LCOV - code coverage report
Current view: top level - src/backend/optimizer/plan - analyzejoins.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18beta1 Lines: 700 724 96.7 %
Date: 2025-05-17 05:15:19 Functions: 27 27 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * analyzejoins.c
       4             :  *    Routines for simplifying joins after initial query analysis
       5             :  *
       6             :  * While we do a great deal of join simplification in prep/prepjointree.c,
       7             :  * certain optimizations cannot be performed at that stage for lack of
       8             :  * detailed information about the query.  The routines here are invoked
       9             :  * after initsplan.c has done its work, and can do additional join removal
      10             :  * and simplification steps based on the information extracted.  The penalty
      11             :  * is that we have to work harder to clean up after ourselves when we modify
      12             :  * the query, since the derived data structures have to be updated too.
      13             :  *
      14             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      15             :  * Portions Copyright (c) 1994, Regents of the University of California
      16             :  *
      17             :  *
      18             :  * IDENTIFICATION
      19             :  *    src/backend/optimizer/plan/analyzejoins.c
      20             :  *
      21             :  *-------------------------------------------------------------------------
      22             :  */
      23             : #include "postgres.h"
      24             : 
      25             : #include "catalog/pg_class.h"
      26             : #include "nodes/nodeFuncs.h"
      27             : #include "optimizer/joininfo.h"
      28             : #include "optimizer/optimizer.h"
      29             : #include "optimizer/pathnode.h"
      30             : #include "optimizer/paths.h"
      31             : #include "optimizer/placeholder.h"
      32             : #include "optimizer/planmain.h"
      33             : #include "optimizer/restrictinfo.h"
      34             : #include "rewrite/rewriteManip.h"
      35             : #include "utils/lsyscache.h"
      36             : 
      37             : /*
      38             :  * Utility structure.  A sorting procedure is needed to simplify the search
      39             :  * of SJE-candidate baserels referencing the same database relation.  Having
      40             :  * collected all baserels from the query jointree, the planner sorts them
      41             :  * according to the reloid value, groups them with the next pass and attempts
      42             :  * to remove self-joins.
      43             :  *
      44             :  * Preliminary sorting prevents quadratic behavior that can be harmful in the
      45             :  * case of numerous joins.
      46             :  */
      47             : typedef struct
      48             : {
      49             :     int         relid;
      50             :     Oid         reloid;
      51             : } SelfJoinCandidate;
      52             : 
      53             : bool        enable_self_join_elimination;
      54             : 
      55             : /* local functions */
      56             : static bool join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo);
      57             : static void remove_leftjoinrel_from_query(PlannerInfo *root, int relid,
      58             :                                           SpecialJoinInfo *sjinfo);
      59             : static void remove_rel_from_restrictinfo(RestrictInfo *rinfo,
      60             :                                          int relid, int ojrelid);
      61             : static void remove_rel_from_eclass(EquivalenceClass *ec,
      62             :                                    SpecialJoinInfo *sjinfo,
      63             :                                    int relid, int subst);
      64             : static List *remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved);
      65             : static bool rel_supports_distinctness(PlannerInfo *root, RelOptInfo *rel);
      66             : static bool rel_is_distinct_for(PlannerInfo *root, RelOptInfo *rel,
      67             :                                 List *clause_list, List **extra_clauses);
      68             : static Oid  distinct_col_search(int colno, List *colnos, List *opids);
      69             : static bool is_innerrel_unique_for(PlannerInfo *root,
      70             :                                    Relids joinrelids,
      71             :                                    Relids outerrelids,
      72             :                                    RelOptInfo *innerrel,
      73             :                                    JoinType jointype,
      74             :                                    List *restrictlist,
      75             :                                    List **extra_clauses);
      76             : static int  self_join_candidates_cmp(const void *a, const void *b);
      77             : static bool replace_relid_callback(Node *node,
      78             :                                    ChangeVarNodes_context *context);
      79             : 
      80             : 
      81             : /*
      82             :  * remove_useless_joins
      83             :  *      Check for relations that don't actually need to be joined at all,
      84             :  *      and remove them from the query.
      85             :  *
      86             :  * We are passed the current joinlist and return the updated list.  Other
      87             :  * data structures that have to be updated are accessible via "root".
      88             :  */
      89             : List *
      90      342304 : remove_useless_joins(PlannerInfo *root, List *joinlist)
      91             : {
      92             :     ListCell   *lc;
      93             : 
      94             :     /*
      95             :      * We are only interested in relations that are left-joined to, so we can
      96             :      * scan the join_info_list to find them easily.
      97             :      */
      98      342304 : restart:
      99      386324 :     foreach(lc, root->join_info_list)
     100             :     {
     101       54704 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
     102             :         int         innerrelid;
     103             :         int         nremoved;
     104             : 
     105             :         /* Skip if not removable */
     106       54704 :         if (!join_is_removable(root, sjinfo))
     107       44020 :             continue;
     108             : 
     109             :         /*
     110             :          * Currently, join_is_removable can only succeed when the sjinfo's
     111             :          * righthand is a single baserel.  Remove that rel from the query and
     112             :          * joinlist.
     113             :          */
     114       10684 :         innerrelid = bms_singleton_member(sjinfo->min_righthand);
     115             : 
     116       10684 :         remove_leftjoinrel_from_query(root, innerrelid, sjinfo);
     117             : 
     118             :         /* We verify that exactly one reference gets removed from joinlist */
     119       10684 :         nremoved = 0;
     120       10684 :         joinlist = remove_rel_from_joinlist(joinlist, innerrelid, &nremoved);
     121       10684 :         if (nremoved != 1)
     122           0 :             elog(ERROR, "failed to find relation %d in joinlist", innerrelid);
     123             : 
     124             :         /*
     125             :          * We can delete this SpecialJoinInfo from the list too, since it's no
     126             :          * longer of interest.  (Since we'll restart the foreach loop
     127             :          * immediately, we don't bother with foreach_delete_current.)
     128             :          */
     129       10684 :         root->join_info_list = list_delete_cell(root->join_info_list, lc);
     130             : 
     131             :         /*
     132             :          * Restart the scan.  This is necessary to ensure we find all
     133             :          * removable joins independently of ordering of the join_info_list
     134             :          * (note that removal of attr_needed bits may make a join appear
     135             :          * removable that did not before).
     136             :          */
     137       10684 :         goto restart;
     138             :     }
     139             : 
     140      331620 :     return joinlist;
     141             : }
     142             : 
     143             : /*
     144             :  * join_is_removable
     145             :  *    Check whether we need not perform this special join at all, because
     146             :  *    it will just duplicate its left input.
     147             :  *
     148             :  * This is true for a left join for which the join condition cannot match
     149             :  * more than one inner-side row.  (There are other possibly interesting
     150             :  * cases, but we don't have the infrastructure to prove them.)  We also
     151             :  * have to check that the inner side doesn't generate any variables needed
     152             :  * above the join.
     153             :  */
     154             : static bool
     155       54704 : join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo)
     156             : {
     157             :     int         innerrelid;
     158             :     RelOptInfo *innerrel;
     159             :     Relids      inputrelids;
     160             :     Relids      joinrelids;
     161       54704 :     List       *clause_list = NIL;
     162             :     ListCell   *l;
     163             :     int         attroff;
     164             : 
     165             :     /*
     166             :      * Must be a left join to a single baserel, else we aren't going to be
     167             :      * able to do anything with it.
     168             :      */
     169       54704 :     if (sjinfo->jointype != JOIN_LEFT)
     170        9940 :         return false;
     171             : 
     172       44764 :     if (!bms_get_singleton_member(sjinfo->min_righthand, &innerrelid))
     173        1298 :         return false;
     174             : 
     175             :     /*
     176             :      * Never try to eliminate a left join to the query result rel.  Although
     177             :      * the case is syntactically impossible in standard SQL, MERGE will build
     178             :      * a join tree that looks exactly like that.
     179             :      */
     180       43466 :     if (innerrelid == root->parse->resultRelation)
     181         758 :         return false;
     182             : 
     183       42708 :     innerrel = find_base_rel(root, innerrelid);
     184             : 
     185             :     /*
     186             :      * Before we go to the effort of checking whether any innerrel variables
     187             :      * are needed above the join, make a quick check to eliminate cases in
     188             :      * which we will surely be unable to prove uniqueness of the innerrel.
     189             :      */
     190       42708 :     if (!rel_supports_distinctness(root, innerrel))
     191        3116 :         return false;
     192             : 
     193             :     /* Compute the relid set for the join we are considering */
     194       39592 :     inputrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
     195             :     Assert(sjinfo->ojrelid != 0);
     196       39592 :     joinrelids = bms_copy(inputrelids);
     197       39592 :     joinrelids = bms_add_member(joinrelids, sjinfo->ojrelid);
     198             : 
     199             :     /*
     200             :      * We can't remove the join if any inner-rel attributes are used above the
     201             :      * join.  Here, "above" the join includes pushed-down conditions, so we
     202             :      * should reject if attr_needed includes the OJ's own relid; therefore,
     203             :      * compare to inputrelids not joinrelids.
     204             :      *
     205             :      * As a micro-optimization, it seems better to start with max_attr and
     206             :      * count down rather than starting with min_attr and counting up, on the
     207             :      * theory that the system attributes are somewhat less likely to be wanted
     208             :      * and should be tested last.
     209             :      */
     210      351474 :     for (attroff = innerrel->max_attr - innerrel->min_attr;
     211             :          attroff >= 0;
     212      311882 :          attroff--)
     213             :     {
     214      340628 :         if (!bms_is_subset(innerrel->attr_needed[attroff], inputrelids))
     215       28746 :             return false;
     216             :     }
     217             : 
     218             :     /*
     219             :      * Similarly check that the inner rel isn't needed by any PlaceHolderVars
     220             :      * that will be used above the join.  The PHV case is a little bit more
     221             :      * complicated, because PHVs may have been assigned a ph_eval_at location
     222             :      * that includes the innerrel, yet their contained expression might not
     223             :      * actually reference the innerrel (it could be just a constant, for
     224             :      * instance).  If such a PHV is due to be evaluated above the join then it
     225             :      * needn't prevent join removal.
     226             :      */
     227       11038 :     foreach(l, root->placeholder_list)
     228             :     {
     229         228 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
     230             : 
     231         228 :         if (bms_overlap(phinfo->ph_lateral, innerrel->relids))
     232          36 :             return false;       /* it references innerrel laterally */
     233         228 :         if (!bms_overlap(phinfo->ph_eval_at, innerrel->relids))
     234          54 :             continue;           /* it definitely doesn't reference innerrel */
     235         174 :         if (bms_is_subset(phinfo->ph_needed, inputrelids))
     236           6 :             continue;           /* PHV is not used above the join */
     237         168 :         if (!bms_is_member(sjinfo->ojrelid, phinfo->ph_eval_at))
     238          30 :             return false;       /* it has to be evaluated below the join */
     239             : 
     240             :         /*
     241             :          * We need to be sure there will still be a place to evaluate the PHV
     242             :          * if we remove the join, ie that ph_eval_at wouldn't become empty.
     243             :          */
     244         138 :         if (!bms_overlap(sjinfo->min_lefthand, phinfo->ph_eval_at))
     245           6 :             return false;       /* there isn't any other place to eval PHV */
     246             :         /* Check contained expression last, since this is a bit expensive */
     247         132 :         if (bms_overlap(pull_varnos(root, (Node *) phinfo->ph_var->phexpr),
     248         132 :                         innerrel->relids))
     249           0 :             return false;       /* contained expression references innerrel */
     250             :     }
     251             : 
     252             :     /*
     253             :      * Search for mergejoinable clauses that constrain the inner rel against
     254             :      * either the outer rel or a pseudoconstant.  If an operator is
     255             :      * mergejoinable then it behaves like equality for some btree opclass, so
     256             :      * it's what we want.  The mergejoinability test also eliminates clauses
     257             :      * containing volatile functions, which we couldn't depend on.
     258             :      */
     259       21930 :     foreach(l, innerrel->joininfo)
     260             :     {
     261       11120 :         RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
     262             : 
     263             :         /*
     264             :          * If the current join commutes with some other outer join(s) via
     265             :          * outer join identity 3, there will be multiple clones of its join
     266             :          * clauses in the joininfo list.  We want to consider only the
     267             :          * has_clone form of such clauses.  Processing more than one form
     268             :          * would be wasteful, and also some of the others would confuse the
     269             :          * RINFO_IS_PUSHED_DOWN test below.
     270             :          */
     271       11120 :         if (restrictinfo->is_clone)
     272         100 :             continue;           /* ignore it */
     273             : 
     274             :         /*
     275             :          * If it's not a join clause for this outer join, we can't use it.
     276             :          * Note that if the clause is pushed-down, then it is logically from
     277             :          * above the outer join, even if it references no other rels (it might
     278             :          * be from WHERE, for example).
     279             :          */
     280       11020 :         if (RINFO_IS_PUSHED_DOWN(restrictinfo, joinrelids))
     281         120 :             continue;           /* ignore; not useful here */
     282             : 
     283             :         /* Ignore if it's not a mergejoinable clause */
     284       10900 :         if (!restrictinfo->can_join ||
     285       10826 :             restrictinfo->mergeopfamilies == NIL)
     286          74 :             continue;           /* not mergejoinable */
     287             : 
     288             :         /*
     289             :          * Check if the clause has the form "outer op inner" or "inner op
     290             :          * outer", and if so mark which side is inner.
     291             :          */
     292       10826 :         if (!clause_sides_match_join(restrictinfo, sjinfo->min_lefthand,
     293             :                                      innerrel->relids))
     294           6 :             continue;           /* no good for these input relations */
     295             : 
     296             :         /* OK, add to list */
     297       10820 :         clause_list = lappend(clause_list, restrictinfo);
     298             :     }
     299             : 
     300             :     /*
     301             :      * Now that we have the relevant equality join clauses, try to prove the
     302             :      * innerrel distinct.
     303             :      */
     304       10810 :     if (rel_is_distinct_for(root, innerrel, clause_list, NULL))
     305       10684 :         return true;
     306             : 
     307             :     /*
     308             :      * Some day it would be nice to check for other methods of establishing
     309             :      * distinctness.
     310             :      */
     311         126 :     return false;
     312             : }
     313             : 
     314             : 
     315             : /*
     316             :  * Remove the target rel->relid and references to the target join from the
     317             :  * planner's data structures, having determined that there is no need
     318             :  * to include them in the query. Optionally replace them with subst if subst
     319             :  * is non-negative.
     320             :  *
     321             :  * This function updates only parts needed for both left-join removal and
     322             :  * self-join removal.
     323             :  */
     324             : static void
     325       11284 : remove_rel_from_query(PlannerInfo *root, RelOptInfo *rel,
     326             :                       int subst, SpecialJoinInfo *sjinfo,
     327             :                       Relids joinrelids)
     328             : {
     329       11284 :     int         relid = rel->relid;
     330             :     Index       rti;
     331             :     ListCell   *l;
     332             : 
     333             :     /*
     334             :      * Update all_baserels and related relid sets.
