach(v, path->pathtarget->exprs)
823 : {
824 2298442 : Node *node = (Node *) lfirst(v);
825 : TargetEntry *tle;
826 :
827 : /*
828 : * If it's a parameterized path, there might be lateral references in
829 : * the tlist, which need to be replaced with Params. There's no need
830 : * to remake the TargetEntry nodes, so apply this to each list item
831 : * separately.
832 : */
833 2298442 : if (path->param_info)
834 19458 : node = replace_nestloop_params(root, node);
835 :
836 2298442 : tle = makeTargetEntry((Expr *) node,
837 : resno,
838 : NULL,
839 : false);
840 2298442 : if (sortgrouprefs)
841 1458240 : tle->ressortgroupref = sortgrouprefs[resno - 1];
842 :
843 2298442 : tlist = lappend(tlist, tle);
844 2298442 : resno++;
845 : }
846 972286 : return tlist;
847 : }
848 :
849 : /*
850 : * use_physical_tlist
851 : * Decide whether to use a tlist matching relation structure,
852 : * rather than only those Vars actually referenced.
853 : */
854 : static bool
855 744714 : use_physical_tlist(PlannerInfo *root, Path *path, int flags)
856 : {
857 744714 : RelOptInfo *rel = path->parent;
858 : int i;
859 : ListCell *lc;
860 :
861 : /*
862 : * Forget it if either exact tlist or small tlist is demanded.
863 : */
864 744714 : if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))
865 514650 : return false;
866 :
867 : /*
868 : * We can do this for real relation scans, subquery scans, function scans,
869 : * tablefunc scans, values scans, and CTE scans (but not for, eg, joins).
870 : */
871 230064 : if (rel->rtekind != RTE_RELATION &&
872 38720 : rel->rtekind != RTE_SUBQUERY &&
873 36316 : rel->rtekind != RTE_FUNCTION &&
874 14518 : rel->rtekind != RTE_TABLEFUNC &&
875 14284 : rel->rtekind != RTE_VALUES &&
876 12992 : rel->rtekind != RTE_CTE)
877 11528 : return false;
878 :
879 : /*
880 : * Can't do it with inheritance cases either (mainly because Append
881 : * doesn't project; this test may be unnecessary now that
882 : * create_append_plan instructs its children to return an exact tlist).
883 : */
884 218536 : if (rel->reloptkind != RELOPT_BASEREL)
885 4790 : return false;
886 :
887 : /*
888 : * Also, don't do it to a CustomPath; the premise that we're extracting
889 : * columns from a simple physical tuple is unlikely to hold for those.
890 : * (When it does make sense, the custom path creator can set up the path's
891 : * pathtarget that way.)
892 : */
893 213746 : if (IsA(path, CustomPath))
894 0 : return false;
895 :
896 : /*
897 : * If a bitmap scan's tlist is empty, keep it as-is. This may allow the
898 : * executor to skip heap page fetches, and in any case, the benefit of
899 : * using a physical tlist instead would be minimal.
900 : */
901 213746 : if (IsA(path, BitmapHeapPath) &&
902 10558 : path->pathtarget->exprs == NIL)
903 3162 : return false;
904 :
905 : /*
906 : * Can't do it if any system columns or whole-row Vars are requested.
907 : * (This could possibly be fixed but would take some fragile assumptions
908 : * in setrefs.c, I think.)
909 : */
910 1466798 : for (i = rel->min_attr; i <= 0; i++)
911 : {
912 1274026 : if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
913 17812 : return false;
914 : }
915 :
916 : /*
917 : * Can't do it if the rel is required to emit any placeholder expressions,
918 : * either.
919 : */
920 194424 : foreach(lc, root->placeholder_list)
921 : {
922 2004 : PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
923 :
924 3948 : if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
925 1944 : bms_is_subset(phinfo->ph_eval_at, rel->relids))
926 352 : return false;
927 : }
928 :
929 : /*
930 : * For an index-only scan, the "physical tlist" is the index's indextlist.
931 : * We can only return that without a projection if all the index's columns
932 : * are returnable.
933 : */
934 192420 : if (path->pathtype == T_IndexOnlyScan)
935 : {
936 8436 : IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo;
937 :
938 18304 : for (i = 0; i < indexinfo->ncolumns; i++)
939 : {
940 9884 : if (!indexinfo->canreturn[i])
941 16 : return false;
942 : }
943 : }
944 :
945 : /*
946 : * Also, can't do it if CP_LABEL_TLIST is specified and path is requested
947 : * to emit any sort/group columns that are not simple Vars. (If they are
948 : * simple Vars, they should appear in the physical tlist, and
949 : * apply_pathtarget_labeling_to_tlist will take care of getting them
950 : * labeled again.) We also have to check that no two sort/group columns
951 : * are the same Var, else that element of the physical tlist would need
952 : * conflicting ressortgroupref labels.
953 : */
954 192404 : if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs)
955 : {
956 2574 : Bitmapset *sortgroupatts = NULL;
957 :
958 2574 : i = 0;
959 6210 : foreach(lc, path->pathtarget->exprs)
960 : {
961 4394 : Expr *expr = (Expr *) lfirst(lc);
962 :
963 4394 : if (path->pathtarget->sortgrouprefs[i])
964 : {
965 3620 : if (expr && IsA(expr, Var))
966 2862 : {
967 2874 : int attno = ((Var *) expr)->varattno;
968 :
969 2874 : attno -= FirstLowInvalidHeapAttributeNumber;
970 2874 : if (bms_is_member(attno, sortgroupatts))
971 758 : return false;
972 2862 : sortgroupatts = bms_add_member(sortgroupatts, attno);
973 : }
974 : else
975 746 : return false;
976 : }
977 3636 : i++;
978 : }
979 : }
980 :
981 191646 : return true;
982 : }
983 :
984 : /*
985 : * get_gating_quals
986 : * See if there are pseudoconstant quals in a node's quals list
987 : *
988 : * If the node's quals list includes any pseudoconstant quals,
989 : * return just those quals.
990 : */
991 : static List *
992 618140 : get_gating_quals(PlannerInfo *root, List *quals)
993 : {
994 : /* No need to look if we know there are no pseudoconstants */
995 618140 : if (!root->hasPseudoConstantQuals)
996 595694 : return NIL;
997 :
998 : /* Sort into desirable execution order while still in RestrictInfo form */
999 22446 : quals = order_qual_clauses(root, quals);
1000 :
1001 : /* Pull out any pseudoconstant quals from the RestrictInfo list */
1002 22446 : return extract_actual_clauses(quals, true);
1003 : }
1004 :
1005 : /*
1006 : * create_gating_plan
1007 : * Deal with pseudoconstant qual clauses
1008 : *
1009 : * Add a gating Result node atop the already-built plan.
1010 : */
1011 : static Plan *
1012 9796 : create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
1013 : List *gating_quals)
1014 : {
1015 : Plan *gplan;
1016 : Plan *splan;
1017 :
1018 : Assert(gating_quals);
1019 :
1020 : /*
1021 : * We might have a trivial Result plan already. Stacking one Result atop
1022 : * another is silly, so if that applies, just discard the input plan.
1023 : * (We're assuming its targetlist is uninteresting; it should be either
1024 : * the same as the result of build_path_tlist, or a simplified version.)
1025 : */
1026 9796 : splan = plan;
1027 9796 : if (IsA(plan, Result))
1028 : {
1029 24 : Result *rplan = (Result *) plan;
1030 :
1031 24 : if (rplan->plan.lefttree == NULL &&
1032 24 : rplan->resconstantqual == NULL)
1033 24 : splan = NULL;
1034 : }
1035 :
1036 : /*
1037 : * Since we need a Result node anyway, always return the path's requested
1038 : * tlist; that's never a wrong choice, even if the parent node didn't ask
1039 : * for CP_EXACT_TLIST.
1040 : */
1041 9796 : gplan = (Plan *) make_result(build_path_tlist(root, path),
1042 : (Node *) gating_quals,
1043 : splan);
1044 :
1045 : /*
1046 : * Notice that we don't change cost or size estimates when doing gating.
1047 : * The costs of qual eval were already included in the subplan's cost.
1048 : * Leaving the size alone amounts to assuming that the gating qual will
1049 : * succeed, which is the conservative estimate for planning upper queries.
1050 : * We certainly don't want to assume the output size is zero (unless the
1051 : * gating qual is actually constant FALSE, and that case is dealt with in
1052 : * clausesel.c). Interpolating between the two cases is silly, because it
1053 : * doesn't reflect what will really happen at runtime, and besides which
1054 : * in most cases we have only a very bad idea of the probability of the
1055 : * gating qual being true.
1056 : */
1057 9796 : copy_plan_costsize(gplan, plan);
1058 :
1059 : /* Gating quals could be unsafe, so better use the Path's safety flag */
1060 9796 : gplan->parallel_safe = path->parallel_safe;
1061 :
1062 9796 : return gplan;
1063 : }
1064 :
1065 : /*
1066 : * create_join_plan
1067 : * Create a join plan for 'best_path' and (recursively) plans for its
1068 : * inner and outer paths.
1069 : */
1070 : static Plan *
1071 131856 : create_join_plan(PlannerInfo *root, JoinPath *best_path)
1072 : {
1073 : Plan *plan;
1074 : List *gating_clauses;
1075 :
1076 131856 : switch (best_path->path.pathtype)
1077 : {
1078 7648 : case T_MergeJoin:
1079 7648 : plan = (Plan *) create_mergejoin_plan(root,
1080 : (MergePath *) best_path);
1081 7648 : break;
1082 32578 : case T_HashJoin:
1083 32578 : plan = (Plan *) create_hashjoin_plan(root,
1084 : (HashPath *) best_path);
1085 32578 : break;
1086 91630 : case T_NestLoop:
1087 91630 : plan = (Plan *) create_nestloop_plan(root,
1088 : (NestPath *) best_path);
1089 91630 : break;
1090 0 : default:
1091 0 : elog(ERROR, "unrecognized node type: %d",
1092 : (int) best_path->path.pathtype);
1093 : plan = NULL; /* keep compiler quiet */
1094 : break;
1095 : }
1096 :
1097 : /*
1098 : * If there are any pseudoconstant clauses attached to this node, insert a
1099 : * gating Result node that evaluates the pseudoconstants as one-time
1100 : * quals.
1101 : */
1102 131856 : gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo);
1103 131856 : if (gating_clauses)
1104 3106 : plan = create_gating_plan(root, (Path *) best_path, plan,
1105 : gating_clauses);
1106 :
1107 : #ifdef NOT_USED
1108 :
1109 : /*
1110 : * * Expensive function pullups may have pulled local predicates * into
1111 : * this path node. Put them in the qpqual of the plan node. * JMH,
1112 : * 6/15/92
1113 : */
1114 : if (get_loc_restrictinfo(best_path) != NIL)
1115 : set_qpqual((Plan) plan,
1116 : list_concat(get_qpqual((Plan) plan),
1117 : get_actual_clauses(get_loc_restrictinfo(best_path))));
1118 : #endif
1119 :
1120 131856 : return plan;
1121 : }
1122 :
1123 : /*
1124 : * mark_async_capable_plan
1125 : * Check whether the Plan node created from a Path node is async-capable,
1126 : * and if so, mark the Plan node as such and return true, otherwise
1127 : * return false.
1128 : */
1129 : static bool
1130 30450 : mark_async_capable_plan(Plan *plan, Path *path)
1131 : {
1132 30450 : switch (nodeTag(path))
1133 : {
1134 11114 : case T_SubqueryScanPath:
1135 : {
1136 11114 : SubqueryScan *scan_plan = (SubqueryScan *) plan;
1137 :
1138 : /*
1139 : * If the generated plan node includes a gating Result node,
1140 : * we can't execute it asynchronously.
1141 : */
1142 11114 : if (IsA(plan, Result))
1143 4 : return false;
1144 :
1145 : /*
1146 : * If a SubqueryScan node atop of an async-capable plan node
1147 : * is deletable, consider it as async-capable.
1148 : */
1149 15612 : if (trivial_subqueryscan(scan_plan) &&
1150 4502 : mark_async_capable_plan(scan_plan->subplan,
1151 : ((SubqueryScanPath *) path)->subpath))
1152 16 : break;
1153 11094 : return false;
1154 : }
1155 488 : case T_ForeignPath:
1156 : {
1157 488 : FdwRoutine *fdwroutine = path->parent->fdwroutine;
1158 :
1159 : /*
1160 : * If the generated plan node includes a gating Result node,
1161 : * we can't execute it asynchronously.
1162 : */
1163 488 : if (IsA(plan, Result))
1164 8 : return false;
1165 :
1166 : Assert(fdwroutine != NULL);
1167 954 : if (fdwroutine->IsForeignPathAsyncCapable != NULL &&
1168 474 : fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path))
1169 194 : break;
1170 286 : return false;
1171 : }
1172 5276 : case T_ProjectionPath:
1173 :
1174 : /*
1175 : * If the generated plan node includes a Result node for the
1176 : * projection, we can't execute it asynchronously.
1177 : */
1178 5276 : if (IsA(plan, Result))
1179 184 : return false;
1180 :
1181 : /*
1182 : * create_projection_plan() would have pulled up the subplan, so
1183 : * check the capability using the subpath.
1184 : */
1185 5092 : if (mark_async_capable_plan(plan,
1186 : ((ProjectionPath *) path)->subpath))
1187 32 : return true;
1188 5060 : return false;
1189 13572 : default:
1190 13572 : return false;
1191 : }
1192 :
1193 210 : plan->async_capable = true;
1194 :
1195 210 : return true;
1196 : }
1197 :
1198 : /*
1199 : * create_append_plan
1200 : * Create an Append plan for 'best_path' and (recursively) plans
1201 : * for its subpaths.
1202 : *
1203 : * Returns a Plan node.
1204 : */
1205 : static Plan *
1206 24348 : create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags)
1207 : {
1208 : Append *plan;
1209 24348 : List *tlist = build_path_tlist(root, &best_path->path);
1210 24348 : int orig_tlist_length = list_length(tlist);
1211 24348 : bool tlist_was_changed = false;
1212 24348 : List *pathkeys = best_path->path.pathkeys;
1213 24348 : List *subplans = NIL;
1214 : ListCell *subpaths;
1215 24348 : int nasyncplans = 0;
1216 24348 : RelOptInfo *rel = best_path->path.parent;
1217 24348 : int nodenumsortkeys = 0;
1218 24348 : AttrNumber *nodeSortColIdx = NULL;
1219 24348 : Oid *nodeSortOperators = NULL;
1220 24348 : Oid *nodeCollations = NULL;
1221 24348 : bool *nodeNullsFirst = NULL;
1222 24348 : bool consider_async = false;
1223 :
1224 : /*
1225 : * The subpaths list could be empty, if every child was proven empty by
1226 : * constraint exclusion. In that case generate a dummy plan that returns
1227 : * no rows.
1228 : *
1229 : * Note that an AppendPath with no members is also generated in certain
1230 : * cases where there was no appending construct at all, but we know the
1231 : * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel).
1232 : */
1233 24348 : if (best_path->subpaths == NIL)
1234 : {
1235 : /* Generate a Result plan with constant-FALSE gating qual */
1236 : Plan *plan;
1237 :
1238 1030 : plan = (Plan *) make_result(tlist,
1239 1030 : (Node *) list_make1(makeBoolConst(false,
1240 : false)),
1241 : NULL);
1242 :
1243 1030 : copy_generic_path_info(plan, (Path *) best_path);
1244 :
1245 1030 : return plan;
1246 : }
1247 :
1248 : /*
1249 : * Otherwise build an Append plan. Note that if there's just one child,
1250 : * the Append is pretty useless; but we wait till setrefs.c to get rid of
1251 : * it. Doing so here doesn't work because the varno of the child scan
1252 : * plan won't match the parent-rel Vars it'll be asked to emit.
1253 : *
1254 : * We don't have the actual creation of the Append node split out into a
1255 : * separate make_xxx function. This is because we want to run
1256 : * prepare_sort_from_pathkeys on it before we do so on the individual
1257 : * child plans, to make cross-checking the sort info easier.
1258 : */
1259 23318 : plan = makeNode(Append);
1260 23318 : plan->plan.targetlist = tlist;
1261 23318 : plan->plan.qual = NIL;
1262 23318 : plan->plan.lefttree = NULL;
1263 23318 : plan->plan.righttree = NULL;
1264 23318 : plan->apprelids = rel->relids;
1265 :
1266 23318 : if (pathkeys != NIL)
1267 : {
1268 : /*
1269 : * Compute sort column info, and adjust the Append's tlist as needed.
1270 : * Because we pass adjust_tlist_in_place = true, we may ignore the
1271 : * function result; it must be the same plan node. However, we then
1272 : * need to detect whether any tlist entries were added.
1273 : */
1274 314 : (void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys,
1275 314 : best_path->path.parent->relids,
1276 : NULL,
1277 : true,
1278 : &nodenumsortkeys,
1279 : &nodeSortColIdx,
1280 : &nodeSortOperators,
1281 : &nodeCollations,
1282 : &nodeNullsFirst);
1283 314 : tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist));
1284 : }
1285 :
1286 : /* If appropriate, consider async append */
1287 23318 : consider_async = (enable_async_append && pathkeys == NIL &&
1288 56956 : !best_path->path.parallel_safe &&
1289 10320 : list_length(best_path->subpaths) > 1);
1290 :
1291 : /* Build the plan for each child */
1292 77002 : foreach(subpaths, best_path->subpaths)
1293 : {
1294 53684 : Path *subpath = (Path *) lfirst(subpaths);
1295 : Plan *subplan;
1296 :
1297 : /* Must insist that all children return the same tlist */
1298 53684 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1299 :
1300 : /*
1301 : * For ordered Appends, we must insert a Sort node if subplan isn't
1302 : * sufficiently ordered.
1303 : */
1304 53684 : if (pathkeys != NIL)
1305 : {
1306 : int numsortkeys;
1307 : AttrNumber *sortColIdx;
1308 : Oid *sortOperators;
1309 : Oid *collations;
1310 : bool *nullsFirst;
1311 : int presorted_keys;
1312 :
1313 : /*
1314 : * Compute sort column info, and adjust subplan's tlist as needed.
1315 : * We must apply prepare_sort_from_pathkeys even to subplans that
1316 : * don't need an explicit sort, to make sure they are returning
1317 : * the same sort key columns the Append expects.
1318 : */
1319 788 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1320 788 : subpath->parent->relids,
1321 : nodeSortColIdx,
1322 : false,
1323 : &numsortkeys,
1324 : &sortColIdx,
1325 : &sortOperators,
1326 : &collations,
1327 : &nullsFirst);
1328 :
1329 : /*
1330 : * Check that we got the same sort key information. We just
1331 : * Assert that the sortops match, since those depend only on the
1332 : * pathkeys; but it seems like a good idea to check the sort
1333 : * column numbers explicitly, to ensure the tlists match up.
1334 : */
1335 : Assert(numsortkeys == nodenumsortkeys);
1336 788 : if (memcmp(sortColIdx, nodeSortColIdx,
1337 : numsortkeys * sizeof(AttrNumber)) != 0)
1338 0 : elog(ERROR, "Append child's targetlist doesn't match Append");
1339 : Assert(memcmp(sortOperators, nodeSortOperators,
1340 : numsortkeys * sizeof(Oid)) == 0);
1341 : Assert(memcmp(collations, nodeCollations,
1342 : numsortkeys * sizeof(Oid)) == 0);
1343 : Assert(memcmp(nullsFirst, nodeNullsFirst,
1344 : numsortkeys * sizeof(bool)) == 0);
1345 :
1346 : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1347 788 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1348 : &presorted_keys))
1349 : {
1350 : Plan *sort_plan;
1351 :
1352 : /*
1353 : * We choose to use incremental sort if it is enabled and
1354 : * there are presorted keys; otherwise we use full sort.
1355 : */
1356 12 : if (enable_incremental_sort && presorted_keys > 0)
1357 : {
1358 : sort_plan = (Plan *)
1359 6 : make_incrementalsort(subplan, numsortkeys, presorted_keys,
1360 : sortColIdx, sortOperators,
1361 : collations, nullsFirst);
1362 :
1363 6 : label_incrementalsort_with_costsize(root,
1364 : (IncrementalSort *) sort_plan,
1365 : pathkeys,
1366 : best_path->limit_tuples);
1367 : }
1368 : else
1369 : {
1370 6 : sort_plan = (Plan *) make_sort(subplan, numsortkeys,
1371 : sortColIdx, sortOperators,
1372 : collations, nullsFirst);
1373 :
1374 6 : label_sort_with_costsize(root, (Sort *) sort_plan,
1375 : best_path->limit_tuples);
1376 : }
1377 :
1378 12 : subplan = sort_plan;
1379 : }
1380 : }
1381 :
1382 : /* If needed, check to see if subplan can be executed asynchronously */
1383 53684 : if (consider_async && mark_async_capable_plan(subplan, subpath))
1384 : {
1385 : Assert(subplan->async_capable);
1386 194 : ++nasyncplans;
1387 : }
1388 :
1389 53684 : subplans = lappend(subplans, subplan);
1390 : }
1391 :
1392 : /* Set below if we find quals that we can use to run-time prune */
1393 23318 : plan->part_prune_index = -1;
1394 :
1395 : /*
1396 : * If any quals exist, they may be useful to perform further partition
1397 : * pruning during execution. Gather information needed by the executor to
1398 : * do partition pruning.
1399 : */
1400 23318 : if (enable_partition_pruning)
1401 : {
1402 : List *prunequal;
1403 :
1404 23264 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1405 :
1406 23264 : if (best_path->path.param_info)
1407 : {
1408 350 : List *prmquals = best_path->path.param_info->ppi_clauses;
1409 :
1410 350 : prmquals = extract_actual_clauses(prmquals, false);
1411 350 : prmquals = (List *) replace_nestloop_params(root,
1412 : (Node *) prmquals);
1413 :
1414 350 : prunequal = list_concat(prunequal, prmquals);
1415 : }
1416 :
1417 23264 : if (prunequal != NIL)
1418 9080 : plan->part_prune_index = make_partition_pruneinfo(root, rel,
1419 : best_path->subpaths,
1420 : prunequal);
1421 : }
1422 :
1423 23318 : plan->appendplans = subplans;
1424 23318 : plan->nasyncplans = nasyncplans;
1425 23318 : plan->first_partial_plan = best_path->first_partial_path;
1426 :
1427 23318 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1428 :
1429 : /*
1430 : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1431 : * produce either the exact tlist or a narrow tlist, we should get rid of
1432 : * the sort columns again. We must inject a projection node to do so.
1433 : */
1434 23318 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1435 : {
1436 0 : tlist = list_copy_head(plan->plan.targetlist, orig_tlist_length);
1437 0 : return inject_projection_plan((Plan *) plan, tlist,
1438 0 : plan->plan.parallel_safe);
1439 : }
1440 : else
1441 23318 : return (Plan *) plan;
1442 : }
1443 :
1444 : /*
1445 : * create_merge_append_plan
1446 : * Create a MergeAppend plan for 'best_path' and (recursively) plans
1447 : * for its subpaths.
1448 : *
1449 : * Returns a Plan node.
1450 : */
1451 : static Plan *
1452 566 : create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
1453 : int flags)
1454 : {
1455 566 : MergeAppend *node = makeNode(MergeAppend);
1456 566 : Plan *plan = &node->plan;
1457 566 : List *tlist = build_path_tlist(root, &best_path->path);
1458 566 : int orig_tlist_length = list_length(tlist);
1459 : bool tlist_was_changed;
1460 566 : List *pathkeys = best_path->path.pathkeys;
1461 566 : List *subplans = NIL;
1462 : ListCell *subpaths;
1463 566 : RelOptInfo *rel = best_path->path.parent;
1464 :
1465 : /*
1466 : * We don't have the actual creation of the MergeAppend node split out
1467 : * into a separate make_xxx function. This is because we want to run
1468 : * prepare_sort_from_pathkeys on it before we do so on the individual
1469 : * child plans, to make cross-checking the sort info easier.
1470 : */
1471 566 : copy_generic_path_info(plan, (Path *) best_path);
1472 566 : plan->targetlist = tlist;
1473 566 : plan->qual = NIL;
1474 566 : plan->lefttree = NULL;
1475 566 : plan->righttree = NULL;
1476 566 : node->apprelids = rel->relids;
1477 :
1478 : /*
1479 : * Compute sort column info, and adjust MergeAppend's tlist as needed.
1480 : * Because we pass adjust_tlist_in_place = true, we may ignore the
1481 : * function result; it must be the same plan node. However, we then need
1482 : * to detect whether any tlist entries were added.
1483 : */
1484 566 : (void) prepare_sort_from_pathkeys(plan, pathkeys,
1485 566 : best_path->path.parent->relids,
1486 : NULL,
1487 : true,
1488 : &node->numCols,
1489 : &node->sortColIdx,
1490 : &node->sortOperators,
1491 : &node->collations,
1492 : &node->nullsFirst);
1493 566 : tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist));
1494 :
1495 : /*
1496 : * Now prepare the child plans. We must apply prepare_sort_from_pathkeys
1497 : * even to subplans that don't need an explicit sort, to make sure they
1498 : * are returning the same sort key columns the MergeAppend expects.
1499 : */
1500 2152 : foreach(subpaths, best_path->subpaths)
1501 : {
1502 1586 : Path *subpath = (Path *) lfirst(subpaths);
1503 : Plan *subplan;
1504 : int numsortkeys;
1505 : AttrNumber *sortColIdx;
1506 : Oid *sortOperators;
1507 : Oid *collations;
1508 : bool *nullsFirst;
1509 : int presorted_keys;
1510 :
1511 : /* Build the child plan */
1512 : /* Must insist that all children return the same tlist */
1513 1586 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1514 :
1515 : /* Compute sort column info, and adjust subplan's tlist as needed */
1516 1586 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1517 1586 : subpath->parent->relids,
1518 1586 : node->sortColIdx,
1519 : false,
1520 : &numsortkeys,
1521 : &sortColIdx,
1522 : &sortOperators,
1523 : &collations,
1524 : &nullsFirst);
1525 :
1526 : /*
1527 : * Check that we got the same sort key information. We just Assert
1528 : * that the sortops match, since those depend only on the pathkeys;
1529 : * but it seems like a good idea to check the sort column numbers
1530 : * explicitly, to ensure the tlists really do match up.
1531 : */
1532 : Assert(numsortkeys == node->numCols);
1533 1586 : if (memcmp(sortColIdx, node->sortColIdx,
1534 : numsortkeys * sizeof(AttrNumber)) != 0)
1535 0 : elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
1536 : Assert(memcmp(sortOperators, node->sortOperators,
1537 : numsortkeys * sizeof(Oid)) == 0);
1538 : Assert(memcmp(collations, node->collations,
1539 : numsortkeys * sizeof(Oid)) == 0);
1540 : Assert(memcmp(nullsFirst, node->nullsFirst,
1541 : numsortkeys * sizeof(bool)) == 0);
1542 :
1543 : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1544 1586 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1545 : &presorted_keys))
1546 : {
1547 : Plan *sort_plan;
1548 :
1549 : /*
1550 : * We choose to use incremental sort if it is enabled and there
1551 : * are presorted keys; otherwise we use full sort.
1552 : */
1553 84 : if (enable_incremental_sort && presorted_keys > 0)
1554 : {
1555 : sort_plan = (Plan *)
1556 18 : make_incrementalsort(subplan, numsortkeys, presorted_keys,
1557 : sortColIdx, sortOperators,
1558 : collations, nullsFirst);
1559 :
1560 18 : label_incrementalsort_with_costsize(root,
1561 : (IncrementalSort *) sort_plan,
1562 : pathkeys,
1563 : best_path->limit_tuples);
1564 : }
1565 : else
1566 : {
1567 66 : sort_plan = (Plan *) make_sort(subplan, numsortkeys,
1568 : sortColIdx, sortOperators,
1569 : collations, nullsFirst);
1570 :
1571 66 : label_sort_with_costsize(root, (Sort *) sort_plan,
1572 : best_path->limit_tuples);
1573 : }
1574 :
1575 84 : subplan = sort_plan;
1576 : }
1577 :
1578 1586 : subplans = lappend(subplans, subplan);
1579 : }
1580 :
1581 : /* Set below if we find quals that we can use to run-time prune */
1582 566 : node->part_prune_index = -1;
1583 :
1584 : /*
1585 : * If any quals exist, they may be useful to perform further partition
1586 : * pruning during execution. Gather information needed by the executor to
1587 : * do partition pruning.
1588 : */
1589 566 : if (enable_partition_pruning)
1590 : {
1591 : List *prunequal;
1592 :
1593 566 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1594 :
1595 : /* We don't currently generate any parameterized MergeAppend paths */
1596 : Assert(best_path->path.param_info == NULL);
1597 :
1598 566 : if (prunequal != NIL)
1599 168 : node->part_prune_index = make_partition_pruneinfo(root, rel,
1600 : best_path->subpaths,
1601 : prunequal);
1602 : }
1603 :
1604 566 : node->mergeplans = subplans;
1605 :
1606 : /*
1607 : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1608 : * produce either the exact tlist or a narrow tlist, we should get rid of
1609 : * the sort columns again. We must inject a projection node to do so.
1610 : */
1611 566 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1612 : {
1613 0 : tlist = list_copy_head(plan->targetlist, orig_tlist_length);
1614 0 : return inject_projection_plan(plan, tlist, plan->parallel_safe);
1615 : }
1616 : else
1617 566 : return plan;
1618 : }
1619 :
1620 : /*
1621 : * create_group_result_plan
1622 : * Create a Result plan for 'best_path'.
1623 : * This is only used for degenerate grouping cases.
1624 : *
1625 : * Returns a Plan node.
1626 : */
1627 : static Result *
1628 193622 : create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path)
1629 : {
1630 : Result *plan;
1631 : List *tlist;
1632 : List *quals;
1633 :
1634 193622 : tlist = build_path_tlist(root, &best_path->path);
1635 :
1636 : /* best_path->quals is just bare clauses */
1637 193622 : quals = order_qual_clauses(root, best_path->quals);
1638 :
1639 193622 : plan = make_result(tlist, (Node *) quals, NULL);
1640 :
1641 193622 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1642 :
1643 193622 : return plan;
1644 : }
1645 :
1646 : /*
1647 : * create_project_set_plan
1648 : * Create a ProjectSet plan for 'best_path'.
1649 : *
1650 : * Returns a Plan node.
