LCOV - code coverage report
Current view: top level - src/backend/optimizer/path - costsize.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 1741 1780 97.8 %
Date: 2026-01-09 17:17:48 Functions: 74 74 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * costsize.c
       4             :  *    Routines to compute (and set) relation sizes and path costs
       5             :  *
       6             :  * Path costs are measured in arbitrary units established by these basic
       7             :  * parameters:
       8             :  *
       9             :  *  seq_page_cost       Cost of a sequential page fetch
      10             :  *  random_page_cost    Cost of a non-sequential page fetch
      11             :  *  cpu_tuple_cost      Cost of typical CPU time to process a tuple
      12             :  *  cpu_index_tuple_cost  Cost of typical CPU time to process an index tuple
      13             :  *  cpu_operator_cost   Cost of CPU time to execute an operator or function
      14             :  *  parallel_tuple_cost Cost of CPU time to pass a tuple from worker to leader backend
      15             :  *  parallel_setup_cost Cost of setting up shared memory for parallelism
      16             :  *
      17             :  * We expect that the kernel will typically do some amount of read-ahead
      18             :  * optimization; this in conjunction with seek costs means that seq_page_cost
      19             :  * is normally considerably less than random_page_cost.  (However, if the
      20             :  * database is fully cached in RAM, it is reasonable to set them equal.)
      21             :  *
      22             :  * We also use a rough estimate "effective_cache_size" of the number of
      23             :  * disk pages in Postgres + OS-level disk cache.  (We can't simply use
      24             :  * NBuffers for this purpose because that would ignore the effects of
      25             :  * the kernel's disk cache.)
      26             :  *
      27             :  * Obviously, taking constants for these values is an oversimplification,
      28             :  * but it's tough enough to get any useful estimates even at this level of
      29             :  * detail.  Note that all of these parameters are user-settable, in case
      30             :  * the default values are drastically off for a particular platform.
      31             :  *
      32             :  * seq_page_cost and random_page_cost can also be overridden for an individual
      33             :  * tablespace, in case some data is on a fast disk and other data is on a slow
      34             :  * disk.  Per-tablespace overrides never apply to temporary work files such as
      35             :  * an external sort or a materialize node that overflows work_mem.
      36             :  *
      37             :  * We compute two separate costs for each path:
      38             :  *      total_cost: total estimated cost to fetch all tuples
      39             :  *      startup_cost: cost that is expended before first tuple is fetched
      40             :  * In some scenarios, such as when there is a LIMIT or we are implementing
      41             :  * an EXISTS(...) sub-select, it is not necessary to fetch all tuples of the
      42             :  * path's result.  A caller can estimate the cost of fetching a partial
      43             :  * result by interpolating between startup_cost and total_cost.  In detail:
      44             :  *      actual_cost = startup_cost +
      45             :  *          (total_cost - startup_cost) * tuples_to_fetch / path->rows;
      46             :  * Note that a base relation's rows count (and, by extension, plan_rows for
      47             :  * plan nodes below the LIMIT node) are set without regard to any LIMIT, so
      48             :  * that this equation works properly.  (Note: while path->rows is never zero
      49             :  * for ordinary relations, it is zero for paths for provably-empty relations,
      50             :  * so beware of division-by-zero.)  The LIMIT is applied as a top-level
      51             :  * plan node.
      52             :  *
      53             :  * Each path stores the total number of disabled nodes that exist at or
      54             :  * below that point in the plan tree. This is regarded as a component of
      55             :  * the cost, and paths with fewer disabled nodes should be regarded as
      56             :  * cheaper than those with more. Disabled nodes occur when the user sets
      57             :  * a GUC like enable_seqscan=false. We can't necessarily respect such a
      58             :  * setting in every part of the plan tree, but we want to respect in as many
      59             :  * parts of the plan tree as possible. Simpler schemes like storing a Boolean
      60             :  * here rather than a count fail to do that. We used to disable nodes by
      61             :  * adding a large constant to the startup cost, but that distorted planning
      62             :  * in other ways.
      63             :  *
      64             :  * For largely historical reasons, most of the routines in this module use
      65             :  * the passed result Path only to store their results (rows, startup_cost and
      66             :  * total_cost) into.  All the input data they need is passed as separate
      67             :  * parameters, even though much of it could be extracted from the Path.
      68             :  * An exception is made for the cost_XXXjoin() routines, which expect all
      69             :  * the other fields of the passed XXXPath to be filled in, and similarly
      70             :  * cost_index() assumes the passed IndexPath is valid except for its output
      71             :  * values.
      72             :  *
      73             :  *
      74             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
      75             :  * Portions Copyright (c) 1994, Regents of the University of California
      76             :  *
      77             :  * IDENTIFICATION
      78             :  *    src/backend/optimizer/path/costsize.c
      79             :  *
      80             :  *-------------------------------------------------------------------------
      81             :  */
      82             : 
      83             : #include "postgres.h"
      84             : 
      85             : #include <limits.h>
      86             : #include <math.h>
      87             : 
      88             : #include "access/amapi.h"
      89             : #include "access/htup_details.h"
      90             : #include "access/tsmapi.h"
      91             : #include "executor/executor.h"
      92             : #include "executor/nodeAgg.h"
      93             : #include "executor/nodeHash.h"
      94             : #include "executor/nodeMemoize.h"
      95             : #include "miscadmin.h"
      96             : #include "nodes/makefuncs.h"
      97             : #include "nodes/nodeFuncs.h"
      98             : #include "optimizer/clauses.h"
      99             : #include "optimizer/cost.h"
     100             : #include "optimizer/optimizer.h"
     101             : #include "optimizer/pathnode.h"
     102             : #include "optimizer/paths.h"
     103             : #include "optimizer/placeholder.h"
     104             : #include "optimizer/plancat.h"
     105             : #include "optimizer/restrictinfo.h"
     106             : #include "parser/parsetree.h"
     107             : #include "utils/lsyscache.h"
     108             : #include "utils/selfuncs.h"
     109             : #include "utils/spccache.h"
     110             : #include "utils/tuplesort.h"
     111             : 
     112             : 
     113             : #define LOG2(x)  (log(x) / 0.693147180559945)
     114             : 
     115             : /*
     116             :  * Append and MergeAppend nodes are less expensive than some other operations
     117             :  * which use cpu_tuple_cost; instead of adding a separate GUC, estimate the
     118             :  * per-tuple cost as cpu_tuple_cost multiplied by this value.
     119             :  */
     120             : #define APPEND_CPU_COST_MULTIPLIER 0.5
     121             : 
     122             : /*
     123             :  * Maximum value for row estimates.  We cap row estimates to this to help
     124             :  * ensure that costs based on these estimates remain within the range of what
     125             :  * double can represent.  add_path() wouldn't act sanely given infinite or NaN
     126             :  * cost values.
     127             :  */
     128             : #define MAXIMUM_ROWCOUNT 1e100
     129             : 
     130             : double      seq_page_cost = DEFAULT_SEQ_PAGE_COST;
     131             : double      random_page_cost = DEFAULT_RANDOM_PAGE_COST;
     132             : double      cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST;
     133             : double      cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST;
     134             : double      cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST;
     135             : double      parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST;
     136             : double      parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST;
     137             : double      recursive_worktable_factor = DEFAULT_RECURSIVE_WORKTABLE_FACTOR;
     138             : 
     139             : int         effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;
     140             : 
     141             : Cost        disable_cost = 1.0e10;
     142             : 
     143             : int         max_parallel_workers_per_gather = 2;
     144             : 
     145             : bool        enable_seqscan = true;
     146             : bool        enable_indexscan = true;
     147             : bool        enable_indexonlyscan = true;
     148             : bool        enable_bitmapscan = true;
     149             : bool        enable_tidscan = true;
     150             : bool        enable_sort = true;
     151             : bool        enable_incremental_sort = true;
     152             : bool        enable_hashagg = true;
     153             : bool        enable_nestloop = true;
     154             : bool        enable_material = true;
     155             : bool        enable_memoize = true;
     156             : bool        enable_mergejoin = true;
     157             : bool        enable_hashjoin = true;
     158             : bool        enable_gathermerge = true;
     159             : bool        enable_partitionwise_join = false;
     160             : bool        enable_partitionwise_aggregate = false;
     161             : bool        enable_parallel_append = true;
     162             : bool        enable_parallel_hash = true;
     163             : bool        enable_partition_pruning = true;
     164             : bool        enable_presorted_aggregate = true;
     165             : bool        enable_async_append = true;
     166             : 
     167             : typedef struct
     168             : {
     169             :     PlannerInfo *root;
     170             :     QualCost    total;
     171             : } cost_qual_eval_context;
     172             : 
     173             : static List *extract_nonindex_conditions(List *qual_clauses, List *indexclauses);
     174             : static MergeScanSelCache *cached_scansel(PlannerInfo *root,
     175             :                                          RestrictInfo *rinfo,
     176             :                                          PathKey *pathkey);
     177             : static void cost_rescan(PlannerInfo *root, Path *path,
     178             :                         Cost *rescan_startup_cost, Cost *rescan_total_cost);
     179             : static bool cost_qual_eval_walker(Node *node, cost_qual_eval_context *context);
     180             : static void get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
     181             :                                       ParamPathInfo *param_info,
     182             :                                       QualCost *qpqual_cost);
     183             : static bool has_indexed_join_quals(NestPath *path);
     184             : static double approx_tuple_count(PlannerInfo *root, JoinPath *path,
     185             :                                  List *quals);
     186             : static double calc_joinrel_size_estimate(PlannerInfo *root,
     187             :                                          RelOptInfo *joinrel,
     188             :                                          RelOptInfo *outer_rel,
     189             :                                          RelOptInfo *inner_rel,
     190             :                                          double outer_rows,
     191             :                                          double inner_rows,
     192             :                                          SpecialJoinInfo *sjinfo,
     193             :                                          List *restrictlist);
     194             : static Selectivity get_foreign_key_join_selectivity(PlannerInfo *root,
     195             :                                                     Relids outer_relids,
     196             :                                                     Relids inner_relids,
     197             :                                                     SpecialJoinInfo *sjinfo,
     198             :                                                     List **restrictlist);
     199             : static Cost append_nonpartial_cost(List *subpaths, int numpaths,
     200             :                                    int parallel_workers);
     201             : static void set_rel_width(PlannerInfo *root, RelOptInfo *rel);
     202             : static int32 get_expr_width(PlannerInfo *root, const Node *expr);
     203             : static double relation_byte_size(double tuples, int width);
     204             : static double page_size(double tuples, int width);
     205             : static double get_parallel_divisor(Path *path);
     206             : 
     207             : 
     208             : /*
     209             :  * clamp_row_est
     210             :  *      Force a row-count estimate to a sane value.
     211             :  */
     212             : double
     213    10589506 : clamp_row_est(double nrows)
     214             : {
     215             :     /*
     216             :      * Avoid infinite and NaN row estimates.  Costs derived from such values
     217             :      * are going to be useless.  Also force the estimate to be at least one
     218             :      * row, to make explain output look better and to avoid possible
     219             :      * divide-by-zero when interpolating costs.  Make it an integer, too.
     220             :      */
     221    10589506 :     if (nrows > MAXIMUM_ROWCOUNT || isnan(nrows))
     222           0 :         nrows = MAXIMUM_ROWCOUNT;
     223    10589506 :     else if (nrows <= 1.0)
     224     3271256 :         nrows = 1.0;
     225             :     else
     226     7318250 :         nrows = rint(nrows);
     227             : 
     228    10589506 :     return nrows;
     229             : }
     230             : 
     231             : /*
     232             :  * clamp_width_est
     233             :  *      Force a tuple-width estimate to a sane value.
     234             :  *
     235             :  * The planner represents datatype width and tuple width estimates as int32.
     236             :  * When summing column width estimates to create a tuple width estimate,
     237             :  * it's possible to reach integer overflow in edge cases.  To ensure sane
     238             :  * behavior, we form such sums in int64 arithmetic and then apply this routine
     239             :  * to clamp to int32 range.
     240             :  */
     241             : int32
     242     1998620 : clamp_width_est(int64 tuple_width)
     243             : {
     244             :     /*
     245             :      * Anything more than MaxAllocSize is clearly bogus, since we could not
     246             :      * create a tuple that large.
     247             :      */
     248     1998620 :     if (tuple_width > MaxAllocSize)
     249           0 :         return (int32) MaxAllocSize;
     250             : 
     251             :     /*
     252             :      * Unlike clamp_row_est, we just Assert that the value isn't negative,
     253             :      * rather than masking such errors.
     254             :      */
     255             :     Assert(tuple_width >= 0);
     256             : 
     257     1998620 :     return (int32) tuple_width;
     258             : }
     259             : 
     260             : 
     261             : /*
     262             :  * cost_seqscan
     263             :  *    Determines and returns the cost of scanning a relation sequentially.
     264             :  *
     265             :  * 'baserel' is the relation to be scanned
     266             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     267             :  */
     268             : void
     269      445376 : cost_seqscan(Path *path, PlannerInfo *root,
     270             :              RelOptInfo *baserel, ParamPathInfo *param_info)
     271             : {
     272      445376 :     Cost        startup_cost = 0;
     273             :     Cost        cpu_run_cost;
     274             :     Cost        disk_run_cost;
     275             :     double      spc_seq_page_cost;
     276             :     QualCost    qpqual_cost;
     277             :     Cost        cpu_per_tuple;
     278             : 
     279             :     /* Should only be applied to base relations */
     280             :     Assert(baserel->relid > 0);
     281             :     Assert(baserel->rtekind == RTE_RELATION);
     282             : 
     283             :     /* Mark the path with the correct row estimate */
     284      445376 :     if (param_info)
     285         840 :         path->rows = param_info->ppi_rows;
     286             :     else
     287      444536 :         path->rows = baserel->rows;
     288             : 
     289             :     /* fetch estimated page cost for tablespace containing table */
     290      445376 :     get_tablespace_page_costs(baserel->reltablespace,
     291             :                               NULL,
     292             :                               &spc_seq_page_cost);
     293             : 
     294             :     /*
     295             :      * disk costs
     296             :      */
     297      445376 :     disk_run_cost = spc_seq_page_cost * baserel->pages;
     298             : 
     299             :     /* CPU costs */
     300      445376 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     301             : 
     302      445376 :     startup_cost += qpqual_cost.startup;
     303      445376 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     304      445376 :     cpu_run_cost = cpu_per_tuple * baserel->tuples;
     305             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     306      445376 :     startup_cost += path->pathtarget->cost.startup;
     307      445376 :     cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
     308             : 
     309             :     /* Adjust costing for parallelism, if used. */
     310      445376 :     if (path->parallel_workers > 0)
     311             :     {
     312       28380 :         double      parallel_divisor = get_parallel_divisor(path);
     313             : 
     314             :         /* The CPU cost is divided among all the workers. */
     315       28380 :         cpu_run_cost /= parallel_divisor;
     316             : 
     317             :         /*
     318             :          * It may be possible to amortize some of the I/O cost, but probably
     319             :          * not very much, because most operating systems already do aggressive
     320             :          * prefetching.  For now, we assume that the disk run cost can't be
     321             :          * amortized at all.
     322             :          */
     323             : 
     324             :         /*
     325             :          * In the case of a parallel plan, the row count needs to represent
     326             :          * the number of tuples processed per worker.
     327             :          */
     328       28380 :         path->rows = clamp_row_est(path->rows / parallel_divisor);
     329             :     }
     330             : 
     331      445376 :     path->disabled_nodes = enable_seqscan ? 0 : 1;
     332      445376 :     path->startup_cost = startup_cost;
     333      445376 :     path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
     334      445376 : }
     335             : 
     336             : /*
     337             :  * cost_samplescan
     338             :  *    Determines and returns the cost of scanning a relation using sampling.
     339             :  *
     340             :  * 'baserel' is the relation to be scanned
     341             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     342             :  */
     343             : void
     344         306 : cost_samplescan(Path *path, PlannerInfo *root,
     345             :                 RelOptInfo *baserel, ParamPathInfo *param_info)
     346             : {
     347         306 :     Cost        startup_cost = 0;
     348         306 :     Cost        run_cost = 0;
     349             :     RangeTblEntry *rte;
     350             :     TableSampleClause *tsc;
     351             :     TsmRoutine *tsm;
     352             :     double      spc_seq_page_cost,
     353             :                 spc_random_page_cost,
     354             :                 spc_page_cost;
     355             :     QualCost    qpqual_cost;
     356             :     Cost        cpu_per_tuple;
     357             : 
     358             :     /* Should only be applied to base relations with tablesample clauses */
     359             :     Assert(baserel->relid > 0);
     360         306 :     rte = planner_rt_fetch(baserel->relid, root);
     361             :     Assert(rte->rtekind == RTE_RELATION);
     362         306 :     tsc = rte->tablesample;
     363             :     Assert(tsc != NULL);
     364         306 :     tsm = GetTsmRoutine(tsc->tsmhandler);
     365             : 
     366             :     /* Mark the path with the correct row estimate */
     367         306 :     if (param_info)
     368          72 :         path->rows = param_info->ppi_rows;
     369             :     else
     370         234 :         path->rows = baserel->rows;
     371             : 
     372             :     /* fetch estimated page cost for tablespace containing table */
     373         306 :     get_tablespace_page_costs(baserel->reltablespace,
     374             :                               &spc_random_page_cost,
     375             :                               &spc_seq_page_cost);
     376             : 
     377             :     /* if NextSampleBlock is used, assume random access, else sequential */
     378         612 :     spc_page_cost = (tsm->NextSampleBlock != NULL) ?
     379         306 :         spc_random_page_cost : spc_seq_page_cost;
     380             : 
     381             :     /*
     382             :      * disk costs (recall that baserel->pages has already been set to the
     383             :      * number of pages the sampling method will visit)
     384             :      */
     385         306 :     run_cost += spc_page_cost * baserel->pages;
     386             : 
     387             :     /*
     388             :      * CPU costs (recall that baserel->tuples has already been set to the
     389             :      * number of tuples the sampling method will select).  Note that we ignore
     390             :      * execution cost of the TABLESAMPLE parameter expressions; they will be
     391             :      * evaluated only once per scan, and in most usages they'll likely be
     392             :      * simple constants anyway.  We also don't charge anything for the
     393             :      * calculations the sampling method might do internally.
     394             :      */
     395         306 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     396             : 
     397         306 :     startup_cost += qpqual_cost.startup;
     398         306 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     399         306 :     run_cost += cpu_per_tuple * baserel->tuples;
     400             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     401         306 :     startup_cost += path->pathtarget->cost.startup;
     402         306 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
     403             : 
     404         306 :     path->disabled_nodes = 0;
     405         306 :     path->startup_cost = startup_cost;
     406         306 :     path->total_cost = startup_cost + run_cost;
     407         306 : }
     408             : 
     409             : /*
     410             :  * cost_gather
     411             :  *    Determines and returns the cost of gather path.
     412             :  *
     413             :  * 'rel' is the relation to be operated upon
     414             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     415             :  * 'rows' may be used to point to a row estimate; if non-NULL, it overrides
     416             :  * both 'rel' and 'param_info'.  This is useful when the path doesn't exactly
     417             :  * correspond to any particular RelOptInfo.
     418             :  */
     419             : void
     420       25416 : cost_gather(GatherPath *path, PlannerInfo *root,
     421             :             RelOptInfo *rel, ParamPathInfo *param_info,
     422             :             double *rows)
     423             : {
     424       25416 :     Cost        startup_cost = 0;
     425       25416 :     Cost        run_cost = 0;
     426             : 
     427             :     /* Mark the path with the correct row estimate */
     428       25416 :     if (rows)
     429        6262 :         path->path.rows = *rows;
     430       19154 :     else if (param_info)
     431           0 :         path->path.rows = param_info->ppi_rows;
     432             :     else
     433       19154 :         path->path.rows = rel->rows;
     434             : 
     435       25416 :     startup_cost = path->subpath->startup_cost;
     436             : 
     437       25416 :     run_cost = path->subpath->total_cost - path->subpath->startup_cost;
     438             : 
     439             :     /* Parallel setup and communication cost. */
     440       25416 :     startup_cost += parallel_setup_cost;
     441       25416 :     run_cost += parallel_tuple_cost * path->path.rows;
     442             : 
     443       25416 :     path->path.disabled_nodes = path->subpath->disabled_nodes;
     444       25416 :     path->path.startup_cost = startup_cost;
     445       25416 :     path->path.total_cost = (startup_cost + run_cost);
     446       25416 : }
     447             : 
     448             : /*
     449             :  * cost_gather_merge
     450             :  *    Determines and returns the cost of gather merge path.
     451             :  *
     452             :  * GatherMerge merges several pre-sorted input streams, using a heap that at
     453             :  * any given instant holds the next tuple from each stream. If there are N
     454             :  * streams, we need about N*log2(N) tuple comparisons to construct the heap at
     455             :  * startup, and then for each output tuple, about log2(N) comparisons to
     456             :  * replace the top heap entry with the next tuple from the same stream.
     457             :  */
     458             : void
     459       18928 : cost_gather_merge(GatherMergePath *path, PlannerInfo *root,
     460             :                   RelOptInfo *rel, ParamPathInfo *param_info,
     461             :                   int input_disabled_nodes,
     462             :                   Cost input_startup_cost, Cost input_total_cost,
     463             :                   double *rows)
     464             : {
     465       18928 :     Cost        startup_cost = 0;
     466       18928 :     Cost        run_cost = 0;
     467             :     Cost        comparison_cost;
     468             :     double      N;
     469             :     double      logN;
     470             : 
     471             :     /* Mark the path with the correct row estimate */
     472       18928 :     if (rows)
     473       11278 :         path->path.rows = *rows;
     474        7650 :     else if (param_info)
     475           0 :         path->path.rows = param_info->ppi_rows;
     476             :     else
     477        7650 :         path->path.rows = rel->rows;
     478             : 
     479             :     /*
     480             :      * Add one to the number of workers to account for the leader.  This might
     481             :      * be overgenerous since the leader will do less work than other workers
     482             :      * in typical cases, but we'll go with it for now.
     483             :      */
     484             :     Assert(path->num_workers > 0);
     485       18928 :     N = (double) path->num_workers + 1;
     486       18928 :     logN = LOG2(N);
     487             : 
     488             :     /* Assumed cost per tuple comparison */
     489       18928 :     comparison_cost = 2.0 * cpu_operator_cost;
     490             : 
     491             :     /* Heap creation cost */
     492       18928 :     startup_cost += comparison_cost * N * logN;
     493             : 
     494             :     /* Per-tuple heap maintenance cost */
     495       18928 :     run_cost += path->path.rows * comparison_cost * logN;
     496             : 
     497             :     /* small cost for heap management, like cost_merge_append */
     498       18928 :     run_cost += cpu_operator_cost * path->path.rows;
     499             : 
     500             :     /*
     501             :      * Parallel setup and communication cost.  Since Gather Merge, unlike
     502             :      * Gather, requires us to block until a tuple is available from every
     503             :      * worker, we bump the IPC cost up a little bit as compared with Gather.
     504             :      * For lack of a better idea, charge an extra 5%.
     505             :      */
     506       18928 :     startup_cost += parallel_setup_cost;
     507       18928 :     run_cost += parallel_tuple_cost * path->path.rows * 1.05;
     508             : 
     509       18928 :     path->path.disabled_nodes = input_disabled_nodes
     510       18928 :         + (enable_gathermerge ? 0 : 1);
     511       18928 :     path->path.startup_cost = startup_cost + input_startup_cost;
     512       18928 :     path->path.total_cost = (startup_cost + run_cost + input_total_cost);
     513       18928 : }
     514             : 
     515             : /*
     516             :  * cost_index
     517             :  *    Determines and returns the cost of scanning a relation using an index.
     518             :  *
     519             :  * 'path' describes the indexscan under consideration, and is complete
     520             :  *      except for the fields to be set by this routine
     521             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
     522             :  *      estimates of caching behavior
     523             :  *
     524             :  * In addition to rows, startup_cost and total_cost, cost_index() sets the
     525             :  * path's indextotalcost and indexselectivity fields.  These values will be
     526             :  * needed if the IndexPath is used in a BitmapIndexScan.
     527             :  *
     528             :  * NOTE: path->indexquals must contain only clauses usable as index
     529             :  * restrictions.  Any additional quals evaluated as qpquals may reduce the
     530             :  * number of returned tuples, but they won't reduce the number of tuples
     531             :  * we have to fetch from the table, so they don't reduce the scan cost.
     532             :  */
     533             : void
     534      820786 : cost_index(IndexPath *path, PlannerInfo *root, double loop_count,
     535             :            bool partial_path)
     536             : {
     537      820786 :     IndexOptInfo *index = path->indexinfo;
     538      820786 :     RelOptInfo *baserel = index->rel;
     539      820786 :     bool        indexonly = (path->path.pathtype == T_IndexOnlyScan);
     540             :     amcostestimate_function amcostestimate;
     541             :     List       *qpquals;
     542      820786 :     Cost        startup_cost = 0;
     543      820786 :     Cost        run_cost = 0;
     544      820786 :     Cost        cpu_run_cost = 0;
     545             :     Cost        indexStartupCost;
     546             :     Cost        indexTotalCost;
     547             :     Selectivity indexSelectivity;
     548             :     double      indexCorrelation,
     549             :                 csquared;
     550             :     double      spc_seq_page_cost,
     551             :                 spc_random_page_cost;
     552             :     Cost        min_IO_cost,
     553             :                 max_IO_cost;
     554             :     QualCost    qpqual_cost;
     555             :     Cost        cpu_per_tuple;
     556             :     double      tuples_fetched;
     557             :     double      pages_fetched;
     558             :     double      rand_heap_pages;
     559             :     double      index_pages;
     560             : 
     561             :     /* Should only be applied to base relations */
     562             :     Assert(IsA(baserel, RelOptInfo) &&
     563             :            IsA(index, IndexOptInfo));
     564             :     Assert(baserel->relid > 0);
     565             :     Assert(baserel->rtekind == RTE_RELATION);
     566             : 
     567             :     /*
     568             :      * Mark the path with the correct row estimate, and identify which quals
     569             :      * will need to be enforced as qpquals.  We need not check any quals that
     570             :      * are implied by the index's predicate, so we can use indrestrictinfo not
     571             :      * baserestrictinfo as the list of relevant restriction clauses for the
     572             :      * rel.
     573             :      */
     574      820786 :     if (path->path.param_info)
     575             :     {
     576      156990 :         path->path.rows = path->path.param_info->ppi_rows;
     577             :         /* qpquals come from the rel's restriction clauses and ppi_clauses */
     578      156990 :         qpquals = list_concat(extract_nonindex_conditions(path->indexinfo->indrestrictinfo,
     579             :                                                           path->indexclauses),
     580      156990 :                               extract_nonindex_conditions(path->path.param_info->ppi_clauses,
     581             :                                                           path->indexclauses));
     582             :     }
     583             :     else
     584             :     {
     585      663796 :         path->path.rows = baserel->rows;
     586             :         /* qpquals come from just the rel's restriction clauses */
     587      663796 :         qpquals = extract_nonindex_conditions(path->indexinfo->indrestrictinfo,
     588             :                                               path->indexclauses);
     589             :     }
     590             : 
     591             :     /* we don't need to check enable_indexonlyscan; indxpath.c does that */
     592      820786 :     path->path.disabled_nodes = enable_indexscan ? 0 : 1;
     593             : 
     594             :     /*
     595             :      * Call index-access-method-specific code to estimate the processing cost
     596             :      * for scanning the index, as well as the selectivity of the index (ie,
     597             :      * the fraction of main-table tuples we will have to retrieve) and its
     598             :      * correlation to the main-table tuple order.  We need a cast here because
     599             :      * pathnodes.h uses a weak function type to avoid including amapi.h.
     600             :      */
     601      820786 :     amcostestimate = (amcostestimate_function) index->amcostestimate;
     602      820786 :     amcostestimate(root, path, loop_count,
     603             :                    &indexStartupCost, &indexTotalCost,
     604             :                    &indexSelectivity, &indexCorrelation,
     605             :                    &index_pages);
     606             : 
     607             :     /*
     608             :      * Save amcostestimate's results for possible use in bitmap scan planning.
     609             :      * We don't bother to save indexStartupCost or indexCorrelation, because a
     610             :      * bitmap scan doesn't care about either.
     611             :      */
     612      820786 :     path->indextotalcost = indexTotalCost;
     613      820786 :     path->indexselectivity = indexSelectivity;
     614             : 
     615             :     /* all costs for touching index itself included here */
     616      820786 :     startup_cost += indexStartupCost;
     617      820786 :     run_cost += indexTotalCost - indexStartupCost;
     618             : 
     619             :     /* estimate number of main-table tuples fetched */
     620      820786 :     tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
     621             : 
     622             :     /* fetch estimated page costs for tablespace containing table */
     623      820786 :     get_tablespace_page_costs(baserel->reltablespace,
     624             :                               &spc_random_page_cost,
     625             :                               &spc_seq_page_cost);
     626             : 
     627             :     /*----------
     628             :      * Estimate number of main-table pages fetched, and compute I/O cost.
     629             :      *
     630             :      * When the index ordering is uncorrelated with the table ordering,
     631             :      * we use an approximation proposed by Mackert and Lohman (see
     632             :      * index_pages_fetched() for details) to compute the number of pages
     633             :      * fetched, and then charge spc_random_page_cost per page fetched.
     634             :      *
     635             :      * When the index ordering is exactly correlated with the table ordering
     636             :      * (just after a CLUSTER, for example), the number of pages fetched should
     637             :      * be exactly selectivity * table_size.  What's more, all but the first
     638             :      * will be sequential fetches, not the random fetches that occur in the
     639             :      * uncorrelated case.  So if the number of pages is more than 1, we
     640             :      * ought to charge
     641             :      *      spc_random_page_cost + (pages_fetched - 1) * spc_seq_page_cost
     642             :      * For partially-correlated indexes, we ought to charge somewhere between
     643             :      * these two estimates.  We currently interpolate linearly between the
     644             :      * estimates based on the correlation squared (XXX is that appropriate?).
     645             :      *
     646             :      * If it's an index-only scan, then we will not need to fetch any heap
     647             :      * pages for which the visibility map shows all tuples are visible.
     648             :      * Hence, reduce the estimated number of heap fetches accordingly.
     649             :      * We use the measured fraction of the entire heap that is all-visible,
     650             :      * which might not be particularly relevant to the subset of the heap
     651             :      * that this query will fetch; but it's not clear how to do better.
     652             :      *----------
     653             :      */
     654      820786 :     if (loop_count > 1)
     655             :     {
     656             :         /*
     657             :          * For repeated indexscans, the appropriate estimate for the
     658             :          * uncorrelated case is to scale up the number of tuples fetched in
     659             :          * the Mackert and Lohman formula by the number of scans, so that we
     660             :          * estimate the number of pages fetched by all the scans; then
     661             :          * pro-rate the costs for one scan.  In this case we assume all the
     662             :          * fetches are random accesses.
     663             :          */
     664       90400 :         pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
     665             :                                             baserel->pages,
     666       90400 :                                             (double) index->pages,
     667             :                                             root);
     668             : 
     669       90400 :         if (indexonly)
     670       11312 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     671             : 
     672       90400 :         rand_heap_pages = pages_fetched;
     673             : 
     674       90400 :         max_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
     675             : 
     676             :         /*
     677             :          * In the perfectly correlated case, the number of pages touched by
     678             :          * each scan is selectivity * table_size, and we can use the Mackert
     679             :          * and Lohman formula at the page level to estimate how much work is
     680             :          * saved by caching across scans.  We still assume all the fetches are
     681             :          * random, though, which is an overestimate that's hard to correct for
     682             :          * without double-counting the cache effects.  (But in most cases
     683             :          * where such a plan is actually interesting, only one page would get
     684             :          * fetched per scan anyway, so it shouldn't matter much.)
     685             :          */
     686       90400 :         pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
     687             : 
     688       90400 :         pages_fetched = index_pages_fetched(pages_fetched * loop_count,
     689             :                                             baserel->pages,
     690       90400 :                                             (double) index->pages,
     691             :                                             root);
     692             : 
     693       90400 :         if (indexonly)
     694       11312 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     695             : 
     696       90400 :         min_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
     697             :     }
     698             :     else
     699             :     {
     700             :         /*
     701             :          * Normal case: apply the Mackert and Lohman formula, and then
     702             :          * interpolate between that and the correlation-derived result.
     703             :          */
     704      730386 :         pages_fetched = index_pages_fetched(tuples_fetched,
     705             :                                             baserel->pages,
     706      730386 :                                             (double) index->pages,
     707             :                                             root);
     708             : 
     709      730386 :         if (indexonly)
     710       71664 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     711             : 
     712      730386 :         rand_heap_pages = pages_fetched;
     713             : 
     714             :         /* max_IO_cost is for the perfectly uncorrelated case (csquared=0) */
     715      730386 :         max_IO_cost = pages_fetched * spc_random_page_cost;
     716             : 
     717             :         /* min_IO_cost is for the perfectly correlated case (csquared=1) */
     718      730386 :         pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
     719             : 
     720      730386 :         if (indexonly)
     721       71664 :             pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     722             : 
     723      730386 :         if (pages_fetched > 0)
     724             :         {
     725      651102 :             min_IO_cost = spc_random_page_cost;
     726      651102 :             if (pages_fetched > 1)
     727      199988 :                 min_IO_cost += (pages_fetched - 1) * spc_seq_page_cost;
     728             :         }
     729             :         else
     730       79284 :             min_IO_cost = 0;
     731             :     }
     732             : 
     733      820786 :     if (partial_path)
     734             :     {
     735             :         /*
     736             :          * For index only scans compute workers based on number of index pages
     737             :          * fetched; the number of heap pages we fetch might be so small as to
     738             :          * effectively rule out parallelism, which we don't want to do.
     739             :          */
     740      281492 :         if (indexonly)
     741       26446 :             rand_heap_pages = -1;
     742             : 
     743             :         /*
     744             :          * Estimate the number of parallel workers required to scan index. Use
     745             :          * the number of heap pages computed considering heap fetches won't be
     746             :          * sequential as for parallel scans the pages are accessed in random
     747             :          * order.
     748             :          */
     749      281492 :         path->path.parallel_workers = compute_parallel_worker(baserel,
     750             :                                                               rand_heap_pages,
     751             :                                                               index_pages,
     752             :                                                               max_parallel_workers_per_gather);
     753             : 
     754             :         /*
     755             :          * Fall out if workers can't be assigned for parallel scan, because in
     756             :          * such a case this path will be rejected.  So there is no benefit in
     757             :          * doing extra computation.
     758             :          */
     759      281492 :         if (path->path.parallel_workers <= 0)
     760      271280 :             return;
     761             : 
     762       10212 :         path->path.parallel_aware = true;
     763             :     }
     764             : 
     765             :     /*
     766             :      * Now interpolate based on estimated index order correlation to get total
     767             :      * disk I/O cost for main table accesses.
     768             :      */
     769      549506 :     csquared = indexCorrelation * indexCorrelation;
     770             : 
     771      549506 :     run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);
     772             : 
     773             :     /*
     774             :      * Estimate CPU costs per tuple.
     775             :      *
     776             :      * What we want here is cpu_tuple_cost plus the evaluation costs of any
     777             :      * qual clauses that we have to evaluate as qpquals.
     778             :      */
     779      549506 :     cost_qual_eval(&qpqual_cost, qpquals, root);
     780             : 
     781      549506 :     startup_cost += qpqual_cost.startup;
     782      549506 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     783             : 
     784      549506 :     cpu_run_cost += cpu_per_tuple * tuples_fetched;
     785             : 
     786             :     /* tlist eval costs are paid per output row, not per tuple scanned */
     787      549506 :     startup_cost += path->path.pathtarget->cost.startup;
     788      549506 :     cpu_run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
     789             : 
     790             :     /* Adjust costing for parallelism, if used. */
     791      549506 :     if (path->path.parallel_workers > 0)
     792             :     {
     793       10212 :         double      parallel_divisor = get_parallel_divisor(&path->path);
     794             : 
     795       10212 :         path->path.rows = clamp_row_est(path->path.rows / parallel_divisor);
     796             : 
     797             :         /* The CPU cost is divided among all the workers. */
     798       10212 :         cpu_run_cost /= parallel_divisor;
     799             :     }
     800             : 
     801      549506 :     run_cost += cpu_run_cost;
     802             : 
     803      549506 :     path->path.startup_cost = startup_cost;
     804      549506 :     path->path.total_cost = startup_cost + run_cost;
     805             : }
     806             : 
     807             : /*
     808             :  * extract_nonindex_conditions
     809             :  *
     810             :  * Given a list of quals to be enforced in an indexscan, extract the ones that
     811             :  * will have to be applied as qpquals (ie, the index machinery won't handle
     812             :  * them).  Here we detect only whether a qual clause is directly redundant
     813             :  * with some indexclause.  If the index path is chosen for use, createplan.c
     814             :  * will try a bit harder to get rid of redundant qual conditions; specifically
     815             :  * it will see if quals can be proven to be implied by the indexquals.  But
     816             :  * it does not seem worth the cycles to try to factor that in at this stage,
     817             :  * since we're only trying to estimate qual eval costs.  Otherwise this must
     818             :  * match the logic in create_indexscan_plan().