     335             :      */
     336       11284 :     root->all_baserels = adjust_relid_set(root->all_baserels, relid, subst);
     337       11284 :     root->all_query_rels = adjust_relid_set(root->all_query_rels, relid, subst);
     338             : 
     339       11284 :     if (sjinfo != NULL)
     340             :     {
     341       21368 :         root->outer_join_rels = bms_del_member(root->outer_join_rels,
     342       10684 :                                                sjinfo->ojrelid);
     343       10684 :         root->all_query_rels = bms_del_member(root->all_query_rels,
     344       10684 :                                               sjinfo->ojrelid);
     345             :     }
     346             : 
     347             :     /*
     348             :      * Likewise remove references from SpecialJoinInfo data structures.
     349             :      *
     350             :      * This is relevant in case the outer join we're deleting is nested inside
     351             :      * other outer joins: the upper joins' relid sets have to be adjusted. The
     352             :      * RHS of the target outer join will be made empty here, but that's OK
     353             :      * since caller will delete that SpecialJoinInfo entirely.
     354             :      */
     355       25786 :     foreach(l, root->join_info_list)
     356             :     {
     357       14502 :         SpecialJoinInfo *sjinf = (SpecialJoinInfo *) lfirst(l);
     358             : 
     359             :         /*
     360             :          * initsplan.c is fairly cavalier about allowing SpecialJoinInfos'
     361             :          * lefthand/righthand relid sets to be shared with other data
     362             :          * structures.  Ensure that we don't modify the original relid sets.
     363             :          * (The commute_xxx sets are always per-SpecialJoinInfo though.)
     364             :          */
     365       14502 :         sjinf->min_lefthand = bms_copy(sjinf->min_lefthand);
     366       14502 :         sjinf->min_righthand = bms_copy(sjinf->min_righthand);
     367       14502 :         sjinf->syn_lefthand = bms_copy(sjinf->syn_lefthand);
     368       14502 :         sjinf->syn_righthand = bms_copy(sjinf->syn_righthand);
     369             :         /* Now remove relid from the sets: */
     370       14502 :         sjinf->min_lefthand = adjust_relid_set(sjinf->min_lefthand, relid, subst);
     371       14502 :         sjinf->min_righthand = adjust_relid_set(sjinf->min_righthand, relid, subst);
     372       14502 :         sjinf->syn_lefthand = adjust_relid_set(sjinf->syn_lefthand, relid, subst);
     373       14502 :         sjinf->syn_righthand = adjust_relid_set(sjinf->syn_righthand, relid, subst);
     374             : 
     375       14502 :         if (sjinfo != NULL)
     376             :         {
     377             :             Assert(subst <= 0);
     378             : 
     379             :             /* Remove sjinfo->ojrelid bits from the sets: */
     380       28800 :             sjinf->min_lefthand = bms_del_member(sjinf->min_lefthand,
     381       14400 :                                                  sjinfo->ojrelid);
     382       28800 :             sjinf->min_righthand = bms_del_member(sjinf->min_righthand,
     383       14400 :                                                   sjinfo->ojrelid);
     384       28800 :             sjinf->syn_lefthand = bms_del_member(sjinf->syn_lefthand,
     385       14400 :                                                  sjinfo->ojrelid);
     386       28800 :             sjinf->syn_righthand = bms_del_member(sjinf->syn_righthand,
     387       14400 :                                                   sjinfo->ojrelid);
     388             :             /* relid cannot appear in these fields, but ojrelid can: */
     389       28800 :             sjinf->commute_above_l = bms_del_member(sjinf->commute_above_l,
     390       14400 :                                                     sjinfo->ojrelid);
     391       28800 :             sjinf->commute_above_r = bms_del_member(sjinf->commute_above_r,
     392       14400 :                                                     sjinfo->ojrelid);
     393       28800 :             sjinf->commute_below_l = bms_del_member(sjinf->commute_below_l,
     394       14400 :                                                     sjinfo->ojrelid);
     395       14400 :             sjinf->commute_below_r = bms_del_member(sjinf->commute_below_r,
     396       14400 :                                                     sjinfo->ojrelid);
     397             :         }
     398             :         else
     399             :         {
     400             :             Assert(subst > 0);
     401             : 
     402         102 :             ChangeVarNodesExtended((Node *) sjinf->semi_rhs_exprs, relid, subst,
     403             :                                    0, replace_relid_callback);
     404             :         }
     405             :     }
     406             : 
     407             :     /*
     408             :      * Likewise remove references from PlaceHolderVar data structures,
     409             :      * removing any no-longer-needed placeholders entirely.  We remove PHV
     410             :      * only for left-join removal.  With self-join elimination, PHVs already
     411             :      * get moved to the remaining relation, where they might still be needed.
     412             :      * It might also happen that we skip the removal of some PHVs that could
     413             :      * be removed.  However, the overhead of extra PHVs is small compared to
     414             :      * the complexity of analysis needed to remove them.
     415             :      *
     416             :      * Removal is a bit trickier than it might seem: we can remove PHVs that
     417             :      * are used at the target rel and/or in the join qual, but not those that
     418             :      * are used at join partner rels or above the join.  It's not that easy to
     419             :      * distinguish PHVs used at partner rels from those used in the join qual,
     420             :      * since they will both have ph_needed sets that are subsets of
     421             :      * joinrelids.  However, a PHV used at a partner rel could not have the
     422             :      * target rel in ph_eval_at, so we check that while deciding whether to
     423             :      * remove or just update the PHV.  There is no corresponding test in
     424             :      * join_is_removable because it doesn't need to distinguish those cases.
     425             :      */
     426       11500 :     foreach(l, root->placeholder_list)
     427             :     {
     428         216 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
     429             : 
     430             :         Assert(sjinfo == NULL || !bms_is_member(relid, phinfo->ph_lateral));
     431         390 :         if (sjinfo != NULL &&
     432         204 :             bms_is_subset(phinfo->ph_needed, joinrelids) &&
     433          30 :             bms_is_member(relid, phinfo->ph_eval_at) &&
     434          12 :             !bms_is_member(sjinfo->ojrelid, phinfo->ph_eval_at))
     435             :         {
     436             :             /*
     437             :              * This code shouldn't be executed if one relation is substituted
     438             :              * with another: in this case, the placeholder may be employed in
     439             :              * a filter inside the scan node the SJE removes.
     440             :              */
     441           6 :             root->placeholder_list = foreach_delete_current(root->placeholder_list,
     442             :                                                             l);
     443           6 :             root->placeholder_array[phinfo->phid] = NULL;
     444             :         }
     445             :         else
     446             :         {
     447         210 :             PlaceHolderVar *phv = phinfo->ph_var;
     448             : 
     449         210 :             phinfo->ph_eval_at = adjust_relid_set(phinfo->ph_eval_at, relid, subst);
     450         210 :             if (sjinfo != NULL)
     451         168 :                 phinfo->ph_eval_at = adjust_relid_set(phinfo->ph_eval_at,
     452         168 :                                                       sjinfo->ojrelid, subst);
     453             :             Assert(!bms_is_empty(phinfo->ph_eval_at));   /* checked previously */
     454             :             /* Reduce ph_needed to contain only "relation 0"; see below */
     455         210 :             if (bms_is_member(0, phinfo->ph_needed))
     456         102 :                 phinfo->ph_needed = bms_make_singleton(0);
     457             :             else
     458         108 :                 phinfo->ph_needed = NULL;
     459             : 
     460         210 :             phinfo->ph_lateral = adjust_relid_set(phinfo->ph_lateral, relid, subst);
     461             : 
     462             :             /*
     463             :              * ph_lateral might contain rels mentioned in ph_eval_at after the
     464             :              * replacement, remove them.
     465             :              */
     466         210 :             phinfo->ph_lateral = bms_difference(phinfo->ph_lateral, phinfo->ph_eval_at);
     467             :             /* ph_lateral might or might not be empty */
     468             : 
     469         210 :             phv->phrels = adjust_relid_set(phv->phrels, relid, subst);
     470         210 :             if (sjinfo != NULL)
     471         168 :                 phv->phrels = adjust_relid_set(phv->phrels,
     472         168 :                                                sjinfo->ojrelid, subst);
     473             :             Assert(!bms_is_empty(phv->phrels));
     474             : 
     475         210 :             ChangeVarNodesExtended((Node *) phv->phexpr, relid, subst, 0,
     476             :                                    replace_relid_callback);
     477             : 
     478             :             Assert(phv->phnullingrels == NULL); /* no need to adjust */
     479             :         }
     480             :     }
     481             : 
     482             :     /*
     483             :      * Likewise remove references from EquivalenceClasses.
     484             :      */
     485       59610 :     foreach(l, root->eq_classes)
     486             :     {
     487       48326 :         EquivalenceClass *ec = (EquivalenceClass *) lfirst(l);
     488             : 
     489       48326 :         if (bms_is_member(relid, ec->ec_relids) ||
     490       31822 :             (sjinfo == NULL || bms_is_member(sjinfo->ojrelid, ec->ec_relids)))
     491       16504 :             remove_rel_from_eclass(ec, sjinfo, relid, subst);
     492             :     }
     493             : 
     494             :     /*
     495             :      * Finally, we must recompute per-Var attr_needed and per-PlaceHolderVar
     496             :      * ph_needed relid sets.  These have to be known accurately, else we may
     497             :      * fail to remove other now-removable outer joins.  And our removal of the
     498             :      * join clause(s) for this outer join may mean that Vars that were
     499             :      * formerly needed no longer are.  So we have to do this honestly by
     500             :      * repeating the construction of those relid sets.  We can cheat to one
     501             :      * small extent: we can avoid re-examining the targetlist and HAVING qual
     502             :      * by preserving "relation 0" bits from the existing relid sets.  This is
     503             :      * safe because we'd never remove such references.
     504             :      *
     505             :      * So, start by removing all other bits from attr_needed sets and
     506             :      * lateral_vars lists.  (We already did this above for ph_needed.)
     507             :      */
     508       70108 :     for (rti = 1; rti < root->simple_rel_array_size; rti++)
     509             :     {
     510       58824 :         RelOptInfo *otherrel = root->simple_rel_array[rti];
     511             :         int         attroff;
     512             : 
     513             :         /* there may be empty slots corresponding to non-baserel RTEs */
     514       58824 :         if (otherrel == NULL)
     515       28644 :             continue;
     516             : 
     517             :         Assert(otherrel->relid == rti); /* sanity check on array */
     518             : 
     519      669070 :         for (attroff = otherrel->max_attr - otherrel->min_attr;
     520             :              attroff >= 0;
     521      638890 :              attroff--)
     522             :         {
     523      638890 :             if (bms_is_member(0, otherrel->attr_needed[attroff]))
     524       46280 :                 otherrel->attr_needed[attroff] = bms_make_singleton(0);
     525             :             else
     526      592610 :                 otherrel->attr_needed[attroff] = NULL;
     527             :         }
     528             : 
     529       30180 :         if (subst > 0)
     530        1496 :             ChangeVarNodesExtended((Node *) otherrel->lateral_vars, relid,
     531             :                                    subst, 0, replace_relid_callback);
     532             :     }
     533       11284 : }
     534             : 
     535             : /*
     536             :  * Remove the target relid and references to the target join from the
     537             :  * planner's data structures, having determined that there is no need
     538             :  * to include them in the query.
     539             :  *
     540             :  * We are not terribly thorough here.  We only bother to update parts of
     541             :  * the planner's data structures that will actually be consulted later.
     542             :  */
     543             : static void
     544       10684 : remove_leftjoinrel_from_query(PlannerInfo *root, int relid,
     545             :                               SpecialJoinInfo *sjinfo)
     546             : {
     547       10684 :     RelOptInfo *rel = find_base_rel(root, relid);
     548       10684 :     int         ojrelid = sjinfo->ojrelid;
     549             :     Relids      joinrelids;
     550             :     Relids      join_plus_commute;
     551             :     List       *joininfos;
     552             :     ListCell   *l;
     553             : 
     554             :     /* Compute the relid set for the join we are considering */
     555       10684 :     joinrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
     556             :     Assert(ojrelid != 0);
     557       10684 :     joinrelids = bms_add_member(joinrelids, ojrelid);
     558             : 
     559       10684 :     remove_rel_from_query(root, rel, -1, sjinfo, joinrelids);
     560             : 
     561             :     /*
     562             :      * Remove any joinquals referencing the rel from the joininfo lists.
     563             :      *
     564             :      * In some cases, a joinqual has to be put back after deleting its
     565             :      * reference to the target rel.  This can occur for pseudoconstant and
     566             :      * outerjoin-delayed quals, which can get marked as requiring the rel in
     567             :      * order to force them to be evaluated at or above the join.  We can't
     568             :      * just discard them, though.  Only quals that logically belonged to the
     569             :      * outer join being discarded should be removed from the query.
     570             :      *
     571             :      * We might encounter a qual that is a clone of a deletable qual with some
     572             :      * outer-join relids added (see deconstruct_distribute_oj_quals).  To
     573             :      * ensure we get rid of such clones as well, add the relids of all OJs
     574             :      * commutable with this one to the set we test against for
     575             :      * pushed-down-ness.
     576             :      */
     577       10684 :     join_plus_commute = bms_union(joinrelids,
     578       10684 :                                   sjinfo->commute_above_r);
     579       10684 :     join_plus_commute = bms_add_members(join_plus_commute,
     580       10684 :                                         sjinfo->commute_below_l);
     581             : 
     582             :     /*
     583             :      * We must make a copy of the rel's old joininfo list before starting the
     584             :      * loop, because otherwise remove_join_clause_from_rels would destroy the
     585             :      * list while we're scanning it.
     586             :      */
     587       10684 :     joininfos = list_copy(rel->joininfo);
     588       21702 :     foreach(l, joininfos)
     589             :     {
     590       11018 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
     591             : 
     592       11018 :         remove_join_clause_from_rels(root, rinfo, rinfo->required_relids);
     593             : 
     594       11018 :         if (RINFO_IS_PUSHED_DOWN(rinfo, join_plus_commute))
     595             :         {
     596             :             /*
     597             :              * There might be references to relid or ojrelid in the
     598             :              * RestrictInfo's relid sets, as a consequence of PHVs having had
     599             :              * ph_eval_at sets that include those.  We already checked above
     600             :              * that any such PHV is safe (and updated its ph_eval_at), so we
     601             :              * can just drop those references.
     602             :              */
     603         120 :             remove_rel_from_restrictinfo(rinfo, relid, ojrelid);
     604             : 
     605             :             /*
     606             :              * Cross-check that the clause itself does not reference the
     607             :              * target rel or join.