1651 : */
1652 : static ProjectSet *
1653 11674 : create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path)
1654 : {
1655 : ProjectSet *plan;
1656 : Plan *subplan;
1657 : List *tlist;
1658 :
1659 : /* Since we intend to project, we don't need to constrain child tlist */
1660 11674 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1661 :
1662 11674 : tlist = build_path_tlist(root, &best_path->path);
1663 :
1664 11674 : plan = make_project_set(tlist, subplan);
1665 :
1666 11674 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1667 :
1668 11674 : return plan;
1669 : }
1670 :
1671 : /*
1672 : * create_material_plan
1673 : * Create a Material plan for 'best_path' and (recursively) plans
1674 : * for its subpaths.
1675 : *
1676 : * Returns a Plan node.
1677 : */
1678 : static Material *
1679 4348 : create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags)
1680 : {
1681 : Material *plan;
1682 : Plan *subplan;
1683 :
1684 : /*
1685 : * We don't want any excess columns in the materialized tuples, so request
1686 : * a smaller tlist. Otherwise, since Material doesn't project, tlist
1687 : * requirements pass through.
1688 : */
1689 4348 : subplan = create_plan_recurse(root, best_path->subpath,
1690 : flags | CP_SMALL_TLIST);
1691 :
1692 4348 : plan = make_material(subplan);
1693 :
1694 4348 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1695 :
1696 4348 : return plan;
1697 : }
1698 :
1699 : /*
1700 : * create_memoize_plan
1701 : * Create a Memoize plan for 'best_path' and (recursively) plans for its
1702 : * subpaths.
1703 : *
1704 : * Returns a Plan node.
1705 : */
1706 : static Memoize *
1707 1988 : create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags)
1708 : {
1709 : Memoize *plan;
1710 : Bitmapset *keyparamids;
1711 : Plan *subplan;
1712 : Oid *operators;
1713 : Oid *collations;
1714 1988 : List *param_exprs = NIL;
1715 : ListCell *lc;
1716 : ListCell *lc2;
1717 : int nkeys;
1718 : int i;
1719 :
1720 1988 : subplan = create_plan_recurse(root, best_path->subpath,
1721 : flags | CP_SMALL_TLIST);
1722 :
1723 1988 : param_exprs = (List *) replace_nestloop_params(root, (Node *)
1724 1988 : best_path->param_exprs);
1725 :
1726 1988 : nkeys = list_length(param_exprs);
1727 : Assert(nkeys > 0);
1728 1988 : operators = palloc(nkeys * sizeof(Oid));
1729 1988 : collations = palloc(nkeys * sizeof(Oid));
1730 :
1731 1988 : i = 0;
1732 4040 : forboth(lc, param_exprs, lc2, best_path->hash_operators)
1733 : {
1734 2052 : Expr *param_expr = (Expr *) lfirst(lc);
1735 2052 : Oid opno = lfirst_oid(lc2);
1736 :
1737 2052 : operators[i] = opno;
1738 2052 : collations[i] = exprCollation((Node *) param_expr);
1739 2052 : i++;
1740 : }
1741 :
1742 1988 : keyparamids = pull_paramids((Expr *) param_exprs);
1743 :
1744 1988 : plan = make_memoize(subplan, operators, collations, param_exprs,
1745 1988 : best_path->singlerow, best_path->binary_mode,
1746 : best_path->est_entries, keyparamids, best_path->est_calls,
1747 : best_path->est_unique_keys, best_path->est_hit_ratio);
1748 :
1749 1988 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1750 :
1751 1988 : return plan;
1752 : }
1753 :
1754 : /*
1755 : * create_gather_plan
1756 : *
1757 : * Create a Gather plan for 'best_path' and (recursively) plans
1758 : * for its subpaths.
1759 : */
1760 : static Gather *
1761 950 : create_gather_plan(PlannerInfo *root, GatherPath *best_path)
1762 : {
1763 : Gather *gather_plan;
1764 : Plan *subplan;
1765 : List *tlist;
1766 :
1767 : /*
1768 : * Push projection down to the child node. That way, the projection work
1769 : * is parallelized, and there can be no system columns in the result (they
1770 : * can't travel through a tuple queue because it uses MinimalTuple
1771 : * representation).
1772 : */
1773 950 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1774 :
1775 950 : tlist = build_path_tlist(root, &best_path->path);
1776 :
1777 950 : gather_plan = make_gather(tlist,
1778 : NIL,
1779 : best_path->num_workers,
1780 : assign_special_exec_param(root),
1781 950 : best_path->single_copy,
1782 : subplan);
1783 :
1784 950 : copy_generic_path_info(&gather_plan->plan, &best_path->path);
1785 :
1786 : /* use parallel mode for parallel plans. */
1787 950 : root->glob->parallelModeNeeded = true;
1788 :
1789 950 : return gather_plan;
1790 : }
1791 :
1792 : /*
1793 : * create_gather_merge_plan
1794 : *
1795 : * Create a Gather Merge plan for 'best_path' and (recursively)
1796 : * plans for its subpaths.
1797 : */
1798 : static GatherMerge *
1799 342 : create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path)
1800 : {
1801 : GatherMerge *gm_plan;
1802 : Plan *subplan;
1803 342 : List *pathkeys = best_path->path.pathkeys;
1804 342 : List *tlist = build_path_tlist(root, &best_path->path);
1805 :
1806 : /* As with Gather, project away columns in the workers. */
1807 342 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1808 :
1809 : /* Create a shell for a GatherMerge plan. */
1810 342 : gm_plan = makeNode(GatherMerge);
1811 342 : gm_plan->plan.targetlist = tlist;
1812 342 : gm_plan->num_workers = best_path->num_workers;
1813 342 : copy_generic_path_info(&gm_plan->plan, &best_path->path);
1814 :
1815 : /* Assign the rescan Param. */
1816 342 : gm_plan->rescan_param = assign_special_exec_param(root);
1817 :
1818 : /* Gather Merge is pointless with no pathkeys; use Gather instead. */
1819 : Assert(pathkeys != NIL);
1820 :
1821 : /* Compute sort column info, and adjust subplan's tlist as needed */
1822 342 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1823 342 : best_path->subpath->parent->relids,
1824 342 : gm_plan->sortColIdx,
1825 : false,
1826 : &gm_plan->numCols,
1827 : &gm_plan->sortColIdx,
1828 : &gm_plan->sortOperators,
1829 : &gm_plan->collations,
1830 : &gm_plan->nullsFirst);
1831 :
1832 : /*
1833 : * All gather merge paths should have already guaranteed the necessary
1834 : * sort order. See create_gather_merge_path.
1835 : */
1836 : Assert(pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys));
1837 :
1838 : /* Now insert the subplan under GatherMerge. */
1839 342 : gm_plan->plan.lefttree = subplan;
1840 :
1841 : /* use parallel mode for parallel plans. */
1842 342 : root->glob->parallelModeNeeded = true;
1843 :
1844 342 : return gm_plan;
1845 : }
1846 :
1847 : /*
1848 : * create_projection_plan
1849 : *
1850 : * Create a plan tree to do a projection step and (recursively) plans
1851 : * for its subpaths. We may need a Result node for the projection,
1852 : * but sometimes we can just let the subplan do the work.
1853 : */
1854 : static Plan *
1855 335222 : create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags)
1856 : {
1857 : Plan *plan;
1858 : Plan *subplan;
1859 : List *tlist;
1860 335222 : bool needs_result_node = false;
1861 :
1862 : /*
1863 : * Convert our subpath to a Plan and determine whether we need a Result
1864 : * node.
1865 : *
1866 : * In most cases where we don't need to project, create_projection_path
1867 : * will have set dummypp, but not always. First, some createplan.c
1868 : * routines change the tlists of their nodes. (An example is that
1869 : * create_merge_append_plan might add resjunk sort columns to a
1870 : * MergeAppend.) Second, create_projection_path has no way of knowing
1871 : * what path node will be placed on top of the projection path and
1872 : * therefore can't predict whether it will require an exact tlist. For
1873 : * both of these reasons, we have to recheck here.
1874 : */
1875 335222 : if (use_physical_tlist(root, &best_path->path, flags))
1876 : {
1877 : /*
1878 : * Our caller doesn't really care what tlist we return, so we don't
1879 : * actually need to project. However, we may still need to ensure
1880 : * proper sortgroupref labels, if the caller cares about those.
1881 : */
1882 1656 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1883 1656 : tlist = subplan->targetlist;
1884 1656 : if (flags & CP_LABEL_TLIST)
1885 1014 : apply_pathtarget_labeling_to_tlist(tlist,
1886 : best_path->path.pathtarget);
1887 : }
1888 333566 : else if (is_projection_capable_path(best_path->subpath))
1889 : {
1890 : /*
1891 : * Our caller requires that we return the exact tlist, but no separate
1892 : * result node is needed because the subpath is projection-capable.
1893 : * Tell create_plan_recurse that we're going to ignore the tlist it
1894 : * produces.
1895 : */
1896 331658 : subplan = create_plan_recurse(root, best_path->subpath,
1897 : CP_IGNORE_TLIST);
1898 : Assert(is_projection_capable_plan(subplan));
1899 331658 : tlist = build_path_tlist(root, &best_path->path);
1900 : }
1901 : else
1902 : {
1903 : /*
1904 : * It looks like we need a result node, unless by good fortune the
1905 : * requested tlist is exactly the one the child wants to produce.
1906 : */
1907 1908 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1908 1908 : tlist = build_path_tlist(root, &best_path->path);
1909 1908 : needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist);
1910 : }
1911 :
1912 : /*
1913 : * If we make a different decision about whether to include a Result node
1914 : * than create_projection_path did, we'll have made slightly wrong cost
1915 : * estimates; but label the plan with the cost estimates we actually used,
1916 : * not "corrected" ones. (XXX this could be cleaned up if we moved more
1917 : * of the sortcolumn setup logic into Path creation, but that would add
1918 : * expense to creating Paths we might end up not using.)
1919 : */
1920 335222 : if (!needs_result_node)
1921 : {
1922 : /* Don't need a separate Result, just assign tlist to subplan */
1923 333480 : plan = subplan;
1924 333480 : plan->targetlist = tlist;
1925 :
1926 : /* Label plan with the estimated costs we actually used */
1927 333480 : plan->startup_cost = best_path->path.startup_cost;
1928 333480 : plan->total_cost = best_path->path.total_cost;
1929 333480 : plan->plan_rows = best_path->path.rows;
1930 333480 : plan->plan_width = best_path->path.pathtarget->width;
1931 333480 : plan->parallel_safe = best_path->path.parallel_safe;
1932 : /* ... but don't change subplan's parallel_aware flag */
1933 : }
1934 : else
1935 : {
1936 : /* We need a Result node */
1937 1742 : plan = (Plan *) make_result(tlist, NULL, subplan);
1938 :
1939 1742 : copy_generic_path_info(plan, (Path *) best_path);
1940 : }
1941 :
1942 335222 : return plan;
1943 : }
1944 :
1945 : /*
1946 : * inject_projection_plan
1947 : * Insert a Result node to do a projection step.
1948 : *
1949 : * This is used in a few places where we decide on-the-fly that we need a
1950 : * projection step as part of the tree generated for some Path node.
1951 : * We should try to get rid of this in favor of doing it more honestly.
1952 : *
1953 : * One reason it's ugly is we have to be told the right parallel_safe marking
1954 : * to apply (since the tlist might be unsafe even if the child plan is safe).
1955 : */
1956 : static Plan *
1957 34 : inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
1958 : {
1959 : Plan *plan;
1960 :
1961 34 : plan = (Plan *) make_result(tlist, NULL, subplan);
1962 :
1963 : /*
1964 : * In principle, we should charge tlist eval cost plus cpu_per_tuple per
1965 : * row for the Result node. But the former has probably been factored in
1966 : * already and the latter was not accounted for during Path construction,
1967 : * so being formally correct might just make the EXPLAIN output look less
1968 : * consistent not more so. Hence, just copy the subplan's cost.
1969 : */
1970 34 : copy_plan_costsize(plan, subplan);
1971 34 : plan->parallel_safe = parallel_safe;
1972 :
1973 34 : return plan;
1974 : }
1975 :
1976 : /*
1977 : * change_plan_targetlist
1978 : * Externally available wrapper for inject_projection_plan.
1979 : *
1980 : * This is meant for use by FDW plan-generation functions, which might
1981 : * want to adjust the tlist computed by some subplan tree. In general,
1982 : * a Result node is needed to compute the new tlist, but we can optimize
1983 : * some cases.
1984 : *
1985 : * In most cases, tlist_parallel_safe can just be passed as the parallel_safe
1986 : * flag of the FDW's own Path node.
1987 : */
1988 : Plan *
1989 78 : change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe)
1990 : {
1991 : /*
1992 : * If the top plan node can't do projections and its existing target list
1993 : * isn't already what we need, we need to add a Result node to help it
1994 : * along.
1995 : */
1996 78 : if (!is_projection_capable_plan(subplan) &&
1997 14 : !tlist_same_exprs(tlist, subplan->targetlist))
1998 8 : subplan = inject_projection_plan(subplan, tlist,
1999 8 : subplan->parallel_safe &&
2000 : tlist_parallel_safe);
2001 : else
2002 : {
2003 : /* Else we can just replace the plan node's tlist */
2004 70 : subplan->targetlist = tlist;
2005 70 : subplan->parallel_safe &= tlist_parallel_safe;
2006 : }
2007 78 : return subplan;
2008 : }
2009 :
2010 : /*
2011 : * create_sort_plan
2012 : *
2013 : * Create a Sort plan for 'best_path' and (recursively) plans
2014 : * for its subpaths.
2015 : */
2016 : static Sort *
2017 67908 : create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags)
2018 : {
2019 : Sort *plan;
2020 : Plan *subplan;
2021 :
2022 : /*
2023 : * We don't want any excess columns in the sorted tuples, so request a
2024 : * smaller tlist. Otherwise, since Sort doesn't project, tlist
2025 : * requirements pass through.
2026 : */
2027 67908 : subplan = create_plan_recurse(root, best_path->subpath,
2028 : flags | CP_SMALL_TLIST);
2029 :
2030 : /*
2031 : * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr,
2032 : * which will ignore any child EC members that don't belong to the given
2033 : * relids. Thus, if this sort path is based on a child relation, we must
2034 : * pass its relids.
2035 : */
2036 67908 : plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys,
2037 67908 : IS_OTHER_REL(best_path->subpath->parent) ?
2038 426 : best_path->path.parent->relids : NULL);
2039 :
2040 67908 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2041 :
2042 67908 : return plan;
2043 : }
2044 :
2045 : /*
2046 : * create_incrementalsort_plan
2047 : *
2048 : * Do the same as create_sort_plan, but create IncrementalSort plan.
2049 : */
2050 : static IncrementalSort *
2051 956 : create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path,
2052 : int flags)
2053 : {
2054 : IncrementalSort *plan;
2055 : Plan *subplan;
2056 :
2057 : /* See comments in create_sort_plan() above */
2058 956 : subplan = create_plan_recurse(root, best_path->spath.subpath,
2059 : flags | CP_SMALL_TLIST);
2060 956 : plan = make_incrementalsort_from_pathkeys(subplan,
2061 : best_path->spath.path.pathkeys,
2062 956 : IS_OTHER_REL(best_path->spath.subpath->parent) ?
2063 0 : best_path->spath.path.parent->relids : NULL,
2064 : best_path->nPresortedCols);
2065 :
2066 956 : copy_generic_path_info(&plan->sort.plan, (Path *) best_path);
2067 :
2068 956 : return plan;
2069 : }
2070 :
2071 : /*
2072 : * create_group_plan
2073 : *
2074 : * Create a Group plan for 'best_path' and (recursively) plans
2075 : * for its subpaths.
2076 : */
2077 : static Group *
2078 246 : create_group_plan(PlannerInfo *root, GroupPath *best_path)
2079 : {
2080 : Group *plan;
2081 : Plan *subplan;
2082 : List *tlist;
2083 : List *quals;
2084 :
2085 : /*
2086 : * Group can project, so no need to be terribly picky about child tlist,
2087 : * but we do need grouping columns to be available
2088 : */
2089 246 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2090 :
2091 246 : tlist = build_path_tlist(root, &best_path->path);
2092 :
2093 246 : quals = order_qual_clauses(root, best_path->qual);
2094 :
2095 492 : plan = make_group(tlist,
2096 : quals,
2097 246 : list_length(best_path->groupClause),
2098 : extract_grouping_cols(best_path->groupClause,
2099 : subplan->targetlist),
2100 : extract_grouping_ops(best_path->groupClause),
2101 : extract_grouping_collations(best_path->groupClause,
2102 : subplan->targetlist),
2103 : subplan);
2104 :
2105 246 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2106 :
2107 246 : return plan;
2108 : }
2109 :
2110 : /*
2111 : * create_unique_plan
2112 : *
2113 : * Create a Unique plan for 'best_path' and (recursively) plans
2114 : * for its subpaths.
2115 : */
2116 : static Unique *
2117 5626 : create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags)
2118 : {
2119 : Unique *plan;
2120 : Plan *subplan;
2121 :
2122 : /*
2123 : * Unique doesn't project, so tlist requirements pass through; moreover we
2124 : * need grouping columns to be labeled.
2125 : */
2126 5626 : subplan = create_plan_recurse(root, best_path->subpath,
2127 : flags | CP_LABEL_TLIST);
2128 :
2129 : /*
2130 : * make_unique_from_pathkeys calls find_ec_member_matching_expr, which
2131 : * will ignore any child EC members that don't belong to the given relids.
2132 : * Thus, if this unique path is based on a child relation, we must pass
2133 : * its relids.
2134 : */
2135 5626 : plan = make_unique_from_pathkeys(subplan,
2136 : best_path->path.pathkeys,
2137 : best_path->numkeys,
2138 5626 : IS_OTHER_REL(best_path->path.parent) ?
2139 90 : best_path->path.parent->relids : NULL);
2140 :
2141 5626 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2142 :
2143 5626 : return plan;
2144 : }
2145 :
2146 : /*
2147 : * create_agg_plan
2148 : *
2149 : * Create an Agg plan for 'best_path' and (recursively) plans
2150 : * for its subpaths.
2151 : */
2152 : static Agg *
2153 40306 : create_agg_plan(PlannerInfo *root, AggPath *best_path)
2154 : {
2155 : Agg *plan;
2156 : Plan *subplan;
2157 : List *tlist;
2158 : List *quals;
2159 :
2160 : /*
2161 : * Agg can project, so no need to be terribly picky about child tlist, but
2162 : * we do need grouping columns to be available
2163 : */
2164 40306 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2165 :
2166 40306 : tlist = build_path_tlist(root, &best_path->path);
2167 :
2168 40306 : quals = order_qual_clauses(root, best_path->qual);
2169 :
2170 80612 : plan = make_agg(tlist, quals,
2171 : best_path->aggstrategy,
2172 : best_path->aggsplit,
2173 40306 : list_length(best_path->groupClause),
2174 : extract_grouping_cols(best_path->groupClause,
2175 : subplan->targetlist),
2176 : extract_grouping_ops(best_path->groupClause),
2177 : extract_grouping_collations(best_path->groupClause,
2178 : subplan->targetlist),
2179 : NIL,
2180 : NIL,
2181 : best_path->numGroups,
2182 : best_path->transitionSpace,
2183 : subplan);
2184 :
2185 40306 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2186 :
2187 40306 : return plan;
2188 : }
2189 :
2190 : /*
2191 : * Given a groupclause for a collection of grouping sets, produce the
2192 : * corresponding groupColIdx.
2193 : *
2194 : * root->grouping_map maps the tleSortGroupRef to the actual column position in
2195 : * the input tuple. So we get the ref from the entries in the groupclause and
2196 : * look them up there.
2197 : */
2198 : static AttrNumber *
2199 1846 : remap_groupColIdx(PlannerInfo *root, List *groupClause)
2200 : {
2201 1846 : AttrNumber *grouping_map = root->grouping_map;
2202 : AttrNumber *new_grpColIdx;
2203 : ListCell *lc;
2204 : int i;
2205 :
2206 : Assert(grouping_map);
2207 :
2208 1846 : new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));
2209 :
2210 1846 : i = 0;
2211 4304 : foreach(lc, groupClause)
2212 : {
2213 2458 : SortGroupClause *clause = lfirst(lc);
2214 :
2215 2458 : new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
2216 : }
2217 :
2218 1846 : return new_grpColIdx;
2219 : }
2220 :
2221 : /*
2222 : * create_groupingsets_plan
2223 : * Create a plan for 'best_path' and (recursively) plans
2224 : * for its subpaths.
2225 : *
2226 : * What we emit is an Agg plan with some vestigial Agg and Sort nodes
2227 : * hanging off the side. The top Agg implements the last grouping set
2228 : * specified in the GroupingSetsPath, and any additional grouping sets
2229 : * each give rise to a subsidiary Agg and Sort node in the top Agg's
2230 : * "chain" list. These nodes don't participate in the plan directly,
2231 : * but they are a convenient way to represent the required data for
2232 : * the extra steps.
2233 : *
2234 : * Returns a Plan node.
2235 : */
2236 : static Plan *
2237 860 : create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path)
2238 : {
2239 : Agg *plan;
2240 : Plan *subplan;
2241 860 : List *rollups = best_path->rollups;
2242 : AttrNumber *grouping_map;
2243 : int maxref;
2244 : List *chain;
2245 : ListCell *lc;
2246 :
2247 : /* Shouldn't get here without grouping sets */
2248 : Assert(root->parse->groupingSets);
2249 : Assert(rollups != NIL);
2250 :
2251 : /*
2252 : * Agg can project, so no need to be terribly picky about child tlist, but
2253 : * we do need grouping columns to be available
2254 : */
2255 860 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2256 :
2257 : /*
2258 : * Compute the mapping from tleSortGroupRef to column index in the child's
2259 : * tlist. First, identify max SortGroupRef in groupClause, for array
2260 : * sizing.
2261 : */
2262 860 : maxref = 0;
2263 2684 : foreach(lc, root->processed_groupClause)
2264 : {
2265 1824 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2266 :
2267 1824 : if (gc->tleSortGroupRef > maxref)
2268 1788 : maxref = gc->tleSortGroupRef;
2269 : }
2270 :
2271 860 : grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber));
2272 :
2273 : /* Now look up the column numbers in the child's tlist */
2274 2684 : foreach(lc, root->processed_groupClause)
2275 : {
2276 1824 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2277 1824 : TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist);
2278 :
2279 1824 : grouping_map[gc->tleSortGroupRef] = tle->resno;
2280 : }
2281 :
2282 : /*
2283 : * During setrefs.c, we'll need the grouping_map to fix up the cols lists
2284 : * in GroupingFunc nodes. Save it for setrefs.c to use.
2285 : */
2286 : Assert(root->grouping_map == NULL);
2287 860 : root->grouping_map = grouping_map;
2288 :
2289 : /*
2290 : * Generate the side nodes that describe the other sort and group
2291 : * operations besides the top one. Note that we don't worry about putting
2292 : * accurate cost estimates in the side nodes; only the topmost Agg node's
2293 : * costs will be shown by EXPLAIN.
2294 : */
2295 860 : chain = NIL;
2296 860 : if (list_length(rollups) > 1)
2297 : {
2298 584 : bool is_first_sort = ((RollupData *) linitial(rollups))->is_hashed;
2299 :
2300 1570 : for_each_from(lc, rollups, 1)
2301 : {
2302 986 : RollupData *rollup = lfirst(lc);
2303 : AttrNumber *new_grpColIdx;
2304 986 : Plan *sort_plan = NULL;
2305 : Plan *agg_plan;
2306 : AggStrategy strat;
2307 :
2308 986 : new_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2309 :
2310 986 : if (!rollup->is_hashed && !is_first_sort)
2311 : {
2312 : sort_plan = (Plan *)
2313 240 : make_sort_from_groupcols(rollup->groupClause,
2314 : new_grpColIdx,
2315 : subplan);
2316 : }
2317 :
2318 986 : if (!rollup->is_hashed)
2319 472 : is_first_sort = false;
2320 :
2321 986 : if (rollup->is_hashed)
2322 514 : strat = AGG_HASHED;
2323 472 : else if (linitial(rollup->gsets) == NIL)
2324 170 : strat = AGG_PLAIN;
2325 : else
2326 302 : strat = AGG_SORTED;
2327 :
2328 1972 : agg_plan = (Plan *) make_agg(NIL,
2329 : NIL,
2330 : strat,
2331 : AGGSPLIT_SIMPLE,
2332 986 : list_length((List *) linitial(rollup->gsets)),
2333 : new_grpColIdx,
2334 : extract_grouping_ops(rollup->groupClause),
2335 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2336 : rollup->gsets,
2337 : NIL,
2338 : rollup->numGroups,
2339 : best_path->transitionSpace,
2340 : sort_plan);
2341 :
2342 : /*
2343 : * Remove stuff we don't need to avoid bloating debug output.
2344 : */
2345 986 : if (sort_plan)
2346 : {
2347 240 : sort_plan->targetlist = NIL;
2348 240 : sort_plan->lefttree = NULL;
2349 : }
2350 :
2351 986 : chain = lappend(chain, agg_plan);
2352 : }
2353 : }
2354 :
2355 : /*
2356 : * Now make the real Agg node
2357 : */
2358 : {
2359 860 : RollupData *rollup = linitial(rollups);
2360 : AttrNumber *top_grpColIdx;
2361 : int numGroupCols;
2362 :
2363 860 : top_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2364 :
2365 860 : numGroupCols = list_length((List *) linitial(rollup->gsets));
2366 :
2367 860 : plan = make_agg(build_path_tlist(root, &best_path->path),
2368 : best_path->qual,
2369 : best_path->aggstrategy,
2370 : AGGSPLIT_SIMPLE,
2371 : numGroupCols,
2372 : top_grpColIdx,
2373 : extract_grouping_ops(rollup->groupClause),
2374 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2375 : rollup->gsets,
2376 : chain,
2377 : rollup->numGroups,
2378 : best_path->transitionSpace,
2379 : subplan);
2380 :
2381 : /* Copy cost data from Path to Plan */
2382 860 : copy_generic_path_info(&plan->plan, &best_path->path);
2383 : }
2384 :
2385 860 : return (Plan *) plan;
2386 : }
2387 :
2388 : /*
2389 : * create_minmaxagg_plan
2390 : *
2391 : * Create a Result plan for 'best_path' and (recursively) plans
2392 : * for its subpaths.
2393 : */
2394 : static Result *
2395 364 : create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path)
2396 : {
2397 : Result *plan;
2398 : List *tlist;
2399 : ListCell *lc;
2400 :
2401 : /* Prepare an InitPlan for each aggregate's subquery. */
2402 764 : foreach(lc, best_path->mmaggregates)
2403 : {
2404 400 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
2405 400 : PlannerInfo *subroot = mminfo->subroot;
2406 400 : Query *subparse = subroot->parse;
2407 : Plan *plan;
2408 :
2409 : /*
2410 : * Generate the plan for the subquery. We already have a Path, but we
2411 : * have to convert it to a Plan and attach a LIMIT node above it.
2412 : * Since we are entering a different planner context (subroot),
2413 : * recurse to create_plan not create_plan_recurse.
2414 : */
2415 400 : plan = create_plan(subroot, mminfo->path);
2416 :
2417 400 : plan = (Plan *) make_limit(plan,
2418 : subparse->limitOffset,
2419 : subparse->limitCount,
2420 : subparse->limitOption,
2421 : 0, NULL, NULL, NULL);
2422 :
2423 : /* Must apply correct cost/width data to Limit node */
2424 400 : plan->disabled_nodes = mminfo->path->disabled_nodes;
2425 400 : plan->startup_cost = mminfo->path->startup_cost;
2426 400 : plan->total_cost = mminfo->pathcost;
2427 400 : plan->plan_rows = 1;
2428 400 : plan->plan_width = mminfo->path->pathtarget->width;
2429 400 : plan->parallel_aware = false;
2430 400 : plan->parallel_safe = mminfo->path->parallel_safe;
2431 :
2432 : /* Convert the plan into an InitPlan in the outer query. */
2433 400 : SS_make_initplan_from_plan(root, subroot, plan, mminfo->param);
2434 : }
2435 :
2436 : /* Generate the output plan --- basically just a Result */
2437 364 : tlist = build_path_tlist(root, &best_path->path);
2438 :
2439 364 : plan = make_result(tlist, (Node *) best_path->quals, NULL);
2440 :
2441 364 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2442 :
2443 : /*
2444 : * During setrefs.c, we'll need to replace references to the Agg nodes
2445 : * with InitPlan output params. (We can't just do that locally in the
2446 : * MinMaxAgg node, because path nodes above here may have Agg references
2447 : * as well.) Save the mmaggregates list to tell setrefs.c to do that.
2448 : */
2449 : Assert(root->minmax_aggs == NIL);
2450 364 : root->minmax_aggs = best_path->mmaggregates;
2451 :
2452 364 : return plan;
2453 : }
2454 :
2455 : /*
2456 : * create_windowagg_plan
2457 : *
2458 : * Create a WindowAgg plan for 'best_path' and (recursively) plans
2459 : * for its subpaths.
2460 : */
2461 : static WindowAgg *
2462 2546 : create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path)
2463 : {
2464 : WindowAgg *plan;
2465 2546 : WindowClause *wc = best_path->winclause;
2466 2546 : int numPart = list_length(wc->partitionClause);
2467 2546 : int numOrder = list_length(wc->orderClause);
2468 : Plan *subplan;
2469 : List *tlist;
2470 : int partNumCols;
2471 : AttrNumber *partColIdx;
2472 : Oid *partOperators;
2473 : Oid *partCollations;
2474 : int ordNumCols;
2475 : AttrNumber *ordColIdx;
2476 : Oid *ordOperators;
2477 : Oid *ordCollations;
2478 : ListCell *lc;
2479 :
2480 : /*
2481 : * Choice of tlist here is motivated by the fact that WindowAgg will be
2482 : * storing the input rows of window frames in a tuplestore; it therefore
2483 : * behooves us to request a small tlist to avoid wasting space. We do of
2484 : * course need grouping columns to be available.
2485 : */
2486 2546 : subplan = create_plan_recurse(root, best_path->subpath,
2487 : CP_LABEL_TLIST | CP_SMALL_TLIST);
2488 :
2489 2546 : tlist = build_path_tlist(root, &best_path->path);
2490 :
2491 : /*
2492 : * Convert SortGroupClause lists into arrays of attr indexes and equality
2493 : * operators, as wanted by executor.