     819             :  *
     820             :  * qual_clauses, and the result, are lists of RestrictInfos.
     821             :  * indexclauses is a list of IndexClauses.
     822             :  */
     823             : static List *
     824      977776 : extract_nonindex_conditions(List *qual_clauses, List *indexclauses)
     825             : {
     826      977776 :     List       *result = NIL;
     827             :     ListCell   *lc;
     828             : 
     829     2023572 :     foreach(lc, qual_clauses)
     830             :     {
     831     1045796 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
     832             : 
     833     1045796 :         if (rinfo->pseudoconstant)
     834       10304 :             continue;           /* we may drop pseudoconstants here */
     835     1035492 :         if (is_redundant_with_indexclauses(rinfo, indexclauses))
     836      617362 :             continue;           /* dup or derived from same EquivalenceClass */
     837             :         /* ... skip the predicate proof attempt createplan.c will try ... */
     838      418130 :         result = lappend(result, rinfo);
     839             :     }
     840      977776 :     return result;
     841             : }
     842             : 
     843             : /*
     844             :  * index_pages_fetched
     845             :  *    Estimate the number of pages actually fetched after accounting for
     846             :  *    cache effects.
     847             :  *
     848             :  * We use an approximation proposed by Mackert and Lohman, "Index Scans
     849             :  * Using a Finite LRU Buffer: A Validated I/O Model", ACM Transactions
     850             :  * on Database Systems, Vol. 14, No. 3, September 1989, Pages 401-424.
     851             :  * The Mackert and Lohman approximation is that the number of pages
     852             :  * fetched is
     853             :  *  PF =
     854             :  *      min(2TNs/(2T+Ns), T)            when T <= b
     855             :  *      2TNs/(2T+Ns)                    when T > b and Ns <= 2Tb/(2T-b)
     856             :  *      b + (Ns - 2Tb/(2T-b))*(T-b)/T   when T > b and Ns > 2Tb/(2T-b)
     857             :  * where
     858             :  *      T = # pages in table
     859             :  *      N = # tuples in table
     860             :  *      s = selectivity = fraction of table to be scanned
     861             :  *      b = # buffer pages available (we include kernel space here)
     862             :  *
     863             :  * We assume that effective_cache_size is the total number of buffer pages
     864             :  * available for the whole query, and pro-rate that space across all the
     865             :  * tables in the query and the index currently under consideration.  (This
     866             :  * ignores space needed for other indexes used by the query, but since we
     867             :  * don't know which indexes will get used, we can't estimate that very well;
     868             :  * and in any case counting all the tables may well be an overestimate, since
     869             :  * depending on the join plan not all the tables may be scanned concurrently.)
     870             :  *
     871             :  * The product Ns is the number of tuples fetched; we pass in that
     872             :  * product rather than calculating it here.  "pages" is the number of pages
     873             :  * in the object under consideration (either an index or a table).
     874             :  * "index_pages" is the amount to add to the total table space, which was
     875             :  * computed for us by make_one_rel.
     876             :  *
     877             :  * Caller is expected to have ensured that tuples_fetched is greater than zero
     878             :  * and rounded to integer (see clamp_row_est).  The result will likewise be
     879             :  * greater than zero and integral.
     880             :  */
     881             : double
     882     1154766 : index_pages_fetched(double tuples_fetched, BlockNumber pages,
     883             :                     double index_pages, PlannerInfo *root)
     884             : {
     885             :     double      pages_fetched;
     886             :     double      total_pages;
     887             :     double      T,
     888             :                 b;
     889             : 
     890             :     /* T is # pages in table, but don't allow it to be zero */
     891     1154766 :     T = (pages > 1) ? (double) pages : 1.0;
     892             : 
     893             :     /* Compute number of pages assumed to be competing for cache space */
     894     1154766 :     total_pages = root->total_table_pages + index_pages;
     895     1154766 :     total_pages = Max(total_pages, 1.0);
     896             :     Assert(T <= total_pages);
     897             : 
     898             :     /* b is pro-rated share of effective_cache_size */
     899     1154766 :     b = (double) effective_cache_size * T / total_pages;
     900             : 
     901             :     /* force it positive and integral */
     902     1154766 :     if (b <= 1.0)
     903           0 :         b = 1.0;
     904             :     else
     905     1154766 :         b = ceil(b);
     906             : 
     907             :     /* This part is the Mackert and Lohman formula */
     908     1154766 :     if (T <= b)
     909             :     {
     910     1154766 :         pages_fetched =
     911     1154766 :             (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
     912     1154766 :         if (pages_fetched >= T)
     913      677938 :             pages_fetched = T;
     914             :         else
     915      476828 :             pages_fetched = ceil(pages_fetched);
     916             :     }
     917             :     else
     918             :     {
     919             :         double      lim;
     920             : 
     921           0 :         lim = (2.0 * T * b) / (2.0 * T - b);
     922           0 :         if (tuples_fetched <= lim)
     923             :         {
     924           0 :             pages_fetched =
     925           0 :                 (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
     926             :         }
     927             :         else
     928             :         {
     929           0 :             pages_fetched =
     930           0 :                 b + (tuples_fetched - lim) * (T - b) / T;
     931             :         }
     932           0 :         pages_fetched = ceil(pages_fetched);
     933             :     }
     934     1154766 :     return pages_fetched;
     935             : }
     936             : 
     937             : /*
     938             :  * get_indexpath_pages
     939             :  *      Determine the total size of the indexes used in a bitmap index path.
     940             :  *
     941             :  * Note: if the same index is used more than once in a bitmap tree, we will
     942             :  * count it multiple times, which perhaps is the wrong thing ... but it's
     943             :  * not completely clear, and detecting duplicates is difficult, so ignore it
     944             :  * for now.
     945             :  */
     946             : static double
     947      194226 : get_indexpath_pages(Path *bitmapqual)
     948             : {
     949      194226 :     double      result = 0;
     950             :     ListCell   *l;
     951             : 
     952      194226 :     if (IsA(bitmapqual, BitmapAndPath))
     953             :     {
     954       23176 :         BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
     955             : 
     956       69528 :         foreach(l, apath->bitmapquals)
     957             :         {
     958       46352 :             result += get_indexpath_pages((Path *) lfirst(l));
     959             :         }
     960             :     }
     961      171050 :     else if (IsA(bitmapqual, BitmapOrPath))
     962             :     {
     963          70 :         BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
     964             : 
     965         222 :         foreach(l, opath->bitmapquals)
     966             :         {
     967         152 :             result += get_indexpath_pages((Path *) lfirst(l));
     968             :         }
     969             :     }
     970      170980 :     else if (IsA(bitmapqual, IndexPath))
     971             :     {
     972      170980 :         IndexPath  *ipath = (IndexPath *) bitmapqual;
     973             : 
     974      170980 :         result = (double) ipath->indexinfo->pages;
     975             :     }
     976             :     else
     977           0 :         elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
     978             : 
     979      194226 :     return result;
     980             : }
     981             : 
     982             : /*
     983             :  * cost_bitmap_heap_scan
     984             :  *    Determines and returns the cost of scanning a relation using a bitmap
     985             :  *    index-then-heap plan.
     986             :  *
     987             :  * 'baserel' is the relation to be scanned
     988             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     989             :  * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths
     990             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
     991             :  *      estimates of caching behavior
     992             :  *
     993             :  * Note: the component IndexPaths in bitmapqual should have been costed
     994             :  * using the same loop_count.
     995             :  */
     996             : void
     997      557624 : cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel,
     998             :                       ParamPathInfo *param_info,
     999             :                       Path *bitmapqual, double loop_count)
    1000             : {
    1001      557624 :     Cost        startup_cost = 0;
    1002      557624 :     Cost        run_cost = 0;
    1003             :     Cost        indexTotalCost;
    1004             :     QualCost    qpqual_cost;
    1005             :     Cost        cpu_per_tuple;
    1006             :     Cost        cost_per_page;
    1007             :     Cost        cpu_run_cost;
    1008             :     double      tuples_fetched;
    1009             :     double      pages_fetched;
    1010             :     double      spc_seq_page_cost,
    1011             :                 spc_random_page_cost;
    1012             :     double      T;
    1013             : 
    1014             :     /* Should only be applied to base relations */
    1015             :     Assert(IsA(baserel, RelOptInfo));
    1016             :     Assert(baserel->relid > 0);
    1017             :     Assert(baserel->rtekind == RTE_RELATION);
    1018             : 
    1019             :     /* Mark the path with the correct row estimate */
    1020      557624 :     if (param_info)
    1021      236630 :         path->rows = param_info->ppi_rows;
    1022             :     else
    1023      320994 :         path->rows = baserel->rows;
    1024             : 
    1025      557624 :     pages_fetched = compute_bitmap_pages(root, baserel, bitmapqual,
    1026             :                                          loop_count, &indexTotalCost,
    1027             :                                          &tuples_fetched);
    1028             : 
    1029      557624 :     startup_cost += indexTotalCost;
    1030      557624 :     T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
    1031             : 
    1032             :     /* Fetch estimated page costs for tablespace containing table. */
    1033      557624 :     get_tablespace_page_costs(baserel->reltablespace,
    1034             :                               &spc_random_page_cost,
    1035             :                               &spc_seq_page_cost);
    1036             : 
    1037             :     /*
    1038             :      * For small numbers of pages we should charge spc_random_page_cost
    1039             :      * apiece, while if nearly all the table's pages are being read, it's more
    1040             :      * appropriate to charge spc_seq_page_cost apiece.  The effect is
    1041             :      * nonlinear, too. For lack of a better idea, interpolate like this to
    1042             :      * determine the cost per page.
    1043             :      */
    1044      557624 :     if (pages_fetched >= 2.0)
    1045      117960 :         cost_per_page = spc_random_page_cost -
    1046      117960 :             (spc_random_page_cost - spc_seq_page_cost)
    1047      117960 :             * sqrt(pages_fetched / T);
    1048             :     else
    1049      439664 :         cost_per_page = spc_random_page_cost;
    1050             : 
    1051      557624 :     run_cost += pages_fetched * cost_per_page;
    1052             : 
    1053             :     /*
    1054             :      * Estimate CPU costs per tuple.
    1055             :      *
    1056             :      * Often the indexquals don't need to be rechecked at each tuple ... but
    1057             :      * not always, especially not if there are enough tuples involved that the
    1058             :      * bitmaps become lossy.  For the moment, just assume they will be
    1059             :      * rechecked always.  This means we charge the full freight for all the
    1060             :      * scan clauses.
    1061             :      */
    1062      557624 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1063             : 
    1064      557624 :     startup_cost += qpqual_cost.startup;
    1065      557624 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1066      557624 :     cpu_run_cost = cpu_per_tuple * tuples_fetched;
    1067             : 
    1068             :     /* Adjust costing for parallelism, if used. */
    1069      557624 :     if (path->parallel_workers > 0)
    1070             :     {
    1071        4276 :         double      parallel_divisor = get_parallel_divisor(path);
    1072             : 
    1073             :         /* The CPU cost is divided among all the workers. */
    1074        4276 :         cpu_run_cost /= parallel_divisor;
    1075             : 
    1076        4276 :         path->rows = clamp_row_est(path->rows / parallel_divisor);
    1077             :     }
    1078             : 
    1079             : 
    1080      557624 :     run_cost += cpu_run_cost;
    1081             : 
    1082             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1083      557624 :     startup_cost += path->pathtarget->cost.startup;
    1084      557624 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1085             : 
    1086      557624 :     path->disabled_nodes = enable_bitmapscan ? 0 : 1;
    1087      557624 :     path->startup_cost = startup_cost;
    1088      557624 :     path->total_cost = startup_cost + run_cost;
    1089      557624 : }
    1090             : 
    1091             : /*
    1092             :  * cost_bitmap_tree_node
    1093             :  *      Extract cost and selectivity from a bitmap tree node (index/and/or)
    1094             :  */
    1095             : void
    1096     1027518 : cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec)
    1097             : {
    1098     1027518 :     if (IsA(path, IndexPath))
    1099             :     {
    1100      973102 :         *cost = ((IndexPath *) path)->indextotalcost;
    1101      973102 :         *selec = ((IndexPath *) path)->indexselectivity;
    1102             : 
    1103             :         /*
    1104             :          * Charge a small amount per retrieved tuple to reflect the costs of
    1105             :          * manipulating the bitmap.  This is mostly to make sure that a bitmap
    1106             :          * scan doesn't look to be the same cost as an indexscan to retrieve a
    1107             :          * single tuple.
    1108             :          */
    1109      973102 :         *cost += 0.1 * cpu_operator_cost * path->rows;
    1110             :     }
    1111       54416 :     else if (IsA(path, BitmapAndPath))
    1112             :     {
    1113       50748 :         *cost = path->total_cost;
    1114       50748 :         *selec = ((BitmapAndPath *) path)->bitmapselectivity;
    1115             :     }
    1116        3668 :     else if (IsA(path, BitmapOrPath))
    1117             :     {
    1118        3668 :         *cost = path->total_cost;
    1119        3668 :         *selec = ((BitmapOrPath *) path)->bitmapselectivity;
    1120             :     }
    1121             :     else
    1122             :     {
    1123           0 :         elog(ERROR, "unrecognized node type: %d", nodeTag(path));
    1124             :         *cost = *selec = 0;     /* keep compiler quiet */
    1125             :     }
    1126     1027518 : }
    1127             : 
    1128             : /*
    1129             :  * cost_bitmap_and_node
    1130             :  *      Estimate the cost of a BitmapAnd node
    1131             :  *
    1132             :  * Note that this considers only the costs of index scanning and bitmap
    1133             :  * creation, not the eventual heap access.  In that sense the object isn't
    1134             :  * truly a Path, but it has enough path-like properties (costs in particular)
    1135             :  * to warrant treating it as one.  We don't bother to set the path rows field,
    1136             :  * however.
    1137             :  */
    1138             : void
    1139       50534 : cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
    1140             : {
    1141             :     Cost        totalCost;
    1142             :     Selectivity selec;
    1143             :     ListCell   *l;
    1144             : 
    1145             :     /*
    1146             :      * We estimate AND selectivity on the assumption that the inputs are
    1147             :      * independent.  This is probably often wrong, but we don't have the info
    1148             :      * to do better.
    1149             :      *
    1150             :      * The runtime cost of the BitmapAnd itself is estimated at 100x
    1151             :      * cpu_operator_cost for each tbm_intersect needed.  Probably too small,
    1152             :      * definitely too simplistic?
    1153             :      */
    1154       50534 :     totalCost = 0.0;
    1155       50534 :     selec = 1.0;
    1156      151602 :     foreach(l, path->bitmapquals)
    1157             :     {
    1158      101068 :         Path       *subpath = (Path *) lfirst(l);
    1159             :         Cost        subCost;
    1160             :         Selectivity subselec;
    1161             : 
    1162      101068 :         cost_bitmap_tree_node(subpath, &subCost, &subselec);
    1163             : 
    1164      101068 :         selec *= subselec;
    1165             : 
    1166      101068 :         totalCost += subCost;
    1167      101068 :         if (l != list_head(path->bitmapquals))
    1168       50534 :             totalCost += 100.0 * cpu_operator_cost;
    1169             :     }
    1170       50534 :     path->bitmapselectivity = selec;
    1171       50534 :     path->path.rows = 0;     /* per above, not used */
    1172       50534 :     path->path.disabled_nodes = 0;
    1173       50534 :     path->path.startup_cost = totalCost;
    1174       50534 :     path->path.total_cost = totalCost;
    1175       50534 : }
    1176             : 
    1177             : /*
    1178             :  * cost_bitmap_or_node
    1179             :  *      Estimate the cost of a BitmapOr node
    1180             :  *
    1181             :  * See comments for cost_bitmap_and_node.
    1182             :  */
    1183             : void
    1184        1040 : cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
    1185             : {
    1186             :     Cost        totalCost;
    1187             :     Selectivity selec;
    1188             :     ListCell   *l;
    1189             : 
    1190             :     /*
    1191             :      * We estimate OR selectivity on the assumption that the inputs are
    1192             :      * non-overlapping, since that's often the case in "x IN (list)" type
    1193             :      * situations.  Of course, we clamp to 1.0 at the end.
    1194             :      *
    1195             :      * The runtime cost of the BitmapOr itself is estimated at 100x
    1196             :      * cpu_operator_cost for each tbm_union needed.  Probably too small,
    1197             :      * definitely too simplistic?  We are aware that the tbm_unions are
    1198             :      * optimized out when the inputs are BitmapIndexScans.
    1199             :      */
    1200        1040 :     totalCost = 0.0;
    1201        1040 :     selec = 0.0;
    1202        2922 :     foreach(l, path->bitmapquals)
    1203             :     {
    1204        1882 :         Path       *subpath = (Path *) lfirst(l);
    1205             :         Cost        subCost;
    1206             :         Selectivity subselec;
    1207             : 
    1208        1882 :         cost_bitmap_tree_node(subpath, &subCost, &subselec);
    1209             : 
    1210        1882 :         selec += subselec;
    1211             : 
    1212        1882 :         totalCost += subCost;
    1213        1882 :         if (l != list_head(path->bitmapquals) &&
    1214         842 :             !IsA(subpath, IndexPath))
    1215           0 :             totalCost += 100.0 * cpu_operator_cost;
    1216             :     }
    1217        1040 :     path->bitmapselectivity = Min(selec, 1.0);
    1218        1040 :     path->path.rows = 0;     /* per above, not used */
    1219        1040 :     path->path.startup_cost = totalCost;
    1220        1040 :     path->path.total_cost = totalCost;
    1221        1040 : }
    1222             : 
    1223             : /*
    1224             :  * cost_tidscan
    1225             :  *    Determines and returns the cost of scanning a relation using TIDs.
    1226             :  *
    1227             :  * 'baserel' is the relation to be scanned
    1228             :  * 'tidquals' is the list of TID-checkable quals
    1229             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1230             :  */
    1231             : void
    1232         872 : cost_tidscan(Path *path, PlannerInfo *root,
    1233             :              RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
    1234             : {
    1235         872 :     Cost        startup_cost = 0;
    1236         872 :     Cost        run_cost = 0;
    1237             :     QualCost    qpqual_cost;
    1238             :     Cost        cpu_per_tuple;
    1239             :     QualCost    tid_qual_cost;
    1240             :     double      ntuples;
    1241             :     ListCell   *l;
    1242             :     double      spc_random_page_cost;
    1243             : 
    1244             :     /* Should only be applied to base relations */
    1245             :     Assert(baserel->relid > 0);
    1246             :     Assert(baserel->rtekind == RTE_RELATION);
    1247             :     Assert(tidquals != NIL);
    1248             : 
    1249             :     /* Mark the path with the correct row estimate */
    1250         872 :     if (param_info)
    1251         144 :         path->rows = param_info->ppi_rows;
    1252             :     else
    1253         728 :         path->rows = baserel->rows;
    1254             : 
    1255             :     /* Count how many tuples we expect to retrieve */
    1256         872 :     ntuples = 0;
    1257        1770 :     foreach(l, tidquals)
    1258             :     {
    1259         898 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    1260         898 :         Expr       *qual = rinfo->clause;
    1261             : 
    1262             :         /*
    1263             :          * We must use a TID scan for CurrentOfExpr; in any other case, we
    1264             :          * should be generating a TID scan only if enable_tidscan=true. Also,
    1265             :          * if CurrentOfExpr is the qual, there should be only one.
    1266             :          */
    1267             :         Assert(enable_tidscan || IsA(qual, CurrentOfExpr));
    1268             :         Assert(list_length(tidquals) == 1 || !IsA(qual, CurrentOfExpr));
    1269             : 
    1270         898 :         if (IsA(qual, ScalarArrayOpExpr))
    1271             :         {
    1272             :             /* Each element of the array yields 1 tuple */
    1273          50 :             ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) qual;
    1274          50 :             Node       *arraynode = (Node *) lsecond(saop->args);
    1275             : 
    1276          50 :             ntuples += estimate_array_length(root, arraynode);
    1277             :         }
    1278         848 :         else if (IsA(qual, CurrentOfExpr))
    1279             :         {
    1280             :             /* CURRENT OF yields 1 tuple */
    1281         404 :             ntuples++;
    1282             :         }
    1283             :         else
    1284             :         {
    1285             :             /* It's just CTID = something, count 1 tuple */
    1286         444 :             ntuples++;
    1287             :         }
    1288             :     }
    1289             : 
    1290             :     /*
    1291             :      * The TID qual expressions will be computed once, any other baserestrict
    1292             :      * quals once per retrieved tuple.
    1293             :      */
    1294         872 :     cost_qual_eval(&tid_qual_cost, tidquals, root);
    1295             : 
    1296             :     /* fetch estimated page cost for tablespace containing table */
    1297         872 :     get_tablespace_page_costs(baserel->reltablespace,
    1298             :                               &spc_random_page_cost,
    1299             :                               NULL);
    1300             : 
    1301             :     /* disk costs --- assume each tuple on a different page */
    1302         872 :     run_cost += spc_random_page_cost * ntuples;
    1303             : 
    1304             :     /* Add scanning CPU costs */
    1305         872 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1306             : 
    1307             :     /* XXX currently we assume TID quals are a subset of qpquals */
    1308         872 :     startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
    1309         872 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
    1310         872 :         tid_qual_cost.per_tuple;
    1311         872 :     run_cost += cpu_per_tuple * ntuples;
    1312             : 
    1313             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1314         872 :     startup_cost += path->pathtarget->cost.startup;
    1315         872 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1316             : 
    1317             :     /*
    1318             :      * There are assertions above verifying that we only reach this function
    1319             :      * either when enable_tidscan=true or when the TID scan is the only legal
    1320             :      * path, so it's safe to set disabled_nodes to zero here.
    1321             :      */
    1322         872 :     path->disabled_nodes = 0;
    1323         872 :     path->startup_cost = startup_cost;
    1324         872 :     path->total_cost = startup_cost + run_cost;
    1325         872 : }
    1326             : 
    1327             : /*
    1328             :  * cost_tidrangescan
    1329             :  *    Determines and sets the costs of scanning a relation using a range of
    1330             :  *    TIDs for 'path'
    1331             :  *
    1332             :  * 'baserel' is the relation to be scanned
    1333             :  * 'tidrangequals' is the list of TID-checkable range quals
    1334             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1335             :  */
    1336             : void
    1337        2052 : cost_tidrangescan(Path *path, PlannerInfo *root,
    1338             :                   RelOptInfo *baserel, List *tidrangequals,
    1339             :                   ParamPathInfo *param_info)
    1340             : {
    1341             :     Selectivity selectivity;
    1342             :     double      pages;
    1343             :     Cost        startup_cost;
    1344             :     Cost        cpu_run_cost;
    1345             :     Cost        disk_run_cost;
    1346             :     QualCost    qpqual_cost;
    1347             :     Cost        cpu_per_tuple;
    1348             :     QualCost    tid_qual_cost;
    1349             :     double      ntuples;
    1350             :     double      nseqpages;
    1351             :     double      spc_random_page_cost;
    1352             :     double      spc_seq_page_cost;
    1353             : 
    1354             :     /* Should only be applied to base relations */
    1355             :     Assert(baserel->relid > 0);
    1356             :     Assert(baserel->rtekind == RTE_RELATION);
    1357             : 
    1358             :     /* Mark the path with the correct row estimate */
    1359        2052 :     if (param_info)
    1360           0 :         path->rows = param_info->ppi_rows;
    1361             :     else
    1362        2052 :         path->rows = baserel->rows;
    1363             : 
    1364             :     /* Count how many tuples and pages we expect to scan */
    1365        2052 :     selectivity = clauselist_selectivity(root, tidrangequals, baserel->relid,
    1366             :                                          JOIN_INNER, NULL);
    1367        2052 :     pages = ceil(selectivity * baserel->pages);
    1368             : 
    1369        2052 :     if (pages <= 0.0)
    1370          42 :         pages = 1.0;
    1371             : 
    1372             :     /*
    1373             :      * The first page in a range requires a random seek, but each subsequent
    1374             :      * page is just a normal sequential page read. NOTE: it's desirable for
    1375             :      * TID Range Scans to cost more than the equivalent Sequential Scans,
    1376             :      * because Seq Scans have some performance advantages such as scan
    1377             :      * synchronization, and we'd prefer one of them to be picked unless a TID
    1378             :      * Range Scan really is better.
    1379             :      */
    1380        2052 :     ntuples = selectivity * baserel->tuples;
    1381        2052 :     nseqpages = pages - 1.0;
    1382             : 
    1383             :     /*
    1384             :      * The TID qual expressions will be computed once, any other baserestrict
    1385             :      * quals once per retrieved tuple.
    1386             :      */
    1387        2052 :     cost_qual_eval(&tid_qual_cost, tidrangequals, root);
    1388             : 
    1389             :     /* fetch estimated page cost for tablespace containing table */
    1390        2052 :     get_tablespace_page_costs(baserel->reltablespace,
    1391             :                               &spc_random_page_cost,
    1392             :                               &spc_seq_page_cost);
    1393             : 
    1394             :     /* disk costs; 1 random page and the remainder as seq pages */
    1395        2052 :     disk_run_cost = spc_random_page_cost + spc_seq_page_cost * nseqpages;
    1396             : 
    1397             :     /* Add scanning CPU costs */
    1398        2052 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1399             : 
    1400             :     /*
    1401             :      * XXX currently we assume TID quals are a subset of qpquals at this
    1402             :      * point; they will be removed (if possible) when we create the plan, so
    1403             :      * we subtract their cost from the total qpqual cost.  (If the TID quals
    1404             :      * can't be removed, this is a mistake and we're going to underestimate
    1405             :      * the CPU cost a bit.)
    1406             :      */
    1407        2052 :     startup_cost = qpqual_cost.startup + tid_qual_cost.per_tuple;
    1408        2052 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
    1409        2052 :         tid_qual_cost.per_tuple;
    1410        2052 :     cpu_run_cost = cpu_per_tuple * ntuples;
    1411             : 
    1412             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1413        2052 :     startup_cost += path->pathtarget->cost.startup;
    1414        2052 :     cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1415             : 
    1416             :     /* Adjust costing for parallelism, if used. */
    1417        2052 :     if (path->parallel_workers > 0)
    1418             :     {
    1419          48 :         double      parallel_divisor = get_parallel_divisor(path);
    1420             : 
    1421             :         /* The CPU cost is divided among all the workers. */
    1422          48 :         cpu_run_cost /= parallel_divisor;
    1423             : 
    1424             :         /*
    1425             :          * In the case of a parallel plan, the row count needs to represent
    1426             :          * the number of tuples processed per worker.
    1427             :          */
    1428          48 :         path->rows = clamp_row_est(path->rows / parallel_divisor);
    1429             :     }
    1430             : 
    1431             :     /* we should not generate this path type when enable_tidscan=false */
    1432             :     Assert(enable_tidscan);
    1433        2052 :     path->disabled_nodes = 0;
    1434        2052 :     path->startup_cost = startup_cost;
    1435        2052 :     path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
    1436        2052 : }
    1437             : 
    1438             : /*
    1439             :  * cost_subqueryscan
    1440             :  *    Determines and returns the cost of scanning a subquery RTE.
    1441             :  *
    1442             :  * 'baserel' is the relation to be scanned
    1443             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1444             :  * 'trivial_pathtarget' is true if the pathtarget is believed to be trivial.
    1445             :  */
    1446             : void
    1447       62324 : cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root,
    1448             :                   RelOptInfo *baserel, ParamPathInfo *param_info,
    1449             :                   bool trivial_pathtarget)
    1450             : {
    1451             :     Cost        startup_cost;
    1452             :     Cost        run_cost;
    1453             :     List       *qpquals;
    1454             :     QualCost    qpqual_cost;
    1455             :     Cost        cpu_per_tuple;
    1456             : 
    1457             :     /* Should only be applied to base relations that are subqueries */
    1458             :     Assert(baserel->relid > 0);
    1459             :     Assert(baserel->rtekind == RTE_SUBQUERY);
    1460             : 
    1461             :     /*
    1462             :      * We compute the rowcount estimate as the subplan's estimate times the
    1463             :      * selectivity of relevant restriction clauses.  In simple cases this will
    1464             :      * come out the same as baserel->rows; but when dealing with parallelized
    1465             :      * paths we must do it like this to get the right answer.
    1466             :      */
    1467       62324 :     if (param_info)
    1468         618 :         qpquals = list_concat_copy(param_info->ppi_clauses,
    1469         618 :                                    baserel->baserestrictinfo);
    1470             :     else
    1471       61706 :         qpquals = baserel->baserestrictinfo;
    1472             : 
    1473       62324 :     path->path.rows = clamp_row_est(path->subpath->rows *
    1474       62324 :                                     clauselist_selectivity(root,
    1475             :                                                            qpquals,
    1476             :                                                            0,
    1477             :                                                            JOIN_INNER,
    1478             :                                                            NULL));
    1479             : 
    1480             :     /*
    1481             :      * Cost of path is cost of evaluating the subplan, plus cost of evaluating
    1482             :      * any restriction clauses and tlist that will be attached to the
    1483             :      * SubqueryScan node, plus cpu_tuple_cost to account for selection and
    1484             :      * projection overhead.
    1485             :      */
    1486       62324 :     path->path.disabled_nodes = path->subpath->disabled_nodes;
    1487       62324 :     path->path.startup_cost = path->subpath->startup_cost;
    1488       62324 :     path->path.total_cost = path->subpath->total_cost;
    1489             : 
    1490             :     /*
    1491             :      * However, if there are no relevant restriction clauses and the
    1492             :      * pathtarget is trivial, then we expect that setrefs.c will optimize away
    1493             :      * the SubqueryScan plan node altogether, so we should just make its cost
    1494             :      * and rowcount equal to the input path's.
    1495             :      *
    1496             :      * Note: there are some edge cases where createplan.c will apply a
    1497             :      * different targetlist to the SubqueryScan node, thus falsifying our
    1498             :      * current estimate of whether the target is trivial, and making the cost
    1499             :      * estimate (though not the rowcount) wrong.  It does not seem worth the
    1500             :      * extra complication to try to account for that exactly, especially since
    1501             :      * that behavior falsifies other cost estimates as well.
    1502             :      */
    1503       62324 :     if (qpquals == NIL && trivial_pathtarget)
    1504       27548 :         return;
    1505             : 
    1506       34776 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1507             : 
    1508       34776 :     startup_cost = qpqual_cost.startup;
    1509       34776 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1510       34776 :     run_cost = cpu_per_tuple * path->subpath->rows;
    1511             : 
    1512             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1513       34776 :     startup_cost += path->path.pathtarget->cost.startup;
    1514       34776 :     run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
    1515             : 
    1516       34776 :     path->path.startup_cost += startup_cost;
    1517       34776 :     path->path.total_cost += startup_cost + run_cost;
    1518             : }
    1519             : 
    1520             : /*
    1521             :  * cost_functionscan
    1522             :  *    Determines and returns the cost of scanning a function RTE.
    1523             :  *
    1524             :  * 'baserel' is the relation to be scanned
    1525             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1526             :  */
    1527             : void
    1528       52708 : cost_functionscan(Path *path, PlannerInfo *root,
    1529             :                   RelOptInfo *baserel, ParamPathInfo *param_info)
    1530             : {
    1531       52708 :     Cost        startup_cost = 0;
    1532       52708 :     Cost        run_cost = 0;
    1533             :     QualCost    qpqual_cost;
    1534             :     Cost        cpu_per_tuple;
    1535             :     RangeTblEntry *rte;
    1536             :     QualCost    exprcost;
    1537             : 
    1538             :     /* Should only be applied to base relations that are functions */
    1539             :     Assert(baserel->relid > 0);
    1540       52708 :     rte = planner_rt_fetch(baserel->relid, root);
    1541             :     Assert(rte->rtekind == RTE_FUNCTION);
    1542             : 
    1543             :     /* Mark the path with the correct row estimate */
    1544       52708 :     if (param_info)
    1545        8370 :         path->rows = param_info->ppi_rows;
    1546             :     else
    1547       44338 :         path->rows = baserel->rows;
    1548             : 
    1549             :     /*
    1550             :      * Estimate costs of executing the function expression(s).
    1551             :      *
    1552             :      * Currently, nodeFunctionscan.c always executes the functions to
    1553             :      * completion before returning any rows, and caches the results in a
    1554             :      * tuplestore.  So the function eval cost is all startup cost, and per-row
    1555             :      * costs are minimal.
    1556             :      *
    1557             :      * XXX in principle we ought to charge tuplestore spill costs if the
    1558             :      * number of rows is large.  However, given how phony our rowcount
    1559             :      * estimates for functions tend to be, there's not a lot of point in that
    1560             :      * refinement right now.
    1561             :      */
    1562       52708 :     cost_qual_eval_node(&exprcost, (Node *) rte->functions, root);
    1563             : 
    1564       52708 :     startup_cost += exprcost.startup + exprcost.per_tuple;
    1565             : 
    1566             :     /* Add scanning CPU costs */
    1567       52708 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1568             : 
    1569       52708 :     startup_cost += qpqual_cost.startup;
    1570       52708 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1571       52708 :     run_cost += cpu_per_tuple * baserel->tuples;
    1572             : 
    1573             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1574       52708 :     startup_cost += path->pathtarget->cost.startup;
    1575       52708 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1576             : 
    1577       52708 :     path->disabled_nodes = 0;
    1578       52708 :     path->startup_cost = startup_cost;
    1579       52708 :     path->total_cost = startup_cost + run_cost;
    1580       52708 : }
    1581             : 
    1582             : /*
    1583             :  * cost_tablefuncscan
    1584             :  *    Determines and returns the cost of scanning a table function.
    1585             :  *
    1586             :  * 'baserel' is the relation to be scanned
    1587             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1588             :  */
    1589             : void
    1590         626 : cost_tablefuncscan(Path *path, PlannerInfo *root,
    1591             :                    RelOptInfo *baserel, ParamPathInfo *param_info)
    1592             : {
    1593         626 :     Cost        startup_cost = 0;
    1594         626 :     Cost        run_cost = 0;
    1595             :     QualCost    qpqual_cost;
    1596             :     Cost        cpu_per_tuple;
    1597             :     RangeTblEntry *rte;
    1598             :     QualCost    exprcost;
    1599             : 
    1600             :     /* Should only be applied to base relations that are functions */
    1601             :     Assert(baserel->relid > 0);
    1602         626 :     rte = planner_rt_fetch(baserel->relid, root);
    1603             :     Assert(rte->rtekind == RTE_TABLEFUNC);
    1604             : 
    1605             :     /* Mark the path with the correct row estimate */
    1606         626 :     if (param_info)
    1607         234 :         path->rows = param_info->ppi_rows;
    1608             :     else
    1609         392 :         path->rows = baserel->rows;
    1610             : 
    1611             :     /*
    1612             :      * Estimate costs of executing the table func expression(s).
    1613             :      *
    1614             :      * XXX in principle we ought to charge tuplestore spill costs if the
    1615             :      * number of rows is large.  However, given how phony our rowcount
    1616             :      * estimates for tablefuncs tend to be, there's not a lot of point in that
    1617             :      * refinement right now.
    1618             :      */
    1619         626 :     cost_qual_eval_node(&exprcost, (Node *) rte->tablefunc, root);
    1620             : 
    1621         626 :     startup_cost += exprcost.startup + exprcost.per_tuple;
    1622             : 
    1623             :     /* Add scanning CPU costs */
    1624         626 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1625             : 
    1626         626 :     startup_cost += qpqual_cost.startup;
    1627         626 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1628         626 :     run_cost += cpu_per_tuple * baserel->tuples;
    1629             : 
    1630             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1631         626 :     startup_cost += path->pathtarget->cost.startup;
    1632         626 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1633             : 
    1634         626 :     path->disabled_nodes = 0;
    1635         626 :     path->startup_cost = startup_cost;
    1636         626 :     path->total_cost = startup_cost + run_cost;
    1637         626 : }
    1638             : 
    1639             : /*
    1640             :  * cost_valuesscan
    1641             :  *    Determines and returns the cost of scanning a VALUES RTE.
    1642             :  *
    1643             :  * 'baserel' is the relation to be scanned
    1644             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1645             :  */
    1646             : void
    1647        8508 : cost_valuesscan(Path *path, PlannerInfo *root,
    1648             :                 RelOptInfo *baserel, ParamPathInfo *param_info)
    1649             : {
    1650        8508 :     Cost        startup_cost = 0;
    1651        8508 :     Cost        run_cost = 0;
    1652             :     QualCost    qpqual_cost;
    1653             :     Cost        cpu_per_tuple;
    1654             : 
    1655             :     /* Should only be applied to base relations that are values lists */
    1656             :     Assert(baserel->relid > 0);
    1657             :     Assert(baserel->rtekind == RTE_VALUES);
    1658             : 
    1659             :     /* Mark the path with the correct row estimate */
    1660        8508 :     if (param_info)
    1661          66 :         path->rows = param_info->ppi_rows;
    1662             :     else
    1663        8442 :         path->rows = baserel->rows;
    1664             : 
    1665             :     /*
    1666             :      * For now, estimate list evaluation cost at one operator eval per list
    1667             :      * (probably pretty bogus, but is it worth being smarter?)
