Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * createplan.c
4 : * Routines to create the desired plan for processing a query.
5 : * Planning is complete, we just need to convert the selected
6 : * Path into a Plan.
7 : *
8 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
9 : * Portions Copyright (c) 1994, Regents of the University of California
10 : *
11 : *
12 : * IDENTIFICATION
13 : * src/backend/optimizer/plan/createplan.c
14 : *
15 : *-------------------------------------------------------------------------
16 : */
17 : #include "postgres.h"
18 :
19 : #include <math.h>
20 :
21 : #include "access/sysattr.h"
22 : #include "catalog/pg_class.h"
23 : #include "foreign/fdwapi.h"
24 : #include "miscadmin.h"
25 : #include "nodes/extensible.h"
26 : #include "nodes/makefuncs.h"
27 : #include "nodes/nodeFuncs.h"
28 : #include "optimizer/clauses.h"
29 : #include "optimizer/cost.h"
30 : #include "optimizer/optimizer.h"
31 : #include "optimizer/paramassign.h"
32 : #include "optimizer/pathnode.h"
33 : #include "optimizer/paths.h"
34 : #include "optimizer/placeholder.h"
35 : #include "optimizer/plancat.h"
36 : #include "optimizer/planmain.h"
37 : #include "optimizer/prep.h"
38 : #include "optimizer/restrictinfo.h"
39 : #include "optimizer/subselect.h"
40 : #include "optimizer/tlist.h"
41 : #include "parser/parse_clause.h"
42 : #include "parser/parsetree.h"
43 : #include "partitioning/partprune.h"
44 : #include "tcop/tcopprot.h"
45 : #include "utils/lsyscache.h"
46 :
47 :
48 : /*
49 : * Flag bits that can appear in the flags argument of create_plan_recurse().
50 : * These can be OR-ed together.
51 : *
52 : * CP_EXACT_TLIST specifies that the generated plan node must return exactly
53 : * the tlist specified by the path's pathtarget (this overrides both
54 : * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set). Otherwise, the
55 : * plan node is allowed to return just the Vars and PlaceHolderVars needed
56 : * to evaluate the pathtarget.
57 : *
58 : * CP_SMALL_TLIST specifies that a narrower tlist is preferred. This is
59 : * passed down by parent nodes such as Sort and Hash, which will have to
60 : * store the returned tuples.
61 : *
62 : * CP_LABEL_TLIST specifies that the plan node must return columns matching
63 : * any sortgrouprefs specified in its pathtarget, with appropriate
64 : * ressortgroupref labels. This is passed down by parent nodes such as Sort
65 : * and Group, which need these values to be available in their inputs.
66 : *
67 : * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist,
68 : * and therefore it doesn't matter a bit what target list gets generated.
69 : */
70 : #define CP_EXACT_TLIST 0x0001 /* Plan must return specified tlist */
71 : #define CP_SMALL_TLIST 0x0002 /* Prefer narrower tlists */
72 : #define CP_LABEL_TLIST 0x0004 /* tlist must contain sortgrouprefs */
73 : #define CP_IGNORE_TLIST 0x0008 /* caller will replace tlist */
74 :
75 :
76 : static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path,
77 : int flags);
78 : static Plan *create_scan_plan(PlannerInfo *root, Path *best_path,
79 : int flags);
80 : static List *build_path_tlist(PlannerInfo *root, Path *path);
81 : static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags);
82 : static List *get_gating_quals(PlannerInfo *root, List *quals);
83 : static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
84 : List *gating_quals);
85 : static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
86 : static bool mark_async_capable_plan(Plan *plan, Path *path);
87 : static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path,
88 : int flags);
89 : static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
90 : int flags);
91 : static Result *create_group_result_plan(PlannerInfo *root,
92 : GroupResultPath *best_path);
93 : static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path);
94 : static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path,
95 : int flags);
96 : static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path,
97 : int flags);
98 : static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path);
99 : static Plan *create_projection_plan(PlannerInfo *root,
100 : ProjectionPath *best_path,
101 : int flags);
102 : static Plan *inject_projection_plan(Plan *subplan, List *tlist,
103 : bool parallel_safe);
104 : static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags);
105 : static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root,
106 : IncrementalSortPath *best_path, int flags);
107 : static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path);
108 : static Unique *create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags);
109 : static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path);
110 : static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path);
111 : static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path);
112 : static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path);
113 : static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path,
114 : int flags);
115 : static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path);
116 : static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
117 : int flags);
118 : static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path);
119 : static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path,
120 : int flags);
121 : static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
122 : List *tlist, List *scan_clauses);
123 : static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
124 : List *tlist, List *scan_clauses);
125 : static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
126 : List *tlist, List *scan_clauses, bool indexonly);
127 : static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
128 : BitmapHeapPath *best_path,
129 : List *tlist, List *scan_clauses);
130 : static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
131 : List **qual, List **indexqual, List **indexECs);
132 : static void bitmap_subplan_mark_shared(Plan *plan);
133 : static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
134 : List *tlist, List *scan_clauses);
135 : static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root,
136 : TidRangePath *best_path,
137 : List *tlist,
138 : List *scan_clauses);
139 : static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root,
140 : SubqueryScanPath *best_path,
141 : List *tlist, List *scan_clauses);
142 : static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
143 : List *tlist, List *scan_clauses);
144 : static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
145 : List *tlist, List *scan_clauses);
146 : static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
147 : List *tlist, List *scan_clauses);
148 : static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
149 : List *tlist, List *scan_clauses);
150 : static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root,
151 : Path *best_path, List *tlist, List *scan_clauses);
152 : static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path,
153 : List *tlist, List *scan_clauses);
154 : static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
155 : List *tlist, List *scan_clauses);
156 : static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
157 : List *tlist, List *scan_clauses);
158 : static CustomScan *create_customscan_plan(PlannerInfo *root,
159 : CustomPath *best_path,
160 : List *tlist, List *scan_clauses);
161 : static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path);
162 : static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path);
163 : static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path);
164 : static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
165 : static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
166 : static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
167 : List **stripped_indexquals_p,
168 : List **fixed_indexquals_p);
169 : static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
170 : static Node *fix_indexqual_clause(PlannerInfo *root,
171 : IndexOptInfo *index, int indexcol,
172 : Node *clause, List *indexcolnos);
173 : static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
174 : static List *get_switched_clauses(List *clauses, Relids outerrelids);
175 : static List *order_qual_clauses(PlannerInfo *root, List *clauses);
176 : static void copy_generic_path_info(Plan *dest, Path *src);
177 : static void copy_plan_costsize(Plan *dest, Plan *src);
178 : static void label_sort_with_costsize(PlannerInfo *root, Sort *plan,
179 : double limit_tuples);
180 : static void label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
181 : List *pathkeys, double limit_tuples);
182 : static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
183 : static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
184 : TableSampleClause *tsc);
185 : static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
186 : Oid indexid, List *indexqual, List *indexqualorig,
187 : List *indexorderby, List *indexorderbyorig,
188 : List *indexorderbyops,
189 : ScanDirection indexscandir);
190 : static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
191 : Index scanrelid, Oid indexid,
192 : List *indexqual, List *recheckqual,
193 : List *indexorderby,
194 : List *indextlist,
195 : ScanDirection indexscandir);
196 : static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
197 : List *indexqual,
198 : List *indexqualorig);
199 : static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
200 : List *qpqual,
201 : Plan *lefttree,
202 : List *bitmapqualorig,
203 : Index scanrelid);
204 : static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
205 : List *tidquals);
206 : static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual,
207 : Index scanrelid, List *tidrangequals);
208 : static SubqueryScan *make_subqueryscan(List *qptlist,
209 : List *qpqual,
210 : Index scanrelid,
211 : Plan *subplan);
212 : static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
213 : Index scanrelid, List *functions, bool funcordinality);
214 : static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
215 : Index scanrelid, List *values_lists);
216 : static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual,
217 : Index scanrelid, TableFunc *tablefunc);
218 : static CteScan *make_ctescan(List *qptlist, List *qpqual,
219 : Index scanrelid, int ctePlanId, int cteParam);
220 : static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual,
221 : Index scanrelid, char *enrname);
222 : static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
223 : Index scanrelid, int wtParam);
224 : static RecursiveUnion *make_recursive_union(List *tlist,
225 : Plan *lefttree,
226 : Plan *righttree,
227 : int wtParam,
228 : List *distinctList,
229 : long numGroups);
230 : static BitmapAnd *make_bitmap_and(List *bitmapplans);
231 : static BitmapOr *make_bitmap_or(List *bitmapplans);
232 : static NestLoop *make_nestloop(List *tlist,
233 : List *joinclauses, List *otherclauses, List *nestParams,
234 : Plan *lefttree, Plan *righttree,
235 : JoinType jointype, bool inner_unique);
236 : static HashJoin *make_hashjoin(List *tlist,
237 : List *joinclauses, List *otherclauses,
238 : List *hashclauses,
239 : List *hashoperators, List *hashcollations,
240 : List *hashkeys,
241 : Plan *lefttree, Plan *righttree,
242 : JoinType jointype, bool inner_unique);
243 : static Hash *make_hash(Plan *lefttree,
244 : List *hashkeys,
245 : Oid skewTable,
246 : AttrNumber skewColumn,
247 : bool skewInherit);
248 : static MergeJoin *make_mergejoin(List *tlist,
249 : List *joinclauses, List *otherclauses,
250 : List *mergeclauses,
251 : Oid *mergefamilies,
252 : Oid *mergecollations,
253 : bool *mergereversals,
254 : bool *mergenullsfirst,
255 : Plan *lefttree, Plan *righttree,
256 : JoinType jointype, bool inner_unique,
257 : bool skip_mark_restore);
258 : static Sort *make_sort(Plan *lefttree, int numCols,
259 : AttrNumber *sortColIdx, Oid *sortOperators,
260 : Oid *collations, bool *nullsFirst);
261 : static IncrementalSort *make_incrementalsort(Plan *lefttree,
262 : int numCols, int nPresortedCols,
263 : AttrNumber *sortColIdx, Oid *sortOperators,
264 : Oid *collations, bool *nullsFirst);
265 : static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
266 : Relids relids,
267 : const AttrNumber *reqColIdx,
268 : bool adjust_tlist_in_place,
269 : int *p_numsortkeys,
270 : AttrNumber **p_sortColIdx,
271 : Oid **p_sortOperators,
272 : Oid **p_collations,
273 : bool **p_nullsFirst);
274 : static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
275 : Relids relids);
276 : static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree,
277 : List *pathkeys, Relids relids, int nPresortedCols);
278 : static Sort *make_sort_from_groupcols(List *groupcls,
279 : AttrNumber *grpColIdx,
280 : Plan *lefttree);
281 : static Material *make_material(Plan *lefttree);
282 : static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators,
283 : Oid *collations, List *param_exprs,
284 : bool singlerow, bool binary_mode,
285 : uint32 est_entries, Bitmapset *keyparamids,
286 : Cardinality est_calls,
287 : Cardinality est_unique_keys,
288 : double est_hit_ratio);
289 : static WindowAgg *make_windowagg(List *tlist, WindowClause *wc,
290 : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
291 : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
292 : List *runCondition, List *qual, bool topWindow,
293 : Plan *lefttree);
294 : static Group *make_group(List *tlist, List *qual, int numGroupCols,
295 : AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
296 : Plan *lefttree);
297 : static Unique *make_unique_from_pathkeys(Plan *lefttree,
298 : List *pathkeys, int numCols,
299 : Relids relids);
300 : static Gather *make_gather(List *qptlist, List *qpqual,
301 : int nworkers, int rescan_param, bool single_copy, Plan *subplan);
302 : static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy,
303 : List *tlist, Plan *lefttree, Plan *righttree,
304 : List *groupList, long numGroups);
305 : static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam);
306 : static Result *make_gating_result(List *tlist, Node *resconstantqual,
307 : Plan *subplan);
308 : static Result *make_one_row_result(List *tlist, Node *resconstantqual,
309 : RelOptInfo *rel);
310 : static ProjectSet *make_project_set(List *tlist, Plan *subplan);
311 : static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan,
312 : CmdType operation, bool canSetTag,
313 : Index nominalRelation, Index rootRelation,
314 : bool partColsUpdated,
315 : List *resultRelations,
316 : List *updateColnosLists,
317 : List *withCheckOptionLists, List *returningLists,
318 : List *rowMarks, OnConflictExpr *onconflict,
319 : List *mergeActionLists, List *mergeJoinConditions,
320 : int epqParam);
321 : static GatherMerge *create_gather_merge_plan(PlannerInfo *root,
322 : GatherMergePath *best_path);
323 :
324 :
325 : /*
326 : * create_plan
327 : * Creates the access plan for a query by recursively processing the
328 : * desired tree of pathnodes, starting at the node 'best_path'. For
329 : * every pathnode found, we create a corresponding plan node containing
330 : * appropriate id, target list, and qualification information.
331 : *
332 : * The tlists and quals in the plan tree are still in planner format,
333 : * ie, Vars still correspond to the parser's numbering. This will be
334 : * fixed later by setrefs.c.
335 : *
336 : * best_path is the best access path
337 : *
338 : * Returns a Plan tree.
339 : */
340 : Plan *
341 527310 : create_plan(PlannerInfo *root, Path *best_path)
342 : {
343 : Plan *plan;
344 :
345 : /* plan_params should not be in use in current query level */
346 : Assert(root->plan_params == NIL);
347 :
348 : /* Initialize this module's workspace in PlannerInfo */
349 527310 : root->curOuterRels = NULL;
350 527310 : root->curOuterParams = NIL;
351 :
352 : /* Recursively process the path tree, demanding the correct tlist result */
353 527310 : plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
354 :
355 : /*
356 : * Make sure the topmost plan node's targetlist exposes the original
357 : * column names and other decorative info. Targetlists generated within
358 : * the planner don't bother with that stuff, but we must have it on the
359 : * top-level tlist seen at execution time. However, ModifyTable plan
360 : * nodes don't have a tlist matching the querytree targetlist.
361 : */
362 526914 : if (!IsA(plan, ModifyTable))
363 434110 : apply_tlist_labeling(plan->targetlist, root->processed_tlist);
364 :
365 : /*
366 : * Attach any initPlans created in this query level to the topmost plan
367 : * node. (In principle the initplans could go in any plan node at or
368 : * above where they're referenced, but there seems no reason to put them
369 : * any lower than the topmost node for the query level. Also, see
370 : * comments for SS_finalize_plan before you try to change this.)
371 : */
372 526914 : SS_attach_initplans(root, plan);
373 :
374 : /* Check we successfully assigned all NestLoopParams to plan nodes */
375 526914 : if (root->curOuterParams != NIL)
376 0 : elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
377 :
378 : /*
379 : * Reset plan_params to ensure param IDs used for nestloop params are not
380 : * re-used later
381 : */
382 526914 : root->plan_params = NIL;
383 :
384 526914 : return plan;
385 : }
386 :
387 : /*
388 : * create_plan_recurse
389 : * Recursive guts of create_plan().
390 : */
391 : static Plan *
392 1463206 : create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
393 : {
394 : Plan *plan;
395 :
396 : /* Guard against stack overflow due to overly complex plans */
397 1463206 : check_stack_depth();
398 :
399 1463206 : switch (best_path->pathtype)
400 : {
401 502408 : case T_SeqScan:
402 : case T_SampleScan:
403 : case T_IndexScan:
404 : case T_IndexOnlyScan:
405 : case T_BitmapHeapScan:
406 : case T_TidScan:
407 : case T_TidRangeScan:
408 : case T_SubqueryScan:
409 : case T_FunctionScan:
410 : case T_TableFuncScan:
411 : case T_ValuesScan:
412 : case T_CteScan:
413 : case T_WorkTableScan:
414 : case T_NamedTuplestoreScan:
415 : case T_ForeignScan:
416 : case T_CustomScan:
417 502408 : plan = create_scan_plan(root, best_path, flags);
418 502408 : break;
419 139890 : case T_HashJoin:
420 : case T_MergeJoin:
421 : case T_NestLoop:
422 139890 : plan = create_join_plan(root,
423 : (JoinPath *) best_path);
424 139890 : break;
425 25006 : case T_Append:
426 25006 : plan = create_append_plan(root,
427 : (AppendPath *) best_path,
428 : flags);
429 25006 : break;
430 566 : case T_MergeAppend:
431 566 : plan = create_merge_append_plan(root,
432 : (MergeAppendPath *) best_path,
433 : flags);
434 566 : break;
435 547516 : case T_Result:
436 547516 : if (IsA(best_path, ProjectionPath))
437 : {
438 345894 : plan = create_projection_plan(root,
439 : (ProjectionPath *) best_path,
440 : flags);
441 : }
442 201622 : else if (IsA(best_path, MinMaxAggPath))
443 : {
444 364 : plan = (Plan *) create_minmaxagg_plan(root,
445 : (MinMaxAggPath *) best_path);
446 : }
447 201258 : else if (IsA(best_path, GroupResultPath))
448 : {
449 197190 : plan = (Plan *) create_group_result_plan(root,
450 : (GroupResultPath *) best_path);
451 : }
452 : else
453 : {
454 : /* Simple RTE_RESULT base relation */
455 : Assert(IsA(best_path, Path));
456 4068 : plan = create_scan_plan(root, best_path, flags);
457 : }
458 547516 : break;
459 11716 : case T_ProjectSet:
460 11716 : plan = (Plan *) create_project_set_plan(root,
461 : (ProjectSetPath *) best_path);
462 11716 : break;
463 4300 : case T_Material:
464 4300 : plan = (Plan *) create_material_plan(root,
465 : (MaterialPath *) best_path,
466 : flags);
467 4300 : break;
468 1988 : case T_Memoize:
469 1988 : plan = (Plan *) create_memoize_plan(root,
470 : (MemoizePath *) best_path,
471 : flags);
472 1988 : break;
473 5694 : case T_Unique:
474 5694 : plan = (Plan *) create_unique_plan(root,
475 : (UniquePath *) best_path,
476 : flags);
477 5694 : break;
478 948 : case T_Gather:
479 948 : plan = (Plan *) create_gather_plan(root,
480 : (GatherPath *) best_path);
481 948 : break;
482 69290 : case T_Sort:
483 69290 : plan = (Plan *) create_sort_plan(root,
484 : (SortPath *) best_path,
485 : flags);
486 69290 : break;
487 1006 : case T_IncrementalSort:
488 1006 : plan = (Plan *) create_incrementalsort_plan(root,
489 : (IncrementalSortPath *) best_path,
490 : flags);
491 1006 : break;
492 246 : case T_Group:
493 246 : plan = (Plan *) create_group_plan(root,
494 : (GroupPath *) best_path);
495 246 : break;
496 42522 : case T_Agg:
497 42522 : if (IsA(best_path, GroupingSetsPath))
498 866 : plan = create_groupingsets_plan(root,
499 : (GroupingSetsPath *) best_path);
500 : else
501 : {
502 : Assert(IsA(best_path, AggPath));
503 41656 : plan = (Plan *) create_agg_plan(root,
504 : (AggPath *) best_path);
505 : }
506 42522 : break;
507 2750 : case T_WindowAgg:
508 2750 : plan = (Plan *) create_windowagg_plan(root,
509 : (WindowAggPath *) best_path);
510 2750 : break;
511 662 : case T_SetOp:
512 662 : plan = (Plan *) create_setop_plan(root,
513 : (SetOpPath *) best_path,
514 : flags);
515 662 : break;
516 926 : case T_RecursiveUnion:
517 926 : plan = (Plan *) create_recursiveunion_plan(root,
518 : (RecursiveUnionPath *) best_path);
519 926 : break;
520 7804 : case T_LockRows:
521 7804 : plan = (Plan *) create_lockrows_plan(root,
522 : (LockRowsPath *) best_path,
523 : flags);
524 7804 : break;
525 93200 : case T_ModifyTable:
526 93200 : plan = (Plan *) create_modifytable_plan(root,
527 : (ModifyTablePath *) best_path);
528 92804 : break;
529 4414 : case T_Limit:
530 4414 : plan = (Plan *) create_limit_plan(root,
531 : (LimitPath *) best_path,
532 : flags);
533 4414 : break;
534 354 : case T_GatherMerge:
535 354 : plan = (Plan *) create_gather_merge_plan(root,
536 : (GatherMergePath *) best_path);
537 354 : break;
538 0 : default:
539 0 : elog(ERROR, "unrecognized node type: %d",
540 : (int) best_path->pathtype);
541 : plan = NULL; /* keep compiler quiet */
542 : break;
543 : }
544 :
545 1462810 : return plan;
546 : }
547 :
548 : /*
549 : * create_scan_plan
550 : * Create a scan plan for the parent relation of 'best_path'.
551 : */
552 : static Plan *
553 506476 : create_scan_plan(PlannerInfo *root, Path *best_path, int flags)
554 : {
555 506476 : RelOptInfo *rel = best_path->parent;
556 : List *scan_clauses;
557 : List *gating_clauses;
558 : List *tlist;
559 : Plan *plan;
560 :
561 : /*
562 : * Extract the relevant restriction clauses from the parent relation. The
563 : * executor must apply all these restrictions during the scan, except for
564 : * pseudoconstants which we'll take care of below.
565 : *
566 : * If this is a plain indexscan or index-only scan, we need not consider
567 : * restriction clauses that are implied by the index's predicate, so use
568 : * indrestrictinfo not baserestrictinfo. Note that we can't do that for
569 : * bitmap indexscans, since there's not necessarily a single index
570 : * involved; but it doesn't matter since create_bitmap_scan_plan() will be
571 : * able to get rid of such clauses anyway via predicate proof.
572 : */
573 506476 : switch (best_path->pathtype)
574 : {
575 158894 : case T_IndexScan:
576 : case T_IndexOnlyScan:
577 158894 : scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo;
578 158894 : break;
579 347582 : default:
580 347582 : scan_clauses = rel->baserestrictinfo;
581 347582 : break;
582 : }
583 :
584 : /*
585 : * If this is a parameterized scan, we also need to enforce all the join
586 : * clauses available from the outer relation(s).
587 : *
588 : * For paranoia's sake, don't modify the stored baserestrictinfo list.
589 : */
590 506476 : if (best_path->param_info)
591 49456 : scan_clauses = list_concat_copy(scan_clauses,
592 49456 : best_path->param_info->ppi_clauses);
593 :
594 : /*
595 : * Detect whether we have any pseudoconstant quals to deal with. Then, if
596 : * we'll need a gating Result node, it will be able to project, so there
597 : * are no requirements on the child's tlist.
598 : *
599 : * If this replaces a join, it must be a foreign scan or a custom scan,
600 : * and the FDW or the custom scan provider would have stored in the best
601 : * path the list of RestrictInfo nodes to apply to the join; check against
602 : * that list in that case.
603 : */
604 506476 : if (IS_JOIN_REL(rel))
605 310 : {
606 : List *join_clauses;
607 :
608 : Assert(best_path->pathtype == T_ForeignScan ||
609 : best_path->pathtype == T_CustomScan);
610 310 : if (best_path->pathtype == T_ForeignScan)
611 310 : join_clauses = ((ForeignPath *) best_path)->fdw_restrictinfo;
612 : else
613 0 : join_clauses = ((CustomPath *) best_path)->custom_restrictinfo;
614 :
615 310 : gating_clauses = get_gating_quals(root, join_clauses);
616 : }
617 : else
618 506166 : gating_clauses = get_gating_quals(root, scan_clauses);
619 506476 : if (gating_clauses)
620 6896 : flags = 0;
621 :
622 : /*
623 : * For table scans, rather than using the relation targetlist (which is
624 : * only those Vars actually needed by the query), we prefer to generate a
625 : * tlist containing all Vars in order. This will allow the executor to
626 : * optimize away projection of the table tuples, if possible.
627 : *
628 : * But if the caller is going to ignore our tlist anyway, then don't
629 : * bother generating one at all. We use an exact equality test here, so
630 : * that this only applies when CP_IGNORE_TLIST is the only flag set.
631 : */
632 506476 : if (flags == CP_IGNORE_TLIST)
633 : {
634 77766 : tlist = NULL;
635 : }
636 428710 : else if (use_physical_tlist(root, best_path, flags))
637 : {
638 196872 : if (best_path->pathtype == T_IndexOnlyScan)
639 : {
640 : /* For index-only scan, the preferred tlist is the index's */
641 10274 : tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
642 :
643 : /*
644 : * Transfer sortgroupref data to the replacement tlist, if
645 : * requested (use_physical_tlist checked that this will work).
646 : */
647 10274 : if (flags & CP_LABEL_TLIST)
648 1910 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
649 : }
650 : else
651 : {
652 186598 : tlist = build_physical_tlist(root, rel);
653 186598 : if (tlist == NIL)
654 : {
655 : /* Failed because of dropped cols, so use regular method */
656 160 : tlist = build_path_tlist(root, best_path);
657 : }
658 : else
659 : {
660 : /* As above, transfer sortgroupref data to replacement tlist */
661 186438 : if (flags & CP_LABEL_TLIST)
662 13466 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
663 : }
664 : }
665 : }
666 : else
667 : {
668 231838 : tlist = build_path_tlist(root, best_path);
669 : }
670 :
671 506476 : switch (best_path->pathtype)
672 : {
673 219488 : case T_SeqScan:
674 219488 : plan = (Plan *) create_seqscan_plan(root,
675 : best_path,
676 : tlist,
677 : scan_clauses);
678 219488 : break;
679 :
680 306 : case T_SampleScan:
681 306 : plan = (Plan *) create_samplescan_plan(root,
682 : best_path,
683 : tlist,
684 : scan_clauses);
685 306 : break;
686 :
687 140688 : case T_IndexScan:
688 140688 : plan = (Plan *) create_indexscan_plan(root,
689 : (IndexPath *) best_path,
690 : tlist,
691 : scan_clauses,
692 : false);
693 140688 : break;
694 :
695 18206 : case T_IndexOnlyScan:
696 18206 : plan = (Plan *) create_indexscan_plan(root,
697 : (IndexPath *) best_path,
698 : tlist,
699 : scan_clauses,
700 : true);
701 18206 : break;
702 :
703 21054 : case T_BitmapHeapScan:
704 21054 : plan = (Plan *) create_bitmap_scan_plan(root,
705 : (BitmapHeapPath *) best_path,
706 : tlist,
707 : scan_clauses);
708 21054 : break;
709 :
710 752 : case T_TidScan:
711 752 : plan = (Plan *) create_tidscan_plan(root,
712 : (TidPath *) best_path,
713 : tlist,
714 : scan_clauses);
715 752 : break;
716 :
717 1944 : case T_TidRangeScan:
718 1944 : plan = (Plan *) create_tidrangescan_plan(root,
719 : (TidRangePath *) best_path,
720 : tlist,
721 : scan_clauses);
722 1944 : break;
723 :
724 32550 : case T_SubqueryScan:
725 32550 : plan = (Plan *) create_subqueryscan_plan(root,
726 : (SubqueryScanPath *) best_path,
727 : tlist,
728 : scan_clauses);
729 32550 : break;
730 :
731 50804 : case T_FunctionScan:
732 50804 : plan = (Plan *) create_functionscan_plan(root,
733 : best_path,
734 : tlist,
735 : scan_clauses);
736 50804 : break;
737 :
738 626 : case T_TableFuncScan:
739 626 : plan = (Plan *) create_tablefuncscan_plan(root,
740 : best_path,
741 : tlist,
742 : scan_clauses);
743 626 : break;
744 :
745 8278 : case T_ValuesScan:
746 8278 : plan = (Plan *) create_valuesscan_plan(root,
747 : best_path,
748 : tlist,
749 : scan_clauses);
750 8278 : break;
751 :
752 4244 : case T_CteScan:
753 4244 : plan = (Plan *) create_ctescan_plan(root,
754 : best_path,
755 : tlist,
756 : scan_clauses);
757 4244 : break;
758 :
759 478 : case T_NamedTuplestoreScan:
760 478 : plan = (Plan *) create_namedtuplestorescan_plan(root,
761 : best_path,
762 : tlist,
763 : scan_clauses);
764 478 : break;
765 :
766 4068 : case T_Result:
767 4068 : plan = (Plan *) create_resultscan_plan(root,
768 : best_path,
769 : tlist,
770 : scan_clauses);
771 4068 : break;
772 :
773 926 : case T_WorkTableScan:
774 926 : plan = (Plan *) create_worktablescan_plan(root,
775 : best_path,
776 : tlist,
777 : scan_clauses);
778 926 : break;
779 :
780 2064 : case T_ForeignScan:
781 2064 : plan = (Plan *) create_foreignscan_plan(root,
782 : (ForeignPath *) best_path,
783 : tlist,
784 : scan_clauses);
785 2064 : break;
786 :
787 0 : case T_CustomScan:
788 0 : plan = (Plan *) create_customscan_plan(root,
789 : (CustomPath *) best_path,
790 : tlist,
791 : scan_clauses);
792 0 : break;
793 :
794 0 : default:
795 0 : elog(ERROR, "unrecognized node type: %d",
796 : (int) best_path->pathtype);
797 : plan = NULL; /* keep compiler quiet */
798 : break;
799 : }
800 :
801 : /*
802 : * If there are any pseudoconstant clauses attached to this node, insert a
803 : * gating Result node that evaluates the pseudoconstants as one-time
804 : * quals.
805 : */
806 506476 : if (gating_clauses)
807 6896 : plan = create_gating_plan(root, best_path, plan, gating_clauses);
808 :
809 506476 : return plan;
810 : }
811 :
812 : /*
813 : * Build a target list (ie, a list of TargetEntry) for the Path's output.
814 : *
815 : * This is almost just make_tlist_from_pathtarget(), but we also have to
816 : * deal with replacing nestloop params.
817 : */
818 : static List *
819 1009208 : build_path_tlist(PlannerInfo *root, Path *path)
820 : {
821 1009208 : List *tlist = NIL;
822 1009208 : Index *sortgrouprefs = path->pathtarget->sortgrouprefs;
823 1009208 : int resno = 1;
824 : ListCell *v;
825 :
826 3453926 : foreach(v, path->pathtarget->exprs)
827 : {
828 2444718 : Node *node = (Node *) lfirst(v);
829 : TargetEntry *tle;
830 :
831 : /*
832 : * If it's a parameterized path, there might be lateral references in
833 : * the tlist, which need to be replaced with Params. There's no need
834 : * to remake the TargetEntry nodes, so apply this to each list item
835 : * separately.
836 : */
837 2444718 : if (path->param_info)
838 24048 : node = replace_nestloop_params(root, node);
839 :
840 2444718 : tle = makeTargetEntry((Expr *) node,
841 : resno,
842 : NULL,
843 : false);
844 2444718 : if (sortgrouprefs)
845 1522548 : tle->ressortgroupref = sortgrouprefs[resno - 1];
846 :
847 2444718 : tlist = lappend(tlist, tle);
848 2444718 : resno++;
849 : }
850 1009208 : return tlist;
851 : }
852 :
853 : /*
854 : * use_physical_tlist
855 : * Decide whether to use a tlist matching relation structure,
856 : * rather than only those Vars actually referenced.
857 : */
858 : static bool
859 774604 : use_physical_tlist(PlannerInfo *root, Path *path, int flags)
860 : {
861 774604 : RelOptInfo *rel = path->parent;
862 : int i;
863 : ListCell *lc;
864 :
865 : /*
866 : * Forget it if either exact tlist or small tlist is demanded.
867 : */
868 774604 : if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))
869 531462 : return false;
870 :
871 : /*
872 : * We can do this for real relation scans, subquery scans, function scans,
873 : * tablefunc scans, values scans, and CTE scans (but not for, eg, joins).
874 : */
875 243142 : if (rel->rtekind != RTE_RELATION &&
876 38990 : rel->rtekind != RTE_SUBQUERY &&
877 36450 : rel->rtekind != RTE_FUNCTION &&
878 14718 : rel->rtekind != RTE_TABLEFUNC &&
879 14484 : rel->rtekind != RTE_VALUES &&
880 13190 : rel->rtekind != RTE_CTE)
881 11714 : return false;
882 :
883 : /*
884 : * Can't do it with inheritance cases either (mainly because Append
885 : * doesn't project; this test may be unnecessary now that
886 : * create_append_plan instructs its children to return an exact tlist).
887 : */
888 231428 : if (rel->reloptkind != RELOPT_BASEREL)
889 6110 : return false;
890 :
891 : /*
892 : * Also, don't do it to a CustomPath; the premise that we're extracting
893 : * columns from a simple physical tuple is unlikely to hold for those.
894 : * (When it does make sense, the custom path creator can set up the path's
895 : * pathtarget that way.)
896 : */
897 225318 : if (IsA(path, CustomPath))
898 0 : return false;
899 :
900 : /*
901 : * If a bitmap scan's tlist is empty, keep it as-is. This may allow the
902 : * executor to skip heap page fetches, and in any case, the benefit of
903 : * using a physical tlist instead would be minimal.
904 : */
905 225318 : if (IsA(path, BitmapHeapPath) &&
906 10606 : path->pathtarget->exprs == NIL)
907 3160 : return false;
908 :
909 : /*
910 : * Can't do it if any system columns or whole-row Vars are requested.
911 : * (This could possibly be fixed but would take some fragile assumptions
912 : * in setrefs.c, I think.)
913 : */
914 1527430 : for (i = rel->min_attr; i <= 0; i++)
915 : {
916 1327602 : if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
917 22330 : return false;
918 : }
919 :
920 : /*
921 : * Can't do it if the rel is required to emit any placeholder expressions,
922 : * either.
923 : */
924 201492 : foreach(lc, root->placeholder_list)
925 : {
926 2016 : PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
927 :
928 3972 : if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
929 1956 : bms_is_subset(phinfo->ph_eval_at, rel->relids))
930 352 : return false;
931 : }
932 :
933 : /*
934 : * For an index-only scan, the "physical tlist" is the index's indextlist.
935 : * We can only return that without a projection if all the index's columns
936 : * are returnable.
937 : */
938 199476 : if (path->pathtype == T_IndexOnlyScan)
939 : {
940 10290 : IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo;
941 :
942 22388 : for (i = 0; i < indexinfo->ncolumns; i++)
943 : {
944 12114 : if (!indexinfo->canreturn[i])
945 16 : return false;
946 : }
947 : }
948 :
949 : /*
950 : * Also, can't do it if CP_LABEL_TLIST is specified and path is requested
951 : * to emit any sort/group columns that are not simple Vars. (If they are
952 : * simple Vars, they should appear in the physical tlist, and
953 : * apply_pathtarget_labeling_to_tlist will take care of getting them
954 : * labeled again.) We also have to check that no two sort/group columns
955 : * are the same Var, else that element of the physical tlist would need
956 : * conflicting ressortgroupref labels.