2494 : */
2495 2546 : partColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numPart);
2496 2546 : partOperators = (Oid *) palloc(sizeof(Oid) * numPart);
2497 2546 : partCollations = (Oid *) palloc(sizeof(Oid) * numPart);
2498 :
2499 2546 : partNumCols = 0;
2500 3278 : foreach(lc, wc->partitionClause)
2501 : {
2502 732 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2503 732 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2504 :
2505 : Assert(OidIsValid(sgc->eqop));
2506 732 : partColIdx[partNumCols] = tle->resno;
2507 732 : partOperators[partNumCols] = sgc->eqop;
2508 732 : partCollations[partNumCols] = exprCollation((Node *) tle->expr);
2509 732 : partNumCols++;
2510 : }
2511 :
2512 2546 : ordColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numOrder);
2513 2546 : ordOperators = (Oid *) palloc(sizeof(Oid) * numOrder);
2514 2546 : ordCollations = (Oid *) palloc(sizeof(Oid) * numOrder);
2515 :
2516 2546 : ordNumCols = 0;
2517 4722 : foreach(lc, wc->orderClause)
2518 : {
2519 2176 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2520 2176 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2521 :
2522 : Assert(OidIsValid(sgc->eqop));
2523 2176 : ordColIdx[ordNumCols] = tle->resno;
2524 2176 : ordOperators[ordNumCols] = sgc->eqop;
2525 2176 : ordCollations[ordNumCols] = exprCollation((Node *) tle->expr);
2526 2176 : ordNumCols++;
2527 : }
2528 :
2529 : /* And finally we can make the WindowAgg node */
2530 2546 : plan = make_windowagg(tlist,
2531 : wc,
2532 : partNumCols,
2533 : partColIdx,
2534 : partOperators,
2535 : partCollations,
2536 : ordNumCols,
2537 : ordColIdx,
2538 : ordOperators,
2539 : ordCollations,
2540 : best_path->runCondition,
2541 : best_path->qual,
2542 2546 : best_path->topwindow,
2543 : subplan);
2544 :
2545 2546 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2546 :
2547 2546 : return plan;
2548 : }
2549 :
2550 : /*
2551 : * create_setop_plan
2552 : *
2553 : * Create a SetOp plan for 'best_path' and (recursively) plans
2554 : * for its subpaths.
2555 : */
2556 : static SetOp *
2557 662 : create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags)
2558 : {
2559 : SetOp *plan;
2560 662 : List *tlist = build_path_tlist(root, &best_path->path);
2561 : Plan *leftplan;
2562 : Plan *rightplan;
2563 : long numGroups;
2564 :
2565 : /*
2566 : * SetOp doesn't project, so tlist requirements pass through; moreover we
2567 : * need grouping columns to be labeled.
2568 : */
2569 662 : leftplan = create_plan_recurse(root, best_path->leftpath,
2570 : flags | CP_LABEL_TLIST);
2571 662 : rightplan = create_plan_recurse(root, best_path->rightpath,
2572 : flags | CP_LABEL_TLIST);
2573 :
2574 : /* Convert numGroups to long int --- but 'ware overflow! */
2575 662 : numGroups = clamp_cardinality_to_long(best_path->numGroups);
2576 :
2577 662 : plan = make_setop(best_path->cmd,
2578 : best_path->strategy,
2579 : tlist,
2580 : leftplan,
2581 : rightplan,
2582 : best_path->groupList,
2583 : numGroups);
2584 :
2585 662 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2586 :
2587 662 : return plan;
2588 : }
2589 :
2590 : /*
2591 : * create_recursiveunion_plan
2592 : *
2593 : * Create a RecursiveUnion plan for 'best_path' and (recursively) plans
2594 : * for its subpaths.
2595 : */
2596 : static RecursiveUnion *
2597 920 : create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path)
2598 : {
2599 : RecursiveUnion *plan;
2600 : Plan *leftplan;
2601 : Plan *rightplan;
2602 : List *tlist;
2603 : long numGroups;
2604 :
2605 : /* Need both children to produce same tlist, so force it */
2606 920 : leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST);
2607 920 : rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST);
2608 :
2609 920 : tlist = build_path_tlist(root, &best_path->path);
2610 :
2611 : /* Convert numGroups to long int --- but 'ware overflow! */
2612 920 : numGroups = clamp_cardinality_to_long(best_path->numGroups);
2613 :
2614 920 : plan = make_recursive_union(tlist,
2615 : leftplan,
2616 : rightplan,
2617 : best_path->wtParam,
2618 : best_path->distinctList,
2619 : numGroups);
2620 :
2621 920 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2622 :
2623 920 : return plan;
2624 : }
2625 :
2626 : /*
2627 : * create_lockrows_plan
2628 : *
2629 : * Create a LockRows plan for 'best_path' and (recursively) plans
2630 : * for its subpaths.
2631 : */
2632 : static LockRows *
2633 7734 : create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
2634 : int flags)
2635 : {
2636 : LockRows *plan;
2637 : Plan *subplan;
2638 :
2639 : /* LockRows doesn't project, so tlist requirements pass through */
2640 7734 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2641 :
2642 7734 : plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam);
2643 :
2644 7734 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2645 :
2646 7734 : return plan;
2647 : }
2648 :
2649 : /*
2650 : * create_modifytable_plan
2651 : * Create a ModifyTable plan for 'best_path'.
2652 : *
2653 : * Returns a Plan node.
2654 : */
2655 : static ModifyTable *
2656 90616 : create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path)
2657 : {
2658 : ModifyTable *plan;
2659 90616 : Path *subpath = best_path->subpath;
2660 : Plan *subplan;
2661 :
2662 : /* Subplan must produce exactly the specified tlist */
2663 90616 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
2664 :
2665 : /* Transfer resname/resjunk labeling, too, to keep executor happy */
2666 90616 : apply_tlist_labeling(subplan->targetlist, root->processed_tlist);
2667 :
2668 90616 : plan = make_modifytable(root,
2669 : subplan,
2670 : best_path->operation,
2671 90616 : best_path->canSetTag,
2672 : best_path->nominalRelation,
2673 : best_path->rootRelation,
2674 90616 : best_path->partColsUpdated,
2675 : best_path->resultRelations,
2676 : best_path->updateColnosLists,
2677 : best_path->withCheckOptionLists,
2678 : best_path->returningLists,
2679 : best_path->rowMarks,
2680 : best_path->onconflict,
2681 : best_path->mergeActionLists,
2682 : best_path->mergeJoinConditions,
2683 : best_path->epqParam);
2684 :
2685 90220 : copy_generic_path_info(&plan->plan, &best_path->path);
2686 :
2687 90220 : return plan;
2688 : }
2689 :
2690 : /*
2691 : * create_limit_plan
2692 : *
2693 : * Create a Limit plan for 'best_path' and (recursively) plans
2694 : * for its subpaths.
2695 : */
2696 : static Limit *
2697 4412 : create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags)
2698 : {
2699 : Limit *plan;
2700 : Plan *subplan;
2701 4412 : int numUniqkeys = 0;
2702 4412 : AttrNumber *uniqColIdx = NULL;
2703 4412 : Oid *uniqOperators = NULL;
2704 4412 : Oid *uniqCollations = NULL;
2705 :
2706 : /* Limit doesn't project, so tlist requirements pass through */
2707 4412 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2708 :
2709 : /* Extract information necessary for comparing rows for WITH TIES. */
2710 4412 : if (best_path->limitOption == LIMIT_OPTION_WITH_TIES)
2711 : {
2712 30 : Query *parse = root->parse;
2713 : ListCell *l;
2714 :
2715 30 : numUniqkeys = list_length(parse->sortClause);
2716 30 : uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber));
2717 30 : uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2718 30 : uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2719 :
2720 30 : numUniqkeys = 0;
2721 60 : foreach(l, parse->sortClause)
2722 : {
2723 30 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
2724 30 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList);
2725 :
2726 30 : uniqColIdx[numUniqkeys] = tle->resno;
2727 30 : uniqOperators[numUniqkeys] = sortcl->eqop;
2728 30 : uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr);
2729 30 : numUniqkeys++;
2730 : }
2731 : }
2732 :
2733 4412 : plan = make_limit(subplan,
2734 : best_path->limitOffset,
2735 : best_path->limitCount,
2736 : best_path->limitOption,
2737 : numUniqkeys, uniqColIdx, uniqOperators, uniqCollations);
2738 :
2739 4412 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2740 :
2741 4412 : return plan;
2742 : }
2743 :
2744 :
2745 : /*****************************************************************************
2746 : *
2747 : * BASE-RELATION SCAN METHODS
2748 : *
2749 : *****************************************************************************/
2750 :
2751 :
2752 : /*
2753 : * create_seqscan_plan
2754 : * Returns a seqscan plan for the base relation scanned by 'best_path'
2755 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2756 : */
2757 : static SeqScan *
2758 207932 : create_seqscan_plan(PlannerInfo *root, Path *best_path,
2759 : List *tlist, List *scan_clauses)
2760 : {
2761 : SeqScan *scan_plan;
2762 207932 : Index scan_relid = best_path->parent->relid;
2763 :
2764 : /* it should be a base rel... */
2765 : Assert(scan_relid > 0);
2766 : Assert(best_path->parent->rtekind == RTE_RELATION);
2767 :
2768 : /* Sort clauses into best execution order */
2769 207932 : scan_clauses = order_qual_clauses(root, scan_clauses);
2770 :
2771 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2772 207932 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2773 :
2774 : /* Replace any outer-relation variables with nestloop params */
2775 207932 : if (best_path->param_info)
2776 : {
2777 : scan_clauses = (List *)
2778 474 : replace_nestloop_params(root, (Node *) scan_clauses);
2779 : }
2780 :
2781 207932 : scan_plan = make_seqscan(tlist,
2782 : scan_clauses,
2783 : scan_relid);
2784 :
2785 207932 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2786 :
2787 207932 : return scan_plan;
2788 : }
2789 :
2790 : /*
2791 : * create_samplescan_plan
2792 : * Returns a samplescan plan for the base relation scanned by 'best_path'
2793 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2794 : */
2795 : static SampleScan *
2796 306 : create_samplescan_plan(PlannerInfo *root, Path *best_path,
2797 : List *tlist, List *scan_clauses)
2798 : {
2799 : SampleScan *scan_plan;
2800 306 : Index scan_relid = best_path->parent->relid;
2801 : RangeTblEntry *rte;
2802 : TableSampleClause *tsc;
2803 :
2804 : /* it should be a base rel with a tablesample clause... */
2805 : Assert(scan_relid > 0);
2806 306 : rte = planner_rt_fetch(scan_relid, root);
2807 : Assert(rte->rtekind == RTE_RELATION);
2808 306 : tsc = rte->tablesample;
2809 : Assert(tsc != NULL);
2810 :
2811 : /* Sort clauses into best execution order */
2812 306 : scan_clauses = order_qual_clauses(root, scan_clauses);
2813 :
2814 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2815 306 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2816 :
2817 : /* Replace any outer-relation variables with nestloop params */
2818 306 : if (best_path->param_info)
2819 : {
2820 : scan_clauses = (List *)
2821 72 : replace_nestloop_params(root, (Node *) scan_clauses);
2822 : tsc = (TableSampleClause *)
2823 72 : replace_nestloop_params(root, (Node *) tsc);
2824 : }
2825 :
2826 306 : scan_plan = make_samplescan(tlist,
2827 : scan_clauses,
2828 : scan_relid,
2829 : tsc);
2830 :
2831 306 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2832 :
2833 306 : return scan_plan;
2834 : }
2835 :
2836 : /*
2837 : * create_indexscan_plan
2838 : * Returns an indexscan plan for the base relation scanned by 'best_path'
2839 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2840 : *
2841 : * We use this for both plain IndexScans and IndexOnlyScans, because the
2842 : * qual preprocessing work is the same for both. Note that the caller tells
2843 : * us which to build --- we don't look at best_path->path.pathtype, because
2844 : * create_bitmap_subplan needs to be able to override the prior decision.
2845 : */
2846 : static Scan *
2847 177070 : create_indexscan_plan(PlannerInfo *root,
2848 : IndexPath *best_path,
2849 : List *tlist,
2850 : List *scan_clauses,
2851 : bool indexonly)
2852 : {
2853 : Scan *scan_plan;
2854 177070 : List *indexclauses = best_path->indexclauses;
2855 177070 : List *indexorderbys = best_path->indexorderbys;
2856 177070 : Index baserelid = best_path->path.parent->relid;
2857 177070 : IndexOptInfo *indexinfo = best_path->indexinfo;
2858 177070 : Oid indexoid = indexinfo->indexoid;
2859 : List *qpqual;
2860 : List *stripped_indexquals;
2861 : List *fixed_indexquals;
2862 : List *fixed_indexorderbys;
2863 177070 : List *indexorderbyops = NIL;
2864 : ListCell *l;
2865 :
2866 : /* it should be a base rel... */
2867 : Assert(baserelid > 0);
2868 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
2869 : /* check the scan direction is valid */
2870 : Assert(best_path->indexscandir == ForwardScanDirection ||
2871 : best_path->indexscandir == BackwardScanDirection);
2872 :
2873 : /*
2874 : * Extract the index qual expressions (stripped of RestrictInfos) from the
2875 : * IndexClauses list, and prepare a copy with index Vars substituted for
2876 : * table Vars. (This step also does replace_nestloop_params on the
2877 : * fixed_indexquals.)
2878 : */
2879 177070 : fix_indexqual_references(root, best_path,
2880 : &stripped_indexquals,
2881 : &fixed_indexquals);
2882 :
2883 : /*
2884 : * Likewise fix up index attr references in the ORDER BY expressions.
2885 : */
2886 177070 : fixed_indexorderbys = fix_indexorderby_references(root, best_path);
2887 :
2888 : /*
2889 : * The qpqual list must contain all restrictions not automatically handled
2890 : * by the index, other than pseudoconstant clauses which will be handled
2891 : * by a separate gating plan node. All the predicates in the indexquals
2892 : * will be checked (either by the index itself, or by nodeIndexscan.c),
2893 : * but if there are any "special" operators involved then they must be
2894 : * included in qpqual. The upshot is that qpqual must contain
2895 : * scan_clauses minus whatever appears in indexquals.
2896 : *
2897 : * is_redundant_with_indexclauses() detects cases where a scan clause is
2898 : * present in the indexclauses list or is generated from the same
2899 : * EquivalenceClass as some indexclause, and is therefore redundant with
2900 : * it, though not equal. (The latter happens when indxpath.c prefers a
2901 : * different derived equality than what generate_join_implied_equalities
2902 : * picked for a parameterized scan's ppi_clauses.) Note that it will not
2903 : * match to lossy index clauses, which is critical because we have to
2904 : * include the original clause in qpqual in that case.
2905 : *
2906 : * In some situations (particularly with OR'd index conditions) we may
2907 : * have scan_clauses that are not equal to, but are logically implied by,
2908 : * the index quals; so we also try a predicate_implied_by() check to see
2909 : * if we can discard quals that way. (predicate_implied_by assumes its
2910 : * first input contains only immutable functions, so we have to check
2911 : * that.)
2912 : *
2913 : * Note: if you change this bit of code you should also look at
2914 : * extract_nonindex_conditions() in costsize.c.
2915 : */
2916 177070 : qpqual = NIL;
2917 423990 : foreach(l, scan_clauses)
2918 : {
2919 246920 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
2920 :
2921 246920 : if (rinfo->pseudoconstant)
2922 1940 : continue; /* we may drop pseudoconstants here */
2923 244980 : if (is_redundant_with_indexclauses(rinfo, indexclauses))
2924 168346 : continue; /* dup or derived from same EquivalenceClass */
2925 151874 : if (!contain_mutable_functions((Node *) rinfo->clause) &&
2926 75240 : predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals,
2927 : false))
2928 186 : continue; /* provably implied by indexquals */
2929 76448 : qpqual = lappend(qpqual, rinfo);
2930 : }
2931 :
2932 : /* Sort clauses into best execution order */
2933 177070 : qpqual = order_qual_clauses(root, qpqual);
2934 :
2935 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2936 177070 : qpqual = extract_actual_clauses(qpqual, false);
2937 :
2938 : /*
2939 : * We have to replace any outer-relation variables with nestloop params in
2940 : * the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
2941 : * annoying to have to do this separately from the processing in
2942 : * fix_indexqual_references --- rethink this when generalizing the inner
2943 : * indexscan support. But note we can't really do this earlier because
2944 : * it'd break the comparisons to predicates above ... (or would it? Those
2945 : * wouldn't have outer refs)
2946 : */
2947 177070 : if (best_path->path.param_info)
2948 : {
2949 36588 : stripped_indexquals = (List *)
2950 36588 : replace_nestloop_params(root, (Node *) stripped_indexquals);
2951 : qpqual = (List *)
2952 36588 : replace_nestloop_params(root, (Node *) qpqual);
2953 : indexorderbys = (List *)
2954 36588 : replace_nestloop_params(root, (Node *) indexorderbys);
2955 : }
2956 :
2957 : /*
2958 : * If there are ORDER BY expressions, look up the sort operators for their
2959 : * result datatypes.
2960 : */
2961 177070 : if (indexorderbys)
2962 : {
2963 : ListCell *pathkeyCell,
2964 : *exprCell;
2965 :
2966 : /*
2967 : * PathKey contains OID of the btree opfamily we're sorting by, but
2968 : * that's not quite enough because we need the expression's datatype
2969 : * to look up the sort operator in the operator family.
2970 : */
2971 : Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
2972 766 : forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
2973 : {
2974 386 : PathKey *pathkey = (PathKey *) lfirst(pathkeyCell);
2975 386 : Node *expr = (Node *) lfirst(exprCell);
2976 386 : Oid exprtype = exprType(expr);
2977 : Oid sortop;
2978 :
2979 : /* Get sort operator from opfamily */
2980 386 : sortop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
2981 : exprtype,
2982 : exprtype,
2983 : pathkey->pk_cmptype);
2984 386 : if (!OidIsValid(sortop))
2985 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2986 : pathkey->pk_cmptype, exprtype, exprtype, pathkey->pk_opfamily);
2987 386 : indexorderbyops = lappend_oid(indexorderbyops, sortop);
2988 : }
2989 : }
2990 :
2991 : /*
2992 : * For an index-only scan, we must mark indextlist entries as resjunk if
2993 : * they are columns that the index AM can't return; this cues setrefs.c to
2994 : * not generate references to those columns.
2995 : */
2996 177070 : if (indexonly)
2997 : {
2998 16398 : int i = 0;
2999 :
3000 38740 : foreach(l, indexinfo->indextlist)
3001 : {
3002 22342 : TargetEntry *indextle = (TargetEntry *) lfirst(l);
3003 :
3004 22342 : indextle->resjunk = !indexinfo->canreturn[i];
3005 22342 : i++;
3006 : }
3007 : }
3008 :
3009 : /* Finally ready to build the plan node */
3010 177070 : if (indexonly)
3011 16398 : scan_plan = (Scan *) make_indexonlyscan(tlist,
3012 : qpqual,
3013 : baserelid,
3014 : indexoid,
3015 : fixed_indexquals,
3016 : stripped_indexquals,
3017 : fixed_indexorderbys,
3018 : indexinfo->indextlist,
3019 : best_path->indexscandir);
3020 : else
3021 160672 : scan_plan = (Scan *) make_indexscan(tlist,
3022 : qpqual,
3023 : baserelid,
3024 : indexoid,
3025 : fixed_indexquals,
3026 : stripped_indexquals,
3027 : fixed_indexorderbys,
3028 : indexorderbys,
3029 : indexorderbyops,
3030 : best_path->indexscandir);
3031 :
3032 177070 : copy_generic_path_info(&scan_plan->plan, &best_path->path);
3033 :
3034 177070 : return scan_plan;
3035 : }
3036 :
3037 : /*
3038 : * create_bitmap_scan_plan
3039 : * Returns a bitmap scan plan for the base relation scanned by 'best_path'
3040 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3041 : */
3042 : static BitmapHeapScan *
3043 20322 : create_bitmap_scan_plan(PlannerInfo *root,
3044 : BitmapHeapPath *best_path,
3045 : List *tlist,
3046 : List *scan_clauses)
3047 : {
3048 20322 : Index baserelid = best_path->path.parent->relid;
3049 : Plan *bitmapqualplan;
3050 : List *bitmapqualorig;
3051 : List *indexquals;
3052 : List *indexECs;
3053 : List *qpqual;
3054 : ListCell *l;
3055 : BitmapHeapScan *scan_plan;
3056 :
3057 : /* it should be a base rel... */
3058 : Assert(baserelid > 0);
3059 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3060 :
3061 : /* Process the bitmapqual tree into a Plan tree and qual lists */
3062 20322 : bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
3063 : &bitmapqualorig, &indexquals,
3064 : &indexECs);
3065 :
3066 20322 : if (best_path->path.parallel_aware)
3067 30 : bitmap_subplan_mark_shared(bitmapqualplan);
3068 :
3069 : /*
3070 : * The qpqual list must contain all restrictions not automatically handled
3071 : * by the index, other than pseudoconstant clauses which will be handled
3072 : * by a separate gating plan node. All the predicates in the indexquals
3073 : * will be checked (either by the index itself, or by
3074 : * nodeBitmapHeapscan.c), but if there are any "special" operators
3075 : * involved then they must be added to qpqual. The upshot is that qpqual
3076 : * must contain scan_clauses minus whatever appears in indexquals.
3077 : *
3078 : * This loop is similar to the comparable code in create_indexscan_plan(),
3079 : * but with some differences because it has to compare the scan clauses to
3080 : * stripped (no RestrictInfos) indexquals. See comments there for more
3081 : * info.
3082 : *
3083 : * In normal cases simple equal() checks will be enough to spot duplicate
3084 : * clauses, so we try that first. We next see if the scan clause is
3085 : * redundant with any top-level indexqual by virtue of being generated
3086 : * from the same EC. After that, try predicate_implied_by().
3087 : *
3088 : * Unlike create_indexscan_plan(), the predicate_implied_by() test here is
3089 : * useful for getting rid of qpquals that are implied by index predicates,
3090 : * because the predicate conditions are included in the "indexquals"
3091 : * returned by create_bitmap_subplan(). Bitmap scans have to do it that
3092 : * way because predicate conditions need to be rechecked if the scan
3093 : * becomes lossy, so they have to be included in bitmapqualorig.
3094 : */
3095 20322 : qpqual = NIL;
3096 46944 : foreach(l, scan_clauses)
3097 : {
3098 26622 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3099 26622 : Node *clause = (Node *) rinfo->clause;
3100 :
3101 26622 : if (rinfo->pseudoconstant)
3102 24 : continue; /* we may drop pseudoconstants here */
3103 26598 : if (list_member(indexquals, clause))
3104 20878 : continue; /* simple duplicate */
3105 5720 : if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
3106 18 : continue; /* derived from same EquivalenceClass */
3107 11188 : if (!contain_mutable_functions(clause) &&
3108 5486 : predicate_implied_by(list_make1(clause), indexquals, false))
3109 734 : continue; /* provably implied by indexquals */
3110 4968 : qpqual = lappend(qpqual, rinfo);
3111 : }
3112 :
3113 : /* Sort clauses into best execution order */
3114 20322 : qpqual = order_qual_clauses(root, qpqual);
3115 :
3116 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3117 20322 : qpqual = extract_actual_clauses(qpqual, false);
3118 :
3119 : /*
3120 : * When dealing with special operators, we will at this point have
3121 : * duplicate clauses in qpqual and bitmapqualorig. We may as well drop
3122 : * 'em from bitmapqualorig, since there's no point in making the tests
3123 : * twice.
3124 : */
3125 20322 : bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
3126 :
3127 : /*
3128 : * We have to replace any outer-relation variables with nestloop params in
3129 : * the qpqual and bitmapqualorig expressions. (This was already done for
3130 : * expressions attached to plan nodes in the bitmapqualplan tree.)
3131 : */
3132 20322 : if (best_path->path.param_info)
3133 : {
3134 : qpqual = (List *)
3135 724 : replace_nestloop_params(root, (Node *) qpqual);
3136 724 : bitmapqualorig = (List *)
3137 724 : replace_nestloop_params(root, (Node *) bitmapqualorig);
3138 : }
3139 :
3140 : /* Finally ready to build the plan node */
3141 20322 : scan_plan = make_bitmap_heapscan(tlist,
3142 : qpqual,
3143 : bitmapqualplan,
3144 : bitmapqualorig,
3145 : baserelid);
3146 :
3147 20322 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3148 :
3149 20322 : return scan_plan;
3150 : }
3151 :
3152 : /*
3153 : * Given a bitmapqual tree, generate the Plan tree that implements it
3154 : *
3155 : * As byproducts, we also return in *qual and *indexqual the qual lists
3156 : * (in implicit-AND form, without RestrictInfos) describing the original index
3157 : * conditions and the generated indexqual conditions. (These are the same in
3158 : * simple cases, but when special index operators are involved, the former
3159 : * list includes the special conditions while the latter includes the actual
3160 : * indexable conditions derived from them.) Both lists include partial-index
3161 : * predicates, because we have to recheck predicates as well as index
3162 : * conditions if the bitmap scan becomes lossy.
3163 : *
3164 : * In addition, we return a list of EquivalenceClass pointers for all the
3165 : * top-level indexquals that were possibly-redundantly derived from ECs.
3166 : * This allows removal of scan_clauses that are redundant with such quals.
3167 : * (We do not attempt to detect such redundancies for quals that are within
3168 : * OR subtrees. This could be done in a less hacky way if we returned the
3169 : * indexquals in RestrictInfo form, but that would be slower and still pretty
3170 : * messy, since we'd have to build new RestrictInfos in many cases.)
3171 : */
3172 : static Plan *
3173 21648 : create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
3174 : List **qual, List **indexqual, List **indexECs)
3175 : {
3176 : Plan *plan;
3177 :
3178 21648 : if (IsA(bitmapqual, BitmapAndPath))
3179 : {
3180 242 : BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
3181 242 : List *subplans = NIL;
3182 242 : List *subquals = NIL;
3183 242 : List *subindexquals = NIL;
3184 242 : List *subindexECs = NIL;
3185 : ListCell *l;
3186 :
3187 : /*
3188 : * There may well be redundant quals among the subplans, since a
3189 : * top-level WHERE qual might have gotten used to form several
3190 : * different index quals. We don't try exceedingly hard to eliminate
3191 : * redundancies, but we do eliminate obvious duplicates by using
3192 : * list_concat_unique.
3193 : */
3194 726 : foreach(l, apath->bitmapquals)
3195 : {
3196 : Plan *subplan;
3197 : List *subqual;
3198 : List *subindexqual;
3199 : List *subindexEC;
3200 :
3201 484 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3202 : &subqual, &subindexqual,
3203 : &subindexEC);
3204 484 : subplans = lappend(subplans, subplan);
3205 484 : subquals = list_concat_unique(subquals, subqual);
3206 484 : subindexquals = list_concat_unique(subindexquals, subindexqual);
3207 : /* Duplicates in indexECs aren't worth getting rid of */
3208 484 : subindexECs = list_concat(subindexECs, subindexEC);
3209 : }
3210 242 : plan = (Plan *) make_bitmap_and(subplans);
3211 242 : plan->startup_cost = apath->path.startup_cost;
3212 242 : plan->total_cost = apath->path.total_cost;
3213 242 : plan->plan_rows =
3214 242 : clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
3215 242 : plan->plan_width = 0; /* meaningless */
3216 242 : plan->parallel_aware = false;
3217 242 : plan->parallel_safe = apath->path.parallel_safe;
3218 242 : *qual = subquals;
3219 242 : *indexqual = subindexquals;
3220 242 : *indexECs = subindexECs;
3221 : }
3222 21406 : else if (IsA(bitmapqual, BitmapOrPath))
3223 : {
3224 418 : BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
3225 418 : List *subplans = NIL;
3226 418 : List *subquals = NIL;
3227 418 : List *subindexquals = NIL;
3228 418 : bool const_true_subqual = false;
3229 418 : bool const_true_subindexqual = false;
3230 : ListCell *l;
3231 :
3232 : /*
3233 : * Here, we only detect qual-free subplans. A qual-free subplan would
3234 : * cause us to generate "... OR true ..." which we may as well reduce
3235 : * to just "true". We do not try to eliminate redundant subclauses
3236 : * because (a) it's not as likely as in the AND case, and (b) we might
3237 : * well be working with hundreds or even thousands of OR conditions,
3238 : * perhaps from a long IN list. The performance of list_append_unique
3239 : * would be unacceptable.
3240 : */
3241 1260 : foreach(l, opath->bitmapquals)
3242 : {
3243 : Plan *subplan;
3244 : List *subqual;
3245 : List *subindexqual;
3246 : List *subindexEC;
3247 :
3248 842 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3249 : &subqual, &subindexqual,
3250 : &subindexEC);
3251 842 : subplans = lappend(subplans, subplan);
3252 842 : if (subqual == NIL)
3253 0 : const_true_subqual = true;
3254 842 : else if (!const_true_subqual)
3255 842 : subquals = lappend(subquals,
3256 842 : make_ands_explicit(subqual));
3257 842 : if (subindexqual == NIL)
3258 0 : const_true_subindexqual = true;
3259 842 : else if (!const_true_subindexqual)
3260 842 : subindexquals = lappend(subindexquals,
3261 842 : make_ands_explicit(subindexqual));
3262 : }
3263 :
3264 : /*
3265 : * In the presence of ScalarArrayOpExpr quals, we might have built
3266 : * BitmapOrPaths with just one subpath; don't add an OR step.
3267 : */
3268 418 : if (list_length(subplans) == 1)
3269 : {
3270 0 : plan = (Plan *) linitial(subplans);
3271 : }
3272 : else
3273 : {
3274 418 : plan = (Plan *) make_bitmap_or(subplans);
3275 418 : plan->startup_cost = opath->path.startup_cost;
3276 418 : plan->total_cost = opath->path.total_cost;
3277 418 : plan->plan_rows =
3278 418 : clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
3279 418 : plan->plan_width = 0; /* meaningless */
3280 418 : plan->parallel_aware = false;
3281 418 : plan->parallel_safe = opath->path.parallel_safe;
3282 : }
3283 :
3284 : /*
3285 : * If there were constant-TRUE subquals, the OR reduces to constant
3286 : * TRUE. Also, avoid generating one-element ORs, which could happen
3287 : * due to redundancy elimination or ScalarArrayOpExpr quals.
