LCOV - code coverage report
Current view: top level - src/backend/optimizer/path - joinrels.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 549 579 94.8 %
Date: 2025-10-21 05:17:45 Functions: 20 20 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * joinrels.c
       4             :  *    Routines to determine which relations should be joined
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/optimizer/path/joinrels.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include "miscadmin.h"
      18             : #include "optimizer/appendinfo.h"
      19             : #include "optimizer/cost.h"
      20             : #include "optimizer/joininfo.h"
      21             : #include "optimizer/pathnode.h"
      22             : #include "optimizer/paths.h"
      23             : #include "optimizer/planner.h"
      24             : #include "partitioning/partbounds.h"
      25             : #include "utils/memutils.h"
      26             : 
      27             : 
      28             : static void make_rels_by_clause_joins(PlannerInfo *root,
      29             :                                       RelOptInfo *old_rel,
      30             :                                       List *other_rels,
      31             :                                       int first_rel_idx);
      32             : static void make_rels_by_clauseless_joins(PlannerInfo *root,
      33             :                                           RelOptInfo *old_rel,
      34             :                                           List *other_rels);
      35             : static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel);
      36             : static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel);
      37             : static bool restriction_is_constant_false(List *restrictlist,
      38             :                                           RelOptInfo *joinrel,
      39             :                                           bool only_pushed_down);
      40             : static void make_grouped_join_rel(PlannerInfo *root, RelOptInfo *rel1,
      41             :                                   RelOptInfo *rel2, RelOptInfo *joinrel,
      42             :                                   SpecialJoinInfo *sjinfo, List *restrictlist);
      43             : static void populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
      44             :                                         RelOptInfo *rel2, RelOptInfo *joinrel,
      45             :                                         SpecialJoinInfo *sjinfo, List *restrictlist);
      46             : static void try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1,
      47             :                                    RelOptInfo *rel2, RelOptInfo *joinrel,
      48             :                                    SpecialJoinInfo *parent_sjinfo,
      49             :                                    List *parent_restrictlist);
      50             : static SpecialJoinInfo *build_child_join_sjinfo(PlannerInfo *root,
      51             :                                                 SpecialJoinInfo *parent_sjinfo,
      52             :                                                 Relids left_relids, Relids right_relids);
      53             : static void free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo,
      54             :                                    SpecialJoinInfo *parent_sjinfo);
      55             : static void compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1,
      56             :                                      RelOptInfo *rel2, RelOptInfo *joinrel,
      57             :                                      SpecialJoinInfo *parent_sjinfo,
      58             :                                      List **parts1, List **parts2);
      59             : static void get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
      60             :                                     RelOptInfo *rel1, RelOptInfo *rel2,
      61             :                                     List **parts1, List **parts2);
      62             : 
      63             : 
      64             : /*
      65             :  * join_search_one_level
      66             :  *    Consider ways to produce join relations containing exactly 'level'
      67             :  *    jointree items.  (This is one step of the dynamic-programming method
      68             :  *    embodied in standard_join_search.)  Join rel nodes for each feasible
      69             :  *    combination of lower-level rels are created and returned in a list.
      70             :  *    Implementation paths are created for each such joinrel, too.
      71             :  *
      72             :  * level: level of rels we want to make this time
      73             :  * root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
      74             :  *
      75             :  * The result is returned in root->join_rel_level[level].
      76             :  */
      77             : void
      78      136722 : join_search_one_level(PlannerInfo *root, int level)
      79             : {
      80      136722 :     List      **joinrels = root->join_rel_level;
      81             :     ListCell   *r;
      82             :     int         k;
      83             : 
      84             :     Assert(joinrels[level] == NIL);
      85             : 
      86             :     /* Set join_cur_level so that new joinrels are added to proper list */
      87      136722 :     root->join_cur_level = level;
      88             : 
      89             :     /*
      90             :      * First, consider left-sided and right-sided plans, in which rels of
      91             :      * exactly level-1 member relations are joined against initial relations.
      92             :      * We prefer to join using join clauses, but if we find a rel of level-1
      93             :      * members that has no join clauses, we will generate Cartesian-product
      94             :      * joins against all initial rels not already contained in it.
      95             :      */
      96      482206 :     foreach(r, joinrels[level - 1])
      97             :     {
      98      345484 :         RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
      99             : 
     100      375850 :         if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
     101       30366 :             has_join_restriction(root, old_rel))
     102      334796 :         {
     103             :             int         first_rel;
     104             : 
     105             :             /*
     106             :              * There are join clauses or join order restrictions relevant to
     107             :              * this rel, so consider joins between this rel and (only) those
     108             :              * initial rels it is linked to by a clause or restriction.
     109             :              *
     110             :              * At level 2 this condition is symmetric, so there is no need to
     111             :              * look at initial rels before this one in the list; we already
     112             :              * considered such joins when we were at the earlier rel.  (The
     113             :              * mirror-image joins are handled automatically by make_join_rel.)
     114             :              * In later passes (level > 2), we join rels of the previous level
     115             :              * to each initial rel they don't already include but have a join
     116             :              * clause or restriction with.
     117             :              */
     118      334796 :             if (level == 2)     /* consider remaining initial rels */
     119      226852 :                 first_rel = foreach_current_index(r) + 1;
     120             :             else
     121      107944 :                 first_rel = 0;
     122             : 
     123      334796 :             make_rels_by_clause_joins(root, old_rel, joinrels[1], first_rel);
     124             :         }
     125             :         else
     126             :         {
     127             :             /*
     128             :              * Oops, we have a relation that is not joined to any other
     129             :              * relation, either directly or by join-order restrictions.
     130             :              * Cartesian product time.
     131             :              *
     132             :              * We consider a cartesian product with each not-already-included
     133             :              * initial rel, whether it has other join clauses or not.  At
     134             :              * level 2, if there are two or more clauseless initial rels, we
     135             :              * will redundantly consider joining them in both directions; but
     136             :              * such cases aren't common enough to justify adding complexity to
     137             :              * avoid the duplicated effort.
     138             :              */
     139       10688 :             make_rels_by_clauseless_joins(root,
     140             :                                           old_rel,
     141       10688 :                                           joinrels[1]);
     142             :         }
     143             :     }
     144             : 
     145             :     /*
     146             :      * Now, consider "bushy plans" in which relations of k initial rels are
     147             :      * joined to relations of level-k initial rels, for 2 <= k <= level-2.
     148             :      *
     149             :      * We only consider bushy-plan joins for pairs of rels where there is a
     150             :      * suitable join clause (or join order restriction), in order to avoid
     151             :      * unreasonable growth of planning time.
     152             :      */
     153      136722 :     for (k = 2;; k++)
     154       12920 :     {
     155      149642 :         int         other_level = level - k;
     156             : 
     157             :         /*
     158             :          * Since make_join_rel(x, y) handles both x,y and y,x cases, we only
     159             :          * need to go as far as the halfway point.
     160             :          */
     161      149642 :         if (k > other_level)
     162      136722 :             break;
     163             : 
     164       67038 :         foreach(r, joinrels[k])
     165             :         {
     166       54118 :             RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
     167             :             int         first_rel;
     168             :             ListCell   *r2;
     169             : 
     170             :             /*
     171             :              * We can ignore relations without join clauses here, unless they
     172             :              * participate in join-order restrictions --- then we might have
     173             :              * to force a bushy join plan.
     174             :              */
     175       54118 :             if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
     176         432 :                 !has_join_restriction(root, old_rel))
     177         300 :                 continue;
     178             : 
     179       53818 :             if (k == other_level)   /* only consider remaining rels */
     180       37520 :                 first_rel = foreach_current_index(r) + 1;
     181             :             else
     182       16298 :                 first_rel = 0;
     183             : 
     184      233618 :             for_each_from(r2, joinrels[other_level], first_rel)
     185             :             {
     186      179800 :                 RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
     187             : 
     188      179800 :                 if (!bms_overlap(old_rel->relids, new_rel->relids))
     189             :                 {
     190             :                     /*
     191             :                      * OK, we can build a rel of the right level from this
     192             :                      * pair of rels.  Do so if there is at least one relevant
     193             :                      * join clause or join order restriction.
     194             :                      */
     195       22098 :                     if (have_relevant_joinclause(root, old_rel, new_rel) ||
     196        1154 :                         have_join_order_restriction(root, old_rel, new_rel))
     197             :                     {
     198       19856 :                         (void) make_join_rel(root, old_rel, new_rel);
     199             :                     }
     200             :                 }
     201             :             }
     202             :         }
     203             :     }
     204             : 
     205             :     /*----------
     206             :      * Last-ditch effort: if we failed to find any usable joins so far, force
     207             :      * a set of cartesian-product joins to be generated.  This handles the
     208             :      * special case where all the available rels have join clauses but we
     209             :      * cannot use any of those clauses yet.  This can only happen when we are
     210             :      * considering a join sub-problem (a sub-joinlist) and all the rels in the
     211             :      * sub-problem have only join clauses with rels outside the sub-problem.
     212             :      * An example is
     213             :      *
     214             :      *      SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...
     215             :      *      WHERE a.w = c.x and b.y = d.z;
     216             :      *
     217             :      * If the "a INNER JOIN b" sub-problem does not get flattened into the
     218             :      * upper level, we must be willing to make a cartesian join of a and b;
     219             :      * but the code above will not have done so, because it thought that both
     220             :      * a and b have joinclauses.  We consider only left-sided and right-sided
     221             :      * cartesian joins in this case (no bushy).
     222             :      *----------
     223             :      */
     224      136722 :     if (joinrels[level] == NIL)
     225             :     {
     226             :         /*
     227             :          * This loop is just like the first one, except we always call
     228             :          * make_rels_by_clauseless_joins().
     229             :          */
     230          54 :         foreach(r, joinrels[level - 1])
     231             :         {
     232          36 :             RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
     233             : 
     234          36 :             make_rels_by_clauseless_joins(root,
     235             :                                           old_rel,
     236          36 :                                           joinrels[1]);
     237             :         }
     238             : 
     239             :         /*----------
     240             :          * When special joins are involved, there may be no legal way
     241             :          * to make an N-way join for some values of N.  For example consider
     242             :          *
     243             :          * SELECT ... FROM t1 WHERE
     244             :          *   x IN (SELECT ... FROM t2,t3 WHERE ...) AND
     245             :          *   y IN (SELECT ... FROM t4,t5 WHERE ...)
     246             :          *
     247             :          * We will flatten this query to a 5-way join problem, but there are
     248             :          * no 4-way joins that join_is_legal() will consider legal.  We have
     249             :          * to accept failure at level 4 and go on to discover a workable
     250             :          * bushy plan at level 5.
     251             :          *
     252             :          * However, if there are no special joins and no lateral references
     253             :          * then join_is_legal() should never fail, and so the following sanity
     254             :          * check is useful.
     255             :          *----------
     256             :          */
     257          18 :         if (joinrels[level] == NIL &&
     258           6 :             root->join_info_list == NIL &&
     259           0 :             !root->hasLateralRTEs)
     260           0 :             elog(ERROR, "failed to build any %d-way joins", level);
     261             :     }
     262      136722 : }
     263             : 
     264             : /*
     265             :  * make_rels_by_clause_joins
     266             :  *    Build joins between the given relation 'old_rel' and other relations
     267             :  *    that participate in join clauses that 'old_rel' also participates in
     268             :  *    (or participate in join-order restrictions with it).
     269             :  *    The join rels are returned in root->join_rel_level[join_cur_level].
     270             :  *
     271             :  * Note: at levels above 2 we will generate the same joined relation in
     272             :  * multiple ways --- for example (a join b) join c is the same RelOptInfo as
     273             :  * (b join c) join a, though the second case will add a different set of Paths
     274             :  * to it.  This is the reason for using the join_rel_level mechanism, which
     275             :  * automatically ensures that each new joinrel is only added to the list once.
     276             :  *
     277             :  * 'old_rel' is the relation entry for the relation to be joined
     278             :  * 'other_rels': a list containing the other rels to be considered for joining
     279             :  * 'first_rel_idx': the first rel to be considered in 'other_rels'
     280             :  *
     281             :  * Currently, this is only used with initial rels in other_rels, but it
     282             :  * will work for joining to joinrels too.