     608             :              */
     609             : #ifdef USE_ASSERT_CHECKING
     610             :             {
     611             :                 Relids      clause_varnos = pull_varnos(root,
     612             :                                                         (Node *) rinfo->clause);
     613             : 
     614             :                 Assert(!bms_is_member(relid, clause_varnos));
     615             :                 Assert(!bms_is_member(ojrelid, clause_varnos));
     616             :             }
     617             : #endif
     618             :             /* Now throw it back into the joininfo lists */
     619         120 :             distribute_restrictinfo_to_rels(root, rinfo);
     620             :         }
     621             :     }
     622             : 
     623             :     /*
     624             :      * There may be references to the rel in root->fkey_list, but if so,
     625             :      * match_foreign_keys_to_quals() will get rid of them.
     626             :      */
     627             : 
     628             :     /*
     629             :      * Now remove the rel from the baserel array to prevent it from being
     630             :      * referenced again.  (We can't do this earlier because
     631             :      * remove_join_clause_from_rels will touch it.)
     632             :      */
     633       10684 :     root->simple_rel_array[relid] = NULL;
     634             : 
     635             :     /* And nuke the RelOptInfo, just in case there's another access path */
     636       10684 :     pfree(rel);
     637             : 
     638             :     /*
     639             :      * Now repeat construction of attr_needed bits coming from all other
     640             :      * sources.
     641             :      */
     642       10684 :     rebuild_placeholder_attr_needed(root);
     643       10684 :     rebuild_joinclause_attr_needed(root);
     644       10684 :     rebuild_eclass_attr_needed(root);
     645       10684 :     rebuild_lateral_attr_needed(root);
     646       10684 : }
     647             : 
     648             : /*
     649             :  * Remove any references to relid or ojrelid from the RestrictInfo.
     650             :  *
     651             :  * We only bother to clean out bits in clause_relids and required_relids,
     652             :  * not nullingrel bits in contained Vars and PHVs.  (This might have to be
     653             :  * improved sometime.)  However, if the RestrictInfo contains an OR clause
     654             :  * we have to also clean up the sub-clauses.
     655             :  */
     656             : static void
     657        4790 : remove_rel_from_restrictinfo(RestrictInfo *rinfo, int relid, int ojrelid)
     658             : {
     659             :     /*
     660             :      * initsplan.c is fairly cavalier about allowing RestrictInfos to share
     661             :      * relid sets with other RestrictInfos, and SpecialJoinInfos too.  Make
     662             :      * sure this RestrictInfo has its own relid sets before we modify them.
     663             :      * (In present usage, clause_relids is probably not shared, but
     664             :      * required_relids could be; let's not assume anything.)
     665             :      */
     666        4790 :     rinfo->clause_relids = bms_copy(rinfo->clause_relids);
     667        4790 :     rinfo->clause_relids = bms_del_member(rinfo->clause_relids, relid);
     668        4790 :     rinfo->clause_relids = bms_del_member(rinfo->clause_relids, ojrelid);
     669             :     /* Likewise for required_relids */
     670        4790 :     rinfo->required_relids = bms_copy(rinfo->required_relids);
     671        4790 :     rinfo->required_relids = bms_del_member(rinfo->required_relids, relid);
     672        4790 :     rinfo->required_relids = bms_del_member(rinfo->required_relids, ojrelid);
     673             : 
     674             :     /* If it's an OR, recurse to clean up sub-clauses */
     675        4790 :     if (restriction_is_or_clause(rinfo))
     676             :     {
     677             :         ListCell   *lc;
     678             : 
     679             :         Assert(is_orclause(rinfo->orclause));
     680          18 :         foreach(lc, ((BoolExpr *) rinfo->orclause)->args)
     681             :         {
     682          12 :             Node       *orarg = (Node *) lfirst(lc);
     683             : 
     684             :             /* OR arguments should be ANDs or sub-RestrictInfos */
     685          12 :             if (is_andclause(orarg))
     686             :             {
     687           0 :                 List       *andargs = ((BoolExpr *) orarg)->args;
     688             :                 ListCell   *lc2;
     689             : 
     690           0 :                 foreach(lc2, andargs)
     691             :                 {
     692           0 :                     RestrictInfo *rinfo2 = lfirst_node(RestrictInfo, lc2);
     693             : 
     694           0 :                     remove_rel_from_restrictinfo(rinfo2, relid, ojrelid);
     695             :                 }
     696             :             }
     697             :             else
     698             :             {
     699          12 :                 RestrictInfo *rinfo2 = castNode(RestrictInfo, orarg);
     700             : 
     701          12 :                 remove_rel_from_restrictinfo(rinfo2, relid, ojrelid);
     702             :             }
     703             :         }
     704             :     }
     705        4790 : }
     706             : 
     707             : /*
     708             :  * Remove any references to relid or sjinfo->ojrelid (if sjinfo != NULL)
     709             :  * from the EquivalenceClass.
     710             :  *
     711             :  * Like remove_rel_from_restrictinfo, we don't worry about cleaning out
     712             :  * any nullingrel bits in contained Vars and PHVs.  (This might have to be
     713             :  * improved sometime.)  We do need to fix the EC and EM relid sets to ensure
     714             :  * that implied join equalities will be generated at the appropriate join
     715             :  * level(s).
     716             :  */
     717             : static void
     718       16504 : remove_rel_from_eclass(EquivalenceClass *ec, SpecialJoinInfo *sjinfo,
     719             :                        int relid, int subst)
     720             : {
     721             :     ListCell   *lc;
     722             : 
     723             :     /* Fix up the EC's overall relids */
     724       16504 :     ec->ec_relids = adjust_relid_set(ec->ec_relids, relid, subst);
     725       16504 :     if (sjinfo != NULL)
     726       15436 :         ec->ec_relids = adjust_relid_set(ec->ec_relids,
     727       15436 :                                          sjinfo->ojrelid, subst);
     728             : 
     729             :     /*
     730             :      * We don't expect any EC child members to exist at this point.  Ensure
     731             :      * that's the case, otherwise, we might be getting asked to do something
     732             :      * this function hasn't been coded for.
     733             :      */
     734             :     Assert(ec->ec_childmembers == NULL);
     735             : 
     736             :     /*
     737             :      * Fix up the member expressions.  Any non-const member that ends with
     738             :      * empty em_relids must be a Var or PHV of the removed relation.  We don't
     739             :      * need it anymore, so we can drop it.
     740             :      */
     741       38448 :     foreach(lc, ec->ec_members)
     742             :     {
     743       21944 :         EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
     744             : 
     745       21944 :         if (bms_is_member(relid, cur_em->em_relids) ||
     746        4658 :             (sjinfo != NULL && bms_is_member(sjinfo->ojrelid,
     747        4658 :                                              cur_em->em_relids)))
     748             :         {
     749             :             Assert(!cur_em->em_is_const);
     750       15436 :             cur_em->em_relids = adjust_relid_set(cur_em->em_relids, relid, subst);
     751       15436 :             if (sjinfo != NULL)
     752       15436 :                 cur_em->em_relids = adjust_relid_set(cur_em->em_relids,
     753       15436 :                                                      sjinfo->ojrelid, subst);
     754       15436 :             if (bms_is_empty(cur_em->em_relids))
     755       15424 :                 ec->ec_members = foreach_delete_current(ec->ec_members, lc);
     756             :         }
     757             :     }
     758             : 
     759             :     /* Fix up the source clauses, in case we can re-use them later */
     760       22218 :     foreach(lc, ec->ec_sources)
     761             :     {
     762        5714 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
     763             : 
     764        5714 :         if (sjinfo == NULL)
     765        1056 :             ChangeVarNodesExtended((Node *) rinfo, relid, subst, 0,
     766             :                                    replace_relid_callback);
     767             :         else
     768        4658 :             remove_rel_from_restrictinfo(rinfo, relid, sjinfo->ojrelid);
     769             :     }
     770             : 
     771             :     /*
     772             :      * Rather than expend code on fixing up any already-derived clauses, just
     773             :      * drop them.  (At this point, any such clauses would be base restriction
     774             :      * clauses, which we'd not need anymore anyway.)
     775             :      */
     776       16504 :     ec_clear_derived_clauses(ec);
     777       16504 : }
     778             : 
     779             : /*
     780             :  * Remove any occurrences of the target relid from a joinlist structure.
     781             :  *
     782             :  * It's easiest to build a whole new list structure, so we handle it that
     783             :  * way.  Efficiency is not a big deal here.
     784             :  *
     785             :  * *nremoved is incremented by the number of occurrences removed (there
     786             :  * should be exactly one, but the caller checks that).
     787             :  */
     788             : static List *
     789       11548 : remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved)
     790             : {
     791       11548 :     List       *result = NIL;
     792             :     ListCell   *jl;
     793             : 
     794       41992 :     foreach(jl, joinlist)
     795             :     {
     796       30444 :         Node       *jlnode = (Node *) lfirst(jl);
     797             : 
     798       30444 :         if (IsA(jlnode, RangeTblRef))
     799             :         {
     800       30180 :             int         varno = ((RangeTblRef *) jlnode)->rtindex;
     801             : 
     802       30180 :             if (varno == relid)
     803       11284 :                 (*nremoved)++;
     804             :             else
     805       18896 :                 result = lappend(result, jlnode);
     806             :         }
     807         264 :         else if (IsA(jlnode, List))
     808             :         {
     809             :             /* Recurse to handle subproblem */
     810             :             List       *sublist;
     811             : 
     812         264 :             sublist = remove_rel_from_joinlist((List *) jlnode,
     813             :                                                relid, nremoved);
     814             :             /* Avoid including empty sub-lists in the result */
     815         264 :             if (sublist)
     816         264 :                 result = lappend(result, sublist);
     817             :         }
     818             :         else
     819             :         {
     820           0 :             elog(ERROR, "unrecognized joinlist node type: %d",
     821             :                  (int) nodeTag(jlnode));
     822             :         }
     823             :     }
     824             : 
     825       11548 :     return result;
     826             : }
     827             : 
     828             : 
     829             : /*
     830             :  * reduce_unique_semijoins
     831             :  *      Check for semijoins that can be simplified to plain inner joins
     832             :  *      because the inner relation is provably unique for the join clauses.
     833             :  *
     834             :  * Ideally this would happen during reduce_outer_joins, but we don't have
     835             :  * enough information at that point.
     836             :  *
     837             :  * To perform the strength reduction when applicable, we need only delete
     838             :  * the semijoin's SpecialJoinInfo from root->join_info_list.  (We don't
     839             :  * bother fixing the join type attributed to it in the query jointree,
     840             :  * since that won't be consulted again.)
     841             :  */
     842             : void
     843      331620 : reduce_unique_semijoins(PlannerInfo *root)
     844             : {
     845             :     ListCell   *lc;
     846             : 
     847             :     /*
     848             :      * Scan the join_info_list to find semijoins.
     849             :      */
     850      375414 :     foreach(lc, root->join_info_list)
     851             :     {
     852       43794 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
     853             :         int         innerrelid;
     854             :         RelOptInfo *innerrel;
     855             :         Relids      joinrelids;
     856             :         List       *restrictlist;
     857             : 
     858             :         /*
     859             :          * Must be a semijoin to a single baserel, else we aren't going to be
     860             :          * able to do anything with it.
     861             :          */
     862       43794 :         if (sjinfo->jointype != JOIN_SEMI)
     863       43484 :             continue;
     864             : 
     865        4812 :         if (!bms_get_singleton_member(sjinfo->min_righthand, &innerrelid))
     866         164 :             continue;
     867             : 
     868        4648 :         innerrel = find_base_rel(root, innerrelid);
     869             : 
     870             :         /*
     871             :          * Before we trouble to run generate_join_implied_equalities, make a
     872             :          * quick check to eliminate cases in which we will surely be unable to
     873             :          * prove uniqueness of the innerrel.
     874             :          */
     875        4648 :         if (!rel_supports_distinctness(root, innerrel))
     876         944 :             continue;
     877             : 
     878             :         /* Compute the relid set for the join we are considering */
     879        3704 :         joinrelids = bms_union(sjinfo->min_lefthand, sjinfo->min_righthand);
     880             :         Assert(sjinfo->ojrelid == 0);    /* SEMI joins don't have RT indexes */
     881             : 
     882             :         /*
     883             :          * Since we're only considering a single-rel RHS, any join clauses it
     884             :          * has must be clauses linking it to the semijoin's min_lefthand.  We
     885             :          * can also consider EC-derived join clauses.
     886             :          */
     887             :         restrictlist =
     888        3704 :             list_concat(generate_join_implied_equalities(root,
     889             :                                                          joinrelids,
     890             :                                                          sjinfo->min_lefthand,
     891             :                                                          innerrel,
     892             :                                                          NULL),
     893        3704 :                         innerrel->joininfo);
     894             : 
     895             :         /* Test whether the innerrel is unique for those clauses. */
     896        3704 :         if (!innerrel_is_unique(root,
     897             :                                 joinrelids, sjinfo->min_lefthand, innerrel,
     898             :                                 JOIN_SEMI, restrictlist, true))
     899        3394 :             continue;
     900             : 
     901             :         /* OK, remove the SpecialJoinInfo from the list. */
     902         310 :         root->join_info_list = foreach_delete_current(root->join_info_list, lc);
     903             :     }
     904      331620 : }
     905             : 
     906             : 
     907             : /*
     908             :  * rel_supports_distinctness
     909             :  *      Could the relation possibly be proven distinct on some set of columns?
     910             :  *
     911             :  * This is effectively a pre-checking function for rel_is_distinct_for().
     912             :  * It must return true if rel_is_distinct_for() could possibly return true
     913             :  * with this rel, but it should not expend a lot of cycles.  The idea is
     914             :  * that callers can avoid doing possibly-expensive processing to compute
     915             :  * rel_is_distinct_for()'s argument lists if the call could not possibly
     916             :  * succeed.
     917             :  */
     918             : static bool
     919      616298 : rel_supports_distinctness(PlannerInfo *root, RelOptInfo *rel)
     920             : {
     921             :     /* We only know about baserels ... */
     922      616298 :     if (rel->reloptkind != RELOPT_BASEREL)
     923      202120 :         return false;
     924      414178 :     if (rel->rtekind == RTE_RELATION)
     925             :     {
     926             :         /*
     927             :          * For a plain relation, we only know how to prove uniqueness by
     928             :          * reference to unique indexes.  Make sure there's at least one
     929             :          * suitable unique index.  It must be immediately enforced, and not a
     930             :          * partial index. (Keep these conditions in sync with
     931             :          * relation_has_unique_index_for!)
     932             :          */
     933             :         ListCell   *lc;
     934             : 
     935      525112 :         foreach(lc, rel->indexlist)
     936             :         {
     937      471790 :             IndexOptInfo *ind = (IndexOptInfo *) lfirst(lc);
     938             : 
     939      471790 :             if (ind->unique && ind->immediate && ind->indpred == NIL)
     940      323562 :                 return true;
     941             :         }
     942             :     }
     943       37294 :     else if (rel->rtekind == RTE_SUBQUERY)
     944             :     {
     945       10194 :         Query      *subquery = root->simple_rte_array[rel->relid]->subquery;
     946             : 
     947             :         /* Check if the subquery has any qualities that support distinctness */
     948       10194 :         if (query_supports_distinctness(subquery))
     949        8212 :             return true;
     950             :     }
     951             :     /* We have no proof rules for any other rtekinds. */
     952       82404 :     return false;
     953             : }
     954             : 
     955             : /*
     956             :  * rel_is_distinct_for
     957             :  *      Does the relation return only distinct rows according to clause_list?