957 : */
958 199460 : if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs)
959 : {
960 2726 : Bitmapset *sortgroupatts = NULL;
961 :
962 2726 : i = 0;
963 6588 : foreach(lc, path->pathtarget->exprs)
964 : {
965 4624 : Expr *expr = (Expr *) lfirst(lc);
966 :
967 4624 : if (path->pathtarget->sortgrouprefs[i])
968 : {
969 3790 : if (expr && IsA(expr, Var))
970 3028 : {
971 3040 : int attno = ((Var *) expr)->varattno;
972 :
973 3040 : attno -= FirstLowInvalidHeapAttributeNumber;
974 3040 : if (bms_is_member(attno, sortgroupatts))
975 762 : return false;
976 3028 : sortgroupatts = bms_add_member(sortgroupatts, attno);
977 : }
978 : else
979 750 : return false;
980 : }
981 3862 : i++;
982 : }
983 : }
984 :
985 198698 : return true;
986 : }
987 :
988 : /*
989 : * get_gating_quals
990 : * See if there are pseudoconstant quals in a node's quals list
991 : *
992 : * If the node's quals list includes any pseudoconstant quals,
993 : * return just those quals.
994 : */
995 : static List *
996 646366 : get_gating_quals(PlannerInfo *root, List *quals)
997 : {
998 : /* No need to look if we know there are no pseudoconstants */
999 646366 : if (!root->hasPseudoConstantQuals)
1000 623714 : return NIL;
1001 :
1002 : /* Sort into desirable execution order while still in RestrictInfo form */
1003 22652 : quals = order_qual_clauses(root, quals);
1004 :
1005 : /* Pull out any pseudoconstant quals from the RestrictInfo list */
1006 22652 : return extract_actual_clauses(quals, true);
1007 : }
1008 :
1009 : /*
1010 : * create_gating_plan
1011 : * Deal with pseudoconstant qual clauses
1012 : *
1013 : * Add a gating Result node atop the already-built plan.
1014 : */
1015 : static Plan *
1016 10002 : create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
1017 : List *gating_quals)
1018 : {
1019 : Result *gplan;
1020 :
1021 : Assert(gating_quals);
1022 :
1023 : /*
1024 : * Since we need a Result node anyway, always return the path's requested
1025 : * tlist; that's never a wrong choice, even if the parent node didn't ask
1026 : * for CP_EXACT_TLIST.
1027 : */
1028 10002 : gplan = make_gating_result(build_path_tlist(root, path),
1029 : (Node *) gating_quals, plan);
1030 :
1031 : /*
1032 : * We might have had a trivial Result plan already. Stacking one Result
1033 : * atop another is silly, so if that applies, just discard the input plan.
1034 : * (We're assuming its targetlist is uninteresting; it should be either
1035 : * the same as the result of build_path_tlist, or a simplified version.
1036 : * However, we preserve the set of relids that it purports to scan and
1037 : * attribute that to our replacement Result instead, and likewise for the
1038 : * result_type.)
1039 : */
1040 10002 : if (IsA(plan, Result))
1041 : {
1042 24 : Result *rplan = (Result *) plan;
1043 :
1044 24 : gplan->plan.lefttree = NULL;
1045 24 : gplan->relids = rplan->relids;
1046 24 : gplan->result_type = rplan->result_type;
1047 : }
1048 :
1049 : /*
1050 : * Notice that we don't change cost or size estimates when doing gating.
1051 : * The costs of qual eval were already included in the subplan's cost.
1052 : * Leaving the size alone amounts to assuming that the gating qual will
1053 : * succeed, which is the conservative estimate for planning upper queries.
1054 : * We certainly don't want to assume the output size is zero (unless the
1055 : * gating qual is actually constant FALSE, and that case is dealt with in
1056 : * clausesel.c). Interpolating between the two cases is silly, because it
1057 : * doesn't reflect what will really happen at runtime, and besides which
1058 : * in most cases we have only a very bad idea of the probability of the
1059 : * gating qual being true.
1060 : */
1061 10002 : copy_plan_costsize(&gplan->plan, plan);
1062 :
1063 : /* Gating quals could be unsafe, so better use the Path's safety flag */
1064 10002 : gplan->plan.parallel_safe = path->parallel_safe;
1065 :
1066 10002 : return &gplan->plan;
1067 : }
1068 :
1069 : /*
1070 : * create_join_plan
1071 : * Create a join plan for 'best_path' and (recursively) plans for its
1072 : * inner and outer paths.
1073 : */
1074 : static Plan *
1075 139890 : create_join_plan(PlannerInfo *root, JoinPath *best_path)
1076 : {
1077 : Plan *plan;
1078 : List *gating_clauses;
1079 :
1080 139890 : switch (best_path->path.pathtype)
1081 : {
1082 7740 : case T_MergeJoin:
1083 7740 : plan = (Plan *) create_mergejoin_plan(root,
1084 : (MergePath *) best_path);
1085 7740 : break;
1086 34650 : case T_HashJoin:
1087 34650 : plan = (Plan *) create_hashjoin_plan(root,
1088 : (HashPath *) best_path);
1089 34650 : break;
1090 97500 : case T_NestLoop:
1091 97500 : plan = (Plan *) create_nestloop_plan(root,
1092 : (NestPath *) best_path);
1093 97500 : break;
1094 0 : default:
1095 0 : elog(ERROR, "unrecognized node type: %d",
1096 : (int) best_path->path.pathtype);
1097 : plan = NULL; /* keep compiler quiet */
1098 : break;
1099 : }
1100 :
1101 : /*
1102 : * If there are any pseudoconstant clauses attached to this node, insert a
1103 : * gating Result node that evaluates the pseudoconstants as one-time
1104 : * quals.
1105 : */
1106 139890 : gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo);
1107 139890 : if (gating_clauses)
1108 3106 : plan = create_gating_plan(root, (Path *) best_path, plan,
1109 : gating_clauses);
1110 :
1111 : #ifdef NOT_USED
1112 :
1113 : /*
1114 : * * Expensive function pullups may have pulled local predicates * into
1115 : * this path node. Put them in the qpqual of the plan node. * JMH,
1116 : * 6/15/92
1117 : */
1118 : if (get_loc_restrictinfo(best_path) != NIL)
1119 : set_qpqual((Plan) plan,
1120 : list_concat(get_qpqual((Plan) plan),
1121 : get_actual_clauses(get_loc_restrictinfo(best_path))));
1122 : #endif
1123 :
1124 139890 : return plan;
1125 : }
1126 :
1127 : /*
1128 : * mark_async_capable_plan
1129 : * Check whether the Plan node created from a Path node is async-capable,
1130 : * and if so, mark the Plan node as such and return true, otherwise
1131 : * return false.
1132 : */
1133 : static bool
1134 30590 : mark_async_capable_plan(Plan *plan, Path *path)
1135 : {
1136 30590 : switch (nodeTag(path))
1137 : {
1138 11122 : case T_SubqueryScanPath:
1139 : {
1140 11122 : SubqueryScan *scan_plan = (SubqueryScan *) plan;
1141 :
1142 : /*
1143 : * If the generated plan node includes a gating Result node,
1144 : * we can't execute it asynchronously.
1145 : */
1146 11122 : if (IsA(plan, Result))
1147 4 : return false;
1148 :
1149 : /*
1150 : * If a SubqueryScan node atop of an async-capable plan node
1151 : * is deletable, consider it as async-capable.
1152 : */
1153 15624 : if (trivial_subqueryscan(scan_plan) &&
1154 4506 : mark_async_capable_plan(scan_plan->subplan,
1155 : ((SubqueryScanPath *) path)->subpath))
1156 16 : break;
1157 11102 : return false;
1158 : }
1159 488 : case T_ForeignPath:
1160 : {
1161 488 : FdwRoutine *fdwroutine = path->parent->fdwroutine;
1162 :
1163 : /*
1164 : * If the generated plan node includes a gating Result node,
1165 : * we can't execute it asynchronously.
1166 : */
1167 488 : if (IsA(plan, Result))
1168 8 : return false;
1169 :
1170 : Assert(fdwroutine != NULL);
1171 954 : if (fdwroutine->IsForeignPathAsyncCapable != NULL &&
1172 474 : fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path))
1173 194 : break;
1174 286 : return false;
1175 : }
1176 5332 : case T_ProjectionPath:
1177 :
1178 : /*
1179 : * If the generated plan node includes a Result node for the
1180 : * projection, we can't execute it asynchronously.
1181 : */
1182 5332 : if (IsA(plan, Result))
1183 184 : return false;
1184 :
1185 : /*
1186 : * create_projection_plan() would have pulled up the subplan, so
1187 : * check the capability using the subpath.
1188 : */
1189 5148 : if (mark_async_capable_plan(plan,
1190 : ((ProjectionPath *) path)->subpath))
1191 32 : return true;
1192 5116 : return false;
1193 13648 : default:
1194 13648 : return false;
1195 : }
1196 :
1197 210 : plan->async_capable = true;
1198 :
1199 210 : return true;
1200 : }
1201 :
1202 : /*
1203 : * create_append_plan
1204 : * Create an Append plan for 'best_path' and (recursively) plans
1205 : * for its subpaths.
1206 : *
1207 : * Returns a Plan node.
1208 : */
1209 : static Plan *
1210 25006 : create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags)
1211 : {
1212 : Append *plan;
1213 25006 : List *tlist = build_path_tlist(root, &best_path->path);
1214 25006 : int orig_tlist_length = list_length(tlist);
1215 25006 : bool tlist_was_changed = false;
1216 25006 : List *pathkeys = best_path->path.pathkeys;
1217 25006 : List *subplans = NIL;
1218 : ListCell *subpaths;
1219 25006 : int nasyncplans = 0;
1220 25006 : RelOptInfo *rel = best_path->path.parent;
1221 25006 : int nodenumsortkeys = 0;
1222 25006 : AttrNumber *nodeSortColIdx = NULL;
1223 25006 : Oid *nodeSortOperators = NULL;
1224 25006 : Oid *nodeCollations = NULL;
1225 25006 : bool *nodeNullsFirst = NULL;
1226 25006 : bool consider_async = false;
1227 :
1228 : /*
1229 : * The subpaths list could be empty, if every child was proven empty by
1230 : * constraint exclusion. In that case generate a dummy plan that returns
1231 : * no rows.
1232 : *
1233 : * Note that an AppendPath with no members is also generated in certain
1234 : * cases where there was no appending construct at all, but we know the
1235 : * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel).
1236 : */
1237 25006 : if (best_path->subpaths == NIL)
1238 : {
1239 : /* Generate a Result plan with constant-FALSE gating qual */
1240 : Plan *plan;
1241 :
1242 1068 : plan = (Plan *) make_one_row_result(tlist,
1243 1068 : (Node *) list_make1(makeBoolConst(false,
1244 : false)),
1245 : best_path->path.parent);
1246 :
1247 1068 : copy_generic_path_info(plan, (Path *) best_path);
1248 :
1249 1068 : return plan;
1250 : }
1251 :
1252 : /*
1253 : * Otherwise build an Append plan. Note that if there's just one child,
1254 : * the Append is pretty useless; but we wait till setrefs.c to get rid of
1255 : * it. Doing so here doesn't work because the varno of the child scan
1256 : * plan won't match the parent-rel Vars it'll be asked to emit.
1257 : *
1258 : * We don't have the actual creation of the Append node split out into a
1259 : * separate make_xxx function. This is because we want to run
1260 : * prepare_sort_from_pathkeys on it before we do so on the individual
1261 : * child plans, to make cross-checking the sort info easier.
1262 : */
1263 23938 : plan = makeNode(Append);
1264 23938 : plan->plan.targetlist = tlist;
1265 23938 : plan->plan.qual = NIL;
1266 23938 : plan->plan.lefttree = NULL;
1267 23938 : plan->plan.righttree = NULL;
1268 23938 : plan->apprelids = rel->relids;
1269 :
1270 23938 : if (pathkeys != NIL)
1271 : {
1272 : /*
1273 : * Compute sort column info, and adjust the Append's tlist as needed.
1274 : * Because we pass adjust_tlist_in_place = true, we may ignore the
1275 : * function result; it must be the same plan node. However, we then
1276 : * need to detect whether any tlist entries were added.
1277 : */
1278 314 : (void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys,
1279 314 : best_path->path.parent->relids,
1280 : NULL,
1281 : true,
1282 : &nodenumsortkeys,
1283 : &nodeSortColIdx,
1284 : &nodeSortOperators,
1285 : &nodeCollations,
1286 : &nodeNullsFirst);
1287 314 : tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist));
1288 : }
1289 :
1290 : /* If appropriate, consider async append */
1291 23938 : consider_async = (enable_async_append && pathkeys == NIL &&
1292 58236 : !best_path->path.parallel_safe &&
1293 10360 : list_length(best_path->subpaths) > 1);
1294 :
1295 : /* Build the plan for each child */
1296 83118 : foreach(subpaths, best_path->subpaths)
1297 : {
1298 59180 : Path *subpath = (Path *) lfirst(subpaths);
1299 : Plan *subplan;
1300 :
1301 : /* Must insist that all children return the same tlist */
1302 59180 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1303 :
1304 : /*
1305 : * For ordered Appends, we must insert a Sort node if subplan isn't
1306 : * sufficiently ordered.
1307 : */
1308 59180 : if (pathkeys != NIL)
1309 : {
1310 : int numsortkeys;
1311 : AttrNumber *sortColIdx;
1312 : Oid *sortOperators;
1313 : Oid *collations;
1314 : bool *nullsFirst;
1315 : int presorted_keys;
1316 :
1317 : /*
1318 : * Compute sort column info, and adjust subplan's tlist as needed.
1319 : * We must apply prepare_sort_from_pathkeys even to subplans that
1320 : * don't need an explicit sort, to make sure they are returning
1321 : * the same sort key columns the Append expects.
1322 : */
1323 788 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1324 788 : subpath->parent->relids,
1325 : nodeSortColIdx,
1326 : false,
1327 : &numsortkeys,
1328 : &sortColIdx,
1329 : &sortOperators,
1330 : &collations,
1331 : &nullsFirst);
1332 :
1333 : /*
1334 : * Check that we got the same sort key information. We just
1335 : * Assert that the sortops match, since those depend only on the
1336 : * pathkeys; but it seems like a good idea to check the sort
1337 : * column numbers explicitly, to ensure the tlists match up.
1338 : */
1339 : Assert(numsortkeys == nodenumsortkeys);
1340 788 : if (memcmp(sortColIdx, nodeSortColIdx,
1341 : numsortkeys * sizeof(AttrNumber)) != 0)
1342 0 : elog(ERROR, "Append child's targetlist doesn't match Append");
1343 : Assert(memcmp(sortOperators, nodeSortOperators,
1344 : numsortkeys * sizeof(Oid)) == 0);
1345 : Assert(memcmp(collations, nodeCollations,
1346 : numsortkeys * sizeof(Oid)) == 0);
1347 : Assert(memcmp(nullsFirst, nodeNullsFirst,
1348 : numsortkeys * sizeof(bool)) == 0);
1349 :
1350 : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1351 788 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1352 : &presorted_keys))
1353 : {
1354 : Plan *sort_plan;
1355 :
1356 : /*
1357 : * We choose to use incremental sort if it is enabled and
1358 : * there are presorted keys; otherwise we use full sort.
1359 : */
1360 12 : if (enable_incremental_sort && presorted_keys > 0)
1361 : {
1362 : sort_plan = (Plan *)
1363 6 : make_incrementalsort(subplan, numsortkeys, presorted_keys,
1364 : sortColIdx, sortOperators,
1365 : collations, nullsFirst);
1366 :
1367 6 : label_incrementalsort_with_costsize(root,
1368 : (IncrementalSort *) sort_plan,
1369 : pathkeys,
1370 : best_path->limit_tuples);
1371 : }
1372 : else
1373 : {
1374 6 : sort_plan = (Plan *) make_sort(subplan, numsortkeys,
1375 : sortColIdx, sortOperators,
1376 : collations, nullsFirst);
1377 :
1378 6 : label_sort_with_costsize(root, (Sort *) sort_plan,
1379 : best_path->limit_tuples);
1380 : }
1381 :
1382 12 : subplan = sort_plan;
1383 : }
1384 : }
1385 :
1386 : /* If needed, check to see if subplan can be executed asynchronously */
1387 59180 : if (consider_async && mark_async_capable_plan(subplan, subpath))
1388 : {
1389 : Assert(subplan->async_capable);
1390 194 : ++nasyncplans;
1391 : }
1392 :
1393 59180 : subplans = lappend(subplans, subplan);
1394 : }
1395 :
1396 : /* Set below if we find quals that we can use to run-time prune */
1397 23938 : plan->part_prune_index = -1;
1398 :
1399 : /*
1400 : * If any quals exist, they may be useful to perform further partition
1401 : * pruning during execution. Gather information needed by the executor to
1402 : * do partition pruning.
1403 : */
1404 23938 : if (enable_partition_pruning)
1405 : {
1406 : List *prunequal;
1407 :
1408 23884 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1409 :
1410 23884 : if (best_path->path.param_info)
1411 : {
1412 352 : List *prmquals = best_path->path.param_info->ppi_clauses;
1413 :
1414 352 : prmquals = extract_actual_clauses(prmquals, false);
1415 352 : prmquals = (List *) replace_nestloop_params(root,
1416 : (Node *) prmquals);
1417 :
1418 352 : prunequal = list_concat(prunequal, prmquals);
1419 : }
1420 :
1421 23884 : if (prunequal != NIL)
1422 9104 : plan->part_prune_index = make_partition_pruneinfo(root, rel,
1423 : best_path->subpaths,
1424 : prunequal);
1425 : }
1426 :
1427 23938 : plan->appendplans = subplans;
1428 23938 : plan->nasyncplans = nasyncplans;
1429 23938 : plan->first_partial_plan = best_path->first_partial_path;
1430 :
1431 23938 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1432 :
1433 : /*
1434 : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1435 : * produce either the exact tlist or a narrow tlist, we should get rid of
1436 : * the sort columns again. We must inject a projection node to do so.
1437 : */
1438 23938 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1439 : {
1440 0 : tlist = list_copy_head(plan->plan.targetlist, orig_tlist_length);
1441 0 : return inject_projection_plan((Plan *) plan, tlist,
1442 0 : plan->plan.parallel_safe);
1443 : }
1444 : else
1445 23938 : return (Plan *) plan;
1446 : }
1447 :
1448 : /*
1449 : * create_merge_append_plan
1450 : * Create a MergeAppend plan for 'best_path' and (recursively) plans
1451 : * for its subpaths.
1452 : *
1453 : * Returns a Plan node.
1454 : */
1455 : static Plan *
1456 566 : create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
1457 : int flags)
1458 : {
1459 566 : MergeAppend *node = makeNode(MergeAppend);
1460 566 : Plan *plan = &node->plan;
1461 566 : List *tlist = build_path_tlist(root, &best_path->path);
1462 566 : int orig_tlist_length = list_length(tlist);
1463 : bool tlist_was_changed;
1464 566 : List *pathkeys = best_path->path.pathkeys;
1465 566 : List *subplans = NIL;
1466 : ListCell *subpaths;
1467 566 : RelOptInfo *rel = best_path->path.parent;
1468 :
1469 : /*
1470 : * We don't have the actual creation of the MergeAppend node split out
1471 : * into a separate make_xxx function. This is because we want to run
1472 : * prepare_sort_from_pathkeys on it before we do so on the individual
1473 : * child plans, to make cross-checking the sort info easier.
1474 : */
1475 566 : copy_generic_path_info(plan, (Path *) best_path);
1476 566 : plan->targetlist = tlist;
1477 566 : plan->qual = NIL;
1478 566 : plan->lefttree = NULL;
1479 566 : plan->righttree = NULL;
1480 566 : node->apprelids = rel->relids;
1481 :
1482 : /*
1483 : * Compute sort column info, and adjust MergeAppend's tlist as needed.
1484 : * Because we pass adjust_tlist_in_place = true, we may ignore the
1485 : * function result; it must be the same plan node. However, we then need
1486 : * to detect whether any tlist entries were added.
1487 : */
1488 566 : (void) prepare_sort_from_pathkeys(plan, pathkeys,
1489 566 : best_path->path.parent->relids,
1490 : NULL,
1491 : true,
1492 : &node->numCols,
1493 : &node->sortColIdx,
1494 : &node->sortOperators,
1495 : &node->collations,
1496 : &node->nullsFirst);
1497 566 : tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist));
1498 :
1499 : /*
1500 : * Now prepare the child plans. We must apply prepare_sort_from_pathkeys
1501 : * even to subplans that don't need an explicit sort, to make sure they
1502 : * are returning the same sort key columns the MergeAppend expects.
1503 : */
1504 2152 : foreach(subpaths, best_path->subpaths)
1505 : {
1506 1586 : Path *subpath = (Path *) lfirst(subpaths);
1507 : Plan *subplan;
1508 : int numsortkeys;
1509 : AttrNumber *sortColIdx;
1510 : Oid *sortOperators;
1511 : Oid *collations;
1512 : bool *nullsFirst;
1513 : int presorted_keys;
1514 :
1515 : /* Build the child plan */
1516 : /* Must insist that all children return the same tlist */
1517 1586 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1518 :
1519 : /* Compute sort column info, and adjust subplan's tlist as needed */
1520 1586 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1521 1586 : subpath->parent->relids,
1522 1586 : node->sortColIdx,
1523 : false,
1524 : &numsortkeys,
1525 : &sortColIdx,
1526 : &sortOperators,
1527 : &collations,
1528 : &nullsFirst);
1529 :
1530 : /*
1531 : * Check that we got the same sort key information. We just Assert
1532 : * that the sortops match, since those depend only on the pathkeys;
1533 : * but it seems like a good idea to check the sort column numbers
1534 : * explicitly, to ensure the tlists really do match up.
1535 : */
1536 : Assert(numsortkeys == node->numCols);
1537 1586 : if (memcmp(sortColIdx, node->sortColIdx,
1538 : numsortkeys * sizeof(AttrNumber)) != 0)
1539 0 : elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
1540 : Assert(memcmp(sortOperators, node->sortOperators,
1541 : numsortkeys * sizeof(Oid)) == 0);
1542 : Assert(memcmp(collations, node->collations,
1543 : numsortkeys * sizeof(Oid)) == 0);
1544 : Assert(memcmp(nullsFirst, node->nullsFirst,
1545 : numsortkeys * sizeof(bool)) == 0);
1546 :
1547 : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1548 1586 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1549 : &presorted_keys))
1550 : {
1551 : Plan *sort_plan;
1552 :
1553 : /*
1554 : * We choose to use incremental sort if it is enabled and there
1555 : * are presorted keys; otherwise we use full sort.
1556 : */
1557 84 : if (enable_incremental_sort && presorted_keys > 0)
1558 : {
1559 : sort_plan = (Plan *)
1560 18 : make_incrementalsort(subplan, numsortkeys, presorted_keys,
1561 : sortColIdx, sortOperators,
1562 : collations, nullsFirst);
1563 :
1564 18 : label_incrementalsort_with_costsize(root,
1565 : (IncrementalSort *) sort_plan,
1566 : pathkeys,
1567 : best_path->limit_tuples);
1568 : }
1569 : else
1570 : {
1571 66 : sort_plan = (Plan *) make_sort(subplan, numsortkeys,
1572 : sortColIdx, sortOperators,
1573 : collations, nullsFirst);
1574 :
1575 66 : label_sort_with_costsize(root, (Sort *) sort_plan,
1576 : best_path->limit_tuples);
1577 : }
1578 :
1579 84 : subplan = sort_plan;
1580 : }
1581 :
1582 1586 : subplans = lappend(subplans, subplan);
1583 : }
1584 :
1585 : /* Set below if we find quals that we can use to run-time prune */
1586 566 : node->part_prune_index = -1;
1587 :
1588 : /*
1589 : * If any quals exist, they may be useful to perform further partition
1590 : * pruning during execution. Gather information needed by the executor to
1591 : * do partition pruning.
1592 : */
1593 566 : if (enable_partition_pruning)
1594 : {
1595 : List *prunequal;
1596 :
1597 566 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1598 :
1599 : /* We don't currently generate any parameterized MergeAppend paths */
1600 : Assert(best_path->path.param_info == NULL);
1601 :
1602 566 : if (prunequal != NIL)
1603 168 : node->part_prune_index = make_partition_pruneinfo(root, rel,
1604 : best_path->subpaths,
1605 : prunequal);
1606 : }
1607 :
1608 566 : node->mergeplans = subplans;
1609 :
1610 : /*
1611 : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1612 : * produce either the exact tlist or a narrow tlist, we should get rid of
1613 : * the sort columns again. We must inject a projection node to do so.
1614 : */
1615 566 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1616 : {
1617 0 : tlist = list_copy_head(plan->targetlist, orig_tlist_length);
1618 0 : return inject_projection_plan(plan, tlist, plan->parallel_safe);
1619 : }
1620 : else
1621 566 : return plan;
1622 : }
1623 :
1624 : /*
1625 : * create_group_result_plan
1626 : * Create a Result plan for 'best_path'.
1627 : * This is only used for degenerate grouping cases.
1628 : *
1629 : * Returns a Plan node.
1630 : */
1631 : static Result *
1632 197190 : create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path)
1633 : {
1634 : Result *plan;
1635 : List *tlist;
1636 : List *quals;
1637 :
1638 197190 : tlist = build_path_tlist(root, &best_path->path);
1639 :
1640 : /* best_path->quals is just bare clauses */
1641 197190 : quals = order_qual_clauses(root, best_path->quals);
1642 :
1643 197190 : plan = make_one_row_result(tlist, (Node *) quals, best_path->path.parent);
1644 :
1645 197190 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1646 :
1647 197190 : return plan;
1648 : }
1649 :
1650 : /*
1651 : * create_project_set_plan
1652 : * Create a ProjectSet plan for 'best_path'.
1653 : *
1654 : * Returns a Plan node.
1655 : */
1656 : static ProjectSet *
1657 11716 : create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path)
1658 : {
1659 : ProjectSet *plan;
1660 : Plan *subplan;
1661 : List *tlist;
1662 :
1663 : /* Since we intend to project, we don't need to constrain child tlist */
1664 11716 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1665 :
1666 11716 : tlist = build_path_tlist(root, &best_path->path);
1667 :
1668 11716 : plan = make_project_set(tlist, subplan);
1669 :
1670 11716 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1671 :
1672 11716 : return plan;
1673 : }
1674 :
1675 : /*
1676 : * create_material_plan
1677 : * Create a Material plan for 'best_path' and (recursively) plans
1678 : * for its subpaths.
1679 : *
1680 : * Returns a Plan node.
1681 : */
1682 : static Material *
1683 4300 : create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags)
1684 : {
1685 : Material *plan;
1686 : Plan *subplan;
1687 :
1688 : /*
1689 : * We don't want any excess columns in the materialized tuples, so request
1690 : * a smaller tlist. Otherwise, since Material doesn't project, tlist
1691 : * requirements pass through.
1692 : */
1693 4300 : subplan = create_plan_recurse(root, best_path->subpath,
1694 : flags | CP_SMALL_TLIST);
1695 :
1696 4300 : plan = make_material(subplan);
1697 :
1698 4300 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1699 :
1700 4300 : return plan;
1701 : }
1702 :
1703 : /*
1704 : * create_memoize_plan
1705 : * Create a Memoize plan for 'best_path' and (recursively) plans for its
1706 : * subpaths.
1707 : *
1708 : * Returns a Plan node.
1709 : */
1710 : static Memoize *
1711 1988 : create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags)
1712 : {
1713 : Memoize *plan;
1714 : Bitmapset *keyparamids;
1715 : Plan *subplan;
1716 : Oid *operators;
1717 : Oid *collations;
1718 1988 : List *param_exprs = NIL;
1719 : ListCell *lc;
1720 : ListCell *lc2;
1721 : int nkeys;
1722 : int i;
1723 :
1724 1988 : subplan = create_plan_recurse(root, best_path->subpath,
1725 : flags | CP_SMALL_TLIST);
1726 :
1727 1988 : param_exprs = (List *) replace_nestloop_params(root, (Node *)
1728 1988 : best_path->param_exprs);
1729 :
1730 1988 : nkeys = list_length(param_exprs);
1731 : Assert(nkeys > 0);
1732 1988 : operators = palloc(nkeys * sizeof(Oid));
1733 1988 : collations = palloc(nkeys * sizeof(Oid));
1734 :
1735 1988 : i = 0;
1736 4038 : forboth(lc, param_exprs, lc2, best_path->hash_operators)
1737 : {
1738 2050 : Expr *param_expr = (Expr *) lfirst(lc);
1739 2050 : Oid opno = lfirst_oid(lc2);
1740 :
1741 2050 : operators[i] = opno;
1742 2050 : collations[i] = exprCollation((Node *) param_expr);
1743 2050 : i++;
1744 : }
1745 :
1746 1988 : keyparamids = pull_paramids((Expr *) param_exprs);
1747 :
1748 1988 : plan = make_memoize(subplan, operators, collations, param_exprs,
1749 1988 : best_path->singlerow, best_path->binary_mode,
1750 : best_path->est_entries, keyparamids, best_path->est_calls,
1751 : best_path->est_unique_keys, best_path->est_hit_ratio);
1752 :
1753 1988 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1754 :
1755 1988 : return plan;
1756 : }
1757 :
1758 : /*
1759 : * create_gather_plan
1760 : *
1761 : * Create a Gather plan for 'best_path' and (recursively) plans
1762 : * for its subpaths.
1763 : */
1764 : static Gather *
1765 948 : create_gather_plan(PlannerInfo *root, GatherPath *best_path)
1766 : {
1767 : Gather *gather_plan;
1768 : Plan *subplan;
1769 : List *tlist;
1770 :
1771 : /*
1772 : * Push projection down to the child node. That way, the projection work
1773 : * is parallelized, and there can be no system columns in the result (they
1774 : * can't travel through a tuple queue because it uses MinimalTuple
1775 : * representation).
1776 : */
1777 948 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1778 :
1779 948 : tlist = build_path_tlist(root, &best_path->path);
1780 :
1781 948 : gather_plan = make_gather(tlist,
1782 : NIL,
1783 : best_path->num_workers,
1784 : assign_special_exec_param(root),
1785 948 : best_path->single_copy,
1786 : subplan);
1787 :
1788 948 : copy_generic_path_info(&gather_plan->plan, &best_path->path);
1789 :
1790 : /* use parallel mode for parallel plans. */
1791 948 : root->glob->parallelModeNeeded = true;
1792 :
1793 948 : return gather_plan;
1794 : }
1795 :
1796 : /*
1797 : * create_gather_merge_plan
1798 : *
1799 : * Create a Gather Merge plan for 'best_path' and (recursively)
1800 : * plans for its subpaths.
1801 : */
1802 : static GatherMerge *
1803 354 : create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path)
1804 : {
1805 : GatherMerge *gm_plan;
1806 : Plan *subplan;
1807 354 : List *pathkeys = best_path->path.pathkeys;
1808 354 : List *tlist = build_path_tlist(root, &best_path->path);
1809 :
1810 : /* As with Gather, project away columns in the workers. */
1811 354 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1812 :
1813 : /* Create a shell for a GatherMerge plan. */
1814 354 : gm_plan = makeNode(GatherMerge);
1815 354 : gm_plan->plan.targetlist = tlist;
1816 354 : gm_plan->num_workers = best_path->num_workers;
1817 354 : copy_generic_path_info(&gm_plan->plan, &best_path->path);
1818 :
1819 : /* Assign the rescan Param. */
1820 354 : gm_plan->rescan_param = assign_special_exec_param(root);
1821 :
1822 : /* Gather Merge is pointless with no pathkeys; use Gather instead. */
1823 : Assert(pathkeys != NIL);
1824 :
1825 : /* Compute sort column info, and adjust subplan's tlist as needed */
1826 354 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1827 354 : best_path->subpath->parent->relids,
1828 354 : gm_plan->sortColIdx,
1829 : false,
1830 : &gm_plan->numCols,
1831 : &gm_plan->sortColIdx,
1832 : &gm_plan->sortOperators,
1833 : &gm_plan->collations,
1834 : &gm_plan->nullsFirst);
1835 :
1836 : /*
1837 : * All gather merge paths should have already guaranteed the necessary
1838 : * sort order. See create_gather_merge_path.
1839 : */
1840 : Assert(pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys));
1841 :
1842 : /* Now insert the subplan under GatherMerge. */
1843 354 : gm_plan->plan.lefttree = subplan;
1844 :
1845 : /* use parallel mode for parallel plans. */
1846 354 : root->glob->parallelModeNeeded = true;
1847 :
1848 354 : return gm_plan;
1849 : }
1850 :
1851 : /*
1852 : * create_projection_plan
1853 : *
1854 : * Create a plan tree to do a projection step and (recursively) plans
1855 : * for its subpaths. We may need a Result node for the projection,
1856 : * but sometimes we can just let the subplan do the work.
1857 : */
1858 : static Plan *
1859 345894 : create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags)
1860 : {
1861 : Plan *plan;
1862 : Plan *subplan;
1863 : List *tlist;
1864 345894 : bool needs_result_node = false;
1865 :
1866 : /*
1867 : * Convert our subpath to a Plan and determine whether we need a Result
1868 : * node.
1869 : *
1870 : * In most cases where we don't need to project, create_projection_path
1871 : * will have set dummypp, but not always. First, some createplan.c
1872 : * routines change the tlists of their nodes. (An example is that
1873 : * create_merge_append_plan might add resjunk sort columns to a
1874 : * MergeAppend.) Second, create_projection_path has no way of knowing
1875 : * what path node will be placed on top of the projection path and
1876 : * therefore can't predict whether it will require an exact tlist. For
1877 : * both of these reasons, we have to recheck here.
1878 : */
1879 345894 : if (use_physical_tlist(root, &best_path->path, flags))
1880 : {
1881 : /*
1882 : * Our caller doesn't really care what tlist we return, so we don't
1883 : * actually need to project. However, we may still need to ensure
1884 : * proper sortgroupref labels, if the caller cares about those.
1885 : */
1886 1826 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1887 1826 : tlist = subplan->targetlist;
1888 1826 : if (flags & CP_LABEL_TLIST)
1889 1160 : apply_pathtarget_labeling_to_tlist(tlist,
1890 : best_path->path.pathtarget);
1891 : }
1892 344068 : else if (is_projection_capable_path(best_path->subpath))
1893 : {
1894 : /*
1895 : * Our caller requires that we return the exact tlist, but no separate
1896 : * result node is needed because the subpath is projection-capable.