     283             :  */
     284             : static void
     285      334796 : make_rels_by_clause_joins(PlannerInfo *root,
     286             :                           RelOptInfo *old_rel,
     287             :                           List *other_rels,
     288             :                           int first_rel_idx)
     289             : {
     290             :     ListCell   *l;
     291             : 
     292      975906 :     for_each_from(l, other_rels, first_rel_idx)
     293             :     {
     294      641110 :         RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
     295             : 
     296     1006622 :         if (!bms_overlap(old_rel->relids, other_rel->relids) &&
     297      441702 :             (have_relevant_joinclause(root, old_rel, other_rel) ||
     298       76190 :              have_join_order_restriction(root, old_rel, other_rel)))
     299             :         {
     300      301036 :             (void) make_join_rel(root, old_rel, other_rel);
     301             :         }
     302             :     }
     303      334796 : }
     304             : 
     305             : /*
     306             :  * make_rels_by_clauseless_joins
     307             :  *    Given a relation 'old_rel' and a list of other relations
     308             :  *    'other_rels', create a join relation between 'old_rel' and each
     309             :  *    member of 'other_rels' that isn't already included in 'old_rel'.
     310             :  *    The join rels are returned in root->join_rel_level[join_cur_level].
     311             :  *
     312             :  * 'old_rel' is the relation entry for the relation to be joined
     313             :  * 'other_rels': a list containing the other rels to be considered for joining
     314             :  *
     315             :  * Currently, this is only used with initial rels in other_rels, but it would
     316             :  * work for joining to joinrels too.
     317             :  */
     318             : static void
     319       10724 : make_rels_by_clauseless_joins(PlannerInfo *root,
     320             :                               RelOptInfo *old_rel,
     321             :                               List *other_rels)
     322             : {
     323             :     ListCell   *l;
     324             : 
     325       34290 :     foreach(l, other_rels)
     326             :     {
     327       23566 :         RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
     328             : 
     329       23566 :         if (!bms_overlap(other_rel->relids, old_rel->relids))
     330             :         {
     331       11626 :             (void) make_join_rel(root, old_rel, other_rel);
     332             :         }
     333             :     }
     334       10724 : }
     335             : 
     336             : 
     337             : /*
     338             :  * join_is_legal
     339             :  *     Determine whether a proposed join is legal given the query's
     340             :  *     join order constraints; and if it is, determine the join type.
     341             :  *
     342             :  * Caller must supply not only the two rels, but the union of their relids.
     343             :  * (We could simplify the API by computing joinrelids locally, but this
     344             :  * would be redundant work in the normal path through make_join_rel.
     345             :  * Note that this value does NOT include the RT index of any outer join that
     346             :  * might need to be performed here, so it's not the canonical identifier
     347             :  * of the join relation.)
     348             :  *
     349             :  * On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
     350             :  * else it's set to point to the associated SpecialJoinInfo node.  Also,
     351             :  * *reversed_p is set true if the given relations need to be swapped to
     352             :  * match the SpecialJoinInfo node.
     353             :  */
     354             : static bool
     355      341362 : join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
     356             :               Relids joinrelids,
     357             :               SpecialJoinInfo **sjinfo_p, bool *reversed_p)
     358             : {
     359             :     SpecialJoinInfo *match_sjinfo;
     360             :     bool        reversed;
     361             :     bool        unique_ified;
     362             :     bool        must_be_leftjoin;
     363             :     ListCell   *l;
     364             : 
     365             :     /*
     366             :      * Ensure output params are set on failure return.  This is just to
     367             :      * suppress uninitialized-variable warnings from overly anal compilers.
     368             :      */
     369      341362 :     *sjinfo_p = NULL;
     370      341362 :     *reversed_p = false;
     371             : 
     372             :     /*
     373             :      * If we have any special joins, the proposed join might be illegal; and
     374             :      * in any case we have to determine its join type.  Scan the join info
     375             :      * list for matches and conflicts.
     376             :      */
     377      341362 :     match_sjinfo = NULL;
     378      341362 :     reversed = false;
     379      341362 :     unique_ified = false;
     380      341362 :     must_be_leftjoin = false;
     381             : 
     382      695630 :     foreach(l, root->join_info_list)
     383             :     {
     384      363708 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
     385             : 
     386             :         /*
     387             :          * This special join is not relevant unless its RHS overlaps the
     388             :          * proposed join.  (Check this first as a fast path for dismissing
     389             :          * most irrelevant SJs quickly.)
     390             :          */
     391      363708 :         if (!bms_overlap(sjinfo->min_righthand, joinrelids))
     392      121676 :             continue;
     393             : 
     394             :         /*
     395             :          * Also, not relevant if proposed join is fully contained within RHS
     396             :          * (ie, we're still building up the RHS).
     397             :          */
     398      242032 :         if (bms_is_subset(joinrelids, sjinfo->min_righthand))
     399        5344 :             continue;
     400             : 
     401             :         /*
     402             :          * Also, not relevant if SJ is already done within either input.
     403             :          */
     404      442018 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
     405      205330 :             bms_is_subset(sjinfo->min_righthand, rel1->relids))
     406      100376 :             continue;
     407      156902 :         if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
     408       20590 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
     409       10812 :             continue;
     410             : 
     411             :         /*
     412             :          * If it's a semijoin and we already joined the RHS to any other rels
     413             :          * within either input, then we must have unique-ified the RHS at that
     414             :          * point (see below).  Therefore the semijoin is no longer relevant in
     415             :          * this join path.
     416             :          */
     417      125500 :         if (sjinfo->jointype == JOIN_SEMI)
     418             :         {
     419       10966 :             if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
     420        1576 :                 !bms_equal(sjinfo->syn_righthand, rel1->relids))
     421         690 :                 continue;
     422       10276 :             if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
     423        7224 :                 !bms_equal(sjinfo->syn_righthand, rel2->relids))
     424         214 :                 continue;
     425             :         }
     426             : 
     427             :         /*
     428             :          * If one input contains min_lefthand and the other contains
     429             :          * min_righthand, then we can perform the SJ at this join.
     430             :          *
     431             :          * Reject if we get matches to more than one SJ; that implies we're
     432             :          * considering something that's not really valid.
     433             :          */
     434      229398 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
     435      104802 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
     436             :         {
     437       98114 :             if (match_sjinfo)
     438        9440 :                 return false;   /* invalid join path */
     439       98114 :             match_sjinfo = sjinfo;
     440       98114 :             reversed = false;
     441             :         }
     442       35922 :         else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
     443        9440 :                  bms_is_subset(sjinfo->min_righthand, rel1->relids))
     444             :         {
     445        8216 :             if (match_sjinfo)
     446           0 :                 return false;   /* invalid join path */
     447        8216 :             match_sjinfo = sjinfo;
     448        8216 :             reversed = true;
     449             :         }
     450       21276 :         else if (sjinfo->jointype == JOIN_SEMI &&
     451        3618 :                  bms_equal(sjinfo->syn_righthand, rel2->relids) &&
     452         608 :                  create_unique_paths(root, rel2, sjinfo) != NULL)
     453             :         {
     454             :             /*----------
     455             :              * For a semijoin, we can join the RHS to anything else by
     456             :              * unique-ifying the RHS (if the RHS can be unique-ified).
     457             :              * We will only get here if we have the full RHS but less
     458             :              * than min_lefthand on the LHS.
     459             :              *
     460             :              * The reason to consider such a join path is exemplified by
     461             :              *  SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
     462             :              * If we insist on doing this as a semijoin we will first have
     463             :              * to form the cartesian product of A*B.  But if we unique-ify
     464             :              * C then the semijoin becomes a plain innerjoin and we can join
     465             :              * in any order, eg C to A and then to B.  When C is much smaller
     466             :              * than A and B this can be a huge win.  So we allow C to be
     467             :              * joined to just A or just B here, and then make_join_rel has
     468             :              * to handle the case properly.
     469             :              *
     470             :              * Note that actually we'll allow unique-ified C to be joined to
     471             :              * some other relation D here, too.  That is legal, if usually not
     472             :              * very sane, and this routine is only concerned with legality not
     473             :              * with whether the join is good strategy.
     474             :              *----------
     475             :              */
     476         392 :             if (match_sjinfo)
     477           6 :                 return false;   /* invalid join path */
     478         386 :             match_sjinfo = sjinfo;
     479         386 :             reversed = false;
     480         386 :             unique_ified = true;
     481             :         }
     482       20492 :         else if (sjinfo->jointype == JOIN_SEMI &&
     483        2854 :                  bms_equal(sjinfo->syn_righthand, rel1->relids) &&
     484         236 :                  create_unique_paths(root, rel1, sjinfo) != NULL)
     485             :         {
     486             :             /* Reversed semijoin case */
     487         104 :             if (match_sjinfo)
     488           0 :                 return false;   /* invalid join path */
     489         104 :             match_sjinfo = sjinfo;
     490         104 :             reversed = true;
     491         104 :             unique_ified = true;
     492             :         }
     493             :         else
     494             :         {
     495             :             /*
     496             :              * Otherwise, the proposed join overlaps the RHS but isn't a valid
     497             :              * implementation of this SJ.  But don't panic quite yet: the RHS
     498             :              * violation might have occurred previously, in one or both input
     499             :              * relations, in which case we must have previously decided that
     500             :              * it was OK to commute some other SJ with this one.  If we need
     501             :              * to perform this join to finish building up the RHS, rejecting
     502             :              * it could lead to not finding any plan at all.  (This can occur
     503             :              * because of the heuristics elsewhere in this file that postpone
     504             :              * clauseless joins: we might not consider doing a clauseless join
     505             :              * within the RHS until after we've performed other, validly
     506             :              * commutable SJs with one or both sides of the clauseless join.)
     507             :              * This consideration boils down to the rule that if both inputs
     508             :              * overlap the RHS, we can allow the join --- they are either
     509             :              * fully within the RHS, or represent previously-allowed joins to
     510             :              * rels outside it.
     511             :              */
     512       26014 :             if (bms_overlap(rel1->relids, sjinfo->min_righthand) &&
     513        8244 :                 bms_overlap(rel2->relids, sjinfo->min_righthand))
     514         174 :                 continue;       /* assume valid previous violation of RHS */
     515             : 
     516             :             /*
     517             :              * The proposed join could still be legal, but only if we're
     518             :              * allowed to associate it into the RHS of this SJ.  That means
     519             :              * this SJ must be a LEFT join (not SEMI or ANTI, and certainly
     520             :              * not FULL) and the proposed join must not overlap the LHS.
     521             :              */
     522       32546 :             if (sjinfo->jointype != JOIN_LEFT ||
     523       14950 :                 bms_overlap(joinrelids, sjinfo->min_lefthand))
     524        9434 :                 return false;   /* invalid join path */
     525             : 
     526             :             /*
     527             :              * To be valid, the proposed join must be a LEFT join; otherwise
     528             :              * it can't associate into this SJ's RHS.  But we may not yet have
     529             :              * found the SpecialJoinInfo matching the proposed join, so we
     530             :              * can't test that yet.  Remember the requirement for later.
     531             :              */
     532        8162 :             must_be_leftjoin = true;
     533             :         }
     534             :     }
     535             : 
     536             :     /*
     537             :      * Fail if violated any SJ's RHS and didn't match to a LEFT SJ: the
     538             :      * proposed join can't associate into an SJ's RHS.
     539             :      *
     540             :      * Also, fail if the proposed join's predicate isn't strict; we're
     541             :      * essentially checking to see if we can apply outer-join identity 3, and
     542             :      * that's a requirement.  (This check may be redundant with checks in
     543             :      * make_outerjoininfo, but I'm not quite sure, and it's cheap to test.)
     544             :      */
     545      331922 :     if (must_be_leftjoin &&
     546        5190 :         (match_sjinfo == NULL ||
     547        5190 :          match_sjinfo->jointype != JOIN_LEFT ||
     548        5190 :          !match_sjinfo->lhs_strict))
     549        1498 :         return false;           /* invalid join path */
     550             : 
     551             :     /*
     552             :      * We also have to check for constraints imposed by LATERAL references.
