LCOV - code coverage report
Current view: top level - src/backend/optimizer/path - indxpath.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 1159 1229 94.3 %
Date: 2026-01-08 12:17:46 Functions: 49 50 98.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * indxpath.c
       4             :  *    Routines to determine which indexes are usable for scanning a
       5             :  *    given relation, and create Paths accordingly.
       6             :  *
       7             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
       8             :  * Portions Copyright (c) 1994, Regents of the University of California
       9             :  *
      10             :  *
      11             :  * IDENTIFICATION
      12             :  *    src/backend/optimizer/path/indxpath.c
      13             :  *
      14             :  *-------------------------------------------------------------------------
      15             :  */
      16             : #include "postgres.h"
      17             : 
      18             : #include <math.h>
      19             : 
      20             : #include "access/stratnum.h"
      21             : #include "access/sysattr.h"
      22             : #include "access/transam.h"
      23             : #include "catalog/pg_am.h"
      24             : #include "catalog/pg_amop.h"
      25             : #include "catalog/pg_operator.h"
      26             : #include "catalog/pg_opfamily.h"
      27             : #include "catalog/pg_type.h"
      28             : #include "nodes/makefuncs.h"
      29             : #include "nodes/nodeFuncs.h"
      30             : #include "nodes/supportnodes.h"
      31             : #include "optimizer/cost.h"
      32             : #include "optimizer/optimizer.h"
      33             : #include "optimizer/pathnode.h"
      34             : #include "optimizer/paths.h"
      35             : #include "optimizer/prep.h"
      36             : #include "optimizer/restrictinfo.h"
      37             : #include "utils/lsyscache.h"
      38             : #include "utils/selfuncs.h"
      39             : 
      40             : 
      41             : /* XXX see PartCollMatchesExprColl */
      42             : #define IndexCollMatchesExprColl(idxcollation, exprcollation) \
      43             :     ((idxcollation) == InvalidOid || (idxcollation) == (exprcollation))
      44             : 
      45             : /* Whether we are looking for plain indexscan, bitmap scan, or either */
      46             : typedef enum
      47             : {
      48             :     ST_INDEXSCAN,               /* must support amgettuple */
      49             :     ST_BITMAPSCAN,              /* must support amgetbitmap */
      50             :     ST_ANYSCAN,                 /* either is okay */
      51             : } ScanTypeControl;
      52             : 
      53             : /* Data structure for collecting qual clauses that match an index */
      54             : typedef struct
      55             : {
      56             :     bool        nonempty;       /* True if lists are not all empty */
      57             :     /* Lists of IndexClause nodes, one list per index column */
      58             :     List       *indexclauses[INDEX_MAX_KEYS];
      59             : } IndexClauseSet;
      60             : 
      61             : /* Per-path data used within choose_bitmap_and() */
      62             : typedef struct
      63             : {
      64             :     Path       *path;           /* IndexPath, BitmapAndPath, or BitmapOrPath */
      65             :     List       *quals;          /* the WHERE clauses it uses */
      66             :     List       *preds;          /* predicates of its partial index(es) */
      67             :     Bitmapset  *clauseids;      /* quals+preds represented as a bitmapset */
      68             :     bool        unclassifiable; /* has too many quals+preds to process? */
      69             : } PathClauseUsage;
      70             : 
      71             : /* Callback argument for ec_member_matches_indexcol */
      72             : typedef struct
      73             : {
      74             :     IndexOptInfo *index;        /* index we're considering */
      75             :     int         indexcol;       /* index column we want to match to */
      76             : } ec_member_matches_arg;
      77             : 
      78             : 
      79             : static void consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel,
      80             :                                         IndexOptInfo *index,
      81             :                                         IndexClauseSet *rclauseset,
      82             :                                         IndexClauseSet *jclauseset,
      83             :                                         IndexClauseSet *eclauseset,
      84             :                                         List **bitindexpaths);
      85             : static void consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel,
      86             :                                            IndexOptInfo *index,
      87             :                                            IndexClauseSet *rclauseset,
      88             :                                            IndexClauseSet *jclauseset,
      89             :                                            IndexClauseSet *eclauseset,
      90             :                                            List **bitindexpaths,
      91             :                                            List *indexjoinclauses,
      92             :                                            int considered_clauses,
      93             :                                            List **considered_relids);
      94             : static void get_join_index_paths(PlannerInfo *root, RelOptInfo *rel,
      95             :                                  IndexOptInfo *index,
      96             :                                  IndexClauseSet *rclauseset,
      97             :                                  IndexClauseSet *jclauseset,
      98             :                                  IndexClauseSet *eclauseset,
      99             :                                  List **bitindexpaths,
     100             :                                  Relids relids,
     101             :                                  List **considered_relids);
     102             : static bool eclass_already_used(EquivalenceClass *parent_ec, Relids oldrelids,
     103             :                                 List *indexjoinclauses);
     104             : static void get_index_paths(PlannerInfo *root, RelOptInfo *rel,
     105             :                             IndexOptInfo *index, IndexClauseSet *clauses,
     106             :                             List **bitindexpaths);
     107             : static List *build_index_paths(PlannerInfo *root, RelOptInfo *rel,
     108             :                                IndexOptInfo *index, IndexClauseSet *clauses,
     109             :                                bool useful_predicate,
     110             :                                ScanTypeControl scantype,
     111             :                                bool *skip_nonnative_saop);
     112             : static List *build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel,
     113             :                                 List *clauses, List *other_clauses);
     114             : static List *generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel,
     115             :                                       List *clauses, List *other_clauses);
     116             : static Path *choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel,
     117             :                                List *paths);
     118             : static int  path_usage_comparator(const void *a, const void *b);
     119             : static Cost bitmap_scan_cost_est(PlannerInfo *root, RelOptInfo *rel,
     120             :                                  Path *ipath);
     121             : static Cost bitmap_and_cost_est(PlannerInfo *root, RelOptInfo *rel,
     122             :                                 List *paths);
     123             : static PathClauseUsage *classify_index_clause_usage(Path *path,
     124             :                                                     List **clauselist);
     125             : static void find_indexpath_quals(Path *bitmapqual, List **quals, List **preds);
     126             : static int  find_list_position(Node *node, List **nodelist);
     127             : static bool check_index_only(RelOptInfo *rel, IndexOptInfo *index);
     128             : static double get_loop_count(PlannerInfo *root, Index cur_relid, Relids outer_relids);
     129             : static double adjust_rowcount_for_semijoins(PlannerInfo *root,
     130             :                                             Index cur_relid,
     131             :                                             Index outer_relid,
     132             :                                             double rowcount);
     133             : static double approximate_joinrel_size(PlannerInfo *root, Relids relids);
     134             : static void match_restriction_clauses_to_index(PlannerInfo *root,
     135             :                                                IndexOptInfo *index,
     136             :                                                IndexClauseSet *clauseset);
     137             : static void match_join_clauses_to_index(PlannerInfo *root,
     138             :                                         RelOptInfo *rel, IndexOptInfo *index,
     139             :                                         IndexClauseSet *clauseset,
     140             :                                         List **joinorclauses);
     141             : static void match_eclass_clauses_to_index(PlannerInfo *root,
     142             :                                           IndexOptInfo *index,
     143             :                                           IndexClauseSet *clauseset);
     144             : static void match_clauses_to_index(PlannerInfo *root,
     145             :                                    List *clauses,
     146             :                                    IndexOptInfo *index,
     147             :                                    IndexClauseSet *clauseset);
     148             : static void match_clause_to_index(PlannerInfo *root,
     149             :                                   RestrictInfo *rinfo,
     150             :                                   IndexOptInfo *index,
     151             :                                   IndexClauseSet *clauseset);
     152             : static IndexClause *match_clause_to_indexcol(PlannerInfo *root,
     153             :                                              RestrictInfo *rinfo,
     154             :                                              int indexcol,
     155             :                                              IndexOptInfo *index);
     156             : static bool IsBooleanOpfamily(Oid opfamily);
     157             : static IndexClause *match_boolean_index_clause(PlannerInfo *root,
     158             :                                                RestrictInfo *rinfo,
     159             :                                                int indexcol, IndexOptInfo *index);
     160             : static IndexClause *match_opclause_to_indexcol(PlannerInfo *root,
     161             :                                                RestrictInfo *rinfo,
     162             :                                                int indexcol,
     163             :                                                IndexOptInfo *index);
     164             : static IndexClause *match_funcclause_to_indexcol(PlannerInfo *root,
     165             :                                                  RestrictInfo *rinfo,
     166             :                                                  int indexcol,
     167             :                                                  IndexOptInfo *index);
     168             : static IndexClause *get_index_clause_from_support(PlannerInfo *root,
     169             :                                                   RestrictInfo *rinfo,
     170             :                                                   Oid funcid,
     171             :                                                   int indexarg,
     172             :                                                   int indexcol,
     173             :                                                   IndexOptInfo *index);
     174             : static IndexClause *match_saopclause_to_indexcol(PlannerInfo *root,
     175             :                                                  RestrictInfo *rinfo,
     176             :                                                  int indexcol,
     177             :                                                  IndexOptInfo *index);
     178             : static IndexClause *match_rowcompare_to_indexcol(PlannerInfo *root,
     179             :                                                  RestrictInfo *rinfo,
     180             :                                                  int indexcol,
     181             :                                                  IndexOptInfo *index);
     182             : static IndexClause *match_orclause_to_indexcol(PlannerInfo *root,
     183             :                                                RestrictInfo *rinfo,
     184             :                                                int indexcol,
     185             :                                                IndexOptInfo *index);
     186             : static IndexClause *expand_indexqual_rowcompare(PlannerInfo *root,
     187             :                                                 RestrictInfo *rinfo,
     188             :                                                 int indexcol,
     189             :                                                 IndexOptInfo *index,
     190             :                                                 Oid expr_op,
     191             :                                                 bool var_on_left);
     192             : static void match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys,
     193             :                                     List **orderby_clauses_p,
     194             :                                     List **clause_columns_p);
     195             : static Expr *match_clause_to_ordering_op(IndexOptInfo *index,
     196             :                                          int indexcol, Expr *clause, Oid pk_opfamily);
     197             : static bool ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel,
     198             :                                        EquivalenceClass *ec, EquivalenceMember *em,
     199             :                                        void *arg);
     200             : static bool contain_strippable_phv_walker(Node *node, void *context);
     201             : static Node *strip_phvs_in_index_operand_mutator(Node *node, void *context);
     202             : 
     203             : 
     204             : /*
     205             :  * create_index_paths()
     206             :  *    Generate all interesting index paths for the given relation.
     207             :  *    Candidate paths are added to the rel's pathlist (using add_path).
     208             :  *
     209             :  * To be considered for an index scan, an index must match one or more
     210             :  * restriction clauses or join clauses from the query's qual condition,
     211             :  * or match the query's ORDER BY condition, or have a predicate that
     212             :  * matches the query's qual condition.
     213             :  *
     214             :  * There are two basic kinds of index scans.  A "plain" index scan uses
     215             :  * only restriction clauses (possibly none at all) in its indexqual,
     216             :  * so it can be applied in any context.  A "parameterized" index scan uses
     217             :  * join clauses (plus restriction clauses, if available) in its indexqual.
     218             :  * When joining such a scan to one of the relations supplying the other
     219             :  * variables used in its indexqual, the parameterized scan must appear as
     220             :  * the inner relation of a nestloop join; it can't be used on the outer side,
     221             :  * nor in a merge or hash join.  In that context, values for the other rels'
     222             :  * attributes are available and fixed during any one scan of the indexpath.
     223             :  *
     224             :  * An IndexPath is generated and submitted to add_path() for each plain or
     225             :  * parameterized index scan this routine deems potentially interesting for
     226             :  * the current query.
     227             :  *
     228             :  * 'rel' is the relation for which we want to generate index paths
     229             :  *
     230             :  * Note: check_index_predicates() must have been run previously for this rel.
     231             :  *
     232             :  * Note: in cases involving LATERAL references in the relation's tlist, it's
     233             :  * possible that rel->lateral_relids is nonempty.  Currently, we include
     234             :  * lateral_relids into the parameterization reported for each path, but don't
     235             :  * take it into account otherwise.  The fact that any such rels *must* be
     236             :  * available as parameter sources perhaps should influence our choices of
     237             :  * index quals ... but for now, it doesn't seem worth troubling over.
     238             :  * In particular, comments below about "unparameterized" paths should be read
     239             :  * as meaning "unparameterized so far as the indexquals are concerned".
     240             :  */
     241             : void
     242      417082 : create_index_paths(PlannerInfo *root, RelOptInfo *rel)
     243             : {
     244             :     List       *indexpaths;
     245             :     List       *bitindexpaths;
     246             :     List       *bitjoinpaths;
     247             :     List       *joinorclauses;
     248             :     IndexClauseSet rclauseset;
     249             :     IndexClauseSet jclauseset;
     250             :     IndexClauseSet eclauseset;
     251             :     ListCell   *lc;
     252             : 
     253             :     /* Skip the whole mess if no indexes */
     254      417082 :     if (rel->indexlist == NIL)
     255       72250 :         return;
     256             : 
     257             :     /* Bitmap paths are collected and then dealt with at the end */
     258      344832 :     bitindexpaths = bitjoinpaths = joinorclauses = NIL;
     259             : 
     260             :     /* Examine each index in turn */
     261     1079162 :     foreach(lc, rel->indexlist)
     262             :     {
     263      734330 :         IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
     264             : 
     265             :         /* Protect limited-size array in IndexClauseSets */
     266             :         Assert(index->nkeycolumns <= INDEX_MAX_KEYS);
     267             : 
     268             :         /*
     269             :          * Ignore partial indexes that do not match the query.
     270             :          * (generate_bitmap_or_paths() might be able to do something with
     271             :          * them, but that's of no concern here.)
     272             :          */
     273      734330 :         if (index->indpred != NIL && !index->predOK)
     274         548 :             continue;
     275             : 
     276             :         /*
     277             :          * Identify the restriction clauses that can match the index.
     278             :          */
     279    24948588 :         MemSet(&rclauseset, 0, sizeof(rclauseset));
     280      733782 :         match_restriction_clauses_to_index(root, index, &rclauseset);
     281             : 
     282             :         /*
     283             :          * Build index paths from the restriction clauses.  These will be
     284             :          * non-parameterized paths.  Plain paths go directly to add_path(),
     285             :          * bitmap paths are added to bitindexpaths to be handled below.
     286             :          */
     287      733782 :         get_index_paths(root, rel, index, &rclauseset,
     288             :                         &bitindexpaths);
     289             : 
     290             :         /*
     291             :          * Identify the join clauses that can match the index.  For the moment
     292             :          * we keep them separate from the restriction clauses.  Note that this
     293             :          * step finds only "loose" join clauses that have not been merged into
     294             :          * EquivalenceClasses.  Also, collect join OR clauses for later.
     295             :          */
     296    24948588 :         MemSet(&jclauseset, 0, sizeof(jclauseset));
     297      733782 :         match_join_clauses_to_index(root, rel, index,
     298             :                                     &jclauseset, &joinorclauses);
     299             : 
     300             :         /*
     301             :          * Look for EquivalenceClasses that can generate joinclauses matching
     302             :          * the index.
     303             :          */
     304    24948588 :         MemSet(&eclauseset, 0, sizeof(eclauseset));
     305      733782 :         match_eclass_clauses_to_index(root, index,
     306             :                                       &eclauseset);
     307             : 
     308             :         /*
     309             :          * If we found any plain or eclass join clauses, build parameterized
     310             :          * index paths using them.
     311             :          */
     312      733782 :         if (jclauseset.nonempty || eclauseset.nonempty)
     313      142806 :             consider_index_join_clauses(root, rel, index,
     314             :                                         &rclauseset,
     315             :                                         &jclauseset,
     316             :                                         &eclauseset,
     317             :                                         &bitjoinpaths);
     318             :     }
     319             : 
     320             :     /*
     321             :      * Generate BitmapOrPaths for any suitable OR-clauses present in the
     322             :      * restriction list.  Add these to bitindexpaths.
     323             :      */
     324      344832 :     indexpaths = generate_bitmap_or_paths(root, rel,
     325             :                                           rel->baserestrictinfo, NIL);
     326      344832 :     bitindexpaths = list_concat(bitindexpaths, indexpaths);
     327             : 
     328             :     /*
     329             :      * Likewise, generate BitmapOrPaths for any suitable OR-clauses present in
     330             :      * the joinclause list.  Add these to bitjoinpaths.
     331             :      */
     332      344832 :     indexpaths = generate_bitmap_or_paths(root, rel,
     333             :                                           joinorclauses, rel->baserestrictinfo);
     334      344832 :     bitjoinpaths = list_concat(bitjoinpaths, indexpaths);
     335             : 
     336             :     /*
     337             :      * If we found anything usable, generate a BitmapHeapPath for the most
     338             :      * promising combination of restriction bitmap index paths.  Note there
     339             :      * will be only one such path no matter how many indexes exist.  This
     340             :      * should be sufficient since there's basically only one figure of merit
     341             :      * (total cost) for such a path.
     342             :      */
     343      344832 :     if (bitindexpaths != NIL)
     344             :     {
     345             :         Path       *bitmapqual;
     346             :         BitmapHeapPath *bpath;
     347             : 
     348      208604 :         bitmapqual = choose_bitmap_and(root, rel, bitindexpaths);
     349      208604 :         bpath = create_bitmap_heap_path(root, rel, bitmapqual,
     350             :                                         rel->lateral_relids, 1.0, 0);
     351      208604 :         add_path(rel, (Path *) bpath);
     352             : 
     353             :         /* create a partial bitmap heap path */
     354      208604 :         if (rel->consider_parallel && rel->lateral_relids == NULL)
     355      146438 :             create_partial_bitmap_paths(root, rel, bitmapqual);
     356             :     }
     357             : 
     358             :     /*
     359             :      * Likewise, if we found anything usable, generate BitmapHeapPaths for the
     360             :      * most promising combinations of join bitmap index paths.  Our strategy
     361             :      * is to generate one such path for each distinct parameterization seen
     362             :      * among the available bitmap index paths.  This may look pretty
     363             :      * expensive, but usually there won't be very many distinct
     364             :      * parameterizations.  (This logic is quite similar to that in
     365             :      * consider_index_join_clauses, but we're working with whole paths not
     366             :      * individual clauses.)
     367             :      */
     368      344832 :     if (bitjoinpaths != NIL)
     369             :     {
     370             :         List       *all_path_outers;
     371             : 
     372             :         /* Identify each distinct parameterization seen in bitjoinpaths */
     373      129950 :         all_path_outers = NIL;
     374      286794 :         foreach(lc, bitjoinpaths)
     375             :         {
     376      156844 :             Path       *path = (Path *) lfirst(lc);
     377      156844 :             Relids      required_outer = PATH_REQ_OUTER(path);
     378             : 
     379      156844 :             all_path_outers = list_append_unique(all_path_outers,
     380             :                                                  required_outer);
     381             :         }
     382             : 
     383             :         /* Now, for each distinct parameterization set ... */
     384      279496 :         foreach(lc, all_path_outers)
     385             :         {
     386      149546 :             Relids      max_outers = (Relids) lfirst(lc);
     387             :             List       *this_path_set;
     388             :             Path       *bitmapqual;
     389             :             Relids      required_outer;
     390             :             double      loop_count;
     391             :             BitmapHeapPath *bpath;
     392             :             ListCell   *lcp;
     393             : 
     394             :             /* Identify all the bitmap join paths needing no more than that */
     395      149546 :             this_path_set = NIL;
     396      359088 :             foreach(lcp, bitjoinpaths)
     397             :             {
     398      209542 :                 Path       *path = (Path *) lfirst(lcp);
     399             : 
     400      209542 :                 if (bms_is_subset(PATH_REQ_OUTER(path), max_outers))
     401      164020 :                     this_path_set = lappend(this_path_set, path);
     402             :             }
     403             : 
     404             :             /*
     405             :              * Add in restriction bitmap paths, since they can be used
     406             :              * together with any join paths.
     407             :              */
     408      149546 :             this_path_set = list_concat(this_path_set, bitindexpaths);
     409             : 
     410             :             /* Select best AND combination for this parameterization */
     411      149546 :             bitmapqual = choose_bitmap_and(root, rel, this_path_set);
     412             : 
     413             :             /* And push that path into the mix */
     414      149546 :             required_outer = PATH_REQ_OUTER(bitmapqual);
     415      149546 :             loop_count = get_loop_count(root, rel->relid, required_outer);
     416      149546 :             bpath = create_bitmap_heap_path(root, rel, bitmapqual,
     417             :                                             required_outer, loop_count, 0);
     418      149546 :             add_path(rel, (Path *) bpath);
     419             :         }
     420             :     }
     421             : }
     422             : 
     423             : /*
     424             :  * consider_index_join_clauses
     425             :  *    Given sets of join clauses for an index, decide which parameterized
     426             :  *    index paths to build.
     427             :  *
     428             :  * Plain indexpaths are sent directly to add_path, while potential
     429             :  * bitmap indexpaths are added to *bitindexpaths for later processing.
     430             :  *
     431             :  * 'rel' is the index's heap relation
     432             :  * 'index' is the index for which we want to generate paths
     433             :  * 'rclauseset' is the collection of indexable restriction clauses
     434             :  * 'jclauseset' is the collection of indexable simple join clauses
     435             :  * 'eclauseset' is the collection of indexable clauses from EquivalenceClasses
     436             :  * '*bitindexpaths' is the list to add bitmap paths to
     437             :  */
     438             : static void
     439      142806 : consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel,
     440             :                             IndexOptInfo *index,
     441             :                             IndexClauseSet *rclauseset,
     442             :                             IndexClauseSet *jclauseset,
     443             :                             IndexClauseSet *eclauseset,
     444             :                             List **bitindexpaths)
     445             : {
     446      142806 :     int         considered_clauses = 0;
     447      142806 :     List       *considered_relids = NIL;
     448             :     int         indexcol;
     449             : 
     450             :     /*
     451             :      * The strategy here is to identify every potentially useful set of outer
     452             :      * rels that can provide indexable join clauses.  For each such set,
     453             :      * select all the join clauses available from those outer rels, add on all
     454             :      * the indexable restriction clauses, and generate plain and/or bitmap
     455             :      * index paths for that set of clauses.  This is based on the assumption
     456             :      * that it's always better to apply a clause as an indexqual than as a
     457             :      * filter (qpqual); which is where an available clause would end up being
     458             :      * applied if we omit it from the indexquals.
     459             :      *
     460             :      * This looks expensive, but in most practical cases there won't be very
     461             :      * many distinct sets of outer rels to consider.  As a safety valve when
     462             :      * that's not true, we use a heuristic: limit the number of outer rel sets
     463             :      * considered to a multiple of the number of clauses considered.  (We'll
     464             :      * always consider using each individual join clause, though.)
     465             :      *
     466             :      * For simplicity in selecting relevant clauses, we represent each set of
     467             :      * outer rels as a maximum set of clause_relids --- that is, the indexed
     468             :      * relation itself is also included in the relids set.  considered_relids
     469             :      * lists all relids sets we've already tried.
     470             :      */
     471      363524 :     for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
     472             :     {
     473             :         /* Consider each applicable simple join clause */
     474      220718 :         considered_clauses += list_length(jclauseset->indexclauses[indexcol]);
     475      220718 :         consider_index_join_outer_rels(root, rel, index,
     476             :                                        rclauseset, jclauseset, eclauseset,
     477             :                                        bitindexpaths,
     478             :                                        jclauseset->indexclauses[indexcol],
     479             :                                        considered_clauses,
     480             :                                        &considered_relids);
     481             :         /* Consider each applicable eclass join clause */
     482      220718 :         considered_clauses += list_length(eclauseset->indexclauses[indexcol]);
     483      220718 :         consider_index_join_outer_rels(root, rel, index,
     484             :                                        rclauseset, jclauseset, eclauseset,
     485             :                                        bitindexpaths,
     486             :                                        eclauseset->indexclauses[indexcol],
     487             :                                        considered_clauses,
     488             :                                        &considered_relids);
     489             :     }
     490      142806 : }
     491             : 
     492             : /*
     493             :  * consider_index_join_outer_rels
     494             :  *    Generate parameterized paths based on clause relids in the clause list.
     495             :  *
     496             :  * Workhorse for consider_index_join_clauses; see notes therein for rationale.
     497             :  *
     498             :  * 'rel', 'index', 'rclauseset', 'jclauseset', 'eclauseset', and
     499             :  *      'bitindexpaths' as above
     500             :  * 'indexjoinclauses' is a list of IndexClauses for join clauses
     501             :  * 'considered_clauses' is the total number of clauses considered (so far)
     502             :  * '*considered_relids' is a list of all relids sets already considered
     503             :  */
     504             : static void
     505      441436 : consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel,
     506             :                                IndexOptInfo *index,
     507             :                                IndexClauseSet *rclauseset,
     508             :                                IndexClauseSet *jclauseset,
     509             :                                IndexClauseSet *eclauseset,
     510             :                                List **bitindexpaths,
     511             :                                List *indexjoinclauses,
     512             :                                int considered_clauses,
     513             :                                List **considered_relids)
     514             : {
     515             :     ListCell   *lc;
     516             : 
     517             :     /* Examine relids of each joinclause in the given list */
     518      602850 :     foreach(lc, indexjoinclauses)
     519             :     {
     520      161414 :         IndexClause *iclause = (IndexClause *) lfirst(lc);
     521      161414 :         Relids      clause_relids = iclause->rinfo->clause_relids;
     522      161414 :         EquivalenceClass *parent_ec = iclause->rinfo->parent_ec;
     523             :         int         num_considered_relids;
     524             : 
     525             :         /* If we already tried its relids set, no need to do so again */
     526      161414 :         if (list_member(*considered_relids, clause_relids))
     527        8064 :             continue;
     528             : 
     529             :         /*
     530             :          * Generate the union of this clause's relids set with each
     531             :          * previously-tried set.  This ensures we try this clause along with
     532             :          * every interesting subset of previous clauses.  However, to avoid
     533             :          * exponential growth of planning time when there are many clauses,
     534             :          * limit the number of relid sets accepted to 10 * considered_clauses.