     958             :  *
     959             :  * clause_list is a list of join restriction clauses involving this rel and
     960             :  * some other one.  Return true if no two rows emitted by this rel could
     961             :  * possibly join to the same row of the other rel.
     962             :  *
     963             :  * The caller must have already determined that each condition is a
     964             :  * mergejoinable equality with an expression in this relation on one side, and
     965             :  * an expression not involving this relation on the other.  The transient
     966             :  * outer_is_left flag is used to identify which side references this relation:
     967             :  * left side if outer_is_left is false, right side if it is true.
     968             :  *
     969             :  * Note that the passed-in clause_list may be destructively modified!  This
     970             :  * is OK for current uses, because the clause_list is built by the caller for
     971             :  * the sole purpose of passing to this function.
     972             :  *
     973             :  * (*extra_clauses) to be set to the right sides of baserestrictinfo clauses,
     974             :  * looking like "x = const" if distinctness is derived from such clauses, not
     975             :  * joininfo clauses.  Pass NULL to the extra_clauses if this value is not
     976             :  * needed.
     977             :  */
     978             : static bool
     979      209824 : rel_is_distinct_for(PlannerInfo *root, RelOptInfo *rel, List *clause_list,
     980             :                     List **extra_clauses)
     981             : {
     982             :     /*
     983             :      * We could skip a couple of tests here if we assume all callers checked
     984             :      * rel_supports_distinctness first, but it doesn't seem worth taking any
     985             :      * risk for.
     986             :      */
     987      209824 :     if (rel->reloptkind != RELOPT_BASEREL)
     988           0 :         return false;
     989      209824 :     if (rel->rtekind == RTE_RELATION)
     990             :     {
     991             :         /*
     992             :          * Examine the indexes to see if we have a matching unique index.
     993             :          * relation_has_unique_index_ext automatically adds any usable
     994             :          * restriction clauses for the rel, so we needn't do that here.
     995             :          */
     996      205152 :         if (relation_has_unique_index_ext(root, rel, clause_list, NIL, NIL,
     997             :                                           extra_clauses))
     998      117206 :             return true;
     999             :     }
    1000        4672 :     else if (rel->rtekind == RTE_SUBQUERY)
    1001             :     {
    1002        4672 :         Index       relid = rel->relid;
    1003        4672 :         Query      *subquery = root->simple_rte_array[relid]->subquery;
    1004        4672 :         List       *colnos = NIL;
    1005        4672 :         List       *opids = NIL;
    1006             :         ListCell   *l;
    1007             : 
    1008             :         /*
    1009             :          * Build the argument lists for query_is_distinct_for: a list of
    1010             :          * output column numbers that the query needs to be distinct over, and
    1011             :          * a list of equality operators that the output columns need to be
    1012             :          * distinct according to.
    1013             :          *
    1014             :          * (XXX we are not considering restriction clauses attached to the
    1015             :          * subquery; is that worth doing?)
    1016             :          */
    1017        9308 :         foreach(l, clause_list)
    1018             :         {
    1019        4636 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    1020             :             Oid         op;
    1021             :             Var        *var;
    1022             : 
    1023             :             /*
    1024             :              * Get the equality operator we need uniqueness according to.
    1025             :              * (This might be a cross-type operator and thus not exactly the
    1026             :              * same operator the subquery would consider; that's all right
    1027             :              * since query_is_distinct_for can resolve such cases.)  The
    1028             :              * caller's mergejoinability test should have selected only
    1029             :              * OpExprs.
    1030             :              */
    1031        4636 :             op = castNode(OpExpr, rinfo->clause)->opno;
    1032             : 
    1033             :             /* caller identified the inner side for us */
    1034        4636 :             if (rinfo->outer_is_left)
    1035        4298 :                 var = (Var *) get_rightop(rinfo->clause);
    1036             :             else
    1037         338 :                 var = (Var *) get_leftop(rinfo->clause);
    1038             : 
    1039             :             /*
    1040             :              * We may ignore any RelabelType node above the operand.  (There
    1041             :              * won't be more than one, since eval_const_expressions() has been
    1042             :              * applied already.)
    1043             :              */
    1044        4636 :             if (var && IsA(var, RelabelType))
    1045        3176 :                 var = (Var *) ((RelabelType *) var)->arg;
    1046             : 
    1047             :             /*
    1048             :              * If inner side isn't a Var referencing a subquery output column,
    1049             :              * this clause doesn't help us.
    1050             :              */
    1051        4636 :             if (!var || !IsA(var, Var) ||
    1052        4624 :                 var->varno != relid || var->varlevelsup != 0)
    1053          12 :                 continue;
    1054             : 
    1055        4624 :             colnos = lappend_int(colnos, var->varattno);
    1056        4624 :             opids = lappend_oid(opids, op);
    1057             :         }
    1058             : 
    1059        4672 :         if (query_is_distinct_for(subquery, colnos, opids))
    1060         212 :             return true;
    1061             :     }
    1062       92406 :     return false;
    1063             : }
    1064             : 
    1065             : 
    1066             : /*
    1067             :  * query_supports_distinctness - could the query possibly be proven distinct
    1068             :  *      on some set of output columns?
    1069             :  *
    1070             :  * This is effectively a pre-checking function for query_is_distinct_for().
    1071             :  * It must return true if query_is_distinct_for() could possibly return true
    1072             :  * with this query, but it should not expend a lot of cycles.  The idea is
    1073             :  * that callers can avoid doing possibly-expensive processing to compute
    1074             :  * query_is_distinct_for()'s argument lists if the call could not possibly
    1075             :  * succeed.
    1076             :  */
    1077             : bool
    1078       13496 : query_supports_distinctness(Query *query)
    1079             : {
    1080             :     /* SRFs break distinctness except with DISTINCT, see below */
    1081       13496 :     if (query->hasTargetSRFs && query->distinctClause == NIL)
    1082        1008 :         return false;
    1083             : 
    1084             :     /* check for features we can prove distinctness with */
    1085       12488 :     if (query->distinctClause != NIL ||
    1086       12344 :         query->groupClause != NIL ||
    1087       12156 :         query->groupingSets != NIL ||
    1088       12156 :         query->hasAggs ||
    1089       11884 :         query->havingQual ||
    1090       11884 :         query->setOperations)
    1091       11460 :         return true;
    1092             : 
    1093        1028 :     return false;
    1094             : }
    1095             : 
    1096             : /*
    1097             :  * query_is_distinct_for - does query never return duplicates of the
    1098             :  *      specified columns?
    1099             :  *
    1100             :  * query is a not-yet-planned subquery (in current usage, it's always from
    1101             :  * a subquery RTE, which the planner avoids scribbling on).
    1102             :  *
    1103             :  * colnos is an integer list of output column numbers (resno's).  We are
    1104             :  * interested in whether rows consisting of just these columns are certain
    1105             :  * to be distinct.  "Distinctness" is defined according to whether the
    1106             :  * corresponding upper-level equality operators listed in opids would think
    1107             :  * the values are distinct.  (Note: the opids entries could be cross-type
    1108             :  * operators, and thus not exactly the equality operators that the subquery
    1109             :  * would use itself.  We use equality_ops_are_compatible() to check
    1110             :  * compatibility.  That looks at opfamily membership for index AMs that have
    1111             :  * declared that they support consistent equality semantics within an
    1112             :  * opfamily, and so should give trustworthy answers for all operators that we
    1113             :  * might need to deal with here.)
    1114             :  */
    1115             : bool
    1116        4868 : query_is_distinct_for(Query *query, List *colnos, List *opids)
    1117             : {
    1118             :     ListCell   *l;
    1119             :     Oid         opid;
    1120             : 
    1121             :     Assert(list_length(colnos) == list_length(opids));
    1122             : 
    1123             :     /*
    1124             :      * DISTINCT (including DISTINCT ON) guarantees uniqueness if all the
    1125             :      * columns in the DISTINCT clause appear in colnos and operator semantics
    1126             :      * match.  This is true even if there are SRFs in the DISTINCT columns or
    1127             :      * elsewhere in the tlist.
    1128             :      */
    1129        4868 :     if (query->distinctClause)
    1130             :     {
    1131         150 :         foreach(l, query->distinctClause)
    1132             :         {
    1133         120 :             SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
    1134         120 :             TargetEntry *tle = get_sortgroupclause_tle(sgc,
    1135             :                                                        query->targetList);
    1136             : 
    1137         120 :             opid = distinct_col_search(tle->resno, colnos, opids);
    1138         120 :             if (!OidIsValid(opid) ||
    1139          48 :                 !equality_ops_are_compatible(opid, sgc->eqop))
    1140             :                 break;          /* exit early if no match */
    1141             :         }
    1142         102 :         if (l == NULL)          /* had matches for all? */
    1143          30 :             return true;
    1144             :     }
    1145             : 
    1146             :     /*
    1147             :      * Otherwise, a set-returning function in the query's targetlist can
    1148             :      * result in returning duplicate rows, despite any grouping that might
    1149             :      * occur before tlist evaluation.  (If all tlist SRFs are within GROUP BY
    1150             :      * columns, it would be safe because they'd be expanded before grouping.
    1151             :      * But it doesn't currently seem worth the effort to check for that.)
    1152             :      */
    1153        4838 :     if (query->hasTargetSRFs)
    1154           0 :         return false;
    1155             : 
    1156             :     /*
    1157             :      * Similarly, GROUP BY without GROUPING SETS guarantees uniqueness if all
    1158             :      * the grouped columns appear in colnos and operator semantics match.
    1159             :      */
    1160        4838 :     if (query->groupClause && !query->groupingSets)
    1161             :     {
    1162         234 :         foreach(l, query->groupClause)
    1163             :         {
    1164         164 :             SortGroupClause *sgc = (SortGroupClause *) lfirst(l);
    1165         164 :             TargetEntry *tle = get_sortgroupclause_tle(sgc,
    1166             :                                                        query->targetList);
    1167             : 
    1168         164 :             opid = distinct_col_search(tle->resno, colnos, opids);
    1169         164 :             if (!OidIsValid(opid) ||
    1170         112 :                 !equality_ops_are_compatible(opid, sgc->eqop))
    1171             :                 break;          /* exit early if no match */
    1172             :         }
    1173         122 :         if (l == NULL)          /* had matches for all? */
    1174          70 :             return true;
    1175             :     }
    1176        4716 :     else if (query->groupingSets)
    1177             :     {
    1178             :         /*
    1179             :          * If we have grouping sets with expressions, we probably don't have
    1180             :          * uniqueness and analysis would be hard. Punt.
    1181             :          */
    1182           0 :         if (query->groupClause)
    1183           0 :             return false;
    1184             : 
    1185             :         /*
    1186             :          * If we have no groupClause (therefore no grouping expressions), we
    1187             :          * might have one or many empty grouping sets. If there's just one,
    1188             :          * then we're returning only one row and are certainly unique. But
    1189             :          * otherwise, we know we're certainly not unique.
    1190             :          */
    1191           0 :         if (list_length(query->groupingSets) == 1 &&
    1192           0 :             ((GroupingSet *) linitial(query->groupingSets))->kind == GROUPING_SET_EMPTY)
    1193           0 :             return true;
    1194             :         else
    1195           0 :             return false;
    1196             :     }
    1197             :     else
    1198             :     {
    1199             :         /*
    1200             :          * If we have no GROUP BY, but do have aggregates or HAVING, then the
    1201             :          * result is at most one row so it's surely unique, for any operators.
    1202             :          */
    1203        4716 :         if (query->hasAggs || query->havingQual)
    1204         100 :             return true;
    1205             :     }
    1206             : 
    1207             :     /*
    1208             :      * UNION, INTERSECT, EXCEPT guarantee uniqueness of the whole output row,
    1209             :      * except with ALL.
    1210             :      */
    1211        4668 :     if (query->setOperations)
    1212             :     {
    1213        4544 :         SetOperationStmt *topop = castNode(SetOperationStmt, query->setOperations);
    1214             : 
    1215             :         Assert(topop->op != SETOP_NONE);
    1216             : 
    1217        4544 :         if (!topop->all)
    1218             :         {
    1219             :             ListCell   *lg;
    1220             : 
    1221             :             /* We're good if all the nonjunk output columns are in colnos */
    1222          72 :             lg = list_head(topop->groupClauses);
    1223          90 :             foreach(l, query->targetList)
    1224             :             {
    1225          78 :                 TargetEntry *tle = (TargetEntry *) lfirst(l);
    1226             :                 SortGroupClause *sgc;
    1227             : 
    1228          78 :                 if (tle->resjunk)
    1229           0 :                     continue;   /* ignore resjunk columns */
    1230             : 
    1231             :                 /* non-resjunk columns should have grouping clauses */
    1232             :                 Assert(lg != NULL);
    1233          78 :                 sgc = (SortGroupClause *) lfirst(lg);
    1234          78 :                 lg = lnext(topop->groupClauses, lg);
    1235             : 
    1236          78 :                 opid = distinct_col_search(tle->resno, colnos, opids);
    1237          78 :                 if (!OidIsValid(opid) ||
    1238          18 :                     !equality_ops_are_compatible(opid, sgc->eqop))
    1239             :                     break;      /* exit early if no match */
    1240             :             }
    1241          72 :             if (l == NULL)      /* had matches for all? */
    1242          12 :                 return true;
    1243             :         }
    1244             :     }
    1245             : 
    1246             :     /*
    1247             :      * XXX Are there any other cases in which we can easily see the result
    1248             :      * must be distinct?
    1249             :      *
    1250             :      * If you do add more smarts to this function, be sure to update
    1251             :      * query_supports_distinctness() to match.
    1252             :      */
    1253             : 
    1254        4656 :     return false;
    1255             : }
    1256             : 
    1257             : /*
    1258             :  * distinct_col_search - subroutine for query_is_distinct_for
    1259             :  *
    1260             :  * If colno is in colnos, return the corresponding element of opids,
    1261             :  * else return InvalidOid.  (Ordinarily colnos would not contain duplicates,
    1262             :  * but if it does, we arbitrarily select the first match.)
    1263             :  */
    1264             : static Oid
    1265         362 : distinct_col_search(int colno, List *colnos, List *opids)
    1266             : {
    1267             :     ListCell   *lc1,
    1268             :                *lc2;
    1269             : 
    1270         574 :     forboth(lc1, colnos, lc2, opids)
    1271             :     {
    1272         390 :         if (colno == lfirst_int(lc1))
    1273         178 :             return lfirst_oid(lc2);
    1274             :     }
    1275         184 :     return InvalidOid;
    1276             : }
    1277             : 
    1278             : 
    1279             : /*
    1280             :  * innerrel_is_unique
    1281             :  *    Check if the innerrel provably contains at most one tuple matching any
    1282             :  *    tuple from the outerrel, based on join clauses in the 'restrictlist'.