1897 : * Tell create_plan_recurse that we're going to ignore the tlist it
1898 : * produces.
1899 : */
1900 342156 : subplan = create_plan_recurse(root, best_path->subpath,
1901 : CP_IGNORE_TLIST);
1902 : Assert(is_projection_capable_plan(subplan));
1903 342156 : tlist = build_path_tlist(root, &best_path->path);
1904 : }
1905 : else
1906 : {
1907 : /*
1908 : * It looks like we need a result node, unless by good fortune the
1909 : * requested tlist is exactly the one the child wants to produce.
1910 : */
1911 1912 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1912 1912 : tlist = build_path_tlist(root, &best_path->path);
1913 1912 : needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist);
1914 : }
1915 :
1916 : /*
1917 : * If we make a different decision about whether to include a Result node
1918 : * than create_projection_path did, we'll have made slightly wrong cost
1919 : * estimates; but label the plan with the cost estimates we actually used,
1920 : * not "corrected" ones. (XXX this could be cleaned up if we moved more
1921 : * of the sortcolumn setup logic into Path creation, but that would add
1922 : * expense to creating Paths we might end up not using.)
1923 : */
1924 345894 : if (!needs_result_node)
1925 : {
1926 : /* Don't need a separate Result, just assign tlist to subplan */
1927 344148 : plan = subplan;
1928 344148 : plan->targetlist = tlist;
1929 :
1930 : /* Label plan with the estimated costs we actually used */
1931 344148 : plan->startup_cost = best_path->path.startup_cost;
1932 344148 : plan->total_cost = best_path->path.total_cost;
1933 344148 : plan->plan_rows = best_path->path.rows;
1934 344148 : plan->plan_width = best_path->path.pathtarget->width;
1935 344148 : plan->parallel_safe = best_path->path.parallel_safe;
1936 : /* ... but don't change subplan's parallel_aware flag */
1937 : }
1938 : else
1939 : {
1940 1746 : plan = (Plan *) make_gating_result(tlist, NULL, subplan);
1941 :
1942 1746 : copy_generic_path_info(plan, (Path *) best_path);
1943 : }
1944 :
1945 345894 : return plan;
1946 : }
1947 :
1948 : /*
1949 : * inject_projection_plan
1950 : * Insert a Result node to do a projection step.
1951 : *
1952 : * This is used in a few places where we decide on-the-fly that we need a
1953 : * projection step as part of the tree generated for some Path node.
1954 : * We should try to get rid of this in favor of doing it more honestly.
1955 : *
1956 : * One reason it's ugly is we have to be told the right parallel_safe marking
1957 : * to apply (since the tlist might be unsafe even if the child plan is safe).
1958 : */
1959 : static Plan *
1960 34 : inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
1961 : {
1962 : Plan *plan;
1963 :
1964 34 : plan = (Plan *) make_gating_result(tlist, NULL, subplan);
1965 :
1966 : /*
1967 : * In principle, we should charge tlist eval cost plus cpu_per_tuple per
1968 : * row for the Result node. But the former has probably been factored in
1969 : * already and the latter was not accounted for during Path construction,
1970 : * so being formally correct might just make the EXPLAIN output look less
1971 : * consistent not more so. Hence, just copy the subplan's cost.
1972 : */
1973 34 : copy_plan_costsize(plan, subplan);
1974 34 : plan->parallel_safe = parallel_safe;
1975 :
1976 34 : return plan;
1977 : }
1978 :
1979 : /*
1980 : * change_plan_targetlist
1981 : * Externally available wrapper for inject_projection_plan.
1982 : *
1983 : * This is meant for use by FDW plan-generation functions, which might
1984 : * want to adjust the tlist computed by some subplan tree. In general,
1985 : * a Result node is needed to compute the new tlist, but we can optimize
1986 : * some cases.
1987 : *
1988 : * In most cases, tlist_parallel_safe can just be passed as the parallel_safe
1989 : * flag of the FDW's own Path node.
1990 : */
1991 : Plan *
1992 78 : change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe)
1993 : {
1994 : /*
1995 : * If the top plan node can't do projections and its existing target list
1996 : * isn't already what we need, we need to add a Result node to help it
1997 : * along.
1998 : */
1999 78 : if (!is_projection_capable_plan(subplan) &&
2000 14 : !tlist_same_exprs(tlist, subplan->targetlist))
2001 8 : subplan = inject_projection_plan(subplan, tlist,
2002 8 : subplan->parallel_safe &&
2003 : tlist_parallel_safe);
2004 : else
2005 : {
2006 : /* Else we can just replace the plan node's tlist */
2007 70 : subplan->targetlist = tlist;
2008 70 : subplan->parallel_safe &= tlist_parallel_safe;
2009 : }
2010 78 : return subplan;
2011 : }
2012 :
2013 : /*
2014 : * create_sort_plan
2015 : *
2016 : * Create a Sort plan for 'best_path' and (recursively) plans
2017 : * for its subpaths.
2018 : */
2019 : static Sort *
2020 69290 : create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags)
2021 : {
2022 : Sort *plan;
2023 : Plan *subplan;
2024 :
2025 : /*
2026 : * We don't want any excess columns in the sorted tuples, so request a
2027 : * smaller tlist. Otherwise, since Sort doesn't project, tlist
2028 : * requirements pass through.
2029 : */
2030 69290 : subplan = create_plan_recurse(root, best_path->subpath,
2031 : flags | CP_SMALL_TLIST);
2032 :
2033 : /*
2034 : * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr,
2035 : * which will ignore any child EC members that don't belong to the given
2036 : * relids. Thus, if this sort path is based on a child relation, we must
2037 : * pass its relids.
2038 : */
2039 69290 : plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys,
2040 69290 : IS_OTHER_REL(best_path->subpath->parent) ?
2041 426 : best_path->path.parent->relids : NULL);
2042 :
2043 69290 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2044 :
2045 69290 : return plan;
2046 : }
2047 :
2048 : /*
2049 : * create_incrementalsort_plan
2050 : *
2051 : * Do the same as create_sort_plan, but create IncrementalSort plan.
2052 : */
2053 : static IncrementalSort *
2054 1006 : create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path,
2055 : int flags)
2056 : {
2057 : IncrementalSort *plan;
2058 : Plan *subplan;
2059 :
2060 : /* See comments in create_sort_plan() above */
2061 1006 : subplan = create_plan_recurse(root, best_path->spath.subpath,
2062 : flags | CP_SMALL_TLIST);
2063 1006 : plan = make_incrementalsort_from_pathkeys(subplan,
2064 : best_path->spath.path.pathkeys,
2065 1006 : IS_OTHER_REL(best_path->spath.subpath->parent) ?
2066 36 : best_path->spath.path.parent->relids : NULL,
2067 : best_path->nPresortedCols);
2068 :
2069 1006 : copy_generic_path_info(&plan->sort.plan, (Path *) best_path);
2070 :
2071 1006 : return plan;
2072 : }
2073 :
2074 : /*
2075 : * create_group_plan
2076 : *
2077 : * Create a Group plan for 'best_path' and (recursively) plans
2078 : * for its subpaths.
2079 : */
2080 : static Group *
2081 246 : create_group_plan(PlannerInfo *root, GroupPath *best_path)
2082 : {
2083 : Group *plan;
2084 : Plan *subplan;
2085 : List *tlist;
2086 : List *quals;
2087 :
2088 : /*
2089 : * Group can project, so no need to be terribly picky about child tlist,
2090 : * but we do need grouping columns to be available
2091 : */
2092 246 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2093 :
2094 246 : tlist = build_path_tlist(root, &best_path->path);
2095 :
2096 246 : quals = order_qual_clauses(root, best_path->qual);
2097 :
2098 492 : plan = make_group(tlist,
2099 : quals,
2100 246 : list_length(best_path->groupClause),
2101 : extract_grouping_cols(best_path->groupClause,
2102 : subplan->targetlist),
2103 : extract_grouping_ops(best_path->groupClause),
2104 : extract_grouping_collations(best_path->groupClause,
2105 : subplan->targetlist),
2106 : subplan);
2107 :
2108 246 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2109 :
2110 246 : return plan;
2111 : }
2112 :
2113 : /*
2114 : * create_unique_plan
2115 : *
2116 : * Create a Unique plan for 'best_path' and (recursively) plans
2117 : * for its subpaths.
2118 : */
2119 : static Unique *
2120 5694 : create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags)
2121 : {
2122 : Unique *plan;
2123 : Plan *subplan;
2124 :
2125 : /*
2126 : * Unique doesn't project, so tlist requirements pass through; moreover we
2127 : * need grouping columns to be labeled.
2128 : */
2129 5694 : subplan = create_plan_recurse(root, best_path->subpath,
2130 : flags | CP_LABEL_TLIST);
2131 :
2132 : /*
2133 : * make_unique_from_pathkeys calls find_ec_member_matching_expr, which
2134 : * will ignore any child EC members that don't belong to the given relids.
2135 : * Thus, if this unique path is based on a child relation, we must pass
2136 : * its relids.
2137 : */
2138 5694 : plan = make_unique_from_pathkeys(subplan,
2139 : best_path->path.pathkeys,
2140 : best_path->numkeys,
2141 5694 : IS_OTHER_REL(best_path->path.parent) ?
2142 90 : best_path->path.parent->relids : NULL);
2143 :
2144 5694 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2145 :
2146 5694 : return plan;
2147 : }
2148 :
2149 : /*
2150 : * create_agg_plan
2151 : *
2152 : * Create an Agg plan for 'best_path' and (recursively) plans
2153 : * for its subpaths.
2154 : */
2155 : static Agg *
2156 41656 : create_agg_plan(PlannerInfo *root, AggPath *best_path)
2157 : {
2158 : Agg *plan;
2159 : Plan *subplan;
2160 : List *tlist;
2161 : List *quals;
2162 :
2163 : /*
2164 : * Agg can project, so no need to be terribly picky about child tlist, but
2165 : * we do need grouping columns to be available
2166 : */
2167 41656 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2168 :
2169 41656 : tlist = build_path_tlist(root, &best_path->path);
2170 :
2171 41656 : quals = order_qual_clauses(root, best_path->qual);
2172 :
2173 83312 : plan = make_agg(tlist, quals,
2174 : best_path->aggstrategy,
2175 : best_path->aggsplit,
2176 41656 : list_length(best_path->groupClause),
2177 : extract_grouping_cols(best_path->groupClause,
2178 : subplan->targetlist),
2179 : extract_grouping_ops(best_path->groupClause),
2180 : extract_grouping_collations(best_path->groupClause,
2181 : subplan->targetlist),
2182 : NIL,
2183 : NIL,
2184 : best_path->numGroups,
2185 : best_path->transitionSpace,
2186 : subplan);
2187 :
2188 41656 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2189 :
2190 41656 : return plan;
2191 : }
2192 :
2193 : /*
2194 : * Given a groupclause for a collection of grouping sets, produce the
2195 : * corresponding groupColIdx.
2196 : *
2197 : * root->grouping_map maps the tleSortGroupRef to the actual column position in
2198 : * the input tuple. So we get the ref from the entries in the groupclause and
2199 : * look them up there.
2200 : */
2201 : static AttrNumber *
2202 1852 : remap_groupColIdx(PlannerInfo *root, List *groupClause)
2203 : {
2204 1852 : AttrNumber *grouping_map = root->grouping_map;
2205 : AttrNumber *new_grpColIdx;
2206 : ListCell *lc;
2207 : int i;
2208 :
2209 : Assert(grouping_map);
2210 :
2211 1852 : new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));
2212 :
2213 1852 : i = 0;
2214 4310 : foreach(lc, groupClause)
2215 : {
2216 2458 : SortGroupClause *clause = lfirst(lc);
2217 :
2218 2458 : new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
2219 : }
2220 :
2221 1852 : return new_grpColIdx;
2222 : }
2223 :
2224 : /*
2225 : * create_groupingsets_plan
2226 : * Create a plan for 'best_path' and (recursively) plans
2227 : * for its subpaths.
2228 : *
2229 : * What we emit is an Agg plan with some vestigial Agg and Sort nodes
2230 : * hanging off the side. The top Agg implements the last grouping set
2231 : * specified in the GroupingSetsPath, and any additional grouping sets
2232 : * each give rise to a subsidiary Agg and Sort node in the top Agg's
2233 : * "chain" list. These nodes don't participate in the plan directly,
2234 : * but they are a convenient way to represent the required data for
2235 : * the extra steps.
2236 : *
2237 : * Returns a Plan node.
2238 : */
2239 : static Plan *
2240 866 : create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path)
2241 : {
2242 : Agg *plan;
2243 : Plan *subplan;
2244 866 : List *rollups = best_path->rollups;
2245 : AttrNumber *grouping_map;
2246 : int maxref;
2247 : List *chain;
2248 : ListCell *lc;
2249 :
2250 : /* Shouldn't get here without grouping sets */
2251 : Assert(root->parse->groupingSets);
2252 : Assert(rollups != NIL);
2253 :
2254 : /*
2255 : * Agg can project, so no need to be terribly picky about child tlist, but
2256 : * we do need grouping columns to be available
2257 : */
2258 866 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2259 :
2260 : /*
2261 : * Compute the mapping from tleSortGroupRef to column index in the child's
2262 : * tlist. First, identify max SortGroupRef in groupClause, for array
2263 : * sizing.
2264 : */
2265 866 : maxref = 0;
2266 2690 : foreach(lc, root->processed_groupClause)
2267 : {
2268 1824 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2269 :
2270 1824 : if (gc->tleSortGroupRef > maxref)
2271 1788 : maxref = gc->tleSortGroupRef;
2272 : }
2273 :
2274 866 : grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber));
2275 :
2276 : /* Now look up the column numbers in the child's tlist */
2277 2690 : foreach(lc, root->processed_groupClause)
2278 : {
2279 1824 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2280 1824 : TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist);
2281 :
2282 1824 : grouping_map[gc->tleSortGroupRef] = tle->resno;
2283 : }
2284 :
2285 : /*
2286 : * During setrefs.c, we'll need the grouping_map to fix up the cols lists
2287 : * in GroupingFunc nodes. Save it for setrefs.c to use.
2288 : */
2289 : Assert(root->grouping_map == NULL);
2290 866 : root->grouping_map = grouping_map;
2291 :
2292 : /*
2293 : * Generate the side nodes that describe the other sort and group
2294 : * operations besides the top one. Note that we don't worry about putting
2295 : * accurate cost estimates in the side nodes; only the topmost Agg node's
2296 : * costs will be shown by EXPLAIN.
2297 : */
2298 866 : chain = NIL;
2299 866 : if (list_length(rollups) > 1)
2300 : {
2301 584 : bool is_first_sort = ((RollupData *) linitial(rollups))->is_hashed;
2302 :
2303 1570 : for_each_from(lc, rollups, 1)
2304 : {
2305 986 : RollupData *rollup = lfirst(lc);
2306 : AttrNumber *new_grpColIdx;
2307 986 : Plan *sort_plan = NULL;
2308 : Plan *agg_plan;
2309 : AggStrategy strat;
2310 :
2311 986 : new_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2312 :
2313 986 : if (!rollup->is_hashed && !is_first_sort)
2314 : {
2315 : sort_plan = (Plan *)
2316 240 : make_sort_from_groupcols(rollup->groupClause,
2317 : new_grpColIdx,
2318 : subplan);
2319 : }
2320 :
2321 986 : if (!rollup->is_hashed)
2322 472 : is_first_sort = false;
2323 :
2324 986 : if (rollup->is_hashed)
2325 514 : strat = AGG_HASHED;
2326 472 : else if (linitial(rollup->gsets) == NIL)
2327 170 : strat = AGG_PLAIN;
2328 : else
2329 302 : strat = AGG_SORTED;
2330 :
2331 1972 : agg_plan = (Plan *) make_agg(NIL,
2332 : NIL,
2333 : strat,
2334 : AGGSPLIT_SIMPLE,
2335 986 : list_length((List *) linitial(rollup->gsets)),
2336 : new_grpColIdx,
2337 : extract_grouping_ops(rollup->groupClause),
2338 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2339 : rollup->gsets,
2340 : NIL,
2341 : rollup->numGroups,
2342 : best_path->transitionSpace,
2343 : sort_plan);
2344 :
2345 : /*
2346 : * Remove stuff we don't need to avoid bloating debug output.
2347 : */
2348 986 : if (sort_plan)
2349 : {
2350 240 : sort_plan->targetlist = NIL;
2351 240 : sort_plan->lefttree = NULL;
2352 : }
2353 :
2354 986 : chain = lappend(chain, agg_plan);
2355 : }
2356 : }
2357 :
2358 : /*
2359 : * Now make the real Agg node
2360 : */
2361 : {
2362 866 : RollupData *rollup = linitial(rollups);
2363 : AttrNumber *top_grpColIdx;
2364 : int numGroupCols;
2365 :
2366 866 : top_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2367 :
2368 866 : numGroupCols = list_length((List *) linitial(rollup->gsets));
2369 :
2370 866 : plan = make_agg(build_path_tlist(root, &best_path->path),
2371 : best_path->qual,
2372 : best_path->aggstrategy,
2373 : AGGSPLIT_SIMPLE,
2374 : numGroupCols,
2375 : top_grpColIdx,
2376 : extract_grouping_ops(rollup->groupClause),
2377 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2378 : rollup->gsets,
2379 : chain,
2380 : rollup->numGroups,
2381 : best_path->transitionSpace,
2382 : subplan);
2383 :
2384 : /* Copy cost data from Path to Plan */
2385 866 : copy_generic_path_info(&plan->plan, &best_path->path);
2386 : }
2387 :
2388 866 : return (Plan *) plan;
2389 : }
2390 :
2391 : /*
2392 : * create_minmaxagg_plan
2393 : *
2394 : * Create a Result plan for 'best_path' and (recursively) plans
2395 : * for its subpaths.
2396 : */
2397 : static Result *
2398 364 : create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path)
2399 : {
2400 : Result *plan;
2401 : List *tlist;
2402 : ListCell *lc;
2403 :
2404 : /* Prepare an InitPlan for each aggregate's subquery. */
2405 764 : foreach(lc, best_path->mmaggregates)
2406 : {
2407 400 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
2408 400 : PlannerInfo *subroot = mminfo->subroot;
2409 400 : Query *subparse = subroot->parse;
2410 : Plan *plan;
2411 :
2412 : /*
2413 : * Generate the plan for the subquery. We already have a Path, but we
2414 : * have to convert it to a Plan and attach a LIMIT node above it.
2415 : * Since we are entering a different planner context (subroot),
2416 : * recurse to create_plan not create_plan_recurse.
2417 : */
2418 400 : plan = create_plan(subroot, mminfo->path);
2419 :
2420 400 : plan = (Plan *) make_limit(plan,
2421 : subparse->limitOffset,
2422 : subparse->limitCount,
2423 : subparse->limitOption,
2424 : 0, NULL, NULL, NULL);
2425 :
2426 : /* Must apply correct cost/width data to Limit node */
2427 400 : plan->disabled_nodes = mminfo->path->disabled_nodes;
2428 400 : plan->startup_cost = mminfo->path->startup_cost;
2429 400 : plan->total_cost = mminfo->pathcost;
2430 400 : plan->plan_rows = 1;
2431 400 : plan->plan_width = mminfo->path->pathtarget->width;
2432 400 : plan->parallel_aware = false;
2433 400 : plan->parallel_safe = mminfo->path->parallel_safe;
2434 :
2435 : /* Convert the plan into an InitPlan in the outer query. */
2436 400 : SS_make_initplan_from_plan(root, subroot, plan, mminfo->param);
2437 : }
2438 :
2439 : /* Generate the output plan --- basically just a Result */
2440 364 : tlist = build_path_tlist(root, &best_path->path);
2441 :
2442 364 : plan = make_one_row_result(tlist, (Node *) best_path->quals,
2443 : best_path->path.parent);
2444 364 : plan->result_type = RESULT_TYPE_MINMAX;
2445 :
2446 364 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2447 :
2448 : /*
2449 : * During setrefs.c, we'll need to replace references to the Agg nodes
2450 : * with InitPlan output params. (We can't just do that locally in the
2451 : * MinMaxAgg node, because path nodes above here may have Agg references
2452 : * as well.) Save the mmaggregates list to tell setrefs.c to do that.
2453 : */
2454 : Assert(root->minmax_aggs == NIL);
2455 364 : root->minmax_aggs = best_path->mmaggregates;
2456 :
2457 364 : return plan;
2458 : }
2459 :
2460 : /*
2461 : * create_windowagg_plan
2462 : *
2463 : * Create a WindowAgg plan for 'best_path' and (recursively) plans
2464 : * for its subpaths.
2465 : */
2466 : static WindowAgg *
2467 2750 : create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path)
2468 : {
2469 : WindowAgg *plan;
2470 2750 : WindowClause *wc = best_path->winclause;
2471 2750 : int numPart = list_length(wc->partitionClause);
2472 2750 : int numOrder = list_length(wc->orderClause);
2473 : Plan *subplan;
2474 : List *tlist;
2475 : int partNumCols;
2476 : AttrNumber *partColIdx;
2477 : Oid *partOperators;
2478 : Oid *partCollations;
2479 : int ordNumCols;
2480 : AttrNumber *ordColIdx;
2481 : Oid *ordOperators;
2482 : Oid *ordCollations;
2483 : ListCell *lc;
2484 :
2485 : /*
2486 : * Choice of tlist here is motivated by the fact that WindowAgg will be
2487 : * storing the input rows of window frames in a tuplestore; it therefore
2488 : * behooves us to request a small tlist to avoid wasting space. We do of
2489 : * course need grouping columns to be available.
2490 : */
2491 2750 : subplan = create_plan_recurse(root, best_path->subpath,
2492 : CP_LABEL_TLIST | CP_SMALL_TLIST);
2493 :
2494 2750 : tlist = build_path_tlist(root, &best_path->path);
2495 :
2496 : /*
2497 : * Convert SortGroupClause lists into arrays of attr indexes and equality
2498 : * operators, as wanted by executor.
2499 : */
2500 2750 : partColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numPart);
2501 2750 : partOperators = (Oid *) palloc(sizeof(Oid) * numPart);
2502 2750 : partCollations = (Oid *) palloc(sizeof(Oid) * numPart);
2503 :
2504 2750 : partNumCols = 0;
2505 3494 : foreach(lc, wc->partitionClause)
2506 : {
2507 744 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2508 744 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2509 :
2510 : Assert(OidIsValid(sgc->eqop));
2511 744 : partColIdx[partNumCols] = tle->resno;
2512 744 : partOperators[partNumCols] = sgc->eqop;
2513 744 : partCollations[partNumCols] = exprCollation((Node *) tle->expr);
2514 744 : partNumCols++;
2515 : }
2516 :
2517 2750 : ordColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numOrder);
2518 2750 : ordOperators = (Oid *) palloc(sizeof(Oid) * numOrder);
2519 2750 : ordCollations = (Oid *) palloc(sizeof(Oid) * numOrder);
2520 :
2521 2750 : ordNumCols = 0;
2522 5010 : foreach(lc, wc->orderClause)
2523 : {
2524 2260 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2525 2260 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2526 :
2527 : Assert(OidIsValid(sgc->eqop));
2528 2260 : ordColIdx[ordNumCols] = tle->resno;
2529 2260 : ordOperators[ordNumCols] = sgc->eqop;
2530 2260 : ordCollations[ordNumCols] = exprCollation((Node *) tle->expr);
2531 2260 : ordNumCols++;
2532 : }
2533 :
2534 : /* And finally we can make the WindowAgg node */
2535 2750 : plan = make_windowagg(tlist,
2536 : wc,
2537 : partNumCols,
2538 : partColIdx,
2539 : partOperators,
2540 : partCollations,
2541 : ordNumCols,
2542 : ordColIdx,
2543 : ordOperators,
2544 : ordCollations,
2545 : best_path->runCondition,
2546 : best_path->qual,
2547 2750 : best_path->topwindow,
2548 : subplan);
2549 :
2550 2750 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2551 :
2552 2750 : return plan;
2553 : }
2554 :
2555 : /*
2556 : * create_setop_plan
2557 : *
2558 : * Create a SetOp plan for 'best_path' and (recursively) plans
2559 : * for its subpaths.
2560 : */
2561 : static SetOp *
2562 662 : create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags)
2563 : {
2564 : SetOp *plan;
2565 662 : List *tlist = build_path_tlist(root, &best_path->path);
2566 : Plan *leftplan;
2567 : Plan *rightplan;
2568 : long numGroups;
2569 :
2570 : /*
2571 : * SetOp doesn't project, so tlist requirements pass through; moreover we
2572 : * need grouping columns to be labeled.
2573 : */
2574 662 : leftplan = create_plan_recurse(root, best_path->leftpath,
2575 : flags | CP_LABEL_TLIST);
2576 662 : rightplan = create_plan_recurse(root, best_path->rightpath,
2577 : flags | CP_LABEL_TLIST);
2578 :
2579 : /* Convert numGroups to long int --- but 'ware overflow! */
2580 662 : numGroups = clamp_cardinality_to_long(best_path->numGroups);
2581 :
2582 662 : plan = make_setop(best_path->cmd,
2583 : best_path->strategy,
2584 : tlist,
2585 : leftplan,
2586 : rightplan,
2587 : best_path->groupList,
2588 : numGroups);
2589 :
2590 662 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2591 :
2592 662 : return plan;
2593 : }
2594 :
2595 : /*
2596 : * create_recursiveunion_plan
2597 : *
2598 : * Create a RecursiveUnion plan for 'best_path' and (recursively) plans
2599 : * for its subpaths.
2600 : */
2601 : static RecursiveUnion *
2602 926 : create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path)
2603 : {
2604 : RecursiveUnion *plan;
2605 : Plan *leftplan;
2606 : Plan *rightplan;
2607 : List *tlist;
2608 : long numGroups;
2609 :
2610 : /* Need both children to produce same tlist, so force it */
2611 926 : leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST);
2612 926 : rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST);
2613 :
2614 926 : tlist = build_path_tlist(root, &best_path->path);
2615 :
2616 : /* Convert numGroups to long int --- but 'ware overflow! */
2617 926 : numGroups = clamp_cardinality_to_long(best_path->numGroups);
2618 :
2619 926 : plan = make_recursive_union(tlist,
2620 : leftplan,
2621 : rightplan,
2622 : best_path->wtParam,
2623 : best_path->distinctList,
2624 : numGroups);
2625 :
2626 926 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2627 :
2628 926 : return plan;
2629 : }
2630 :
2631 : /*
2632 : * create_lockrows_plan
2633 : *
2634 : * Create a LockRows plan for 'best_path' and (recursively) plans
2635 : * for its subpaths.
2636 : */
2637 : static LockRows *
2638 7804 : create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
2639 : int flags)
2640 : {
2641 : LockRows *plan;
2642 : Plan *subplan;
2643 :
2644 : /* LockRows doesn't project, so tlist requirements pass through */
2645 7804 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2646 :
2647 7804 : plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam);
2648 :
2649 7804 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2650 :
2651 7804 : return plan;
2652 : }
2653 :
2654 : /*
2655 : * create_modifytable_plan
2656 : * Create a ModifyTable plan for 'best_path'.
2657 : *
2658 : * Returns a Plan node.
2659 : */
2660 : static ModifyTable *
2661 93200 : create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path)
2662 : {
2663 : ModifyTable *plan;
2664 93200 : Path *subpath = best_path->subpath;
2665 : Plan *subplan;
2666 :
2667 : /* Subplan must produce exactly the specified tlist */
2668 93200 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
2669 :
2670 : /* Transfer resname/resjunk labeling, too, to keep executor happy */
2671 93200 : apply_tlist_labeling(subplan->targetlist, root->processed_tlist);
2672 :
2673 93200 : plan = make_modifytable(root,
2674 : subplan,
2675 : best_path->operation,
2676 93200 : best_path->canSetTag,
2677 : best_path->nominalRelation,
2678 : best_path->rootRelation,
2679 93200 : best_path->partColsUpdated,
2680 : best_path->resultRelations,
2681 : best_path->updateColnosLists,
2682 : best_path->withCheckOptionLists,
2683 : best_path->returningLists,
2684 : best_path->rowMarks,
2685 : best_path->onconflict,
2686 : best_path->mergeActionLists,
2687 : best_path->mergeJoinConditions,
2688 : best_path->epqParam);
2689 :
2690 92804 : copy_generic_path_info(&plan->plan, &best_path->path);
2691 :
2692 92804 : return plan;
2693 : }
2694 :
2695 : /*
2696 : * create_limit_plan
2697 : *
2698 : * Create a Limit plan for 'best_path' and (recursively) plans
2699 : * for its subpaths.
2700 : */
2701 : static Limit *
2702 4414 : create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags)
2703 : {
2704 : Limit *plan;
2705 : Plan *subplan;
2706 4414 : int numUniqkeys = 0;
2707 4414 : AttrNumber *uniqColIdx = NULL;
2708 4414 : Oid *uniqOperators = NULL;
2709 4414 : Oid *uniqCollations = NULL;
2710 :
2711 : /* Limit doesn't project, so tlist requirements pass through */
2712 4414 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2713 :
2714 : /* Extract information necessary for comparing rows for WITH TIES. */
2715 4414 : if (best_path->limitOption == LIMIT_OPTION_WITH_TIES)
2716 : {
2717 30 : Query *parse = root->parse;
2718 : ListCell *l;
2719 :
2720 30 : numUniqkeys = list_length(parse->sortClause);
2721 30 : uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber));
2722 30 : uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2723 30 : uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2724 :
2725 30 : numUniqkeys = 0;
2726 60 : foreach(l, parse->sortClause)
2727 : {
2728 30 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
2729 30 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList);
2730 :
2731 30 : uniqColIdx[numUniqkeys] = tle->resno;
2732 30 : uniqOperators[numUniqkeys] = sortcl->eqop;
2733 30 : uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr);
2734 30 : numUniqkeys++;
2735 : }
2736 : }
2737 :
2738 4414 : plan = make_limit(subplan,
2739 : best_path->limitOffset,
2740 : best_path->limitCount,
2741 : best_path->limitOption,
2742 : numUniqkeys, uniqColIdx, uniqOperators, uniqCollations);
2743 :
2744 4414 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2745 :
2746 4414 : return plan;
2747 : }
2748 :
2749 :
2750 : /*****************************************************************************
2751 : *
2752 : * BASE-RELATION SCAN METHODS
2753 : *
2754 : *****************************************************************************/
2755 :
2756 :
2757 : /*
2758 : * create_seqscan_plan
2759 : * Returns a seqscan plan for the base relation scanned by 'best_path'
2760 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2761 : */
2762 : static SeqScan *
2763 219488 : create_seqscan_plan(PlannerInfo *root, Path *best_path,
2764 : List *tlist, List *scan_clauses)
2765 : {
2766 : SeqScan *scan_plan;
2767 219488 : Index scan_relid = best_path->parent->relid;
2768 :
2769 : /* it should be a base rel... */
2770 : Assert(scan_relid > 0);
2771 : Assert(best_path->parent->rtekind == RTE_RELATION);
2772 :
2773 : /* Sort clauses into best execution order */
2774 219488 : scan_clauses = order_qual_clauses(root, scan_clauses);
2775 :
2776 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2777 219488 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2778 :
2779 : /* Replace any outer-relation variables with nestloop params */
2780 219488 : if (best_path->param_info)
2781 : {
2782 : scan_clauses = (List *)
2783 474 : replace_nestloop_params(root, (Node *) scan_clauses);
2784 : }
2785 :
2786 219488 : scan_plan = make_seqscan(tlist,
2787 : scan_clauses,
2788 : scan_relid);
2789 :
2790 219488 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2791 :
2792 219488 : return scan_plan;
2793 : }
2794 :
2795 : /*
2796 : * create_samplescan_plan
2797 : * Returns a samplescan plan for the base relation scanned by 'best_path'
2798 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2799 : */
2800 : static SampleScan *
2801 306 : create_samplescan_plan(PlannerInfo *root, Path *best_path,
2802 : List *tlist, List *scan_clauses)
2803 : {
2804 : SampleScan *scan_plan;
2805 306 : Index scan_relid = best_path->parent->relid;
2806 : RangeTblEntry *rte;
2807 : TableSampleClause *tsc;
2808 :
2809 : /* it should be a base rel with a tablesample clause... */
2810 : Assert(scan_relid > 0);
2811 306 : rte = planner_rt_fetch(scan_relid, root);
2812 : Assert(rte->rtekind == RTE_RELATION);
2813 306 : tsc = rte->tablesample;
2814 : Assert(tsc != NULL);
2815 :
2816 : /* Sort clauses into best execution order */
2817 306 : scan_clauses = order_qual_clauses(root, scan_clauses);
2818 :
2819 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2820 306 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2821 :
2822 : /* Replace any outer-relation variables with nestloop params */
2823 306 : if (best_path->param_info)
2824 : {
2825 : scan_clauses = (List *)
2826 72 : replace_nestloop_params(root, (Node *) scan_clauses);
2827 : tsc = (TableSampleClause *)
2828 72 : replace_nestloop_params(root, (Node *) tsc);
2829 : }
2830 :
2831 306 : scan_plan = make_samplescan(tlist,
2832 : scan_clauses,
2833 : scan_relid,
2834 : tsc);
2835 :
2836 306 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2837 :
2838 306 : return scan_plan;
2839 : }
2840 :
2841 : /*
2842 : * create_indexscan_plan
2843 : * Returns an indexscan plan for the base relation scanned by 'best_path'
2844 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2845 : *
2846 : * We use this for both plain IndexScans and IndexOnlyScans, because the
2847 : * qual preprocessing work is the same for both. Note that the caller tells
2848 : * us which to build --- we don't look at best_path->path.pathtype, because
2849 : * create_bitmap_subplan needs to be able to override the prior decision.
2850 : */
2851 : static Scan *
2852 180622 : create_indexscan_plan(PlannerInfo *root,
2853 : IndexPath *best_path,
2854 : List *tlist,
2855 : List *scan_clauses,
2856 : bool indexonly)
2857 : {
2858 : Scan *scan_plan;
2859 180622 : List *indexclauses = best_path->indexclauses;
2860 180622 : List *indexorderbys = best_path->indexorderbys;
2861 180622 : Index baserelid = best_path->path.parent->relid;
2862 180622 : IndexOptInfo *indexinfo = best_path->indexinfo;
2863 180622 : Oid indexoid = indexinfo->indexoid;
2864 : List *qpqual;
2865 : List *stripped_indexquals;
2866 : List *fixed_indexquals;
2867 : List *fixed_indexorderbys;
2868 180622 : List *indexorderbyops = NIL;
2869 : ListCell *l;
2870 :
2871 : /* it should be a base rel... */
2872 : Assert(baserelid > 0);
2873 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
2874 : /* check the scan direction is valid */
2875 : Assert(best_path->indexscandir == ForwardScanDirection ||
2876 : best_path->indexscandir == BackwardScanDirection);
2877 :
2878 : /*
2879 : * Extract the index qual expressions (stripped of RestrictInfos) from the
2880 : * IndexClauses list, and prepare a copy with index Vars substituted for
2881 : * table Vars. (This step also does replace_nestloop_params on the
2882 : * fixed_indexquals.)