     535             :          *
     536             :          * Note: get_join_index_paths appends entries to *considered_relids,
     537             :          * but we do not need to visit such newly-added entries within this
     538             :          * loop, so we don't use foreach() here.  No real harm would be done
     539             :          * if we did visit them, since the subset check would reject them; but
     540             :          * it would waste some cycles.
     541             :          */
     542      153350 :         num_considered_relids = list_length(*considered_relids);
     543      164260 :         for (int pos = 0; pos < num_considered_relids; pos++)
     544             :         {
     545       10910 :             Relids      oldrelids = (Relids) list_nth(*considered_relids, pos);
     546             : 
     547             :             /*
     548             :              * If either is a subset of the other, no new set is possible.
     549             :              * This isn't a complete test for redundancy, but it's easy and
     550             :              * cheap.  get_join_index_paths will check more carefully if we
     551             :              * already generated the same relids set.
     552             :              */
     553       10910 :             if (bms_subset_compare(clause_relids, oldrelids) != BMS_DIFFERENT)
     554          24 :                 continue;
     555             : 
     556             :             /*
     557             :              * If this clause was derived from an equivalence class, the
     558             :              * clause list may contain other clauses derived from the same
     559             :              * eclass.  We should not consider that combining this clause with
     560             :              * one of those clauses generates a usefully different
     561             :              * parameterization; so skip if any clause derived from the same
     562             :              * eclass would already have been included when using oldrelids.
     563             :              */
     564       21610 :             if (parent_ec &&
     565       10724 :                 eclass_already_used(parent_ec, oldrelids,
     566             :                                     indexjoinclauses))
     567        7388 :                 continue;
     568             : 
     569             :             /*
     570             :              * If the number of relid sets considered exceeds our heuristic
     571             :              * limit, stop considering combinations of clauses.  We'll still
     572             :              * consider the current clause alone, though (below this loop).
     573             :              */
     574        3498 :             if (list_length(*considered_relids) >= 10 * considered_clauses)
     575           0 :                 break;
     576             : 
     577             :             /* OK, try the union set */
     578        3498 :             get_join_index_paths(root, rel, index,
     579             :                                  rclauseset, jclauseset, eclauseset,
     580             :                                  bitindexpaths,
     581             :                                  bms_union(clause_relids, oldrelids),
     582             :                                  considered_relids);
     583             :         }
     584             : 
     585             :         /* Also try this set of relids by itself */
     586      153350 :         get_join_index_paths(root, rel, index,
     587             :                              rclauseset, jclauseset, eclauseset,
     588             :                              bitindexpaths,
     589             :                              clause_relids,
     590             :                              considered_relids);
     591             :     }
     592      441436 : }
     593             : 
     594             : /*
     595             :  * get_join_index_paths
     596             :  *    Generate index paths using clauses from the specified outer relations.
     597             :  *    In addition to generating paths, relids is added to *considered_relids
     598             :  *    if not already present.
     599             :  *
     600             :  * Workhorse for consider_index_join_clauses; see notes therein for rationale.
     601             :  *
     602             :  * 'rel', 'index', 'rclauseset', 'jclauseset', 'eclauseset',
     603             :  *      'bitindexpaths', 'considered_relids' as above
     604             :  * 'relids' is the current set of relids to consider (the target rel plus
     605             :  *      one or more outer rels)
     606             :  */
     607             : static void
     608      156848 : get_join_index_paths(PlannerInfo *root, RelOptInfo *rel,
     609             :                      IndexOptInfo *index,
     610             :                      IndexClauseSet *rclauseset,
     611             :                      IndexClauseSet *jclauseset,
     612             :                      IndexClauseSet *eclauseset,
     613             :                      List **bitindexpaths,
     614             :                      Relids relids,
     615             :                      List **considered_relids)
     616             : {
     617             :     IndexClauseSet clauseset;
     618             :     int         indexcol;
     619             : 
     620             :     /* If we already considered this relids set, don't repeat the work */
     621      156848 :     if (list_member(*considered_relids, relids))
     622           0 :         return;
     623             : 
     624             :     /* Identify indexclauses usable with this relids set */
     625     5332832 :     MemSet(&clauseset, 0, sizeof(clauseset));
     626             : 
     627      404428 :     for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
     628             :     {
     629             :         ListCell   *lc;
     630             : 
     631             :         /* First find applicable simple join clauses */
     632      283474 :         foreach(lc, jclauseset->indexclauses[indexcol])
     633             :         {
     634       35894 :             IndexClause *iclause = (IndexClause *) lfirst(lc);
     635             : 
     636       35894 :             if (bms_is_subset(iclause->rinfo->clause_relids, relids))
     637       35468 :                 clauseset.indexclauses[indexcol] =
     638       35468 :                     lappend(clauseset.indexclauses[indexcol], iclause);
     639             :         }
     640             : 
     641             :         /*
     642             :          * Add applicable eclass join clauses.  The clauses generated for each
     643             :          * column are redundant (cf generate_implied_equalities_for_column),
     644             :          * so we need at most one.  This is the only exception to the general
     645             :          * rule of using all available index clauses.
     646             :          */
     647      264072 :         foreach(lc, eclauseset->indexclauses[indexcol])
     648             :         {
     649      149362 :             IndexClause *iclause = (IndexClause *) lfirst(lc);
     650             : 
     651      149362 :             if (bms_is_subset(iclause->rinfo->clause_relids, relids))
     652             :             {
     653      132870 :                 clauseset.indexclauses[indexcol] =
     654      132870 :                     lappend(clauseset.indexclauses[indexcol], iclause);
     655      132870 :                 break;
     656             :             }
     657             :         }
     658             : 
     659             :         /* Add restriction clauses */
     660      247580 :         clauseset.indexclauses[indexcol] =
     661      247580 :             list_concat(clauseset.indexclauses[indexcol],
     662      247580 :                         rclauseset->indexclauses[indexcol]);
     663             : 
     664      247580 :         if (clauseset.indexclauses[indexcol] != NIL)
     665      197004 :             clauseset.nonempty = true;
     666             :     }
     667             : 
     668             :     /* We should have found something, else caller passed silly relids */
     669             :     Assert(clauseset.nonempty);
     670             : 
     671             :     /* Build index path(s) using the collected set of clauses */
     672      156848 :     get_index_paths(root, rel, index, &clauseset, bitindexpaths);
     673             : 
     674             :     /*
     675             :      * Remember we considered paths for this set of relids.
     676             :      */
     677      156848 :     *considered_relids = lappend(*considered_relids, relids);
     678             : }
     679             : 
     680             : /*
     681             :  * eclass_already_used
     682             :  *      True if any join clause usable with oldrelids was generated from
     683             :  *      the specified equivalence class.
     684             :  */
     685             : static bool
     686       10724 : eclass_already_used(EquivalenceClass *parent_ec, Relids oldrelids,
     687             :                     List *indexjoinclauses)
     688             : {
     689             :     ListCell   *lc;
     690             : 
     691       14522 :     foreach(lc, indexjoinclauses)
     692             :     {
     693       11186 :         IndexClause *iclause = (IndexClause *) lfirst(lc);
     694       11186 :         RestrictInfo *rinfo = iclause->rinfo;
     695             : 
     696       22372 :         if (rinfo->parent_ec == parent_ec &&
     697       11186 :             bms_is_subset(rinfo->clause_relids, oldrelids))
     698        7388 :             return true;
     699             :     }
     700        3336 :     return false;
     701             : }
     702             : 
     703             : 
     704             : /*
     705             :  * get_index_paths
     706             :  *    Given an index and a set of index clauses for it, construct IndexPaths.
     707             :  *
     708             :  * Plain indexpaths are sent directly to add_path, while potential
     709             :  * bitmap indexpaths are added to *bitindexpaths for later processing.
     710             :  *
     711             :  * This is a fairly simple frontend to build_index_paths().  Its reason for
     712             :  * existence is mainly to handle ScalarArrayOpExpr quals properly.  If the
     713             :  * index AM supports them natively, we should just include them in simple
     714             :  * index paths.  If not, we should exclude them while building simple index
     715             :  * paths, and then make a separate attempt to include them in bitmap paths.
     716             :  */
     717             : static void
     718      890630 : get_index_paths(PlannerInfo *root, RelOptInfo *rel,
     719             :                 IndexOptInfo *index, IndexClauseSet *clauses,
     720             :                 List **bitindexpaths)
     721             : {
     722             :     List       *indexpaths;
     723      890630 :     bool        skip_nonnative_saop = false;
     724             :     ListCell   *lc;
     725             : 
     726             :     /*
     727             :      * Build simple index paths using the clauses.  Allow ScalarArrayOpExpr
     728             :      * clauses only if the index AM supports them natively.
     729             :      */
     730      890630 :     indexpaths = build_index_paths(root, rel,
     731             :                                    index, clauses,
     732      890630 :                                    index->predOK,
     733             :                                    ST_ANYSCAN,
     734             :                                    &skip_nonnative_saop);
     735             : 
     736             :     /*
     737             :      * Submit all the ones that can form plain IndexScan plans to add_path. (A
     738             :      * plain IndexPath can represent either a plain IndexScan or an
     739             :      * IndexOnlyScan, but for our purposes here that distinction does not
     740             :      * matter.  However, some of the indexes might support only bitmap scans,
     741             :      * and those we mustn't submit to add_path here.)
     742             :      *
     743             :      * Also, pick out the ones that are usable as bitmap scans.  For that, we
     744             :      * must discard indexes that don't support bitmap scans, and we also are
     745             :      * only interested in paths that have some selectivity; we should discard
     746             :      * anything that was generated solely for ordering purposes.
     747             :      */
     748     1427458 :     foreach(lc, indexpaths)
     749             :     {
     750      536828 :         IndexPath  *ipath = (IndexPath *) lfirst(lc);
     751             : 
     752      536828 :         if (index->amhasgettuple)
     753      523032 :             add_path(rel, (Path *) ipath);
     754             : 
     755      536828 :         if (index->amhasgetbitmap &&
     756      536828 :             (ipath->path.pathkeys == NIL ||
     757      333994 :              ipath->indexselectivity < 1.0))
     758      391794 :             *bitindexpaths = lappend(*bitindexpaths, ipath);
     759             :     }
     760             : 
     761             :     /*
     762             :      * If there were ScalarArrayOpExpr clauses that the index can't handle
     763             :      * natively, generate bitmap scan paths relying on executor-managed
     764             :      * ScalarArrayOpExpr.
     765             :      */
     766      890630 :     if (skip_nonnative_saop)
     767             :     {
     768          32 :         indexpaths = build_index_paths(root, rel,
     769             :                                        index, clauses,
     770             :                                        false,
     771             :                                        ST_BITMAPSCAN,
     772             :                                        NULL);
     773          32 :         *bitindexpaths = list_concat(*bitindexpaths, indexpaths);
     774             :     }
     775      890630 : }
     776             : 
     777             : /*
     778             :  * build_index_paths
     779             :  *    Given an index and a set of index clauses for it, construct zero
     780             :  *    or more IndexPaths. It also constructs zero or more partial IndexPaths.
     781             :  *
     782             :  * We return a list of paths because (1) this routine checks some cases
     783             :  * that should cause us to not generate any IndexPath, and (2) in some
     784             :  * cases we want to consider both a forward and a backward scan, so as
     785             :  * to obtain both sort orders.  Note that the paths are just returned
     786             :  * to the caller and not immediately fed to add_path().
     787             :  *
     788             :  * At top level, useful_predicate should be exactly the index's predOK flag
     789             :  * (ie, true if it has a predicate that was proven from the restriction
     790             :  * clauses).  When working on an arm of an OR clause, useful_predicate
     791             :  * should be true if the predicate required the current OR list to be proven.
     792             :  * Note that this routine should never be called at all if the index has an
     793             :  * unprovable predicate.
     794             :  *
     795             :  * scantype indicates whether we want to create plain indexscans, bitmap
     796             :  * indexscans, or both.  When it's ST_BITMAPSCAN, we will not consider
     797             :  * index ordering while deciding if a Path is worth generating.
     798             :  *
     799             :  * If skip_nonnative_saop is non-NULL, we ignore ScalarArrayOpExpr clauses
     800             :  * unless the index AM supports them directly, and we set *skip_nonnative_saop
     801             :  * to true if we found any such clauses (caller must initialize the variable
     802             :  * to false).  If it's NULL, we do not ignore ScalarArrayOpExpr clauses.
     803             :  *
     804             :  * 'rel' is the index's heap relation
     805             :  * 'index' is the index for which we want to generate paths
     806             :  * 'clauses' is the collection of indexable clauses (IndexClause nodes)
     807             :  * 'useful_predicate' indicates whether the index has a useful predicate
     808             :  * 'scantype' indicates whether we need plain or bitmap scan support
     809             :  * 'skip_nonnative_saop' indicates whether to accept SAOP if index AM doesn't
     810             :  */
     811             : static List *
     812      893816 : build_index_paths(PlannerInfo *root, RelOptInfo *rel,
     813             :                   IndexOptInfo *index, IndexClauseSet *clauses,
     814             :                   bool useful_predicate,
     815             :                   ScanTypeControl scantype,
     816             :                   bool *skip_nonnative_saop)
     817             : {
     818      893816 :     List       *result = NIL;
     819             :     IndexPath  *ipath;
     820             :     List       *index_clauses;
     821             :     Relids      outer_relids;
     822             :     double      loop_count;
     823             :     List       *orderbyclauses;
     824             :     List       *orderbyclausecols;
     825             :     List       *index_pathkeys;
     826             :     List       *useful_pathkeys;
     827             :     bool        pathkeys_possibly_useful;
     828             :     bool        index_is_ordered;
     829             :     bool        index_only_scan;
     830             :     int         indexcol;
     831             : 
     832             :     Assert(skip_nonnative_saop != NULL || scantype == ST_BITMAPSCAN);
     833             : 
     834             :     /*
     835             :      * Check that index supports the desired scan type(s)
     836             :      */
     837      893816 :     switch (scantype)
     838             :     {
     839           0 :         case ST_INDEXSCAN:
     840           0 :             if (!index->amhasgettuple)
     841           0 :                 return NIL;
     842           0 :             break;
     843        3186 :         case ST_BITMAPSCAN:
     844        3186 :             if (!index->amhasgetbitmap)
     845           0 :                 return NIL;
     846        3186 :             break;
     847      890630 :         case ST_ANYSCAN:
     848             :             /* either or both are OK */
     849      890630 :             break;
     850             :     }
     851             : 
     852             :     /*
     853             :      * 1. Combine the per-column IndexClause lists into an overall list.
     854             :      *
     855             :      * In the resulting list, clauses are ordered by index key, so that the
     856             :      * column numbers form a nondecreasing sequence.  (This order is depended
     857             :      * on by btree and possibly other places.)  The list can be empty, if the
     858             :      * index AM allows that.
     859             :      *
     860             :      * We also build a Relids set showing which outer rels are required by the
     861             :      * selected clauses.  Any lateral_relids are included in that, but not
     862             :      * otherwise accounted for.
     863             :      */
     864      893816 :     index_clauses = NIL;
     865      893816 :     outer_relids = bms_copy(rel->lateral_relids);
     866     2534518 :     for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
     867             :     {
     868             :         ListCell   *lc;
     869             : 
     870     2100926 :         foreach(lc, clauses->indexclauses[indexcol])
     871             :         {
     872      459880 :             IndexClause *iclause = (IndexClause *) lfirst(lc);
     873      459880 :             RestrictInfo *rinfo = iclause->rinfo;
     874             : 
     875      459880 :             if (skip_nonnative_saop && !index->amsearcharray &&
     876       21858 :                 IsA(rinfo->clause, ScalarArrayOpExpr))
     877             :             {
     878             :                 /*
     879             :                  * Caller asked us to generate IndexPaths that omit any
     880             :                  * ScalarArrayOpExpr clauses when the underlying index AM
     881             :                  * lacks native support.
     882             :                  *
     883             :                  * We must omit this clause (and tell caller about it).
     884             :                  */
     885          32 :                 *skip_nonnative_saop = true;
     886          32 :                 continue;
     887             :             }
     888             : 
     889             :             /* OK to include this clause */
     890      459848 :             index_clauses = lappend(index_clauses, iclause);
     891      459848 :             outer_relids = bms_add_members(outer_relids,
     892      459848 :                                            rinfo->clause_relids);
     893             :         }
     894             : 
     895             :         /*
     896             :          * If no clauses match the first index column, check for amoptionalkey
     897             :          * restriction.  We can't generate a scan over an index with
     898             :          * amoptionalkey = false unless there's at least one index clause.
     899             :          * (When working on columns after the first, this test cannot fail. It
     900             :          * is always okay for columns after the first to not have any
     901             :          * clauses.)
     902             :          */
     903     1641046 :         if (index_clauses == NIL && !index->amoptionalkey)
     904         344 :             return NIL;
     905             :     }
     906             : 
     907             :     /* We do not want the index's rel itself listed in outer_relids */
     908      893472 :     outer_relids = bms_del_member(outer_relids, rel->relid);
     909             : 
     910             :     /* Compute loop_count for cost estimation purposes */
     911      893472 :     loop_count = get_loop_count(root, rel->relid, outer_relids);
     912             : 
     913             :     /*
     914             :      * 2. Compute pathkeys describing index's ordering, if any, then see how
     915             :      * many of them are actually useful for this query.  This is not relevant
     916             :      * if we are only trying to build bitmap indexscans.
     917             :      */
     918     1783758 :     pathkeys_possibly_useful = (scantype != ST_BITMAPSCAN &&
     919      890286 :                                 has_useful_pathkeys(root, rel));
     920      893472 :     index_is_ordered = (index->sortopfamily != NULL);
     921      893472 :     if (index_is_ordered && pathkeys_possibly_useful)
     922             :     {
     923      671618 :         index_pathkeys = build_index_pathkeys(root, index,
     924             :                                               ForwardScanDirection);
     925      671618 :         useful_pathkeys = truncate_useless_pathkeys(root, rel,
     926             :                                                     index_pathkeys);
     927      671618 :         orderbyclauses = NIL;
     928      671618 :         orderbyclausecols = NIL;
     929             :     }
     930      221854 :     else if (index->amcanorderbyop && pathkeys_possibly_useful)
     931             :     {
     932             :         /*
     933             :          * See if we can generate ordering operators for query_pathkeys or at
     934             :          * least some prefix thereof.  Matching to just a prefix of the
     935             :          * query_pathkeys will allow an incremental sort to be considered on
     936             :          * the index's partially sorted results.
     937             :          */
     938        1074 :         match_pathkeys_to_index(index, root->query_pathkeys,
     939             :                                 &orderbyclauses,
     940             :                                 &orderbyclausecols);
     941        1074 :         if (list_length(root->query_pathkeys) == list_length(orderbyclauses))
     942         468 :             useful_pathkeys = root->query_pathkeys;
     943             :         else
     944         606 :             useful_pathkeys = list_copy_head(root->query_pathkeys,
     945             :                                              list_length(orderbyclauses));
     946             :     }
     947             :     else
     948             :     {
     949      220780 :         useful_pathkeys = NIL;
     950      220780 :         orderbyclauses = NIL;
     951      220780 :         orderbyclausecols = NIL;
     952             :     }
     953             : 
     954             :     /*
     955             :      * 3. Check if an index-only scan is possible.  If we're not building
     956             :      * plain indexscans, this isn't relevant since bitmap scans don't support
     957             :      * index data retrieval anyway.
     958             :      */
     959     1783758 :     index_only_scan = (scantype != ST_BITMAPSCAN &&
     960      890286 :                        check_index_only(rel, index));
     961             : 
     962             :     /*
     963             :      * 4. Generate an indexscan path if there are relevant restriction clauses
     964             :      * in the current clauses, OR the index ordering is potentially useful for
     965             :      * later merging or final output ordering, OR the index has a useful
     966             :      * predicate, OR an index-only scan is possible.
     967             :      */
     968      893472 :     if (index_clauses != NIL || useful_pathkeys != NIL || useful_predicate ||
     969             :         index_only_scan)
     970             :     {
     971      539400 :         ipath = create_index_path(root, index,
     972             :                                   index_clauses,
     973             :                                   orderbyclauses,
     974             :                                   orderbyclausecols,
     975             :                                   useful_pathkeys,
     976             :                                   ForwardScanDirection,
     977             :                                   index_only_scan,
     978             :                                   outer_relids,
     979             :                                   loop_count,
     980             :                                   false);
     981      539400 :         result = lappend(result, ipath);
     982             : 
     983             :         /*
     984             :          * If appropriate, consider parallel index scan.  We don't allow
     985             :          * parallel index scan for bitmap index scans.
     986             :          */
     987      539400 :         if (index->amcanparallel &&
     988      518500 :             rel->consider_parallel && outer_relids == NULL &&
     989             :             scantype != ST_BITMAPSCAN)
     990             :         {
     991      281458 :             ipath = create_index_path(root, index,
     992             :                                       index_clauses,
     993             :                                       orderbyclauses,
     994             :                                       orderbyclausecols,
     995             :                                       useful_pathkeys,
     996             :                                       ForwardScanDirection,
     997             :                                       index_only_scan,
     998             :                                       outer_relids,
     999             :                                       loop_count,
    1000             :                                       true);
    1001             : 
    1002             :             /*
    1003             :              * if, after costing the path, we find that it's not worth using
    1004             :              * parallel workers, just free it.
    1005             :              */
    1006      281458 :             if (ipath->path.parallel_workers > 0)
    1007       10048 :                 add_partial_path(rel, (Path *) ipath);
    1008             :             else
    1009      271410 :                 pfree(ipath);
    1010             :         }
    1011             :     }
    1012             : 
    1013             :     /*
    1014             :      * 5. If the index is ordered, a backwards scan might be interesting.
    1015             :      */
    1016      893472 :     if (index_is_ordered && pathkeys_possibly_useful)
    1017             :     {
    1018      671618 :         index_pathkeys = build_index_pathkeys(root, index,
    1019             :                                               BackwardScanDirection);
    1020      671618 :         useful_pathkeys = truncate_useless_pathkeys(root, rel,
    1021             :                                                     index_pathkeys);
    1022      671618 :         if (useful_pathkeys != NIL)
    1023             :         {
    1024         614 :             ipath = create_index_path(root, index,
    1025             :                                       index_clauses,
    1026             :                                       NIL,
    1027             :                                       NIL,
    1028             :                                       useful_pathkeys,
    1029             :                                       BackwardScanDirection,
    1030             :                                       index_only_scan,
    1031             :                                       outer_relids,
    1032             :                                       loop_count,
    1033             :                                       false);
    1034         614 :             result = lappend(result, ipath);
    1035             : 
    1036             :             /* If appropriate, consider parallel index scan */
    1037         614 :             if (index->amcanparallel &&
    1038         614 :                 rel->consider_parallel && outer_relids == NULL &&
    1039             :                 scantype != ST_BITMAPSCAN)
    1040             :             {
    1041         512 :                 ipath = create_index_path(root, index,
    1042             :                                           index_clauses,
    1043             :                                           NIL,
    1044             :                                           NIL,
    1045             :                                           useful_pathkeys,
    1046             :                                           BackwardScanDirection,
    1047             :                                           index_only_scan,
    1048             :                                           outer_relids,
    1049             :                                           loop_count,
    1050             :                                           true);
    1051             : 
    1052             :                 /*
    1053             :                  * if, after costing the path, we find that it's not worth
    1054             :                  * using parallel workers, just free it.
    1055             :                  */
    1056         512 :                 if (ipath->path.parallel_workers > 0)
    1057         168 :                     add_partial_path(rel, (Path *) ipath);
    1058             :                 else
    1059         344 :                     pfree(ipath);
    1060             :             }
    1061             :         }
    1062             :     }
    1063             : 
    1064      893472 :     return result;
    1065             : }
    1066             : 
    1067             : /*
    1068             :  * build_paths_for_OR
    1069             :  *    Given a list of restriction clauses from one arm of an OR clause,
    1070             :  *    construct all matching IndexPaths for the relation.
    1071             :  *
    1072             :  * Here we must scan all indexes of the relation, since a bitmap OR tree
    1073             :  * can use multiple indexes.
    1074             :  *
    1075             :  * The caller actually supplies two lists of restriction clauses: some
    1076             :  * "current" ones and some "other" ones.  Both lists can be used freely
    1077             :  * to match keys of the index, but an index must use at least one of the
    1078             :  * "current" clauses to be considered usable.  The motivation for this is
    1079             :  * examples like
    1080             :  *      WHERE (x = 42) AND (... OR (y = 52 AND z = 77) OR ....)
    1081             :  * While we are considering the y/z subclause of the OR, we can use "x = 42"
    1082             :  * as one of the available index conditions; but we shouldn't match the
    1083             :  * subclause to any index on x alone, because such a Path would already have
    1084             :  * been generated at the upper level.  So we could use an index on x,y,z
    1085             :  * or an index on x,y for the OR subclause, but not an index on just x.
    1086             :  * When dealing with a partial index, a match of the index predicate to
    1087             :  * one of the "current" clauses also makes the index usable.
    1088             :  *
    1089             :  * 'rel' is the relation for which we want to generate index paths
    1090             :  * 'clauses' is the current list of clauses (RestrictInfo nodes)
    1091             :  * 'other_clauses' is the list of additional upper-level clauses
    1092             :  */
    1093             : static List *
    1094       10882 : build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel,
    1095             :                    List *clauses, List *other_clauses)
    1096             : {
    1097       10882 :     List       *result = NIL;
    1098       10882 :     List       *all_clauses = NIL;  /* not computed till needed */
    1099             :     ListCell   *lc;
    1100             : 
    1101       37902 :     foreach(lc, rel->indexlist)
    1102             :     {
    1103       27020 :         IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
    1104             :         IndexClauseSet clauseset;
    1105             :         List       *indexpaths;
    1106             :         bool        useful_predicate;
    1107             : 
    1108             :         /* Ignore index if it doesn't support bitmap scans */
    1109       27020 :         if (!index->amhasgetbitmap)
    1110       23866 :             continue;
    1111             : 
    1112             :         /*
    1113             :          * Ignore partial indexes that do not match the query.  If a partial
    1114             :          * index is marked predOK then we know it's OK.  Otherwise, we have to
    1115             :          * test whether the added clauses are sufficient to imply the
    1116             :          * predicate. If so, we can use the index in the current context.