    1283             :  *
    1284             :  * We need an actual RelOptInfo for the innerrel, but it's sufficient to
    1285             :  * identify the outerrel by its Relids.  This asymmetry supports use of this
    1286             :  * function before joinrels have been built.  (The caller is expected to
    1287             :  * also supply the joinrelids, just to save recalculating that.)
    1288             :  *
    1289             :  * The proof must be made based only on clauses that will be "joinquals"
    1290             :  * rather than "otherquals" at execution.  For an inner join there's no
    1291             :  * difference; but if the join is outer, we must ignore pushed-down quals,
    1292             :  * as those will become "otherquals".  Note that this means the answer might
    1293             :  * vary depending on whether IS_OUTER_JOIN(jointype); since we cache the
    1294             :  * answer without regard to that, callers must take care not to call this
    1295             :  * with jointypes that would be classified differently by IS_OUTER_JOIN().
    1296             :  *
    1297             :  * The actual proof is undertaken by is_innerrel_unique_for(); this function
    1298             :  * is a frontend that is mainly concerned with caching the answers.
    1299             :  * In particular, the force_cache argument allows overriding the internal
    1300             :  * heuristic about whether to cache negative answers; it should be "true"
    1301             :  * if making an inquiry that is not part of the normal bottom-up join search
    1302             :  * sequence.
    1303             :  */
    1304             : bool
    1305      669392 : innerrel_is_unique(PlannerInfo *root,
    1306             :                    Relids joinrelids,
    1307             :                    Relids outerrelids,
    1308             :                    RelOptInfo *innerrel,
    1309             :                    JoinType jointype,
    1310             :                    List *restrictlist,
    1311             :                    bool force_cache)
    1312             : {
    1313      669392 :     return innerrel_is_unique_ext(root, joinrelids, outerrelids, innerrel,
    1314             :                                   jointype, restrictlist, force_cache, NULL);
    1315             : }
    1316             : 
    1317             : /*
    1318             :  * innerrel_is_unique_ext
    1319             :  *    Do the same as innerrel_is_unique(), but also set to (*extra_clauses)
    1320             :  *    additional clauses from a baserestrictinfo list used to prove the
    1321             :  *    uniqueness.
    1322             :  *
    1323             :  * A non-NULL extra_clauses indicates that we're checking for self-join and
    1324             :  * correspondingly dealing with filtered clauses.
    1325             :  */
    1326             : bool
    1327      671392 : innerrel_is_unique_ext(PlannerInfo *root,
    1328             :                        Relids joinrelids,
    1329             :                        Relids outerrelids,
    1330             :                        RelOptInfo *innerrel,
    1331             :                        JoinType jointype,
    1332             :                        List *restrictlist,
    1333             :                        bool force_cache,
    1334             :                        List **extra_clauses)
    1335             : {
    1336             :     MemoryContext old_context;
    1337             :     ListCell   *lc;
    1338             :     UniqueRelInfo *uniqueRelInfo;
    1339      671392 :     List       *outer_exprs = NIL;
    1340      671392 :     bool        self_join = (extra_clauses != NULL);
    1341             : 
    1342             :     /* Certainly can't prove uniqueness when there are no joinclauses */
    1343      671392 :     if (restrictlist == NIL)
    1344      102450 :         return false;
    1345             : 
    1346             :     /*
    1347             :      * Make a quick check to eliminate cases in which we will surely be unable
    1348             :      * to prove uniqueness of the innerrel.
    1349             :      */
    1350      568942 :     if (!rel_supports_distinctness(root, innerrel))
    1351      280464 :         return false;
    1352             : 
    1353             :     /*
    1354             :      * Query the cache to see if we've managed to prove that innerrel is
    1355             :      * unique for any subset of this outerrel.  For non-self-join search, we
    1356             :      * don't need an exact match, as extra outerrels can't make the innerrel
    1357             :      * any less unique (or more formally, the restrictlist for a join to a
    1358             :      * superset outerrel must be a superset of the conditions we successfully
    1359             :      * used before). For self-join search, we require an exact match of
    1360             :      * outerrels because we need extra clauses to be valid for our case. Also,
    1361             :      * for self-join checking we've filtered the clauses list.  Thus, we can
    1362             :      * match only the result cached for a self-join search for another
    1363             :      * self-join check.
    1364             :      */
    1365      319236 :     foreach(lc, innerrel->unique_for_rels)
    1366             :     {
    1367      119898 :         uniqueRelInfo = (UniqueRelInfo *) lfirst(lc);
    1368             : 
    1369      119898 :         if ((!self_join && bms_is_subset(uniqueRelInfo->outerrelids, outerrelids)) ||
    1370          74 :             (self_join && bms_equal(uniqueRelInfo->outerrelids, outerrelids) &&
    1371          56 :              uniqueRelInfo->self_join))
    1372             :         {
    1373       89140 :             if (extra_clauses)
    1374          12 :                 *extra_clauses = uniqueRelInfo->extra_clauses;
    1375       89140 :             return true;        /* Success! */
    1376             :         }
    1377             :     }
    1378             : 
    1379             :     /*
    1380             :      * Conversely, we may have already determined that this outerrel, or some
    1381             :      * superset thereof, cannot prove this innerrel to be unique.
    1382             :      */
    1383      199822 :     foreach(lc, innerrel->non_unique_for_rels)
    1384             :     {
    1385         808 :         Relids      unique_for_rels = (Relids) lfirst(lc);
    1386             : 
    1387         808 :         if (bms_is_subset(outerrelids, unique_for_rels))
    1388         324 :             return false;
    1389             :     }
    1390             : 
    1391             :     /* No cached information, so try to make the proof. */
    1392      199014 :     if (is_innerrel_unique_for(root, joinrelids, outerrelids, innerrel,
    1393             :                                jointype, restrictlist,
    1394             :                                self_join ? &outer_exprs : NULL))
    1395             :     {
    1396             :         /*
    1397             :          * Cache the positive result for future probes, being sure to keep it
    1398             :          * in the planner_cxt even if we are working in GEQO.
    1399             :          *
    1400             :          * Note: one might consider trying to isolate the minimal subset of
    1401             :          * the outerrels that proved the innerrel unique.  But it's not worth
    1402             :          * the trouble, because the planner builds up joinrels incrementally
    1403             :          * and so we'll see the minimally sufficient outerrels before any
    1404             :          * supersets of them anyway.
    1405             :          */
    1406      106734 :         old_context = MemoryContextSwitchTo(root->planner_cxt);
    1407      106734 :         uniqueRelInfo = makeNode(UniqueRelInfo);
    1408      106734 :         uniqueRelInfo->outerrelids = bms_copy(outerrelids);
    1409      106734 :         uniqueRelInfo->self_join = self_join;
    1410      106734 :         uniqueRelInfo->extra_clauses = outer_exprs;
    1411      106734 :         innerrel->unique_for_rels = lappend(innerrel->unique_for_rels,
    1412             :                                             uniqueRelInfo);
    1413      106734 :         MemoryContextSwitchTo(old_context);
    1414             : 
    1415      106734 :         if (extra_clauses)
    1416         654 :             *extra_clauses = outer_exprs;
    1417      106734 :         return true;            /* Success! */
    1418             :     }
    1419             :     else
    1420             :     {
    1421             :         /*
    1422             :          * None of the join conditions for outerrel proved innerrel unique, so
    1423             :          * we can safely reject this outerrel or any subset of it in future
    1424             :          * checks.
    1425             :          *
    1426             :          * However, in normal planning mode, caching this knowledge is totally
    1427             :          * pointless; it won't be queried again, because we build up joinrels
    1428             :          * from smaller to larger.  It is useful in GEQO mode, where the
    1429             :          * knowledge can be carried across successive planning attempts; and
    1430             :          * it's likely to be useful when using join-search plugins, too. Hence
    1431             :          * cache when join_search_private is non-NULL.  (Yeah, that's a hack,
    1432             :          * but it seems reasonable.)
    1433             :          *
    1434             :          * Also, allow callers to override that heuristic and force caching;
    1435             :          * that's useful for reduce_unique_semijoins, which calls here before
    1436             :          * the normal join search starts.
    1437             :          */
    1438       92280 :         if (force_cache || root->join_search_private)
    1439             :         {
    1440        3718 :             old_context = MemoryContextSwitchTo(root->planner_cxt);
    1441        3718 :             innerrel->non_unique_for_rels =
    1442        3718 :                 lappend(innerrel->non_unique_for_rels,
    1443        3718 :                         bms_copy(outerrelids));
    1444        3718 :             MemoryContextSwitchTo(old_context);
    1445             :         }
    1446             : 
    1447       92280 :         return false;
    1448             :     }
    1449             : }
    1450             : 
    1451             : /*
    1452             :  * is_innerrel_unique_for
    1453             :  *    Check if the innerrel provably contains at most one tuple matching any
    1454             :  *    tuple from the outerrel, based on join clauses in the 'restrictlist'.
    1455             :  */
    1456             : static bool
    1457      199014 : is_innerrel_unique_for(PlannerInfo *root,
    1458             :                        Relids joinrelids,
    1459             :                        Relids outerrelids,
    1460             :                        RelOptInfo *innerrel,
    1461             :                        JoinType jointype,
    1462             :                        List *restrictlist,
    1463             :                        List **extra_clauses)
    1464             : {
    1465      199014 :     List       *clause_list = NIL;
    1466             :     ListCell   *lc;
    1467             : 
    1468             :     /*
    1469             :      * Search for mergejoinable clauses that constrain the inner rel against
    1470             :      * the outer rel.  If an operator is mergejoinable then it behaves like
    1471             :      * equality for some btree opclass, so it's what we want.  The
    1472             :      * mergejoinability test also eliminates clauses containing volatile
    1473             :      * functions, which we couldn't depend on.
    1474             :      */
    1475      438866 :     foreach(lc, restrictlist)
    1476             :     {
    1477      239852 :         RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(lc);
    1478             : 
    1479             :         /*
    1480             :          * As noted above, if it's a pushed-down clause and we're at an outer
    1481             :          * join, we can't use it.
    1482             :          */
    1483      239852 :         if (IS_OUTER_JOIN(jointype) &&
    1484      106558 :             RINFO_IS_PUSHED_DOWN(restrictinfo, joinrelids))
    1485        4958 :             continue;
    1486             : 
    1487             :         /* Ignore if it's not a mergejoinable clause */
    1488      234894 :         if (!restrictinfo->can_join ||
    1489      216868 :             restrictinfo->mergeopfamilies == NIL)
    1490       18950 :             continue;           /* not mergejoinable */
    1491             : 
    1492             :         /*
    1493             :          * Check if the clause has the form "outer op inner" or "inner op
    1494             :          * outer", and if so mark which side is inner.
    1495             :          */
    1496      215944 :         if (!clause_sides_match_join(restrictinfo, outerrelids,
    1497             :                                      innerrel->relids))
    1498          40 :             continue;           /* no good for these input relations */
    1499             : 
    1500             :         /* OK, add to the list */
    1501      215904 :         clause_list = lappend(clause_list, restrictinfo);
    1502             :     }
    1503             : 
    1504             :     /* Let rel_is_distinct_for() do the hard work */
    1505      199014 :     return rel_is_distinct_for(root, innerrel, clause_list, extra_clauses);
    1506             : }
    1507             : 
    1508             : /*
    1509             :  * Update EC members to point to the remaining relation instead of the removed
    1510             :  * one, removing duplicates.
    1511             :  *
    1512             :  * Restriction clauses for base relations are already distributed to
    1513             :  * the respective baserestrictinfo lists (see
    1514             :  * generate_implied_equalities_for_column). The above code has already processed
    1515             :  * this list and updated these clauses to reference the remaining
    1516             :  * relation, so that we can skip them here based on their relids.
    1517             :  *
    1518             :  * Likewise, we have already processed the join clauses that join the
    1519             :  * removed relation to the remaining one.
    1520             :  *
    1521             :  * Finally, there might be join clauses tying the removed relation to
    1522             :  * some third relation.  We can't just delete the source clauses and
    1523             :  * regenerate them from the EC because the corresponding equality
    1524             :  * operators might be missing (see the handling of ec_broken).
    1525             :  * Therefore, we will update the references in the source clauses.
    1526             :  *
    1527             :  * Derived clauses can be generated again, so it is simpler just to
    1528             :  * delete them.
    1529             :  */
    1530             : static void
    1531         924 : update_eclasses(EquivalenceClass *ec, int from, int to)
    1532             : {
    1533         924 :     List       *new_members = NIL;
    1534         924 :     List       *new_sources = NIL;
    1535             : 
    1536             :     /*
    1537             :      * We don't expect any EC child members to exist at this point.  Ensure
    1538             :      * that's the case, otherwise, we might be getting asked to do something
    1539             :      * this function hasn't been coded for.
    1540             :      */
    1541             :     Assert(ec->ec_childmembers == NULL);
    1542             : 
    1543        3726 :     foreach_node(EquivalenceMember, em, ec->ec_members)
    1544             :     {
    1545        1878 :         bool        is_redundant = false;
    1546             : 
    1547        1878 :         if (!bms_is_member(from, em->em_relids))
    1548             :         {
    1549         936 :             new_members = lappend(new_members, em);
    1550         936 :             continue;
    1551             :         }
    1552             : 
    1553         942 :         em->em_relids = adjust_relid_set(em->em_relids, from, to);
    1554         942 :         em->em_jdomain->jd_relids = adjust_relid_set(em->em_jdomain->jd_relids, from, to);
    1555             : 
    1556             :         /* We only process inner joins */
    1557         942 :         ChangeVarNodesExtended((Node *) em->em_expr, from, to, 0,
    1558             :                                replace_relid_callback);
    1559             : 
    1560        1908 :         foreach_node(EquivalenceMember, other, new_members)
    1561             :         {
    1562         304 :             if (!equal(em->em_relids, other->em_relids))
    1563          24 :                 continue;
    1564             : 
    1565         280 :             if (equal(em->em_expr, other->em_expr))
    1566             :             {
    1567         280 :                 is_redundant = true;
    1568         280 :                 break;
    1569             :             }
    1570             :         }
    1571             : 
    1572         942 :         if (!is_redundant)
    1573         662 :             new_members = lappend(new_members, em);
    1574             :     }
    1575             : 
    1576         924 :     list_free(ec->ec_members);
    1577         924 :     ec->ec_members = new_members;
    1578             : 
    1579         924 :     ec_clear_derived_clauses(ec);
    1580             : 
    1581             :     /* Update EC source expressions */
    1582        2802 :     foreach_node(RestrictInfo, rinfo, ec->ec_sources)
    1583             :     {
    1584         954 :         bool        is_redundant = false;
    1585             : 
    1586         954 :         if (!bms_is_member(from, rinfo->required_relids))
    1587             :         {
    1588         118 :             new_sources = lappend(new_sources, rinfo);
    1589         118 :             continue;
    1590             :         }
    1591             : 
    1592         836 :         ChangeVarNodesExtended((Node *) rinfo, from, to, 0,
    1593             :                                replace_relid_callback);
    1594             : 
    1595             :         /*
    1596             :          * After switching the clause to the remaining relation, check it for
    1597             :          * redundancy with existing ones. We don't have to check for
    1598             :          * redundancy with derived clauses, because we've just deleted them.