     553             :      */
     554      330424 :     if (root->hasLateralRTEs)
     555             :     {
     556             :         bool        lateral_fwd;
     557             :         bool        lateral_rev;
     558             :         Relids      join_lateral_rels;
     559             : 
     560             :         /*
     561             :          * The proposed rels could each contain lateral references to the
     562             :          * other, in which case the join is impossible.  If there are lateral
     563             :          * references in just one direction, then the join has to be done with
     564             :          * a nestloop with the lateral referencer on the inside.  If the join
     565             :          * matches an SJ that cannot be implemented by such a nestloop, the
     566             :          * join is impossible.
     567             :          *
     568             :          * Also, if the lateral reference is only indirect, we should reject
     569             :          * the join; whatever rel(s) the reference chain goes through must be
     570             :          * joined to first.
     571             :          */
     572       17650 :         lateral_fwd = bms_overlap(rel1->relids, rel2->lateral_relids);
     573       17650 :         lateral_rev = bms_overlap(rel2->relids, rel1->lateral_relids);
     574       17650 :         if (lateral_fwd && lateral_rev)
     575          30 :             return false;       /* have lateral refs in both directions */
     576       17620 :         if (lateral_fwd)
     577             :         {
     578             :             /* has to be implemented as nestloop with rel1 on left */
     579       10232 :             if (match_sjinfo &&
     580         426 :                 (reversed ||
     581         408 :                  unique_ified ||
     582         408 :                  match_sjinfo->jointype == JOIN_FULL))
     583          18 :                 return false;   /* not implementable as nestloop */
     584             :             /* check there is a direct reference from rel2 to rel1 */
     585       10214 :             if (!bms_overlap(rel1->relids, rel2->direct_lateral_relids))
     586          42 :                 return false;   /* only indirect refs, so reject */
     587             :         }
     588        7388 :         else if (lateral_rev)
     589             :         {
     590             :             /* has to be implemented as nestloop with rel2 on left */
     591        1660 :             if (match_sjinfo &&
     592          78 :                 (!reversed ||
     593          78 :                  unique_ified ||
     594          78 :                  match_sjinfo->jointype == JOIN_FULL))
     595           0 :                 return false;   /* not implementable as nestloop */
     596             :             /* check there is a direct reference from rel1 to rel2 */
     597        1660 :             if (!bms_overlap(rel2->relids, rel1->direct_lateral_relids))
     598           0 :                 return false;   /* only indirect refs, so reject */
     599             :         }
     600             : 
     601             :         /*
     602             :          * LATERAL references could also cause problems later on if we accept
     603             :          * this join: if the join's minimum parameterization includes any rels
     604             :          * that would have to be on the inside of an outer join with this join
     605             :          * rel, then it's never going to be possible to build the complete
     606             :          * query using this join.  We should reject this join not only because
     607             :          * it'll save work, but because if we don't, the clauseless-join
     608             :          * heuristics might think that legality of this join means that some
     609             :          * other join rel need not be formed, and that could lead to failure
     610             :          * to find any plan at all.  We have to consider not only rels that
     611             :          * are directly on the inner side of an OJ with the joinrel, but also
     612             :          * ones that are indirectly so, so search to find all such rels.
     613             :          */
     614       17560 :         join_lateral_rels = min_join_parameterization(root, joinrelids,
     615             :                                                       rel1, rel2);
     616       17560 :         if (join_lateral_rels)
     617             :         {
     618        2390 :             Relids      join_plus_rhs = bms_copy(joinrelids);
     619             :             bool        more;
     620             : 
     621             :             do
     622             :             {
     623        2786 :                 more = false;
     624        4712 :                 foreach(l, root->join_info_list)
     625             :                 {
     626        1926 :                     SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
     627             : 
     628             :                     /* ignore full joins --- their ordering is predetermined */
     629        1926 :                     if (sjinfo->jointype == JOIN_FULL)
     630          18 :                         continue;
     631             : 
     632        1908 :                     if (bms_overlap(sjinfo->min_lefthand, join_plus_rhs) &&
     633        1602 :                         !bms_is_subset(sjinfo->min_righthand, join_plus_rhs))
     634             :                     {
     635         546 :                         join_plus_rhs = bms_add_members(join_plus_rhs,
     636         546 :                                                         sjinfo->min_righthand);
     637         546 :                         more = true;
     638             :                     }
     639             :                 }
     640        2786 :             } while (more);
     641        2390 :             if (bms_overlap(join_plus_rhs, join_lateral_rels))
     642         312 :                 return false;   /* will not be able to join to some RHS rel */
     643             :         }
     644             :     }
     645             : 
     646             :     /* Otherwise, it's a valid join */
     647      330022 :     *sjinfo_p = match_sjinfo;
     648      330022 :     *reversed_p = reversed;
     649      330022 :     return true;
     650             : }
     651             : 
     652             : /*
     653             :  * init_dummy_sjinfo
     654             :  *    Populate the given SpecialJoinInfo for a plain inner join between the
     655             :  *    left and right relations specified by left_relids and right_relids
     656             :  *    respectively.
     657             :  *
     658             :  * Normally, an inner join does not have a SpecialJoinInfo node associated with
     659             :  * it. But some functions involved in join planning require one containing at
     660             :  * least the information of which relations are being joined.  So we initialize
     661             :  * that information here.
     662             :  */
     663             : void
     664     1233092 : init_dummy_sjinfo(SpecialJoinInfo *sjinfo, Relids left_relids,
     665             :                   Relids right_relids)
     666             : {
     667     1233092 :     sjinfo->type = T_SpecialJoinInfo;
     668     1233092 :     sjinfo->min_lefthand = left_relids;
     669     1233092 :     sjinfo->min_righthand = right_relids;
     670     1233092 :     sjinfo->syn_lefthand = left_relids;
     671     1233092 :     sjinfo->syn_righthand = right_relids;
     672     1233092 :     sjinfo->jointype = JOIN_INNER;
     673     1233092 :     sjinfo->ojrelid = 0;
     674     1233092 :     sjinfo->commute_above_l = NULL;
     675     1233092 :     sjinfo->commute_above_r = NULL;
     676     1233092 :     sjinfo->commute_below_l = NULL;
     677     1233092 :     sjinfo->commute_below_r = NULL;
     678             :     /* we don't bother trying to make the remaining fields valid */
     679     1233092 :     sjinfo->lhs_strict = false;
     680     1233092 :     sjinfo->semi_can_btree = false;
     681     1233092 :     sjinfo->semi_can_hash = false;
     682     1233092 :     sjinfo->semi_operators = NIL;
     683     1233092 :     sjinfo->semi_rhs_exprs = NIL;
     684     1233092 : }
     685             : 
     686             : /*
     687             :  * make_join_rel
     688             :  *     Find or create a join RelOptInfo that represents the join of
     689             :  *     the two given rels, and add to it path information for paths
     690             :  *     created with the two rels as outer and inner rel.
     691             :  *     (The join rel may already contain paths generated from other
     692             :  *     pairs of rels that add up to the same set of base rels.)
     693             :  *
     694             :  * NB: will return NULL if attempted join is not valid.  This can happen
     695             :  * when working with outer joins, or with IN or EXISTS clauses that have been
     696             :  * turned into joins.
     697             :  */
     698             : RelOptInfo *
     699      340906 : make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
     700             : {
     701             :     Relids      joinrelids;
     702             :     SpecialJoinInfo *sjinfo;
     703             :     bool        reversed;
     704      340906 :     List       *pushed_down_joins = NIL;
     705             :     SpecialJoinInfo sjinfo_data;
     706             :     RelOptInfo *joinrel;
     707             :     List       *restrictlist;
     708             : 
     709             :     /* We should never try to join two overlapping sets of rels. */
     710             :     Assert(!bms_overlap(rel1->relids, rel2->relids));
     711             : 
     712             :     /* Construct Relids set that identifies the joinrel (without OJ as yet). */
     713      340906 :     joinrelids = bms_union(rel1->relids, rel2->relids);
     714             : 
     715             :     /* Check validity and determine join type. */
     716      340906 :     if (!join_is_legal(root, rel1, rel2, joinrelids,
     717             :                        &sjinfo, &reversed))
     718             :     {
     719             :         /* invalid join path */
     720       11136 :         bms_free(joinrelids);
     721       11136 :         return NULL;
     722             :     }
     723             : 
     724             :     /*
     725             :      * Add outer join relid(s) to form the canonical relids.  Any added outer
     726             :      * joins besides sjinfo itself are appended to pushed_down_joins.
     727             :      */
     728      329770 :     joinrelids = add_outer_joins_to_relids(root, joinrelids, sjinfo,
     729             :                                            &pushed_down_joins);
     730             : 
     731             :     /* Swap rels if needed to match the join info. */
     732      329770 :     if (reversed)
     733             :     {
     734        8296 :         RelOptInfo *trel = rel1;
     735             : 
     736        8296 :         rel1 = rel2;
     737        8296 :         rel2 = trel;
     738             :     }
     739             : 
     740             :     /*
     741             :      * If it's a plain inner join, then we won't have found anything in
     742             :      * join_info_list.  Make up a SpecialJoinInfo so that selectivity
     743             :      * estimation functions will know what's being joined.
     744             :      */
     745      329770 :     if (sjinfo == NULL)
     746             :     {
     747      223244 :         sjinfo = &sjinfo_data;
     748      223244 :         init_dummy_sjinfo(sjinfo, rel1->relids, rel2->relids);
     749             :     }
     750             : 
     751             :     /*
     752             :      * Find or build the join RelOptInfo, and compute the restrictlist that
     753             :      * goes with this particular joining.
     754             :      */
     755      329770 :     joinrel = build_join_rel(root, joinrelids, rel1, rel2,
     756             :                              sjinfo, pushed_down_joins,
     757             :                              &restrictlist);
     758             : 
     759             :     /*
     760             :      * If we've already proven this join is empty, we needn't consider any
     761             :      * more paths for it.
     762             :      */
     763      329770 :     if (is_dummy_rel(joinrel))
     764             :     {
     765         504 :         bms_free(joinrelids);
     766         504 :         return joinrel;
     767             :     }
     768             : 
     769             :     /* Build a grouped join relation for 'joinrel' if possible. */
     770      329266 :     make_grouped_join_rel(root, rel1, rel2, joinrel, sjinfo,
     771             :                           restrictlist);
     772             : 
     773             :     /* Add paths to the join relation. */
     774      329266 :     populate_joinrel_with_paths(root, rel1, rel2, joinrel, sjinfo,
     775             :                                 restrictlist);
     776             : 
     777      329266 :     bms_free(joinrelids);
     778             : 
     779      329266 :     return joinrel;
     780             : }
     781             : 
     782             : /*
     783             :  * add_outer_joins_to_relids
     784             :  *    Add relids to input_relids to represent any outer joins that will be
     785             :  *    calculated at this join.
     786             :  *
     787             :  * input_relids is the union of the relid sets of the two input relations.
     788             :  * Note that we modify this in-place and return it; caller must bms_copy()
     789             :  * it first, if a separate value is desired.
     790             :  *
     791             :  * sjinfo represents the join being performed.
     792             :  *
     793             :  * If the current join completes the calculation of any outer joins that
     794             :  * have been pushed down per outer-join identity 3, those relids will be
     795             :  * added to the result along with sjinfo's own relid.  If pushed_down_joins
     796             :  * is not NULL, then also the SpecialJoinInfos for such added outer joins will
     797             :  * be appended to *pushed_down_joins (so caller must initialize it to NIL).
     798             :  */
     799             : Relids
     800      337288 : add_outer_joins_to_relids(PlannerInfo *root, Relids input_relids,
     801             :                           SpecialJoinInfo *sjinfo,
     802             :                           List **pushed_down_joins)
     803             : {
     804             :     /* Nothing to do if this isn't an outer join with an assigned relid. */
     805      337288 :     if (sjinfo == NULL || sjinfo->ojrelid == 0)
     806      241882 :         return input_relids;
     807             : 
     808             :     /*
     809             :      * If it's not a left join, we have no rules that would permit executing
     810             :      * it in non-syntactic order, so just form the syntactic relid set.  (This
     811             :      * is just a quick-exit test; we'd come to the same conclusion anyway,
     812             :      * since its commute_below_l and commute_above_l sets must be empty.)
     813             :      */
     814       95406 :     if (sjinfo->jointype != JOIN_LEFT)
     815        2236 :         return bms_add_member(input_relids, sjinfo->ojrelid);
     816             : 
     817             :     /*
     818             :      * We cannot add the OJ relid if this join has been pushed into the RHS of
     819             :      * a syntactically-lower left join per OJ identity 3.  (If it has, then we
     820             :      * cannot claim that its outputs represent the final state of its RHS.)