    1668             :      */
    1669        8508 :     cpu_per_tuple = cpu_operator_cost;
    1670             : 
    1671             :     /* Add scanning CPU costs */
    1672        8508 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1673             : 
    1674        8508 :     startup_cost += qpqual_cost.startup;
    1675        8508 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1676        8508 :     run_cost += cpu_per_tuple * baserel->tuples;
    1677             : 
    1678             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1679        8508 :     startup_cost += path->pathtarget->cost.startup;
    1680        8508 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1681             : 
    1682        8508 :     path->disabled_nodes = 0;
    1683        8508 :     path->startup_cost = startup_cost;
    1684        8508 :     path->total_cost = startup_cost + run_cost;
    1685        8508 : }
    1686             : 
    1687             : /*
    1688             :  * cost_ctescan
    1689             :  *    Determines and returns the cost of scanning a CTE RTE.
    1690             :  *
    1691             :  * Note: this is used for both self-reference and regular CTEs; the
    1692             :  * possible cost differences are below the threshold of what we could
    1693             :  * estimate accurately anyway.  Note that the costs of evaluating the
    1694             :  * referenced CTE query are added into the final plan as initplan costs,
    1695             :  * and should NOT be counted here.
    1696             :  */
    1697             : void
    1698        5298 : cost_ctescan(Path *path, PlannerInfo *root,
    1699             :              RelOptInfo *baserel, ParamPathInfo *param_info)
    1700             : {
    1701        5298 :     Cost        startup_cost = 0;
    1702        5298 :     Cost        run_cost = 0;
    1703             :     QualCost    qpqual_cost;
    1704             :     Cost        cpu_per_tuple;
    1705             : 
    1706             :     /* Should only be applied to base relations that are CTEs */
    1707             :     Assert(baserel->relid > 0);
    1708             :     Assert(baserel->rtekind == RTE_CTE);
    1709             : 
    1710             :     /* Mark the path with the correct row estimate */
    1711        5298 :     if (param_info)
    1712           0 :         path->rows = param_info->ppi_rows;
    1713             :     else
    1714        5298 :         path->rows = baserel->rows;
    1715             : 
    1716             :     /* Charge one CPU tuple cost per row for tuplestore manipulation */
    1717        5298 :     cpu_per_tuple = cpu_tuple_cost;
    1718             : 
    1719             :     /* Add scanning CPU costs */
    1720        5298 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1721             : 
    1722        5298 :     startup_cost += qpqual_cost.startup;
    1723        5298 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1724        5298 :     run_cost += cpu_per_tuple * baserel->tuples;
    1725             : 
    1726             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    1727        5298 :     startup_cost += path->pathtarget->cost.startup;
    1728        5298 :     run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1729             : 
    1730        5298 :     path->disabled_nodes = 0;
    1731        5298 :     path->startup_cost = startup_cost;
    1732        5298 :     path->total_cost = startup_cost + run_cost;
    1733        5298 : }
    1734             : 
    1735             : /*
    1736             :  * cost_namedtuplestorescan
    1737             :  *    Determines and returns the cost of scanning a named tuplestore.
    1738             :  */
    1739             : void
    1740         474 : cost_namedtuplestorescan(Path *path, PlannerInfo *root,
    1741             :                          RelOptInfo *baserel, ParamPathInfo *param_info)
    1742             : {
    1743         474 :     Cost        startup_cost = 0;
    1744         474 :     Cost        run_cost = 0;
    1745             :     QualCost    qpqual_cost;
    1746             :     Cost        cpu_per_tuple;
    1747             : 
    1748             :     /* Should only be applied to base relations that are Tuplestores */
    1749             :     Assert(baserel->relid > 0);
    1750             :     Assert(baserel->rtekind == RTE_NAMEDTUPLESTORE);
    1751             : 
    1752             :     /* Mark the path with the correct row estimate */
    1753         474 :     if (param_info)
    1754           0 :         path->rows = param_info->ppi_rows;
    1755             :     else
    1756         474 :         path->rows = baserel->rows;
    1757             : 
    1758             :     /* Charge one CPU tuple cost per row for tuplestore manipulation */
    1759         474 :     cpu_per_tuple = cpu_tuple_cost;
    1760             : 
    1761             :     /* Add scanning CPU costs */
    1762         474 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1763             : 
    1764         474 :     startup_cost += qpqual_cost.startup;
    1765         474 :     cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1766         474 :     run_cost += cpu_per_tuple * baserel->tuples;
    1767             : 
    1768         474 :     path->disabled_nodes = 0;
    1769         474 :     path->startup_cost = startup_cost;
    1770         474 :     path->total_cost = startup_cost + run_cost;
    1771         474 : }
    1772             : 
    1773             : /*
    1774             :  * cost_resultscan
    1775             :  *    Determines and returns the cost of scanning an RTE_RESULT relation.
    1776             :  */
    1777             : void
    1778        4346 : cost_resultscan(Path *path, PlannerInfo *root,
    1779             :                 RelOptInfo *baserel, ParamPathInfo *param_info)
    1780             : {
    1781        4346 :     Cost        startup_cost = 0;
    1782        4346 :     Cost        run_cost = 0;
    1783             :     QualCost    qpqual_cost;
    1784             :     Cost        cpu_per_tuple;
    1785             : 
    1786             :     /* Should only be applied to RTE_RESULT base relations */
    1787             :     Assert(baserel->relid > 0);
    1788             :     Assert(baserel->rtekind == RTE_RESULT);
    1789             : 
    1790             :     /* Mark the path with the correct row estimate */
    1791        4346 :     if (param_info)
    1792         156 :         path->rows = param_info->ppi_rows;
    1793             :     else
    1794        4190 :         path->rows = baserel->rows;
    1795             : 
    1796             :     /* We charge qual cost plus cpu_tuple_cost */
    1797        4346 :     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1798             : 
    1799        4346 :     startup_cost += qpqual_cost.startup;
    1800        4346 :     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1801        4346 :     run_cost += cpu_per_tuple * baserel->tuples;
    1802             : 
    1803        4346 :     path->disabled_nodes = 0;
    1804        4346 :     path->startup_cost = startup_cost;
    1805        4346 :     path->total_cost = startup_cost + run_cost;
    1806        4346 : }
    1807             : 
    1808             : /*
    1809             :  * cost_recursive_union
    1810             :  *    Determines and returns the cost of performing a recursive union,
    1811             :  *    and also the estimated output size.
    1812             :  *
    1813             :  * We are given Paths for the nonrecursive and recursive terms.
    1814             :  */
    1815             : void
    1816         932 : cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
    1817             : {
    1818             :     Cost        startup_cost;
    1819             :     Cost        total_cost;
    1820             :     double      total_rows;
    1821             : 
    1822             :     /* We probably have decent estimates for the non-recursive term */
    1823         932 :     startup_cost = nrterm->startup_cost;
    1824         932 :     total_cost = nrterm->total_cost;
    1825         932 :     total_rows = nrterm->rows;
    1826             : 
    1827             :     /*
    1828             :      * We arbitrarily assume that about 10 recursive iterations will be
    1829             :      * needed, and that we've managed to get a good fix on the cost and output
    1830             :      * size of each one of them.  These are mighty shaky assumptions but it's
    1831             :      * hard to see how to do better.
    1832             :      */
    1833         932 :     total_cost += 10 * rterm->total_cost;
    1834         932 :     total_rows += 10 * rterm->rows;
    1835             : 
    1836             :     /*
    1837             :      * Also charge cpu_tuple_cost per row to account for the costs of
    1838             :      * manipulating the tuplestores.  (We don't worry about possible
    1839             :      * spill-to-disk costs.)
    1840             :      */
    1841         932 :     total_cost += cpu_tuple_cost * total_rows;
    1842             : 
    1843         932 :     runion->disabled_nodes = nrterm->disabled_nodes + rterm->disabled_nodes;
    1844         932 :     runion->startup_cost = startup_cost;
    1845         932 :     runion->total_cost = total_cost;
    1846         932 :     runion->rows = total_rows;
    1847         932 :     runion->pathtarget->width = Max(nrterm->pathtarget->width,
    1848             :                                     rterm->pathtarget->width);
    1849         932 : }
    1850             : 
    1851             : /*
    1852             :  * cost_tuplesort
    1853             :  *    Determines and returns the cost of sorting a relation using tuplesort,
    1854             :  *    not including the cost of reading the input data.
    1855             :  *
    1856             :  * If the total volume of data to sort is less than sort_mem, we will do
    1857             :  * an in-memory sort, which requires no I/O and about t*log2(t) tuple
    1858             :  * comparisons for t tuples.
    1859             :  *
    1860             :  * If the total volume exceeds sort_mem, we switch to a tape-style merge
    1861             :  * algorithm.  There will still be about t*log2(t) tuple comparisons in
    1862             :  * total, but we will also need to write and read each tuple once per
    1863             :  * merge pass.  We expect about ceil(logM(r)) merge passes where r is the
    1864             :  * number of initial runs formed and M is the merge order used by tuplesort.c.
    1865             :  * Since the average initial run should be about sort_mem, we have
    1866             :  *      disk traffic = 2 * relsize * ceil(logM(p / sort_mem))
    1867             :  *      cpu = comparison_cost * t * log2(t)
    1868             :  *
    1869             :  * If the sort is bounded (i.e., only the first k result tuples are needed)
    1870             :  * and k tuples can fit into sort_mem, we use a heap method that keeps only
    1871             :  * k tuples in the heap; this will require about t*log2(k) tuple comparisons.
    1872             :  *
    1873             :  * The disk traffic is assumed to be 3/4ths sequential and 1/4th random
    1874             :  * accesses (XXX can't we refine that guess?)
    1875             :  *
    1876             :  * By default, we charge two operator evals per tuple comparison, which should
    1877             :  * be in the right ballpark in most cases.  The caller can tweak this by
    1878             :  * specifying nonzero comparison_cost; typically that's used for any extra
    1879             :  * work that has to be done to prepare the inputs to the comparison operators.
    1880             :  *
    1881             :  * 'tuples' is the number of tuples in the relation
    1882             :  * 'width' is the average tuple width in bytes
    1883             :  * 'comparison_cost' is the extra cost per comparison, if any
    1884             :  * 'sort_mem' is the number of kilobytes of work memory allowed for the sort
    1885             :  * 'limit_tuples' is the bound on the number of output tuples; -1 if no bound
    1886             :  */
    1887             : static void
    1888     2098040 : cost_tuplesort(Cost *startup_cost, Cost *run_cost,
    1889             :                double tuples, int width,
    1890             :                Cost comparison_cost, int sort_mem,
    1891             :                double limit_tuples)
    1892             : {
    1893     2098040 :     double      input_bytes = relation_byte_size(tuples, width);
    1894             :     double      output_bytes;
    1895             :     double      output_tuples;
    1896     2098040 :     int64       sort_mem_bytes = sort_mem * (int64) 1024;
    1897             : 
    1898             :     /*
    1899             :      * We want to be sure the cost of a sort is never estimated as zero, even
    1900             :      * if passed-in tuple count is zero.  Besides, mustn't do log(0)...
    1901             :      */
    1902     2098040 :     if (tuples < 2.0)
    1903      551824 :         tuples = 2.0;
    1904             : 
    1905             :     /* Include the default cost-per-comparison */
    1906     2098040 :     comparison_cost += 2.0 * cpu_operator_cost;
    1907             : 
    1908             :     /* Do we have a useful LIMIT? */
    1909     2098040 :     if (limit_tuples > 0 && limit_tuples < tuples)
    1910             :     {
    1911        1828 :         output_tuples = limit_tuples;
    1912        1828 :         output_bytes = relation_byte_size(output_tuples, width);
    1913             :     }
    1914             :     else
    1915             :     {
    1916     2096212 :         output_tuples = tuples;
    1917     2096212 :         output_bytes = input_bytes;
    1918             :     }
    1919             : 
    1920     2098040 :     if (output_bytes > sort_mem_bytes)
    1921             :     {
    1922             :         /*
    1923             :          * We'll have to use a disk-based sort of all the tuples
    1924             :          */
    1925       17532 :         double      npages = ceil(input_bytes / BLCKSZ);
    1926       17532 :         double      nruns = input_bytes / sort_mem_bytes;
    1927       17532 :         double      mergeorder = tuplesort_merge_order(sort_mem_bytes);
    1928             :         double      log_runs;
    1929             :         double      npageaccesses;
    1930             : 
    1931             :         /*
    1932             :          * CPU costs
    1933             :          *
    1934             :          * Assume about N log2 N comparisons
    1935             :          */
    1936       17532 :         *startup_cost = comparison_cost * tuples * LOG2(tuples);
    1937             : 
    1938             :         /* Disk costs */
    1939             : 
    1940             :         /* Compute logM(r) as log(r) / log(M) */
    1941       17532 :         if (nruns > mergeorder)
    1942        4746 :             log_runs = ceil(log(nruns) / log(mergeorder));
    1943             :         else
    1944       12786 :             log_runs = 1.0;
    1945       17532 :         npageaccesses = 2.0 * npages * log_runs;
    1946             :         /* Assume 3/4ths of accesses are sequential, 1/4th are not */
    1947       17532 :         *startup_cost += npageaccesses *
    1948       17532 :             (seq_page_cost * 0.75 + random_page_cost * 0.25);
    1949             :     }
    1950     2080508 :     else if (tuples > 2 * output_tuples || input_bytes > sort_mem_bytes)
    1951             :     {
    1952             :         /*
    1953             :          * We'll use a bounded heap-sort keeping just K tuples in memory, for
    1954             :          * a total number of tuple comparisons of N log2 K; but the constant
    1955             :          * factor is a bit higher than for quicksort.  Tweak it so that the
    1956             :          * cost curve is continuous at the crossover point.
    1957             :          */
    1958        1338 :         *startup_cost = comparison_cost * tuples * LOG2(2.0 * output_tuples);
    1959             :     }
    1960             :     else
    1961             :     {
    1962             :         /* We'll use plain quicksort on all the input tuples */
    1963     2079170 :         *startup_cost = comparison_cost * tuples * LOG2(tuples);
    1964             :     }
    1965             : 
    1966             :     /*
    1967             :      * Also charge a small amount (arbitrarily set equal to operator cost) per
    1968             :      * extracted tuple.  We don't charge cpu_tuple_cost because a Sort node
    1969             :      * doesn't do qual-checking or projection, so it has less overhead than
    1970             :      * most plan nodes.  Note it's correct to use tuples not output_tuples
    1971             :      * here --- the upper LIMIT will pro-rate the run cost so we'd be double
    1972             :      * counting the LIMIT otherwise.
    1973             :      */
    1974     2098040 :     *run_cost = cpu_operator_cost * tuples;
    1975     2098040 : }
    1976             : 
    1977             : /*
    1978             :  * cost_incremental_sort
    1979             :  *  Determines and returns the cost of sorting a relation incrementally, when
    1980             :  *  the input path is presorted by a prefix of the pathkeys.
    1981             :  *
    1982             :  * 'presorted_keys' is the number of leading pathkeys by which the input path
    1983             :  * is sorted.
    1984             :  *
    1985             :  * We estimate the number of groups into which the relation is divided by the
    1986             :  * leading pathkeys, and then calculate the cost of sorting a single group
    1987             :  * with tuplesort using cost_tuplesort().
    1988             :  */
    1989             : void
    1990       12794 : cost_incremental_sort(Path *path,
    1991             :                       PlannerInfo *root, List *pathkeys, int presorted_keys,
    1992             :                       int input_disabled_nodes,
    1993             :                       Cost input_startup_cost, Cost input_total_cost,
    1994             :                       double input_tuples, int width, Cost comparison_cost, int sort_mem,
    1995             :                       double limit_tuples)
    1996             : {
    1997             :     Cost        startup_cost,
    1998             :                 run_cost,
    1999       12794 :                 input_run_cost = input_total_cost - input_startup_cost;
    2000             :     double      group_tuples,
    2001             :                 input_groups;
    2002             :     Cost        group_startup_cost,
    2003             :                 group_run_cost,
    2004             :                 group_input_run_cost;
    2005       12794 :     List       *presortedExprs = NIL;
    2006             :     ListCell   *l;
    2007       12794 :     bool        unknown_varno = false;
    2008             : 
    2009             :     Assert(presorted_keys > 0 && presorted_keys < list_length(pathkeys));
    2010             : 
    2011             :     /*
    2012             :      * We want to be sure the cost of a sort is never estimated as zero, even
    2013             :      * if passed-in tuple count is zero.  Besides, mustn't do log(0)...
    2014             :      */
    2015       12794 :     if (input_tuples < 2.0)
    2016        6798 :         input_tuples = 2.0;
    2017             : 
    2018             :     /* Default estimate of number of groups, capped to one group per row. */
    2019       12794 :     input_groups = Min(input_tuples, DEFAULT_NUM_DISTINCT);
    2020             : 
    2021             :     /*
    2022             :      * Extract presorted keys as list of expressions.
    2023             :      *
    2024             :      * We need to be careful about Vars containing "varno 0" which might have
    2025             :      * been introduced by generate_append_tlist, which would confuse
    2026             :      * estimate_num_groups (in fact it'd fail for such expressions). See
    2027             :      * recurse_set_operations which has to deal with the same issue.
    2028             :      *
    2029             :      * Unlike recurse_set_operations we can't access the original target list
    2030             :      * here, and even if we could it's not very clear how useful would that be
    2031             :      * for a set operation combining multiple tables. So we simply detect if
    2032             :      * there are any expressions with "varno 0" and use the default
    2033             :      * DEFAULT_NUM_DISTINCT in that case.
    2034             :      *
    2035             :      * We might also use either 1.0 (a single group) or input_tuples (each row
    2036             :      * being a separate group), pretty much the worst and best case for
    2037             :      * incremental sort. But those are extreme cases and using something in
    2038             :      * between seems reasonable. Furthermore, generate_append_tlist is used
    2039             :      * for set operations, which are likely to produce mostly unique output
    2040             :      * anyway - from that standpoint the DEFAULT_NUM_DISTINCT is defensive
    2041             :      * while maintaining lower startup cost.
    2042             :      */
    2043       12890 :     foreach(l, pathkeys)
    2044             :     {
    2045       12890 :         PathKey    *key = (PathKey *) lfirst(l);
    2046       12890 :         EquivalenceMember *member = (EquivalenceMember *)
    2047       12890 :             linitial(key->pk_eclass->ec_members);
    2048             : 
    2049             :         /*
    2050             :          * Check if the expression contains Var with "varno 0" so that we
    2051             :          * don't call estimate_num_groups in that case.
    2052             :          */
    2053       12890 :         if (bms_is_member(0, pull_varnos(root, (Node *) member->em_expr)))
    2054             :         {
    2055          10 :             unknown_varno = true;
    2056          10 :             break;
    2057             :         }
    2058             : 
    2059             :         /* expression not containing any Vars with "varno 0" */
    2060       12880 :         presortedExprs = lappend(presortedExprs, member->em_expr);
    2061             : 
    2062       12880 :         if (foreach_current_index(l) + 1 >= presorted_keys)
    2063       12784 :             break;
    2064             :     }
    2065             : 
    2066             :     /* Estimate the number of groups with equal presorted keys. */
    2067       12794 :     if (!unknown_varno)
    2068       12784 :         input_groups = estimate_num_groups(root, presortedExprs, input_tuples,
    2069             :                                            NULL, NULL);
    2070             : 
    2071       12794 :     group_tuples = input_tuples / input_groups;
    2072       12794 :     group_input_run_cost = input_run_cost / input_groups;
    2073             : 
    2074             :     /*
    2075             :      * Estimate the average cost of sorting of one group where presorted keys
    2076             :      * are equal.
    2077             :      */
    2078       12794 :     cost_tuplesort(&group_startup_cost, &group_run_cost,
    2079             :                    group_tuples, width, comparison_cost, sort_mem,
    2080             :                    limit_tuples);
    2081             : 
    2082             :     /*
    2083             :      * Startup cost of incremental sort is the startup cost of its first group
    2084             :      * plus the cost of its input.
    2085             :      */
    2086       12794 :     startup_cost = group_startup_cost + input_startup_cost +
    2087             :         group_input_run_cost;
    2088             : 
    2089             :     /*
    2090             :      * After we started producing tuples from the first group, the cost of
    2091             :      * producing all the tuples is given by the cost to finish processing this
    2092             :      * group, plus the total cost to process the remaining groups, plus the
    2093             :      * remaining cost of input.
    2094             :      */
    2095       12794 :     run_cost = group_run_cost + (group_run_cost + group_startup_cost) *
    2096       12794 :         (input_groups - 1) + group_input_run_cost * (input_groups - 1);
    2097             : 
    2098             :     /*
    2099             :      * Incremental sort adds some overhead by itself. Firstly, it has to
    2100             :      * detect the sort groups. This is roughly equal to one extra copy and
    2101             :      * comparison per tuple.
    2102             :      */
    2103       12794 :     run_cost += (cpu_tuple_cost + comparison_cost) * input_tuples;
    2104             : 
    2105             :     /*
    2106             :      * Additionally, we charge double cpu_tuple_cost for each input group to
    2107             :      * account for the tuplesort_reset that's performed after each group.
    2108             :      */
    2109       12794 :     run_cost += 2.0 * cpu_tuple_cost * input_groups;
    2110             : 
    2111       12794 :     path->rows = input_tuples;
    2112             : 
    2113             :     /* should not generate these paths when enable_incremental_sort=false */
    2114             :     Assert(enable_incremental_sort);
    2115       12794 :     path->disabled_nodes = input_disabled_nodes;
    2116             : 
    2117       12794 :     path->startup_cost = startup_cost;
    2118       12794 :     path->total_cost = startup_cost + run_cost;
    2119       12794 : }
    2120             : 
    2121             : /*
    2122             :  * cost_sort
    2123             :  *    Determines and returns the cost of sorting a relation, including
    2124             :  *    the cost of reading the input data.
    2125             :  *
    2126             :  * NOTE: some callers currently pass NIL for pathkeys because they
    2127             :  * can't conveniently supply the sort keys.  Since this routine doesn't
    2128             :  * currently do anything with pathkeys anyway, that doesn't matter...
    2129             :  * but if it ever does, it should react gracefully to lack of key data.
    2130             :  * (Actually, the thing we'd most likely be interested in is just the number
    2131             :  * of sort keys, which all callers *could* supply.)
    2132             :  */
    2133             : void
    2134     2085246 : cost_sort(Path *path, PlannerInfo *root,
    2135             :           List *pathkeys, int input_disabled_nodes,
    2136             :           Cost input_cost, double tuples, int width,
    2137             :           Cost comparison_cost, int sort_mem,
    2138             :           double limit_tuples)
    2139             : 
    2140             : {
    2141             :     Cost        startup_cost;
    2142             :     Cost        run_cost;
    2143             : 
    2144     2085246 :     cost_tuplesort(&startup_cost, &run_cost,
    2145             :                    tuples, width,
    2146             :                    comparison_cost, sort_mem,
    2147             :                    limit_tuples);
    2148             : 
    2149     2085246 :     startup_cost += input_cost;
    2150             : 
    2151     2085246 :     path->rows = tuples;
    2152     2085246 :     path->disabled_nodes = input_disabled_nodes + (enable_sort ? 0 : 1);
    2153     2085246 :     path->startup_cost = startup_cost;
    2154     2085246 :     path->total_cost = startup_cost + run_cost;
    2155     2085246 : }
    2156             : 
    2157             : /*
    2158             :  * append_nonpartial_cost
    2159             :  *    Estimate the cost of the non-partial paths in a Parallel Append.
    2160             :  *    The non-partial paths are assumed to be the first "numpaths" paths
    2161             :  *    from the subpaths list, and to be in order of decreasing cost.
    2162             :  */
    2163             : static Cost
    2164       26108 : append_nonpartial_cost(List *subpaths, int numpaths, int parallel_workers)
    2165             : {
    2166             :     Cost       *costarr;
    2167             :     int         arrlen;
    2168             :     ListCell   *l;
    2169             :     ListCell   *cell;
    2170             :     int         path_index;
    2171             :     int         min_index;
    2172             :     int         max_index;
    2173             : 
    2174       26108 :     if (numpaths == 0)
    2175       21060 :         return 0;
    2176             : 
    2177             :     /*
    2178             :      * Array length is number of workers or number of relevant paths,
    2179             :      * whichever is less.
    2180             :      */
    2181        5048 :     arrlen = Min(parallel_workers, numpaths);
    2182        5048 :     costarr = palloc_array(Cost, arrlen);
    2183             : 
    2184             :     /* The first few paths will each be claimed by a different worker. */
    2185        5048 :     path_index = 0;
    2186       14670 :     foreach(cell, subpaths)
    2187             :     {
    2188       10922 :         Path       *subpath = (Path *) lfirst(cell);
    2189             : 
    2190       10922 :         if (path_index == arrlen)
    2191        1300 :             break;
    2192        9622 :         costarr[path_index++] = subpath->total_cost;
    2193             :     }
    2194             : 
    2195             :     /*
    2196             :      * Since subpaths are sorted by decreasing cost, the last one will have
    2197             :      * the minimum cost.
    2198             :      */
    2199        5048 :     min_index = arrlen - 1;
    2200             : 
    2201             :     /*
    2202             :      * For each of the remaining subpaths, add its cost to the array element
    2203             :      * with minimum cost.
    2204             :      */
    2205        9778 :     for_each_cell(l, subpaths, cell)
    2206             :     {
    2207        5276 :         Path       *subpath = (Path *) lfirst(l);
    2208             : 
    2209             :         /* Consider only the non-partial paths */
    2210        5276 :         if (path_index++ == numpaths)
    2211         546 :             break;
    2212             : 
    2213        4730 :         costarr[min_index] += subpath->total_cost;
    2214             : 
    2215             :         /* Update the new min cost array index */
    2216        4730 :         min_index = 0;
    2217       14226 :         for (int i = 0; i < arrlen; i++)
    2218             :         {
    2219        9496 :             if (costarr[i] < costarr[min_index])
    2220        1560 :                 min_index = i;
    2221             :         }
    2222             :     }
    2223             : 
    2224             :     /* Return the highest cost from the array */
    2225        5048 :     max_index = 0;
    2226       14670 :     for (int i = 0; i < arrlen; i++)
    2227             :     {
    2228        9622 :         if (costarr[i] > costarr[max_index])
    2229         394 :             max_index = i;
    2230             :     }
    2231             : 
    2232        5048 :     return costarr[max_index];
    2233             : }
    2234             : 
    2235             : /*
    2236             :  * cost_append
    2237             :  *    Determines and returns the cost of an Append node.
    2238             :  */
    2239             : void
    2240       70846 : cost_append(AppendPath *apath, PlannerInfo *root)
    2241             : {
    2242             :     ListCell   *l;
    2243             : 
    2244       70846 :     apath->path.disabled_nodes = 0;
    2245       70846 :     apath->path.startup_cost = 0;
    2246       70846 :     apath->path.total_cost = 0;
    2247       70846 :     apath->path.rows = 0;
    2248             : 
    2249       70846 :     if (apath->subpaths == NIL)
    2250        2066 :         return;
    2251             : 
    2252       68780 :     if (!apath->path.parallel_aware)
    2253             :     {
    2254       42672 :         List       *pathkeys = apath->path.pathkeys;
    2255             : 
    2256       42672 :         if (pathkeys == NIL)
    2257             :         {
    2258       40528 :             Path       *firstsubpath = (Path *) linitial(apath->subpaths);
    2259             : 
    2260             :             /*
    2261             :              * For an unordered, non-parallel-aware Append we take the startup
    2262             :              * cost as the startup cost of the first subpath.
    2263             :              */
    2264       40528 :             apath->path.startup_cost = firstsubpath->startup_cost;
    2265             : 
    2266             :             /*
    2267             :              * Compute rows, number of disabled nodes, and total cost as sums
    2268             :              * of underlying subplan values.
    2269             :              */
    2270      158586 :             foreach(l, apath->subpaths)
    2271             :             {
    2272      118058 :                 Path       *subpath = (Path *) lfirst(l);
    2273             : 
    2274      118058 :                 apath->path.rows += subpath->rows;
    2275      118058 :                 apath->path.disabled_nodes += subpath->disabled_nodes;
    2276      118058 :                 apath->path.total_cost += subpath->total_cost;
    2277             :             }
    2278             :         }
    2279             :         else
    2280             :         {
    2281             :             /*
    2282             :              * For an ordered, non-parallel-aware Append we take the startup
    2283             :              * cost as the sum of the subpath startup costs.  This ensures
    2284             :              * that we don't underestimate the startup cost when a query's
    2285             :              * LIMIT is such that several of the children have to be run to
    2286             :              * satisfy it.  This might be overkill --- another plausible hack
    2287             :              * would be to take the Append's startup cost as the maximum of
    2288             :              * the child startup costs.  But we don't want to risk believing
    2289             :              * that an ORDER BY LIMIT query can be satisfied at small cost
    2290             :              * when the first child has small startup cost but later ones
    2291             :              * don't.  (If we had the ability to deal with nonlinear cost
    2292             :              * interpolation for partial retrievals, we would not need to be
    2293             :              * so conservative about this.)
    2294             :              *
    2295             :              * This case is also different from the above in that we have to
    2296             :              * account for possibly injecting sorts into subpaths that aren't
    2297             :              * natively ordered.
    2298             :              */
    2299        8340 :             foreach(l, apath->subpaths)
    2300             :             {
    2301        6196 :                 Path       *subpath = (Path *) lfirst(l);
    2302             :                 int         presorted_keys;
    2303             :                 Path        sort_path;  /* dummy for result of
    2304             :                                          * cost_sort/cost_incremental_sort */
    2305             : 
    2306        6196 :                 if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
    2307             :                                                  &presorted_keys))
    2308             :                 {
    2309             :                     /*
    2310             :                      * We'll need to insert a Sort node, so include costs for
    2311             :                      * that.  We choose to use incremental sort if it is
    2312             :                      * enabled and there are presorted keys; otherwise we use
    2313             :                      * full sort.
    2314             :                      *
    2315             :                      * We can use the parent's LIMIT if any, since we
    2316             :                      * certainly won't pull more than that many tuples from
    2317             :                      * any child.
    2318             :                      */
    2319          44 :                     if (enable_incremental_sort && presorted_keys > 0)
    2320             :                     {
    2321          12 :                         cost_incremental_sort(&sort_path,
    2322             :                                               root,
    2323             :                                               pathkeys,
    2324             :                                               presorted_keys,
    2325             :                                               subpath->disabled_nodes,
    2326             :                                               subpath->startup_cost,
    2327             :                                               subpath->total_cost,
    2328             :                                               subpath->rows,
    2329          12 :                                               subpath->pathtarget->width,
    2330             :                                               0.0,
    2331             :                                               work_mem,
    2332             :                                               apath->limit_tuples);
    2333             :                     }
    2334             :                     else
    2335             :                     {
    2336          32 :                         cost_sort(&sort_path,
    2337             :                                   root,
    2338             :                                   pathkeys,
    2339             :                                   subpath->disabled_nodes,
    2340             :                                   subpath->total_cost,
    2341             :                                   subpath->rows,
    2342          32 :                                   subpath->pathtarget->width,
    2343             :                                   0.0,
    2344             :                                   work_mem,
    2345             :                                   apath->limit_tuples);
    2346             :                     }
    2347             : 
    2348          44 :                     subpath = &sort_path;
    2349             :                 }
    2350             : 
    2351        6196 :                 apath->path.rows += subpath->rows;
    2352        6196 :                 apath->path.disabled_nodes += subpath->disabled_nodes;
    2353        6196 :                 apath->path.startup_cost += subpath->startup_cost;
    2354        6196 :                 apath->path.total_cost += subpath->total_cost;
    2355             :             }
    2356             :         }
    2357             :     }
    2358             :     else                        /* parallel-aware */
    2359             :     {
    2360       26108 :         int         i = 0;
    2361       26108 :         double      parallel_divisor = get_parallel_divisor(&apath->path);
    2362             : 
    2363             :         /* Parallel-aware Append never produces ordered output. */
    2364             :         Assert(apath->path.pathkeys == NIL);
    2365             : 
    2366             :         /* Calculate startup cost. */
    2367      103478 :         foreach(l, apath->subpaths)
    2368             :         {
    2369       77370 :             Path       *subpath = (Path *) lfirst(l);
    2370             : 
    2371             :             /*
    2372             :              * Append will start returning tuples when the child node having
    2373             :              * lowest startup cost is done setting up. We consider only the
    2374             :              * first few subplans that immediately get a worker assigned.
    2375             :              */
    2376       77370 :             if (i == 0)
    2377       26108 :                 apath->path.startup_cost = subpath->startup_cost;
    2378       51262 :             else if (i < apath->path.parallel_workers)
    2379       25532 :                 apath->path.startup_cost = Min(apath->path.startup_cost,
    2380             :                                                subpath->startup_cost);
    2381             : 
    2382             :             /*
    2383             :              * Apply parallel divisor to subpaths.  Scale the number of rows
    2384             :              * for each partial subpath based on the ratio of the parallel
    2385             :              * divisor originally used for the subpath to the one we adopted.
    2386             :              * Also add the cost of partial paths to the total cost, but
    2387             :              * ignore non-partial paths for now.
    2388             :              */
    2389       77370 :             if (i < apath->first_partial_path)
    2390       14352 :                 apath->path.rows += subpath->rows / parallel_divisor;
    2391             :             else
    2392             :             {
    2393             :                 double      subpath_parallel_divisor;
    2394             : 
    2395       63018 :                 subpath_parallel_divisor = get_parallel_divisor(subpath);
    2396       63018 :                 apath->path.rows += subpath->rows * (subpath_parallel_divisor /
    2397             :                                                      parallel_divisor);
    2398       63018 :                 apath->path.total_cost += subpath->total_cost;
    2399             :             }
    2400             : 
    2401       77370 :             apath->path.disabled_nodes += subpath->disabled_nodes;
    2402       77370 :             apath->path.rows = clamp_row_est(apath->path.rows);
    2403             : 
    2404       77370 :             i++;
    2405             :         }
    2406             : 
    2407             :         /* Add cost for non-partial subpaths. */
    2408       26108 :         apath->path.total_cost +=
    2409       26108 :             append_nonpartial_cost(apath->subpaths,
    2410             :                                    apath->first_partial_path,
    2411             :                                    apath->path.parallel_workers);
    2412             :     }
    2413             : 
    2414             :     /*
    2415             :      * Although Append does not do any selection or projection, it's not free;
    2416             :      * add a small per-tuple overhead.
    2417             :      */
    2418       68780 :     apath->path.total_cost +=
    2419       68780 :         cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * apath->path.rows;
    2420             : }
    2421             : 
    2422             : /*
    2423             :  * cost_merge_append
    2424             :  *    Determines and returns the cost of a MergeAppend node.
    2425             :  *
    2426             :  * MergeAppend merges several pre-sorted input streams, using a heap that
    2427             :  * at any given instant holds the next tuple from each stream.  If there
    2428             :  * are N streams, we need about N*log2(N) tuple comparisons to construct
    2429             :  * the heap at startup, and then for each output tuple, about log2(N)
    2430             :  * comparisons to replace the top entry.
    2431             :  *
    2432             :  * (The effective value of N will drop once some of the input streams are
    2433             :  * exhausted, but it seems unlikely to be worth trying to account for that.)
    2434             :  *
    2435             :  * The heap is never spilled to disk, since we assume N is not very large.
    2436             :  * So this is much simpler than cost_sort.
    2437             :  *
    2438             :  * As in cost_sort, we charge two operator evals per tuple comparison.
    2439             :  *
    2440             :  * 'pathkeys' is a list of sort keys
    2441             :  * 'n_streams' is the number of input streams
    2442             :  * 'input_disabled_nodes' is the sum of the input streams' disabled node counts
    2443             :  * 'input_startup_cost' is the sum of the input streams' startup costs
    2444             :  * 'input_total_cost' is the sum of the input streams' total costs
    2445             :  * 'tuples' is the number of tuples in all the streams
    2446             :  */
    2447             : void
    2448        9900 : cost_merge_append(Path *path, PlannerInfo *root,
    2449             :                   List *pathkeys, int n_streams,
    2450             :                   int input_disabled_nodes,
    2451             :                   Cost input_startup_cost, Cost input_total_cost,
    2452             :                   double tuples)
    2453             : {
    2454        9900 :     Cost        startup_cost = 0;
    2455        9900 :     Cost        run_cost = 0;
    2456             :     Cost        comparison_cost;
    2457             :     double      N;
    2458             :     double      logN;
    2459             : 
    2460             :     /*
    2461             :      * Avoid log(0)...