    1117             :          *
    1118             :          * We set useful_predicate to true iff the predicate was proven using
    1119             :          * the current set of clauses.  This is needed to prevent matching a
    1120             :          * predOK index to an arm of an OR, which would be a legal but
    1121             :          * pointlessly inefficient plan.  (A better plan will be generated by
    1122             :          * just scanning the predOK index alone, no OR.)
    1123             :          */
    1124       27020 :         useful_predicate = false;
    1125       27020 :         if (index->indpred != NIL)
    1126             :         {
    1127         168 :             if (index->predOK)
    1128             :             {
    1129             :                 /* Usable, but don't set useful_predicate */
    1130             :             }
    1131             :             else
    1132             :             {
    1133             :                 /* Form all_clauses if not done already */
    1134         144 :                 if (all_clauses == NIL)
    1135          60 :                     all_clauses = list_concat_copy(clauses, other_clauses);
    1136             : 
    1137         144 :                 if (!predicate_implied_by(index->indpred, all_clauses, false))
    1138          96 :                     continue;   /* can't use it at all */
    1139             : 
    1140          48 :                 if (!predicate_implied_by(index->indpred, other_clauses, false))
    1141          48 :                     useful_predicate = true;
    1142             :             }
    1143             :         }
    1144             : 
    1145             :         /*
    1146             :          * Identify the restriction clauses that can match the index.
    1147             :          */
    1148      915416 :         MemSet(&clauseset, 0, sizeof(clauseset));
    1149       26924 :         match_clauses_to_index(root, clauses, index, &clauseset);
    1150             : 
    1151             :         /*
    1152             :          * If no matches so far, and the index predicate isn't useful, we
    1153             :          * don't want it.
    1154             :          */
    1155       26924 :         if (!clauseset.nonempty && !useful_predicate)
    1156       23770 :             continue;
    1157             : 
    1158             :         /*
    1159             :          * Add "other" restriction clauses to the clauseset.
    1160             :          */
    1161        3154 :         match_clauses_to_index(root, other_clauses, index, &clauseset);
    1162             : 
    1163             :         /*
    1164             :          * Construct paths if possible.
    1165             :          */
    1166        3154 :         indexpaths = build_index_paths(root, rel,
    1167             :                                        index, &clauseset,
    1168             :                                        useful_predicate,
    1169             :                                        ST_BITMAPSCAN,
    1170             :                                        NULL);
    1171        3154 :         result = list_concat(result, indexpaths);
    1172             :     }
    1173             : 
    1174       10882 :     return result;
    1175             : }
    1176             : 
    1177             : /*
    1178             :  * Utility structure used to group similar OR-clause arguments in
    1179             :  * group_similar_or_args().  It represents information about the OR-clause
    1180             :  * argument and its matching index key.
    1181             :  */
    1182             : typedef struct
    1183             : {
    1184             :     int         indexnum;       /* index of the matching index, or -1 if no
    1185             :                                  * matching index */
    1186             :     int         colnum;         /* index of the matching column, or -1 if no
    1187             :                                  * matching index */
    1188             :     Oid         opno;           /* OID of the OpClause operator, or InvalidOid
    1189             :                                  * if not an OpExpr */
    1190             :     Oid         inputcollid;    /* OID of the OpClause input collation */
    1191             :     int         argindex;       /* index of the clause in the list of
    1192             :                                  * arguments */
    1193             :     int         groupindex;     /* value of argindex for the fist clause in
    1194             :                                  * the group of similar clauses */
    1195             : } OrArgIndexMatch;
    1196             : 
    1197             : /*
    1198             :  * Comparison function for OrArgIndexMatch which provides sort order placing
    1199             :  * similar OR-clause arguments together.
    1200             :  */
    1201             : static int
    1202        7150 : or_arg_index_match_cmp(const void *a, const void *b)
    1203             : {
    1204        7150 :     const OrArgIndexMatch *match_a = (const OrArgIndexMatch *) a;
    1205        7150 :     const OrArgIndexMatch *match_b = (const OrArgIndexMatch *) b;
    1206             : 
    1207        7150 :     if (match_a->indexnum < match_b->indexnum)
    1208        1358 :         return -1;
    1209        5792 :     else if (match_a->indexnum > match_b->indexnum)
    1210        3106 :         return 1;
    1211             : 
    1212        2686 :     if (match_a->colnum < match_b->colnum)
    1213         874 :         return -1;
    1214        1812 :     else if (match_a->colnum > match_b->colnum)
    1215          24 :         return 1;
    1216             : 
    1217        1788 :     if (match_a->opno < match_b->opno)
    1218          18 :         return -1;
    1219        1770 :     else if (match_a->opno > match_b->opno)
    1220          42 :         return 1;
    1221             : 
    1222        1728 :     if (match_a->inputcollid < match_b->inputcollid)
    1223           0 :         return -1;
    1224        1728 :     else if (match_a->inputcollid > match_b->inputcollid)
    1225           0 :         return 1;
    1226             : 
    1227        1728 :     if (match_a->argindex < match_b->argindex)
    1228        1650 :         return -1;
    1229          78 :     else if (match_a->argindex > match_b->argindex)
    1230          78 :         return 1;
    1231             : 
    1232           0 :     return 0;
    1233             : }
    1234             : 
    1235             : /*
    1236             :  * Another comparison function for OrArgIndexMatch.  It sorts groups together
    1237             :  * using groupindex.  The group items are then sorted by argindex.
    1238             :  */
    1239             : static int
    1240        7240 : or_arg_index_match_cmp_group(const void *a, const void *b)
    1241             : {
    1242        7240 :     const OrArgIndexMatch *match_a = (const OrArgIndexMatch *) a;
    1243        7240 :     const OrArgIndexMatch *match_b = (const OrArgIndexMatch *) b;
    1244             : 
    1245        7240 :     if (match_a->groupindex < match_b->groupindex)
    1246        3546 :         return -1;
    1247        3694 :     else if (match_a->groupindex > match_b->groupindex)
    1248        3250 :         return 1;
    1249             : 
    1250         444 :     if (match_a->argindex < match_b->argindex)
    1251         444 :         return -1;
    1252           0 :     else if (match_a->argindex > match_b->argindex)
    1253           0 :         return 1;
    1254             : 
    1255           0 :     return 0;
    1256             : }
    1257             : 
    1258             : /*
    1259             :  * group_similar_or_args
    1260             :  *      Transform incoming OR-restrictinfo into a list of sub-restrictinfos,
    1261             :  *      each of them containing a subset of similar OR-clause arguments from
    1262             :  *      the source rinfo.
    1263             :  *
    1264             :  * Similar OR-clause arguments are of the form "indexkey op constant" having
    1265             :  * the same indexkey, operator, and collation.  Constant may comprise either
    1266             :  * Const or Param.  It may be employed later, during the
    1267             :  * match_clause_to_indexcol() to transform the whole OR-sub-rinfo to an SAOP
    1268             :  * clause.
    1269             :  *
    1270             :  * Returns the processed list of OR-clause arguments.
    1271             :  */
    1272             : static List *
    1273        9098 : group_similar_or_args(PlannerInfo *root, RelOptInfo *rel, RestrictInfo *rinfo)
    1274             : {
    1275             :     int         n;
    1276             :     int         i;
    1277             :     int         group_start;
    1278             :     OrArgIndexMatch *matches;
    1279        9098 :     bool        matched = false;
    1280             :     ListCell   *lc;
    1281             :     ListCell   *lc2;
    1282             :     List       *orargs;
    1283        9098 :     List       *result = NIL;
    1284        9098 :     Index       relid = rel->relid;
    1285             : 
    1286             :     Assert(IsA(rinfo->orclause, BoolExpr));
    1287        9098 :     orargs = ((BoolExpr *) rinfo->orclause)->args;
    1288        9098 :     n = list_length(orargs);
    1289             : 
    1290             :     /*
    1291             :      * To avoid N^2 behavior, take utility pass along the list of OR-clause
    1292             :      * arguments.  For each argument, fill the OrArgIndexMatch structure,
    1293             :      * which will be used to sort these arguments at the next step.
    1294             :      */
    1295        9098 :     i = -1;
    1296        9098 :     matches = palloc_array(OrArgIndexMatch, n);
    1297       30640 :     foreach(lc, orargs)
    1298             :     {
    1299       21542 :         Node       *arg = lfirst(lc);
    1300             :         RestrictInfo *argrinfo;
    1301             :         OpExpr     *clause;
    1302             :         Oid         opno;
    1303             :         Node       *leftop,
    1304             :                    *rightop;
    1305             :         Node       *nonConstExpr;
    1306             :         int         indexnum;
    1307             :         int         colnum;
    1308             : 
    1309       21542 :         i++;
    1310       21542 :         matches[i].argindex = i;
    1311       21542 :         matches[i].groupindex = i;
    1312       21542 :         matches[i].indexnum = -1;
    1313       21542 :         matches[i].colnum = -1;
    1314       21542 :         matches[i].opno = InvalidOid;
    1315       21542 :         matches[i].inputcollid = InvalidOid;
    1316             : 
    1317       21542 :         if (!IsA(arg, RestrictInfo))
    1318        2458 :             continue;
    1319             : 
    1320       19084 :         argrinfo = castNode(RestrictInfo, arg);
    1321             : 
    1322             :         /* Only operator clauses can match  */
    1323       19084 :         if (!IsA(argrinfo->clause, OpExpr))
    1324        7798 :             continue;
    1325             : 
    1326       11286 :         clause = (OpExpr *) argrinfo->clause;
    1327       11286 :         opno = clause->opno;
    1328             : 
    1329             :         /* Only binary operators can match  */
    1330       11286 :         if (list_length(clause->args) != 2)
    1331           0 :             continue;
    1332             : 
    1333             :         /*
    1334             :          * Ignore any RelabelType node above the operands.  This is needed to
    1335             :          * be able to apply indexscanning in binary-compatible-operator cases.
    1336             :          * Note: we can assume there is at most one RelabelType node;
    1337             :          * eval_const_expressions() will have simplified if more than one.
    1338             :          */
    1339       11286 :         leftop = get_leftop(clause);
    1340       11286 :         if (IsA(leftop, RelabelType))
    1341         204 :             leftop = (Node *) ((RelabelType *) leftop)->arg;
    1342             : 
    1343       11286 :         rightop = get_rightop(clause);
    1344       11286 :         if (IsA(rightop, RelabelType))
    1345         808 :             rightop = (Node *) ((RelabelType *) rightop)->arg;
    1346             : 
    1347             :         /*
    1348             :          * Check for clauses of the form: (indexkey operator constant) or
    1349             :          * (constant operator indexkey).  But we don't know a particular index
    1350             :          * yet.  Therefore, we try to distinguish the potential index key and
    1351             :          * constant first, then search for a matching index key among all
    1352             :          * indexes.
    1353             :          */
    1354       11286 :         if (bms_is_member(relid, argrinfo->right_relids) &&
    1355        1986 :             !bms_is_member(relid, argrinfo->left_relids) &&
    1356        1914 :             !contain_volatile_functions(leftop))
    1357             :         {
    1358        1914 :             opno = get_commutator(opno);
    1359             : 
    1360        1914 :             if (!OidIsValid(opno))
    1361             :             {
    1362             :                 /* commutator doesn't exist, we can't reverse the order */
    1363           0 :                 continue;
    1364             :             }
    1365        1914 :             nonConstExpr = rightop;
    1366             :         }
    1367        9372 :         else if (bms_is_member(relid, argrinfo->left_relids) &&
    1368        7440 :                  !bms_is_member(relid, argrinfo->right_relids) &&
    1369        7368 :                  !contain_volatile_functions(rightop))
    1370             :         {
    1371        7368 :             nonConstExpr = leftop;
    1372             :         }
    1373             :         else
    1374             :         {
    1375        2004 :             continue;
    1376             :         }
    1377             : 
    1378             :         /*
    1379             :          * Match non-constant part to the index key.  It's possible that a
    1380             :          * single non-constant part matches multiple index keys.  It's OK, we
    1381             :          * just stop with first matching index key.  Given that this choice is
    1382             :          * determined the same for every clause, we will group similar clauses
    1383             :          * together anyway.
    1384             :          */
    1385        9282 :         indexnum = 0;
    1386       20204 :         foreach(lc2, rel->indexlist)
    1387             :         {
    1388       16514 :             IndexOptInfo *index = (IndexOptInfo *) lfirst(lc2);
    1389             : 
    1390             :             /*
    1391             :              * Ignore index if it doesn't support bitmap scans or SAOP
    1392             :              * clauses.
    1393             :              */
    1394       16514 :             if (!index->amhasgetbitmap || !index->amsearcharray)
    1395          54 :                 continue;
    1396             : 
    1397       37356 :             for (colnum = 0; colnum < index->nkeycolumns; colnum++)
    1398             :             {
    1399       26488 :                 if (match_index_to_operand(nonConstExpr, colnum, index))
    1400             :                 {
    1401        5592 :                     matches[i].indexnum = indexnum;
    1402        5592 :                     matches[i].colnum = colnum;
    1403        5592 :                     matches[i].opno = opno;
    1404        5592 :                     matches[i].inputcollid = clause->inputcollid;
    1405        5592 :                     matched = true;
    1406        5592 :                     break;
    1407             :                 }
    1408             :             }
    1409             : 
    1410             :             /*
    1411             :              * Stop looping through the indexes, if we managed to match
    1412             :              * nonConstExpr to any index column.
    1413             :              */
    1414       16460 :             if (matches[i].indexnum >= 0)
    1415        5592 :                 break;
    1416       10868 :             indexnum++;
    1417             :         }
    1418             :     }
    1419             : 
    1420             :     /*
    1421             :      * Fast-path check: if no clause is matching to the index column, we can
    1422             :      * just give up at this stage and return the clause list as-is.
    1423             :      */
    1424        9098 :     if (!matched)
    1425             :     {
    1426        5074 :         pfree(matches);
    1427        5074 :         return orargs;
    1428             :     }
    1429             : 
    1430             :     /*
    1431             :      * Sort clauses to make similar clauses go together.  But at the same
    1432             :      * time, we would like to change the order of clauses as little as
    1433             :      * possible.  To do so, we reorder each group of similar clauses so that
    1434             :      * the first item of the group stays in place, and all the other items are
    1435             :      * moved after it.  So, if there are no similar clauses, the order of
    1436             :      * clauses stays the same.  When there are some groups, required
    1437             :      * reordering happens while the rest of the clauses remain in their
    1438             :      * places.  That is achieved by assigning a 'groupindex' to each clause:
    1439             :      * the number of the first item in the group in the original clause list.
    1440             :      */
    1441        4024 :     qsort(matches, n, sizeof(OrArgIndexMatch), or_arg_index_match_cmp);
    1442             : 
    1443             :     /* Assign groupindex to the sorted clauses */
    1444        9626 :     for (i = 1; i < n; i++)
    1445             :     {
    1446             :         /*
    1447             :          * When two clauses are similar and should belong to the same group,
    1448             :          * copy the 'groupindex' from the previous clause.  Given we are
    1449             :          * considering clauses in direct order, all the clauses would have a
    1450             :          * 'groupindex' equal to the 'groupindex' of the first clause in the
    1451             :          * group.
    1452             :          */
    1453        5602 :         if (matches[i].indexnum == matches[i - 1].indexnum &&
    1454        2566 :             matches[i].colnum == matches[i - 1].colnum &&
    1455        1680 :             matches[i].opno == matches[i - 1].opno &&
    1456        1632 :             matches[i].inputcollid == matches[i - 1].inputcollid &&
    1457        1632 :             matches[i].indexnum != -1)
    1458         444 :             matches[i].groupindex = matches[i - 1].groupindex;
    1459             :     }
    1460             : 
    1461             :     /* Re-sort clauses first by groupindex then by argindex */
    1462        4024 :     qsort(matches, n, sizeof(OrArgIndexMatch), or_arg_index_match_cmp_group);
    1463             : 
    1464             :     /*
    1465             :      * Group similar clauses into single sub-restrictinfo. Side effect: the
    1466             :      * resulting list of restrictions will be sorted by indexnum and colnum.
    1467             :      */
    1468        4024 :     group_start = 0;
    1469       13650 :     for (i = 1; i <= n; i++)
    1470             :     {
    1471             :         /* Check if it's a group boundary */
    1472        9626 :         if (group_start >= 0 &&
    1473        5602 :             (i == n ||
    1474        5602 :              matches[i].indexnum != matches[group_start].indexnum ||
    1475        2494 :              matches[i].colnum != matches[group_start].colnum ||
    1476        1626 :              matches[i].opno != matches[group_start].opno ||
    1477        1584 :              matches[i].inputcollid != matches[group_start].inputcollid ||
    1478        1584 :              matches[i].indexnum == -1))
    1479             :         {
    1480             :             /*
    1481             :              * One clause in group: add it "as is" to the upper-level OR.
    1482             :              */
    1483        9182 :             if (i - group_start == 1)
    1484             :             {
    1485        8870 :                 result = lappend(result,
    1486             :                                  list_nth(orargs,
    1487        8870 :                                           matches[group_start].argindex));
    1488             :             }
    1489             :             else
    1490             :             {
    1491             :                 /*
    1492             :                  * Two or more clauses in a group: create a nested OR.
    1493             :                  */
    1494         312 :                 List       *args = NIL;
    1495         312 :                 List       *rargs = NIL;
    1496             :                 RestrictInfo *subrinfo;
    1497             :                 int         j;
    1498             : 
    1499             :                 Assert(i - group_start >= 2);
    1500             : 
    1501             :                 /* Construct the list of nested OR arguments */
    1502        1068 :                 for (j = group_start; j < i; j++)
    1503             :                 {
    1504         756 :                     Node       *arg = list_nth(orargs, matches[j].argindex);
    1505             : 
    1506         756 :                     rargs = lappend(rargs, arg);
    1507         756 :                     if (IsA(arg, RestrictInfo))
    1508         756 :                         args = lappend(args, ((RestrictInfo *) arg)->clause);
    1509             :                     else
    1510           0 :                         args = lappend(args, arg);
    1511             :                 }
    1512             : 
    1513             :                 /* Construct the nested OR and wrap it with RestrictInfo */
    1514         312 :                 subrinfo = make_plain_restrictinfo(root,
    1515             :                                                    make_orclause(args),
    1516             :                                                    make_orclause(rargs),
    1517         312 :                                                    rinfo->is_pushed_down,
    1518         312 :                                                    rinfo->has_clone,
    1519         312 :                                                    rinfo->is_clone,
    1520         312 :                                                    rinfo->pseudoconstant,
    1521             :                                                    rinfo->security_level,
    1522             :                                                    rinfo->required_relids,
    1523             :                                                    rinfo->incompatible_relids,
    1524             :                                                    rinfo->outer_relids);
    1525         312 :                 result = lappend(result, subrinfo);
    1526             :             }
    1527             : 
    1528        9182 :             group_start = i;
    1529             :         }
    1530             :     }
    1531        4024 :     pfree(matches);
    1532        4024 :     return result;
    1533             : }
    1534             : 
    1535             : /*
    1536             :  * make_bitmap_paths_for_or_group
    1537             :  *      Generate bitmap paths for a group of similar OR-clause arguments
    1538             :  *      produced by group_similar_or_args().
    1539             :  *
    1540             :  * This function considers two cases: (1) matching a group of clauses to
    1541             :  * the index as a whole, and (2) matching the individual clauses one-by-one.
    1542             :  * (1) typically comprises an optimal solution.  If not, (2) typically
    1543             :  * comprises fair alternative.
    1544             :  *
    1545             :  * Ideally, we could consider all arbitrary splits of arguments into
    1546             :  * subgroups, but that could lead to unacceptable computational complexity.
    1547             :  * This is why we only consider two cases of above.
    1548             :  */
    1549             : static List *
    1550         306 : make_bitmap_paths_for_or_group(PlannerInfo *root, RelOptInfo *rel,
    1551             :                                RestrictInfo *ri, List *other_clauses)
    1552             : {
    1553         306 :     List       *jointlist = NIL;
    1554         306 :     List       *splitlist = NIL;
    1555             :     ListCell   *lc;
    1556             :     List       *orargs;
    1557         306 :     List       *args = ((BoolExpr *) ri->orclause)->args;
    1558         306 :     Cost        jointcost = 0.0,
    1559         306 :                 splitcost = 0.0;
    1560             :     Path       *bitmapqual;
    1561             :     List       *indlist;
    1562             : 
    1563             :     /*
    1564             :      * First, try to match the whole group to the one index.
    1565             :      */
    1566         306 :     orargs = list_make1(ri);
    1567         306 :     indlist = build_paths_for_OR(root, rel,
    1568             :                                  orargs,
    1569             :                                  other_clauses);
    1570         306 :     if (indlist != NIL)
    1571             :     {
    1572         300 :         bitmapqual = choose_bitmap_and(root, rel, indlist);
    1573         300 :         jointcost = bitmapqual->total_cost;
    1574         300 :         jointlist = list_make1(bitmapqual);
    1575             :     }
    1576             : 
    1577             :     /*
    1578             :      * If we manage to find a bitmap scan, which uses the group of OR-clause
    1579             :      * arguments as a whole, we can skip matching OR-clause arguments
    1580             :      * one-by-one as long as there are no other clauses, which can bring more
    1581             :      * efficiency to one-by-one case.
    1582             :      */
    1583         306 :     if (jointlist != NIL && other_clauses == NIL)
    1584          84 :         return jointlist;
    1585             : 
    1586             :     /*
    1587             :      * Also try to match all containing clauses one-by-one.
    1588             :      */
    1589         768 :     foreach(lc, args)
    1590             :     {
    1591         552 :         orargs = list_make1(lfirst(lc));
    1592             : 
    1593         552 :         indlist = build_paths_for_OR(root, rel,
    1594             :                                      orargs,
    1595             :                                      other_clauses);
    1596             : 
    1597         552 :         if (indlist == NIL)
    1598             :         {
    1599           6 :             splitlist = NIL;
    1600           6 :             break;
    1601             :         }
    1602             : 
    1603         546 :         bitmapqual = choose_bitmap_and(root, rel, indlist);
    1604         546 :         splitcost += bitmapqual->total_cost;
    1605         546 :         splitlist = lappend(splitlist, bitmapqual);
    1606             :     }
    1607             : 
    1608             :     /*
    1609             :      * Pick the best option.
    1610             :      */
    1611         222 :     if (splitlist == NIL)
    1612           6 :         return jointlist;
    1613         216 :     else if (jointlist == NIL)
    1614           0 :         return splitlist;
    1615             :     else
    1616         216 :         return (jointcost < splitcost) ? jointlist : splitlist;
    1617             : }
    1618             : 
    1619             : 
    1620             : /*
    1621             :  * generate_bitmap_or_paths
    1622             :  *      Look through the list of clauses to find OR clauses, and generate
    1623             :  *      a BitmapOrPath for each one we can handle that way.  Return a list
    1624             :  *      of the generated BitmapOrPaths.
    1625             :  *
    1626             :  * other_clauses is a list of additional clauses that can be assumed true
    1627             :  * for the purpose of generating indexquals, but are not to be searched for
    1628             :  * ORs.  (See build_paths_for_OR() for motivation.)
    1629             :  */
    1630             : static List *
    1631      691148 : generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel,
    1632             :                          List *clauses, List *other_clauses)
    1633             : {
    1634      691148 :     List       *result = NIL;
    1635             :     List       *all_clauses;
    1636             :     ListCell   *lc;
    1637             : 
    1638             :     /*
    1639             :      * We can use both the current and other clauses as context for
    1640             :      * build_paths_for_OR; no need to remove ORs from the lists.
    1641             :      */
    1642      691148 :     all_clauses = list_concat_copy(clauses, other_clauses);
    1643             : 
    1644     1071234 :     foreach(lc, clauses)
    1645             :     {
    1646      380086 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
    1647             :         List       *pathlist;
    1648             :         Path       *bitmapqual;
    1649             :         ListCell   *j;
    1650             :         List       *groupedArgs;
    1651      380086 :         List       *inner_other_clauses = NIL;
    1652             : 
    1653             :         /* Ignore RestrictInfos that aren't ORs */
    1654      380086 :         if (!restriction_is_or_clause(rinfo))
    1655      370988 :             continue;
    1656             : 
    1657             :         /*
    1658             :          * We must be able to match at least one index to each of the arms of
    1659             :          * the OR, else we can't use it.
    1660             :          */
    1661        9098 :         pathlist = NIL;
    1662             : 
    1663             :         /*
    1664             :          * Group the similar OR-clause arguments into dedicated RestrictInfos,
    1665             :          * because each of those RestrictInfos has a chance to match the index
    1666             :          * as a whole.
    1667             :          */
    1668        9098 :         groupedArgs = group_similar_or_args(root, rel, rinfo);
    1669             : 
    1670        9098 :         if (groupedArgs != ((BoolExpr *) rinfo->orclause)->args)
    1671             :         {
    1672             :             /*
    1673             :              * Some parts of the rinfo were probably grouped.  In this case,
    1674             :              * we have a set of sub-rinfos that together are an exact
    1675             :              * duplicate of rinfo.  Thus, we need to remove the rinfo from
    1676             :              * other clauses. match_clauses_to_index detects duplicated
    1677             :              * iclauses by comparing pointers to original rinfos that would be
    1678             :              * different.  So, we must delete rinfo to avoid de-facto
    1679             :              * duplicated clauses in the index clauses list.
    1680             :              */
    1681        4024 :             inner_other_clauses = list_delete(list_copy(all_clauses), rinfo);
    1682             :         }
    1683             : 
    1684       11370 :         foreach(j, groupedArgs)
    1685             :         {
    1686       10330 :             Node       *orarg = (Node *) lfirst(j);
    1687             :             List       *indlist;
    1688             : 
    1689             :             /* OR arguments should be ANDs or sub-RestrictInfos */
    1690       10330 :             if (is_andclause(orarg))
    1691             :             {
    1692        1484 :                 List       *andargs = ((BoolExpr *) orarg)->args;
    1693             : 
    1694        1484 :                 indlist = build_paths_for_OR(root, rel,
    1695             :                                              andargs,
    1696             :                                              all_clauses);
    1697             : 
    1698             :                 /* Recurse in case there are sub-ORs */
    1699        1484 :                 indlist = list_concat(indlist,
    1700        1484 :                                       generate_bitmap_or_paths(root, rel,
    1701             :                                                                andargs,
    1702             :                                                                all_clauses));
    1703             :             }
    1704        8846 :             else if (restriction_is_or_clause(castNode(RestrictInfo, orarg)))
    1705             :             {
    1706         306 :                 RestrictInfo *ri = castNode(RestrictInfo, orarg);
    1707             : 
    1708             :                 /*
    1709             :                  * Generate bitmap paths for the group of similar OR-clause
    1710             :                  * arguments.
