Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * createplan.c
4 : * Routines to create the desired plan for processing a query.
5 : * Planning is complete, we just need to convert the selected
6 : * Path into a Plan.
7 : *
8 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
9 : * Portions Copyright (c) 1994, Regents of the University of California
10 : *
11 : *
12 : * IDENTIFICATION
13 : * src/backend/optimizer/plan/createplan.c
14 : *
15 : *-------------------------------------------------------------------------
16 : */
17 : #include "postgres.h"
18 :
19 : #include <math.h>
20 :
21 : #include "access/sysattr.h"
22 : #include "catalog/pg_class.h"
23 : #include "foreign/fdwapi.h"
24 : #include "miscadmin.h"
25 : #include "nodes/extensible.h"
26 : #include "nodes/makefuncs.h"
27 : #include "nodes/nodeFuncs.h"
28 : #include "optimizer/clauses.h"
29 : #include "optimizer/cost.h"
30 : #include "optimizer/optimizer.h"
31 : #include "optimizer/paramassign.h"
32 : #include "optimizer/pathnode.h"
33 : #include "optimizer/paths.h"
34 : #include "optimizer/placeholder.h"
35 : #include "optimizer/plancat.h"
36 : #include "optimizer/planmain.h"
37 : #include "optimizer/prep.h"
38 : #include "optimizer/restrictinfo.h"
39 : #include "optimizer/subselect.h"
40 : #include "optimizer/tlist.h"
41 : #include "parser/parse_clause.h"
42 : #include "parser/parsetree.h"
43 : #include "partitioning/partprune.h"
44 : #include "tcop/tcopprot.h"
45 : #include "utils/lsyscache.h"
46 :
47 :
48 : /*
49 : * Flag bits that can appear in the flags argument of create_plan_recurse().
50 : * These can be OR-ed together.
51 : *
52 : * CP_EXACT_TLIST specifies that the generated plan node must return exactly
53 : * the tlist specified by the path's pathtarget (this overrides both
54 : * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set). Otherwise, the
55 : * plan node is allowed to return just the Vars and PlaceHolderVars needed
56 : * to evaluate the pathtarget.
57 : *
58 : * CP_SMALL_TLIST specifies that a narrower tlist is preferred. This is
59 : * passed down by parent nodes such as Sort and Hash, which will have to
60 : * store the returned tuples.
61 : *
62 : * CP_LABEL_TLIST specifies that the plan node must return columns matching
63 : * any sortgrouprefs specified in its pathtarget, with appropriate
64 : * ressortgroupref labels. This is passed down by parent nodes such as Sort
65 : * and Group, which need these values to be available in their inputs.
66 : *
67 : * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist,
68 : * and therefore it doesn't matter a bit what target list gets generated.
69 : */
70 : #define CP_EXACT_TLIST 0x0001 /* Plan must return specified tlist */
71 : #define CP_SMALL_TLIST 0x0002 /* Prefer narrower tlists */
72 : #define CP_LABEL_TLIST 0x0004 /* tlist must contain sortgrouprefs */
73 : #define CP_IGNORE_TLIST 0x0008 /* caller will replace tlist */
74 :
75 :
76 : static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path,
77 : int flags);
78 : static Plan *create_scan_plan(PlannerInfo *root, Path *best_path,
79 : int flags);
80 : static List *build_path_tlist(PlannerInfo *root, Path *path);
81 : static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags);
82 : static List *get_gating_quals(PlannerInfo *root, List *quals);
83 : static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
84 : List *gating_quals);
85 : static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
86 : static bool mark_async_capable_plan(Plan *plan, Path *path);
87 : static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path,
88 : int flags);
89 : static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
90 : int flags);
91 : static Result *create_group_result_plan(PlannerInfo *root,
92 : GroupResultPath *best_path);
93 : static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path);
94 : static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path,
95 : int flags);
96 : static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path,
97 : int flags);
98 : static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path);
99 : static Plan *create_projection_plan(PlannerInfo *root,
100 : ProjectionPath *best_path,
101 : int flags);
102 : static Plan *inject_projection_plan(Plan *subplan, List *tlist,
103 : bool parallel_safe);
104 : static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags);
105 : static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root,
106 : IncrementalSortPath *best_path, int flags);
107 : static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path);
108 : static Unique *create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags);
109 : static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path);
110 : static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path);
111 : static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path);
112 : static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path);
113 : static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path,
114 : int flags);
115 : static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path);
116 : static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
117 : int flags);
118 : static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path);
119 : static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path,
120 : int flags);
121 : static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
122 : List *tlist, List *scan_clauses);
123 : static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
124 : List *tlist, List *scan_clauses);
125 : static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
126 : List *tlist, List *scan_clauses, bool indexonly);
127 : static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
128 : BitmapHeapPath *best_path,
129 : List *tlist, List *scan_clauses);
130 : static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
131 : List **qual, List **indexqual, List **indexECs);
132 : static void bitmap_subplan_mark_shared(Plan *plan);
133 : static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
134 : List *tlist, List *scan_clauses);
135 : static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root,
136 : TidRangePath *best_path,
137 : List *tlist,
138 : List *scan_clauses);
139 : static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root,
140 : SubqueryScanPath *best_path,
141 : List *tlist, List *scan_clauses);
142 : static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
143 : List *tlist, List *scan_clauses);
144 : static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
145 : List *tlist, List *scan_clauses);
146 : static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
147 : List *tlist, List *scan_clauses);
148 : static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
149 : List *tlist, List *scan_clauses);
150 : static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root,
151 : Path *best_path, List *tlist, List *scan_clauses);
152 : static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path,
153 : List *tlist, List *scan_clauses);
154 : static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
155 : List *tlist, List *scan_clauses);
156 : static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
157 : List *tlist, List *scan_clauses);
158 : static CustomScan *create_customscan_plan(PlannerInfo *root,
159 : CustomPath *best_path,
160 : List *tlist, List *scan_clauses);
161 : static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path);
162 : static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path);
163 : static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path);
164 : static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
165 : static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
166 : static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
167 : List **stripped_indexquals_p,
168 : List **fixed_indexquals_p);
169 : static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
170 : static Node *fix_indexqual_clause(PlannerInfo *root,
171 : IndexOptInfo *index, int indexcol,
172 : Node *clause, List *indexcolnos);
173 : static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
174 : static List *get_switched_clauses(List *clauses, Relids outerrelids);
175 : static List *order_qual_clauses(PlannerInfo *root, List *clauses);
176 : static void copy_generic_path_info(Plan *dest, Path *src);
177 : static void copy_plan_costsize(Plan *dest, Plan *src);
178 : static void label_sort_with_costsize(PlannerInfo *root, Sort *plan,
179 : double limit_tuples);
180 : static void label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
181 : List *pathkeys, double limit_tuples);
182 : static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
183 : static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
184 : TableSampleClause *tsc);
185 : static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
186 : Oid indexid, List *indexqual, List *indexqualorig,
187 : List *indexorderby, List *indexorderbyorig,
188 : List *indexorderbyops,
189 : ScanDirection indexscandir);
190 : static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
191 : Index scanrelid, Oid indexid,
192 : List *indexqual, List *recheckqual,
193 : List *indexorderby,
194 : List *indextlist,
195 : ScanDirection indexscandir);
196 : static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
197 : List *indexqual,
198 : List *indexqualorig);
199 : static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
200 : List *qpqual,
201 : Plan *lefttree,
202 : List *bitmapqualorig,
203 : Index scanrelid);
204 : static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
205 : List *tidquals);
206 : static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual,
207 : Index scanrelid, List *tidrangequals);
208 : static SubqueryScan *make_subqueryscan(List *qptlist,
209 : List *qpqual,
210 : Index scanrelid,
211 : Plan *subplan);
212 : static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
213 : Index scanrelid, List *functions, bool funcordinality);
214 : static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
215 : Index scanrelid, List *values_lists);
216 : static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual,
217 : Index scanrelid, TableFunc *tablefunc);
218 : static CteScan *make_ctescan(List *qptlist, List *qpqual,
219 : Index scanrelid, int ctePlanId, int cteParam);
220 : static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual,
221 : Index scanrelid, char *enrname);
222 : static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
223 : Index scanrelid, int wtParam);
224 : static RecursiveUnion *make_recursive_union(List *tlist,
225 : Plan *lefttree,
226 : Plan *righttree,
227 : int wtParam,
228 : List *distinctList,
229 : Cardinality numGroups);
230 : static BitmapAnd *make_bitmap_and(List *bitmapplans);
231 : static BitmapOr *make_bitmap_or(List *bitmapplans);
232 : static NestLoop *make_nestloop(List *tlist,
233 : List *joinclauses, List *otherclauses, List *nestParams,
234 : Plan *lefttree, Plan *righttree,
235 : JoinType jointype, bool inner_unique);
236 : static HashJoin *make_hashjoin(List *tlist,
237 : List *joinclauses, List *otherclauses,
238 : List *hashclauses,
239 : List *hashoperators, List *hashcollations,
240 : List *hashkeys,
241 : Plan *lefttree, Plan *righttree,
242 : JoinType jointype, bool inner_unique);
243 : static Hash *make_hash(Plan *lefttree,
244 : List *hashkeys,
245 : Oid skewTable,
246 : AttrNumber skewColumn,
247 : bool skewInherit);
248 : static MergeJoin *make_mergejoin(List *tlist,
249 : List *joinclauses, List *otherclauses,
250 : List *mergeclauses,
251 : Oid *mergefamilies,
252 : Oid *mergecollations,
253 : bool *mergereversals,
254 : bool *mergenullsfirst,
255 : Plan *lefttree, Plan *righttree,
256 : JoinType jointype, bool inner_unique,
257 : bool skip_mark_restore);
258 : static Sort *make_sort(Plan *lefttree, int numCols,
259 : AttrNumber *sortColIdx, Oid *sortOperators,
260 : Oid *collations, bool *nullsFirst);
261 : static IncrementalSort *make_incrementalsort(Plan *lefttree,
262 : int numCols, int nPresortedCols,
263 : AttrNumber *sortColIdx, Oid *sortOperators,
264 : Oid *collations, bool *nullsFirst);
265 : static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
266 : Relids relids,
267 : const AttrNumber *reqColIdx,
268 : bool adjust_tlist_in_place,
269 : int *p_numsortkeys,
270 : AttrNumber **p_sortColIdx,
271 : Oid **p_sortOperators,
272 : Oid **p_collations,
273 : bool **p_nullsFirst);
274 : static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
275 : Relids relids);
276 : static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree,
277 : List *pathkeys, Relids relids, int nPresortedCols);
278 : static Sort *make_sort_from_groupcols(List *groupcls,
279 : AttrNumber *grpColIdx,
280 : Plan *lefttree);
281 : static Material *make_material(Plan *lefttree);
282 : static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators,
283 : Oid *collations, List *param_exprs,
284 : bool singlerow, bool binary_mode,
285 : uint32 est_entries, Bitmapset *keyparamids,
286 : Cardinality est_calls,
287 : Cardinality est_unique_keys,
288 : double est_hit_ratio);
289 : static WindowAgg *make_windowagg(List *tlist, WindowClause *wc,
290 : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
291 : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
292 : List *runCondition, List *qual, bool topWindow,
293 : Plan *lefttree);
294 : static Group *make_group(List *tlist, List *qual, int numGroupCols,
295 : AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
296 : Plan *lefttree);
297 : static Unique *make_unique_from_pathkeys(Plan *lefttree,
298 : List *pathkeys, int numCols,
299 : Relids relids);
300 : static Gather *make_gather(List *qptlist, List *qpqual,
301 : int nworkers, int rescan_param, bool single_copy, Plan *subplan);
302 : static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy,
303 : List *tlist, Plan *lefttree, Plan *righttree,
304 : List *groupList, Cardinality numGroups);
305 : static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam);
306 : static Result *make_gating_result(List *tlist, Node *resconstantqual,
307 : Plan *subplan);
308 : static Result *make_one_row_result(List *tlist, Node *resconstantqual,
309 : RelOptInfo *rel);
310 : static ProjectSet *make_project_set(List *tlist, Plan *subplan);
311 : static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan,
312 : CmdType operation, bool canSetTag,
313 : Index nominalRelation, Index rootRelation,
314 : List *resultRelations,
315 : List *updateColnosLists,
316 : List *withCheckOptionLists, List *returningLists,
317 : List *rowMarks, OnConflictExpr *onconflict,
318 : List *mergeActionLists, List *mergeJoinConditions,
319 : int epqParam);
320 : static GatherMerge *create_gather_merge_plan(PlannerInfo *root,
321 : GatherMergePath *best_path);
322 :
323 :
324 : /*
325 : * create_plan
326 : * Creates the access plan for a query by recursively processing the
327 : * desired tree of pathnodes, starting at the node 'best_path'. For
328 : * every pathnode found, we create a corresponding plan node containing
329 : * appropriate id, target list, and qualification information.
330 : *
331 : * The tlists and quals in the plan tree are still in planner format,
332 : * ie, Vars still correspond to the parser's numbering. This will be
333 : * fixed later by setrefs.c.
334 : *
335 : * best_path is the best access path
336 : *
337 : * Returns a Plan tree.
338 : */
339 : Plan *
340 527968 : create_plan(PlannerInfo *root, Path *best_path)
341 : {
342 : Plan *plan;
343 :
344 : /* plan_params should not be in use in current query level */
345 : Assert(root->plan_params == NIL);
346 :
347 : /* Initialize this module's workspace in PlannerInfo */
348 527968 : root->curOuterRels = NULL;
349 527968 : root->curOuterParams = NIL;
350 :
351 : /* Recursively process the path tree, demanding the correct tlist result */
352 527968 : plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
353 :
354 : /*
355 : * Make sure the topmost plan node's targetlist exposes the original
356 : * column names and other decorative info. Targetlists generated within
357 : * the planner don't bother with that stuff, but we must have it on the
358 : * top-level tlist seen at execution time. However, ModifyTable plan
359 : * nodes don't have a tlist matching the querytree targetlist.
360 : */
361 527572 : if (!IsA(plan, ModifyTable))
362 434464 : apply_tlist_labeling(plan->targetlist, root->processed_tlist);
363 :
364 : /*
365 : * Attach any initPlans created in this query level to the topmost plan
366 : * node. (In principle the initplans could go in any plan node at or
367 : * above where they're referenced, but there seems no reason to put them
368 : * any lower than the topmost node for the query level. Also, see
369 : * comments for SS_finalize_plan before you try to change this.)
370 : */
371 527572 : SS_attach_initplans(root, plan);
372 :
373 : /* Check we successfully assigned all NestLoopParams to plan nodes */
374 527572 : if (root->curOuterParams != NIL)
375 0 : elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
376 :
377 : /*
378 : * Reset plan_params to ensure param IDs used for nestloop params are not
379 : * re-used later
380 : */
381 527572 : root->plan_params = NIL;
382 :
383 527572 : return plan;
384 : }
385 :
386 : /*
387 : * create_plan_recurse
388 : * Recursive guts of create_plan().
389 : */
390 : static Plan *
391 1466748 : create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
392 : {
393 : Plan *plan;
394 :
395 : /* Guard against stack overflow due to overly complex plans */
396 1466748 : check_stack_depth();
397 :
398 1466748 : switch (best_path->pathtype)
399 : {
400 504264 : case T_SeqScan:
401 : case T_SampleScan:
402 : case T_IndexScan:
403 : case T_IndexOnlyScan:
404 : case T_BitmapHeapScan:
405 : case T_TidScan:
406 : case T_TidRangeScan:
407 : case T_SubqueryScan:
408 : case T_FunctionScan:
409 : case T_TableFuncScan:
410 : case T_ValuesScan:
411 : case T_CteScan:
412 : case T_WorkTableScan:
413 : case T_NamedTuplestoreScan:
414 : case T_ForeignScan:
415 : case T_CustomScan:
416 504264 : plan = create_scan_plan(root, best_path, flags);
417 504264 : break;
418 140672 : case T_HashJoin:
419 : case T_MergeJoin:
420 : case T_NestLoop:
421 140672 : plan = create_join_plan(root,
422 : (JoinPath *) best_path);
423 140672 : break;
424 25390 : case T_Append:
425 25390 : plan = create_append_plan(root,
426 : (AppendPath *) best_path,
427 : flags);
428 25390 : break;
429 578 : case T_MergeAppend:
430 578 : plan = create_merge_append_plan(root,
431 : (MergeAppendPath *) best_path,
432 : flags);
433 578 : break;
434 547328 : case T_Result:
435 547328 : if (IsA(best_path, ProjectionPath))
436 : {
437 345752 : plan = create_projection_plan(root,
438 : (ProjectionPath *) best_path,
439 : flags);
440 : }
441 201576 : else if (IsA(best_path, MinMaxAggPath))
442 : {
443 364 : plan = (Plan *) create_minmaxagg_plan(root,
444 : (MinMaxAggPath *) best_path);
445 : }
446 201212 : else if (IsA(best_path, GroupResultPath))
447 : {
448 197156 : plan = (Plan *) create_group_result_plan(root,
449 : (GroupResultPath *) best_path);
450 : }
451 : else
452 : {
453 : /* Simple RTE_RESULT base relation */
454 : Assert(IsA(best_path, Path));
455 4056 : plan = create_scan_plan(root, best_path, flags);
456 : }
457 547328 : break;
458 11730 : case T_ProjectSet:
459 11730 : plan = (Plan *) create_project_set_plan(root,
460 : (ProjectSetPath *) best_path);
461 11730 : break;
462 4252 : case T_Material:
463 4252 : plan = (Plan *) create_material_plan(root,
464 : (MaterialPath *) best_path,
465 : flags);
466 4252 : break;
467 1958 : case T_Memoize:
468 1958 : plan = (Plan *) create_memoize_plan(root,
469 : (MemoizePath *) best_path,
470 : flags);
471 1958 : break;
472 5702 : case T_Unique:
473 5702 : plan = (Plan *) create_unique_plan(root,
474 : (UniquePath *) best_path,
475 : flags);
476 5702 : break;
477 954 : case T_Gather:
478 954 : plan = (Plan *) create_gather_plan(root,
479 : (GatherPath *) best_path);
480 954 : break;
481 69178 : case T_Sort:
482 69178 : plan = (Plan *) create_sort_plan(root,
483 : (SortPath *) best_path,
484 : flags);
485 69178 : break;
486 984 : case T_IncrementalSort:
487 984 : plan = (Plan *) create_incrementalsort_plan(root,
488 : (IncrementalSortPath *) best_path,
489 : flags);
490 984 : break;
491 246 : case T_Group:
492 246 : plan = (Plan *) create_group_plan(root,
493 : (GroupPath *) best_path);
494 246 : break;
495 42976 : case T_Agg:
496 42976 : if (IsA(best_path, GroupingSetsPath))
497 914 : plan = create_groupingsets_plan(root,
498 : (GroupingSetsPath *) best_path);
499 : else
500 : {
501 : Assert(IsA(best_path, AggPath));
502 42062 : plan = (Plan *) create_agg_plan(root,
503 : (AggPath *) best_path);
504 : }
505 42976 : break;
506 2750 : case T_WindowAgg:
507 2750 : plan = (Plan *) create_windowagg_plan(root,
508 : (WindowAggPath *) best_path);
509 2750 : break;
510 668 : case T_SetOp:
511 668 : plan = (Plan *) create_setop_plan(root,
512 : (SetOpPath *) best_path,
513 : flags);
514 668 : break;
515 930 : case T_RecursiveUnion:
516 930 : plan = (Plan *) create_recursiveunion_plan(root,
517 : (RecursiveUnionPath *) best_path);
518 930 : break;
519 7868 : case T_LockRows:
520 7868 : plan = (Plan *) create_lockrows_plan(root,
521 : (LockRowsPath *) best_path,
522 : flags);
523 7868 : break;
524 93504 : case T_ModifyTable:
525 93504 : plan = (Plan *) create_modifytable_plan(root,
526 : (ModifyTablePath *) best_path);
527 93108 : break;
528 4462 : case T_Limit:
529 4462 : plan = (Plan *) create_limit_plan(root,
530 : (LimitPath *) best_path,
531 : flags);
532 4462 : break;
533 354 : case T_GatherMerge:
534 354 : plan = (Plan *) create_gather_merge_plan(root,
535 : (GatherMergePath *) best_path);
536 354 : break;
537 0 : default:
538 0 : elog(ERROR, "unrecognized node type: %d",
539 : (int) best_path->pathtype);
540 : plan = NULL; /* keep compiler quiet */
541 : break;
542 : }
543 :
544 1466352 : return plan;
545 : }
546 :
547 : /*
548 : * create_scan_plan
549 : * Create a scan plan for the parent relation of 'best_path'.
550 : */
551 : static Plan *
552 508320 : create_scan_plan(PlannerInfo *root, Path *best_path, int flags)
553 : {
554 508320 : RelOptInfo *rel = best_path->parent;
555 : List *scan_clauses;
556 : List *gating_clauses;
557 : List *tlist;
558 : Plan *plan;
559 :
560 : /*
561 : * Extract the relevant restriction clauses from the parent relation. The
562 : * executor must apply all these restrictions during the scan, except for
563 : * pseudoconstants which we'll take care of below.
564 : *
565 : * If this is a plain indexscan or index-only scan, we need not consider
566 : * restriction clauses that are implied by the index's predicate, so use
567 : * indrestrictinfo not baserestrictinfo. Note that we can't do that for
568 : * bitmap indexscans, since there's not necessarily a single index
569 : * involved; but it doesn't matter since create_bitmap_scan_plan() will be
570 : * able to get rid of such clauses anyway via predicate proof.
571 : */
572 508320 : switch (best_path->pathtype)
573 : {
574 158418 : case T_IndexScan:
575 : case T_IndexOnlyScan:
576 158418 : scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo;
577 158418 : break;
578 349902 : default:
579 349902 : scan_clauses = rel->baserestrictinfo;
580 349902 : break;
581 : }
582 :
583 : /*
584 : * If this is a parameterized scan, we also need to enforce all the join
585 : * clauses available from the outer relation(s).
586 : *
587 : * For paranoia's sake, don't modify the stored baserestrictinfo list.
588 : */
589 508320 : if (best_path->param_info)
590 49932 : scan_clauses = list_concat_copy(scan_clauses,
591 49932 : best_path->param_info->ppi_clauses);
592 :
593 : /*
594 : * Detect whether we have any pseudoconstant quals to deal with. Then, if
595 : * we'll need a gating Result node, it will be able to project, so there
596 : * are no requirements on the child's tlist.
597 : *
598 : * If this replaces a join, it must be a foreign scan or a custom scan,
599 : * and the FDW or the custom scan provider would have stored in the best
600 : * path the list of RestrictInfo nodes to apply to the join; check against
601 : * that list in that case.
602 : */
603 508320 : if (IS_JOIN_REL(rel))
604 318 : {
605 : List *join_clauses;
606 :
607 : Assert(best_path->pathtype == T_ForeignScan ||
608 : best_path->pathtype == T_CustomScan);
609 318 : if (best_path->pathtype == T_ForeignScan)
610 318 : join_clauses = ((ForeignPath *) best_path)->fdw_restrictinfo;
611 : else
612 0 : join_clauses = ((CustomPath *) best_path)->custom_restrictinfo;
613 :
614 318 : gating_clauses = get_gating_quals(root, join_clauses);
615 : }
616 : else
617 508002 : gating_clauses = get_gating_quals(root, scan_clauses);
618 508320 : if (gating_clauses)
619 6872 : flags = 0;
620 :
621 : /*
622 : * For table scans, rather than using the relation targetlist (which is
623 : * only those Vars actually needed by the query), we prefer to generate a
624 : * tlist containing all Vars in order. This will allow the executor to
625 : * optimize away projection of the table tuples, if possible.
626 : *
627 : * But if the caller is going to ignore our tlist anyway, then don't
628 : * bother generating one at all. We use an exact equality test here, so
629 : * that this only applies when CP_IGNORE_TLIST is the only flag set.
630 : */
631 508320 : if (flags == CP_IGNORE_TLIST)
632 : {
633 77730 : tlist = NULL;
634 : }
635 430590 : else if (use_physical_tlist(root, best_path, flags))
636 : {
637 197370 : if (best_path->pathtype == T_IndexOnlyScan)
638 : {
639 : /* For index-only scan, the preferred tlist is the index's */
640 10272 : tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
641 :
642 : /*
643 : * Transfer sortgroupref data to the replacement tlist, if
644 : * requested (use_physical_tlist checked that this will work).
645 : */
646 10272 : if (flags & CP_LABEL_TLIST)
647 1912 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
648 : }
649 : else
650 : {
651 187098 : tlist = build_physical_tlist(root, rel);
652 187098 : if (tlist == NIL)
653 : {
654 : /* Failed because of dropped cols, so use regular method */
655 160 : tlist = build_path_tlist(root, best_path);
656 : }
657 : else
658 : {
659 : /* As above, transfer sortgroupref data to replacement tlist */
660 186938 : if (flags & CP_LABEL_TLIST)
661 13524 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
662 : }
663 : }
664 : }
665 : else
666 : {
667 233220 : tlist = build_path_tlist(root, best_path);
668 : }
669 :
670 508320 : switch (best_path->pathtype)
671 : {
672 220606 : case T_SeqScan:
673 220606 : plan = (Plan *) create_seqscan_plan(root,
674 : best_path,
675 : tlist,
676 : scan_clauses);
677 220606 : break;
678 :
679 306 : case T_SampleScan:
680 306 : plan = (Plan *) create_samplescan_plan(root,
681 : best_path,
682 : tlist,
683 : scan_clauses);
684 306 : break;
685 :
686 140218 : case T_IndexScan:
687 140218 : plan = (Plan *) create_indexscan_plan(root,
688 : (IndexPath *) best_path,
689 : tlist,
690 : scan_clauses,
691 : false);
692 140218 : break;
693 :
694 18200 : case T_IndexOnlyScan:
695 18200 : plan = (Plan *) create_indexscan_plan(root,
696 : (IndexPath *) best_path,
697 : tlist,
698 : scan_clauses,
699 : true);
700 18200 : break;
701 :
702 21088 : case T_BitmapHeapScan:
703 21088 : plan = (Plan *) create_bitmap_scan_plan(root,
704 : (BitmapHeapPath *) best_path,
705 : tlist,
706 : scan_clauses);
707 21088 : break;
708 :
709 752 : case T_TidScan:
710 752 : plan = (Plan *) create_tidscan_plan(root,
711 : (TidPath *) best_path,
712 : tlist,
713 : scan_clauses);
714 752 : break;
715 :
716 1944 : case T_TidRangeScan:
717 1944 : plan = (Plan *) create_tidrangescan_plan(root,
718 : (TidRangePath *) best_path,
719 : tlist,
720 : scan_clauses);
721 1944 : break;
722 :
723 33224 : case T_SubqueryScan:
724 33224 : plan = (Plan *) create_subqueryscan_plan(root,
725 : (SubqueryScanPath *) best_path,
726 : tlist,
727 : scan_clauses);
728 33224 : break;
729 :
730 51280 : case T_FunctionScan:
731 51280 : plan = (Plan *) create_functionscan_plan(root,
732 : best_path,
733 : tlist,
734 : scan_clauses);
735 51280 : break;
736 :
737 626 : case T_TableFuncScan:
738 626 : plan = (Plan *) create_tablefuncscan_plan(root,
739 : best_path,
740 : tlist,
741 : scan_clauses);
742 626 : break;
743 :
744 8268 : case T_ValuesScan:
745 8268 : plan = (Plan *) create_valuesscan_plan(root,
746 : best_path,
747 : tlist,
748 : scan_clauses);
749 8268 : break;
750 :
751 4254 : case T_CteScan:
752 4254 : plan = (Plan *) create_ctescan_plan(root,
753 : best_path,
754 : tlist,
755 : scan_clauses);
756 4254 : break;
757 :
758 482 : case T_NamedTuplestoreScan:
759 482 : plan = (Plan *) create_namedtuplestorescan_plan(root,
760 : best_path,
761 : tlist,
762 : scan_clauses);
763 482 : break;
764 :
765 4056 : case T_Result:
766 4056 : plan = (Plan *) create_resultscan_plan(root,
767 : best_path,
768 : tlist,
769 : scan_clauses);
770 4056 : break;
771 :
772 930 : case T_WorkTableScan:
773 930 : plan = (Plan *) create_worktablescan_plan(root,
774 : best_path,
775 : tlist,
776 : scan_clauses);
777 930 : break;
778 :
779 2086 : case T_ForeignScan:
780 2086 : plan = (Plan *) create_foreignscan_plan(root,
781 : (ForeignPath *) best_path,
782 : tlist,
783 : scan_clauses);
784 2086 : break;
785 :
786 0 : case T_CustomScan:
787 0 : plan = (Plan *) create_customscan_plan(root,
788 : (CustomPath *) best_path,
789 : tlist,
790 : scan_clauses);
791 0 : break;
792 :
793 0 : default:
794 0 : elog(ERROR, "unrecognized node type: %d",
795 : (int) best_path->pathtype);
796 : plan = NULL; /* keep compiler quiet */
797 : break;
798 : }
799 :
800 : /*
801 : * If there are any pseudoconstant clauses attached to this node, insert a
802 : * gating Result node that evaluates the pseudoconstants as one-time
803 : * quals.
804 : */
805 508320 : if (gating_clauses)
806 6872 : plan = create_gating_plan(root, best_path, plan, gating_clauses);
807 :
808 508320 : return plan;
809 : }
810 :
811 : /*
812 : * Build a target list (ie, a list of TargetEntry) for the Path's output.
813 : *
814 : * This is almost just make_tlist_from_pathtarget(), but we also have to
815 : * deal with replacing nestloop params.
816 : */
817 : static List *
818 1012042 : build_path_tlist(PlannerInfo *root, Path *path)
819 : {
820 1012042 : List *tlist = NIL;
821 1012042 : Index *sortgrouprefs = path->pathtarget->sortgrouprefs;
822 1012042 : int resno = 1;
823 : ListCell *v;
824 :
825 3464204 : foreach(v, path->pathtarget->exprs)
826 : {
827 2452162 : Node *node = (Node *) lfirst(v);
828 : TargetEntry *tle;
829 :
830 : /*
831 : * If it's a parameterized path, there might be lateral references in
832 : * the tlist, which need to be replaced with Params. There's no need
833 : * to remake the TargetEntry nodes, so apply this to each list item
834 : * separately.
835 : */
836 2452162 : if (path->param_info)
837 24432 : node = replace_nestloop_params(root, node);
838 :
839 2452162 : tle = makeTargetEntry((Expr *) node,
840 : resno,
841 : NULL,
842 : false);
843 2452162 : if (sortgrouprefs)
844 1526232 : tle->ressortgroupref = sortgrouprefs[resno - 1];
845 :
846 2452162 : tlist = lappend(tlist, tle);
847 2452162 : resno++;
848 : }
849 1012042 : return tlist;
850 : }
851 :
852 : /*
853 : * use_physical_tlist
854 : * Decide whether to use a tlist matching relation structure,
855 : * rather than only those Vars actually referenced.
856 : */
857 : static bool
858 776342 : use_physical_tlist(PlannerInfo *root, Path *path, int flags)
859 : {
860 776342 : RelOptInfo *rel = path->parent;
861 : int i;
862 : ListCell *lc;
863 :
864 : /*
865 : * Forget it if either exact tlist or small tlist is demanded.
866 : */
867 776342 : if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))
868 532160 : return false;
869 :
870 : /*
871 : * We can do this for real relation scans, subquery scans, function scans,
872 : * tablefunc scans, values scans, and CTE scans (but not for, eg, joins).
873 : */
874 244182 : if (rel->rtekind != RTE_RELATION &&
875 39872 : rel->rtekind != RTE_SUBQUERY &&
876 37326 : rel->rtekind != RTE_FUNCTION &&
877 15048 : rel->rtekind != RTE_TABLEFUNC &&
878 14814 : rel->rtekind != RTE_VALUES &&
879 13518 : rel->rtekind != RTE_CTE)
880 12042 : return false;
881 :
882 : /*
883 : * Can't do it with inheritance cases either (mainly because Append
884 : * doesn't project; this test may be unnecessary now that
885 : * create_append_plan instructs its children to return an exact tlist).
886 : */
887 232140 : if (rel->reloptkind != RELOPT_BASEREL)
888 6110 : return false;
889 :
890 : /*
891 : * Also, don't do it to a CustomPath; the premise that we're extracting
892 : * columns from a simple physical tuple is unlikely to hold for those.
893 : * (When it does make sense, the custom path creator can set up the path's
894 : * pathtarget that way.)
895 : */
896 226030 : if (IsA(path, CustomPath))
897 0 : return false;
898 :
899 : /*
900 : * If a bitmap scan's tlist is empty, keep it as-is. This may allow the
901 : * executor to skip heap page fetches, and in any case, the benefit of
902 : * using a physical tlist instead would be minimal.
903 : */
904 226030 : if (IsA(path, BitmapHeapPath) &&
905 10662 : path->pathtarget->exprs == NIL)
906 3160 : return false;
907 :
908 : /*
909 : * Can't do it if any system columns or whole-row Vars are requested.
910 : * (This could possibly be fixed but would take some fragile assumptions
911 : * in setrefs.c, I think.)
912 : */
913 1528962 : for (i = rel->min_attr; i <= 0; i++)
914 : {
915 1328640 : if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
916 22548 : return false;
917 : }
918 :
919 : /*
920 : * Can't do it if the rel is required to emit any placeholder expressions,
921 : * either.
922 : */
923 201986 : foreach(lc, root->placeholder_list)
924 : {
925 2016 : PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
926 :
927 3972 : if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
928 1956 : bms_is_subset(phinfo->ph_eval_at, rel->relids))
929 352 : return false;
930 : }
931 :
932 : /*
933 : * For an index-only scan, the "physical tlist" is the index's indextlist.
934 : * We can only return that without a projection if all the index's columns
935 : * are returnable.
936 : */
937 199970 : if (path->pathtype == T_IndexOnlyScan)
938 : {
939 10288 : IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo;
940 :
941 22386 : for (i = 0; i < indexinfo->ncolumns; i++)
942 : {
943 12114 : if (!indexinfo->canreturn[i])
944 16 : return false;
945 : }
946 : }
947 :
948 : /*
949 : * Also, can't do it if CP_LABEL_TLIST is specified and path is requested
950 : * to emit any sort/group columns that are not simple Vars. (If they are
951 : * simple Vars, they should appear in the physical tlist, and
952 : * apply_pathtarget_labeling_to_tlist will take care of getting them
953 : * labeled again.) We also have to check that no two sort/group columns
954 : * are the same Var, else that element of the physical tlist would need
955 : * conflicting ressortgroupref labels.