    1599             :          */
    1600        1696 :         foreach_node(RestrictInfo, other, new_sources)
    1601             :         {
    1602          36 :             if (!equal(rinfo->clause_relids, other->clause_relids))
    1603          24 :                 continue;
    1604             : 
    1605          12 :             if (equal(rinfo->clause, other->clause))
    1606             :             {
    1607          12 :                 is_redundant = true;
    1608          12 :                 break;
    1609             :             }
    1610             :         }
    1611             : 
    1612         836 :         if (!is_redundant)
    1613         824 :             new_sources = lappend(new_sources, rinfo);
    1614             :     }
    1615             : 
    1616         924 :     list_free(ec->ec_sources);
    1617         924 :     ec->ec_sources = new_sources;
    1618         924 :     ec->ec_relids = adjust_relid_set(ec->ec_relids, from, to);
    1619         924 : }
    1620             : 
    1621             : /*
    1622             :  * "Logically" compares two RestrictInfo's ignoring the 'rinfo_serial' field,
    1623             :  * which makes almost every RestrictInfo unique.  This type of comparison is
    1624             :  * useful when removing duplicates while moving RestrictInfo's from removed
    1625             :  * relation to remaining relation during self-join elimination.
    1626             :  *
    1627             :  * XXX: In the future, we might remove the 'rinfo_serial' field completely and
    1628             :  * get rid of this function.
    1629             :  */
    1630             : static bool
    1631         512 : restrict_infos_logically_equal(RestrictInfo *a, RestrictInfo *b)
    1632             : {
    1633         512 :     int         saved_rinfo_serial = a->rinfo_serial;
    1634             :     bool        result;
    1635             : 
    1636         512 :     a->rinfo_serial = b->rinfo_serial;
    1637         512 :     result = equal(a, b);
    1638         512 :     a->rinfo_serial = saved_rinfo_serial;
    1639             : 
    1640         512 :     return result;
    1641             : }
    1642             : 
    1643             : /*
    1644             :  * This function adds all non-redundant clauses to the keeping relation
    1645             :  * during self-join elimination.  That is a contradictory operation. On the
    1646             :  * one hand, we reduce the length of the `restrict` lists, which can
    1647             :  * impact planning or executing time.  Additionally, we improve the
    1648             :  * accuracy of cardinality estimation.  On the other hand, it is one more
    1649             :  * place that can make planning time much longer in specific cases.  It
    1650             :  * would have been better to avoid calling the equal() function here, but
    1651             :  * it's the only way to detect duplicated inequality expressions.
    1652             :  *
    1653             :  * (*keep_rinfo_list) is given by pointer because it might be altered by
    1654             :  * distribute_restrictinfo_to_rels().
    1655             :  */
    1656             : static void
    1657        1200 : add_non_redundant_clauses(PlannerInfo *root,
    1658             :                           List *rinfo_candidates,
    1659             :                           List **keep_rinfo_list,
    1660             :                           Index removed_relid)
    1661             : {
    1662        3328 :     foreach_node(RestrictInfo, rinfo, rinfo_candidates)
    1663             :     {
    1664         928 :         bool        is_redundant = false;
    1665             : 
    1666             :         Assert(!bms_is_member(removed_relid, rinfo->required_relids));
    1667             : 
    1668        2232 :         foreach_node(RestrictInfo, src, (*keep_rinfo_list))
    1669             :         {
    1670         530 :             if (!bms_equal(src->clause_relids, rinfo->clause_relids))
    1671             :                 /* Can't compare trivially different clauses */
    1672          12 :                 continue;
    1673             : 
    1674         518 :             if (src == rinfo ||
    1675         518 :                 (rinfo->parent_ec != NULL &&
    1676         816 :                  src->parent_ec == rinfo->parent_ec) ||
    1677         512 :                 restrict_infos_logically_equal(rinfo, src))
    1678             :             {
    1679         154 :                 is_redundant = true;
    1680         154 :                 break;
    1681             :             }
    1682             :         }
    1683         928 :         if (!is_redundant)
    1684         774 :             distribute_restrictinfo_to_rels(root, rinfo);
    1685             :     }
    1686        1200 : }
    1687             : 
    1688             : /*
    1689             :  * A custom callback for ChangeVarNodesExtended() providing
    1690             :  * Self-join elimination (SJE) related functionality
    1691             :  *
    1692             :  * SJE needs to skip the RangeTblRef node
    1693             :  * type.  During SJE's last step, remove_rel_from_joinlist() removes
    1694             :  * remaining RangeTblRefs with target relid.  If ChangeVarNodes() replaces
    1695             :  * the target relid before, remove_rel_from_joinlist() fails to identify
    1696             :  * the nodes to delete.
    1697             :  *
    1698             :  * SJE also needs to change the relids within RestrictInfo's.
    1699             :  */
    1700             : static bool
    1701       41006 : replace_relid_callback(Node *node, ChangeVarNodes_context *context)
    1702             : {
    1703       41006 :     if (IsA(node, RangeTblRef))
    1704             :     {
    1705        1544 :         return true;
    1706             :     }
    1707       39462 :     else if (IsA(node, RestrictInfo))
    1708             :     {
    1709        2844 :         RestrictInfo *rinfo = (RestrictInfo *) node;
    1710        2844 :         int         relid = -1;
    1711        2844 :         bool        is_req_equal =
    1712        2844 :             (rinfo->required_relids == rinfo->clause_relids);
    1713        2844 :         bool        clause_relids_is_multiple =
    1714        2844 :             (bms_membership(rinfo->clause_relids) == BMS_MULTIPLE);
    1715             : 
    1716             :         /*
    1717             :          * Recurse down into clauses if the target relation is present in
    1718             :          * clause_relids or required_relids.  We must check required_relids
    1719             :          * because the relation not present in clause_relids might still be
    1720             :          * present somewhere in orclause.
    1721             :          */
    1722        3960 :         if (bms_is_member(context->rt_index, rinfo->clause_relids) ||
    1723        1116 :             bms_is_member(context->rt_index, rinfo->required_relids))
    1724             :         {
    1725             :             Relids      new_clause_relids;
    1726             : 
    1727        1776 :             ChangeVarNodesWalkExpression((Node *) rinfo->clause, context);
    1728        1776 :             ChangeVarNodesWalkExpression((Node *) rinfo->orclause, context);
    1729             : 
    1730        1776 :             new_clause_relids = adjust_relid_set(rinfo->clause_relids,
    1731             :                                                  context->rt_index,
    1732             :                                                  context->new_index);
    1733             : 
    1734             :             /*
    1735             :              * Incrementally adjust num_base_rels based on the change of
    1736             :              * clause_relids, which could contain both base relids and
    1737             :              * outer-join relids.  This operation is legal until we remove
    1738             :              * only baserels.
    1739             :              */
    1740        1776 :             rinfo->num_base_rels -= bms_num_members(rinfo->clause_relids) -
    1741        1776 :                 bms_num_members(new_clause_relids);
    1742             : 
    1743        1776 :             rinfo->clause_relids = new_clause_relids;
    1744        1776 :             rinfo->left_relids =
    1745        1776 :                 adjust_relid_set(rinfo->left_relids, context->rt_index, context->new_index);
    1746        1776 :             rinfo->right_relids =
    1747        1776 :                 adjust_relid_set(rinfo->right_relids, context->rt_index, context->new_index);
    1748             :         }
    1749             : 
    1750        2844 :         if (is_req_equal)
    1751          24 :             rinfo->required_relids = rinfo->clause_relids;
    1752             :         else
    1753        2820 :             rinfo->required_relids =
    1754        2820 :                 adjust_relid_set(rinfo->required_relids, context->rt_index, context->new_index);
    1755             : 
    1756        2844 :         rinfo->outer_relids =
    1757        2844 :             adjust_relid_set(rinfo->outer_relids, context->rt_index, context->new_index);
    1758        2844 :         rinfo->incompatible_relids =
    1759        2844 :             adjust_relid_set(rinfo->incompatible_relids, context->rt_index, context->new_index);
    1760             : 
    1761        4836 :         if (rinfo->mergeopfamilies &&
    1762        3704 :             bms_get_singleton_member(rinfo->clause_relids, &relid) &&
    1763        1272 :             clause_relids_is_multiple &&
    1764        1272 :             relid == context->new_index && IsA(rinfo->clause, OpExpr))
    1765             :         {
    1766             :             Expr       *leftOp;
    1767             :             Expr       *rightOp;
    1768             : 
    1769        1272 :             leftOp = (Expr *) get_leftop(rinfo->clause);
    1770        1272 :             rightOp = (Expr *) get_rightop(rinfo->clause);
    1771             : 
    1772             :             /*
    1773             :              * For self-join elimination, changing varnos could transform
    1774             :              * "t1.a = t2.a" into "t1.a = t1.a".  That is always true as long
    1775             :              * as "t1.a" is not null.  We use qual() to check for such a case,
    1776             :              * and then we replace the qual for a check for not null
    1777             :              * (NullTest).
    1778             :              */
    1779        1272 :             if (leftOp != NULL && equal(leftOp, rightOp))
    1780             :             {
    1781        1260 :                 NullTest   *ntest = makeNode(NullTest);
    1782             : 
    1783        1260 :                 ntest->arg = leftOp;
    1784        1260 :                 ntest->nulltesttype = IS_NOT_NULL;
    1785        1260 :                 ntest->argisrow = false;
    1786        1260 :                 ntest->location = -1;
    1787        1260 :                 rinfo->clause = (Expr *) ntest;
    1788        1260 :                 rinfo->mergeopfamilies = NIL;
    1789        1260 :                 rinfo->left_em = NULL;
    1790        1260 :                 rinfo->right_em = NULL;
    1791             :             }
    1792             :             Assert(rinfo->orclause == NULL);
    1793             :         }
    1794        2844 :         return true;
    1795             :     }
    1796             : 
    1797       36618 :     return false;
    1798             : }
    1799             : 
    1800             : /*
    1801             :  * Remove a relation after we have proven that it participates only in an
    1802             :  * unneeded unique self-join.
    1803             :  *
    1804             :  * Replace any links in planner info structures.
    1805             :  *
    1806             :  * Transfer join and restriction clauses from the removed relation to the
    1807             :  * remaining one. We change the Vars of the clause to point to the
    1808             :  * remaining relation instead of the removed one. The clauses that require
    1809             :  * a subset of joinrelids become restriction clauses of the remaining
    1810             :  * relation, and others remain join clauses. We append them to
    1811             :  * baserestrictinfo and joininfo, respectively, trying not to introduce
    1812             :  * duplicates.
    1813             :  *
    1814             :  * We also have to process the 'joinclauses' list here, because it
    1815             :  * contains EC-derived join clauses which must become filter clauses. It
    1816             :  * is not enough to just correct the ECs because the EC-derived
    1817             :  * restrictions are generated before join removal (see
    1818             :  * generate_base_implied_equalities).
    1819             :  *
    1820             :  * NOTE: Remember to keep the code in sync with PlannerInfo to be sure all
    1821             :  * cached relids and relid bitmapsets can be correctly cleaned during the
    1822             :  * self-join elimination procedure.
    1823             :  */
    1824             : static void
    1825         600 : remove_self_join_rel(PlannerInfo *root, PlanRowMark *kmark, PlanRowMark *rmark,
    1826             :                      RelOptInfo *toKeep, RelOptInfo *toRemove,
    1827             :                      List *restrictlist)
    1828             : {
    1829             :     List       *joininfos;
    1830             :     ListCell   *lc;
    1831             :     int         i;
    1832         600 :     List       *jinfo_candidates = NIL;
    1833         600 :     List       *binfo_candidates = NIL;
    1834             : 
    1835             :     Assert(toKeep->relid > 0);
    1836             :     Assert(toRemove->relid > 0);
    1837             : 
    1838             :     /*
    1839             :      * Replace the index of the removing table with the keeping one. The
    1840             :      * technique of removing/distributing restrictinfo is used here to attach
    1841             :      * just appeared (for keeping relation) join clauses and avoid adding
    1842             :      * duplicates of those that already exist in the joininfo list.
    1843             :      */
    1844         600 :     joininfos = list_copy(toRemove->joininfo);
    1845        1290 :     foreach_node(RestrictInfo, rinfo, joininfos)
    1846             :     {
    1847          90 :         remove_join_clause_from_rels(root, rinfo, rinfo->required_relids);
    1848          90 :         ChangeVarNodesExtended((Node *) rinfo, toRemove->relid, toKeep->relid,
    1849             :                                0, replace_relid_callback);
    1850             : 
    1851          90 :         if (bms_membership(rinfo->required_relids) == BMS_MULTIPLE)
    1852          72 :             jinfo_candidates = lappend(jinfo_candidates, rinfo);
    1853             :         else
    1854          18 :             binfo_candidates = lappend(binfo_candidates, rinfo);
    1855             :     }
    1856             : 
    1857             :     /*
    1858             :      * Concatenate restrictlist to the list of base restrictions of the
    1859             :      * removing table just to simplify the replacement procedure: all of them
    1860             :      * weren't connected to any keeping relations and need to be added to some
    1861             :      * rels.
    1862             :      */
    1863         600 :     toRemove->baserestrictinfo = list_concat(toRemove->baserestrictinfo,
    1864             :                                              restrictlist);
    1865        2038 :     foreach_node(RestrictInfo, rinfo, toRemove->baserestrictinfo)
    1866             :     {
    1867         838 :         ChangeVarNodesExtended((Node *) rinfo, toRemove->relid, toKeep->relid,
    1868             :                                0, replace_relid_callback);
    1869             : 
    1870         838 :         if (bms_membership(rinfo->required_relids) == BMS_MULTIPLE)
    1871           0 :             jinfo_candidates = lappend(jinfo_candidates, rinfo);
    1872             :         else
    1873         838 :             binfo_candidates = lappend(binfo_candidates, rinfo);
    1874             :     }
    1875             : 
    1876             :     /*
    1877             :      * Now, add all non-redundant clauses to the keeping relation.
    1878             :      */
    1879         600 :     add_non_redundant_clauses(root, binfo_candidates,
    1880             :                               &toKeep->baserestrictinfo, toRemove->relid);
    1881         600 :     add_non_redundant_clauses(root, jinfo_candidates,
    1882             :                               &toKeep->joininfo, toRemove->relid);
    1883             : 
    1884         600 :     list_free(binfo_candidates);
    1885         600 :     list_free(jinfo_candidates);
    1886             : 
    1887             :     /*
    1888             :      * Arrange equivalence classes, mentioned removing a table, with the
    1889             :      * keeping one: varno of removing table should be replaced in members and
    1890             :      * sources lists. Also, remove duplicated elements if this replacement
    1891             :      * procedure created them.