    1711             :                  */
    1712         306 :                 indlist = make_bitmap_paths_for_or_group(root,
    1713             :                                                          rel, ri,
    1714             :                                                          inner_other_clauses);
    1715             : 
    1716         306 :                 if (indlist == NIL)
    1717             :                 {
    1718           6 :                     pathlist = NIL;
    1719           6 :                     break;
    1720             :                 }
    1721             :                 else
    1722             :                 {
    1723         300 :                     pathlist = list_concat(pathlist, indlist);
    1724         300 :                     continue;
    1725             :                 }
    1726             :             }
    1727             :             else
    1728             :             {
    1729        8540 :                 RestrictInfo *ri = castNode(RestrictInfo, orarg);
    1730             :                 List       *orargs;
    1731             : 
    1732        8540 :                 orargs = list_make1(ri);
    1733             : 
    1734        8540 :                 indlist = build_paths_for_OR(root, rel,
    1735             :                                              orargs,
    1736             :                                              all_clauses);
    1737             :             }
    1738             : 
    1739             :             /*
    1740             :              * If nothing matched this arm, we can't do anything with this OR
    1741             :              * clause.
    1742             :              */
    1743       10024 :             if (indlist == NIL)
    1744             :             {
    1745        8052 :                 pathlist = NIL;
    1746        8052 :                 break;
    1747             :             }
    1748             : 
    1749             :             /*
    1750             :              * OK, pick the most promising AND combination, and add it to
    1751             :              * pathlist.
    1752             :              */
    1753        1972 :             bitmapqual = choose_bitmap_and(root, rel, indlist);
    1754        1972 :             pathlist = lappend(pathlist, bitmapqual);
    1755             :         }
    1756             : 
    1757        9098 :         if (inner_other_clauses != NIL)
    1758        2242 :             list_free(inner_other_clauses);
    1759             : 
    1760             :         /*
    1761             :          * If we have a match for every arm, then turn them into a
    1762             :          * BitmapOrPath, and add to result list.
    1763             :          */
    1764        9098 :         if (pathlist != NIL)
    1765             :         {
    1766        1040 :             bitmapqual = (Path *) create_bitmap_or_path(root, rel, pathlist);
    1767        1040 :             result = lappend(result, bitmapqual);
    1768             :         }
    1769             :     }
    1770             : 
    1771      691148 :     return result;
    1772             : }
    1773             : 
    1774             : 
    1775             : /*
    1776             :  * choose_bitmap_and
    1777             :  *      Given a nonempty list of bitmap paths, AND them into one path.
    1778             :  *
    1779             :  * This is a nontrivial decision since we can legally use any subset of the
    1780             :  * given path set.  We want to choose a good tradeoff between selectivity
    1781             :  * and cost of computing the bitmap.
    1782             :  *
    1783             :  * The result is either a single one of the inputs, or a BitmapAndPath
    1784             :  * combining multiple inputs.
    1785             :  */
    1786             : static Path *
    1787      360968 : choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths)
    1788             : {
    1789      360968 :     int         npaths = list_length(paths);
    1790             :     PathClauseUsage **pathinfoarray;
    1791             :     PathClauseUsage *pathinfo;
    1792             :     List       *clauselist;
    1793      360968 :     List       *bestpaths = NIL;
    1794      360968 :     Cost        bestcost = 0;
    1795             :     int         i,
    1796             :                 j;
    1797             :     ListCell   *l;
    1798             : 
    1799             :     Assert(npaths > 0);          /* else caller error */
    1800      360968 :     if (npaths == 1)
    1801      280724 :         return (Path *) linitial(paths);    /* easy case */
    1802             : 
    1803             :     /*
    1804             :      * In theory we should consider every nonempty subset of the given paths.
    1805             :      * In practice that seems like overkill, given the crude nature of the
    1806             :      * estimates, not to mention the possible effects of higher-level AND and
    1807             :      * OR clauses.  Moreover, it's completely impractical if there are a large
    1808             :      * number of paths, since the work would grow as O(2^N).
    1809             :      *
    1810             :      * As a heuristic, we first check for paths using exactly the same sets of
    1811             :      * WHERE clauses + index predicate conditions, and reject all but the
    1812             :      * cheapest-to-scan in any such group.  This primarily gets rid of indexes
    1813             :      * that include the interesting columns but also irrelevant columns.  (In
    1814             :      * situations where the DBA has gone overboard on creating variant
    1815             :      * indexes, this can make for a very large reduction in the number of
    1816             :      * paths considered further.)
    1817             :      *
    1818             :      * We then sort the surviving paths with the cheapest-to-scan first, and
    1819             :      * for each path, consider using that path alone as the basis for a bitmap
    1820             :      * scan.  Then we consider bitmap AND scans formed from that path plus
    1821             :      * each subsequent (higher-cost) path, adding on a subsequent path if it
    1822             :      * results in a reduction in the estimated total scan cost. This means we
    1823             :      * consider about O(N^2) rather than O(2^N) path combinations, which is
    1824             :      * quite tolerable, especially given than N is usually reasonably small
    1825             :      * because of the prefiltering step.  The cheapest of these is returned.
    1826             :      *
    1827             :      * We will only consider AND combinations in which no two indexes use the
    1828             :      * same WHERE clause.  This is a bit of a kluge: it's needed because
    1829             :      * costsize.c and clausesel.c aren't very smart about redundant clauses.
    1830             :      * They will usually double-count the redundant clauses, producing a
    1831             :      * too-small selectivity that makes a redundant AND step look like it
    1832             :      * reduces the total cost.  Perhaps someday that code will be smarter and
    1833             :      * we can remove this limitation.  (But note that this also defends
    1834             :      * against flat-out duplicate input paths, which can happen because
    1835             :      * match_join_clauses_to_index will find the same OR join clauses that
    1836             :      * extract_restriction_or_clauses has pulled OR restriction clauses out
    1837             :      * of.)
    1838             :      *
    1839             :      * For the same reason, we reject AND combinations in which an index
    1840             :      * predicate clause duplicates another clause.  Here we find it necessary
    1841             :      * to be even stricter: we'll reject a partial index if any of its
    1842             :      * predicate clauses are implied by the set of WHERE clauses and predicate
    1843             :      * clauses used so far.  This covers cases such as a condition "x = 42"
    1844             :      * used with a plain index, followed by a clauseless scan of a partial
    1845             :      * index "WHERE x >= 40 AND x < 50".  The partial index has been accepted
    1846             :      * only because "x = 42" was present, and so allowing it would partially
    1847             :      * double-count selectivity.  (We could use predicate_implied_by on
    1848             :      * regular qual clauses too, to have a more intelligent, but much more
    1849             :      * expensive, check for redundancy --- but in most cases simple equality
    1850             :      * seems to suffice.)
    1851             :      */
    1852             : 
    1853             :     /*
    1854             :      * Extract clause usage info and detect any paths that use exactly the
    1855             :      * same set of clauses; keep only the cheapest-to-scan of any such groups.
    1856             :      * The surviving paths are put into an array for qsort'ing.
    1857             :      */
    1858       80244 :     pathinfoarray = palloc_array(PathClauseUsage *, npaths);
    1859       80244 :     clauselist = NIL;
    1860       80244 :     npaths = 0;
    1861      263976 :     foreach(l, paths)
    1862             :     {
    1863      183732 :         Path       *ipath = (Path *) lfirst(l);
    1864             : 
    1865      183732 :         pathinfo = classify_index_clause_usage(ipath, &clauselist);
    1866             : 
    1867             :         /* If it's unclassifiable, treat it as distinct from all others */
    1868      183732 :         if (pathinfo->unclassifiable)
    1869             :         {
    1870           0 :             pathinfoarray[npaths++] = pathinfo;
    1871           0 :             continue;
    1872             :         }
    1873             : 
    1874      286912 :         for (i = 0; i < npaths; i++)
    1875             :         {
    1876      253284 :             if (!pathinfoarray[i]->unclassifiable &&
    1877      126642 :                 bms_equal(pathinfo->clauseids, pathinfoarray[i]->clauseids))
    1878       23462 :                 break;
    1879             :         }
    1880      183732 :         if (i < npaths)
    1881             :         {
    1882             :             /* duplicate clauseids, keep the cheaper one */
    1883             :             Cost        ncost;
    1884             :             Cost        ocost;
    1885             :             Selectivity nselec;
    1886             :             Selectivity oselec;
    1887             : 
    1888       23462 :             cost_bitmap_tree_node(pathinfo->path, &ncost, &nselec);
    1889       23462 :             cost_bitmap_tree_node(pathinfoarray[i]->path, &ocost, &oselec);
    1890       23462 :             if (ncost < ocost)
    1891        5170 :                 pathinfoarray[i] = pathinfo;
    1892             :         }
    1893             :         else
    1894             :         {
    1895             :             /* not duplicate clauseids, add to array */
    1896      160270 :             pathinfoarray[npaths++] = pathinfo;
    1897             :         }
    1898             :     }
    1899             : 
    1900             :     /* If only one surviving path, we're done */
    1901       80244 :     if (npaths == 1)
    1902       14678 :         return pathinfoarray[0]->path;
    1903             : 
    1904             :     /* Sort the surviving paths by index access cost */
    1905       65566 :     qsort(pathinfoarray, npaths, sizeof(PathClauseUsage *),
    1906             :           path_usage_comparator);
    1907             : 
    1908             :     /*
    1909             :      * For each surviving index, consider it as an "AND group leader", and see
    1910             :      * whether adding on any of the later indexes results in an AND path with
    1911             :      * cheaper total cost than before.  Then take the cheapest AND group.
    1912             :      *
    1913             :      * Note: paths that are either clauseless or unclassifiable will have
    1914             :      * empty clauseids, so that they will not be rejected by the clauseids
    1915             :      * filter here, nor will they cause later paths to be rejected by it.
    1916             :      */
    1917      211158 :     for (i = 0; i < npaths; i++)
    1918             :     {
    1919             :         Cost        costsofar;
    1920             :         List       *qualsofar;
    1921             :         Bitmapset  *clauseidsofar;
    1922             : 
    1923      145592 :         pathinfo = pathinfoarray[i];
    1924      145592 :         paths = list_make1(pathinfo->path);
    1925      145592 :         costsofar = bitmap_scan_cost_est(root, rel, pathinfo->path);
    1926      145592 :         qualsofar = list_concat_copy(pathinfo->quals, pathinfo->preds);
    1927      145592 :         clauseidsofar = bms_copy(pathinfo->clauseids);
    1928             : 
    1929      240516 :         for (j = i + 1; j < npaths; j++)
    1930             :         {
    1931             :             Cost        newcost;
    1932             : 
    1933       94924 :             pathinfo = pathinfoarray[j];
    1934             :             /* Check for redundancy */
    1935       94924 :             if (bms_overlap(pathinfo->clauseids, clauseidsofar))
    1936       44604 :                 continue;       /* consider it redundant */
    1937       50320 :             if (pathinfo->preds)
    1938             :             {
    1939          24 :                 bool        redundant = false;
    1940             : 
    1941             :                 /* we check each predicate clause separately */
    1942          24 :                 foreach(l, pathinfo->preds)
    1943             :                 {
    1944          24 :                     Node       *np = (Node *) lfirst(l);
    1945             : 
    1946          24 :                     if (predicate_implied_by(list_make1(np), qualsofar, false))
    1947             :                     {
    1948          24 :                         redundant = true;
    1949          24 :                         break;  /* out of inner foreach loop */
    1950             :                     }
    1951             :                 }
    1952          24 :                 if (redundant)
    1953          24 :                     continue;
    1954             :             }
    1955             :             /* tentatively add new path to paths, so we can estimate cost */
    1956       50296 :             paths = lappend(paths, pathinfo->path);
    1957       50296 :             newcost = bitmap_and_cost_est(root, rel, paths);
    1958       50296 :             if (newcost < costsofar)
    1959             :             {
    1960             :                 /* keep new path in paths, update subsidiary variables */
    1961         292 :                 costsofar = newcost;
    1962         292 :                 qualsofar = list_concat(qualsofar, pathinfo->quals);
    1963         292 :                 qualsofar = list_concat(qualsofar, pathinfo->preds);
    1964         292 :                 clauseidsofar = bms_add_members(clauseidsofar,
    1965         292 :                                                 pathinfo->clauseids);
    1966             :             }
    1967             :             else
    1968             :             {
    1969             :                 /* reject new path, remove it from paths list */
    1970       50004 :                 paths = list_truncate(paths, list_length(paths) - 1);
    1971             :             }
    1972             :         }
    1973             : 
    1974             :         /* Keep the cheapest AND-group (or singleton) */
    1975      145592 :         if (i == 0 || costsofar < bestcost)
    1976             :         {
    1977       70564 :             bestpaths = paths;
    1978       70564 :             bestcost = costsofar;
    1979             :         }
    1980             : 
    1981             :         /* some easy cleanup (we don't try real hard though) */
    1982      145592 :         list_free(qualsofar);
    1983             :     }
    1984             : 
    1985       65566 :     if (list_length(bestpaths) == 1)
    1986       65298 :         return (Path *) linitial(bestpaths);    /* no need for AND */
    1987         268 :     return (Path *) create_bitmap_and_path(root, rel, bestpaths);
    1988             : }
    1989             : 
    1990             : /* qsort comparator to sort in increasing index access cost order */
    1991             : static int
    1992       86884 : path_usage_comparator(const void *a, const void *b)
    1993             : {
    1994       86884 :     PathClauseUsage *pa = *(PathClauseUsage *const *) a;
    1995       86884 :     PathClauseUsage *pb = *(PathClauseUsage *const *) b;
    1996             :     Cost        acost;
    1997             :     Cost        bcost;
    1998             :     Selectivity aselec;
    1999             :     Selectivity bselec;
    2000             : 
    2001       86884 :     cost_bitmap_tree_node(pa->path, &acost, &aselec);
    2002       86884 :     cost_bitmap_tree_node(pb->path, &bcost, &bselec);
    2003             : 
    2004             :     /*
    2005             :      * If costs are the same, sort by selectivity.
    2006             :      */
    2007       86884 :     if (acost < bcost)
    2008       57260 :         return -1;
    2009       29624 :     if (acost > bcost)
    2010       19198 :         return 1;
    2011             : 
    2012       10426 :     if (aselec < bselec)
    2013        5498 :         return -1;
    2014        4928 :     if (aselec > bselec)
    2015        1164 :         return 1;
    2016             : 
    2017        3764 :     return 0;
    2018             : }
    2019             : 
    2020             : /*
    2021             :  * Estimate the cost of actually executing a bitmap scan with a single
    2022             :  * index path (which could be a BitmapAnd or BitmapOr node).
    2023             :  */
    2024             : static Cost
    2025      195888 : bitmap_scan_cost_est(PlannerInfo *root, RelOptInfo *rel, Path *ipath)
    2026             : {
    2027             :     BitmapHeapPath bpath;
    2028             : 
    2029             :     /* Set up a dummy BitmapHeapPath */
    2030      195888 :     bpath.path.type = T_BitmapHeapPath;
    2031      195888 :     bpath.path.pathtype = T_BitmapHeapScan;
    2032      195888 :     bpath.path.parent = rel;
    2033      195888 :     bpath.path.pathtarget = rel->reltarget;
    2034      195888 :     bpath.path.param_info = ipath->param_info;
    2035      195888 :     bpath.path.pathkeys = NIL;
    2036      195888 :     bpath.bitmapqual = ipath;
    2037             : 
    2038             :     /*
    2039             :      * Check the cost of temporary path without considering parallelism.
    2040             :      * Parallel bitmap heap path will be considered at later stage.
    2041             :      */
    2042      195888 :     bpath.path.parallel_workers = 0;
    2043             : 
    2044             :     /* Now we can do cost_bitmap_heap_scan */
    2045      195888 :     cost_bitmap_heap_scan(&bpath.path, root, rel,
    2046             :                           bpath.path.param_info,
    2047             :                           ipath,
    2048             :                           get_loop_count(root, rel->relid,
    2049      195888 :                                          PATH_REQ_OUTER(ipath)));
    2050             : 
    2051      195888 :     return bpath.path.total_cost;
    2052             : }
    2053             : 
    2054             : /*
    2055             :  * Estimate the cost of actually executing a BitmapAnd scan with the given
    2056             :  * inputs.
    2057             :  */
    2058             : static Cost
    2059       50296 : bitmap_and_cost_est(PlannerInfo *root, RelOptInfo *rel, List *paths)
    2060             : {
    2061             :     BitmapAndPath *apath;
    2062             : 
    2063             :     /*
    2064             :      * Might as well build a real BitmapAndPath here, as the work is slightly
    2065             :      * too complicated to be worth repeating just to save one palloc.
    2066             :      */
    2067       50296 :     apath = create_bitmap_and_path(root, rel, paths);
    2068             : 
    2069       50296 :     return bitmap_scan_cost_est(root, rel, (Path *) apath);
    2070             : }
    2071             : 
    2072             : 
    2073             : /*
    2074             :  * classify_index_clause_usage
    2075             :  *      Construct a PathClauseUsage struct describing the WHERE clauses and
    2076             :  *      index predicate clauses used by the given indexscan path.
    2077             :  *      We consider two clauses the same if they are equal().
    2078             :  *
    2079             :  * At some point we might want to migrate this info into the Path data
    2080             :  * structure proper, but for the moment it's only needed within
    2081             :  * choose_bitmap_and().
    2082             :  *
    2083             :  * *clauselist is used and expanded as needed to identify all the distinct
    2084             :  * clauses seen across successive calls.  Caller must initialize it to NIL
    2085             :  * before first call of a set.
    2086             :  */
    2087             : static PathClauseUsage *
    2088      183732 : classify_index_clause_usage(Path *path, List **clauselist)
    2089             : {
    2090             :     PathClauseUsage *result;
    2091             :     Bitmapset  *clauseids;
    2092             :     ListCell   *lc;
    2093             : 
    2094      183732 :     result = palloc_object(PathClauseUsage);
    2095      183732 :     result->path = path;
    2096             : 
    2097             :     /* Recursively find the quals and preds used by the path */
    2098      183732 :     result->quals = NIL;
    2099      183732 :     result->preds = NIL;
    2100      183732 :     find_indexpath_quals(path, &result->quals, &result->preds);
    2101             : 
    2102             :     /*
    2103             :      * Some machine-generated queries have outlandish numbers of qual clauses.
    2104             :      * To avoid getting into O(N^2) behavior even in this preliminary
    2105             :      * classification step, we want to limit the number of entries we can
    2106             :      * accumulate in *clauselist.  Treat any path with more than 100 quals +
    2107             :      * preds as unclassifiable, which will cause calling code to consider it
    2108             :      * distinct from all other paths.
    2109             :      */
    2110      183732 :     if (list_length(result->quals) + list_length(result->preds) > 100)
    2111             :     {
    2112           0 :         result->clauseids = NULL;
    2113           0 :         result->unclassifiable = true;
    2114           0 :         return result;
    2115             :     }
    2116             : 
    2117             :     /* Build up a bitmapset representing the quals and preds */
    2118      183732 :     clauseids = NULL;
    2119      424734 :     foreach(lc, result->quals)
    2120             :     {
    2121      241002 :         Node       *node = (Node *) lfirst(lc);
    2122             : 
    2123      241002 :         clauseids = bms_add_member(clauseids,
    2124             :                                    find_list_position(node, clauselist));
    2125             :     }
    2126      184020 :     foreach(lc, result->preds)
    2127             :     {
    2128         288 :         Node       *node = (Node *) lfirst(lc);
    2129             : 
    2130         288 :         clauseids = bms_add_member(clauseids,
    2131             :                                    find_list_position(node, clauselist));
    2132             :     }
    2133      183732 :     result->clauseids = clauseids;
    2134      183732 :     result->unclassifiable = false;
    2135             : 
    2136      183732 :     return result;
    2137             : }
    2138             : 
    2139             : 
    2140             : /*
    2141             :  * find_indexpath_quals
    2142             :  *
    2143             :  * Given the Path structure for a plain or bitmap indexscan, extract lists
    2144             :  * of all the index clauses and index predicate conditions used in the Path.
    2145             :  * These are appended to the initial contents of *quals and *preds (hence
    2146             :  * caller should initialize those to NIL).
    2147             :  *
    2148             :  * Note we are not trying to produce an accurate representation of the AND/OR
    2149             :  * semantics of the Path, but just find out all the base conditions used.
    2150             :  *
    2151             :  * The result lists contain pointers to the expressions used in the Path,
    2152             :  * but all the list cells are freshly built, so it's safe to destructively
    2153             :  * modify the lists (eg, by concat'ing with other lists).
    2154             :  */
    2155             : static void
    2156      186142 : find_indexpath_quals(Path *bitmapqual, List **quals, List **preds)
    2157             : {
    2158      186142 :     if (IsA(bitmapqual, BitmapAndPath))
    2159             :     {
    2160           0 :         BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
    2161             :         ListCell   *l;
    2162             : 
    2163           0 :         foreach(l, apath->bitmapquals)
    2164             :         {
    2165           0 :             find_indexpath_quals((Path *) lfirst(l), quals, preds);
    2166             :         }
    2167             :     }
    2168      186142 :     else if (IsA(bitmapqual, BitmapOrPath))
    2169             :     {
    2170        1310 :         BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
    2171             :         ListCell   *l;
    2172             : 
    2173        3720 :         foreach(l, opath->bitmapquals)
    2174             :         {
    2175        2410 :             find_indexpath_quals((Path *) lfirst(l), quals, preds);
    2176             :         }
    2177             :     }
    2178      184832 :     else if (IsA(bitmapqual, IndexPath))
    2179             :     {
    2180      184832 :         IndexPath  *ipath = (IndexPath *) bitmapqual;
    2181             :         ListCell   *l;
    2182             : 
    2183      425834 :         foreach(l, ipath->indexclauses)
    2184             :         {
    2185      241002 :             IndexClause *iclause = (IndexClause *) lfirst(l);
    2186             : 
    2187      241002 :             *quals = lappend(*quals, iclause->rinfo->clause);
    2188             :         }
    2189      184832 :         *preds = list_concat(*preds, ipath->indexinfo->indpred);
    2190             :     }
    2191             :     else
    2192           0 :         elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
    2193      186142 : }
    2194             : 
    2195             : 
    2196             : /*
    2197             :  * find_list_position
    2198             :  *      Return the given node's position (counting from 0) in the given
    2199             :  *      list of nodes.  If it's not equal() to any existing list member,
    2200             :  *      add it at the end, and return that position.
    2201             :  */
    2202             : static int
    2203      241290 : find_list_position(Node *node, List **nodelist)
    2204             : {
    2205             :     int         i;
    2206             :     ListCell   *lc;
    2207             : 
    2208      241290 :     i = 0;
    2209      388086 :     foreach(lc, *nodelist)
    2210             :     {
    2211      218120 :         Node       *oldnode = (Node *) lfirst(lc);
    2212             : 
    2213      218120 :         if (equal(node, oldnode))
    2214       71324 :             return i;
    2215      146796 :         i++;
    2216             :     }
    2217             : 
    2218      169966 :     *nodelist = lappend(*nodelist, node);
    2219             : 
    2220      169966 :     return i;
    2221             : }
    2222             : 
    2223             : 
    2224             : /*
    2225             :  * check_index_only
    2226             :  *      Determine whether an index-only scan is possible for this index.
    2227             :  */
    2228             : static bool
    2229      890286 : check_index_only(RelOptInfo *rel, IndexOptInfo *index)
    2230             : {
    2231             :     bool        result;
    2232      890286 :     Bitmapset  *attrs_used = NULL;
    2233      890286 :     Bitmapset  *index_canreturn_attrs = NULL;
    2234             :     ListCell   *lc;
    2235             :     int         i;
    2236             : 
    2237             :     /* Index-only scans must be enabled */
    2238      890286 :     if (!enable_indexonlyscan)
    2239        3858 :         return false;
    2240             : 
    2241             :     /*
    2242             :      * Check that all needed attributes of the relation are available from the
    2243             :      * index.
    2244             :      */
    2245             : 
    2246             :     /*
    2247             :      * First, identify all the attributes needed for joins or final output.
    2248             :      * Note: we must look at rel's targetlist, not the attr_needed data,
    2249             :      * because attr_needed isn't computed for inheritance child rels.
    2250             :      */
    2251      886428 :     pull_varattnos((Node *) rel->reltarget->exprs, rel->relid, &attrs_used);
    2252             : 
    2253             :     /*
    2254             :      * Add all the attributes used by restriction clauses; but consider only
    2255             :      * those clauses not implied by the index predicate, since ones that are
    2256             :      * so implied don't need to be checked explicitly in the plan.
    2257             :      *
    2258             :      * Note: attributes used only in index quals would not be needed at
    2259             :      * runtime either, if we are certain that the index is not lossy.  However
    2260             :      * it'd be complicated to account for that accurately, and it doesn't
    2261             :      * matter in most cases, since we'd conclude that such attributes are
    2262             :      * available from the index anyway.
    2263             :      */
    2264     1824922 :     foreach(lc, index->indrestrictinfo)
    2265             :     {
    2266      938494 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    2267             : 
    2268      938494 :         pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used);
    2269             :     }
    2270             : 
    2271             :     /*
    2272             :      * Construct a bitmapset of columns that the index can return back in an
    2273             :      * index-only scan.
    2274             :      */
    2275     2517684 :     for (i = 0; i < index->ncolumns; i++)
    2276             :     {
    2277     1631256 :         int         attno = index->indexkeys[i];
    2278             : 
    2279             :         /*
    2280             :          * For the moment, we just ignore index expressions.  It might be nice
    2281             :          * to do something with them, later.