956 : */
957 199954 : if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs)
958 : {
959 2716 : Bitmapset *sortgroupatts = NULL;
960 :
961 2716 : i = 0;
962 6570 : foreach(lc, path->pathtarget->exprs)
963 : {
964 4614 : Expr *expr = (Expr *) lfirst(lc);
965 :
966 4614 : if (path->pathtarget->sortgrouprefs[i])
967 : {
968 3780 : if (expr && IsA(expr, Var))
969 3020 : {
970 3032 : int attno = ((Var *) expr)->varattno;
971 :
972 3032 : attno -= FirstLowInvalidHeapAttributeNumber;
973 3032 : if (bms_is_member(attno, sortgroupatts))
974 760 : return false;
975 3020 : sortgroupatts = bms_add_member(sortgroupatts, attno);
976 : }
977 : else
978 748 : return false;
979 : }
980 3854 : i++;
981 : }
982 : }
983 :
984 199194 : return true;
985 : }
986 :
987 : /*
988 : * get_gating_quals
989 : * See if there are pseudoconstant quals in a node's quals list
990 : *
991 : * If the node's quals list includes any pseudoconstant quals,
992 : * return just those quals.
993 : */
994 : static List *
995 648992 : get_gating_quals(PlannerInfo *root, List *quals)
996 : {
997 : /* No need to look if we know there are no pseudoconstants */
998 648992 : if (!root->hasPseudoConstantQuals)
999 626424 : return NIL;
1000 :
1001 : /* Sort into desirable execution order while still in RestrictInfo form */
1002 22568 : quals = order_qual_clauses(root, quals);
1003 :
1004 : /* Pull out any pseudoconstant quals from the RestrictInfo list */
1005 22568 : return extract_actual_clauses(quals, true);
1006 : }
1007 :
1008 : /*
1009 : * create_gating_plan
1010 : * Deal with pseudoconstant qual clauses
1011 : *
1012 : * Add a gating Result node atop the already-built plan.
1013 : */
1014 : static Plan *
1015 9966 : create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
1016 : List *gating_quals)
1017 : {
1018 : Result *gplan;
1019 :
1020 : Assert(gating_quals);
1021 :
1022 : /*
1023 : * Since we need a Result node anyway, always return the path's requested
1024 : * tlist; that's never a wrong choice, even if the parent node didn't ask
1025 : * for CP_EXACT_TLIST.
1026 : */
1027 9966 : gplan = make_gating_result(build_path_tlist(root, path),
1028 : (Node *) gating_quals, plan);
1029 :
1030 : /*
1031 : * We might have had a trivial Result plan already. Stacking one Result
1032 : * atop another is silly, so if that applies, just discard the input plan.
1033 : * (We're assuming its targetlist is uninteresting; it should be either
1034 : * the same as the result of build_path_tlist, or a simplified version.
1035 : * However, we preserve the set of relids that it purports to scan and
1036 : * attribute that to our replacement Result instead, and likewise for the
1037 : * result_type.)
1038 : */
1039 9966 : if (IsA(plan, Result))
1040 : {
1041 24 : Result *rplan = (Result *) plan;
1042 :
1043 24 : gplan->plan.lefttree = NULL;
1044 24 : gplan->relids = rplan->relids;
1045 24 : gplan->result_type = rplan->result_type;
1046 : }
1047 :
1048 : /*
1049 : * Notice that we don't change cost or size estimates when doing gating.
1050 : * The costs of qual eval were already included in the subplan's cost.
1051 : * Leaving the size alone amounts to assuming that the gating qual will
1052 : * succeed, which is the conservative estimate for planning upper queries.
1053 : * We certainly don't want to assume the output size is zero (unless the
1054 : * gating qual is actually constant FALSE, and that case is dealt with in
1055 : * clausesel.c). Interpolating between the two cases is silly, because it
1056 : * doesn't reflect what will really happen at runtime, and besides which
1057 : * in most cases we have only a very bad idea of the probability of the
1058 : * gating qual being true.
1059 : */
1060 9966 : copy_plan_costsize(&gplan->plan, plan);
1061 :
1062 : /* Gating quals could be unsafe, so better use the Path's safety flag */
1063 9966 : gplan->plan.parallel_safe = path->parallel_safe;
1064 :
1065 9966 : return &gplan->plan;
1066 : }
1067 :
1068 : /*
1069 : * create_join_plan
1070 : * Create a join plan for 'best_path' and (recursively) plans for its
1071 : * inner and outer paths.
1072 : */
1073 : static Plan *
1074 140672 : create_join_plan(PlannerInfo *root, JoinPath *best_path)
1075 : {
1076 : Plan *plan;
1077 : List *gating_clauses;
1078 :
1079 140672 : switch (best_path->path.pathtype)
1080 : {
1081 7624 : case T_MergeJoin:
1082 7624 : plan = (Plan *) create_mergejoin_plan(root,
1083 : (MergePath *) best_path);
1084 7624 : break;
1085 35164 : case T_HashJoin:
1086 35164 : plan = (Plan *) create_hashjoin_plan(root,
1087 : (HashPath *) best_path);
1088 35164 : break;
1089 97884 : case T_NestLoop:
1090 97884 : plan = (Plan *) create_nestloop_plan(root,
1091 : (NestPath *) best_path);
1092 97884 : break;
1093 0 : default:
1094 0 : elog(ERROR, "unrecognized node type: %d",
1095 : (int) best_path->path.pathtype);
1096 : plan = NULL; /* keep compiler quiet */
1097 : break;
1098 : }
1099 :
1100 : /*
1101 : * If there are any pseudoconstant clauses attached to this node, insert a
1102 : * gating Result node that evaluates the pseudoconstants as one-time
1103 : * quals.
1104 : */
1105 140672 : gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo);
1106 140672 : if (gating_clauses)
1107 3094 : plan = create_gating_plan(root, (Path *) best_path, plan,
1108 : gating_clauses);
1109 :
1110 : #ifdef NOT_USED
1111 :
1112 : /*
1113 : * * Expensive function pullups may have pulled local predicates * into
1114 : * this path node. Put them in the qpqual of the plan node. * JMH,
1115 : * 6/15/92
1116 : */
1117 : if (get_loc_restrictinfo(best_path) != NIL)
1118 : set_qpqual((Plan) plan,
1119 : list_concat(get_qpqual((Plan) plan),
1120 : get_actual_clauses(get_loc_restrictinfo(best_path))));
1121 : #endif
1122 :
1123 140672 : return plan;
1124 : }
1125 :
1126 : /*
1127 : * mark_async_capable_plan
1128 : * Check whether the Plan node created from a Path node is async-capable,
1129 : * and if so, mark the Plan node as such and return true, otherwise
1130 : * return false.
1131 : */
1132 : static bool
1133 30540 : mark_async_capable_plan(Plan *plan, Path *path)
1134 : {
1135 30540 : switch (nodeTag(path))
1136 : {
1137 11092 : case T_SubqueryScanPath:
1138 : {
1139 11092 : SubqueryScan *scan_plan = (SubqueryScan *) plan;
1140 :
1141 : /*
1142 : * If the generated plan node includes a gating Result node,
1143 : * we can't execute it asynchronously.
1144 : */
1145 11092 : if (IsA(plan, Result))
1146 4 : return false;
1147 :
1148 : /*
1149 : * If a SubqueryScan node atop of an async-capable plan node
1150 : * is deletable, consider it as async-capable.
1151 : */
1152 15582 : if (trivial_subqueryscan(scan_plan) &&
1153 4494 : mark_async_capable_plan(scan_plan->subplan,
1154 : ((SubqueryScanPath *) path)->subpath))
1155 16 : break;
1156 11072 : return false;
1157 : }
1158 488 : case T_ForeignPath:
1159 : {
1160 488 : FdwRoutine *fdwroutine = path->parent->fdwroutine;
1161 :
1162 : /*
1163 : * If the generated plan node includes a gating Result node,
1164 : * we can't execute it asynchronously.
1165 : */
1166 488 : if (IsA(plan, Result))
1167 8 : return false;
1168 :
1169 : Assert(fdwroutine != NULL);
1170 954 : if (fdwroutine->IsForeignPathAsyncCapable != NULL &&
1171 474 : fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path))
1172 194 : break;
1173 286 : return false;
1174 : }
1175 5320 : case T_ProjectionPath:
1176 :
1177 : /*
1178 : * If the generated plan node includes a Result node for the
1179 : * projection, we can't execute it asynchronously.
1180 : */
1181 5320 : if (IsA(plan, Result))
1182 184 : return false;
1183 :
1184 : /*
1185 : * create_projection_plan() would have pulled up the subplan, so
1186 : * check the capability using the subpath.
1187 : */
1188 5136 : if (mark_async_capable_plan(plan,
1189 : ((ProjectionPath *) path)->subpath))
1190 32 : return true;
1191 5104 : return false;
1192 13640 : default:
1193 13640 : return false;
1194 : }
1195 :
1196 210 : plan->async_capable = true;
1197 :
1198 210 : return true;
1199 : }
1200 :
1201 : /*
1202 : * create_append_plan
1203 : * Create an Append plan for 'best_path' and (recursively) plans
1204 : * for its subpaths.
1205 : *
1206 : * Returns a Plan node.
1207 : */
1208 : static Plan *
1209 25390 : create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags)
1210 : {
1211 : Append *plan;
1212 25390 : List *tlist = build_path_tlist(root, &best_path->path);
1213 25390 : int orig_tlist_length = list_length(tlist);
1214 25390 : bool tlist_was_changed = false;
1215 25390 : List *pathkeys = best_path->path.pathkeys;
1216 25390 : List *subplans = NIL;
1217 : ListCell *subpaths;
1218 25390 : int nasyncplans = 0;
1219 25390 : RelOptInfo *rel = best_path->path.parent;
1220 25390 : int nodenumsortkeys = 0;
1221 25390 : AttrNumber *nodeSortColIdx = NULL;
1222 25390 : Oid *nodeSortOperators = NULL;
1223 25390 : Oid *nodeCollations = NULL;
1224 25390 : bool *nodeNullsFirst = NULL;
1225 25390 : bool consider_async = false;
1226 :
1227 : /*
1228 : * The subpaths list could be empty, if every child was proven empty by
1229 : * constraint exclusion. In that case generate a dummy plan that returns
1230 : * no rows.
1231 : *
1232 : * Note that an AppendPath with no members is also generated in certain
1233 : * cases where there was no appending construct at all, but we know the
1234 : * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel).
1235 : */
1236 25390 : if (best_path->subpaths == NIL)
1237 : {
1238 : /* Generate a Result plan with constant-FALSE gating qual */
1239 : Plan *plan;
1240 :
1241 1104 : plan = (Plan *) make_one_row_result(tlist,
1242 1104 : (Node *) list_make1(makeBoolConst(false,
1243 : false)),
1244 : best_path->path.parent);
1245 :
1246 1104 : copy_generic_path_info(plan, (Path *) best_path);
1247 :
1248 1104 : return plan;
1249 : }
1250 :
1251 : /*
1252 : * Otherwise build an Append plan. Note that if there's just one child,
1253 : * the Append is pretty useless; but we wait till setrefs.c to get rid of
1254 : * it. Doing so here doesn't work because the varno of the child scan
1255 : * plan won't match the parent-rel Vars it'll be asked to emit.
1256 : *
1257 : * We don't have the actual creation of the Append node split out into a
1258 : * separate make_xxx function. This is because we want to run
1259 : * prepare_sort_from_pathkeys on it before we do so on the individual
1260 : * child plans, to make cross-checking the sort info easier.
1261 : */
1262 24286 : plan = makeNode(Append);
1263 24286 : plan->plan.targetlist = tlist;
1264 24286 : plan->plan.qual = NIL;
1265 24286 : plan->plan.lefttree = NULL;
1266 24286 : plan->plan.righttree = NULL;
1267 24286 : plan->apprelids = rel->relids;
1268 :
1269 24286 : if (pathkeys != NIL)
1270 : {
1271 : /*
1272 : * Compute sort column info, and adjust the Append's tlist as needed.
1273 : * Because we pass adjust_tlist_in_place = true, we may ignore the
1274 : * function result; it must be the same plan node. However, we then
1275 : * need to detect whether any tlist entries were added.
1276 : */
1277 314 : (void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys,
1278 314 : best_path->path.parent->relids,
1279 : NULL,
1280 : true,
1281 : &nodenumsortkeys,
1282 : &nodeSortColIdx,
1283 : &nodeSortOperators,
1284 : &nodeCollations,
1285 : &nodeNullsFirst);
1286 314 : tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist));
1287 : }
1288 :
1289 : /* If appropriate, consider async append */
1290 24286 : consider_async = (enable_async_append && pathkeys == NIL &&
1291 58950 : !best_path->path.parallel_safe &&
1292 10378 : list_length(best_path->subpaths) > 1);
1293 :
1294 : /* Build the plan for each child */
1295 84182 : foreach(subpaths, best_path->subpaths)
1296 : {
1297 59896 : Path *subpath = (Path *) lfirst(subpaths);
1298 : Plan *subplan;
1299 :
1300 : /* Must insist that all children return the same tlist */
1301 59896 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1302 :
1303 : /*
1304 : * For ordered Appends, we must insert a Sort node if subplan isn't
1305 : * sufficiently ordered.
1306 : */
1307 59896 : if (pathkeys != NIL)
1308 : {
1309 : int numsortkeys;
1310 : AttrNumber *sortColIdx;
1311 : Oid *sortOperators;
1312 : Oid *collations;
1313 : bool *nullsFirst;
1314 : int presorted_keys;
1315 :
1316 : /*
1317 : * Compute sort column info, and adjust subplan's tlist as needed.
1318 : * We must apply prepare_sort_from_pathkeys even to subplans that
1319 : * don't need an explicit sort, to make sure they are returning
1320 : * the same sort key columns the Append expects.
1321 : */
1322 788 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1323 788 : subpath->parent->relids,
1324 : nodeSortColIdx,
1325 : false,
1326 : &numsortkeys,
1327 : &sortColIdx,
1328 : &sortOperators,
1329 : &collations,
1330 : &nullsFirst);
1331 :
1332 : /*
1333 : * Check that we got the same sort key information. We just
1334 : * Assert that the sortops match, since those depend only on the
1335 : * pathkeys; but it seems like a good idea to check the sort
1336 : * column numbers explicitly, to ensure the tlists match up.
1337 : */
1338 : Assert(numsortkeys == nodenumsortkeys);
1339 788 : if (memcmp(sortColIdx, nodeSortColIdx,
1340 : numsortkeys * sizeof(AttrNumber)) != 0)
1341 0 : elog(ERROR, "Append child's targetlist doesn't match Append");
1342 : Assert(memcmp(sortOperators, nodeSortOperators,
1343 : numsortkeys * sizeof(Oid)) == 0);
1344 : Assert(memcmp(collations, nodeCollations,
1345 : numsortkeys * sizeof(Oid)) == 0);
1346 : Assert(memcmp(nullsFirst, nodeNullsFirst,
1347 : numsortkeys * sizeof(bool)) == 0);
1348 :
1349 : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1350 788 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1351 : &presorted_keys))
1352 : {
1353 : Plan *sort_plan;
1354 :
1355 : /*
1356 : * We choose to use incremental sort if it is enabled and
1357 : * there are presorted keys; otherwise we use full sort.
1358 : */
1359 12 : if (enable_incremental_sort && presorted_keys > 0)
1360 : {
1361 : sort_plan = (Plan *)
1362 6 : make_incrementalsort(subplan, numsortkeys, presorted_keys,
1363 : sortColIdx, sortOperators,
1364 : collations, nullsFirst);
1365 :
1366 6 : label_incrementalsort_with_costsize(root,
1367 : (IncrementalSort *) sort_plan,
1368 : pathkeys,
1369 : best_path->limit_tuples);
1370 : }
1371 : else
1372 : {
1373 6 : sort_plan = (Plan *) make_sort(subplan, numsortkeys,
1374 : sortColIdx, sortOperators,
1375 : collations, nullsFirst);
1376 :
1377 6 : label_sort_with_costsize(root, (Sort *) sort_plan,
1378 : best_path->limit_tuples);
1379 : }
1380 :
1381 12 : subplan = sort_plan;
1382 : }
1383 : }
1384 :
1385 : /* If needed, check to see if subplan can be executed asynchronously */
1386 59896 : if (consider_async && mark_async_capable_plan(subplan, subpath))
1387 : {
1388 : Assert(subplan->async_capable);
1389 194 : ++nasyncplans;
1390 : }
1391 :
1392 59896 : subplans = lappend(subplans, subplan);
1393 : }
1394 :
1395 : /* Set below if we find quals that we can use to run-time prune */
1396 24286 : plan->part_prune_index = -1;
1397 :
1398 : /*
1399 : * If any quals exist, they may be useful to perform further partition
1400 : * pruning during execution. Gather information needed by the executor to
1401 : * do partition pruning.
1402 : */
1403 24286 : if (enable_partition_pruning)
1404 : {
1405 : List *prunequal;
1406 :
1407 24232 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1408 :
1409 24232 : if (best_path->path.param_info)
1410 : {
1411 352 : List *prmquals = best_path->path.param_info->ppi_clauses;
1412 :
1413 352 : prmquals = extract_actual_clauses(prmquals, false);
1414 352 : prmquals = (List *) replace_nestloop_params(root,
1415 : (Node *) prmquals);
1416 :
1417 352 : prunequal = list_concat(prunequal, prmquals);
1418 : }
1419 :
1420 24232 : if (prunequal != NIL)
1421 9142 : plan->part_prune_index = make_partition_pruneinfo(root, rel,
1422 : best_path->subpaths,
1423 : prunequal);
1424 : }
1425 :
1426 24286 : plan->appendplans = subplans;
1427 24286 : plan->nasyncplans = nasyncplans;
1428 24286 : plan->first_partial_plan = best_path->first_partial_path;
1429 :
1430 24286 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1431 :
1432 : /*
1433 : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1434 : * produce either the exact tlist or a narrow tlist, we should get rid of
1435 : * the sort columns again. We must inject a projection node to do so.
1436 : */
1437 24286 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1438 : {
1439 0 : tlist = list_copy_head(plan->plan.targetlist, orig_tlist_length);
1440 0 : return inject_projection_plan((Plan *) plan, tlist,
1441 0 : plan->plan.parallel_safe);
1442 : }
1443 : else
1444 24286 : return (Plan *) plan;
1445 : }
1446 :
1447 : /*
1448 : * create_merge_append_plan
1449 : * Create a MergeAppend plan for 'best_path' and (recursively) plans
1450 : * for its subpaths.
1451 : *
1452 : * Returns a Plan node.
1453 : */
1454 : static Plan *
1455 578 : create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
1456 : int flags)
1457 : {
1458 578 : MergeAppend *node = makeNode(MergeAppend);
1459 578 : Plan *plan = &node->plan;
1460 578 : List *tlist = build_path_tlist(root, &best_path->path);
1461 578 : int orig_tlist_length = list_length(tlist);
1462 : bool tlist_was_changed;
1463 578 : List *pathkeys = best_path->path.pathkeys;
1464 578 : List *subplans = NIL;
1465 : ListCell *subpaths;
1466 578 : RelOptInfo *rel = best_path->path.parent;
1467 :
1468 : /*
1469 : * We don't have the actual creation of the MergeAppend node split out
1470 : * into a separate make_xxx function. This is because we want to run
1471 : * prepare_sort_from_pathkeys on it before we do so on the individual
1472 : * child plans, to make cross-checking the sort info easier.
1473 : */
1474 578 : copy_generic_path_info(plan, (Path *) best_path);
1475 578 : plan->targetlist = tlist;
1476 578 : plan->qual = NIL;
1477 578 : plan->lefttree = NULL;
1478 578 : plan->righttree = NULL;
1479 578 : node->apprelids = rel->relids;
1480 :
1481 : /*
1482 : * Compute sort column info, and adjust MergeAppend's tlist as needed.
1483 : * Because we pass adjust_tlist_in_place = true, we may ignore the
1484 : * function result; it must be the same plan node. However, we then need
1485 : * to detect whether any tlist entries were added.
1486 : */
1487 578 : (void) prepare_sort_from_pathkeys(plan, pathkeys,
1488 578 : best_path->path.parent->relids,
1489 : NULL,
1490 : true,
1491 : &node->numCols,
1492 : &node->sortColIdx,
1493 : &node->sortOperators,
1494 : &node->collations,
1495 : &node->nullsFirst);
1496 578 : tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist));
1497 :
1498 : /*
1499 : * Now prepare the child plans. We must apply prepare_sort_from_pathkeys
1500 : * even to subplans that don't need an explicit sort, to make sure they
1501 : * are returning the same sort key columns the MergeAppend expects.
1502 : */
1503 2200 : foreach(subpaths, best_path->subpaths)
1504 : {
1505 1622 : Path *subpath = (Path *) lfirst(subpaths);
1506 : Plan *subplan;
1507 : int numsortkeys;
1508 : AttrNumber *sortColIdx;
1509 : Oid *sortOperators;
1510 : Oid *collations;
1511 : bool *nullsFirst;
1512 : int presorted_keys;
1513 :
1514 : /* Build the child plan */
1515 : /* Must insist that all children return the same tlist */
1516 1622 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1517 :
1518 : /* Compute sort column info, and adjust subplan's tlist as needed */
1519 1622 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1520 1622 : subpath->parent->relids,
1521 1622 : node->sortColIdx,
1522 : false,
1523 : &numsortkeys,
1524 : &sortColIdx,
1525 : &sortOperators,
1526 : &collations,
1527 : &nullsFirst);
1528 :
1529 : /*
1530 : * Check that we got the same sort key information. We just Assert
1531 : * that the sortops match, since those depend only on the pathkeys;
1532 : * but it seems like a good idea to check the sort column numbers
1533 : * explicitly, to ensure the tlists really do match up.
1534 : */
1535 : Assert(numsortkeys == node->numCols);
1536 1622 : if (memcmp(sortColIdx, node->sortColIdx,
1537 : numsortkeys * sizeof(AttrNumber)) != 0)
1538 0 : elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
1539 : Assert(memcmp(sortOperators, node->sortOperators,
1540 : numsortkeys * sizeof(Oid)) == 0);
1541 : Assert(memcmp(collations, node->collations,
1542 : numsortkeys * sizeof(Oid)) == 0);
1543 : Assert(memcmp(nullsFirst, node->nullsFirst,
1544 : numsortkeys * sizeof(bool)) == 0);
1545 :
1546 : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1547 1622 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1548 : &presorted_keys))
1549 : {
1550 : Plan *sort_plan;
1551 :
1552 : /*
1553 : * We choose to use incremental sort if it is enabled and there
1554 : * are presorted keys; otherwise we use full sort.
1555 : */
1556 84 : if (enable_incremental_sort && presorted_keys > 0)
1557 : {
1558 : sort_plan = (Plan *)
1559 18 : make_incrementalsort(subplan, numsortkeys, presorted_keys,
1560 : sortColIdx, sortOperators,
1561 : collations, nullsFirst);
1562 :
1563 18 : label_incrementalsort_with_costsize(root,
1564 : (IncrementalSort *) sort_plan,
1565 : pathkeys,
1566 : best_path->limit_tuples);
1567 : }
1568 : else
1569 : {
1570 66 : sort_plan = (Plan *) make_sort(subplan, numsortkeys,
1571 : sortColIdx, sortOperators,
1572 : collations, nullsFirst);
1573 :
1574 66 : label_sort_with_costsize(root, (Sort *) sort_plan,
1575 : best_path->limit_tuples);
1576 : }
1577 :
1578 84 : subplan = sort_plan;
1579 : }
1580 :
1581 1622 : subplans = lappend(subplans, subplan);
1582 : }
1583 :
1584 : /* Set below if we find quals that we can use to run-time prune */
1585 578 : node->part_prune_index = -1;
1586 :
1587 : /*
1588 : * If any quals exist, they may be useful to perform further partition
1589 : * pruning during execution. Gather information needed by the executor to
1590 : * do partition pruning.
1591 : */
1592 578 : if (enable_partition_pruning)
1593 : {
1594 : List *prunequal;
1595 :
1596 578 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1597 :
1598 : /* We don't currently generate any parameterized MergeAppend paths */
1599 : Assert(best_path->path.param_info == NULL);
1600 :
1601 578 : if (prunequal != NIL)
1602 168 : node->part_prune_index = make_partition_pruneinfo(root, rel,
1603 : best_path->subpaths,
1604 : prunequal);
1605 : }
1606 :
1607 578 : node->mergeplans = subplans;
1608 :
1609 : /*
1610 : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1611 : * produce either the exact tlist or a narrow tlist, we should get rid of
1612 : * the sort columns again. We must inject a projection node to do so.
1613 : */
1614 578 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1615 : {
1616 0 : tlist = list_copy_head(plan->targetlist, orig_tlist_length);
1617 0 : return inject_projection_plan(plan, tlist, plan->parallel_safe);
1618 : }
1619 : else
1620 578 : return plan;
1621 : }
1622 :
1623 : /*
1624 : * create_group_result_plan
1625 : * Create a Result plan for 'best_path'.
1626 : * This is only used for degenerate grouping cases.
1627 : *
1628 : * Returns a Plan node.
1629 : */
1630 : static Result *
1631 197156 : create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path)
1632 : {
1633 : Result *plan;
1634 : List *tlist;
1635 : List *quals;
1636 :
1637 197156 : tlist = build_path_tlist(root, &best_path->path);
1638 :
1639 : /* best_path->quals is just bare clauses */
1640 197156 : quals = order_qual_clauses(root, best_path->quals);
1641 :
1642 197156 : plan = make_one_row_result(tlist, (Node *) quals, best_path->path.parent);
1643 :
1644 197156 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1645 :
1646 197156 : return plan;
1647 : }
1648 :
1649 : /*
1650 : * create_project_set_plan
1651 : * Create a ProjectSet plan for 'best_path'.
1652 : *
1653 : * Returns a Plan node.
1654 : */
1655 : static ProjectSet *
1656 11730 : create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path)
1657 : {
1658 : ProjectSet *plan;
1659 : Plan *subplan;
1660 : List *tlist;
1661 :
1662 : /* Since we intend to project, we don't need to constrain child tlist */
1663 11730 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1664 :
1665 11730 : tlist = build_path_tlist(root, &best_path->path);
1666 :
1667 11730 : plan = make_project_set(tlist, subplan);
1668 :
1669 11730 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1670 :
1671 11730 : return plan;
1672 : }
1673 :
1674 : /*
1675 : * create_material_plan
1676 : * Create a Material plan for 'best_path' and (recursively) plans
1677 : * for its subpaths.
1678 : *
1679 : * Returns a Plan node.
1680 : */
1681 : static Material *
1682 4252 : create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags)
1683 : {
1684 : Material *plan;
1685 : Plan *subplan;
1686 :
1687 : /*
1688 : * We don't want any excess columns in the materialized tuples, so request
1689 : * a smaller tlist. Otherwise, since Material doesn't project, tlist
1690 : * requirements pass through.
1691 : */
1692 4252 : subplan = create_plan_recurse(root, best_path->subpath,
1693 : flags | CP_SMALL_TLIST);
1694 :
1695 4252 : plan = make_material(subplan);
1696 :
1697 4252 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1698 :
1699 4252 : return plan;
1700 : }
1701 :
1702 : /*
1703 : * create_memoize_plan
1704 : * Create a Memoize plan for 'best_path' and (recursively) plans for its
1705 : * subpaths.
1706 : *
1707 : * Returns a Plan node.
1708 : */
1709 : static Memoize *
1710 1958 : create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags)
1711 : {
1712 : Memoize *plan;
1713 : Bitmapset *keyparamids;
1714 : Plan *subplan;
1715 : Oid *operators;
1716 : Oid *collations;
1717 1958 : List *param_exprs = NIL;
1718 : ListCell *lc;
1719 : ListCell *lc2;
1720 : int nkeys;
1721 : int i;
1722 :
1723 1958 : subplan = create_plan_recurse(root, best_path->subpath,
1724 : flags | CP_SMALL_TLIST);
1725 :
1726 1958 : param_exprs = (List *) replace_nestloop_params(root, (Node *)
1727 1958 : best_path->param_exprs);
1728 :
1729 1958 : nkeys = list_length(param_exprs);
1730 : Assert(nkeys > 0);
1731 1958 : operators = palloc(nkeys * sizeof(Oid));
1732 1958 : collations = palloc(nkeys * sizeof(Oid));
1733 :
1734 1958 : i = 0;
1735 3978 : forboth(lc, param_exprs, lc2, best_path->hash_operators)
1736 : {
1737 2020 : Expr *param_expr = (Expr *) lfirst(lc);
1738 2020 : Oid opno = lfirst_oid(lc2);
1739 :
1740 2020 : operators[i] = opno;
1741 2020 : collations[i] = exprCollation((Node *) param_expr);
1742 2020 : i++;
1743 : }
1744 :
1745 1958 : keyparamids = pull_paramids((Expr *) param_exprs);
1746 :
1747 1958 : plan = make_memoize(subplan, operators, collations, param_exprs,
1748 1958 : best_path->singlerow, best_path->binary_mode,
1749 : best_path->est_entries, keyparamids, best_path->est_calls,
1750 : best_path->est_unique_keys, best_path->est_hit_ratio);
1751 :
1752 1958 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1753 :
1754 1958 : return plan;
1755 : }
1756 :
1757 : /*
1758 : * create_gather_plan
1759 : *
1760 : * Create a Gather plan for 'best_path' and (recursively) plans
1761 : * for its subpaths.
1762 : */
1763 : static Gather *
1764 954 : create_gather_plan(PlannerInfo *root, GatherPath *best_path)
1765 : {
1766 : Gather *gather_plan;
1767 : Plan *subplan;
1768 : List *tlist;
1769 :
1770 : /*
1771 : * Push projection down to the child node. That way, the projection work
1772 : * is parallelized, and there can be no system columns in the result (they
1773 : * can't travel through a tuple queue because it uses MinimalTuple
1774 : * representation).
1775 : */
1776 954 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1777 :
1778 954 : tlist = build_path_tlist(root, &best_path->path);
1779 :
1780 954 : gather_plan = make_gather(tlist,
1781 : NIL,
1782 : best_path->num_workers,
1783 : assign_special_exec_param(root),
1784 954 : best_path->single_copy,
1785 : subplan);
1786 :
1787 954 : copy_generic_path_info(&gather_plan->plan, &best_path->path);
1788 :
1789 : /* use parallel mode for parallel plans. */
1790 954 : root->glob->parallelModeNeeded = true;
1791 :
1792 954 : return gather_plan;
1793 : }
1794 :
1795 : /*
1796 : * create_gather_merge_plan
1797 : *
1798 : * Create a Gather Merge plan for 'best_path' and (recursively)
1799 : * plans for its subpaths.
1800 : */
1801 : static GatherMerge *
1802 354 : create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path)
1803 : {
1804 : GatherMerge *gm_plan;
1805 : Plan *subplan;
1806 354 : List *pathkeys = best_path->path.pathkeys;
1807 354 : List *tlist = build_path_tlist(root, &best_path->path);
1808 :
1809 : /* As with Gather, project away columns in the workers. */
1810 354 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1811 :
1812 : /* Create a shell for a GatherMerge plan. */
1813 354 : gm_plan = makeNode(GatherMerge);
1814 354 : gm_plan->plan.targetlist = tlist;
1815 354 : gm_plan->num_workers = best_path->num_workers;
1816 354 : copy_generic_path_info(&gm_plan->plan, &best_path->path);
1817 :
1818 : /* Assign the rescan Param. */
1819 354 : gm_plan->rescan_param = assign_special_exec_param(root);
1820 :
1821 : /* Gather Merge is pointless with no pathkeys; use Gather instead. */
1822 : Assert(pathkeys != NIL);
1823 :
1824 : /* Compute sort column info, and adjust subplan's tlist as needed */
1825 354 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1826 354 : best_path->subpath->parent->relids,
1827 354 : gm_plan->sortColIdx,
1828 : false,
1829 : &gm_plan->numCols,
1830 : &gm_plan->sortColIdx,
1831 : &gm_plan->sortOperators,
1832 : &gm_plan->collations,
1833 : &gm_plan->nullsFirst);
1834 :
1835 : /*
1836 : * All gather merge paths should have already guaranteed the necessary
1837 : * sort order. See create_gather_merge_path.
1838 : */
1839 : Assert(pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys));
1840 :
1841 : /* Now insert the subplan under GatherMerge. */
1842 354 : gm_plan->plan.lefttree = subplan;
1843 :
1844 : /* use parallel mode for parallel plans. */
1845 354 : root->glob->parallelModeNeeded = true;
1846 :
1847 354 : return gm_plan;
1848 : }
1849 :
1850 : /*
1851 : * create_projection_plan
1852 : *
1853 : * Create a plan tree to do a projection step and (recursively) plans
1854 : * for its subpaths. We may need a Result node for the projection,
1855 : * but sometimes we can just let the subplan do the work.
1856 : */
1857 : static Plan *
1858 345752 : create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags)
1859 : {
1860 : Plan *plan;
1861 : Plan *subplan;
1862 : List *tlist;
1863 345752 : bool needs_result_node = false;
1864 :
1865 : /*
1866 : * Convert our subpath to a Plan and determine whether we need a Result
1867 : * node.
1868 : *
1869 : * In most cases where we don't need to project, create_projection_path
1870 : * will have set dummypp, but not always. First, some createplan.c
1871 : * routines change the tlists of their nodes. (An example is that
1872 : * create_merge_append_plan might add resjunk sort columns to a
1873 : * MergeAppend.) Second, create_projection_path has no way of knowing
1874 : * what path node will be placed on top of the projection path and
1875 : * therefore can't predict whether it will require an exact tlist. For
1876 : * both of these reasons, we have to recheck here.
1877 : */
1878 345752 : if (use_physical_tlist(root, &best_path->path, flags))
1879 : {
1880 : /*
1881 : * Our caller doesn't really care what tlist we return, so we don't
1882 : * actually need to project. However, we may still need to ensure
1883 : * proper sortgroupref labels, if the caller cares about those.
1884 : */
1885 1824 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1886 1824 : tlist = subplan->targetlist;
1887 1824 : if (flags & CP_LABEL_TLIST)
1888 1156 : apply_pathtarget_labeling_to_tlist(tlist,
1889 : best_path->path.pathtarget);
1890 : }
1891 343928 : else if (is_projection_capable_path(best_path->subpath))
1892 : {
1893 : /*
1894 : * Our caller requires that we return the exact tlist, but no separate
1895 : * result node is needed because the subpath is projection-capable.