     821             :      * There will not be any other OJs that can be added either, so we're
     822             :      * done.
     823             :      */
     824       93170 :     if (!bms_is_subset(sjinfo->commute_below_l, input_relids))
     825        4890 :         return input_relids;
     826             : 
     827             :     /* OK to add OJ's own relid */
     828       88280 :     input_relids = bms_add_member(input_relids, sjinfo->ojrelid);
     829             : 
     830             :     /*
     831             :      * Contrariwise, if we are now forming the final result of such a commuted
     832             :      * pair of OJs, it's time to add the relid(s) of the pushed-down join(s).
     833             :      * We can skip this if this join was never a candidate to be pushed up.
     834             :      */
     835       88280 :     if (sjinfo->commute_above_l)
     836             :     {
     837       17464 :         Relids      commute_above_rels = bms_copy(sjinfo->commute_above_l);
     838             :         ListCell   *lc;
     839             : 
     840             :         /*
     841             :          * The current join could complete the nulling of more than one
     842             :          * pushed-down join, so we have to examine all the SpecialJoinInfos.
     843             :          * Because join_info_list was built in bottom-up order, it's
     844             :          * sufficient to traverse it once: an ojrelid we add in one loop
     845             :          * iteration would not have affected decisions of earlier iterations.
     846             :          */
     847       58720 :         foreach(lc, root->join_info_list)
     848             :         {
     849       41256 :             SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
     850             : 
     851       41256 :             if (othersj == sjinfo ||
     852       23792 :                 othersj->ojrelid == 0 || othersj->jointype != JOIN_LEFT)
     853       17476 :                 continue;       /* definitely not interesting */
     854             : 
     855       23780 :             if (!bms_is_member(othersj->ojrelid, commute_above_rels))
     856        6168 :                 continue;
     857             : 
     858             :             /* Add it if not already present but conditions now satisfied */
     859       35224 :             if (!bms_is_member(othersj->ojrelid, input_relids) &&
     860       35200 :                 bms_is_subset(othersj->min_lefthand, input_relids) &&
     861       26470 :                 bms_is_subset(othersj->min_righthand, input_relids) &&
     862        8882 :                 bms_is_subset(othersj->commute_below_l, input_relids))
     863             :             {
     864        8846 :                 input_relids = bms_add_member(input_relids, othersj->ojrelid);
     865             :                 /* report such pushed down outer joins, if asked */
     866        8846 :                 if (pushed_down_joins != NULL)
     867        8846 :                     *pushed_down_joins = lappend(*pushed_down_joins, othersj);
     868             : 
     869             :                 /*
     870             :                  * We must also check any joins that othersj potentially
     871             :                  * commutes with.  They likewise must appear later in
     872             :                  * join_info_list than othersj itself, so we can visit them
     873             :                  * later in this loop.
     874             :                  */
     875        8846 :                 commute_above_rels = bms_add_members(commute_above_rels,
     876        8846 :                                                      othersj->commute_above_l);
     877             :             }
     878             :         }
     879             :     }
     880             : 
     881       88280 :     return input_relids;
     882             : }
     883             : 
     884             : /*
     885             :  * make_grouped_join_rel
     886             :  *    Build a grouped join relation for the given "joinrel" if eager
     887             :  *    aggregation is applicable and the resulting grouped paths are considered
     888             :  *    useful.
     889             :  *
     890             :  * There are two strategies for generating grouped paths for a join relation:
     891             :  *
     892             :  * 1. Join a grouped (partially aggregated) input relation with a non-grouped
     893             :  * input (e.g., AGG(B) JOIN A).
     894             :  *
     895             :  * 2. Apply partial aggregation (sorted or hashed) on top of existing
     896             :  * non-grouped join paths (e.g., AGG(A JOIN B)).
     897             :  *
     898             :  * To limit planning effort and avoid an explosion of alternatives, we adopt a
     899             :  * strategy where partial aggregation is only pushed to the lowest possible
     900             :  * level in the join tree that is deemed useful.  That is, if grouped paths can
     901             :  * be built using the first strategy, we skip consideration of the second
     902             :  * strategy for the same join level.
     903             :  *
     904             :  * Additionally, if there are multiple lowest useful levels where partial
     905             :  * aggregation could be applied, such as in a join tree with relations A, B,
     906             :  * and C where both "AGG(A JOIN B) JOIN C" and "A JOIN AGG(B JOIN C)" are valid
     907             :  * placements, we choose only the first one encountered during join search.
     908             :  * This avoids generating multiple versions of the same grouped relation based
     909             :  * on different aggregation placements.
     910             :  *
     911             :  * These heuristics also ensure that all grouped paths for the same grouped
     912             :  * relation produce the same set of rows, which is a basic assumption in the
     913             :  * planner.
     914             :  */
     915             : static void
     916      348660 : make_grouped_join_rel(PlannerInfo *root, RelOptInfo *rel1,
     917             :                       RelOptInfo *rel2, RelOptInfo *joinrel,
     918             :                       SpecialJoinInfo *sjinfo, List *restrictlist)
     919             : {
     920             :     RelOptInfo *grouped_rel;
     921             :     RelOptInfo *grouped_rel1;
     922             :     RelOptInfo *grouped_rel2;
     923             :     bool        rel1_empty;
     924             :     bool        rel2_empty;
     925             :     Relids      apply_agg_at;
     926             : 
     927             :     /*
     928             :      * If there are no aggregate expressions or grouping expressions, eager
     929             :      * aggregation is not possible.
     930             :      */
     931      348660 :     if (root->agg_clause_list == NIL ||
     932       18780 :         root->group_expr_list == NIL)
     933      330114 :         return;
     934             : 
     935             :     /* Retrieve the grouped relations for the two input rels */
     936       18546 :     grouped_rel1 = rel1->grouped_rel;
     937       18546 :     grouped_rel2 = rel2->grouped_rel;
     938             : 
     939       18546 :     rel1_empty = (grouped_rel1 == NULL || IS_DUMMY_REL(grouped_rel1));
     940       18546 :     rel2_empty = (grouped_rel2 == NULL || IS_DUMMY_REL(grouped_rel2));
     941             : 
     942             :     /* Find or construct a grouped joinrel for this joinrel */
     943       18546 :     grouped_rel = joinrel->grouped_rel;
     944       18546 :     if (grouped_rel == NULL)
     945             :     {
     946       17970 :         RelAggInfo *agg_info = NULL;
     947             : 
     948             :         /*
     949             :          * Prepare the information needed to create grouped paths for this
     950             :          * join relation.
     951             :          */
     952       17970 :         agg_info = create_rel_agg_info(root, joinrel, rel1_empty == rel2_empty);
     953       17970 :         if (agg_info == NULL)
     954         840 :             return;
     955             : 
     956             :         /*
     957             :          * If grouped paths for the given join relation are not considered
     958             :          * useful, and no grouped paths can be built by joining grouped input
     959             :          * relations, skip building the grouped join relation.
     960             :          */
     961       17130 :         if (!agg_info->agg_useful &&
     962             :             (rel1_empty == rel2_empty))
     963         260 :             return;
     964             : 
     965             :         /* build the grouped relation */
     966       16870 :         grouped_rel = build_grouped_rel(root, joinrel);
     967       16870 :         grouped_rel->reltarget = agg_info->target;
     968             : 
     969       16870 :         if (rel1_empty != rel2_empty)
     970             :         {
     971             :             /*
     972             :              * If there is exactly one grouped input relation, then we can
     973             :              * build grouped paths by joining the input relations.  Set size
     974             :              * estimates for the grouped join relation based on the input
     975             :              * relations, and update the set of relids where partial
     976             :              * aggregation is applied to that of the grouped input relation.
     977             :              */
     978       16210 :             set_joinrel_size_estimates(root, grouped_rel,
     979             :                                        rel1_empty ? rel1 : grouped_rel1,
     980             :                                        rel2_empty ? rel2 : grouped_rel2,
     981             :                                        sjinfo, restrictlist);
     982       16210 :             agg_info->apply_agg_at = rel1_empty ?
     983       16210 :                 grouped_rel2->agg_info->apply_agg_at :
     984        8032 :                 grouped_rel1->agg_info->apply_agg_at;
     985             :         }
     986             :         else
     987             :         {
     988             :             /*
     989             :              * Otherwise, grouped paths can be built by applying partial
     990             :              * aggregation on top of existing non-grouped join paths.  Set
     991             :              * size estimates for the grouped join relation based on the
     992             :              * estimated number of groups, and track the set of relids where
     993             :              * partial aggregation is applied.  Note that these values may be
     994             :              * updated later if it is determined that grouped paths can be
     995             :              * constructed by joining other input relations.
     996             :              */
     997         660 :             grouped_rel->rows = agg_info->grouped_rows;
     998         660 :             agg_info->apply_agg_at = bms_copy(joinrel->relids);
     999             :         }
    1000             : 
    1001       16870 :         grouped_rel->agg_info = agg_info;
    1002       16870 :         joinrel->grouped_rel = grouped_rel;
    1003             :     }
    1004             : 
    1005             :     Assert(IS_GROUPED_REL(grouped_rel));
    1006             : 
    1007             :     /* We may have already proven this grouped join relation to be dummy. */
    1008       17446 :     if (IS_DUMMY_REL(grouped_rel))
    1009           0 :         return;
    1010             : 
    1011             :     /*
    1012             :      * Nothing to do if there's no grouped input relation.  Also, joining two
    1013             :      * grouped relations is not currently supported.
    1014             :      */
    1015       17446 :     if (rel1_empty == rel2_empty)
    1016         948 :         return;
    1017             : 
    1018             :     /*
    1019             :      * Get the set of relids where partial aggregation is applied among the
    1020             :      * given input relations.
    1021             :      */
    1022       16498 :     apply_agg_at = rel1_empty ?
    1023       16498 :         grouped_rel2->agg_info->apply_agg_at :
    1024        8320 :         grouped_rel1->agg_info->apply_agg_at;
    1025             : 
    1026             :     /*
    1027             :      * If it's not the designated level, skip building grouped paths.
    1028             :      *
    1029             :      * One exception is when it is a subset of the previously recorded level.
    1030             :      * In that case, we need to update the designated level to this one, and
    1031             :      * adjust the size estimates for the grouped join relation accordingly.
    1032             :      * For example, suppose partial aggregation can be applied on top of (B
    1033             :      * JOIN C).  If we first construct the join as ((A JOIN B) JOIN C), we'd
    1034             :      * record the designated level as including all three relations (A B C).
    1035             :      * Later, when we consider (A JOIN (B JOIN C)), we encounter the smaller
    1036             :      * (B C) join level directly.  Since this is a subset of the previous
    1037             :      * level and still valid for partial aggregation, we update the designated
    1038             :      * level to (B C), and adjust the size estimates accordingly.
    1039             :      */
    1040       16498 :     if (!bms_equal(apply_agg_at, grouped_rel->agg_info->apply_agg_at))
    1041             :     {
    1042         288 :         if (bms_is_subset(apply_agg_at, grouped_rel->agg_info->apply_agg_at))
    1043             :         {
    1044             :             /* Adjust the size estimates for the grouped join relation. */
    1045         288 :             set_joinrel_size_estimates(root, grouped_rel,
    1046             :                                        rel1_empty ? rel1 : grouped_rel1,
    1047             :                                        rel2_empty ? rel2 : grouped_rel2,
    1048             :                                        sjinfo, restrictlist);
    1049         288 :             grouped_rel->agg_info->apply_agg_at = apply_agg_at;
    1050             :         }
    1051             :         else
    1052           0 :             return;
    1053             :     }
    1054             : 
    1055             :     /* Make paths for the grouped join relation. */
    1056       16498 :     populate_joinrel_with_paths(root,
    1057             :                                 rel1_empty ? rel1 : grouped_rel1,
    1058             :                                 rel2_empty ? rel2 : grouped_rel2,
    1059             :                                 grouped_rel,
    1060             :                                 sjinfo,
    1061             :                                 restrictlist);
    1062             : }
    1063             : 
    1064             : /*
    1065             :  * populate_joinrel_with_paths
    1066             :  *    Add paths to the given joinrel for given pair of joining relations. The
    1067             :  *    SpecialJoinInfo provides details about the join and the restrictlist
    1068             :  *    contains the join clauses and the other clauses applicable for given pair
    1069             :  *    of the joining relations.