2883 : */
2884 180622 : fix_indexqual_references(root, best_path,
2885 : &stripped_indexquals,
2886 : &fixed_indexquals);
2887 :
2888 : /*
2889 : * Likewise fix up index attr references in the ORDER BY expressions.
2890 : */
2891 180622 : fixed_indexorderbys = fix_indexorderby_references(root, best_path);
2892 :
2893 : /*
2894 : * The qpqual list must contain all restrictions not automatically handled
2895 : * by the index, other than pseudoconstant clauses which will be handled
2896 : * by a separate gating plan node. All the predicates in the indexquals
2897 : * will be checked (either by the index itself, or by nodeIndexscan.c),
2898 : * but if there are any "special" operators involved then they must be
2899 : * included in qpqual. The upshot is that qpqual must contain
2900 : * scan_clauses minus whatever appears in indexquals.
2901 : *
2902 : * is_redundant_with_indexclauses() detects cases where a scan clause is
2903 : * present in the indexclauses list or is generated from the same
2904 : * EquivalenceClass as some indexclause, and is therefore redundant with
2905 : * it, though not equal. (The latter happens when indxpath.c prefers a
2906 : * different derived equality than what generate_join_implied_equalities
2907 : * picked for a parameterized scan's ppi_clauses.) Note that it will not
2908 : * match to lossy index clauses, which is critical because we have to
2909 : * include the original clause in qpqual in that case.
2910 : *
2911 : * In some situations (particularly with OR'd index conditions) we may
2912 : * have scan_clauses that are not equal to, but are logically implied by,
2913 : * the index quals; so we also try a predicate_implied_by() check to see
2914 : * if we can discard quals that way. (predicate_implied_by assumes its
2915 : * first input contains only immutable functions, so we have to check
2916 : * that.)
2917 : *
2918 : * Note: if you change this bit of code you should also look at
2919 : * extract_nonindex_conditions() in costsize.c.
2920 : */
2921 180622 : qpqual = NIL;
2922 431492 : foreach(l, scan_clauses)
2923 : {
2924 250870 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
2925 :
2926 250870 : if (rinfo->pseudoconstant)
2927 1952 : continue; /* we may drop pseudoconstants here */
2928 248918 : if (is_redundant_with_indexclauses(rinfo, indexclauses))
2929 171884 : continue; /* dup or derived from same EquivalenceClass */
2930 152686 : if (!contain_mutable_functions((Node *) rinfo->clause) &&
2931 75652 : predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals,
2932 : false))
2933 186 : continue; /* provably implied by indexquals */
2934 76848 : qpqual = lappend(qpqual, rinfo);
2935 : }
2936 :
2937 : /* Sort clauses into best execution order */
2938 180622 : qpqual = order_qual_clauses(root, qpqual);
2939 :
2940 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2941 180622 : qpqual = extract_actual_clauses(qpqual, false);
2942 :
2943 : /*
2944 : * We have to replace any outer-relation variables with nestloop params in
2945 : * the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
2946 : * annoying to have to do this separately from the processing in
2947 : * fix_indexqual_references --- rethink this when generalizing the inner
2948 : * indexscan support. But note we can't really do this earlier because
2949 : * it'd break the comparisons to predicates above ... (or would it? Those
2950 : * wouldn't have outer refs)
2951 : */
2952 180622 : if (best_path->path.param_info)
2953 : {
2954 39872 : stripped_indexquals = (List *)
2955 39872 : replace_nestloop_params(root, (Node *) stripped_indexquals);
2956 : qpqual = (List *)
2957 39872 : replace_nestloop_params(root, (Node *) qpqual);
2958 : indexorderbys = (List *)
2959 39872 : replace_nestloop_params(root, (Node *) indexorderbys);
2960 : }
2961 :
2962 : /*
2963 : * If there are ORDER BY expressions, look up the sort operators for their
2964 : * result datatypes.
2965 : */
2966 180622 : if (indexorderbys)
2967 : {
2968 : ListCell *pathkeyCell,
2969 : *exprCell;
2970 :
2971 : /*
2972 : * PathKey contains OID of the btree opfamily we're sorting by, but
2973 : * that's not quite enough because we need the expression's datatype
2974 : * to look up the sort operator in the operator family.
2975 : */
2976 : Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
2977 766 : forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
2978 : {
2979 386 : PathKey *pathkey = (PathKey *) lfirst(pathkeyCell);
2980 386 : Node *expr = (Node *) lfirst(exprCell);
2981 386 : Oid exprtype = exprType(expr);
2982 : Oid sortop;
2983 :
2984 : /* Get sort operator from opfamily */
2985 386 : sortop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
2986 : exprtype,
2987 : exprtype,
2988 : pathkey->pk_cmptype);
2989 386 : if (!OidIsValid(sortop))
2990 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2991 : pathkey->pk_cmptype, exprtype, exprtype, pathkey->pk_opfamily);
2992 386 : indexorderbyops = lappend_oid(indexorderbyops, sortop);
2993 : }
2994 : }
2995 :
2996 : /*
2997 : * For an index-only scan, we must mark indextlist entries as resjunk if
2998 : * they are columns that the index AM can't return; this cues setrefs.c to
2999 : * not generate references to those columns.
3000 : */
3001 180622 : if (indexonly)
3002 : {
3003 18206 : int i = 0;
3004 :
3005 42736 : foreach(l, indexinfo->indextlist)
3006 : {
3007 24530 : TargetEntry *indextle = (TargetEntry *) lfirst(l);
3008 :
3009 24530 : indextle->resjunk = !indexinfo->canreturn[i];
3010 24530 : i++;
3011 : }
3012 : }
3013 :
3014 : /* Finally ready to build the plan node */
3015 180622 : if (indexonly)
3016 18206 : scan_plan = (Scan *) make_indexonlyscan(tlist,
3017 : qpqual,
3018 : baserelid,
3019 : indexoid,
3020 : fixed_indexquals,
3021 : stripped_indexquals,
3022 : fixed_indexorderbys,
3023 : indexinfo->indextlist,
3024 : best_path->indexscandir);
3025 : else
3026 162416 : scan_plan = (Scan *) make_indexscan(tlist,
3027 : qpqual,
3028 : baserelid,
3029 : indexoid,
3030 : fixed_indexquals,
3031 : stripped_indexquals,
3032 : fixed_indexorderbys,
3033 : indexorderbys,
3034 : indexorderbyops,
3035 : best_path->indexscandir);
3036 :
3037 180622 : copy_generic_path_info(&scan_plan->plan, &best_path->path);
3038 :
3039 180622 : return scan_plan;
3040 : }
3041 :
3042 : /*
3043 : * create_bitmap_scan_plan
3044 : * Returns a bitmap scan plan for the base relation scanned by 'best_path'
3045 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3046 : */
3047 : static BitmapHeapScan *
3048 21054 : create_bitmap_scan_plan(PlannerInfo *root,
3049 : BitmapHeapPath *best_path,
3050 : List *tlist,
3051 : List *scan_clauses)
3052 : {
3053 21054 : Index baserelid = best_path->path.parent->relid;
3054 : Plan *bitmapqualplan;
3055 : List *bitmapqualorig;
3056 : List *indexquals;
3057 : List *indexECs;
3058 : List *qpqual;
3059 : ListCell *l;
3060 : BitmapHeapScan *scan_plan;
3061 :
3062 : /* it should be a base rel... */
3063 : Assert(baserelid > 0);
3064 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3065 :
3066 : /* Process the bitmapqual tree into a Plan tree and qual lists */
3067 21054 : bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
3068 : &bitmapqualorig, &indexquals,
3069 : &indexECs);
3070 :
3071 21054 : if (best_path->path.parallel_aware)
3072 30 : bitmap_subplan_mark_shared(bitmapqualplan);
3073 :
3074 : /*
3075 : * The qpqual list must contain all restrictions not automatically handled
3076 : * by the index, other than pseudoconstant clauses which will be handled
3077 : * by a separate gating plan node. All the predicates in the indexquals
3078 : * will be checked (either by the index itself, or by
3079 : * nodeBitmapHeapscan.c), but if there are any "special" operators
3080 : * involved then they must be added to qpqual. The upshot is that qpqual
3081 : * must contain scan_clauses minus whatever appears in indexquals.
3082 : *
3083 : * This loop is similar to the comparable code in create_indexscan_plan(),
3084 : * but with some differences because it has to compare the scan clauses to
3085 : * stripped (no RestrictInfos) indexquals. See comments there for more
3086 : * info.
3087 : *
3088 : * In normal cases simple equal() checks will be enough to spot duplicate
3089 : * clauses, so we try that first. We next see if the scan clause is
3090 : * redundant with any top-level indexqual by virtue of being generated
3091 : * from the same EC. After that, try predicate_implied_by().
3092 : *
3093 : * Unlike create_indexscan_plan(), the predicate_implied_by() test here is
3094 : * useful for getting rid of qpquals that are implied by index predicates,
3095 : * because the predicate conditions are included in the "indexquals"
3096 : * returned by create_bitmap_subplan(). Bitmap scans have to do it that
3097 : * way because predicate conditions need to be rechecked if the scan
3098 : * becomes lossy, so they have to be included in bitmapqualorig.
3099 : */
3100 21054 : qpqual = NIL;
3101 49152 : foreach(l, scan_clauses)
3102 : {
3103 28098 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3104 28098 : Node *clause = (Node *) rinfo->clause;
3105 :
3106 28098 : if (rinfo->pseudoconstant)
3107 24 : continue; /* we may drop pseudoconstants here */
3108 28074 : if (list_member(indexquals, clause))
3109 21612 : continue; /* simple duplicate */
3110 6462 : if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
3111 18 : continue; /* derived from same EquivalenceClass */
3112 12666 : if (!contain_mutable_functions(clause) &&
3113 6222 : predicate_implied_by(list_make1(clause), indexquals, false))
3114 740 : continue; /* provably implied by indexquals */
3115 5704 : qpqual = lappend(qpqual, rinfo);
3116 : }
3117 :
3118 : /* Sort clauses into best execution order */
3119 21054 : qpqual = order_qual_clauses(root, qpqual);
3120 :
3121 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3122 21054 : qpqual = extract_actual_clauses(qpqual, false);
3123 :
3124 : /*
3125 : * When dealing with special operators, we will at this point have
3126 : * duplicate clauses in qpqual and bitmapqualorig. We may as well drop
3127 : * 'em from bitmapqualorig, since there's no point in making the tests
3128 : * twice.
3129 : */
3130 21054 : bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
3131 :
3132 : /*
3133 : * We have to replace any outer-relation variables with nestloop params in
3134 : * the qpqual and bitmapqualorig expressions. (This was already done for
3135 : * expressions attached to plan nodes in the bitmapqualplan tree.)
3136 : */
3137 21054 : if (best_path->path.param_info)
3138 : {
3139 : qpqual = (List *)
3140 746 : replace_nestloop_params(root, (Node *) qpqual);
3141 746 : bitmapqualorig = (List *)
3142 746 : replace_nestloop_params(root, (Node *) bitmapqualorig);
3143 : }
3144 :
3145 : /* Finally ready to build the plan node */
3146 21054 : scan_plan = make_bitmap_heapscan(tlist,
3147 : qpqual,
3148 : bitmapqualplan,
3149 : bitmapqualorig,
3150 : baserelid);
3151 :
3152 21054 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3153 :
3154 21054 : return scan_plan;
3155 : }
3156 :
3157 : /*
3158 : * Given a bitmapqual tree, generate the Plan tree that implements it
3159 : *
3160 : * As byproducts, we also return in *qual and *indexqual the qual lists
3161 : * (in implicit-AND form, without RestrictInfos) describing the original index
3162 : * conditions and the generated indexqual conditions. (These are the same in
3163 : * simple cases, but when special index operators are involved, the former
3164 : * list includes the special conditions while the latter includes the actual
3165 : * indexable conditions derived from them.) Both lists include partial-index
3166 : * predicates, because we have to recheck predicates as well as index
3167 : * conditions if the bitmap scan becomes lossy.
3168 : *
3169 : * In addition, we return a list of EquivalenceClass pointers for all the
3170 : * top-level indexquals that were possibly-redundantly derived from ECs.
3171 : * This allows removal of scan_clauses that are redundant with such quals.
3172 : * (We do not attempt to detect such redundancies for quals that are within
3173 : * OR subtrees. This could be done in a less hacky way if we returned the
3174 : * indexquals in RestrictInfo form, but that would be slower and still pretty
3175 : * messy, since we'd have to build new RestrictInfos in many cases.)
3176 : */
3177 : static Plan *
3178 22396 : create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
3179 : List **qual, List **indexqual, List **indexECs)
3180 : {
3181 : Plan *plan;
3182 :
3183 22396 : if (IsA(bitmapqual, BitmapAndPath))
3184 : {
3185 246 : BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
3186 246 : List *subplans = NIL;
3187 246 : List *subquals = NIL;
3188 246 : List *subindexquals = NIL;
3189 246 : List *subindexECs = NIL;
3190 : ListCell *l;
3191 :
3192 : /*
3193 : * There may well be redundant quals among the subplans, since a
3194 : * top-level WHERE qual might have gotten used to form several
3195 : * different index quals. We don't try exceedingly hard to eliminate
3196 : * redundancies, but we do eliminate obvious duplicates by using
3197 : * list_concat_unique.
3198 : */
3199 738 : foreach(l, apath->bitmapquals)
3200 : {
3201 : Plan *subplan;
3202 : List *subqual;
3203 : List *subindexqual;
3204 : List *subindexEC;
3205 :
3206 492 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3207 : &subqual, &subindexqual,
3208 : &subindexEC);
3209 492 : subplans = lappend(subplans, subplan);
3210 492 : subquals = list_concat_unique(subquals, subqual);
3211 492 : subindexquals = list_concat_unique(subindexquals, subindexqual);
3212 : /* Duplicates in indexECs aren't worth getting rid of */
3213 492 : subindexECs = list_concat(subindexECs, subindexEC);
3214 : }
3215 246 : plan = (Plan *) make_bitmap_and(subplans);
3216 246 : plan->startup_cost = apath->path.startup_cost;
3217 246 : plan->total_cost = apath->path.total_cost;
3218 246 : plan->plan_rows =
3219 246 : clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
3220 246 : plan->plan_width = 0; /* meaningless */
3221 246 : plan->parallel_aware = false;
3222 246 : plan->parallel_safe = apath->path.parallel_safe;
3223 246 : *qual = subquals;
3224 246 : *indexqual = subindexquals;
3225 246 : *indexECs = subindexECs;
3226 : }
3227 22150 : else if (IsA(bitmapqual, BitmapOrPath))
3228 : {
3229 422 : BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
3230 422 : List *subplans = NIL;
3231 422 : List *subquals = NIL;
3232 422 : List *subindexquals = NIL;
3233 422 : bool const_true_subqual = false;
3234 422 : bool const_true_subindexqual = false;
3235 : ListCell *l;
3236 :
3237 : /*
3238 : * Here, we only detect qual-free subplans. A qual-free subplan would
3239 : * cause us to generate "... OR true ..." which we may as well reduce
3240 : * to just "true". We do not try to eliminate redundant subclauses
3241 : * because (a) it's not as likely as in the AND case, and (b) we might
3242 : * well be working with hundreds or even thousands of OR conditions,
3243 : * perhaps from a long IN list. The performance of list_append_unique
3244 : * would be unacceptable.
3245 : */
3246 1272 : foreach(l, opath->bitmapquals)
3247 : {
3248 : Plan *subplan;
3249 : List *subqual;
3250 : List *subindexqual;
3251 : List *subindexEC;
3252 :
3253 850 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3254 : &subqual, &subindexqual,
3255 : &subindexEC);
3256 850 : subplans = lappend(subplans, subplan);
3257 850 : if (subqual == NIL)
3258 0 : const_true_subqual = true;
3259 850 : else if (!const_true_subqual)
3260 850 : subquals = lappend(subquals,
3261 850 : make_ands_explicit(subqual));
3262 850 : if (subindexqual == NIL)
3263 0 : const_true_subindexqual = true;
3264 850 : else if (!const_true_subindexqual)
3265 850 : subindexquals = lappend(subindexquals,
3266 850 : make_ands_explicit(subindexqual));
3267 : }
3268 :
3269 : /*
3270 : * In the presence of ScalarArrayOpExpr quals, we might have built
3271 : * BitmapOrPaths with just one subpath; don't add an OR step.
3272 : */
3273 422 : if (list_length(subplans) == 1)
3274 : {
3275 0 : plan = (Plan *) linitial(subplans);
3276 : }
3277 : else
3278 : {
3279 422 : plan = (Plan *) make_bitmap_or(subplans);
3280 422 : plan->startup_cost = opath->path.startup_cost;
3281 422 : plan->total_cost = opath->path.total_cost;
3282 422 : plan->plan_rows =
3283 422 : clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
3284 422 : plan->plan_width = 0; /* meaningless */
3285 422 : plan->parallel_aware = false;
3286 422 : plan->parallel_safe = opath->path.parallel_safe;
3287 : }
3288 :
3289 : /*
3290 : * If there were constant-TRUE subquals, the OR reduces to constant
3291 : * TRUE. Also, avoid generating one-element ORs, which could happen
3292 : * due to redundancy elimination or ScalarArrayOpExpr quals.
3293 : */
3294 422 : if (const_true_subqual)
3295 0 : *qual = NIL;
3296 422 : else if (list_length(subquals) <= 1)
3297 0 : *qual = subquals;
3298 : else
3299 422 : *qual = list_make1(make_orclause(subquals));
3300 422 : if (const_true_subindexqual)
3301 0 : *indexqual = NIL;
3302 422 : else if (list_length(subindexquals) <= 1)
3303 0 : *indexqual = subindexquals;
3304 : else
3305 422 : *indexqual = list_make1(make_orclause(subindexquals));
3306 422 : *indexECs = NIL;
3307 : }
3308 21728 : else if (IsA(bitmapqual, IndexPath))
3309 : {
3310 21728 : IndexPath *ipath = (IndexPath *) bitmapqual;
3311 : IndexScan *iscan;
3312 : List *subquals;
3313 : List *subindexquals;
3314 : List *subindexECs;
3315 : ListCell *l;
3316 :
3317 : /* Use the regular indexscan plan build machinery... */
3318 21728 : iscan = castNode(IndexScan,
3319 : create_indexscan_plan(root, ipath,
3320 : NIL, NIL, false));
3321 : /* then convert to a bitmap indexscan */
3322 21728 : plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
3323 : iscan->indexid,
3324 : iscan->indexqual,
3325 : iscan->indexqualorig);
3326 : /* and set its cost/width fields appropriately */
3327 21728 : plan->startup_cost = 0.0;
3328 21728 : plan->total_cost = ipath->indextotalcost;
3329 21728 : plan->plan_rows =
3330 21728 : clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
3331 21728 : plan->plan_width = 0; /* meaningless */
3332 21728 : plan->parallel_aware = false;
3333 21728 : plan->parallel_safe = ipath->path.parallel_safe;
3334 : /* Extract original index clauses, actual index quals, relevant ECs */
3335 21728 : subquals = NIL;
3336 21728 : subindexquals = NIL;
3337 21728 : subindexECs = NIL;
3338 44746 : foreach(l, ipath->indexclauses)
3339 : {
3340 23018 : IndexClause *iclause = (IndexClause *) lfirst(l);
3341 23018 : RestrictInfo *rinfo = iclause->rinfo;
3342 :
3343 : Assert(!rinfo->pseudoconstant);
3344 23018 : subquals = lappend(subquals, rinfo->clause);
3345 23018 : subindexquals = list_concat(subindexquals,
3346 23018 : get_actual_clauses(iclause->indexquals));
3347 23018 : if (rinfo->parent_ec)
3348 596 : subindexECs = lappend(subindexECs, rinfo->parent_ec);
3349 : }
3350 : /* We can add any index predicate conditions, too */
3351 21898 : foreach(l, ipath->indexinfo->indpred)
3352 : {
3353 170 : Expr *pred = (Expr *) lfirst(l);
3354 :
3355 : /*
3356 : * We know that the index predicate must have been implied by the
3357 : * query condition as a whole, but it may or may not be implied by
3358 : * the conditions that got pushed into the bitmapqual. Avoid
3359 : * generating redundant conditions.
3360 : */
3361 170 : if (!predicate_implied_by(list_make1(pred), subquals, false))
3362 : {
3363 140 : subquals = lappend(subquals, pred);
3364 140 : subindexquals = lappend(subindexquals, pred);
3365 : }
3366 : }
3367 21728 : *qual = subquals;
3368 21728 : *indexqual = subindexquals;
3369 21728 : *indexECs = subindexECs;
3370 : }
3371 : else
3372 : {
3373 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
3374 : plan = NULL; /* keep compiler quiet */
3375 : }
3376 :
3377 22396 : return plan;
3378 : }
3379 :
3380 : /*
3381 : * create_tidscan_plan
3382 : * Returns a tidscan plan for the base relation scanned by 'best_path'
3383 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3384 : */
3385 : static TidScan *
3386 752 : create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
3387 : List *tlist, List *scan_clauses)
3388 : {
3389 : TidScan *scan_plan;
3390 752 : Index scan_relid = best_path->path.parent->relid;
3391 752 : List *tidquals = best_path->tidquals;
3392 :
3393 : /* it should be a base rel... */
3394 : Assert(scan_relid > 0);
3395 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3396 :
3397 : /*
3398 : * The qpqual list must contain all restrictions not enforced by the
3399 : * tidquals list. Since tidquals has OR semantics, we have to be careful
3400 : * about matching it up to scan_clauses. It's convenient to handle the
3401 : * single-tidqual case separately from the multiple-tidqual case. In the
3402 : * single-tidqual case, we look through the scan_clauses while they are
3403 : * still in RestrictInfo form, and drop any that are redundant with the
3404 : * tidqual.
3405 : *
3406 : * In normal cases simple pointer equality checks will be enough to spot
3407 : * duplicate RestrictInfos, so we try that first.
3408 : *
3409 : * Another common case is that a scan_clauses entry is generated from the
3410 : * same EquivalenceClass as some tidqual, and is therefore redundant with
3411 : * it, though not equal.
3412 : *
3413 : * Unlike indexpaths, we don't bother with predicate_implied_by(); the
3414 : * number of cases where it could win are pretty small.
3415 : */
3416 752 : if (list_length(tidquals) == 1)
3417 : {
3418 726 : List *qpqual = NIL;
3419 : ListCell *l;
3420 :
3421 1536 : foreach(l, scan_clauses)
3422 : {
3423 810 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3424 :
3425 810 : if (rinfo->pseudoconstant)
3426 0 : continue; /* we may drop pseudoconstants here */
3427 810 : if (list_member_ptr(tidquals, rinfo))
3428 726 : continue; /* simple duplicate */
3429 84 : if (is_redundant_derived_clause(rinfo, tidquals))
3430 0 : continue; /* derived from same EquivalenceClass */
3431 84 : qpqual = lappend(qpqual, rinfo);
3432 : }
3433 726 : scan_clauses = qpqual;
3434 : }
3435 :
3436 : /* Sort clauses into best execution order */
3437 752 : scan_clauses = order_qual_clauses(root, scan_clauses);
3438 :
3439 : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3440 752 : tidquals = extract_actual_clauses(tidquals, false);
3441 752 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3442 :
3443 : /*
3444 : * If we have multiple tidquals, it's more convenient to remove duplicate
3445 : * scan_clauses after stripping the RestrictInfos. In this situation,
3446 : * because the tidquals represent OR sub-clauses, they could not have come
3447 : * from EquivalenceClasses so we don't have to worry about matching up
3448 : * non-identical clauses. On the other hand, because tidpath.c will have
3449 : * extracted those sub-clauses from some OR clause and built its own list,
3450 : * we will certainly not have pointer equality to any scan clause. So
3451 : * convert the tidquals list to an explicit OR clause and see if we can
3452 : * match it via equal() to any scan clause.
3453 : */
3454 752 : if (list_length(tidquals) > 1)
3455 26 : scan_clauses = list_difference(scan_clauses,
3456 26 : list_make1(make_orclause(tidquals)));
3457 :
3458 : /* Replace any outer-relation variables with nestloop params */
3459 752 : if (best_path->path.param_info)
3460 : {
3461 : tidquals = (List *)
3462 24 : replace_nestloop_params(root, (Node *) tidquals);
3463 : scan_clauses = (List *)
3464 24 : replace_nestloop_params(root, (Node *) scan_clauses);
3465 : }
3466 :
3467 752 : scan_plan = make_tidscan(tlist,
3468 : scan_clauses,
3469 : scan_relid,
3470 : tidquals);
3471 :
3472 752 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3473 :
3474 752 : return scan_plan;
3475 : }
3476 :
3477 : /*
3478 : * create_tidrangescan_plan
3479 : * Returns a tidrangescan plan for the base relation scanned by 'best_path'
3480 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3481 : */
3482 : static TidRangeScan *
3483 1944 : create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path,
3484 : List *tlist, List *scan_clauses)
3485 : {
3486 : TidRangeScan *scan_plan;
3487 1944 : Index scan_relid = best_path->path.parent->relid;
3488 1944 : List *tidrangequals = best_path->tidrangequals;
3489 :
3490 : /* it should be a base rel... */
3491 : Assert(scan_relid > 0);
3492 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3493 :
3494 : /*
3495 : * The qpqual list must contain all restrictions not enforced by the
3496 : * tidrangequals list. tidrangequals has AND semantics, so we can simply
3497 : * remove any qual that appears in it.
3498 : */
3499 : {
3500 1944 : List *qpqual = NIL;
3501 : ListCell *l;
3502 :
3503 3922 : foreach(l, scan_clauses)
3504 : {
3505 1978 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3506 :
3507 1978 : if (rinfo->pseudoconstant)
3508 0 : continue; /* we may drop pseudoconstants here */
3509 1978 : if (list_member_ptr(tidrangequals, rinfo))
3510 1978 : continue; /* simple duplicate */
3511 0 : qpqual = lappend(qpqual, rinfo);
3512 : }
3513 1944 : scan_clauses = qpqual;
3514 : }
3515 :
3516 : /* Sort clauses into best execution order */
3517 1944 : scan_clauses = order_qual_clauses(root, scan_clauses);
3518 :
3519 : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3520 1944 : tidrangequals = extract_actual_clauses(tidrangequals, false);
3521 1944 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3522 :
3523 : /* Replace any outer-relation variables with nestloop params */
3524 1944 : if (best_path->path.param_info)
3525 : {
3526 : tidrangequals = (List *)
3527 0 : replace_nestloop_params(root, (Node *) tidrangequals);
3528 : scan_clauses = (List *)
3529 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3530 : }
3531 :
3532 1944 : scan_plan = make_tidrangescan(tlist,
3533 : scan_clauses,
3534 : scan_relid,
3535 : tidrangequals);
3536 :
3537 1944 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3538 :
3539 1944 : return scan_plan;
3540 : }
3541 :
3542 : /*
3543 : * create_subqueryscan_plan
3544 : * Returns a subqueryscan plan for the base relation scanned by 'best_path'
3545 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3546 : */
3547 : static SubqueryScan *
3548 32550 : create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path,
3549 : List *tlist, List *scan_clauses)
3550 : {
3551 : SubqueryScan *scan_plan;
3552 32550 : RelOptInfo *rel = best_path->path.parent;
3553 32550 : Index scan_relid = rel->relid;
3554 : Plan *subplan;
3555 :
3556 : /* it should be a subquery base rel... */
3557 : Assert(scan_relid > 0);
3558 : Assert(rel->rtekind == RTE_SUBQUERY);
3559 :
3560 : /*
3561 : * Recursively create Plan from Path for subquery. Since we are entering
3562 : * a different planner context (subroot), recurse to create_plan not
3563 : * create_plan_recurse.
3564 : */
3565 32550 : subplan = create_plan(rel->subroot, best_path->subpath);
3566 :
3567 : /* Sort clauses into best execution order */
3568 32550 : scan_clauses = order_qual_clauses(root, scan_clauses);
3569 :
3570 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3571 32550 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3572 :
3573 : /*
3574 : * Replace any outer-relation variables with nestloop params.
3575 : *
3576 : * We must provide nestloop params for both lateral references of the
3577 : * subquery and outer vars in the scan_clauses. It's better to assign the
3578 : * former first, because that code path requires specific param IDs, while
3579 : * replace_nestloop_params can adapt to the IDs assigned by
3580 : * process_subquery_nestloop_params. This avoids possibly duplicating
3581 : * nestloop params when the same Var is needed for both reasons.
3582 : */
3583 32550 : if (best_path->path.param_info)
3584 : {
3585 550 : process_subquery_nestloop_params(root,
3586 : rel->subplan_params);
3587 : scan_clauses = (List *)
3588 550 : replace_nestloop_params(root, (Node *) scan_clauses);
3589 : }
3590 :
3591 32550 : scan_plan = make_subqueryscan(tlist,
3592 : scan_clauses,
3593 : scan_relid,
3594 : subplan);
3595 :
3596 32550 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3597 :
3598 32550 : return scan_plan;
3599 : }
3600 :
3601 : /*
3602 : * create_functionscan_plan
3603 : * Returns a functionscan plan for the base relation scanned by 'best_path'
3604 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3605 : */
3606 : static FunctionScan *
3607 50804 : create_functionscan_plan(PlannerInfo *root, Path *best_path,
3608 : List *tlist, List *scan_clauses)
3609 : {
3610 : FunctionScan *scan_plan;
3611 50804 : Index scan_relid = best_path->parent->relid;
3612 : RangeTblEntry *rte;
3613 : List *functions;
3614 :
3615 : /* it should be a function base rel... */
3616 : Assert(scan_relid > 0);
3617 50804 : rte = planner_rt_fetch(scan_relid, root);
3618 : Assert(rte->rtekind == RTE_FUNCTION);
3619 50804 : functions = rte->functions;
3620 :
3621 : /* Sort clauses into best execution order */
3622 50804 : scan_clauses = order_qual_clauses(root, scan_clauses);
3623 :
3624 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3625 50804 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3626 :
3627 : /* Replace any outer-relation variables with nestloop params */
3628 50804 : if (best_path->param_info)
3629 : {
3630 : scan_clauses = (List *)
3631 7998 : replace_nestloop_params(root, (Node *) scan_clauses);
3632 : /* The function expressions could contain nestloop params, too */
3633 7998 : functions = (List *) replace_nestloop_params(root, (Node *) functions);
3634 : }
3635 :
3636 50804 : scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
3637 50804 : functions, rte->funcordinality);
3638 :
3639 50804 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3640 :
3641 50804 : return scan_plan;
3642 : }
3643 :
3644 : /*
3645 : * create_tablefuncscan_plan
3646 : * Returns a tablefuncscan plan for the base relation scanned by 'best_path'
3647 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3648 : */
3649 : static TableFuncScan *
3650 626 : create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
3651 : List *tlist, List *scan_clauses)
3652 : {
3653 : TableFuncScan *scan_plan;
3654 626 : Index scan_relid = best_path->parent->relid;
3655 : RangeTblEntry *rte;
3656 : TableFunc *tablefunc;
3657 :
3658 : /* it should be a function base rel... */
3659 : Assert(scan_relid > 0);
3660 626 : rte = planner_rt_fetch(scan_relid, root);
3661 : Assert(rte->rtekind == RTE_TABLEFUNC);
3662 626 : tablefunc = rte->tablefunc;
3663 :
3664 : /* Sort clauses into best execution order */
3665 626 : scan_clauses = order_qual_clauses(root, scan_clauses);
3666 :
3667 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3668 626 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3669 :
3670 : /* Replace any outer-relation variables with nestloop params */
3671 626 : if (best_path->param_info)
3672 : {
3673 : scan_clauses = (List *)
3674 234 : replace_nestloop_params(root, (Node *) scan_clauses);
3675 : /* The function expressions could contain nestloop params, too */
3676 234 : tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc);
3677 : }
3678 :
3679 626 : scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid,
3680 : tablefunc);
3681 :
3682 626 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3683 :
3684 626 : return scan_plan;
3685 : }
3686 :
3687 : /*
3688 : * create_valuesscan_plan
3689 : * Returns a valuesscan plan for the base relation scanned by 'best_path'
3690 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3691 : */
3692 : static ValuesScan *
3693 8278 : create_valuesscan_plan(PlannerInfo *root, Path *best_path,
3694 : List *tlist, List *scan_clauses)
3695 : {
3696 : ValuesScan *scan_plan;
3697 8278 : Index scan_relid = best_path->parent->relid;
3698 : RangeTblEntry *rte;
3699 : List *values_lists;
3700 :
3701 : /* it should be a values base rel... */
3702 : Assert(scan_relid > 0);
3703 8278 : rte = planner_rt_fetch(scan_relid, root);
3704 : Assert(rte->rtekind == RTE_VALUES);
3705 8278 : values_lists = rte->values_lists;
3706 :
3707 : /* Sort clauses into best execution order */
3708 8278 : scan_clauses = order_qual_clauses(root, scan_clauses);
3709 :
3710 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3711 8278 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3712 :
3713 : /* Replace any outer-relation variables with nestloop params */
3714 8278 : if (best_path->param_info)
3715 : {
3716 : scan_clauses = (List *)
3717 66 : replace_nestloop_params(root, (Node *) scan_clauses);
3718 : /* The values lists could contain nestloop params, too */
3719 : values_lists = (List *)
3720 66 : replace_nestloop_params(root, (Node *) values_lists);
3721 : }
3722 :
3723 8278 : scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
3724 : values_lists);
3725 :
3726 8278 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3727 :
3728 8278 : return scan_plan;
3729 : }
3730 :
3731 : /*
3732 : * create_ctescan_plan
3733 : * Returns a ctescan plan for the base relation scanned by 'best_path'
3734 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3735 : */
3736 : static CteScan *
3737 4244 : create_ctescan_plan(PlannerInfo *root, Path *best_path,
3738 : List *tlist, List *scan_clauses)
3739 : {
3740 : CteScan *scan_plan;
3741 4244 : Index scan_relid = best_path->parent->relid;
3742 : RangeTblEntry *rte;
3743 4244 : SubPlan *ctesplan = NULL;
3744 : int plan_id;
3745 : int cte_param_id;
3746 : PlannerInfo *cteroot;
3747 : Index levelsup;
3748 : int ndx;
3749 : ListCell *lc;
3750 :
3751 : Assert(scan_relid > 0);
3752 4244 : rte = planner_rt_fetch(scan_relid, root);
3753 : Assert(rte->rtekind == RTE_CTE);
3754 : Assert(!rte->self_reference);
3755 :
3756 : /*
3757 : * Find the referenced CTE, and locate the SubPlan previously made for it.