1896 : * Tell create_plan_recurse that we're going to ignore the tlist it
1897 : * produces.
1898 : */
1899 342008 : subplan = create_plan_recurse(root, best_path->subpath,
1900 : CP_IGNORE_TLIST);
1901 : Assert(is_projection_capable_plan(subplan));
1902 342008 : tlist = build_path_tlist(root, &best_path->path);
1903 : }
1904 : else
1905 : {
1906 : /*
1907 : * It looks like we need a result node, unless by good fortune the
1908 : * requested tlist is exactly the one the child wants to produce.
1909 : */
1910 1920 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1911 1920 : tlist = build_path_tlist(root, &best_path->path);
1912 1920 : needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist);
1913 : }
1914 :
1915 : /*
1916 : * If we make a different decision about whether to include a Result node
1917 : * than create_projection_path did, we'll have made slightly wrong cost
1918 : * estimates; but label the plan with the cost estimates we actually used,
1919 : * not "corrected" ones. (XXX this could be cleaned up if we moved more
1920 : * of the sortcolumn setup logic into Path creation, but that would add
1921 : * expense to creating Paths we might end up not using.)
1922 : */
1923 345752 : if (!needs_result_node)
1924 : {
1925 : /* Don't need a separate Result, just assign tlist to subplan */
1926 343998 : plan = subplan;
1927 343998 : plan->targetlist = tlist;
1928 :
1929 : /* Label plan with the estimated costs we actually used */
1930 343998 : plan->startup_cost = best_path->path.startup_cost;
1931 343998 : plan->total_cost = best_path->path.total_cost;
1932 343998 : plan->plan_rows = best_path->path.rows;
1933 343998 : plan->plan_width = best_path->path.pathtarget->width;
1934 343998 : plan->parallel_safe = best_path->path.parallel_safe;
1935 : /* ... but don't change subplan's parallel_aware flag */
1936 : }
1937 : else
1938 : {
1939 1754 : plan = (Plan *) make_gating_result(tlist, NULL, subplan);
1940 :
1941 1754 : copy_generic_path_info(plan, (Path *) best_path);
1942 : }
1943 :
1944 345752 : return plan;
1945 : }
1946 :
1947 : /*
1948 : * inject_projection_plan
1949 : * Insert a Result node to do a projection step.
1950 : *
1951 : * This is used in a few places where we decide on-the-fly that we need a
1952 : * projection step as part of the tree generated for some Path node.
1953 : * We should try to get rid of this in favor of doing it more honestly.
1954 : *
1955 : * One reason it's ugly is we have to be told the right parallel_safe marking
1956 : * to apply (since the tlist might be unsafe even if the child plan is safe).
1957 : */
1958 : static Plan *
1959 34 : inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
1960 : {
1961 : Plan *plan;
1962 :
1963 34 : plan = (Plan *) make_gating_result(tlist, NULL, subplan);
1964 :
1965 : /*
1966 : * In principle, we should charge tlist eval cost plus cpu_per_tuple per
1967 : * row for the Result node. But the former has probably been factored in
1968 : * already and the latter was not accounted for during Path construction,
1969 : * so being formally correct might just make the EXPLAIN output look less
1970 : * consistent not more so. Hence, just copy the subplan's cost.
1971 : */
1972 34 : copy_plan_costsize(plan, subplan);
1973 34 : plan->parallel_safe = parallel_safe;
1974 :
1975 34 : return plan;
1976 : }
1977 :
1978 : /*
1979 : * change_plan_targetlist
1980 : * Externally available wrapper for inject_projection_plan.
1981 : *
1982 : * This is meant for use by FDW plan-generation functions, which might
1983 : * want to adjust the tlist computed by some subplan tree. In general,
1984 : * a Result node is needed to compute the new tlist, but we can optimize
1985 : * some cases.
1986 : *
1987 : * In most cases, tlist_parallel_safe can just be passed as the parallel_safe
1988 : * flag of the FDW's own Path node.
1989 : */
1990 : Plan *
1991 82 : change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe)
1992 : {
1993 : /*
1994 : * If the top plan node can't do projections and its existing target list
1995 : * isn't already what we need, we need to add a Result node to help it
1996 : * along.
1997 : */
1998 82 : if (!is_projection_capable_plan(subplan) &&
1999 14 : !tlist_same_exprs(tlist, subplan->targetlist))
2000 8 : subplan = inject_projection_plan(subplan, tlist,
2001 8 : subplan->parallel_safe &&
2002 : tlist_parallel_safe);
2003 : else
2004 : {
2005 : /* Else we can just replace the plan node's tlist */
2006 74 : subplan->targetlist = tlist;
2007 74 : subplan->parallel_safe &= tlist_parallel_safe;
2008 : }
2009 82 : return subplan;
2010 : }
2011 :
2012 : /*
2013 : * create_sort_plan
2014 : *
2015 : * Create a Sort plan for 'best_path' and (recursively) plans
2016 : * for its subpaths.
2017 : */
2018 : static Sort *
2019 69178 : create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags)
2020 : {
2021 : Sort *plan;
2022 : Plan *subplan;
2023 :
2024 : /*
2025 : * We don't want any excess columns in the sorted tuples, so request a
2026 : * smaller tlist. Otherwise, since Sort doesn't project, tlist
2027 : * requirements pass through.
2028 : */
2029 69178 : subplan = create_plan_recurse(root, best_path->subpath,
2030 : flags | CP_SMALL_TLIST);
2031 :
2032 : /*
2033 : * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr,
2034 : * which will ignore any child EC members that don't belong to the given
2035 : * relids. Thus, if this sort path is based on a child relation, we must
2036 : * pass its relids.
2037 : */
2038 69178 : plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys,
2039 69178 : IS_OTHER_REL(best_path->subpath->parent) ?
2040 462 : best_path->path.parent->relids : NULL);
2041 :
2042 69178 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2043 :
2044 69178 : return plan;
2045 : }
2046 :
2047 : /*
2048 : * create_incrementalsort_plan
2049 : *
2050 : * Do the same as create_sort_plan, but create IncrementalSort plan.
2051 : */
2052 : static IncrementalSort *
2053 984 : create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path,
2054 : int flags)
2055 : {
2056 : IncrementalSort *plan;
2057 : Plan *subplan;
2058 :
2059 : /* See comments in create_sort_plan() above */
2060 984 : subplan = create_plan_recurse(root, best_path->spath.subpath,
2061 : flags | CP_SMALL_TLIST);
2062 984 : plan = make_incrementalsort_from_pathkeys(subplan,
2063 : best_path->spath.path.pathkeys,
2064 984 : IS_OTHER_REL(best_path->spath.subpath->parent) ?
2065 36 : best_path->spath.path.parent->relids : NULL,
2066 : best_path->nPresortedCols);
2067 :
2068 984 : copy_generic_path_info(&plan->sort.plan, (Path *) best_path);
2069 :
2070 984 : return plan;
2071 : }
2072 :
2073 : /*
2074 : * create_group_plan
2075 : *
2076 : * Create a Group plan for 'best_path' and (recursively) plans
2077 : * for its subpaths.
2078 : */
2079 : static Group *
2080 246 : create_group_plan(PlannerInfo *root, GroupPath *best_path)
2081 : {
2082 : Group *plan;
2083 : Plan *subplan;
2084 : List *tlist;
2085 : List *quals;
2086 :
2087 : /*
2088 : * Group can project, so no need to be terribly picky about child tlist,
2089 : * but we do need grouping columns to be available
2090 : */
2091 246 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2092 :
2093 246 : tlist = build_path_tlist(root, &best_path->path);
2094 :
2095 246 : quals = order_qual_clauses(root, best_path->qual);
2096 :
2097 492 : plan = make_group(tlist,
2098 : quals,
2099 246 : list_length(best_path->groupClause),
2100 : extract_grouping_cols(best_path->groupClause,
2101 : subplan->targetlist),
2102 : extract_grouping_ops(best_path->groupClause),
2103 : extract_grouping_collations(best_path->groupClause,
2104 : subplan->targetlist),
2105 : subplan);
2106 :
2107 246 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2108 :
2109 246 : return plan;
2110 : }
2111 :
2112 : /*
2113 : * create_unique_plan
2114 : *
2115 : * Create a Unique plan for 'best_path' and (recursively) plans
2116 : * for its subpaths.
2117 : */
2118 : static Unique *
2119 5702 : create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags)
2120 : {
2121 : Unique *plan;
2122 : Plan *subplan;
2123 :
2124 : /*
2125 : * Unique doesn't project, so tlist requirements pass through; moreover we
2126 : * need grouping columns to be labeled.
2127 : */
2128 5702 : subplan = create_plan_recurse(root, best_path->subpath,
2129 : flags | CP_LABEL_TLIST);
2130 :
2131 : /*
2132 : * make_unique_from_pathkeys calls find_ec_member_matching_expr, which
2133 : * will ignore any child EC members that don't belong to the given relids.
2134 : * Thus, if this unique path is based on a child relation, we must pass
2135 : * its relids.
2136 : */
2137 5702 : plan = make_unique_from_pathkeys(subplan,
2138 : best_path->path.pathkeys,
2139 : best_path->numkeys,
2140 5702 : IS_OTHER_REL(best_path->path.parent) ?
2141 90 : best_path->path.parent->relids : NULL);
2142 :
2143 5702 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2144 :
2145 5702 : return plan;
2146 : }
2147 :
2148 : /*
2149 : * create_agg_plan
2150 : *
2151 : * Create an Agg plan for 'best_path' and (recursively) plans
2152 : * for its subpaths.
2153 : */
2154 : static Agg *
2155 42062 : create_agg_plan(PlannerInfo *root, AggPath *best_path)
2156 : {
2157 : Agg *plan;
2158 : Plan *subplan;
2159 : List *tlist;
2160 : List *quals;
2161 :
2162 : /*
2163 : * Agg can project, so no need to be terribly picky about child tlist, but
2164 : * we do need grouping columns to be available
2165 : */
2166 42062 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2167 :
2168 42062 : tlist = build_path_tlist(root, &best_path->path);
2169 :
2170 42062 : quals = order_qual_clauses(root, best_path->qual);
2171 :
2172 84124 : plan = make_agg(tlist, quals,
2173 : best_path->aggstrategy,
2174 : best_path->aggsplit,
2175 42062 : list_length(best_path->groupClause),
2176 : extract_grouping_cols(best_path->groupClause,
2177 : subplan->targetlist),
2178 : extract_grouping_ops(best_path->groupClause),
2179 : extract_grouping_collations(best_path->groupClause,
2180 : subplan->targetlist),
2181 : NIL,
2182 : NIL,
2183 : best_path->numGroups,
2184 : best_path->transitionSpace,
2185 : subplan);
2186 :
2187 42062 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2188 :
2189 42062 : return plan;
2190 : }
2191 :
2192 : /*
2193 : * Given a groupclause for a collection of grouping sets, produce the
2194 : * corresponding groupColIdx.
2195 : *
2196 : * root->grouping_map maps the tleSortGroupRef to the actual column position in
2197 : * the input tuple. So we get the ref from the entries in the groupclause and
2198 : * look them up there.
2199 : */
2200 : static AttrNumber *
2201 1912 : remap_groupColIdx(PlannerInfo *root, List *groupClause)
2202 : {
2203 1912 : AttrNumber *grouping_map = root->grouping_map;
2204 : AttrNumber *new_grpColIdx;
2205 : ListCell *lc;
2206 : int i;
2207 :
2208 : Assert(grouping_map);
2209 :
2210 1912 : new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));
2211 :
2212 1912 : i = 0;
2213 4430 : foreach(lc, groupClause)
2214 : {
2215 2518 : SortGroupClause *clause = lfirst(lc);
2216 :
2217 2518 : new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
2218 : }
2219 :
2220 1912 : return new_grpColIdx;
2221 : }
2222 :
2223 : /*
2224 : * create_groupingsets_plan
2225 : * Create a plan for 'best_path' and (recursively) plans
2226 : * for its subpaths.
2227 : *
2228 : * What we emit is an Agg plan with some vestigial Agg and Sort nodes
2229 : * hanging off the side. The top Agg implements the last grouping set
2230 : * specified in the GroupingSetsPath, and any additional grouping sets
2231 : * each give rise to a subsidiary Agg and Sort node in the top Agg's
2232 : * "chain" list. These nodes don't participate in the plan directly,
2233 : * but they are a convenient way to represent the required data for
2234 : * the extra steps.
2235 : *
2236 : * Returns a Plan node.
2237 : */
2238 : static Plan *
2239 914 : create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path)
2240 : {
2241 : Agg *plan;
2242 : Plan *subplan;
2243 914 : List *rollups = best_path->rollups;
2244 : AttrNumber *grouping_map;
2245 : int maxref;
2246 : List *chain;
2247 : ListCell *lc;
2248 :
2249 : /* Shouldn't get here without grouping sets */
2250 : Assert(root->parse->groupingSets);
2251 : Assert(rollups != NIL);
2252 :
2253 : /*
2254 : * Agg can project, so no need to be terribly picky about child tlist, but
2255 : * we do need grouping columns to be available
2256 : */
2257 914 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2258 :
2259 : /*
2260 : * Compute the mapping from tleSortGroupRef to column index in the child's
2261 : * tlist. First, identify max SortGroupRef in groupClause, for array
2262 : * sizing.
2263 : */
2264 914 : maxref = 0;
2265 2798 : foreach(lc, root->processed_groupClause)
2266 : {
2267 1884 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2268 :
2269 1884 : if (gc->tleSortGroupRef > maxref)
2270 1848 : maxref = gc->tleSortGroupRef;
2271 : }
2272 :
2273 914 : grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber));
2274 :
2275 : /* Now look up the column numbers in the child's tlist */
2276 2798 : foreach(lc, root->processed_groupClause)
2277 : {
2278 1884 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2279 1884 : TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist);
2280 :
2281 1884 : grouping_map[gc->tleSortGroupRef] = tle->resno;
2282 : }
2283 :
2284 : /*
2285 : * During setrefs.c, we'll need the grouping_map to fix up the cols lists
2286 : * in GroupingFunc nodes. Save it for setrefs.c to use.
2287 : */
2288 : Assert(root->grouping_map == NULL);
2289 914 : root->grouping_map = grouping_map;
2290 :
2291 : /*
2292 : * Generate the side nodes that describe the other sort and group
2293 : * operations besides the top one. Note that we don't worry about putting
2294 : * accurate cost estimates in the side nodes; only the topmost Agg node's
2295 : * costs will be shown by EXPLAIN.
2296 : */
2297 914 : chain = NIL;
2298 914 : if (list_length(rollups) > 1)
2299 : {
2300 596 : bool is_first_sort = ((RollupData *) linitial(rollups))->is_hashed;
2301 :
2302 1594 : for_each_from(lc, rollups, 1)
2303 : {
2304 998 : RollupData *rollup = lfirst(lc);
2305 : AttrNumber *new_grpColIdx;
2306 998 : Plan *sort_plan = NULL;
2307 : Plan *agg_plan;
2308 : AggStrategy strat;
2309 :
2310 998 : new_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2311 :
2312 998 : if (!rollup->is_hashed && !is_first_sort)
2313 : {
2314 : sort_plan = (Plan *)
2315 252 : make_sort_from_groupcols(rollup->groupClause,
2316 : new_grpColIdx,
2317 : subplan);
2318 : }
2319 :
2320 998 : if (!rollup->is_hashed)
2321 484 : is_first_sort = false;
2322 :
2323 998 : if (rollup->is_hashed)
2324 514 : strat = AGG_HASHED;
2325 484 : else if (linitial(rollup->gsets) == NIL)
2326 170 : strat = AGG_PLAIN;
2327 : else
2328 314 : strat = AGG_SORTED;
2329 :
2330 1996 : agg_plan = (Plan *) make_agg(NIL,
2331 : NIL,
2332 : strat,
2333 : AGGSPLIT_SIMPLE,
2334 998 : list_length((List *) linitial(rollup->gsets)),
2335 : new_grpColIdx,
2336 : extract_grouping_ops(rollup->groupClause),
2337 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2338 : rollup->gsets,
2339 : NIL,
2340 : rollup->numGroups,
2341 : best_path->transitionSpace,
2342 : sort_plan);
2343 :
2344 : /*
2345 : * Remove stuff we don't need to avoid bloating debug output.
2346 : */
2347 998 : if (sort_plan)
2348 : {
2349 252 : sort_plan->targetlist = NIL;
2350 252 : sort_plan->lefttree = NULL;
2351 : }
2352 :
2353 998 : chain = lappend(chain, agg_plan);
2354 : }
2355 : }
2356 :
2357 : /*
2358 : * Now make the real Agg node
2359 : */
2360 : {
2361 914 : RollupData *rollup = linitial(rollups);
2362 : AttrNumber *top_grpColIdx;
2363 : int numGroupCols;
2364 :
2365 914 : top_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2366 :
2367 914 : numGroupCols = list_length((List *) linitial(rollup->gsets));
2368 :
2369 914 : plan = make_agg(build_path_tlist(root, &best_path->path),
2370 : best_path->qual,
2371 : best_path->aggstrategy,
2372 : AGGSPLIT_SIMPLE,
2373 : numGroupCols,
2374 : top_grpColIdx,
2375 : extract_grouping_ops(rollup->groupClause),
2376 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2377 : rollup->gsets,
2378 : chain,
2379 : rollup->numGroups,
2380 : best_path->transitionSpace,
2381 : subplan);
2382 :
2383 : /* Copy cost data from Path to Plan */
2384 914 : copy_generic_path_info(&plan->plan, &best_path->path);
2385 : }
2386 :
2387 914 : return (Plan *) plan;
2388 : }
2389 :
2390 : /*
2391 : * create_minmaxagg_plan
2392 : *
2393 : * Create a Result plan for 'best_path' and (recursively) plans
2394 : * for its subpaths.
2395 : */
2396 : static Result *
2397 364 : create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path)
2398 : {
2399 : Result *plan;
2400 : List *tlist;
2401 : ListCell *lc;
2402 :
2403 : /* Prepare an InitPlan for each aggregate's subquery. */
2404 764 : foreach(lc, best_path->mmaggregates)
2405 : {
2406 400 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
2407 400 : PlannerInfo *subroot = mminfo->subroot;
2408 400 : Query *subparse = subroot->parse;
2409 : Plan *plan;
2410 :
2411 : /*
2412 : * Generate the plan for the subquery. We already have a Path, but we
2413 : * have to convert it to a Plan and attach a LIMIT node above it.
2414 : * Since we are entering a different planner context (subroot),
2415 : * recurse to create_plan not create_plan_recurse.
2416 : */
2417 400 : plan = create_plan(subroot, mminfo->path);
2418 :
2419 400 : plan = (Plan *) make_limit(plan,
2420 : subparse->limitOffset,
2421 : subparse->limitCount,
2422 : subparse->limitOption,
2423 : 0, NULL, NULL, NULL);
2424 :
2425 : /* Must apply correct cost/width data to Limit node */
2426 400 : plan->disabled_nodes = mminfo->path->disabled_nodes;
2427 400 : plan->startup_cost = mminfo->path->startup_cost;
2428 400 : plan->total_cost = mminfo->pathcost;
2429 400 : plan->plan_rows = 1;
2430 400 : plan->plan_width = mminfo->path->pathtarget->width;
2431 400 : plan->parallel_aware = false;
2432 400 : plan->parallel_safe = mminfo->path->parallel_safe;
2433 :
2434 : /* Convert the plan into an InitPlan in the outer query. */
2435 400 : SS_make_initplan_from_plan(root, subroot, plan, mminfo->param);
2436 : }
2437 :
2438 : /* Generate the output plan --- basically just a Result */
2439 364 : tlist = build_path_tlist(root, &best_path->path);
2440 :
2441 364 : plan = make_one_row_result(tlist, (Node *) best_path->quals,
2442 : best_path->path.parent);
2443 364 : plan->result_type = RESULT_TYPE_MINMAX;
2444 :
2445 364 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2446 :
2447 : /*
2448 : * During setrefs.c, we'll need to replace references to the Agg nodes
2449 : * with InitPlan output params. (We can't just do that locally in the
2450 : * MinMaxAgg node, because path nodes above here may have Agg references
2451 : * as well.) Save the mmaggregates list to tell setrefs.c to do that.
2452 : */
2453 : Assert(root->minmax_aggs == NIL);
2454 364 : root->minmax_aggs = best_path->mmaggregates;
2455 :
2456 364 : return plan;
2457 : }
2458 :
2459 : /*
2460 : * create_windowagg_plan
2461 : *
2462 : * Create a WindowAgg plan for 'best_path' and (recursively) plans
2463 : * for its subpaths.
2464 : */
2465 : static WindowAgg *
2466 2750 : create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path)
2467 : {
2468 : WindowAgg *plan;
2469 2750 : WindowClause *wc = best_path->winclause;
2470 2750 : int numPart = list_length(wc->partitionClause);
2471 2750 : int numOrder = list_length(wc->orderClause);
2472 : Plan *subplan;
2473 : List *tlist;
2474 : int partNumCols;
2475 : AttrNumber *partColIdx;
2476 : Oid *partOperators;
2477 : Oid *partCollations;
2478 : int ordNumCols;
2479 : AttrNumber *ordColIdx;
2480 : Oid *ordOperators;
2481 : Oid *ordCollations;
2482 : ListCell *lc;
2483 :
2484 : /*
2485 : * Choice of tlist here is motivated by the fact that WindowAgg will be
2486 : * storing the input rows of window frames in a tuplestore; it therefore
2487 : * behooves us to request a small tlist to avoid wasting space. We do of
2488 : * course need grouping columns to be available.
2489 : */
2490 2750 : subplan = create_plan_recurse(root, best_path->subpath,
2491 : CP_LABEL_TLIST | CP_SMALL_TLIST);
2492 :
2493 2750 : tlist = build_path_tlist(root, &best_path->path);
2494 :
2495 : /*
2496 : * Convert SortGroupClause lists into arrays of attr indexes and equality
2497 : * operators, as wanted by executor.
2498 : */
2499 2750 : partColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numPart);
2500 2750 : partOperators = (Oid *) palloc(sizeof(Oid) * numPart);
2501 2750 : partCollations = (Oid *) palloc(sizeof(Oid) * numPart);
2502 :
2503 2750 : partNumCols = 0;
2504 3494 : foreach(lc, wc->partitionClause)
2505 : {
2506 744 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2507 744 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2508 :
2509 : Assert(OidIsValid(sgc->eqop));
2510 744 : partColIdx[partNumCols] = tle->resno;
2511 744 : partOperators[partNumCols] = sgc->eqop;
2512 744 : partCollations[partNumCols] = exprCollation((Node *) tle->expr);
2513 744 : partNumCols++;
2514 : }
2515 :
2516 2750 : ordColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numOrder);
2517 2750 : ordOperators = (Oid *) palloc(sizeof(Oid) * numOrder);
2518 2750 : ordCollations = (Oid *) palloc(sizeof(Oid) * numOrder);
2519 :
2520 2750 : ordNumCols = 0;
2521 5010 : foreach(lc, wc->orderClause)
2522 : {
2523 2260 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2524 2260 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2525 :
2526 : Assert(OidIsValid(sgc->eqop));
2527 2260 : ordColIdx[ordNumCols] = tle->resno;
2528 2260 : ordOperators[ordNumCols] = sgc->eqop;
2529 2260 : ordCollations[ordNumCols] = exprCollation((Node *) tle->expr);
2530 2260 : ordNumCols++;
2531 : }
2532 :
2533 : /* And finally we can make the WindowAgg node */
2534 2750 : plan = make_windowagg(tlist,
2535 : wc,
2536 : partNumCols,
2537 : partColIdx,
2538 : partOperators,
2539 : partCollations,
2540 : ordNumCols,
2541 : ordColIdx,
2542 : ordOperators,
2543 : ordCollations,
2544 : best_path->runCondition,
2545 : best_path->qual,
2546 2750 : best_path->topwindow,
2547 : subplan);
2548 :
2549 2750 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2550 :
2551 2750 : return plan;
2552 : }
2553 :
2554 : /*
2555 : * create_setop_plan
2556 : *
2557 : * Create a SetOp plan for 'best_path' and (recursively) plans
2558 : * for its subpaths.
2559 : */
2560 : static SetOp *
2561 668 : create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags)
2562 : {
2563 : SetOp *plan;
2564 668 : List *tlist = build_path_tlist(root, &best_path->path);
2565 : Plan *leftplan;
2566 : Plan *rightplan;
2567 :
2568 : /*
2569 : * SetOp doesn't project, so tlist requirements pass through; moreover we
2570 : * need grouping columns to be labeled.
2571 : */
2572 668 : leftplan = create_plan_recurse(root, best_path->leftpath,
2573 : flags | CP_LABEL_TLIST);
2574 668 : rightplan = create_plan_recurse(root, best_path->rightpath,
2575 : flags | CP_LABEL_TLIST);
2576 :
2577 668 : plan = make_setop(best_path->cmd,
2578 : best_path->strategy,
2579 : tlist,
2580 : leftplan,
2581 : rightplan,
2582 : best_path->groupList,
2583 : best_path->numGroups);
2584 :
2585 668 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2586 :
2587 668 : return plan;
2588 : }
2589 :
2590 : /*
2591 : * create_recursiveunion_plan
2592 : *
2593 : * Create a RecursiveUnion plan for 'best_path' and (recursively) plans
2594 : * for its subpaths.
2595 : */
2596 : static RecursiveUnion *
2597 930 : create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path)
2598 : {
2599 : RecursiveUnion *plan;
2600 : Plan *leftplan;
2601 : Plan *rightplan;
2602 : List *tlist;
2603 :
2604 : /* Need both children to produce same tlist, so force it */
2605 930 : leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST);
2606 930 : rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST);
2607 :
2608 930 : tlist = build_path_tlist(root, &best_path->path);
2609 :
2610 930 : plan = make_recursive_union(tlist,
2611 : leftplan,
2612 : rightplan,
2613 : best_path->wtParam,
2614 : best_path->distinctList,
2615 : best_path->numGroups);
2616 :
2617 930 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2618 :
2619 930 : return plan;
2620 : }
2621 :
2622 : /*
2623 : * create_lockrows_plan
2624 : *
2625 : * Create a LockRows plan for 'best_path' and (recursively) plans
2626 : * for its subpaths.
2627 : */
2628 : static LockRows *
2629 7868 : create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
2630 : int flags)
2631 : {
2632 : LockRows *plan;
2633 : Plan *subplan;
2634 :
2635 : /* LockRows doesn't project, so tlist requirements pass through */
2636 7868 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2637 :
2638 7868 : plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam);
2639 :
2640 7868 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2641 :
2642 7868 : return plan;
2643 : }
2644 :
2645 : /*
2646 : * create_modifytable_plan
2647 : * Create a ModifyTable plan for 'best_path'.
2648 : *
2649 : * Returns a Plan node.
2650 : */
2651 : static ModifyTable *
2652 93504 : create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path)
2653 : {
2654 : ModifyTable *plan;
2655 93504 : Path *subpath = best_path->subpath;
2656 : Plan *subplan;
2657 :
2658 : /* Subplan must produce exactly the specified tlist */
2659 93504 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
2660 :
2661 : /* Transfer resname/resjunk labeling, too, to keep executor happy */
2662 93504 : apply_tlist_labeling(subplan->targetlist, root->processed_tlist);
2663 :
2664 93504 : plan = make_modifytable(root,
2665 : subplan,
2666 : best_path->operation,
2667 93504 : best_path->canSetTag,
2668 : best_path->nominalRelation,
2669 : best_path->rootRelation,
2670 : best_path->resultRelations,
2671 : best_path->updateColnosLists,
2672 : best_path->withCheckOptionLists,
2673 : best_path->returningLists,
2674 : best_path->rowMarks,
2675 : best_path->onconflict,
2676 : best_path->mergeActionLists,
2677 : best_path->mergeJoinConditions,
2678 : best_path->epqParam);
2679 :
2680 93108 : copy_generic_path_info(&plan->plan, &best_path->path);
2681 :
2682 93108 : return plan;
2683 : }
2684 :
2685 : /*
2686 : * create_limit_plan
2687 : *
2688 : * Create a Limit plan for 'best_path' and (recursively) plans
2689 : * for its subpaths.
2690 : */
2691 : static Limit *
2692 4462 : create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags)
2693 : {
2694 : Limit *plan;
2695 : Plan *subplan;
2696 4462 : int numUniqkeys = 0;
2697 4462 : AttrNumber *uniqColIdx = NULL;
2698 4462 : Oid *uniqOperators = NULL;
2699 4462 : Oid *uniqCollations = NULL;
2700 :
2701 : /* Limit doesn't project, so tlist requirements pass through */
2702 4462 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2703 :
2704 : /* Extract information necessary for comparing rows for WITH TIES. */
2705 4462 : if (best_path->limitOption == LIMIT_OPTION_WITH_TIES)
2706 : {
2707 30 : Query *parse = root->parse;
2708 : ListCell *l;
2709 :
2710 30 : numUniqkeys = list_length(parse->sortClause);
2711 30 : uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber));
2712 30 : uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2713 30 : uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2714 :
2715 30 : numUniqkeys = 0;
2716 60 : foreach(l, parse->sortClause)
2717 : {
2718 30 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
2719 30 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList);
2720 :
2721 30 : uniqColIdx[numUniqkeys] = tle->resno;
2722 30 : uniqOperators[numUniqkeys] = sortcl->eqop;
2723 30 : uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr);
2724 30 : numUniqkeys++;
2725 : }
2726 : }
2727 :
2728 4462 : plan = make_limit(subplan,
2729 : best_path->limitOffset,
2730 : best_path->limitCount,
2731 : best_path->limitOption,
2732 : numUniqkeys, uniqColIdx, uniqOperators, uniqCollations);
2733 :
2734 4462 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2735 :
2736 4462 : return plan;
2737 : }
2738 :
2739 :
2740 : /*****************************************************************************
2741 : *
2742 : * BASE-RELATION SCAN METHODS
2743 : *
2744 : *****************************************************************************/
2745 :
2746 :
2747 : /*
2748 : * create_seqscan_plan
2749 : * Returns a seqscan plan for the base relation scanned by 'best_path'
2750 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2751 : */
2752 : static SeqScan *
2753 220606 : create_seqscan_plan(PlannerInfo *root, Path *best_path,
2754 : List *tlist, List *scan_clauses)
2755 : {
2756 : SeqScan *scan_plan;
2757 220606 : Index scan_relid = best_path->parent->relid;
2758 :
2759 : /* it should be a base rel... */
2760 : Assert(scan_relid > 0);
2761 : Assert(best_path->parent->rtekind == RTE_RELATION);
2762 :
2763 : /* Sort clauses into best execution order */
2764 220606 : scan_clauses = order_qual_clauses(root, scan_clauses);
2765 :
2766 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2767 220606 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2768 :
2769 : /* Replace any outer-relation variables with nestloop params */
2770 220606 : if (best_path->param_info)
2771 : {
2772 : scan_clauses = (List *)
2773 474 : replace_nestloop_params(root, (Node *) scan_clauses);
2774 : }
2775 :
2776 220606 : scan_plan = make_seqscan(tlist,
2777 : scan_clauses,
2778 : scan_relid);
2779 :
2780 220606 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2781 :
2782 220606 : return scan_plan;
2783 : }
2784 :
2785 : /*
2786 : * create_samplescan_plan
2787 : * Returns a samplescan plan for the base relation scanned by 'best_path'
2788 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2789 : */
2790 : static SampleScan *
2791 306 : create_samplescan_plan(PlannerInfo *root, Path *best_path,
2792 : List *tlist, List *scan_clauses)
2793 : {
2794 : SampleScan *scan_plan;
2795 306 : Index scan_relid = best_path->parent->relid;
2796 : RangeTblEntry *rte;
2797 : TableSampleClause *tsc;
2798 :
2799 : /* it should be a base rel with a tablesample clause... */
2800 : Assert(scan_relid > 0);
2801 306 : rte = planner_rt_fetch(scan_relid, root);
2802 : Assert(rte->rtekind == RTE_RELATION);
2803 306 : tsc = rte->tablesample;
2804 : Assert(tsc != NULL);
2805 :
2806 : /* Sort clauses into best execution order */
2807 306 : scan_clauses = order_qual_clauses(root, scan_clauses);
2808 :
2809 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2810 306 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2811 :
2812 : /* Replace any outer-relation variables with nestloop params */
2813 306 : if (best_path->param_info)
2814 : {
2815 : scan_clauses = (List *)
2816 72 : replace_nestloop_params(root, (Node *) scan_clauses);
2817 : tsc = (TableSampleClause *)
2818 72 : replace_nestloop_params(root, (Node *) tsc);
2819 : }
2820 :
2821 306 : scan_plan = make_samplescan(tlist,
2822 : scan_clauses,
2823 : scan_relid,
2824 : tsc);
2825 :
2826 306 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2827 :
2828 306 : return scan_plan;
2829 : }
2830 :
2831 : /*
2832 : * create_indexscan_plan
2833 : * Returns an indexscan plan for the base relation scanned by 'best_path'
2834 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2835 : *
2836 : * We use this for both plain IndexScans and IndexOnlyScans, because the
2837 : * qual preprocessing work is the same for both. Note that the caller tells
2838 : * us which to build --- we don't look at best_path->path.pathtype, because
2839 : * create_bitmap_subplan needs to be able to override the prior decision.
2840 : */
2841 : static Scan *
2842 180180 : create_indexscan_plan(PlannerInfo *root,
2843 : IndexPath *best_path,
2844 : List *tlist,
2845 : List *scan_clauses,
2846 : bool indexonly)
2847 : {
2848 : Scan *scan_plan;
2849 180180 : List *indexclauses = best_path->indexclauses;
2850 180180 : List *indexorderbys = best_path->indexorderbys;
2851 180180 : Index baserelid = best_path->path.parent->relid;
2852 180180 : IndexOptInfo *indexinfo = best_path->indexinfo;
2853 180180 : Oid indexoid = indexinfo->indexoid;
2854 : List *qpqual;
2855 : List *stripped_indexquals;
2856 : List *fixed_indexquals;
2857 : List *fixed_indexorderbys;
2858 180180 : List *indexorderbyops = NIL;
2859 : ListCell *l;
2860 :
2861 : /* it should be a base rel... */
2862 : Assert(baserelid > 0);
2863 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
2864 : /* check the scan direction is valid */
2865 : Assert(best_path->indexscandir == ForwardScanDirection ||
2866 : best_path->indexscandir == BackwardScanDirection);
2867 :
2868 : /*
2869 : * Extract the index qual expressions (stripped of RestrictInfos) from the
2870 : * IndexClauses list, and prepare a copy with index Vars substituted for
2871 : * table Vars. (This step also does replace_nestloop_params on the
2872 : * fixed_indexquals.)