    2282             :          */
    2283     1631256 :         if (attno == 0)
    2284        3310 :             continue;
    2285             : 
    2286     1627946 :         if (index->canreturn[i])
    2287             :             index_canreturn_attrs =
    2288     1352398 :                 bms_add_member(index_canreturn_attrs,
    2289             :                                attno - FirstLowInvalidHeapAttributeNumber);
    2290             :     }
    2291             : 
    2292             :     /* Do we have all the necessary attributes? */
    2293      886428 :     result = bms_is_subset(attrs_used, index_canreturn_attrs);
    2294             : 
    2295      886428 :     bms_free(attrs_used);
    2296      886428 :     bms_free(index_canreturn_attrs);
    2297             : 
    2298      886428 :     return result;
    2299             : }
    2300             : 
    2301             : /*
    2302             :  * get_loop_count
    2303             :  *      Choose the loop count estimate to use for costing a parameterized path
    2304             :  *      with the given set of outer relids.
    2305             :  *
    2306             :  * Since we produce parameterized paths before we've begun to generate join
    2307             :  * relations, it's impossible to predict exactly how many times a parameterized
    2308             :  * path will be iterated; we don't know the size of the relation that will be
    2309             :  * on the outside of the nestloop.  However, we should try to account for
    2310             :  * multiple iterations somehow in costing the path.  The heuristic embodied
    2311             :  * here is to use the rowcount of the smallest other base relation needed in
    2312             :  * the join clauses used by the path.  (We could alternatively consider the
    2313             :  * largest one, but that seems too optimistic.)  This is of course the right
    2314             :  * answer for single-other-relation cases, and it seems like a reasonable
    2315             :  * zero-order approximation for multiway-join cases.
    2316             :  *
    2317             :  * In addition, we check to see if the other side of each join clause is on
    2318             :  * the inside of some semijoin that the current relation is on the outside of.
    2319             :  * If so, the only way that a parameterized path could be used is if the
    2320             :  * semijoin RHS has been unique-ified, so we should use the number of unique
    2321             :  * RHS rows rather than using the relation's raw rowcount.
    2322             :  *
    2323             :  * Note: for this to work, allpaths.c must establish all baserel size
    2324             :  * estimates before it begins to compute paths, or at least before it
    2325             :  * calls create_index_paths().
    2326             :  */
    2327             : static double
    2328     1238906 : get_loop_count(PlannerInfo *root, Index cur_relid, Relids outer_relids)
    2329             : {
    2330             :     double      result;
    2331             :     int         outer_relid;
    2332             : 
    2333             :     /* For a non-parameterized path, just return 1.0 quickly */
    2334     1238906 :     if (outer_relids == NULL)
    2335      844742 :         return 1.0;
    2336             : 
    2337      394164 :     result = 0.0;
    2338      394164 :     outer_relid = -1;
    2339      799504 :     while ((outer_relid = bms_next_member(outer_relids, outer_relid)) >= 0)
    2340             :     {
    2341             :         RelOptInfo *outer_rel;
    2342             :         double      rowcount;
    2343             : 
    2344             :         /* Paranoia: ignore bogus relid indexes */
    2345      405340 :         if (outer_relid >= root->simple_rel_array_size)
    2346           0 :             continue;
    2347      405340 :         outer_rel = root->simple_rel_array[outer_relid];
    2348      405340 :         if (outer_rel == NULL)
    2349         254 :             continue;
    2350             :         Assert(outer_rel->relid == outer_relid); /* sanity check on array */
    2351             : 
    2352             :         /* Other relation could be proven empty, if so ignore */
    2353      405086 :         if (IS_DUMMY_REL(outer_rel))
    2354          24 :             continue;
    2355             : 
    2356             :         /* Otherwise, rel's rows estimate should be valid by now */
    2357             :         Assert(outer_rel->rows > 0);
    2358             : 
    2359             :         /* Check to see if rel is on the inside of any semijoins */
    2360      405062 :         rowcount = adjust_rowcount_for_semijoins(root,
    2361             :                                                  cur_relid,
    2362             :                                                  outer_relid,
    2363             :                                                  outer_rel->rows);
    2364             : 
    2365             :         /* Remember smallest row count estimate among the outer rels */
    2366      405062 :         if (result == 0.0 || result > rowcount)
    2367      401372 :             result = rowcount;
    2368             :     }
    2369             :     /* Return 1.0 if we found no valid relations (shouldn't happen) */
    2370      394164 :     return (result > 0.0) ? result : 1.0;
    2371             : }
    2372             : 
    2373             : /*
    2374             :  * Check to see if outer_relid is on the inside of any semijoin that cur_relid
    2375             :  * is on the outside of.  If so, replace rowcount with the estimated number of
    2376             :  * unique rows from the semijoin RHS (assuming that's smaller, which it might
    2377             :  * not be).  The estimate is crude but it's the best we can do at this stage
    2378             :  * of the proceedings.
    2379             :  */
    2380             : static double
    2381      405062 : adjust_rowcount_for_semijoins(PlannerInfo *root,
    2382             :                               Index cur_relid,
    2383             :                               Index outer_relid,
    2384             :                               double rowcount)
    2385             : {
    2386             :     ListCell   *lc;
    2387             : 
    2388      628520 :     foreach(lc, root->join_info_list)
    2389             :     {
    2390      223458 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
    2391             : 
    2392      231806 :         if (sjinfo->jointype == JOIN_SEMI &&
    2393       12074 :             bms_is_member(cur_relid, sjinfo->syn_lefthand) &&
    2394        3726 :             bms_is_member(outer_relid, sjinfo->syn_righthand))
    2395             :         {
    2396             :             /* Estimate number of unique-ified rows */
    2397             :             double      nraw;
    2398             :             double      nunique;
    2399             : 
    2400        1360 :             nraw = approximate_joinrel_size(root, sjinfo->syn_righthand);
    2401        1360 :             nunique = estimate_num_groups(root,
    2402             :                                           sjinfo->semi_rhs_exprs,
    2403             :                                           nraw,
    2404             :                                           NULL,
    2405             :                                           NULL);
    2406        1360 :             if (rowcount > nunique)
    2407         470 :                 rowcount = nunique;
    2408             :         }
    2409             :     }
    2410      405062 :     return rowcount;
    2411             : }
    2412             : 
    2413             : /*
    2414             :  * Make an approximate estimate of the size of a joinrel.
    2415             :  *
    2416             :  * We don't have enough info at this point to get a good estimate, so we
    2417             :  * just multiply the base relation sizes together.  Fortunately, this is
    2418             :  * the right answer anyway for the most common case with a single relation
    2419             :  * on the RHS of a semijoin.  Also, estimate_num_groups() has only a weak
    2420             :  * dependency on its input_rows argument (it basically uses it as a clamp).
    2421             :  * So we might be able to get a fairly decent end result even with a severe
    2422             :  * overestimate of the RHS's raw size.
    2423             :  */
    2424             : static double
    2425        1360 : approximate_joinrel_size(PlannerInfo *root, Relids relids)
    2426             : {
    2427        1360 :     double      rowcount = 1.0;
    2428             :     int         relid;
    2429             : 
    2430        1360 :     relid = -1;
    2431        2924 :     while ((relid = bms_next_member(relids, relid)) >= 0)
    2432             :     {
    2433             :         RelOptInfo *rel;
    2434             : 
    2435             :         /* Paranoia: ignore bogus relid indexes */
    2436        1564 :         if (relid >= root->simple_rel_array_size)
    2437           0 :             continue;
    2438        1564 :         rel = root->simple_rel_array[relid];
    2439        1564 :         if (rel == NULL)
    2440           0 :             continue;
    2441             :         Assert(rel->relid == relid); /* sanity check on array */
    2442             : 
    2443             :         /* Relation could be proven empty, if so ignore */
    2444        1564 :         if (IS_DUMMY_REL(rel))
    2445           0 :             continue;
    2446             : 
    2447             :         /* Otherwise, rel's rows estimate should be valid by now */
    2448             :         Assert(rel->rows > 0);
    2449             : 
    2450             :         /* Accumulate product */
    2451        1564 :         rowcount *= rel->rows;
    2452             :     }
    2453        1360 :     return rowcount;
    2454             : }
    2455             : 
    2456             : 
    2457             : /****************************************************************************
    2458             :  *              ----  ROUTINES TO CHECK QUERY CLAUSES  ----
    2459             :  ****************************************************************************/
    2460             : 
    2461             : /*
    2462             :  * match_restriction_clauses_to_index
    2463             :  *    Identify restriction clauses for the rel that match the index.
    2464             :  *    Matching clauses are added to *clauseset.
    2465             :  */
    2466             : static void
    2467      733782 : match_restriction_clauses_to_index(PlannerInfo *root,
    2468             :                                    IndexOptInfo *index,
    2469             :                                    IndexClauseSet *clauseset)
    2470             : {
    2471             :     /* We can ignore clauses that are implied by the index predicate */
    2472      733782 :     match_clauses_to_index(root, index->indrestrictinfo, index, clauseset);
    2473      733782 : }
    2474             : 
    2475             : /*
    2476             :  * match_join_clauses_to_index
    2477             :  *    Identify join clauses for the rel that match the index.
    2478             :  *    Matching clauses are added to *clauseset.
    2479             :  *    Also, add any potentially usable join OR clauses to *joinorclauses.
    2480             :  *    They also might be processed by match_clause_to_index() as a whole.
    2481             :  */
    2482             : static void
    2483      733782 : match_join_clauses_to_index(PlannerInfo *root,
    2484             :                             RelOptInfo *rel, IndexOptInfo *index,
    2485             :                             IndexClauseSet *clauseset,
    2486             :                             List **joinorclauses)
    2487             : {
    2488             :     ListCell   *lc;
    2489             : 
    2490             :     /* Scan the rel's join clauses */
    2491      987818 :     foreach(lc, rel->joininfo)
    2492             :     {
    2493      254036 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    2494             : 
    2495             :         /* Check if clause can be moved to this rel */
    2496      254036 :         if (!join_clause_is_movable_to(rinfo, rel))
    2497      155288 :             continue;
    2498             : 
    2499             :         /*
    2500             :          * Potentially usable, so see if it matches the index or is an OR. Use
    2501             :          * list_append_unique_ptr() here to avoid possible duplicates when
    2502             :          * processing the same clauses with different indexes.
    2503             :          */
    2504       98748 :         if (restriction_is_or_clause(rinfo))
    2505       13402 :             *joinorclauses = list_append_unique_ptr(*joinorclauses, rinfo);
    2506             : 
    2507       98748 :         match_clause_to_index(root, rinfo, index, clauseset);
    2508             :     }
    2509      733782 : }
    2510             : 
    2511             : /*
    2512             :  * match_eclass_clauses_to_index
    2513             :  *    Identify EquivalenceClass join clauses for the rel that match the index.
    2514             :  *    Matching clauses are added to *clauseset.
    2515             :  */
    2516             : static void
    2517      733782 : match_eclass_clauses_to_index(PlannerInfo *root, IndexOptInfo *index,
    2518             :                               IndexClauseSet *clauseset)
    2519             : {
    2520             :     int         indexcol;
    2521             : 
    2522             :     /* No work if rel is not in any such ECs */
    2523      733782 :     if (!index->rel->has_eclass_joins)
    2524      421640 :         return;
    2525             : 
    2526      820350 :     for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
    2527             :     {
    2528             :         ec_member_matches_arg arg;
    2529             :         List       *clauses;
    2530             : 
    2531             :         /* Generate clauses, skipping any that join to lateral_referencers */
    2532      508208 :         arg.index = index;
    2533      508208 :         arg.indexcol = indexcol;
    2534      508208 :         clauses = generate_implied_equalities_for_column(root,
    2535             :                                                          index->rel,
    2536             :                                                          ec_member_matches_indexcol,
    2537             :                                                          &arg,
    2538      508208 :                                                          index->rel->lateral_referencers);
    2539             : 
    2540             :         /*
    2541             :          * We have to check whether the results actually do match the index,
    2542             :          * since for non-btree indexes the EC's equality operators might not
    2543             :          * be in the index opclass (cf ec_member_matches_indexcol).
    2544             :          */
    2545      508208 :         match_clauses_to_index(root, clauses, index, clauseset);
    2546             :     }
    2547             : }
    2548             : 
    2549             : /*
    2550             :  * match_clauses_to_index
    2551             :  *    Perform match_clause_to_index() for each clause in a list.
    2552             :  *    Matching clauses are added to *clauseset.
    2553             :  */
    2554             : static void
    2555     1272068 : match_clauses_to_index(PlannerInfo *root,
    2556             :                        List *clauses,
    2557             :                        IndexOptInfo *index,
    2558             :                        IndexClauseSet *clauseset)
    2559             : {
    2560             :     ListCell   *lc;
    2561             : 
    2562     2282668 :     foreach(lc, clauses)
    2563             :     {
    2564     1010600 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
    2565             : 
    2566     1010600 :         match_clause_to_index(root, rinfo, index, clauseset);
    2567             :     }
    2568     1272068 : }
    2569             : 
    2570             : /*
    2571             :  * match_clause_to_index
    2572             :  *    Test whether a qual clause can be used with an index.
    2573             :  *
    2574             :  * If the clause is usable, add an IndexClause entry for it to the appropriate
    2575             :  * list in *clauseset.  (*clauseset must be initialized to zeroes before first
    2576             :  * call.)
    2577             :  *
    2578             :  * Note: in some circumstances we may find the same RestrictInfos coming from
    2579             :  * multiple places.  Defend against redundant outputs by refusing to add a
    2580             :  * clause twice (pointer equality should be a good enough check for this).
    2581             :  *
    2582             :  * Note: it's possible that a badly-defined index could have multiple matching
    2583             :  * columns.  We always select the first match if so; this avoids scenarios
    2584             :  * wherein we get an inflated idea of the index's selectivity by using the
    2585             :  * same clause multiple times with different index columns.
    2586             :  */
    2587             : static void
    2588     1109348 : match_clause_to_index(PlannerInfo *root,
    2589             :                       RestrictInfo *rinfo,
    2590             :                       IndexOptInfo *index,
    2591             :                       IndexClauseSet *clauseset)
    2592             : {
    2593             :     int         indexcol;
    2594             : 
    2595             :     /*
    2596             :      * Never match pseudoconstants to indexes.  (Normally a match could not
    2597             :      * happen anyway, since a pseudoconstant clause couldn't contain a Var,
    2598             :      * but what if someone builds an expression index on a constant? It's not
    2599             :      * totally unreasonable to do so with a partial index, either.)
    2600             :      */
    2601     1109348 :     if (rinfo->pseudoconstant)
    2602       13832 :         return;
    2603             : 
    2604             :     /*
    2605             :      * If clause can't be used as an indexqual because it must wait till after
    2606             :      * some lower-security-level restriction clause, reject it.
    2607             :      */
    2608     1095516 :     if (!restriction_is_securely_promotable(rinfo, index->rel))
    2609         522 :         return;
    2610             : 
    2611             :     /* OK, check each index key column for a match */
    2612     2404434 :     for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
    2613             :     {
    2614             :         IndexClause *iclause;
    2615             :         ListCell   *lc;
    2616             : 
    2617             :         /* Ignore duplicates */
    2618     1812958 :         foreach(lc, clauseset->indexclauses[indexcol])
    2619             :         {
    2620       80030 :             iclause = (IndexClause *) lfirst(lc);
    2621             : 
    2622       80030 :             if (iclause->rinfo == rinfo)
    2623           0 :                 return;
    2624             :         }
    2625             : 
    2626             :         /* OK, try to match the clause to the index column */
    2627     1732928 :         iclause = match_clause_to_indexcol(root,
    2628             :                                            rinfo,
    2629             :                                            indexcol,
    2630             :                                            index);
    2631     1732928 :         if (iclause)
    2632             :         {
    2633             :             /* Success, so record it */
    2634      423488 :             clauseset->indexclauses[indexcol] =
    2635      423488 :                 lappend(clauseset->indexclauses[indexcol], iclause);
    2636      423488 :             clauseset->nonempty = true;
    2637      423488 :             return;
    2638             :         }
    2639             :     }
    2640             : }
    2641             : 
    2642             : /*
    2643             :  * match_clause_to_indexcol()
    2644             :  *    Determine whether a restriction clause matches a column of an index,
    2645             :  *    and if so, build an IndexClause node describing the details.
    2646             :  *
    2647             :  *    To match an index normally, an operator clause:
    2648             :  *
    2649             :  *    (1)  must be in the form (indexkey op const) or (const op indexkey);
    2650             :  *         and
    2651             :  *    (2)  must contain an operator which is in the index's operator family
    2652             :  *         for this column; and
    2653             :  *    (3)  must match the collation of the index, if collation is relevant.
    2654             :  *
    2655             :  *    Our definition of "const" is exceedingly liberal: we allow anything that
    2656             :  *    doesn't involve a volatile function or a Var of the index's relation.
    2657             :  *    In particular, Vars belonging to other relations of the query are
    2658             :  *    accepted here, since a clause of that form can be used in a
    2659             :  *    parameterized indexscan.  It's the responsibility of higher code levels
    2660             :  *    to manage restriction and join clauses appropriately.
    2661             :  *
    2662             :  *    Note: we do need to check for Vars of the index's relation on the
    2663             :  *    "const" side of the clause, since clauses like (a.f1 OP (b.f2 OP a.f3))
    2664             :  *    are not processable by a parameterized indexscan on a.f1, whereas
    2665             :  *    something like (a.f1 OP (b.f2 OP c.f3)) is.
    2666             :  *
    2667             :  *    Presently, the executor can only deal with indexquals that have the
    2668             :  *    indexkey on the left, so we can only use clauses that have the indexkey
    2669             :  *    on the right if we can commute the clause to put the key on the left.
    2670             :  *    We handle that by generating an IndexClause with the correctly-commuted
    2671             :  *    opclause as a derived indexqual.
    2672             :  *
    2673             :  *    If the index has a collation, the clause must have the same collation.
    2674             :  *    For collation-less indexes, we assume it doesn't matter; this is
    2675             :  *    necessary for cases like "hstore ? text", wherein hstore's operators
    2676             :  *    don't care about collation but the clause will get marked with a
    2677             :  *    collation anyway because of the text argument.  (This logic is
    2678             :  *    embodied in the macro IndexCollMatchesExprColl.)
    2679             :  *
    2680             :  *    It is also possible to match RowCompareExpr clauses to indexes (but
    2681             :  *    currently, only btree indexes handle this).
    2682             :  *
    2683             :  *    It is also possible to match ScalarArrayOpExpr clauses to indexes, when
    2684             :  *    the clause is of the form "indexkey op ANY (arrayconst)".
    2685             :  *
    2686             :  *    It is also possible to match a list of OR clauses if it might be
    2687             :  *    transformed into a single ScalarArrayOpExpr clause.  On success,
    2688             :  *    the returning index clause will contain a transformed clause.
    2689             :  *
    2690             :  *    For boolean indexes, it is also possible to match the clause directly
    2691             :  *    to the indexkey; or perhaps the clause is (NOT indexkey).
    2692             :  *
    2693             :  *    And, last but not least, some operators and functions can be processed
    2694             :  *    to derive (typically lossy) indexquals from a clause that isn't in
    2695             :  *    itself indexable.  If we see that any operand of an OpExpr or FuncExpr
    2696             :  *    matches the index key, and the function has a planner support function
    2697             :  *    attached to it, we'll invoke the support function to see if such an
    2698             :  *    indexqual can be built.
    2699             :  *
    2700             :  * 'rinfo' is the clause to be tested (as a RestrictInfo node).
    2701             :  * 'indexcol' is a column number of 'index' (counting from 0).
    2702             :  * 'index' is the index of interest.
    2703             :  *
    2704             :  * Returns an IndexClause if the clause can be used with this index key,
    2705             :  * or NULL if not.
    2706             :  *
    2707             :  * NOTE:  This routine always returns NULL if the clause is an AND clause.
    2708             :  * Higher-level routines deal with OR and AND clauses. OR clause can be
    2709             :  * matched as a whole by match_orclause_to_indexcol() though.
    2710             :  */
    2711             : static IndexClause *
    2712     1732928 : match_clause_to_indexcol(PlannerInfo *root,
    2713             :                          RestrictInfo *rinfo,
    2714             :                          int indexcol,
    2715             :                          IndexOptInfo *index)
    2716             : {
    2717             :     IndexClause *iclause;
    2718     1732928 :     Expr       *clause = rinfo->clause;
    2719             :     Oid         opfamily;
    2720             : 
    2721             :     Assert(indexcol < index->nkeycolumns);
    2722             : 
    2723             :     /*
    2724             :      * Historically this code has coped with NULL clauses.  That's probably
    2725             :      * not possible anymore, but we might as well continue to cope.
    2726             :      */
    2727     1732928 :     if (clause == NULL)
    2728           0 :         return NULL;
    2729             : 
    2730             :     /* First check for boolean-index cases. */
    2731     1732928 :     opfamily = index->opfamily[indexcol];
    2732     1732928 :     if (IsBooleanOpfamily(opfamily))
    2733             :     {
    2734         490 :         iclause = match_boolean_index_clause(root, rinfo, indexcol, index);
    2735         490 :         if (iclause)
    2736         314 :             return iclause;
    2737             :     }
    2738             : 
    2739             :     /*
    2740             :      * Clause must be an opclause, funcclause, ScalarArrayOpExpr,
    2741             :      * RowCompareExpr, or OR-clause that could be converted to SAOP.  Or, if
    2742             :      * the index supports it, we can handle IS NULL/NOT NULL clauses.
    2743             :      */
    2744     1732614 :     if (IsA(clause, OpExpr))
    2745             :     {
    2746     1456112 :         return match_opclause_to_indexcol(root, rinfo, indexcol, index);
    2747             :     }
    2748      276502 :     else if (IsA(clause, FuncExpr))
    2749             :     {
    2750       29990 :         return match_funcclause_to_indexcol(root, rinfo, indexcol, index);
    2751             :     }
    2752      246512 :     else if (IsA(clause, ScalarArrayOpExpr))
    2753             :     {
    2754       80228 :         return match_saopclause_to_indexcol(root, rinfo, indexcol, index);
    2755             :     }
    2756      166284 :     else if (IsA(clause, RowCompareExpr))
    2757             :     {
    2758         504 :         return match_rowcompare_to_indexcol(root, rinfo, indexcol, index);
    2759             :     }
    2760      165780 :     else if (restriction_is_or_clause(rinfo))
    2761             :     {
    2762       43994 :         return match_orclause_to_indexcol(root, rinfo, indexcol, index);
    2763             :     }
    2764      121786 :     else if (index->amsearchnulls && IsA(clause, NullTest))
    2765             :     {
    2766       15640 :         NullTest   *nt = (NullTest *) clause;
    2767             : 
    2768       31280 :         if (!nt->argisrow &&
    2769       15640 :             match_index_to_operand((Node *) nt->arg, indexcol, index))
    2770             :         {
    2771        1448 :             iclause = makeNode(IndexClause);
    2772        1448 :             iclause->rinfo = rinfo;
    2773        1448 :             iclause->indexquals = list_make1(rinfo);
    2774        1448 :             iclause->lossy = false;
    2775        1448 :             iclause->indexcol = indexcol;
    2776        1448 :             iclause->indexcols = NIL;
    2777        1448 :             return iclause;
    2778             :         }
    2779             :     }
    2780             : 
    2781      120338 :     return NULL;
    2782             : }
    2783             : 
    2784             : /*
    2785             :  * IsBooleanOpfamily
    2786             :  *    Detect whether an opfamily supports boolean equality as an operator.
    2787             :  *
    2788             :  * If the opfamily OID is in the range of built-in objects, we can rely
    2789             :  * on hard-wired knowledge of which built-in opfamilies support this.
    2790             :  * For extension opfamilies, there's no choice but to do a catcache lookup.
    2791             :  */
    2792             : static bool
    2793     2403332 : IsBooleanOpfamily(Oid opfamily)
    2794             : {
    2795     2403332 :     if (opfamily < FirstNormalObjectId)
    2796     2399694 :         return IsBuiltinBooleanOpfamily(opfamily);
    2797             :     else
    2798        3638 :         return op_in_opfamily(BooleanEqualOperator, opfamily);
    2799             : }
    2800             : 
    2801             : /*
    2802             :  * match_boolean_index_clause
    2803             :  *    Recognize restriction clauses that can be matched to a boolean index.
    2804             :  *
    2805             :  * The idea here is that, for an index on a boolean column that supports the
    2806             :  * BooleanEqualOperator, we can transform a plain reference to the indexkey
    2807             :  * into "indexkey = true", or "NOT indexkey" into "indexkey = false", etc,
    2808             :  * so as to make the expression indexable using the index's "=" operator.
    2809             :  * Since Postgres 8.1, we must do this because constant simplification does
    2810             :  * the reverse transformation; without this code there'd be no way to use
    2811             :  * such an index at all.
    2812             :  *
    2813             :  * This should be called only when IsBooleanOpfamily() recognizes the
    2814             :  * index's operator family.  We check to see if the clause matches the
    2815             :  * index's key, and if so, build a suitable IndexClause.
    2816             :  */
    2817             : static IndexClause *
    2818        1782 : match_boolean_index_clause(PlannerInfo *root,
    2819             :                            RestrictInfo *rinfo,
    2820             :                            int indexcol,
    2821             :                            IndexOptInfo *index)
    2822             : {
    2823        1782 :     Node       *clause = (Node *) rinfo->clause;
    2824        1782 :     Expr       *op = NULL;
    2825             : 
    2826             :     /* Direct match? */
    2827        1782 :     if (match_index_to_operand(clause, indexcol, index))
    2828             :     {
    2829             :         /* convert to indexkey = TRUE */
    2830         314 :         op = make_opclause(BooleanEqualOperator, BOOLOID, false,
    2831             :                            (Expr *) clause,
    2832         314 :                            (Expr *) makeBoolConst(true, false),
    2833             :                            InvalidOid, InvalidOid);
    2834             :     }
    2835             :     /* NOT clause? */
    2836        1468 :     else if (is_notclause(clause))
    2837             :     {
    2838        1208 :         Node       *arg = (Node *) get_notclausearg((Expr *) clause);
    2839             : 
    2840        1208 :         if (match_index_to_operand(arg, indexcol, index))
    2841             :         {
    2842             :             /* convert to indexkey = FALSE */
    2843        1208 :             op = make_opclause(BooleanEqualOperator, BOOLOID, false,
    2844             :                                (Expr *) arg,
    2845        1208 :                                (Expr *) makeBoolConst(false, false),
    2846             :                                InvalidOid, InvalidOid);
    2847             :         }
    2848             :     }
    2849             : 
    2850             :     /*
    2851             :      * Since we only consider clauses at top level of WHERE, we can convert
    2852             :      * indexkey IS TRUE and indexkey IS FALSE to index searches as well.  The
    2853             :      * different meaning for NULL isn't important.