    2462             :      */
    2463        9900 :     N = (n_streams < 2) ? 2.0 : (double) n_streams;
    2464        9900 :     logN = LOG2(N);
    2465             : 
    2466             :     /* Assumed cost per tuple comparison */
    2467        9900 :     comparison_cost = 2.0 * cpu_operator_cost;
    2468             : 
    2469             :     /* Heap creation cost */
    2470        9900 :     startup_cost += comparison_cost * N * logN;
    2471             : 
    2472             :     /* Per-tuple heap maintenance cost */
    2473        9900 :     run_cost += tuples * comparison_cost * logN;
    2474             : 
    2475             :     /*
    2476             :      * Although MergeAppend does not do any selection or projection, it's not
    2477             :      * free; add a small per-tuple overhead.
    2478             :      */
    2479        9900 :     run_cost += cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * tuples;
    2480             : 
    2481        9900 :     path->disabled_nodes = input_disabled_nodes;
    2482        9900 :     path->startup_cost = startup_cost + input_startup_cost;
    2483        9900 :     path->total_cost = startup_cost + run_cost + input_total_cost;
    2484        9900 : }
    2485             : 
    2486             : /*
    2487             :  * cost_material
    2488             :  *    Determines and returns the cost of materializing a relation, including
    2489             :  *    the cost of reading the input data.
    2490             :  *
    2491             :  * If the total volume of data to materialize exceeds work_mem, we will need
    2492             :  * to write it to disk, so the cost is much higher in that case.
    2493             :  *
    2494             :  * Note that here we are estimating the costs for the first scan of the
    2495             :  * relation, so the materialization is all overhead --- any savings will
    2496             :  * occur only on rescan, which is estimated in cost_rescan.
    2497             :  */
    2498             : void
    2499      680372 : cost_material(Path *path,
    2500             :               int input_disabled_nodes,
    2501             :               Cost input_startup_cost, Cost input_total_cost,
    2502             :               double tuples, int width)
    2503             : {
    2504      680372 :     Cost        startup_cost = input_startup_cost;
    2505      680372 :     Cost        run_cost = input_total_cost - input_startup_cost;
    2506      680372 :     double      nbytes = relation_byte_size(tuples, width);
    2507      680372 :     double      work_mem_bytes = work_mem * (Size) 1024;
    2508             : 
    2509      680372 :     path->rows = tuples;
    2510             : 
    2511             :     /*
    2512             :      * Whether spilling or not, charge 2x cpu_operator_cost per tuple to
    2513             :      * reflect bookkeeping overhead.  (This rate must be more than what
    2514             :      * cost_rescan charges for materialize, ie, cpu_operator_cost per tuple;
    2515             :      * if it is exactly the same then there will be a cost tie between
    2516             :      * nestloop with A outer, materialized B inner and nestloop with B outer,
    2517             :      * materialized A inner.  The extra cost ensures we'll prefer
    2518             :      * materializing the smaller rel.)  Note that this is normally a good deal
    2519             :      * less than cpu_tuple_cost; which is OK because a Material plan node
    2520             :      * doesn't do qual-checking or projection, so it's got less overhead than
    2521             :      * most plan nodes.
    2522             :      */
    2523      680372 :     run_cost += 2 * cpu_operator_cost * tuples;
    2524             : 
    2525             :     /*
    2526             :      * If we will spill to disk, charge at the rate of seq_page_cost per page.
    2527             :      * This cost is assumed to be evenly spread through the plan run phase,
    2528             :      * which isn't exactly accurate but our cost model doesn't allow for
    2529             :      * nonuniform costs within the run phase.
    2530             :      */
    2531      680372 :     if (nbytes > work_mem_bytes)
    2532             :     {
    2533        4974 :         double      npages = ceil(nbytes / BLCKSZ);
    2534             : 
    2535        4974 :         run_cost += seq_page_cost * npages;
    2536             :     }
    2537             : 
    2538      680372 :     path->disabled_nodes = input_disabled_nodes + (enable_material ? 0 : 1);
    2539      680372 :     path->startup_cost = startup_cost;
    2540      680372 :     path->total_cost = startup_cost + run_cost;
    2541      680372 : }
    2542             : 
    2543             : /*
    2544             :  * cost_memoize_rescan
    2545             :  *    Determines the estimated cost of rescanning a Memoize node.
    2546             :  *
    2547             :  * In order to estimate this, we must gain knowledge of how often we expect to
    2548             :  * be called and how many distinct sets of parameters we are likely to be
    2549             :  * called with. If we expect a good cache hit ratio, then we can set our
    2550             :  * costs to account for that hit ratio, plus a little bit of cost for the
    2551             :  * caching itself.  Caching will not work out well if we expect to be called
    2552             :  * with too many distinct parameter values.  The worst-case here is that we
    2553             :  * never see any parameter value twice, in which case we'd never get a cache
    2554             :  * hit and caching would be a complete waste of effort.
    2555             :  */
    2556             : static void
    2557      295536 : cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath,
    2558             :                     Cost *rescan_startup_cost, Cost *rescan_total_cost)
    2559             : {
    2560             :     EstimationInfo estinfo;
    2561             :     ListCell   *lc;
    2562      295536 :     Cost        input_startup_cost = mpath->subpath->startup_cost;
    2563      295536 :     Cost        input_total_cost = mpath->subpath->total_cost;
    2564      295536 :     double      tuples = mpath->subpath->rows;
    2565      295536 :     Cardinality est_calls = mpath->est_calls;
    2566      295536 :     int         width = mpath->subpath->pathtarget->width;
    2567             : 
    2568             :     double      hash_mem_bytes;
    2569             :     double      est_entry_bytes;
    2570             :     Cardinality est_cache_entries;
    2571             :     Cardinality ndistinct;
    2572             :     double      evict_ratio;
    2573             :     double      hit_ratio;
    2574             :     Cost        startup_cost;
    2575             :     Cost        total_cost;
    2576             : 
    2577             :     /* available cache space */
    2578      295536 :     hash_mem_bytes = get_hash_memory_limit();
    2579             : 
    2580             :     /*
    2581             :      * Set the number of bytes each cache entry should consume in the cache.
    2582             :      * To provide us with better estimations on how many cache entries we can
    2583             :      * store at once, we make a call to the executor here to ask it what
    2584             :      * memory overheads there are for a single cache entry.
    2585             :      */
    2586      295536 :     est_entry_bytes = relation_byte_size(tuples, width) +
    2587      295536 :         ExecEstimateCacheEntryOverheadBytes(tuples);
    2588             : 
    2589             :     /* include the estimated width for the cache keys */
    2590      629668 :     foreach(lc, mpath->param_exprs)
    2591      334132 :         est_entry_bytes += get_expr_width(root, (Node *) lfirst(lc));
    2592             : 
    2593             :     /* estimate on the upper limit of cache entries we can hold at once */
    2594      295536 :     est_cache_entries = floor(hash_mem_bytes / est_entry_bytes);
    2595             : 
    2596             :     /* estimate on the distinct number of parameter values */
    2597      295536 :     ndistinct = estimate_num_groups(root, mpath->param_exprs, est_calls, NULL,
    2598             :                                     &estinfo);
    2599             : 
    2600             :     /*
    2601             :      * When the estimation fell back on using a default value, it's a bit too
    2602             :      * risky to assume that it's ok to use a Memoize node.  The use of a
    2603             :      * default could cause us to use a Memoize node when it's really
    2604             :      * inappropriate to do so.  If we see that this has been done, then we'll
    2605             :      * assume that every call will have unique parameters, which will almost
    2606             :      * certainly mean a MemoizePath will never survive add_path().
    2607             :      */
    2608      295536 :     if ((estinfo.flags & SELFLAG_USED_DEFAULT) != 0)
    2609       17610 :         ndistinct = est_calls;
    2610             : 
    2611             :     /* Remember the ndistinct estimate for EXPLAIN */
    2612      295536 :     mpath->est_unique_keys = ndistinct;
    2613             : 
    2614             :     /*
    2615             :      * Since we've already estimated the maximum number of entries we can
    2616             :      * store at once and know the estimated number of distinct values we'll be
    2617             :      * called with, we'll take this opportunity to set the path's est_entries.
    2618             :      * This will ultimately determine the hash table size that the executor
    2619             :      * will use.  If we leave this at zero, the executor will just choose the
    2620             :      * size itself.  Really this is not the right place to do this, but it's
    2621             :      * convenient since everything is already calculated.
    2622             :      */
    2623      295536 :     mpath->est_entries = Min(Min(ndistinct, est_cache_entries),
    2624             :                              PG_UINT32_MAX);
    2625             : 
    2626             :     /*
    2627             :      * When the number of distinct parameter values is above the amount we can
    2628             :      * store in the cache, then we'll have to evict some entries from the
    2629             :      * cache.  This is not free. Here we estimate how often we'll incur the
    2630             :      * cost of that eviction.
    2631             :      */
    2632      295536 :     evict_ratio = 1.0 - Min(est_cache_entries, ndistinct) / ndistinct;
    2633             : 
    2634             :     /*
    2635             :      * In order to estimate how costly a single scan will be, we need to
    2636             :      * attempt to estimate what the cache hit ratio will be.  To do that we
    2637             :      * must look at how many scans are estimated in total for this node and
    2638             :      * how many of those scans we expect to get a cache hit.
    2639             :      */
    2640      591072 :     hit_ratio = ((est_calls - ndistinct) / est_calls) *
    2641      295536 :         (est_cache_entries / Max(ndistinct, est_cache_entries));
    2642             : 
    2643             :     /* Remember the hit ratio estimate for EXPLAIN */
    2644      295536 :     mpath->est_hit_ratio = hit_ratio;
    2645             : 
    2646             :     Assert(hit_ratio >= 0 && hit_ratio <= 1.0);
    2647             : 
    2648             :     /*
    2649             :      * Set the total_cost accounting for the expected cache hit ratio.  We
    2650             :      * also add on a cpu_operator_cost to account for a cache lookup. This
    2651             :      * will happen regardless of whether it's a cache hit or not.
    2652             :      */
    2653      295536 :     total_cost = input_total_cost * (1.0 - hit_ratio) + cpu_operator_cost;
    2654             : 
    2655             :     /* Now adjust the total cost to account for cache evictions */
    2656             : 
    2657             :     /* Charge a cpu_tuple_cost for evicting the actual cache entry */
    2658      295536 :     total_cost += cpu_tuple_cost * evict_ratio;
    2659             : 
    2660             :     /*
    2661             :      * Charge a 10th of cpu_operator_cost to evict every tuple in that entry.
    2662             :      * The per-tuple eviction is really just a pfree, so charging a whole
    2663             :      * cpu_operator_cost seems a little excessive.
    2664             :      */
    2665      295536 :     total_cost += cpu_operator_cost / 10.0 * evict_ratio * tuples;
    2666             : 
    2667             :     /*
    2668             :      * Now adjust for storing things in the cache, since that's not free
    2669             :      * either.  Everything must go in the cache.  We don't proportion this
    2670             :      * over any ratio, just apply it once for the scan.  We charge a
    2671             :      * cpu_tuple_cost for the creation of the cache entry and also a
    2672             :      * cpu_operator_cost for each tuple we expect to cache.
    2673             :      */
    2674      295536 :     total_cost += cpu_tuple_cost + cpu_operator_cost * tuples;
    2675             : 
    2676             :     /*
    2677             :      * Getting the first row must be also be proportioned according to the
    2678             :      * expected cache hit ratio.
    2679             :      */
    2680      295536 :     startup_cost = input_startup_cost * (1.0 - hit_ratio);
    2681             : 
    2682             :     /*
    2683             :      * Additionally we charge a cpu_tuple_cost to account for cache lookups,
    2684             :      * which we'll do regardless of whether it was a cache hit or not.
    2685             :      */
    2686      295536 :     startup_cost += cpu_tuple_cost;
    2687             : 
    2688      295536 :     *rescan_startup_cost = startup_cost;
    2689      295536 :     *rescan_total_cost = total_cost;
    2690      295536 : }
    2691             : 
    2692             : /*
    2693             :  * cost_agg
    2694             :  *      Determines and returns the cost of performing an Agg plan node,
    2695             :  *      including the cost of its input.
    2696             :  *
    2697             :  * aggcosts can be NULL when there are no actual aggregate functions (i.e.,
    2698             :  * we are using a hashed Agg node just to do grouping).
    2699             :  *
    2700             :  * Note: when aggstrategy == AGG_SORTED, caller must ensure that input costs
    2701             :  * are for appropriately-sorted input.
    2702             :  */
    2703             : void
    2704       93322 : cost_agg(Path *path, PlannerInfo *root,
    2705             :          AggStrategy aggstrategy, const AggClauseCosts *aggcosts,
    2706             :          int numGroupCols, double numGroups,
    2707             :          List *quals,
    2708             :          int disabled_nodes,
    2709             :          Cost input_startup_cost, Cost input_total_cost,
    2710             :          double input_tuples, double input_width)
    2711             : {
    2712             :     double      output_tuples;
    2713             :     Cost        startup_cost;
    2714             :     Cost        total_cost;
    2715       93322 :     const AggClauseCosts dummy_aggcosts = {0};
    2716             : 
    2717             :     /* Use all-zero per-aggregate costs if NULL is passed */
    2718       93322 :     if (aggcosts == NULL)
    2719             :     {
    2720             :         Assert(aggstrategy == AGG_HASHED);
    2721       19244 :         aggcosts = &dummy_aggcosts;
    2722             :     }
    2723             : 
    2724             :     /*
    2725             :      * The transCost.per_tuple component of aggcosts should be charged once
    2726             :      * per input tuple, corresponding to the costs of evaluating the aggregate
    2727             :      * transfns and their input expressions. The finalCost.per_tuple component
    2728             :      * is charged once per output tuple, corresponding to the costs of
    2729             :      * evaluating the finalfns.  Startup costs are of course charged but once.
    2730             :      *
    2731             :      * If we are grouping, we charge an additional cpu_operator_cost per
    2732             :      * grouping column per input tuple for grouping comparisons.
    2733             :      *
    2734             :      * We will produce a single output tuple if not grouping, and a tuple per
    2735             :      * group otherwise.  We charge cpu_tuple_cost for each output tuple.
    2736             :      *
    2737             :      * Note: in this cost model, AGG_SORTED and AGG_HASHED have exactly the
    2738             :      * same total CPU cost, but AGG_SORTED has lower startup cost.  If the
    2739             :      * input path is already sorted appropriately, AGG_SORTED should be
    2740             :      * preferred (since it has no risk of memory overflow).  This will happen
    2741             :      * as long as the computed total costs are indeed exactly equal --- but if
    2742             :      * there's roundoff error we might do the wrong thing.  So be sure that
    2743             :      * the computations below form the same intermediate values in the same
    2744             :      * order.
    2745             :      */
    2746       93322 :     if (aggstrategy == AGG_PLAIN)
    2747             :     {
    2748       43254 :         startup_cost = input_total_cost;
    2749       43254 :         startup_cost += aggcosts->transCost.startup;
    2750       43254 :         startup_cost += aggcosts->transCost.per_tuple * input_tuples;
    2751       43254 :         startup_cost += aggcosts->finalCost.startup;
    2752       43254 :         startup_cost += aggcosts->finalCost.per_tuple;
    2753             :         /* we aren't grouping */
    2754       43254 :         total_cost = startup_cost + cpu_tuple_cost;
    2755       43254 :         output_tuples = 1;
    2756             :     }
    2757       50068 :     else if (aggstrategy == AGG_SORTED || aggstrategy == AGG_MIXED)
    2758             :     {
    2759             :         /* Here we are able to deliver output on-the-fly */
    2760       18238 :         startup_cost = input_startup_cost;
    2761       18238 :         total_cost = input_total_cost;
    2762       18238 :         if (aggstrategy == AGG_MIXED && !enable_hashagg)
    2763         540 :             ++disabled_nodes;
    2764             :         /* calcs phrased this way to match HASHED case, see note above */
    2765       18238 :         total_cost += aggcosts->transCost.startup;
    2766       18238 :         total_cost += aggcosts->transCost.per_tuple * input_tuples;
    2767       18238 :         total_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
    2768       18238 :         total_cost += aggcosts->finalCost.startup;
    2769       18238 :         total_cost += aggcosts->finalCost.per_tuple * numGroups;
    2770       18238 :         total_cost += cpu_tuple_cost * numGroups;
    2771       18238 :         output_tuples = numGroups;
    2772             :     }
    2773             :     else
    2774             :     {
    2775             :         /* must be AGG_HASHED */
    2776       31830 :         startup_cost = input_total_cost;
    2777       31830 :         if (!enable_hashagg)
    2778        1890 :             ++disabled_nodes;
    2779       31830 :         startup_cost += aggcosts->transCost.startup;
    2780       31830 :         startup_cost += aggcosts->transCost.per_tuple * input_tuples;
    2781             :         /* cost of computing hash value */
    2782       31830 :         startup_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
    2783       31830 :         startup_cost += aggcosts->finalCost.startup;
    2784             : 
    2785       31830 :         total_cost = startup_cost;
    2786       31830 :         total_cost += aggcosts->finalCost.per_tuple * numGroups;
    2787             :         /* cost of retrieving from hash table */
    2788       31830 :         total_cost += cpu_tuple_cost * numGroups;
    2789       31830 :         output_tuples = numGroups;
    2790             :     }
    2791             : 
    2792             :     /*
    2793             :      * Add the disk costs of hash aggregation that spills to disk.
    2794             :      *
    2795             :      * Groups that go into the hash table stay in memory until finalized, so
    2796             :      * spilling and reprocessing tuples doesn't incur additional invocations
    2797             :      * of transCost or finalCost. Furthermore, the computed hash value is
    2798             :      * stored with the spilled tuples, so we don't incur extra invocations of
    2799             :      * the hash function.
    2800             :      *
    2801             :      * Hash Agg begins returning tuples after the first batch is complete.
    2802             :      * Accrue writes (spilled tuples) to startup_cost and to total_cost;
    2803             :      * accrue reads only to total_cost.
    2804             :      */
    2805       93322 :     if (aggstrategy == AGG_HASHED || aggstrategy == AGG_MIXED)
    2806             :     {
    2807             :         double      pages;
    2808       32860 :         double      pages_written = 0.0;
    2809       32860 :         double      pages_read = 0.0;
    2810             :         double      spill_cost;
    2811             :         double      hashentrysize;
    2812             :         double      nbatches;
    2813             :         Size        mem_limit;
    2814             :         uint64      ngroups_limit;
    2815             :         int         num_partitions;
    2816             :         int         depth;
    2817             : 
    2818             :         /*
    2819             :          * Estimate number of batches based on the computed limits. If less
    2820             :          * than or equal to one, all groups are expected to fit in memory;
    2821             :          * otherwise we expect to spill.
    2822             :          */
    2823       32860 :         hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
    2824             :                                             input_width,
    2825       32860 :                                             aggcosts->transitionSpace);
    2826       32860 :         hash_agg_set_limits(hashentrysize, numGroups, 0, &mem_limit,
    2827             :                             &ngroups_limit, &num_partitions);
    2828             : 
    2829       32860 :         nbatches = Max((numGroups * hashentrysize) / mem_limit,
    2830             :                        numGroups / ngroups_limit);
    2831             : 
    2832       32860 :         nbatches = Max(ceil(nbatches), 1.0);
    2833       32860 :         num_partitions = Max(num_partitions, 2);
    2834             : 
    2835             :         /*
    2836             :          * The number of partitions can change at different levels of
    2837             :          * recursion; but for the purposes of this calculation assume it stays
    2838             :          * constant.
    2839             :          */
    2840       32860 :         depth = ceil(log(nbatches) / log(num_partitions));
    2841             : 
    2842             :         /*
    2843             :          * Estimate number of pages read and written. For each level of
    2844             :          * recursion, a tuple must be written and then later read.
    2845             :          */
    2846       32860 :         pages = relation_byte_size(input_tuples, input_width) / BLCKSZ;
    2847       32860 :         pages_written = pages_read = pages * depth;
    2848             : 
    2849             :         /*
    2850             :          * HashAgg has somewhat worse IO behavior than Sort on typical
    2851             :          * hardware/OS combinations. Account for this with a generic penalty.
    2852             :          */
    2853       32860 :         pages_read *= 2.0;
    2854       32860 :         pages_written *= 2.0;
    2855             : 
    2856       32860 :         startup_cost += pages_written * random_page_cost;
    2857       32860 :         total_cost += pages_written * random_page_cost;
    2858       32860 :         total_cost += pages_read * seq_page_cost;
    2859             : 
    2860             :         /* account for CPU cost of spilling a tuple and reading it back */
    2861       32860 :         spill_cost = depth * input_tuples * 2.0 * cpu_tuple_cost;
    2862       32860 :         startup_cost += spill_cost;
    2863       32860 :         total_cost += spill_cost;
    2864             :     }
    2865             : 
    2866             :     /*
    2867             :      * If there are quals (HAVING quals), account for their cost and
    2868             :      * selectivity.
    2869             :      */
    2870       93322 :     if (quals)
    2871             :     {
    2872             :         QualCost    qual_cost;
    2873             : 
    2874        4656 :         cost_qual_eval(&qual_cost, quals, root);
    2875        4656 :         startup_cost += qual_cost.startup;
    2876        4656 :         total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
    2877             : 
    2878        4656 :         output_tuples = clamp_row_est(output_tuples *
    2879        4656 :                                       clauselist_selectivity(root,
    2880             :                                                              quals,
    2881             :                                                              0,
    2882             :                                                              JOIN_INNER,
    2883             :                                                              NULL));
    2884             :     }
    2885             : 
    2886       93322 :     path->rows = output_tuples;
    2887       93322 :     path->disabled_nodes = disabled_nodes;
    2888       93322 :     path->startup_cost = startup_cost;
    2889       93322 :     path->total_cost = total_cost;
    2890       93322 : }
    2891             : 
    2892             : /*
    2893             :  * get_windowclause_startup_tuples
    2894             :  *      Estimate how many tuples we'll need to fetch from a WindowAgg's
    2895             :  *      subnode before we can output the first WindowAgg tuple.
    2896             :  *
    2897             :  * How many tuples need to be read depends on the WindowClause.  For example,
    2898             :  * a WindowClause with no PARTITION BY and no ORDER BY requires that all
    2899             :  * subnode tuples are read and aggregated before the WindowAgg can output
    2900             :  * anything.  If there's a PARTITION BY, then we only need to look at tuples
    2901             :  * in the first partition.  Here we attempt to estimate just how many
    2902             :  * 'input_tuples' the WindowAgg will need to read for the given WindowClause
    2903             :  * before the first tuple can be output.
    2904             :  */
    2905             : static double
    2906        2976 : get_windowclause_startup_tuples(PlannerInfo *root, WindowClause *wc,
    2907             :                                 double input_tuples)
    2908             : {
    2909        2976 :     int         frameOptions = wc->frameOptions;
    2910             :     double      partition_tuples;
    2911             :     double      return_tuples;
    2912             :     double      peer_tuples;
    2913             : 
    2914             :     /*
    2915             :      * First, figure out how many partitions there are likely to be and set
    2916             :      * partition_tuples according to that estimate.
    2917             :      */
    2918        2976 :     if (wc->partitionClause != NIL)
    2919             :     {
    2920             :         double      num_partitions;
    2921         734 :         List       *partexprs = get_sortgrouplist_exprs(wc->partitionClause,
    2922         734 :                                                         root->parse->targetList);
    2923             : 
    2924         734 :         num_partitions = estimate_num_groups(root, partexprs, input_tuples,
    2925             :                                              NULL, NULL);
    2926         734 :         list_free(partexprs);
    2927             : 
    2928         734 :         partition_tuples = input_tuples / num_partitions;
    2929             :     }
    2930             :     else
    2931             :     {
    2932             :         /* all tuples belong to the same partition */
    2933        2242 :         partition_tuples = input_tuples;
    2934             :     }
    2935             : 
    2936             :     /* estimate the number of tuples in each peer group */
    2937        2976 :     if (wc->orderClause != NIL)
    2938             :     {
    2939             :         double      num_groups;
    2940             :         List       *orderexprs;
    2941             : 
    2942        2370 :         orderexprs = get_sortgrouplist_exprs(wc->orderClause,
    2943        2370 :                                              root->parse->targetList);
    2944             : 
    2945             :         /* estimate out how many peer groups there are in the partition */
    2946        2370 :         num_groups = estimate_num_groups(root, orderexprs,
    2947             :                                          partition_tuples, NULL,
    2948             :                                          NULL);
    2949        2370 :         list_free(orderexprs);
    2950        2370 :         peer_tuples = partition_tuples / num_groups;
    2951             :     }
    2952             :     else
    2953             :     {
    2954             :         /* no ORDER BY so only 1 tuple belongs in each peer group */
    2955         606 :         peer_tuples = 1.0;
    2956             :     }
    2957             : 
    2958        2976 :     if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
    2959             :     {
    2960             :         /* include all partition rows */
    2961         364 :         return_tuples = partition_tuples;
    2962             :     }
    2963        2612 :     else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
    2964             :     {
    2965        1574 :         if (frameOptions & FRAMEOPTION_ROWS)
    2966             :         {
    2967             :             /* just count the current row */
    2968         722 :             return_tuples = 1.0;
    2969             :         }
    2970         852 :         else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
    2971             :         {
    2972             :             /*
    2973             :              * When in RANGE/GROUPS mode, it's more complex.  If there's no
    2974             :              * ORDER BY, then all rows in the partition are peers, otherwise
    2975             :              * we'll need to read the first group of peers.
    2976             :              */
    2977         852 :             if (wc->orderClause == NIL)
    2978         326 :                 return_tuples = partition_tuples;
    2979             :             else
    2980         526 :                 return_tuples = peer_tuples;
    2981             :         }
    2982             :         else
    2983             :         {
    2984             :             /*
    2985             :              * Something new we don't support yet?  This needs attention.
    2986             :              * We'll just return 1.0 in the meantime.
    2987             :              */
    2988             :             Assert(false);
    2989           0 :             return_tuples = 1.0;
    2990             :         }
    2991             :     }
    2992        1038 :     else if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
    2993             :     {
    2994             :         /*
    2995             :          * BETWEEN ... AND N PRECEDING will only need to read the WindowAgg's
    2996             :          * subnode after N ROWS/RANGES/GROUPS.  N can be 0, but not negative,
    2997             :          * so we'll just assume only the current row needs to be read to fetch
    2998             :          * the first WindowAgg row.
    2999             :          */
    3000         108 :         return_tuples = 1.0;
    3001             :     }
    3002         930 :     else if (frameOptions & FRAMEOPTION_END_OFFSET_FOLLOWING)
    3003             :     {
    3004         930 :         Const      *endOffset = (Const *) wc->endOffset;
    3005             :         double      end_offset_value;
    3006             : 
    3007             :         /* try and figure out the value specified in the endOffset. */
    3008         930 :         if (IsA(endOffset, Const))
    3009             :         {
    3010         930 :             if (endOffset->constisnull)
    3011             :             {
    3012             :                 /*
    3013             :                  * NULLs are not allowed, but currently, there's no code to
    3014             :                  * error out if there's a NULL Const.  We'll only discover
    3015             :                  * this during execution.  For now, just pretend everything is
    3016             :                  * fine and assume that just the first row/range/group will be
    3017             :                  * needed.
    3018             :                  */
    3019           0 :                 end_offset_value = 1.0;
    3020             :             }
    3021             :             else
    3022             :             {
    3023         930 :                 switch (endOffset->consttype)
    3024             :                 {
    3025          24 :                     case INT2OID:
    3026          24 :                         end_offset_value =
    3027          24 :                             (double) DatumGetInt16(endOffset->constvalue);
    3028          24 :                         break;
    3029         132 :                     case INT4OID:
    3030         132 :                         end_offset_value =
    3031         132 :                             (double) DatumGetInt32(endOffset->constvalue);
    3032         132 :                         break;
    3033         432 :                     case INT8OID:
    3034         432 :                         end_offset_value =
    3035         432 :                             (double) DatumGetInt64(endOffset->constvalue);
    3036         432 :                         break;
    3037         342 :                     default:
    3038         342 :                         end_offset_value =
    3039         342 :                             partition_tuples / peer_tuples *
    3040             :                             DEFAULT_INEQ_SEL;
    3041         342 :                         break;
    3042             :                 }
    3043             :             }
    3044             :         }
    3045             :         else
    3046             :         {
    3047             :             /*
    3048             :              * When the end bound is not a Const, we'll just need to guess. We
    3049             :              * just make use of DEFAULT_INEQ_SEL.
    3050             :              */
    3051           0 :             end_offset_value =
    3052           0 :                 partition_tuples / peer_tuples * DEFAULT_INEQ_SEL;
    3053             :         }
    3054             : 
    3055         930 :         if (frameOptions & FRAMEOPTION_ROWS)
    3056             :         {
    3057             :             /* include the N FOLLOWING and the current row */
    3058         270 :             return_tuples = end_offset_value + 1.0;
    3059             :         }
    3060         660 :         else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
    3061             :         {
    3062             :             /* include N FOLLOWING ranges/group and the initial range/group */
    3063         660 :             return_tuples = peer_tuples * (end_offset_value + 1.0);
    3064             :         }
    3065             :         else
    3066             :         {
    3067             :             /*
    3068             :              * Something new we don't support yet?  This needs attention.
    3069             :              * We'll just return 1.0 in the meantime.
    3070             :              */
    3071             :             Assert(false);
    3072           0 :             return_tuples = 1.0;
    3073             :         }
    3074             :     }
    3075             :     else
    3076             :     {
    3077             :         /*
    3078             :          * Something new we don't support yet?  This needs attention.  We'll
    3079             :          * just return 1.0 in the meantime.
    3080             :          */
    3081             :         Assert(false);
    3082           0 :         return_tuples = 1.0;
    3083             :     }
    3084             : 
    3085        2976 :     if (wc->partitionClause != NIL || wc->orderClause != NIL)
    3086             :     {
    3087             :         /*
    3088             :          * Cap the return value to the estimated partition tuples and account
    3089             :          * for the extra tuple WindowAgg will need to read to confirm the next
    3090             :          * tuple does not belong to the same partition or peer group.
    3091             :          */
    3092        2582 :         return_tuples = Min(return_tuples + 1.0, partition_tuples);
    3093             :     }
    3094             :     else
    3095             :     {
    3096             :         /*
    3097             :          * Cap the return value so it's never higher than the expected tuples
    3098             :          * in the partition.
    3099             :          */
    3100         394 :         return_tuples = Min(return_tuples, partition_tuples);
    3101             :     }
    3102             : 
    3103             :     /*
    3104             :      * We needn't worry about any EXCLUDE options as those only exclude rows
    3105             :      * from being aggregated, not from being read from the WindowAgg's
    3106             :      * subnode.
    3107             :      */
    3108             : 
    3109        2976 :     return clamp_row_est(return_tuples);
    3110             : }
    3111             : 
    3112             : /*
    3113             :  * cost_windowagg
    3114             :  *      Determines and returns the cost of performing a WindowAgg plan node,
    3115             :  *      including the cost of its input.
    3116             :  *
    3117             :  * Input is assumed already properly sorted.
    3118             :  */
    3119             : void
    3120        2976 : cost_windowagg(Path *path, PlannerInfo *root,
    3121             :                List *windowFuncs, WindowClause *winclause,
    3122             :                int input_disabled_nodes,
    3123             :                Cost input_startup_cost, Cost input_total_cost,
    3124             :                double input_tuples)
    3125             : {
    3126             :     Cost        startup_cost;
    3127             :     Cost        total_cost;
    3128             :     double      startup_tuples;
    3129             :     int         numPartCols;
    3130             :     int         numOrderCols;
    3131             :     ListCell   *lc;
    3132             : 
    3133        2976 :     numPartCols = list_length(winclause->partitionClause);
    3134        2976 :     numOrderCols = list_length(winclause->orderClause);
    3135             : 
    3136        2976 :     startup_cost = input_startup_cost;
    3137        2976 :     total_cost = input_total_cost;
    3138             : 
    3139             :     /*
    3140             :      * Window functions are assumed to cost their stated execution cost, plus
    3141             :      * the cost of evaluating their input expressions, per tuple.  Since they
    3142             :      * may in fact evaluate their inputs at multiple rows during each cycle,
    3143             :      * this could be a drastic underestimate; but without a way to know how
    3144             :      * many rows the window function will fetch, it's hard to do better.  In
    3145             :      * any case, it's a good estimate for all the built-in window functions,
    3146             :      * so we'll just do this for now.
    3147             :      */
    3148        6822 :     foreach(lc, windowFuncs)
    3149             :     {
    3150        3846 :         WindowFunc *wfunc = lfirst_node(WindowFunc, lc);
    3151             :         Cost        wfunccost;
    3152             :         QualCost    argcosts;
    3153             : 
    3154        3846 :         argcosts.startup = argcosts.per_tuple = 0;
    3155        3846 :         add_function_cost(root, wfunc->winfnoid, (Node *) wfunc,
    3156             :                           &argcosts);
    3157        3846 :         startup_cost += argcosts.startup;
    3158        3846 :         wfunccost = argcosts.per_tuple;
    3159             : 
    3160             :         /* also add the input expressions' cost to per-input-row costs */
    3161        3846 :         cost_qual_eval_node(&argcosts, (Node *) wfunc->args, root);
    3162        3846 :         startup_cost += argcosts.startup;
    3163        3846 :         wfunccost += argcosts.per_tuple;
    3164             : 
    3165             :         /*
    3166             :          * Add the filter's cost to per-input-row costs.  XXX We should reduce
    3167             :          * input expression costs according to filter selectivity.
    3168             :          */
    3169        3846 :         cost_qual_eval_node(&argcosts, (Node *) wfunc->aggfilter, root);
    3170        3846 :         startup_cost += argcosts.startup;
    3171        3846 :         wfunccost += argcosts.per_tuple;
    3172             : 
    3173        3846 :         total_cost += wfunccost * input_tuples;
    3174             :     }
    3175             : 
    3176             :     /*
    3177             :      * We also charge cpu_operator_cost per grouping column per tuple for
    3178             :      * grouping comparisons, plus cpu_tuple_cost per tuple for general
    3179             :      * overhead.
    3180             :      *
    3181             :      * XXX this neglects costs of spooling the data to disk when it overflows
    3182             :      * work_mem.  Sooner or later that should get accounted for.
    3183             :      */
    3184        2976 :     total_cost += cpu_operator_cost * (numPartCols + numOrderCols) * input_tuples;
    3185        2976 :     total_cost += cpu_tuple_cost * input_tuples;
    3186             : 
    3187        2976 :     path->rows = input_tuples;
    3188        2976 :     path->disabled_nodes = input_disabled_nodes;
    3189        2976 :     path->startup_cost = startup_cost;
    3190        2976 :     path->total_cost = total_cost;
    3191             : 
    3192             :     /*
    3193             :      * Also, take into account how many tuples we need to read from the
    3194             :      * subnode in order to produce the first tuple from the WindowAgg.  To do
    3195             :      * this we proportion the run cost (total cost not including startup cost)
    3196             :      * over the estimated startup tuples.  We already included the startup
    3197             :      * cost of the subnode, so we only need to do this when the estimated
    3198             :      * startup tuples is above 1.0.
    3199             :      */
    3200        2976 :     startup_tuples = get_windowclause_startup_tuples(root, winclause,
    3201             :                                                      input_tuples);
    3202             : 
    3203        2976 :     if (startup_tuples > 1.0)
    3204        2568 :         path->startup_cost += (total_cost - startup_cost) / input_tuples *
    3205        2568 :             (startup_tuples - 1.0);
    3206        2976 : }
    3207             : 
    3208             : /*
    3209             :  * cost_group
    3210             :  *      Determines and returns the cost of performing a Group plan node,
    3211             :  *      including the cost of its input.
    3212             :  *
    3213             :  * Note: caller must ensure that input costs are for appropriately-sorted
    3214             :  * input.
    3215             :  */
    3216             : void
    3217        1226 : cost_group(Path *path, PlannerInfo *root,
    3218             :            int numGroupCols, double numGroups,
    3219             :            List *quals,
    3220             :            int input_disabled_nodes,
    3221             :            Cost input_startup_cost, Cost input_total_cost,
    3222             :            double input_tuples)
    3223             : {
    3224             :     double      output_tuples;
    3225             :     Cost        startup_cost;
    3226             :     Cost        total_cost;
    3227             : 
    3228        1226 :     output_tuples = numGroups;
    3229        1226 :     startup_cost = input_startup_cost;
    3230        1226 :     total_cost = input_total_cost;
    3231             : 
    3232             :     /*
    3233             :      * Charge one cpu_operator_cost per comparison per input tuple. We assume
    3234             :      * all columns get compared at most of the tuples.
    3235             :      */
    3236        1226 :     total_cost += cpu_operator_cost * input_tuples * numGroupCols;
    3237             : 
    3238             :     /*
    3239             :      * If there are quals (HAVING quals), account for their cost and
    3240             :      * selectivity.