2873 : */
2874 180180 : fix_indexqual_references(root, best_path,
2875 : &stripped_indexquals,
2876 : &fixed_indexquals);
2877 :
2878 : /*
2879 : * Likewise fix up index attr references in the ORDER BY expressions.
2880 : */
2881 180180 : fixed_indexorderbys = fix_indexorderby_references(root, best_path);
2882 :
2883 : /*
2884 : * The qpqual list must contain all restrictions not automatically handled
2885 : * by the index, other than pseudoconstant clauses which will be handled
2886 : * by a separate gating plan node. All the predicates in the indexquals
2887 : * will be checked (either by the index itself, or by nodeIndexscan.c),
2888 : * but if there are any "special" operators involved then they must be
2889 : * included in qpqual. The upshot is that qpqual must contain
2890 : * scan_clauses minus whatever appears in indexquals.
2891 : *
2892 : * is_redundant_with_indexclauses() detects cases where a scan clause is
2893 : * present in the indexclauses list or is generated from the same
2894 : * EquivalenceClass as some indexclause, and is therefore redundant with
2895 : * it, though not equal. (The latter happens when indxpath.c prefers a
2896 : * different derived equality than what generate_join_implied_equalities
2897 : * picked for a parameterized scan's ppi_clauses.) Note that it will not
2898 : * match to lossy index clauses, which is critical because we have to
2899 : * include the original clause in qpqual in that case.
2900 : *
2901 : * In some situations (particularly with OR'd index conditions) we may
2902 : * have scan_clauses that are not equal to, but are logically implied by,
2903 : * the index quals; so we also try a predicate_implied_by() check to see
2904 : * if we can discard quals that way. (predicate_implied_by assumes its
2905 : * first input contains only immutable functions, so we have to check
2906 : * that.)
2907 : *
2908 : * Note: if you change this bit of code you should also look at
2909 : * extract_nonindex_conditions() in costsize.c.
2910 : */
2911 180180 : qpqual = NIL;
2912 430666 : foreach(l, scan_clauses)
2913 : {
2914 250486 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
2915 :
2916 250486 : if (rinfo->pseudoconstant)
2917 1916 : continue; /* we may drop pseudoconstants here */
2918 248570 : if (is_redundant_with_indexclauses(rinfo, indexclauses))
2919 171396 : continue; /* dup or derived from same EquivalenceClass */
2920 152894 : if (!contain_mutable_functions((Node *) rinfo->clause) &&
2921 75720 : predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals,
2922 : false))
2923 186 : continue; /* provably implied by indexquals */
2924 76988 : qpqual = lappend(qpqual, rinfo);
2925 : }
2926 :
2927 : /* Sort clauses into best execution order */
2928 180180 : qpqual = order_qual_clauses(root, qpqual);
2929 :
2930 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2931 180180 : qpqual = extract_actual_clauses(qpqual, false);
2932 :
2933 : /*
2934 : * We have to replace any outer-relation variables with nestloop params in
2935 : * the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
2936 : * annoying to have to do this separately from the processing in
2937 : * fix_indexqual_references --- rethink this when generalizing the inner
2938 : * indexscan support. But note we can't really do this earlier because
2939 : * it'd break the comparisons to predicates above ... (or would it? Those
2940 : * wouldn't have outer refs)
2941 : */
2942 180180 : if (best_path->path.param_info)
2943 : {
2944 39776 : stripped_indexquals = (List *)
2945 39776 : replace_nestloop_params(root, (Node *) stripped_indexquals);
2946 : qpqual = (List *)
2947 39776 : replace_nestloop_params(root, (Node *) qpqual);
2948 : indexorderbys = (List *)
2949 39776 : replace_nestloop_params(root, (Node *) indexorderbys);
2950 : }
2951 :
2952 : /*
2953 : * If there are ORDER BY expressions, look up the sort operators for their
2954 : * result datatypes.
2955 : */
2956 180180 : if (indexorderbys)
2957 : {
2958 : ListCell *pathkeyCell,
2959 : *exprCell;
2960 :
2961 : /*
2962 : * PathKey contains OID of the btree opfamily we're sorting by, but
2963 : * that's not quite enough because we need the expression's datatype
2964 : * to look up the sort operator in the operator family.
2965 : */
2966 : Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
2967 766 : forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
2968 : {
2969 386 : PathKey *pathkey = (PathKey *) lfirst(pathkeyCell);
2970 386 : Node *expr = (Node *) lfirst(exprCell);
2971 386 : Oid exprtype = exprType(expr);
2972 : Oid sortop;
2973 :
2974 : /* Get sort operator from opfamily */
2975 386 : sortop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
2976 : exprtype,
2977 : exprtype,
2978 : pathkey->pk_cmptype);
2979 386 : if (!OidIsValid(sortop))
2980 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2981 : pathkey->pk_cmptype, exprtype, exprtype, pathkey->pk_opfamily);
2982 386 : indexorderbyops = lappend_oid(indexorderbyops, sortop);
2983 : }
2984 : }
2985 :
2986 : /*
2987 : * For an index-only scan, we must mark indextlist entries as resjunk if
2988 : * they are columns that the index AM can't return; this cues setrefs.c to
2989 : * not generate references to those columns.
2990 : */
2991 180180 : if (indexonly)
2992 : {
2993 18200 : int i = 0;
2994 :
2995 42728 : foreach(l, indexinfo->indextlist)
2996 : {
2997 24528 : TargetEntry *indextle = (TargetEntry *) lfirst(l);
2998 :
2999 24528 : indextle->resjunk = !indexinfo->canreturn[i];
3000 24528 : i++;
3001 : }
3002 : }
3003 :
3004 : /* Finally ready to build the plan node */
3005 180180 : if (indexonly)
3006 18200 : scan_plan = (Scan *) make_indexonlyscan(tlist,
3007 : qpqual,
3008 : baserelid,
3009 : indexoid,
3010 : fixed_indexquals,
3011 : stripped_indexquals,
3012 : fixed_indexorderbys,
3013 : indexinfo->indextlist,
3014 : best_path->indexscandir);
3015 : else
3016 161980 : scan_plan = (Scan *) make_indexscan(tlist,
3017 : qpqual,
3018 : baserelid,
3019 : indexoid,
3020 : fixed_indexquals,
3021 : stripped_indexquals,
3022 : fixed_indexorderbys,
3023 : indexorderbys,
3024 : indexorderbyops,
3025 : best_path->indexscandir);
3026 :
3027 180180 : copy_generic_path_info(&scan_plan->plan, &best_path->path);
3028 :
3029 180180 : return scan_plan;
3030 : }
3031 :
3032 : /*
3033 : * create_bitmap_scan_plan
3034 : * Returns a bitmap scan plan for the base relation scanned by 'best_path'
3035 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3036 : */
3037 : static BitmapHeapScan *
3038 21088 : create_bitmap_scan_plan(PlannerInfo *root,
3039 : BitmapHeapPath *best_path,
3040 : List *tlist,
3041 : List *scan_clauses)
3042 : {
3043 21088 : Index baserelid = best_path->path.parent->relid;
3044 : Plan *bitmapqualplan;
3045 : List *bitmapqualorig;
3046 : List *indexquals;
3047 : List *indexECs;
3048 : List *qpqual;
3049 : ListCell *l;
3050 : BitmapHeapScan *scan_plan;
3051 :
3052 : /* it should be a base rel... */
3053 : Assert(baserelid > 0);
3054 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3055 :
3056 : /* Process the bitmapqual tree into a Plan tree and qual lists */
3057 21088 : bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
3058 : &bitmapqualorig, &indexquals,
3059 : &indexECs);
3060 :
3061 21088 : if (best_path->path.parallel_aware)
3062 30 : bitmap_subplan_mark_shared(bitmapqualplan);
3063 :
3064 : /*
3065 : * The qpqual list must contain all restrictions not automatically handled
3066 : * by the index, other than pseudoconstant clauses which will be handled
3067 : * by a separate gating plan node. All the predicates in the indexquals
3068 : * will be checked (either by the index itself, or by
3069 : * nodeBitmapHeapscan.c), but if there are any "special" operators
3070 : * involved then they must be added to qpqual. The upshot is that qpqual
3071 : * must contain scan_clauses minus whatever appears in indexquals.
3072 : *
3073 : * This loop is similar to the comparable code in create_indexscan_plan(),
3074 : * but with some differences because it has to compare the scan clauses to
3075 : * stripped (no RestrictInfos) indexquals. See comments there for more
3076 : * info.
3077 : *
3078 : * In normal cases simple equal() checks will be enough to spot duplicate
3079 : * clauses, so we try that first. We next see if the scan clause is
3080 : * redundant with any top-level indexqual by virtue of being generated
3081 : * from the same EC. After that, try predicate_implied_by().
3082 : *
3083 : * Unlike create_indexscan_plan(), the predicate_implied_by() test here is
3084 : * useful for getting rid of qpquals that are implied by index predicates,
3085 : * because the predicate conditions are included in the "indexquals"
3086 : * returned by create_bitmap_subplan(). Bitmap scans have to do it that
3087 : * way because predicate conditions need to be rechecked if the scan
3088 : * becomes lossy, so they have to be included in bitmapqualorig.
3089 : */
3090 21088 : qpqual = NIL;
3091 49206 : foreach(l, scan_clauses)
3092 : {
3093 28118 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3094 28118 : Node *clause = (Node *) rinfo->clause;
3095 :
3096 28118 : if (rinfo->pseudoconstant)
3097 24 : continue; /* we may drop pseudoconstants here */
3098 28094 : if (list_member(indexquals, clause))
3099 21650 : continue; /* simple duplicate */
3100 6444 : if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
3101 16 : continue; /* derived from same EquivalenceClass */
3102 12636 : if (!contain_mutable_functions(clause) &&
3103 6208 : predicate_implied_by(list_make1(clause), indexquals, false))
3104 740 : continue; /* provably implied by indexquals */
3105 5688 : qpqual = lappend(qpqual, rinfo);
3106 : }
3107 :
3108 : /* Sort clauses into best execution order */
3109 21088 : qpqual = order_qual_clauses(root, qpqual);
3110 :
3111 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3112 21088 : qpqual = extract_actual_clauses(qpqual, false);
3113 :
3114 : /*
3115 : * When dealing with special operators, we will at this point have
3116 : * duplicate clauses in qpqual and bitmapqualorig. We may as well drop
3117 : * 'em from bitmapqualorig, since there's no point in making the tests
3118 : * twice.
3119 : */
3120 21088 : bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
3121 :
3122 : /*
3123 : * We have to replace any outer-relation variables with nestloop params in
3124 : * the qpqual and bitmapqualorig expressions. (This was already done for
3125 : * expressions attached to plan nodes in the bitmapqualplan tree.)
3126 : */
3127 21088 : if (best_path->path.param_info)
3128 : {
3129 : qpqual = (List *)
3130 752 : replace_nestloop_params(root, (Node *) qpqual);
3131 752 : bitmapqualorig = (List *)
3132 752 : replace_nestloop_params(root, (Node *) bitmapqualorig);
3133 : }
3134 :
3135 : /* Finally ready to build the plan node */
3136 21088 : scan_plan = make_bitmap_heapscan(tlist,
3137 : qpqual,
3138 : bitmapqualplan,
3139 : bitmapqualorig,
3140 : baserelid);
3141 :
3142 21088 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3143 :
3144 21088 : return scan_plan;
3145 : }
3146 :
3147 : /*
3148 : * Given a bitmapqual tree, generate the Plan tree that implements it
3149 : *
3150 : * As byproducts, we also return in *qual and *indexqual the qual lists
3151 : * (in implicit-AND form, without RestrictInfos) describing the original index
3152 : * conditions and the generated indexqual conditions. (These are the same in
3153 : * simple cases, but when special index operators are involved, the former
3154 : * list includes the special conditions while the latter includes the actual
3155 : * indexable conditions derived from them.) Both lists include partial-index
3156 : * predicates, because we have to recheck predicates as well as index
3157 : * conditions if the bitmap scan becomes lossy.
3158 : *
3159 : * In addition, we return a list of EquivalenceClass pointers for all the
3160 : * top-level indexquals that were possibly-redundantly derived from ECs.
3161 : * This allows removal of scan_clauses that are redundant with such quals.
3162 : * (We do not attempt to detect such redundancies for quals that are within
3163 : * OR subtrees. This could be done in a less hacky way if we returned the
3164 : * indexquals in RestrictInfo form, but that would be slower and still pretty
3165 : * messy, since we'd have to build new RestrictInfos in many cases.)
3166 : */
3167 : static Plan *
3168 22430 : create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
3169 : List **qual, List **indexqual, List **indexECs)
3170 : {
3171 : Plan *plan;
3172 :
3173 22430 : if (IsA(bitmapqual, BitmapAndPath))
3174 : {
3175 246 : BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
3176 246 : List *subplans = NIL;
3177 246 : List *subquals = NIL;
3178 246 : List *subindexquals = NIL;
3179 246 : List *subindexECs = NIL;
3180 : ListCell *l;
3181 :
3182 : /*
3183 : * There may well be redundant quals among the subplans, since a
3184 : * top-level WHERE qual might have gotten used to form several
3185 : * different index quals. We don't try exceedingly hard to eliminate
3186 : * redundancies, but we do eliminate obvious duplicates by using
3187 : * list_concat_unique.
3188 : */
3189 738 : foreach(l, apath->bitmapquals)
3190 : {
3191 : Plan *subplan;
3192 : List *subqual;
3193 : List *subindexqual;
3194 : List *subindexEC;
3195 :
3196 492 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3197 : &subqual, &subindexqual,
3198 : &subindexEC);
3199 492 : subplans = lappend(subplans, subplan);
3200 492 : subquals = list_concat_unique(subquals, subqual);
3201 492 : subindexquals = list_concat_unique(subindexquals, subindexqual);
3202 : /* Duplicates in indexECs aren't worth getting rid of */
3203 492 : subindexECs = list_concat(subindexECs, subindexEC);
3204 : }
3205 246 : plan = (Plan *) make_bitmap_and(subplans);
3206 246 : plan->startup_cost = apath->path.startup_cost;
3207 246 : plan->total_cost = apath->path.total_cost;
3208 246 : plan->plan_rows =
3209 246 : clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
3210 246 : plan->plan_width = 0; /* meaningless */
3211 246 : plan->parallel_aware = false;
3212 246 : plan->parallel_safe = apath->path.parallel_safe;
3213 246 : *qual = subquals;
3214 246 : *indexqual = subindexquals;
3215 246 : *indexECs = subindexECs;
3216 : }
3217 22184 : else if (IsA(bitmapqual, BitmapOrPath))
3218 : {
3219 422 : BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
3220 422 : List *subplans = NIL;
3221 422 : List *subquals = NIL;
3222 422 : List *subindexquals = NIL;
3223 422 : bool const_true_subqual = false;
3224 422 : bool const_true_subindexqual = false;
3225 : ListCell *l;
3226 :
3227 : /*
3228 : * Here, we only detect qual-free subplans. A qual-free subplan would
3229 : * cause us to generate "... OR true ..." which we may as well reduce
3230 : * to just "true". We do not try to eliminate redundant subclauses
3231 : * because (a) it's not as likely as in the AND case, and (b) we might
3232 : * well be working with hundreds or even thousands of OR conditions,
3233 : * perhaps from a long IN list. The performance of list_append_unique
3234 : * would be unacceptable.
3235 : */
3236 1272 : foreach(l, opath->bitmapquals)
3237 : {
3238 : Plan *subplan;
3239 : List *subqual;
3240 : List *subindexqual;
3241 : List *subindexEC;
3242 :
3243 850 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3244 : &subqual, &subindexqual,
3245 : &subindexEC);
3246 850 : subplans = lappend(subplans, subplan);
3247 850 : if (subqual == NIL)
3248 0 : const_true_subqual = true;
3249 850 : else if (!const_true_subqual)
3250 850 : subquals = lappend(subquals,
3251 850 : make_ands_explicit(subqual));
3252 850 : if (subindexqual == NIL)
3253 0 : const_true_subindexqual = true;
3254 850 : else if (!const_true_subindexqual)
3255 850 : subindexquals = lappend(subindexquals,
3256 850 : make_ands_explicit(subindexqual));
3257 : }
3258 :
3259 : /*
3260 : * In the presence of ScalarArrayOpExpr quals, we might have built
3261 : * BitmapOrPaths with just one subpath; don't add an OR step.
3262 : */
3263 422 : if (list_length(subplans) == 1)
3264 : {
3265 0 : plan = (Plan *) linitial(subplans);
3266 : }
3267 : else
3268 : {
3269 422 : plan = (Plan *) make_bitmap_or(subplans);
3270 422 : plan->startup_cost = opath->path.startup_cost;
3271 422 : plan->total_cost = opath->path.total_cost;
3272 422 : plan->plan_rows =
3273 422 : clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
3274 422 : plan->plan_width = 0; /* meaningless */
3275 422 : plan->parallel_aware = false;
3276 422 : plan->parallel_safe = opath->path.parallel_safe;
3277 : }
3278 :
3279 : /*
3280 : * If there were constant-TRUE subquals, the OR reduces to constant
3281 : * TRUE. Also, avoid generating one-element ORs, which could happen
3282 : * due to redundancy elimination or ScalarArrayOpExpr quals.
3283 : */
3284 422 : if (const_true_subqual)
3285 0 : *qual = NIL;
3286 422 : else if (list_length(subquals) <= 1)
3287 0 : *qual = subquals;
3288 : else
3289 422 : *qual = list_make1(make_orclause(subquals));
3290 422 : if (const_true_subindexqual)
3291 0 : *indexqual = NIL;
3292 422 : else if (list_length(subindexquals) <= 1)
3293 0 : *indexqual = subindexquals;
3294 : else
3295 422 : *indexqual = list_make1(make_orclause(subindexquals));
3296 422 : *indexECs = NIL;
3297 : }
3298 21762 : else if (IsA(bitmapqual, IndexPath))
3299 : {
3300 21762 : IndexPath *ipath = (IndexPath *) bitmapqual;
3301 : IndexScan *iscan;
3302 : List *subquals;
3303 : List *subindexquals;
3304 : List *subindexECs;
3305 : ListCell *l;
3306 :
3307 : /* Use the regular indexscan plan build machinery... */
3308 21762 : iscan = castNode(IndexScan,
3309 : create_indexscan_plan(root, ipath,
3310 : NIL, NIL, false));
3311 : /* then convert to a bitmap indexscan */
3312 21762 : plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
3313 : iscan->indexid,
3314 : iscan->indexqual,
3315 : iscan->indexqualorig);
3316 : /* and set its cost/width fields appropriately */
3317 21762 : plan->startup_cost = 0.0;
3318 21762 : plan->total_cost = ipath->indextotalcost;
3319 21762 : plan->plan_rows =
3320 21762 : clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
3321 21762 : plan->plan_width = 0; /* meaningless */
3322 21762 : plan->parallel_aware = false;
3323 21762 : plan->parallel_safe = ipath->path.parallel_safe;
3324 : /* Extract original index clauses, actual index quals, relevant ECs */
3325 21762 : subquals = NIL;
3326 21762 : subindexquals = NIL;
3327 21762 : subindexECs = NIL;
3328 44806 : foreach(l, ipath->indexclauses)
3329 : {
3330 23044 : IndexClause *iclause = (IndexClause *) lfirst(l);
3331 23044 : RestrictInfo *rinfo = iclause->rinfo;
3332 :
3333 : Assert(!rinfo->pseudoconstant);
3334 23044 : subquals = lappend(subquals, rinfo->clause);
3335 23044 : subindexquals = list_concat(subindexquals,
3336 23044 : get_actual_clauses(iclause->indexquals));
3337 23044 : if (rinfo->parent_ec)
3338 602 : subindexECs = lappend(subindexECs, rinfo->parent_ec);
3339 : }
3340 : /* We can add any index predicate conditions, too */
3341 21932 : foreach(l, ipath->indexinfo->indpred)
3342 : {
3343 170 : Expr *pred = (Expr *) lfirst(l);
3344 :
3345 : /*
3346 : * We know that the index predicate must have been implied by the
3347 : * query condition as a whole, but it may or may not be implied by
3348 : * the conditions that got pushed into the bitmapqual. Avoid
3349 : * generating redundant conditions.
3350 : */
3351 170 : if (!predicate_implied_by(list_make1(pred), subquals, false))
3352 : {
3353 140 : subquals = lappend(subquals, pred);
3354 140 : subindexquals = lappend(subindexquals, pred);
3355 : }
3356 : }
3357 21762 : *qual = subquals;
3358 21762 : *indexqual = subindexquals;
3359 21762 : *indexECs = subindexECs;
3360 : }
3361 : else
3362 : {
3363 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
3364 : plan = NULL; /* keep compiler quiet */
3365 : }
3366 :
3367 22430 : return plan;
3368 : }
3369 :
3370 : /*
3371 : * create_tidscan_plan
3372 : * Returns a tidscan plan for the base relation scanned by 'best_path'
3373 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3374 : */
3375 : static TidScan *
3376 752 : create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
3377 : List *tlist, List *scan_clauses)
3378 : {
3379 : TidScan *scan_plan;
3380 752 : Index scan_relid = best_path->path.parent->relid;
3381 752 : List *tidquals = best_path->tidquals;
3382 :
3383 : /* it should be a base rel... */
3384 : Assert(scan_relid > 0);
3385 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3386 :
3387 : /*
3388 : * The qpqual list must contain all restrictions not enforced by the
3389 : * tidquals list. Since tidquals has OR semantics, we have to be careful
3390 : * about matching it up to scan_clauses. It's convenient to handle the
3391 : * single-tidqual case separately from the multiple-tidqual case. In the
3392 : * single-tidqual case, we look through the scan_clauses while they are
3393 : * still in RestrictInfo form, and drop any that are redundant with the
3394 : * tidqual.
3395 : *
3396 : * In normal cases simple pointer equality checks will be enough to spot
3397 : * duplicate RestrictInfos, so we try that first.
3398 : *
3399 : * Another common case is that a scan_clauses entry is generated from the
3400 : * same EquivalenceClass as some tidqual, and is therefore redundant with
3401 : * it, though not equal.
3402 : *
3403 : * Unlike indexpaths, we don't bother with predicate_implied_by(); the
3404 : * number of cases where it could win are pretty small.
3405 : */
3406 752 : if (list_length(tidquals) == 1)
3407 : {
3408 726 : List *qpqual = NIL;
3409 : ListCell *l;
3410 :
3411 1536 : foreach(l, scan_clauses)
3412 : {
3413 810 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3414 :
3415 810 : if (rinfo->pseudoconstant)
3416 0 : continue; /* we may drop pseudoconstants here */
3417 810 : if (list_member_ptr(tidquals, rinfo))
3418 726 : continue; /* simple duplicate */
3419 84 : if (is_redundant_derived_clause(rinfo, tidquals))
3420 0 : continue; /* derived from same EquivalenceClass */
3421 84 : qpqual = lappend(qpqual, rinfo);
3422 : }
3423 726 : scan_clauses = qpqual;
3424 : }
3425 :
3426 : /* Sort clauses into best execution order */
3427 752 : scan_clauses = order_qual_clauses(root, scan_clauses);
3428 :
3429 : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3430 752 : tidquals = extract_actual_clauses(tidquals, false);
3431 752 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3432 :
3433 : /*
3434 : * If we have multiple tidquals, it's more convenient to remove duplicate
3435 : * scan_clauses after stripping the RestrictInfos. In this situation,
3436 : * because the tidquals represent OR sub-clauses, they could not have come
3437 : * from EquivalenceClasses so we don't have to worry about matching up
3438 : * non-identical clauses. On the other hand, because tidpath.c will have
3439 : * extracted those sub-clauses from some OR clause and built its own list,
3440 : * we will certainly not have pointer equality to any scan clause. So
3441 : * convert the tidquals list to an explicit OR clause and see if we can
3442 : * match it via equal() to any scan clause.
3443 : */
3444 752 : if (list_length(tidquals) > 1)
3445 26 : scan_clauses = list_difference(scan_clauses,
3446 26 : list_make1(make_orclause(tidquals)));
3447 :
3448 : /* Replace any outer-relation variables with nestloop params */
3449 752 : if (best_path->path.param_info)
3450 : {
3451 : tidquals = (List *)
3452 24 : replace_nestloop_params(root, (Node *) tidquals);
3453 : scan_clauses = (List *)
3454 24 : replace_nestloop_params(root, (Node *) scan_clauses);
3455 : }
3456 :
3457 752 : scan_plan = make_tidscan(tlist,
3458 : scan_clauses,
3459 : scan_relid,
3460 : tidquals);
3461 :
3462 752 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3463 :
3464 752 : return scan_plan;
3465 : }
3466 :
3467 : /*
3468 : * create_tidrangescan_plan
3469 : * Returns a tidrangescan plan for the base relation scanned by 'best_path'
3470 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3471 : */
3472 : static TidRangeScan *
3473 1944 : create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path,
3474 : List *tlist, List *scan_clauses)
3475 : {
3476 : TidRangeScan *scan_plan;
3477 1944 : Index scan_relid = best_path->path.parent->relid;
3478 1944 : List *tidrangequals = best_path->tidrangequals;
3479 :
3480 : /* it should be a base rel... */
3481 : Assert(scan_relid > 0);
3482 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3483 :
3484 : /*
3485 : * The qpqual list must contain all restrictions not enforced by the
3486 : * tidrangequals list. tidrangequals has AND semantics, so we can simply
3487 : * remove any qual that appears in it.
3488 : */
3489 : {
3490 1944 : List *qpqual = NIL;
3491 : ListCell *l;
3492 :
3493 3922 : foreach(l, scan_clauses)
3494 : {
3495 1978 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3496 :
3497 1978 : if (rinfo->pseudoconstant)
3498 0 : continue; /* we may drop pseudoconstants here */
3499 1978 : if (list_member_ptr(tidrangequals, rinfo))
3500 1978 : continue; /* simple duplicate */
3501 0 : qpqual = lappend(qpqual, rinfo);
3502 : }
3503 1944 : scan_clauses = qpqual;
3504 : }
3505 :
3506 : /* Sort clauses into best execution order */
3507 1944 : scan_clauses = order_qual_clauses(root, scan_clauses);
3508 :
3509 : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3510 1944 : tidrangequals = extract_actual_clauses(tidrangequals, false);
3511 1944 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3512 :
3513 : /* Replace any outer-relation variables with nestloop params */
3514 1944 : if (best_path->path.param_info)
3515 : {
3516 : tidrangequals = (List *)
3517 0 : replace_nestloop_params(root, (Node *) tidrangequals);
3518 : scan_clauses = (List *)
3519 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3520 : }
3521 :
3522 1944 : scan_plan = make_tidrangescan(tlist,
3523 : scan_clauses,
3524 : scan_relid,
3525 : tidrangequals);
3526 :
3527 1944 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3528 :
3529 1944 : return scan_plan;
3530 : }
3531 :
3532 : /*
3533 : * create_subqueryscan_plan
3534 : * Returns a subqueryscan plan for the base relation scanned by 'best_path'
3535 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3536 : */
3537 : static SubqueryScan *
3538 33224 : create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path,
3539 : List *tlist, List *scan_clauses)
3540 : {
3541 : SubqueryScan *scan_plan;
3542 33224 : RelOptInfo *rel = best_path->path.parent;
3543 33224 : Index scan_relid = rel->relid;
3544 : Plan *subplan;
3545 :
3546 : /* it should be a subquery base rel... */
3547 : Assert(scan_relid > 0);
3548 : Assert(rel->rtekind == RTE_SUBQUERY);
3549 :
3550 : /*
3551 : * Recursively create Plan from Path for subquery. Since we are entering
3552 : * a different planner context (subroot), recurse to create_plan not
3553 : * create_plan_recurse.
3554 : */
3555 33224 : subplan = create_plan(rel->subroot, best_path->subpath);
3556 :
3557 : /* Sort clauses into best execution order */
3558 33224 : scan_clauses = order_qual_clauses(root, scan_clauses);
3559 :
3560 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3561 33224 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3562 :
3563 : /*
3564 : * Replace any outer-relation variables with nestloop params.
3565 : *
3566 : * We must provide nestloop params for both lateral references of the
3567 : * subquery and outer vars in the scan_clauses. It's better to assign the
3568 : * former first, because that code path requires specific param IDs, while
3569 : * replace_nestloop_params can adapt to the IDs assigned by
3570 : * process_subquery_nestloop_params. This avoids possibly duplicating
3571 : * nestloop params when the same Var is needed for both reasons.
3572 : */
3573 33224 : if (best_path->path.param_info)
3574 : {
3575 550 : process_subquery_nestloop_params(root,
3576 : rel->subplan_params);
3577 : scan_clauses = (List *)
3578 550 : replace_nestloop_params(root, (Node *) scan_clauses);
3579 : }
3580 :
3581 33224 : scan_plan = make_subqueryscan(tlist,
3582 : scan_clauses,
3583 : scan_relid,
3584 : subplan);
3585 :
3586 33224 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3587 :
3588 33224 : return scan_plan;
3589 : }
3590 :
3591 : /*
3592 : * create_functionscan_plan
3593 : * Returns a functionscan plan for the base relation scanned by 'best_path'
3594 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3595 : */
3596 : static FunctionScan *
3597 51280 : create_functionscan_plan(PlannerInfo *root, Path *best_path,
3598 : List *tlist, List *scan_clauses)
3599 : {
3600 : FunctionScan *scan_plan;
3601 51280 : Index scan_relid = best_path->parent->relid;
3602 : RangeTblEntry *rte;
3603 : List *functions;
3604 :
3605 : /* it should be a function base rel... */
3606 : Assert(scan_relid > 0);
3607 51280 : rte = planner_rt_fetch(scan_relid, root);
3608 : Assert(rte->rtekind == RTE_FUNCTION);
3609 51280 : functions = rte->functions;
3610 :
3611 : /* Sort clauses into best execution order */
3612 51280 : scan_clauses = order_qual_clauses(root, scan_clauses);
3613 :
3614 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3615 51280 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3616 :
3617 : /* Replace any outer-relation variables with nestloop params */
3618 51280 : if (best_path->param_info)
3619 : {
3620 : scan_clauses = (List *)
3621 8566 : replace_nestloop_params(root, (Node *) scan_clauses);
3622 : /* The function expressions could contain nestloop params, too */
3623 8566 : functions = (List *) replace_nestloop_params(root, (Node *) functions);
3624 : }
3625 :
3626 51280 : scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
3627 51280 : functions, rte->funcordinality);
3628 :
3629 51280 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3630 :
3631 51280 : return scan_plan;
3632 : }
3633 :
3634 : /*
3635 : * create_tablefuncscan_plan
3636 : * Returns a tablefuncscan plan for the base relation scanned by 'best_path'
3637 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3638 : */
3639 : static TableFuncScan *
3640 626 : create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
3641 : List *tlist, List *scan_clauses)
3642 : {
3643 : TableFuncScan *scan_plan;
3644 626 : Index scan_relid = best_path->parent->relid;
3645 : RangeTblEntry *rte;
3646 : TableFunc *tablefunc;
3647 :
3648 : /* it should be a function base rel... */
3649 : Assert(scan_relid > 0);
3650 626 : rte = planner_rt_fetch(scan_relid, root);
3651 : Assert(rte->rtekind == RTE_TABLEFUNC);
3652 626 : tablefunc = rte->tablefunc;
3653 :
3654 : /* Sort clauses into best execution order */
3655 626 : scan_clauses = order_qual_clauses(root, scan_clauses);
3656 :
3657 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3658 626 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3659 :
3660 : /* Replace any outer-relation variables with nestloop params */
3661 626 : if (best_path->param_info)
3662 : {
3663 : scan_clauses = (List *)
3664 234 : replace_nestloop_params(root, (Node *) scan_clauses);
3665 : /* The function expressions could contain nestloop params, too */
3666 234 : tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc);
3667 : }
3668 :
3669 626 : scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid,
3670 : tablefunc);
3671 :
3672 626 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3673 :
3674 626 : return scan_plan;
3675 : }
3676 :
3677 : /*
3678 : * create_valuesscan_plan
3679 : * Returns a valuesscan plan for the base relation scanned by 'best_path'
3680 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3681 : */
3682 : static ValuesScan *
3683 8268 : create_valuesscan_plan(PlannerInfo *root, Path *best_path,
3684 : List *tlist, List *scan_clauses)
3685 : {
3686 : ValuesScan *scan_plan;
3687 8268 : Index scan_relid = best_path->parent->relid;
3688 : RangeTblEntry *rte;
3689 : List *values_lists;
3690 :
3691 : /* it should be a values base rel... */
3692 : Assert(scan_relid > 0);
3693 8268 : rte = planner_rt_fetch(scan_relid, root);
3694 : Assert(rte->rtekind == RTE_VALUES);
3695 8268 : values_lists = rte->values_lists;
3696 :
3697 : /* Sort clauses into best execution order */
3698 8268 : scan_clauses = order_qual_clauses(root, scan_clauses);
3699 :
3700 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3701 8268 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3702 :
3703 : /* Replace any outer-relation variables with nestloop params */
3704 8268 : if (best_path->param_info)
3705 : {
3706 : scan_clauses = (List *)
3707 66 : replace_nestloop_params(root, (Node *) scan_clauses);
3708 : /* The values lists could contain nestloop params, too */
3709 : values_lists = (List *)
3710 66 : replace_nestloop_params(root, (Node *) values_lists);
3711 : }
3712 :
3713 8268 : scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
3714 : values_lists);
3715 :
3716 8268 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3717 :
3718 8268 : return scan_plan;
3719 : }
3720 :
3721 : /*
3722 : * create_ctescan_plan
3723 : * Returns a ctescan plan for the base relation scanned by 'best_path'
3724 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3725 : */
3726 : static CteScan *
3727 4254 : create_ctescan_plan(PlannerInfo *root, Path *best_path,
3728 : List *tlist, List *scan_clauses)
3729 : {
3730 : CteScan *scan_plan;
3731 4254 : Index scan_relid = best_path->parent->relid;
3732 : RangeTblEntry *rte;
3733 4254 : SubPlan *ctesplan = NULL;
3734 : int plan_id;
3735 : int cte_param_id;
3736 : PlannerInfo *cteroot;
3737 : Index levelsup;
3738 : int ndx;
3739 : ListCell *lc;
3740 :
3741 : Assert(scan_relid > 0);
3742 4254 : rte = planner_rt_fetch(scan_relid, root);
3743 : Assert(rte->rtekind == RTE_CTE);
3744 : Assert(!rte->self_reference);
3745 :
3746 : /*
3747 : * Find the referenced CTE, and locate the SubPlan previously made for it.