    2854             :      */
    2855         260 :     else if (clause && IsA(clause, BooleanTest))
    2856             :     {
    2857          48 :         BooleanTest *btest = (BooleanTest *) clause;
    2858          48 :         Node       *arg = (Node *) btest->arg;
    2859             : 
    2860          78 :         if (btest->booltesttype == IS_TRUE &&
    2861          30 :             match_index_to_operand(arg, indexcol, index))
    2862             :         {
    2863             :             /* convert to indexkey = TRUE */
    2864          30 :             op = make_opclause(BooleanEqualOperator, BOOLOID, false,
    2865             :                                (Expr *) arg,
    2866          30 :                                (Expr *) makeBoolConst(true, false),
    2867             :                                InvalidOid, InvalidOid);
    2868             :         }
    2869          36 :         else if (btest->booltesttype == IS_FALSE &&
    2870          18 :                  match_index_to_operand(arg, indexcol, index))
    2871             :         {
    2872             :             /* convert to indexkey = FALSE */
    2873          18 :             op = make_opclause(BooleanEqualOperator, BOOLOID, false,
    2874             :                                (Expr *) arg,
    2875          18 :                                (Expr *) makeBoolConst(false, false),
    2876             :                                InvalidOid, InvalidOid);
    2877             :         }
    2878             :     }
    2879             : 
    2880             :     /*
    2881             :      * If we successfully made an operator clause from the given qual, we must
    2882             :      * wrap it in an IndexClause.  It's not lossy.
    2883             :      */
    2884        1782 :     if (op)
    2885             :     {
    2886        1570 :         IndexClause *iclause = makeNode(IndexClause);
    2887             : 
    2888        1570 :         iclause->rinfo = rinfo;
    2889        1570 :         iclause->indexquals = list_make1(make_simple_restrictinfo(root, op));
    2890        1570 :         iclause->lossy = false;
    2891        1570 :         iclause->indexcol = indexcol;
    2892        1570 :         iclause->indexcols = NIL;
    2893        1570 :         return iclause;
    2894             :     }
    2895             : 
    2896         212 :     return NULL;
    2897             : }
    2898             : 
    2899             : /*
    2900             :  * match_opclause_to_indexcol()
    2901             :  *    Handles the OpExpr case for match_clause_to_indexcol(),
    2902             :  *    which see for comments.
    2903             :  */
    2904             : static IndexClause *
    2905     1456112 : match_opclause_to_indexcol(PlannerInfo *root,
    2906             :                            RestrictInfo *rinfo,
    2907             :                            int indexcol,
    2908             :                            IndexOptInfo *index)
    2909             : {
    2910             :     IndexClause *iclause;
    2911     1456112 :     OpExpr     *clause = (OpExpr *) rinfo->clause;
    2912             :     Node       *leftop,
    2913             :                *rightop;
    2914             :     Oid         expr_op;
    2915             :     Oid         expr_coll;
    2916             :     Index       index_relid;
    2917             :     Oid         opfamily;
    2918             :     Oid         idxcollation;
    2919             : 
    2920             :     /*
    2921             :      * Only binary operators need apply.  (In theory, a planner support
    2922             :      * function could do something with a unary operator, but it seems
    2923             :      * unlikely to be worth the cycles to check.)
    2924             :      */
    2925     1456112 :     if (list_length(clause->args) != 2)
    2926           0 :         return NULL;
    2927             : 
    2928     1456112 :     leftop = (Node *) linitial(clause->args);
    2929     1456112 :     rightop = (Node *) lsecond(clause->args);
    2930     1456112 :     expr_op = clause->opno;
    2931     1456112 :     expr_coll = clause->inputcollid;
    2932             : 
    2933     1456112 :     index_relid = index->rel->relid;
    2934     1456112 :     opfamily = index->opfamily[indexcol];
    2935     1456112 :     idxcollation = index->indexcollations[indexcol];
    2936             : 
    2937             :     /*
    2938             :      * Check for clauses of the form: (indexkey operator constant) or
    2939             :      * (constant operator indexkey).  See match_clause_to_indexcol's notes
    2940             :      * about const-ness.
    2941             :      *
    2942             :      * Note that we don't ask the support function about clauses that don't
    2943             :      * have one of these forms.  Again, in principle it might be possible to
    2944             :      * do something, but it seems unlikely to be worth the cycles to check.
    2945             :      */
    2946     1456112 :     if (match_index_to_operand(leftop, indexcol, index) &&
    2947      357666 :         !bms_is_member(index_relid, rinfo->right_relids) &&
    2948      357480 :         !contain_volatile_functions(rightop))
    2949             :     {
    2950      708226 :         if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&
    2951      350746 :             op_in_opfamily(expr_op, opfamily))
    2952             :         {
    2953      343150 :             iclause = makeNode(IndexClause);
    2954      343150 :             iclause->rinfo = rinfo;
    2955      343150 :             iclause->indexquals = list_make1(rinfo);
    2956      343150 :             iclause->lossy = false;
    2957      343150 :             iclause->indexcol = indexcol;
    2958      343150 :             iclause->indexcols = NIL;
    2959      343150 :             return iclause;
    2960             :         }
    2961             : 
    2962             :         /*
    2963             :          * If we didn't find a member of the index's opfamily, try the support
    2964             :          * function for the operator's underlying function.
    2965             :          */
    2966       14330 :         set_opfuncid(clause);   /* make sure we have opfuncid */
    2967       14330 :         return get_index_clause_from_support(root,
    2968             :                                              rinfo,
    2969             :                                              clause->opfuncid,
    2970             :                                              0, /* indexarg on left */
    2971             :                                              indexcol,
    2972             :                                              index);
    2973             :     }
    2974             : 
    2975     1098632 :     if (match_index_to_operand(rightop, indexcol, index) &&
    2976       69188 :         !bms_is_member(index_relid, rinfo->left_relids) &&
    2977       69062 :         !contain_volatile_functions(leftop))
    2978             :     {
    2979       69062 :         if (IndexCollMatchesExprColl(idxcollation, expr_coll))
    2980             :         {
    2981       69050 :             Oid         comm_op = get_commutator(expr_op);
    2982             : 
    2983      138100 :             if (OidIsValid(comm_op) &&
    2984       69050 :                 op_in_opfamily(comm_op, opfamily))
    2985             :             {
    2986             :                 RestrictInfo *commrinfo;
    2987             : 
    2988             :                 /* Build a commuted OpExpr and RestrictInfo */
    2989       68574 :                 commrinfo = commute_restrictinfo(rinfo, comm_op);
    2990             : 
    2991             :                 /* Make an IndexClause showing that as a derived qual */
    2992       68574 :                 iclause = makeNode(IndexClause);
    2993       68574 :                 iclause->rinfo = rinfo;
    2994       68574 :                 iclause->indexquals = list_make1(commrinfo);
    2995       68574 :                 iclause->lossy = false;
    2996       68574 :                 iclause->indexcol = indexcol;
    2997       68574 :                 iclause->indexcols = NIL;
    2998       68574 :                 return iclause;
    2999             :             }
    3000             :         }
    3001             : 
    3002             :         /*
    3003             :          * If we didn't find a member of the index's opfamily, try the support
    3004             :          * function for the operator's underlying function.
    3005             :          */
    3006         488 :         set_opfuncid(clause);   /* make sure we have opfuncid */
    3007         488 :         return get_index_clause_from_support(root,
    3008             :                                              rinfo,
    3009             :                                              clause->opfuncid,
    3010             :                                              1, /* indexarg on right */
    3011             :                                              indexcol,
    3012             :                                              index);
    3013             :     }
    3014             : 
    3015     1029570 :     return NULL;
    3016             : }
    3017             : 
    3018             : /*
    3019             :  * match_funcclause_to_indexcol()
    3020             :  *    Handles the FuncExpr case for match_clause_to_indexcol(),
    3021             :  *    which see for comments.
    3022             :  */
    3023             : static IndexClause *
    3024       29990 : match_funcclause_to_indexcol(PlannerInfo *root,
    3025             :                              RestrictInfo *rinfo,
    3026             :                              int indexcol,
    3027             :                              IndexOptInfo *index)
    3028             : {
    3029       29990 :     FuncExpr   *clause = (FuncExpr *) rinfo->clause;
    3030             :     int         indexarg;
    3031             :     ListCell   *lc;
    3032             : 
    3033             :     /*
    3034             :      * We have no built-in intelligence about function clauses, but if there's
    3035             :      * a planner support function, it might be able to do something.  But, to
    3036             :      * cut down on wasted planning cycles, only call the support function if
    3037             :      * at least one argument matches the target index column.
    3038             :      *
    3039             :      * Note that we don't insist on the other arguments being pseudoconstants;
    3040             :      * the support function has to check that.  This is to allow cases where
    3041             :      * only some of the other arguments need to be included in the indexqual.
    3042             :      */
    3043       29990 :     indexarg = 0;
    3044       64502 :     foreach(lc, clause->args)
    3045             :     {
    3046       40336 :         Node       *op = (Node *) lfirst(lc);
    3047             : 
    3048       40336 :         if (match_index_to_operand(op, indexcol, index))
    3049             :         {
    3050        5824 :             return get_index_clause_from_support(root,
    3051             :                                                  rinfo,
    3052             :                                                  clause->funcid,
    3053             :                                                  indexarg,
    3054             :                                                  indexcol,
    3055             :                                                  index);
    3056             :         }
    3057             : 
    3058       34512 :         indexarg++;
    3059             :     }
    3060             : 
    3061       24166 :     return NULL;
    3062             : }
    3063             : 
    3064             : /*
    3065             :  * get_index_clause_from_support()
    3066             :  *      If the function has a planner support function, try to construct
    3067             :  *      an IndexClause using indexquals created by the support function.
    3068             :  */
    3069             : static IndexClause *
    3070       20642 : get_index_clause_from_support(PlannerInfo *root,
    3071             :                               RestrictInfo *rinfo,
    3072             :                               Oid funcid,
    3073             :                               int indexarg,
    3074             :                               int indexcol,
    3075             :                               IndexOptInfo *index)
    3076             : {
    3077       20642 :     Oid         prosupport = get_func_support(funcid);
    3078             :     SupportRequestIndexCondition req;
    3079             :     List       *sresult;
    3080             : 
    3081       20642 :     if (!OidIsValid(prosupport))
    3082       12432 :         return NULL;
    3083             : 
    3084        8210 :     req.type = T_SupportRequestIndexCondition;
    3085        8210 :     req.root = root;
    3086        8210 :     req.funcid = funcid;
    3087        8210 :     req.node = (Node *) rinfo->clause;
    3088        8210 :     req.indexarg = indexarg;
    3089        8210 :     req.index = index;
    3090        8210 :     req.indexcol = indexcol;
    3091        8210 :     req.opfamily = index->opfamily[indexcol];
    3092        8210 :     req.indexcollation = index->indexcollations[indexcol];
    3093             : 
    3094        8210 :     req.lossy = true;           /* default assumption */
    3095             : 
    3096             :     sresult = (List *)
    3097        8210 :         DatumGetPointer(OidFunctionCall1(prosupport,
    3098             :                                          PointerGetDatum(&req)));
    3099             : 
    3100        8210 :     if (sresult != NIL)
    3101             :     {
    3102        1406 :         IndexClause *iclause = makeNode(IndexClause);
    3103        1406 :         List       *indexquals = NIL;
    3104             :         ListCell   *lc;
    3105             : 
    3106             :         /*
    3107             :          * The support function API says it should just give back bare
    3108             :          * clauses, so here we must wrap each one in a RestrictInfo.
    3109             :          */
    3110        4140 :         foreach(lc, sresult)
    3111             :         {
    3112        2734 :             Expr       *clause = (Expr *) lfirst(lc);
    3113             : 
    3114        2734 :             indexquals = lappend(indexquals,
    3115        2734 :                                  make_simple_restrictinfo(root, clause));
    3116             :         }
    3117             : 
    3118        1406 :         iclause->rinfo = rinfo;
    3119        1406 :         iclause->indexquals = indexquals;
    3120        1406 :         iclause->lossy = req.lossy;
    3121        1406 :         iclause->indexcol = indexcol;
    3122        1406 :         iclause->indexcols = NIL;
    3123             : 
    3124        1406 :         return iclause;
    3125             :     }
    3126             : 
    3127        6804 :     return NULL;
    3128             : }
    3129             : 
    3130             : /*
    3131             :  * match_saopclause_to_indexcol()
    3132             :  *    Handles the ScalarArrayOpExpr case for match_clause_to_indexcol(),
    3133             :  *    which see for comments.
    3134             :  */
    3135             : static IndexClause *
    3136       80228 : match_saopclause_to_indexcol(PlannerInfo *root,
    3137             :                              RestrictInfo *rinfo,
    3138             :                              int indexcol,
    3139             :                              IndexOptInfo *index)
    3140             : {
    3141       80228 :     ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause;
    3142             :     Node       *leftop,
    3143             :                *rightop;
    3144             :     Relids      right_relids;
    3145             :     Oid         expr_op;
    3146             :     Oid         expr_coll;
    3147             :     Index       index_relid;
    3148             :     Oid         opfamily;
    3149             :     Oid         idxcollation;
    3150             : 
    3151             :     /* We only accept ANY clauses, not ALL */
    3152       80228 :     if (!saop->useOr)
    3153        9322 :         return NULL;
    3154       70906 :     leftop = (Node *) linitial(saop->args);
    3155       70906 :     rightop = (Node *) lsecond(saop->args);
    3156       70906 :     right_relids = pull_varnos(root, rightop);
    3157       70906 :     expr_op = saop->opno;
    3158       70906 :     expr_coll = saop->inputcollid;
    3159             : 
    3160       70906 :     index_relid = index->rel->relid;
    3161       70906 :     opfamily = index->opfamily[indexcol];
    3162       70906 :     idxcollation = index->indexcollations[indexcol];
    3163             : 
    3164             :     /*
    3165             :      * We must have indexkey on the left and a pseudo-constant array argument.
    3166             :      */
    3167       70906 :     if (match_index_to_operand(leftop, indexcol, index) &&
    3168        7378 :         !bms_is_member(index_relid, right_relids) &&
    3169        7378 :         !contain_volatile_functions(rightop))
    3170             :     {
    3171       14750 :         if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&
    3172        7372 :             op_in_opfamily(expr_op, opfamily))
    3173             :         {
    3174        7360 :             IndexClause *iclause = makeNode(IndexClause);
    3175             : 
    3176        7360 :             iclause->rinfo = rinfo;
    3177        7360 :             iclause->indexquals = list_make1(rinfo);
    3178        7360 :             iclause->lossy = false;
    3179        7360 :             iclause->indexcol = indexcol;
    3180        7360 :             iclause->indexcols = NIL;
    3181        7360 :             return iclause;
    3182             :         }
    3183             : 
    3184             :         /*
    3185             :          * We do not currently ask support functions about ScalarArrayOpExprs,
    3186             :          * though in principle we could.
    3187             :          */
    3188             :     }
    3189             : 
    3190       63546 :     return NULL;
    3191             : }
    3192             : 
    3193             : /*
    3194             :  * match_rowcompare_to_indexcol()
    3195             :  *    Handles the RowCompareExpr case for match_clause_to_indexcol(),
    3196             :  *    which see for comments.
    3197             :  *
    3198             :  * In this routine we check whether the first column of the row comparison
    3199             :  * matches the target index column.  This is sufficient to guarantee that some
    3200             :  * index condition can be constructed from the RowCompareExpr --- the rest
    3201             :  * is handled by expand_indexqual_rowcompare().
    3202             :  */
    3203             : static IndexClause *
    3204         504 : match_rowcompare_to_indexcol(PlannerInfo *root,
    3205             :                              RestrictInfo *rinfo,
    3206             :                              int indexcol,
    3207             :                              IndexOptInfo *index)
    3208             : {
    3209         504 :     RowCompareExpr *clause = (RowCompareExpr *) rinfo->clause;
    3210             :     Index       index_relid;
    3211             :     Oid         opfamily;
    3212             :     Oid         idxcollation;
    3213             :     Node       *leftop,
    3214             :                *rightop;
    3215             :     bool        var_on_left;
    3216             :     Oid         expr_op;
    3217             :     Oid         expr_coll;
    3218             : 
    3219             :     /* Forget it if we're not dealing with a btree index */
    3220         504 :     if (index->relam != BTREE_AM_OID)
    3221           0 :         return NULL;
    3222             : 
    3223         504 :     index_relid = index->rel->relid;
    3224         504 :     opfamily = index->opfamily[indexcol];
    3225         504 :     idxcollation = index->indexcollations[indexcol];
    3226             : 
    3227             :     /*
    3228             :      * We could do the matching on the basis of insisting that the opfamily
    3229             :      * shown in the RowCompareExpr be the same as the index column's opfamily,
    3230             :      * but that could fail in the presence of reverse-sort opfamilies: it'd be
    3231             :      * a matter of chance whether RowCompareExpr had picked the forward or
    3232             :      * reverse-sort family.  So look only at the operator, and match if it is
    3233             :      * a member of the index's opfamily (after commutation, if the indexkey is
    3234             :      * on the right).  We'll worry later about whether any additional
    3235             :      * operators are matchable to the index.
    3236             :      */
    3237         504 :     leftop = (Node *) linitial(clause->largs);
    3238         504 :     rightop = (Node *) linitial(clause->rargs);
    3239         504 :     expr_op = linitial_oid(clause->opnos);
    3240         504 :     expr_coll = linitial_oid(clause->inputcollids);
    3241             : 
    3242             :     /* Collations must match, if relevant */
    3243         504 :     if (!IndexCollMatchesExprColl(idxcollation, expr_coll))
    3244           0 :         return NULL;
    3245             : 
    3246             :     /*
    3247             :      * These syntactic tests are the same as in match_opclause_to_indexcol()
    3248             :      */
    3249         504 :     if (match_index_to_operand(leftop, indexcol, index) &&
    3250         162 :         !bms_is_member(index_relid, pull_varnos(root, rightop)) &&
    3251         162 :         !contain_volatile_functions(rightop))
    3252             :     {
    3253             :         /* OK, indexkey is on left */
    3254         162 :         var_on_left = true;
    3255             :     }
    3256         342 :     else if (match_index_to_operand(rightop, indexcol, index) &&
    3257          24 :              !bms_is_member(index_relid, pull_varnos(root, leftop)) &&
    3258          24 :              !contain_volatile_functions(leftop))
    3259             :     {
    3260             :         /* indexkey is on right, so commute the operator */
    3261          24 :         expr_op = get_commutator(expr_op);
    3262          24 :         if (expr_op == InvalidOid)
    3263           0 :             return NULL;
    3264          24 :         var_on_left = false;
    3265             :     }
    3266             :     else
    3267         318 :         return NULL;
    3268             : 
    3269             :     /* We're good if the operator is the right type of opfamily member */
    3270         186 :     switch (get_op_opfamily_strategy(expr_op, opfamily))
    3271             :     {
    3272         186 :         case BTLessStrategyNumber:
    3273             :         case BTLessEqualStrategyNumber:
    3274             :         case BTGreaterEqualStrategyNumber:
    3275             :         case BTGreaterStrategyNumber:
    3276         186 :             return expand_indexqual_rowcompare(root,
    3277             :                                                rinfo,
    3278             :                                                indexcol,
    3279             :                                                index,
    3280             :                                                expr_op,
    3281             :                                                var_on_left);
    3282             :     }
    3283             : 
    3284           0 :     return NULL;
    3285             : }
    3286             : 
    3287             : /*
    3288             :  * match_orclause_to_indexcol()
    3289             :  *    Handles the OR-expr case for match_clause_to_indexcol() in the case
    3290             :  *    when it could be transformed to ScalarArrayOpExpr.
    3291             :  *
    3292             :  * In this routine, we attempt to transform a list of OR-clause args into a
    3293             :  * single SAOP expression matching the target index column.  On success,
    3294             :  * return an IndexClause containing the transformed expression.
    3295             :  * Return NULL if the transformation fails.
    3296             :  */
    3297             : static IndexClause *
    3298       43994 : match_orclause_to_indexcol(PlannerInfo *root,
    3299             :                            RestrictInfo *rinfo,
    3300             :                            int indexcol,
    3301             :                            IndexOptInfo *index)
    3302             : {
    3303       43994 :     BoolExpr   *orclause = (BoolExpr *) rinfo->orclause;
    3304       43994 :     List       *consts = NIL;
    3305       43994 :     Node       *indexExpr = NULL;
    3306       43994 :     Oid         matchOpno = InvalidOid;
    3307       43994 :     Oid         consttype = InvalidOid;
    3308       43994 :     Oid         arraytype = InvalidOid;
    3309       43994 :     Oid         inputcollid = InvalidOid;
    3310       43994 :     bool        firstTime = true;
    3311       43994 :     bool        haveNonConst = false;
    3312       43994 :     Index       indexRelid = index->rel->relid;
    3313             :     ScalarArrayOpExpr *saopexpr;
    3314             :     IndexClause *iclause;
    3315             :     ListCell   *lc;
    3316             : 
    3317             :     /* Forget it if index doesn't support SAOP clauses */
    3318       43994 :     if (!index->amsearcharray)
    3319         106 :         return NULL;
    3320             : 
    3321             :     /*
    3322             :      * Try to convert a list of OR-clauses to a single SAOP expression. Each
    3323             :      * OR entry must be in the form: (indexkey operator constant) or (constant
    3324             :      * operator indexkey).  Operators of all the entries must match.  On
    3325             :      * discovery of anything unsupported, we give up by breaking out of the
    3326             :      * loop immediately and returning NULL.
    3327             :      */
    3328       48468 :     foreach(lc, orclause->args)
    3329             :     {
    3330       47418 :         RestrictInfo *subRinfo = (RestrictInfo *) lfirst(lc);
    3331             :         OpExpr     *subClause;
    3332             :         Oid         opno;
    3333             :         Node       *leftop,
    3334             :                    *rightop;
    3335             :         Node       *constExpr;
    3336             : 
    3337             :         /* If it's not a RestrictInfo (i.e. it's a sub-AND), we can't use it */
    3338       47418 :         if (!IsA(subRinfo, RestrictInfo))
    3339        5286 :             break;
    3340             : 
    3341             :         /* Only operator clauses can match */
    3342       42132 :         if (!IsA(subRinfo->clause, OpExpr))
    3343       12944 :             break;
    3344             : 
    3345       29188 :         subClause = (OpExpr *) subRinfo->clause;
    3346       29188 :         opno = subClause->opno;
    3347             : 
    3348             :         /* Only binary operators can match */
    3349       29188 :         if (list_length(subClause->args) != 2)
    3350           0 :             break;
    3351             : 
    3352             :         /*
    3353             :          * Check for clauses of the form: (indexkey operator constant) or
    3354             :          * (constant operator indexkey).  These tests should agree with
    3355             :          * match_opclause_to_indexcol.
    3356             :          */
    3357       29188 :         leftop = (Node *) linitial(subClause->args);
    3358       29188 :         rightop = (Node *) lsecond(subClause->args);
    3359       29188 :         if (match_index_to_operand(leftop, indexcol, index) &&
    3360        6424 :             !bms_is_member(indexRelid, subRinfo->right_relids) &&
    3361        6394 :             !contain_volatile_functions(rightop))
    3362             :         {
    3363        6394 :             indexExpr = leftop;
    3364        6394 :             constExpr = rightop;
    3365             :         }
    3366       22794 :         else if (match_index_to_operand(rightop, indexcol, index) &&
    3367         194 :                  !bms_is_member(indexRelid, subRinfo->left_relids) &&
    3368         188 :                  !contain_volatile_functions(leftop))
    3369             :         {
    3370         188 :             opno = get_commutator(opno);
    3371         188 :             if (!OidIsValid(opno))
    3372             :             {
    3373             :                 /* commutator doesn't exist, we can't reverse the order */
    3374           0 :                 break;
    3375             :             }
    3376         188 :             indexExpr = rightop;
    3377         188 :             constExpr = leftop;
    3378             :         }
    3379             :         else
    3380             :         {
    3381             :             break;
    3382             :         }
    3383             : 
    3384             :         /*
    3385             :          * Save information about the operator, type, and collation for the
    3386             :          * first matching qual.  Then, check that subsequent quals match the
    3387             :          * first.
    3388             :          */
    3389        6582 :         if (firstTime)
    3390             :         {
    3391        4824 :             matchOpno = opno;
    3392        4824 :             consttype = exprType(constExpr);
    3393        4824 :             arraytype = get_array_type(consttype);
    3394        4824 :             inputcollid = subClause->inputcollid;
    3395             : 
    3396             :             /*
    3397             :              * Check that the operator is presented in the opfamily and that
    3398             :              * the expression collation matches the index collation.  Also,
    3399             :              * there must be an array type to construct an array later.
    3400             :              */
    3401        4824 :             if (!IndexCollMatchesExprColl(index->indexcollations[indexcol],
    3402        4698 :                                           inputcollid) ||
    3403        4698 :                 !op_in_opfamily(matchOpno, index->opfamily[indexcol]) ||
    3404             :                 !OidIsValid(arraytype))
    3405             :                 break;
    3406             : 
    3407             :             /*
    3408             :              * Disallow if either type is RECORD, mainly because we can't be
    3409             :              * positive that all the RHS expressions are the same record type.
    3410             :              */
    3411        2966 :             if (consttype == RECORDOID || exprType(indexExpr) == RECORDOID)
    3412             :                 break;
    3413             : 
    3414        2966 :             firstTime = false;
    3415             :         }
    3416             :         else
    3417             :         {
    3418        1758 :             if (matchOpno != opno ||
    3419        3228 :                 inputcollid != subClause->inputcollid ||
    3420        1614 :                 consttype != exprType(constExpr))
    3421             :                 break;
    3422             :         }
    3423             : 
    3424             :         /*
    3425             :          * The righthand inputs don't necessarily have to be plain Consts, but
    3426             :          * make_SAOP_expr needs to know if any are not.