    1070             :  */
    1071             : static void
    1072      365158 : populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
    1073             :                             RelOptInfo *rel2, RelOptInfo *joinrel,
    1074             :                             SpecialJoinInfo *sjinfo, List *restrictlist)
    1075             : {
    1076             :     RelOptInfo *unique_rel2;
    1077             : 
    1078             :     /*
    1079             :      * Consider paths using each rel as both outer and inner.  Depending on
    1080             :      * the join type, a provably empty outer or inner rel might mean the join
    1081             :      * is provably empty too; in which case throw away any previously computed
    1082             :      * paths and mark the join as dummy.  (We do it this way since it's
    1083             :      * conceivable that dummy-ness of a multi-element join might only be
    1084             :      * noticeable for certain construction paths.)
    1085             :      *
    1086             :      * Also, a provably constant-false join restriction typically means that
    1087             :      * we can skip evaluating one or both sides of the join.  We do this by
    1088             :      * marking the appropriate rel as dummy.  For outer joins, a
    1089             :      * constant-false restriction that is pushed down still means the whole
    1090             :      * join is dummy, while a non-pushed-down one means that no inner rows
    1091             :      * will join so we can treat the inner rel as dummy.
    1092             :      *
    1093             :      * We need only consider the jointypes that appear in join_info_list, plus
    1094             :      * JOIN_INNER.
    1095             :      */
    1096      365158 :     switch (sjinfo->jointype)
    1097             :     {
    1098      255464 :         case JOIN_INNER:
    1099      510898 :             if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
    1100      255434 :                 restriction_is_constant_false(restrictlist, joinrel, false))
    1101             :             {
    1102         216 :                 mark_dummy_rel(joinrel);
    1103         216 :                 break;
    1104             :             }
    1105      255248 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1106             :                                  JOIN_INNER, sjinfo,
    1107             :                                  restrictlist);
    1108      255248 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1109             :                                  JOIN_INNER, sjinfo,
    1110             :                                  restrictlist);
    1111      255248 :             break;
    1112       94860 :         case JOIN_LEFT:
    1113      189666 :             if (is_dummy_rel(rel1) ||
    1114       94806 :                 restriction_is_constant_false(restrictlist, joinrel, true))
    1115             :             {
    1116          86 :                 mark_dummy_rel(joinrel);
    1117          86 :                 break;
    1118             :             }
    1119       94990 :             if (restriction_is_constant_false(restrictlist, joinrel, false) &&
    1120         216 :                 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
    1121         192 :                 mark_dummy_rel(rel2);
    1122       94774 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1123             :                                  JOIN_LEFT, sjinfo,
    1124             :                                  restrictlist);
    1125       94774 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1126             :                                  JOIN_RIGHT, sjinfo,
    1127             :                                  restrictlist);
    1128       94774 :             break;
    1129        1732 :         case JOIN_FULL:
    1130        3464 :             if ((is_dummy_rel(rel1) && is_dummy_rel(rel2)) ||
    1131        1732 :                 restriction_is_constant_false(restrictlist, joinrel, true))
    1132             :             {
    1133          12 :                 mark_dummy_rel(joinrel);
    1134          12 :                 break;
    1135             :             }
    1136        1720 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1137             :                                  JOIN_FULL, sjinfo,
    1138             :                                  restrictlist);
    1139        1720 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1140             :                                  JOIN_FULL, sjinfo,
    1141             :                                  restrictlist);
    1142             : 
    1143             :             /*
    1144             :              * If there are join quals that aren't mergeable or hashable, we
    1145             :              * may not be able to build any valid plan.  Complain here so that
    1146             :              * we can give a somewhat-useful error message.  (Since we have no
    1147             :              * flexibility of planning for a full join, there's no chance of
    1148             :              * succeeding later with another pair of input rels.)
    1149             :              */
    1150        1720 :             if (joinrel->pathlist == NIL)
    1151           0 :                 ereport(ERROR,
    1152             :                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1153             :                          errmsg("FULL JOIN is only supported with merge-joinable or hash-joinable join conditions")));
    1154        1720 :             break;
    1155        7944 :         case JOIN_SEMI:
    1156             : 
    1157             :             /*
    1158             :              * We might have a normal semijoin, or a case where we don't have
    1159             :              * enough rels to do the semijoin but can unique-ify the RHS and
    1160             :              * then do an innerjoin (see comments in join_is_legal).  In the
    1161             :              * latter case we can't apply JOIN_SEMI joining.
    1162             :              */
    1163       15458 :             if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
    1164        7514 :                 bms_is_subset(sjinfo->min_righthand, rel2->relids))
    1165             :             {
    1166       15022 :                 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
    1167        7508 :                     restriction_is_constant_false(restrictlist, joinrel, false))
    1168             :                 {
    1169          12 :                     mark_dummy_rel(joinrel);
    1170          12 :                     break;
    1171             :                 }
    1172        7502 :                 add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1173             :                                      JOIN_SEMI, sjinfo,
    1174             :                                      restrictlist);
    1175        7502 :                 add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1176             :                                      JOIN_RIGHT_SEMI, sjinfo,
    1177             :                                      restrictlist);
    1178             :             }
    1179             : 
    1180             :             /*
    1181             :              * If we know how to unique-ify the RHS and one input rel is
    1182             :              * exactly the RHS (not a superset) we can consider unique-ifying
    1183             :              * it and then doing a regular join.  (The create_unique_paths
    1184             :              * check here is probably redundant with what join_is_legal did,
    1185             :              * but if so the check is cheap because it's cached.  So test
    1186             :              * anyway to be sure.)
    1187             :              */
    1188       15864 :             if (bms_equal(sjinfo->syn_righthand, rel2->relids) &&
    1189        7932 :                 (unique_rel2 = create_unique_paths(root, rel2, sjinfo)) != NULL)
    1190             :             {
    1191       12372 :                 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
    1192        6186 :                     restriction_is_constant_false(restrictlist, joinrel, false))
    1193             :                 {
    1194           0 :                     mark_dummy_rel(joinrel);
    1195           0 :                     break;
    1196             :                 }
    1197        6186 :                 add_paths_to_joinrel(root, joinrel, rel1, unique_rel2,
    1198             :                                      JOIN_UNIQUE_INNER, sjinfo,
    1199             :                                      restrictlist);
    1200        6186 :                 add_paths_to_joinrel(root, joinrel, unique_rel2, rel1,
    1201             :                                      JOIN_UNIQUE_OUTER, sjinfo,
    1202             :                                      restrictlist);
    1203             :             }
    1204        7932 :             break;
    1205        5158 :         case JOIN_ANTI:
    1206       10316 :             if (is_dummy_rel(rel1) ||
    1207        5158 :                 restriction_is_constant_false(restrictlist, joinrel, true))
    1208             :             {
    1209           0 :                 mark_dummy_rel(joinrel);
    1210           0 :                 break;
    1211             :             }
    1212        5158 :             if (restriction_is_constant_false(restrictlist, joinrel, false) &&
    1213           0 :                 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
    1214           0 :                 mark_dummy_rel(rel2);
    1215        5158 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1216             :                                  JOIN_ANTI, sjinfo,
    1217             :                                  restrictlist);
    1218        5158 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1219             :                                  JOIN_RIGHT_ANTI, sjinfo,
    1220             :                                  restrictlist);
    1221        5158 :             break;
    1222           0 :         default:
    1223             :             /* other values not expected here */
    1224           0 :             elog(ERROR, "unrecognized join type: %d", (int) sjinfo->jointype);
    1225             :             break;
    1226             :     }
    1227             : 
    1228             :     /* Apply partitionwise join technique, if possible. */
    1229      365158 :     try_partitionwise_join(root, rel1, rel2, joinrel, sjinfo, restrictlist);
    1230      365158 : }
    1231             : 
    1232             : 
    1233             : /*
    1234             :  * have_join_order_restriction
    1235             :  *      Detect whether the two relations should be joined to satisfy
    1236             :  *      a join-order restriction arising from special or lateral joins.
    1237             :  *
    1238             :  * In practice this is always used with have_relevant_joinclause(), and so
    1239             :  * could be merged with that function, but it seems clearer to separate the
    1240             :  * two concerns.  We need this test because there are degenerate cases where
    1241             :  * a clauseless join must be performed to satisfy join-order restrictions.
    1242             :  * Also, if one rel has a lateral reference to the other, or both are needed
    1243             :  * to compute some PHV, we should consider joining them even if the join would
    1244             :  * be clauseless.
    1245             :  *
    1246             :  * Note: this is only a problem if one side of a degenerate outer join
    1247             :  * contains multiple rels, or a clauseless join is required within an
    1248             :  * IN/EXISTS RHS; else we will find a join path via the "last ditch" case in
    1249             :  * join_search_one_level().  We could dispense with this test if we were
    1250             :  * willing to try bushy plans in the "last ditch" case, but that seems much
    1251             :  * less efficient.
    1252             :  */
    1253             : bool
    1254       79624 : have_join_order_restriction(PlannerInfo *root,
    1255             :                             RelOptInfo *rel1, RelOptInfo *rel2)
    1256             : {
    1257       79624 :     bool        result = false;
    1258             :     ListCell   *l;
    1259             : 
    1260             :     /*
    1261             :      * If either side has a direct lateral reference to the other, attempt the
    1262             :      * join regardless of outer-join considerations.
    1263             :      */
    1264      149868 :     if (bms_overlap(rel1->relids, rel2->direct_lateral_relids) ||
    1265       70244 :         bms_overlap(rel2->relids, rel1->direct_lateral_relids))
    1266       10494 :         return true;
    1267             : 
    1268             :     /*
    1269             :      * Likewise, if both rels are needed to compute some PlaceHolderVar,
    1270             :      * attempt the join regardless of outer-join considerations.  (This is not
    1271             :      * very desirable, because a PHV with a large eval_at set will cause a lot
    1272             :      * of probably-useless joins to be considered, but failing to do this can
    1273             :      * cause us to fail to construct a plan at all.)
    1274             :      */
    1275       71012 :     foreach(l, root->placeholder_list)
    1276             :     {
    1277        1942 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
    1278             : 
    1279        2332 :         if (bms_is_subset(rel1->relids, phinfo->ph_eval_at) &&
    1280         390 :             bms_is_subset(rel2->relids, phinfo->ph_eval_at))
    1281          60 :             return true;
    1282             :     }
    1283             : 
    1284             :     /*
    1285             :      * It's possible that the rels correspond to the left and right sides of a
    1286             :      * degenerate outer join, that is, one with no joinclause mentioning the
    1287             :      * non-nullable side; in which case we should force the join to occur.
    1288             :      *
    1289             :      * Also, the two rels could represent a clauseless join that has to be
    1290             :      * completed to build up the LHS or RHS of an outer join.
    1291             :      */
    1292      180466 :     foreach(l, root->join_info_list)
    1293             :     {
    1294      112874 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
    1295             : 
    1296             :         /* ignore full joins --- other mechanisms handle them */
    1297      112874 :         if (sjinfo->jointype == JOIN_FULL)
    1298          42 :             continue;
    1299             : 
    1300             :         /* Can we perform the SJ with these rels? */
    1301      138470 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
    1302       25638 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
    1303             :         {
    1304        1076 :             result = true;
    1305        1076 :             break;
    1306             :         }
    1307      118650 :         if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
    1308        6894 :             bms_is_subset(sjinfo->min_righthand, rel1->relids))
    1309             :         {
    1310         210 :             result = true;
    1311         210 :             break;
    1312             :         }
    1313             : 
    1314             :         /*
    1315             :          * Might we need to join these rels to complete the RHS?  We have to
    1316             :          * use "overlap" tests since either rel might include a lower SJ that
    1317             :          * has been proven to commute with this one.