    3241             :      */
    3242        1226 :     if (quals)
    3243             :     {
    3244             :         QualCost    qual_cost;
    3245             : 
    3246           0 :         cost_qual_eval(&qual_cost, quals, root);
    3247           0 :         startup_cost += qual_cost.startup;
    3248           0 :         total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
    3249             : 
    3250           0 :         output_tuples = clamp_row_est(output_tuples *
    3251           0 :                                       clauselist_selectivity(root,
    3252             :                                                              quals,
    3253             :                                                              0,
    3254             :                                                              JOIN_INNER,
    3255             :                                                              NULL));
    3256             :     }
    3257             : 
    3258        1226 :     path->rows = output_tuples;
    3259        1226 :     path->disabled_nodes = input_disabled_nodes;
    3260        1226 :     path->startup_cost = startup_cost;
    3261        1226 :     path->total_cost = total_cost;
    3262        1226 : }
    3263             : 
    3264             : /*
    3265             :  * initial_cost_nestloop
    3266             :  *    Preliminary estimate of the cost of a nestloop join path.
    3267             :  *
    3268             :  * This must quickly produce lower-bound estimates of the path's startup and
    3269             :  * total costs.  If we are unable to eliminate the proposed path from
    3270             :  * consideration using the lower bounds, final_cost_nestloop will be called
    3271             :  * to obtain the final estimates.
    3272             :  *
    3273             :  * The exact division of labor between this function and final_cost_nestloop
    3274             :  * is private to them, and represents a tradeoff between speed of the initial
    3275             :  * estimate and getting a tight lower bound.  We choose to not examine the
    3276             :  * join quals here, since that's by far the most expensive part of the
    3277             :  * calculations.  The end result is that CPU-cost considerations must be
    3278             :  * left for the second phase; and for SEMI/ANTI joins, we must also postpone
    3279             :  * incorporation of the inner path's run cost.
    3280             :  *
    3281             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    3282             :  *      other data to be used by final_cost_nestloop
    3283             :  * 'jointype' is the type of join to be performed
    3284             :  * 'outer_path' is the outer input to the join
    3285             :  * 'inner_path' is the inner input to the join
    3286             :  * 'extra' contains miscellaneous information about the join
    3287             :  */
    3288             : void
    3289     3293368 : initial_cost_nestloop(PlannerInfo *root, JoinCostWorkspace *workspace,
    3290             :                       JoinType jointype,
    3291             :                       Path *outer_path, Path *inner_path,
    3292             :                       JoinPathExtraData *extra)
    3293             : {
    3294             :     int         disabled_nodes;
    3295     3293368 :     Cost        startup_cost = 0;
    3296     3293368 :     Cost        run_cost = 0;
    3297     3293368 :     double      outer_path_rows = outer_path->rows;
    3298             :     Cost        inner_rescan_start_cost;
    3299             :     Cost        inner_rescan_total_cost;
    3300             :     Cost        inner_run_cost;
    3301             :     Cost        inner_rescan_run_cost;
    3302             : 
    3303             :     /* Count up disabled nodes. */
    3304     3293368 :     disabled_nodes = enable_nestloop ? 0 : 1;
    3305     3293368 :     disabled_nodes += inner_path->disabled_nodes;
    3306     3293368 :     disabled_nodes += outer_path->disabled_nodes;
    3307             : 
    3308             :     /* estimate costs to rescan the inner relation */
    3309     3293368 :     cost_rescan(root, inner_path,
    3310             :                 &inner_rescan_start_cost,
    3311             :                 &inner_rescan_total_cost);
    3312             : 
    3313             :     /* cost of source data */
    3314             : 
    3315             :     /*
    3316             :      * NOTE: clearly, we must pay both outer and inner paths' startup_cost
    3317             :      * before we can start returning tuples, so the join's startup cost is
    3318             :      * their sum.  We'll also pay the inner path's rescan startup cost
    3319             :      * multiple times.
    3320             :      */
    3321     3293368 :     startup_cost += outer_path->startup_cost + inner_path->startup_cost;
    3322     3293368 :     run_cost += outer_path->total_cost - outer_path->startup_cost;
    3323     3293368 :     if (outer_path_rows > 1)
    3324     2412828 :         run_cost += (outer_path_rows - 1) * inner_rescan_start_cost;
    3325             : 
    3326     3293368 :     inner_run_cost = inner_path->total_cost - inner_path->startup_cost;
    3327     3293368 :     inner_rescan_run_cost = inner_rescan_total_cost - inner_rescan_start_cost;
    3328             : 
    3329     3293368 :     if (jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
    3330     3231334 :         extra->inner_unique)
    3331             :     {
    3332             :         /*
    3333             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3334             :          * executor will stop after the first match.
    3335             :          *
    3336             :          * Getting decent estimates requires inspection of the join quals,
    3337             :          * which we choose to postpone to final_cost_nestloop.
    3338             :          */
    3339             : 
    3340             :         /* Save private data for final_cost_nestloop */
    3341     1342490 :         workspace->inner_run_cost = inner_run_cost;
    3342     1342490 :         workspace->inner_rescan_run_cost = inner_rescan_run_cost;
    3343             :     }
    3344             :     else
    3345             :     {
    3346             :         /* Normal case; we'll scan whole input rel for each outer row */
    3347     1950878 :         run_cost += inner_run_cost;
    3348     1950878 :         if (outer_path_rows > 1)
    3349     1510410 :             run_cost += (outer_path_rows - 1) * inner_rescan_run_cost;
    3350             :     }
    3351             : 
    3352             :     /* CPU costs left for later */
    3353             : 
    3354             :     /* Public result fields */
    3355     3293368 :     workspace->disabled_nodes = disabled_nodes;
    3356     3293368 :     workspace->startup_cost = startup_cost;
    3357     3293368 :     workspace->total_cost = startup_cost + run_cost;
    3358             :     /* Save private data for final_cost_nestloop */
    3359     3293368 :     workspace->run_cost = run_cost;
    3360     3293368 : }
    3361             : 
    3362             : /*
    3363             :  * final_cost_nestloop
    3364             :  *    Final estimate of the cost and result size of a nestloop join path.
    3365             :  *
    3366             :  * 'path' is already filled in except for the rows and cost fields
    3367             :  * 'workspace' is the result from initial_cost_nestloop
    3368             :  * 'extra' contains miscellaneous information about the join
    3369             :  */
    3370             : void
    3371     1477618 : final_cost_nestloop(PlannerInfo *root, NestPath *path,
    3372             :                     JoinCostWorkspace *workspace,
    3373             :                     JoinPathExtraData *extra)
    3374             : {
    3375     1477618 :     Path       *outer_path = path->jpath.outerjoinpath;
    3376     1477618 :     Path       *inner_path = path->jpath.innerjoinpath;
    3377     1477618 :     double      outer_path_rows = outer_path->rows;
    3378     1477618 :     double      inner_path_rows = inner_path->rows;
    3379     1477618 :     Cost        startup_cost = workspace->startup_cost;
    3380     1477618 :     Cost        run_cost = workspace->run_cost;
    3381             :     Cost        cpu_per_tuple;
    3382             :     QualCost    restrict_qual_cost;
    3383             :     double      ntuples;
    3384             : 
    3385             :     /* Set the number of disabled nodes. */
    3386     1477618 :     path->jpath.path.disabled_nodes = workspace->disabled_nodes;
    3387             : 
    3388             :     /* Protect some assumptions below that rowcounts aren't zero */
    3389     1477618 :     if (outer_path_rows <= 0)
    3390           0 :         outer_path_rows = 1;
    3391     1477618 :     if (inner_path_rows <= 0)
    3392         726 :         inner_path_rows = 1;
    3393             :     /* Mark the path with the correct row estimate */
    3394     1477618 :     if (path->jpath.path.param_info)
    3395       32984 :         path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    3396             :     else
    3397     1444634 :         path->jpath.path.rows = path->jpath.path.parent->rows;
    3398             : 
    3399             :     /* For partial paths, scale row estimate. */
    3400     1477618 :     if (path->jpath.path.parallel_workers > 0)
    3401             :     {
    3402       44178 :         double      parallel_divisor = get_parallel_divisor(&path->jpath.path);
    3403             : 
    3404       44178 :         path->jpath.path.rows =
    3405       44178 :             clamp_row_est(path->jpath.path.rows / parallel_divisor);
    3406             :     }
    3407             : 
    3408             :     /* cost of inner-relation source data (we already dealt with outer rel) */
    3409             : 
    3410     1477618 :     if (path->jpath.jointype == JOIN_SEMI || path->jpath.jointype == JOIN_ANTI ||
    3411     1434312 :         extra->inner_unique)
    3412      925524 :     {
    3413             :         /*
    3414             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3415             :          * executor will stop after the first match.
    3416             :          */
    3417      925524 :         Cost        inner_run_cost = workspace->inner_run_cost;
    3418      925524 :         Cost        inner_rescan_run_cost = workspace->inner_rescan_run_cost;
    3419             :         double      outer_matched_rows;
    3420             :         double      outer_unmatched_rows;
    3421             :         Selectivity inner_scan_frac;
    3422             : 
    3423             :         /*
    3424             :          * For an outer-rel row that has at least one match, we can expect the
    3425             :          * inner scan to stop after a fraction 1/(match_count+1) of the inner
    3426             :          * rows, if the matches are evenly distributed.  Since they probably
    3427             :          * aren't quite evenly distributed, we apply a fuzz factor of 2.0 to
    3428             :          * that fraction.  (If we used a larger fuzz factor, we'd have to
    3429             :          * clamp inner_scan_frac to at most 1.0; but since match_count is at
    3430             :          * least 1, no such clamp is needed now.)
    3431             :          */
    3432      925524 :         outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
    3433      925524 :         outer_unmatched_rows = outer_path_rows - outer_matched_rows;
    3434      925524 :         inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
    3435             : 
    3436             :         /*
    3437             :          * Compute number of tuples processed (not number emitted!).  First,
    3438             :          * account for successfully-matched outer rows.
    3439             :          */
    3440      925524 :         ntuples = outer_matched_rows * inner_path_rows * inner_scan_frac;
    3441             : 
    3442             :         /*
    3443             :          * Now we need to estimate the actual costs of scanning the inner
    3444             :          * relation, which may be quite a bit less than N times inner_run_cost
    3445             :          * due to early scan stops.  We consider two cases.  If the inner path
    3446             :          * is an indexscan using all the joinquals as indexquals, then an
    3447             :          * unmatched outer row results in an indexscan returning no rows,
    3448             :          * which is probably quite cheap.  Otherwise, the executor will have
    3449             :          * to scan the whole inner rel for an unmatched row; not so cheap.
    3450             :          */
    3451      925524 :         if (has_indexed_join_quals(path))
    3452             :         {
    3453             :             /*
    3454             :              * Successfully-matched outer rows will only require scanning
    3455             :              * inner_scan_frac of the inner relation.  In this case, we don't
    3456             :              * need to charge the full inner_run_cost even when that's more
    3457             :              * than inner_rescan_run_cost, because we can assume that none of
    3458             :              * the inner scans ever scan the whole inner relation.  So it's
    3459             :              * okay to assume that all the inner scan executions can be
    3460             :              * fractions of the full cost, even if materialization is reducing
    3461             :              * the rescan cost.  At this writing, it's impossible to get here
    3462             :              * for a materialized inner scan, so inner_run_cost and
    3463             :              * inner_rescan_run_cost will be the same anyway; but just in
    3464             :              * case, use inner_run_cost for the first matched tuple and
    3465             :              * inner_rescan_run_cost for additional ones.
    3466             :              */
    3467      152264 :             run_cost += inner_run_cost * inner_scan_frac;
    3468      152264 :             if (outer_matched_rows > 1)
    3469       20982 :                 run_cost += (outer_matched_rows - 1) * inner_rescan_run_cost * inner_scan_frac;
    3470             : 
    3471             :             /*
    3472             :              * Add the cost of inner-scan executions for unmatched outer rows.
    3473             :              * We estimate this as the same cost as returning the first tuple
    3474             :              * of a nonempty scan.  We consider that these are all rescans,
    3475             :              * since we used inner_run_cost once already.
    3476             :              */
    3477      152264 :             run_cost += outer_unmatched_rows *
    3478      152264 :                 inner_rescan_run_cost / inner_path_rows;
    3479             : 
    3480             :             /*
    3481             :              * We won't be evaluating any quals at all for unmatched rows, so
    3482             :              * don't add them to ntuples.
    3483             :              */
    3484             :         }
    3485             :         else
    3486             :         {
    3487             :             /*
    3488             :              * Here, a complicating factor is that rescans may be cheaper than
    3489             :              * first scans.  If we never scan all the way to the end of the
    3490             :              * inner rel, it might be (depending on the plan type) that we'd
    3491             :              * never pay the whole inner first-scan run cost.  However it is
    3492             :              * difficult to estimate whether that will happen (and it could
    3493             :              * not happen if there are any unmatched outer rows!), so be
    3494             :              * conservative and always charge the whole first-scan cost once.
    3495             :              * We consider this charge to correspond to the first unmatched
    3496             :              * outer row, unless there isn't one in our estimate, in which
    3497             :              * case blame it on the first matched row.
    3498             :              */
    3499             : 
    3500             :             /* First, count all unmatched join tuples as being processed */
    3501      773260 :             ntuples += outer_unmatched_rows * inner_path_rows;
    3502             : 
    3503             :             /* Now add the forced full scan, and decrement appropriate count */
    3504      773260 :             run_cost += inner_run_cost;
    3505      773260 :             if (outer_unmatched_rows >= 1)
    3506      736342 :                 outer_unmatched_rows -= 1;
    3507             :             else
    3508       36918 :                 outer_matched_rows -= 1;
    3509             : 
    3510             :             /* Add inner run cost for additional outer tuples having matches */
    3511      773260 :             if (outer_matched_rows > 0)
    3512      283158 :                 run_cost += outer_matched_rows * inner_rescan_run_cost * inner_scan_frac;
    3513             : 
    3514             :             /* Add inner run cost for additional unmatched outer tuples */
    3515      773260 :             if (outer_unmatched_rows > 0)
    3516      490862 :                 run_cost += outer_unmatched_rows * inner_rescan_run_cost;
    3517             :         }
    3518             :     }
    3519             :     else
    3520             :     {
    3521             :         /* Normal-case source costs were included in preliminary estimate */
    3522             : 
    3523             :         /* Compute number of tuples processed (not number emitted!) */
    3524      552094 :         ntuples = outer_path_rows * inner_path_rows;
    3525             :     }
    3526             : 
    3527             :     /* CPU costs */
    3528     1477618 :     cost_qual_eval(&restrict_qual_cost, path->jpath.joinrestrictinfo, root);
    3529     1477618 :     startup_cost += restrict_qual_cost.startup;
    3530     1477618 :     cpu_per_tuple = cpu_tuple_cost + restrict_qual_cost.per_tuple;
    3531     1477618 :     run_cost += cpu_per_tuple * ntuples;
    3532             : 
    3533             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    3534     1477618 :     startup_cost += path->jpath.path.pathtarget->cost.startup;
    3535     1477618 :     run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    3536             : 
    3537     1477618 :     path->jpath.path.startup_cost = startup_cost;
    3538     1477618 :     path->jpath.path.total_cost = startup_cost + run_cost;
    3539     1477618 : }
    3540             : 
    3541             : /*
    3542             :  * initial_cost_mergejoin
    3543             :  *    Preliminary estimate of the cost of a mergejoin path.
    3544             :  *
    3545             :  * This must quickly produce lower-bound estimates of the path's startup and
    3546             :  * total costs.  If we are unable to eliminate the proposed path from
    3547             :  * consideration using the lower bounds, final_cost_mergejoin will be called
    3548             :  * to obtain the final estimates.
    3549             :  *
    3550             :  * The exact division of labor between this function and final_cost_mergejoin
    3551             :  * is private to them, and represents a tradeoff between speed of the initial
    3552             :  * estimate and getting a tight lower bound.  We choose to not examine the
    3553             :  * join quals here, except for obtaining the scan selectivity estimate which
    3554             :  * is really essential (but fortunately, use of caching keeps the cost of
    3555             :  * getting that down to something reasonable).
    3556             :  * We also assume that cost_sort/cost_incremental_sort is cheap enough to use
    3557             :  * here.
    3558             :  *
    3559             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    3560             :  *      other data to be used by final_cost_mergejoin
    3561             :  * 'jointype' is the type of join to be performed
    3562             :  * 'mergeclauses' is the list of joinclauses to be used as merge clauses
    3563             :  * 'outer_path' is the outer input to the join
    3564             :  * 'inner_path' is the inner input to the join
    3565             :  * 'outersortkeys' is the list of sort keys for the outer path
    3566             :  * 'innersortkeys' is the list of sort keys for the inner path
    3567             :  * 'outer_presorted_keys' is the number of presorted keys of the outer path
    3568             :  * 'extra' contains miscellaneous information about the join
    3569             :  *
    3570             :  * Note: outersortkeys and innersortkeys should be NIL if no explicit
    3571             :  * sort is needed because the respective source path is already ordered.
    3572             :  */
    3573             : void
    3574     1489560 : initial_cost_mergejoin(PlannerInfo *root, JoinCostWorkspace *workspace,
    3575             :                        JoinType jointype,
    3576             :                        List *mergeclauses,
    3577             :                        Path *outer_path, Path *inner_path,
    3578             :                        List *outersortkeys, List *innersortkeys,
    3579             :                        int outer_presorted_keys,
    3580             :                        JoinPathExtraData *extra)
    3581             : {
    3582             :     int         disabled_nodes;
    3583     1489560 :     Cost        startup_cost = 0;
    3584     1489560 :     Cost        run_cost = 0;
    3585     1489560 :     double      outer_path_rows = outer_path->rows;
    3586     1489560 :     double      inner_path_rows = inner_path->rows;
    3587             :     Cost        inner_run_cost;
    3588             :     double      outer_rows,
    3589             :                 inner_rows,
    3590             :                 outer_skip_rows,
    3591             :                 inner_skip_rows;
    3592             :     Selectivity outerstartsel,
    3593             :                 outerendsel,
    3594             :                 innerstartsel,
    3595             :                 innerendsel;
    3596             :     Path        sort_path;      /* dummy for result of
    3597             :                                  * cost_sort/cost_incremental_sort */
    3598             : 
    3599             :     /* Protect some assumptions below that rowcounts aren't zero */
    3600     1489560 :     if (outer_path_rows <= 0)
    3601          96 :         outer_path_rows = 1;
    3602     1489560 :     if (inner_path_rows <= 0)
    3603         126 :         inner_path_rows = 1;
    3604             : 
    3605             :     /*
    3606             :      * A merge join will stop as soon as it exhausts either input stream
    3607             :      * (unless it's an outer join, in which case the outer side has to be
    3608             :      * scanned all the way anyway).  Estimate fraction of the left and right
    3609             :      * inputs that will actually need to be scanned.  Likewise, we can
    3610             :      * estimate the number of rows that will be skipped before the first join
    3611             :      * pair is found, which should be factored into startup cost. We use only
    3612             :      * the first (most significant) merge clause for this purpose. Since
    3613             :      * mergejoinscansel() is a fairly expensive computation, we cache the
    3614             :      * results in the merge clause RestrictInfo.
    3615             :      */
    3616     1489560 :     if (mergeclauses && jointype != JOIN_FULL)
    3617     1483296 :     {
    3618     1483296 :         RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
    3619             :         List       *opathkeys;
    3620             :         List       *ipathkeys;
    3621             :         PathKey    *opathkey;
    3622             :         PathKey    *ipathkey;
    3623             :         MergeScanSelCache *cache;
    3624             : 
    3625             :         /* Get the input pathkeys to determine the sort-order details */
    3626     1483296 :         opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
    3627     1483296 :         ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
    3628             :         Assert(opathkeys);
    3629             :         Assert(ipathkeys);
    3630     1483296 :         opathkey = (PathKey *) linitial(opathkeys);
    3631     1483296 :         ipathkey = (PathKey *) linitial(ipathkeys);
    3632             :         /* debugging check */
    3633     1483296 :         if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
    3634     1483296 :             opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
    3635     1483296 :             opathkey->pk_cmptype != ipathkey->pk_cmptype ||
    3636     1483296 :             opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
    3637           0 :             elog(ERROR, "left and right pathkeys do not match in mergejoin");
    3638             : 
    3639             :         /* Get the selectivity with caching */
    3640     1483296 :         cache = cached_scansel(root, firstclause, opathkey);
    3641             : 
    3642     1483296 :         if (bms_is_subset(firstclause->left_relids,
    3643     1483296 :                           outer_path->parent->relids))
    3644             :         {
    3645             :             /* left side of clause is outer */
    3646      774212 :             outerstartsel = cache->leftstartsel;
    3647      774212 :             outerendsel = cache->leftendsel;
    3648      774212 :             innerstartsel = cache->rightstartsel;
    3649      774212 :             innerendsel = cache->rightendsel;
    3650             :         }
    3651             :         else
    3652             :         {
    3653             :             /* left side of clause is inner */
    3654      709084 :             outerstartsel = cache->rightstartsel;
    3655      709084 :             outerendsel = cache->rightendsel;
    3656      709084 :             innerstartsel = cache->leftstartsel;
    3657      709084 :             innerendsel = cache->leftendsel;
    3658             :         }
    3659     1483296 :         if (jointype == JOIN_LEFT ||
    3660             :             jointype == JOIN_ANTI)
    3661             :         {
    3662      199898 :             outerstartsel = 0.0;
    3663      199898 :             outerendsel = 1.0;
    3664             :         }
    3665     1283398 :         else if (jointype == JOIN_RIGHT ||
    3666             :                  jointype == JOIN_RIGHT_ANTI)
    3667             :         {
    3668      199788 :             innerstartsel = 0.0;
    3669      199788 :             innerendsel = 1.0;
    3670             :         }
    3671             :     }
    3672             :     else
    3673             :     {
    3674             :         /* cope with clauseless or full mergejoin */
    3675        6264 :         outerstartsel = innerstartsel = 0.0;
    3676        6264 :         outerendsel = innerendsel = 1.0;
    3677             :     }
    3678             : 
    3679             :     /*
    3680             :      * Convert selectivities to row counts.  We force outer_rows and
    3681             :      * inner_rows to be at least 1, but the skip_rows estimates can be zero.
    3682             :      */
    3683     1489560 :     outer_skip_rows = rint(outer_path_rows * outerstartsel);
    3684     1489560 :     inner_skip_rows = rint(inner_path_rows * innerstartsel);
    3685     1489560 :     outer_rows = clamp_row_est(outer_path_rows * outerendsel);
    3686     1489560 :     inner_rows = clamp_row_est(inner_path_rows * innerendsel);
    3687             : 
    3688             :     Assert(outer_skip_rows <= outer_rows);
    3689             :     Assert(inner_skip_rows <= inner_rows);
    3690             : 
    3691             :     /*
    3692             :      * Readjust scan selectivities to account for above rounding.  This is
    3693             :      * normally an insignificant effect, but when there are only a few rows in
    3694             :      * the inputs, failing to do this makes for a large percentage error.
    3695             :      */
    3696     1489560 :     outerstartsel = outer_skip_rows / outer_path_rows;
    3697     1489560 :     innerstartsel = inner_skip_rows / inner_path_rows;
    3698     1489560 :     outerendsel = outer_rows / outer_path_rows;
    3699     1489560 :     innerendsel = inner_rows / inner_path_rows;
    3700             : 
    3701             :     Assert(outerstartsel <= outerendsel);
    3702             :     Assert(innerstartsel <= innerendsel);
    3703             : 
    3704     1489560 :     disabled_nodes = enable_mergejoin ? 0 : 1;
    3705             : 
    3706             :     /* cost of source data */
    3707             : 
    3708     1489560 :     if (outersortkeys)          /* do we need to sort outer? */
    3709             :     {
    3710             :         /*
    3711             :          * We can assert that the outer path is not already ordered
    3712             :          * appropriately for the mergejoin; otherwise, outersortkeys would
    3713             :          * have been set to NIL.
    3714             :          */
    3715             :         Assert(!pathkeys_contained_in(outersortkeys, outer_path->pathkeys));
    3716             : 
    3717             :         /*
    3718             :          * We choose to use incremental sort if it is enabled and there are
    3719             :          * presorted keys; otherwise we use full sort.
    3720             :          */
    3721      760342 :         if (enable_incremental_sort && outer_presorted_keys > 0)
    3722             :         {
    3723        1948 :             cost_incremental_sort(&sort_path,
    3724             :                                   root,
    3725             :                                   outersortkeys,
    3726             :                                   outer_presorted_keys,
    3727             :                                   outer_path->disabled_nodes,
    3728             :                                   outer_path->startup_cost,
    3729             :                                   outer_path->total_cost,
    3730             :                                   outer_path_rows,
    3731        1948 :                                   outer_path->pathtarget->width,
    3732             :                                   0.0,
    3733             :                                   work_mem,
    3734             :                                   -1.0);
    3735             :         }
    3736             :         else
    3737             :         {
    3738      758394 :             cost_sort(&sort_path,
    3739             :                       root,
    3740             :                       outersortkeys,
    3741             :                       outer_path->disabled_nodes,
    3742             :                       outer_path->total_cost,
    3743             :                       outer_path_rows,
    3744      758394 :                       outer_path->pathtarget->width,
    3745             :                       0.0,
    3746             :                       work_mem,
    3747             :                       -1.0);
    3748             :         }
    3749             : 
    3750      760342 :         disabled_nodes += sort_path.disabled_nodes;
    3751      760342 :         startup_cost += sort_path.startup_cost;
    3752      760342 :         startup_cost += (sort_path.total_cost - sort_path.startup_cost)
    3753      760342 :             * outerstartsel;
    3754      760342 :         run_cost += (sort_path.total_cost - sort_path.startup_cost)
    3755      760342 :             * (outerendsel - outerstartsel);
    3756             :     }
    3757             :     else
    3758             :     {
    3759      729218 :         disabled_nodes += outer_path->disabled_nodes;
    3760      729218 :         startup_cost += outer_path->startup_cost;
    3761      729218 :         startup_cost += (outer_path->total_cost - outer_path->startup_cost)
    3762      729218 :             * outerstartsel;
    3763      729218 :         run_cost += (outer_path->total_cost - outer_path->startup_cost)
    3764      729218 :             * (outerendsel - outerstartsel);
    3765             :     }
    3766             : 
    3767     1489560 :     if (innersortkeys)          /* do we need to sort inner? */
    3768             :     {
    3769             :         /*
    3770             :          * We can assert that the inner path is not already ordered
    3771             :          * appropriately for the mergejoin; otherwise, innersortkeys would
    3772             :          * have been set to NIL.
    3773             :          */
    3774             :         Assert(!pathkeys_contained_in(innersortkeys, inner_path->pathkeys));
    3775             : 
    3776             :         /*
    3777             :          * We do not consider incremental sort for inner path, because
    3778             :          * incremental sort does not support mark/restore.
    3779             :          */
    3780             : 
    3781     1197606 :         cost_sort(&sort_path,
    3782             :                   root,
    3783             :                   innersortkeys,
    3784             :                   inner_path->disabled_nodes,
    3785             :                   inner_path->total_cost,
    3786             :                   inner_path_rows,
    3787     1197606 :                   inner_path->pathtarget->width,
    3788             :                   0.0,
    3789             :                   work_mem,
    3790             :                   -1.0);
    3791     1197606 :         disabled_nodes += sort_path.disabled_nodes;
    3792     1197606 :         startup_cost += sort_path.startup_cost;
    3793     1197606 :         startup_cost += (sort_path.total_cost - sort_path.startup_cost)
    3794     1197606 :             * innerstartsel;
    3795     1197606 :         inner_run_cost = (sort_path.total_cost - sort_path.startup_cost)
    3796     1197606 :             * (innerendsel - innerstartsel);
    3797             :     }
    3798             :     else
    3799             :     {
    3800      291954 :         disabled_nodes += inner_path->disabled_nodes;
    3801      291954 :         startup_cost += inner_path->startup_cost;
    3802      291954 :         startup_cost += (inner_path->total_cost - inner_path->startup_cost)
    3803      291954 :             * innerstartsel;
    3804      291954 :         inner_run_cost = (inner_path->total_cost - inner_path->startup_cost)
    3805      291954 :             * (innerendsel - innerstartsel);
    3806             :     }
    3807             : 
    3808             :     /*
    3809             :      * We can't yet determine whether rescanning occurs, or whether
    3810             :      * materialization of the inner input should be done.  The minimum
    3811             :      * possible inner input cost, regardless of rescan and materialization
    3812             :      * considerations, is inner_run_cost.  We include that in
    3813             :      * workspace->total_cost, but not yet in run_cost.
    3814             :      */
    3815             : 
    3816             :     /* CPU costs left for later */
    3817             : 
    3818             :     /* Public result fields */
    3819     1489560 :     workspace->disabled_nodes = disabled_nodes;
    3820     1489560 :     workspace->startup_cost = startup_cost;
    3821     1489560 :     workspace->total_cost = startup_cost + run_cost + inner_run_cost;
    3822             :     /* Save private data for final_cost_mergejoin */
    3823     1489560 :     workspace->run_cost = run_cost;
    3824     1489560 :     workspace->inner_run_cost = inner_run_cost;
    3825     1489560 :     workspace->outer_rows = outer_rows;
    3826     1489560 :     workspace->inner_rows = inner_rows;
    3827     1489560 :     workspace->outer_skip_rows = outer_skip_rows;
    3828     1489560 :     workspace->inner_skip_rows = inner_skip_rows;
    3829     1489560 : }
    3830             : 
    3831             : /*
    3832             :  * final_cost_mergejoin
    3833             :  *    Final estimate of the cost and result size of a mergejoin path.
    3834             :  *
    3835             :  * Unlike other costsize functions, this routine makes two actual decisions:
    3836             :  * whether the executor will need to do mark/restore, and whether we should
    3837             :  * materialize the inner path.  It would be logically cleaner to build
    3838             :  * separate paths testing these alternatives, but that would require repeating
    3839             :  * most of the cost calculations, which are not all that cheap.  Since the
    3840             :  * choice will not affect output pathkeys or startup cost, only total cost,
    3841             :  * there is no possibility of wanting to keep more than one path.  So it seems
    3842             :  * best to make the decisions here and record them in the path's
    3843             :  * skip_mark_restore and materialize_inner fields.
    3844             :  *
    3845             :  * Mark/restore overhead is usually required, but can be skipped if we know
    3846             :  * that the executor need find only one match per outer tuple, and that the
    3847             :  * mergeclauses are sufficient to identify a match.
    3848             :  *
    3849             :  * We materialize the inner path if we need mark/restore and either the inner
    3850             :  * path can't support mark/restore, or it's cheaper to use an interposed
    3851             :  * Material node to handle mark/restore.
    3852             :  *
    3853             :  * 'path' is already filled in except for the rows and cost fields and
    3854             :  *      skip_mark_restore and materialize_inner
    3855             :  * 'workspace' is the result from initial_cost_mergejoin
    3856             :  * 'extra' contains miscellaneous information about the join
    3857             :  */
    3858             : void
    3859      465444 : final_cost_mergejoin(PlannerInfo *root, MergePath *path,
    3860             :                      JoinCostWorkspace *workspace,
    3861             :                      JoinPathExtraData *extra)
    3862             : {
    3863      465444 :     Path       *outer_path = path->jpath.outerjoinpath;
    3864      465444 :     Path       *inner_path = path->jpath.innerjoinpath;
    3865      465444 :     double      inner_path_rows = inner_path->rows;
    3866      465444 :     List       *mergeclauses = path->path_mergeclauses;
    3867      465444 :     List       *innersortkeys = path->innersortkeys;
    3868      465444 :     Cost        startup_cost = workspace->startup_cost;
    3869      465444 :     Cost        run_cost = workspace->run_cost;
    3870      465444 :     Cost        inner_run_cost = workspace->inner_run_cost;
    3871      465444 :     double      outer_rows = workspace->outer_rows;
    3872      465444 :     double      inner_rows = workspace->inner_rows;
    3873      465444 :     double      outer_skip_rows = workspace->outer_skip_rows;
    3874      465444 :     double      inner_skip_rows = workspace->inner_skip_rows;
    3875             :     Cost        cpu_per_tuple,
    3876             :                 bare_inner_cost,
    3877             :                 mat_inner_cost;
    3878             :     QualCost    merge_qual_cost;
    3879             :     QualCost    qp_qual_cost;
    3880             :     double      mergejointuples,
    3881             :                 rescannedtuples;
    3882             :     double      rescanratio;
    3883             : 
    3884             :     /* Set the number of disabled nodes. */
    3885      465444 :     path->jpath.path.disabled_nodes = workspace->disabled_nodes;
    3886             : 
    3887             :     /* Protect some assumptions below that rowcounts aren't zero */
    3888      465444 :     if (inner_path_rows <= 0)
    3889          90 :         inner_path_rows = 1;
    3890             : 
    3891             :     /* Mark the path with the correct row estimate */
    3892      465444 :     if (path->jpath.path.param_info)
    3893        1624 :         path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    3894             :     else
    3895      463820 :         path->jpath.path.rows = path->jpath.path.parent->rows;
    3896             : 
    3897             :     /* For partial paths, scale row estimate. */
    3898      465444 :     if (path->jpath.path.parallel_workers > 0)
    3899             :     {
    3900       65864 :         double      parallel_divisor = get_parallel_divisor(&path->jpath.path);
    3901             : 
    3902       65864 :         path->jpath.path.rows =
    3903       65864 :             clamp_row_est(path->jpath.path.rows / parallel_divisor);
    3904             :     }
    3905             : 
    3906             :     /*
    3907             :      * Compute cost of the mergequals and qpquals (other restriction clauses)
    3908             :      * separately.
    3909             :      */
    3910      465444 :     cost_qual_eval(&merge_qual_cost, mergeclauses, root);
    3911      465444 :     cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
    3912      465444 :     qp_qual_cost.startup -= merge_qual_cost.startup;
    3913      465444 :     qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple;
    3914             : 
    3915             :     /*
    3916             :      * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3917             :      * executor will stop scanning for matches after the first match.  When
    3918             :      * all the joinclauses are merge clauses, this means we don't ever need to
    3919             :      * back up the merge, and so we can skip mark/restore overhead.
    3920             :      */
    3921      465444 :     if ((path->jpath.jointype == JOIN_SEMI ||
    3922      458198 :          path->jpath.jointype == JOIN_ANTI ||
    3923      612644 :          extra->inner_unique) &&
    3924      161494 :         (list_length(path->jpath.joinrestrictinfo) ==
    3925      161494 :          list_length(path->path_mergeclauses)))
    3926      139588 :         path->skip_mark_restore = true;
    3927             :     else
    3928      325856 :         path->skip_mark_restore = false;
    3929             : 
    3930             :     /*
    3931             :      * Get approx # tuples passing the mergequals.  We use approx_tuple_count
    3932             :      * here because we need an estimate done with JOIN_INNER semantics.
    3933             :      */
    3934      465444 :     mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
    3935             : 
    3936             :     /*
    3937             :      * When there are equal merge keys in the outer relation, the mergejoin
    3938             :      * must rescan any matching tuples in the inner relation. This means
    3939             :      * re-fetching inner tuples; we have to estimate how often that happens.
    3940             :      *
    3941             :      * For regular inner and outer joins, the number of re-fetches can be
    3942             :      * estimated approximately as size of merge join output minus size of
    3943             :      * inner relation. Assume that the distinct key values are 1, 2, ..., and
    3944             :      * denote the number of values of each key in the outer relation as m1,
    3945             :      * m2, ...; in the inner relation, n1, n2, ...  Then we have
    3946             :      *
    3947             :      * size of join = m1 * n1 + m2 * n2 + ...
    3948             :      *
    3949             :      * number of rescanned tuples = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 *
    3950             :      * n1 + m2 * n2 + ... - (n1 + n2 + ...) = size of join - size of inner
    3951             :      * relation
    3952             :      *
    3953             :      * This equation works correctly for outer tuples having no inner match
    3954             :      * (nk = 0), but not for inner tuples having no outer match (mk = 0); we
    3955             :      * are effectively subtracting those from the number of rescanned tuples,
    3956             :      * when we should not.  Can we do better without expensive selectivity
    3957             :      * computations?
    3958             :      *
    3959             :      * The whole issue is moot if we know we don't need to mark/restore at
    3960             :      * all, or if we are working from a unique-ified outer input.
    3961             :      */
    3962      465444 :     if (path->skip_mark_restore ||
    3963      325856 :         RELATION_WAS_MADE_UNIQUE(outer_path->parent, extra->sjinfo,
    3964             :                                  path->jpath.jointype))
    3965      144436 :         rescannedtuples = 0;
    3966             :     else
    3967             :     {
    3968      321008 :         rescannedtuples = mergejointuples - inner_path_rows;
    3969             :         /* Must clamp because of possible underestimate */
    3970      321008 :         if (rescannedtuples < 0)
    3971       78440 :             rescannedtuples = 0;
    3972             :     }
    3973             : 
    3974             :     /*
    3975             :      * We'll inflate various costs this much to account for rescanning.  Note
    3976             :      * that this is to be multiplied by something involving inner_rows, or
    3977             :      * another number related to the portion of the inner rel we'll scan.