3758 : */
3759 4244 : levelsup = rte->ctelevelsup;
3760 4244 : cteroot = root;
3761 7402 : while (levelsup-- > 0)
3762 : {
3763 3158 : cteroot = cteroot->parent_root;
3764 3158 : if (!cteroot) /* shouldn't happen */
3765 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3766 : }
3767 :
3768 : /*
3769 : * Note: cte_plan_ids can be shorter than cteList, if we are still working
3770 : * on planning the CTEs (ie, this is a side-reference from another CTE).
3771 : * So we mustn't use forboth here.
3772 : */
3773 4244 : ndx = 0;
3774 5880 : foreach(lc, cteroot->parse->cteList)
3775 : {
3776 5880 : CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
3777 :
3778 5880 : if (strcmp(cte->ctename, rte->ctename) == 0)
3779 4244 : break;
3780 1636 : ndx++;
3781 : }
3782 4244 : if (lc == NULL) /* shouldn't happen */
3783 0 : elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
3784 4244 : if (ndx >= list_length(cteroot->cte_plan_ids))
3785 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3786 4244 : plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
3787 4244 : if (plan_id <= 0)
3788 0 : elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
3789 5074 : foreach(lc, cteroot->init_plans)
3790 : {
3791 5074 : ctesplan = (SubPlan *) lfirst(lc);
3792 5074 : if (ctesplan->plan_id == plan_id)
3793 4244 : break;
3794 : }
3795 4244 : if (lc == NULL) /* shouldn't happen */
3796 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3797 :
3798 : /*
3799 : * We need the CTE param ID, which is the sole member of the SubPlan's
3800 : * setParam list.
3801 : */
3802 4244 : cte_param_id = linitial_int(ctesplan->setParam);
3803 :
3804 : /* Sort clauses into best execution order */
3805 4244 : scan_clauses = order_qual_clauses(root, scan_clauses);
3806 :
3807 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3808 4244 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3809 :
3810 : /* Replace any outer-relation variables with nestloop params */
3811 4244 : if (best_path->param_info)
3812 : {
3813 : scan_clauses = (List *)
3814 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3815 : }
3816 :
3817 4244 : scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
3818 : plan_id, cte_param_id);
3819 :
3820 4244 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3821 :
3822 4244 : return scan_plan;
3823 : }
3824 :
3825 : /*
3826 : * create_namedtuplestorescan_plan
3827 : * Returns a tuplestorescan plan for the base relation scanned by
3828 : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3829 : * 'tlist'.
3830 : */
3831 : static NamedTuplestoreScan *
3832 478 : create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path,
3833 : List *tlist, List *scan_clauses)
3834 : {
3835 : NamedTuplestoreScan *scan_plan;
3836 478 : Index scan_relid = best_path->parent->relid;
3837 : RangeTblEntry *rte;
3838 :
3839 : Assert(scan_relid > 0);
3840 478 : rte = planner_rt_fetch(scan_relid, root);
3841 : Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
3842 :
3843 : /* Sort clauses into best execution order */
3844 478 : scan_clauses = order_qual_clauses(root, scan_clauses);
3845 :
3846 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3847 478 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3848 :
3849 : /* Replace any outer-relation variables with nestloop params */
3850 478 : if (best_path->param_info)
3851 : {
3852 : scan_clauses = (List *)
3853 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3854 : }
3855 :
3856 478 : scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid,
3857 : rte->enrname);
3858 :
3859 478 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3860 :
3861 478 : return scan_plan;
3862 : }
3863 :
3864 : /*
3865 : * create_resultscan_plan
3866 : * Returns a Result plan for the RTE_RESULT base relation scanned by
3867 : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3868 : * 'tlist'.
3869 : */
3870 : static Result *
3871 4068 : create_resultscan_plan(PlannerInfo *root, Path *best_path,
3872 : List *tlist, List *scan_clauses)
3873 : {
3874 : Result *scan_plan;
3875 4068 : Index scan_relid = best_path->parent->relid;
3876 : RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
3877 :
3878 : Assert(scan_relid > 0);
3879 4068 : rte = planner_rt_fetch(scan_relid, root);
3880 : Assert(rte->rtekind == RTE_RESULT);
3881 :
3882 : /* Sort clauses into best execution order */
3883 4068 : scan_clauses = order_qual_clauses(root, scan_clauses);
3884 :
3885 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3886 4068 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3887 :
3888 : /* Replace any outer-relation variables with nestloop params */
3889 4068 : if (best_path->param_info)
3890 : {
3891 : scan_clauses = (List *)
3892 140 : replace_nestloop_params(root, (Node *) scan_clauses);
3893 : }
3894 :
3895 4068 : scan_plan = make_one_row_result(tlist, (Node *) scan_clauses,
3896 : best_path->parent);
3897 :
3898 4068 : copy_generic_path_info(&scan_plan->plan, best_path);
3899 :
3900 4068 : return scan_plan;
3901 : }
3902 :
3903 : /*
3904 : * create_worktablescan_plan
3905 : * Returns a worktablescan plan for the base relation scanned by 'best_path'
3906 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3907 : */
3908 : static WorkTableScan *
3909 926 : create_worktablescan_plan(PlannerInfo *root, Path *best_path,
3910 : List *tlist, List *scan_clauses)
3911 : {
3912 : WorkTableScan *scan_plan;
3913 926 : Index scan_relid = best_path->parent->relid;
3914 : RangeTblEntry *rte;
3915 : Index levelsup;
3916 : PlannerInfo *cteroot;
3917 :
3918 : Assert(scan_relid > 0);
3919 926 : rte = planner_rt_fetch(scan_relid, root);
3920 : Assert(rte->rtekind == RTE_CTE);
3921 : Assert(rte->self_reference);
3922 :
3923 : /*
3924 : * We need to find the worktable param ID, which is in the plan level
3925 : * that's processing the recursive UNION, which is one level *below* where
3926 : * the CTE comes from.
3927 : */
3928 926 : levelsup = rte->ctelevelsup;
3929 926 : if (levelsup == 0) /* shouldn't happen */
3930 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3931 926 : levelsup--;
3932 926 : cteroot = root;
3933 2264 : while (levelsup-- > 0)
3934 : {
3935 1338 : cteroot = cteroot->parent_root;
3936 1338 : if (!cteroot) /* shouldn't happen */
3937 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3938 : }
3939 926 : if (cteroot->wt_param_id < 0) /* shouldn't happen */
3940 0 : elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
3941 :
3942 : /* Sort clauses into best execution order */
3943 926 : scan_clauses = order_qual_clauses(root, scan_clauses);
3944 :
3945 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3946 926 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3947 :
3948 : /* Replace any outer-relation variables with nestloop params */
3949 926 : if (best_path->param_info)
3950 : {
3951 : scan_clauses = (List *)
3952 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3953 : }
3954 :
3955 926 : scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
3956 : cteroot->wt_param_id);
3957 :
3958 926 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3959 :
3960 926 : return scan_plan;
3961 : }
3962 :
3963 : /*
3964 : * create_foreignscan_plan
3965 : * Returns a foreignscan plan for the relation scanned by 'best_path'
3966 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3967 : */
3968 : static ForeignScan *
3969 2064 : create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
3970 : List *tlist, List *scan_clauses)
3971 : {
3972 : ForeignScan *scan_plan;
3973 2064 : RelOptInfo *rel = best_path->path.parent;
3974 2064 : Index scan_relid = rel->relid;
3975 2064 : Oid rel_oid = InvalidOid;
3976 2064 : Plan *outer_plan = NULL;
3977 :
3978 : Assert(rel->fdwroutine != NULL);
3979 :
3980 : /* transform the child path if any */
3981 2064 : if (best_path->fdw_outerpath)
3982 48 : outer_plan = create_plan_recurse(root, best_path->fdw_outerpath,
3983 : CP_EXACT_TLIST);
3984 :
3985 : /*
3986 : * If we're scanning a base relation, fetch its OID. (Irrelevant if
3987 : * scanning a join relation.)
3988 : */
3989 2064 : if (scan_relid > 0)
3990 : {
3991 : RangeTblEntry *rte;
3992 :
3993 : Assert(rel->rtekind == RTE_RELATION);
3994 1500 : rte = planner_rt_fetch(scan_relid, root);
3995 : Assert(rte->rtekind == RTE_RELATION);
3996 1500 : rel_oid = rte->relid;
3997 : }
3998 :
3999 : /*
4000 : * Sort clauses into best execution order. We do this first since the FDW
4001 : * might have more info than we do and wish to adjust the ordering.
4002 : */
4003 2064 : scan_clauses = order_qual_clauses(root, scan_clauses);
4004 :
4005 : /*
4006 : * Let the FDW perform its processing on the restriction clauses and
4007 : * generate the plan node. Note that the FDW might remove restriction
4008 : * clauses that it intends to execute remotely, or even add more (if it
4009 : * has selected some join clauses for remote use but also wants them
4010 : * rechecked locally).
4011 : */
4012 2064 : scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
4013 : best_path,
4014 : tlist, scan_clauses,
4015 : outer_plan);
4016 :
4017 : /* Copy cost data from Path to Plan; no need to make FDW do this */
4018 2064 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
4019 :
4020 : /* Copy user OID to access as; likewise no need to make FDW do this */
4021 2064 : scan_plan->checkAsUser = rel->userid;
4022 :
4023 : /* Copy foreign server OID; likewise, no need to make FDW do this */
4024 2064 : scan_plan->fs_server = rel->serverid;
4025 :
4026 : /*
4027 : * Likewise, copy the relids that are represented by this foreign scan. An
4028 : * upper rel doesn't have relids set, but it covers all the relations
4029 : * participating in the underlying scan/join, so use root->all_query_rels.
4030 : */
4031 2064 : if (rel->reloptkind == RELOPT_UPPER_REL)
4032 242 : scan_plan->fs_relids = root->all_query_rels;
4033 : else
4034 1822 : scan_plan->fs_relids = best_path->path.parent->relids;
4035 :
4036 : /*
4037 : * Join relid sets include relevant outer joins, but FDWs may need to know
4038 : * which are the included base rels. That's a bit tedious to get without
4039 : * access to the plan-time data structures, so compute it here.
4040 : */
4041 4128 : scan_plan->fs_base_relids = bms_difference(scan_plan->fs_relids,
4042 2064 : root->outer_join_rels);
4043 :
4044 : /*
4045 : * If this is a foreign join, and to make it valid to push down we had to
4046 : * assume that the current user is the same as some user explicitly named
4047 : * in the query, mark the finished plan as depending on the current user.
4048 : */
4049 2064 : if (rel->useridiscurrent)
4050 4 : root->glob->dependsOnRole = true;
4051 :
4052 : /*
4053 : * Replace any outer-relation variables with nestloop params in the qual,
4054 : * fdw_exprs and fdw_recheck_quals expressions. We do this last so that
4055 : * the FDW doesn't have to be involved. (Note that parts of fdw_exprs or
4056 : * fdw_recheck_quals could have come from join clauses, so doing this
4057 : * beforehand on the scan_clauses wouldn't work.) We assume
4058 : * fdw_scan_tlist contains no such variables.
4059 : */
4060 2064 : if (best_path->path.param_info)
4061 : {
4062 26 : scan_plan->scan.plan.qual = (List *)
4063 26 : replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
4064 26 : scan_plan->fdw_exprs = (List *)
4065 26 : replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
4066 26 : scan_plan->fdw_recheck_quals = (List *)
4067 26 : replace_nestloop_params(root,
4068 26 : (Node *) scan_plan->fdw_recheck_quals);
4069 : }
4070 :
4071 : /*
4072 : * If rel is a base relation, detect whether any system columns are
4073 : * requested from the rel. (If rel is a join relation, rel->relid will be
4074 : * 0, but there can be no Var with relid 0 in the rel's targetlist or the
4075 : * restriction clauses, so we skip this in that case. Note that any such
4076 : * columns in base relations that were joined are assumed to be contained
4077 : * in fdw_scan_tlist.) This is a bit of a kluge and might go away
4078 : * someday, so we intentionally leave it out of the API presented to FDWs.
4079 : */
4080 2064 : scan_plan->fsSystemCol = false;
4081 2064 : if (scan_relid > 0)
4082 : {
4083 1500 : Bitmapset *attrs_used = NULL;
4084 : ListCell *lc;
4085 : int i;
4086 :
4087 : /*
4088 : * First, examine all the attributes needed for joins or final output.
4089 : * Note: we must look at rel's targetlist, not the attr_needed data,
4090 : * because attr_needed isn't computed for inheritance child rels.
4091 : */
4092 1500 : pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used);
4093 :
4094 : /* Add all the attributes used by restriction clauses. */
4095 2204 : foreach(lc, rel->baserestrictinfo)
4096 : {
4097 704 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
4098 :
4099 704 : pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used);
4100 : }
4101 :
4102 : /* Now, are any system columns requested from rel? */
4103 8458 : for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
4104 : {
4105 7500 : if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
4106 : {
4107 542 : scan_plan->fsSystemCol = true;
4108 542 : break;
4109 : }
4110 : }
4111 :
4112 1500 : bms_free(attrs_used);
4113 : }
4114 :
4115 2064 : return scan_plan;
4116 : }
4117 :
4118 : /*
4119 : * create_customscan_plan
4120 : *
4121 : * Transform a CustomPath into a Plan.
4122 : */
4123 : static CustomScan *
4124 0 : create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
4125 : List *tlist, List *scan_clauses)
4126 : {
4127 : CustomScan *cplan;
4128 0 : RelOptInfo *rel = best_path->path.parent;
4129 0 : List *custom_plans = NIL;
4130 : ListCell *lc;
4131 :
4132 : /* Recursively transform child paths. */
4133 0 : foreach(lc, best_path->custom_paths)
4134 : {
4135 0 : Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc),
4136 : CP_EXACT_TLIST);
4137 :
4138 0 : custom_plans = lappend(custom_plans, plan);
4139 : }
4140 :
4141 : /*
4142 : * Sort clauses into the best execution order, although custom-scan
4143 : * provider can reorder them again.
4144 : */
4145 0 : scan_clauses = order_qual_clauses(root, scan_clauses);
4146 :
4147 : /*
4148 : * Invoke custom plan provider to create the Plan node represented by the
4149 : * CustomPath.
4150 : */
4151 0 : cplan = castNode(CustomScan,
4152 : best_path->methods->PlanCustomPath(root,
4153 : rel,
4154 : best_path,
4155 : tlist,
4156 : scan_clauses,
4157 : custom_plans));
4158 :
4159 : /*
4160 : * Copy cost data from Path to Plan; no need to make custom-plan providers
4161 : * do this
4162 : */
4163 0 : copy_generic_path_info(&cplan->scan.plan, &best_path->path);
4164 :
4165 : /* Likewise, copy the relids that are represented by this custom scan */
4166 0 : cplan->custom_relids = best_path->path.parent->relids;
4167 :
4168 : /*
4169 : * Replace any outer-relation variables with nestloop params in the qual
4170 : * and custom_exprs expressions. We do this last so that the custom-plan
4171 : * provider doesn't have to be involved. (Note that parts of custom_exprs
4172 : * could have come from join clauses, so doing this beforehand on the
4173 : * scan_clauses wouldn't work.) We assume custom_scan_tlist contains no
4174 : * such variables.
4175 : */
4176 0 : if (best_path->path.param_info)
4177 : {
4178 0 : cplan->scan.plan.qual = (List *)
4179 0 : replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
4180 0 : cplan->custom_exprs = (List *)
4181 0 : replace_nestloop_params(root, (Node *) cplan->custom_exprs);
4182 : }
4183 :
4184 0 : return cplan;
4185 : }
4186 :
4187 :
4188 : /*****************************************************************************
4189 : *
4190 : * JOIN METHODS
4191 : *
4192 : *****************************************************************************/
4193 :
4194 : static NestLoop *
4195 97500 : create_nestloop_plan(PlannerInfo *root,
4196 : NestPath *best_path)
4197 : {
4198 : NestLoop *join_plan;
4199 : Plan *outer_plan;
4200 : Plan *inner_plan;
4201 : Relids outerrelids;
4202 97500 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4203 97500 : List *joinrestrictclauses = best_path->jpath.joinrestrictinfo;
4204 : List *joinclauses;
4205 : List *otherclauses;
4206 : List *nestParams;
4207 : List *outer_tlist;
4208 : bool outer_parallel_safe;
4209 97500 : Relids saveOuterRels = root->curOuterRels;
4210 : ListCell *lc;
4211 :
4212 : /*
4213 : * If the inner path is parameterized by the topmost parent of the outer
4214 : * rel rather than the outer rel itself, fix that. (Nothing happens here
4215 : * if it is not so parameterized.)
4216 : */
4217 97500 : best_path->jpath.innerjoinpath =
4218 97500 : reparameterize_path_by_child(root,
4219 : best_path->jpath.innerjoinpath,
4220 97500 : best_path->jpath.outerjoinpath->parent);
4221 :
4222 : /*
4223 : * Failure here probably means that reparameterize_path_by_child() is not
4224 : * in sync with path_is_reparameterizable_by_child().
4225 : */
4226 : Assert(best_path->jpath.innerjoinpath != NULL);
4227 :
4228 : /* NestLoop can project, so no need to be picky about child tlists */
4229 97500 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath, 0);
4230 :
4231 : /* For a nestloop, include outer relids in curOuterRels for inner side */
4232 97500 : outerrelids = best_path->jpath.outerjoinpath->parent->relids;
4233 97500 : root->curOuterRels = bms_union(root->curOuterRels, outerrelids);
4234 :
4235 97500 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath, 0);
4236 :
4237 : /* Restore curOuterRels */
4238 97500 : bms_free(root->curOuterRels);
4239 97500 : root->curOuterRels = saveOuterRels;
4240 :
4241 : /* Sort join qual clauses into best execution order */
4242 97500 : joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
4243 :
4244 : /* Get the join qual clauses (in plain expression form) */
4245 : /* Any pseudoconstant clauses are ignored here */
4246 97500 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4247 : {
4248 22508 : extract_actual_join_clauses(joinrestrictclauses,
4249 22508 : best_path->jpath.path.parent->relids,
4250 : &joinclauses, &otherclauses);
4251 : }
4252 : else
4253 : {
4254 : /* We can treat all clauses alike for an inner join */
4255 74992 : joinclauses = extract_actual_clauses(joinrestrictclauses, false);
4256 74992 : otherclauses = NIL;
4257 : }
4258 :
4259 : /* Replace any outer-relation variables with nestloop params */
4260 97500 : if (best_path->jpath.path.param_info)
4261 : {
4262 968 : joinclauses = (List *)
4263 968 : replace_nestloop_params(root, (Node *) joinclauses);
4264 968 : otherclauses = (List *)
4265 968 : replace_nestloop_params(root, (Node *) otherclauses);
4266 : }
4267 :
4268 : /*
4269 : * Identify any nestloop parameters that should be supplied by this join
4270 : * node, and remove them from root->curOuterParams.
4271 : */
4272 97500 : nestParams = identify_current_nestloop_params(root,
4273 : outerrelids,
4274 97500 : PATH_REQ_OUTER((Path *) best_path));
4275 :
4276 : /*
4277 : * While nestloop parameters that are Vars had better be available from
4278 : * the outer_plan already, there are edge cases where nestloop parameters
4279 : * that are PHVs won't be. In such cases we must add them to the
4280 : * outer_plan's tlist, since the executor's NestLoopParam machinery
4281 : * requires the params to be simple outer-Var references to that tlist.
4282 : * (This is cheating a little bit, because the outer path's required-outer
4283 : * relids might not be enough to allow evaluating such a PHV. But in
4284 : * practice, if we could have evaluated the PHV at the nestloop node, we
4285 : * can do so in the outer plan too.)
4286 : */
4287 97500 : outer_tlist = outer_plan->targetlist;
4288 97500 : outer_parallel_safe = outer_plan->parallel_safe;
4289 152334 : foreach(lc, nestParams)
4290 : {
4291 54834 : NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
4292 : PlaceHolderVar *phv;
4293 : TargetEntry *tle;
4294 :
4295 54834 : if (IsA(nlp->paramval, Var))
4296 54582 : continue; /* nothing to do for simple Vars */
4297 : /* Otherwise it must be a PHV */
4298 252 : phv = castNode(PlaceHolderVar, nlp->paramval);
4299 :
4300 252 : if (tlist_member((Expr *) phv, outer_tlist))
4301 222 : continue; /* already available */
4302 :
4303 : /*
4304 : * It's possible that nestloop parameter PHVs selected to evaluate
4305 : * here contain references to surviving root->curOuterParams items
4306 : * (that is, they reference values that will be supplied by some
4307 : * higher-level nestloop). Those need to be converted to Params now.
4308 : * Note: it's safe to do this after the tlist_member() check, because
4309 : * equal() won't pay attention to phv->phexpr.
4310 : */
4311 60 : phv->phexpr = (Expr *) replace_nestloop_params(root,
4312 30 : (Node *) phv->phexpr);
4313 :
4314 : /* Make a shallow copy of outer_tlist, if we didn't already */
4315 30 : if (outer_tlist == outer_plan->targetlist)
4316 30 : outer_tlist = list_copy(outer_tlist);
4317 : /* ... and add the needed expression */
4318 30 : tle = makeTargetEntry((Expr *) copyObject(phv),
4319 30 : list_length(outer_tlist) + 1,
4320 : NULL,
4321 : true);
4322 30 : outer_tlist = lappend(outer_tlist, tle);
4323 : /* ... and track whether tlist is (still) parallel-safe */
4324 30 : if (outer_parallel_safe)
4325 6 : outer_parallel_safe = is_parallel_safe(root, (Node *) phv);
4326 : }
4327 97500 : if (outer_tlist != outer_plan->targetlist)
4328 30 : outer_plan = change_plan_targetlist(outer_plan, outer_tlist,
4329 : outer_parallel_safe);
4330 :
4331 : /* And finally, we can build the join plan node */
4332 97500 : join_plan = make_nestloop(tlist,
4333 : joinclauses,
4334 : otherclauses,
4335 : nestParams,
4336 : outer_plan,
4337 : inner_plan,
4338 : best_path->jpath.jointype,
4339 97500 : best_path->jpath.inner_unique);
4340 :
4341 97500 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4342 :
4343 97500 : return join_plan;
4344 : }
4345 :
4346 : static MergeJoin *
4347 7740 : create_mergejoin_plan(PlannerInfo *root,
4348 : MergePath *best_path)
4349 : {
4350 : MergeJoin *join_plan;
4351 : Plan *outer_plan;
4352 : Plan *inner_plan;
4353 7740 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4354 : List *joinclauses;
4355 : List *otherclauses;
4356 : List *mergeclauses;
4357 : List *outerpathkeys;
4358 : List *innerpathkeys;
4359 : int nClauses;
4360 : Oid *mergefamilies;
4361 : Oid *mergecollations;
4362 : bool *mergereversals;
4363 : bool *mergenullsfirst;
4364 : PathKey *opathkey;
4365 : EquivalenceClass *opeclass;
4366 : int i;
4367 : ListCell *lc;
4368 : ListCell *lop;
4369 : ListCell *lip;
4370 7740 : Path *outer_path = best_path->jpath.outerjoinpath;
4371 7740 : Path *inner_path = best_path->jpath.innerjoinpath;
4372 :
4373 : /*
4374 : * MergeJoin can project, so we don't have to demand exact tlists from the
4375 : * inputs. However, if we're intending to sort an input's result, it's
4376 : * best to request a small tlist so we aren't sorting more data than
4377 : * necessary.
4378 : */
4379 7740 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4380 7740 : (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4381 :
4382 7740 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4383 7740 : (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4384 :
4385 : /* Sort join qual clauses into best execution order */
4386 : /* NB: do NOT reorder the mergeclauses */
4387 7740 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4388 :
4389 : /* Get the join qual clauses (in plain expression form) */
4390 : /* Any pseudoconstant clauses are ignored here */
4391 7740 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4392 : {
4393 5256 : extract_actual_join_clauses(joinclauses,
4394 5256 : best_path->jpath.path.parent->relids,
4395 : &joinclauses, &otherclauses);
4396 : }
4397 : else
4398 : {
4399 : /* We can treat all clauses alike for an inner join */
4400 2484 : joinclauses = extract_actual_clauses(joinclauses, false);
4401 2484 : otherclauses = NIL;
4402 : }
4403 :
4404 : /*
4405 : * Remove the mergeclauses from the list of join qual clauses, leaving the
4406 : * list of quals that must be checked as qpquals.
4407 : */
4408 7740 : mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
4409 7740 : joinclauses = list_difference(joinclauses, mergeclauses);
4410 :
4411 : /*
4412 : * Replace any outer-relation variables with nestloop params. There
4413 : * should not be any in the mergeclauses.
4414 : */
4415 7740 : if (best_path->jpath.path.param_info)
4416 : {
4417 6 : joinclauses = (List *)
4418 6 : replace_nestloop_params(root, (Node *) joinclauses);
4419 6 : otherclauses = (List *)
4420 6 : replace_nestloop_params(root, (Node *) otherclauses);
4421 : }
4422 :
4423 : /*
4424 : * Rearrange mergeclauses, if needed, so that the outer variable is always
4425 : * on the left; mark the mergeclause restrictinfos with correct
4426 : * outer_is_left status.
4427 : */
4428 7740 : mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
4429 7740 : best_path->jpath.outerjoinpath->parent->relids);
4430 :
4431 : /*
4432 : * Create explicit sort nodes for the outer and inner paths if necessary.
4433 : */
4434 7740 : if (best_path->outersortkeys)
4435 : {
4436 3030 : Relids outer_relids = outer_path->parent->relids;
4437 : Plan *sort_plan;
4438 :
4439 : /*
4440 : * We can assert that the outer path is not already ordered
4441 : * appropriately for the mergejoin; otherwise, outersortkeys would
4442 : * have been set to NIL.
4443 : */
4444 : Assert(!pathkeys_contained_in(best_path->outersortkeys,
4445 : outer_path->pathkeys));
4446 :
4447 : /*
4448 : * We choose to use incremental sort if it is enabled and there are
4449 : * presorted keys; otherwise we use full sort.
4450 : */
4451 3030 : if (enable_incremental_sort && best_path->outer_presorted_keys > 0)
4452 : {
4453 : sort_plan = (Plan *)
4454 12 : make_incrementalsort_from_pathkeys(outer_plan,
4455 : best_path->outersortkeys,
4456 : outer_relids,
4457 : best_path->outer_presorted_keys);
4458 :
4459 12 : label_incrementalsort_with_costsize(root,
4460 : (IncrementalSort *) sort_plan,
4461 : best_path->outersortkeys,
4462 : -1.0);
4463 : }
4464 : else
4465 : {
4466 : sort_plan = (Plan *)
4467 3018 : make_sort_from_pathkeys(outer_plan,
4468 : best_path->outersortkeys,
4469 : outer_relids);
4470 :
4471 3018 : label_sort_with_costsize(root, (Sort *) sort_plan, -1.0);
4472 : }
4473 :
4474 3030 : outer_plan = sort_plan;
4475 3030 : outerpathkeys = best_path->outersortkeys;
4476 : }
4477 : else
4478 4710 : outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
4479 :
4480 7740 : if (best_path->innersortkeys)
4481 : {
4482 : /*
4483 : * We do not consider incremental sort for inner path, because
4484 : * incremental sort does not support mark/restore.
4485 : */
4486 :
4487 7218 : Relids inner_relids = inner_path->parent->relids;
4488 : Sort *sort;
4489 :
4490 : /*
4491 : * We can assert that the inner path is not already ordered
4492 : * appropriately for the mergejoin; otherwise, innersortkeys would
4493 : * have been set to NIL.
4494 : */
4495 : Assert(!pathkeys_contained_in(best_path->innersortkeys,
4496 : inner_path->pathkeys));
4497 :
4498 7218 : sort = make_sort_from_pathkeys(inner_plan,
4499 : best_path->innersortkeys,
4500 : inner_relids);
4501 :
4502 7218 : label_sort_with_costsize(root, sort, -1.0);
4503 7218 : inner_plan = (Plan *) sort;
4504 7218 : innerpathkeys = best_path->innersortkeys;
4505 : }
4506 : else
4507 522 : innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
4508 :
4509 : /*
4510 : * If specified, add a materialize node to shield the inner plan from the
4511 : * need to handle mark/restore.
4512 : */
4513 7740 : if (best_path->materialize_inner)
4514 : {
4515 176 : Plan *matplan = (Plan *) make_material(inner_plan);
4516 :
4517 : /*
4518 : * We assume the materialize will not spill to disk, and therefore
4519 : * charge just cpu_operator_cost per tuple. (Keep this estimate in
4520 : * sync with final_cost_mergejoin.)
4521 : */
4522 176 : copy_plan_costsize(matplan, inner_plan);
4523 176 : matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
4524 :
4525 176 : inner_plan = matplan;
4526 : }
4527 :
4528 : /*
4529 : * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
4530 : * executor. The information is in the pathkeys for the two inputs, but
4531 : * we need to be careful about the possibility of mergeclauses sharing a
4532 : * pathkey, as well as the possibility that the inner pathkeys are not in
4533 : * an order matching the mergeclauses.
4534 : */
4535 7740 : nClauses = list_length(mergeclauses);
4536 : Assert(nClauses == list_length(best_path->path_mergeclauses));
4537 7740 : mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
4538 7740 : mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
4539 7740 : mergereversals = (bool *) palloc(nClauses * sizeof(bool));
4540 7740 : mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
4541 :
4542 7740 : opathkey = NULL;
4543 7740 : opeclass = NULL;
4544 7740 : lop = list_head(outerpathkeys);
4545 7740 : lip = list_head(innerpathkeys);
4546 7740 : i = 0;
4547 16412 : foreach(lc, best_path->path_mergeclauses)
4548 : {
4549 8672 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
4550 : EquivalenceClass *oeclass;
4551 : EquivalenceClass *ieclass;
4552 8672 : PathKey *ipathkey = NULL;
4553 8672 : EquivalenceClass *ipeclass = NULL;
4554 8672 : bool first_inner_match = false;
4555 :
4556 : /* fetch outer/inner eclass from mergeclause */
4557 8672 : if (rinfo->outer_is_left)
4558 : {
4559 7016 : oeclass = rinfo->left_ec;
4560 7016 : ieclass = rinfo->right_ec;
4561 : }
4562 : else
4563 : {
4564 1656 : oeclass = rinfo->right_ec;
4565 1656 : ieclass = rinfo->left_ec;
4566 : }
4567 : Assert(oeclass != NULL);
4568 : Assert(ieclass != NULL);
4569 :
4570 : /*
4571 : * We must identify the pathkey elements associated with this clause
4572 : * by matching the eclasses (which should give a unique match, since
4573 : * the pathkey lists should be canonical). In typical cases the merge
4574 : * clauses are one-to-one with the pathkeys, but when dealing with
4575 : * partially redundant query conditions, things are more complicated.
4576 : *
4577 : * lop and lip reference the first as-yet-unmatched pathkey elements.
4578 : * If they're NULL then all pathkey elements have been matched.
4579 : *
4580 : * The ordering of the outer pathkeys should match the mergeclauses,
4581 : * by construction (see find_mergeclauses_for_outer_pathkeys()). There
4582 : * could be more than one mergeclause for the same outer pathkey, but
4583 : * no pathkey may be entirely skipped over.
4584 : */
4585 8672 : if (oeclass != opeclass) /* multiple matches are not interesting */
4586 : {
4587 : /* doesn't match the current opathkey, so must match the next */
4588 8660 : if (lop == NULL)
4589 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4590 8660 : opathkey = (PathKey *) lfirst(lop);
4591 8660 : opeclass = opathkey->pk_eclass;
4592 8660 : lop = lnext(outerpathkeys, lop);
4593 8660 : if (oeclass != opeclass)
4594 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4595 : }
4596 :
4597 : /*
4598 : * The inner pathkeys likewise should not have skipped-over keys, but
4599 : * it's possible for a mergeclause to reference some earlier inner
4600 : * pathkey if we had redundant pathkeys. For example we might have
4601 : * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x". The
4602 : * implied inner ordering is then "ORDER BY x, y, x", but the pathkey
4603 : * mechanism drops the second sort by x as redundant, and this code
4604 : * must cope.
4605 : *
4606 : * It's also possible for the implied inner-rel ordering to be like
4607 : * "ORDER BY x, y, x DESC". We still drop the second instance of x as
4608 : * redundant; but this means that the sort ordering of a redundant
4609 : * inner pathkey should not be considered significant. So we must
4610 : * detect whether this is the first clause matching an inner pathkey.
4611 : */
4612 8672 : if (lip)
4613 : {
4614 8654 : ipathkey = (PathKey *) lfirst(lip);
4615 8654 : ipeclass = ipathkey->pk_eclass;
4616 8654 : if (ieclass == ipeclass)
4617 : {
4618 : /* successful first match to this inner pathkey */
4619 8654 : lip = lnext(innerpathkeys, lip);
4620 8654 : first_inner_match = true;
4621 : }
4622 : }
4623 8672 : if (!first_inner_match)
4624 : {
4625 : /* redundant clause ... must match something before lip */
4626 : ListCell *l2;
4627 :
4628 18 : foreach(l2, innerpathkeys)
4629 : {
4630 18 : if (l2 == lip)
4631 0 : break;
4632 18 : ipathkey = (PathKey *) lfirst(l2);
4633 18 : ipeclass = ipathkey->pk_eclass;
4634 18 : if (ieclass == ipeclass)
4635 18 : break;
4636 : }
4637 18 : if (ieclass != ipeclass)
4638 0 : elog(ERROR, "inner pathkeys do not match mergeclauses");
4639 : }
4640 :
4641 : /*
4642 : * The pathkeys should always match each other as to opfamily and
4643 : * collation (which affect equality), but if we're considering a
4644 : * redundant inner pathkey, its sort ordering might not match. In
4645 : * such cases we may ignore the inner pathkey's sort ordering and use
4646 : * the outer's. (In effect, we're lying to the executor about the
4647 : * sort direction of this inner column, but it does not matter since
4648 : * the run-time row comparisons would only reach this column when
4649 : * there's equality for the earlier column containing the same eclass.