    1318             :          */
    1319      134538 :         if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&
    1320       22992 :             bms_overlap(sjinfo->min_righthand, rel2->relids))
    1321             :         {
    1322         120 :             result = true;
    1323         120 :             break;
    1324             :         }
    1325             : 
    1326             :         /* Likewise for the LHS. */
    1327      139020 :         if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&
    1328       27594 :             bms_overlap(sjinfo->min_lefthand, rel2->relids))
    1329             :         {
    1330          72 :             result = true;
    1331          72 :             break;
    1332             :         }
    1333             :     }
    1334             : 
    1335             :     /*
    1336             :      * We do not force the join to occur if either input rel can legally be
    1337             :      * joined to anything else using joinclauses.  This essentially means that
    1338             :      * clauseless bushy joins are put off as long as possible. The reason is
    1339             :      * that when there is a join order restriction high up in the join tree
    1340             :      * (that is, with many rels inside the LHS or RHS), we would otherwise
    1341             :      * expend lots of effort considering very stupid join combinations within
    1342             :      * its LHS or RHS.
    1343             :      */
    1344       69070 :     if (result)
    1345             :     {
    1346        2818 :         if (has_legal_joinclause(root, rel1) ||
    1347        1340 :             has_legal_joinclause(root, rel2))
    1348         252 :             result = false;
    1349             :     }
    1350             : 
    1351       69070 :     return result;
    1352             : }
    1353             : 
    1354             : 
    1355             : /*
    1356             :  * has_join_restriction
    1357             :  *      Detect whether the specified relation has join-order restrictions,
    1358             :  *      due to being inside an outer join or an IN (sub-SELECT),
    1359             :  *      or participating in any LATERAL references or multi-rel PHVs.
    1360             :  *
    1361             :  * Essentially, this tests whether have_join_order_restriction() could
    1362             :  * succeed with this rel and some other one.  It's OK if we sometimes
    1363             :  * say "true" incorrectly.  (Therefore, we don't bother with the relatively
    1364             :  * expensive has_legal_joinclause test.)
    1365             :  */
    1366             : static bool
    1367       30798 : has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
    1368             : {
    1369             :     ListCell   *l;
    1370             : 
    1371       30798 :     if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)
    1372       17610 :         return true;
    1373             : 
    1374       13980 :     foreach(l, root->placeholder_list)
    1375             :     {
    1376         840 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
    1377             : 
    1378         840 :         if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&
    1379         204 :             !bms_equal(rel->relids, phinfo->ph_eval_at))
    1380          48 :             return true;
    1381             :     }
    1382             : 
    1383       13934 :     foreach(l, root->join_info_list)
    1384             :     {
    1385        2946 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
    1386             : 
    1387             :         /* ignore full joins --- other mechanisms preserve their ordering */
    1388        2946 :         if (sjinfo->jointype == JOIN_FULL)
    1389          86 :             continue;
    1390             : 
    1391             :         /* ignore if SJ is already contained in rel */
    1392        4410 :         if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
    1393        1550 :             bms_is_subset(sjinfo->min_righthand, rel->relids))
    1394         372 :             continue;
    1395             : 
    1396             :         /* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
    1397        3774 :         if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
    1398        1286 :             bms_overlap(sjinfo->min_righthand, rel->relids))
    1399        2152 :             return true;
    1400             :     }
    1401             : 
    1402       10988 :     return false;
    1403             : }
    1404             : 
    1405             : 
    1406             : /*
    1407             :  * has_legal_joinclause
    1408             :  *      Detect whether the specified relation can legally be joined
    1409             :  *      to any other rels using join clauses.
    1410             :  *
    1411             :  * We consider only joins to single other relations in the current
    1412             :  * initial_rels list.  This is sufficient to get a "true" result in most real
    1413             :  * queries, and an occasional erroneous "false" will only cost a bit more
    1414             :  * planning time.  The reason for this limitation is that considering joins to
    1415             :  * other joins would require proving that the other join rel can legally be
    1416             :  * formed, which seems like too much trouble for something that's only a
    1417             :  * heuristic to save planning time.  (Note: we must look at initial_rels
    1418             :  * and not all of the query, since when we are planning a sub-joinlist we
    1419             :  * may be forced to make clauseless joins within initial_rels even though
    1420             :  * there are join clauses linking to other parts of the query.)
    1421             :  */
    1422             : static bool
    1423        2818 : has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
    1424             : {
    1425             :     ListCell   *lc;
    1426             : 
    1427       10458 :     foreach(lc, root->initial_rels)
    1428             :     {
    1429        7892 :         RelOptInfo *rel2 = (RelOptInfo *) lfirst(lc);
    1430             : 
    1431             :         /* ignore rels that are already in "rel" */
    1432        7892 :         if (bms_overlap(rel->relids, rel2->relids))
    1433        3322 :             continue;
    1434             : 
    1435        4570 :         if (have_relevant_joinclause(root, rel, rel2))
    1436             :         {
    1437             :             Relids      joinrelids;
    1438             :             SpecialJoinInfo *sjinfo;
    1439             :             bool        reversed;
    1440             : 
    1441             :             /* join_is_legal needs relids of the union */
    1442         456 :             joinrelids = bms_union(rel->relids, rel2->relids);
    1443             : 
    1444         456 :             if (join_is_legal(root, rel, rel2, joinrelids,
    1445             :                               &sjinfo, &reversed))
    1446             :             {
    1447             :                 /* Yes, this will work */
    1448         252 :                 bms_free(joinrelids);
    1449         252 :                 return true;
    1450             :             }
    1451             : 
    1452         204 :             bms_free(joinrelids);
    1453             :         }
    1454             :     }
    1455             : 
    1456        2566 :     return false;
    1457             : }
    1458             : 
    1459             : 
    1460             : /*
    1461             :  * is_dummy_rel --- has relation been proven empty?
    1462             :  */
    1463             : bool
    1464     2876694 : is_dummy_rel(RelOptInfo *rel)
    1465             : {
    1466             :     Path       *path;
    1467             : 
    1468             :     /*
    1469             :      * A rel that is known dummy will have just one path that is a childless
    1470             :      * Append.  (Even if somehow it has more paths, a childless Append will
    1471             :      * have cost zero and hence should be at the front of the pathlist.)
    1472             :      */
    1473     2876694 :     if (rel->pathlist == NIL)
    1474     1449572 :         return false;
    1475     1427122 :     path = (Path *) linitial(rel->pathlist);
    1476             : 
    1477             :     /*
    1478             :      * Initially, a dummy path will just be a childless Append.  But in later
    1479             :      * planning stages we might stick a ProjectSetPath and/or ProjectionPath
    1480             :      * on top, since Append can't project.  Rather than make assumptions about
    1481             :      * which combinations can occur, just descend through whatever we find.
    1482             :      */
    1483             :     for (;;)
    1484             :     {
    1485     1502416 :         if (IsA(path, ProjectionPath))
    1486       66146 :             path = ((ProjectionPath *) path)->subpath;
    1487     1436270 :         else if (IsA(path, ProjectSetPath))
    1488        9148 :             path = ((ProjectSetPath *) path)->subpath;
    1489             :         else
    1490     1427122 :             break;
    1491             :     }
    1492     1427122 :     if (IS_DUMMY_APPEND(path))
    1493        4672 :         return true;
    1494     1422450 :     return false;
    1495             : }
    1496             : 
    1497             : /*
    1498             :  * Mark a relation as proven empty.
    1499             :  *
    1500             :  * During GEQO planning, this can get invoked more than once on the same
    1501             :  * baserel struct, so it's worth checking to see if the rel is already marked
    1502             :  * dummy.
    1503             :  *
    1504             :  * Also, when called during GEQO join planning, we are in a short-lived
    1505             :  * memory context.  We must make sure that the dummy path attached to a
    1506             :  * baserel survives the GEQO cycle, else the baserel is trashed for future
    1507             :  * GEQO cycles.  On the other hand, when we are marking a joinrel during GEQO,
    1508             :  * we don't want the dummy path to clutter the main planning context.  Upshot
    1509             :  * is that the best solution is to explicitly make the dummy path in the same
    1510             :  * context the given RelOptInfo is in.
    1511             :  */
    1512             : void
    1513         720 : mark_dummy_rel(RelOptInfo *rel)
    1514             : {
    1515             :     MemoryContext oldcontext;
    1516             : 
    1517             :     /* Already marked? */
    1518         720 :     if (is_dummy_rel(rel))
    1519          18 :         return;
    1520             : 
    1521             :     /* No, so choose correct context to make the dummy path in */
    1522         702 :     oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
    1523             : 
    1524             :     /* Set dummy size estimate */
    1525         702 :     rel->rows = 0;
    1526             : 
    1527             :     /* Evict any previously chosen paths */
    1528         702 :     rel->pathlist = NIL;
    1529         702 :     rel->partial_pathlist = NIL;
    1530             : 
    1531             :     /* Set up the dummy path */
    1532         702 :     add_path(rel, (Path *) create_append_path(NULL, rel, NIL, NIL,
    1533             :                                               NIL, rel->lateral_relids,
    1534             :                                               0, false, -1));
    1535             : 
    1536             :     /* Set or update cheapest_total_path and related fields */
    1537         702 :     set_cheapest(rel);
    1538             : 
    1539         702 :     MemoryContextSwitchTo(oldcontext);
    1540             : }
    1541             : 
    1542             : 
    1543             : /*
    1544             :  * restriction_is_constant_false --- is a restrictlist just FALSE?
    1545             :  *
    1546             :  * In cases where a qual is provably constant FALSE, eval_const_expressions
    1547             :  * will generally have thrown away anything that's ANDed with it.  In outer
    1548             :  * join situations this will leave us computing cartesian products only to
    1549             :  * decide there's no match for an outer row, which is pretty stupid.  So,
    1550             :  * we need to detect the case.
    1551             :  *
    1552             :  * If only_pushed_down is true, then consider only quals that are pushed-down
    1553             :  * from the point of view of the joinrel.
    1554             :  */
    1555             : static bool
    1556      470756 : restriction_is_constant_false(List *restrictlist,
    1557             :                               RelOptInfo *joinrel,
    1558             :                               bool only_pushed_down)
    1559             : {
    1560             :     ListCell   *lc;
    1561             : 
    1562             :     /*
    1563             :      * Despite the above comment, the restriction list we see here might
    1564             :      * possibly have other members besides the FALSE constant, since other
    1565             :      * quals could get "pushed down" to the outer join level.  So we check
    1566             :      * each member of the list.
    1567             :      */
    1568     1003812 :     foreach(lc, restrictlist)
    1569             :     {
    1570      533508 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
    1571             : 
    1572      533508 :         if (only_pushed_down && !RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    1573      127324 :             continue;
    1574             : 
    1575      406184 :         if (rinfo->clause && IsA(rinfo->clause, Const))
    1576             :         {
    1577        5252 :             Const      *con = (Const *) rinfo->clause;
    1578             : 
    1579             :             /* constant NULL is as good as constant FALSE for our purposes */
    1580        5252 :             if (con->constisnull)
    1581         452 :                 return true;
    1582        5144 :             if (!DatumGetBool(con->constvalue))
    1583         344 :                 return true;
    1584             :         }
    1585             :     }
    1586      470304 :     return false;
    1587             : }
    1588             : 
    1589             : /*
    1590             :  * Assess whether join between given two partitioned relations can be broken
    1591             :  * down into joins between matching partitions; a technique called
    1592             :  * "partitionwise join"
    1593             :  *
    1594             :  * Partitionwise join is possible when a. Joining relations have same
    1595             :  * partitioning scheme b. There exists an equi-join between the partition keys
    1596             :  * of the two relations.
    1597             :  *
    1598             :  * Partitionwise join is planned as follows (details: optimizer/README.)
    1599             :  *
    1600             :  * 1. Create the RelOptInfos for joins between matching partitions i.e
    1601             :  * child-joins and add paths to them.
    1602             :  *
    1603             :  * 2. Construct Append or MergeAppend paths across the set of child joins.
    1604             :  * This second phase is implemented by generate_partitionwise_join_paths().
    1605             :  *
    1606             :  * The RelOptInfo, SpecialJoinInfo and restrictlist for each child join are
    1607             :  * obtained by translating the respective parent join structures.