3288 : */
3289 418 : if (const_true_subqual)
3290 0 : *qual = NIL;
3291 418 : else if (list_length(subquals) <= 1)
3292 0 : *qual = subquals;
3293 : else
3294 418 : *qual = list_make1(make_orclause(subquals));
3295 418 : if (const_true_subindexqual)
3296 0 : *indexqual = NIL;
3297 418 : else if (list_length(subindexquals) <= 1)
3298 0 : *indexqual = subindexquals;
3299 : else
3300 418 : *indexqual = list_make1(make_orclause(subindexquals));
3301 418 : *indexECs = NIL;
3302 : }
3303 20988 : else if (IsA(bitmapqual, IndexPath))
3304 : {
3305 20988 : IndexPath *ipath = (IndexPath *) bitmapqual;
3306 : IndexScan *iscan;
3307 : List *subquals;
3308 : List *subindexquals;
3309 : List *subindexECs;
3310 : ListCell *l;
3311 :
3312 : /* Use the regular indexscan plan build machinery... */
3313 20988 : iscan = castNode(IndexScan,
3314 : create_indexscan_plan(root, ipath,
3315 : NIL, NIL, false));
3316 : /* then convert to a bitmap indexscan */
3317 20988 : plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
3318 : iscan->indexid,
3319 : iscan->indexqual,
3320 : iscan->indexqualorig);
3321 : /* and set its cost/width fields appropriately */
3322 20988 : plan->startup_cost = 0.0;
3323 20988 : plan->total_cost = ipath->indextotalcost;
3324 20988 : plan->plan_rows =
3325 20988 : clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
3326 20988 : plan->plan_width = 0; /* meaningless */
3327 20988 : plan->parallel_aware = false;
3328 20988 : plan->parallel_safe = ipath->path.parallel_safe;
3329 : /* Extract original index clauses, actual index quals, relevant ECs */
3330 20988 : subquals = NIL;
3331 20988 : subindexquals = NIL;
3332 20988 : subindexECs = NIL;
3333 43258 : foreach(l, ipath->indexclauses)
3334 : {
3335 22270 : IndexClause *iclause = (IndexClause *) lfirst(l);
3336 22270 : RestrictInfo *rinfo = iclause->rinfo;
3337 :
3338 : Assert(!rinfo->pseudoconstant);
3339 22270 : subquals = lappend(subquals, rinfo->clause);
3340 22270 : subindexquals = list_concat(subindexquals,
3341 22270 : get_actual_clauses(iclause->indexquals));
3342 22270 : if (rinfo->parent_ec)
3343 580 : subindexECs = lappend(subindexECs, rinfo->parent_ec);
3344 : }
3345 : /* We can add any index predicate conditions, too */
3346 21158 : foreach(l, ipath->indexinfo->indpred)
3347 : {
3348 170 : Expr *pred = (Expr *) lfirst(l);
3349 :
3350 : /*
3351 : * We know that the index predicate must have been implied by the
3352 : * query condition as a whole, but it may or may not be implied by
3353 : * the conditions that got pushed into the bitmapqual. Avoid
3354 : * generating redundant conditions.
3355 : */
3356 170 : if (!predicate_implied_by(list_make1(pred), subquals, false))
3357 : {
3358 140 : subquals = lappend(subquals, pred);
3359 140 : subindexquals = lappend(subindexquals, pred);
3360 : }
3361 : }
3362 20988 : *qual = subquals;
3363 20988 : *indexqual = subindexquals;
3364 20988 : *indexECs = subindexECs;
3365 : }
3366 : else
3367 : {
3368 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
3369 : plan = NULL; /* keep compiler quiet */
3370 : }
3371 :
3372 21648 : return plan;
3373 : }
3374 :
3375 : /*
3376 : * create_tidscan_plan
3377 : * Returns a tidscan plan for the base relation scanned by 'best_path'
3378 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3379 : */
3380 : static TidScan *
3381 740 : create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
3382 : List *tlist, List *scan_clauses)
3383 : {
3384 : TidScan *scan_plan;
3385 740 : Index scan_relid = best_path->path.parent->relid;
3386 740 : List *tidquals = best_path->tidquals;
3387 :
3388 : /* it should be a base rel... */
3389 : Assert(scan_relid > 0);
3390 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3391 :
3392 : /*
3393 : * The qpqual list must contain all restrictions not enforced by the
3394 : * tidquals list. Since tidquals has OR semantics, we have to be careful
3395 : * about matching it up to scan_clauses. It's convenient to handle the
3396 : * single-tidqual case separately from the multiple-tidqual case. In the
3397 : * single-tidqual case, we look through the scan_clauses while they are
3398 : * still in RestrictInfo form, and drop any that are redundant with the
3399 : * tidqual.
3400 : *
3401 : * In normal cases simple pointer equality checks will be enough to spot
3402 : * duplicate RestrictInfos, so we try that first.
3403 : *
3404 : * Another common case is that a scan_clauses entry is generated from the
3405 : * same EquivalenceClass as some tidqual, and is therefore redundant with
3406 : * it, though not equal.
3407 : *
3408 : * Unlike indexpaths, we don't bother with predicate_implied_by(); the
3409 : * number of cases where it could win are pretty small.
3410 : */
3411 740 : if (list_length(tidquals) == 1)
3412 : {
3413 716 : List *qpqual = NIL;
3414 : ListCell *l;
3415 :
3416 1516 : foreach(l, scan_clauses)
3417 : {
3418 800 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3419 :
3420 800 : if (rinfo->pseudoconstant)
3421 0 : continue; /* we may drop pseudoconstants here */
3422 800 : if (list_member_ptr(tidquals, rinfo))
3423 716 : continue; /* simple duplicate */
3424 84 : if (is_redundant_derived_clause(rinfo, tidquals))
3425 0 : continue; /* derived from same EquivalenceClass */
3426 84 : qpqual = lappend(qpqual, rinfo);
3427 : }
3428 716 : scan_clauses = qpqual;
3429 : }
3430 :
3431 : /* Sort clauses into best execution order */
3432 740 : scan_clauses = order_qual_clauses(root, scan_clauses);
3433 :
3434 : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3435 740 : tidquals = extract_actual_clauses(tidquals, false);
3436 740 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3437 :
3438 : /*
3439 : * If we have multiple tidquals, it's more convenient to remove duplicate
3440 : * scan_clauses after stripping the RestrictInfos. In this situation,
3441 : * because the tidquals represent OR sub-clauses, they could not have come
3442 : * from EquivalenceClasses so we don't have to worry about matching up
3443 : * non-identical clauses. On the other hand, because tidpath.c will have
3444 : * extracted those sub-clauses from some OR clause and built its own list,
3445 : * we will certainly not have pointer equality to any scan clause. So
3446 : * convert the tidquals list to an explicit OR clause and see if we can
3447 : * match it via equal() to any scan clause.
3448 : */
3449 740 : if (list_length(tidquals) > 1)
3450 24 : scan_clauses = list_difference(scan_clauses,
3451 24 : list_make1(make_orclause(tidquals)));
3452 :
3453 : /* Replace any outer-relation variables with nestloop params */
3454 740 : if (best_path->path.param_info)
3455 : {
3456 : tidquals = (List *)
3457 24 : replace_nestloop_params(root, (Node *) tidquals);
3458 : scan_clauses = (List *)
3459 24 : replace_nestloop_params(root, (Node *) scan_clauses);
3460 : }
3461 :
3462 740 : scan_plan = make_tidscan(tlist,
3463 : scan_clauses,
3464 : scan_relid,
3465 : tidquals);
3466 :
3467 740 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3468 :
3469 740 : return scan_plan;
3470 : }
3471 :
3472 : /*
3473 : * create_tidrangescan_plan
3474 : * Returns a tidrangescan plan for the base relation scanned by 'best_path'
3475 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3476 : */
3477 : static TidRangeScan *
3478 1940 : create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path,
3479 : List *tlist, List *scan_clauses)
3480 : {
3481 : TidRangeScan *scan_plan;
3482 1940 : Index scan_relid = best_path->path.parent->relid;
3483 1940 : List *tidrangequals = best_path->tidrangequals;
3484 :
3485 : /* it should be a base rel... */
3486 : Assert(scan_relid > 0);
3487 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3488 :
3489 : /*
3490 : * The qpqual list must contain all restrictions not enforced by the
3491 : * tidrangequals list. tidrangequals has AND semantics, so we can simply
3492 : * remove any qual that appears in it.
3493 : */
3494 : {
3495 1940 : List *qpqual = NIL;
3496 : ListCell *l;
3497 :
3498 3910 : foreach(l, scan_clauses)
3499 : {
3500 1970 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3501 :
3502 1970 : if (rinfo->pseudoconstant)
3503 0 : continue; /* we may drop pseudoconstants here */
3504 1970 : if (list_member_ptr(tidrangequals, rinfo))
3505 1970 : continue; /* simple duplicate */
3506 0 : qpqual = lappend(qpqual, rinfo);
3507 : }
3508 1940 : scan_clauses = qpqual;
3509 : }
3510 :
3511 : /* Sort clauses into best execution order */
3512 1940 : scan_clauses = order_qual_clauses(root, scan_clauses);
3513 :
3514 : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3515 1940 : tidrangequals = extract_actual_clauses(tidrangequals, false);
3516 1940 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3517 :
3518 : /* Replace any outer-relation variables with nestloop params */
3519 1940 : if (best_path->path.param_info)
3520 : {
3521 : tidrangequals = (List *)
3522 0 : replace_nestloop_params(root, (Node *) tidrangequals);
3523 : scan_clauses = (List *)
3524 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3525 : }
3526 :
3527 1940 : scan_plan = make_tidrangescan(tlist,
3528 : scan_clauses,
3529 : scan_relid,
3530 : tidrangequals);
3531 :
3532 1940 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3533 :
3534 1940 : return scan_plan;
3535 : }
3536 :
3537 : /*
3538 : * create_subqueryscan_plan
3539 : * Returns a subqueryscan plan for the base relation scanned by 'best_path'
3540 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3541 : */
3542 : static SubqueryScan *
3543 27418 : create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path,
3544 : List *tlist, List *scan_clauses)
3545 : {
3546 : SubqueryScan *scan_plan;
3547 27418 : RelOptInfo *rel = best_path->path.parent;
3548 27418 : Index scan_relid = rel->relid;
3549 : Plan *subplan;
3550 :
3551 : /* it should be a subquery base rel... */
3552 : Assert(scan_relid > 0);
3553 : Assert(rel->rtekind == RTE_SUBQUERY);
3554 :
3555 : /*
3556 : * Recursively create Plan from Path for subquery. Since we are entering
3557 : * a different planner context (subroot), recurse to create_plan not
3558 : * create_plan_recurse.
3559 : */
3560 27418 : subplan = create_plan(rel->subroot, best_path->subpath);
3561 :
3562 : /* Sort clauses into best execution order */
3563 27418 : scan_clauses = order_qual_clauses(root, scan_clauses);
3564 :
3565 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3566 27418 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3567 :
3568 : /*
3569 : * Replace any outer-relation variables with nestloop params.
3570 : *
3571 : * We must provide nestloop params for both lateral references of the
3572 : * subquery and outer vars in the scan_clauses. It's better to assign the
3573 : * former first, because that code path requires specific param IDs, while
3574 : * replace_nestloop_params can adapt to the IDs assigned by
3575 : * process_subquery_nestloop_params. This avoids possibly duplicating
3576 : * nestloop params when the same Var is needed for both reasons.
3577 : */
3578 27418 : if (best_path->path.param_info)
3579 : {
3580 550 : process_subquery_nestloop_params(root,
3581 : rel->subplan_params);
3582 : scan_clauses = (List *)
3583 550 : replace_nestloop_params(root, (Node *) scan_clauses);
3584 : }
3585 :
3586 27418 : scan_plan = make_subqueryscan(tlist,
3587 : scan_clauses,
3588 : scan_relid,
3589 : subplan);
3590 :
3591 27418 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3592 :
3593 27418 : return scan_plan;
3594 : }
3595 :
3596 : /*
3597 : * create_functionscan_plan
3598 : * Returns a functionscan plan for the base relation scanned by 'best_path'
3599 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3600 : */
3601 : static FunctionScan *
3602 50946 : create_functionscan_plan(PlannerInfo *root, Path *best_path,
3603 : List *tlist, List *scan_clauses)
3604 : {
3605 : FunctionScan *scan_plan;
3606 50946 : Index scan_relid = best_path->parent->relid;
3607 : RangeTblEntry *rte;
3608 : List *functions;
3609 :
3610 : /* it should be a function base rel... */
3611 : Assert(scan_relid > 0);
3612 50946 : rte = planner_rt_fetch(scan_relid, root);
3613 : Assert(rte->rtekind == RTE_FUNCTION);
3614 50946 : functions = rte->functions;
3615 :
3616 : /* Sort clauses into best execution order */
3617 50946 : scan_clauses = order_qual_clauses(root, scan_clauses);
3618 :
3619 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3620 50946 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3621 :
3622 : /* Replace any outer-relation variables with nestloop params */
3623 50946 : if (best_path->param_info)
3624 : {
3625 : scan_clauses = (List *)
3626 8214 : replace_nestloop_params(root, (Node *) scan_clauses);
3627 : /* The function expressions could contain nestloop params, too */
3628 8214 : functions = (List *) replace_nestloop_params(root, (Node *) functions);
3629 : }
3630 :
3631 50946 : scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
3632 50946 : functions, rte->funcordinality);
3633 :
3634 50946 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3635 :
3636 50946 : return scan_plan;
3637 : }
3638 :
3639 : /*
3640 : * create_tablefuncscan_plan
3641 : * Returns a tablefuncscan plan for the base relation scanned by 'best_path'
3642 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3643 : */
3644 : static TableFuncScan *
3645 626 : create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
3646 : List *tlist, List *scan_clauses)
3647 : {
3648 : TableFuncScan *scan_plan;
3649 626 : Index scan_relid = best_path->parent->relid;
3650 : RangeTblEntry *rte;
3651 : TableFunc *tablefunc;
3652 :
3653 : /* it should be a function base rel... */
3654 : Assert(scan_relid > 0);
3655 626 : rte = planner_rt_fetch(scan_relid, root);
3656 : Assert(rte->rtekind == RTE_TABLEFUNC);
3657 626 : tablefunc = rte->tablefunc;
3658 :
3659 : /* Sort clauses into best execution order */
3660 626 : scan_clauses = order_qual_clauses(root, scan_clauses);
3661 :
3662 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3663 626 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3664 :
3665 : /* Replace any outer-relation variables with nestloop params */
3666 626 : if (best_path->param_info)
3667 : {
3668 : scan_clauses = (List *)
3669 234 : replace_nestloop_params(root, (Node *) scan_clauses);
3670 : /* The function expressions could contain nestloop params, too */
3671 234 : tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc);
3672 : }
3673 :
3674 626 : scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid,
3675 : tablefunc);
3676 :
3677 626 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3678 :
3679 626 : return scan_plan;
3680 : }
3681 :
3682 : /*
3683 : * create_valuesscan_plan
3684 : * Returns a valuesscan plan for the base relation scanned by 'best_path'
3685 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3686 : */
3687 : static ValuesScan *
3688 8222 : create_valuesscan_plan(PlannerInfo *root, Path *best_path,
3689 : List *tlist, List *scan_clauses)
3690 : {
3691 : ValuesScan *scan_plan;
3692 8222 : Index scan_relid = best_path->parent->relid;
3693 : RangeTblEntry *rte;
3694 : List *values_lists;
3695 :
3696 : /* it should be a values base rel... */
3697 : Assert(scan_relid > 0);
3698 8222 : rte = planner_rt_fetch(scan_relid, root);
3699 : Assert(rte->rtekind == RTE_VALUES);
3700 8222 : values_lists = rte->values_lists;
3701 :
3702 : /* Sort clauses into best execution order */
3703 8222 : scan_clauses = order_qual_clauses(root, scan_clauses);
3704 :
3705 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3706 8222 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3707 :
3708 : /* Replace any outer-relation variables with nestloop params */
3709 8222 : if (best_path->param_info)
3710 : {
3711 : scan_clauses = (List *)
3712 66 : replace_nestloop_params(root, (Node *) scan_clauses);
3713 : /* The values lists could contain nestloop params, too */
3714 : values_lists = (List *)
3715 66 : replace_nestloop_params(root, (Node *) values_lists);
3716 : }
3717 :
3718 8222 : scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
3719 : values_lists);
3720 :
3721 8222 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3722 :
3723 8222 : return scan_plan;
3724 : }
3725 :
3726 : /*
3727 : * create_ctescan_plan
3728 : * Returns a ctescan plan for the base relation scanned by 'best_path'
3729 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3730 : */
3731 : static CteScan *
3732 4224 : create_ctescan_plan(PlannerInfo *root, Path *best_path,
3733 : List *tlist, List *scan_clauses)
3734 : {
3735 : CteScan *scan_plan;
3736 4224 : Index scan_relid = best_path->parent->relid;
3737 : RangeTblEntry *rte;
3738 4224 : SubPlan *ctesplan = NULL;
3739 : int plan_id;
3740 : int cte_param_id;
3741 : PlannerInfo *cteroot;
3742 : Index levelsup;
3743 : int ndx;
3744 : ListCell *lc;
3745 :
3746 : Assert(scan_relid > 0);
3747 4224 : rte = planner_rt_fetch(scan_relid, root);
3748 : Assert(rte->rtekind == RTE_CTE);
3749 : Assert(!rte->self_reference);
3750 :
3751 : /*
3752 : * Find the referenced CTE, and locate the SubPlan previously made for it.
3753 : */
3754 4224 : levelsup = rte->ctelevelsup;
3755 4224 : cteroot = root;
3756 7364 : while (levelsup-- > 0)
3757 : {
3758 3140 : cteroot = cteroot->parent_root;
3759 3140 : if (!cteroot) /* shouldn't happen */
3760 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3761 : }
3762 :
3763 : /*
3764 : * Note: cte_plan_ids can be shorter than cteList, if we are still working
3765 : * on planning the CTEs (ie, this is a side-reference from another CTE).
3766 : * So we mustn't use forboth here.
3767 : */
3768 4224 : ndx = 0;
3769 5790 : foreach(lc, cteroot->parse->cteList)
3770 : {
3771 5790 : CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
3772 :
3773 5790 : if (strcmp(cte->ctename, rte->ctename) == 0)
3774 4224 : break;
3775 1566 : ndx++;
3776 : }
3777 4224 : if (lc == NULL) /* shouldn't happen */
3778 0 : elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
3779 4224 : if (ndx >= list_length(cteroot->cte_plan_ids))
3780 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3781 4224 : plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
3782 4224 : if (plan_id <= 0)
3783 0 : elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
3784 5038 : foreach(lc, cteroot->init_plans)
3785 : {
3786 5038 : ctesplan = (SubPlan *) lfirst(lc);
3787 5038 : if (ctesplan->plan_id == plan_id)
3788 4224 : break;
3789 : }
3790 4224 : if (lc == NULL) /* shouldn't happen */
3791 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3792 :
3793 : /*
3794 : * We need the CTE param ID, which is the sole member of the SubPlan's
3795 : * setParam list.
3796 : */
3797 4224 : cte_param_id = linitial_int(ctesplan->setParam);
3798 :
3799 : /* Sort clauses into best execution order */
3800 4224 : scan_clauses = order_qual_clauses(root, scan_clauses);
3801 :
3802 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3803 4224 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3804 :
3805 : /* Replace any outer-relation variables with nestloop params */
3806 4224 : if (best_path->param_info)
3807 : {
3808 : scan_clauses = (List *)
3809 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3810 : }
3811 :
3812 4224 : scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
3813 : plan_id, cte_param_id);
3814 :
3815 4224 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3816 :
3817 4224 : return scan_plan;
3818 : }
3819 :
3820 : /*
3821 : * create_namedtuplestorescan_plan
3822 : * Returns a tuplestorescan plan for the base relation scanned by
3823 : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3824 : * 'tlist'.
3825 : */
3826 : static NamedTuplestoreScan *
3827 474 : create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path,
3828 : List *tlist, List *scan_clauses)
3829 : {
3830 : NamedTuplestoreScan *scan_plan;
3831 474 : Index scan_relid = best_path->parent->relid;
3832 : RangeTblEntry *rte;
3833 :
3834 : Assert(scan_relid > 0);
3835 474 : rte = planner_rt_fetch(scan_relid, root);
3836 : Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
3837 :
3838 : /* Sort clauses into best execution order */
3839 474 : scan_clauses = order_qual_clauses(root, scan_clauses);
3840 :
3841 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3842 474 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3843 :
3844 : /* Replace any outer-relation variables with nestloop params */
3845 474 : if (best_path->param_info)
3846 : {
3847 : scan_clauses = (List *)
3848 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3849 : }
3850 :
3851 474 : scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid,
3852 : rte->enrname);
3853 :
3854 474 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3855 :
3856 474 : return scan_plan;
3857 : }
3858 :
3859 : /*
3860 : * create_resultscan_plan
3861 : * Returns a Result plan for the RTE_RESULT base relation scanned by
3862 : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3863 : * 'tlist'.
3864 : */
3865 : static Result *
3866 4068 : create_resultscan_plan(PlannerInfo *root, Path *best_path,
3867 : List *tlist, List *scan_clauses)
3868 : {
3869 : Result *scan_plan;
3870 4068 : Index scan_relid = best_path->parent->relid;
3871 : RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
3872 :
3873 : Assert(scan_relid > 0);
3874 4068 : rte = planner_rt_fetch(scan_relid, root);
3875 : Assert(rte->rtekind == RTE_RESULT);
3876 :
3877 : /* Sort clauses into best execution order */
3878 4068 : scan_clauses = order_qual_clauses(root, scan_clauses);
3879 :
3880 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3881 4068 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3882 :
3883 : /* Replace any outer-relation variables with nestloop params */
3884 4068 : if (best_path->param_info)
3885 : {
3886 : scan_clauses = (List *)
3887 138 : replace_nestloop_params(root, (Node *) scan_clauses);
3888 : }
3889 :
3890 4068 : scan_plan = make_result(tlist, (Node *) scan_clauses, NULL);
3891 :
3892 4068 : copy_generic_path_info(&scan_plan->plan, best_path);
3893 :
3894 4068 : return scan_plan;
3895 : }
3896 :
3897 : /*
3898 : * create_worktablescan_plan
3899 : * Returns a worktablescan plan for the base relation scanned by 'best_path'
3900 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3901 : */
3902 : static WorkTableScan *
3903 920 : create_worktablescan_plan(PlannerInfo *root, Path *best_path,
3904 : List *tlist, List *scan_clauses)
3905 : {
3906 : WorkTableScan *scan_plan;
3907 920 : Index scan_relid = best_path->parent->relid;
3908 : RangeTblEntry *rte;
3909 : Index levelsup;
3910 : PlannerInfo *cteroot;
3911 :
3912 : Assert(scan_relid > 0);
3913 920 : rte = planner_rt_fetch(scan_relid, root);
3914 : Assert(rte->rtekind == RTE_CTE);
3915 : Assert(rte->self_reference);
3916 :
3917 : /*
3918 : * We need to find the worktable param ID, which is in the plan level
3919 : * that's processing the recursive UNION, which is one level *below* where
3920 : * the CTE comes from.
3921 : */
3922 920 : levelsup = rte->ctelevelsup;
3923 920 : if (levelsup == 0) /* shouldn't happen */
3924 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3925 920 : levelsup--;
3926 920 : cteroot = root;
3927 2252 : while (levelsup-- > 0)
3928 : {
3929 1332 : cteroot = cteroot->parent_root;
3930 1332 : if (!cteroot) /* shouldn't happen */
3931 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3932 : }
3933 920 : if (cteroot->wt_param_id < 0) /* shouldn't happen */
3934 0 : elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
3935 :
3936 : /* Sort clauses into best execution order */
3937 920 : scan_clauses = order_qual_clauses(root, scan_clauses);
3938 :
3939 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3940 920 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3941 :
3942 : /* Replace any outer-relation variables with nestloop params */
3943 920 : if (best_path->param_info)
3944 : {
3945 : scan_clauses = (List *)
3946 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3947 : }
3948 :
3949 920 : scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
3950 : cteroot->wt_param_id);
3951 :
3952 920 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3953 :
3954 920 : return scan_plan;
3955 : }
3956 :
3957 : /*
3958 : * create_foreignscan_plan
3959 : * Returns a foreignscan plan for the relation scanned by 'best_path'
3960 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3961 : */
3962 : static ForeignScan *
3963 2064 : create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
3964 : List *tlist, List *scan_clauses)
3965 : {
3966 : ForeignScan *scan_plan;
3967 2064 : RelOptInfo *rel = best_path->path.parent;
3968 2064 : Index scan_relid = rel->relid;
3969 2064 : Oid rel_oid = InvalidOid;
3970 2064 : Plan *outer_plan = NULL;
3971 :
3972 : Assert(rel->fdwroutine != NULL);
3973 :
3974 : /* transform the child path if any */
3975 2064 : if (best_path->fdw_outerpath)
3976 48 : outer_plan = create_plan_recurse(root, best_path->fdw_outerpath,
3977 : CP_EXACT_TLIST);
3978 :
3979 : /*
3980 : * If we're scanning a base relation, fetch its OID. (Irrelevant if
3981 : * scanning a join relation.)
3982 : */
3983 2064 : if (scan_relid > 0)
3984 : {
3985 : RangeTblEntry *rte;
3986 :
3987 : Assert(rel->rtekind == RTE_RELATION);
3988 1500 : rte = planner_rt_fetch(scan_relid, root);
3989 : Assert(rte->rtekind == RTE_RELATION);
3990 1500 : rel_oid = rte->relid;
3991 : }
3992 :
3993 : /*
3994 : * Sort clauses into best execution order. We do this first since the FDW
3995 : * might have more info than we do and wish to adjust the ordering.
3996 : */
3997 2064 : scan_clauses = order_qual_clauses(root, scan_clauses);
3998 :
3999 : /*
4000 : * Let the FDW perform its processing on the restriction clauses and
4001 : * generate the plan node. Note that the FDW might remove restriction
4002 : * clauses that it intends to execute remotely, or even add more (if it
4003 : * has selected some join clauses for remote use but also wants them
4004 : * rechecked locally).
4005 : */
4006 2064 : scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
4007 : best_path,
4008 : tlist, scan_clauses,
4009 : outer_plan);
4010 :
4011 : /* Copy cost data from Path to Plan; no need to make FDW do this */
4012 2064 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
4013 :
4014 : /* Copy user OID to access as; likewise no need to make FDW do this */
4015 2064 : scan_plan->checkAsUser = rel->userid;
4016 :
4017 : /* Copy foreign server OID; likewise, no need to make FDW do this */
4018 2064 : scan_plan->fs_server = rel->serverid;
4019 :
4020 : /*
4021 : * Likewise, copy the relids that are represented by this foreign scan. An
4022 : * upper rel doesn't have relids set, but it covers all the relations
4023 : * participating in the underlying scan/join, so use root->all_query_rels.
4024 : */
4025 2064 : if (rel->reloptkind == RELOPT_UPPER_REL)
4026 242 : scan_plan->fs_relids = root->all_query_rels;
4027 : else
4028 1822 : scan_plan->fs_relids = best_path->path.parent->relids;
4029 :
4030 : /*
4031 : * Join relid sets include relevant outer joins, but FDWs may need to know
4032 : * which are the included base rels. That's a bit tedious to get without
4033 : * access to the plan-time data structures, so compute it here.
4034 : */
4035 4128 : scan_plan->fs_base_relids = bms_difference(scan_plan->fs_relids,
4036 2064 : root->outer_join_rels);
4037 :
4038 : /*
4039 : * If this is a foreign join, and to make it valid to push down we had to
4040 : * assume that the current user is the same as some user explicitly named
4041 : * in the query, mark the finished plan as depending on the current user.
4042 : */
4043 2064 : if (rel->useridiscurrent)
4044 4 : root->glob->dependsOnRole = true;
4045 :
4046 : /*
4047 : * Replace any outer-relation variables with nestloop params in the qual,
4048 : * fdw_exprs and fdw_recheck_quals expressions. We do this last so that
4049 : * the FDW doesn't have to be involved. (Note that parts of fdw_exprs or
4050 : * fdw_recheck_quals could have come from join clauses, so doing this
4051 : * beforehand on the scan_clauses wouldn't work.) We assume
4052 : * fdw_scan_tlist contains no such variables.
4053 : */
4054 2064 : if (best_path->path.param_info)
4055 : {
4056 26 : scan_plan->scan.plan.qual = (List *)
4057 26 : replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
4058 26 : scan_plan->fdw_exprs = (List *)
4059 26 : replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
4060 26 : scan_plan->fdw_recheck_quals = (List *)
4061 26 : replace_nestloop_params(root,
4062 26 : (Node *) scan_plan->fdw_recheck_quals);
4063 : }
4064 :
4065 : /*
4066 : * If rel is a base relation, detect whether any system columns are
4067 : * requested from the rel. (If rel is a join relation, rel->relid will be
4068 : * 0, but there can be no Var with relid 0 in the rel's targetlist or the
4069 : * restriction clauses, so we skip this in that case. Note that any such
4070 : * columns in base relations that were joined are assumed to be contained
4071 : * in fdw_scan_tlist.) This is a bit of a kluge and might go away
4072 : * someday, so we intentionally leave it out of the API presented to FDWs.
4073 : */
4074 2064 : scan_plan->fsSystemCol = false;
4075 2064 : if (scan_relid > 0)
4076 : {
4077 1500 : Bitmapset *attrs_used = NULL;
4078 : ListCell *lc;
4079 : int i;
4080 :
4081 : /*
4082 : * First, examine all the attributes needed for joins or final output.
4083 : * Note: we must look at rel's targetlist, not the attr_needed data,
4084 : * because attr_needed isn't computed for inheritance child rels.
4085 : */
4086 1500 : pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used);
4087 :
4088 : /* Add all the attributes used by restriction clauses. */
4089 2204 : foreach(lc, rel->baserestrictinfo)
4090 : {
4091 704 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
4092 :
4093 704 : pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used);
4094 : }
4095 :
4096 : /* Now, are any system columns requested from rel? */
4097 8458 : for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
4098 : {
4099 7500 : if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
4100 : {
4101 542 : scan_plan->fsSystemCol = true;
4102 542 : break;
4103 : }
4104 : }
4105 :
4106 1500 : bms_free(attrs_used);
4107 : }
4108 :
4109 2064 : return scan_plan;
4110 : }
4111 :
4112 : /*
4113 : * create_customscan_plan
4114 : *
4115 : * Transform a CustomPath into a Plan.
4116 : */
4117 : static CustomScan *
4118 0 : create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
4119 : List *tlist, List *scan_clauses)
4120 : {
4121 : CustomScan *cplan;
4122 0 : RelOptInfo *rel = best_path->path.parent;
4123 0 : List *custom_plans = NIL;
4124 : ListCell *lc;
4125 :
4126 : /* Recursively transform child paths. */
4127 0 : foreach(lc, best_path->custom_paths)
4128 : {
4129 0 : Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc),
4130 : CP_EXACT_TLIST);
4131 :
4132 0 : custom_plans = lappend(custom_plans, plan);
4133 : }
4134 :
4135 : /*
4136 : * Sort clauses into the best execution order, although custom-scan
4137 : * provider can reorder them again.