3748 : */
3749 4254 : levelsup = rte->ctelevelsup;
3750 4254 : cteroot = root;
3751 7424 : while (levelsup-- > 0)
3752 : {
3753 3170 : cteroot = cteroot->parent_root;
3754 3170 : if (!cteroot) /* shouldn't happen */
3755 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3756 : }
3757 :
3758 : /*
3759 : * Note: cte_plan_ids can be shorter than cteList, if we are still working
3760 : * on planning the CTEs (ie, this is a side-reference from another CTE).
3761 : * So we mustn't use forboth here.
3762 : */
3763 4254 : ndx = 0;
3764 5890 : foreach(lc, cteroot->parse->cteList)
3765 : {
3766 5890 : CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
3767 :
3768 5890 : if (strcmp(cte->ctename, rte->ctename) == 0)
3769 4254 : break;
3770 1636 : ndx++;
3771 : }
3772 4254 : if (lc == NULL) /* shouldn't happen */
3773 0 : elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
3774 4254 : if (ndx >= list_length(cteroot->cte_plan_ids))
3775 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3776 4254 : plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
3777 4254 : if (plan_id <= 0)
3778 0 : elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
3779 5084 : foreach(lc, cteroot->init_plans)
3780 : {
3781 5084 : ctesplan = (SubPlan *) lfirst(lc);
3782 5084 : if (ctesplan->plan_id == plan_id)
3783 4254 : break;
3784 : }
3785 4254 : if (lc == NULL) /* shouldn't happen */
3786 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3787 :
3788 : /*
3789 : * We need the CTE param ID, which is the sole member of the SubPlan's
3790 : * setParam list.
3791 : */
3792 4254 : cte_param_id = linitial_int(ctesplan->setParam);
3793 :
3794 : /* Sort clauses into best execution order */
3795 4254 : scan_clauses = order_qual_clauses(root, scan_clauses);
3796 :
3797 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3798 4254 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3799 :
3800 : /* Replace any outer-relation variables with nestloop params */
3801 4254 : if (best_path->param_info)
3802 : {
3803 : scan_clauses = (List *)
3804 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3805 : }
3806 :
3807 4254 : scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
3808 : plan_id, cte_param_id);
3809 :
3810 4254 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3811 :
3812 4254 : return scan_plan;
3813 : }
3814 :
3815 : /*
3816 : * create_namedtuplestorescan_plan
3817 : * Returns a tuplestorescan plan for the base relation scanned by
3818 : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3819 : * 'tlist'.
3820 : */
3821 : static NamedTuplestoreScan *
3822 482 : create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path,
3823 : List *tlist, List *scan_clauses)
3824 : {
3825 : NamedTuplestoreScan *scan_plan;
3826 482 : Index scan_relid = best_path->parent->relid;
3827 : RangeTblEntry *rte;
3828 :
3829 : Assert(scan_relid > 0);
3830 482 : rte = planner_rt_fetch(scan_relid, root);
3831 : Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
3832 :
3833 : /* Sort clauses into best execution order */
3834 482 : scan_clauses = order_qual_clauses(root, scan_clauses);
3835 :
3836 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3837 482 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3838 :
3839 : /* Replace any outer-relation variables with nestloop params */
3840 482 : if (best_path->param_info)
3841 : {
3842 : scan_clauses = (List *)
3843 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3844 : }
3845 :
3846 482 : scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid,
3847 : rte->enrname);
3848 :
3849 482 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3850 :
3851 482 : return scan_plan;
3852 : }
3853 :
3854 : /*
3855 : * create_resultscan_plan
3856 : * Returns a Result plan for the RTE_RESULT base relation scanned by
3857 : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3858 : * 'tlist'.
3859 : */
3860 : static Result *
3861 4056 : create_resultscan_plan(PlannerInfo *root, Path *best_path,
3862 : List *tlist, List *scan_clauses)
3863 : {
3864 : Result *scan_plan;
3865 4056 : Index scan_relid = best_path->parent->relid;
3866 : RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
3867 :
3868 : Assert(scan_relid > 0);
3869 4056 : rte = planner_rt_fetch(scan_relid, root);
3870 : Assert(rte->rtekind == RTE_RESULT);
3871 :
3872 : /* Sort clauses into best execution order */
3873 4056 : scan_clauses = order_qual_clauses(root, scan_clauses);
3874 :
3875 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3876 4056 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3877 :
3878 : /* Replace any outer-relation variables with nestloop params */
3879 4056 : if (best_path->param_info)
3880 : {
3881 : scan_clauses = (List *)
3882 140 : replace_nestloop_params(root, (Node *) scan_clauses);
3883 : }
3884 :
3885 4056 : scan_plan = make_one_row_result(tlist, (Node *) scan_clauses,
3886 : best_path->parent);
3887 :
3888 4056 : copy_generic_path_info(&scan_plan->plan, best_path);
3889 :
3890 4056 : return scan_plan;
3891 : }
3892 :
3893 : /*
3894 : * create_worktablescan_plan
3895 : * Returns a worktablescan plan for the base relation scanned by 'best_path'
3896 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3897 : */
3898 : static WorkTableScan *
3899 930 : create_worktablescan_plan(PlannerInfo *root, Path *best_path,
3900 : List *tlist, List *scan_clauses)
3901 : {
3902 : WorkTableScan *scan_plan;
3903 930 : Index scan_relid = best_path->parent->relid;
3904 : RangeTblEntry *rte;
3905 : Index levelsup;
3906 : PlannerInfo *cteroot;
3907 :
3908 : Assert(scan_relid > 0);
3909 930 : rte = planner_rt_fetch(scan_relid, root);
3910 : Assert(rte->rtekind == RTE_CTE);
3911 : Assert(rte->self_reference);
3912 :
3913 : /*
3914 : * We need to find the worktable param ID, which is in the plan level
3915 : * that's processing the recursive UNION, which is one level *below* where
3916 : * the CTE comes from.
3917 : */
3918 930 : levelsup = rte->ctelevelsup;
3919 930 : if (levelsup == 0) /* shouldn't happen */
3920 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3921 930 : levelsup--;
3922 930 : cteroot = root;
3923 2272 : while (levelsup-- > 0)
3924 : {
3925 1342 : cteroot = cteroot->parent_root;
3926 1342 : if (!cteroot) /* shouldn't happen */
3927 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3928 : }
3929 930 : if (cteroot->wt_param_id < 0) /* shouldn't happen */
3930 0 : elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
3931 :
3932 : /* Sort clauses into best execution order */
3933 930 : scan_clauses = order_qual_clauses(root, scan_clauses);
3934 :
3935 : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3936 930 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3937 :
3938 : /* Replace any outer-relation variables with nestloop params */
3939 930 : if (best_path->param_info)
3940 : {
3941 : scan_clauses = (List *)
3942 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3943 : }
3944 :
3945 930 : scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
3946 : cteroot->wt_param_id);
3947 :
3948 930 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3949 :
3950 930 : return scan_plan;
3951 : }
3952 :
3953 : /*
3954 : * create_foreignscan_plan
3955 : * Returns a foreignscan plan for the relation scanned by 'best_path'
3956 : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3957 : */
3958 : static ForeignScan *
3959 2086 : create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
3960 : List *tlist, List *scan_clauses)
3961 : {
3962 : ForeignScan *scan_plan;
3963 2086 : RelOptInfo *rel = best_path->path.parent;
3964 2086 : Index scan_relid = rel->relid;
3965 2086 : Oid rel_oid = InvalidOid;
3966 2086 : Plan *outer_plan = NULL;
3967 :
3968 : Assert(rel->fdwroutine != NULL);
3969 :
3970 : /* transform the child path if any */
3971 2086 : if (best_path->fdw_outerpath)
3972 52 : outer_plan = create_plan_recurse(root, best_path->fdw_outerpath,
3973 : CP_EXACT_TLIST);
3974 :
3975 : /*
3976 : * If we're scanning a base relation, fetch its OID. (Irrelevant if
3977 : * scanning a join relation.)
3978 : */
3979 2086 : if (scan_relid > 0)
3980 : {
3981 : RangeTblEntry *rte;
3982 :
3983 : Assert(rel->rtekind == RTE_RELATION);
3984 1516 : rte = planner_rt_fetch(scan_relid, root);
3985 : Assert(rte->rtekind == RTE_RELATION);
3986 1516 : rel_oid = rte->relid;
3987 : }
3988 :
3989 : /*
3990 : * Sort clauses into best execution order. We do this first since the FDW
3991 : * might have more info than we do and wish to adjust the ordering.
3992 : */
3993 2086 : scan_clauses = order_qual_clauses(root, scan_clauses);
3994 :
3995 : /*
3996 : * Let the FDW perform its processing on the restriction clauses and
3997 : * generate the plan node. Note that the FDW might remove restriction
3998 : * clauses that it intends to execute remotely, or even add more (if it
3999 : * has selected some join clauses for remote use but also wants them
4000 : * rechecked locally).
4001 : */
4002 2086 : scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
4003 : best_path,
4004 : tlist, scan_clauses,
4005 : outer_plan);
4006 :
4007 : /* Copy cost data from Path to Plan; no need to make FDW do this */
4008 2086 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
4009 :
4010 : /* Copy user OID to access as; likewise no need to make FDW do this */
4011 2086 : scan_plan->checkAsUser = rel->userid;
4012 :
4013 : /* Copy foreign server OID; likewise, no need to make FDW do this */
4014 2086 : scan_plan->fs_server = rel->serverid;
4015 :
4016 : /*
4017 : * Likewise, copy the relids that are represented by this foreign scan. An
4018 : * upper rel doesn't have relids set, but it covers all the relations
4019 : * participating in the underlying scan/join, so use root->all_query_rels.
4020 : */
4021 2086 : if (rel->reloptkind == RELOPT_UPPER_REL)
4022 240 : scan_plan->fs_relids = root->all_query_rels;
4023 : else
4024 1846 : scan_plan->fs_relids = best_path->path.parent->relids;
4025 :
4026 : /*
4027 : * Join relid sets include relevant outer joins, but FDWs may need to know
4028 : * which are the included base rels. That's a bit tedious to get without
4029 : * access to the plan-time data structures, so compute it here.
4030 : */
4031 4172 : scan_plan->fs_base_relids = bms_difference(scan_plan->fs_relids,
4032 2086 : root->outer_join_rels);
4033 :
4034 : /*
4035 : * If this is a foreign join, and to make it valid to push down we had to
4036 : * assume that the current user is the same as some user explicitly named
4037 : * in the query, mark the finished plan as depending on the current user.
4038 : */
4039 2086 : if (rel->useridiscurrent)
4040 4 : root->glob->dependsOnRole = true;
4041 :
4042 : /*
4043 : * Replace any outer-relation variables with nestloop params in the qual,
4044 : * fdw_exprs and fdw_recheck_quals expressions. We do this last so that
4045 : * the FDW doesn't have to be involved. (Note that parts of fdw_exprs or
4046 : * fdw_recheck_quals could have come from join clauses, so doing this
4047 : * beforehand on the scan_clauses wouldn't work.) We assume
4048 : * fdw_scan_tlist contains no such variables.
4049 : */
4050 2086 : if (best_path->path.param_info)
4051 : {
4052 30 : scan_plan->scan.plan.qual = (List *)
4053 30 : replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
4054 30 : scan_plan->fdw_exprs = (List *)
4055 30 : replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
4056 30 : scan_plan->fdw_recheck_quals = (List *)
4057 30 : replace_nestloop_params(root,
4058 30 : (Node *) scan_plan->fdw_recheck_quals);
4059 : }
4060 :
4061 : /*
4062 : * If rel is a base relation, detect whether any system columns are
4063 : * requested from the rel. (If rel is a join relation, rel->relid will be
4064 : * 0, but there can be no Var with relid 0 in the rel's targetlist or the
4065 : * restriction clauses, so we skip this in that case. Note that any such
4066 : * columns in base relations that were joined are assumed to be contained
4067 : * in fdw_scan_tlist.) This is a bit of a kluge and might go away
4068 : * someday, so we intentionally leave it out of the API presented to FDWs.
4069 : */
4070 2086 : scan_plan->fsSystemCol = false;
4071 2086 : if (scan_relid > 0)
4072 : {
4073 1516 : Bitmapset *attrs_used = NULL;
4074 : ListCell *lc;
4075 : int i;
4076 :
4077 : /*
4078 : * First, examine all the attributes needed for joins or final output.
4079 : * Note: we must look at rel's targetlist, not the attr_needed data,
4080 : * because attr_needed isn't computed for inheritance child rels.
4081 : */
4082 1516 : pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used);
4083 :
4084 : /* Add all the attributes used by restriction clauses. */
4085 2224 : foreach(lc, rel->baserestrictinfo)
4086 : {
4087 708 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
4088 :
4089 708 : pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used);
4090 : }
4091 :
4092 : /* Now, are any system columns requested from rel? */
4093 8570 : for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
4094 : {
4095 7596 : if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
4096 : {
4097 542 : scan_plan->fsSystemCol = true;
4098 542 : break;
4099 : }
4100 : }
4101 :
4102 1516 : bms_free(attrs_used);
4103 : }
4104 :
4105 2086 : return scan_plan;
4106 : }
4107 :
4108 : /*
4109 : * create_customscan_plan
4110 : *
4111 : * Transform a CustomPath into a Plan.
4112 : */
4113 : static CustomScan *
4114 0 : create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
4115 : List *tlist, List *scan_clauses)
4116 : {
4117 : CustomScan *cplan;
4118 0 : RelOptInfo *rel = best_path->path.parent;
4119 0 : List *custom_plans = NIL;
4120 : ListCell *lc;
4121 :
4122 : /* Recursively transform child paths. */
4123 0 : foreach(lc, best_path->custom_paths)
4124 : {
4125 0 : Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc),
4126 : CP_EXACT_TLIST);
4127 :
4128 0 : custom_plans = lappend(custom_plans, plan);
4129 : }
4130 :
4131 : /*
4132 : * Sort clauses into the best execution order, although custom-scan
4133 : * provider can reorder them again.
4134 : */
4135 0 : scan_clauses = order_qual_clauses(root, scan_clauses);
4136 :
4137 : /*
4138 : * Invoke custom plan provider to create the Plan node represented by the
4139 : * CustomPath.
4140 : */
4141 0 : cplan = castNode(CustomScan,
4142 : best_path->methods->PlanCustomPath(root,
4143 : rel,
4144 : best_path,
4145 : tlist,
4146 : scan_clauses,
4147 : custom_plans));
4148 :
4149 : /*
4150 : * Copy cost data from Path to Plan; no need to make custom-plan providers
4151 : * do this
4152 : */
4153 0 : copy_generic_path_info(&cplan->scan.plan, &best_path->path);
4154 :
4155 : /* Likewise, copy the relids that are represented by this custom scan */
4156 0 : cplan->custom_relids = best_path->path.parent->relids;
4157 :
4158 : /*
4159 : * Replace any outer-relation variables with nestloop params in the qual
4160 : * and custom_exprs expressions. We do this last so that the custom-plan
4161 : * provider doesn't have to be involved. (Note that parts of custom_exprs
4162 : * could have come from join clauses, so doing this beforehand on the
4163 : * scan_clauses wouldn't work.) We assume custom_scan_tlist contains no
4164 : * such variables.
4165 : */
4166 0 : if (best_path->path.param_info)
4167 : {
4168 0 : cplan->scan.plan.qual = (List *)
4169 0 : replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
4170 0 : cplan->custom_exprs = (List *)
4171 0 : replace_nestloop_params(root, (Node *) cplan->custom_exprs);
4172 : }
4173 :
4174 0 : return cplan;
4175 : }
4176 :
4177 :
4178 : /*****************************************************************************
4179 : *
4180 : * JOIN METHODS
4181 : *
4182 : *****************************************************************************/
4183 :
4184 : static NestLoop *
4185 97884 : create_nestloop_plan(PlannerInfo *root,
4186 : NestPath *best_path)
4187 : {
4188 : NestLoop *join_plan;
4189 : Plan *outer_plan;
4190 : Plan *inner_plan;
4191 : Relids outerrelids;
4192 97884 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4193 97884 : List *joinrestrictclauses = best_path->jpath.joinrestrictinfo;
4194 : List *joinclauses;
4195 : List *otherclauses;
4196 : List *nestParams;
4197 : List *outer_tlist;
4198 : bool outer_parallel_safe;
4199 97884 : Relids saveOuterRels = root->curOuterRels;
4200 : ListCell *lc;
4201 :
4202 : /*
4203 : * If the inner path is parameterized by the topmost parent of the outer
4204 : * rel rather than the outer rel itself, fix that. (Nothing happens here
4205 : * if it is not so parameterized.)
4206 : */
4207 97884 : best_path->jpath.innerjoinpath =
4208 97884 : reparameterize_path_by_child(root,
4209 : best_path->jpath.innerjoinpath,
4210 97884 : best_path->jpath.outerjoinpath->parent);
4211 :
4212 : /*
4213 : * Failure here probably means that reparameterize_path_by_child() is not
4214 : * in sync with path_is_reparameterizable_by_child().
4215 : */
4216 : Assert(best_path->jpath.innerjoinpath != NULL);
4217 :
4218 : /* NestLoop can project, so no need to be picky about child tlists */
4219 97884 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath, 0);
4220 :
4221 : /* For a nestloop, include outer relids in curOuterRels for inner side */
4222 97884 : outerrelids = best_path->jpath.outerjoinpath->parent->relids;
4223 97884 : root->curOuterRels = bms_union(root->curOuterRels, outerrelids);
4224 :
4225 97884 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath, 0);
4226 :
4227 : /* Restore curOuterRels */
4228 97884 : bms_free(root->curOuterRels);
4229 97884 : root->curOuterRels = saveOuterRels;
4230 :
4231 : /* Sort join qual clauses into best execution order */
4232 97884 : joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
4233 :
4234 : /* Get the join qual clauses (in plain expression form) */
4235 : /* Any pseudoconstant clauses are ignored here */
4236 97884 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4237 : {
4238 22360 : extract_actual_join_clauses(joinrestrictclauses,
4239 22360 : best_path->jpath.path.parent->relids,
4240 : &joinclauses, &otherclauses);
4241 : }
4242 : else
4243 : {
4244 : /* We can treat all clauses alike for an inner join */
4245 75524 : joinclauses = extract_actual_clauses(joinrestrictclauses, false);
4246 75524 : otherclauses = NIL;
4247 : }
4248 :
4249 : /* Replace any outer-relation variables with nestloop params */
4250 97884 : if (best_path->jpath.path.param_info)
4251 : {
4252 968 : joinclauses = (List *)
4253 968 : replace_nestloop_params(root, (Node *) joinclauses);
4254 968 : otherclauses = (List *)
4255 968 : replace_nestloop_params(root, (Node *) otherclauses);
4256 : }
4257 :
4258 : /*
4259 : * Identify any nestloop parameters that should be supplied by this join
4260 : * node, and remove them from root->curOuterParams.
4261 : */
4262 97884 : nestParams = identify_current_nestloop_params(root,
4263 : outerrelids,
4264 97884 : PATH_REQ_OUTER((Path *) best_path));
4265 :
4266 : /*
4267 : * While nestloop parameters that are Vars had better be available from
4268 : * the outer_plan already, there are edge cases where nestloop parameters
4269 : * that are PHVs won't be. In such cases we must add them to the
4270 : * outer_plan's tlist, since the executor's NestLoopParam machinery
4271 : * requires the params to be simple outer-Var references to that tlist.
4272 : * (This is cheating a little bit, because the outer path's required-outer
4273 : * relids might not be enough to allow evaluating such a PHV. But in
4274 : * practice, if we could have evaluated the PHV at the nestloop node, we
4275 : * can do so in the outer plan too.)
4276 : */
4277 97884 : outer_tlist = outer_plan->targetlist;
4278 97884 : outer_parallel_safe = outer_plan->parallel_safe;
4279 153286 : foreach(lc, nestParams)
4280 : {
4281 55402 : NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
4282 : PlaceHolderVar *phv;
4283 : TargetEntry *tle;
4284 :
4285 55402 : if (IsA(nlp->paramval, Var))
4286 55150 : continue; /* nothing to do for simple Vars */
4287 : /* Otherwise it must be a PHV */
4288 252 : phv = castNode(PlaceHolderVar, nlp->paramval);
4289 :
4290 252 : if (tlist_member((Expr *) phv, outer_tlist))
4291 222 : continue; /* already available */
4292 :
4293 : /*
4294 : * It's possible that nestloop parameter PHVs selected to evaluate
4295 : * here contain references to surviving root->curOuterParams items
4296 : * (that is, they reference values that will be supplied by some
4297 : * higher-level nestloop). Those need to be converted to Params now.
4298 : * Note: it's safe to do this after the tlist_member() check, because
4299 : * equal() won't pay attention to phv->phexpr.
4300 : */
4301 60 : phv->phexpr = (Expr *) replace_nestloop_params(root,
4302 30 : (Node *) phv->phexpr);
4303 :
4304 : /* Make a shallow copy of outer_tlist, if we didn't already */
4305 30 : if (outer_tlist == outer_plan->targetlist)
4306 30 : outer_tlist = list_copy(outer_tlist);
4307 : /* ... and add the needed expression */
4308 30 : tle = makeTargetEntry((Expr *) copyObject(phv),
4309 30 : list_length(outer_tlist) + 1,
4310 : NULL,
4311 : true);
4312 30 : outer_tlist = lappend(outer_tlist, tle);
4313 : /* ... and track whether tlist is (still) parallel-safe */
4314 30 : if (outer_parallel_safe)
4315 6 : outer_parallel_safe = is_parallel_safe(root, (Node *) phv);
4316 : }
4317 97884 : if (outer_tlist != outer_plan->targetlist)
4318 30 : outer_plan = change_plan_targetlist(outer_plan, outer_tlist,
4319 : outer_parallel_safe);
4320 :
4321 : /* And finally, we can build the join plan node */
4322 97884 : join_plan = make_nestloop(tlist,
4323 : joinclauses,
4324 : otherclauses,
4325 : nestParams,
4326 : outer_plan,
4327 : inner_plan,
4328 : best_path->jpath.jointype,
4329 97884 : best_path->jpath.inner_unique);
4330 :
4331 97884 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4332 :
4333 97884 : return join_plan;
4334 : }
4335 :
4336 : static MergeJoin *
4337 7624 : create_mergejoin_plan(PlannerInfo *root,
4338 : MergePath *best_path)
4339 : {
4340 : MergeJoin *join_plan;
4341 : Plan *outer_plan;
4342 : Plan *inner_plan;
4343 7624 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4344 : List *joinclauses;
4345 : List *otherclauses;
4346 : List *mergeclauses;
4347 : List *outerpathkeys;
4348 : List *innerpathkeys;
4349 : int nClauses;
4350 : Oid *mergefamilies;
4351 : Oid *mergecollations;
4352 : bool *mergereversals;
4353 : bool *mergenullsfirst;
4354 : PathKey *opathkey;
4355 : EquivalenceClass *opeclass;
4356 : int i;
4357 : ListCell *lc;
4358 : ListCell *lop;
4359 : ListCell *lip;
4360 7624 : Path *outer_path = best_path->jpath.outerjoinpath;
4361 7624 : Path *inner_path = best_path->jpath.innerjoinpath;
4362 :
4363 : /*
4364 : * MergeJoin can project, so we don't have to demand exact tlists from the
4365 : * inputs. However, if we're intending to sort an input's result, it's
4366 : * best to request a small tlist so we aren't sorting more data than
4367 : * necessary.
4368 : */
4369 7624 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4370 7624 : (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4371 :
4372 7624 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4373 7624 : (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4374 :
4375 : /* Sort join qual clauses into best execution order */
4376 : /* NB: do NOT reorder the mergeclauses */
4377 7624 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4378 :
4379 : /* Get the join qual clauses (in plain expression form) */
4380 : /* Any pseudoconstant clauses are ignored here */
4381 7624 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4382 : {
4383 5164 : extract_actual_join_clauses(joinclauses,
4384 5164 : best_path->jpath.path.parent->relids,
4385 : &joinclauses, &otherclauses);
4386 : }
4387 : else
4388 : {
4389 : /* We can treat all clauses alike for an inner join */
4390 2460 : joinclauses = extract_actual_clauses(joinclauses, false);
4391 2460 : otherclauses = NIL;
4392 : }
4393 :
4394 : /*
4395 : * Remove the mergeclauses from the list of join qual clauses, leaving the
4396 : * list of quals that must be checked as qpquals.
4397 : */
4398 7624 : mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
4399 7624 : joinclauses = list_difference(joinclauses, mergeclauses);
4400 :
4401 : /*
4402 : * Replace any outer-relation variables with nestloop params. There
4403 : * should not be any in the mergeclauses.
4404 : */
4405 7624 : if (best_path->jpath.path.param_info)
4406 : {
4407 6 : joinclauses = (List *)
4408 6 : replace_nestloop_params(root, (Node *) joinclauses);
4409 6 : otherclauses = (List *)
4410 6 : replace_nestloop_params(root, (Node *) otherclauses);
4411 : }
4412 :
4413 : /*
4414 : * Rearrange mergeclauses, if needed, so that the outer variable is always
4415 : * on the left; mark the mergeclause restrictinfos with correct
4416 : * outer_is_left status.
4417 : */
4418 7624 : mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
4419 7624 : best_path->jpath.outerjoinpath->parent->relids);
4420 :
4421 : /*
4422 : * Create explicit sort nodes for the outer and inner paths if necessary.
4423 : */
4424 7624 : if (best_path->outersortkeys)
4425 : {
4426 3012 : Relids outer_relids = outer_path->parent->relids;
4427 : Plan *sort_plan;
4428 :
4429 : /*
4430 : * We can assert that the outer path is not already ordered
4431 : * appropriately for the mergejoin; otherwise, outersortkeys would
4432 : * have been set to NIL.
4433 : */
4434 : Assert(!pathkeys_contained_in(best_path->outersortkeys,
4435 : outer_path->pathkeys));
4436 :
4437 : /*
4438 : * We choose to use incremental sort if it is enabled and there are
4439 : * presorted keys; otherwise we use full sort.
4440 : */
4441 3012 : if (enable_incremental_sort && best_path->outer_presorted_keys > 0)
4442 : {
4443 : sort_plan = (Plan *)
4444 12 : make_incrementalsort_from_pathkeys(outer_plan,
4445 : best_path->outersortkeys,
4446 : outer_relids,
4447 : best_path->outer_presorted_keys);
4448 :
4449 12 : label_incrementalsort_with_costsize(root,
4450 : (IncrementalSort *) sort_plan,
4451 : best_path->outersortkeys,
4452 : -1.0);
4453 : }
4454 : else
4455 : {
4456 : sort_plan = (Plan *)
4457 3000 : make_sort_from_pathkeys(outer_plan,
4458 : best_path->outersortkeys,
4459 : outer_relids);
4460 :
4461 3000 : label_sort_with_costsize(root, (Sort *) sort_plan, -1.0);
4462 : }
4463 :
4464 3012 : outer_plan = sort_plan;
4465 3012 : outerpathkeys = best_path->outersortkeys;
4466 : }
4467 : else
4468 4612 : outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
4469 :
4470 7624 : if (best_path->innersortkeys)
4471 : {
4472 : /*
4473 : * We do not consider incremental sort for inner path, because
4474 : * incremental sort does not support mark/restore.
4475 : */
4476 :
4477 7106 : Relids inner_relids = inner_path->parent->relids;
4478 : Sort *sort;
4479 :
4480 : /*
4481 : * We can assert that the inner path is not already ordered
4482 : * appropriately for the mergejoin; otherwise, innersortkeys would
4483 : * have been set to NIL.
4484 : */
4485 : Assert(!pathkeys_contained_in(best_path->innersortkeys,
4486 : inner_path->pathkeys));
4487 :
4488 7106 : sort = make_sort_from_pathkeys(inner_plan,
4489 : best_path->innersortkeys,
4490 : inner_relids);
4491 :
4492 7106 : label_sort_with_costsize(root, sort, -1.0);
4493 7106 : inner_plan = (Plan *) sort;
4494 7106 : innerpathkeys = best_path->innersortkeys;
4495 : }
4496 : else
4497 518 : innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
4498 :
4499 : /*
4500 : * If specified, add a materialize node to shield the inner plan from the
4501 : * need to handle mark/restore.
4502 : */
4503 7624 : if (best_path->materialize_inner)
4504 : {
4505 176 : Plan *matplan = (Plan *) make_material(inner_plan);
4506 :
4507 : /*
4508 : * We assume the materialize will not spill to disk, and therefore
4509 : * charge just cpu_operator_cost per tuple. (Keep this estimate in
4510 : * sync with final_cost_mergejoin.)
4511 : */
4512 176 : copy_plan_costsize(matplan, inner_plan);
4513 176 : matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
4514 :
4515 176 : inner_plan = matplan;
4516 : }
4517 :
4518 : /*
4519 : * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
4520 : * executor. The information is in the pathkeys for the two inputs, but
4521 : * we need to be careful about the possibility of mergeclauses sharing a
4522 : * pathkey, as well as the possibility that the inner pathkeys are not in
4523 : * an order matching the mergeclauses.
4524 : */
4525 7624 : nClauses = list_length(mergeclauses);
4526 : Assert(nClauses == list_length(best_path->path_mergeclauses));
4527 7624 : mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
4528 7624 : mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
4529 7624 : mergereversals = (bool *) palloc(nClauses * sizeof(bool));
4530 7624 : mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
4531 :
4532 7624 : opathkey = NULL;
4533 7624 : opeclass = NULL;
4534 7624 : lop = list_head(outerpathkeys);
4535 7624 : lip = list_head(innerpathkeys);
4536 7624 : i = 0;
4537 16172 : foreach(lc, best_path->path_mergeclauses)
4538 : {
4539 8548 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
4540 : EquivalenceClass *oeclass;
4541 : EquivalenceClass *ieclass;
4542 8548 : PathKey *ipathkey = NULL;
4543 8548 : EquivalenceClass *ipeclass = NULL;
4544 8548 : bool first_inner_match = false;
4545 :
4546 : /* fetch outer/inner eclass from mergeclause */
4547 8548 : if (rinfo->outer_is_left)
4548 : {
4549 6896 : oeclass = rinfo->left_ec;
4550 6896 : ieclass = rinfo->right_ec;
4551 : }
4552 : else
4553 : {
4554 1652 : oeclass = rinfo->right_ec;
4555 1652 : ieclass = rinfo->left_ec;
4556 : }
4557 : Assert(oeclass != NULL);
4558 : Assert(ieclass != NULL);
4559 :
4560 : /*
4561 : * We must identify the pathkey elements associated with this clause
4562 : * by matching the eclasses (which should give a unique match, since
4563 : * the pathkey lists should be canonical). In typical cases the merge
4564 : * clauses are one-to-one with the pathkeys, but when dealing with
4565 : * partially redundant query conditions, things are more complicated.
4566 : *
4567 : * lop and lip reference the first as-yet-unmatched pathkey elements.
4568 : * If they're NULL then all pathkey elements have been matched.
4569 : *
4570 : * The ordering of the outer pathkeys should match the mergeclauses,
4571 : * by construction (see find_mergeclauses_for_outer_pathkeys()). There
4572 : * could be more than one mergeclause for the same outer pathkey, but
4573 : * no pathkey may be entirely skipped over.
4574 : */
4575 8548 : if (oeclass != opeclass) /* multiple matches are not interesting */
4576 : {
4577 : /* doesn't match the current opathkey, so must match the next */
4578 8536 : if (lop == NULL)
4579 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4580 8536 : opathkey = (PathKey *) lfirst(lop);
4581 8536 : opeclass = opathkey->pk_eclass;
4582 8536 : lop = lnext(outerpathkeys, lop);
4583 8536 : if (oeclass != opeclass)
4584 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4585 : }
4586 :
4587 : /*
4588 : * The inner pathkeys likewise should not have skipped-over keys, but
4589 : * it's possible for a mergeclause to reference some earlier inner
4590 : * pathkey if we had redundant pathkeys. For example we might have
4591 : * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x". The
4592 : * implied inner ordering is then "ORDER BY x, y, x", but the pathkey
4593 : * mechanism drops the second sort by x as redundant, and this code
4594 : * must cope.
4595 : *
4596 : * It's also possible for the implied inner-rel ordering to be like
4597 : * "ORDER BY x, y, x DESC". We still drop the second instance of x as
4598 : * redundant; but this means that the sort ordering of a redundant
4599 : * inner pathkey should not be considered significant. So we must
4600 : * detect whether this is the first clause matching an inner pathkey.
4601 : */
4602 8548 : if (lip)
4603 : {
4604 8530 : ipathkey = (PathKey *) lfirst(lip);
4605 8530 : ipeclass = ipathkey->pk_eclass;
4606 8530 : if (ieclass == ipeclass)
4607 : {
4608 : /* successful first match to this inner pathkey */
4609 8530 : lip = lnext(innerpathkeys, lip);
4610 8530 : first_inner_match = true;
4611 : }
4612 : }
4613 8548 : if (!first_inner_match)
4614 : {
4615 : /* redundant clause ... must match something before lip */
4616 : ListCell *l2;
4617 :
4618 18 : foreach(l2, innerpathkeys)
4619 : {
4620 18 : if (l2 == lip)
4621 0 : break;
4622 18 : ipathkey = (PathKey *) lfirst(l2);
4623 18 : ipeclass = ipathkey->pk_eclass;
4624 18 : if (ieclass == ipeclass)
4625 18 : break;
4626 : }
4627 18 : if (ieclass != ipeclass)
4628 0 : elog(ERROR, "inner pathkeys do not match mergeclauses");
4629 : }
4630 :
4631 : /*
4632 : * The pathkeys should always match each other as to opfamily and
4633 : * collation (which affect equality), but if we're considering a
4634 : * redundant inner pathkey, its sort ordering might not match. In
4635 : * such cases we may ignore the inner pathkey's sort ordering and use
4636 : * the outer's. (In effect, we're lying to the executor about the
4637 : * sort direction of this inner column, but it does not matter since
4638 : * the run-time row comparisons would only reach this column when
4639 : * there's equality for the earlier column containing the same eclass.