    1608             :  */
    1609             : static void
    1610      365158 : try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
    1611             :                        RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo,
    1612             :                        List *parent_restrictlist)
    1613             : {
    1614      365158 :     bool        rel1_is_simple = IS_SIMPLE_REL(rel1);
    1615      365158 :     bool        rel2_is_simple = IS_SIMPLE_REL(rel2);
    1616      365158 :     List       *parts1 = NIL;
    1617      365158 :     List       *parts2 = NIL;
    1618      365158 :     ListCell   *lcr1 = NULL;
    1619      365158 :     ListCell   *lcr2 = NULL;
    1620             :     int         cnt_parts;
    1621             : 
    1622             :     /* Guard against stack overflow due to overly deep partition hierarchy. */
    1623      365158 :     check_stack_depth();
    1624             : 
    1625             :     /* Nothing to do, if the join relation is not partitioned. */
    1626      365158 :     if (joinrel->part_scheme == NULL || joinrel->nparts == 0)
    1627      357512 :         return;
    1628             : 
    1629             :     /* The join relation should have consider_partitionwise_join set. */
    1630             :     Assert(joinrel->consider_partitionwise_join);
    1631             : 
    1632             :     /*
    1633             :      * We can not perform partitionwise join if either of the joining
    1634             :      * relations is not partitioned.
    1635             :      */
    1636        7784 :     if (!IS_PARTITIONED_REL(rel1) || !IS_PARTITIONED_REL(rel2))
    1637          18 :         return;
    1638             : 
    1639             :     Assert(REL_HAS_ALL_PART_PROPS(rel1) && REL_HAS_ALL_PART_PROPS(rel2));
    1640             : 
    1641             :     /* The joining relations should have consider_partitionwise_join set. */
    1642             :     Assert(rel1->consider_partitionwise_join &&
    1643             :            rel2->consider_partitionwise_join);
    1644             : 
    1645             :     /*
    1646             :      * The partition scheme of the join relation should match that of the
    1647             :      * joining relations.
    1648             :      */
    1649             :     Assert(joinrel->part_scheme == rel1->part_scheme &&
    1650             :            joinrel->part_scheme == rel2->part_scheme);
    1651             : 
    1652             :     Assert(!(joinrel->partbounds_merged && (joinrel->nparts <= 0)));
    1653             : 
    1654        7766 :     compute_partition_bounds(root, rel1, rel2, joinrel, parent_sjinfo,
    1655             :                              &parts1, &parts2);
    1656             : 
    1657        7766 :     if (joinrel->partbounds_merged)
    1658             :     {
    1659         768 :         lcr1 = list_head(parts1);
    1660         768 :         lcr2 = list_head(parts2);
    1661             :     }
    1662             : 
    1663             :     /*
    1664             :      * Create child-join relations for this partitioned join, if those don't
    1665             :      * exist. Add paths to child-joins for a pair of child relations
    1666             :      * corresponding to the given pair of parent relations.
    1667             :      */
    1668       27236 :     for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
    1669             :     {
    1670             :         RelOptInfo *child_rel1;
    1671             :         RelOptInfo *child_rel2;
    1672             :         bool        rel1_empty;
    1673             :         bool        rel2_empty;
    1674             :         SpecialJoinInfo *child_sjinfo;
    1675             :         List       *child_restrictlist;
    1676             :         RelOptInfo *child_joinrel;
    1677             :         AppendRelInfo **appinfos;
    1678             :         int         nappinfos;
    1679             :         Relids      child_relids;
    1680             : 
    1681       19590 :         if (joinrel->partbounds_merged)
    1682             :         {
    1683        2010 :             child_rel1 = lfirst_node(RelOptInfo, lcr1);
    1684        2010 :             child_rel2 = lfirst_node(RelOptInfo, lcr2);
    1685        2010 :             lcr1 = lnext(parts1, lcr1);
    1686        2010 :             lcr2 = lnext(parts2, lcr2);
    1687             :         }
    1688             :         else
    1689             :         {
    1690       17580 :             child_rel1 = rel1->part_rels[cnt_parts];
    1691       17580 :             child_rel2 = rel2->part_rels[cnt_parts];
    1692             :         }
    1693             : 
    1694       19590 :         rel1_empty = (child_rel1 == NULL || IS_DUMMY_REL(child_rel1));
    1695       19590 :         rel2_empty = (child_rel2 == NULL || IS_DUMMY_REL(child_rel2));
    1696             : 
    1697             :         /*
    1698             :          * Check for cases where we can prove that this segment of the join
    1699             :          * returns no rows, due to one or both inputs being empty (including
    1700             :          * inputs that have been pruned away entirely).  If so just ignore it.
    1701             :          * These rules are equivalent to populate_joinrel_with_paths's rules
    1702             :          * for dummy input relations.
    1703             :          */
    1704       19590 :         switch (parent_sjinfo->jointype)
    1705             :         {
    1706       16772 :             case JOIN_INNER:
    1707             :             case JOIN_SEMI:
    1708       16772 :                 if (rel1_empty || rel2_empty)
    1709          76 :                     continue;   /* ignore this join segment */
    1710       16724 :                 break;
    1711        2096 :             case JOIN_LEFT:
    1712             :             case JOIN_ANTI:
    1713        2096 :                 if (rel1_empty)
    1714          28 :                     continue;   /* ignore this join segment */
    1715        2068 :                 break;
    1716         722 :             case JOIN_FULL:
    1717         722 :                 if (rel1_empty && rel2_empty)
    1718           0 :                     continue;   /* ignore this join segment */
    1719         722 :                 break;
    1720           0 :             default:
    1721             :                 /* other values not expected here */
    1722           0 :                 elog(ERROR, "unrecognized join type: %d",
    1723             :                      (int) parent_sjinfo->jointype);
    1724             :                 break;
    1725             :         }
    1726             : 
    1727             :         /*
    1728             :          * If a child has been pruned entirely then we can't generate paths
    1729             :          * for it, so we have to reject partitionwise joining unless we were
    1730             :          * able to eliminate this partition above.
    1731             :          */
    1732       19514 :         if (child_rel1 == NULL || child_rel2 == NULL)
    1733             :         {
    1734             :             /*
    1735             :              * Mark the joinrel as unpartitioned so that later functions treat
    1736             :              * it correctly.
    1737             :              */
    1738         120 :             joinrel->nparts = 0;
    1739         120 :             return;
    1740             :         }
    1741             : 
    1742             :         /*
    1743             :          * If a leaf relation has consider_partitionwise_join=false, it means
    1744             :          * that it's a dummy relation for which we skipped setting up tlist
    1745             :          * expressions and adding EC members in set_append_rel_size(), so
    1746             :          * again we have to fail here.
    1747             :          */
    1748       19394 :         if (rel1_is_simple && !child_rel1->consider_partitionwise_join)
    1749             :         {
    1750             :             Assert(child_rel1->reloptkind == RELOPT_OTHER_MEMBER_REL);
    1751             :             Assert(IS_DUMMY_REL(child_rel1));
    1752           0 :             joinrel->nparts = 0;
    1753           0 :             return;
    1754             :         }
    1755       19394 :         if (rel2_is_simple && !child_rel2->consider_partitionwise_join)
    1756             :         {
    1757             :             Assert(child_rel2->reloptkind == RELOPT_OTHER_MEMBER_REL);
    1758             :             Assert(IS_DUMMY_REL(child_rel2));
    1759           0 :             joinrel->nparts = 0;
    1760           0 :             return;
    1761             :         }
    1762             : 
    1763             :         /* We should never try to join two overlapping sets of rels. */
    1764             :         Assert(!bms_overlap(child_rel1->relids, child_rel2->relids));
    1765             : 
    1766             :         /*
    1767             :          * Construct SpecialJoinInfo from parent join relations's
    1768             :          * SpecialJoinInfo.
    1769             :          */
    1770       19394 :         child_sjinfo = build_child_join_sjinfo(root, parent_sjinfo,
    1771             :                                                child_rel1->relids,
    1772             :                                                child_rel2->relids);
    1773             : 
    1774             :         /* Find the AppendRelInfo structures */
    1775       19394 :         child_relids = bms_union(child_rel1->relids, child_rel2->relids);
    1776       19394 :         appinfos = find_appinfos_by_relids(root, child_relids,
    1777             :                                            &nappinfos);
    1778             : 
    1779             :         /*
    1780             :          * Construct restrictions applicable to the child join from those
    1781             :          * applicable to the parent join.
    1782             :          */
    1783             :         child_restrictlist =
    1784       19394 :             (List *) adjust_appendrel_attrs(root,
    1785             :                                             (Node *) parent_restrictlist,
    1786             :                                             nappinfos, appinfos);
    1787             : 
    1788             :         /* Find or construct the child join's RelOptInfo */
    1789       19394 :         child_joinrel = joinrel->part_rels[cnt_parts];
    1790       19394 :         if (!child_joinrel)
    1791             :         {
    1792       18370 :             child_joinrel = build_child_join_rel(root, child_rel1, child_rel2,
    1793             :                                                  joinrel, child_restrictlist,
    1794             :                                                  child_sjinfo, nappinfos, appinfos);
    1795       18370 :             joinrel->part_rels[cnt_parts] = child_joinrel;
    1796       18370 :             joinrel->live_parts = bms_add_member(joinrel->live_parts, cnt_parts);
    1797       18370 :             joinrel->all_partrels = bms_add_members(joinrel->all_partrels,
    1798       18370 :                                                     child_joinrel->relids);
    1799             :         }
    1800             : 
    1801             :         /* Assert we got the right one */
    1802             :         Assert(bms_equal(child_joinrel->relids,
    1803             :                          adjust_child_relids(joinrel->relids,
    1804             :                                              nappinfos, appinfos)));
    1805             : 
    1806             :         /* Build a grouped join relation for 'child_joinrel' if possible */
    1807       19394 :         make_grouped_join_rel(root, child_rel1, child_rel2,
    1808             :                               child_joinrel, child_sjinfo,
    1809             :                               child_restrictlist);
    1810             : 
    1811             :         /* And make paths for the child join */
    1812       19394 :         populate_joinrel_with_paths(root, child_rel1, child_rel2,
    1813             :                                     child_joinrel, child_sjinfo,
    1814             :                                     child_restrictlist);
    1815             : 
    1816             :         /*
    1817             :          * When there are thousands of partitions involved, this loop will
    1818             :          * accumulate a significant amount of memory usage from objects that
    1819             :          * are only needed within the loop.  Free these local objects eagerly
    1820             :          * at the end of each iteration.
    1821             :          */
    1822       19394 :         pfree(appinfos);
    1823       19394 :         bms_free(child_relids);
    1824       19394 :         free_child_join_sjinfo(child_sjinfo, parent_sjinfo);
    1825             :     }
    1826             : }
    1827             : 
    1828             : /*
    1829             :  * Construct the SpecialJoinInfo for a child-join by translating
    1830             :  * SpecialJoinInfo for the join between parents. left_relids and right_relids
    1831             :  * are the relids of left and right side of the join respectively.
    1832             :  *
    1833             :  * If translations are added to or removed from this function, consider
    1834             :  * updating free_child_join_sjinfo() accordingly.