4138 : */
4139 0 : scan_clauses = order_qual_clauses(root, scan_clauses);
4140 :
4141 : /*
4142 : * Invoke custom plan provider to create the Plan node represented by the
4143 : * CustomPath.
4144 : */
4145 0 : cplan = castNode(CustomScan,
4146 : best_path->methods->PlanCustomPath(root,
4147 : rel,
4148 : best_path,
4149 : tlist,
4150 : scan_clauses,
4151 : custom_plans));
4152 :
4153 : /*
4154 : * Copy cost data from Path to Plan; no need to make custom-plan providers
4155 : * do this
4156 : */
4157 0 : copy_generic_path_info(&cplan->scan.plan, &best_path->path);
4158 :
4159 : /* Likewise, copy the relids that are represented by this custom scan */
4160 0 : cplan->custom_relids = best_path->path.parent->relids;
4161 :
4162 : /*
4163 : * Replace any outer-relation variables with nestloop params in the qual
4164 : * and custom_exprs expressions. We do this last so that the custom-plan
4165 : * provider doesn't have to be involved. (Note that parts of custom_exprs
4166 : * could have come from join clauses, so doing this beforehand on the
4167 : * scan_clauses wouldn't work.) We assume custom_scan_tlist contains no
4168 : * such variables.
4169 : */
4170 0 : if (best_path->path.param_info)
4171 : {
4172 0 : cplan->scan.plan.qual = (List *)
4173 0 : replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
4174 0 : cplan->custom_exprs = (List *)
4175 0 : replace_nestloop_params(root, (Node *) cplan->custom_exprs);
4176 : }
4177 :
4178 0 : return cplan;
4179 : }
4180 :
4181 :
4182 : /*****************************************************************************
4183 : *
4184 : * JOIN METHODS
4185 : *
4186 : *****************************************************************************/
4187 :
4188 : static NestLoop *
4189 91630 : create_nestloop_plan(PlannerInfo *root,
4190 : NestPath *best_path)
4191 : {
4192 : NestLoop *join_plan;
4193 : Plan *outer_plan;
4194 : Plan *inner_plan;
4195 : Relids outerrelids;
4196 91630 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4197 91630 : List *joinrestrictclauses = best_path->jpath.joinrestrictinfo;
4198 : List *joinclauses;
4199 : List *otherclauses;
4200 : List *nestParams;
4201 : List *outer_tlist;
4202 : bool outer_parallel_safe;
4203 91630 : Relids saveOuterRels = root->curOuterRels;
4204 : ListCell *lc;
4205 :
4206 : /*
4207 : * If the inner path is parameterized by the topmost parent of the outer
4208 : * rel rather than the outer rel itself, fix that. (Nothing happens here
4209 : * if it is not so parameterized.)
4210 : */
4211 91630 : best_path->jpath.innerjoinpath =
4212 91630 : reparameterize_path_by_child(root,
4213 : best_path->jpath.innerjoinpath,
4214 91630 : best_path->jpath.outerjoinpath->parent);
4215 :
4216 : /*
4217 : * Failure here probably means that reparameterize_path_by_child() is not
4218 : * in sync with path_is_reparameterizable_by_child().
4219 : */
4220 : Assert(best_path->jpath.innerjoinpath != NULL);
4221 :
4222 : /* NestLoop can project, so no need to be picky about child tlists */
4223 91630 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath, 0);
4224 :
4225 : /* For a nestloop, include outer relids in curOuterRels for inner side */
4226 91630 : outerrelids = best_path->jpath.outerjoinpath->parent->relids;
4227 91630 : root->curOuterRels = bms_union(root->curOuterRels, outerrelids);
4228 :
4229 91630 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath, 0);
4230 :
4231 : /* Restore curOuterRels */
4232 91630 : bms_free(root->curOuterRels);
4233 91630 : root->curOuterRels = saveOuterRels;
4234 :
4235 : /* Sort join qual clauses into best execution order */
4236 91630 : joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
4237 :
4238 : /* Get the join qual clauses (in plain expression form) */
4239 : /* Any pseudoconstant clauses are ignored here */
4240 91630 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4241 : {
4242 22272 : extract_actual_join_clauses(joinrestrictclauses,
4243 22272 : best_path->jpath.path.parent->relids,
4244 : &joinclauses, &otherclauses);
4245 : }
4246 : else
4247 : {
4248 : /* We can treat all clauses alike for an inner join */
4249 69358 : joinclauses = extract_actual_clauses(joinrestrictclauses, false);
4250 69358 : otherclauses = NIL;
4251 : }
4252 :
4253 : /* Replace any outer-relation variables with nestloop params */
4254 91630 : if (best_path->jpath.path.param_info)
4255 : {
4256 966 : joinclauses = (List *)
4257 966 : replace_nestloop_params(root, (Node *) joinclauses);
4258 966 : otherclauses = (List *)
4259 966 : replace_nestloop_params(root, (Node *) otherclauses);
4260 : }
4261 :
4262 : /*
4263 : * Identify any nestloop parameters that should be supplied by this join
4264 : * node, and remove them from root->curOuterParams.
4265 : */
4266 91630 : nestParams = identify_current_nestloop_params(root,
4267 : outerrelids,
4268 91630 : PATH_REQ_OUTER((Path *) best_path));
4269 :
4270 : /*
4271 : * While nestloop parameters that are Vars had better be available from
4272 : * the outer_plan already, there are edge cases where nestloop parameters
4273 : * that are PHVs won't be. In such cases we must add them to the
4274 : * outer_plan's tlist, since the executor's NestLoopParam machinery
4275 : * requires the params to be simple outer-Var references to that tlist.
4276 : * (This is cheating a little bit, because the outer path's required-outer
4277 : * relids might not be enough to allow evaluating such a PHV. But in
4278 : * practice, if we could have evaluated the PHV at the nestloop node, we
4279 : * can do so in the outer plan too.)
4280 : */
4281 91630 : outer_tlist = outer_plan->targetlist;
4282 91630 : outer_parallel_safe = outer_plan->parallel_safe;
4283 141890 : foreach(lc, nestParams)
4284 : {
4285 50260 : NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
4286 : PlaceHolderVar *phv;
4287 : TargetEntry *tle;
4288 :
4289 50260 : if (IsA(nlp->paramval, Var))
4290 50008 : continue; /* nothing to do for simple Vars */
4291 : /* Otherwise it must be a PHV */
4292 252 : phv = castNode(PlaceHolderVar, nlp->paramval);
4293 :
4294 252 : if (tlist_member((Expr *) phv, outer_tlist))
4295 222 : continue; /* already available */
4296 :
4297 : /*
4298 : * It's possible that nestloop parameter PHVs selected to evaluate
4299 : * here contain references to surviving root->curOuterParams items
4300 : * (that is, they reference values that will be supplied by some
4301 : * higher-level nestloop). Those need to be converted to Params now.
4302 : * Note: it's safe to do this after the tlist_member() check, because
4303 : * equal() won't pay attention to phv->phexpr.
4304 : */
4305 60 : phv->phexpr = (Expr *) replace_nestloop_params(root,
4306 30 : (Node *) phv->phexpr);
4307 :
4308 : /* Make a shallow copy of outer_tlist, if we didn't already */
4309 30 : if (outer_tlist == outer_plan->targetlist)
4310 30 : outer_tlist = list_copy(outer_tlist);
4311 : /* ... and add the needed expression */
4312 30 : tle = makeTargetEntry((Expr *) copyObject(phv),
4313 30 : list_length(outer_tlist) + 1,
4314 : NULL,
4315 : true);
4316 30 : outer_tlist = lappend(outer_tlist, tle);
4317 : /* ... and track whether tlist is (still) parallel-safe */
4318 30 : if (outer_parallel_safe)
4319 6 : outer_parallel_safe = is_parallel_safe(root, (Node *) phv);
4320 : }
4321 91630 : if (outer_tlist != outer_plan->targetlist)
4322 30 : outer_plan = change_plan_targetlist(outer_plan, outer_tlist,
4323 : outer_parallel_safe);
4324 :
4325 : /* And finally, we can build the join plan node */
4326 91630 : join_plan = make_nestloop(tlist,
4327 : joinclauses,
4328 : otherclauses,
4329 : nestParams,
4330 : outer_plan,
4331 : inner_plan,
4332 : best_path->jpath.jointype,
4333 91630 : best_path->jpath.inner_unique);
4334 :
4335 91630 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4336 :
4337 91630 : return join_plan;
4338 : }
4339 :
4340 : static MergeJoin *
4341 7648 : create_mergejoin_plan(PlannerInfo *root,
4342 : MergePath *best_path)
4343 : {
4344 : MergeJoin *join_plan;
4345 : Plan *outer_plan;
4346 : Plan *inner_plan;
4347 7648 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4348 : List *joinclauses;
4349 : List *otherclauses;
4350 : List *mergeclauses;
4351 : List *outerpathkeys;
4352 : List *innerpathkeys;
4353 : int nClauses;
4354 : Oid *mergefamilies;
4355 : Oid *mergecollations;
4356 : bool *mergereversals;
4357 : bool *mergenullsfirst;
4358 : PathKey *opathkey;
4359 : EquivalenceClass *opeclass;
4360 : int i;
4361 : ListCell *lc;
4362 : ListCell *lop;
4363 : ListCell *lip;
4364 7648 : Path *outer_path = best_path->jpath.outerjoinpath;
4365 7648 : Path *inner_path = best_path->jpath.innerjoinpath;
4366 :
4367 : /*
4368 : * MergeJoin can project, so we don't have to demand exact tlists from the
4369 : * inputs. However, if we're intending to sort an input's result, it's
4370 : * best to request a small tlist so we aren't sorting more data than
4371 : * necessary.
4372 : */
4373 7648 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4374 7648 : (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4375 :
4376 7648 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4377 7648 : (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4378 :
4379 : /* Sort join qual clauses into best execution order */
4380 : /* NB: do NOT reorder the mergeclauses */
4381 7648 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4382 :
4383 : /* Get the join qual clauses (in plain expression form) */
4384 : /* Any pseudoconstant clauses are ignored here */
4385 7648 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4386 : {
4387 5222 : extract_actual_join_clauses(joinclauses,
4388 5222 : best_path->jpath.path.parent->relids,
4389 : &joinclauses, &otherclauses);
4390 : }
4391 : else
4392 : {
4393 : /* We can treat all clauses alike for an inner join */
4394 2426 : joinclauses = extract_actual_clauses(joinclauses, false);
4395 2426 : otherclauses = NIL;
4396 : }
4397 :
4398 : /*
4399 : * Remove the mergeclauses from the list of join qual clauses, leaving the
4400 : * list of quals that must be checked as qpquals.
4401 : */
4402 7648 : mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
4403 7648 : joinclauses = list_difference(joinclauses, mergeclauses);
4404 :
4405 : /*
4406 : * Replace any outer-relation variables with nestloop params. There
4407 : * should not be any in the mergeclauses.
4408 : */
4409 7648 : if (best_path->jpath.path.param_info)
4410 : {
4411 6 : joinclauses = (List *)
4412 6 : replace_nestloop_params(root, (Node *) joinclauses);
4413 6 : otherclauses = (List *)
4414 6 : replace_nestloop_params(root, (Node *) otherclauses);
4415 : }
4416 :
4417 : /*
4418 : * Rearrange mergeclauses, if needed, so that the outer variable is always
4419 : * on the left; mark the mergeclause restrictinfos with correct
4420 : * outer_is_left status.
4421 : */
4422 7648 : mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
4423 7648 : best_path->jpath.outerjoinpath->parent->relids);
4424 :
4425 : /*
4426 : * Create explicit sort nodes for the outer and inner paths if necessary.
4427 : */
4428 7648 : if (best_path->outersortkeys)
4429 : {
4430 2980 : Relids outer_relids = outer_path->parent->relids;
4431 : Plan *sort_plan;
4432 :
4433 : /*
4434 : * We can assert that the outer path is not already ordered
4435 : * appropriately for the mergejoin; otherwise, outersortkeys would
4436 : * have been set to NIL.
4437 : */
4438 : Assert(!pathkeys_contained_in(best_path->outersortkeys,
4439 : outer_path->pathkeys));
4440 :
4441 : /*
4442 : * We choose to use incremental sort if it is enabled and there are
4443 : * presorted keys; otherwise we use full sort.
4444 : */
4445 2980 : if (enable_incremental_sort && best_path->outer_presorted_keys > 0)
4446 : {
4447 : sort_plan = (Plan *)
4448 12 : make_incrementalsort_from_pathkeys(outer_plan,
4449 : best_path->outersortkeys,
4450 : outer_relids,
4451 : best_path->outer_presorted_keys);
4452 :
4453 12 : label_incrementalsort_with_costsize(root,
4454 : (IncrementalSort *) sort_plan,
4455 : best_path->outersortkeys,
4456 : -1.0);
4457 : }
4458 : else
4459 : {
4460 : sort_plan = (Plan *)
4461 2968 : make_sort_from_pathkeys(outer_plan,
4462 : best_path->outersortkeys,
4463 : outer_relids);
4464 :
4465 2968 : label_sort_with_costsize(root, (Sort *) sort_plan, -1.0);
4466 : }
4467 :
4468 2980 : outer_plan = sort_plan;
4469 2980 : outerpathkeys = best_path->outersortkeys;
4470 : }
4471 : else
4472 4668 : outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
4473 :
4474 7648 : if (best_path->innersortkeys)
4475 : {
4476 : /*
4477 : * We do not consider incremental sort for inner path, because
4478 : * incremental sort does not support mark/restore.
4479 : */
4480 :
4481 7124 : Relids inner_relids = inner_path->parent->relids;
4482 : Sort *sort;
4483 :
4484 : /*
4485 : * We can assert that the inner path is not already ordered
4486 : * appropriately for the mergejoin; otherwise, innersortkeys would
4487 : * have been set to NIL.
4488 : */
4489 : Assert(!pathkeys_contained_in(best_path->innersortkeys,
4490 : inner_path->pathkeys));
4491 :
4492 7124 : sort = make_sort_from_pathkeys(inner_plan,
4493 : best_path->innersortkeys,
4494 : inner_relids);
4495 :
4496 7124 : label_sort_with_costsize(root, sort, -1.0);
4497 7124 : inner_plan = (Plan *) sort;
4498 7124 : innerpathkeys = best_path->innersortkeys;
4499 : }
4500 : else
4501 524 : innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
4502 :
4503 : /*
4504 : * If specified, add a materialize node to shield the inner plan from the
4505 : * need to handle mark/restore.
4506 : */
4507 7648 : if (best_path->materialize_inner)
4508 : {
4509 176 : Plan *matplan = (Plan *) make_material(inner_plan);
4510 :
4511 : /*
4512 : * We assume the materialize will not spill to disk, and therefore
4513 : * charge just cpu_operator_cost per tuple. (Keep this estimate in
4514 : * sync with final_cost_mergejoin.)
4515 : */
4516 176 : copy_plan_costsize(matplan, inner_plan);
4517 176 : matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
4518 :
4519 176 : inner_plan = matplan;
4520 : }
4521 :
4522 : /*
4523 : * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
4524 : * executor. The information is in the pathkeys for the two inputs, but
4525 : * we need to be careful about the possibility of mergeclauses sharing a
4526 : * pathkey, as well as the possibility that the inner pathkeys are not in
4527 : * an order matching the mergeclauses.
4528 : */
4529 7648 : nClauses = list_length(mergeclauses);
4530 : Assert(nClauses == list_length(best_path->path_mergeclauses));
4531 7648 : mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
4532 7648 : mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
4533 7648 : mergereversals = (bool *) palloc(nClauses * sizeof(bool));
4534 7648 : mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
4535 :
4536 7648 : opathkey = NULL;
4537 7648 : opeclass = NULL;
4538 7648 : lop = list_head(outerpathkeys);
4539 7648 : lip = list_head(innerpathkeys);
4540 7648 : i = 0;
4541 16212 : foreach(lc, best_path->path_mergeclauses)
4542 : {
4543 8564 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
4544 : EquivalenceClass *oeclass;
4545 : EquivalenceClass *ieclass;
4546 8564 : PathKey *ipathkey = NULL;
4547 8564 : EquivalenceClass *ipeclass = NULL;
4548 8564 : bool first_inner_match = false;
4549 :
4550 : /* fetch outer/inner eclass from mergeclause */
4551 8564 : if (rinfo->outer_is_left)
4552 : {
4553 6926 : oeclass = rinfo->left_ec;
4554 6926 : ieclass = rinfo->right_ec;
4555 : }
4556 : else
4557 : {
4558 1638 : oeclass = rinfo->right_ec;
4559 1638 : ieclass = rinfo->left_ec;
4560 : }
4561 : Assert(oeclass != NULL);
4562 : Assert(ieclass != NULL);
4563 :
4564 : /*
4565 : * We must identify the pathkey elements associated with this clause
4566 : * by matching the eclasses (which should give a unique match, since
4567 : * the pathkey lists should be canonical). In typical cases the merge
4568 : * clauses are one-to-one with the pathkeys, but when dealing with
4569 : * partially redundant query conditions, things are more complicated.
4570 : *
4571 : * lop and lip reference the first as-yet-unmatched pathkey elements.
4572 : * If they're NULL then all pathkey elements have been matched.
4573 : *
4574 : * The ordering of the outer pathkeys should match the mergeclauses,
4575 : * by construction (see find_mergeclauses_for_outer_pathkeys()). There
4576 : * could be more than one mergeclause for the same outer pathkey, but
4577 : * no pathkey may be entirely skipped over.
4578 : */
4579 8564 : if (oeclass != opeclass) /* multiple matches are not interesting */
4580 : {
4581 : /* doesn't match the current opathkey, so must match the next */
4582 8552 : if (lop == NULL)
4583 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4584 8552 : opathkey = (PathKey *) lfirst(lop);
4585 8552 : opeclass = opathkey->pk_eclass;
4586 8552 : lop = lnext(outerpathkeys, lop);
4587 8552 : if (oeclass != opeclass)
4588 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4589 : }
4590 :
4591 : /*
4592 : * The inner pathkeys likewise should not have skipped-over keys, but
4593 : * it's possible for a mergeclause to reference some earlier inner
4594 : * pathkey if we had redundant pathkeys. For example we might have
4595 : * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x". The
4596 : * implied inner ordering is then "ORDER BY x, y, x", but the pathkey
4597 : * mechanism drops the second sort by x as redundant, and this code
4598 : * must cope.
4599 : *
4600 : * It's also possible for the implied inner-rel ordering to be like
4601 : * "ORDER BY x, y, x DESC". We still drop the second instance of x as
4602 : * redundant; but this means that the sort ordering of a redundant
4603 : * inner pathkey should not be considered significant. So we must
4604 : * detect whether this is the first clause matching an inner pathkey.
4605 : */
4606 8564 : if (lip)
4607 : {
4608 8546 : ipathkey = (PathKey *) lfirst(lip);
4609 8546 : ipeclass = ipathkey->pk_eclass;
4610 8546 : if (ieclass == ipeclass)
4611 : {
4612 : /* successful first match to this inner pathkey */
4613 8546 : lip = lnext(innerpathkeys, lip);
4614 8546 : first_inner_match = true;
4615 : }
4616 : }
4617 8564 : if (!first_inner_match)
4618 : {
4619 : /* redundant clause ... must match something before lip */
4620 : ListCell *l2;
4621 :
4622 18 : foreach(l2, innerpathkeys)
4623 : {
4624 18 : if (l2 == lip)
4625 0 : break;
4626 18 : ipathkey = (PathKey *) lfirst(l2);
4627 18 : ipeclass = ipathkey->pk_eclass;
4628 18 : if (ieclass == ipeclass)
4629 18 : break;
4630 : }
4631 18 : if (ieclass != ipeclass)
4632 0 : elog(ERROR, "inner pathkeys do not match mergeclauses");
4633 : }
4634 :
4635 : /*
4636 : * The pathkeys should always match each other as to opfamily and
4637 : * collation (which affect equality), but if we're considering a
4638 : * redundant inner pathkey, its sort ordering might not match. In
4639 : * such cases we may ignore the inner pathkey's sort ordering and use
4640 : * the outer's. (In effect, we're lying to the executor about the
4641 : * sort direction of this inner column, but it does not matter since
4642 : * the run-time row comparisons would only reach this column when
4643 : * there's equality for the earlier column containing the same eclass.
4644 : * There could be only one value in this column for the range of inner
4645 : * rows having a given value in the earlier column, so it does not
4646 : * matter which way we imagine this column to be ordered.) But a
4647 : * non-redundant inner pathkey had better match outer's ordering too.
4648 : */
4649 8564 : if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
4650 8564 : opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation)
4651 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4652 8564 : if (first_inner_match &&
4653 8546 : (opathkey->pk_cmptype != ipathkey->pk_cmptype ||
4654 8546 : opathkey->pk_nulls_first != ipathkey->pk_nulls_first))
4655 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4656 :
4657 : /* OK, save info for executor */
4658 8564 : mergefamilies[i] = opathkey->pk_opfamily;
4659 8564 : mergecollations[i] = opathkey->pk_eclass->ec_collation;
4660 8564 : mergereversals[i] = (opathkey->pk_cmptype == COMPARE_GT ? true : false);
4661 8564 : mergenullsfirst[i] = opathkey->pk_nulls_first;
4662 8564 : i++;
4663 : }
4664 :
4665 : /*
4666 : * Note: it is not an error if we have additional pathkey elements (i.e.,
4667 : * lop or lip isn't NULL here). The input paths might be better-sorted
4668 : * than we need for the current mergejoin.
4669 : */
4670 :
4671 : /*
4672 : * Now we can build the mergejoin node.
4673 : */
4674 7648 : join_plan = make_mergejoin(tlist,
4675 : joinclauses,
4676 : otherclauses,
4677 : mergeclauses,
4678 : mergefamilies,
4679 : mergecollations,
4680 : mergereversals,
4681 : mergenullsfirst,
4682 : outer_plan,
4683 : inner_plan,
4684 : best_path->jpath.jointype,
4685 7648 : best_path->jpath.inner_unique,
4686 7648 : best_path->skip_mark_restore);
4687 :
4688 : /* Costs of sort and material steps are included in path cost already */
4689 7648 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4690 :
4691 7648 : return join_plan;
4692 : }
4693 :
4694 : static HashJoin *
4695 32578 : create_hashjoin_plan(PlannerInfo *root,
4696 : HashPath *best_path)
4697 : {
4698 : HashJoin *join_plan;
4699 : Hash *hash_plan;
4700 : Plan *outer_plan;
4701 : Plan *inner_plan;
4702 32578 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4703 : List *joinclauses;
4704 : List *otherclauses;
4705 : List *hashclauses;
4706 32578 : List *hashoperators = NIL;
4707 32578 : List *hashcollations = NIL;
4708 32578 : List *inner_hashkeys = NIL;
4709 32578 : List *outer_hashkeys = NIL;
4710 32578 : Oid skewTable = InvalidOid;
4711 32578 : AttrNumber skewColumn = InvalidAttrNumber;
4712 32578 : bool skewInherit = false;
4713 : ListCell *lc;
4714 :
4715 : /*
4716 : * HashJoin can project, so we don't have to demand exact tlists from the
4717 : * inputs. However, it's best to request a small tlist from the inner
4718 : * side, so that we aren't storing more data than necessary. Likewise, if
4719 : * we anticipate batching, request a small tlist from the outer side so
4720 : * that we don't put extra data in the outer batch files.
4721 : */
4722 32578 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4723 32578 : (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0);
4724 :
4725 32578 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4726 : CP_SMALL_TLIST);
4727 :
4728 : /* Sort join qual clauses into best execution order */
4729 32578 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4730 : /* There's no point in sorting the hash clauses ... */
4731 :
4732 : /* Get the join qual clauses (in plain expression form) */
4733 : /* Any pseudoconstant clauses are ignored here */
4734 32578 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4735 : {
4736 11002 : extract_actual_join_clauses(joinclauses,
4737 11002 : best_path->jpath.path.parent->relids,
4738 : &joinclauses, &otherclauses);
4739 : }
4740 : else
4741 : {
4742 : /* We can treat all clauses alike for an inner join */
4743 21576 : joinclauses = extract_actual_clauses(joinclauses, false);
4744 21576 : otherclauses = NIL;
4745 : }
4746 :
4747 : /*
4748 : * Remove the hashclauses from the list of join qual clauses, leaving the
4749 : * list of quals that must be checked as qpquals.
4750 : */
4751 32578 : hashclauses = get_actual_clauses(best_path->path_hashclauses);
4752 32578 : joinclauses = list_difference(joinclauses, hashclauses);
4753 :
4754 : /*
4755 : * Replace any outer-relation variables with nestloop params. There
4756 : * should not be any in the hashclauses.
4757 : */
4758 32578 : if (best_path->jpath.path.param_info)
4759 : {
4760 156 : joinclauses = (List *)
4761 156 : replace_nestloop_params(root, (Node *) joinclauses);
4762 156 : otherclauses = (List *)
4763 156 : replace_nestloop_params(root, (Node *) otherclauses);
4764 : }
4765 :
4766 : /*
4767 : * Rearrange hashclauses, if needed, so that the outer variable is always
4768 : * on the left.
4769 : */
4770 32578 : hashclauses = get_switched_clauses(best_path->path_hashclauses,
4771 32578 : best_path->jpath.outerjoinpath->parent->relids);
4772 :
4773 : /*
4774 : * If there is a single join clause and we can identify the outer variable
4775 : * as a simple column reference, supply its identity for possible use in
4776 : * skew optimization. (Note: in principle we could do skew optimization
4777 : * with multiple join clauses, but we'd have to be able to determine the
4778 : * most common combinations of outer values, which we don't currently have
4779 : * enough stats for.)
4780 : */
4781 32578 : if (list_length(hashclauses) == 1)
4782 : {
4783 30102 : OpExpr *clause = (OpExpr *) linitial(hashclauses);
4784 : Node *node;
4785 :
4786 : Assert(is_opclause(clause));
4787 30102 : node = (Node *) linitial(clause->args);
4788 30102 : if (IsA(node, RelabelType))
4789 618 : node = (Node *) ((RelabelType *) node)->arg;
4790 30102 : if (IsA(node, Var))
4791 : {
4792 26106 : Var *var = (Var *) node;
4793 : RangeTblEntry *rte;
4794 :
4795 26106 : rte = root->simple_rte_array[var->varno];
4796 26106 : if (rte->rtekind == RTE_RELATION)
4797 : {
4798 22778 : skewTable = rte->relid;
4799 22778 : skewColumn = var->varattno;
4800 22778 : skewInherit = rte->inh;
4801 : }
4802 : }
4803 : }
4804 :
4805 : /*
4806 : * Collect hash related information. The hashed expressions are
4807 : * deconstructed into outer/inner expressions, so they can be computed
4808 : * separately (inner expressions are used to build the hashtable via Hash,
4809 : * outer expressions to perform lookups of tuples from HashJoin's outer
4810 : * plan in the hashtable). Also collect operator information necessary to
4811 : * build the hashtable.
4812 : */
4813 67734 : foreach(lc, hashclauses)
4814 : {
4815 35156 : OpExpr *hclause = lfirst_node(OpExpr, lc);
4816 :
4817 35156 : hashoperators = lappend_oid(hashoperators, hclause->opno);
4818 35156 : hashcollations = lappend_oid(hashcollations, hclause->inputcollid);
4819 35156 : outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args));
4820 35156 : inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args));
4821 : }
4822 :
4823 : /*
4824 : * Build the hash node and hash join node.
4825 : */
4826 32578 : hash_plan = make_hash(inner_plan,
4827 : inner_hashkeys,
4828 : skewTable,
4829 : skewColumn,
4830 : skewInherit);
4831 :
4832 : /*
4833 : * Set Hash node's startup & total costs equal to total cost of input
4834 : * plan; this only affects EXPLAIN display not decisions.
4835 : */
4836 32578 : copy_plan_costsize(&hash_plan->plan, inner_plan);
4837 32578 : hash_plan->plan.startup_cost = hash_plan->plan.total_cost;
4838 :
4839 : /*
4840 : * If parallel-aware, the executor will also need an estimate of the total
4841 : * number of rows expected from all participants so that it can size the
4842 : * shared hash table.
4843 : */
4844 32578 : if (best_path->jpath.path.parallel_aware)
4845 : {
4846 186 : hash_plan->plan.parallel_aware = true;
4847 186 : hash_plan->rows_total = best_path->inner_rows_total;
4848 : }
4849 :
4850 32578 : join_plan = make_hashjoin(tlist,
4851 : joinclauses,
4852 : otherclauses,
4853 : hashclauses,
4854 : hashoperators,
4855 : hashcollations,
4856 : outer_hashkeys,
4857 : outer_plan,
4858 : (Plan *) hash_plan,
4859 : best_path->jpath.jointype,
4860 32578 : best_path->jpath.inner_unique);
4861 :
4862 32578 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4863 :
4864 32578 : return join_plan;
4865 : }
4866 :
4867 :
4868 : /*****************************************************************************
4869 : *
4870 : * SUPPORTING ROUTINES
4871 : *
4872 : *****************************************************************************/
4873 :
4874 : /*
4875 : * replace_nestloop_params
4876 : * Replace outer-relation Vars and PlaceHolderVars in the given expression
4877 : * with nestloop Params
4878 : *
4879 : * All Vars and PlaceHolderVars belonging to the relation(s) identified by
4880 : * root->curOuterRels are replaced by Params, and entries are added to
4881 : * root->curOuterParams if not already present.
4882 : */
4883 : static Node *
4884 346996 : replace_nestloop_params(PlannerInfo *root, Node *expr)
4885 : {
4886 : /* No setup needed for tree walk, so away we go */
4887 346996 : return replace_nestloop_params_mutator(expr, root);
4888 : }
4889 :
4890 : static Node *
4891 1278362 : replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
4892 : {
4893 1278362 : if (node == NULL)
4894 82966 : return NULL;
4895 1195396 : if (IsA(node, Var))
4896 : {
4897 363320 : Var *var = (Var *) node;
4898 :
4899 : /* Upper-level Vars should be long gone at this point */
4900 : Assert(var->varlevelsup == 0);
4901 : /* If not to be replaced, we can just return the Var unmodified */
4902 363320 : if (IS_SPECIAL_VARNO(var->varno) ||
4903 363308 : !bms_is_member(var->varno, root->curOuterRels))
4904 271378 : return node;
4905 : /* Replace the Var with a nestloop Param */
4906 91942 : return (Node *) replace_nestloop_param_var(root, var);
4907 : }
4908 832076 : if (IsA(node, PlaceHolderVar))
4909 : {
4910 916 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
4911 :
4912 : /* Upper-level PlaceHolderVars should be long gone at this point */
4913 : Assert(phv->phlevelsup == 0);
4914 :
4915 : /* Check whether we need to replace the PHV */
4916 916 : if (!bms_is_subset(find_placeholder_info(root, phv)->ph_eval_at,
4917 916 : root->curOuterRels))
4918 : {
4919 : /*
4920 : * We can't replace the whole PHV, but we might still need to
4921 : * replace Vars or PHVs within its expression, in case it ends up
4922 : * actually getting evaluated here. (It might get evaluated in
4923 : * this plan node, or some child node; in the latter case we don't
4924 : * really need to process the expression here, but we haven't got
4925 : * enough info to tell if that's the case.) Flat-copy the PHV
4926 : * node and then recurse on its expression.