    3427             :          */
    3428        4580 :         if (!IsA(constExpr, Const))
    3429         368 :             haveNonConst = true;
    3430             : 
    3431        4580 :         consts = lappend(consts, constExpr);
    3432             :     }
    3433             : 
    3434             :     /*
    3435             :      * Handle failed conversion from breaking out of the loop because of an
    3436             :      * unsupported qual.  Also check that we have an indexExpr, just in case
    3437             :      * the OR list was somehow empty (it shouldn't be).  Return NULL to
    3438             :      * indicate the conversion failed.
    3439             :      */
    3440       43888 :     if (lc != NULL || indexExpr == NULL)
    3441             :     {
    3442       42838 :         list_free(consts);      /* might as well */
    3443       42838 :         return NULL;
    3444             :     }
    3445             : 
    3446             :     /*
    3447             :      * Build the new SAOP node.  We use the indexExpr from the last OR arm;
    3448             :      * since all the arms passed match_index_to_operand, it shouldn't matter
    3449             :      * which one we use.  But using "inputcollid" twice is a bit of a cheat:
    3450             :      * we might end up with an array Const node that is labeled with a
    3451             :      * collation despite its elements being of a noncollatable type.  But
    3452             :      * nothing is likely to complain about that, so we don't bother being more
    3453             :      * accurate.
    3454             :      */
    3455        1050 :     saopexpr = make_SAOP_expr(matchOpno, indexExpr, consttype, inputcollid,
    3456             :                               inputcollid, consts, haveNonConst);
    3457             :     Assert(saopexpr != NULL);
    3458             : 
    3459             :     /*
    3460             :      * Finally, build an IndexClause based on the SAOP node.  It's not lossy.
    3461             :      */
    3462        1050 :     iclause = makeNode(IndexClause);
    3463        1050 :     iclause->rinfo = rinfo;
    3464        1050 :     iclause->indexquals = list_make1(make_simple_restrictinfo(root,
    3465             :                                                               (Expr *) saopexpr));
    3466        1050 :     iclause->lossy = false;
    3467        1050 :     iclause->indexcol = indexcol;
    3468        1050 :     iclause->indexcols = NIL;
    3469        1050 :     return iclause;
    3470             : }
    3471             : 
    3472             : /*
    3473             :  * expand_indexqual_rowcompare --- expand a single indexqual condition
    3474             :  *      that is a RowCompareExpr
    3475             :  *
    3476             :  * It's already known that the first column of the row comparison matches
    3477             :  * the specified column of the index.  We can use additional columns of the
    3478             :  * row comparison as index qualifications, so long as they match the index
    3479             :  * in the "same direction", ie, the indexkeys are all on the same side of the
    3480             :  * clause and the operators are all the same-type members of the opfamilies.
    3481             :  *
    3482             :  * If all the columns of the RowCompareExpr match in this way, we just use it
    3483             :  * as-is, except for possibly commuting it to put the indexkeys on the left.
    3484             :  *
    3485             :  * Otherwise, we build a shortened RowCompareExpr (if more than one
    3486             :  * column matches) or a simple OpExpr (if the first-column match is all
    3487             :  * there is).  In these cases the modified clause is always "<=" or ">="
    3488             :  * even when the original was "<" or ">" --- this is necessary to match all
    3489             :  * the rows that could match the original.  (We are building a lossy version
    3490             :  * of the row comparison when we do this, so we set lossy = true.)
    3491             :  *
    3492             :  * Note: this is really just the last half of match_rowcompare_to_indexcol,
    3493             :  * but we split it out for comprehensibility.
    3494             :  */
    3495             : static IndexClause *
    3496         186 : expand_indexqual_rowcompare(PlannerInfo *root,
    3497             :                             RestrictInfo *rinfo,
    3498             :                             int indexcol,
    3499             :                             IndexOptInfo *index,
    3500             :                             Oid expr_op,
    3501             :                             bool var_on_left)
    3502             : {
    3503         186 :     IndexClause *iclause = makeNode(IndexClause);
    3504         186 :     RowCompareExpr *clause = (RowCompareExpr *) rinfo->clause;
    3505             :     int         op_strategy;
    3506             :     Oid         op_lefttype;
    3507             :     Oid         op_righttype;
    3508             :     int         matching_cols;
    3509             :     List       *expr_ops;
    3510             :     List       *opfamilies;
    3511             :     List       *lefttypes;
    3512             :     List       *righttypes;
    3513             :     List       *new_ops;
    3514             :     List       *var_args;
    3515             :     List       *non_var_args;
    3516             : 
    3517         186 :     iclause->rinfo = rinfo;
    3518         186 :     iclause->indexcol = indexcol;
    3519             : 
    3520         186 :     if (var_on_left)
    3521             :     {
    3522         162 :         var_args = clause->largs;
    3523         162 :         non_var_args = clause->rargs;
    3524             :     }
    3525             :     else
    3526             :     {
    3527          24 :         var_args = clause->rargs;
    3528          24 :         non_var_args = clause->largs;
    3529             :     }
    3530             : 
    3531         186 :     get_op_opfamily_properties(expr_op, index->opfamily[indexcol], false,
    3532             :                                &op_strategy,
    3533             :                                &op_lefttype,
    3534             :                                &op_righttype);
    3535             : 
    3536             :     /* Initialize returned list of which index columns are used */
    3537         186 :     iclause->indexcols = list_make1_int(indexcol);
    3538             : 
    3539             :     /* Build lists of ops, opfamilies and operator datatypes in case needed */
    3540         186 :     expr_ops = list_make1_oid(expr_op);
    3541         186 :     opfamilies = list_make1_oid(index->opfamily[indexcol]);
    3542         186 :     lefttypes = list_make1_oid(op_lefttype);
    3543         186 :     righttypes = list_make1_oid(op_righttype);
    3544             : 
    3545             :     /*
    3546             :      * See how many of the remaining columns match some index column in the
    3547             :      * same way.  As in match_clause_to_indexcol(), the "other" side of any
    3548             :      * potential index condition is OK as long as it doesn't use Vars from the
    3549             :      * indexed relation.
    3550             :      */
    3551         186 :     matching_cols = 1;
    3552             : 
    3553         354 :     while (matching_cols < list_length(var_args))
    3554             :     {
    3555         222 :         Node       *varop = (Node *) list_nth(var_args, matching_cols);
    3556         222 :         Node       *constop = (Node *) list_nth(non_var_args, matching_cols);
    3557             :         int         i;
    3558             : 
    3559         222 :         expr_op = list_nth_oid(clause->opnos, matching_cols);
    3560         222 :         if (!var_on_left)
    3561             :         {
    3562             :             /* indexkey is on right, so commute the operator */
    3563          24 :             expr_op = get_commutator(expr_op);
    3564          24 :             if (expr_op == InvalidOid)
    3565           0 :                 break;          /* operator is not usable */
    3566             :         }
    3567         222 :         if (bms_is_member(index->rel->relid, pull_varnos(root, constop)))
    3568           0 :             break;              /* no good, Var on wrong side */
    3569         222 :         if (contain_volatile_functions(constop))
    3570           0 :             break;              /* no good, volatile comparison value */
    3571             : 
    3572             :         /*
    3573             :          * The Var side can match any key column of the index.
    3574             :          */
    3575         516 :         for (i = 0; i < index->nkeycolumns; i++)
    3576             :         {
    3577         462 :             if (match_index_to_operand(varop, i, index) &&
    3578         168 :                 get_op_opfamily_strategy(expr_op,
    3579         168 :                                          index->opfamily[i]) == op_strategy &&
    3580         168 :                 IndexCollMatchesExprColl(index->indexcollations[i],
    3581             :                                          list_nth_oid(clause->inputcollids,
    3582             :                                                       matching_cols)))
    3583             :                 break;
    3584             :         }
    3585         222 :         if (i >= index->nkeycolumns)
    3586          54 :             break;              /* no match found */
    3587             : 
    3588             :         /* Add column number to returned list */
    3589         168 :         iclause->indexcols = lappend_int(iclause->indexcols, i);
    3590             : 
    3591             :         /* Add operator info to lists */
    3592         168 :         get_op_opfamily_properties(expr_op, index->opfamily[i], false,
    3593             :                                    &op_strategy,
    3594             :                                    &op_lefttype,
    3595             :                                    &op_righttype);
    3596         168 :         expr_ops = lappend_oid(expr_ops, expr_op);
    3597         168 :         opfamilies = lappend_oid(opfamilies, index->opfamily[i]);
    3598         168 :         lefttypes = lappend_oid(lefttypes, op_lefttype);
    3599         168 :         righttypes = lappend_oid(righttypes, op_righttype);
    3600             : 
    3601             :         /* This column matches, keep scanning */
    3602         168 :         matching_cols++;
    3603             :     }
    3604             : 
    3605             :     /* Result is non-lossy if all columns are usable as index quals */
    3606         186 :     iclause->lossy = (matching_cols != list_length(clause->opnos));
    3607             : 
    3608             :     /*
    3609             :      * We can use rinfo->clause as-is if we have var on left and it's all
    3610             :      * usable as index quals.
    3611             :      */
    3612         186 :     if (var_on_left && !iclause->lossy)
    3613         120 :         iclause->indexquals = list_make1(rinfo);
    3614             :     else
    3615             :     {
    3616             :         /*
    3617             :          * We have to generate a modified rowcompare (possibly just one
    3618             :          * OpExpr).  The painful part of this is changing < to <= or > to >=,
    3619             :          * so deal with that first.
    3620             :          */
    3621          66 :         if (!iclause->lossy)
    3622             :         {
    3623             :             /* very easy, just use the commuted operators */
    3624          12 :             new_ops = expr_ops;
    3625             :         }
    3626          54 :         else if (op_strategy == BTLessEqualStrategyNumber ||
    3627          54 :                  op_strategy == BTGreaterEqualStrategyNumber)
    3628             :         {
    3629             :             /* easy, just use the same (possibly commuted) operators */
    3630           0 :             new_ops = list_truncate(expr_ops, matching_cols);
    3631             :         }
    3632             :         else
    3633             :         {
    3634             :             ListCell   *opfamilies_cell;
    3635             :             ListCell   *lefttypes_cell;
    3636             :             ListCell   *righttypes_cell;
    3637             : 
    3638          54 :             if (op_strategy == BTLessStrategyNumber)
    3639          30 :                 op_strategy = BTLessEqualStrategyNumber;
    3640          24 :             else if (op_strategy == BTGreaterStrategyNumber)
    3641          24 :                 op_strategy = BTGreaterEqualStrategyNumber;
    3642             :             else
    3643           0 :                 elog(ERROR, "unexpected strategy number %d", op_strategy);
    3644          54 :             new_ops = NIL;
    3645         144 :             forthree(opfamilies_cell, opfamilies,
    3646             :                      lefttypes_cell, lefttypes,
    3647             :                      righttypes_cell, righttypes)
    3648             :             {
    3649          90 :                 Oid         opfam = lfirst_oid(opfamilies_cell);
    3650          90 :                 Oid         lefttype = lfirst_oid(lefttypes_cell);
    3651          90 :                 Oid         righttype = lfirst_oid(righttypes_cell);
    3652             : 
    3653          90 :                 expr_op = get_opfamily_member(opfam, lefttype, righttype,
    3654             :                                               op_strategy);
    3655          90 :                 if (!OidIsValid(expr_op))   /* should not happen */
    3656           0 :                     elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
    3657             :                          op_strategy, lefttype, righttype, opfam);
    3658          90 :                 new_ops = lappend_oid(new_ops, expr_op);
    3659             :             }
    3660             :         }
    3661             : 
    3662             :         /* If we have more than one matching col, create a subset rowcompare */
    3663          66 :         if (matching_cols > 1)
    3664             :         {
    3665          48 :             RowCompareExpr *rc = makeNode(RowCompareExpr);
    3666             : 
    3667          48 :             rc->cmptype = (CompareType) op_strategy;
    3668          48 :             rc->opnos = new_ops;
    3669          48 :             rc->opfamilies = list_copy_head(clause->opfamilies,
    3670             :                                             matching_cols);
    3671          48 :             rc->inputcollids = list_copy_head(clause->inputcollids,
    3672             :                                               matching_cols);
    3673          48 :             rc->largs = list_copy_head(var_args, matching_cols);
    3674          48 :             rc->rargs = list_copy_head(non_var_args, matching_cols);
    3675          48 :             iclause->indexquals = list_make1(make_simple_restrictinfo(root,
    3676             :                                                                       (Expr *) rc));
    3677             :         }
    3678             :         else
    3679             :         {
    3680             :             Expr       *op;
    3681             : 
    3682             :             /* We don't report an index column list in this case */
    3683          18 :             iclause->indexcols = NIL;
    3684             : 
    3685          18 :             op = make_opclause(linitial_oid(new_ops), BOOLOID, false,
    3686          18 :                                copyObject(linitial(var_args)),
    3687          18 :                                copyObject(linitial(non_var_args)),
    3688             :                                InvalidOid,
    3689          18 :                                linitial_oid(clause->inputcollids));
    3690          18 :             iclause->indexquals = list_make1(make_simple_restrictinfo(root, op));
    3691             :         }
    3692             :     }
    3693             : 
    3694         186 :     return iclause;
    3695             : }
    3696             : 
    3697             : 
    3698             : /****************************************************************************
    3699             :  *              ----  ROUTINES TO CHECK ORDERING OPERATORS  ----
    3700             :  ****************************************************************************/
    3701             : 
    3702             : /*
    3703             :  * match_pathkeys_to_index
    3704             :  *      For the given 'index' and 'pathkeys', output a list of suitable ORDER
    3705             :  *      BY expressions, each of the form "indexedcol operator pseudoconstant",
    3706             :  *      along with an integer list of the index column numbers (zero based)
    3707             :  *      that each clause would be used with.
    3708             :  *
    3709             :  * This attempts to find an ORDER BY and index column number for all items in
    3710             :  * the pathkey list, however, if we're unable to match any given pathkey to an
    3711             :  * index column, we return just the ones matched by the function so far.  This
    3712             :  * allows callers who are interested in partial matches to get them.  Callers
    3713             :  * can determine a partial match vs a full match by checking the outputted
    3714             :  * list lengths.  A full match will have one item in the output lists for each
    3715             :  * item in the given 'pathkeys' list.
    3716             :  */
    3717             : static void
    3718        1074 : match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys,
    3719             :                         List **orderby_clauses_p,
    3720             :                         List **clause_columns_p)
    3721             : {
    3722             :     ListCell   *lc1;
    3723             : 
    3724        1074 :     *orderby_clauses_p = NIL;   /* set default results */
    3725        1074 :     *clause_columns_p = NIL;
    3726             : 
    3727             :     /* Only indexes with the amcanorderbyop property are interesting here */
    3728        1074 :     if (!index->amcanorderbyop)
    3729           0 :         return;
    3730             : 
    3731        1548 :     foreach(lc1, pathkeys)
    3732             :     {
    3733        1080 :         PathKey    *pathkey = (PathKey *) lfirst(lc1);
    3734        1080 :         bool        found = false;
    3735             :         EquivalenceMemberIterator it;
    3736             :         EquivalenceMember *member;
    3737             : 
    3738             : 
    3739             :         /* Pathkey must request default sort order for the target opfamily */
    3740        1080 :         if (pathkey->pk_cmptype != COMPARE_LT || pathkey->pk_nulls_first)
    3741         606 :             return;
    3742             : 
    3743             :         /* If eclass is volatile, no hope of using an indexscan */
    3744        1046 :         if (pathkey->pk_eclass->ec_has_volatile)
    3745           0 :             return;
    3746             : 
    3747             :         /*
    3748             :          * Try to match eclass member expression(s) to index.  Note that child
    3749             :          * EC members are considered, but only when they belong to the target
    3750             :          * relation.  (Unlike regular members, the same expression could be a
    3751             :          * child member of more than one EC.  Therefore, the same index could
    3752             :          * be considered to match more than one pathkey list, which is OK
    3753             :          * here.  See also get_eclass_for_sort_expr.)
    3754             :          */
    3755        1046 :         setup_eclass_member_iterator(&it, pathkey->pk_eclass,
    3756        1046 :                                      index->rel->relids);
    3757        1650 :         while ((member = eclass_member_iterator_next(&it)) != NULL)
    3758             :         {
    3759             :             int         indexcol;
    3760             : 
    3761             :             /* No possibility of match if it references other relations */
    3762        1078 :             if (!bms_equal(member->em_relids, index->rel->relids))
    3763          32 :                 continue;
    3764             : 
    3765             :             /*
    3766             :              * We allow any column of the index to match each pathkey; they
    3767             :              * don't have to match left-to-right as you might expect.  This is
    3768             :              * correct for GiST, and it doesn't matter for SP-GiST because
    3769             :              * that doesn't handle multiple columns anyway, and no other
    3770             :              * existing AMs support amcanorderbyop.  We might need different
    3771             :              * logic in future for other implementations.
    3772             :              */
    3773        1906 :             for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
    3774             :             {
    3775             :                 Expr       *expr;
    3776             : 
    3777        1334 :                 expr = match_clause_to_ordering_op(index,
    3778             :                                                    indexcol,
    3779             :                                                    member->em_expr,
    3780             :                                                    pathkey->pk_opfamily);
    3781        1334 :                 if (expr)
    3782             :                 {
    3783         474 :                     *orderby_clauses_p = lappend(*orderby_clauses_p, expr);
    3784         474 :                     *clause_columns_p = lappend_int(*clause_columns_p, indexcol);
    3785         474 :                     found = true;
    3786         474 :                     break;
    3787             :                 }
    3788             :             }
    3789             : 
    3790        1046 :             if (found)          /* don't want to look at remaining members */
    3791         474 :                 break;
    3792             :         }
    3793             : 
    3794             :         /*
    3795             :          * Return the matches found so far when this pathkey couldn't be
    3796             :          * matched to the index.
    3797             :          */
    3798        1046 :         if (!found)
    3799         572 :             return;
    3800             :     }
    3801             : }
    3802             : 
    3803             : /*
    3804             :  * match_clause_to_ordering_op
    3805             :  *    Determines whether an ordering operator expression matches an
    3806             :  *    index column.
    3807             :  *
    3808             :  *    This is similar to, but simpler than, match_clause_to_indexcol.
    3809             :  *    We only care about simple OpExpr cases.  The input is a bare
    3810             :  *    expression that is being ordered by, which must be of the form
    3811             :  *    (indexkey op const) or (const op indexkey) where op is an ordering
    3812             :  *    operator for the column's opfamily.
    3813             :  *
    3814             :  * 'index' is the index of interest.
    3815             :  * 'indexcol' is a column number of 'index' (counting from 0).
    3816             :  * 'clause' is the ordering expression to be tested.
    3817             :  * 'pk_opfamily' is the btree opfamily describing the required sort order.
    3818             :  *
    3819             :  * Note that we currently do not consider the collation of the ordering
    3820             :  * operator's result.  In practical cases the result type will be numeric
    3821             :  * and thus have no collation, and it's not very clear what to match to
    3822             :  * if it did have a collation.  The index's collation should match the
    3823             :  * ordering operator's input collation, not its result.
    3824             :  *
    3825             :  * If successful, return 'clause' as-is if the indexkey is on the left,
    3826             :  * otherwise a commuted copy of 'clause'.  If no match, return NULL.
    3827             :  */
    3828             : static Expr *
    3829        1334 : match_clause_to_ordering_op(IndexOptInfo *index,
    3830             :                             int indexcol,
    3831             :                             Expr *clause,
    3832             :                             Oid pk_opfamily)
    3833             : {
    3834             :     Oid         opfamily;
    3835             :     Oid         idxcollation;
    3836             :     Node       *leftop,
    3837             :                *rightop;
    3838             :     Oid         expr_op;
    3839             :     Oid         expr_coll;
    3840             :     Oid         sortfamily;
    3841             :     bool        commuted;
    3842             : 
    3843             :     Assert(indexcol < index->nkeycolumns);
    3844             : 
    3845        1334 :     opfamily = index->opfamily[indexcol];
    3846        1334 :     idxcollation = index->indexcollations[indexcol];
    3847             : 
    3848             :     /*
    3849             :      * Clause must be a binary opclause.
    3850             :      */
    3851        1334 :     if (!is_opclause(clause))
    3852         860 :         return NULL;
    3853         474 :     leftop = get_leftop(clause);
    3854         474 :     rightop = get_rightop(clause);
    3855         474 :     if (!leftop || !rightop)
    3856           0 :         return NULL;
    3857         474 :     expr_op = ((OpExpr *) clause)->opno;
    3858         474 :     expr_coll = ((OpExpr *) clause)->inputcollid;
    3859             : 
    3860             :     /*
    3861             :      * We can forget the whole thing right away if wrong collation.
    3862             :      */
    3863         474 :     if (!IndexCollMatchesExprColl(idxcollation, expr_coll))
    3864           0 :         return NULL;
    3865             : 
    3866             :     /*
    3867             :      * Check for clauses of the form: (indexkey operator constant) or
    3868             :      * (constant operator indexkey).
    3869             :      */
    3870         474 :     if (match_index_to_operand(leftop, indexcol, index) &&
    3871         450 :         !contain_var_clause(rightop) &&
    3872         450 :         !contain_volatile_functions(rightop))
    3873             :     {
    3874         450 :         commuted = false;
    3875             :     }
    3876          24 :     else if (match_index_to_operand(rightop, indexcol, index) &&
    3877          24 :              !contain_var_clause(leftop) &&
    3878          24 :              !contain_volatile_functions(leftop))
    3879             :     {
    3880             :         /* Might match, but we need a commuted operator */
    3881          24 :         expr_op = get_commutator(expr_op);
    3882          24 :         if (expr_op == InvalidOid)
    3883           0 :             return NULL;
    3884          24 :         commuted = true;
    3885             :     }
    3886             :     else
    3887           0 :         return NULL;
    3888             : 
    3889             :     /*
    3890             :      * Is the (commuted) operator an ordering operator for the opfamily? And
    3891             :      * if so, does it yield the right sorting semantics?
    3892             :      */
    3893         474 :     sortfamily = get_op_opfamily_sortfamily(expr_op, opfamily);
    3894         474 :     if (sortfamily != pk_opfamily)
    3895           0 :         return NULL;
    3896             : 
    3897             :     /* We have a match.  Return clause or a commuted version thereof. */
    3898         474 :     if (commuted)
    3899             :     {
    3900          24 :         OpExpr     *newclause = makeNode(OpExpr);
    3901             : 
    3902             :         /* flat-copy all the fields of clause */
    3903          24 :         memcpy(newclause, clause, sizeof(OpExpr));
    3904             : 
    3905             :         /* commute it */
    3906          24 :         newclause->opno = expr_op;
    3907          24 :         newclause->opfuncid = InvalidOid;
    3908          24 :         newclause->args = list_make2(rightop, leftop);
    3909             : 
    3910          24 :         clause = (Expr *) newclause;
    3911             :     }
    3912             : 
    3913         474 :     return clause;
    3914             : }
    3915             : 
    3916             : 
    3917             : /****************************************************************************
    3918             :  *              ----  ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS  ----
    3919             :  ****************************************************************************/
    3920             : 
    3921             : /*
    3922             :  * check_index_predicates
    3923             :  *      Set the predicate-derived IndexOptInfo fields for each index
    3924             :  *      of the specified relation.
    3925             :  *
    3926             :  * predOK is set true if the index is partial and its predicate is satisfied
    3927             :  * for this query, ie the query's WHERE clauses imply the predicate.
    3928             :  *
    3929             :  * indrestrictinfo is set to the relation's baserestrictinfo list less any
    3930             :  * conditions that are implied by the index's predicate.  (Obviously, for a
    3931             :  * non-partial index, this is the same as baserestrictinfo.)  Such conditions
    3932             :  * can be dropped from the plan when using the index, in certain cases.
    3933             :  *
    3934             :  * At one time it was possible for this to get re-run after adding more
    3935             :  * restrictions to the rel, thus possibly letting us prove more indexes OK.
    3936             :  * That doesn't happen any more (at least not in the core code's usage),
    3937             :  * but this code still supports it in case extensions want to mess with the
    3938             :  * baserestrictinfo list.  We assume that adding more restrictions can't make
    3939             :  * an index not predOK.  We must recompute indrestrictinfo each time, though,
    3940             :  * to make sure any newly-added restrictions get into it if needed.
    3941             :  */
    3942             : void
    3943      417822 : check_index_predicates(PlannerInfo *root, RelOptInfo *rel)
    3944             : {
    3945             :     List       *clauselist;
    3946             :     bool        have_partial;
    3947             :     bool        is_target_rel;
    3948             :     Relids      otherrels;
    3949             :     ListCell   *lc;
    3950             : 
    3951             :     /* Indexes are available only on base or "other" member relations. */
    3952             :     Assert(IS_SIMPLE_REL(rel));
    3953             : 
    3954             :     /*
    3955             :      * Initialize the indrestrictinfo lists to be identical to
    3956             :      * baserestrictinfo, and check whether there are any partial indexes.  If
    3957             :      * not, this is all we need to do.
    3958             :      */
    3959      417822 :     have_partial = false;
    3960     1152380 :     foreach(lc, rel->indexlist)
    3961             :     {
    3962      734558 :         IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
    3963             : 
    3964      734558 :         index->indrestrictinfo = rel->baserestrictinfo;
    3965      734558 :         if (index->indpred)
    3966        1052 :             have_partial = true;
    3967             :     }
    3968      417822 :     if (!have_partial)
    3969      417094 :         return;
    3970             : 
    3971             :     /*
    3972             :      * Construct a list of clauses that we can assume true for the purpose of
    3973             :      * proving the index(es) usable.  Restriction clauses for the rel are
    3974             :      * always usable, and so are any join clauses that are "movable to" this
    3975             :      * rel.  Also, we can consider any EC-derivable join clauses (which must
    3976             :      * be "movable to" this rel, by definition).