4650 : * There could be only one value in this column for the range of inner
4651 : * rows having a given value in the earlier column, so it does not
4652 : * matter which way we imagine this column to be ordered.) But a
4653 : * non-redundant inner pathkey had better match outer's ordering too.
4654 : */
4655 8672 : if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
4656 8672 : opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation)
4657 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4658 8672 : if (first_inner_match &&
4659 8654 : (opathkey->pk_cmptype != ipathkey->pk_cmptype ||
4660 8654 : opathkey->pk_nulls_first != ipathkey->pk_nulls_first))
4661 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4662 :
4663 : /* OK, save info for executor */
4664 8672 : mergefamilies[i] = opathkey->pk_opfamily;
4665 8672 : mergecollations[i] = opathkey->pk_eclass->ec_collation;
4666 8672 : mergereversals[i] = (opathkey->pk_cmptype == COMPARE_GT ? true : false);
4667 8672 : mergenullsfirst[i] = opathkey->pk_nulls_first;
4668 8672 : i++;
4669 : }
4670 :
4671 : /*
4672 : * Note: it is not an error if we have additional pathkey elements (i.e.,
4673 : * lop or lip isn't NULL here). The input paths might be better-sorted
4674 : * than we need for the current mergejoin.
4675 : */
4676 :
4677 : /*
4678 : * Now we can build the mergejoin node.
4679 : */
4680 7740 : join_plan = make_mergejoin(tlist,
4681 : joinclauses,
4682 : otherclauses,
4683 : mergeclauses,
4684 : mergefamilies,
4685 : mergecollations,
4686 : mergereversals,
4687 : mergenullsfirst,
4688 : outer_plan,
4689 : inner_plan,
4690 : best_path->jpath.jointype,
4691 7740 : best_path->jpath.inner_unique,
4692 7740 : best_path->skip_mark_restore);
4693 :
4694 : /* Costs of sort and material steps are included in path cost already */
4695 7740 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4696 :
4697 7740 : return join_plan;
4698 : }
4699 :
4700 : static HashJoin *
4701 34650 : create_hashjoin_plan(PlannerInfo *root,
4702 : HashPath *best_path)
4703 : {
4704 : HashJoin *join_plan;
4705 : Hash *hash_plan;
4706 : Plan *outer_plan;
4707 : Plan *inner_plan;
4708 34650 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4709 : List *joinclauses;
4710 : List *otherclauses;
4711 : List *hashclauses;
4712 34650 : List *hashoperators = NIL;
4713 34650 : List *hashcollations = NIL;
4714 34650 : List *inner_hashkeys = NIL;
4715 34650 : List *outer_hashkeys = NIL;
4716 34650 : Oid skewTable = InvalidOid;
4717 34650 : AttrNumber skewColumn = InvalidAttrNumber;
4718 34650 : bool skewInherit = false;
4719 : ListCell *lc;
4720 :
4721 : /*
4722 : * HashJoin can project, so we don't have to demand exact tlists from the
4723 : * inputs. However, it's best to request a small tlist from the inner
4724 : * side, so that we aren't storing more data than necessary. Likewise, if
4725 : * we anticipate batching, request a small tlist from the outer side so
4726 : * that we don't put extra data in the outer batch files.
4727 : */
4728 34650 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4729 34650 : (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0);
4730 :
4731 34650 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4732 : CP_SMALL_TLIST);
4733 :
4734 : /* Sort join qual clauses into best execution order */
4735 34650 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4736 : /* There's no point in sorting the hash clauses ... */
4737 :
4738 : /* Get the join qual clauses (in plain expression form) */
4739 : /* Any pseudoconstant clauses are ignored here */
4740 34650 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4741 : {
4742 11058 : extract_actual_join_clauses(joinclauses,
4743 11058 : best_path->jpath.path.parent->relids,
4744 : &joinclauses, &otherclauses);
4745 : }
4746 : else
4747 : {
4748 : /* We can treat all clauses alike for an inner join */
4749 23592 : joinclauses = extract_actual_clauses(joinclauses, false);
4750 23592 : otherclauses = NIL;
4751 : }
4752 :
4753 : /*
4754 : * Remove the hashclauses from the list of join qual clauses, leaving the
4755 : * list of quals that must be checked as qpquals.
4756 : */
4757 34650 : hashclauses = get_actual_clauses(best_path->path_hashclauses);
4758 34650 : joinclauses = list_difference(joinclauses, hashclauses);
4759 :
4760 : /*
4761 : * Replace any outer-relation variables with nestloop params. There
4762 : * should not be any in the hashclauses.
4763 : */
4764 34650 : if (best_path->jpath.path.param_info)
4765 : {
4766 170 : joinclauses = (List *)
4767 170 : replace_nestloop_params(root, (Node *) joinclauses);
4768 170 : otherclauses = (List *)
4769 170 : replace_nestloop_params(root, (Node *) otherclauses);
4770 : }
4771 :
4772 : /*
4773 : * Rearrange hashclauses, if needed, so that the outer variable is always
4774 : * on the left.
4775 : */
4776 34650 : hashclauses = get_switched_clauses(best_path->path_hashclauses,
4777 34650 : best_path->jpath.outerjoinpath->parent->relids);
4778 :
4779 : /*
4780 : * If there is a single join clause and we can identify the outer variable
4781 : * as a simple column reference, supply its identity for possible use in
4782 : * skew optimization. (Note: in principle we could do skew optimization
4783 : * with multiple join clauses, but we'd have to be able to determine the
4784 : * most common combinations of outer values, which we don't currently have
4785 : * enough stats for.)
4786 : */
4787 34650 : if (list_length(hashclauses) == 1)
4788 : {
4789 31368 : OpExpr *clause = (OpExpr *) linitial(hashclauses);
4790 : Node *node;
4791 :
4792 : Assert(is_opclause(clause));
4793 31368 : node = (Node *) linitial(clause->args);
4794 31368 : if (IsA(node, RelabelType))
4795 578 : node = (Node *) ((RelabelType *) node)->arg;
4796 31368 : if (IsA(node, Var))
4797 : {
4798 27360 : Var *var = (Var *) node;
4799 : RangeTblEntry *rte;
4800 :
4801 27360 : rte = root->simple_rte_array[var->varno];
4802 27360 : if (rte->rtekind == RTE_RELATION)
4803 : {
4804 24064 : skewTable = rte->relid;
4805 24064 : skewColumn = var->varattno;
4806 24064 : skewInherit = rte->inh;
4807 : }
4808 : }
4809 : }
4810 :
4811 : /*
4812 : * Collect hash related information. The hashed expressions are
4813 : * deconstructed into outer/inner expressions, so they can be computed
4814 : * separately (inner expressions are used to build the hashtable via Hash,
4815 : * outer expressions to perform lookups of tuples from HashJoin's outer
4816 : * plan in the hashtable). Also collect operator information necessary to
4817 : * build the hashtable.
4818 : */
4819 72684 : foreach(lc, hashclauses)
4820 : {
4821 38034 : OpExpr *hclause = lfirst_node(OpExpr, lc);
4822 :
4823 38034 : hashoperators = lappend_oid(hashoperators, hclause->opno);
4824 38034 : hashcollations = lappend_oid(hashcollations, hclause->inputcollid);
4825 38034 : outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args));
4826 38034 : inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args));
4827 : }
4828 :
4829 : /*
4830 : * Build the hash node and hash join node.
4831 : */
4832 34650 : hash_plan = make_hash(inner_plan,
4833 : inner_hashkeys,
4834 : skewTable,
4835 : skewColumn,
4836 : skewInherit);
4837 :
4838 : /*
4839 : * Set Hash node's startup & total costs equal to total cost of input
4840 : * plan; this only affects EXPLAIN display not decisions.
4841 : */
4842 34650 : copy_plan_costsize(&hash_plan->plan, inner_plan);
4843 34650 : hash_plan->plan.startup_cost = hash_plan->plan.total_cost;
4844 :
4845 : /*
4846 : * If parallel-aware, the executor will also need an estimate of the total
4847 : * number of rows expected from all participants so that it can size the
4848 : * shared hash table.
4849 : */
4850 34650 : if (best_path->jpath.path.parallel_aware)
4851 : {
4852 198 : hash_plan->plan.parallel_aware = true;
4853 198 : hash_plan->rows_total = best_path->inner_rows_total;
4854 : }
4855 :
4856 34650 : join_plan = make_hashjoin(tlist,
4857 : joinclauses,
4858 : otherclauses,
4859 : hashclauses,
4860 : hashoperators,
4861 : hashcollations,
4862 : outer_hashkeys,
4863 : outer_plan,
4864 : (Plan *) hash_plan,
4865 : best_path->jpath.jointype,
4866 34650 : best_path->jpath.inner_unique);
4867 :
4868 34650 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4869 :
4870 34650 : return join_plan;
4871 : }
4872 :
4873 :
4874 : /*****************************************************************************
4875 : *
4876 : * SUPPORTING ROUTINES
4877 : *
4878 : *****************************************************************************/
4879 :
4880 : /*
4881 : * replace_nestloop_params
4882 : * Replace outer-relation Vars and PlaceHolderVars in the given expression
4883 : * with nestloop Params
4884 : *
4885 : * All Vars and PlaceHolderVars belonging to the relation(s) identified by
4886 : * root->curOuterRels are replaced by Params, and entries are added to
4887 : * root->curOuterParams if not already present.
4888 : */
4889 : static Node *
4890 365360 : replace_nestloop_params(PlannerInfo *root, Node *expr)
4891 : {
4892 : /* No setup needed for tree walk, so away we go */
4893 365360 : return replace_nestloop_params_mutator(expr, root);
4894 : }
4895 :
4896 : static Node *
4897 1328638 : replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
4898 : {
4899 1328638 : if (node == NULL)
4900 88758 : return NULL;
4901 1239880 : if (IsA(node, Var))
4902 : {
4903 385400 : Var *var = (Var *) node;
4904 :
4905 : /* Upper-level Vars should be long gone at this point */
4906 : Assert(var->varlevelsup == 0);
4907 : /* If not to be replaced, we can just return the Var unmodified */
4908 385400 : if (IS_SPECIAL_VARNO(var->varno) ||
4909 385388 : !bms_is_member(var->varno, root->curOuterRels))
4910 285200 : return node;
4911 : /* Replace the Var with a nestloop Param */
4912 100200 : return (Node *) replace_nestloop_param_var(root, var);
4913 : }
4914 854480 : if (IsA(node, PlaceHolderVar))
4915 : {
4916 916 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
4917 :
4918 : /* Upper-level PlaceHolderVars should be long gone at this point */
4919 : Assert(phv->phlevelsup == 0);
4920 :
4921 : /* Check whether we need to replace the PHV */
4922 916 : if (!bms_is_subset(find_placeholder_info(root, phv)->ph_eval_at,
4923 916 : root->curOuterRels))
4924 : {
4925 : /*
4926 : * We can't replace the whole PHV, but we might still need to
4927 : * replace Vars or PHVs within its expression, in case it ends up
4928 : * actually getting evaluated here. (It might get evaluated in
4929 : * this plan node, or some child node; in the latter case we don't
4930 : * really need to process the expression here, but we haven't got
4931 : * enough info to tell if that's the case.) Flat-copy the PHV
4932 : * node and then recurse on its expression.
4933 : *
4934 : * Note that after doing this, we might have different
4935 : * representations of the contents of the same PHV in different
4936 : * parts of the plan tree. This is OK because equal() will just
4937 : * match on phid/phlevelsup, so setrefs.c will still recognize an
4938 : * upper-level reference to a lower-level copy of the same PHV.
4939 : */
4940 592 : PlaceHolderVar *newphv = makeNode(PlaceHolderVar);
4941 :
4942 592 : memcpy(newphv, phv, sizeof(PlaceHolderVar));
4943 592 : newphv->phexpr = (Expr *)
4944 592 : replace_nestloop_params_mutator((Node *) phv->phexpr,
4945 : root);
4946 592 : return (Node *) newphv;
4947 : }
4948 : /* Replace the PlaceHolderVar with a nestloop Param */
4949 324 : return (Node *) replace_nestloop_param_placeholdervar(root, phv);
4950 : }
4951 853564 : return expression_tree_mutator(node, replace_nestloop_params_mutator, root);
4952 : }
4953 :
4954 : /*
4955 : * fix_indexqual_references
4956 : * Adjust indexqual clauses to the form the executor's indexqual
4957 : * machinery needs.
4958 : *
4959 : * We have three tasks here:
4960 : * * Select the actual qual clauses out of the input IndexClause list,
4961 : * and remove RestrictInfo nodes from the qual clauses.
4962 : * * Replace any outer-relation Var or PHV nodes with nestloop Params.
4963 : * (XXX eventually, that responsibility should go elsewhere?)
4964 : * * Index keys must be represented by Var nodes with varattno set to the
4965 : * index's attribute number, not the attribute number in the original rel.
4966 : *
4967 : * *stripped_indexquals_p receives a list of the actual qual clauses.
4968 : *
4969 : * *fixed_indexquals_p receives a list of the adjusted quals. This is a copy
4970 : * that shares no substructure with the original; this is needed in case there
4971 : * are subplans in it (we need two separate copies of the subplan tree, or
4972 : * things will go awry).
4973 : */
4974 : static void
4975 180622 : fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
4976 : List **stripped_indexquals_p, List **fixed_indexquals_p)
4977 : {
4978 180622 : IndexOptInfo *index = index_path->indexinfo;
4979 : List *stripped_indexquals;
4980 : List *fixed_indexquals;
4981 : ListCell *lc;
4982 :
4983 180622 : stripped_indexquals = fixed_indexquals = NIL;
4984 :
4985 376696 : foreach(lc, index_path->indexclauses)
4986 : {
4987 196074 : IndexClause *iclause = lfirst_node(IndexClause, lc);
4988 196074 : int indexcol = iclause->indexcol;
4989 : ListCell *lc2;
4990 :
4991 393204 : foreach(lc2, iclause->indexquals)
4992 : {
4993 197130 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
4994 197130 : Node *clause = (Node *) rinfo->clause;
4995 :
4996 197130 : stripped_indexquals = lappend(stripped_indexquals, clause);
4997 197130 : clause = fix_indexqual_clause(root, index, indexcol,
4998 : clause, iclause->indexcols);
4999 197130 : fixed_indexquals = lappend(fixed_indexquals, clause);
5000 : }
5001 : }
5002 :
5003 180622 : *stripped_indexquals_p = stripped_indexquals;
5004 180622 : *fixed_indexquals_p = fixed_indexquals;
5005 180622 : }
5006 :
5007 : /*
5008 : * fix_indexorderby_references
5009 : * Adjust indexorderby clauses to the form the executor's index
5010 : * machinery needs.
5011 : *
5012 : * This is a simplified version of fix_indexqual_references. The input is
5013 : * bare clauses and a separate indexcol list, instead of IndexClauses.
5014 : */
5015 : static List *
5016 180622 : fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
5017 : {
5018 180622 : IndexOptInfo *index = index_path->indexinfo;
5019 : List *fixed_indexorderbys;
5020 : ListCell *lcc,
5021 : *lci;
5022 :
5023 180622 : fixed_indexorderbys = NIL;
5024 :
5025 181008 : forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
5026 : {
5027 386 : Node *clause = (Node *) lfirst(lcc);
5028 386 : int indexcol = lfirst_int(lci);
5029 :
5030 386 : clause = fix_indexqual_clause(root, index, indexcol, clause, NIL);
5031 386 : fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
5032 : }
5033 :
5034 180622 : return fixed_indexorderbys;
5035 : }
5036 :
5037 : /*
5038 : * fix_indexqual_clause
5039 : * Convert a single indexqual clause to the form needed by the executor.
5040 : *
5041 : * We replace nestloop params here, and replace the index key variables
5042 : * or expressions by index Var nodes.
5043 : */
5044 : static Node *
5045 197516 : fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol,
5046 : Node *clause, List *indexcolnos)
5047 : {
5048 : /*
5049 : * Replace any outer-relation variables with nestloop params.
5050 : *
5051 : * This also makes a copy of the clause, so it's safe to modify it
5052 : * in-place below.
5053 : */
5054 197516 : clause = replace_nestloop_params(root, clause);
5055 :
5056 197516 : if (IsA(clause, OpExpr))
5057 : {
5058 194176 : OpExpr *op = (OpExpr *) clause;
5059 :
5060 : /* Replace the indexkey expression with an index Var. */
5061 194176 : linitial(op->args) = fix_indexqual_operand(linitial(op->args),
5062 : index,
5063 : indexcol);
5064 : }
5065 3340 : else if (IsA(clause, RowCompareExpr))
5066 : {
5067 168 : RowCompareExpr *rc = (RowCompareExpr *) clause;
5068 : ListCell *lca,
5069 : *lcai;
5070 :
5071 : /* Replace the indexkey expressions with index Vars. */
5072 : Assert(list_length(rc->largs) == list_length(indexcolnos));
5073 504 : forboth(lca, rc->largs, lcai, indexcolnos)
5074 : {
5075 336 : lfirst(lca) = fix_indexqual_operand(lfirst(lca),
5076 : index,
5077 : lfirst_int(lcai));
5078 : }
5079 : }
5080 3172 : else if (IsA(clause, ScalarArrayOpExpr))
5081 : {
5082 2278 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
5083 :
5084 : /* Replace the indexkey expression with an index Var. */
5085 2278 : linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
5086 : index,
5087 : indexcol);
5088 : }
5089 894 : else if (IsA(clause, NullTest))
5090 : {
5091 894 : NullTest *nt = (NullTest *) clause;
5092 :
5093 : /* Replace the indexkey expression with an index Var. */
5094 894 : nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
5095 : index,
5096 : indexcol);
5097 : }
5098 : else
5099 0 : elog(ERROR, "unsupported indexqual type: %d",
5100 : (int) nodeTag(clause));
5101 :
5102 197516 : return clause;
5103 : }
5104 :
5105 : /*
5106 : * fix_indexqual_operand
5107 : * Convert an indexqual expression to a Var referencing the index column.
5108 : *
5109 : * We represent index keys by Var nodes having varno == INDEX_VAR and varattno
5110 : * equal to the index's attribute number (index column position).
5111 : *
5112 : * Most of the code here is just for sanity cross-checking that the given
5113 : * expression actually matches the index column it's claimed to.
5114 : */
5115 : static Node *
5116 197684 : fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
5117 : {
5118 : Var *result;
5119 : int pos;
5120 : ListCell *indexpr_item;
5121 :
5122 : /*
5123 : * Remove any binary-compatible relabeling of the indexkey
5124 : */
5125 197684 : if (IsA(node, RelabelType))
5126 626 : node = (Node *) ((RelabelType *) node)->arg;
5127 :
5128 : Assert(indexcol >= 0 && indexcol < index->ncolumns);
5129 :
5130 197684 : if (index->indexkeys[indexcol] != 0)
5131 : {
5132 : /* It's a simple index column */
5133 197320 : if (IsA(node, Var) &&
5134 197320 : ((Var *) node)->varno == index->rel->relid &&
5135 197320 : ((Var *) node)->varattno == index->indexkeys[indexcol])
5136 : {
5137 197320 : result = (Var *) copyObject(node);
5138 197320 : result->varno = INDEX_VAR;
5139 197320 : result->varattno = indexcol + 1;
5140 197320 : return (Node *) result;
5141 : }
5142 : else
5143 0 : elog(ERROR, "index key does not match expected index column");
5144 : }
5145 :
5146 : /* It's an index expression, so find and cross-check the expression */
5147 364 : indexpr_item = list_head(index->indexprs);
5148 364 : for (pos = 0; pos < index->ncolumns; pos++)
5149 : {
5150 364 : if (index->indexkeys[pos] == 0)
5151 : {
5152 364 : if (indexpr_item == NULL)
5153 0 : elog(ERROR, "too few entries in indexprs list");
5154 364 : if (pos == indexcol)
5155 : {
5156 : Node *indexkey;
5157 :
5158 364 : indexkey = (Node *) lfirst(indexpr_item);
5159 364 : if (indexkey && IsA(indexkey, RelabelType))
5160 10 : indexkey = (Node *) ((RelabelType *) indexkey)->arg;
5161 364 : if (equal(node, indexkey))
5162 : {
5163 364 : result = makeVar(INDEX_VAR, indexcol + 1,
5164 364 : exprType(lfirst(indexpr_item)), -1,
5165 364 : exprCollation(lfirst(indexpr_item)),
5166 : 0);
5167 364 : return (Node *) result;
5168 : }
5169 : else
5170 0 : elog(ERROR, "index key does not match expected index column");
5171 : }
5172 0 : indexpr_item = lnext(index->indexprs, indexpr_item);
5173 : }
5174 : }
5175 :
5176 : /* Oops... */
5177 0 : elog(ERROR, "index key does not match expected index column");
5178 : return NULL; /* keep compiler quiet */
5179 : }
5180 :
5181 : /*
5182 : * get_switched_clauses
5183 : * Given a list of merge or hash joinclauses (as RestrictInfo nodes),
5184 : * extract the bare clauses, and rearrange the elements within the
5185 : * clauses, if needed, so the outer join variable is on the left and
5186 : * the inner is on the right. The original clause data structure is not
5187 : * touched; a modified list is returned. We do, however, set the transient
5188 : * outer_is_left field in each RestrictInfo to show which side was which.
5189 : */
5190 : static List *
5191 42390 : get_switched_clauses(List *clauses, Relids outerrelids)
5192 : {
5193 42390 : List *t_list = NIL;
5194 : ListCell *l;
5195 :
5196 89096 : foreach(l, clauses)
5197 : {
5198 46706 : RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
5199 46706 : OpExpr *clause = (OpExpr *) restrictinfo->clause;
5200 :
5201 : Assert(is_opclause(clause));
5202 46706 : if (bms_is_subset(restrictinfo->right_relids, outerrelids))
5203 : {
5204 : /*
5205 : * Duplicate just enough of the structure to allow commuting the
5206 : * clause without changing the original list. Could use
5207 : * copyObject, but a complete deep copy is overkill.
5208 : */
5209 20140 : OpExpr *temp = makeNode(OpExpr);
5210 :
5211 20140 : temp->opno = clause->opno;
5212 20140 : temp->opfuncid = InvalidOid;
5213 20140 : temp->opresulttype = clause->opresulttype;
5214 20140 : temp->opretset = clause->opretset;
5215 20140 : temp->opcollid = clause->opcollid;
5216 20140 : temp->inputcollid = clause->inputcollid;
5217 20140 : temp->args = list_copy(clause->args);
5218 20140 : temp->location = clause->location;
5219 : /* Commute it --- note this modifies the temp node in-place. */
5220 20140 : CommuteOpExpr(temp);
5221 20140 : t_list = lappend(t_list, temp);
5222 20140 : restrictinfo->outer_is_left = false;
5223 : }
5224 : else
5225 : {
5226 : Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
5227 26566 : t_list = lappend(t_list, clause);
5228 26566 : restrictinfo->outer_is_left = true;
5229 : }
5230 : }
5231 42390 : return t_list;
5232 : }
5233 :
5234 : /*
5235 : * order_qual_clauses
5236 : * Given a list of qual clauses that will all be evaluated at the same
5237 : * plan node, sort the list into the order we want to check the quals
5238 : * in at runtime.
5239 : *
5240 : * When security barrier quals are used in the query, we may have quals with
5241 : * different security levels in the list. Quals of lower security_level
5242 : * must go before quals of higher security_level, except that we can grant
5243 : * exceptions to move up quals that are leakproof. When security level
5244 : * doesn't force the decision, we prefer to order clauses by estimated
5245 : * execution cost, cheapest first.
5246 : *
5247 : * Ideally the order should be driven by a combination of execution cost and
5248 : * selectivity, but it's not immediately clear how to account for both,
5249 : * and given the uncertainty of the estimates the reliability of the decisions
5250 : * would be doubtful anyway. So we just order by security level then
5251 : * estimated per-tuple cost, being careful not to change the order when
5252 : * (as is often the case) the estimates are identical.
5253 : *
5254 : * Although this will work on either bare clauses or RestrictInfos, it's
5255 : * much faster to apply it to RestrictInfos, since it can re-use cost
5256 : * information that is cached in RestrictInfos. XXX in the bare-clause
5257 : * case, we are also not able to apply security considerations. That is
5258 : * all right for the moment, because the bare-clause case doesn't occur
5259 : * anywhere that barrier quals could be present, but it would be better to
5260 : * get rid of it.
5261 : *
5262 : * Note: some callers pass lists that contain entries that will later be
5263 : * removed; this is the easiest way to let this routine see RestrictInfos
5264 : * instead of bare clauses. This is another reason why trying to consider
5265 : * selectivity in the ordering would likely do the wrong thing.
5266 : */
5267 : static List *
5268 929838 : order_qual_clauses(PlannerInfo *root, List *clauses)
5269 : {
5270 : typedef struct
5271 : {
5272 : Node *clause;
5273 : Cost cost;
5274 : Index security_level;
5275 : } QualItem;
5276 929838 : int nitems = list_length(clauses);
5277 : QualItem *items;
5278 : ListCell *lc;
5279 : int i;
5280 : List *result;
5281 :
5282 : /* No need to work hard for 0 or 1 clause */
5283 929838 : if (nitems <= 1)
5284 856574 : return clauses;
5285 :
5286 : /*
5287 : * Collect the items and costs into an array. This is to avoid repeated
5288 : * cost_qual_eval work if the inputs aren't RestrictInfos.
5289 : */
5290 73264 : items = (QualItem *) palloc(nitems * sizeof(QualItem));
5291 73264 : i = 0;
5292 243286 : foreach(lc, clauses)
5293 : {
5294 170022 : Node *clause = (Node *) lfirst(lc);
5295 : QualCost qcost;
5296 :
5297 170022 : cost_qual_eval_node(&qcost, clause, root);
5298 170022 : items[i].clause = clause;
5299 170022 : items[i].cost = qcost.per_tuple;
5300 170022 : if (IsA(clause, RestrictInfo))
5301 : {
5302 169930 : RestrictInfo *rinfo = (RestrictInfo *) clause;
5303 :
5304 : /*
5305 : * If a clause is leakproof, it doesn't have to be constrained by
5306 : * its nominal security level. If it's also reasonably cheap
5307 : * (here defined as 10X cpu_operator_cost), pretend it has
5308 : * security_level 0, which will allow it to go in front of
5309 : * more-expensive quals of lower security levels. Of course, that
5310 : * will also force it to go in front of cheaper quals of its own
5311 : * security level, which is not so great, but we can alleviate
5312 : * that risk by applying the cost limit cutoff.
5313 : */
5314 169930 : if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost)
5315 1200 : items[i].security_level = 0;
5316 : else
5317 168730 : items[i].security_level = rinfo->security_level;
5318 : }
5319 : else
5320 92 : items[i].security_level = 0;
5321 170022 : i++;
5322 : }
5323 :
5324 : /*
5325 : * Sort. We don't use qsort() because it's not guaranteed stable for
5326 : * equal keys. The expected number of entries is small enough that a
5327 : * simple insertion sort should be good enough.
5328 : */
5329 170022 : for (i = 1; i < nitems; i++)
5330 : {
5331 96758 : QualItem newitem = items[i];
5332 : int j;
5333 :
5334 : /* insert newitem into the already-sorted subarray */
5335 107210 : for (j = i; j > 0; j--)
5336 : {
5337 98936 : QualItem *olditem = &items[j - 1];
5338 :
5339 98936 : if (newitem.security_level > olditem->security_level ||
5340 98090 : (newitem.security_level == olditem->security_level &&
5341 96654 : newitem.cost >= olditem->cost))
5342 : break;
5343 10452 : items[j] = *olditem;
5344 : }
5345 96758 : items[j] = newitem;
5346 : }
5347 :
5348 : /* Convert back to a list */
5349 73264 : result = NIL;
5350 243286 : for (i = 0; i < nitems; i++)
5351 170022 : result = lappend(result, items[i].clause);
5352 :
5353 73264 : return result;
5354 : }
5355 :
5356 : /*
5357 : * Copy cost and size info from a Path node to the Plan node created from it.
5358 : * The executor usually won't use this info, but it's needed by EXPLAIN.
5359 : * Also copy the parallel-related flags, which the executor *will* use.
5360 : */
5361 : static void
5362 1140390 : copy_generic_path_info(Plan *dest, Path *src)
5363 : {
5364 1140390 : dest->disabled_nodes = src->disabled_nodes;
5365 1140390 : dest->startup_cost = src->startup_cost;
5366 1140390 : dest->total_cost = src->total_cost;
5367 1140390 : dest->plan_rows = src->rows;
5368 1140390 : dest->plan_width = src->pathtarget->width;
5369 1140390 : dest->parallel_aware = src->parallel_aware;
5370 1140390 : dest->parallel_safe = src->parallel_safe;
5371 1140390 : }
5372 :
5373 : /*
5374 : * Copy cost and size info from a lower plan node to an inserted node.
5375 : * (Most callers alter the info after copying it.)
5376 : */
5377 : static void
5378 44862 : copy_plan_costsize(Plan *dest, Plan *src)
5379 : {
5380 44862 : dest->disabled_nodes = src->disabled_nodes;
5381 44862 : dest->startup_cost = src->startup_cost;
5382 44862 : dest->total_cost = src->total_cost;
5383 44862 : dest->plan_rows = src->plan_rows;
5384 44862 : dest->plan_width = src->plan_width;
5385 : /* Assume the inserted node is not parallel-aware. */
5386 44862 : dest->parallel_aware = false;
5387 : /* Assume the inserted node is parallel-safe, if child plan is. */
5388 44862 : dest->parallel_safe = src->parallel_safe;
5389 44862 : }
5390 :
5391 : /*
5392 : * Some places in this file build Sort nodes that don't have a directly
5393 : * corresponding Path node. The cost of the sort is, or should have been,
5394 : * included in the cost of the Path node we're working from, but since it's
5395 : * not split out, we have to re-figure it using cost_sort(). This is just
5396 : * to label the Sort node nicely for EXPLAIN.
5397 : *
5398 : * limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
5399 : */
5400 : static void
5401 10308 : label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples)
5402 : {
5403 10308 : Plan *lefttree = plan->plan.lefttree;
5404 : Path sort_path; /* dummy for result of cost_sort */
5405 :
5406 : Assert(IsA(plan, Sort));
5407 :
5408 10308 : cost_sort(&sort_path, root, NIL,
5409 : plan->plan.disabled_nodes,
5410 : lefttree->total_cost,
5411 : lefttree->plan_rows,
5412 : lefttree->plan_width,
5413 : 0.0,
5414 : work_mem,
5415 : limit_tuples);
5416 10308 : plan->plan.startup_cost = sort_path.startup_cost;
5417 10308 : plan->plan.total_cost = sort_path.total_cost;
5418 10308 : plan->plan.plan_rows = lefttree->plan_rows;
5419 10308 : plan->plan.plan_width = lefttree->plan_width;
5420 10308 : plan->plan.parallel_aware = false;
5421 10308 : plan->plan.parallel_safe = lefttree->parallel_safe;
5422 10308 : }
5423 :
5424 : /*
5425 : * Same as label_sort_with_costsize, but labels the IncrementalSort node
5426 : * instead.
5427 : */
5428 : static void
5429 36 : label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
5430 : List *pathkeys, double limit_tuples)
5431 : {
5432 36 : Plan *lefttree = plan->sort.plan.lefttree;
5433 : Path sort_path; /* dummy for result of cost_incremental_sort */
5434 :
5435 : Assert(IsA(plan, IncrementalSort));
5436 :
5437 36 : cost_incremental_sort(&sort_path, root, pathkeys,
5438 : plan->nPresortedCols,
5439 : plan->sort.plan.disabled_nodes,
5440 : lefttree->startup_cost,
5441 : lefttree->total_cost,
5442 : lefttree->plan_rows,
5443 : lefttree->plan_width,
5444 : 0.0,
5445 : work_mem,
5446 : limit_tuples);
5447 36 : plan->sort.plan.startup_cost = sort_path.startup_cost;
5448 36 : plan->sort.plan.total_cost = sort_path.total_cost;
5449 36 : plan->sort.plan.plan_rows = lefttree->plan_rows;
5450 36 : plan->sort.plan.plan_width = lefttree->plan_width;
5451 36 : plan->sort.plan.parallel_aware = false;
5452 36 : plan->sort.plan.parallel_safe = lefttree->parallel_safe;
5453 36 : }
5454 :
5455 : /*
5456 : * bitmap_subplan_mark_shared
5457 : * Set isshared flag in bitmap subplan so that it will be created in
5458 : * shared memory.
5459 : */
5460 : static void
5461 30 : bitmap_subplan_mark_shared(Plan *plan)
5462 : {
5463 30 : if (IsA(plan, BitmapAnd))
5464 0 : bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans));
5465 30 : else if (IsA(plan, BitmapOr))
5466 : {
5467 0 : ((BitmapOr *) plan)->isshared = true;
5468 0 : bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans));
5469 : }
5470 30 : else if (IsA(plan, BitmapIndexScan))
5471 30 : ((BitmapIndexScan *) plan)->isshared = true;
5472 : else
5473 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(plan));
5474 30 : }
5475 :
5476 : /*****************************************************************************
5477 : *
5478 : * PLAN NODE BUILDING ROUTINES
5479 : *
5480 : * In general, these functions are not passed the original Path and therefore
5481 : * leave it to the caller to fill in the cost/width fields from the Path,
5482 : * typically by calling copy_generic_path_info(). This convention is
5483 : * somewhat historical, but it does support a few places above where we build
5484 : * a plan node without having an exactly corresponding Path node. Under no
5485 : * circumstances should one of these functions do its own cost calculations,
5486 : * as that would be redundant with calculations done while building Paths.