4927 : *
4928 : * Note that after doing this, we might have different
4929 : * representations of the contents of the same PHV in different
4930 : * parts of the plan tree. This is OK because equal() will just
4931 : * match on phid/phlevelsup, so setrefs.c will still recognize an
4932 : * upper-level reference to a lower-level copy of the same PHV.
4933 : */
4934 592 : PlaceHolderVar *newphv = makeNode(PlaceHolderVar);
4935 :
4936 592 : memcpy(newphv, phv, sizeof(PlaceHolderVar));
4937 592 : newphv->phexpr = (Expr *)
4938 592 : replace_nestloop_params_mutator((Node *) phv->phexpr,
4939 : root);
4940 592 : return (Node *) newphv;
4941 : }
4942 : /* Replace the PlaceHolderVar with a nestloop Param */
4943 324 : return (Node *) replace_nestloop_param_placeholdervar(root, phv);
4944 : }
4945 831160 : return expression_tree_mutator(node, replace_nestloop_params_mutator, root);
4946 : }
4947 :
4948 : /*
4949 : * fix_indexqual_references
4950 : * Adjust indexqual clauses to the form the executor's indexqual
4951 : * machinery needs.
4952 : *
4953 : * We have three tasks here:
4954 : * * Select the actual qual clauses out of the input IndexClause list,
4955 : * and remove RestrictInfo nodes from the qual clauses.
4956 : * * Replace any outer-relation Var or PHV nodes with nestloop Params.
4957 : * (XXX eventually, that responsibility should go elsewhere?)
4958 : * * Index keys must be represented by Var nodes with varattno set to the
4959 : * index's attribute number, not the attribute number in the original rel.
4960 : *
4961 : * *stripped_indexquals_p receives a list of the actual qual clauses.
4962 : *
4963 : * *fixed_indexquals_p receives a list of the adjusted quals. This is a copy
4964 : * that shares no substructure with the original; this is needed in case there
4965 : * are subplans in it (we need two separate copies of the subplan tree, or
4966 : * things will go awry).
4967 : */
4968 : static void
4969 177070 : fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
4970 : List **stripped_indexquals_p, List **fixed_indexquals_p)
4971 : {
4972 177070 : IndexOptInfo *index = index_path->indexinfo;
4973 : List *stripped_indexquals;
4974 : List *fixed_indexquals;
4975 : ListCell *lc;
4976 :
4977 177070 : stripped_indexquals = fixed_indexquals = NIL;
4978 :
4979 368866 : foreach(lc, index_path->indexclauses)
4980 : {
4981 191796 : IndexClause *iclause = lfirst_node(IndexClause, lc);
4982 191796 : int indexcol = iclause->indexcol;
4983 : ListCell *lc2;
4984 :
4985 384652 : foreach(lc2, iclause->indexquals)
4986 : {
4987 192856 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
4988 192856 : Node *clause = (Node *) rinfo->clause;
4989 :
4990 192856 : stripped_indexquals = lappend(stripped_indexquals, clause);
4991 192856 : clause = fix_indexqual_clause(root, index, indexcol,
4992 : clause, iclause->indexcols);
4993 192856 : fixed_indexquals = lappend(fixed_indexquals, clause);
4994 : }
4995 : }
4996 :
4997 177070 : *stripped_indexquals_p = stripped_indexquals;
4998 177070 : *fixed_indexquals_p = fixed_indexquals;
4999 177070 : }
5000 :
5001 : /*
5002 : * fix_indexorderby_references
5003 : * Adjust indexorderby clauses to the form the executor's index
5004 : * machinery needs.
5005 : *
5006 : * This is a simplified version of fix_indexqual_references. The input is
5007 : * bare clauses and a separate indexcol list, instead of IndexClauses.
5008 : */
5009 : static List *
5010 177070 : fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
5011 : {
5012 177070 : IndexOptInfo *index = index_path->indexinfo;
5013 : List *fixed_indexorderbys;
5014 : ListCell *lcc,
5015 : *lci;
5016 :
5017 177070 : fixed_indexorderbys = NIL;
5018 :
5019 177456 : forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
5020 : {
5021 386 : Node *clause = (Node *) lfirst(lcc);
5022 386 : int indexcol = lfirst_int(lci);
5023 :
5024 386 : clause = fix_indexqual_clause(root, index, indexcol, clause, NIL);
5025 386 : fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
5026 : }
5027 :
5028 177070 : return fixed_indexorderbys;
5029 : }
5030 :
5031 : /*
5032 : * fix_indexqual_clause
5033 : * Convert a single indexqual clause to the form needed by the executor.
5034 : *
5035 : * We replace nestloop params here, and replace the index key variables
5036 : * or expressions by index Var nodes.
5037 : */
5038 : static Node *
5039 193242 : fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol,
5040 : Node *clause, List *indexcolnos)
5041 : {
5042 : /*
5043 : * Replace any outer-relation variables with nestloop params.
5044 : *
5045 : * This also makes a copy of the clause, so it's safe to modify it
5046 : * in-place below.
5047 : */
5048 193242 : clause = replace_nestloop_params(root, clause);
5049 :
5050 193242 : if (IsA(clause, OpExpr))
5051 : {
5052 190116 : OpExpr *op = (OpExpr *) clause;
5053 :
5054 : /* Replace the indexkey expression with an index Var. */
5055 190116 : linitial(op->args) = fix_indexqual_operand(linitial(op->args),
5056 : index,
5057 : indexcol);
5058 : }
5059 3126 : else if (IsA(clause, RowCompareExpr))
5060 : {
5061 168 : RowCompareExpr *rc = (RowCompareExpr *) clause;
5062 : ListCell *lca,
5063 : *lcai;
5064 :
5065 : /* Replace the indexkey expressions with index Vars. */
5066 : Assert(list_length(rc->largs) == list_length(indexcolnos));
5067 504 : forboth(lca, rc->largs, lcai, indexcolnos)
5068 : {
5069 336 : lfirst(lca) = fix_indexqual_operand(lfirst(lca),
5070 : index,
5071 : lfirst_int(lcai));
5072 : }
5073 : }
5074 2958 : else if (IsA(clause, ScalarArrayOpExpr))
5075 : {
5076 2064 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
5077 :
5078 : /* Replace the indexkey expression with an index Var. */
5079 2064 : linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
5080 : index,
5081 : indexcol);
5082 : }
5083 894 : else if (IsA(clause, NullTest))
5084 : {
5085 894 : NullTest *nt = (NullTest *) clause;
5086 :
5087 : /* Replace the indexkey expression with an index Var. */
5088 894 : nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
5089 : index,
5090 : indexcol);
5091 : }
5092 : else
5093 0 : elog(ERROR, "unsupported indexqual type: %d",
5094 : (int) nodeTag(clause));
5095 :
5096 193242 : return clause;
5097 : }
5098 :
5099 : /*
5100 : * fix_indexqual_operand
5101 : * Convert an indexqual expression to a Var referencing the index column.
5102 : *
5103 : * We represent index keys by Var nodes having varno == INDEX_VAR and varattno
5104 : * equal to the index's attribute number (index column position).
5105 : *
5106 : * Most of the code here is just for sanity cross-checking that the given
5107 : * expression actually matches the index column it's claimed to.
5108 : */
5109 : static Node *
5110 193410 : fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
5111 : {
5112 : Var *result;
5113 : int pos;
5114 : ListCell *indexpr_item;
5115 :
5116 : /*
5117 : * Remove any binary-compatible relabeling of the indexkey
5118 : */
5119 193410 : if (IsA(node, RelabelType))
5120 626 : node = (Node *) ((RelabelType *) node)->arg;
5121 :
5122 : Assert(indexcol >= 0 && indexcol < index->ncolumns);
5123 :
5124 193410 : if (index->indexkeys[indexcol] != 0)
5125 : {
5126 : /* It's a simple index column */
5127 193046 : if (IsA(node, Var) &&
5128 193046 : ((Var *) node)->varno == index->rel->relid &&
5129 193046 : ((Var *) node)->varattno == index->indexkeys[indexcol])
5130 : {
5131 193046 : result = (Var *) copyObject(node);
5132 193046 : result->varno = INDEX_VAR;
5133 193046 : result->varattno = indexcol + 1;
5134 193046 : return (Node *) result;
5135 : }
5136 : else
5137 0 : elog(ERROR, "index key does not match expected index column");
5138 : }
5139 :
5140 : /* It's an index expression, so find and cross-check the expression */
5141 364 : indexpr_item = list_head(index->indexprs);
5142 364 : for (pos = 0; pos < index->ncolumns; pos++)
5143 : {
5144 364 : if (index->indexkeys[pos] == 0)
5145 : {
5146 364 : if (indexpr_item == NULL)
5147 0 : elog(ERROR, "too few entries in indexprs list");
5148 364 : if (pos == indexcol)
5149 : {
5150 : Node *indexkey;
5151 :
5152 364 : indexkey = (Node *) lfirst(indexpr_item);
5153 364 : if (indexkey && IsA(indexkey, RelabelType))
5154 10 : indexkey = (Node *) ((RelabelType *) indexkey)->arg;
5155 364 : if (equal(node, indexkey))
5156 : {
5157 364 : result = makeVar(INDEX_VAR, indexcol + 1,
5158 364 : exprType(lfirst(indexpr_item)), -1,
5159 364 : exprCollation(lfirst(indexpr_item)),
5160 : 0);
5161 364 : return (Node *) result;
5162 : }
5163 : else
5164 0 : elog(ERROR, "index key does not match expected index column");
5165 : }
5166 0 : indexpr_item = lnext(index->indexprs, indexpr_item);
5167 : }
5168 : }
5169 :
5170 : /* Oops... */
5171 0 : elog(ERROR, "index key does not match expected index column");
5172 : return NULL; /* keep compiler quiet */
5173 : }
5174 :
5175 : /*
5176 : * get_switched_clauses
5177 : * Given a list of merge or hash joinclauses (as RestrictInfo nodes),
5178 : * extract the bare clauses, and rearrange the elements within the
5179 : * clauses, if needed, so the outer join variable is on the left and
5180 : * the inner is on the right. The original clause data structure is not
5181 : * touched; a modified list is returned. We do, however, set the transient
5182 : * outer_is_left field in each RestrictInfo to show which side was which.
5183 : */
5184 : static List *
5185 40226 : get_switched_clauses(List *clauses, Relids outerrelids)
5186 : {
5187 40226 : List *t_list = NIL;
5188 : ListCell *l;
5189 :
5190 83946 : foreach(l, clauses)
5191 : {
5192 43720 : RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
5193 43720 : OpExpr *clause = (OpExpr *) restrictinfo->clause;
5194 :
5195 : Assert(is_opclause(clause));
5196 43720 : if (bms_is_subset(restrictinfo->right_relids, outerrelids))
5197 : {
5198 : /*
5199 : * Duplicate just enough of the structure to allow commuting the
5200 : * clause without changing the original list. Could use
5201 : * copyObject, but a complete deep copy is overkill.
5202 : */
5203 18136 : OpExpr *temp = makeNode(OpExpr);
5204 :
5205 18136 : temp->opno = clause->opno;
5206 18136 : temp->opfuncid = InvalidOid;
5207 18136 : temp->opresulttype = clause->opresulttype;
5208 18136 : temp->opretset = clause->opretset;
5209 18136 : temp->opcollid = clause->opcollid;
5210 18136 : temp->inputcollid = clause->inputcollid;
5211 18136 : temp->args = list_copy(clause->args);
5212 18136 : temp->location = clause->location;
5213 : /* Commute it --- note this modifies the temp node in-place. */
5214 18136 : CommuteOpExpr(temp);
5215 18136 : t_list = lappend(t_list, temp);
5216 18136 : restrictinfo->outer_is_left = false;
5217 : }
5218 : else
5219 : {
5220 : Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
5221 25584 : t_list = lappend(t_list, clause);
5222 25584 : restrictinfo->outer_is_left = true;
5223 : }
5224 : }
5225 40226 : return t_list;
5226 : }
5227 :
5228 : /*
5229 : * order_qual_clauses
5230 : * Given a list of qual clauses that will all be evaluated at the same
5231 : * plan node, sort the list into the order we want to check the quals
5232 : * in at runtime.
5233 : *
5234 : * When security barrier quals are used in the query, we may have quals with
5235 : * different security levels in the list. Quals of lower security_level
5236 : * must go before quals of higher security_level, except that we can grant
5237 : * exceptions to move up quals that are leakproof. When security level
5238 : * doesn't force the decision, we prefer to order clauses by estimated
5239 : * execution cost, cheapest first.
5240 : *
5241 : * Ideally the order should be driven by a combination of execution cost and
5242 : * selectivity, but it's not immediately clear how to account for both,
5243 : * and given the uncertainty of the estimates the reliability of the decisions
5244 : * would be doubtful anyway. So we just order by security level then
5245 : * estimated per-tuple cost, being careful not to change the order when
5246 : * (as is often the case) the estimates are identical.
5247 : *
5248 : * Although this will work on either bare clauses or RestrictInfos, it's
5249 : * much faster to apply it to RestrictInfos, since it can re-use cost
5250 : * information that is cached in RestrictInfos. XXX in the bare-clause
5251 : * case, we are also not able to apply security considerations. That is
5252 : * all right for the moment, because the bare-clause case doesn't occur
5253 : * anywhere that barrier quals could be present, but it would be better to
5254 : * get rid of it.
5255 : *
5256 : * Note: some callers pass lists that contain entries that will later be
5257 : * removed; this is the easiest way to let this routine see RestrictInfos
5258 : * instead of bare clauses. This is another reason why trying to consider
5259 : * selectivity in the ordering would likely do the wrong thing.
5260 : */
5261 : static List *
5262 895748 : order_qual_clauses(PlannerInfo *root, List *clauses)
5263 : {
5264 : typedef struct
5265 : {
5266 : Node *clause;
5267 : Cost cost;
5268 : Index security_level;
5269 : } QualItem;
5270 895748 : int nitems = list_length(clauses);
5271 : QualItem *items;
5272 : ListCell *lc;
5273 : int i;
5274 : List *result;
5275 :
5276 : /* No need to work hard for 0 or 1 clause */
5277 895748 : if (nitems <= 1)
5278 826524 : return clauses;
5279 :
5280 : /*
5281 : * Collect the items and costs into an array. This is to avoid repeated
5282 : * cost_qual_eval work if the inputs aren't RestrictInfos.
5283 : */
5284 69224 : items = (QualItem *) palloc(nitems * sizeof(QualItem));
5285 69224 : i = 0;
5286 231086 : foreach(lc, clauses)
5287 : {
5288 161862 : Node *clause = (Node *) lfirst(lc);
5289 : QualCost qcost;
5290 :
5291 161862 : cost_qual_eval_node(&qcost, clause, root);
5292 161862 : items[i].clause = clause;
5293 161862 : items[i].cost = qcost.per_tuple;
5294 161862 : if (IsA(clause, RestrictInfo))
5295 : {
5296 161770 : RestrictInfo *rinfo = (RestrictInfo *) clause;
5297 :
5298 : /*
5299 : * If a clause is leakproof, it doesn't have to be constrained by
5300 : * its nominal security level. If it's also reasonably cheap
5301 : * (here defined as 10X cpu_operator_cost), pretend it has
5302 : * security_level 0, which will allow it to go in front of
5303 : * more-expensive quals of lower security levels. Of course, that
5304 : * will also force it to go in front of cheaper quals of its own
5305 : * security level, which is not so great, but we can alleviate
5306 : * that risk by applying the cost limit cutoff.
5307 : */
5308 161770 : if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost)
5309 1200 : items[i].security_level = 0;
5310 : else
5311 160570 : items[i].security_level = rinfo->security_level;
5312 : }
5313 : else
5314 92 : items[i].security_level = 0;
5315 161862 : i++;
5316 : }
5317 :
5318 : /*
5319 : * Sort. We don't use qsort() because it's not guaranteed stable for
5320 : * equal keys. The expected number of entries is small enough that a
5321 : * simple insertion sort should be good enough.
5322 : */
5323 161862 : for (i = 1; i < nitems; i++)
5324 : {
5325 92638 : QualItem newitem = items[i];
5326 : int j;
5327 :
5328 : /* insert newitem into the already-sorted subarray */
5329 103026 : for (j = i; j > 0; j--)
5330 : {
5331 94772 : QualItem *olditem = &items[j - 1];
5332 :
5333 94772 : if (newitem.security_level > olditem->security_level ||
5334 93926 : (newitem.security_level == olditem->security_level &&
5335 92490 : newitem.cost >= olditem->cost))
5336 : break;
5337 10388 : items[j] = *olditem;
5338 : }
5339 92638 : items[j] = newitem;
5340 : }
5341 :
5342 : /* Convert back to a list */
5343 69224 : result = NIL;
5344 231086 : for (i = 0; i < nitems; i++)
5345 161862 : result = lappend(result, items[i].clause);
5346 :
5347 69224 : return result;
5348 : }
5349 :
5350 : /*
5351 : * Copy cost and size info from a Path node to the Plan node created from it.
5352 : * The executor usually won't use this info, but it's needed by EXPLAIN.
5353 : * Also copy the parallel-related flags, which the executor *will* use.
5354 : */
5355 : static void
5356 1101468 : copy_generic_path_info(Plan *dest, Path *src)
5357 : {
5358 1101468 : dest->disabled_nodes = src->disabled_nodes;
5359 1101468 : dest->startup_cost = src->startup_cost;
5360 1101468 : dest->total_cost = src->total_cost;
5361 1101468 : dest->plan_rows = src->rows;
5362 1101468 : dest->plan_width = src->pathtarget->width;
5363 1101468 : dest->parallel_aware = src->parallel_aware;
5364 1101468 : dest->parallel_safe = src->parallel_safe;
5365 1101468 : }
5366 :
5367 : /*
5368 : * Copy cost and size info from a lower plan node to an inserted node.
5369 : * (Most callers alter the info after copying it.)
5370 : */
5371 : static void
5372 42584 : copy_plan_costsize(Plan *dest, Plan *src)
5373 : {
5374 42584 : dest->disabled_nodes = src->disabled_nodes;
5375 42584 : dest->startup_cost = src->startup_cost;
5376 42584 : dest->total_cost = src->total_cost;
5377 42584 : dest->plan_rows = src->plan_rows;
5378 42584 : dest->plan_width = src->plan_width;
5379 : /* Assume the inserted node is not parallel-aware. */
5380 42584 : dest->parallel_aware = false;
5381 : /* Assume the inserted node is parallel-safe, if child plan is. */
5382 42584 : dest->parallel_safe = src->parallel_safe;
5383 42584 : }
5384 :
5385 : /*
5386 : * Some places in this file build Sort nodes that don't have a directly
5387 : * corresponding Path node. The cost of the sort is, or should have been,
5388 : * included in the cost of the Path node we're working from, but since it's
5389 : * not split out, we have to re-figure it using cost_sort(). This is just
5390 : * to label the Sort node nicely for EXPLAIN.
5391 : *
5392 : * limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
5393 : */
5394 : static void
5395 10164 : label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples)
5396 : {
5397 10164 : Plan *lefttree = plan->plan.lefttree;
5398 : Path sort_path; /* dummy for result of cost_sort */
5399 :
5400 : Assert(IsA(plan, Sort));
5401 :
5402 10164 : cost_sort(&sort_path, root, NIL,
5403 : plan->plan.disabled_nodes,
5404 : lefttree->total_cost,
5405 : lefttree->plan_rows,
5406 : lefttree->plan_width,
5407 : 0.0,
5408 : work_mem,
5409 : limit_tuples);
5410 10164 : plan->plan.startup_cost = sort_path.startup_cost;
5411 10164 : plan->plan.total_cost = sort_path.total_cost;
5412 10164 : plan->plan.plan_rows = lefttree->plan_rows;
5413 10164 : plan->plan.plan_width = lefttree->plan_width;
5414 10164 : plan->plan.parallel_aware = false;
5415 10164 : plan->plan.parallel_safe = lefttree->parallel_safe;
5416 10164 : }
5417 :
5418 : /*
5419 : * Same as label_sort_with_costsize, but labels the IncrementalSort node
5420 : * instead.
5421 : */
5422 : static void
5423 36 : label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
5424 : List *pathkeys, double limit_tuples)
5425 : {
5426 36 : Plan *lefttree = plan->sort.plan.lefttree;
5427 : Path sort_path; /* dummy for result of cost_incremental_sort */
5428 :
5429 : Assert(IsA(plan, IncrementalSort));
5430 :
5431 36 : cost_incremental_sort(&sort_path, root, pathkeys,
5432 : plan->nPresortedCols,
5433 : plan->sort.plan.disabled_nodes,
5434 : lefttree->startup_cost,
5435 : lefttree->total_cost,
5436 : lefttree->plan_rows,
5437 : lefttree->plan_width,
5438 : 0.0,
5439 : work_mem,
5440 : limit_tuples);
5441 36 : plan->sort.plan.startup_cost = sort_path.startup_cost;
5442 36 : plan->sort.plan.total_cost = sort_path.total_cost;
5443 36 : plan->sort.plan.plan_rows = lefttree->plan_rows;
5444 36 : plan->sort.plan.plan_width = lefttree->plan_width;
5445 36 : plan->sort.plan.parallel_aware = false;
5446 36 : plan->sort.plan.parallel_safe = lefttree->parallel_safe;
5447 36 : }
5448 :
5449 : /*
5450 : * bitmap_subplan_mark_shared
5451 : * Set isshared flag in bitmap subplan so that it will be created in
5452 : * shared memory.
5453 : */
5454 : static void
5455 30 : bitmap_subplan_mark_shared(Plan *plan)
5456 : {
5457 30 : if (IsA(plan, BitmapAnd))
5458 0 : bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans));
5459 30 : else if (IsA(plan, BitmapOr))
5460 : {
5461 0 : ((BitmapOr *) plan)->isshared = true;
5462 0 : bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans));
5463 : }
5464 30 : else if (IsA(plan, BitmapIndexScan))
5465 30 : ((BitmapIndexScan *) plan)->isshared = true;
5466 : else
5467 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(plan));
5468 30 : }
5469 :
5470 : /*****************************************************************************
5471 : *
5472 : * PLAN NODE BUILDING ROUTINES
5473 : *
5474 : * In general, these functions are not passed the original Path and therefore
5475 : * leave it to the caller to fill in the cost/width fields from the Path,
5476 : * typically by calling copy_generic_path_info(). This convention is
5477 : * somewhat historical, but it does support a few places above where we build
5478 : * a plan node without having an exactly corresponding Path node. Under no
5479 : * circumstances should one of these functions do its own cost calculations,
5480 : * as that would be redundant with calculations done while building Paths.