4640 : * There could be only one value in this column for the range of inner
4641 : * rows having a given value in the earlier column, so it does not
4642 : * matter which way we imagine this column to be ordered.) But a
4643 : * non-redundant inner pathkey had better match outer's ordering too.
4644 : */
4645 8548 : if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
4646 8548 : opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation)
4647 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4648 8548 : if (first_inner_match &&
4649 8530 : (opathkey->pk_cmptype != ipathkey->pk_cmptype ||
4650 8530 : opathkey->pk_nulls_first != ipathkey->pk_nulls_first))
4651 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4652 :
4653 : /* OK, save info for executor */
4654 8548 : mergefamilies[i] = opathkey->pk_opfamily;
4655 8548 : mergecollations[i] = opathkey->pk_eclass->ec_collation;
4656 8548 : mergereversals[i] = (opathkey->pk_cmptype == COMPARE_GT ? true : false);
4657 8548 : mergenullsfirst[i] = opathkey->pk_nulls_first;
4658 8548 : i++;
4659 : }
4660 :
4661 : /*
4662 : * Note: it is not an error if we have additional pathkey elements (i.e.,
4663 : * lop or lip isn't NULL here). The input paths might be better-sorted
4664 : * than we need for the current mergejoin.
4665 : */
4666 :
4667 : /*
4668 : * Now we can build the mergejoin node.
4669 : */
4670 7624 : join_plan = make_mergejoin(tlist,
4671 : joinclauses,
4672 : otherclauses,
4673 : mergeclauses,
4674 : mergefamilies,
4675 : mergecollations,
4676 : mergereversals,
4677 : mergenullsfirst,
4678 : outer_plan,
4679 : inner_plan,
4680 : best_path->jpath.jointype,
4681 7624 : best_path->jpath.inner_unique,
4682 7624 : best_path->skip_mark_restore);
4683 :
4684 : /* Costs of sort and material steps are included in path cost already */
4685 7624 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4686 :
4687 7624 : return join_plan;
4688 : }
4689 :
4690 : static HashJoin *
4691 35164 : create_hashjoin_plan(PlannerInfo *root,
4692 : HashPath *best_path)
4693 : {
4694 : HashJoin *join_plan;
4695 : Hash *hash_plan;
4696 : Plan *outer_plan;
4697 : Plan *inner_plan;
4698 35164 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4699 : List *joinclauses;
4700 : List *otherclauses;
4701 : List *hashclauses;
4702 35164 : List *hashoperators = NIL;
4703 35164 : List *hashcollations = NIL;
4704 35164 : List *inner_hashkeys = NIL;
4705 35164 : List *outer_hashkeys = NIL;
4706 35164 : Oid skewTable = InvalidOid;
4707 35164 : AttrNumber skewColumn = InvalidAttrNumber;
4708 35164 : bool skewInherit = false;
4709 : ListCell *lc;
4710 :
4711 : /*
4712 : * HashJoin can project, so we don't have to demand exact tlists from the
4713 : * inputs. However, it's best to request a small tlist from the inner
4714 : * side, so that we aren't storing more data than necessary. Likewise, if
4715 : * we anticipate batching, request a small tlist from the outer side so
4716 : * that we don't put extra data in the outer batch files.
4717 : */
4718 35164 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4719 35164 : (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0);
4720 :
4721 35164 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4722 : CP_SMALL_TLIST);
4723 :
4724 : /* Sort join qual clauses into best execution order */
4725 35164 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4726 : /* There's no point in sorting the hash clauses ... */
4727 :
4728 : /* Get the join qual clauses (in plain expression form) */
4729 : /* Any pseudoconstant clauses are ignored here */
4730 35164 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4731 : {
4732 11072 : extract_actual_join_clauses(joinclauses,
4733 11072 : best_path->jpath.path.parent->relids,
4734 : &joinclauses, &otherclauses);
4735 : }
4736 : else
4737 : {
4738 : /* We can treat all clauses alike for an inner join */
4739 24092 : joinclauses = extract_actual_clauses(joinclauses, false);
4740 24092 : otherclauses = NIL;
4741 : }
4742 :
4743 : /*
4744 : * Remove the hashclauses from the list of join qual clauses, leaving the
4745 : * list of quals that must be checked as qpquals.
4746 : */
4747 35164 : hashclauses = get_actual_clauses(best_path->path_hashclauses);
4748 35164 : joinclauses = list_difference(joinclauses, hashclauses);
4749 :
4750 : /*
4751 : * Replace any outer-relation variables with nestloop params. There
4752 : * should not be any in the hashclauses.
4753 : */
4754 35164 : if (best_path->jpath.path.param_info)
4755 : {
4756 234 : joinclauses = (List *)
4757 234 : replace_nestloop_params(root, (Node *) joinclauses);
4758 234 : otherclauses = (List *)
4759 234 : replace_nestloop_params(root, (Node *) otherclauses);
4760 : }
4761 :
4762 : /*
4763 : * Rearrange hashclauses, if needed, so that the outer variable is always
4764 : * on the left.
4765 : */
4766 35164 : hashclauses = get_switched_clauses(best_path->path_hashclauses,
4767 35164 : best_path->jpath.outerjoinpath->parent->relids);
4768 :
4769 : /*
4770 : * If there is a single join clause and we can identify the outer variable
4771 : * as a simple column reference, supply its identity for possible use in
4772 : * skew optimization. (Note: in principle we could do skew optimization
4773 : * with multiple join clauses, but we'd have to be able to determine the
4774 : * most common combinations of outer values, which we don't currently have
4775 : * enough stats for.)
4776 : */
4777 35164 : if (list_length(hashclauses) == 1)
4778 : {
4779 31930 : OpExpr *clause = (OpExpr *) linitial(hashclauses);
4780 : Node *node;
4781 :
4782 : Assert(is_opclause(clause));
4783 31930 : node = (Node *) linitial(clause->args);
4784 31930 : if (IsA(node, RelabelType))
4785 592 : node = (Node *) ((RelabelType *) node)->arg;
4786 31930 : if (IsA(node, Var))
4787 : {
4788 27930 : Var *var = (Var *) node;
4789 : RangeTblEntry *rte;
4790 :
4791 27930 : rte = root->simple_rte_array[var->varno];
4792 27930 : if (rte->rtekind == RTE_RELATION)
4793 : {
4794 24318 : skewTable = rte->relid;
4795 24318 : skewColumn = var->varattno;
4796 24318 : skewInherit = rte->inh;
4797 : }
4798 : }
4799 : }
4800 :
4801 : /*
4802 : * Collect hash related information. The hashed expressions are
4803 : * deconstructed into outer/inner expressions, so they can be computed
4804 : * separately (inner expressions are used to build the hashtable via Hash,
4805 : * outer expressions to perform lookups of tuples from HashJoin's outer
4806 : * plan in the hashtable). Also collect operator information necessary to
4807 : * build the hashtable.
4808 : */
4809 73664 : foreach(lc, hashclauses)
4810 : {
4811 38500 : OpExpr *hclause = lfirst_node(OpExpr, lc);
4812 :
4813 38500 : hashoperators = lappend_oid(hashoperators, hclause->opno);
4814 38500 : hashcollations = lappend_oid(hashcollations, hclause->inputcollid);
4815 38500 : outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args));
4816 38500 : inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args));
4817 : }
4818 :
4819 : /*
4820 : * Build the hash node and hash join node.
4821 : */
4822 35164 : hash_plan = make_hash(inner_plan,
4823 : inner_hashkeys,
4824 : skewTable,
4825 : skewColumn,
4826 : skewInherit);
4827 :
4828 : /*
4829 : * Set Hash node's startup & total costs equal to total cost of input
4830 : * plan; this only affects EXPLAIN display not decisions.
4831 : */
4832 35164 : copy_plan_costsize(&hash_plan->plan, inner_plan);
4833 35164 : hash_plan->plan.startup_cost = hash_plan->plan.total_cost;
4834 :
4835 : /*
4836 : * If parallel-aware, the executor will also need an estimate of the total
4837 : * number of rows expected from all participants so that it can size the
4838 : * shared hash table.
4839 : */
4840 35164 : if (best_path->jpath.path.parallel_aware)
4841 : {
4842 204 : hash_plan->plan.parallel_aware = true;
4843 204 : hash_plan->rows_total = best_path->inner_rows_total;
4844 : }
4845 :
4846 35164 : join_plan = make_hashjoin(tlist,
4847 : joinclauses,
4848 : otherclauses,
4849 : hashclauses,
4850 : hashoperators,
4851 : hashcollations,
4852 : outer_hashkeys,
4853 : outer_plan,
4854 : (Plan *) hash_plan,
4855 : best_path->jpath.jointype,
4856 35164 : best_path->jpath.inner_unique);
4857 :
4858 35164 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4859 :
4860 35164 : return join_plan;
4861 : }
4862 :
4863 :
4864 : /*****************************************************************************
4865 : *
4866 : * SUPPORTING ROUTINES
4867 : *
4868 : *****************************************************************************/
4869 :
4870 : /*
4871 : * replace_nestloop_params
4872 : * Replace outer-relation Vars and PlaceHolderVars in the given expression
4873 : * with nestloop Params
4874 : *
4875 : * All Vars and PlaceHolderVars belonging to the relation(s) identified by
4876 : * root->curOuterRels are replaced by Params, and entries are added to
4877 : * root->curOuterParams if not already present.
4878 : */
4879 : static Node *
4880 366262 : replace_nestloop_params(PlannerInfo *root, Node *expr)
4881 : {
4882 : /* No setup needed for tree walk, so away we go */
4883 366262 : return replace_nestloop_params_mutator(expr, root);
4884 : }
4885 :
4886 : static Node *
4887 1332784 : replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
4888 : {
4889 1332784 : if (node == NULL)
4890 89178 : return NULL;
4891 1243606 : if (IsA(node, Var))
4892 : {
4893 385840 : Var *var = (Var *) node;
4894 :
4895 : /* Upper-level Vars should be long gone at this point */
4896 : Assert(var->varlevelsup == 0);
4897 : /* If not to be replaced, we can just return the Var unmodified */
4898 385840 : if (IS_SPECIAL_VARNO(var->varno) ||
4899 385828 : !bms_is_member(var->varno, root->curOuterRels))
4900 285176 : return node;
4901 : /* Replace the Var with a nestloop Param */
4902 100664 : return (Node *) replace_nestloop_param_var(root, var);
4903 : }
4904 857766 : if (IsA(node, PlaceHolderVar))
4905 : {
4906 916 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
4907 :
4908 : /* Upper-level PlaceHolderVars should be long gone at this point */
4909 : Assert(phv->phlevelsup == 0);
4910 :
4911 : /* Check whether we need to replace the PHV */
4912 916 : if (!bms_is_subset(find_placeholder_info(root, phv)->ph_eval_at,
4913 916 : root->curOuterRels))
4914 : {
4915 : /*
4916 : * We can't replace the whole PHV, but we might still need to
4917 : * replace Vars or PHVs within its expression, in case it ends up
4918 : * actually getting evaluated here. (It might get evaluated in
4919 : * this plan node, or some child node; in the latter case we don't
4920 : * really need to process the expression here, but we haven't got
4921 : * enough info to tell if that's the case.) Flat-copy the PHV
4922 : * node and then recurse on its expression.
4923 : *
4924 : * Note that after doing this, we might have different
4925 : * representations of the contents of the same PHV in different
4926 : * parts of the plan tree. This is OK because equal() will just
4927 : * match on phid/phlevelsup, so setrefs.c will still recognize an
4928 : * upper-level reference to a lower-level copy of the same PHV.
4929 : */
4930 592 : PlaceHolderVar *newphv = makeNode(PlaceHolderVar);
4931 :
4932 592 : memcpy(newphv, phv, sizeof(PlaceHolderVar));
4933 592 : newphv->phexpr = (Expr *)
4934 592 : replace_nestloop_params_mutator((Node *) phv->phexpr,
4935 : root);
4936 592 : return (Node *) newphv;
4937 : }
4938 : /* Replace the PlaceHolderVar with a nestloop Param */
4939 324 : return (Node *) replace_nestloop_param_placeholdervar(root, phv);
4940 : }
4941 856850 : return expression_tree_mutator(node, replace_nestloop_params_mutator, root);
4942 : }
4943 :
4944 : /*
4945 : * fix_indexqual_references
4946 : * Adjust indexqual clauses to the form the executor's indexqual
4947 : * machinery needs.
4948 : *
4949 : * We have three tasks here:
4950 : * * Select the actual qual clauses out of the input IndexClause list,
4951 : * and remove RestrictInfo nodes from the qual clauses.
4952 : * * Replace any outer-relation Var or PHV nodes with nestloop Params.
4953 : * (XXX eventually, that responsibility should go elsewhere?)
4954 : * * Index keys must be represented by Var nodes with varattno set to the
4955 : * index's attribute number, not the attribute number in the original rel.
4956 : *
4957 : * *stripped_indexquals_p receives a list of the actual qual clauses.
4958 : *
4959 : * *fixed_indexquals_p receives a list of the adjusted quals. This is a copy
4960 : * that shares no substructure with the original; this is needed in case there
4961 : * are subplans in it (we need two separate copies of the subplan tree, or
4962 : * things will go awry).
4963 : */
4964 : static void
4965 180180 : fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
4966 : List **stripped_indexquals_p, List **fixed_indexquals_p)
4967 : {
4968 180180 : IndexOptInfo *index = index_path->indexinfo;
4969 : List *stripped_indexquals;
4970 : List *fixed_indexquals;
4971 : ListCell *lc;
4972 :
4973 180180 : stripped_indexquals = fixed_indexquals = NIL;
4974 :
4975 375802 : foreach(lc, index_path->indexclauses)
4976 : {
4977 195622 : IndexClause *iclause = lfirst_node(IndexClause, lc);
4978 195622 : int indexcol = iclause->indexcol;
4979 : ListCell *lc2;
4980 :
4981 392300 : foreach(lc2, iclause->indexquals)
4982 : {
4983 196678 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
4984 196678 : Node *clause = (Node *) rinfo->clause;
4985 :
4986 196678 : stripped_indexquals = lappend(stripped_indexquals, clause);
4987 196678 : clause = fix_indexqual_clause(root, index, indexcol,
4988 : clause, iclause->indexcols);
4989 196678 : fixed_indexquals = lappend(fixed_indexquals, clause);
4990 : }
4991 : }
4992 :
4993 180180 : *stripped_indexquals_p = stripped_indexquals;
4994 180180 : *fixed_indexquals_p = fixed_indexquals;
4995 180180 : }
4996 :
4997 : /*
4998 : * fix_indexorderby_references
4999 : * Adjust indexorderby clauses to the form the executor's index
5000 : * machinery needs.
5001 : *
5002 : * This is a simplified version of fix_indexqual_references. The input is
5003 : * bare clauses and a separate indexcol list, instead of IndexClauses.
5004 : */
5005 : static List *
5006 180180 : fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
5007 : {
5008 180180 : IndexOptInfo *index = index_path->indexinfo;
5009 : List *fixed_indexorderbys;
5010 : ListCell *lcc,
5011 : *lci;
5012 :
5013 180180 : fixed_indexorderbys = NIL;
5014 :
5015 180566 : forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
5016 : {
5017 386 : Node *clause = (Node *) lfirst(lcc);
5018 386 : int indexcol = lfirst_int(lci);
5019 :
5020 386 : clause = fix_indexqual_clause(root, index, indexcol, clause, NIL);
5021 386 : fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
5022 : }
5023 :
5024 180180 : return fixed_indexorderbys;
5025 : }
5026 :
5027 : /*
5028 : * fix_indexqual_clause
5029 : * Convert a single indexqual clause to the form needed by the executor.
5030 : *
5031 : * We replace nestloop params here, and replace the index key variables
5032 : * or expressions by index Var nodes.
5033 : */
5034 : static Node *
5035 197064 : fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol,
5036 : Node *clause, List *indexcolnos)
5037 : {
5038 : /*
5039 : * Replace any outer-relation variables with nestloop params.
5040 : *
5041 : * This also makes a copy of the clause, so it's safe to modify it
5042 : * in-place below.
5043 : */
5044 197064 : clause = replace_nestloop_params(root, clause);
5045 :
5046 197064 : if (IsA(clause, OpExpr))
5047 : {
5048 193722 : OpExpr *op = (OpExpr *) clause;
5049 :
5050 : /* Replace the indexkey expression with an index Var. */
5051 193722 : linitial(op->args) = fix_indexqual_operand(linitial(op->args),
5052 : index,
5053 : indexcol);
5054 : }
5055 3342 : else if (IsA(clause, RowCompareExpr))
5056 : {
5057 168 : RowCompareExpr *rc = (RowCompareExpr *) clause;
5058 : ListCell *lca,
5059 : *lcai;
5060 :
5061 : /* Replace the indexkey expressions with index Vars. */
5062 : Assert(list_length(rc->largs) == list_length(indexcolnos));
5063 504 : forboth(lca, rc->largs, lcai, indexcolnos)
5064 : {
5065 336 : lfirst(lca) = fix_indexqual_operand(lfirst(lca),
5066 : index,
5067 : lfirst_int(lcai));
5068 : }
5069 : }
5070 3174 : else if (IsA(clause, ScalarArrayOpExpr))
5071 : {
5072 2280 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
5073 :
5074 : /* Replace the indexkey expression with an index Var. */
5075 2280 : linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
5076 : index,
5077 : indexcol);
5078 : }
5079 894 : else if (IsA(clause, NullTest))
5080 : {
5081 894 : NullTest *nt = (NullTest *) clause;
5082 :
5083 : /* Replace the indexkey expression with an index Var. */
5084 894 : nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
5085 : index,
5086 : indexcol);
5087 : }
5088 : else
5089 0 : elog(ERROR, "unsupported indexqual type: %d",
5090 : (int) nodeTag(clause));
5091 :
5092 197064 : return clause;
5093 : }
5094 :
5095 : /*
5096 : * fix_indexqual_operand
5097 : * Convert an indexqual expression to a Var referencing the index column.
5098 : *
5099 : * We represent index keys by Var nodes having varno == INDEX_VAR and varattno
5100 : * equal to the index's attribute number (index column position).
5101 : *
5102 : * Most of the code here is just for sanity cross-checking that the given
5103 : * expression actually matches the index column it's claimed to.
5104 : */
5105 : static Node *
5106 197232 : fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
5107 : {
5108 : Var *result;
5109 : int pos;
5110 : ListCell *indexpr_item;
5111 :
5112 : /*
5113 : * Remove any binary-compatible relabeling of the indexkey
5114 : */
5115 197232 : if (IsA(node, RelabelType))
5116 626 : node = (Node *) ((RelabelType *) node)->arg;
5117 :
5118 : Assert(indexcol >= 0 && indexcol < index->ncolumns);
5119 :
5120 197232 : if (index->indexkeys[indexcol] != 0)
5121 : {
5122 : /* It's a simple index column */
5123 196868 : if (IsA(node, Var) &&
5124 196868 : ((Var *) node)->varno == index->rel->relid &&
5125 196868 : ((Var *) node)->varattno == index->indexkeys[indexcol])
5126 : {
5127 196868 : result = (Var *) copyObject(node);
5128 196868 : result->varno = INDEX_VAR;
5129 196868 : result->varattno = indexcol + 1;
5130 196868 : return (Node *) result;
5131 : }
5132 : else
5133 0 : elog(ERROR, "index key does not match expected index column");
5134 : }
5135 :
5136 : /* It's an index expression, so find and cross-check the expression */
5137 364 : indexpr_item = list_head(index->indexprs);
5138 364 : for (pos = 0; pos < index->ncolumns; pos++)
5139 : {
5140 364 : if (index->indexkeys[pos] == 0)
5141 : {
5142 364 : if (indexpr_item == NULL)
5143 0 : elog(ERROR, "too few entries in indexprs list");
5144 364 : if (pos == indexcol)
5145 : {
5146 : Node *indexkey;
5147 :
5148 364 : indexkey = (Node *) lfirst(indexpr_item);
5149 364 : if (indexkey && IsA(indexkey, RelabelType))
5150 10 : indexkey = (Node *) ((RelabelType *) indexkey)->arg;
5151 364 : if (equal(node, indexkey))
5152 : {
5153 364 : result = makeVar(INDEX_VAR, indexcol + 1,
5154 364 : exprType(lfirst(indexpr_item)), -1,
5155 364 : exprCollation(lfirst(indexpr_item)),
5156 : 0);
5157 364 : return (Node *) result;
5158 : }
5159 : else
5160 0 : elog(ERROR, "index key does not match expected index column");
5161 : }
5162 0 : indexpr_item = lnext(index->indexprs, indexpr_item);
5163 : }
5164 : }
5165 :
5166 : /* Oops... */
5167 0 : elog(ERROR, "index key does not match expected index column");
5168 : return NULL; /* keep compiler quiet */
5169 : }
5170 :
5171 : /*
5172 : * get_switched_clauses
5173 : * Given a list of merge or hash joinclauses (as RestrictInfo nodes),
5174 : * extract the bare clauses, and rearrange the elements within the
5175 : * clauses, if needed, so the outer join variable is on the left and
5176 : * the inner is on the right. The original clause data structure is not
5177 : * touched; a modified list is returned. We do, however, set the transient
5178 : * outer_is_left field in each RestrictInfo to show which side was which.
5179 : */
5180 : static List *
5181 42788 : get_switched_clauses(List *clauses, Relids outerrelids)
5182 : {
5183 42788 : List *t_list = NIL;
5184 : ListCell *l;
5185 :
5186 89836 : foreach(l, clauses)
5187 : {
5188 47048 : RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
5189 47048 : OpExpr *clause = (OpExpr *) restrictinfo->clause;
5190 :
5191 : Assert(is_opclause(clause));
5192 47048 : if (bms_is_subset(restrictinfo->right_relids, outerrelids))
5193 : {
5194 : /*
5195 : * Duplicate just enough of the structure to allow commuting the
5196 : * clause without changing the original list. Could use
5197 : * copyObject, but a complete deep copy is overkill.
5198 : */
5199 20408 : OpExpr *temp = makeNode(OpExpr);
5200 :
5201 20408 : temp->opno = clause->opno;
5202 20408 : temp->opfuncid = InvalidOid;
5203 20408 : temp->opresulttype = clause->opresulttype;
5204 20408 : temp->opretset = clause->opretset;
5205 20408 : temp->opcollid = clause->opcollid;
5206 20408 : temp->inputcollid = clause->inputcollid;
5207 20408 : temp->args = list_copy(clause->args);
5208 20408 : temp->location = clause->location;
5209 : /* Commute it --- note this modifies the temp node in-place. */
5210 20408 : CommuteOpExpr(temp);
5211 20408 : t_list = lappend(t_list, temp);
5212 20408 : restrictinfo->outer_is_left = false;
5213 : }
5214 : else
5215 : {
5216 : Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
5217 26640 : t_list = lappend(t_list, clause);
5218 26640 : restrictinfo->outer_is_left = true;
5219 : }
5220 : }
5221 42788 : return t_list;
5222 : }
5223 :
5224 : /*
5225 : * order_qual_clauses
5226 : * Given a list of qual clauses that will all be evaluated at the same
5227 : * plan node, sort the list into the order we want to check the quals
5228 : * in at runtime.
5229 : *
5230 : * When security barrier quals are used in the query, we may have quals with
5231 : * different security levels in the list. Quals of lower security_level
5232 : * must go before quals of higher security_level, except that we can grant
5233 : * exceptions to move up quals that are leakproof. When security level
5234 : * doesn't force the decision, we prefer to order clauses by estimated
5235 : * execution cost, cheapest first.
5236 : *
5237 : * Ideally the order should be driven by a combination of execution cost and
5238 : * selectivity, but it's not immediately clear how to account for both,
5239 : * and given the uncertainty of the estimates the reliability of the decisions
5240 : * would be doubtful anyway. So we just order by security level then
5241 : * estimated per-tuple cost, being careful not to change the order when
5242 : * (as is often the case) the estimates are identical.
5243 : *
5244 : * Although this will work on either bare clauses or RestrictInfos, it's
5245 : * much faster to apply it to RestrictInfos, since it can re-use cost
5246 : * information that is cached in RestrictInfos. XXX in the bare-clause
5247 : * case, we are also not able to apply security considerations. That is
5248 : * all right for the moment, because the bare-clause case doesn't occur
5249 : * anywhere that barrier quals could be present, but it would be better to
5250 : * get rid of it.
5251 : *
5252 : * Note: some callers pass lists that contain entries that will later be
5253 : * removed; this is the easiest way to let this routine see RestrictInfos
5254 : * instead of bare clauses. This is another reason why trying to consider
5255 : * selectivity in the ordering would likely do the wrong thing.
5256 : */
5257 : static List *
5258 932786 : order_qual_clauses(PlannerInfo *root, List *clauses)
5259 : {
5260 : typedef struct
5261 : {
5262 : Node *clause;
5263 : Cost cost;
5264 : Index security_level;
5265 : } QualItem;
5266 932786 : int nitems = list_length(clauses);
5267 : QualItem *items;
5268 : ListCell *lc;
5269 : int i;
5270 : List *result;
5271 :
5272 : /* No need to work hard for 0 or 1 clause */
5273 932786 : if (nitems <= 1)
5274 859550 : return clauses;
5275 :
5276 : /*
5277 : * Collect the items and costs into an array. This is to avoid repeated
5278 : * cost_qual_eval work if the inputs aren't RestrictInfos.
5279 : */
5280 73236 : items = (QualItem *) palloc(nitems * sizeof(QualItem));
5281 73236 : i = 0;
5282 243184 : foreach(lc, clauses)
5283 : {
5284 169948 : Node *clause = (Node *) lfirst(lc);
5285 : QualCost qcost;
5286 :
5287 169948 : cost_qual_eval_node(&qcost, clause, root);
5288 169948 : items[i].clause = clause;
5289 169948 : items[i].cost = qcost.per_tuple;
5290 169948 : if (IsA(clause, RestrictInfo))
5291 : {
5292 169856 : RestrictInfo *rinfo = (RestrictInfo *) clause;
5293 :
5294 : /*
5295 : * If a clause is leakproof, it doesn't have to be constrained by
5296 : * its nominal security level. If it's also reasonably cheap
5297 : * (here defined as 10X cpu_operator_cost), pretend it has
5298 : * security_level 0, which will allow it to go in front of
5299 : * more-expensive quals of lower security levels. Of course, that
5300 : * will also force it to go in front of cheaper quals of its own
5301 : * security level, which is not so great, but we can alleviate
5302 : * that risk by applying the cost limit cutoff.
5303 : */
5304 169856 : if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost)
5305 1206 : items[i].security_level = 0;
5306 : else
5307 168650 : items[i].security_level = rinfo->security_level;
5308 : }
5309 : else
5310 92 : items[i].security_level = 0;
5311 169948 : i++;
5312 : }
5313 :
5314 : /*
5315 : * Sort. We don't use qsort() because it's not guaranteed stable for
5316 : * equal keys. The expected number of entries is small enough that a
5317 : * simple insertion sort should be good enough.
5318 : */
5319 169948 : for (i = 1; i < nitems; i++)
5320 : {
5321 96712 : QualItem newitem = items[i];
5322 : int j;
5323 :
5324 : /* insert newitem into the already-sorted subarray */
5325 107178 : for (j = i; j > 0; j--)
5326 : {
5327 98892 : QualItem *olditem = &items[j - 1];
5328 :
5329 98892 : if (newitem.security_level > olditem->security_level ||
5330 97998 : (newitem.security_level == olditem->security_level &&
5331 96562 : newitem.cost >= olditem->cost))
5332 : break;
5333 10466 : items[j] = *olditem;
5334 : }
5335 96712 : items[j] = newitem;
5336 : }
5337 :
5338 : /* Convert back to a list */
5339 73236 : result = NIL;
5340 243184 : for (i = 0; i < nitems; i++)
5341 169948 : result = lappend(result, items[i].clause);
5342 :
5343 73236 : return result;
5344 : }
5345 :
5346 : /*
5347 : * Copy cost and size info from a Path node to the Plan node created from it.
5348 : * The executor usually won't use this info, but it's needed by EXPLAIN.
5349 : * Also copy the parallel-related flags, which the executor *will* use.
5350 : */
5351 : static void
5352 1144116 : copy_generic_path_info(Plan *dest, Path *src)
5353 : {
5354 1144116 : dest->disabled_nodes = src->disabled_nodes;
5355 1144116 : dest->startup_cost = src->startup_cost;
5356 1144116 : dest->total_cost = src->total_cost;
5357 1144116 : dest->plan_rows = src->rows;
5358 1144116 : dest->plan_width = src->pathtarget->width;
5359 1144116 : dest->parallel_aware = src->parallel_aware;
5360 1144116 : dest->parallel_safe = src->parallel_safe;
5361 1144116 : }
5362 :
5363 : /*
5364 : * Copy cost and size info from a lower plan node to an inserted node.
5365 : * (Most callers alter the info after copying it.)
5366 : */
5367 : static void
5368 45340 : copy_plan_costsize(Plan *dest, Plan *src)
5369 : {
5370 45340 : dest->disabled_nodes = src->disabled_nodes;
5371 45340 : dest->startup_cost = src->startup_cost;
5372 45340 : dest->total_cost = src->total_cost;
5373 45340 : dest->plan_rows = src->plan_rows;
5374 45340 : dest->plan_width = src->plan_width;
5375 : /* Assume the inserted node is not parallel-aware. */
5376 45340 : dest->parallel_aware = false;
5377 : /* Assume the inserted node is parallel-safe, if child plan is. */
5378 45340 : dest->parallel_safe = src->parallel_safe;
5379 45340 : }
5380 :
5381 : /*
5382 : * Some places in this file build Sort nodes that don't have a directly
5383 : * corresponding Path node. The cost of the sort is, or should have been,
5384 : * included in the cost of the Path node we're working from, but since it's
5385 : * not split out, we have to re-figure it using cost_sort(). This is just
5386 : * to label the Sort node nicely for EXPLAIN.
5387 : *
5388 : * limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
5389 : */
5390 : static void
5391 10178 : label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples)
5392 : {
5393 10178 : Plan *lefttree = plan->plan.lefttree;
5394 : Path sort_path; /* dummy for result of cost_sort */
5395 :
5396 : Assert(IsA(plan, Sort));
5397 :
5398 10178 : cost_sort(&sort_path, root, NIL,
5399 : plan->plan.disabled_nodes,
5400 : lefttree->total_cost,
5401 : lefttree->plan_rows,
5402 : lefttree->plan_width,
5403 : 0.0,
5404 : work_mem,
5405 : limit_tuples);
5406 10178 : plan->plan.startup_cost = sort_path.startup_cost;
5407 10178 : plan->plan.total_cost = sort_path.total_cost;
5408 10178 : plan->plan.plan_rows = lefttree->plan_rows;
5409 10178 : plan->plan.plan_width = lefttree->plan_width;
5410 10178 : plan->plan.parallel_aware = false;
5411 10178 : plan->plan.parallel_safe = lefttree->parallel_safe;
5412 10178 : }
5413 :
5414 : /*
5415 : * Same as label_sort_with_costsize, but labels the IncrementalSort node
5416 : * instead.
5417 : */
5418 : static void
5419 36 : label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
5420 : List *pathkeys, double limit_tuples)
5421 : {
5422 36 : Plan *lefttree = plan->sort.plan.lefttree;
5423 : Path sort_path; /* dummy for result of cost_incremental_sort */
5424 :
5425 : Assert(IsA(plan, IncrementalSort));
5426 :
5427 36 : cost_incremental_sort(&sort_path, root, pathkeys,
5428 : plan->nPresortedCols,
5429 : plan->sort.plan.disabled_nodes,
5430 : lefttree->startup_cost,
5431 : lefttree->total_cost,
5432 : lefttree->plan_rows,
5433 : lefttree->plan_width,
5434 : 0.0,
5435 : work_mem,
5436 : limit_tuples);
5437 36 : plan->sort.plan.startup_cost = sort_path.startup_cost;
5438 36 : plan->sort.plan.total_cost = sort_path.total_cost;
5439 36 : plan->sort.plan.plan_rows = lefttree->plan_rows;
5440 36 : plan->sort.plan.plan_width = lefttree->plan_width;
5441 36 : plan->sort.plan.parallel_aware = false;
5442 36 : plan->sort.plan.parallel_safe = lefttree->parallel_safe;
5443 36 : }
5444 :
5445 : /*
5446 : * bitmap_subplan_mark_shared
5447 : * Set isshared flag in bitmap subplan so that it will be created in
5448 : * shared memory.
5449 : */
5450 : static void
5451 30 : bitmap_subplan_mark_shared(Plan *plan)
5452 : {
5453 30 : if (IsA(plan, BitmapAnd))
5454 0 : bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans));
5455 30 : else if (IsA(plan, BitmapOr))
5456 : {
5457 0 : ((BitmapOr *) plan)->isshared = true;
5458 0 : bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans));
5459 : }
5460 30 : else if (IsA(plan, BitmapIndexScan))
5461 30 : ((BitmapIndexScan *) plan)->isshared = true;
5462 : else
5463 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(plan));
5464 30 : }
5465 :
5466 : /*****************************************************************************
5467 : *
5468 : * PLAN NODE BUILDING ROUTINES
5469 : *
5470 : * In general, these functions are not passed the original Path and therefore
5471 : * leave it to the caller to fill in the cost/width fields from the Path,
5472 : * typically by calling copy_generic_path_info(). This convention is
5473 : * somewhat historical, but it does support a few places above where we build
5474 : * a plan node without having an exactly corresponding Path node. Under no
5475 : * circumstances should one of these functions do its own cost calculations,
5476 : * as that would be redundant with calculations done while building Paths.