5487 : *
5488 : *****************************************************************************/
5489 :
5490 : static SeqScan *
5491 219488 : make_seqscan(List *qptlist,
5492 : List *qpqual,
5493 : Index scanrelid)
5494 : {
5495 219488 : SeqScan *node = makeNode(SeqScan);
5496 219488 : Plan *plan = &node->scan.plan;
5497 :
5498 219488 : plan->targetlist = qptlist;
5499 219488 : plan->qual = qpqual;
5500 219488 : plan->lefttree = NULL;
5501 219488 : plan->righttree = NULL;
5502 219488 : node->scan.scanrelid = scanrelid;
5503 :
5504 219488 : return node;
5505 : }
5506 :
5507 : static SampleScan *
5508 306 : make_samplescan(List *qptlist,
5509 : List *qpqual,
5510 : Index scanrelid,
5511 : TableSampleClause *tsc)
5512 : {
5513 306 : SampleScan *node = makeNode(SampleScan);
5514 306 : Plan *plan = &node->scan.plan;
5515 :
5516 306 : plan->targetlist = qptlist;
5517 306 : plan->qual = qpqual;
5518 306 : plan->lefttree = NULL;
5519 306 : plan->righttree = NULL;
5520 306 : node->scan.scanrelid = scanrelid;
5521 306 : node->tablesample = tsc;
5522 :
5523 306 : return node;
5524 : }
5525 :
5526 : static IndexScan *
5527 162416 : make_indexscan(List *qptlist,
5528 : List *qpqual,
5529 : Index scanrelid,
5530 : Oid indexid,
5531 : List *indexqual,
5532 : List *indexqualorig,
5533 : List *indexorderby,
5534 : List *indexorderbyorig,
5535 : List *indexorderbyops,
5536 : ScanDirection indexscandir)
5537 : {
5538 162416 : IndexScan *node = makeNode(IndexScan);
5539 162416 : Plan *plan = &node->scan.plan;
5540 :
5541 162416 : plan->targetlist = qptlist;
5542 162416 : plan->qual = qpqual;
5543 162416 : plan->lefttree = NULL;
5544 162416 : plan->righttree = NULL;
5545 162416 : node->scan.scanrelid = scanrelid;
5546 162416 : node->indexid = indexid;
5547 162416 : node->indexqual = indexqual;
5548 162416 : node->indexqualorig = indexqualorig;
5549 162416 : node->indexorderby = indexorderby;
5550 162416 : node->indexorderbyorig = indexorderbyorig;
5551 162416 : node->indexorderbyops = indexorderbyops;
5552 162416 : node->indexorderdir = indexscandir;
5553 :
5554 162416 : return node;
5555 : }
5556 :
5557 : static IndexOnlyScan *
5558 18206 : make_indexonlyscan(List *qptlist,
5559 : List *qpqual,
5560 : Index scanrelid,
5561 : Oid indexid,
5562 : List *indexqual,
5563 : List *recheckqual,
5564 : List *indexorderby,
5565 : List *indextlist,
5566 : ScanDirection indexscandir)
5567 : {
5568 18206 : IndexOnlyScan *node = makeNode(IndexOnlyScan);
5569 18206 : Plan *plan = &node->scan.plan;
5570 :
5571 18206 : plan->targetlist = qptlist;
5572 18206 : plan->qual = qpqual;
5573 18206 : plan->lefttree = NULL;
5574 18206 : plan->righttree = NULL;
5575 18206 : node->scan.scanrelid = scanrelid;
5576 18206 : node->indexid = indexid;
5577 18206 : node->indexqual = indexqual;
5578 18206 : node->recheckqual = recheckqual;
5579 18206 : node->indexorderby = indexorderby;
5580 18206 : node->indextlist = indextlist;
5581 18206 : node->indexorderdir = indexscandir;
5582 :
5583 18206 : return node;
5584 : }
5585 :
5586 : static BitmapIndexScan *
5587 21728 : make_bitmap_indexscan(Index scanrelid,
5588 : Oid indexid,
5589 : List *indexqual,
5590 : List *indexqualorig)
5591 : {
5592 21728 : BitmapIndexScan *node = makeNode(BitmapIndexScan);
5593 21728 : Plan *plan = &node->scan.plan;
5594 :
5595 21728 : plan->targetlist = NIL; /* not used */
5596 21728 : plan->qual = NIL; /* not used */
5597 21728 : plan->lefttree = NULL;
5598 21728 : plan->righttree = NULL;
5599 21728 : node->scan.scanrelid = scanrelid;
5600 21728 : node->indexid = indexid;
5601 21728 : node->indexqual = indexqual;
5602 21728 : node->indexqualorig = indexqualorig;
5603 :
5604 21728 : return node;
5605 : }
5606 :
5607 : static BitmapHeapScan *
5608 21054 : make_bitmap_heapscan(List *qptlist,
5609 : List *qpqual,
5610 : Plan *lefttree,
5611 : List *bitmapqualorig,
5612 : Index scanrelid)
5613 : {
5614 21054 : BitmapHeapScan *node = makeNode(BitmapHeapScan);
5615 21054 : Plan *plan = &node->scan.plan;
5616 :
5617 21054 : plan->targetlist = qptlist;
5618 21054 : plan->qual = qpqual;
5619 21054 : plan->lefttree = lefttree;
5620 21054 : plan->righttree = NULL;
5621 21054 : node->scan.scanrelid = scanrelid;
5622 21054 : node->bitmapqualorig = bitmapqualorig;
5623 :
5624 21054 : return node;
5625 : }
5626 :
5627 : static TidScan *
5628 752 : make_tidscan(List *qptlist,
5629 : List *qpqual,
5630 : Index scanrelid,
5631 : List *tidquals)
5632 : {
5633 752 : TidScan *node = makeNode(TidScan);
5634 752 : Plan *plan = &node->scan.plan;
5635 :
5636 752 : plan->targetlist = qptlist;
5637 752 : plan->qual = qpqual;
5638 752 : plan->lefttree = NULL;
5639 752 : plan->righttree = NULL;
5640 752 : node->scan.scanrelid = scanrelid;
5641 752 : node->tidquals = tidquals;
5642 :
5643 752 : return node;
5644 : }
5645 :
5646 : static TidRangeScan *
5647 1944 : make_tidrangescan(List *qptlist,
5648 : List *qpqual,
5649 : Index scanrelid,
5650 : List *tidrangequals)
5651 : {
5652 1944 : TidRangeScan *node = makeNode(TidRangeScan);
5653 1944 : Plan *plan = &node->scan.plan;
5654 :
5655 1944 : plan->targetlist = qptlist;
5656 1944 : plan->qual = qpqual;
5657 1944 : plan->lefttree = NULL;
5658 1944 : plan->righttree = NULL;
5659 1944 : node->scan.scanrelid = scanrelid;
5660 1944 : node->tidrangequals = tidrangequals;
5661 :
5662 1944 : return node;
5663 : }
5664 :
5665 : static SubqueryScan *
5666 32550 : make_subqueryscan(List *qptlist,
5667 : List *qpqual,
5668 : Index scanrelid,
5669 : Plan *subplan)
5670 : {
5671 32550 : SubqueryScan *node = makeNode(SubqueryScan);
5672 32550 : Plan *plan = &node->scan.plan;
5673 :
5674 32550 : plan->targetlist = qptlist;
5675 32550 : plan->qual = qpqual;
5676 32550 : plan->lefttree = NULL;
5677 32550 : plan->righttree = NULL;
5678 32550 : node->scan.scanrelid = scanrelid;
5679 32550 : node->subplan = subplan;
5680 32550 : node->scanstatus = SUBQUERY_SCAN_UNKNOWN;
5681 :
5682 32550 : return node;
5683 : }
5684 :
5685 : static FunctionScan *
5686 50804 : make_functionscan(List *qptlist,
5687 : List *qpqual,
5688 : Index scanrelid,
5689 : List *functions,
5690 : bool funcordinality)
5691 : {
5692 50804 : FunctionScan *node = makeNode(FunctionScan);
5693 50804 : Plan *plan = &node->scan.plan;
5694 :
5695 50804 : plan->targetlist = qptlist;
5696 50804 : plan->qual = qpqual;
5697 50804 : plan->lefttree = NULL;
5698 50804 : plan->righttree = NULL;
5699 50804 : node->scan.scanrelid = scanrelid;
5700 50804 : node->functions = functions;
5701 50804 : node->funcordinality = funcordinality;
5702 :
5703 50804 : return node;
5704 : }
5705 :
5706 : static TableFuncScan *
5707 626 : make_tablefuncscan(List *qptlist,
5708 : List *qpqual,
5709 : Index scanrelid,
5710 : TableFunc *tablefunc)
5711 : {
5712 626 : TableFuncScan *node = makeNode(TableFuncScan);
5713 626 : Plan *plan = &node->scan.plan;
5714 :
5715 626 : plan->targetlist = qptlist;
5716 626 : plan->qual = qpqual;
5717 626 : plan->lefttree = NULL;
5718 626 : plan->righttree = NULL;
5719 626 : node->scan.scanrelid = scanrelid;
5720 626 : node->tablefunc = tablefunc;
5721 :
5722 626 : return node;
5723 : }
5724 :
5725 : static ValuesScan *
5726 8278 : make_valuesscan(List *qptlist,
5727 : List *qpqual,
5728 : Index scanrelid,
5729 : List *values_lists)
5730 : {
5731 8278 : ValuesScan *node = makeNode(ValuesScan);
5732 8278 : Plan *plan = &node->scan.plan;
5733 :
5734 8278 : plan->targetlist = qptlist;
5735 8278 : plan->qual = qpqual;
5736 8278 : plan->lefttree = NULL;
5737 8278 : plan->righttree = NULL;
5738 8278 : node->scan.scanrelid = scanrelid;
5739 8278 : node->values_lists = values_lists;
5740 :
5741 8278 : return node;
5742 : }
5743 :
5744 : static CteScan *
5745 4244 : make_ctescan(List *qptlist,
5746 : List *qpqual,
5747 : Index scanrelid,
5748 : int ctePlanId,
5749 : int cteParam)
5750 : {
5751 4244 : CteScan *node = makeNode(CteScan);
5752 4244 : Plan *plan = &node->scan.plan;
5753 :
5754 4244 : plan->targetlist = qptlist;
5755 4244 : plan->qual = qpqual;
5756 4244 : plan->lefttree = NULL;
5757 4244 : plan->righttree = NULL;
5758 4244 : node->scan.scanrelid = scanrelid;
5759 4244 : node->ctePlanId = ctePlanId;
5760 4244 : node->cteParam = cteParam;
5761 :
5762 4244 : return node;
5763 : }
5764 :
5765 : static NamedTuplestoreScan *
5766 478 : make_namedtuplestorescan(List *qptlist,
5767 : List *qpqual,
5768 : Index scanrelid,
5769 : char *enrname)
5770 : {
5771 478 : NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan);
5772 478 : Plan *plan = &node->scan.plan;
5773 :
5774 : /* cost should be inserted by caller */
5775 478 : plan->targetlist = qptlist;
5776 478 : plan->qual = qpqual;
5777 478 : plan->lefttree = NULL;
5778 478 : plan->righttree = NULL;
5779 478 : node->scan.scanrelid = scanrelid;
5780 478 : node->enrname = enrname;
5781 :
5782 478 : return node;
5783 : }
5784 :
5785 : static WorkTableScan *
5786 926 : make_worktablescan(List *qptlist,
5787 : List *qpqual,
5788 : Index scanrelid,
5789 : int wtParam)
5790 : {
5791 926 : WorkTableScan *node = makeNode(WorkTableScan);
5792 926 : Plan *plan = &node->scan.plan;
5793 :
5794 926 : plan->targetlist = qptlist;
5795 926 : plan->qual = qpqual;
5796 926 : plan->lefttree = NULL;
5797 926 : plan->righttree = NULL;
5798 926 : node->scan.scanrelid = scanrelid;
5799 926 : node->wtParam = wtParam;
5800 :
5801 926 : return node;
5802 : }
5803 :
5804 : ForeignScan *
5805 2064 : make_foreignscan(List *qptlist,
5806 : List *qpqual,
5807 : Index scanrelid,
5808 : List *fdw_exprs,
5809 : List *fdw_private,
5810 : List *fdw_scan_tlist,
5811 : List *fdw_recheck_quals,
5812 : Plan *outer_plan)
5813 : {
5814 2064 : ForeignScan *node = makeNode(ForeignScan);
5815 2064 : Plan *plan = &node->scan.plan;
5816 :
5817 : /* cost will be filled in by create_foreignscan_plan */
5818 2064 : plan->targetlist = qptlist;
5819 2064 : plan->qual = qpqual;
5820 2064 : plan->lefttree = outer_plan;
5821 2064 : plan->righttree = NULL;
5822 2064 : node->scan.scanrelid = scanrelid;
5823 :
5824 : /* these may be overridden by the FDW's PlanDirectModify callback. */
5825 2064 : node->operation = CMD_SELECT;
5826 2064 : node->resultRelation = 0;
5827 :
5828 : /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5829 2064 : node->checkAsUser = InvalidOid;
5830 2064 : node->fs_server = InvalidOid;
5831 2064 : node->fdw_exprs = fdw_exprs;
5832 2064 : node->fdw_private = fdw_private;
5833 2064 : node->fdw_scan_tlist = fdw_scan_tlist;
5834 2064 : node->fdw_recheck_quals = fdw_recheck_quals;
5835 : /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5836 2064 : node->fs_relids = NULL;
5837 2064 : node->fs_base_relids = NULL;
5838 : /* fsSystemCol will be filled in by create_foreignscan_plan */
5839 2064 : node->fsSystemCol = false;
5840 :
5841 2064 : return node;
5842 : }
5843 :
5844 : static RecursiveUnion *
5845 926 : make_recursive_union(List *tlist,
5846 : Plan *lefttree,
5847 : Plan *righttree,
5848 : int wtParam,
5849 : List *distinctList,
5850 : long numGroups)
5851 : {
5852 926 : RecursiveUnion *node = makeNode(RecursiveUnion);
5853 926 : Plan *plan = &node->plan;
5854 926 : int numCols = list_length(distinctList);
5855 :
5856 926 : plan->targetlist = tlist;
5857 926 : plan->qual = NIL;
5858 926 : plan->lefttree = lefttree;
5859 926 : plan->righttree = righttree;
5860 926 : node->wtParam = wtParam;
5861 :
5862 : /*
5863 : * convert SortGroupClause list into arrays of attr indexes and equality
5864 : * operators, as wanted by executor
5865 : */
5866 926 : node->numCols = numCols;
5867 926 : if (numCols > 0)
5868 : {
5869 378 : int keyno = 0;
5870 : AttrNumber *dupColIdx;
5871 : Oid *dupOperators;
5872 : Oid *dupCollations;
5873 : ListCell *slitem;
5874 :
5875 378 : dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
5876 378 : dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
5877 378 : dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);
5878 :
5879 1440 : foreach(slitem, distinctList)
5880 : {
5881 1062 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
5882 1062 : TargetEntry *tle = get_sortgroupclause_tle(sortcl,
5883 : plan->targetlist);
5884 :
5885 1062 : dupColIdx[keyno] = tle->resno;
5886 1062 : dupOperators[keyno] = sortcl->eqop;
5887 1062 : dupCollations[keyno] = exprCollation((Node *) tle->expr);
5888 : Assert(OidIsValid(dupOperators[keyno]));
5889 1062 : keyno++;
5890 : }
5891 378 : node->dupColIdx = dupColIdx;
5892 378 : node->dupOperators = dupOperators;
5893 378 : node->dupCollations = dupCollations;
5894 : }
5895 926 : node->numGroups = numGroups;
5896 :
5897 926 : return node;
5898 : }
5899 :
5900 : static BitmapAnd *
5901 246 : make_bitmap_and(List *bitmapplans)
5902 : {
5903 246 : BitmapAnd *node = makeNode(BitmapAnd);
5904 246 : Plan *plan = &node->plan;
5905 :
5906 246 : plan->targetlist = NIL;
5907 246 : plan->qual = NIL;
5908 246 : plan->lefttree = NULL;
5909 246 : plan->righttree = NULL;
5910 246 : node->bitmapplans = bitmapplans;
5911 :
5912 246 : return node;
5913 : }
5914 :
5915 : static BitmapOr *
5916 422 : make_bitmap_or(List *bitmapplans)
5917 : {
5918 422 : BitmapOr *node = makeNode(BitmapOr);
5919 422 : Plan *plan = &node->plan;
5920 :
5921 422 : plan->targetlist = NIL;
5922 422 : plan->qual = NIL;
5923 422 : plan->lefttree = NULL;
5924 422 : plan->righttree = NULL;
5925 422 : node->bitmapplans = bitmapplans;
5926 :
5927 422 : return node;
5928 : }
5929 :
5930 : static NestLoop *
5931 97500 : make_nestloop(List *tlist,
5932 : List *joinclauses,
5933 : List *otherclauses,
5934 : List *nestParams,
5935 : Plan *lefttree,
5936 : Plan *righttree,
5937 : JoinType jointype,
5938 : bool inner_unique)
5939 : {
5940 97500 : NestLoop *node = makeNode(NestLoop);
5941 97500 : Plan *plan = &node->join.plan;
5942 :
5943 97500 : plan->targetlist = tlist;
5944 97500 : plan->qual = otherclauses;
5945 97500 : plan->lefttree = lefttree;
5946 97500 : plan->righttree = righttree;
5947 97500 : node->join.jointype = jointype;
5948 97500 : node->join.inner_unique = inner_unique;
5949 97500 : node->join.joinqual = joinclauses;
5950 97500 : node->nestParams = nestParams;
5951 :
5952 97500 : return node;
5953 : }
5954 :
5955 : static HashJoin *
5956 34650 : make_hashjoin(List *tlist,
5957 : List *joinclauses,
5958 : List *otherclauses,
5959 : List *hashclauses,
5960 : List *hashoperators,
5961 : List *hashcollations,
5962 : List *hashkeys,
5963 : Plan *lefttree,
5964 : Plan *righttree,
5965 : JoinType jointype,
5966 : bool inner_unique)
5967 : {
5968 34650 : HashJoin *node = makeNode(HashJoin);
5969 34650 : Plan *plan = &node->join.plan;
5970 :
5971 34650 : plan->targetlist = tlist;
5972 34650 : plan->qual = otherclauses;
5973 34650 : plan->lefttree = lefttree;
5974 34650 : plan->righttree = righttree;
5975 34650 : node->hashclauses = hashclauses;
5976 34650 : node->hashoperators = hashoperators;
5977 34650 : node->hashcollations = hashcollations;
5978 34650 : node->hashkeys = hashkeys;
5979 34650 : node->join.jointype = jointype;
5980 34650 : node->join.inner_unique = inner_unique;
5981 34650 : node->join.joinqual = joinclauses;
5982 :
5983 34650 : return node;
5984 : }
5985 :
5986 : static Hash *
5987 34650 : make_hash(Plan *lefttree,
5988 : List *hashkeys,
5989 : Oid skewTable,
5990 : AttrNumber skewColumn,
5991 : bool skewInherit)
5992 : {
5993 34650 : Hash *node = makeNode(Hash);
5994 34650 : Plan *plan = &node->plan;
5995 :
5996 34650 : plan->targetlist = lefttree->targetlist;
5997 34650 : plan->qual = NIL;
5998 34650 : plan->lefttree = lefttree;
5999 34650 : plan->righttree = NULL;
6000 :
6001 34650 : node->hashkeys = hashkeys;
6002 34650 : node->skewTable = skewTable;
6003 34650 : node->skewColumn = skewColumn;
6004 34650 : node->skewInherit = skewInherit;
6005 :
6006 34650 : return node;
6007 : }
6008 :
6009 : static MergeJoin *
6010 7740 : make_mergejoin(List *tlist,
6011 : List *joinclauses,
6012 : List *otherclauses,
6013 : List *mergeclauses,
6014 : Oid *mergefamilies,
6015 : Oid *mergecollations,
6016 : bool *mergereversals,
6017 : bool *mergenullsfirst,
6018 : Plan *lefttree,
6019 : Plan *righttree,
6020 : JoinType jointype,
6021 : bool inner_unique,
6022 : bool skip_mark_restore)
6023 : {
6024 7740 : MergeJoin *node = makeNode(MergeJoin);
6025 7740 : Plan *plan = &node->join.plan;
6026 :
6027 7740 : plan->targetlist = tlist;
6028 7740 : plan->qual = otherclauses;
6029 7740 : plan->lefttree = lefttree;
6030 7740 : plan->righttree = righttree;
6031 7740 : node->skip_mark_restore = skip_mark_restore;
6032 7740 : node->mergeclauses = mergeclauses;
6033 7740 : node->mergeFamilies = mergefamilies;
6034 7740 : node->mergeCollations = mergecollations;
6035 7740 : node->mergeReversals = mergereversals;
6036 7740 : node->mergeNullsFirst = mergenullsfirst;
6037 7740 : node->join.jointype = jointype;
6038 7740 : node->join.inner_unique = inner_unique;
6039 7740 : node->join.joinqual = joinclauses;
6040 :
6041 7740 : return node;
6042 : }
6043 :
6044 : /*
6045 : * make_sort --- basic routine to build a Sort plan node
6046 : *
6047 : * Caller must have built the sortColIdx, sortOperators, collations, and
6048 : * nullsFirst arrays already.
6049 : */
6050 : static Sort *
6051 79838 : make_sort(Plan *lefttree, int numCols,
6052 : AttrNumber *sortColIdx, Oid *sortOperators,
6053 : Oid *collations, bool *nullsFirst)
6054 : {
6055 : Sort *node;
6056 : Plan *plan;
6057 :
6058 79838 : node = makeNode(Sort);
6059 :
6060 79838 : plan = &node->plan;
6061 79838 : plan->targetlist = lefttree->targetlist;
6062 79838 : plan->disabled_nodes = lefttree->disabled_nodes + (enable_sort == false);
6063 79838 : plan->qual = NIL;
6064 79838 : plan->lefttree = lefttree;
6065 79838 : plan->righttree = NULL;
6066 79838 : node->numCols = numCols;
6067 79838 : node->sortColIdx = sortColIdx;
6068 79838 : node->sortOperators = sortOperators;
6069 79838 : node->collations = collations;
6070 79838 : node->nullsFirst = nullsFirst;
6071 :
6072 79838 : return node;
6073 : }
6074 :
6075 : /*
6076 : * make_incrementalsort --- basic routine to build an IncrementalSort plan node
6077 : *
6078 : * Caller must have built the sortColIdx, sortOperators, collations, and
6079 : * nullsFirst arrays already.
6080 : */
6081 : static IncrementalSort *
6082 1042 : make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols,
6083 : AttrNumber *sortColIdx, Oid *sortOperators,
6084 : Oid *collations, bool *nullsFirst)
6085 : {
6086 : IncrementalSort *node;
6087 : Plan *plan;
6088 :
6089 1042 : node = makeNode(IncrementalSort);
6090 :
6091 1042 : plan = &node->sort.plan;
6092 1042 : plan->targetlist = lefttree->targetlist;
6093 1042 : plan->qual = NIL;
6094 1042 : plan->lefttree = lefttree;
6095 1042 : plan->righttree = NULL;
6096 1042 : node->nPresortedCols = nPresortedCols;
6097 1042 : node->sort.numCols = numCols;
6098 1042 : node->sort.sortColIdx = sortColIdx;
6099 1042 : node->sort.sortOperators = sortOperators;
6100 1042 : node->sort.collations = collations;
6101 1042 : node->sort.nullsFirst = nullsFirst;
6102 :
6103 1042 : return node;
6104 : }
6105 :
6106 : /*
6107 : * prepare_sort_from_pathkeys
6108 : * Prepare to sort according to given pathkeys
6109 : *
6110 : * This is used to set up for Sort, MergeAppend, and Gather Merge nodes. It
6111 : * calculates the executor's representation of the sort key information, and
6112 : * adjusts the plan targetlist if needed to add resjunk sort columns.
6113 : *
6114 : * Input parameters:
6115 : * 'lefttree' is the plan node which yields input tuples
6116 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6117 : * 'relids' identifies the child relation being sorted, if any
6118 : * 'reqColIdx' is NULL or an array of required sort key column numbers
6119 : * 'adjust_tlist_in_place' is true if lefttree must be modified in-place
6120 : *
6121 : * We must convert the pathkey information into arrays of sort key column
6122 : * numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
6123 : * which is the representation the executor wants. These are returned into
6124 : * the output parameters *p_numsortkeys etc.
6125 : *
6126 : * When looking for matches to an EquivalenceClass's members, we will only
6127 : * consider child EC members if they belong to given 'relids'. This protects
6128 : * against possible incorrect matches to child expressions that contain no
6129 : * Vars.
6130 : *
6131 : * If reqColIdx isn't NULL then it contains sort key column numbers that
6132 : * we should match. This is used when making child plans for a MergeAppend;
6133 : * it's an error if we can't match the columns.
6134 : *
6135 : * If the pathkeys include expressions that aren't simple Vars, we will
6136 : * usually need to add resjunk items to the input plan's targetlist to
6137 : * compute these expressions, since a Sort or MergeAppend node itself won't
6138 : * do any such calculations. If the input plan type isn't one that can do
6139 : * projections, this means adding a Result node just to do the projection.
6140 : * However, the caller can pass adjust_tlist_in_place = true to force the
6141 : * lefttree tlist to be modified in-place regardless of whether the node type
6142 : * can project --- we use this for fixing the tlist of MergeAppend itself.
6143 : *
6144 : * Returns the node which is to be the input to the Sort (either lefttree,
6145 : * or a Result stacked atop lefttree).
6146 : */
6147 : static Plan *
6148 84152 : prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
6149 : Relids relids,
6150 : const AttrNumber *reqColIdx,
6151 : bool adjust_tlist_in_place,
6152 : int *p_numsortkeys,
6153 : AttrNumber **p_sortColIdx,
6154 : Oid **p_sortOperators,
6155 : Oid **p_collations,
6156 : bool **p_nullsFirst)
6157 : {
6158 84152 : List *tlist = lefttree->targetlist;
6159 : ListCell *i;
6160 : int numsortkeys;
6161 : AttrNumber *sortColIdx;
6162 : Oid *sortOperators;
6163 : Oid *collations;
6164 : bool *nullsFirst;
6165 :
6166 : /*
6167 : * We will need at most list_length(pathkeys) sort columns; possibly less
6168 : */
6169 84152 : numsortkeys = list_length(pathkeys);
6170 84152 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6171 84152 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6172 84152 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6173 84152 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6174 :
6175 84152 : numsortkeys = 0;
6176 :
6177 207638 : foreach(i, pathkeys)
6178 : {
6179 123486 : PathKey *pathkey = (PathKey *) lfirst(i);
6180 123486 : EquivalenceClass *ec = pathkey->pk_eclass;
6181 : EquivalenceMember *em;
6182 123486 : TargetEntry *tle = NULL;
6183 123486 : Oid pk_datatype = InvalidOid;
6184 : Oid sortop;
6185 : ListCell *j;
6186 :
6187 123486 : if (ec->ec_has_volatile)
6188 : {
6189 : /*
6190 : * If the pathkey's EquivalenceClass is volatile, then it must
6191 : * have come from an ORDER BY clause, and we have to match it to
6192 : * that same targetlist entry.
6193 : */
6194 200 : if (ec->ec_sortref == 0) /* can't happen */
6195 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6196 200 : tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
6197 : Assert(tle);
6198 : Assert(list_length(ec->ec_members) == 1);
6199 200 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6200 : }
6201 123286 : else if (reqColIdx != NULL)
6202 : {
6203 : /*
6204 : * If we are given a sort column number to match, only consider
6205 : * the single TLE at that position. It's possible that there is
6206 : * no such TLE, in which case fall through and generate a resjunk
6207 : * targetentry (we assume this must have happened in the parent
6208 : * plan as well). If there is a TLE but it doesn't match the
6209 : * pathkey's EC, we do the same, which is probably the wrong thing
6210 : * but we'll leave it to caller to complain about the mismatch.
6211 : */
6212 3274 : tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
6213 3274 : if (tle)
6214 : {
6215 3154 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6216 3154 : if (em)
6217 : {
6218 : /* found expr at right place in tlist */
6219 3154 : pk_datatype = em->em_datatype;
6220 : }
6221 : else
6222 0 : tle = NULL;
6223 : }
6224 : }
6225 : else
6226 : {
6227 : /*
6228 : * Otherwise, we can sort by any non-constant expression listed in
6229 : * the pathkey's EquivalenceClass. For now, we take the first
6230 : * tlist item found in the EC. If there's no match, we'll generate
6231 : * a resjunk entry using the first EC member that is an expression
6232 : * in the input's vars.
6233 : *
6234 : * XXX if we have a choice, is there any way of figuring out which
6235 : * might be cheapest to execute? (For example, int4lt is likely
6236 : * much cheaper to execute than numericlt, but both might appear
6237 : * in the same equivalence class...) Not clear that we ever will
6238 : * have an interesting choice in practice, so it may not matter.
6239 : */
6240 300122 : foreach(j, tlist)
6241 : {
6242 299876 : tle = (TargetEntry *) lfirst(j);
6243 299876 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6244 299876 : if (em)
6245 : {
6246 : /* found expr already in tlist */
6247 119766 : pk_datatype = em->em_datatype;
6248 119766 : break;
6249 : }
6250 180110 : tle = NULL;
6251 : }
6252 : }
6253 :
6254 123486 : if (!tle)
6255 : {
6256 : /*
6257 : * No matching tlist item; look for a computable expression.
6258 : */
6259 366 : em = find_computable_ec_member(NULL, ec, tlist, relids, false);
6260 366 : if (!em)
6261 0 : elog(ERROR, "could not find pathkey item to sort");
6262 366 : pk_datatype = em->em_datatype;
6263 :
6264 : /*
6265 : * Do we need to insert a Result node?
6266 : */
6267 366 : if (!adjust_tlist_in_place &&
6268 330 : !is_projection_capable_plan(lefttree))
6269 : {
6270 : /* copy needed so we don't modify input's tlist below */
6271 26 : tlist = copyObject(tlist);
6272 26 : lefttree = inject_projection_plan(lefttree, tlist,
6273 26 : lefttree->parallel_safe);
6274 : }
6275 :
6276 : /* Don't bother testing is_projection_capable_plan again */
6277 366 : adjust_tlist_in_place = true;
6278 :
6279 : /*
6280 : * Add resjunk entry to input's tlist
6281 : */
6282 366 : tle = makeTargetEntry(copyObject(em->em_expr),
6283 366 : list_length(tlist) + 1,
6284 : NULL,
6285 : true);
6286 366 : tlist = lappend(tlist, tle);
6287 366 : lefttree->targetlist = tlist; /* just in case NIL before */
6288 : }
6289 :
6290 : /*
6291 : * Look up the correct sort operator from the PathKey's slightly
6292 : * abstracted representation.
6293 : */
6294 123486 : sortop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
6295 : pk_datatype,
6296 : pk_datatype,
6297 : pathkey->pk_cmptype);
6298 123486 : if (!OidIsValid(sortop)) /* should not happen */
6299 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6300 : pathkey->pk_cmptype, pk_datatype, pk_datatype,
6301 : pathkey->pk_opfamily);
6302 :
6303 : /* Add the column to the sort arrays */
6304 123486 : sortColIdx[numsortkeys] = tle->resno;
6305 123486 : sortOperators[numsortkeys] = sortop;
6306 123486 : collations[numsortkeys] = ec->ec_collation;
6307 123486 : nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
6308 123486 : numsortkeys++;
6309 : }
6310 :
6311 : /* Return results */
6312 84152 : *p_numsortkeys = numsortkeys;
6313 84152 : *p_sortColIdx = sortColIdx;
6314 84152 : *p_sortOperators = sortOperators;
6315 84152 : *p_collations = collations;
6316 84152 : *p_nullsFirst = nullsFirst;
6317 :
6318 84152 : return lefttree;
6319 : }
6320 :
6321 : /*
6322 : * make_sort_from_pathkeys
6323 : * Create sort plan to sort according to given pathkeys
6324 : *
6325 : * 'lefttree' is the node which yields input tuples
6326 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6327 : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6328 : */
6329 : static Sort *
6330 79526 : make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids)
6331 : {
6332 : int numsortkeys;
6333 : AttrNumber *sortColIdx;
6334 : Oid *sortOperators;
6335 : Oid *collations;
6336 : bool *nullsFirst;
6337 :
6338 : /* Compute sort column info, and adjust lefttree as needed */
6339 79526 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6340 : relids,
6341 : NULL,
6342 : false,
6343 : &numsortkeys,
6344 : &sortColIdx,
6345 : &sortOperators,
6346 : &collations,
6347 : &nullsFirst);
6348 :
6349 : /* Now build the Sort node */
6350 79526 : return make_sort(lefttree, numsortkeys,
6351 : sortColIdx, sortOperators,
6352 : collations, nullsFirst);
6353 : }
6354 :
6355 : /*
6356 : * make_incrementalsort_from_pathkeys
6357 : * Create sort plan to sort according to given pathkeys
6358 : *
6359 : * 'lefttree' is the node which yields input tuples
6360 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6361 : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6362 : * 'nPresortedCols' is the number of presorted columns in input tuples
6363 : */
6364 : static IncrementalSort *
6365 1018 : make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys,
6366 : Relids relids, int nPresortedCols)
6367 : {
6368 : int numsortkeys;
6369 : AttrNumber *sortColIdx;
6370 : Oid *sortOperators;
6371 : Oid *collations;
6372 : bool *nullsFirst;
6373 :
6374 : /* Compute sort column info, and adjust lefttree as needed */
6375 1018 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6376 : relids,
6377 : NULL,
6378 : false,
6379 : &numsortkeys,
6380 : &sortColIdx,
6381 : &sortOperators,
6382 : &collations,
6383 : &nullsFirst);
6384 :
6385 : /* Now build the Sort node */
6386 1018 : return make_incrementalsort(lefttree, numsortkeys, nPresortedCols,
6387 : sortColIdx, sortOperators,
6388 : collations, nullsFirst);
6389 : }
6390 :
6391 : /*
6392 : * make_sort_from_sortclauses
6393 : * Create sort plan to sort according to given sortclauses
6394 : *
6395 : * 'sortcls' is a list of SortGroupClauses
6396 : * 'lefttree' is the node which yields input tuples
6397 : */
6398 : Sort *
6399 0 : make_sort_from_sortclauses(List *sortcls, Plan *lefttree)
6400 : {
6401 0 : List *sub_tlist = lefttree->targetlist;
6402 : ListCell *l;
6403 : int numsortkeys;
6404 : AttrNumber *sortColIdx;
6405 : Oid *sortOperators;
6406 : Oid *collations;
6407 : bool *nullsFirst;
6408 :
6409 : /* Convert list-ish representation to arrays wanted by executor */
6410 0 : numsortkeys = list_length(sortcls);
6411 0 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6412 0 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6413 0 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6414 0 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6415 :
6416 0 : numsortkeys = 0;
6417 0 : foreach(l, sortcls)
6418 : {
6419 0 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6420 0 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6421 :
6422 0 : sortColIdx[numsortkeys] = tle->resno;
6423 0 : sortOperators[numsortkeys] = sortcl->sortop;
6424 0 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6425 0 : nullsFirst[numsortkeys] = sortcl->nulls_first;
6426 0 : numsortkeys++;
6427 : }
6428 :
6429 0 : return make_sort(lefttree, numsortkeys,
6430 : sortColIdx, sortOperators,
6431 : collations, nullsFirst);
6432 : }
6433 :
6434 : /*
6435 : * make_sort_from_groupcols
6436 : * Create sort plan to sort based on grouping columns
6437 : *
6438 : * 'groupcls' is the list of SortGroupClauses
6439 : * 'grpColIdx' gives the column numbers to use
6440 : *
6441 : * This might look like it could be merged with make_sort_from_sortclauses,
6442 : * but presently we *must* use the grpColIdx[] array to locate sort columns,
6443 : * because the child plan's tlist is not marked with ressortgroupref info
6444 : * appropriate to the grouping node. So, only the sort ordering info
6445 : * is used from the SortGroupClause entries.