5481 : *
5482 : *****************************************************************************/
5483 :
5484 : static SeqScan *
5485 207932 : make_seqscan(List *qptlist,
5486 : List *qpqual,
5487 : Index scanrelid)
5488 : {
5489 207932 : SeqScan *node = makeNode(SeqScan);
5490 207932 : Plan *plan = &node->scan.plan;
5491 :
5492 207932 : plan->targetlist = qptlist;
5493 207932 : plan->qual = qpqual;
5494 207932 : plan->lefttree = NULL;
5495 207932 : plan->righttree = NULL;
5496 207932 : node->scan.scanrelid = scanrelid;
5497 :
5498 207932 : return node;
5499 : }
5500 :
5501 : static SampleScan *
5502 306 : make_samplescan(List *qptlist,
5503 : List *qpqual,
5504 : Index scanrelid,
5505 : TableSampleClause *tsc)
5506 : {
5507 306 : SampleScan *node = makeNode(SampleScan);
5508 306 : Plan *plan = &node->scan.plan;
5509 :
5510 306 : plan->targetlist = qptlist;
5511 306 : plan->qual = qpqual;
5512 306 : plan->lefttree = NULL;
5513 306 : plan->righttree = NULL;
5514 306 : node->scan.scanrelid = scanrelid;
5515 306 : node->tablesample = tsc;
5516 :
5517 306 : return node;
5518 : }
5519 :
5520 : static IndexScan *
5521 160672 : make_indexscan(List *qptlist,
5522 : List *qpqual,
5523 : Index scanrelid,
5524 : Oid indexid,
5525 : List *indexqual,
5526 : List *indexqualorig,
5527 : List *indexorderby,
5528 : List *indexorderbyorig,
5529 : List *indexorderbyops,
5530 : ScanDirection indexscandir)
5531 : {
5532 160672 : IndexScan *node = makeNode(IndexScan);
5533 160672 : Plan *plan = &node->scan.plan;
5534 :
5535 160672 : plan->targetlist = qptlist;
5536 160672 : plan->qual = qpqual;
5537 160672 : plan->lefttree = NULL;
5538 160672 : plan->righttree = NULL;
5539 160672 : node->scan.scanrelid = scanrelid;
5540 160672 : node->indexid = indexid;
5541 160672 : node->indexqual = indexqual;
5542 160672 : node->indexqualorig = indexqualorig;
5543 160672 : node->indexorderby = indexorderby;
5544 160672 : node->indexorderbyorig = indexorderbyorig;
5545 160672 : node->indexorderbyops = indexorderbyops;
5546 160672 : node->indexorderdir = indexscandir;
5547 :
5548 160672 : return node;
5549 : }
5550 :
5551 : static IndexOnlyScan *
5552 16398 : make_indexonlyscan(List *qptlist,
5553 : List *qpqual,
5554 : Index scanrelid,
5555 : Oid indexid,
5556 : List *indexqual,
5557 : List *recheckqual,
5558 : List *indexorderby,
5559 : List *indextlist,
5560 : ScanDirection indexscandir)
5561 : {
5562 16398 : IndexOnlyScan *node = makeNode(IndexOnlyScan);
5563 16398 : Plan *plan = &node->scan.plan;
5564 :
5565 16398 : plan->targetlist = qptlist;
5566 16398 : plan->qual = qpqual;
5567 16398 : plan->lefttree = NULL;
5568 16398 : plan->righttree = NULL;
5569 16398 : node->scan.scanrelid = scanrelid;
5570 16398 : node->indexid = indexid;
5571 16398 : node->indexqual = indexqual;
5572 16398 : node->recheckqual = recheckqual;
5573 16398 : node->indexorderby = indexorderby;
5574 16398 : node->indextlist = indextlist;
5575 16398 : node->indexorderdir = indexscandir;
5576 :
5577 16398 : return node;
5578 : }
5579 :
5580 : static BitmapIndexScan *
5581 20988 : make_bitmap_indexscan(Index scanrelid,
5582 : Oid indexid,
5583 : List *indexqual,
5584 : List *indexqualorig)
5585 : {
5586 20988 : BitmapIndexScan *node = makeNode(BitmapIndexScan);
5587 20988 : Plan *plan = &node->scan.plan;
5588 :
5589 20988 : plan->targetlist = NIL; /* not used */
5590 20988 : plan->qual = NIL; /* not used */
5591 20988 : plan->lefttree = NULL;
5592 20988 : plan->righttree = NULL;
5593 20988 : node->scan.scanrelid = scanrelid;
5594 20988 : node->indexid = indexid;
5595 20988 : node->indexqual = indexqual;
5596 20988 : node->indexqualorig = indexqualorig;
5597 :
5598 20988 : return node;
5599 : }
5600 :
5601 : static BitmapHeapScan *
5602 20322 : make_bitmap_heapscan(List *qptlist,
5603 : List *qpqual,
5604 : Plan *lefttree,
5605 : List *bitmapqualorig,
5606 : Index scanrelid)
5607 : {
5608 20322 : BitmapHeapScan *node = makeNode(BitmapHeapScan);
5609 20322 : Plan *plan = &node->scan.plan;
5610 :
5611 20322 : plan->targetlist = qptlist;
5612 20322 : plan->qual = qpqual;
5613 20322 : plan->lefttree = lefttree;
5614 20322 : plan->righttree = NULL;
5615 20322 : node->scan.scanrelid = scanrelid;
5616 20322 : node->bitmapqualorig = bitmapqualorig;
5617 :
5618 20322 : return node;
5619 : }
5620 :
5621 : static TidScan *
5622 740 : make_tidscan(List *qptlist,
5623 : List *qpqual,
5624 : Index scanrelid,
5625 : List *tidquals)
5626 : {
5627 740 : TidScan *node = makeNode(TidScan);
5628 740 : Plan *plan = &node->scan.plan;
5629 :
5630 740 : plan->targetlist = qptlist;
5631 740 : plan->qual = qpqual;
5632 740 : plan->lefttree = NULL;
5633 740 : plan->righttree = NULL;
5634 740 : node->scan.scanrelid = scanrelid;
5635 740 : node->tidquals = tidquals;
5636 :
5637 740 : return node;
5638 : }
5639 :
5640 : static TidRangeScan *
5641 1940 : make_tidrangescan(List *qptlist,
5642 : List *qpqual,
5643 : Index scanrelid,
5644 : List *tidrangequals)
5645 : {
5646 1940 : TidRangeScan *node = makeNode(TidRangeScan);
5647 1940 : Plan *plan = &node->scan.plan;
5648 :
5649 1940 : plan->targetlist = qptlist;
5650 1940 : plan->qual = qpqual;
5651 1940 : plan->lefttree = NULL;
5652 1940 : plan->righttree = NULL;
5653 1940 : node->scan.scanrelid = scanrelid;
5654 1940 : node->tidrangequals = tidrangequals;
5655 :
5656 1940 : return node;
5657 : }
5658 :
5659 : static SubqueryScan *
5660 27418 : make_subqueryscan(List *qptlist,
5661 : List *qpqual,
5662 : Index scanrelid,
5663 : Plan *subplan)
5664 : {
5665 27418 : SubqueryScan *node = makeNode(SubqueryScan);
5666 27418 : Plan *plan = &node->scan.plan;
5667 :
5668 27418 : plan->targetlist = qptlist;
5669 27418 : plan->qual = qpqual;
5670 27418 : plan->lefttree = NULL;
5671 27418 : plan->righttree = NULL;
5672 27418 : node->scan.scanrelid = scanrelid;
5673 27418 : node->subplan = subplan;
5674 27418 : node->scanstatus = SUBQUERY_SCAN_UNKNOWN;
5675 :
5676 27418 : return node;
5677 : }
5678 :
5679 : static FunctionScan *
5680 50946 : make_functionscan(List *qptlist,
5681 : List *qpqual,
5682 : Index scanrelid,
5683 : List *functions,
5684 : bool funcordinality)
5685 : {
5686 50946 : FunctionScan *node = makeNode(FunctionScan);
5687 50946 : Plan *plan = &node->scan.plan;
5688 :
5689 50946 : plan->targetlist = qptlist;
5690 50946 : plan->qual = qpqual;
5691 50946 : plan->lefttree = NULL;
5692 50946 : plan->righttree = NULL;
5693 50946 : node->scan.scanrelid = scanrelid;
5694 50946 : node->functions = functions;
5695 50946 : node->funcordinality = funcordinality;
5696 :
5697 50946 : return node;
5698 : }
5699 :
5700 : static TableFuncScan *
5701 626 : make_tablefuncscan(List *qptlist,
5702 : List *qpqual,
5703 : Index scanrelid,
5704 : TableFunc *tablefunc)
5705 : {
5706 626 : TableFuncScan *node = makeNode(TableFuncScan);
5707 626 : Plan *plan = &node->scan.plan;
5708 :
5709 626 : plan->targetlist = qptlist;
5710 626 : plan->qual = qpqual;
5711 626 : plan->lefttree = NULL;
5712 626 : plan->righttree = NULL;
5713 626 : node->scan.scanrelid = scanrelid;
5714 626 : node->tablefunc = tablefunc;
5715 :
5716 626 : return node;
5717 : }
5718 :
5719 : static ValuesScan *
5720 8222 : make_valuesscan(List *qptlist,
5721 : List *qpqual,
5722 : Index scanrelid,
5723 : List *values_lists)
5724 : {
5725 8222 : ValuesScan *node = makeNode(ValuesScan);
5726 8222 : Plan *plan = &node->scan.plan;
5727 :
5728 8222 : plan->targetlist = qptlist;
5729 8222 : plan->qual = qpqual;
5730 8222 : plan->lefttree = NULL;
5731 8222 : plan->righttree = NULL;
5732 8222 : node->scan.scanrelid = scanrelid;
5733 8222 : node->values_lists = values_lists;
5734 :
5735 8222 : return node;
5736 : }
5737 :
5738 : static CteScan *
5739 4224 : make_ctescan(List *qptlist,
5740 : List *qpqual,
5741 : Index scanrelid,
5742 : int ctePlanId,
5743 : int cteParam)
5744 : {
5745 4224 : CteScan *node = makeNode(CteScan);
5746 4224 : Plan *plan = &node->scan.plan;
5747 :
5748 4224 : plan->targetlist = qptlist;
5749 4224 : plan->qual = qpqual;
5750 4224 : plan->lefttree = NULL;
5751 4224 : plan->righttree = NULL;
5752 4224 : node->scan.scanrelid = scanrelid;
5753 4224 : node->ctePlanId = ctePlanId;
5754 4224 : node->cteParam = cteParam;
5755 :
5756 4224 : return node;
5757 : }
5758 :
5759 : static NamedTuplestoreScan *
5760 474 : make_namedtuplestorescan(List *qptlist,
5761 : List *qpqual,
5762 : Index scanrelid,
5763 : char *enrname)
5764 : {
5765 474 : NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan);
5766 474 : Plan *plan = &node->scan.plan;
5767 :
5768 : /* cost should be inserted by caller */
5769 474 : plan->targetlist = qptlist;
5770 474 : plan->qual = qpqual;
5771 474 : plan->lefttree = NULL;
5772 474 : plan->righttree = NULL;
5773 474 : node->scan.scanrelid = scanrelid;
5774 474 : node->enrname = enrname;
5775 :
5776 474 : return node;
5777 : }
5778 :
5779 : static WorkTableScan *
5780 920 : make_worktablescan(List *qptlist,
5781 : List *qpqual,
5782 : Index scanrelid,
5783 : int wtParam)
5784 : {
5785 920 : WorkTableScan *node = makeNode(WorkTableScan);
5786 920 : Plan *plan = &node->scan.plan;
5787 :
5788 920 : plan->targetlist = qptlist;
5789 920 : plan->qual = qpqual;
5790 920 : plan->lefttree = NULL;
5791 920 : plan->righttree = NULL;
5792 920 : node->scan.scanrelid = scanrelid;
5793 920 : node->wtParam = wtParam;
5794 :
5795 920 : return node;
5796 : }
5797 :
5798 : ForeignScan *
5799 2064 : make_foreignscan(List *qptlist,
5800 : List *qpqual,
5801 : Index scanrelid,
5802 : List *fdw_exprs,
5803 : List *fdw_private,
5804 : List *fdw_scan_tlist,
5805 : List *fdw_recheck_quals,
5806 : Plan *outer_plan)
5807 : {
5808 2064 : ForeignScan *node = makeNode(ForeignScan);
5809 2064 : Plan *plan = &node->scan.plan;
5810 :
5811 : /* cost will be filled in by create_foreignscan_plan */
5812 2064 : plan->targetlist = qptlist;
5813 2064 : plan->qual = qpqual;
5814 2064 : plan->lefttree = outer_plan;
5815 2064 : plan->righttree = NULL;
5816 2064 : node->scan.scanrelid = scanrelid;
5817 :
5818 : /* these may be overridden by the FDW's PlanDirectModify callback. */
5819 2064 : node->operation = CMD_SELECT;
5820 2064 : node->resultRelation = 0;
5821 :
5822 : /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5823 2064 : node->checkAsUser = InvalidOid;
5824 2064 : node->fs_server = InvalidOid;
5825 2064 : node->fdw_exprs = fdw_exprs;
5826 2064 : node->fdw_private = fdw_private;
5827 2064 : node->fdw_scan_tlist = fdw_scan_tlist;
5828 2064 : node->fdw_recheck_quals = fdw_recheck_quals;
5829 : /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5830 2064 : node->fs_relids = NULL;
5831 2064 : node->fs_base_relids = NULL;
5832 : /* fsSystemCol will be filled in by create_foreignscan_plan */
5833 2064 : node->fsSystemCol = false;
5834 :
5835 2064 : return node;
5836 : }
5837 :
5838 : static RecursiveUnion *
5839 920 : make_recursive_union(List *tlist,
5840 : Plan *lefttree,
5841 : Plan *righttree,
5842 : int wtParam,
5843 : List *distinctList,
5844 : long numGroups)
5845 : {
5846 920 : RecursiveUnion *node = makeNode(RecursiveUnion);
5847 920 : Plan *plan = &node->plan;
5848 920 : int numCols = list_length(distinctList);
5849 :
5850 920 : plan->targetlist = tlist;
5851 920 : plan->qual = NIL;
5852 920 : plan->lefttree = lefttree;
5853 920 : plan->righttree = righttree;
5854 920 : node->wtParam = wtParam;
5855 :
5856 : /*
5857 : * convert SortGroupClause list into arrays of attr indexes and equality
5858 : * operators, as wanted by executor
5859 : */
5860 920 : node->numCols = numCols;
5861 920 : if (numCols > 0)
5862 : {
5863 372 : int keyno = 0;
5864 : AttrNumber *dupColIdx;
5865 : Oid *dupOperators;
5866 : Oid *dupCollations;
5867 : ListCell *slitem;
5868 :
5869 372 : dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
5870 372 : dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
5871 372 : dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);
5872 :
5873 1416 : foreach(slitem, distinctList)
5874 : {
5875 1044 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
5876 1044 : TargetEntry *tle = get_sortgroupclause_tle(sortcl,
5877 : plan->targetlist);
5878 :
5879 1044 : dupColIdx[keyno] = tle->resno;
5880 1044 : dupOperators[keyno] = sortcl->eqop;
5881 1044 : dupCollations[keyno] = exprCollation((Node *) tle->expr);
5882 : Assert(OidIsValid(dupOperators[keyno]));
5883 1044 : keyno++;
5884 : }
5885 372 : node->dupColIdx = dupColIdx;
5886 372 : node->dupOperators = dupOperators;
5887 372 : node->dupCollations = dupCollations;
5888 : }
5889 920 : node->numGroups = numGroups;
5890 :
5891 920 : return node;
5892 : }
5893 :
5894 : static BitmapAnd *
5895 242 : make_bitmap_and(List *bitmapplans)
5896 : {
5897 242 : BitmapAnd *node = makeNode(BitmapAnd);
5898 242 : Plan *plan = &node->plan;
5899 :
5900 242 : plan->targetlist = NIL;
5901 242 : plan->qual = NIL;
5902 242 : plan->lefttree = NULL;
5903 242 : plan->righttree = NULL;
5904 242 : node->bitmapplans = bitmapplans;
5905 :
5906 242 : return node;
5907 : }
5908 :
5909 : static BitmapOr *
5910 418 : make_bitmap_or(List *bitmapplans)
5911 : {
5912 418 : BitmapOr *node = makeNode(BitmapOr);
5913 418 : Plan *plan = &node->plan;
5914 :
5915 418 : plan->targetlist = NIL;
5916 418 : plan->qual = NIL;
5917 418 : plan->lefttree = NULL;
5918 418 : plan->righttree = NULL;
5919 418 : node->bitmapplans = bitmapplans;
5920 :
5921 418 : return node;
5922 : }
5923 :
5924 : static NestLoop *
5925 91630 : make_nestloop(List *tlist,
5926 : List *joinclauses,
5927 : List *otherclauses,
5928 : List *nestParams,
5929 : Plan *lefttree,
5930 : Plan *righttree,
5931 : JoinType jointype,
5932 : bool inner_unique)
5933 : {
5934 91630 : NestLoop *node = makeNode(NestLoop);
5935 91630 : Plan *plan = &node->join.plan;
5936 :
5937 91630 : plan->targetlist = tlist;
5938 91630 : plan->qual = otherclauses;
5939 91630 : plan->lefttree = lefttree;
5940 91630 : plan->righttree = righttree;
5941 91630 : node->join.jointype = jointype;
5942 91630 : node->join.inner_unique = inner_unique;
5943 91630 : node->join.joinqual = joinclauses;
5944 91630 : node->nestParams = nestParams;
5945 :
5946 91630 : return node;
5947 : }
5948 :
5949 : static HashJoin *
5950 32578 : make_hashjoin(List *tlist,
5951 : List *joinclauses,
5952 : List *otherclauses,
5953 : List *hashclauses,
5954 : List *hashoperators,
5955 : List *hashcollations,
5956 : List *hashkeys,
5957 : Plan *lefttree,
5958 : Plan *righttree,
5959 : JoinType jointype,
5960 : bool inner_unique)
5961 : {
5962 32578 : HashJoin *node = makeNode(HashJoin);
5963 32578 : Plan *plan = &node->join.plan;
5964 :
5965 32578 : plan->targetlist = tlist;
5966 32578 : plan->qual = otherclauses;
5967 32578 : plan->lefttree = lefttree;
5968 32578 : plan->righttree = righttree;
5969 32578 : node->hashclauses = hashclauses;
5970 32578 : node->hashoperators = hashoperators;
5971 32578 : node->hashcollations = hashcollations;
5972 32578 : node->hashkeys = hashkeys;
5973 32578 : node->join.jointype = jointype;
5974 32578 : node->join.inner_unique = inner_unique;
5975 32578 : node->join.joinqual = joinclauses;
5976 :
5977 32578 : return node;
5978 : }
5979 :
5980 : static Hash *
5981 32578 : make_hash(Plan *lefttree,
5982 : List *hashkeys,
5983 : Oid skewTable,
5984 : AttrNumber skewColumn,
5985 : bool skewInherit)
5986 : {
5987 32578 : Hash *node = makeNode(Hash);
5988 32578 : Plan *plan = &node->plan;
5989 :
5990 32578 : plan->targetlist = lefttree->targetlist;
5991 32578 : plan->qual = NIL;
5992 32578 : plan->lefttree = lefttree;
5993 32578 : plan->righttree = NULL;
5994 :
5995 32578 : node->hashkeys = hashkeys;
5996 32578 : node->skewTable = skewTable;
5997 32578 : node->skewColumn = skewColumn;
5998 32578 : node->skewInherit = skewInherit;
5999 :
6000 32578 : return node;
6001 : }
6002 :
6003 : static MergeJoin *
6004 7648 : make_mergejoin(List *tlist,
6005 : List *joinclauses,
6006 : List *otherclauses,
6007 : List *mergeclauses,
6008 : Oid *mergefamilies,
6009 : Oid *mergecollations,
6010 : bool *mergereversals,
6011 : bool *mergenullsfirst,
6012 : Plan *lefttree,
6013 : Plan *righttree,
6014 : JoinType jointype,
6015 : bool inner_unique,
6016 : bool skip_mark_restore)
6017 : {
6018 7648 : MergeJoin *node = makeNode(MergeJoin);
6019 7648 : Plan *plan = &node->join.plan;
6020 :
6021 7648 : plan->targetlist = tlist;
6022 7648 : plan->qual = otherclauses;
6023 7648 : plan->lefttree = lefttree;
6024 7648 : plan->righttree = righttree;
6025 7648 : node->skip_mark_restore = skip_mark_restore;
6026 7648 : node->mergeclauses = mergeclauses;
6027 7648 : node->mergeFamilies = mergefamilies;
6028 7648 : node->mergeCollations = mergecollations;
6029 7648 : node->mergeReversals = mergereversals;
6030 7648 : node->mergeNullsFirst = mergenullsfirst;
6031 7648 : node->join.jointype = jointype;
6032 7648 : node->join.inner_unique = inner_unique;
6033 7648 : node->join.joinqual = joinclauses;
6034 :
6035 7648 : return node;
6036 : }
6037 :
6038 : /*
6039 : * make_sort --- basic routine to build a Sort plan node
6040 : *
6041 : * Caller must have built the sortColIdx, sortOperators, collations, and
6042 : * nullsFirst arrays already.
6043 : */
6044 : static Sort *
6045 78312 : make_sort(Plan *lefttree, int numCols,
6046 : AttrNumber *sortColIdx, Oid *sortOperators,
6047 : Oid *collations, bool *nullsFirst)
6048 : {
6049 : Sort *node;
6050 : Plan *plan;
6051 :
6052 78312 : node = makeNode(Sort);
6053 :
6054 78312 : plan = &node->plan;
6055 78312 : plan->targetlist = lefttree->targetlist;
6056 78312 : plan->disabled_nodes = lefttree->disabled_nodes + (enable_sort == false);
6057 78312 : plan->qual = NIL;
6058 78312 : plan->lefttree = lefttree;
6059 78312 : plan->righttree = NULL;
6060 78312 : node->numCols = numCols;
6061 78312 : node->sortColIdx = sortColIdx;
6062 78312 : node->sortOperators = sortOperators;
6063 78312 : node->collations = collations;
6064 78312 : node->nullsFirst = nullsFirst;
6065 :
6066 78312 : return node;
6067 : }
6068 :
6069 : /*
6070 : * make_incrementalsort --- basic routine to build an IncrementalSort plan node
6071 : *
6072 : * Caller must have built the sortColIdx, sortOperators, collations, and
6073 : * nullsFirst arrays already.
6074 : */
6075 : static IncrementalSort *
6076 992 : make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols,
6077 : AttrNumber *sortColIdx, Oid *sortOperators,
6078 : Oid *collations, bool *nullsFirst)
6079 : {
6080 : IncrementalSort *node;
6081 : Plan *plan;
6082 :
6083 992 : node = makeNode(IncrementalSort);
6084 :
6085 992 : plan = &node->sort.plan;
6086 992 : plan->targetlist = lefttree->targetlist;
6087 992 : plan->qual = NIL;
6088 992 : plan->lefttree = lefttree;
6089 992 : plan->righttree = NULL;
6090 992 : node->nPresortedCols = nPresortedCols;
6091 992 : node->sort.numCols = numCols;
6092 992 : node->sort.sortColIdx = sortColIdx;
6093 992 : node->sort.sortOperators = sortOperators;
6094 992 : node->sort.collations = collations;
6095 992 : node->sort.nullsFirst = nullsFirst;
6096 :
6097 992 : return node;
6098 : }
6099 :
6100 : /*
6101 : * prepare_sort_from_pathkeys
6102 : * Prepare to sort according to given pathkeys
6103 : *
6104 : * This is used to set up for Sort, MergeAppend, and Gather Merge nodes. It
6105 : * calculates the executor's representation of the sort key information, and
6106 : * adjusts the plan targetlist if needed to add resjunk sort columns.
6107 : *
6108 : * Input parameters:
6109 : * 'lefttree' is the plan node which yields input tuples
6110 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6111 : * 'relids' identifies the child relation being sorted, if any
6112 : * 'reqColIdx' is NULL or an array of required sort key column numbers
6113 : * 'adjust_tlist_in_place' is true if lefttree must be modified in-place
6114 : *
6115 : * We must convert the pathkey information into arrays of sort key column
6116 : * numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
6117 : * which is the representation the executor wants. These are returned into
6118 : * the output parameters *p_numsortkeys etc.
6119 : *
6120 : * When looking for matches to an EquivalenceClass's members, we will only
6121 : * consider child EC members if they belong to given 'relids'. This protects
6122 : * against possible incorrect matches to child expressions that contain no
6123 : * Vars.
6124 : *
6125 : * If reqColIdx isn't NULL then it contains sort key column numbers that
6126 : * we should match. This is used when making child plans for a MergeAppend;
6127 : * it's an error if we can't match the columns.
6128 : *
6129 : * If the pathkeys include expressions that aren't simple Vars, we will
6130 : * usually need to add resjunk items to the input plan's targetlist to
6131 : * compute these expressions, since a Sort or MergeAppend node itself won't
6132 : * do any such calculations. If the input plan type isn't one that can do
6133 : * projections, this means adding a Result node just to do the projection.
6134 : * However, the caller can pass adjust_tlist_in_place = true to force the
6135 : * lefttree tlist to be modified in-place regardless of whether the node type
6136 : * can project --- we use this for fixing the tlist of MergeAppend itself.
6137 : *
6138 : * Returns the node which is to be the input to the Sort (either lefttree,
6139 : * or a Result stacked atop lefttree).
6140 : */
6141 : static Plan *
6142 82564 : prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
6143 : Relids relids,
6144 : const AttrNumber *reqColIdx,
6145 : bool adjust_tlist_in_place,
6146 : int *p_numsortkeys,
6147 : AttrNumber **p_sortColIdx,
6148 : Oid **p_sortOperators,
6149 : Oid **p_collations,
6150 : bool **p_nullsFirst)
6151 : {
6152 82564 : List *tlist = lefttree->targetlist;
6153 : ListCell *i;
6154 : int numsortkeys;
6155 : AttrNumber *sortColIdx;
6156 : Oid *sortOperators;
6157 : Oid *collations;
6158 : bool *nullsFirst;
6159 :
6160 : /*
6161 : * We will need at most list_length(pathkeys) sort columns; possibly less
6162 : */
6163 82564 : numsortkeys = list_length(pathkeys);
6164 82564 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6165 82564 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6166 82564 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6167 82564 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6168 :
6169 82564 : numsortkeys = 0;
6170 :
6171 204256 : foreach(i, pathkeys)
6172 : {
6173 121692 : PathKey *pathkey = (PathKey *) lfirst(i);
6174 121692 : EquivalenceClass *ec = pathkey->pk_eclass;
6175 : EquivalenceMember *em;
6176 121692 : TargetEntry *tle = NULL;
6177 121692 : Oid pk_datatype = InvalidOid;
6178 : Oid sortop;
6179 : ListCell *j;
6180 :
6181 121692 : if (ec->ec_has_volatile)
6182 : {
6183 : /*
6184 : * If the pathkey's EquivalenceClass is volatile, then it must
6185 : * have come from an ORDER BY clause, and we have to match it to
6186 : * that same targetlist entry.
6187 : */
6188 200 : if (ec->ec_sortref == 0) /* can't happen */
6189 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6190 200 : tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
6191 : Assert(tle);
6192 : Assert(list_length(ec->ec_members) == 1);
6193 200 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6194 : }
6195 121492 : else if (reqColIdx != NULL)
6196 : {
6197 : /*
6198 : * If we are given a sort column number to match, only consider
6199 : * the single TLE at that position. It's possible that there is
6200 : * no such TLE, in which case fall through and generate a resjunk
6201 : * targetentry (we assume this must have happened in the parent
6202 : * plan as well). If there is a TLE but it doesn't match the
6203 : * pathkey's EC, we do the same, which is probably the wrong thing
6204 : * but we'll leave it to caller to complain about the mismatch.
6205 : */
6206 3274 : tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
6207 3274 : if (tle)
6208 : {
6209 3154 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6210 3154 : if (em)
6211 : {
6212 : /* found expr at right place in tlist */
6213 3154 : pk_datatype = em->em_datatype;
6214 : }
6215 : else
6216 0 : tle = NULL;
6217 : }
6218 : }
6219 : else
6220 : {
6221 : /*
6222 : * Otherwise, we can sort by any non-constant expression listed in
6223 : * the pathkey's EquivalenceClass. For now, we take the first
6224 : * tlist item found in the EC. If there's no match, we'll generate
6225 : * a resjunk entry using the first EC member that is an expression
6226 : * in the input's vars.
6227 : *
6228 : * XXX if we have a choice, is there any way of figuring out which
6229 : * might be cheapest to execute? (For example, int4lt is likely
6230 : * much cheaper to execute than numericlt, but both might appear
6231 : * in the same equivalence class...) Not clear that we ever will
6232 : * have an interesting choice in practice, so it may not matter.
6233 : */
6234 296198 : foreach(j, tlist)
6235 : {
6236 295956 : tle = (TargetEntry *) lfirst(j);
6237 295956 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6238 295956 : if (em)
6239 : {
6240 : /* found expr already in tlist */
6241 117976 : pk_datatype = em->em_datatype;
6242 117976 : break;
6243 : }
6244 177980 : tle = NULL;
6245 : }
6246 : }
6247 :
6248 121692 : if (!tle)
6249 : {
6250 : /*
6251 : * No matching tlist item; look for a computable expression.
6252 : */
6253 362 : em = find_computable_ec_member(NULL, ec, tlist, relids, false);
6254 362 : if (!em)
6255 0 : elog(ERROR, "could not find pathkey item to sort");
6256 362 : pk_datatype = em->em_datatype;
6257 :
6258 : /*
6259 : * Do we need to insert a Result node?
6260 : */
6261 362 : if (!adjust_tlist_in_place &&
6262 326 : !is_projection_capable_plan(lefttree))
6263 : {
6264 : /* copy needed so we don't modify input's tlist below */
6265 26 : tlist = copyObject(tlist);
6266 26 : lefttree = inject_projection_plan(lefttree, tlist,
6267 26 : lefttree->parallel_safe);
6268 : }
6269 :
6270 : /* Don't bother testing is_projection_capable_plan again */
6271 362 : adjust_tlist_in_place = true;
6272 :
6273 : /*
6274 : * Add resjunk entry to input's tlist
6275 : */
6276 362 : tle = makeTargetEntry(copyObject(em->em_expr),
6277 362 : list_length(tlist) + 1,
6278 : NULL,
6279 : true);
6280 362 : tlist = lappend(tlist, tle);
6281 362 : lefttree->targetlist = tlist; /* just in case NIL before */
6282 : }
6283 :
6284 : /*
6285 : * Look up the correct sort operator from the PathKey's slightly
6286 : * abstracted representation.
6287 : */
6288 121692 : sortop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
6289 : pk_datatype,
6290 : pk_datatype,
6291 : pathkey->pk_cmptype);
6292 121692 : if (!OidIsValid(sortop)) /* should not happen */
6293 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6294 : pathkey->pk_cmptype, pk_datatype, pk_datatype,
6295 : pathkey->pk_opfamily);
6296 :
6297 : /* Add the column to the sort arrays */
6298 121692 : sortColIdx[numsortkeys] = tle->resno;
6299 121692 : sortOperators[numsortkeys] = sortop;
6300 121692 : collations[numsortkeys] = ec->ec_collation;
6301 121692 : nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
6302 121692 : numsortkeys++;
6303 : }
6304 :
6305 : /* Return results */
6306 82564 : *p_numsortkeys = numsortkeys;
6307 82564 : *p_sortColIdx = sortColIdx;
6308 82564 : *p_sortOperators = sortOperators;
6309 82564 : *p_collations = collations;
6310 82564 : *p_nullsFirst = nullsFirst;
6311 :
6312 82564 : return lefttree;
6313 : }
6314 :
6315 : /*
6316 : * make_sort_from_pathkeys
6317 : * Create sort plan to sort according to given pathkeys
6318 : *
6319 : * 'lefttree' is the node which yields input tuples
6320 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6321 : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6322 : */
6323 : static Sort *
6324 78000 : make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids)
6325 : {
6326 : int numsortkeys;
6327 : AttrNumber *sortColIdx;
6328 : Oid *sortOperators;
6329 : Oid *collations;
6330 : bool *nullsFirst;
6331 :
6332 : /* Compute sort column info, and adjust lefttree as needed */
6333 78000 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6334 : relids,
6335 : NULL,
6336 : false,
6337 : &numsortkeys,
6338 : &sortColIdx,
6339 : &sortOperators,
6340 : &collations,
6341 : &nullsFirst);
6342 :
6343 : /* Now build the Sort node */
6344 78000 : return make_sort(lefttree, numsortkeys,
6345 : sortColIdx, sortOperators,
6346 : collations, nullsFirst);
6347 : }
6348 :
6349 : /*
6350 : * make_incrementalsort_from_pathkeys
6351 : * Create sort plan to sort according to given pathkeys
6352 : *
6353 : * 'lefttree' is the node which yields input tuples
6354 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6355 : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6356 : * 'nPresortedCols' is the number of presorted columns in input tuples
6357 : */
6358 : static IncrementalSort *
6359 968 : make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys,
6360 : Relids relids, int nPresortedCols)
6361 : {
6362 : int numsortkeys;
6363 : AttrNumber *sortColIdx;
6364 : Oid *sortOperators;
6365 : Oid *collations;
6366 : bool *nullsFirst;
6367 :
6368 : /* Compute sort column info, and adjust lefttree as needed */
6369 968 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6370 : relids,
6371 : NULL,
6372 : false,
6373 : &numsortkeys,
6374 : &sortColIdx,
6375 : &sortOperators,
6376 : &collations,
6377 : &nullsFirst);
6378 :
6379 : /* Now build the Sort node */
6380 968 : return make_incrementalsort(lefttree, numsortkeys, nPresortedCols,
6381 : sortColIdx, sortOperators,
6382 : collations, nullsFirst);
6383 : }
6384 :
6385 : /*
6386 : * make_sort_from_sortclauses
6387 : * Create sort plan to sort according to given sortclauses
6388 : *
6389 : * 'sortcls' is a list of SortGroupClauses
6390 : * 'lefttree' is the node which yields input tuples
6391 : */
6392 : Sort *
6393 0 : make_sort_from_sortclauses(List *sortcls, Plan *lefttree)
6394 : {
6395 0 : List *sub_tlist = lefttree->targetlist;
6396 : ListCell *l;
6397 : int numsortkeys;
6398 : AttrNumber *sortColIdx;
6399 : Oid *sortOperators;
6400 : Oid *collations;
6401 : bool *nullsFirst;
6402 :
6403 : /* Convert list-ish representation to arrays wanted by executor */
6404 0 : numsortkeys = list_length(sortcls);
6405 0 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6406 0 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6407 0 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6408 0 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6409 :
6410 0 : numsortkeys = 0;
6411 0 : foreach(l, sortcls)
6412 : {
6413 0 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6414 0 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6415 :
6416 0 : sortColIdx[numsortkeys] = tle->resno;
6417 0 : sortOperators[numsortkeys] = sortcl->sortop;
6418 0 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6419 0 : nullsFirst[numsortkeys] = sortcl->nulls_first;
6420 0 : numsortkeys++;
6421 : }
6422 :
6423 0 : return make_sort(lefttree, numsortkeys,
6424 : sortColIdx, sortOperators,
6425 : collations, nullsFirst);
6426 : }
6427 :
6428 : /*
6429 : * make_sort_from_groupcols
6430 : * Create sort plan to sort based on grouping columns
6431 : *
6432 : * 'groupcls' is the list of SortGroupClauses
6433 : * 'grpColIdx' gives the column numbers to use
6434 : *
6435 : * This might look like it could be merged with make_sort_from_sortclauses,
6436 : * but presently we *must* use the grpColIdx[] array to locate sort columns,
6437 : * because the child plan's tlist is not marked with ressortgroupref info
6438 : * appropriate to the grouping node. So, only the sort ordering info
6439 : * is used from the SortGroupClause entries.
6440 : */
6441 : static Sort *
6442 240 : make_sort_from_groupcols(List *groupcls,
6443 : AttrNumber *grpColIdx,
6444 : Plan *lefttree)
6445 : {
6446 240 : List *sub_tlist = lefttree->targetlist;
6447 : ListCell *l;
6448 : int numsortkeys;
6449 : AttrNumber *sortColIdx;
6450 : Oid *sortOperators;
6451 : Oid *collations;
6452 : bool *nullsFirst;
6453 :
6454 : /* Convert list-ish representation to arrays wanted by executor */
6455 240 : numsortkeys = list_length(groupcls);
6456 240 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6457 240 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6458 240 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6459 240 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6460 :
6461 240 : numsortkeys = 0;
6462 570 : foreach(l, groupcls)
6463 : {
6464 330 : SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
6465 330 : TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
6466 :
6467 330 : if (!tle)
6468 0 : elog(ERROR, "could not retrieve tle for sort-from-groupcols");
6469 :
6470 330 : sortColIdx[numsortkeys] = tle->resno;
6471 330 : sortOperators[numsortkeys] = grpcl->sortop;
6472 330 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6473 330 : nullsFirst[numsortkeys] = grpcl->nulls_first;
6474 330 : numsortkeys++;
6475 : }
6476 :
6477 240 : return make_sort(lefttree, numsortkeys,
6478 : sortColIdx, sortOperators,
6479 : collations, nullsFirst);
6480 : }
6481 :
6482 : static Material *
6483 4598 : make_material(Plan *lefttree)
6484 : {
6485 4598 : Material *node = makeNode(Material);
6486 4598 : Plan *plan = &node->plan;
6487 :
6488 4598 : plan->targetlist = lefttree->targetlist;
6489 4598 : plan->qual = NIL;
6490 4598 : plan->lefttree = lefttree;
6491 4598 : plan->righttree = NULL;
6492 :
6493 4598 : return node;
6494 : }
6495 :
6496 : /*
6497 : * materialize_finished_plan: stick a Material node atop a completed plan
6498 : *
6499 : * There are a couple of places where we want to attach a Material node
6500 : * after completion of create_plan(), without any MaterialPath path.