    1892             :      */
    1893         600 :     i = -1;
    1894        1524 :     while ((i = bms_next_member(toRemove->eclass_indexes, i)) >= 0)
    1895             :     {
    1896         924 :         EquivalenceClass *ec = (EquivalenceClass *) list_nth(root->eq_classes, i);
    1897             : 
    1898         924 :         update_eclasses(ec, toRemove->relid, toKeep->relid);
    1899         924 :         toKeep->eclass_indexes = bms_add_member(toKeep->eclass_indexes, i);
    1900             :     }
    1901             : 
    1902             :     /*
    1903             :      * Transfer the targetlist and attr_needed flags.
    1904             :      */
    1905             : 
    1906        2396 :     foreach(lc, toRemove->reltarget->exprs)
    1907             :     {
    1908        1796 :         Node       *node = lfirst(lc);
    1909             : 
    1910        1796 :         ChangeVarNodesExtended(node, toRemove->relid, toKeep->relid, 0,
    1911             :                                replace_relid_callback);
    1912        1796 :         if (!list_member(toKeep->reltarget->exprs, node))
    1913         180 :             toKeep->reltarget->exprs = lappend(toKeep->reltarget->exprs, node);
    1914             :     }
    1915             : 
    1916        7590 :     for (i = toKeep->min_attr; i <= toKeep->max_attr; i++)
    1917             :     {
    1918        6990 :         int         attno = i - toKeep->min_attr;
    1919             : 
    1920       13980 :         toRemove->attr_needed[attno] = adjust_relid_set(toRemove->attr_needed[attno],
    1921        6990 :                                                         toRemove->relid, toKeep->relid);
    1922        6990 :         toKeep->attr_needed[attno] = bms_add_members(toKeep->attr_needed[attno],
    1923        6990 :                                                      toRemove->attr_needed[attno]);
    1924             :     }
    1925             : 
    1926             :     /*
    1927             :      * If the removed relation has a row mark, transfer it to the remaining
    1928             :      * one.
    1929             :      *
    1930             :      * If both rels have row marks, just keep the one corresponding to the
    1931             :      * remaining relation because we verified earlier that they have the same
    1932             :      * strength.
    1933             :      */
    1934         600 :     if (rmark)
    1935             :     {
    1936          74 :         if (kmark)
    1937             :         {
    1938             :             Assert(kmark->markType == rmark->markType);
    1939             : 
    1940          74 :             root->rowMarks = list_delete_ptr(root->rowMarks, rmark);
    1941             :         }
    1942             :         else
    1943             :         {
    1944             :             /* Shouldn't have inheritance children here. */
    1945             :             Assert(rmark->rti == rmark->prti);
    1946             : 
    1947           0 :             rmark->rti = rmark->prti = toKeep->relid;
    1948             :         }
    1949             :     }
    1950             : 
    1951             :     /*
    1952             :      * Replace varno in all the query structures, except nodes RangeTblRef
    1953             :      * otherwise later remove_rel_from_joinlist will yield errors.
    1954             :      */
    1955         600 :     ChangeVarNodesExtended((Node *) root->parse, toRemove->relid, toKeep->relid,
    1956             :                            0, replace_relid_callback);
    1957             : 
    1958             :     /* Replace links in the planner info */
    1959         600 :     remove_rel_from_query(root, toRemove, toKeep->relid, NULL, NULL);
    1960             : 
    1961             :     /* At last, replace varno in root targetlist and HAVING clause */
    1962         600 :     ChangeVarNodesExtended((Node *) root->processed_tlist, toRemove->relid,
    1963         600 :                            toKeep->relid, 0, replace_relid_callback);
    1964         600 :     ChangeVarNodesExtended((Node *) root->processed_groupClause,
    1965         600 :                            toRemove->relid, toKeep->relid, 0,
    1966             :                            replace_relid_callback);
    1967             : 
    1968         600 :     adjust_relid_set(root->all_result_relids, toRemove->relid, toKeep->relid);
    1969         600 :     adjust_relid_set(root->leaf_result_relids, toRemove->relid, toKeep->relid);
    1970             : 
    1971             :     /*
    1972             :      * There may be references to the rel in root->fkey_list, but if so,
    1973             :      * match_foreign_keys_to_quals() will get rid of them.
    1974             :      */
    1975             : 
    1976             :     /*
    1977             :      * Finally, remove the rel from the baserel array to prevent it from being
    1978             :      * referenced again.  (We can't do this earlier because
    1979             :      * remove_join_clause_from_rels will touch it.)
    1980             :      */
    1981         600 :     root->simple_rel_array[toRemove->relid] = NULL;
    1982             : 
    1983             :     /* And nuke the RelOptInfo, just in case there's another access path. */
    1984         600 :     pfree(toRemove);
    1985             : 
    1986             :     /*
    1987             :      * Now repeat construction of attr_needed bits coming from all other
    1988             :      * sources.
    1989             :      */
    1990         600 :     rebuild_placeholder_attr_needed(root);
    1991         600 :     rebuild_joinclause_attr_needed(root);
    1992         600 :     rebuild_eclass_attr_needed(root);
    1993         600 :     rebuild_lateral_attr_needed(root);
    1994         600 : }
    1995             : 
    1996             : /*
    1997             :  * split_selfjoin_quals
    1998             :  *      Processes 'joinquals' by building two lists: one containing the quals
    1999             :  *      where the columns/exprs are on either side of the join match and
    2000             :  *      another one containing the remaining quals.
    2001             :  *
    2002             :  * 'joinquals' must only contain quals for a RTE_RELATION being joined to
    2003             :  * itself.
    2004             :  */
    2005             : static void
    2006        2000 : split_selfjoin_quals(PlannerInfo *root, List *joinquals, List **selfjoinquals,
    2007             :                      List **otherjoinquals, int from, int to)
    2008             : {
    2009        2000 :     List       *sjoinquals = NIL;
    2010        2000 :     List       *ojoinquals = NIL;
    2011             : 
    2012        6134 :     foreach_node(RestrictInfo, rinfo, joinquals)
    2013             :     {
    2014             :         OpExpr     *expr;
    2015             :         Node       *leftexpr;
    2016             :         Node       *rightexpr;
    2017             : 
    2018             :         /* In general, clause looks like F(arg1) = G(arg2) */
    2019        4268 :         if (!rinfo->mergeopfamilies ||
    2020        4268 :             bms_num_members(rinfo->clause_relids) != 2 ||
    2021        4268 :             bms_membership(rinfo->left_relids) != BMS_SINGLETON ||
    2022        2134 :             bms_membership(rinfo->right_relids) != BMS_SINGLETON)
    2023             :         {
    2024           0 :             ojoinquals = lappend(ojoinquals, rinfo);
    2025           0 :             continue;
    2026             :         }
    2027             : 
    2028        2134 :         expr = (OpExpr *) rinfo->clause;
    2029             : 
    2030        2134 :         if (!IsA(expr, OpExpr) || list_length(expr->args) != 2)
    2031             :         {
    2032           0 :             ojoinquals = lappend(ojoinquals, rinfo);
    2033           0 :             continue;
    2034             :         }
    2035             : 
    2036        2134 :         leftexpr = get_leftop(rinfo->clause);
    2037        2134 :         rightexpr = copyObject(get_rightop(rinfo->clause));
    2038             : 
    2039        2134 :         if (leftexpr && IsA(leftexpr, RelabelType))
    2040          12 :             leftexpr = (Node *) ((RelabelType *) leftexpr)->arg;
    2041        2134 :         if (rightexpr && IsA(rightexpr, RelabelType))
    2042           6 :             rightexpr = (Node *) ((RelabelType *) rightexpr)->arg;
    2043             : 
    2044             :         /*
    2045             :          * Quite an expensive operation, narrowing the use case. For example,
    2046             :          * when we have cast of the same var to different (but compatible)
    2047             :          * types.
    2048             :          */
    2049        2134 :         ChangeVarNodesExtended(rightexpr,
    2050        2134 :                                bms_singleton_member(rinfo->right_relids),
    2051        2134 :                                bms_singleton_member(rinfo->left_relids), 0,
    2052             :                                replace_relid_callback);
    2053             : 
    2054        2134 :         if (equal(leftexpr, rightexpr))
    2055        1636 :             sjoinquals = lappend(sjoinquals, rinfo);
    2056             :         else
    2057         498 :             ojoinquals = lappend(ojoinquals, rinfo);
    2058             :     }
    2059             : 
    2060        2000 :     *selfjoinquals = sjoinquals;
    2061        2000 :     *otherjoinquals = ojoinquals;
    2062        2000 : }
    2063             : 
    2064             : /*
    2065             :  * Check for a case when uniqueness is at least partly derived from a
    2066             :  * baserestrictinfo clause. In this case, we have a chance to return only
    2067             :  * one row (if such clauses on both sides of SJ are equal) or nothing (if they
    2068             :  * are different).
    2069             :  */
    2070             : static bool
    2071         666 : match_unique_clauses(PlannerInfo *root, RelOptInfo *outer, List *uclauses,
    2072             :                      Index relid)
    2073             : {
    2074        1350 :     foreach_node(RestrictInfo, rinfo, uclauses)
    2075             :     {
    2076             :         Expr       *clause;
    2077             :         Node       *iclause;
    2078             :         Node       *c1;
    2079         150 :         bool        matched = false;
    2080             : 
    2081             :         Assert(outer->relid > 0 && relid > 0);
    2082             : 
    2083             :         /* Only filters like f(R.x1,...,R.xN) == expr we should consider. */
    2084             :         Assert(bms_is_empty(rinfo->left_relids) ^
    2085             :                bms_is_empty(rinfo->right_relids));
    2086             : 
    2087         150 :         clause = (Expr *) copyObject(rinfo->clause);
    2088         150 :         ChangeVarNodesExtended((Node *) clause, relid, outer->relid, 0,
    2089             :                                replace_relid_callback);
    2090             : 
    2091         150 :         iclause = bms_is_empty(rinfo->left_relids) ? get_rightop(clause) :
    2092         144 :             get_leftop(clause);
    2093         150 :         c1 = bms_is_empty(rinfo->left_relids) ? get_leftop(clause) :
    2094         144 :             get_rightop(clause);
    2095             : 
    2096             :         /*
    2097             :          * Compare these left and right sides with the corresponding sides of
    2098             :          * the outer's filters. If no one is detected - return immediately.
    2099             :          */
    2100         408 :         foreach_node(RestrictInfo, orinfo, outer->baserestrictinfo)
    2101             :         {
    2102             :             Node       *oclause;
    2103             :             Node       *c2;
    2104             : 
    2105         192 :             if (orinfo->mergeopfamilies == NIL)
    2106             :                 /* Don't consider clauses that aren't similar to 'F(X)=G(Y)' */
    2107          60 :                 continue;
    2108             : 
    2109             :             Assert(is_opclause(orinfo->clause));
    2110             : 
    2111         264 :             oclause = bms_is_empty(orinfo->left_relids) ?
    2112         132 :                 get_rightop(orinfo->clause) : get_leftop(orinfo->clause);
    2113         264 :             c2 = (bms_is_empty(orinfo->left_relids) ?
    2114         132 :                   get_leftop(orinfo->clause) : get_rightop(orinfo->clause));
    2115             : 
    2116         132 :             if (equal(iclause, oclause) && equal(c1, c2))
    2117             :             {
    2118          84 :                 matched = true;
    2119          84 :                 break;
    2120             :             }
    2121             :         }
    2122             : 
    2123         150 :         if (!matched)
    2124          66 :             return false;
    2125             :     }
    2126             : 
    2127         600 :     return true;
    2128             : }
    2129             : 
    2130             : /*
    2131             :  * Find and remove unique self-joins in a group of base relations that have
    2132             :  * the same Oid.
    2133             :  *
    2134             :  * Returns a set of relids that were removed.
    2135             :  */
    2136             : static Relids
    2137       11454 : remove_self_joins_one_group(PlannerInfo *root, Relids relids)
    2138             : {
    2139       11454 :     Relids      result = NULL;
    2140             :     int         k;              /* Index of kept relation */
    2141       11454 :     int         r = -1;         /* Index of removed relation */
    2142             : 
    2143       35550 :     while ((r = bms_next_member(relids, r)) > 0)
    2144             :     {
    2145       24096 :         RelOptInfo *inner = root->simple_rel_array[r];
    2146             : 
    2147       24096 :         k = r;
    2148             : 
    2149       37532 :         while ((k = bms_next_member(relids, k)) > 0)
    2150             :         {
    2151       14036 :             Relids      joinrelids = NULL;
    2152       14036 :             RelOptInfo *outer = root->simple_rel_array[k];
    2153             :             List       *restrictlist;
    2154             :             List       *selfjoinquals;
    2155             :             List       *otherjoinquals;
    2156             :             ListCell   *lc;
    2157       14036 :             bool        jinfo_check = true;
    2158       14036 :             PlanRowMark *omark = NULL;
    2159       14036 :             PlanRowMark *imark = NULL;
    2160       14036 :             List       *uclauses = NIL;
    2161             : 
    2162             :             /* A sanity check: the relations have the same Oid. */
    2163             :             Assert(root->simple_rte_array[k]->relid ==
    2164             :                    root->simple_rte_array[r]->relid);
    2165             : 
    2166             :             /*
    2167             :              * It is impossible to eliminate the join of two relations if they
    2168             :              * belong to different rules of order. Otherwise, the planner
    2169             :              * can't find any variants of the correct query plan.
    2170             :              */
    2171       17436 :             foreach(lc, root->join_info_list)
    2172             :             {
    2173       11114 :                 SpecialJoinInfo *info = (SpecialJoinInfo *) lfirst(lc);
    2174             : 
    2175       22228 :                 if ((bms_is_member(k, info->syn_lefthand) ^
    2176       15830 :                      bms_is_member(r, info->syn_lefthand)) ||
    2177        4716 :                     (bms_is_member(k, info->syn_righthand) ^
    2178        4716 :                      bms_is_member(r, info->syn_righthand)))
    2179             :                 {
    2180        7714 :                     jinfo_check = false;
    2181        7714 :                     break;
    2182             :                 }
    2183             :             }
    2184       14036 :             if (!jinfo_check)
    2185       13436 :                 continue;
    2186             : 
    2187             :             /*
    2188             :              * Check Row Marks equivalence. We can't remove the join if the
    2189             :              * relations have row marks of different strength (e.g., one is
    2190             :              * locked FOR UPDATE, and another just has ROW_MARK_REFERENCE for
    2191             :              * EvalPlanQual rechecking).