5477 : *
5478 : *****************************************************************************/
5479 :
5480 : static SeqScan *
5481 220606 : make_seqscan(List *qptlist,
5482 : List *qpqual,
5483 : Index scanrelid)
5484 : {
5485 220606 : SeqScan *node = makeNode(SeqScan);
5486 220606 : Plan *plan = &node->scan.plan;
5487 :
5488 220606 : plan->targetlist = qptlist;
5489 220606 : plan->qual = qpqual;
5490 220606 : plan->lefttree = NULL;
5491 220606 : plan->righttree = NULL;
5492 220606 : node->scan.scanrelid = scanrelid;
5493 :
5494 220606 : return node;
5495 : }
5496 :
5497 : static SampleScan *
5498 306 : make_samplescan(List *qptlist,
5499 : List *qpqual,
5500 : Index scanrelid,
5501 : TableSampleClause *tsc)
5502 : {
5503 306 : SampleScan *node = makeNode(SampleScan);
5504 306 : Plan *plan = &node->scan.plan;
5505 :
5506 306 : plan->targetlist = qptlist;
5507 306 : plan->qual = qpqual;
5508 306 : plan->lefttree = NULL;
5509 306 : plan->righttree = NULL;
5510 306 : node->scan.scanrelid = scanrelid;
5511 306 : node->tablesample = tsc;
5512 :
5513 306 : return node;
5514 : }
5515 :
5516 : static IndexScan *
5517 161980 : make_indexscan(List *qptlist,
5518 : List *qpqual,
5519 : Index scanrelid,
5520 : Oid indexid,
5521 : List *indexqual,
5522 : List *indexqualorig,
5523 : List *indexorderby,
5524 : List *indexorderbyorig,
5525 : List *indexorderbyops,
5526 : ScanDirection indexscandir)
5527 : {
5528 161980 : IndexScan *node = makeNode(IndexScan);
5529 161980 : Plan *plan = &node->scan.plan;
5530 :
5531 161980 : plan->targetlist = qptlist;
5532 161980 : plan->qual = qpqual;
5533 161980 : plan->lefttree = NULL;
5534 161980 : plan->righttree = NULL;
5535 161980 : node->scan.scanrelid = scanrelid;
5536 161980 : node->indexid = indexid;
5537 161980 : node->indexqual = indexqual;
5538 161980 : node->indexqualorig = indexqualorig;
5539 161980 : node->indexorderby = indexorderby;
5540 161980 : node->indexorderbyorig = indexorderbyorig;
5541 161980 : node->indexorderbyops = indexorderbyops;
5542 161980 : node->indexorderdir = indexscandir;
5543 :
5544 161980 : return node;
5545 : }
5546 :
5547 : static IndexOnlyScan *
5548 18200 : make_indexonlyscan(List *qptlist,
5549 : List *qpqual,
5550 : Index scanrelid,
5551 : Oid indexid,
5552 : List *indexqual,
5553 : List *recheckqual,
5554 : List *indexorderby,
5555 : List *indextlist,
5556 : ScanDirection indexscandir)
5557 : {
5558 18200 : IndexOnlyScan *node = makeNode(IndexOnlyScan);
5559 18200 : Plan *plan = &node->scan.plan;
5560 :
5561 18200 : plan->targetlist = qptlist;
5562 18200 : plan->qual = qpqual;
5563 18200 : plan->lefttree = NULL;
5564 18200 : plan->righttree = NULL;
5565 18200 : node->scan.scanrelid = scanrelid;
5566 18200 : node->indexid = indexid;
5567 18200 : node->indexqual = indexqual;
5568 18200 : node->recheckqual = recheckqual;
5569 18200 : node->indexorderby = indexorderby;
5570 18200 : node->indextlist = indextlist;
5571 18200 : node->indexorderdir = indexscandir;
5572 :
5573 18200 : return node;
5574 : }
5575 :
5576 : static BitmapIndexScan *
5577 21762 : make_bitmap_indexscan(Index scanrelid,
5578 : Oid indexid,
5579 : List *indexqual,
5580 : List *indexqualorig)
5581 : {
5582 21762 : BitmapIndexScan *node = makeNode(BitmapIndexScan);
5583 21762 : Plan *plan = &node->scan.plan;
5584 :
5585 21762 : plan->targetlist = NIL; /* not used */
5586 21762 : plan->qual = NIL; /* not used */
5587 21762 : plan->lefttree = NULL;
5588 21762 : plan->righttree = NULL;
5589 21762 : node->scan.scanrelid = scanrelid;
5590 21762 : node->indexid = indexid;
5591 21762 : node->indexqual = indexqual;
5592 21762 : node->indexqualorig = indexqualorig;
5593 :
5594 21762 : return node;
5595 : }
5596 :
5597 : static BitmapHeapScan *
5598 21088 : make_bitmap_heapscan(List *qptlist,
5599 : List *qpqual,
5600 : Plan *lefttree,
5601 : List *bitmapqualorig,
5602 : Index scanrelid)
5603 : {
5604 21088 : BitmapHeapScan *node = makeNode(BitmapHeapScan);
5605 21088 : Plan *plan = &node->scan.plan;
5606 :
5607 21088 : plan->targetlist = qptlist;
5608 21088 : plan->qual = qpqual;
5609 21088 : plan->lefttree = lefttree;
5610 21088 : plan->righttree = NULL;
5611 21088 : node->scan.scanrelid = scanrelid;
5612 21088 : node->bitmapqualorig = bitmapqualorig;
5613 :
5614 21088 : return node;
5615 : }
5616 :
5617 : static TidScan *
5618 752 : make_tidscan(List *qptlist,
5619 : List *qpqual,
5620 : Index scanrelid,
5621 : List *tidquals)
5622 : {
5623 752 : TidScan *node = makeNode(TidScan);
5624 752 : Plan *plan = &node->scan.plan;
5625 :
5626 752 : plan->targetlist = qptlist;
5627 752 : plan->qual = qpqual;
5628 752 : plan->lefttree = NULL;
5629 752 : plan->righttree = NULL;
5630 752 : node->scan.scanrelid = scanrelid;
5631 752 : node->tidquals = tidquals;
5632 :
5633 752 : return node;
5634 : }
5635 :
5636 : static TidRangeScan *
5637 1944 : make_tidrangescan(List *qptlist,
5638 : List *qpqual,
5639 : Index scanrelid,
5640 : List *tidrangequals)
5641 : {
5642 1944 : TidRangeScan *node = makeNode(TidRangeScan);
5643 1944 : Plan *plan = &node->scan.plan;
5644 :
5645 1944 : plan->targetlist = qptlist;
5646 1944 : plan->qual = qpqual;
5647 1944 : plan->lefttree = NULL;
5648 1944 : plan->righttree = NULL;
5649 1944 : node->scan.scanrelid = scanrelid;
5650 1944 : node->tidrangequals = tidrangequals;
5651 :
5652 1944 : return node;
5653 : }
5654 :
5655 : static SubqueryScan *
5656 33224 : make_subqueryscan(List *qptlist,
5657 : List *qpqual,
5658 : Index scanrelid,
5659 : Plan *subplan)
5660 : {
5661 33224 : SubqueryScan *node = makeNode(SubqueryScan);
5662 33224 : Plan *plan = &node->scan.plan;
5663 :
5664 33224 : plan->targetlist = qptlist;
5665 33224 : plan->qual = qpqual;
5666 33224 : plan->lefttree = NULL;
5667 33224 : plan->righttree = NULL;
5668 33224 : node->scan.scanrelid = scanrelid;
5669 33224 : node->subplan = subplan;
5670 33224 : node->scanstatus = SUBQUERY_SCAN_UNKNOWN;
5671 :
5672 33224 : return node;
5673 : }
5674 :
5675 : static FunctionScan *
5676 51280 : make_functionscan(List *qptlist,
5677 : List *qpqual,
5678 : Index scanrelid,
5679 : List *functions,
5680 : bool funcordinality)
5681 : {
5682 51280 : FunctionScan *node = makeNode(FunctionScan);
5683 51280 : Plan *plan = &node->scan.plan;
5684 :
5685 51280 : plan->targetlist = qptlist;
5686 51280 : plan->qual = qpqual;
5687 51280 : plan->lefttree = NULL;
5688 51280 : plan->righttree = NULL;
5689 51280 : node->scan.scanrelid = scanrelid;
5690 51280 : node->functions = functions;
5691 51280 : node->funcordinality = funcordinality;
5692 :
5693 51280 : return node;
5694 : }
5695 :
5696 : static TableFuncScan *
5697 626 : make_tablefuncscan(List *qptlist,
5698 : List *qpqual,
5699 : Index scanrelid,
5700 : TableFunc *tablefunc)
5701 : {
5702 626 : TableFuncScan *node = makeNode(TableFuncScan);
5703 626 : Plan *plan = &node->scan.plan;
5704 :
5705 626 : plan->targetlist = qptlist;
5706 626 : plan->qual = qpqual;
5707 626 : plan->lefttree = NULL;
5708 626 : plan->righttree = NULL;
5709 626 : node->scan.scanrelid = scanrelid;
5710 626 : node->tablefunc = tablefunc;
5711 :
5712 626 : return node;
5713 : }
5714 :
5715 : static ValuesScan *
5716 8268 : make_valuesscan(List *qptlist,
5717 : List *qpqual,
5718 : Index scanrelid,
5719 : List *values_lists)
5720 : {
5721 8268 : ValuesScan *node = makeNode(ValuesScan);
5722 8268 : Plan *plan = &node->scan.plan;
5723 :
5724 8268 : plan->targetlist = qptlist;
5725 8268 : plan->qual = qpqual;
5726 8268 : plan->lefttree = NULL;
5727 8268 : plan->righttree = NULL;
5728 8268 : node->scan.scanrelid = scanrelid;
5729 8268 : node->values_lists = values_lists;
5730 :
5731 8268 : return node;
5732 : }
5733 :
5734 : static CteScan *
5735 4254 : make_ctescan(List *qptlist,
5736 : List *qpqual,
5737 : Index scanrelid,
5738 : int ctePlanId,
5739 : int cteParam)
5740 : {
5741 4254 : CteScan *node = makeNode(CteScan);
5742 4254 : Plan *plan = &node->scan.plan;
5743 :
5744 4254 : plan->targetlist = qptlist;
5745 4254 : plan->qual = qpqual;
5746 4254 : plan->lefttree = NULL;
5747 4254 : plan->righttree = NULL;
5748 4254 : node->scan.scanrelid = scanrelid;
5749 4254 : node->ctePlanId = ctePlanId;
5750 4254 : node->cteParam = cteParam;
5751 :
5752 4254 : return node;
5753 : }
5754 :
5755 : static NamedTuplestoreScan *
5756 482 : make_namedtuplestorescan(List *qptlist,
5757 : List *qpqual,
5758 : Index scanrelid,
5759 : char *enrname)
5760 : {
5761 482 : NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan);
5762 482 : Plan *plan = &node->scan.plan;
5763 :
5764 : /* cost should be inserted by caller */
5765 482 : plan->targetlist = qptlist;
5766 482 : plan->qual = qpqual;
5767 482 : plan->lefttree = NULL;
5768 482 : plan->righttree = NULL;
5769 482 : node->scan.scanrelid = scanrelid;
5770 482 : node->enrname = enrname;
5771 :
5772 482 : return node;
5773 : }
5774 :
5775 : static WorkTableScan *
5776 930 : make_worktablescan(List *qptlist,
5777 : List *qpqual,
5778 : Index scanrelid,
5779 : int wtParam)
5780 : {
5781 930 : WorkTableScan *node = makeNode(WorkTableScan);
5782 930 : Plan *plan = &node->scan.plan;
5783 :
5784 930 : plan->targetlist = qptlist;
5785 930 : plan->qual = qpqual;
5786 930 : plan->lefttree = NULL;
5787 930 : plan->righttree = NULL;
5788 930 : node->scan.scanrelid = scanrelid;
5789 930 : node->wtParam = wtParam;
5790 :
5791 930 : return node;
5792 : }
5793 :
5794 : ForeignScan *
5795 2086 : make_foreignscan(List *qptlist,
5796 : List *qpqual,
5797 : Index scanrelid,
5798 : List *fdw_exprs,
5799 : List *fdw_private,
5800 : List *fdw_scan_tlist,
5801 : List *fdw_recheck_quals,
5802 : Plan *outer_plan)
5803 : {
5804 2086 : ForeignScan *node = makeNode(ForeignScan);
5805 2086 : Plan *plan = &node->scan.plan;
5806 :
5807 : /* cost will be filled in by create_foreignscan_plan */
5808 2086 : plan->targetlist = qptlist;
5809 2086 : plan->qual = qpqual;
5810 2086 : plan->lefttree = outer_plan;
5811 2086 : plan->righttree = NULL;
5812 2086 : node->scan.scanrelid = scanrelid;
5813 :
5814 : /* these may be overridden by the FDW's PlanDirectModify callback. */
5815 2086 : node->operation = CMD_SELECT;
5816 2086 : node->resultRelation = 0;
5817 :
5818 : /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5819 2086 : node->checkAsUser = InvalidOid;
5820 2086 : node->fs_server = InvalidOid;
5821 2086 : node->fdw_exprs = fdw_exprs;
5822 2086 : node->fdw_private = fdw_private;
5823 2086 : node->fdw_scan_tlist = fdw_scan_tlist;
5824 2086 : node->fdw_recheck_quals = fdw_recheck_quals;
5825 : /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5826 2086 : node->fs_relids = NULL;
5827 2086 : node->fs_base_relids = NULL;
5828 : /* fsSystemCol will be filled in by create_foreignscan_plan */
5829 2086 : node->fsSystemCol = false;
5830 :
5831 2086 : return node;
5832 : }
5833 :
5834 : static RecursiveUnion *
5835 930 : make_recursive_union(List *tlist,
5836 : Plan *lefttree,
5837 : Plan *righttree,
5838 : int wtParam,
5839 : List *distinctList,
5840 : Cardinality numGroups)
5841 : {
5842 930 : RecursiveUnion *node = makeNode(RecursiveUnion);
5843 930 : Plan *plan = &node->plan;
5844 930 : int numCols = list_length(distinctList);
5845 :
5846 930 : plan->targetlist = tlist;
5847 930 : plan->qual = NIL;
5848 930 : plan->lefttree = lefttree;
5849 930 : plan->righttree = righttree;
5850 930 : node->wtParam = wtParam;
5851 :
5852 : /*
5853 : * convert SortGroupClause list into arrays of attr indexes and equality
5854 : * operators, as wanted by executor
5855 : */
5856 930 : node->numCols = numCols;
5857 930 : if (numCols > 0)
5858 : {
5859 382 : int keyno = 0;
5860 : AttrNumber *dupColIdx;
5861 : Oid *dupOperators;
5862 : Oid *dupCollations;
5863 : ListCell *slitem;
5864 :
5865 382 : dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
5866 382 : dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
5867 382 : dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);
5868 :
5869 1456 : foreach(slitem, distinctList)
5870 : {
5871 1074 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
5872 1074 : TargetEntry *tle = get_sortgroupclause_tle(sortcl,
5873 : plan->targetlist);
5874 :
5875 1074 : dupColIdx[keyno] = tle->resno;
5876 1074 : dupOperators[keyno] = sortcl->eqop;
5877 1074 : dupCollations[keyno] = exprCollation((Node *) tle->expr);
5878 : Assert(OidIsValid(dupOperators[keyno]));
5879 1074 : keyno++;
5880 : }
5881 382 : node->dupColIdx = dupColIdx;
5882 382 : node->dupOperators = dupOperators;
5883 382 : node->dupCollations = dupCollations;
5884 : }
5885 930 : node->numGroups = numGroups;
5886 :
5887 930 : return node;
5888 : }
5889 :
5890 : static BitmapAnd *
5891 246 : make_bitmap_and(List *bitmapplans)
5892 : {
5893 246 : BitmapAnd *node = makeNode(BitmapAnd);
5894 246 : Plan *plan = &node->plan;
5895 :
5896 246 : plan->targetlist = NIL;
5897 246 : plan->qual = NIL;
5898 246 : plan->lefttree = NULL;
5899 246 : plan->righttree = NULL;
5900 246 : node->bitmapplans = bitmapplans;
5901 :
5902 246 : return node;
5903 : }
5904 :
5905 : static BitmapOr *
5906 422 : make_bitmap_or(List *bitmapplans)
5907 : {
5908 422 : BitmapOr *node = makeNode(BitmapOr);
5909 422 : Plan *plan = &node->plan;
5910 :
5911 422 : plan->targetlist = NIL;
5912 422 : plan->qual = NIL;
5913 422 : plan->lefttree = NULL;
5914 422 : plan->righttree = NULL;
5915 422 : node->bitmapplans = bitmapplans;
5916 :
5917 422 : return node;
5918 : }
5919 :
5920 : static NestLoop *
5921 97884 : make_nestloop(List *tlist,
5922 : List *joinclauses,
5923 : List *otherclauses,
5924 : List *nestParams,
5925 : Plan *lefttree,
5926 : Plan *righttree,
5927 : JoinType jointype,
5928 : bool inner_unique)
5929 : {
5930 97884 : NestLoop *node = makeNode(NestLoop);
5931 97884 : Plan *plan = &node->join.plan;
5932 :
5933 97884 : plan->targetlist = tlist;
5934 97884 : plan->qual = otherclauses;
5935 97884 : plan->lefttree = lefttree;
5936 97884 : plan->righttree = righttree;
5937 97884 : node->join.jointype = jointype;
5938 97884 : node->join.inner_unique = inner_unique;
5939 97884 : node->join.joinqual = joinclauses;
5940 97884 : node->nestParams = nestParams;
5941 :
5942 97884 : return node;
5943 : }
5944 :
5945 : static HashJoin *
5946 35164 : make_hashjoin(List *tlist,
5947 : List *joinclauses,
5948 : List *otherclauses,
5949 : List *hashclauses,
5950 : List *hashoperators,
5951 : List *hashcollations,
5952 : List *hashkeys,
5953 : Plan *lefttree,
5954 : Plan *righttree,
5955 : JoinType jointype,
5956 : bool inner_unique)
5957 : {
5958 35164 : HashJoin *node = makeNode(HashJoin);
5959 35164 : Plan *plan = &node->join.plan;
5960 :
5961 35164 : plan->targetlist = tlist;
5962 35164 : plan->qual = otherclauses;
5963 35164 : plan->lefttree = lefttree;
5964 35164 : plan->righttree = righttree;
5965 35164 : node->hashclauses = hashclauses;
5966 35164 : node->hashoperators = hashoperators;
5967 35164 : node->hashcollations = hashcollations;
5968 35164 : node->hashkeys = hashkeys;
5969 35164 : node->join.jointype = jointype;
5970 35164 : node->join.inner_unique = inner_unique;
5971 35164 : node->join.joinqual = joinclauses;
5972 :
5973 35164 : return node;
5974 : }
5975 :
5976 : static Hash *
5977 35164 : make_hash(Plan *lefttree,
5978 : List *hashkeys,
5979 : Oid skewTable,
5980 : AttrNumber skewColumn,
5981 : bool skewInherit)
5982 : {
5983 35164 : Hash *node = makeNode(Hash);
5984 35164 : Plan *plan = &node->plan;
5985 :
5986 35164 : plan->targetlist = lefttree->targetlist;
5987 35164 : plan->qual = NIL;
5988 35164 : plan->lefttree = lefttree;
5989 35164 : plan->righttree = NULL;
5990 :
5991 35164 : node->hashkeys = hashkeys;
5992 35164 : node->skewTable = skewTable;
5993 35164 : node->skewColumn = skewColumn;
5994 35164 : node->skewInherit = skewInherit;
5995 :
5996 35164 : return node;
5997 : }
5998 :
5999 : static MergeJoin *
6000 7624 : make_mergejoin(List *tlist,
6001 : List *joinclauses,
6002 : List *otherclauses,
6003 : List *mergeclauses,
6004 : Oid *mergefamilies,
6005 : Oid *mergecollations,
6006 : bool *mergereversals,
6007 : bool *mergenullsfirst,
6008 : Plan *lefttree,
6009 : Plan *righttree,
6010 : JoinType jointype,
6011 : bool inner_unique,
6012 : bool skip_mark_restore)
6013 : {
6014 7624 : MergeJoin *node = makeNode(MergeJoin);
6015 7624 : Plan *plan = &node->join.plan;
6016 :
6017 7624 : plan->targetlist = tlist;
6018 7624 : plan->qual = otherclauses;
6019 7624 : plan->lefttree = lefttree;
6020 7624 : plan->righttree = righttree;
6021 7624 : node->skip_mark_restore = skip_mark_restore;
6022 7624 : node->mergeclauses = mergeclauses;
6023 7624 : node->mergeFamilies = mergefamilies;
6024 7624 : node->mergeCollations = mergecollations;
6025 7624 : node->mergeReversals = mergereversals;
6026 7624 : node->mergeNullsFirst = mergenullsfirst;
6027 7624 : node->join.jointype = jointype;
6028 7624 : node->join.inner_unique = inner_unique;
6029 7624 : node->join.joinqual = joinclauses;
6030 :
6031 7624 : return node;
6032 : }
6033 :
6034 : /*
6035 : * make_sort --- basic routine to build a Sort plan node
6036 : *
6037 : * Caller must have built the sortColIdx, sortOperators, collations, and
6038 : * nullsFirst arrays already.
6039 : */
6040 : static Sort *
6041 79608 : make_sort(Plan *lefttree, int numCols,
6042 : AttrNumber *sortColIdx, Oid *sortOperators,
6043 : Oid *collations, bool *nullsFirst)
6044 : {
6045 : Sort *node;
6046 : Plan *plan;
6047 :
6048 79608 : node = makeNode(Sort);
6049 :
6050 79608 : plan = &node->plan;
6051 79608 : plan->targetlist = lefttree->targetlist;
6052 79608 : plan->disabled_nodes = lefttree->disabled_nodes + (enable_sort == false);
6053 79608 : plan->qual = NIL;
6054 79608 : plan->lefttree = lefttree;
6055 79608 : plan->righttree = NULL;
6056 79608 : node->numCols = numCols;
6057 79608 : node->sortColIdx = sortColIdx;
6058 79608 : node->sortOperators = sortOperators;
6059 79608 : node->collations = collations;
6060 79608 : node->nullsFirst = nullsFirst;
6061 :
6062 79608 : return node;
6063 : }
6064 :
6065 : /*
6066 : * make_incrementalsort --- basic routine to build an IncrementalSort plan node
6067 : *
6068 : * Caller must have built the sortColIdx, sortOperators, collations, and
6069 : * nullsFirst arrays already.
6070 : */
6071 : static IncrementalSort *
6072 1020 : make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols,
6073 : AttrNumber *sortColIdx, Oid *sortOperators,
6074 : Oid *collations, bool *nullsFirst)
6075 : {
6076 : IncrementalSort *node;
6077 : Plan *plan;
6078 :
6079 1020 : node = makeNode(IncrementalSort);
6080 :
6081 1020 : plan = &node->sort.plan;
6082 1020 : plan->targetlist = lefttree->targetlist;
6083 1020 : plan->qual = NIL;
6084 1020 : plan->lefttree = lefttree;
6085 1020 : plan->righttree = NULL;
6086 1020 : node->nPresortedCols = nPresortedCols;
6087 1020 : node->sort.numCols = numCols;
6088 1020 : node->sort.sortColIdx = sortColIdx;
6089 1020 : node->sort.sortOperators = sortOperators;
6090 1020 : node->sort.collations = collations;
6091 1020 : node->sort.nullsFirst = nullsFirst;
6092 :
6093 1020 : return node;
6094 : }
6095 :
6096 : /*
6097 : * prepare_sort_from_pathkeys
6098 : * Prepare to sort according to given pathkeys
6099 : *
6100 : * This is used to set up for Sort, MergeAppend, and Gather Merge nodes. It
6101 : * calculates the executor's representation of the sort key information, and
6102 : * adjusts the plan targetlist if needed to add resjunk sort columns.
6103 : *
6104 : * Input parameters:
6105 : * 'lefttree' is the plan node which yields input tuples
6106 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6107 : * 'relids' identifies the child relation being sorted, if any
6108 : * 'reqColIdx' is NULL or an array of required sort key column numbers
6109 : * 'adjust_tlist_in_place' is true if lefttree must be modified in-place
6110 : *
6111 : * We must convert the pathkey information into arrays of sort key column
6112 : * numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
6113 : * which is the representation the executor wants. These are returned into
6114 : * the output parameters *p_numsortkeys etc.
6115 : *
6116 : * When looking for matches to an EquivalenceClass's members, we will only
6117 : * consider child EC members if they belong to given 'relids'. This protects
6118 : * against possible incorrect matches to child expressions that contain no
6119 : * Vars.
6120 : *
6121 : * If reqColIdx isn't NULL then it contains sort key column numbers that
6122 : * we should match. This is used when making child plans for a MergeAppend;
6123 : * it's an error if we can't match the columns.
6124 : *
6125 : * If the pathkeys include expressions that aren't simple Vars, we will
6126 : * usually need to add resjunk items to the input plan's targetlist to
6127 : * compute these expressions, since a Sort or MergeAppend node itself won't
6128 : * do any such calculations. If the input plan type isn't one that can do
6129 : * projections, this means adding a Result node just to do the projection.
6130 : * However, the caller can pass adjust_tlist_in_place = true to force the
6131 : * lefttree tlist to be modified in-place regardless of whether the node type
6132 : * can project --- we use this for fixing the tlist of MergeAppend itself.
6133 : *
6134 : * Returns the node which is to be the input to the Sort (either lefttree,
6135 : * or a Result stacked atop lefttree).
6136 : */
6137 : static Plan *
6138 83936 : prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
6139 : Relids relids,
6140 : const AttrNumber *reqColIdx,
6141 : bool adjust_tlist_in_place,
6142 : int *p_numsortkeys,
6143 : AttrNumber **p_sortColIdx,
6144 : Oid **p_sortOperators,
6145 : Oid **p_collations,
6146 : bool **p_nullsFirst)
6147 : {
6148 83936 : List *tlist = lefttree->targetlist;
6149 : ListCell *i;
6150 : int numsortkeys;
6151 : AttrNumber *sortColIdx;
6152 : Oid *sortOperators;
6153 : Oid *collations;
6154 : bool *nullsFirst;
6155 :
6156 : /*
6157 : * We will need at most list_length(pathkeys) sort columns; possibly less
6158 : */
6159 83936 : numsortkeys = list_length(pathkeys);
6160 83936 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6161 83936 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6162 83936 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6163 83936 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6164 :
6165 83936 : numsortkeys = 0;
6166 :
6167 207136 : foreach(i, pathkeys)
6168 : {
6169 123200 : PathKey *pathkey = (PathKey *) lfirst(i);
6170 123200 : EquivalenceClass *ec = pathkey->pk_eclass;
6171 : EquivalenceMember *em;
6172 123200 : TargetEntry *tle = NULL;
6173 123200 : Oid pk_datatype = InvalidOid;
6174 : Oid sortop;
6175 : ListCell *j;
6176 :
6177 123200 : if (ec->ec_has_volatile)
6178 : {
6179 : /*
6180 : * If the pathkey's EquivalenceClass is volatile, then it must
6181 : * have come from an ORDER BY clause, and we have to match it to
6182 : * that same targetlist entry.
6183 : */
6184 200 : if (ec->ec_sortref == 0) /* can't happen */
6185 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6186 200 : tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
6187 : Assert(tle);
6188 : Assert(list_length(ec->ec_members) == 1);
6189 200 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6190 : }
6191 123000 : else if (reqColIdx != NULL)
6192 : {
6193 : /*
6194 : * If we are given a sort column number to match, only consider
6195 : * the single TLE at that position. It's possible that there is
6196 : * no such TLE, in which case fall through and generate a resjunk
6197 : * targetentry (we assume this must have happened in the parent
6198 : * plan as well). If there is a TLE but it doesn't match the
6199 : * pathkey's EC, we do the same, which is probably the wrong thing
6200 : * but we'll leave it to caller to complain about the mismatch.
6201 : */
6202 3310 : tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
6203 3310 : if (tle)
6204 : {
6205 3190 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6206 3190 : if (em)
6207 : {
6208 : /* found expr at right place in tlist */
6209 3190 : pk_datatype = em->em_datatype;
6210 : }
6211 : else
6212 0 : tle = NULL;
6213 : }
6214 : }
6215 : else
6216 : {
6217 : /*
6218 : * Otherwise, we can sort by any non-constant expression listed in
6219 : * the pathkey's EquivalenceClass. For now, we take the first
6220 : * tlist item found in the EC. If there's no match, we'll generate
6221 : * a resjunk entry using the first EC member that is an expression
6222 : * in the input's vars.
6223 : *
6224 : * XXX if we have a choice, is there any way of figuring out which
6225 : * might be cheapest to execute? (For example, int4lt is likely
6226 : * much cheaper to execute than numericlt, but both might appear
6227 : * in the same equivalence class...) Not clear that we ever will
6228 : * have an interesting choice in practice, so it may not matter.
6229 : */
6230 298688 : foreach(j, tlist)
6231 : {
6232 298446 : tle = (TargetEntry *) lfirst(j);
6233 298446 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6234 298446 : if (em)
6235 : {
6236 : /* found expr already in tlist */
6237 119448 : pk_datatype = em->em_datatype;
6238 119448 : break;
6239 : }
6240 178998 : tle = NULL;
6241 : }
6242 : }
6243 :
6244 123200 : if (!tle)
6245 : {
6246 : /*
6247 : * No matching tlist item; look for a computable expression.
6248 : */
6249 362 : em = find_computable_ec_member(NULL, ec, tlist, relids, false);
6250 362 : if (!em)
6251 0 : elog(ERROR, "could not find pathkey item to sort");
6252 362 : pk_datatype = em->em_datatype;
6253 :
6254 : /*
6255 : * Do we need to insert a Result node?
6256 : */
6257 362 : if (!adjust_tlist_in_place &&
6258 326 : !is_projection_capable_plan(lefttree))
6259 : {
6260 : /* copy needed so we don't modify input's tlist below */
6261 26 : tlist = copyObject(tlist);
6262 26 : lefttree = inject_projection_plan(lefttree, tlist,
6263 26 : lefttree->parallel_safe);
6264 : }
6265 :
6266 : /* Don't bother testing is_projection_capable_plan again */
6267 362 : adjust_tlist_in_place = true;
6268 :
6269 : /*
6270 : * Add resjunk entry to input's tlist
6271 : */
6272 362 : tle = makeTargetEntry(copyObject(em->em_expr),
6273 362 : list_length(tlist) + 1,
6274 : NULL,
6275 : true);
6276 362 : tlist = lappend(tlist, tle);
6277 362 : lefttree->targetlist = tlist; /* just in case NIL before */
6278 : }
6279 :
6280 : /*
6281 : * Look up the correct sort operator from the PathKey's slightly
6282 : * abstracted representation.
6283 : */
6284 123200 : sortop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
6285 : pk_datatype,
6286 : pk_datatype,
6287 : pathkey->pk_cmptype);
6288 123200 : if (!OidIsValid(sortop)) /* should not happen */
6289 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6290 : pathkey->pk_cmptype, pk_datatype, pk_datatype,
6291 : pathkey->pk_opfamily);
6292 :
6293 : /* Add the column to the sort arrays */
6294 123200 : sortColIdx[numsortkeys] = tle->resno;
6295 123200 : sortOperators[numsortkeys] = sortop;
6296 123200 : collations[numsortkeys] = ec->ec_collation;
6297 123200 : nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
6298 123200 : numsortkeys++;
6299 : }
6300 :
6301 : /* Return results */
6302 83936 : *p_numsortkeys = numsortkeys;
6303 83936 : *p_sortColIdx = sortColIdx;
6304 83936 : *p_sortOperators = sortOperators;
6305 83936 : *p_collations = collations;
6306 83936 : *p_nullsFirst = nullsFirst;
6307 :
6308 83936 : return lefttree;
6309 : }
6310 :
6311 : /*
6312 : * make_sort_from_pathkeys
6313 : * Create sort plan to sort according to given pathkeys
6314 : *
6315 : * 'lefttree' is the node which yields input tuples
6316 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6317 : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6318 : */
6319 : static Sort *
6320 79284 : make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids)
6321 : {
6322 : int numsortkeys;
6323 : AttrNumber *sortColIdx;
6324 : Oid *sortOperators;
6325 : Oid *collations;
6326 : bool *nullsFirst;
6327 :
6328 : /* Compute sort column info, and adjust lefttree as needed */
6329 79284 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6330 : relids,
6331 : NULL,
6332 : false,
6333 : &numsortkeys,
6334 : &sortColIdx,
6335 : &sortOperators,
6336 : &collations,
6337 : &nullsFirst);
6338 :
6339 : /* Now build the Sort node */
6340 79284 : return make_sort(lefttree, numsortkeys,
6341 : sortColIdx, sortOperators,
6342 : collations, nullsFirst);
6343 : }
6344 :
6345 : /*
6346 : * make_incrementalsort_from_pathkeys
6347 : * Create sort plan to sort according to given pathkeys
6348 : *
6349 : * 'lefttree' is the node which yields input tuples
6350 : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6351 : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6352 : * 'nPresortedCols' is the number of presorted columns in input tuples
6353 : */
6354 : static IncrementalSort *
6355 996 : make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys,
6356 : Relids relids, int nPresortedCols)
6357 : {
6358 : int numsortkeys;
6359 : AttrNumber *sortColIdx;
6360 : Oid *sortOperators;
6361 : Oid *collations;
6362 : bool *nullsFirst;
6363 :
6364 : /* Compute sort column info, and adjust lefttree as needed */
6365 996 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6366 : relids,
6367 : NULL,
6368 : false,
6369 : &numsortkeys,
6370 : &sortColIdx,
6371 : &sortOperators,
6372 : &collations,
6373 : &nullsFirst);
6374 :
6375 : /* Now build the Sort node */
6376 996 : return make_incrementalsort(lefttree, numsortkeys, nPresortedCols,
6377 : sortColIdx, sortOperators,
6378 : collations, nullsFirst);
6379 : }
6380 :
6381 : /*
6382 : * make_sort_from_sortclauses
6383 : * Create sort plan to sort according to given sortclauses
6384 : *
6385 : * 'sortcls' is a list of SortGroupClauses
6386 : * 'lefttree' is the node which yields input tuples
6387 : */
6388 : Sort *
6389 0 : make_sort_from_sortclauses(List *sortcls, Plan *lefttree)
6390 : {
6391 0 : List *sub_tlist = lefttree->targetlist;
6392 : ListCell *l;
6393 : int numsortkeys;
6394 : AttrNumber *sortColIdx;
6395 : Oid *sortOperators;
6396 : Oid *collations;
6397 : bool *nullsFirst;
6398 :
6399 : /* Convert list-ish representation to arrays wanted by executor */
6400 0 : numsortkeys = list_length(sortcls);
6401 0 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6402 0 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6403 0 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6404 0 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6405 :
6406 0 : numsortkeys = 0;
6407 0 : foreach(l, sortcls)
6408 : {
6409 0 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6410 0 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6411 :
6412 0 : sortColIdx[numsortkeys] = tle->resno;
6413 0 : sortOperators[numsortkeys] = sortcl->sortop;
6414 0 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6415 0 : nullsFirst[numsortkeys] = sortcl->nulls_first;
6416 0 : numsortkeys++;
6417 : }
6418 :
6419 0 : return make_sort(lefttree, numsortkeys,
6420 : sortColIdx, sortOperators,
6421 : collations, nullsFirst);
6422 : }
6423 :
6424 : /*
6425 : * make_sort_from_groupcols
6426 : * Create sort plan to sort based on grouping columns
6427 : *
6428 : * 'groupcls' is the list of SortGroupClauses
6429 : * 'grpColIdx' gives the column numbers to use
6430 : *
6431 : * This might look like it could be merged with make_sort_from_sortclauses,
6432 : * but presently we *must* use the grpColIdx[] array to locate sort columns,
6433 : * because the child plan's tlist is not marked with ressortgroupref info
6434 : * appropriate to the grouping node. So, only the sort ordering info
6435 : * is used from the SortGroupClause entries.