6501 : * Those places should probably be refactored someday to do this on the
6502 : * Path representation, but it's not worth the trouble yet.
6503 : */
6504 : Plan *
6505 74 : materialize_finished_plan(Plan *subplan)
6506 : {
6507 : Plan *matplan;
6508 : Path matpath; /* dummy for result of cost_material */
6509 : Cost initplan_cost;
6510 : bool unsafe_initplans;
6511 :
6512 74 : matplan = (Plan *) make_material(subplan);
6513 :
6514 : /*
6515 : * XXX horrid kluge: if there are any initPlans attached to the subplan,
6516 : * move them up to the Material node, which is now effectively the top
6517 : * plan node in its query level. This prevents failure in
6518 : * SS_finalize_plan(), which see for comments.
6519 : */
6520 74 : matplan->initPlan = subplan->initPlan;
6521 74 : subplan->initPlan = NIL;
6522 :
6523 : /* Move the initplans' cost delta, as well */
6524 74 : SS_compute_initplan_cost(matplan->initPlan,
6525 : &initplan_cost, &unsafe_initplans);
6526 74 : subplan->startup_cost -= initplan_cost;
6527 74 : subplan->total_cost -= initplan_cost;
6528 :
6529 : /* Set cost data */
6530 74 : cost_material(&matpath,
6531 : subplan->disabled_nodes,
6532 : subplan->startup_cost,
6533 : subplan->total_cost,
6534 : subplan->plan_rows,
6535 : subplan->plan_width);
6536 74 : matplan->disabled_nodes = subplan->disabled_nodes;
6537 74 : matplan->startup_cost = matpath.startup_cost + initplan_cost;
6538 74 : matplan->total_cost = matpath.total_cost + initplan_cost;
6539 74 : matplan->plan_rows = subplan->plan_rows;
6540 74 : matplan->plan_width = subplan->plan_width;
6541 74 : matplan->parallel_aware = false;
6542 74 : matplan->parallel_safe = subplan->parallel_safe;
6543 :
6544 74 : return matplan;
6545 : }
6546 :
6547 : static Memoize *
6548 1988 : make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations,
6549 : List *param_exprs, bool singlerow, bool binary_mode,
6550 : uint32 est_entries, Bitmapset *keyparamids,
6551 : Cardinality est_calls, Cardinality est_unique_keys,
6552 : double est_hit_ratio)
6553 : {
6554 1988 : Memoize *node = makeNode(Memoize);
6555 1988 : Plan *plan = &node->plan;
6556 :
6557 1988 : plan->targetlist = lefttree->targetlist;
6558 1988 : plan->qual = NIL;
6559 1988 : plan->lefttree = lefttree;
6560 1988 : plan->righttree = NULL;
6561 :
6562 1988 : node->numKeys = list_length(param_exprs);
6563 1988 : node->hashOperators = hashoperators;
6564 1988 : node->collations = collations;
6565 1988 : node->param_exprs = param_exprs;
6566 1988 : node->singlerow = singlerow;
6567 1988 : node->binary_mode = binary_mode;
6568 1988 : node->est_entries = est_entries;
6569 1988 : node->keyparamids = keyparamids;
6570 1988 : node->est_calls = est_calls;
6571 1988 : node->est_unique_keys = est_unique_keys;
6572 1988 : node->est_hit_ratio = est_hit_ratio;
6573 :
6574 1988 : return node;
6575 : }
6576 :
6577 : Agg *
6578 42152 : make_agg(List *tlist, List *qual,
6579 : AggStrategy aggstrategy, AggSplit aggsplit,
6580 : int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
6581 : List *groupingSets, List *chain, double dNumGroups,
6582 : Size transitionSpace, Plan *lefttree)
6583 : {
6584 42152 : Agg *node = makeNode(Agg);
6585 42152 : Plan *plan = &node->plan;
6586 : long numGroups;
6587 :
6588 : /* Reduce to long, but 'ware overflow! */
6589 42152 : numGroups = clamp_cardinality_to_long(dNumGroups);
6590 :
6591 42152 : node->aggstrategy = aggstrategy;
6592 42152 : node->aggsplit = aggsplit;
6593 42152 : node->numCols = numGroupCols;
6594 42152 : node->grpColIdx = grpColIdx;
6595 42152 : node->grpOperators = grpOperators;
6596 42152 : node->grpCollations = grpCollations;
6597 42152 : node->numGroups = numGroups;
6598 42152 : node->transitionSpace = transitionSpace;
6599 42152 : node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6600 42152 : node->groupingSets = groupingSets;
6601 42152 : node->chain = chain;
6602 :
6603 42152 : plan->qual = qual;
6604 42152 : plan->targetlist = tlist;
6605 42152 : plan->lefttree = lefttree;
6606 42152 : plan->righttree = NULL;
6607 :
6608 42152 : return node;
6609 : }
6610 :
6611 : static WindowAgg *
6612 2546 : make_windowagg(List *tlist, WindowClause *wc,
6613 : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
6614 : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
6615 : List *runCondition, List *qual, bool topWindow, Plan *lefttree)
6616 : {
6617 2546 : WindowAgg *node = makeNode(WindowAgg);
6618 2546 : Plan *plan = &node->plan;
6619 :
6620 2546 : node->winname = wc->name;
6621 2546 : node->winref = wc->winref;
6622 2546 : node->partNumCols = partNumCols;
6623 2546 : node->partColIdx = partColIdx;
6624 2546 : node->partOperators = partOperators;
6625 2546 : node->partCollations = partCollations;
6626 2546 : node->ordNumCols = ordNumCols;
6627 2546 : node->ordColIdx = ordColIdx;
6628 2546 : node->ordOperators = ordOperators;
6629 2546 : node->ordCollations = ordCollations;
6630 2546 : node->frameOptions = wc->frameOptions;
6631 2546 : node->startOffset = wc->startOffset;
6632 2546 : node->endOffset = wc->endOffset;
6633 2546 : node->runCondition = runCondition;
6634 : /* a duplicate of the above for EXPLAIN */
6635 2546 : node->runConditionOrig = runCondition;
6636 2546 : node->startInRangeFunc = wc->startInRangeFunc;
6637 2546 : node->endInRangeFunc = wc->endInRangeFunc;
6638 2546 : node->inRangeColl = wc->inRangeColl;
6639 2546 : node->inRangeAsc = wc->inRangeAsc;
6640 2546 : node->inRangeNullsFirst = wc->inRangeNullsFirst;
6641 2546 : node->topWindow = topWindow;
6642 :
6643 2546 : plan->targetlist = tlist;
6644 2546 : plan->lefttree = lefttree;
6645 2546 : plan->righttree = NULL;
6646 2546 : plan->qual = qual;
6647 :
6648 2546 : return node;
6649 : }
6650 :
6651 : static Group *
6652 246 : make_group(List *tlist,
6653 : List *qual,
6654 : int numGroupCols,
6655 : AttrNumber *grpColIdx,
6656 : Oid *grpOperators,
6657 : Oid *grpCollations,
6658 : Plan *lefttree)
6659 : {
6660 246 : Group *node = makeNode(Group);
6661 246 : Plan *plan = &node->plan;
6662 :
6663 246 : node->numCols = numGroupCols;
6664 246 : node->grpColIdx = grpColIdx;
6665 246 : node->grpOperators = grpOperators;
6666 246 : node->grpCollations = grpCollations;
6667 :
6668 246 : plan->qual = qual;
6669 246 : plan->targetlist = tlist;
6670 246 : plan->lefttree = lefttree;
6671 246 : plan->righttree = NULL;
6672 :
6673 246 : return node;
6674 : }
6675 :
6676 : /*
6677 : * pathkeys is a list of PathKeys, identifying the sort columns and semantics.
6678 : * The input plan must already be sorted accordingly.
6679 : *
6680 : * relids identifies the child relation being unique-ified, if any.
6681 : */
6682 : static Unique *
6683 5626 : make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols,
6684 : Relids relids)
6685 : {
6686 5626 : Unique *node = makeNode(Unique);
6687 5626 : Plan *plan = &node->plan;
6688 5626 : int keyno = 0;
6689 : AttrNumber *uniqColIdx;
6690 : Oid *uniqOperators;
6691 : Oid *uniqCollations;
6692 : ListCell *lc;
6693 :
6694 5626 : plan->targetlist = lefttree->targetlist;
6695 5626 : plan->qual = NIL;
6696 5626 : plan->lefttree = lefttree;
6697 5626 : plan->righttree = NULL;
6698 :
6699 : /*
6700 : * Convert pathkeys list into arrays of attr indexes and equality
6701 : * operators, as wanted by executor. This has a lot in common with
6702 : * prepare_sort_from_pathkeys ... maybe unify sometime?
6703 : */
6704 : Assert(numCols >= 0 && numCols <= list_length(pathkeys));
6705 5626 : uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6706 5626 : uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6707 5626 : uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6708 :
6709 18348 : foreach(lc, pathkeys)
6710 : {
6711 12764 : PathKey *pathkey = (PathKey *) lfirst(lc);
6712 12764 : EquivalenceClass *ec = pathkey->pk_eclass;
6713 : EquivalenceMember *em;
6714 12764 : TargetEntry *tle = NULL;
6715 12764 : Oid pk_datatype = InvalidOid;
6716 : Oid eqop;
6717 : ListCell *j;
6718 :
6719 : /* Ignore pathkeys beyond the specified number of columns */
6720 12764 : if (keyno >= numCols)
6721 42 : break;
6722 :
6723 12722 : if (ec->ec_has_volatile)
6724 : {
6725 : /*
6726 : * If the pathkey's EquivalenceClass is volatile, then it must
6727 : * have come from an ORDER BY clause, and we have to match it to
6728 : * that same targetlist entry.
6729 : */
6730 30 : if (ec->ec_sortref == 0) /* can't happen */
6731 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6732 30 : tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist);
6733 : Assert(tle);
6734 : Assert(list_length(ec->ec_members) == 1);
6735 30 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6736 : }
6737 : else
6738 : {
6739 : /*
6740 : * Otherwise, we can use any non-constant expression listed in the
6741 : * pathkey's EquivalenceClass. For now, we take the first tlist
6742 : * item found in the EC.
6743 : */
6744 24428 : foreach(j, plan->targetlist)
6745 : {
6746 24428 : tle = (TargetEntry *) lfirst(j);
6747 24428 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6748 24428 : if (em)
6749 : {
6750 : /* found expr already in tlist */
6751 12692 : pk_datatype = em->em_datatype;
6752 12692 : break;
6753 : }
6754 11736 : tle = NULL;
6755 : }
6756 : }
6757 :
6758 12722 : if (!tle)
6759 0 : elog(ERROR, "could not find pathkey item to sort");
6760 :
6761 : /*
6762 : * Look up the correct equality operator from the PathKey's slightly
6763 : * abstracted representation.
6764 : */
6765 12722 : eqop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
6766 : pk_datatype,
6767 : pk_datatype,
6768 : COMPARE_EQ);
6769 12722 : if (!OidIsValid(eqop)) /* should not happen */
6770 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6771 : COMPARE_EQ, pk_datatype, pk_datatype,
6772 : pathkey->pk_opfamily);
6773 :
6774 12722 : uniqColIdx[keyno] = tle->resno;
6775 12722 : uniqOperators[keyno] = eqop;
6776 12722 : uniqCollations[keyno] = ec->ec_collation;
6777 :
6778 12722 : keyno++;
6779 : }
6780 :
6781 5626 : node->numCols = numCols;
6782 5626 : node->uniqColIdx = uniqColIdx;
6783 5626 : node->uniqOperators = uniqOperators;
6784 5626 : node->uniqCollations = uniqCollations;
6785 :
6786 5626 : return node;
6787 : }
6788 :
6789 : static Gather *
6790 950 : make_gather(List *qptlist,
6791 : List *qpqual,
6792 : int nworkers,
6793 : int rescan_param,
6794 : bool single_copy,
6795 : Plan *subplan)
6796 : {
6797 950 : Gather *node = makeNode(Gather);
6798 950 : Plan *plan = &node->plan;
6799 :
6800 950 : plan->targetlist = qptlist;
6801 950 : plan->qual = qpqual;
6802 950 : plan->lefttree = subplan;
6803 950 : plan->righttree = NULL;
6804 950 : node->num_workers = nworkers;
6805 950 : node->rescan_param = rescan_param;
6806 950 : node->single_copy = single_copy;
6807 950 : node->invisible = false;
6808 950 : node->initParam = NULL;
6809 :
6810 950 : return node;
6811 : }
6812 :
6813 : /*
6814 : * groupList is a list of SortGroupClauses, identifying the targetlist
6815 : * items that should be considered by the SetOp filter. The input plans must
6816 : * already be sorted accordingly, if we're doing SETOP_SORTED mode.
6817 : */
6818 : static SetOp *
6819 662 : make_setop(SetOpCmd cmd, SetOpStrategy strategy,
6820 : List *tlist, Plan *lefttree, Plan *righttree,
6821 : List *groupList, long numGroups)
6822 : {
6823 662 : SetOp *node = makeNode(SetOp);
6824 662 : Plan *plan = &node->plan;
6825 662 : int numCols = list_length(groupList);
6826 662 : int keyno = 0;
6827 : AttrNumber *cmpColIdx;
6828 : Oid *cmpOperators;
6829 : Oid *cmpCollations;
6830 : bool *cmpNullsFirst;
6831 : ListCell *slitem;
6832 :
6833 662 : plan->targetlist = tlist;
6834 662 : plan->qual = NIL;
6835 662 : plan->lefttree = lefttree;
6836 662 : plan->righttree = righttree;
6837 :
6838 : /*
6839 : * convert SortGroupClause list into arrays of attr indexes and comparison
6840 : * operators, as wanted by executor
6841 : */
6842 662 : cmpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6843 662 : cmpOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6844 662 : cmpCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6845 662 : cmpNullsFirst = (bool *) palloc(sizeof(bool) * numCols);
6846 :
6847 2910 : foreach(slitem, groupList)
6848 : {
6849 2248 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
6850 2248 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
6851 :
6852 2248 : cmpColIdx[keyno] = tle->resno;
6853 2248 : if (strategy == SETOP_HASHED)
6854 1090 : cmpOperators[keyno] = sortcl->eqop;
6855 : else
6856 1158 : cmpOperators[keyno] = sortcl->sortop;
6857 : Assert(OidIsValid(cmpOperators[keyno]));
6858 2248 : cmpCollations[keyno] = exprCollation((Node *) tle->expr);
6859 2248 : cmpNullsFirst[keyno] = sortcl->nulls_first;
6860 2248 : keyno++;
6861 : }
6862 :
6863 662 : node->cmd = cmd;
6864 662 : node->strategy = strategy;
6865 662 : node->numCols = numCols;
6866 662 : node->cmpColIdx = cmpColIdx;
6867 662 : node->cmpOperators = cmpOperators;
6868 662 : node->cmpCollations = cmpCollations;
6869 662 : node->cmpNullsFirst = cmpNullsFirst;
6870 662 : node->numGroups = numGroups;
6871 :
6872 662 : return node;
6873 : }
6874 :
6875 : /*
6876 : * make_lockrows
6877 : * Build a LockRows plan node
6878 : */
6879 : static LockRows *
6880 7734 : make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
6881 : {
6882 7734 : LockRows *node = makeNode(LockRows);
6883 7734 : Plan *plan = &node->plan;
6884 :
6885 7734 : plan->targetlist = lefttree->targetlist;
6886 7734 : plan->qual = NIL;
6887 7734 : plan->lefttree = lefttree;
6888 7734 : plan->righttree = NULL;
6889 :
6890 7734 : node->rowMarks = rowMarks;
6891 7734 : node->epqParam = epqParam;
6892 :
6893 7734 : return node;
6894 : }
6895 :
6896 : /*
6897 : * make_limit
6898 : * Build a Limit plan node
6899 : */
6900 : Limit *
6901 4812 : make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
6902 : LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx,
6903 : Oid *uniqOperators, Oid *uniqCollations)
6904 : {
6905 4812 : Limit *node = makeNode(Limit);
6906 4812 : Plan *plan = &node->plan;
6907 :
6908 4812 : plan->targetlist = lefttree->targetlist;
6909 4812 : plan->qual = NIL;
6910 4812 : plan->lefttree = lefttree;
6911 4812 : plan->righttree = NULL;
6912 :
6913 4812 : node->limitOffset = limitOffset;
6914 4812 : node->limitCount = limitCount;
6915 4812 : node->limitOption = limitOption;
6916 4812 : node->uniqNumCols = uniqNumCols;
6917 4812 : node->uniqColIdx = uniqColIdx;
6918 4812 : node->uniqOperators = uniqOperators;
6919 4812 : node->uniqCollations = uniqCollations;
6920 :
6921 4812 : return node;
6922 : }
6923 :
6924 : /*
6925 : * make_result
6926 : * Build a Result plan node
6927 : */
6928 : static Result *
6929 210656 : make_result(List *tlist,
6930 : Node *resconstantqual,
6931 : Plan *subplan)
6932 : {
6933 210656 : Result *node = makeNode(Result);
6934 210656 : Plan *plan = &node->plan;
6935 :
6936 210656 : plan->targetlist = tlist;
6937 210656 : plan->qual = NIL;
6938 210656 : plan->lefttree = subplan;
6939 210656 : plan->righttree = NULL;
6940 210656 : node->resconstantqual = resconstantqual;
6941 :
6942 210656 : return node;
6943 : }
6944 :
6945 : /*
6946 : * make_project_set
6947 : * Build a ProjectSet plan node
6948 : */
6949 : static ProjectSet *
6950 11674 : make_project_set(List *tlist,
6951 : Plan *subplan)
6952 : {
6953 11674 : ProjectSet *node = makeNode(ProjectSet);
6954 11674 : Plan *plan = &node->plan;
6955 :
6956 11674 : plan->targetlist = tlist;
6957 11674 : plan->qual = NIL;
6958 11674 : plan->lefttree = subplan;
6959 11674 : plan->righttree = NULL;
6960 :
6961 11674 : return node;
6962 : }
6963 :
6964 : /*
6965 : * make_modifytable
6966 : * Build a ModifyTable plan node
6967 : */
6968 : static ModifyTable *
6969 90616 : make_modifytable(PlannerInfo *root, Plan *subplan,
6970 : CmdType operation, bool canSetTag,
6971 : Index nominalRelation, Index rootRelation,
6972 : bool partColsUpdated,
6973 : List *resultRelations,
6974 : List *updateColnosLists,
6975 : List *withCheckOptionLists, List *returningLists,
6976 : List *rowMarks, OnConflictExpr *onconflict,
6977 : List *mergeActionLists, List *mergeJoinConditions,
6978 : int epqParam)
6979 : {
6980 90616 : ModifyTable *node = makeNode(ModifyTable);
6981 90616 : bool returning_old_or_new = false;
6982 90616 : bool returning_old_or_new_valid = false;
6983 90616 : bool transition_tables = false;
6984 90616 : bool transition_tables_valid = false;
6985 : List *fdw_private_list;
6986 : Bitmapset *direct_modify_plans;
6987 : ListCell *lc;
6988 : int i;
6989 :
6990 : Assert(operation == CMD_MERGE ||
6991 : (operation == CMD_UPDATE ?
6992 : list_length(resultRelations) == list_length(updateColnosLists) :
6993 : updateColnosLists == NIL));
6994 : Assert(withCheckOptionLists == NIL ||
6995 : list_length(resultRelations) == list_length(withCheckOptionLists));
6996 : Assert(returningLists == NIL ||
6997 : list_length(resultRelations) == list_length(returningLists));
6998 :
6999 90616 : node->plan.lefttree = subplan;
7000 90616 : node->plan.righttree = NULL;
7001 90616 : node->plan.qual = NIL;
7002 : /* setrefs.c will fill in the targetlist, if needed */
7003 90616 : node->plan.targetlist = NIL;
7004 :
7005 90616 : node->operation = operation;
7006 90616 : node->canSetTag = canSetTag;
7007 90616 : node->nominalRelation = nominalRelation;
7008 90616 : node->rootRelation = rootRelation;
7009 90616 : node->partColsUpdated = partColsUpdated;
7010 90616 : node->resultRelations = resultRelations;
7011 90616 : if (!onconflict)
7012 : {
7013 88820 : node->onConflictAction = ONCONFLICT_NONE;
7014 88820 : node->onConflictSet = NIL;
7015 88820 : node->onConflictCols = NIL;
7016 88820 : node->onConflictWhere = NULL;
7017 88820 : node->arbiterIndexes = NIL;
7018 88820 : node->exclRelRTI = 0;
7019 88820 : node->exclRelTlist = NIL;
7020 : }
7021 : else
7022 : {
7023 1796 : node->onConflictAction = onconflict->action;
7024 :
7025 : /*
7026 : * Here we convert the ON CONFLICT UPDATE tlist, if any, to the
7027 : * executor's convention of having consecutive resno's. The actual
7028 : * target column numbers are saved in node->onConflictCols. (This
7029 : * could be done earlier, but there seems no need to.)
7030 : */
7031 1796 : node->onConflictSet = onconflict->onConflictSet;
7032 1796 : node->onConflictCols =
7033 1796 : extract_update_targetlist_colnos(node->onConflictSet);
7034 1796 : node->onConflictWhere = onconflict->onConflictWhere;
7035 :
7036 : /*
7037 : * If a set of unique index inference elements was provided (an
7038 : * INSERT...ON CONFLICT "inference specification"), then infer
7039 : * appropriate unique indexes (or throw an error if none are
7040 : * available).
7041 : */
7042 1796 : node->arbiterIndexes = infer_arbiter_indexes(root);
7043 :
7044 1404 : node->exclRelRTI = onconflict->exclRelIndex;
7045 1404 : node->exclRelTlist = onconflict->exclRelTlist;
7046 : }
7047 90224 : node->updateColnosLists = updateColnosLists;
7048 90224 : node->withCheckOptionLists = withCheckOptionLists;
7049 90224 : node->returningOldAlias = root->parse->returningOldAlias;
7050 90224 : node->returningNewAlias = root->parse->returningNewAlias;
7051 90224 : node->returningLists = returningLists;
7052 90224 : node->rowMarks = rowMarks;
7053 90224 : node->mergeActionLists = mergeActionLists;
7054 90224 : node->mergeJoinConditions = mergeJoinConditions;
7055 90224 : node->epqParam = epqParam;
7056 :
7057 : /*
7058 : * For each result relation that is a foreign table, allow the FDW to
7059 : * construct private plan data, and accumulate it all into a list.
7060 : */
7061 90224 : fdw_private_list = NIL;
7062 90224 : direct_modify_plans = NULL;
7063 90224 : i = 0;
7064 182916 : foreach(lc, resultRelations)
7065 : {
7066 92696 : Index rti = lfirst_int(lc);
7067 : FdwRoutine *fdwroutine;
7068 : List *fdw_private;
7069 : bool direct_modify;
7070 :
7071 : /*
7072 : * If possible, we want to get the FdwRoutine from our RelOptInfo for
7073 : * the table. But sometimes we don't have a RelOptInfo and must get
7074 : * it the hard way. (In INSERT, the target relation is not scanned,
7075 : * so it's not a baserel; and there are also corner cases for
7076 : * updatable views where the target rel isn't a baserel.)
7077 : */
7078 92696 : if (rti < root->simple_rel_array_size &&
7079 92696 : root->simple_rel_array[rti] != NULL)
7080 22172 : {
7081 22172 : RelOptInfo *resultRel = root->simple_rel_array[rti];
7082 :
7083 22172 : fdwroutine = resultRel->fdwroutine;
7084 : }
7085 : else
7086 : {
7087 70524 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7088 :
7089 70524 : if (rte->rtekind == RTE_RELATION &&
7090 70524 : rte->relkind == RELKIND_FOREIGN_TABLE)
7091 : {
7092 : /* Check if the access to foreign tables is restricted */
7093 180 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
7094 : {
7095 : /* there must not be built-in foreign tables */
7096 : Assert(rte->relid >= FirstNormalObjectId);
7097 2 : ereport(ERROR,
7098 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7099 : errmsg("access to non-system foreign table is restricted")));
7100 : }
7101 :
7102 178 : fdwroutine = GetFdwRoutineByRelId(rte->relid);
7103 : }
7104 : else
7105 70344 : fdwroutine = NULL;
7106 : }
7107 :
7108 : /*
7109 : * MERGE is not currently supported for foreign tables. We already
7110 : * checked that when the table mentioned in the query is foreign; but
7111 : * we can still get here if a partitioned table has a foreign table as
7112 : * partition. Disallow that now, to avoid an uglier error message
7113 : * later.
7114 : */
7115 92694 : if (operation == CMD_MERGE && fdwroutine != NULL)
7116 : {
7117 2 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7118 :
7119 2 : ereport(ERROR,
7120 : errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
7121 : errmsg("cannot execute MERGE on relation \"%s\"",
7122 : get_rel_name(rte->relid)),
7123 : errdetail_relkind_not_supported(rte->relkind));
7124 : }
7125 :
7126 : /*
7127 : * Try to modify the foreign table directly if (1) the FDW provides
7128 : * callback functions needed for that and (2) there are no local
7129 : * structures that need to be run for each modified row: row-level
7130 : * triggers on the foreign table, stored generated columns, WITH CHECK
7131 : * OPTIONs from parent views, Vars returning OLD/NEW in the RETURNING
7132 : * list, or transition tables on the named relation.
7133 : */
7134 92692 : direct_modify = false;
7135 92692 : if (fdwroutine != NULL &&
7136 558 : fdwroutine->PlanDirectModify != NULL &&
7137 548 : fdwroutine->BeginDirectModify != NULL &&
7138 548 : fdwroutine->IterateDirectModify != NULL &&
7139 548 : fdwroutine->EndDirectModify != NULL &&
7140 516 : withCheckOptionLists == NIL &&
7141 516 : !has_row_triggers(root, rti, operation) &&
7142 438 : !has_stored_generated_columns(root, rti))
7143 : {
7144 : /*
7145 : * returning_old_or_new and transition_tables are the same for all
7146 : * result relations, respectively
7147 : */
7148 420 : if (!returning_old_or_new_valid)
7149 : {
7150 : returning_old_or_new =
7151 404 : contain_vars_returning_old_or_new((Node *)
7152 404 : root->parse->returningList);
7153 404 : returning_old_or_new_valid = true;
7154 : }
7155 420 : if (!returning_old_or_new)
7156 : {
7157 406 : if (!transition_tables_valid)
7158 : {
7159 390 : transition_tables = has_transition_tables(root,
7160 : nominalRelation,
7161 : operation);
7162 390 : transition_tables_valid = true;
7163 : }
7164 406 : if (!transition_tables)
7165 390 : direct_modify = fdwroutine->PlanDirectModify(root, node,
7166 : rti, i);
7167 : }
7168 : }
7169 92692 : if (direct_modify)
7170 208 : direct_modify_plans = bms_add_member(direct_modify_plans, i);
7171 :
7172 92692 : if (!direct_modify &&
7173 350 : fdwroutine != NULL &&
7174 350 : fdwroutine->PlanForeignModify != NULL)
7175 340 : fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
7176 : else
7177 92352 : fdw_private = NIL;
7178 92692 : fdw_private_list = lappend(fdw_private_list, fdw_private);
7179 92692 : i++;
7180 : }
7181 90220 : node->fdwPrivLists = fdw_private_list;
7182 90220 : node->fdwDirectModifyPlans = direct_modify_plans;
7183 :
7184 90220 : return node;
7185 : }
7186 :
7187 : /*
7188 : * is_projection_capable_path
7189 : * Check whether a given Path node is able to do projection.
7190 : */
7191 : bool
7192 748332 : is_projection_capable_path(Path *path)
7193 : {
7194 : /* Most plan types can project, so just list the ones that can't */
7195 748332 : switch (path->pathtype)
7196 : {
7197 982 : case T_Hash:
7198 : case T_Material:
7199 : case T_Memoize:
7200 : case T_Sort:
7201 : case T_IncrementalSort:
7202 : case T_Unique:
7203 : case T_SetOp:
7204 : case T_LockRows:
7205 : case T_Limit:
7206 : case T_ModifyTable:
7207 : case T_MergeAppend:
7208 : case T_RecursiveUnion:
7209 982 : return false;
7210 0 : case T_CustomScan:
7211 0 : if (castNode(CustomPath, path)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7212 0 : return true;
7213 0 : return false;
7214 15456 : case T_Append:
7215 :
7216 : /*
7217 : * Append can't project, but if an AppendPath is being used to
7218 : * represent a dummy path, what will actually be generated is a
7219 : * Result which can project.
7220 : */
7221 15456 : return IS_DUMMY_APPEND(path);
7222 3316 : case T_ProjectSet:
7223 :
7224 : /*
7225 : * Although ProjectSet certainly projects, say "no" because we
7226 : * don't want the planner to randomly replace its tlist with
7227 : * something else; the SRFs have to stay at top level. This might
7228 : * get relaxed later.
7229 : */
7230 3316 : return false;
7231 728578 : default:
7232 728578 : break;
7233 : }
7234 728578 : return true;
7235 : }
7236 :
7237 : /*
7238 : * is_projection_capable_plan
7239 : * Check whether a given Plan node is able to do projection.
7240 : */
7241 : bool
7242 404 : is_projection_capable_plan(Plan *plan)
7243 : {
7244 : /* Most plan types can project, so just list the ones that can't */
7245 404 : switch (nodeTag(plan))
7246 : {
7247 40 : case T_Hash:
7248 : case T_Material:
7249 : case T_Memoize:
7250 : case T_Sort:
7251 : case T_Unique:
7252 : case T_SetOp:
7253 : case T_LockRows:
7254 : case T_Limit:
7255 : case T_ModifyTable:
7256 : case T_Append:
7257 : case T_MergeAppend:
7258 : case T_RecursiveUnion:
7259 40 : return false;
7260 0 : case T_CustomScan:
7261 0 : if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7262 0 : return true;
7263 0 : return false;
7264 0 : case T_ProjectSet:
7265 :
7266 : /*
7267 : * Although ProjectSet certainly projects, say "no" because we
7268 : * don't want the planner to randomly replace its tlist with
7269 : * something else; the SRFs have to stay at top level. This might
7270 : * get relaxed later.
7271 : */
7272 0 : return false;
7273 364 : default:
7274 364 : break;
7275 : }
7276 364 : return true;
7277 : }
|