    2192             :              */
    2193        6530 :             foreach(lc, root->rowMarks)
    2194             :             {
    2195         380 :                 PlanRowMark *rowMark = (PlanRowMark *) lfirst(lc);
    2196             : 
    2197         380 :                 if (rowMark->rti == k)
    2198             :                 {
    2199             :                     Assert(imark == NULL);
    2200         172 :                     imark = rowMark;
    2201             :                 }
    2202         208 :                 else if (rowMark->rti == r)
    2203             :                 {
    2204             :                     Assert(omark == NULL);
    2205         172 :                     omark = rowMark;
    2206             :                 }
    2207             : 
    2208         380 :                 if (omark && imark)
    2209         172 :                     break;
    2210             :             }
    2211        6322 :             if (omark && imark && omark->markType != imark->markType)
    2212          52 :                 continue;
    2213             : 
    2214             :             /*
    2215             :              * We only deal with base rels here, so their relids bitset
    2216             :              * contains only one member -- their relid.
    2217             :              */
    2218        6270 :             joinrelids = bms_add_member(joinrelids, r);
    2219        6270 :             joinrelids = bms_add_member(joinrelids, k);
    2220             : 
    2221             :             /*
    2222             :              * PHVs should not impose any constraints on removing self-joins.
    2223             :              */
    2224             : 
    2225             :             /*
    2226             :              * At this stage, joininfo lists of inner and outer can contain
    2227             :              * only clauses required for a superior outer join that can't
    2228             :              * influence this optimization. So, we can avoid to call the
    2229             :              * build_joinrel_restrictlist() routine.
    2230             :              */
    2231        6270 :             restrictlist = generate_join_implied_equalities(root, joinrelids,
    2232             :                                                             inner->relids,
    2233             :                                                             outer, NULL);
    2234        6270 :             if (restrictlist == NIL)
    2235        4270 :                 continue;
    2236             : 
    2237             :             /*
    2238             :              * Process restrictlist to separate the self-join quals from the
    2239             :              * other quals. e.g., "x = x" goes to selfjoinquals and "a = b" to
    2240             :              * otherjoinquals.
    2241             :              */
    2242        2000 :             split_selfjoin_quals(root, restrictlist, &selfjoinquals,
    2243        2000 :                                  &otherjoinquals, inner->relid, outer->relid);
    2244             : 
    2245             :             Assert(list_length(restrictlist) ==
    2246             :                    (list_length(selfjoinquals) + list_length(otherjoinquals)));
    2247             : 
    2248             :             /*
    2249             :              * To enable SJE for the only degenerate case without any self
    2250             :              * join clauses at all, add baserestrictinfo to this list. The
    2251             :              * degenerate case works only if both sides have the same clause.
    2252             :              * So doesn't matter which side to add.
    2253             :              */
    2254        2000 :             selfjoinquals = list_concat(selfjoinquals, outer->baserestrictinfo);
    2255             : 
    2256             :             /*
    2257             :              * Determine if the inner table can duplicate outer rows.  We must
    2258             :              * bypass the unique rel cache here since we're possibly using a
    2259             :              * subset of join quals. We can use 'force_cache' == true when all
    2260             :              * join quals are self-join quals.  Otherwise, we could end up
    2261             :              * putting false negatives in the cache.
    2262             :              */
    2263        2000 :             if (!innerrel_is_unique_ext(root, joinrelids, inner->relids,
    2264             :                                         outer, JOIN_INNER, selfjoinquals,
    2265        2000 :                                         list_length(otherjoinquals) == 0,
    2266             :                                         &uclauses))
    2267        1334 :                 continue;
    2268             : 
    2269             :             /*
    2270             :              * 'uclauses' is the copy of outer->baserestrictinfo that are
    2271             :              * associated with an index.  We proved by matching selfjoinquals
    2272             :              * to a unique index that the outer relation has at most one
    2273             :              * matching row for each inner row.  Sometimes that is not enough.
    2274             :              * e.g. "WHERE s1.b = s2.b AND s1.a = 1 AND s2.a = 2" when the
    2275             :              * unique index is (a,b).  Having non-empty uclauses, we must
    2276             :              * validate that the inner baserestrictinfo contains the same
    2277             :              * expressions, or we won't match the same row on each side of the
    2278             :              * join.
    2279             :              */
    2280         666 :             if (!match_unique_clauses(root, inner, uclauses, outer->relid))
    2281          66 :                 continue;
    2282             : 
    2283             :             /*
    2284             :              * We can remove either relation, so remove the inner one in order
    2285             :              * to simplify this loop.
    2286             :              */
    2287         600 :             remove_self_join_rel(root, omark, imark, outer, inner, restrictlist);
    2288             : 
    2289         600 :             result = bms_add_member(result, r);
    2290             : 
    2291             :             /* We have removed the outer relation, try the next one. */
    2292         600 :             break;
    2293             :         }
    2294             :     }
    2295             : 
    2296       11454 :     return result;
    2297             : }
    2298             : 
    2299             : /*
    2300             :  * Gather indexes of base relations from the joinlist and try to eliminate self
    2301             :  * joins.
    2302             :  */
    2303             : static Relids
    2304      100952 : remove_self_joins_recurse(PlannerInfo *root, List *joinlist, Relids toRemove)
    2305             : {
    2306             :     ListCell   *jl;
    2307      100952 :     Relids      relids = NULL;
    2308      100952 :     SelfJoinCandidate *candidates = NULL;
    2309             :     int         i;
    2310             :     int         j;
    2311             :     int         numRels;
    2312             : 
    2313             :     /* Collect indexes of base relations of the join tree */
    2314      336628 :     foreach(jl, joinlist)
    2315             :     {
    2316      235676 :         Node       *jlnode = (Node *) lfirst(jl);
    2317             : 
    2318      235676 :         if (IsA(jlnode, RangeTblRef))
    2319             :         {
    2320      232310 :             int         varno = ((RangeTblRef *) jlnode)->rtindex;
    2321      232310 :             RangeTblEntry *rte = root->simple_rte_array[varno];
    2322             : 
    2323             :             /*
    2324             :              * We only consider ordinary relations as candidates to be
    2325             :              * removed, and these relations should not have TABLESAMPLE
    2326             :              * clauses specified.  Removing a relation with TABLESAMPLE clause
    2327             :              * could potentially change the syntax of the query. Because of
    2328             :              * UPDATE/DELETE EPQ mechanism, currently Query->resultRelation or
    2329             :              * Query->mergeTargetRelation associated rel cannot be eliminated.
    2330             :              */
    2331      232310 :             if (rte->rtekind == RTE_RELATION &&
    2332      201396 :                 rte->relkind == RELKIND_RELATION &&
    2333      196172 :                 rte->tablesample == NULL &&
    2334      196148 :                 varno != root->parse->resultRelation &&
    2335      194364 :                 varno != root->parse->mergeTargetRelation)
    2336             :             {
    2337             :                 Assert(!bms_is_member(varno, relids));
    2338      194364 :                 relids = bms_add_member(relids, varno);
    2339             :             }
    2340             :         }
    2341        3366 :         else if (IsA(jlnode, List))
    2342             :         {
    2343             :             /* Recursively go inside the sub-joinlist */
    2344        3366 :             toRemove = remove_self_joins_recurse(root, (List *) jlnode,
    2345             :                                                  toRemove);
    2346             :         }
    2347             :         else
    2348           0 :             elog(ERROR, "unrecognized joinlist node type: %d",
    2349             :                  (int) nodeTag(jlnode));
    2350             :     }
    2351             : 
    2352      100952 :     numRels = bms_num_members(relids);
    2353             : 
    2354             :     /* Need at least two relations for the join */
    2355      100952 :     if (numRels < 2)
    2356       30626 :         return toRemove;
    2357             : 
    2358             :     /*
    2359             :      * In order to find relations with the same oid we first build an array of
    2360             :      * candidates and then sort it by oid.
    2361             :      */
    2362       70326 :     candidates = (SelfJoinCandidate *) palloc(sizeof(SelfJoinCandidate) *
    2363             :                                               numRels);
    2364       70326 :     i = -1;
    2365       70326 :     j = 0;
    2366      242548 :     while ((i = bms_next_member(relids, i)) >= 0)
    2367             :     {
    2368      172222 :         candidates[j].relid = i;
    2369      172222 :         candidates[j].reloid = root->simple_rte_array[i]->relid;
    2370      172222 :         j++;
    2371             :     }
    2372             : 
    2373       70326 :     qsort(candidates, numRels, sizeof(SelfJoinCandidate),
    2374             :           self_join_candidates_cmp);
    2375             : 
    2376             :     /*
    2377             :      * Iteratively form a group of relation indexes with the same oid and
    2378             :      * launch the routine that detects self-joins in this group and removes
    2379             :      * excessive range table entries.
    2380             :      *
    2381             :      * At the end of the iteration, exclude the group from the overall relids
    2382             :      * list. So each next iteration of the cycle will involve less and less
    2383             :      * value of relids.
    2384             :      */
    2385       70326 :     i = 0;
    2386      242548 :     for (j = 1; j < numRels + 1; j++)
    2387             :     {
    2388      172222 :         if (j == numRels || candidates[j].reloid != candidates[i].reloid)
    2389             :         {
    2390      159664 :             if (j - i >= 2)
    2391             :             {
    2392             :                 /* Create a group of relation indexes with the same oid */
    2393       11376 :                 Relids      group = NULL;
    2394             :                 Relids      removed;
    2395             : 
    2396       35310 :                 while (i < j)
    2397             :                 {
    2398       23934 :                     group = bms_add_member(group, candidates[i].relid);
    2399       23934 :                     i++;
    2400             :                 }
    2401       11376 :                 relids = bms_del_members(relids, group);
    2402             : 
    2403             :                 /*
    2404             :                  * Try to remove self-joins from a group of identical entries.
    2405             :                  * Make the next attempt iteratively - if something is deleted
    2406             :                  * from a group, changes in clauses and equivalence classes
    2407             :                  * can give us a chance to find more candidates.
    2408             :                  */
    2409             :                 do
    2410             :                 {
    2411             :                     Assert(!bms_overlap(group, toRemove));
    2412       11454 :                     removed = remove_self_joins_one_group(root, group);
    2413       11454 :                     toRemove = bms_add_members(toRemove, removed);
    2414       11454 :                     group = bms_del_members(group, removed);
    2415         576 :                 } while (!bms_is_empty(removed) &&
    2416       11454 :                          bms_membership(group) == BMS_MULTIPLE);
    2417       11376 :                 bms_free(removed);
    2418       11376 :                 bms_free(group);
    2419             :             }
    2420             :             else
    2421             :             {
    2422             :                 /* Single relation, just remove it from the set */
    2423      148288 :                 relids = bms_del_member(relids, candidates[i].relid);
    2424      148288 :                 i = j;
    2425             :             }
    2426             :         }
    2427             :     }
    2428             : 
    2429             :     Assert(bms_is_empty(relids));
    2430             : 
    2431       70326 :     return toRemove;
    2432             : }
    2433             : 
    2434             : /*
    2435             :  * Compare self-join candidates by their oids.
    2436             :  */
    2437             : static int
    2438      127480 : self_join_candidates_cmp(const void *a, const void *b)
    2439             : {
    2440      127480 :     const SelfJoinCandidate *ca = (const SelfJoinCandidate *) a;
    2441      127480 :     const SelfJoinCandidate *cb = (const SelfJoinCandidate *) b;
    2442             : 
    2443      127480 :     if (ca->reloid != cb->reloid)
    2444      114868 :         return (ca->reloid < cb->reloid ? -1 : 1);
    2445             :     else
    2446       12612 :         return 0;
    2447             : }
    2448             : 
    2449             : /*
    2450             :  * Find and remove useless self joins.
    2451             :  *
    2452             :  * Search for joins where a relation is joined to itself. If the join clause
    2453             :  * for each tuple from one side of the join is proven to match the same
    2454             :  * physical row (or nothing) on the other side, that self-join can be
    2455             :  * eliminated from the query.  Suitable join clauses are assumed to be in the
    2456             :  * form of X = X, and can be replaced with NOT NULL clauses.
    2457             :  *
    2458             :  * For the sake of simplicity, we don't apply this optimization to special
    2459             :  * joins. Here is a list of what we could do in some particular cases:
    2460             :  * 'a a1 semi join a a2': is reduced to inner by reduce_unique_semijoins,
    2461             :  * and then removed normally.
    2462             :  * 'a a1 anti join a a2': could simplify to a scan with 'outer quals AND
    2463             :  * (IS NULL on join columns OR NOT inner quals)'.
    2464             :  * 'a a1 left join a a2': could simplify to a scan like inner but without
    2465             :  * NOT NULL conditions on join columns.
    2466             :  * 'a a1 left join (a a2 join b)': can't simplify this, because join to b
    2467             :  * can both remove rows and introduce duplicates.
    2468             :  *
    2469             :  * To search for removable joins, we order all the relations on their Oid,
    2470             :  * go over each set with the same Oid, and consider each pair of relations
    2471             :  * in this set.
    2472             :  *
    2473             :  * To remove the join, we mark one of the participating relations as dead
    2474             :  * and rewrite all references to it to point to the remaining relation.
    2475             :  * This includes modifying RestrictInfos, EquivalenceClasses, and
    2476             :  * EquivalenceMembers. We also have to modify the row marks. The join clauses
    2477             :  * of the removed relation become either restriction or join clauses, based on
    2478             :  * whether they reference any relations not participating in the removed join.
    2479             :  *
    2480             :  * 'joinlist' is the top-level joinlist of the query. If it has any
    2481             :  * references to the removed relations, we update them to point to the
    2482             :  * remaining ones.
    2483             :  */
    2484             : List *
    2485      331620 : remove_useless_self_joins(PlannerInfo *root, List *joinlist)
    2486             : {
    2487      331620 :     Relids      toRemove = NULL;
    2488      331620 :     int         relid = -1;
    2489             : 
    2490      663240 :     if (!enable_self_join_elimination || joinlist == NIL ||
    2491      566522 :         (list_length(joinlist) == 1 && !IsA(linitial(joinlist), List)))
    2492      234034 :         return joinlist;
    2493             : 
    2494             :     /*
    2495             :      * Merge pairs of relations participated in self-join. Remove unnecessary
    2496             :      * range table entries.
    2497             :      */
    2498       97586 :     toRemove = remove_self_joins_recurse(root, joinlist, toRemove);
    2499             : 
    2500       97586 :     if (unlikely(toRemove != NULL))
    2501             :     {
    2502             :         /* At the end, remove orphaned relation links */
    2503        1170 :         while ((relid = bms_next_member(toRemove, relid)) >= 0)
    2504             :         {
    2505         600 :             int         nremoved = 0;
    2506             : 
    2507         600 :             joinlist = remove_rel_from_joinlist(joinlist, relid, &nremoved);
    2508         600 :             if (nremoved != 1)
    2509           0 :                 elog(ERROR, "failed to find relation %d in joinlist", relid);
    2510             :         }
    2511             :     }
    2512             : 
    2513       97586 :     return joinlist;
    2514             : }

Generated by: LCOV version 1.14