    1835             :  */
    1836             : static SpecialJoinInfo *
    1837       19394 : build_child_join_sjinfo(PlannerInfo *root, SpecialJoinInfo *parent_sjinfo,
    1838             :                         Relids left_relids, Relids right_relids)
    1839             : {
    1840       19394 :     SpecialJoinInfo *sjinfo = makeNode(SpecialJoinInfo);
    1841             :     AppendRelInfo **left_appinfos;
    1842             :     int         left_nappinfos;
    1843             :     AppendRelInfo **right_appinfos;
    1844             :     int         right_nappinfos;
    1845             : 
    1846             :     /* Dummy SpecialJoinInfos can be created without any translation. */
    1847       19394 :     if (parent_sjinfo->jointype == JOIN_INNER)
    1848             :     {
    1849             :         Assert(parent_sjinfo->ojrelid == 0);
    1850       16208 :         init_dummy_sjinfo(sjinfo, left_relids, right_relids);
    1851       16208 :         return sjinfo;
    1852             :     }
    1853             : 
    1854        3186 :     memcpy(sjinfo, parent_sjinfo, sizeof(SpecialJoinInfo));
    1855        3186 :     left_appinfos = find_appinfos_by_relids(root, left_relids,
    1856             :                                             &left_nappinfos);
    1857        3186 :     right_appinfos = find_appinfos_by_relids(root, right_relids,
    1858             :                                              &right_nappinfos);
    1859             : 
    1860        3186 :     sjinfo->min_lefthand = adjust_child_relids(sjinfo->min_lefthand,
    1861             :                                                left_nappinfos, left_appinfos);
    1862        3186 :     sjinfo->min_righthand = adjust_child_relids(sjinfo->min_righthand,
    1863             :                                                 right_nappinfos,
    1864             :                                                 right_appinfos);
    1865        3186 :     sjinfo->syn_lefthand = adjust_child_relids(sjinfo->syn_lefthand,
    1866             :                                                left_nappinfos, left_appinfos);
    1867        3186 :     sjinfo->syn_righthand = adjust_child_relids(sjinfo->syn_righthand,
    1868             :                                                 right_nappinfos,
    1869             :                                                 right_appinfos);
    1870             :     /* outer-join relids need no adjustment */
    1871        6372 :     sjinfo->semi_rhs_exprs = (List *) adjust_appendrel_attrs(root,
    1872        3186 :                                                              (Node *) sjinfo->semi_rhs_exprs,
    1873             :                                                              right_nappinfos,
    1874             :                                                              right_appinfos);
    1875             : 
    1876        3186 :     pfree(left_appinfos);
    1877        3186 :     pfree(right_appinfos);
    1878             : 
    1879        3186 :     return sjinfo;
    1880             : }
    1881             : 
    1882             : /*
    1883             :  * free_child_join_sjinfo
    1884             :  *      Free memory consumed by a SpecialJoinInfo created by
    1885             :  *      build_child_join_sjinfo()
    1886             :  *
    1887             :  * Only members that are translated copies of their counterpart in the parent
    1888             :  * SpecialJoinInfo are freed here.
    1889             :  */
    1890             : static void
    1891       19394 : free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo,
    1892             :                        SpecialJoinInfo *parent_sjinfo)
    1893             : {
    1894             :     /*
    1895             :      * Dummy SpecialJoinInfos of inner joins do not have any translated fields
    1896             :      * and hence no fields that to be freed.
    1897             :      */
    1898       19394 :     if (child_sjinfo->jointype != JOIN_INNER)
    1899             :     {
    1900        3186 :         if (child_sjinfo->min_lefthand != parent_sjinfo->min_lefthand)
    1901        3168 :             bms_free(child_sjinfo->min_lefthand);
    1902             : 
    1903        3186 :         if (child_sjinfo->min_righthand != parent_sjinfo->min_righthand)
    1904        3186 :             bms_free(child_sjinfo->min_righthand);
    1905             : 
    1906        3186 :         if (child_sjinfo->syn_lefthand != parent_sjinfo->syn_lefthand)
    1907        3186 :             bms_free(child_sjinfo->syn_lefthand);
    1908             : 
    1909        3186 :         if (child_sjinfo->syn_righthand != parent_sjinfo->syn_righthand)
    1910        3186 :             bms_free(child_sjinfo->syn_righthand);
    1911             : 
    1912             :         Assert(child_sjinfo->commute_above_l == parent_sjinfo->commute_above_l);
    1913             :         Assert(child_sjinfo->commute_above_r == parent_sjinfo->commute_above_r);
    1914             :         Assert(child_sjinfo->commute_below_l == parent_sjinfo->commute_below_l);
    1915             :         Assert(child_sjinfo->commute_below_r == parent_sjinfo->commute_below_r);
    1916             : 
    1917             :         Assert(child_sjinfo->semi_operators == parent_sjinfo->semi_operators);
    1918             : 
    1919             :         /*
    1920             :          * semi_rhs_exprs may in principle be freed, but a simple pfree() does
    1921             :          * not suffice, so we leave it alone.
    1922             :          */
    1923             :     }
    1924             : 
    1925       19394 :     pfree(child_sjinfo);
    1926       19394 : }
    1927             : 
    1928             : /*
    1929             :  * compute_partition_bounds
    1930             :  *      Compute the partition bounds for a join rel from those for inputs
    1931             :  */
    1932             : static void
    1933        7766 : compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1,
    1934             :                          RelOptInfo *rel2, RelOptInfo *joinrel,
    1935             :                          SpecialJoinInfo *parent_sjinfo,
    1936             :                          List **parts1, List **parts2)
    1937             : {
    1938             :     /*
    1939             :      * If we don't have the partition bounds for the join rel yet, try to
    1940             :      * compute those along with pairs of partitions to be joined.
    1941             :      */
    1942        7766 :     if (joinrel->nparts == -1)
    1943             :     {
    1944        7386 :         PartitionScheme part_scheme = joinrel->part_scheme;
    1945        7386 :         PartitionBoundInfo boundinfo = NULL;
    1946        7386 :         int         nparts = 0;
    1947             : 
    1948             :         Assert(joinrel->boundinfo == NULL);
    1949             :         Assert(joinrel->part_rels == NULL);
    1950             : 
    1951             :         /*
    1952             :          * See if the partition bounds for inputs are exactly the same, in
    1953             :          * which case we don't need to work hard: the join rel will have the
    1954             :          * same partition bounds as inputs, and the partitions with the same
    1955             :          * cardinal positions will form the pairs.
    1956             :          *
    1957             :          * Note: even in cases where one or both inputs have merged bounds, it
    1958             :          * would be possible for both the bounds to be exactly the same, but
    1959             :          * it seems unlikely to be worth the cycles to check.
    1960             :          */
    1961        7386 :         if (!rel1->partbounds_merged &&
    1962        7326 :             !rel2->partbounds_merged &&
    1963       14394 :             rel1->nparts == rel2->nparts &&
    1964        7068 :             partition_bounds_equal(part_scheme->partnatts,
    1965             :                                    part_scheme->parttyplen,
    1966             :                                    part_scheme->parttypbyval,
    1967             :                                    rel1->boundinfo, rel2->boundinfo))
    1968             :         {
    1969        6540 :             boundinfo = rel1->boundinfo;
    1970        6540 :             nparts = rel1->nparts;
    1971             :         }
    1972             :         else
    1973             :         {
    1974             :             /* Try merging the partition bounds for inputs. */
    1975         846 :             boundinfo = partition_bounds_merge(part_scheme->partnatts,
    1976         846 :                                                part_scheme->partsupfunc,
    1977             :                                                part_scheme->partcollation,
    1978             :                                                rel1, rel2,
    1979             :                                                parent_sjinfo->jointype,
    1980             :                                                parts1, parts2);
    1981         846 :             if (boundinfo == NULL)
    1982             :             {
    1983         114 :                 joinrel->nparts = 0;
    1984         114 :                 return;
    1985             :             }
    1986         732 :             nparts = list_length(*parts1);
    1987         732 :             joinrel->partbounds_merged = true;
    1988             :         }
    1989             : 
    1990             :         Assert(nparts > 0);
    1991        7272 :         joinrel->boundinfo = boundinfo;
    1992        7272 :         joinrel->nparts = nparts;
    1993        7272 :         joinrel->part_rels =
    1994        7272 :             (RelOptInfo **) palloc0(sizeof(RelOptInfo *) * nparts);
    1995             :     }
    1996             :     else
    1997             :     {
    1998             :         Assert(joinrel->nparts > 0);
    1999             :         Assert(joinrel->boundinfo);
    2000             :         Assert(joinrel->part_rels);
    2001             : 
    2002             :         /*
    2003             :          * If the join rel's partbounds_merged flag is true, it means inputs
    2004             :          * are not guaranteed to have the same partition bounds, therefore we
    2005             :          * can't assume that the partitions at the same cardinal positions
    2006             :          * form the pairs; let get_matching_part_pairs() generate the pairs.
    2007             :          * Otherwise, nothing to do since we can assume that.
    2008             :          */
    2009         380 :         if (joinrel->partbounds_merged)
    2010             :         {
    2011          36 :             get_matching_part_pairs(root, joinrel, rel1, rel2,
    2012             :                                     parts1, parts2);
    2013             :             Assert(list_length(*parts1) == joinrel->nparts);
    2014             :             Assert(list_length(*parts2) == joinrel->nparts);
    2015             :         }
    2016             :     }
    2017             : }
    2018             : 
    2019             : /*
    2020             :  * get_matching_part_pairs
    2021             :  *      Generate pairs of partitions to be joined from inputs
    2022             :  */
    2023             : static void
    2024          36 : get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
    2025             :                         RelOptInfo *rel1, RelOptInfo *rel2,
    2026             :                         List **parts1, List **parts2)
    2027             : {
    2028          36 :     bool        rel1_is_simple = IS_SIMPLE_REL(rel1);
    2029          36 :     bool        rel2_is_simple = IS_SIMPLE_REL(rel2);
    2030             :     int         cnt_parts;
    2031             : 
    2032          36 :     *parts1 = NIL;
    2033          36 :     *parts2 = NIL;
    2034             : 
    2035         132 :     for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
    2036             :     {
    2037          96 :         RelOptInfo *child_joinrel = joinrel->part_rels[cnt_parts];
    2038             :         RelOptInfo *child_rel1;
    2039             :         RelOptInfo *child_rel2;
    2040             :         Relids      child_relids1;
    2041             :         Relids      child_relids2;
    2042             : 
    2043             :         /*
    2044             :          * If this segment of the join is empty, it means that this segment
    2045             :          * was ignored when previously creating child-join paths for it in
    2046             :          * try_partitionwise_join() as it would not contribute to the join
    2047             :          * result, due to one or both inputs being empty; add NULL to each of
    2048             :          * the given lists so that this segment will be ignored again in that
    2049             :          * function.
    2050             :          */
    2051          96 :         if (!child_joinrel)
    2052             :         {
    2053           0 :             *parts1 = lappend(*parts1, NULL);
    2054           0 :             *parts2 = lappend(*parts2, NULL);
    2055           0 :             continue;
    2056             :         }
    2057             : 
    2058             :         /*
    2059             :          * Get a relids set of partition(s) involved in this join segment that
    2060             :          * are from the rel1 side.
    2061             :          */
    2062          96 :         child_relids1 = bms_intersect(child_joinrel->relids,
    2063          96 :                                       rel1->all_partrels);
    2064             :         Assert(bms_num_members(child_relids1) == bms_num_members(rel1->relids));
    2065             : 
    2066             :         /*
    2067             :          * Get a child rel for rel1 with the relids.  Note that we should have
    2068             :          * the child rel even if rel1 is a join rel, because in that case the
    2069             :          * partitions specified in the relids would have matching/overlapping
    2070             :          * boundaries, so the specified partitions should be considered as
    2071             :          * ones to be joined when planning partitionwise joins of rel1,
    2072             :          * meaning that the child rel would have been built by the time we get
    2073             :          * here.
    2074             :          */
    2075          96 :         if (rel1_is_simple)
    2076             :         {
    2077           0 :             int         varno = bms_singleton_member(child_relids1);
    2078             : 
    2079           0 :             child_rel1 = find_base_rel(root, varno);
    2080             :         }
    2081             :         else
    2082          96 :             child_rel1 = find_join_rel(root, child_relids1);
    2083             :         Assert(child_rel1);
    2084             : 
    2085             :         /*
    2086             :          * Get a relids set of partition(s) involved in this join segment that
    2087             :          * are from the rel2 side.
    2088             :          */
    2089          96 :         child_relids2 = bms_intersect(child_joinrel->relids,
    2090          96 :                                       rel2->all_partrels);
    2091             :         Assert(bms_num_members(child_relids2) == bms_num_members(rel2->relids));
    2092             : 
    2093             :         /*
    2094             :          * Get a child rel for rel2 with the relids.  See above comments.
    2095             :          */
    2096          96 :         if (rel2_is_simple)
    2097             :         {
    2098          96 :             int         varno = bms_singleton_member(child_relids2);
    2099             : 
    2100          96 :             child_rel2 = find_base_rel(root, varno);
    2101             :         }
    2102             :         else
    2103           0 :             child_rel2 = find_join_rel(root, child_relids2);
    2104             :         Assert(child_rel2);
    2105             : 
    2106             :         /*
    2107             :          * The join of rel1 and rel2 is legal, so is the join of the child
    2108             :          * rels obtained above; add them to the given lists as a join pair
    2109             :          * producing this join segment.
    2110             :          */
    2111          96 :         *parts1 = lappend(*parts1, child_rel1);
    2112          96 :         *parts2 = lappend(*parts2, child_rel2);
    2113             :     }
    2114          36 : }

Generated by: LCOV version 1.16