6436 : */
6437 : static Sort *
6438 252 : make_sort_from_groupcols(List *groupcls,
6439 : AttrNumber *grpColIdx,
6440 : Plan *lefttree)
6441 : {
6442 252 : List *sub_tlist = lefttree->targetlist;
6443 : ListCell *l;
6444 : int numsortkeys;
6445 : AttrNumber *sortColIdx;
6446 : Oid *sortOperators;
6447 : Oid *collations;
6448 : bool *nullsFirst;
6449 :
6450 : /* Convert list-ish representation to arrays wanted by executor */
6451 252 : numsortkeys = list_length(groupcls);
6452 252 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6453 252 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6454 252 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6455 252 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6456 :
6457 252 : numsortkeys = 0;
6458 594 : foreach(l, groupcls)
6459 : {
6460 342 : SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
6461 342 : TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
6462 :
6463 342 : if (!tle)
6464 0 : elog(ERROR, "could not retrieve tle for sort-from-groupcols");
6465 :
6466 342 : sortColIdx[numsortkeys] = tle->resno;
6467 342 : sortOperators[numsortkeys] = grpcl->sortop;
6468 342 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6469 342 : nullsFirst[numsortkeys] = grpcl->nulls_first;
6470 342 : numsortkeys++;
6471 : }
6472 :
6473 252 : return make_sort(lefttree, numsortkeys,
6474 : sortColIdx, sortOperators,
6475 : collations, nullsFirst);
6476 : }
6477 :
6478 : static Material *
6479 4502 : make_material(Plan *lefttree)
6480 : {
6481 4502 : Material *node = makeNode(Material);
6482 4502 : Plan *plan = &node->plan;
6483 :
6484 4502 : plan->targetlist = lefttree->targetlist;
6485 4502 : plan->qual = NIL;
6486 4502 : plan->lefttree = lefttree;
6487 4502 : plan->righttree = NULL;
6488 :
6489 4502 : return node;
6490 : }
6491 :
6492 : /*
6493 : * materialize_finished_plan: stick a Material node atop a completed plan
6494 : *
6495 : * There are a couple of places where we want to attach a Material node
6496 : * after completion of create_plan(), without any MaterialPath path.
6497 : * Those places should probably be refactored someday to do this on the
6498 : * Path representation, but it's not worth the trouble yet.
6499 : */
6500 : Plan *
6501 74 : materialize_finished_plan(Plan *subplan)
6502 : {
6503 : Plan *matplan;
6504 : Path matpath; /* dummy for result of cost_material */
6505 : Cost initplan_cost;
6506 : bool unsafe_initplans;
6507 :
6508 74 : matplan = (Plan *) make_material(subplan);
6509 :
6510 : /*
6511 : * XXX horrid kluge: if there are any initPlans attached to the subplan,
6512 : * move them up to the Material node, which is now effectively the top
6513 : * plan node in its query level. This prevents failure in
6514 : * SS_finalize_plan(), which see for comments.
6515 : */
6516 74 : matplan->initPlan = subplan->initPlan;
6517 74 : subplan->initPlan = NIL;
6518 :
6519 : /* Move the initplans' cost delta, as well */
6520 74 : SS_compute_initplan_cost(matplan->initPlan,
6521 : &initplan_cost, &unsafe_initplans);
6522 74 : subplan->startup_cost -= initplan_cost;
6523 74 : subplan->total_cost -= initplan_cost;
6524 :
6525 : /* Set cost data */
6526 74 : cost_material(&matpath,
6527 : subplan->disabled_nodes,
6528 : subplan->startup_cost,
6529 : subplan->total_cost,
6530 : subplan->plan_rows,
6531 : subplan->plan_width);
6532 74 : matplan->disabled_nodes = subplan->disabled_nodes;
6533 74 : matplan->startup_cost = matpath.startup_cost + initplan_cost;
6534 74 : matplan->total_cost = matpath.total_cost + initplan_cost;
6535 74 : matplan->plan_rows = subplan->plan_rows;
6536 74 : matplan->plan_width = subplan->plan_width;
6537 74 : matplan->parallel_aware = false;
6538 74 : matplan->parallel_safe = subplan->parallel_safe;
6539 :
6540 74 : return matplan;
6541 : }
6542 :
6543 : static Memoize *
6544 1958 : make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations,
6545 : List *param_exprs, bool singlerow, bool binary_mode,
6546 : uint32 est_entries, Bitmapset *keyparamids,
6547 : Cardinality est_calls, Cardinality est_unique_keys,
6548 : double est_hit_ratio)
6549 : {
6550 1958 : Memoize *node = makeNode(Memoize);
6551 1958 : Plan *plan = &node->plan;
6552 :
6553 1958 : plan->targetlist = lefttree->targetlist;
6554 1958 : plan->qual = NIL;
6555 1958 : plan->lefttree = lefttree;
6556 1958 : plan->righttree = NULL;
6557 :
6558 1958 : node->numKeys = list_length(param_exprs);
6559 1958 : node->hashOperators = hashoperators;
6560 1958 : node->collations = collations;
6561 1958 : node->param_exprs = param_exprs;
6562 1958 : node->singlerow = singlerow;
6563 1958 : node->binary_mode = binary_mode;
6564 1958 : node->est_entries = est_entries;
6565 1958 : node->keyparamids = keyparamids;
6566 1958 : node->est_calls = est_calls;
6567 1958 : node->est_unique_keys = est_unique_keys;
6568 1958 : node->est_hit_ratio = est_hit_ratio;
6569 :
6570 1958 : return node;
6571 : }
6572 :
6573 : Agg *
6574 43974 : make_agg(List *tlist, List *qual,
6575 : AggStrategy aggstrategy, AggSplit aggsplit,
6576 : int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
6577 : List *groupingSets, List *chain, Cardinality numGroups,
6578 : Size transitionSpace, Plan *lefttree)
6579 : {
6580 43974 : Agg *node = makeNode(Agg);
6581 43974 : Plan *plan = &node->plan;
6582 :
6583 43974 : node->aggstrategy = aggstrategy;
6584 43974 : node->aggsplit = aggsplit;
6585 43974 : node->numCols = numGroupCols;
6586 43974 : node->grpColIdx = grpColIdx;
6587 43974 : node->grpOperators = grpOperators;
6588 43974 : node->grpCollations = grpCollations;
6589 43974 : node->numGroups = numGroups;
6590 43974 : node->transitionSpace = transitionSpace;
6591 43974 : node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6592 43974 : node->groupingSets = groupingSets;
6593 43974 : node->chain = chain;
6594 :
6595 43974 : plan->qual = qual;
6596 43974 : plan->targetlist = tlist;
6597 43974 : plan->lefttree = lefttree;
6598 43974 : plan->righttree = NULL;
6599 :
6600 43974 : return node;
6601 : }
6602 :
6603 : static WindowAgg *
6604 2750 : make_windowagg(List *tlist, WindowClause *wc,
6605 : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
6606 : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
6607 : List *runCondition, List *qual, bool topWindow, Plan *lefttree)
6608 : {
6609 2750 : WindowAgg *node = makeNode(WindowAgg);
6610 2750 : Plan *plan = &node->plan;
6611 :
6612 2750 : node->winname = wc->name;
6613 2750 : node->winref = wc->winref;
6614 2750 : node->partNumCols = partNumCols;
6615 2750 : node->partColIdx = partColIdx;
6616 2750 : node->partOperators = partOperators;
6617 2750 : node->partCollations = partCollations;
6618 2750 : node->ordNumCols = ordNumCols;
6619 2750 : node->ordColIdx = ordColIdx;
6620 2750 : node->ordOperators = ordOperators;
6621 2750 : node->ordCollations = ordCollations;
6622 2750 : node->frameOptions = wc->frameOptions;
6623 2750 : node->startOffset = wc->startOffset;
6624 2750 : node->endOffset = wc->endOffset;
6625 2750 : node->runCondition = runCondition;
6626 : /* a duplicate of the above for EXPLAIN */
6627 2750 : node->runConditionOrig = runCondition;
6628 2750 : node->startInRangeFunc = wc->startInRangeFunc;
6629 2750 : node->endInRangeFunc = wc->endInRangeFunc;
6630 2750 : node->inRangeColl = wc->inRangeColl;
6631 2750 : node->inRangeAsc = wc->inRangeAsc;
6632 2750 : node->inRangeNullsFirst = wc->inRangeNullsFirst;
6633 2750 : node->topWindow = topWindow;
6634 :
6635 2750 : plan->targetlist = tlist;
6636 2750 : plan->lefttree = lefttree;
6637 2750 : plan->righttree = NULL;
6638 2750 : plan->qual = qual;
6639 :
6640 2750 : return node;
6641 : }
6642 :
6643 : static Group *
6644 246 : make_group(List *tlist,
6645 : List *qual,
6646 : int numGroupCols,
6647 : AttrNumber *grpColIdx,
6648 : Oid *grpOperators,
6649 : Oid *grpCollations,
6650 : Plan *lefttree)
6651 : {
6652 246 : Group *node = makeNode(Group);
6653 246 : Plan *plan = &node->plan;
6654 :
6655 246 : node->numCols = numGroupCols;
6656 246 : node->grpColIdx = grpColIdx;
6657 246 : node->grpOperators = grpOperators;
6658 246 : node->grpCollations = grpCollations;
6659 :
6660 246 : plan->qual = qual;
6661 246 : plan->targetlist = tlist;
6662 246 : plan->lefttree = lefttree;
6663 246 : plan->righttree = NULL;
6664 :
6665 246 : return node;
6666 : }
6667 :
6668 : /*
6669 : * pathkeys is a list of PathKeys, identifying the sort columns and semantics.
6670 : * The input plan must already be sorted accordingly.
6671 : *
6672 : * relids identifies the child relation being unique-ified, if any.
6673 : */
6674 : static Unique *
6675 5702 : make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols,
6676 : Relids relids)
6677 : {
6678 5702 : Unique *node = makeNode(Unique);
6679 5702 : Plan *plan = &node->plan;
6680 5702 : int keyno = 0;
6681 : AttrNumber *uniqColIdx;
6682 : Oid *uniqOperators;
6683 : Oid *uniqCollations;
6684 : ListCell *lc;
6685 :
6686 5702 : plan->targetlist = lefttree->targetlist;
6687 5702 : plan->qual = NIL;
6688 5702 : plan->lefttree = lefttree;
6689 5702 : plan->righttree = NULL;
6690 :
6691 : /*
6692 : * Convert pathkeys list into arrays of attr indexes and equality
6693 : * operators, as wanted by executor. This has a lot in common with
6694 : * prepare_sort_from_pathkeys ... maybe unify sometime?
6695 : */
6696 : Assert(numCols >= 0 && numCols <= list_length(pathkeys));
6697 5702 : uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6698 5702 : uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6699 5702 : uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6700 :
6701 18490 : foreach(lc, pathkeys)
6702 : {
6703 12830 : PathKey *pathkey = (PathKey *) lfirst(lc);
6704 12830 : EquivalenceClass *ec = pathkey->pk_eclass;
6705 : EquivalenceMember *em;
6706 12830 : TargetEntry *tle = NULL;
6707 12830 : Oid pk_datatype = InvalidOid;
6708 : Oid eqop;
6709 : ListCell *j;
6710 :
6711 : /* Ignore pathkeys beyond the specified number of columns */
6712 12830 : if (keyno >= numCols)
6713 42 : break;
6714 :
6715 12788 : if (ec->ec_has_volatile)
6716 : {
6717 : /*
6718 : * If the pathkey's EquivalenceClass is volatile, then it must
6719 : * have come from an ORDER BY clause, and we have to match it to
6720 : * that same targetlist entry.
6721 : */
6722 30 : if (ec->ec_sortref == 0) /* can't happen */
6723 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6724 30 : tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist);
6725 : Assert(tle);
6726 : Assert(list_length(ec->ec_members) == 1);
6727 30 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6728 : }
6729 : else
6730 : {
6731 : /*
6732 : * Otherwise, we can use any non-constant expression listed in the
6733 : * pathkey's EquivalenceClass. For now, we take the first tlist
6734 : * item found in the EC.
6735 : */
6736 24502 : foreach(j, plan->targetlist)
6737 : {
6738 24502 : tle = (TargetEntry *) lfirst(j);
6739 24502 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6740 24502 : if (em)
6741 : {
6742 : /* found expr already in tlist */
6743 12758 : pk_datatype = em->em_datatype;
6744 12758 : break;
6745 : }
6746 11744 : tle = NULL;
6747 : }
6748 : }
6749 :
6750 12788 : if (!tle)
6751 0 : elog(ERROR, "could not find pathkey item to sort");
6752 :
6753 : /*
6754 : * Look up the correct equality operator from the PathKey's slightly
6755 : * abstracted representation.
6756 : */
6757 12788 : eqop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
6758 : pk_datatype,
6759 : pk_datatype,
6760 : COMPARE_EQ);
6761 12788 : if (!OidIsValid(eqop)) /* should not happen */
6762 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6763 : COMPARE_EQ, pk_datatype, pk_datatype,
6764 : pathkey->pk_opfamily);
6765 :
6766 12788 : uniqColIdx[keyno] = tle->resno;
6767 12788 : uniqOperators[keyno] = eqop;
6768 12788 : uniqCollations[keyno] = ec->ec_collation;
6769 :
6770 12788 : keyno++;
6771 : }
6772 :
6773 5702 : node->numCols = numCols;
6774 5702 : node->uniqColIdx = uniqColIdx;
6775 5702 : node->uniqOperators = uniqOperators;
6776 5702 : node->uniqCollations = uniqCollations;
6777 :
6778 5702 : return node;
6779 : }
6780 :
6781 : static Gather *
6782 954 : make_gather(List *qptlist,
6783 : List *qpqual,
6784 : int nworkers,
6785 : int rescan_param,
6786 : bool single_copy,
6787 : Plan *subplan)
6788 : {
6789 954 : Gather *node = makeNode(Gather);
6790 954 : Plan *plan = &node->plan;
6791 :
6792 954 : plan->targetlist = qptlist;
6793 954 : plan->qual = qpqual;
6794 954 : plan->lefttree = subplan;
6795 954 : plan->righttree = NULL;
6796 954 : node->num_workers = nworkers;
6797 954 : node->rescan_param = rescan_param;
6798 954 : node->single_copy = single_copy;
6799 954 : node->invisible = false;
6800 954 : node->initParam = NULL;
6801 :
6802 954 : return node;
6803 : }
6804 :
6805 : /*
6806 : * groupList is a list of SortGroupClauses, identifying the targetlist
6807 : * items that should be considered by the SetOp filter. The input plans must
6808 : * already be sorted accordingly, if we're doing SETOP_SORTED mode.
6809 : */
6810 : static SetOp *
6811 668 : make_setop(SetOpCmd cmd, SetOpStrategy strategy,
6812 : List *tlist, Plan *lefttree, Plan *righttree,
6813 : List *groupList, Cardinality numGroups)
6814 : {
6815 668 : SetOp *node = makeNode(SetOp);
6816 668 : Plan *plan = &node->plan;
6817 668 : int numCols = list_length(groupList);
6818 668 : int keyno = 0;
6819 : AttrNumber *cmpColIdx;
6820 : Oid *cmpOperators;
6821 : Oid *cmpCollations;
6822 : bool *cmpNullsFirst;
6823 : ListCell *slitem;
6824 :
6825 668 : plan->targetlist = tlist;
6826 668 : plan->qual = NIL;
6827 668 : plan->lefttree = lefttree;
6828 668 : plan->righttree = righttree;
6829 :
6830 : /*
6831 : * convert SortGroupClause list into arrays of attr indexes and comparison
6832 : * operators, as wanted by executor
6833 : */
6834 668 : cmpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
6835 668 : cmpOperators = (Oid *) palloc(sizeof(Oid) * numCols);
6836 668 : cmpCollations = (Oid *) palloc(sizeof(Oid) * numCols);
6837 668 : cmpNullsFirst = (bool *) palloc(sizeof(bool) * numCols);
6838 :
6839 2922 : foreach(slitem, groupList)
6840 : {
6841 2254 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
6842 2254 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
6843 :
6844 2254 : cmpColIdx[keyno] = tle->resno;
6845 2254 : if (strategy == SETOP_HASHED)
6846 1096 : cmpOperators[keyno] = sortcl->eqop;
6847 : else
6848 1158 : cmpOperators[keyno] = sortcl->sortop;
6849 : Assert(OidIsValid(cmpOperators[keyno]));
6850 2254 : cmpCollations[keyno] = exprCollation((Node *) tle->expr);
6851 2254 : cmpNullsFirst[keyno] = sortcl->nulls_first;
6852 2254 : keyno++;
6853 : }
6854 :
6855 668 : node->cmd = cmd;
6856 668 : node->strategy = strategy;
6857 668 : node->numCols = numCols;
6858 668 : node->cmpColIdx = cmpColIdx;
6859 668 : node->cmpOperators = cmpOperators;
6860 668 : node->cmpCollations = cmpCollations;
6861 668 : node->cmpNullsFirst = cmpNullsFirst;
6862 668 : node->numGroups = numGroups;
6863 :
6864 668 : return node;
6865 : }
6866 :
6867 : /*
6868 : * make_lockrows
6869 : * Build a LockRows plan node
6870 : */
6871 : static LockRows *
6872 7868 : make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
6873 : {
6874 7868 : LockRows *node = makeNode(LockRows);
6875 7868 : Plan *plan = &node->plan;
6876 :
6877 7868 : plan->targetlist = lefttree->targetlist;
6878 7868 : plan->qual = NIL;
6879 7868 : plan->lefttree = lefttree;
6880 7868 : plan->righttree = NULL;
6881 :
6882 7868 : node->rowMarks = rowMarks;
6883 7868 : node->epqParam = epqParam;
6884 :
6885 7868 : return node;
6886 : }
6887 :
6888 : /*
6889 : * make_limit
6890 : * Build a Limit plan node
6891 : */
6892 : Limit *
6893 4862 : make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
6894 : LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx,
6895 : Oid *uniqOperators, Oid *uniqCollations)
6896 : {
6897 4862 : Limit *node = makeNode(Limit);
6898 4862 : Plan *plan = &node->plan;
6899 :
6900 4862 : plan->targetlist = lefttree->targetlist;
6901 4862 : plan->qual = NIL;
6902 4862 : plan->lefttree = lefttree;
6903 4862 : plan->righttree = NULL;
6904 :
6905 4862 : node->limitOffset = limitOffset;
6906 4862 : node->limitCount = limitCount;
6907 4862 : node->limitOption = limitOption;
6908 4862 : node->uniqNumCols = uniqNumCols;
6909 4862 : node->uniqColIdx = uniqColIdx;
6910 4862 : node->uniqOperators = uniqOperators;
6911 4862 : node->uniqCollations = uniqCollations;
6912 :
6913 4862 : return node;
6914 : }
6915 :
6916 : /*
6917 : * make_gating_result
6918 : * Build a Result plan node that performs projection of a subplan, and/or
6919 : * applies a one time filter (resconstantqual)
6920 : */
6921 : static Result *
6922 11754 : make_gating_result(List *tlist,
6923 : Node *resconstantqual,
6924 : Plan *subplan)
6925 : {
6926 11754 : Result *node = makeNode(Result);
6927 11754 : Plan *plan = &node->plan;
6928 :
6929 : Assert(subplan != NULL);
6930 :
6931 11754 : plan->targetlist = tlist;
6932 11754 : plan->qual = NIL;
6933 11754 : plan->lefttree = subplan;
6934 11754 : plan->righttree = NULL;
6935 11754 : node->result_type = RESULT_TYPE_GATING;
6936 11754 : node->resconstantqual = resconstantqual;
6937 11754 : node->relids = NULL;
6938 :
6939 11754 : return node;
6940 : }
6941 :
6942 : /*
6943 : * make_one_row_result
6944 : * Build a Result plan node that returns a single row (or possibly no rows,
6945 : * if the one-time filtered defined by resconstantqual returns false)
6946 : *
6947 : * 'rel' should be this path's RelOptInfo. In essence, we're saying that this
6948 : * Result node generates all the tuples for that RelOptInfo. Note that the same
6949 : * consideration can never arise in make_gating_result(), because in that case
6950 : * the tuples are always coming from some subordinate node.
6951 : */
6952 : static Result *
6953 202680 : make_one_row_result(List *tlist,
6954 : Node *resconstantqual,
6955 : RelOptInfo *rel)
6956 : {
6957 202680 : Result *node = makeNode(Result);
6958 202680 : Plan *plan = &node->plan;
6959 :
6960 202680 : plan->targetlist = tlist;
6961 202680 : plan->qual = NIL;
6962 202680 : plan->lefttree = NULL;
6963 202680 : plan->righttree = NULL;
6964 404936 : node->result_type = IS_UPPER_REL(rel) ? RESULT_TYPE_UPPER :
6965 202256 : IS_JOIN_REL(rel) ? RESULT_TYPE_JOIN : RESULT_TYPE_SCAN;
6966 202680 : node->resconstantqual = resconstantqual;
6967 202680 : node->relids = rel->relids;
6968 :
6969 202680 : return node;
6970 : }
6971 :
6972 : /*
6973 : * make_project_set
6974 : * Build a ProjectSet plan node
6975 : */
6976 : static ProjectSet *
6977 11730 : make_project_set(List *tlist,
6978 : Plan *subplan)
6979 : {
6980 11730 : ProjectSet *node = makeNode(ProjectSet);
6981 11730 : Plan *plan = &node->plan;
6982 :
6983 11730 : plan->targetlist = tlist;
6984 11730 : plan->qual = NIL;
6985 11730 : plan->lefttree = subplan;
6986 11730 : plan->righttree = NULL;
6987 :
6988 11730 : return node;
6989 : }
6990 :
6991 : /*
6992 : * make_modifytable
6993 : * Build a ModifyTable plan node
6994 : */
6995 : static ModifyTable *
6996 93504 : make_modifytable(PlannerInfo *root, Plan *subplan,
6997 : CmdType operation, bool canSetTag,
6998 : Index nominalRelation, Index rootRelation,
6999 : List *resultRelations,
7000 : List *updateColnosLists,
7001 : List *withCheckOptionLists, List *returningLists,
7002 : List *rowMarks, OnConflictExpr *onconflict,
7003 : List *mergeActionLists, List *mergeJoinConditions,
7004 : int epqParam)
7005 : {
7006 93504 : ModifyTable *node = makeNode(ModifyTable);
7007 93504 : bool returning_old_or_new = false;
7008 93504 : bool returning_old_or_new_valid = false;
7009 93504 : bool transition_tables = false;
7010 93504 : bool transition_tables_valid = false;
7011 : List *fdw_private_list;
7012 : Bitmapset *direct_modify_plans;
7013 : ListCell *lc;
7014 : int i;
7015 :
7016 : Assert(operation == CMD_MERGE ||
7017 : (operation == CMD_UPDATE ?
7018 : list_length(resultRelations) == list_length(updateColnosLists) :
7019 : updateColnosLists == NIL));
7020 : Assert(withCheckOptionLists == NIL ||
7021 : list_length(resultRelations) == list_length(withCheckOptionLists));
7022 : Assert(returningLists == NIL ||
7023 : list_length(resultRelations) == list_length(returningLists));
7024 :
7025 93504 : node->plan.lefttree = subplan;
7026 93504 : node->plan.righttree = NULL;
7027 93504 : node->plan.qual = NIL;
7028 : /* setrefs.c will fill in the targetlist, if needed */
7029 93504 : node->plan.targetlist = NIL;
7030 :
7031 93504 : node->operation = operation;
7032 93504 : node->canSetTag = canSetTag;
7033 93504 : node->nominalRelation = nominalRelation;
7034 93504 : node->rootRelation = rootRelation;
7035 93504 : node->resultRelations = resultRelations;
7036 93504 : if (!onconflict)
7037 : {
7038 91644 : node->onConflictAction = ONCONFLICT_NONE;
7039 91644 : node->onConflictSet = NIL;
7040 91644 : node->onConflictCols = NIL;
7041 91644 : node->onConflictWhere = NULL;
7042 91644 : node->arbiterIndexes = NIL;
7043 91644 : node->exclRelRTI = 0;
7044 91644 : node->exclRelTlist = NIL;
7045 : }
7046 : else
7047 : {
7048 1860 : node->onConflictAction = onconflict->action;
7049 :
7050 : /*
7051 : * Here we convert the ON CONFLICT UPDATE tlist, if any, to the
7052 : * executor's convention of having consecutive resno's. The actual
7053 : * target column numbers are saved in node->onConflictCols. (This
7054 : * could be done earlier, but there seems no need to.)
7055 : */
7056 1860 : node->onConflictSet = onconflict->onConflictSet;
7057 1860 : node->onConflictCols =
7058 1860 : extract_update_targetlist_colnos(node->onConflictSet);
7059 1860 : node->onConflictWhere = onconflict->onConflictWhere;
7060 :
7061 : /*
7062 : * If a set of unique index inference elements was provided (an
7063 : * INSERT...ON CONFLICT "inference specification"), then infer
7064 : * appropriate unique indexes (or throw an error if none are
7065 : * available).
7066 : */
7067 1860 : node->arbiterIndexes = infer_arbiter_indexes(root);
7068 :
7069 1468 : node->exclRelRTI = onconflict->exclRelIndex;
7070 1468 : node->exclRelTlist = onconflict->exclRelTlist;
7071 : }
7072 93112 : node->updateColnosLists = updateColnosLists;
7073 93112 : node->withCheckOptionLists = withCheckOptionLists;
7074 93112 : node->returningOldAlias = root->parse->returningOldAlias;
7075 93112 : node->returningNewAlias = root->parse->returningNewAlias;
7076 93112 : node->returningLists = returningLists;
7077 93112 : node->rowMarks = rowMarks;
7078 93112 : node->mergeActionLists = mergeActionLists;
7079 93112 : node->mergeJoinConditions = mergeJoinConditions;
7080 93112 : node->epqParam = epqParam;
7081 :
7082 : /*
7083 : * For each result relation that is a foreign table, allow the FDW to
7084 : * construct private plan data, and accumulate it all into a list.
7085 : */
7086 93112 : fdw_private_list = NIL;
7087 93112 : direct_modify_plans = NULL;
7088 93112 : i = 0;
7089 188712 : foreach(lc, resultRelations)
7090 : {
7091 95604 : Index rti = lfirst_int(lc);
7092 : FdwRoutine *fdwroutine;
7093 : List *fdw_private;
7094 : bool direct_modify;
7095 :
7096 : /*
7097 : * If possible, we want to get the FdwRoutine from our RelOptInfo for
7098 : * the table. But sometimes we don't have a RelOptInfo and must get
7099 : * it the hard way. (In INSERT, the target relation is not scanned,
7100 : * so it's not a baserel; and there are also corner cases for
7101 : * updatable views where the target rel isn't a baserel.)
7102 : */
7103 95604 : if (rti < root->simple_rel_array_size &&
7104 95604 : root->simple_rel_array[rti] != NULL)
7105 22544 : {
7106 22544 : RelOptInfo *resultRel = root->simple_rel_array[rti];
7107 :
7108 22544 : fdwroutine = resultRel->fdwroutine;
7109 : }
7110 : else
7111 : {
7112 73060 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7113 :
7114 73060 : if (rte->rtekind == RTE_RELATION &&
7115 73060 : rte->relkind == RELKIND_FOREIGN_TABLE)
7116 : {
7117 : /* Check if the access to foreign tables is restricted */
7118 180 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
7119 : {
7120 : /* there must not be built-in foreign tables */
7121 : Assert(rte->relid >= FirstNormalObjectId);
7122 2 : ereport(ERROR,
7123 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7124 : errmsg("access to non-system foreign table is restricted")));
7125 : }
7126 :
7127 178 : fdwroutine = GetFdwRoutineByRelId(rte->relid);
7128 : }
7129 : else
7130 72880 : fdwroutine = NULL;
7131 : }
7132 :
7133 : /*
7134 : * MERGE is not currently supported for foreign tables. We already
7135 : * checked that when the table mentioned in the query is foreign; but
7136 : * we can still get here if a partitioned table has a foreign table as
7137 : * partition. Disallow that now, to avoid an uglier error message
7138 : * later.
7139 : */
7140 95602 : if (operation == CMD_MERGE && fdwroutine != NULL)
7141 : {
7142 2 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7143 :
7144 2 : ereport(ERROR,
7145 : errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
7146 : errmsg("cannot execute MERGE on relation \"%s\"",
7147 : get_rel_name(rte->relid)),
7148 : errdetail_relkind_not_supported(rte->relkind));
7149 : }
7150 :
7151 : /*
7152 : * Try to modify the foreign table directly if (1) the FDW provides
7153 : * callback functions needed for that and (2) there are no local
7154 : * structures that need to be run for each modified row: row-level
7155 : * triggers on the foreign table, stored generated columns, WITH CHECK
7156 : * OPTIONs from parent views, Vars returning OLD/NEW in the RETURNING
7157 : * list, or transition tables on the named relation.
7158 : */
7159 95600 : direct_modify = false;
7160 95600 : if (fdwroutine != NULL &&
7161 558 : fdwroutine->PlanDirectModify != NULL &&
7162 548 : fdwroutine->BeginDirectModify != NULL &&
7163 548 : fdwroutine->IterateDirectModify != NULL &&
7164 548 : fdwroutine->EndDirectModify != NULL &&
7165 516 : withCheckOptionLists == NIL &&
7166 516 : !has_row_triggers(root, rti, operation) &&
7167 438 : !has_stored_generated_columns(root, rti))
7168 : {
7169 : /*
7170 : * returning_old_or_new and transition_tables are the same for all
7171 : * result relations, respectively
7172 : */
7173 420 : if (!returning_old_or_new_valid)
7174 : {
7175 : returning_old_or_new =
7176 404 : contain_vars_returning_old_or_new((Node *)
7177 404 : root->parse->returningList);
7178 404 : returning_old_or_new_valid = true;
7179 : }
7180 420 : if (!returning_old_or_new)
7181 : {
7182 406 : if (!transition_tables_valid)
7183 : {
7184 390 : transition_tables = has_transition_tables(root,
7185 : nominalRelation,
7186 : operation);
7187 390 : transition_tables_valid = true;
7188 : }
7189 406 : if (!transition_tables)
7190 390 : direct_modify = fdwroutine->PlanDirectModify(root, node,
7191 : rti, i);
7192 : }
7193 : }
7194 95600 : if (direct_modify)
7195 208 : direct_modify_plans = bms_add_member(direct_modify_plans, i);
7196 :
7197 95600 : if (!direct_modify &&
7198 350 : fdwroutine != NULL &&
7199 350 : fdwroutine->PlanForeignModify != NULL)
7200 340 : fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
7201 : else
7202 95260 : fdw_private = NIL;
7203 95600 : fdw_private_list = lappend(fdw_private_list, fdw_private);
7204 95600 : i++;
7205 : }
7206 93108 : node->fdwPrivLists = fdw_private_list;
7207 93108 : node->fdwDirectModifyPlans = direct_modify_plans;
7208 :
7209 93108 : return node;
7210 : }
7211 :
7212 : /*
7213 : * is_projection_capable_path
7214 : * Check whether a given Path node is able to do projection.
7215 : */
7216 : bool
7217 776082 : is_projection_capable_path(Path *path)
7218 : {
7219 : /* Most plan types can project, so just list the ones that can't */
7220 776082 : switch (path->pathtype)
7221 : {
7222 982 : case T_Hash:
7223 : case T_Material:
7224 : case T_Memoize:
7225 : case T_Sort:
7226 : case T_IncrementalSort:
7227 : case T_Unique:
7228 : case T_SetOp:
7229 : case T_LockRows:
7230 : case T_Limit:
7231 : case T_ModifyTable:
7232 : case T_MergeAppend:
7233 : case T_RecursiveUnion:
7234 982 : return false;
7235 0 : case T_CustomScan:
7236 0 : if (castNode(CustomPath, path)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7237 0 : return true;
7238 0 : return false;
7239 16104 : case T_Append:
7240 :
7241 : /*
7242 : * Append can't project, but if an AppendPath is being used to
7243 : * represent a dummy path, what will actually be generated is a
7244 : * Result which can project.
7245 : */
7246 16104 : return IS_DUMMY_APPEND(path);
7247 3348 : case T_ProjectSet:
7248 :
7249 : /*
7250 : * Although ProjectSet certainly projects, say "no" because we
7251 : * don't want the planner to randomly replace its tlist with
7252 : * something else; the SRFs have to stay at top level. This might
7253 : * get relaxed later.
7254 : */
7255 3348 : return false;
7256 755648 : default:
7257 755648 : break;
7258 : }
7259 755648 : return true;
7260 : }
7261 :
7262 : /*
7263 : * is_projection_capable_plan
7264 : * Check whether a given Plan node is able to do projection.
7265 : */
7266 : bool
7267 408 : is_projection_capable_plan(Plan *plan)
7268 : {
7269 : /* Most plan types can project, so just list the ones that can't */
7270 408 : switch (nodeTag(plan))
7271 : {
7272 40 : case T_Hash:
7273 : case T_Material:
7274 : case T_Memoize:
7275 : case T_Sort:
7276 : case T_Unique:
7277 : case T_SetOp:
7278 : case T_LockRows:
7279 : case T_Limit:
7280 : case T_ModifyTable:
7281 : case T_Append:
7282 : case T_MergeAppend:
7283 : case T_RecursiveUnion:
7284 40 : return false;
7285 0 : case T_CustomScan:
7286 0 : if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7287 0 : return true;
7288 0 : return false;
7289 0 : case T_ProjectSet:
7290 :
7291 : /*
7292 : * Although ProjectSet certainly projects, say "no" because we
7293 : * don't want the planner to randomly replace its tlist with
7294 : * something else; the SRFs have to stay at top level. This might
7295 : * get relaxed later.
7296 : */
7297 0 : return false;
7298 368 : default:
7299 368 : break;
7300 : }
7301 368 : return true;
7302 : }
|