6446 : */
6447 : static Sort *
6448 240 : make_sort_from_groupcols(List *groupcls,
6449 : AttrNumber *grpColIdx,
6450 : Plan *lefttree)
6451 : {
6452 240 : List *sub_tlist = lefttree->targetlist;
6453 : ListCell *l;
6454 : int numsortkeys;
6455 : AttrNumber *sortColIdx;
6456 : Oid *sortOperators;
6457 : Oid *collations;
6458 : bool *nullsFirst;
6459 :
6460 : /* Convert list-ish representation to arrays wanted by executor */
6461 240 : numsortkeys = list_length(groupcls);
6462 240 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6463 240 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6464 240 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6465 240 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6466 :
6467 240 : numsortkeys = 0;
6468 570 : foreach(l, groupcls)
6469 : {
6470 330 : SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
6471 330 : TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
6472 :
6473 330 : if (!tle)
6474 0 : elog(ERROR, "could not retrieve tle for sort-from-groupcols");
6475 :
6476 330 : sortColIdx[numsortkeys] = tle->resno;
6477 330 : sortOperators[numsortkeys] = grpcl->sortop;
6478 330 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6479 330 : nullsFirst[numsortkeys] = grpcl->nulls_first;
6480 330 : numsortkeys++;
6481 : }
6482 :
6483 240 : return make_sort(lefttree, numsortkeys,
6484 : sortColIdx, sortOperators,
6485 : collations, nullsFirst);
6486 : }
6487 :
6488 : static Material *
6489 4550 : make_material(Plan *lefttree)
6490 : {
6491 4550 : Material *node = makeNode(Material);
6492 4550 : Plan *plan = &node->plan;
6493 :
6494 4550 : plan->targetlist = lefttree->targetlist;
6495 4550 : plan->qual = NIL;
6496 4550 : plan->lefttree = lefttree;
6497 4550 : plan->righttree = NULL;
6498 :
6499 4550 : return node;
6500 : }
6501 :
6502 : /*
6503 : * materialize_finished_plan: stick a Material node atop a completed plan
6504 : *
6505 : * There are a couple of places where we want to attach a Material node
6506 : * after completion of create_plan(), without any MaterialPath path.
6507 : * Those places should probably be refactored someday to do this on the
6508 : * Path representation, but it's not worth the trouble yet.
6509 : */
6510 : Plan *
6511 74 : materialize_finished_plan(Plan *subplan)
6512 : {
6513 : Plan *matplan;
6514 : Path matpath; /* dummy for result of cost_material */
6515 : Cost initplan_cost;
6516 : bool unsafe_initplans;
6517 :
6518 74 : matplan = (Plan *) make_material(subplan);
6519 :
6520 : /*
6521 : * XXX horrid kluge: if there are any initPlans attached to the subplan,
6522 : * move them up to the Material node, which is now effectively the top
6523 : * plan node in its query level. This prevents failure in
6524 : * SS_finalize_plan(), which see for comments.
6525 : */
6526 74 : matplan->initPlan = subplan->initPlan;
6527 74 : subplan->initPlan = NIL;
6528 :
6529 : /* Move the initplans' cost delta, as well */
6530 74 : SS_compute_initplan_cost(matplan->initPlan,
6531 : &initplan_cost, &unsafe_initplans);
6532 74 : subplan->startup_cost -= initplan_cost;
6533 74 : subplan->total_cost -= initplan_cost;
6534 :
6535 : /* Set cost data */
6536 74 : cost_material(&matpath,
6537 : subplan->disabled_nodes,
6538 : subplan->startup_cost,
6539 : subplan->total_cost,
6540 : subplan->plan_rows,
6541 : subplan->plan_width);
6542 74 : matplan->disabled_nodes = subplan->disabled_nodes;
6543 74 : matplan->startup_cost = matpath.startup_cost + initplan_cost;
6544 74 : matplan->total_cost = matpath.total_cost + initplan_cost;
6545 74 : matplan->plan_rows = subplan->plan_rows;
6546 74 : matplan->plan_width = subplan->plan_width;
6547 74 : matplan->parallel_aware = false;
6548 74 : matplan->parallel_safe = subplan->parallel_safe;
6549 :
6550 74 : return matplan;
6551 : }
6552 :
6553 : static Memoize *
6554 1988 : make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations,
6555 : List *param_exprs, bool singlerow, bool binary_mode,
6556 : uint32 est_entries, Bitmapset *keyparamids,
6557 : Cardinality est_calls, Cardinality est_unique_keys,
6558 : double est_hit_ratio)
6559 : {
6560 1988 : Memoize *node = makeNode(Memoize);
6561 1988 : Plan *plan = &node->plan;
6562 :
6563 1988 : plan->targetlist = lefttree->targetlist;
6564 1988 : plan->qual = NIL;
6565 1988 : plan->lefttree = lefttree;
6566 1988 : plan->righttree = NULL;
6567 :
6568 1988 : node->numKeys = list_length(param_exprs);
6569 1988 : node->hashOperators = hashoperators;
6570 1988 : node->collations = collations;
6571 1988 : node->param_exprs = param_exprs;
6572 1988 : node->singlerow = singlerow;
6573 1988 : node->binary_mode = binary_mode;
6574 1988 : node->est_entries = est_entries;
6575 1988 : node->keyparamids = keyparamids;
6576 1988 : node->est_calls = est_calls;
6577 1988 : node->est_unique_keys = est_unique_keys;
6578 1988 : node->est_hit_ratio = est_hit_ratio;
6579 :
6580 1988 : return node;
6581 : }
6582 :
6583 : Agg *
6584 43508 : make_agg(List *tlist, List *qual,
6585 : AggStrategy aggstrategy, AggSplit aggsplit,
6586 : int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
6587 : List *groupingSets, List *chain, double dNumGroups,
6588 : Size transitionSpace, Plan *lefttree)
6589 : {
6590 43508 : Agg *node = makeNode(Agg);
6591 43508 : Plan *plan = &node->plan;
6592 : long numGroups;
6593 :
6594 : /* Reduce to long, but 'ware overflow! */
6595 43508 : numGroups = clamp_cardinality_to_long(dNumGroups);
6596 :
6597 43508 : node->aggstrategy = aggstrategy;
6598 43508 : node->aggsplit = aggsplit;
6599 43508 : node->numCols = numGroupCols;
6600 43508 : node->grpColIdx = grpColIdx;
6601 43508 : node->grpOperators = grpOperators;
6602 43508 : node->grpCollations = grpCollations;
6603 43508 : node->numGroups = numGroups;
6604 43508 : node->transitionSpace = transitionSpace;
6605 43508 : node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6606 43508 : node->groupingSets = groupingSets;
6607 43508 : node->chain = chain;
6608 :
6609 43508 : plan->qual = qual;
6610 43508 : plan->targetlist = tlist;
6611 43508 : plan->lefttree = lefttree;
6612 43508 : plan->righttree = NULL;
6613 :
6614 43508 : return node;
6615 : }
6616 :
6617 : static WindowAgg *
6618 2750 : make_windowagg(List *tlist, WindowClause *wc,
6619 : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
6620 : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
6621 : List *runCondition, List *qual, bool topWindow, Plan *lefttree)
6622 : {
6623 2750 : WindowAgg *node = makeNode(WindowAgg);
6624 2750 : Plan *plan = &node->plan;
6625 :
6626 2750 : node->winname = wc->name;
6627 2750 : node->winref = wc->winref;
6628 2750 : node->partNumCols = partNumCols;
6629 2750 : node->partColIdx = partColIdx;
6630 2750 : node->partOperators = partOperators;
6631 2750 : node->partCollations = partCollations;
6632 2750 : node->ordNumCols = ordNumCols;
6633 2750 : node->ordColIdx = ordColIdx;
6634 2750 : node->ordOperators = ordOperators;
6635 2750 : node->ordCollations = ordCollations;
6636 2750 : node->frameOptions = wc->frameOptions;
6637 2750 : node->startOffset = wc->startOffset;
6638 2750 : node->endOffset = wc->endOffset;
6639 2750 : node->runCondition = runCondition;
6640 : /* a duplicate of the above for EXPLAIN */
6641 2750 : node->runConditionOrig = runCondition;
6642 2750 : node->startInRangeFunc = wc->startInRangeFunc;
6643 2750 : node->endInRangeFunc = wc->endInRangeFunc;
6644 2750 : node->inRangeColl = wc->inRangeColl;
6645 2750 : node->inRangeAsc = wc->inRangeAsc;
6646 2750 : node->inRangeNullsFirst = wc->inRangeNullsFirst;
6647 2750 : node->topWindow = topWindow;
6648 :
6649 2750 : plan->targetlist = tlist;
6650 2750 : plan->lefttree = lefttree;
6651 2750 : plan->righttree = NULL;
6652 2750 : plan->qual = qual;
6653 :
6654 2750 : return node;
6655 : }
6656 :
6657 : static Group *
6658 246 : make_group(List *tlist,
6659 : List *qual,
6660 : int numGroupCols,
6661 : AttrNumber *grpColIdx,
6662 : Oid *grpOperators,
6663 : Oid *grpCollations,
6664 : Plan *lefttree)
6665 : {
6666 246 : Group *node = makeNode(Group);
6667 246 : Plan *plan = &node->plan;
6668 :
6669 246 : node->numCols = numGroupCols;
6670 246 : node->grpColIdx = grpColIdx;
6671 246 : node->grpOperators = grpOperators;
6672 246 : node->grpCollations = grpCollations;
6673 :
6674 246 : plan->qual = qual;
6675 246 : plan->targetlist = tlist;
6676 246 : plan->lefttree = lefttree;
6677 246 : plan->righttree = NULL;
6678 :
6679 246 : return node;
6680 : }
6681 :
6682 : /*
6683 : * pathkeys is a list of PathKeys, identifying the sort columns and semantics.
6684 : * The input plan must already be sorted accordingly.
6685 : *
6686 : * relids identifies the child relation being unique-ified, if any.
6687 : */
6688 : static Unique *
6689 5694 : make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols,
6690 : Relids relids)
6691 : {
6692 5694 : Unique *node = makeNode(Unique);
6693 5694 : Plan *plan = &node->plan;
6694 5694 : int keyno = 0;
6695 : AttrNumber *uniqColIdx;
6696 : Oid *uniqOperators;
6697 : Oid *uniqCollations;
6698 : ListCell *lc;
6699 :
6700 5694 : plan->targetlist = lefttree->targetlist;
6701 5694 : plan->qual = NIL;
6702 5694 : plan->lefttree = lefttree;
6703 5694 : plan->righttree = NULL;
6704 :
6705 : /*
6706 : * Convert pathkeys list into arrays of attr indexes and equality
6707 : * operators, as wanted by executor. This has a lot in common with
6708 : * prepare_sort_from_pathkeys ... maybe unify sometime?
6709 : */
6710 : Assert(numCols >= 0 && numCols <= list_length(pathkeys));
6711 5694 : uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6712 5694 : uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6713 5694 : uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6714 :
6715 18498 : foreach(lc, pathkeys)
6716 : {
6717 12846 : PathKey *pathkey = (PathKey *) lfirst(lc);
6718 12846 : EquivalenceClass *ec = pathkey->pk_eclass;
6719 : EquivalenceMember *em;
6720 12846 : TargetEntry *tle = NULL;
6721 12846 : Oid pk_datatype = InvalidOid;
6722 : Oid eqop;
6723 : ListCell *j;
6724 :
6725 : /* Ignore pathkeys beyond the specified number of columns */
6726 12846 : if (keyno >= numCols)
6727 42 : break;
6728 :
6729 12804 : if (ec->ec_has_volatile)
6730 : {
6731 : /*
6732 : * If the pathkey's EquivalenceClass is volatile, then it must
6733 : * have come from an ORDER BY clause, and we have to match it to
6734 : * that same targetlist entry.
6735 : */
6736 30 : if (ec->ec_sortref == 0) /* can't happen */
6737 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6738 30 : tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist);
6739 : Assert(tle);
6740 : Assert(list_length(ec->ec_members) == 1);
6741 30 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6742 : }
6743 : else
6744 : {
6745 : /*
6746 : * Otherwise, we can use any non-constant expression listed in the
6747 : * pathkey's EquivalenceClass. For now, we take the first tlist
6748 : * item found in the EC.
6749 : */
6750 24552 : foreach(j, plan->targetlist)
6751 : {
6752 24552 : tle = (TargetEntry *) lfirst(j);
6753 24552 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6754 24552 : if (em)
6755 : {
6756 : /* found expr already in tlist */
6757 12774 : pk_datatype = em->em_datatype;
6758 12774 : break;
6759 : }
6760 11778 : tle = NULL;
6761 : }
6762 : }
6763 :
6764 12804 : if (!tle)
6765 0 : elog(ERROR, "could not find pathkey item to sort");
6766 :
6767 : /*
6768 : * Look up the correct equality operator from the PathKey's slightly
6769 : * abstracted representation.
6770 : */
6771 12804 : eqop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
6772 : pk_datatype,
6773 : pk_datatype,
6774 : COMPARE_EQ);
6775 12804 : if (!OidIsValid(eqop)) /* should not happen */
6776 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6777 : COMPARE_EQ, pk_datatype, pk_datatype,
6778 : pathkey->pk_opfamily);
6779 :
6780 12804 : uniqColIdx[keyno] = tle->resno;
6781 12804 : uniqOperators[keyno] = eqop;
6782 12804 : uniqCollations[keyno] = ec->ec_collation;
6783 :
6784 12804 : keyno++;
6785 : }
6786 :
6787 5694 : node->numCols = numCols;
6788 5694 : node->uniqColIdx = uniqColIdx;
6789 5694 : node->uniqOperators = uniqOperators;
6790 5694 : node->uniqCollations = uniqCollations;
6791 :
6792 5694 : return node;
6793 : }
6794 :
6795 : static Gather *
6796 948 : make_gather(List *qptlist,
6797 : List *qpqual,
6798 : int nworkers,
6799 : int rescan_param,
6800 : bool single_copy,
6801 : Plan *subplan)
6802 : {
6803 948 : Gather *node = makeNode(Gather);
6804 948 : Plan *plan = &node->plan;
6805 :
6806 948 : plan->targetlist = qptlist;
6807 948 : plan->qual = qpqual;
6808 948 : plan->lefttree = subplan;
6809 948 : plan->righttree = NULL;
6810 948 : node->num_workers = nworkers;
6811 948 : node->rescan_param = rescan_param;
6812 948 : node->single_copy = single_copy;
6813 948 : node->invisible = false;
6814 948 : node->initParam = NULL;
6815 :
6816 948 : return node;
6817 : }
6818 :
6819 : /*
6820 : * groupList is a list of SortGroupClauses, identifying the targetlist
6821 : * items that should be considered by the SetOp filter. The input plans must
6822 : * already be sorted accordingly, if we're doing SETOP_SORTED mode.
6823 : */
6824 : static SetOp *
6825 662 : make_setop(SetOpCmd cmd, SetOpStrategy strategy,
6826 : List *tlist, Plan *lefttree, Plan *righttree,
6827 : List *groupList, long numGroups)
6828 : {
6829 662 : SetOp *node = makeNode(SetOp);
6830 662 : Plan *plan = &node->plan;
6831 662 : int numCols = list_length(groupList);
6832 662 : int keyno = 0;
6833 : AttrNumber *cmpColIdx;
6834 : Oid *cmpOperators;
6835 : Oid *cmpCollations;
6836 : bool *cmpNullsFirst;
6837 : ListCell *slitem;
6838 :
6839 662 : plan->targetlist = tlist;
6840 662 : plan->qual = NIL;
6841 662 : plan->lefttree = lefttree;
6842 662 : plan->righttree = righttree;
6843 :
6844 : /*
6845 : * convert SortGroupClause list into arrays of attr indexes and comparison
6846 : * operators, as wanted by executor
6847 : */
6848 662 : cmpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6849 662 : cmpOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6850 662 : cmpCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6851 662 : cmpNullsFirst = (bool *) palloc(sizeof(bool) * numCols);
6852 :
6853 2910 : foreach(slitem, groupList)
6854 : {
6855 2248 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
6856 2248 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
6857 :
6858 2248 : cmpColIdx[keyno] = tle->resno;
6859 2248 : if (strategy == SETOP_HASHED)
6860 1090 : cmpOperators[keyno] = sortcl->eqop;
6861 : else
6862 1158 : cmpOperators[keyno] = sortcl->sortop;
6863 : Assert(OidIsValid(cmpOperators[keyno]));
6864 2248 : cmpCollations[keyno] = exprCollation((Node *) tle->expr);
6865 2248 : cmpNullsFirst[keyno] = sortcl->nulls_first;
6866 2248 : keyno++;
6867 : }
6868 :
6869 662 : node->cmd = cmd;
6870 662 : node->strategy = strategy;
6871 662 : node->numCols = numCols;
6872 662 : node->cmpColIdx = cmpColIdx;
6873 662 : node->cmpOperators = cmpOperators;
6874 662 : node->cmpCollations = cmpCollations;
6875 662 : node->cmpNullsFirst = cmpNullsFirst;
6876 662 : node->numGroups = numGroups;
6877 :
6878 662 : return node;
6879 : }
6880 :
6881 : /*
6882 : * make_lockrows
6883 : * Build a LockRows plan node
6884 : */
6885 : static LockRows *
6886 7804 : make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
6887 : {
6888 7804 : LockRows *node = makeNode(LockRows);
6889 7804 : Plan *plan = &node->plan;
6890 :
6891 7804 : plan->targetlist = lefttree->targetlist;
6892 7804 : plan->qual = NIL;
6893 7804 : plan->lefttree = lefttree;
6894 7804 : plan->righttree = NULL;
6895 :
6896 7804 : node->rowMarks = rowMarks;
6897 7804 : node->epqParam = epqParam;
6898 :
6899 7804 : return node;
6900 : }
6901 :
6902 : /*
6903 : * make_limit
6904 : * Build a Limit plan node
6905 : */
6906 : Limit *
6907 4814 : make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
6908 : LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx,
6909 : Oid *uniqOperators, Oid *uniqCollations)
6910 : {
6911 4814 : Limit *node = makeNode(Limit);
6912 4814 : Plan *plan = &node->plan;
6913 :
6914 4814 : plan->targetlist = lefttree->targetlist;
6915 4814 : plan->qual = NIL;
6916 4814 : plan->lefttree = lefttree;
6917 4814 : plan->righttree = NULL;
6918 :
6919 4814 : node->limitOffset = limitOffset;
6920 4814 : node->limitCount = limitCount;
6921 4814 : node->limitOption = limitOption;
6922 4814 : node->uniqNumCols = uniqNumCols;
6923 4814 : node->uniqColIdx = uniqColIdx;
6924 4814 : node->uniqOperators = uniqOperators;
6925 4814 : node->uniqCollations = uniqCollations;
6926 :
6927 4814 : return node;
6928 : }
6929 :
6930 : /*
6931 : * make_gating_result
6932 : * Build a Result plan node that performs projection of a subplan, and/or
6933 : * applies a one time filter (resconstantqual)
6934 : */
6935 : static Result *
6936 11782 : make_gating_result(List *tlist,
6937 : Node *resconstantqual,
6938 : Plan *subplan)
6939 : {
6940 11782 : Result *node = makeNode(Result);
6941 11782 : Plan *plan = &node->plan;
6942 :
6943 : Assert(subplan != NULL);
6944 :
6945 11782 : plan->targetlist = tlist;
6946 11782 : plan->qual = NIL;
6947 11782 : plan->lefttree = subplan;
6948 11782 : plan->righttree = NULL;
6949 11782 : node->result_type = RESULT_TYPE_GATING;
6950 11782 : node->resconstantqual = resconstantqual;
6951 11782 : node->relids = NULL;
6952 :
6953 11782 : return node;
6954 : }
6955 :
6956 : /*
6957 : * make_one_row_result
6958 : * Build a Result plan node that returns a single row (or possibly no rows,
6959 : * if the one-time filtered defined by resconstantqual returns false)
6960 : *
6961 : * 'rel' should be this path's RelOptInfo. In essence, we're saying that this
6962 : * Result node generates all the tuples for that RelOptInfo. Note that the same
6963 : * consideration can never arise in make_gating_result(), because in that case
6964 : * the tuples are always coming from some subordinate node.
6965 : */
6966 : static Result *
6967 202690 : make_one_row_result(List *tlist,
6968 : Node *resconstantqual,
6969 : RelOptInfo *rel)
6970 : {
6971 202690 : Result *node = makeNode(Result);
6972 202690 : Plan *plan = &node->plan;
6973 :
6974 202690 : plan->targetlist = tlist;
6975 202690 : plan->qual = NIL;
6976 202690 : plan->lefttree = NULL;
6977 202690 : plan->righttree = NULL;
6978 404956 : node->result_type = IS_UPPER_REL(rel) ? RESULT_TYPE_UPPER :
6979 202266 : IS_JOIN_REL(rel) ? RESULT_TYPE_JOIN : RESULT_TYPE_SCAN;
6980 202690 : node->resconstantqual = resconstantqual;
6981 202690 : node->relids = rel->relids;
6982 :
6983 202690 : return node;
6984 : }
6985 :
6986 : /*
6987 : * make_project_set
6988 : * Build a ProjectSet plan node
6989 : */
6990 : static ProjectSet *
6991 11716 : make_project_set(List *tlist,
6992 : Plan *subplan)
6993 : {
6994 11716 : ProjectSet *node = makeNode(ProjectSet);
6995 11716 : Plan *plan = &node->plan;
6996 :
6997 11716 : plan->targetlist = tlist;
6998 11716 : plan->qual = NIL;
6999 11716 : plan->lefttree = subplan;
7000 11716 : plan->righttree = NULL;
7001 :
7002 11716 : return node;
7003 : }
7004 :
7005 : /*
7006 : * make_modifytable
7007 : * Build a ModifyTable plan node
7008 : */
7009 : static ModifyTable *
7010 93200 : make_modifytable(PlannerInfo *root, Plan *subplan,
7011 : CmdType operation, bool canSetTag,
7012 : Index nominalRelation, Index rootRelation,
7013 : bool partColsUpdated,
7014 : List *resultRelations,
7015 : List *updateColnosLists,
7016 : List *withCheckOptionLists, List *returningLists,
7017 : List *rowMarks, OnConflictExpr *onconflict,
7018 : List *mergeActionLists, List *mergeJoinConditions,
7019 : int epqParam)
7020 : {
7021 93200 : ModifyTable *node = makeNode(ModifyTable);
7022 93200 : bool returning_old_or_new = false;
7023 93200 : bool returning_old_or_new_valid = false;
7024 93200 : bool transition_tables = false;
7025 93200 : bool transition_tables_valid = false;
7026 : List *fdw_private_list;
7027 : Bitmapset *direct_modify_plans;
7028 : ListCell *lc;
7029 : int i;
7030 :
7031 : Assert(operation == CMD_MERGE ||
7032 : (operation == CMD_UPDATE ?
7033 : list_length(resultRelations) == list_length(updateColnosLists) :
7034 : updateColnosLists == NIL));
7035 : Assert(withCheckOptionLists == NIL ||
7036 : list_length(resultRelations) == list_length(withCheckOptionLists));
7037 : Assert(returningLists == NIL ||
7038 : list_length(resultRelations) == list_length(returningLists));
7039 :
7040 93200 : node->plan.lefttree = subplan;
7041 93200 : node->plan.righttree = NULL;
7042 93200 : node->plan.qual = NIL;
7043 : /* setrefs.c will fill in the targetlist, if needed */
7044 93200 : node->plan.targetlist = NIL;
7045 :
7046 93200 : node->operation = operation;
7047 93200 : node->canSetTag = canSetTag;
7048 93200 : node->nominalRelation = nominalRelation;
7049 93200 : node->rootRelation = rootRelation;
7050 93200 : node->partColsUpdated = partColsUpdated;
7051 93200 : node->resultRelations = resultRelations;
7052 93200 : if (!onconflict)
7053 : {
7054 91380 : node->onConflictAction = ONCONFLICT_NONE;
7055 91380 : node->onConflictSet = NIL;
7056 91380 : node->onConflictCols = NIL;
7057 91380 : node->onConflictWhere = NULL;
7058 91380 : node->arbiterIndexes = NIL;
7059 91380 : node->exclRelRTI = 0;
7060 91380 : node->exclRelTlist = NIL;
7061 : }
7062 : else
7063 : {
7064 1820 : node->onConflictAction = onconflict->action;
7065 :
7066 : /*
7067 : * Here we convert the ON CONFLICT UPDATE tlist, if any, to the
7068 : * executor's convention of having consecutive resno's. The actual
7069 : * target column numbers are saved in node->onConflictCols. (This
7070 : * could be done earlier, but there seems no need to.)
7071 : */
7072 1820 : node->onConflictSet = onconflict->onConflictSet;
7073 1820 : node->onConflictCols =
7074 1820 : extract_update_targetlist_colnos(node->onConflictSet);
7075 1820 : node->onConflictWhere = onconflict->onConflictWhere;
7076 :
7077 : /*
7078 : * If a set of unique index inference elements was provided (an
7079 : * INSERT...ON CONFLICT "inference specification"), then infer
7080 : * appropriate unique indexes (or throw an error if none are
7081 : * available).
7082 : */
7083 1820 : node->arbiterIndexes = infer_arbiter_indexes(root);
7084 :
7085 1428 : node->exclRelRTI = onconflict->exclRelIndex;
7086 1428 : node->exclRelTlist = onconflict->exclRelTlist;
7087 : }
7088 92808 : node->updateColnosLists = updateColnosLists;
7089 92808 : node->withCheckOptionLists = withCheckOptionLists;
7090 92808 : node->returningOldAlias = root->parse->returningOldAlias;
7091 92808 : node->returningNewAlias = root->parse->returningNewAlias;
7092 92808 : node->returningLists = returningLists;
7093 92808 : node->rowMarks = rowMarks;
7094 92808 : node->mergeActionLists = mergeActionLists;
7095 92808 : node->mergeJoinConditions = mergeJoinConditions;
7096 92808 : node->epqParam = epqParam;
7097 :
7098 : /*
7099 : * For each result relation that is a foreign table, allow the FDW to
7100 : * construct private plan data, and accumulate it all into a list.
7101 : */
7102 92808 : fdw_private_list = NIL;
7103 92808 : direct_modify_plans = NULL;
7104 92808 : i = 0;
7105 188102 : foreach(lc, resultRelations)
7106 : {
7107 95298 : Index rti = lfirst_int(lc);
7108 : FdwRoutine *fdwroutine;
7109 : List *fdw_private;
7110 : bool direct_modify;
7111 :
7112 : /*
7113 : * If possible, we want to get the FdwRoutine from our RelOptInfo for
7114 : * the table. But sometimes we don't have a RelOptInfo and must get
7115 : * it the hard way. (In INSERT, the target relation is not scanned,
7116 : * so it's not a baserel; and there are also corner cases for
7117 : * updatable views where the target rel isn't a baserel.)
7118 : */
7119 95298 : if (rti < root->simple_rel_array_size &&
7120 95298 : root->simple_rel_array[rti] != NULL)
7121 22418 : {
7122 22418 : RelOptInfo *resultRel = root->simple_rel_array[rti];
7123 :
7124 22418 : fdwroutine = resultRel->fdwroutine;
7125 : }
7126 : else
7127 : {
7128 72880 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7129 :
7130 72880 : if (rte->rtekind == RTE_RELATION &&
7131 72880 : rte->relkind == RELKIND_FOREIGN_TABLE)
7132 : {
7133 : /* Check if the access to foreign tables is restricted */
7134 180 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
7135 : {
7136 : /* there must not be built-in foreign tables */
7137 : Assert(rte->relid >= FirstNormalObjectId);
7138 2 : ereport(ERROR,
7139 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7140 : errmsg("access to non-system foreign table is restricted")));
7141 : }
7142 :
7143 178 : fdwroutine = GetFdwRoutineByRelId(rte->relid);
7144 : }
7145 : else
7146 72700 : fdwroutine = NULL;
7147 : }
7148 :
7149 : /*
7150 : * MERGE is not currently supported for foreign tables. We already
7151 : * checked that when the table mentioned in the query is foreign; but
7152 : * we can still get here if a partitioned table has a foreign table as
7153 : * partition. Disallow that now, to avoid an uglier error message
7154 : * later.
7155 : */
7156 95296 : if (operation == CMD_MERGE && fdwroutine != NULL)
7157 : {
7158 2 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7159 :
7160 2 : ereport(ERROR,
7161 : errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
7162 : errmsg("cannot execute MERGE on relation \"%s\"",
7163 : get_rel_name(rte->relid)),
7164 : errdetail_relkind_not_supported(rte->relkind));
7165 : }
7166 :
7167 : /*
7168 : * Try to modify the foreign table directly if (1) the FDW provides
7169 : * callback functions needed for that and (2) there are no local
7170 : * structures that need to be run for each modified row: row-level
7171 : * triggers on the foreign table, stored generated columns, WITH CHECK
7172 : * OPTIONs from parent views, Vars returning OLD/NEW in the RETURNING
7173 : * list, or transition tables on the named relation.
7174 : */
7175 95294 : direct_modify = false;
7176 95294 : if (fdwroutine != NULL &&
7177 558 : fdwroutine->PlanDirectModify != NULL &&
7178 548 : fdwroutine->BeginDirectModify != NULL &&
7179 548 : fdwroutine->IterateDirectModify != NULL &&
7180 548 : fdwroutine->EndDirectModify != NULL &&
7181 516 : withCheckOptionLists == NIL &&
7182 516 : !has_row_triggers(root, rti, operation) &&
7183 438 : !has_stored_generated_columns(root, rti))
7184 : {
7185 : /*
7186 : * returning_old_or_new and transition_tables are the same for all
7187 : * result relations, respectively
7188 : */
7189 420 : if (!returning_old_or_new_valid)
7190 : {
7191 : returning_old_or_new =
7192 404 : contain_vars_returning_old_or_new((Node *)
7193 404 : root->parse->returningList);
7194 404 : returning_old_or_new_valid = true;
7195 : }
7196 420 : if (!returning_old_or_new)
7197 : {
7198 406 : if (!transition_tables_valid)
7199 : {
7200 390 : transition_tables = has_transition_tables(root,
7201 : nominalRelation,
7202 : operation);
7203 390 : transition_tables_valid = true;
7204 : }
7205 406 : if (!transition_tables)
7206 390 : direct_modify = fdwroutine->PlanDirectModify(root, node,
7207 : rti, i);
7208 : }
7209 : }
7210 95294 : if (direct_modify)
7211 208 : direct_modify_plans = bms_add_member(direct_modify_plans, i);
7212 :
7213 95294 : if (!direct_modify &&
7214 350 : fdwroutine != NULL &&
7215 350 : fdwroutine->PlanForeignModify != NULL)
7216 340 : fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
7217 : else
7218 94954 : fdw_private = NIL;
7219 95294 : fdw_private_list = lappend(fdw_private_list, fdw_private);
7220 95294 : i++;
7221 : }
7222 92804 : node->fdwPrivLists = fdw_private_list;
7223 92804 : node->fdwDirectModifyPlans = direct_modify_plans;
7224 :
7225 92804 : return node;
7226 : }
7227 :
7228 : /*
7229 : * is_projection_capable_path
7230 : * Check whether a given Path node is able to do projection.
7231 : */
7232 : bool
7233 775860 : is_projection_capable_path(Path *path)
7234 : {
7235 : /* Most plan types can project, so just list the ones that can't */
7236 775860 : switch (path->pathtype)
7237 : {
7238 982 : case T_Hash:
7239 : case T_Material:
7240 : case T_Memoize:
7241 : case T_Sort:
7242 : case T_IncrementalSort:
7243 : case T_Unique:
7244 : case T_SetOp:
7245 : case T_LockRows:
7246 : case T_Limit:
7247 : case T_ModifyTable:
7248 : case T_MergeAppend:
7249 : case T_RecursiveUnion:
7250 982 : return false;
7251 0 : case T_CustomScan:
7252 0 : if (castNode(CustomPath, path)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7253 0 : return true;
7254 0 : return false;
7255 16152 : case T_Append:
7256 :
7257 : /*
7258 : * Append can't project, but if an AppendPath is being used to
7259 : * represent a dummy path, what will actually be generated is a
7260 : * Result which can project.
7261 : */
7262 16152 : return IS_DUMMY_APPEND(path);
7263 3324 : case T_ProjectSet:
7264 :
7265 : /*
7266 : * Although ProjectSet certainly projects, say "no" because we
7267 : * don't want the planner to randomly replace its tlist with
7268 : * something else; the SRFs have to stay at top level. This might
7269 : * get relaxed later.
7270 : */
7271 3324 : return false;
7272 755402 : default:
7273 755402 : break;
7274 : }
7275 755402 : return true;
7276 : }
7277 :
7278 : /*
7279 : * is_projection_capable_plan
7280 : * Check whether a given Plan node is able to do projection.
7281 : */
7282 : bool
7283 408 : is_projection_capable_plan(Plan *plan)
7284 : {
7285 : /* Most plan types can project, so just list the ones that can't */
7286 408 : switch (nodeTag(plan))
7287 : {
7288 40 : case T_Hash:
7289 : case T_Material:
7290 : case T_Memoize:
7291 : case T_Sort:
7292 : case T_Unique:
7293 : case T_SetOp:
7294 : case T_LockRows:
7295 : case T_Limit:
7296 : case T_ModifyTable:
7297 : case T_Append:
7298 : case T_MergeAppend:
7299 : case T_RecursiveUnion:
7300 40 : return false;
7301 0 : case T_CustomScan:
7302 0 : if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7303 0 : return true;
7304 0 : return false;
7305 0 : case T_ProjectSet:
7306 :
7307 : /*
7308 : * Although ProjectSet certainly projects, say "no" because we
7309 : * don't want the planner to randomly replace its tlist with
7310 : * something else; the SRFs have to stay at top level. This might
7311 : * get relaxed later.
7312 : */
7313 0 : return false;
7314 368 : default:
7315 368 : break;
7316 : }
7317 368 : return true;
7318 : }
|