    3977             :      */
    3978         728 :     clauselist = list_copy(rel->baserestrictinfo);
    3979             : 
    3980             :     /* Scan the rel's join clauses */
    3981         728 :     foreach(lc, rel->joininfo)
    3982             :     {
    3983           0 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    3984             : 
    3985             :         /* Check if clause can be moved to this rel */
    3986           0 :         if (!join_clause_is_movable_to(rinfo, rel))
    3987           0 :             continue;
    3988             : 
    3989           0 :         clauselist = lappend(clauselist, rinfo);
    3990             :     }
    3991             : 
    3992             :     /*
    3993             :      * Add on any equivalence-derivable join clauses.  Computing the correct
    3994             :      * relid sets for generate_join_implied_equalities is slightly tricky
    3995             :      * because the rel could be a child rel rather than a true baserel, and in
    3996             :      * that case we must subtract its parents' relid(s) from all_query_rels.
    3997             :      * Additionally, we mustn't consider clauses that are only computable
    3998             :      * after outer joins that can null the rel.
    3999             :      */
    4000         728 :     if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
    4001          72 :         otherrels = bms_difference(root->all_query_rels,
    4002          72 :                                    find_childrel_parents(root, rel));
    4003             :     else
    4004         656 :         otherrels = bms_difference(root->all_query_rels, rel->relids);
    4005         728 :     otherrels = bms_del_members(otherrels, rel->nulling_relids);
    4006             : 
    4007         728 :     if (!bms_is_empty(otherrels))
    4008             :         clauselist =
    4009          98 :             list_concat(clauselist,
    4010          98 :                         generate_join_implied_equalities(root,
    4011          98 :                                                          bms_union(rel->relids,
    4012             :                                                                    otherrels),
    4013             :                                                          otherrels,
    4014             :                                                          rel,
    4015             :                                                          NULL));
    4016             : 
    4017             :     /*
    4018             :      * Normally we remove quals that are implied by a partial index's
    4019             :      * predicate from indrestrictinfo, indicating that they need not be
    4020             :      * checked explicitly by an indexscan plan using this index.  However, if
    4021             :      * the rel is a target relation of UPDATE/DELETE/MERGE/SELECT FOR UPDATE,
    4022             :      * we cannot remove such quals from the plan, because they need to be in
    4023             :      * the plan so that they will be properly rechecked by EvalPlanQual
    4024             :      * testing.  Some day we might want to remove such quals from the main
    4025             :      * plan anyway and pass them through to EvalPlanQual via a side channel;
    4026             :      * but for now, we just don't remove implied quals at all for target
    4027             :      * relations.
    4028             :      */
    4029        1312 :     is_target_rel = (bms_is_member(rel->relid, root->all_result_relids) ||
    4030         584 :                      get_plan_rowmark(root->rowMarks, rel->relid) != NULL);
    4031             : 
    4032             :     /*
    4033             :      * Now try to prove each index predicate true, and compute the
    4034             :      * indrestrictinfo lists for partial indexes.  Note that we compute the
    4035             :      * indrestrictinfo list even for non-predOK indexes; this might seem
    4036             :      * wasteful, but we may be able to use such indexes in OR clauses, cf
    4037             :      * generate_bitmap_or_paths().
    4038             :      */
    4039        2214 :     foreach(lc, rel->indexlist)
    4040             :     {
    4041        1486 :         IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
    4042             :         ListCell   *lcr;
    4043             : 
    4044        1486 :         if (index->indpred == NIL)
    4045         434 :             continue;           /* ignore non-partial indexes here */
    4046             : 
    4047        1052 :         if (!index->predOK)      /* don't repeat work if already proven OK */
    4048        1052 :             index->predOK = predicate_implied_by(index->indpred, clauselist,
    4049             :                                                  false);
    4050             : 
    4051             :         /* If rel is an update target, leave indrestrictinfo as set above */
    4052        1052 :         if (is_target_rel)
    4053         204 :             continue;
    4054             : 
    4055             :         /*
    4056             :          * If index is !amoptionalkey, also leave indrestrictinfo as set
    4057             :          * above.  Otherwise we risk removing all quals for the first index
    4058             :          * key and then not being able to generate an indexscan at all.  It
    4059             :          * would be better to be more selective, but we've not yet identified
    4060             :          * which if any of the quals match the first index key.
    4061             :          */
    4062         848 :         if (!index->amoptionalkey)
    4063          36 :             continue;
    4064             : 
    4065             :         /* Else compute indrestrictinfo as the non-implied quals */
    4066         812 :         index->indrestrictinfo = NIL;
    4067        1914 :         foreach(lcr, rel->baserestrictinfo)
    4068             :         {
    4069        1102 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(lcr);
    4070             : 
    4071             :             /* predicate_implied_by() assumes first arg is immutable */
    4072        1102 :             if (contain_mutable_functions((Node *) rinfo->clause) ||
    4073        1102 :                 !predicate_implied_by(list_make1(rinfo->clause),
    4074             :                                       index->indpred, false))
    4075         782 :                 index->indrestrictinfo = lappend(index->indrestrictinfo, rinfo);
    4076             :         }
    4077             :     }
    4078             : }
    4079             : 
    4080             : /****************************************************************************
    4081             :  *              ----  ROUTINES TO CHECK EXTERNALLY-VISIBLE CONDITIONS  ----
    4082             :  ****************************************************************************/
    4083             : 
    4084             : /*
    4085             :  * ec_member_matches_indexcol
    4086             :  *    Test whether an EquivalenceClass member matches an index column.
    4087             :  *
    4088             :  * This is a callback for use by generate_implied_equalities_for_column.
    4089             :  */
    4090             : static bool
    4091      484586 : ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel,
    4092             :                            EquivalenceClass *ec, EquivalenceMember *em,
    4093             :                            void *arg)
    4094             : {
    4095      484586 :     IndexOptInfo *index = ((ec_member_matches_arg *) arg)->index;
    4096      484586 :     int         indexcol = ((ec_member_matches_arg *) arg)->indexcol;
    4097             :     Oid         curFamily;
    4098             :     Oid         curCollation;
    4099             : 
    4100             :     Assert(indexcol < index->nkeycolumns);
    4101             : 
    4102      484586 :     curFamily = index->opfamily[indexcol];
    4103      484586 :     curCollation = index->indexcollations[indexcol];
    4104             : 
    4105             :     /*
    4106             :      * If it's a btree index, we can reject it if its opfamily isn't
    4107             :      * compatible with the EC, since no clause generated from the EC could be
    4108             :      * used with the index.  For non-btree indexes, we can't easily tell
    4109             :      * whether clauses generated from the EC could be used with the index, so
    4110             :      * don't check the opfamily.  This might mean we return "true" for a
    4111             :      * useless EC, so we have to recheck the results of
    4112             :      * generate_implied_equalities_for_column; see
    4113             :      * match_eclass_clauses_to_index.
    4114             :      */
    4115      484586 :     if (index->relam == BTREE_AM_OID &&
    4116      484544 :         !list_member_oid(ec->ec_opfamilies, curFamily))
    4117      156796 :         return false;
    4118             : 
    4119             :     /* We insist on collation match for all index types, though */
    4120      327790 :     if (!IndexCollMatchesExprColl(curCollation, ec->ec_collation))
    4121          18 :         return false;
    4122             : 
    4123      327772 :     return match_index_to_operand((Node *) em->em_expr, indexcol, index);
    4124             : }
    4125             : 
    4126             : /*
    4127             :  * relation_has_unique_index_for
    4128             :  *    Determine whether the relation provably has at most one row satisfying
    4129             :  *    a set of equality conditions, because the conditions constrain all
    4130             :  *    columns of some unique index.
    4131             :  *
    4132             :  * The conditions are provided as a list of RestrictInfo nodes, where the
    4133             :  * caller has already determined that each condition is a mergejoinable
    4134             :  * equality with an expression in this relation on one side, and an
    4135             :  * expression not involving this relation on the other.  The transient
    4136             :  * outer_is_left flag is used to identify which side we should look at:
    4137             :  * left side if outer_is_left is false, right side if it is true.
    4138             :  *
    4139             :  * The caller need only supply equality conditions arising from joins;
    4140             :  * this routine automatically adds in any usable baserestrictinfo clauses.
    4141             :  * (Note that the passed-in restrictlist will be destructively modified!)
    4142             :  *
    4143             :  * If extra_clauses isn't NULL, return baserestrictinfo clauses which were used
    4144             :  * to derive uniqueness.
    4145             :  */
    4146             : bool
    4147      222530 : relation_has_unique_index_for(PlannerInfo *root, RelOptInfo *rel,
    4148             :                               List *restrictlist, List **extra_clauses)
    4149             : {
    4150             :     ListCell   *ic;
    4151             : 
    4152             :     /* Short-circuit if no indexes... */
    4153      222530 :     if (rel->indexlist == NIL)
    4154           0 :         return false;
    4155             : 
    4156             :     /*
    4157             :      * Examine the rel's restriction clauses for usable var = const clauses
    4158             :      * that we can add to the restrictlist.
    4159             :      */
    4160      366936 :     foreach(ic, rel->baserestrictinfo)
    4161             :     {
    4162      144406 :         RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(ic);
    4163             : 
    4164             :         /*
    4165             :          * Note: can_join won't be set for a restriction clause, but
    4166             :          * mergeopfamilies will be if it has a mergejoinable operator and
    4167             :          * doesn't contain volatile functions.
    4168             :          */
    4169      144406 :         if (restrictinfo->mergeopfamilies == NIL)
    4170       58256 :             continue;           /* not mergejoinable */
    4171             : 
    4172             :         /*
    4173             :          * The clause certainly doesn't refer to anything but the given rel.
    4174             :          * If either side is pseudoconstant then we can use it.
    4175             :          */
    4176       86150 :         if (bms_is_empty(restrictinfo->left_relids))
    4177             :         {
    4178             :             /* righthand side is inner */
    4179          62 :             restrictinfo->outer_is_left = true;
    4180             :         }
    4181       86088 :         else if (bms_is_empty(restrictinfo->right_relids))
    4182             :         {
    4183             :             /* lefthand side is inner */
    4184       85962 :             restrictinfo->outer_is_left = false;
    4185             :         }
    4186             :         else
    4187         126 :             continue;
    4188             : 
    4189             :         /* OK, add to list */
    4190       86024 :         restrictlist = lappend(restrictlist, restrictinfo);
    4191             :     }
    4192             : 
    4193             :     /* Short-circuit the easy case */
    4194      222530 :     if (restrictlist == NIL)
    4195        1120 :         return false;
    4196             : 
    4197             :     /* Examine each index of the relation ... */
    4198      564446 :     foreach(ic, rel->indexlist)
    4199             :     {
    4200      469518 :         IndexOptInfo *ind = (IndexOptInfo *) lfirst(ic);
    4201             :         int         c;
    4202      469518 :         List       *exprs = NIL;
    4203             : 
    4204             :         /*
    4205             :          * If the index is not unique, or not immediately enforced, or if it's
    4206             :          * a partial index, it's useless here.  We're unable to make use of
    4207             :          * predOK partial unique indexes due to the fact that
    4208             :          * check_index_predicates() also makes use of join predicates to
    4209             :          * determine if the partial index is usable. Here we need proofs that
    4210             :          * hold true before any joins are evaluated.
    4211             :          */
    4212      469518 :         if (!ind->unique || !ind->immediate || ind->indpred != NIL)
    4213      128812 :             continue;
    4214             : 
    4215             :         /*
    4216             :          * Try to find each index column in the list of conditions.  This is
    4217             :          * O(N^2) or worse, but we expect all the lists to be short.
    4218             :          */
    4219      570096 :         for (c = 0; c < ind->nkeycolumns; c++)
    4220             :         {
    4221             :             ListCell   *lc;
    4222             : 
    4223      864352 :             foreach(lc, restrictlist)
    4224             :             {
    4225      650128 :                 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    4226             :                 Node       *rexpr;
    4227             : 
    4228             :                 /*
    4229             :                  * The condition's equality operator must be a member of the
    4230             :                  * index opfamily, else it is not asserting the right kind of
    4231             :                  * equality behavior for this index.  We check this first
    4232             :                  * since it's probably cheaper than match_index_to_operand().
    4233             :                  */
    4234      650128 :                 if (!list_member_oid(rinfo->mergeopfamilies, ind->opfamily[c]))
    4235      198948 :                     continue;
    4236             : 
    4237             :                 /*
    4238             :                  * XXX at some point we may need to check collations here too.
    4239             :                  * For the moment we assume all collations reduce to the same
    4240             :                  * notion of equality.
    4241             :                  */
    4242             : 
    4243             :                 /* OK, see if the condition operand matches the index key */
    4244      451180 :                 if (rinfo->outer_is_left)
    4245      180868 :                     rexpr = get_rightop(rinfo->clause);
    4246             :                 else
    4247      270312 :                     rexpr = get_leftop(rinfo->clause);
    4248             : 
    4249      451180 :                 if (match_index_to_operand(rexpr, c, ind))
    4250             :                 {
    4251      229390 :                     if (bms_membership(rinfo->clause_relids) == BMS_SINGLETON)
    4252             :                     {
    4253             :                         MemoryContext oldMemCtx =
    4254       53676 :                             MemoryContextSwitchTo(root->planner_cxt);
    4255             : 
    4256             :                         /*
    4257             :                          * Add filter clause into a list allowing caller to
    4258             :                          * know if uniqueness have made not only by join
    4259             :                          * clauses.
    4260             :                          */
    4261             :                         Assert(bms_is_empty(rinfo->left_relids) ||
    4262             :                                bms_is_empty(rinfo->right_relids));
    4263       53676 :                         if (extra_clauses)
    4264         144 :                             exprs = lappend(exprs, rinfo);
    4265       53676 :                         MemoryContextSwitchTo(oldMemCtx);
    4266             :                     }
    4267             : 
    4268      229390 :                     break;      /* found a match; column is unique */
    4269             :                 }
    4270             :             }
    4271             : 
    4272      443614 :             if (lc == NULL)
    4273      214224 :                 break;          /* no match; this index doesn't help us */
    4274             :         }
    4275             : 
    4276             :         /* Matched all key columns of this index? */
    4277      340706 :         if (c == ind->nkeycolumns)
    4278             :         {
    4279      126482 :             if (extra_clauses)
    4280         654 :                 *extra_clauses = exprs;
    4281      126482 :             return true;
    4282             :         }
    4283             :     }
    4284             : 
    4285       94928 :     return false;
    4286             : }
    4287             : 
    4288             : /*
    4289             :  * indexcol_is_bool_constant_for_query
    4290             :  *
    4291             :  * If an index column is constrained to have a constant value by the query's
    4292             :  * WHERE conditions, then it's irrelevant for sort-order considerations.
    4293             :  * Usually that means we have a restriction clause WHERE indexcol = constant,
    4294             :  * which gets turned into an EquivalenceClass containing a constant, which
    4295             :  * is recognized as redundant by build_index_pathkeys().  But if the index
    4296             :  * column is a boolean variable (or expression), then we are not going to
    4297             :  * see WHERE indexcol = constant, because expression preprocessing will have
    4298             :  * simplified that to "WHERE indexcol" or "WHERE NOT indexcol".  So we are not
    4299             :  * going to have a matching EquivalenceClass (unless the query also contains
    4300             :  * "ORDER BY indexcol").  To allow such cases to work the same as they would
    4301             :  * for non-boolean values, this function is provided to detect whether the
    4302             :  * specified index column matches a boolean restriction clause.
    4303             :  */
    4304             : bool
    4305      670404 : indexcol_is_bool_constant_for_query(PlannerInfo *root,
    4306             :                                     IndexOptInfo *index,
    4307             :                                     int indexcol)
    4308             : {
    4309             :     ListCell   *lc;
    4310             : 
    4311             :     /* If the index isn't boolean, we can't possibly get a match */
    4312      670404 :     if (!IsBooleanOpfamily(index->opfamily[indexcol]))
    4313      667372 :         return false;
    4314             : 
    4315             :     /* Check each restriction clause for the index's rel */
    4316        3068 :     foreach(lc, index->rel->baserestrictinfo)
    4317             :     {
    4318        1292 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    4319             : 
    4320             :         /*
    4321             :          * As in match_clause_to_indexcol, never match pseudoconstants to
    4322             :          * indexes.  (It might be semantically okay to do so here, but the
    4323             :          * odds of getting a match are negligible, so don't waste the cycles.)
    4324             :          */
    4325        1292 :         if (rinfo->pseudoconstant)
    4326           0 :             continue;
    4327             : 
    4328             :         /* See if we can match the clause's expression to the index column */
    4329        1292 :         if (match_boolean_index_clause(root, rinfo, indexcol, index))
    4330        1256 :             return true;
    4331             :     }
    4332             : 
    4333        1776 :     return false;
    4334             : }
    4335             : 
    4336             : 
    4337             : /****************************************************************************
    4338             :  *              ----  ROUTINES TO CHECK OPERANDS  ----
    4339             :  ****************************************************************************/
    4340             : 
    4341             : /*
    4342             :  * match_index_to_operand()
    4343             :  *    Generalized test for a match between an index's key
    4344             :  *    and the operand on one side of a restriction or join clause.
    4345             :  *
    4346             :  * operand: the nodetree to be compared to the index
    4347             :  * indexcol: the column number of the index (counting from 0)
    4348             :  * index: the index of interest
    4349             :  *
    4350             :  * Note that we aren't interested in collations here; the caller must check
    4351             :  * for a collation match, if it's dealing with an operator where that matters.
    4352             :  *
    4353             :  * This is exported for use in selfuncs.c.
    4354             :  */
    4355             : bool
    4356     3792686 : match_index_to_operand(Node *operand,
    4357             :                        int indexcol,
    4358             :                        IndexOptInfo *index)
    4359             : {
    4360             :     int         indkey;
    4361             : 
    4362             :     /*
    4363             :      * Ignore any PlaceHolderVar node contained in the operand.  This is
    4364             :      * needed to be able to apply indexscanning in cases where the operand (or
    4365             :      * a subtree) has been wrapped in PlaceHolderVars to enforce separate
    4366             :      * identity or as a result of outer joins.
    4367             :      */
    4368     3792686 :     operand = strip_phvs_in_index_operand(operand);
    4369             : 
    4370             :     /*
    4371             :      * Ignore any RelabelType node above the operand.  This is needed to be
    4372             :      * able to apply indexscanning in binary-compatible-operator cases.
    4373             :      *
    4374             :      * Note: we must handle nested RelabelType nodes here.  While
    4375             :      * eval_const_expressions() will have simplified them to at most one
    4376             :      * layer, our prior stripping of PlaceHolderVars may have brought separate
    4377             :      * RelabelTypes into adjacency.
    4378             :      */
    4379     3816534 :     while (operand && IsA(operand, RelabelType))
    4380       23848 :         operand = (Node *) ((RelabelType *) operand)->arg;
    4381             : 
    4382     3792686 :     indkey = index->indexkeys[indexcol];
    4383     3792686 :     if (indkey != 0)
    4384             :     {
    4385             :         /*
    4386             :          * Simple index column; operand must be a matching Var.
    4387             :          */
    4388     3786592 :         if (operand && IsA(operand, Var) &&
    4389     2821790 :             index->rel->relid == ((Var *) operand)->varno &&
    4390     2621754 :             indkey == ((Var *) operand)->varattno &&
    4391      931270 :             ((Var *) operand)->varnullingrels == NULL)
    4392      929640 :             return true;
    4393             :     }
    4394             :     else
    4395             :     {
    4396             :         /*
    4397             :          * Index expression; find the correct expression.  (This search could
    4398             :          * be avoided, at the cost of complicating all the callers of this
    4399             :          * routine; doesn't seem worth it.)
    4400             :          */
    4401             :         ListCell   *indexpr_item;
    4402             :         int         i;
    4403             :         Node       *indexkey;
    4404             : 
    4405        6094 :         indexpr_item = list_head(index->indexprs);
    4406        6094 :         for (i = 0; i < indexcol; i++)
    4407             :         {
    4408           0 :             if (index->indexkeys[i] == 0)
    4409             :             {
    4410           0 :                 if (indexpr_item == NULL)
    4411           0 :                     elog(ERROR, "wrong number of index expressions");
    4412           0 :                 indexpr_item = lnext(index->indexprs, indexpr_item);
    4413             :             }
    4414             :         }
    4415        6094 :         if (indexpr_item == NULL)
    4416           0 :             elog(ERROR, "wrong number of index expressions");
    4417        6094 :         indexkey = (Node *) lfirst(indexpr_item);
    4418             : 
    4419             :         /*
    4420             :          * Does it match the operand?  Again, strip any relabeling.
    4421             :          */
    4422        6094 :         if (indexkey && IsA(indexkey, RelabelType))
    4423          10 :             indexkey = (Node *) ((RelabelType *) indexkey)->arg;
    4424             : 
    4425        6094 :         if (equal(indexkey, operand))
    4426        2176 :             return true;
    4427             :     }
    4428             : 
    4429     2860870 :     return false;
    4430             : }
    4431             : 
    4432             : /*
    4433             :  * strip_phvs_in_index_operand
    4434             :  *    Strip PlaceHolderVar nodes from the given operand expression to
    4435             :  *    facilitate matching against an index's key.
    4436             :  *
    4437             :  * A PlaceHolderVar appearing in a relation-scan-level expression is
    4438             :  * effectively a no-op.  Nevertheless, to play it safe, we strip only
    4439             :  * PlaceHolderVars that are not marked nullable.
    4440             :  *
    4441             :  * The removal is performed recursively because PlaceHolderVars can be nested
    4442             :  * or interleaved with other node types.  We must peel back all layers to
    4443             :  * expose the base operand.
    4444             :  *
    4445             :  * As a performance optimization, we first use a lightweight walker to check
    4446             :  * for the presence of strippable PlaceHolderVars.  The expensive mutator is
    4447             :  * invoked only if a candidate is found, avoiding unnecessary memory allocation
    4448             :  * and tree copying in the common case where no PlaceHolderVars are present.
    4449             :  */
    4450             : Node *
    4451     4000156 : strip_phvs_in_index_operand(Node *operand)
    4452             : {
    4453             :     /* Don't mutate/copy if no target PHVs exist */
    4454     4000156 :     if (!contain_strippable_phv_walker(operand, NULL))
    4455     3999068 :         return operand;
    4456             : 
    4457        1088 :     return strip_phvs_in_index_operand_mutator(operand, NULL);
    4458             : }
    4459             : 
    4460             : /*
    4461             :  * contain_strippable_phv_walker
    4462             :  *    Detect if there are any PlaceHolderVars in the tree that are candidates
    4463             :  *    for stripping.
    4464             :  *
    4465             :  * We identify a PlaceHolderVar as strippable only if its phnullingrels is
    4466             :  * empty.
    4467             :  */
    4468             : static bool
    4469     4097966 : contain_strippable_phv_walker(Node *node, void *context)
    4470             : {
    4471     4097966 :     if (node == NULL)
    4472        8044 :         return false;
    4473             : 
    4474     4089922 :     if (IsA(node, PlaceHolderVar))
    4475             :     {
    4476        1178 :         PlaceHolderVar *phv = (PlaceHolderVar *) node;
    4477             : 
    4478        1178 :         if (bms_is_empty(phv->phnullingrels))
    4479        1088 :             return true;
    4480             :     }
    4481             : 
    4482     4088834 :     return expression_tree_walker(node, contain_strippable_phv_walker,
    4483             :                                   context);
    4484             : }
    4485             : 
    4486             : /*
    4487             :  * strip_phvs_in_index_operand_mutator
    4488             :  *    Recursively remove PlaceHolderVars in the tree that match the criteria.
    4489             :  *
    4490             :  * We strip a PlaceHolderVar only if its phnullingrels is empty, replacing it
    4491             :  * with its contained expression.
    4492             :  */
    4493             : static Node *
    4494        3244 : strip_phvs_in_index_operand_mutator(Node *node, void *context)
    4495             : {
    4496        3244 :     if (node == NULL)
    4497           0 :         return NULL;
    4498             : 
    4499        3244 :     if (IsA(node, PlaceHolderVar))
    4500             :     {
    4501        1088 :         PlaceHolderVar *phv = (PlaceHolderVar *) node;
    4502             : 
    4503             :         /* If matches the criteria, strip it */
    4504        1088 :         if (bms_is_empty(phv->phnullingrels))
    4505             :         {
    4506             :             /* Recurse on its contained expression */
    4507        1088 :             return strip_phvs_in_index_operand_mutator((Node *) phv->phexpr,
    4508             :                                                        context);
    4509             :         }
    4510             : 
    4511             :         /* Otherwise, keep this PHV but check its contained expression */
    4512             :     }
    4513             : 
    4514        2156 :     return expression_tree_mutator(node, strip_phvs_in_index_operand_mutator,
    4515             :                                    context);
    4516             : }
    4517             : 
    4518             : /*
    4519             :  * is_pseudo_constant_for_index()
    4520             :  *    Test whether the given expression can be used as an indexscan
    4521             :  *    comparison value.
    4522             :  *
    4523             :  * An indexscan comparison value must not contain any volatile functions,
    4524             :  * and it can't contain any Vars of the index's own table.  Vars of
    4525             :  * other tables are okay, though; in that case we'd be producing an
    4526             :  * indexqual usable in a parameterized indexscan.  This is, therefore,
    4527             :  * a weaker condition than is_pseudo_constant_clause().
    4528             :  *
    4529             :  * This function is exported for use by planner support functions,
    4530             :  * which will have available the IndexOptInfo, but not any RestrictInfo
    4531             :  * infrastructure.  It is making the same test made by functions above
    4532             :  * such as match_opclause_to_indexcol(), but those rely where possible
    4533             :  * on RestrictInfo information about variable membership.
    4534             :  *
    4535             :  * expr: the nodetree to be checked
    4536             :  * index: the index of interest
    4537             :  */
    4538             : bool
    4539           0 : is_pseudo_constant_for_index(PlannerInfo *root, Node *expr, IndexOptInfo *index)
    4540             : {
    4541             :     /* pull_varnos is cheaper than volatility check, so do that first */
    4542           0 :     if (bms_is_member(index->rel->relid, pull_varnos(root, expr)))
    4543           0 :         return false;           /* no good, contains Var of table */
    4544           0 :     if (contain_volatile_functions(expr))
    4545           0 :         return false;           /* no good, volatile comparison value */
    4546           0 :     return true;
    4547             : }

Generated by: LCOV version 1.16