    3978             :      */
    3979      465444 :     rescanratio = 1.0 + (rescannedtuples / inner_rows);
    3980             : 
    3981             :     /*
    3982             :      * Decide whether we want to materialize the inner input to shield it from
    3983             :      * mark/restore and performing re-fetches.  Our cost model for regular
    3984             :      * re-fetches is that a re-fetch costs the same as an original fetch,
    3985             :      * which is probably an overestimate; but on the other hand we ignore the
    3986             :      * bookkeeping costs of mark/restore.  Not clear if it's worth developing
    3987             :      * a more refined model.  So we just need to inflate the inner run cost by
    3988             :      * rescanratio.
    3989             :      */
    3990      465444 :     bare_inner_cost = inner_run_cost * rescanratio;
    3991             : 
    3992             :     /*
    3993             :      * When we interpose a Material node the re-fetch cost is assumed to be
    3994             :      * just cpu_operator_cost per tuple, independently of the underlying
    3995             :      * plan's cost; and we charge an extra cpu_operator_cost per original
    3996             :      * fetch as well.  Note that we're assuming the materialize node will
    3997             :      * never spill to disk, since it only has to remember tuples back to the
    3998             :      * last mark.  (If there are a huge number of duplicates, our other cost
    3999             :      * factors will make the path so expensive that it probably won't get
    4000             :      * chosen anyway.)  So we don't use cost_rescan here.
    4001             :      *
    4002             :      * Note: keep this estimate in sync with create_mergejoin_plan's labeling
    4003             :      * of the generated Material node.
    4004             :      */
    4005      465444 :     mat_inner_cost = inner_run_cost +
    4006      465444 :         cpu_operator_cost * inner_rows * rescanratio;
    4007             : 
    4008             :     /*
    4009             :      * If we don't need mark/restore at all, we don't need materialization.
    4010             :      */
    4011      465444 :     if (path->skip_mark_restore)
    4012      139588 :         path->materialize_inner = false;
    4013             : 
    4014             :     /*
    4015             :      * Prefer materializing if it looks cheaper, unless the user has asked to
    4016             :      * suppress materialization.
    4017             :      */
    4018      325856 :     else if (enable_material && mat_inner_cost < bare_inner_cost)
    4019        3392 :         path->materialize_inner = true;
    4020             : 
    4021             :     /*
    4022             :      * Even if materializing doesn't look cheaper, we *must* do it if the
    4023             :      * inner path is to be used directly (without sorting) and it doesn't
    4024             :      * support mark/restore.
    4025             :      *
    4026             :      * Since the inner side must be ordered, and only Sorts and IndexScans can
    4027             :      * create order to begin with, and they both support mark/restore, you
    4028             :      * might think there's no problem --- but you'd be wrong.  Nestloop and
    4029             :      * merge joins can *preserve* the order of their inputs, so they can be
    4030             :      * selected as the input of a mergejoin, and they don't support
    4031             :      * mark/restore at present.
    4032             :      *
    4033             :      * We don't test the value of enable_material here, because
    4034             :      * materialization is required for correctness in this case, and turning
    4035             :      * it off does not entitle us to deliver an invalid plan.
    4036             :      */
    4037      322464 :     else if (innersortkeys == NIL &&
    4038        9220 :              !ExecSupportsMarkRestore(inner_path))
    4039        1910 :         path->materialize_inner = true;
    4040             : 
    4041             :     /*
    4042             :      * Also, force materializing if the inner path is to be sorted and the
    4043             :      * sort is expected to spill to disk.  This is because the final merge
    4044             :      * pass can be done on-the-fly if it doesn't have to support mark/restore.
    4045             :      * We don't try to adjust the cost estimates for this consideration,
    4046             :      * though.
    4047             :      *
    4048             :      * Since materialization is a performance optimization in this case,
    4049             :      * rather than necessary for correctness, we skip it if enable_material is
    4050             :      * off.
    4051             :      */
    4052      320554 :     else if (enable_material && innersortkeys != NIL &&
    4053      313196 :              relation_byte_size(inner_path_rows,
    4054      313196 :                                 inner_path->pathtarget->width) >
    4055      313196 :              work_mem * (Size) 1024)
    4056         284 :         path->materialize_inner = true;
    4057             :     else
    4058      320270 :         path->materialize_inner = false;
    4059             : 
    4060             :     /* Charge the right incremental cost for the chosen case */
    4061      465444 :     if (path->materialize_inner)
    4062        5586 :         run_cost += mat_inner_cost;
    4063             :     else
    4064      459858 :         run_cost += bare_inner_cost;
    4065             : 
    4066             :     /* CPU costs */
    4067             : 
    4068             :     /*
    4069             :      * The number of tuple comparisons needed is approximately number of outer
    4070             :      * rows plus number of inner rows plus number of rescanned tuples (can we
    4071             :      * refine this?).  At each one, we need to evaluate the mergejoin quals.
    4072             :      */
    4073      465444 :     startup_cost += merge_qual_cost.startup;
    4074      465444 :     startup_cost += merge_qual_cost.per_tuple *
    4075      465444 :         (outer_skip_rows + inner_skip_rows * rescanratio);
    4076      465444 :     run_cost += merge_qual_cost.per_tuple *
    4077      465444 :         ((outer_rows - outer_skip_rows) +
    4078      465444 :          (inner_rows - inner_skip_rows) * rescanratio);
    4079             : 
    4080             :     /*
    4081             :      * For each tuple that gets through the mergejoin proper, we charge
    4082             :      * cpu_tuple_cost plus the cost of evaluating additional restriction
    4083             :      * clauses that are to be applied at the join.  (This is pessimistic since
    4084             :      * not all of the quals may get evaluated at each tuple.)
    4085             :      *
    4086             :      * Note: we could adjust for SEMI/ANTI joins skipping some qual
    4087             :      * evaluations here, but it's probably not worth the trouble.
    4088             :      */
    4089      465444 :     startup_cost += qp_qual_cost.startup;
    4090      465444 :     cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
    4091      465444 :     run_cost += cpu_per_tuple * mergejointuples;
    4092             : 
    4093             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    4094      465444 :     startup_cost += path->jpath.path.pathtarget->cost.startup;
    4095      465444 :     run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    4096             : 
    4097      465444 :     path->jpath.path.startup_cost = startup_cost;
    4098      465444 :     path->jpath.path.total_cost = startup_cost + run_cost;
    4099      465444 : }
    4100             : 
    4101             : /*
    4102             :  * run mergejoinscansel() with caching
    4103             :  */
    4104             : static MergeScanSelCache *
    4105     1483296 : cached_scansel(PlannerInfo *root, RestrictInfo *rinfo, PathKey *pathkey)
    4106             : {
    4107             :     MergeScanSelCache *cache;
    4108             :     ListCell   *lc;
    4109             :     Selectivity leftstartsel,
    4110             :                 leftendsel,
    4111             :                 rightstartsel,
    4112             :                 rightendsel;
    4113             :     MemoryContext oldcontext;
    4114             : 
    4115             :     /* Do we have this result already? */
    4116     1483302 :     foreach(lc, rinfo->scansel_cache)
    4117             :     {
    4118     1340166 :         cache = (MergeScanSelCache *) lfirst(lc);
    4119     1340166 :         if (cache->opfamily == pathkey->pk_opfamily &&
    4120     1340166 :             cache->collation == pathkey->pk_eclass->ec_collation &&
    4121     1340166 :             cache->cmptype == pathkey->pk_cmptype &&
    4122     1340160 :             cache->nulls_first == pathkey->pk_nulls_first)
    4123     1340160 :             return cache;
    4124             :     }
    4125             : 
    4126             :     /* Nope, do the computation */
    4127      143136 :     mergejoinscansel(root,
    4128      143136 :                      (Node *) rinfo->clause,
    4129             :                      pathkey->pk_opfamily,
    4130             :                      pathkey->pk_cmptype,
    4131      143136 :                      pathkey->pk_nulls_first,
    4132             :                      &leftstartsel,
    4133             :                      &leftendsel,
    4134             :                      &rightstartsel,
    4135             :                      &rightendsel);
    4136             : 
    4137             :     /* Cache the result in suitably long-lived workspace */
    4138      143136 :     oldcontext = MemoryContextSwitchTo(root->planner_cxt);
    4139             : 
    4140      143136 :     cache = palloc_object(MergeScanSelCache);
    4141      143136 :     cache->opfamily = pathkey->pk_opfamily;
    4142      143136 :     cache->collation = pathkey->pk_eclass->ec_collation;
    4143      143136 :     cache->cmptype = pathkey->pk_cmptype;
    4144      143136 :     cache->nulls_first = pathkey->pk_nulls_first;
    4145      143136 :     cache->leftstartsel = leftstartsel;
    4146      143136 :     cache->leftendsel = leftendsel;
    4147      143136 :     cache->rightstartsel = rightstartsel;
    4148      143136 :     cache->rightendsel = rightendsel;
    4149             : 
    4150      143136 :     rinfo->scansel_cache = lappend(rinfo->scansel_cache, cache);
    4151             : 
    4152      143136 :     MemoryContextSwitchTo(oldcontext);
    4153             : 
    4154      143136 :     return cache;
    4155             : }
    4156             : 
    4157             : /*
    4158             :  * initial_cost_hashjoin
    4159             :  *    Preliminary estimate of the cost of a hashjoin path.
    4160             :  *
    4161             :  * This must quickly produce lower-bound estimates of the path's startup and
    4162             :  * total costs.  If we are unable to eliminate the proposed path from
    4163             :  * consideration using the lower bounds, final_cost_hashjoin will be called
    4164             :  * to obtain the final estimates.
    4165             :  *
    4166             :  * The exact division of labor between this function and final_cost_hashjoin
    4167             :  * is private to them, and represents a tradeoff between speed of the initial
    4168             :  * estimate and getting a tight lower bound.  We choose to not examine the
    4169             :  * join quals here (other than by counting the number of hash clauses),
    4170             :  * so we can't do much with CPU costs.  We do assume that
    4171             :  * ExecChooseHashTableSize is cheap enough to use here.
    4172             :  *
    4173             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    4174             :  *      other data to be used by final_cost_hashjoin
    4175             :  * 'jointype' is the type of join to be performed
    4176             :  * 'hashclauses' is the list of joinclauses to be used as hash clauses
    4177             :  * 'outer_path' is the outer input to the join
    4178             :  * 'inner_path' is the inner input to the join
    4179             :  * 'extra' contains miscellaneous information about the join
    4180             :  * 'parallel_hash' indicates that inner_path is partial and that a shared
    4181             :  *      hash table will be built in parallel
    4182             :  */
    4183             : void
    4184      880600 : initial_cost_hashjoin(PlannerInfo *root, JoinCostWorkspace *workspace,
    4185             :                       JoinType jointype,
    4186             :                       List *hashclauses,
    4187             :                       Path *outer_path, Path *inner_path,
    4188             :                       JoinPathExtraData *extra,
    4189             :                       bool parallel_hash)
    4190             : {
    4191             :     int         disabled_nodes;
    4192      880600 :     Cost        startup_cost = 0;
    4193      880600 :     Cost        run_cost = 0;
    4194      880600 :     double      outer_path_rows = outer_path->rows;
    4195      880600 :     double      inner_path_rows = inner_path->rows;
    4196      880600 :     double      inner_path_rows_total = inner_path_rows;
    4197      880600 :     int         num_hashclauses = list_length(hashclauses);
    4198             :     int         numbuckets;
    4199             :     int         numbatches;
    4200             :     int         num_skew_mcvs;
    4201             :     size_t      space_allowed;  /* unused */
    4202             : 
    4203             :     /* Count up disabled nodes. */
    4204      880600 :     disabled_nodes = enable_hashjoin ? 0 : 1;
    4205      880600 :     disabled_nodes += inner_path->disabled_nodes;
    4206      880600 :     disabled_nodes += outer_path->disabled_nodes;
    4207             : 
    4208             :     /* cost of source data */
    4209      880600 :     startup_cost += outer_path->startup_cost;
    4210      880600 :     run_cost += outer_path->total_cost - outer_path->startup_cost;
    4211      880600 :     startup_cost += inner_path->total_cost;
    4212             : 
    4213             :     /*
    4214             :      * Cost of computing hash function: must do it once per input tuple. We
    4215             :      * charge one cpu_operator_cost for each column's hash function.  Also,
    4216             :      * tack on one cpu_tuple_cost per inner row, to model the costs of
    4217             :      * inserting the row into the hashtable.
    4218             :      *
    4219             :      * XXX when a hashclause is more complex than a single operator, we really
    4220             :      * should charge the extra eval costs of the left or right side, as
    4221             :      * appropriate, here.  This seems more work than it's worth at the moment.
    4222             :      */
    4223      880600 :     startup_cost += (cpu_operator_cost * num_hashclauses + cpu_tuple_cost)
    4224      880600 :         * inner_path_rows;
    4225      880600 :     run_cost += cpu_operator_cost * num_hashclauses * outer_path_rows;
    4226             : 
    4227             :     /*
    4228             :      * If this is a parallel hash build, then the value we have for
    4229             :      * inner_rows_total currently refers only to the rows returned by each
    4230             :      * participant.  For shared hash table size estimation, we need the total
    4231             :      * number, so we need to undo the division.
    4232             :      */
    4233      880600 :     if (parallel_hash)
    4234       75186 :         inner_path_rows_total *= get_parallel_divisor(inner_path);
    4235             : 
    4236             :     /*
    4237             :      * Get hash table size that executor would use for inner relation.
    4238             :      *
    4239             :      * XXX for the moment, always assume that skew optimization will be
    4240             :      * performed.  As long as SKEW_HASH_MEM_PERCENT is small, it's not worth
    4241             :      * trying to determine that for sure.
    4242             :      *
    4243             :      * XXX at some point it might be interesting to try to account for skew
    4244             :      * optimization in the cost estimate, but for now, we don't.
    4245             :      */
    4246      880600 :     ExecChooseHashTableSize(inner_path_rows_total,
    4247      880600 :                             inner_path->pathtarget->width,
    4248             :                             true,   /* useskew */
    4249             :                             parallel_hash,  /* try_combined_hash_mem */
    4250             :                             outer_path->parallel_workers,
    4251             :                             &space_allowed,
    4252             :                             &numbuckets,
    4253             :                             &numbatches,
    4254             :                             &num_skew_mcvs);
    4255             : 
    4256             :     /*
    4257             :      * If inner relation is too big then we will need to "batch" the join,
    4258             :      * which implies writing and reading most of the tuples to disk an extra
    4259             :      * time.  Charge seq_page_cost per page, since the I/O should be nice and
    4260             :      * sequential.  Writing the inner rel counts as startup cost, all the rest
    4261             :      * as run cost.
    4262             :      */
    4263      880600 :     if (numbatches > 1)
    4264             :     {
    4265        4646 :         double      outerpages = page_size(outer_path_rows,
    4266        4646 :                                            outer_path->pathtarget->width);
    4267        4646 :         double      innerpages = page_size(inner_path_rows,
    4268        4646 :                                            inner_path->pathtarget->width);
    4269             : 
    4270        4646 :         startup_cost += seq_page_cost * innerpages;
    4271        4646 :         run_cost += seq_page_cost * (innerpages + 2 * outerpages);
    4272             :     }
    4273             : 
    4274             :     /* CPU costs left for later */
    4275             : 
    4276             :     /* Public result fields */
    4277      880600 :     workspace->disabled_nodes = disabled_nodes;
    4278      880600 :     workspace->startup_cost = startup_cost;
    4279      880600 :     workspace->total_cost = startup_cost + run_cost;
    4280             :     /* Save private data for final_cost_hashjoin */
    4281      880600 :     workspace->run_cost = run_cost;
    4282      880600 :     workspace->numbuckets = numbuckets;
    4283      880600 :     workspace->numbatches = numbatches;
    4284      880600 :     workspace->inner_rows_total = inner_path_rows_total;
    4285      880600 : }
    4286             : 
    4287             : /*
    4288             :  * final_cost_hashjoin
    4289             :  *    Final estimate of the cost and result size of a hashjoin path.
    4290             :  *
    4291             :  * Note: the numbatches estimate is also saved into 'path' for use later
    4292             :  *
    4293             :  * 'path' is already filled in except for the rows and cost fields and
    4294             :  *      num_batches
    4295             :  * 'workspace' is the result from initial_cost_hashjoin
    4296             :  * 'extra' contains miscellaneous information about the join
    4297             :  */
    4298             : void
    4299      457664 : final_cost_hashjoin(PlannerInfo *root, HashPath *path,
    4300             :                     JoinCostWorkspace *workspace,
    4301             :                     JoinPathExtraData *extra)
    4302             : {
    4303      457664 :     Path       *outer_path = path->jpath.outerjoinpath;
    4304      457664 :     Path       *inner_path = path->jpath.innerjoinpath;
    4305      457664 :     double      outer_path_rows = outer_path->rows;
    4306      457664 :     double      inner_path_rows = inner_path->rows;
    4307      457664 :     double      inner_path_rows_total = workspace->inner_rows_total;
    4308      457664 :     List       *hashclauses = path->path_hashclauses;
    4309      457664 :     Cost        startup_cost = workspace->startup_cost;
    4310      457664 :     Cost        run_cost = workspace->run_cost;
    4311      457664 :     int         numbuckets = workspace->numbuckets;
    4312      457664 :     int         numbatches = workspace->numbatches;
    4313             :     Cost        cpu_per_tuple;
    4314             :     QualCost    hash_qual_cost;
    4315             :     QualCost    qp_qual_cost;
    4316             :     double      hashjointuples;
    4317             :     double      virtualbuckets;
    4318             :     Selectivity innerbucketsize;
    4319             :     Selectivity innermcvfreq;
    4320             :     ListCell   *hcl;
    4321             : 
    4322             :     /* Set the number of disabled nodes. */
    4323      457664 :     path->jpath.path.disabled_nodes = workspace->disabled_nodes;
    4324             : 
    4325             :     /* Mark the path with the correct row estimate */
    4326      457664 :     if (path->jpath.path.param_info)
    4327        3694 :         path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    4328             :     else
    4329      453970 :         path->jpath.path.rows = path->jpath.path.parent->rows;
    4330             : 
    4331             :     /* For partial paths, scale row estimate. */
    4332      457664 :     if (path->jpath.path.parallel_workers > 0)
    4333             :     {
    4334      107146 :         double      parallel_divisor = get_parallel_divisor(&path->jpath.path);
    4335             : 
    4336      107146 :         path->jpath.path.rows =
    4337      107146 :             clamp_row_est(path->jpath.path.rows / parallel_divisor);
    4338             :     }
    4339             : 
    4340             :     /* mark the path with estimated # of batches */
    4341      457664 :     path->num_batches = numbatches;
    4342             : 
    4343             :     /* store the total number of tuples (sum of partial row estimates) */
    4344      457664 :     path->inner_rows_total = inner_path_rows_total;
    4345             : 
    4346             :     /* and compute the number of "virtual" buckets in the whole join */
    4347      457664 :     virtualbuckets = (double) numbuckets * (double) numbatches;
    4348             : 
    4349             :     /*
    4350             :      * Determine bucketsize fraction and MCV frequency for the inner relation.
    4351             :      * We use the smallest bucketsize or MCV frequency estimated for any
    4352             :      * individual hashclause; this is undoubtedly conservative.
    4353             :      *
    4354             :      * BUT: if inner relation has been unique-ified, we can assume it's good
    4355             :      * for hashing.  This is important both because it's the right answer, and
    4356             :      * because we avoid contaminating the cache with a value that's wrong for
    4357             :      * non-unique-ified paths.
    4358             :      */
    4359      457664 :     if (RELATION_WAS_MADE_UNIQUE(inner_path->parent, extra->sjinfo,
    4360             :                                  path->jpath.jointype))
    4361             :     {
    4362        4384 :         innerbucketsize = 1.0 / virtualbuckets;
    4363        4384 :         innermcvfreq = 1.0 / inner_path_rows_total;
    4364             :     }
    4365             :     else
    4366             :     {
    4367             :         List       *otherclauses;
    4368             : 
    4369      453280 :         innerbucketsize = 1.0;
    4370      453280 :         innermcvfreq = 1.0;
    4371             : 
    4372             :         /* At first, try to estimate bucket size using extended statistics. */
    4373      453280 :         otherclauses = estimate_multivariate_bucketsize(root,
    4374             :                                                         inner_path->parent,
    4375             :                                                         hashclauses,
    4376             :                                                         &innerbucketsize);
    4377             : 
    4378             :         /* Pass through the remaining clauses */
    4379      943710 :         foreach(hcl, otherclauses)
    4380             :         {
    4381      490430 :             RestrictInfo *restrictinfo = lfirst_node(RestrictInfo, hcl);
    4382             :             Selectivity thisbucketsize;
    4383             :             Selectivity thismcvfreq;
    4384             : 
    4385             :             /*
    4386             :              * First we have to figure out which side of the hashjoin clause
    4387             :              * is the inner side.
    4388             :              *
    4389             :              * Since we tend to visit the same clauses over and over when
    4390             :              * planning a large query, we cache the bucket stats estimates in
    4391             :              * the RestrictInfo node to avoid repeated lookups of statistics.
    4392             :              */
    4393      490430 :             if (bms_is_subset(restrictinfo->right_relids,
    4394      490430 :                               inner_path->parent->relids))
    4395             :             {
    4396             :                 /* righthand side is inner */
    4397      255164 :                 thisbucketsize = restrictinfo->right_bucketsize;
    4398      255164 :                 if (thisbucketsize < 0)
    4399             :                 {
    4400             :                     /* not cached yet */
    4401      110656 :                     estimate_hash_bucket_stats(root,
    4402      110656 :                                                get_rightop(restrictinfo->clause),
    4403             :                                                virtualbuckets,
    4404             :                                                &restrictinfo->right_mcvfreq,
    4405             :                                                &restrictinfo->right_bucketsize);
    4406      110656 :                     thisbucketsize = restrictinfo->right_bucketsize;
    4407             :                 }
    4408      255164 :                 thismcvfreq = restrictinfo->right_mcvfreq;
    4409             :             }
    4410             :             else
    4411             :             {
    4412             :                 Assert(bms_is_subset(restrictinfo->left_relids,
    4413             :                                      inner_path->parent->relids));
    4414             :                 /* lefthand side is inner */
    4415      235266 :                 thisbucketsize = restrictinfo->left_bucketsize;
    4416      235266 :                 if (thisbucketsize < 0)
    4417             :                 {
    4418             :                     /* not cached yet */
    4419       94646 :                     estimate_hash_bucket_stats(root,
    4420       94646 :                                                get_leftop(restrictinfo->clause),
    4421             :                                                virtualbuckets,
    4422             :                                                &restrictinfo->left_mcvfreq,
    4423             :                                                &restrictinfo->left_bucketsize);
    4424       94646 :                     thisbucketsize = restrictinfo->left_bucketsize;
    4425             :                 }
    4426      235266 :                 thismcvfreq = restrictinfo->left_mcvfreq;
    4427             :             }
    4428             : 
    4429      490430 :             if (innerbucketsize > thisbucketsize)
    4430      363444 :                 innerbucketsize = thisbucketsize;
    4431             :             /* Disregard zero for MCV freq, it means we have no data */
    4432      490430 :             if (thismcvfreq > 0.0 && innermcvfreq > thismcvfreq)
    4433      370528 :                 innermcvfreq = thismcvfreq;
    4434             :         }
    4435             :     }
    4436             : 
    4437             :     /*
    4438             :      * If the bucket holding the inner MCV would exceed hash_mem, we don't
    4439             :      * want to hash unless there is really no other alternative, so apply
    4440             :      * disable_cost.  (The executor normally copes with excessive memory usage
    4441             :      * by splitting batches, but obviously it cannot separate equal values
    4442             :      * that way, so it will be unable to drive the batch size below hash_mem
    4443             :      * when this is true.)
    4444             :      */
    4445      457664 :     if (relation_byte_size(clamp_row_est(inner_path_rows * innermcvfreq),
    4446      915328 :                            inner_path->pathtarget->width) > get_hash_memory_limit())
    4447         116 :         startup_cost += disable_cost;
    4448             : 
    4449             :     /*
    4450             :      * Compute cost of the hashquals and qpquals (other restriction clauses)
    4451             :      * separately.
    4452             :      */
    4453      457664 :     cost_qual_eval(&hash_qual_cost, hashclauses, root);
    4454      457664 :     cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
    4455      457664 :     qp_qual_cost.startup -= hash_qual_cost.startup;
    4456      457664 :     qp_qual_cost.per_tuple -= hash_qual_cost.per_tuple;
    4457             : 
    4458             :     /* CPU costs */
    4459             : 
    4460      457664 :     if (path->jpath.jointype == JOIN_SEMI ||
    4461      451294 :         path->jpath.jointype == JOIN_ANTI ||
    4462      446716 :         extra->inner_unique)
    4463      124498 :     {
    4464             :         double      outer_matched_rows;
    4465             :         Selectivity inner_scan_frac;
    4466             : 
    4467             :         /*
    4468             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    4469             :          * executor will stop after the first match.
    4470             :          *
    4471             :          * For an outer-rel row that has at least one match, we can expect the
    4472             :          * bucket scan to stop after a fraction 1/(match_count+1) of the
    4473             :          * bucket's rows, if the matches are evenly distributed.  Since they
    4474             :          * probably aren't quite evenly distributed, we apply a fuzz factor of
    4475             :          * 2.0 to that fraction.  (If we used a larger fuzz factor, we'd have
    4476             :          * to clamp inner_scan_frac to at most 1.0; but since match_count is
    4477             :          * at least 1, no such clamp is needed now.)
    4478             :          */
    4479      124498 :         outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
    4480      124498 :         inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
    4481             : 
    4482      124498 :         startup_cost += hash_qual_cost.startup;
    4483      248996 :         run_cost += hash_qual_cost.per_tuple * outer_matched_rows *
    4484      124498 :             clamp_row_est(inner_path_rows * innerbucketsize * inner_scan_frac) * 0.5;
    4485             : 
    4486             :         /*
    4487             :          * For unmatched outer-rel rows, the picture is quite a lot different.
    4488             :          * In the first place, there is no reason to assume that these rows
    4489             :          * preferentially hit heavily-populated buckets; instead assume they
    4490             :          * are uncorrelated with the inner distribution and so they see an
    4491             :          * average bucket size of inner_path_rows / virtualbuckets.  In the
    4492             :          * second place, it seems likely that they will have few if any exact
    4493             :          * hash-code matches and so very few of the tuples in the bucket will
    4494             :          * actually require eval of the hash quals.  We don't have any good
    4495             :          * way to estimate how many will, but for the moment assume that the
    4496             :          * effective cost per bucket entry is one-tenth what it is for
    4497             :          * matchable tuples.
    4498             :          */
    4499      248996 :         run_cost += hash_qual_cost.per_tuple *
    4500      248996 :             (outer_path_rows - outer_matched_rows) *
    4501      124498 :             clamp_row_est(inner_path_rows / virtualbuckets) * 0.05;
    4502             : 
    4503             :         /* Get # of tuples that will pass the basic join */
    4504      124498 :         if (path->jpath.jointype == JOIN_ANTI)
    4505        4578 :             hashjointuples = outer_path_rows - outer_matched_rows;
    4506             :         else
    4507      119920 :             hashjointuples = outer_matched_rows;
    4508             :     }
    4509             :     else
    4510             :     {
    4511             :         /*
    4512             :          * The number of tuple comparisons needed is the number of outer
    4513             :          * tuples times the typical number of tuples in a hash bucket, which
    4514             :          * is the inner relation size times its bucketsize fraction.  At each
    4515             :          * one, we need to evaluate the hashjoin quals.  But actually,
    4516             :          * charging the full qual eval cost at each tuple is pessimistic,
    4517             :          * since we don't evaluate the quals unless the hash values match
    4518             :          * exactly.  For lack of a better idea, halve the cost estimate to
    4519             :          * allow for that.
    4520             :          */
    4521      333166 :         startup_cost += hash_qual_cost.startup;
    4522      666332 :         run_cost += hash_qual_cost.per_tuple * outer_path_rows *
    4523      333166 :             clamp_row_est(inner_path_rows * innerbucketsize) * 0.5;
    4524             : 
    4525             :         /*
    4526             :          * Get approx # tuples passing the hashquals.  We use
    4527             :          * approx_tuple_count here because we need an estimate done with
    4528             :          * JOIN_INNER semantics.
    4529             :          */
    4530      333166 :         hashjointuples = approx_tuple_count(root, &path->jpath, hashclauses);
    4531             :     }
    4532             : 
    4533             :     /*
    4534             :      * For each tuple that gets through the hashjoin proper, we charge
    4535             :      * cpu_tuple_cost plus the cost of evaluating additional restriction
    4536             :      * clauses that are to be applied at the join.  (This is pessimistic since
    4537             :      * not all of the quals may get evaluated at each tuple.)
    4538             :      */
    4539      457664 :     startup_cost += qp_qual_cost.startup;
    4540      457664 :     cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
    4541      457664 :     run_cost += cpu_per_tuple * hashjointuples;
    4542             : 
    4543             :     /* tlist eval costs are paid per output row, not per tuple scanned */
    4544      457664 :     startup_cost += path->jpath.path.pathtarget->cost.startup;
    4545      457664 :     run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    4546             : 
    4547      457664 :     path->jpath.path.startup_cost = startup_cost;
    4548      457664 :     path->jpath.path.total_cost = startup_cost + run_cost;
    4549      457664 : }
    4550             : 
    4551             : 
    4552             : /*
    4553             :  * cost_subplan
    4554             :  *      Figure the costs for a SubPlan (or initplan).
    4555             :  *
    4556             :  * Note: we could dig the subplan's Plan out of the root list, but in practice
    4557             :  * all callers have it handy already, so we make them pass it.
    4558             :  */
    4559             : void
    4560       44294 : cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan)
    4561             : {
    4562             :     QualCost    sp_cost;
    4563             : 
    4564             :     /*
    4565             :      * Figure any cost for evaluating the testexpr.
    4566             :      *
    4567             :      * Usually, SubPlan nodes are built very early, before we have constructed
    4568             :      * any RelOptInfos for the parent query level, which means the parent root
    4569             :      * does not yet contain enough information to safely consult statistics.
    4570             :      * Therefore, we pass root as NULL here.  cost_qual_eval() is already
    4571             :      * well-equipped to handle a NULL root.
    4572             :      *
    4573             :      * One exception is SubPlan nodes built for the initplans of MIN/MAX
    4574             :      * aggregates from indexes (cf. SS_make_initplan_from_plan).  In this
    4575             :      * case, having a NULL root is safe because testexpr will be NULL.
    4576             :      * Besides, an initplan will by definition not consult anything from the
    4577             :      * parent plan.
    4578             :      */
    4579       44294 :     cost_qual_eval(&sp_cost,
    4580       44294 :                    make_ands_implicit((Expr *) subplan->testexpr),
    4581             :                    NULL);
    4582             : 
    4583       44294 :     if (subplan->useHashTable)
    4584             :     {
    4585             :         /*
    4586             :          * If we are using a hash table for the subquery outputs, then the
    4587             :          * cost of evaluating the query is a one-time cost.  We charge one
    4588             :          * cpu_operator_cost per tuple for the work of loading the hashtable,
    4589             :          * too.
    4590             :          */
    4591        2126 :         sp_cost.startup += plan->total_cost +
    4592        2126 :             cpu_operator_cost * plan->plan_rows;
    4593             : 
    4594             :         /*
    4595             :          * The per-tuple costs include the cost of evaluating the lefthand
    4596             :          * expressions, plus the cost of probing the hashtable.  We already
    4597             :          * accounted for the lefthand expressions as part of the testexpr, and
    4598             :          * will also have counted one cpu_operator_cost for each comparison
    4599             :          * operator.  That is probably too low for the probing cost, but it's
    4600             :          * hard to make a better estimate, so live with it for now.
    4601             :          */
    4602             :     }
    4603             :     else
    4604             :     {
    4605             :         /*
    4606             :          * Otherwise we will be rescanning the subplan output on each
    4607             :          * evaluation.  We need to estimate how much of the output we will
    4608             :          * actually need to scan.  NOTE: this logic should agree with the
    4609             :          * tuple_fraction estimates used by make_subplan() in
    4610             :          * plan/subselect.c.
    4611             :          */
    4612       42168 :         Cost        plan_run_cost = plan->total_cost - plan->startup_cost;
    4613             : 
    4614       42168 :         if (subplan->subLinkType == EXISTS_SUBLINK)
    4615             :         {
    4616             :             /* we only need to fetch 1 tuple; clamp to avoid zero divide */
    4617        2578 :             sp_cost.per_tuple += plan_run_cost / clamp_row_est(plan->plan_rows);
    4618             :         }
    4619       39590 :         else if (subplan->subLinkType == ALL_SUBLINK ||
    4620       39572 :                  subplan->subLinkType == ANY_SUBLINK)
    4621             :         {
    4622             :             /* assume we need 50% of the tuples */
    4623         146 :             sp_cost.per_tuple += 0.50 * plan_run_cost;
    4624             :             /* also charge a cpu_operator_cost per row examined */
    4625         146 :             sp_cost.per_tuple += 0.50 * plan->plan_rows * cpu_operator_cost;
    4626             :         }
    4627             :         else
    4628             :         {
    4629             :             /* assume we need all tuples */
    4630       39444 :             sp_cost.per_tuple += plan_run_cost;
    4631             :         }
    4632             : 
    4633             :         /*
    4634             :          * Also account for subplan's startup cost. If the subplan is
    4635             :          * uncorrelated or undirect correlated, AND its topmost node is one
    4636             :          * that materializes its output, assume that we'll only need to pay
    4637             :          * its startup cost once; otherwise assume we pay the startup cost
    4638             :          * every time.
    4639             :          */
    4640       55550 :         if (subplan->parParam == NIL &&
    4641       13382 :             ExecMaterializesOutput(nodeTag(plan)))
    4642         782 :             sp_cost.startup += plan->startup_cost;
    4643             :         else
    4644       41386 :             sp_cost.per_tuple += plan->startup_cost;
    4645             :     }
    4646             : 
    4647       44294 :     subplan->startup_cost = sp_cost.startup;
    4648       44294 :     subplan->per_call_cost = sp_cost.per_tuple;
    4649       44294 : }
    4650             : 
    4651             : 
    4652             : /*
    4653             :  * cost_rescan
    4654             :  *      Given a finished Path, estimate the costs of rescanning it after
    4655             :  *      having done so the first time.  For some Path types a rescan is
    4656             :  *      cheaper than an original scan (if no parameters change), and this
    4657             :  *      function embodies knowledge about that.  The default is to return
    4658             :  *      the same costs stored in the Path.  (Note that the cost estimates
    4659             :  *      actually stored in Paths are always for first scans.)
    4660             :  *
    4661             :  * This function is not currently intended to model effects such as rescans
    4662             :  * being cheaper due to disk block caching; what we are concerned with is
    4663             :  * plan types wherein the executor caches results explicitly, or doesn't
    4664             :  * redo startup calculations, etc.
    4665             :  */
    4666             : static void
    4667     3293368 : cost_rescan(PlannerInfo *root, Path *path,
    4668             :             Cost *rescan_startup_cost,  /* output parameters */
    4669             :             Cost *rescan_total_cost)
    4670             : {
    4671     3293368 :     switch (path->pathtype)
    4672             :     {
    4673       53100 :         case T_FunctionScan:
    4674             : 
    4675             :             /*
    4676             :              * Currently, nodeFunctionscan.c always executes the function to
    4677             :              * completion before returning any rows, and caches the results in
    4678             :              * a tuplestore.  So the function eval cost is all startup cost
    4679             :              * and isn't paid over again on rescans. However, all run costs
    4680             :              * will be paid over again.
    4681             :              */
    4682       53100 :             *rescan_startup_cost = 0;
    4683       53100 :             *rescan_total_cost = path->total_cost - path->startup_cost;
    4684       53100 :             break;
    4685      131786 :         case T_HashJoin:
    4686             : 
    4687             :             /*
    4688             :              * If it's a single-batch join, we don't need to rebuild the hash
    4689             :              * table during a rescan.
    4690             :              */
    4691      131786 :             if (((HashPath *) path)->num_batches == 1)
    4692             :             {
    4693             :                 /* Startup cost is exactly the cost of hash table building */
    4694      131786 :                 *rescan_startup_cost = 0;
    4695      131786 :                 *rescan_total_cost = path->total_cost - path->startup_cost;
    4696             :             }
    4697             :             else
    4698             :             {
    4699             :                 /* Otherwise, no special treatment */
    4700           0 :                 *rescan_startup_cost = path->startup_cost;
    4701           0 :                 *rescan_total_cost = path->total_cost;
    4702             :             }
    4703      131786 :             break;
    4704        8112 :         case T_CteScan:
    4705             :         case T_WorkTableScan:
    4706             :             {
    4707             :                 /*
    4708             :                  * These plan types materialize their final result in a
    4709             :                  * tuplestore or tuplesort object.  So the rescan cost is only
    4710             :                  * cpu_tuple_cost per tuple, unless the result is large enough
    4711             :                  * to spill to disk.
    4712             :                  */
    4713        8112 :                 Cost        run_cost = cpu_tuple_cost * path->rows;
    4714        8112 :                 double      nbytes = relation_byte_size(path->rows,
    4715        8112 :                                                         path->pathtarget->width);
    4716        8112 :                 double      work_mem_bytes = work_mem * (Size) 1024;
    4717             : 
    4718        8112 :                 if (nbytes > work_mem_bytes)
    4719             :                 {
    4720             :                     /* It will spill, so account for re-read cost */
    4721         368 :                     double      npages = ceil(nbytes / BLCKSZ);
    4722             : 
    4723         368 :                     run_cost += seq_page_cost * npages;
    4724             :                 }
    4725        8112 :                 *rescan_startup_cost = 0;
    4726        8112 :                 *rescan_total_cost = run_cost;
    4727             :             }
    4728        8112 :             break;
    4729     1188180 :         case T_Material:
    4730             :         case T_Sort:
    4731             :             {
    4732             :                 /*
    4733             :                  * These plan types not only materialize their results, but do
    4734             :                  * not implement qual filtering or projection.  So they are
    4735             :                  * even cheaper to rescan than the ones above.  We charge only
    4736             :                  * cpu_operator_cost per tuple.  (Note: keep that in sync with
    4737             :                  * the run_cost charge in cost_sort, and also see comments in
    4738             :                  * cost_material before you change it.)
    4739             :                  */
    4740     1188180 :                 Cost        run_cost = cpu_operator_cost * path->rows;
    4741     1188180 :                 double      nbytes = relation_byte_size(path->rows,
    4742     1188180 :                                                         path->pathtarget->width);
    4743     1188180 :                 double      work_mem_bytes = work_mem * (Size) 1024;
    4744             : 
    4745     1188180 :                 if (nbytes > work_mem_bytes)
    4746             :                 {
    4747             :                     /* It will spill, so account for re-read cost */
    4748        9910 :                     double      npages = ceil(nbytes / BLCKSZ);
    4749             : 
    4750        9910 :                     run_cost += seq_page_cost * npages;
    4751             :                 }
    4752     1188180 :                 *rescan_startup_cost = 0;
    4753     1188180 :                 *rescan_total_cost = run_cost;
    4754             :             }
    4755     1188180 :             break;
    4756      295536 :         case T_Memoize:
    4757             :             /* All the hard work is done by cost_memoize_rescan */
    4758      295536 :             cost_memoize_rescan(root, (MemoizePath *) path,
    4759             :                                 rescan_startup_cost, rescan_total_cost);
    4760      295536 :             break;
    4761     1616654 :         default:
    4762     1616654 :             *rescan_startup_cost = path->startup_cost;
    4763     1616654 :             *rescan_total_cost = path->total_cost;
    4764     1616654 :             break;
    4765             :     }
    4766     3293368 : }
    4767             : 
    4768             : 
    4769             : /*
    4770             :  * cost_qual_eval
    4771             :  *      Estimate the CPU costs of evaluating a WHERE clause.
    4772             :  *      The input can be either an implicitly-ANDed list of boolean
    4773             :  *      expressions, or a list of RestrictInfo nodes.  (The latter is
    4774             :  *      preferred since it allows caching of the results.)
    4775             :  *      The result includes both a one-time (startup) component,
    4776             :  *      and a per-evaluation component.
    4777             :  *
    4778             :  * Note: in some code paths root can be passed as NULL, resulting in
    4779             :  * slightly worse estimates.
    4780             :  */
    4781             : void
    4782     4712602 : cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
    4783             : {
    4784             :     cost_qual_eval_context context;
    4785             :     ListCell   *l;
    4786             : 
    4787     4712602 :     context.root = root;
    4788     4712602 :     context.total.startup = 0;
    4789     4712602 :     context.total.per_tuple = 0;
    4790             : 
    4791             :     /* We don't charge any cost for the implicit ANDing at top level ... */
    4792             : 
    4793     8972230 :     foreach(l, quals)
    4794             :     {
    4795     4259628 :         Node       *qual = (Node *) lfirst(l);
    4796             : 
    4797     4259628 :         cost_qual_eval_walker(qual, &context);
    4798             :     }
    4799             : 
    4800     4712602 :     *cost = context.total;
    4801     4712602 : }
    4802             : 
    4803             : /*
    4804             :  * cost_qual_eval_node
    4805             :  *      As above, for a single RestrictInfo or expression.
    4806             :  */
    4807             : void
    4808     1879418 : cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
    4809             : {
    4810             :     cost_qual_eval_context context;
    4811             : 
    4812     1879418 :     context.root = root;
    4813     1879418 :     context.total.startup = 0;
    4814     1879418 :     context.total.per_tuple = 0;
    4815             : 
    4816     1879418 :     cost_qual_eval_walker(qual, &context);
    4817             : 
    4818     1879418 :     *cost = context.total;
    4819     1879418 : }
    4820             : 
    4821             : static bool
    4822     9649214 : cost_qual_eval_walker(Node *node, cost_qual_eval_context *context)
    4823             : {
    4824     9649214 :     if (node == NULL)
    4825       94716 :         return false;
    4826             : 
    4827             :     /*
    4828             :      * RestrictInfo nodes contain an eval_cost field reserved for this
    4829             :      * routine's use, so that it's not necessary to evaluate the qual clause's
    4830             :      * cost more than once.  If the clause's cost hasn't been computed yet,
    4831             :      * the field's startup value will contain -1.
    4832             :      */
    4833     9554498 :     if (IsA(node, RestrictInfo))
    4834             :     {
    4835     4449140 :         RestrictInfo *rinfo = (RestrictInfo *) node;
    4836             : 
    4837     4449140 :         if (rinfo->eval_cost.startup < 0)
    4838             :         {
    4839             :             cost_qual_eval_context locContext;
    4840             : 
    4841      610162 :             locContext.root = context->root;
    4842      610162 :             locContext.total.startup = 0;
    4843      610162 :             locContext.total.per_tuple = 0;
    4844             : 
    4845             :             /*
    4846             :              * For an OR clause, recurse into the marked-up tree so that we
    4847             :              * set the eval_cost for contained RestrictInfos too.
    4848             :              */
    4849      610162 :             if (rinfo->orclause)
    4850        9632 :                 cost_qual_eval_walker((Node *) rinfo->orclause, &locContext);
    4851             :             else
    4852      600530 :                 cost_qual_eval_walker((Node *) rinfo->clause, &locContext);
    4853             : 
    4854             :             /*
    4855             :              * If the RestrictInfo is marked pseudoconstant, it will be tested
    4856             :              * only once, so treat its cost as all startup cost.
    4857             :              */
    4858      610162 :             if (rinfo->pseudoconstant)
    4859             :             {
    4860             :                 /* count one execution during startup */
    4861       10310 :                 locContext.total.startup += locContext.total.per_tuple;
    4862       10310 :                 locContext.total.per_tuple = 0;
    4863             :             }
    4864      610162 :             rinfo->eval_cost = locContext.total;
    4865             :         }
    4866     4449140 :         context->total.startup += rinfo->eval_cost.startup;
    4867     4449140 :         context->total.per_tuple += rinfo->eval_cost.per_tuple;
    4868             :         /* do NOT recurse into children */
    4869     4449140 :         return false;
    4870             :     }
    4871             : 
    4872             :     /*
    4873             :      * For each operator or function node in the given tree, we charge the
    4874             :      * estimated execution cost given by pg_proc.procost (remember to multiply
    4875             :      * this by cpu_operator_cost).
    4876             :      *
    4877             :      * Vars and Consts are charged zero, and so are boolean operators (AND,
    4878             :      * OR, NOT). Simplistic, but a lot better than no model at all.
    4879             :      *
    4880             :      * Should we try to account for the possibility of short-circuit
    4881             :      * evaluation of AND/OR?  Probably *not*, because that would make the
    4882             :      * results depend on the clause ordering, and we are not in any position
    4883             :      * to expect that the current ordering of the clauses is the one that's
    4884             :      * going to end up being used.  The above per-RestrictInfo caching would
    4885             :      * not mix well with trying to re-order clauses anyway.
    4886             :      *
    4887             :      * Another issue that is entirely ignored here is that if a set-returning
    4888             :      * function is below top level in the tree, the functions/operators above
    4889             :      * it will need to be evaluated multiple times.  In practical use, such
    4890             :      * cases arise so seldom as to not be worth the added complexity needed;
    4891             :      * moreover, since our rowcount estimates for functions tend to be pretty
    4892             :      * phony, the results would also be pretty phony.
    4893             :      */
    4894     5105358 :     if (IsA(node, FuncExpr))
    4895             :     {
    4896      347432 :         add_function_cost(context->root, ((FuncExpr *) node)->funcid, node,
    4897             :                           &context->total);
    4898             :     }
    4899     4757926 :     else if (IsA(node, OpExpr) ||
    4900     4090408 :              IsA(node, DistinctExpr) ||
    4901     4089328 :              IsA(node, NullIfExpr))
    4902             :     {
    4903             :         /* rely on struct equivalence to treat these all alike */
    4904      668722 :         set_opfuncid((OpExpr *) node);
    4905      668722 :         add_function_cost(context->root, ((OpExpr *) node)->opfuncid, node,
    4906             :                           &context->total);
    4907             :     }
    4908     4089204 :     else if (IsA(node, ScalarArrayOpExpr))
    4909             :     {
    4910       45162 :         ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
    4911       45162 :         Node       *arraynode = (Node *) lsecond(saop->args);
    4912             :         QualCost    sacosts;
    4913             :         QualCost    hcosts;
    4914       45162 :         double      estarraylen = estimate_array_length(context->root, arraynode);
    4915             : 
    4916       45162 :         set_sa_opfuncid(saop);
    4917       45162 :         sacosts.startup = sacosts.per_tuple = 0;
    4918       45162 :         add_function_cost(context->root, saop->opfuncid, NULL,
    4919             :                           &sacosts);
    4920             : 
    4921       45162 :         if (OidIsValid(saop->hashfuncid))
    4922             :         {
    4923             :             /* Handle costs for hashed ScalarArrayOpExpr */
    4924         430 :             hcosts.startup = hcosts.per_tuple = 0;
    4925             : 
    4926         430 :             add_function_cost(context->root, saop->hashfuncid, NULL, &hcosts);
    4927         430 :             context->total.startup += sacosts.startup + hcosts.startup;
    4928             : 
    4929             :             /* Estimate the cost of building the hashtable. */
    4930         430 :             context->total.startup += estarraylen * hcosts.per_tuple;
    4931             : 
    4932             :             /*
    4933             :              * XXX should we charge a little bit for sacosts.per_tuple when
    4934             :              * building the table, or is it ok to assume there will be zero
    4935             :              * hash collision?
    4936             :              */
    4937             : 
    4938             :             /*
    4939             :              * Charge for hashtable lookups.  Charge a single hash and a
    4940             :              * single comparison.
    4941             :              */
    4942         430 :             context->total.per_tuple += hcosts.per_tuple + sacosts.per_tuple;
    4943             :         }
    4944             :         else
    4945             :         {
    4946             :             /*
    4947             :              * Estimate that the operator will be applied to about half of the
    4948             :              * array elements before the answer is determined.
    4949             :              */
    4950       44732 :             context->total.startup += sacosts.startup;
    4951       89464 :             context->total.per_tuple += sacosts.per_tuple *
    4952       44732 :                 estimate_array_length(context->root, arraynode) * 0.5;
    4953             :         }
    4954             :     }
    4955     4044042 :     else if (IsA(node, Aggref) ||
    4956     3972820 :              IsA(node, WindowFunc))
    4957             :     {
    4958             :         /*
    4959             :          * Aggref and WindowFunc nodes are (and should be) treated like Vars,
    4960             :          * ie, zero execution cost in the current model, because they behave
    4961             :          * essentially like Vars at execution.  We disregard the costs of
    4962             :          * their input expressions for the same reason.  The actual execution
    4963             :          * costs of the aggregate/window functions and their arguments have to
    4964             :          * be factored into plan-node-specific costing of the Agg or WindowAgg
    4965             :          * plan node.
    4966             :          */
    4967       75100 :         return false;           /* don't recurse into children */
    4968             :     }
    4969     3968942 :     else if (IsA(node, GroupingFunc))
    4970             :     {
    4971             :         /* Treat this as having cost 1 */
    4972         422 :         context->total.per_tuple += cpu_operator_cost;
    4973         422 :         return false;           /* don't recurse into children */
    4974             :     }
    4975     3968520 :     else if (IsA(node, CoerceViaIO))
    4976             :     {
    4977       22754 :         CoerceViaIO *iocoerce = (CoerceViaIO *) node;
    4978             :         Oid         iofunc;
    4979             :         Oid         typioparam;
    4980             :         bool        typisvarlena;
    4981             : 
    4982             :         /* check the result type's input function */
    4983       22754 :         getTypeInputInfo(iocoerce->resulttype,
    4984             :                          &iofunc, &typioparam);
    4985       22754 :         add_function_cost(context->root, iofunc, NULL,
    4986             :                           &context->total);
    4987             :         /* check the input type's output function */
    4988       22754 :         getTypeOutputInfo(exprType((Node *) iocoerce->arg),
    4989             :                           &iofunc, &typisvarlena);
    4990       22754 :         add_function_cost(context->root, iofunc, NULL,
    4991             :                           &context->total);
    4992             :     }
    4993     3945766 :     else if (IsA(node, ArrayCoerceExpr))
    4994             :     {
    4995        5210 :         ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
    4996             :         QualCost    perelemcost;
    4997             : 
    4998        5210 :         cost_qual_eval_node(&perelemcost, (Node *) acoerce->elemexpr,
    4999             :                             context->root);
    5000        5210 :         context->total.startup += perelemcost.startup;
    5001        5210 :         if (perelemcost.per_tuple > 0)
    5002          66 :             context->total.per_tuple += perelemcost.per_tuple *
    5003          66 :                 estimate_array_length(context->root, (Node *) acoerce->arg);
    5004             :     }
    5005     3940556 :     else if (IsA(node, RowCompareExpr))
    5006             :     {
    5007             :         /* Conservatively assume we will check all the columns */
    5008         252 :         RowCompareExpr *rcexpr = (RowCompareExpr *) node;
    5009             :         ListCell   *lc;
    5010             : 
    5011         810 :         foreach(lc, rcexpr->opnos)
    5012             :         {
    5013         558 :             Oid         opid = lfirst_oid(lc);
    5014             : 
    5015         558 :             add_function_cost(context->root, get_opcode(opid), NULL,
    5016             :                               &context->total);
    5017             :         }
    5018             :     }
    5019     3940304 :     else if (IsA(node, MinMaxExpr) ||
    5020     3940026 :              IsA(node, SQLValueFunction) ||
    5021     3935234 :              IsA(node, XmlExpr) ||
    5022     3934532 :              IsA(node, CoerceToDomain) ||
    5023     3924674 :              IsA(node, NextValueExpr) ||
    5024     3924278 :              IsA(node, JsonExpr))
    5025             :     {
    5026             :         /* Treat all these as having cost 1 */
    5027       18598 :         context->total.per_tuple += cpu_operator_cost;
    5028             :     }
    5029     3921706 :     else if (IsA(node, SubLink))
    5030             :     {
    5031             :         /* This routine should not be applied to un-planned expressions */
    5032           0 :         elog(ERROR, "cannot handle unplanned sub-select");
    5033             :     }
    5034     3921706 :     else if (IsA(node, SubPlan))
    5035             :     {
    5036             :         /*
    5037             :          * A subplan node in an expression typically indicates that the
    5038             :          * subplan will be executed on each evaluation, so charge accordingly.
    5039             :          * (Sub-selects that can be executed as InitPlans have already been
    5040             :          * removed from the expression.)
    5041             :          */
    5042       43780 :         SubPlan    *subplan = (SubPlan *) node;
    5043             : 
    5044       43780 :         context->total.startup += subplan->startup_cost;
    5045       43780 :         context->total.per_tuple += subplan->per_call_cost;
    5046             : 
    5047             :         /*
    5048             :          * We don't want to recurse into the testexpr, because it was already
    5049             :          * counted in the SubPlan node's costs.  So we're done.
    5050             :          */
    5051       43780 :         return false;
    5052             :     }
    5053     3877926 :     else if (IsA(node, AlternativeSubPlan))
    5054             :     {
    5055             :         /*
    5056             :          * Arbitrarily use the first alternative plan for costing.  (We should
    5057             :          * certainly only include one alternative, and we don't yet have
    5058             :          * enough information to know which one the executor is most likely to
    5059             :          * use.)
    5060             :          */
    5061        1858 :         AlternativeSubPlan *asplan = (AlternativeSubPlan *) node;
    5062             : 
    5063        1858 :         return cost_qual_eval_walker((Node *) linitial(asplan->subplans),
    5064             :                                      context);
    5065             :     }
    5066     3876068 :     else if (IsA(node, PlaceHolderVar))
    5067             :     {
    5068             :         /*
    5069             :          * A PlaceHolderVar should be given cost zero when considering general
    5070             :          * expression evaluation costs.  The expense of doing the contained
    5071             :          * expression is charged as part of the tlist eval costs of the scan
    5072             :          * or join where the PHV is first computed (see set_rel_width and
    5073             :          * add_placeholders_to_joinrel).  If we charged it again here, we'd be
    5074             :          * double-counting the cost for each level of plan that the PHV
    5075             :          * bubbles up through.  Hence, return without recursing into the
    5076             :          * phexpr.
    5077             :          */
    5078        5628 :         return false;
    5079             :     }
    5080             : 
    5081             :     /* recurse into children */
    5082     4978570 :     return expression_tree_walker(node, cost_qual_eval_walker, context);
    5083             : }
    5084             : 
    5085             : /*
    5086             :  * get_restriction_qual_cost
    5087             :  *    Compute evaluation costs of a baserel's restriction quals, plus any
    5088             :  *    movable join quals that have been pushed down to the scan.
    5089             :  *    Results are returned into *qpqual_cost.
    5090             :  *
    5091             :  * This is a convenience subroutine that works for seqscans and other cases
    5092             :  * where all the given quals will be evaluated the hard way.  It's not useful
    5093             :  * for cost_index(), for example, where the index machinery takes care of
    5094             :  * some of the quals.  We assume baserestrictcost was previously set by
    5095             :  * set_baserel_size_estimates().
    5096             :  */
    5097             : static void
    5098     1112966 : get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
    5099             :                           ParamPathInfo *param_info,
    5100             :                           QualCost *qpqual_cost)
    5101             : {
    5102     1112966 :     if (param_info)
    5103             :     {
    5104             :         /* Include costs of pushed-down clauses */
    5105      246744 :         cost_qual_eval(qpqual_cost, param_info->ppi_clauses, root);
    5106             : 
    5107      246744 :         qpqual_cost->startup += baserel->baserestrictcost.startup;
    5108      246744 :         qpqual_cost->per_tuple += baserel->baserestrictcost.per_tuple;
    5109             :     }
    5110             :     else
    5111      866222 :         *qpqual_cost = baserel->baserestrictcost;
    5112     1112966 : }
    5113             : 
    5114             : 
    5115             : /*
    5116             :  * compute_semi_anti_join_factors
    5117             :  *    Estimate how much of the inner input a SEMI, ANTI, or inner_unique join
    5118             :  *    can be expected to scan.
    5119             :  *
    5120             :  * In a hash or nestloop SEMI/ANTI join, the executor will stop scanning
    5121             :  * inner rows as soon as it finds a match to the current outer row.
    5122             :  * The same happens if we have detected the inner rel is unique.
    5123             :  * We should therefore adjust some of the cost components for this effect.
    5124             :  * This function computes some estimates needed for these adjustments.
    5125             :  * These estimates will be the same regardless of the particular paths used
    5126             :  * for the outer and inner relation, so we compute these once and then pass
    5127             :  * them to all the join cost estimation functions.
    5128             :  *
    5129             :  * Input parameters:
    5130             :  *  joinrel: join relation under consideration
    5131             :  *  outerrel: outer relation under consideration
    5132             :  *  innerrel: inner relation under consideration
    5133             :  *  jointype: if not JOIN_SEMI or JOIN_ANTI, we assume it's inner_unique
    5134             :  *  sjinfo: SpecialJoinInfo relevant to this join
    5135             :  *  restrictlist: join quals
    5136             :  * Output parameters:
    5137             :  *  *semifactors is filled in (see pathnodes.h for field definitions)
    5138             :  */
    5139             : void
    5140      216256 : compute_semi_anti_join_factors(PlannerInfo *root,
    5141             :                                RelOptInfo *joinrel,
    5142             :                                RelOptInfo *outerrel,
    5143             :                                RelOptInfo *innerrel,
    5144             :                                JoinType jointype,
    5145             :                                SpecialJoinInfo *sjinfo,
    5146             :                                List *restrictlist,
    5147             :                                SemiAntiJoinFactors *semifactors)
    5148             : {
    5149             :     Selectivity jselec;
    5150             :     Selectivity nselec;
    5151             :     Selectivity avgmatch;
    5152             :     SpecialJoinInfo norm_sjinfo;
    5153             :     List       *joinquals;
    5154             :     ListCell   *l;
    5155             : 
    5156             :     /*
    5157             :      * In an ANTI join, we must ignore clauses that are "pushed down", since
    5158             :      * those won't affect the match logic.  In a SEMI join, we do not
    5159             :      * distinguish joinquals from "pushed down" quals, so just use the whole
    5160             :      * restrictinfo list.  For other outer join types, we should consider only
    5161             :      * non-pushed-down quals, so that this devolves to an IS_OUTER_JOIN check.
    5162             :      */
    5163      216256 :     if (IS_OUTER_JOIN(jointype))
    5164             :     {
    5165       75802 :         joinquals = NIL;
    5166      165842 :         foreach(l, restrictlist)
    5167             :         {
    5168       90040 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    5169             : 
    5170       90040 :             if (!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    5171       85164 :                 joinquals = lappend(joinquals, rinfo);
    5172             :         }
    5173             :     }
    5174             :     else
    5175      140454 :         joinquals = restrictlist;
    5176             : 
    5177             :     /*
    5178             :      * Get the JOIN_SEMI or JOIN_ANTI selectivity of the join clauses.
    5179             :      */
    5180      216256 :     jselec = clauselist_selectivity(root,
    5181             :                                     joinquals,
    5182             :                                     0,
    5183             :                                     (jointype == JOIN_ANTI) ? JOIN_ANTI : JOIN_SEMI,
    5184             :                                     sjinfo);
    5185             : 
    5186             :     /*
    5187             :      * Also get the normal inner-join selectivity of the join clauses.
    5188             :      */
    5189      216256 :     init_dummy_sjinfo(&norm_sjinfo, outerrel->relids, innerrel->relids);
    5190             : 
    5191      216256 :     nselec = clauselist_selectivity(root,
    5192             :                                     joinquals,
    5193             :                                     0,
    5194             :                                     JOIN_INNER,
    5195             :                                     &norm_sjinfo);
    5196             : 
    5197             :     /* Avoid leaking a lot of ListCells */
    5198      216256 :     if (IS_OUTER_JOIN(jointype))
    5199       75802 :         list_free(joinquals);
    5200             : 
    5201             :     /*
    5202             :      * jselec can be interpreted as the fraction of outer-rel rows that have
    5203             :      * any matches (this is true for both SEMI and ANTI cases).  And nselec is
    5204             :      * the fraction of the Cartesian product that matches.  So, the average
    5205             :      * number of matches for each outer-rel row that has at least one match is
    5206             :      * nselec * inner_rows / jselec.
    5207             :      *
    5208             :      * Note: it is correct to use the inner rel's "rows" count here, even
    5209             :      * though we might later be considering a parameterized inner path with
    5210             :      * fewer rows.  This is because we have included all the join clauses in
    5211             :      * the selectivity estimate.
    5212             :      */
    5213      216256 :     if (jselec > 0)              /* protect against zero divide */
    5214             :     {
    5215      215862 :         avgmatch = nselec * innerrel->rows / jselec;
    5216             :         /* Clamp to sane range */
    5217      215862 :         avgmatch = Max(1.0, avgmatch);
    5218             :     }
    5219             :     else
    5220         394 :         avgmatch = 1.0;
    5221             : 
    5222      216256 :     semifactors->outer_match_frac = jselec;
    5223      216256 :     semifactors->match_count = avgmatch;
    5224      216256 : }
    5225             : 
    5226             : /*
    5227             :  * has_indexed_join_quals
    5228             :  *    Check whether all the joinquals of a nestloop join are used as
    5229             :  *    inner index quals.
    5230             :  *
    5231             :  * If the inner path of a SEMI/ANTI join is an indexscan (including bitmap
    5232             :  * indexscan) that uses all the joinquals as indexquals, we can assume that an
    5233             :  * unmatched outer tuple is cheap to process, whereas otherwise it's probably
    5234             :  * expensive.
    5235             :  */
    5236             : static bool
    5237      925524 : has_indexed_join_quals(NestPath *path)
    5238             : {
    5239      925524 :     JoinPath   *joinpath = &path->jpath;
    5240      925524 :     Relids      joinrelids = joinpath->path.parent->relids;
    5241      925524 :     Path       *innerpath = joinpath->innerjoinpath;
    5242             :     List       *indexclauses;
    5243             :     bool        found_one;
    5244             :     ListCell   *lc;
    5245             : 
    5246             :     /* If join still has quals to evaluate, it's not fast */
    5247      925524 :     if (joinpath->joinrestrictinfo != NIL)
    5248      656342 :         return false;
    5249             :     /* Nor if the inner path isn't parameterized at all */
    5250      269182 :     if (innerpath->param_info == NULL)
    5251        3300 :         return false;
    5252             : 
    5253             :     /* Find the indexclauses list for the inner scan */
    5254      265882 :     switch (innerpath->pathtype)
    5255             :     {
    5256      161288 :         case T_IndexScan:
    5257             :         case T_IndexOnlyScan:
    5258      161288 :             indexclauses = ((IndexPath *) innerpath)->indexclauses;
    5259      161288 :             break;
    5260         270 :         case T_BitmapHeapScan:
    5261             :             {
    5262             :                 /* Accept only a simple bitmap scan, not AND/OR cases */
    5263         270 :                 Path       *bmqual = ((BitmapHeapPath *) innerpath)->bitmapqual;
    5264             : 
    5265         270 :                 if (IsA(bmqual, IndexPath))
    5266         222 :                     indexclauses = ((IndexPath *) bmqual)->indexclauses;
    5267             :                 else
    5268          48 :                     return false;
    5269         222 :                 break;
    5270             :             }
    5271      104324 :         default:
    5272             : 
    5273             :             /*
    5274             :              * If it's not a simple indexscan, it probably doesn't run quickly
    5275             :              * for zero rows out, even if it's a parameterized path using all
    5276             :              * the joinquals.
    5277             :              */
    5278      104324 :             return false;
    5279             :     }
    5280             : 
    5281             :     /*
    5282             :      * Examine the inner path's param clauses.  Any that are from the outer
    5283             :      * path must be found in the indexclauses list, either exactly or in an
    5284             :      * equivalent form generated by equivclass.c.  Also, we must find at least
    5285             :      * one such clause, else it's a clauseless join which isn't fast.
    5286             :      */
    5287      161510 :     found_one = false;
    5288      318950 :     foreach(lc, innerpath->param_info->ppi_clauses)
    5289             :     {
    5290      166134 :         RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    5291             : 
    5292      166134 :         if (join_clause_is_movable_into(rinfo,
    5293      166134 :                                         innerpath->parent->relids,
    5294             :                                         joinrelids))
    5295             :         {
    5296      165582 :             if (!is_redundant_with_indexclauses(rinfo, indexclauses))
    5297        8694 :                 return false;
    5298      156888 :             found_one = true;
    5299             :         }
    5300             :     }
    5301      152816 :     return found_one;
    5302             : }
    5303             : 
    5304             : 
    5305             : /*
    5306             :  * approx_tuple_count
    5307             :  *      Quick-and-dirty estimation of the number of join rows passing
    5308             :  *      a set of qual conditions.
    5309             :  *
    5310             :  * The quals can be either an implicitly-ANDed list of boolean expressions,
    5311             :  * or a list of RestrictInfo nodes (typically the latter).
    5312             :  *
    5313             :  * We intentionally compute the selectivity under JOIN_INNER rules, even
    5314             :  * if it's some type of outer join.  This is appropriate because we are
    5315             :  * trying to figure out how many tuples pass the initial merge or hash
    5316             :  * join step.
    5317             :  *
    5318             :  * This is quick-and-dirty because we bypass clauselist_selectivity, and
    5319             :  * simply multiply the independent clause selectivities together.  Now
    5320             :  * clauselist_selectivity often can't do any better than that anyhow, but
    5321             :  * for some situations (such as range constraints) it is smarter.  However,
    5322             :  * we can't effectively cache the results of clauselist_selectivity, whereas
    5323             :  * the individual clause selectivities can be and are cached.
    5324             :  *
    5325             :  * Since we are only using the results to estimate how many potential
    5326             :  * output tuples are generated and passed through qpqual checking, it
    5327             :  * seems OK to live with the approximation.
    5328             :  */
    5329             : static double
    5330      798610 : approx_tuple_count(PlannerInfo *root, JoinPath *path, List *quals)
    5331             : {
    5332             :     double      tuples;
    5333      798610 :     double      outer_tuples = path->outerjoinpath->rows;
    5334      798610 :     double      inner_tuples = path->innerjoinpath->rows;
    5335             :     SpecialJoinInfo sjinfo;
    5336      798610 :     Selectivity selec = 1.0;
    5337             :     ListCell   *l;
    5338             : 
    5339             :     /*
    5340             :      * Make up a SpecialJoinInfo for JOIN_INNER semantics.
    5341             :      */
    5342      798610 :     init_dummy_sjinfo(&sjinfo, path->outerjoinpath->parent->relids,
    5343      798610 :                       path->innerjoinpath->parent->relids);
    5344             : 
    5345             :     /* Get the approximate selectivity */
    5346     1688454 :     foreach(l, quals)
    5347             :     {
    5348      889844 :         Node       *qual = (Node *) lfirst(l);
    5349             : 
    5350             :         /* Note that clause_selectivity will be able to cache its result */
    5351      889844 :         selec *= clause_selectivity(root, qual, 0, JOIN_INNER, &sjinfo);
    5352             :     }
    5353             : 
    5354             :     /* Apply it to the input relation sizes */
    5355      798610 :     tuples = selec * outer_tuples * inner_tuples;
    5356             : 
    5357      798610 :     return clamp_row_est(tuples);
    5358             : }
    5359             : 
    5360             : 
    5361             : /*
    5362             :  * set_baserel_size_estimates
    5363             :  *      Set the size estimates for the given base relation.
    5364             :  *
    5365             :  * The rel's targetlist and restrictinfo list must have been constructed
    5366             :  * already, and rel->tuples must be set.
    5367             :  *
    5368             :  * We set the following fields of the rel node:
    5369             :  *  rows: the estimated number of output tuples (after applying
    5370             :  *        restriction clauses).
    5371             :  *  width: the estimated average output tuple width in bytes.
    5372             :  *  baserestrictcost: estimated cost of evaluating baserestrictinfo clauses.
    5373             :  */
    5374             : void
    5375      530458 : set_baserel_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5376             : {
    5377             :     double      nrows;
    5378             : 
    5379             :     /* Should only be applied to base relations */
    5380             :     Assert(rel->relid > 0);
    5381             : 
    5382     1060886 :     nrows = rel->tuples *
    5383      530458 :         clauselist_selectivity(root,
    5384             :                                rel->baserestrictinfo,
    5385             :                                0,
    5386             :                                JOIN_INNER,
    5387             :                                NULL);
    5388             : 
    5389      530428 :     rel->rows = clamp_row_est(nrows);
    5390             : 
    5391      530428 :     cost_qual_eval(&rel->baserestrictcost, rel->baserestrictinfo, root);
    5392             : 
    5393      530428 :     set_rel_width(root, rel);
    5394      530428 : }
    5395             : 
    5396             : /*
    5397             :  * get_parameterized_baserel_size
    5398             :  *      Make a size estimate for a parameterized scan of a base relation.
    5399             :  *
    5400             :  * 'param_clauses' lists the additional join clauses to be used.
    5401             :  *
    5402             :  * set_baserel_size_estimates must have been applied already.
    5403             :  */
    5404             : double
    5405      161930 : get_parameterized_baserel_size(PlannerInfo *root, RelOptInfo *rel,
    5406             :                                List *param_clauses)
    5407             : {
    5408             :     List       *allclauses;
    5409             :     double      nrows;
    5410             : 
    5411             :     /*
    5412             :      * Estimate the number of rows returned by the parameterized scan, knowing
    5413             :      * that it will apply all the extra join clauses as well as the rel's own
    5414             :      * restriction clauses.  Note that we force the clauses to be treated as
    5415             :      * non-join clauses during selectivity estimation.
    5416             :      */
    5417      161930 :     allclauses = list_concat_copy(param_clauses, rel->baserestrictinfo);
    5418      323860 :     nrows = rel->tuples *
    5419      161930 :         clauselist_selectivity(root,
    5420             :                                allclauses,
    5421      161930 :                                rel->relid,   /* do not use 0! */
    5422             :                                JOIN_INNER,
    5423             :                                NULL);
    5424      161930 :     nrows = clamp_row_est(nrows);
    5425             :     /* For safety, make sure result is not more than the base estimate */
    5426      161930 :     if (nrows > rel->rows)
    5427           0 :         nrows = rel->rows;
    5428      161930 :     return nrows;
    5429             : }
    5430             : 
    5431             : /*
    5432             :  * set_joinrel_size_estimates
    5433             :  *      Set the size estimates for the given join relation.
    5434             :  *
    5435             :  * The rel's targetlist must have been constructed already, and a
    5436             :  * restriction clause list that matches the given component rels must
    5437             :  * be provided.
    5438             :  *
    5439             :  * Since there is more than one way to make a joinrel for more than two
    5440             :  * base relations, the results we get here could depend on which component
    5441             :  * rel pair is provided.  In theory we should get the same answers no matter
    5442             :  * which pair is provided; in practice, since the selectivity estimation
    5443             :  * routines don't handle all cases equally well, we might not.  But there's
    5444             :  * not much to be done about it.  (Would it make sense to repeat the
    5445             :  * calculations for each pair of input rels that's encountered, and somehow
    5446             :  * average the results?  Probably way more trouble than it's worth, and
    5447             :  * anyway we must keep the rowcount estimate the same for all paths for the
    5448             :  * joinrel.)
    5449             :  *
    5450             :  * We set only the rows field here.  The reltarget field was already set by
    5451             :  * build_joinrel_tlist, and baserestrictcost is not used for join rels.
    5452             :  */
    5453             : void
    5454      256610 : set_joinrel_size_estimates(PlannerInfo *root, RelOptInfo *rel,
    5455             :                            RelOptInfo *outer_rel,
    5456             :                            RelOptInfo *inner_rel,
    5457             :                            SpecialJoinInfo *sjinfo,
    5458             :                            List *restrictlist)
    5459             : {
    5460      256610 :     rel->rows = calc_joinrel_size_estimate(root,
    5461             :                                            rel,
    5462             :                                            outer_rel,
    5463             :                                            inner_rel,
    5464             :                                            outer_rel->rows,
    5465             :                                            inner_rel->rows,
    5466             :                                            sjinfo,
    5467             :                                            restrictlist);
    5468      256610 : }
    5469             : 
    5470             : /*
    5471             :  * get_parameterized_joinrel_size
    5472             :  *      Make a size estimate for a parameterized scan of a join relation.
    5473             :  *
    5474             :  * 'rel' is the joinrel under consideration.
    5475             :  * 'outer_path', 'inner_path' are (probably also parameterized) Paths that
    5476             :  *      produce the relations being joined.
    5477             :  * 'sjinfo' is any SpecialJoinInfo relevant to this join.
    5478             :  * 'restrict_clauses' lists the join clauses that need to be applied at the
    5479             :  * join node (including any movable clauses that were moved down to this join,
    5480             :  * and not including any movable clauses that were pushed down into the
    5481             :  * child paths).
    5482             :  *
    5483             :  * set_joinrel_size_estimates must have been applied already.
    5484             :  */
    5485             : double
    5486       10048 : get_parameterized_joinrel_size(PlannerInfo *root, RelOptInfo *rel,
    5487             :                                Path *outer_path,
    5488             :                                Path *inner_path,
    5489             :                                SpecialJoinInfo *sjinfo,
    5490             :                                List *restrict_clauses)
    5491             : {
    5492             :     double      nrows;
    5493             : 
    5494             :     /*
    5495             :      * Estimate the number of rows returned by the parameterized join as the
    5496             :      * sizes of the input paths times the selectivity of the clauses that have
    5497             :      * ended up at this join node.
    5498             :      *
    5499             :      * As with set_joinrel_size_estimates, the rowcount estimate could depend
    5500             :      * on the pair of input paths provided, though ideally we'd get the same
    5501             :      * estimate for any pair with the same parameterization.
    5502             :      */
    5503       10048 :     nrows = calc_joinrel_size_estimate(root,
    5504             :                                        rel,
    5505             :                                        outer_path->parent,
    5506             :                                        inner_path->parent,
    5507             :                                        outer_path->rows,
    5508             :                                        inner_path->rows,
    5509             :                                        sjinfo,
    5510             :                                        restrict_clauses);
    5511             :     /* For safety, make sure result is not more than the base estimate */
    5512       10048 :     if (nrows > rel->rows)
    5513          12 :         nrows = rel->rows;
    5514       10048 :     return nrows;
    5515             : }
    5516             : 
    5517             : /*
    5518             :  * calc_joinrel_size_estimate
    5519             :  *      Workhorse for set_joinrel_size_estimates and
    5520             :  *      get_parameterized_joinrel_size.
    5521             :  *
    5522             :  * outer_rel/inner_rel are the relations being joined, but they should be
    5523             :  * assumed to have sizes outer_rows/inner_rows; those numbers might be less
    5524             :  * than what rel->rows says, when we are considering parameterized paths.
    5525             :  */
    5526             : static double
    5527      266658 : calc_joinrel_size_estimate(PlannerInfo *root,
    5528             :                            RelOptInfo *joinrel,
    5529             :                            RelOptInfo *outer_rel,
    5530             :                            RelOptInfo *inner_rel,
    5531             :                            double outer_rows,
    5532             :                            double inner_rows,
    5533             :                            SpecialJoinInfo *sjinfo,
    5534             :                            List *restrictlist)
    5535             : {
    5536      266658 :     JoinType    jointype = sjinfo->jointype;
    5537             :     Selectivity fkselec;
    5538             :     Selectivity jselec;
    5539             :     Selectivity pselec;
    5540             :     double      nrows;
    5541             : 
    5542             :     /*
    5543             :      * Compute joinclause selectivity.  Note that we are only considering
    5544             :      * clauses that become restriction clauses at this join level; we are not
    5545             :      * double-counting them because they were not considered in estimating the
    5546             :      * sizes of the component rels.
    5547             :      *
    5548             :      * First, see whether any of the joinclauses can be matched to known FK
    5549             :      * constraints.  If so, drop those clauses from the restrictlist, and
    5550             :      * instead estimate their selectivity using FK semantics.  (We do this
    5551             :      * without regard to whether said clauses are local or "pushed down".
    5552             :      * Probably, an FK-matching clause could never be seen as pushed down at
    5553             :      * an outer join, since it would be strict and hence would be grounds for
    5554             :      * join strength reduction.)  fkselec gets the net selectivity for
    5555             :      * FK-matching clauses, or 1.0 if there are none.
    5556             :      */
    5557      266658 :     fkselec = get_foreign_key_join_selectivity(root,
    5558             :                                                outer_rel->relids,
    5559             :                                                inner_rel->relids,
    5560             :                                                sjinfo,
    5561             :                                                &restrictlist);
    5562             : 
    5563             :     /*
    5564             :      * For an outer join, we have to distinguish the selectivity of the join's
    5565             :      * own clauses (JOIN/ON conditions) from any clauses that were "pushed
    5566             :      * down".  For inner joins we just count them all as joinclauses.
    5567             :      */
    5568      266658 :     if (IS_OUTER_JOIN(jointype))
    5569             :     {
    5570       81082 :         List       *joinquals = NIL;
    5571       81082 :         List       *pushedquals = NIL;
    5572             :         ListCell   *l;
    5573             : 
    5574             :         /* Grovel through the clauses to separate into two lists */
    5575      182674 :         foreach(l, restrictlist)
    5576             :         {
    5577      101592 :             RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    5578             : 
    5579      101592 :             if (RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    5580        4298 :                 pushedquals = lappend(pushedquals, rinfo);
    5581             :             else
    5582       97294 :                 joinquals = lappend(joinquals, rinfo);
    5583             :         }
    5584             : 
    5585             :         /* Get the separate selectivities */
    5586       81082 :         jselec = clauselist_selectivity(root,
    5587             :                                         joinquals,
    5588             :                                         0,
    5589             :                                         jointype,
    5590             :                                         sjinfo);
    5591       81082 :         pselec = clauselist_selectivity(root,
    5592             :                                         pushedquals,
    5593             :                                         0,
    5594             :                                         jointype,
    5595             :                                         sjinfo);
    5596             : 
    5597             :         /* Avoid leaking a lot of ListCells */
    5598       81082 :         list_free(joinquals);
    5599       81082 :         list_free(pushedquals);
    5600             :     }
    5601             :     else
    5602             :     {
    5603      185576 :         jselec = clauselist_selectivity(root,
    5604             :                                         restrictlist,
    5605             :                                         0,
    5606             :                                         jointype,
    5607             :                                         sjinfo);
    5608      185576 :         pselec = 0.0;           /* not used, keep compiler quiet */
    5609             :     }
    5610             : 
    5611             :     /*
    5612             :      * Basically, we multiply size of Cartesian product by selectivity.
    5613             :      *
    5614             :      * If we are doing an outer join, take that into account: the joinqual
    5615             :      * selectivity has to be clamped using the knowledge that the output must
    5616             :      * be at least as large as the non-nullable input.  However, any
    5617             :      * pushed-down quals are applied after the outer join, so their
    5618             :      * selectivity applies fully.
    5619             :      *
    5620             :      * For JOIN_SEMI and JOIN_ANTI, the selectivity is defined as the fraction
    5621             :      * of LHS rows that have matches, and we apply that straightforwardly.
    5622             :      */
    5623      266658 :     switch (jointype)
    5624             :     {
    5625      177340 :         case JOIN_INNER:
    5626      177340 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    5627             :             /* pselec not used */
    5628      177340 :             break;
    5629       74322 :         case JOIN_LEFT:
    5630       74322 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    5631       74322 :             if (nrows < outer_rows)
    5632       30238 :                 nrows = outer_rows;
    5633       74322 :             nrows *= pselec;
    5634       74322 :             break;
    5635        1720 :         case JOIN_FULL:
    5636        1720 :             nrows = outer_rows * inner_rows * fkselec * jselec;
    5637        1720 :             if (nrows < outer_rows)
    5638        1178 :                 nrows = outer_rows;
    5639        1720 :             if (nrows < inner_rows)
    5640         120 :                 nrows = inner_rows;
    5641        1720 :             nrows *= pselec;
    5642        1720 :             break;
    5643        8236 :         case JOIN_SEMI:
    5644        8236 :             nrows = outer_rows * fkselec * jselec;
    5645             :             /* pselec not used */
    5646        8236 :             break;
    5647        5040 :         case JOIN_ANTI:
    5648        5040 :             nrows = outer_rows * (1.0 - fkselec * jselec);
    5649        5040 :             nrows *= pselec;
    5650        5040 :             break;
    5651           0 :         default:
    5652             :             /* other values not expected here */
    5653           0 :             elog(ERROR, "unrecognized join type: %d", (int) jointype);
    5654             :             nrows = 0;          /* keep compiler quiet */
    5655             :             break;
    5656             :     }
    5657             : 
    5658      266658 :     return clamp_row_est(nrows);
    5659             : }
    5660             : 
    5661             : /*
    5662             :  * get_foreign_key_join_selectivity
    5663             :  *      Estimate join selectivity for foreign-key-related clauses.
    5664             :  *
    5665             :  * Remove any clauses that can be matched to FK constraints from *restrictlist,
    5666             :  * and return a substitute estimate of their selectivity.  1.0 is returned
    5667             :  * when there are no such clauses.
    5668             :  *
    5669             :  * The reason for treating such clauses specially is that we can get better
    5670             :  * estimates this way than by relying on clauselist_selectivity(), especially
    5671             :  * for multi-column FKs where that function's assumption that the clauses are
    5672             :  * independent falls down badly.  But even with single-column FKs, we may be
    5673             :  * able to get a better answer when the pg_statistic stats are missing or out
    5674             :  * of date.
    5675             :  */
    5676             : static Selectivity
    5677      266658 : get_foreign_key_join_selectivity(PlannerInfo *root,
    5678             :                                  Relids outer_relids,
    5679             :                                  Relids inner_relids,
    5680             :                                  SpecialJoinInfo *sjinfo,
    5681             :                                  List **restrictlist)
    5682             : {
    5683      266658 :     Selectivity fkselec = 1.0;
    5684      266658 :     JoinType    jointype = sjinfo->jointype;
    5685      266658 :     List       *worklist = *restrictlist;
    5686             :     ListCell   *lc;
    5687             : 
    5688             :     /* Consider each FK constraint that is known to match the query */
    5689      268624 :     foreach(lc, root->fkey_list)
    5690             :     {
    5691        1966 :         ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
    5692             :         bool        ref_is_outer;
    5693             :         List       *removedlist;
    5694             :         ListCell   *cell;
    5695             : 
    5696             :         /*
    5697             :          * This FK is not relevant unless it connects a baserel on one side of
    5698             :          * this join to a baserel on the other side.
    5699             :          */
    5700        3580 :         if (bms_is_member(fkinfo->con_relid, outer_relids) &&
    5701        1614 :             bms_is_member(fkinfo->ref_relid, inner_relids))
    5702        1440 :             ref_is_outer = false;
    5703         866 :         else if (bms_is_member(fkinfo->ref_relid, outer_relids) &&
    5704         340 :                  bms_is_member(fkinfo->con_relid, inner_relids))
    5705         130 :             ref_is_outer = true;
    5706             :         else
    5707         396 :             continue;
    5708             : 
    5709             :         /*
    5710             :          * If we're dealing with a semi/anti join, and the FK's referenced
    5711             :          * relation is on the outside, then knowledge of the FK doesn't help
    5712             :          * us figure out what we need to know (which is the fraction of outer
    5713             :          * rows that have matches).  On the other hand, if the referenced rel
    5714             :          * is on the inside, then all outer rows must have matches in the
    5715             :          * referenced table (ignoring nulls).  But any restriction or join
    5716             :          * clauses that filter that table will reduce the fraction of matches.
    5717             :          * We can account for restriction clauses, but it's too hard to guess
    5718             :          * how many table rows would get through a join that's inside the RHS.
    5719             :          * Hence, if either case applies, punt and ignore the FK.
    5720             :          */
    5721        1570 :         if ((jointype == JOIN_SEMI || jointype == JOIN_ANTI) &&
    5722        1048 :             (ref_is_outer || bms_membership(inner_relids) != BMS_SINGLETON))
    5723          12 :             continue;
    5724             : 
    5725             :         /*
    5726             :          * Modify the restrictlist by removing clauses that match the FK (and
    5727             :          * putting them into removedlist instead).  It seems unsafe to modify
    5728             :          * the originally-passed List structure, so we make a shallow copy the
    5729             :          * first time through.
    5730             :          */
    5731        1558 :         if (worklist == *restrictlist)
    5732        1334 :             worklist = list_copy(worklist);
    5733             : 
    5734        1558 :         removedlist = NIL;
    5735        3252 :         foreach(cell, worklist)
    5736             :         {
    5737        1694 :             RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
    5738        1694 :             bool        remove_it = false;
    5739             :             int         i;
    5740             : 
    5741             :             /* Drop this clause if it matches any column of the FK */
    5742        2140 :             for (i = 0; i < fkinfo->nkeys; i++)
    5743             :             {
    5744        2110 :                 if (rinfo->parent_ec)
    5745             :                 {
    5746             :                     /*
    5747             :                      * EC-derived clauses can only match by EC.  It is okay to
    5748             :                      * consider any clause derived from the same EC as
    5749             :                      * matching the FK: even if equivclass.c chose to generate
    5750             :                      * a clause equating some other pair of Vars, it could
    5751             :                      * have generated one equating the FK's Vars.  So for
    5752             :                      * purposes of estimation, we can act as though it did so.
    5753             :                      *
    5754             :                      * Note: checking parent_ec is a bit of a cheat because
    5755             :                      * there are EC-derived clauses that don't have parent_ec
    5756             :                      * set; but such clauses must compare expressions that
    5757             :                      * aren't just Vars, so they cannot match the FK anyway.
    5758             :                      */
    5759         304 :                     if (fkinfo->eclass[i] == rinfo->parent_ec)
    5760             :                     {
    5761         298 :                         remove_it = true;
    5762         298 :                         break;
    5763             :                     }
    5764             :                 }
    5765             :                 else
    5766             :                 {
    5767             :                     /*
    5768             :                      * Otherwise, see if rinfo was previously matched to FK as
    5769             :                      * a "loose" clause.
    5770             :                      */
    5771        1806 :                     if (list_member_ptr(fkinfo->rinfos[i], rinfo))
    5772             :                     {
    5773        1366 :                         remove_it = true;
    5774        1366 :                         break;
    5775             :                     }
    5776             :                 }
    5777             :             }
    5778        1694 :             if (remove_it)
    5779             :             {
    5780        1664 :                 worklist = foreach_delete_current(worklist, cell);
    5781        1664 :                 removedlist = lappend(removedlist, rinfo);
    5782             :             }
    5783             :         }
    5784             : 
    5785             :         /*
    5786             :          * If we failed to remove all the matching clauses we expected to
    5787             :          * find, chicken out and ignore this FK; applying its selectivity
    5788             :          * might result in double-counting.  Put any clauses we did manage to
    5789             :          * remove back into the worklist.
    5790             :          *
    5791             :          * Since the matching clauses are known not outerjoin-delayed, they
    5792             :          * would normally have appeared in the initial joinclause list.  If we
    5793             :          * didn't find them, there are two possibilities:
    5794             :          *
    5795             :          * 1. If the FK match is based on an EC that is ec_has_const, it won't
    5796             :          * have generated any join clauses at all.  We discount such ECs while
    5797             :          * checking to see if we have "all" the clauses.  (Below, we'll adjust
    5798             :          * the selectivity estimate for this case.)
    5799             :          *
    5800             :          * 2. The clauses were matched to some other FK in a previous
    5801             :          * iteration of this loop, and thus removed from worklist.  (A likely
    5802             :          * case is that two FKs are matched to the same EC; there will be only
    5803             :          * one EC-derived clause in the initial list, so the first FK will
    5804             :          * consume it.)  Applying both FKs' selectivity independently risks
    5805             :          * underestimating the join size; in particular, this would undo one
    5806             :          * of the main things that ECs were invented for, namely to avoid
    5807             :          * double-counting the selectivity of redundant equality conditions.
    5808             :          * Later we might think of a reasonable way to combine the estimates,
    5809             :          * but for now, just punt, since this is a fairly uncommon situation.
    5810             :          */
    5811        1558 :         if (removedlist == NIL ||
    5812        1272 :             list_length(removedlist) !=
    5813        1272 :             (fkinfo->nmatched_ec - fkinfo->nconst_ec + fkinfo->nmatched_ri))
    5814             :         {
    5815         286 :             worklist = list_concat(worklist, removedlist);
    5816         286 :             continue;
    5817             :         }
    5818             : 
    5819             :         /*
    5820             :          * Finally we get to the payoff: estimate selectivity using the
    5821             :          * knowledge that each referencing row will match exactly one row in
    5822             :          * the referenced table.
    5823             :          *
    5824             :          * XXX that's not true in the presence of nulls in the referencing
    5825             :          * column(s), so in principle we should derate the estimate for those.
    5826             :          * However (1) if there are any strict restriction clauses for the
    5827             :          * referencing column(s) elsewhere in the query, derating here would
    5828             :          * be double-counting the null fraction, and (2) it's not very clear
    5829             :          * how to combine null fractions for multiple referencing columns. So
    5830             :          * we do nothing for now about correcting for nulls.
    5831             :          *
    5832             :          * XXX another point here is that if either side of an FK constraint
    5833             :          * is an inheritance parent, we estimate as though the constraint
    5834             :          * covers all its children as well.  This is not an unreasonable
    5835             :          * assumption for a referencing table, ie the user probably applied
    5836             :          * identical constraints to all child tables (though perhaps we ought
    5837             :          * to check that).  But it's not possible to have done that for a
    5838             :          * referenced table.  Fortunately, precisely because that doesn't
    5839             :          * work, it is uncommon in practice to have an FK referencing a parent
    5840             :          * table.  So, at least for now, disregard inheritance here.
    5841             :          */
    5842        1272 :         if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
    5843         824 :         {
    5844             :             /*
    5845             :              * For JOIN_SEMI and JOIN_ANTI, we only get here when the FK's
    5846             :              * referenced table is exactly the inside of the join.  The join
    5847             :              * selectivity is defined as the fraction of LHS rows that have
    5848             :              * matches.  The FK implies that every LHS row has a match *in the
    5849             :              * referenced table*; but any restriction clauses on it will
    5850             :              * reduce the number of matches.  Hence we take the join
    5851             :              * selectivity as equal to the selectivity of the table's
    5852             :              * restriction clauses, which is rows / tuples; but we must guard
    5853             :              * against tuples == 0.
    5854             :              */
    5855         824 :             RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
    5856         824 :             double      ref_tuples = Max(ref_rel->tuples, 1.0);
    5857             : 
    5858         824 :             fkselec *= ref_rel->rows / ref_tuples;
    5859             :         }
    5860             :         else
    5861             :         {
    5862             :             /*
    5863             :              * Otherwise, selectivity is exactly 1/referenced-table-size; but
    5864             :              * guard against tuples == 0.  Note we should use the raw table
    5865             :              * tuple count, not any estimate of its filtered or joined size.
    5866             :              */
    5867         448 :             RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
    5868         448 :             double      ref_tuples = Max(ref_rel->tuples, 1.0);
    5869             : 
    5870         448 :             fkselec *= 1.0 / ref_tuples;
    5871             :         }
    5872             : 
    5873             :         /*
    5874             :          * If any of the FK columns participated in ec_has_const ECs, then
    5875             :          * equivclass.c will have generated "var = const" restrictions for
    5876             :          * each side of the join, thus reducing the sizes of both input
    5877             :          * relations.  Taking the fkselec at face value would amount to
    5878             :          * double-counting the selectivity of the constant restriction for the
    5879             :          * referencing Var.  Hence, look for the restriction clause(s) that
    5880             :          * were applied to the referencing Var(s), and divide out their
    5881             :          * selectivity to correct for this.
    5882             :          */
    5883        1272 :         if (fkinfo->nconst_ec > 0)
    5884             :         {
    5885          24 :             for (int i = 0; i < fkinfo->nkeys; i++)
    5886             :             {
    5887          18 :                 EquivalenceClass *ec = fkinfo->eclass[i];
    5888             : 
    5889          18 :                 if (ec && ec->ec_has_const)
    5890             :                 {
    5891           6 :                     EquivalenceMember *em = fkinfo->fk_eclass_member[i];
    5892           6 :                     RestrictInfo *rinfo = find_derived_clause_for_ec_member(root,
    5893             :                                                                             ec,
    5894             :                                                                             em);
    5895             : 
    5896           6 :                     if (rinfo)
    5897             :                     {
    5898             :                         Selectivity s0;
    5899             : 
    5900           6 :                         s0 = clause_selectivity(root,
    5901             :                                                 (Node *) rinfo,
    5902             :                                                 0,
    5903             :                                                 jointype,
    5904             :                                                 sjinfo);
    5905           6 :                         if (s0 > 0)
    5906           6 :                             fkselec /= s0;
    5907             :                     }
    5908             :                 }
    5909             :             }
    5910             :         }
    5911             :     }
    5912             : 
    5913      266658 :     *restrictlist = worklist;
    5914      266658 :     CLAMP_PROBABILITY(fkselec);
    5915      266658 :     return fkselec;
    5916             : }
    5917             : 
    5918             : /*
    5919             :  * set_subquery_size_estimates
    5920             :  *      Set the size estimates for a base relation that is a subquery.
    5921             :  *
    5922             :  * The rel's targetlist and restrictinfo list must have been constructed
    5923             :  * already, and the Paths for the subquery must have been completed.
    5924             :  * We look at the subquery's PlannerInfo to extract data.
    5925             :  *
    5926             :  * We set the same fields as set_baserel_size_estimates.
    5927             :  */
    5928             : void
    5929       39492 : set_subquery_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5930             : {
    5931       39492 :     PlannerInfo *subroot = rel->subroot;
    5932             :     RelOptInfo *sub_final_rel;
    5933             :     ListCell   *lc;
    5934             : 
    5935             :     /* Should only be applied to base relations that are subqueries */
    5936             :     Assert(rel->relid > 0);
    5937             :     Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_SUBQUERY);
    5938             : 
    5939             :     /*
    5940             :      * Copy raw number of output rows from subquery.  All of its paths should
    5941             :      * have the same output rowcount, so just look at cheapest-total.
    5942             :      */
    5943       39492 :     sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
    5944       39492 :     rel->tuples = sub_final_rel->cheapest_total_path->rows;
    5945             : 
    5946             :     /*
    5947             :      * Compute per-output-column width estimates by examining the subquery's
    5948             :      * targetlist.  For any output that is a plain Var, get the width estimate
    5949             :      * that was made while planning the subquery.  Otherwise, we leave it to
    5950             :      * set_rel_width to fill in a datatype-based default estimate.
    5951             :      */
    5952      186332 :     foreach(lc, subroot->parse->targetList)
    5953             :     {
    5954      146840 :         TargetEntry *te = lfirst_node(TargetEntry, lc);
    5955      146840 :         Node       *texpr = (Node *) te->expr;
    5956      146840 :         int32       item_width = 0;
    5957             : 
    5958             :         /* junk columns aren't visible to upper query */
    5959      146840 :         if (te->resjunk)
    5960        6902 :             continue;
    5961             : 
    5962             :         /*
    5963             :          * The subquery could be an expansion of a view that's had columns
    5964             :          * added to it since the current query was parsed, so that there are
    5965             :          * non-junk tlist columns in it that don't correspond to any column
    5966             :          * visible at our query level.  Ignore such columns.
    5967             :          */
    5968      139938 :         if (te->resno < rel->min_attr || te->resno > rel->max_attr)
    5969           0 :             continue;
    5970             : 
    5971             :         /*
    5972             :          * XXX This currently doesn't work for subqueries containing set
    5973             :          * operations, because the Vars in their tlists are bogus references
    5974             :          * to the first leaf subquery, which wouldn't give the right answer
    5975             :          * even if we could still get to its PlannerInfo.
    5976             :          *
    5977             :          * Also, the subquery could be an appendrel for which all branches are
    5978             :          * known empty due to constraint exclusion, in which case
    5979             :          * set_append_rel_pathlist will have left the attr_widths set to zero.
    5980             :          *
    5981             :          * In either case, we just leave the width estimate zero until
    5982             :          * set_rel_width fixes it.
    5983             :          */
    5984      139938 :         if (IsA(texpr, Var) &&
    5985       62524 :             subroot->parse->setOperations == NULL)
    5986             :         {
    5987       60684 :             Var        *var = (Var *) texpr;
    5988       60684 :             RelOptInfo *subrel = find_base_rel(subroot, var->varno);
    5989             : 
    5990       60684 :             item_width = subrel->attr_widths[var->varattno - subrel->min_attr];
    5991             :         }
    5992      139938 :         rel->attr_widths[te->resno - rel->min_attr] = item_width;
    5993             :     }
    5994             : 
    5995             :     /* Now estimate number of output rows, etc */
    5996       39492 :     set_baserel_size_estimates(root, rel);
    5997       39492 : }
    5998             : 
    5999             : /*
    6000             :  * set_function_size_estimates
    6001             :  *      Set the size estimates for a base relation that is a function call.
    6002             :  *
    6003             :  * The rel's targetlist and restrictinfo list must have been constructed
    6004             :  * already.
    6005             :  *
    6006             :  * We set the same fields as set_baserel_size_estimates.
    6007             :  */
    6008             : void
    6009       52708 : set_function_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6010             : {
    6011             :     RangeTblEntry *rte;
    6012             :     ListCell   *lc;
    6013             : 
    6014             :     /* Should only be applied to base relations that are functions */
    6015             :     Assert(rel->relid > 0);
    6016       52708 :     rte = planner_rt_fetch(rel->relid, root);
    6017             :     Assert(rte->rtekind == RTE_FUNCTION);
    6018             : 
    6019             :     /*
    6020             :      * Estimate number of rows the functions will return. The rowcount of the
    6021             :      * node is that of the largest function result.
    6022             :      */
    6023       52708 :     rel->tuples = 0;
    6024      105920 :     foreach(lc, rte->functions)
    6025             :     {
    6026       53212 :         RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
    6027       53212 :         double      ntup = expression_returns_set_rows(root, rtfunc->funcexpr);
    6028             : 
    6029       53212 :         if (ntup > rel->tuples)
    6030       52732 :             rel->tuples = ntup;
    6031             :     }
    6032             : 
    6033             :     /* Now estimate number of output rows, etc */
    6034       52708 :     set_baserel_size_estimates(root, rel);
    6035       52708 : }
    6036             : 
    6037             : /*
    6038             :  * set_function_size_estimates
    6039             :  *      Set the size estimates for a base relation that is a function call.
    6040             :  *
    6041             :  * The rel's targetlist and restrictinfo list must have been constructed
    6042             :  * already.
    6043             :  *
    6044             :  * We set the same fields as set_tablefunc_size_estimates.
    6045             :  */
    6046             : void
    6047         626 : set_tablefunc_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6048             : {
    6049             :     /* Should only be applied to base relations that are functions */
    6050             :     Assert(rel->relid > 0);
    6051             :     Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_TABLEFUNC);
    6052             : 
    6053         626 :     rel->tuples = 100;
    6054             : 
    6055             :     /* Now estimate number of output rows, etc */
    6056         626 :     set_baserel_size_estimates(root, rel);
    6057         626 : }
    6058             : 
    6059             : /*
    6060             :  * set_values_size_estimates
    6061             :  *      Set the size estimates for a base relation that is a values list.
    6062             :  *
    6063             :  * The rel's targetlist and restrictinfo list must have been constructed
    6064             :  * already.
    6065             :  *
    6066             :  * We set the same fields as set_baserel_size_estimates.
    6067             :  */
    6068             : void
    6069        8508 : set_values_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6070             : {
    6071             :     RangeTblEntry *rte;
    6072             : 
    6073             :     /* Should only be applied to base relations that are values lists */
    6074             :     Assert(rel->relid > 0);
    6075        8508 :     rte = planner_rt_fetch(rel->relid, root);
    6076             :     Assert(rte->rtekind == RTE_VALUES);
    6077             : 
    6078             :     /*
    6079             :      * Estimate number of rows the values list will return. We know this
    6080             :      * precisely based on the list length (well, barring set-returning
    6081             :      * functions in list items, but that's a refinement not catered for
    6082             :      * anywhere else either).
    6083             :      */
    6084        8508 :     rel->tuples = list_length(rte->values_lists);
    6085             : 
    6086             :     /* Now estimate number of output rows, etc */
    6087        8508 :     set_baserel_size_estimates(root, rel);
    6088        8508 : }
    6089             : 
    6090             : /*
    6091             :  * set_cte_size_estimates
    6092             :  *      Set the size estimates for a base relation that is a CTE reference.
    6093             :  *
    6094             :  * The rel's targetlist and restrictinfo list must have been constructed
    6095             :  * already, and we need an estimate of the number of rows returned by the CTE
    6096             :  * (if a regular CTE) or the non-recursive term (if a self-reference).
    6097             :  *
    6098             :  * We set the same fields as set_baserel_size_estimates.
    6099             :  */
    6100             : void
    6101        5298 : set_cte_size_estimates(PlannerInfo *root, RelOptInfo *rel, double cte_rows)
    6102             : {
    6103             :     RangeTblEntry *rte;
    6104             : 
    6105             :     /* Should only be applied to base relations that are CTE references */
    6106             :     Assert(rel->relid > 0);
    6107        5298 :     rte = planner_rt_fetch(rel->relid, root);
    6108             :     Assert(rte->rtekind == RTE_CTE);
    6109             : 
    6110        5298 :     if (rte->self_reference)
    6111             :     {
    6112             :         /*
    6113             :          * In a self-reference, we assume the average worktable size is a
    6114             :          * multiple of the nonrecursive term's size.  The best multiplier will
    6115             :          * vary depending on query "fan-out", so make its value adjustable.
    6116             :          */
    6117         938 :         rel->tuples = clamp_row_est(recursive_worktable_factor * cte_rows);
    6118             :     }
    6119             :     else
    6120             :     {
    6121             :         /* Otherwise just believe the CTE's rowcount estimate */
    6122        4360 :         rel->tuples = cte_rows;
    6123             :     }
    6124             : 
    6125             :     /* Now estimate number of output rows, etc */
    6126        5298 :     set_baserel_size_estimates(root, rel);
    6127        5298 : }
    6128             : 
    6129             : /*
    6130             :  * set_namedtuplestore_size_estimates
    6131             :  *      Set the size estimates for a base relation that is a tuplestore reference.
    6132             :  *
    6133             :  * The rel's targetlist and restrictinfo list must have been constructed
    6134             :  * already.
    6135             :  *
    6136             :  * We set the same fields as set_baserel_size_estimates.
    6137             :  */
    6138             : void
    6139         474 : set_namedtuplestore_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6140             : {
    6141             :     RangeTblEntry *rte;
    6142             : 
    6143             :     /* Should only be applied to base relations that are tuplestore references */
    6144             :     Assert(rel->relid > 0);
    6145         474 :     rte = planner_rt_fetch(rel->relid, root);
    6146             :     Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
    6147             : 
    6148             :     /*
    6149             :      * Use the estimate provided by the code which is generating the named
    6150             :      * tuplestore.  In some cases, the actual number might be available; in
    6151             :      * others the same plan will be re-used, so a "typical" value might be
    6152             :      * estimated and used.
    6153             :      */
    6154         474 :     rel->tuples = rte->enrtuples;
    6155         474 :     if (rel->tuples < 0)
    6156           0 :         rel->tuples = 1000;
    6157             : 
    6158             :     /* Now estimate number of output rows, etc */
    6159         474 :     set_baserel_size_estimates(root, rel);
    6160         474 : }
    6161             : 
    6162             : /*
    6163             :  * set_result_size_estimates
    6164             :  *      Set the size estimates for an RTE_RESULT base relation
    6165             :  *
    6166             :  * The rel's targetlist and restrictinfo list must have been constructed
    6167             :  * already.
    6168             :  *
    6169             :  * We set the same fields as set_baserel_size_estimates.
    6170             :  */
    6171             : void
    6172        4286 : set_result_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6173             : {
    6174             :     /* Should only be applied to RTE_RESULT base relations */
    6175             :     Assert(rel->relid > 0);
    6176             :     Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_RESULT);
    6177             : 
    6178             :     /* RTE_RESULT always generates a single row, natively */
    6179        4286 :     rel->tuples = 1;
    6180             : 
    6181             :     /* Now estimate number of output rows, etc */
    6182        4286 :     set_baserel_size_estimates(root, rel);
    6183        4286 : }
    6184             : 
    6185             : /*
    6186             :  * set_foreign_size_estimates
    6187             :  *      Set the size estimates for a base relation that is a foreign table.
    6188             :  *
    6189             :  * There is not a whole lot that we can do here; the foreign-data wrapper
    6190             :  * is responsible for producing useful estimates.  We can do a decent job
    6191             :  * of estimating baserestrictcost, so we set that, and we also set up width
    6192             :  * using what will be purely datatype-driven estimates from the targetlist.
    6193             :  * There is no way to do anything sane with the rows value, so we just put
    6194             :  * a default estimate and hope that the wrapper can improve on it.  The
    6195             :  * wrapper's GetForeignRelSize function will be called momentarily.
    6196             :  *
    6197             :  * The rel's targetlist and restrictinfo list must have been constructed
    6198             :  * already.
    6199             :  */
    6200             : void
    6201        2464 : set_foreign_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6202             : {
    6203             :     /* Should only be applied to base relations */
    6204             :     Assert(rel->relid > 0);
    6205             : 
    6206        2464 :     rel->rows = 1000;            /* entirely bogus default estimate */
    6207             : 
    6208        2464 :     cost_qual_eval(&rel->baserestrictcost, rel->baserestrictinfo, root);
    6209             : 
    6210        2464 :     set_rel_width(root, rel);
    6211        2464 : }
    6212             : 
    6213             : 
    6214             : /*
    6215             :  * set_rel_width
    6216             :  *      Set the estimated output width of a base relation.
    6217             :  *
    6218             :  * The estimated output width is the sum of the per-attribute width estimates
    6219             :  * for the actually-referenced columns, plus any PHVs or other expressions
    6220             :  * that have to be calculated at this relation.  This is the amount of data
    6221             :  * we'd need to pass upwards in case of a sort, hash, etc.
    6222             :  *
    6223             :  * This function also sets reltarget->cost, so it's a bit misnamed now.
    6224             :  *
    6225             :  * NB: this works best on plain relations because it prefers to look at
    6226             :  * real Vars.  For subqueries, set_subquery_size_estimates will already have
    6227             :  * copied up whatever per-column estimates were made within the subquery,
    6228             :  * and for other types of rels there isn't much we can do anyway.  We fall
    6229             :  * back on (fairly stupid) datatype-based width estimates if we can't get
    6230             :  * any better number.
    6231             :  *
    6232             :  * The per-attribute width estimates are cached for possible re-use while
    6233             :  * building join relations or post-scan/join pathtargets.
    6234             :  */
    6235             : static void
    6236      532892 : set_rel_width(PlannerInfo *root, RelOptInfo *rel)
    6237             : {
    6238      532892 :     Oid         reloid = planner_rt_fetch(rel->relid, root)->relid;
    6239      532892 :     int64       tuple_width = 0;
    6240      532892 :     bool        have_wholerow_var = false;
    6241             :     ListCell   *lc;
    6242             : 
    6243             :     /* Vars are assumed to have cost zero, but other exprs do not */
    6244      532892 :     rel->reltarget->cost.startup = 0;
    6245      532892 :     rel->reltarget->cost.per_tuple = 0;
    6246             : 
    6247     1896230 :     foreach(lc, rel->reltarget->exprs)
    6248             :     {
    6249     1363338 :         Node       *node = (Node *) lfirst(lc);
    6250             : 
    6251             :         /*
    6252             :          * Ordinarily, a Var in a rel's targetlist must belong to that rel;
    6253             :          * but there are corner cases involving LATERAL references where that
    6254             :          * isn't so.  If the Var has the wrong varno, fall through to the
    6255             :          * generic case (it doesn't seem worth the trouble to be any smarter).
    6256             :          */
    6257     1363338 :         if (IsA(node, Var) &&
    6258     1338888 :             ((Var *) node)->varno == rel->relid)
    6259      361942 :         {
    6260     1338822 :             Var        *var = (Var *) node;
    6261             :             int         ndx;
    6262             :             int32       item_width;
    6263             : 
    6264             :             Assert(var->varattno >= rel->min_attr);
    6265             :             Assert(var->varattno <= rel->max_attr);
    6266             : 
    6267     1338822 :             ndx = var->varattno - rel->min_attr;
    6268             : 
    6269             :             /*
    6270             :              * If it's a whole-row Var, we'll deal with it below after we have
    6271             :              * already cached as many attr widths as possible.
    6272             :              */
    6273     1338822 :             if (var->varattno == 0)
    6274             :             {
    6275        3060 :                 have_wholerow_var = true;
    6276        3060 :                 continue;
    6277             :             }
    6278             : 
    6279             :             /*
    6280             :              * The width may have been cached already (especially if it's a
    6281             :              * subquery), so don't duplicate effort.
    6282             :              */
    6283     1335762 :             if (rel->attr_widths[ndx] > 0)
    6284             :             {
    6285      257208 :                 tuple_width += rel->attr_widths[ndx];
    6286      257208 :                 continue;
    6287             :             }
    6288             : 
    6289             :             /* Try to get column width from statistics */
    6290     1078554 :             if (reloid != InvalidOid && var->varattno > 0)
    6291             :             {
    6292      848540 :                 item_width = get_attavgwidth(reloid, var->varattno);
    6293      848540 :                 if (item_width > 0)
    6294             :                 {
    6295      716612 :                     rel->attr_widths[ndx] = item_width;
    6296      716612 :                     tuple_width += item_width;
    6297      716612 :                     continue;
    6298             :                 }
    6299             :             }
    6300             : 
    6301             :             /*
    6302             :              * Not a plain relation, or can't find statistics for it. Estimate
    6303             :              * using just the type info.
    6304             :              */
    6305      361942 :             item_width = get_typavgwidth(var->vartype, var->vartypmod);
    6306             :             Assert(item_width > 0);
    6307      361942 :             rel->attr_widths[ndx] = item_width;
    6308      361942 :             tuple_width += item_width;
    6309             :         }
    6310       24516 :         else if (IsA(node, PlaceHolderVar))
    6311             :         {
    6312             :             /*
    6313             :              * We will need to evaluate the PHV's contained expression while
    6314             :              * scanning this rel, so be sure to include it in reltarget->cost.
    6315             :              */
    6316        2134 :             PlaceHolderVar *phv = (PlaceHolderVar *) node;
    6317        2134 :             PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
    6318             :             QualCost    cost;
    6319             : 
    6320        2134 :             tuple_width += phinfo->ph_width;
    6321        2134 :             cost_qual_eval_node(&cost, (Node *) phv->phexpr, root);
    6322        2134 :             rel->reltarget->cost.startup += cost.startup;
    6323        2134 :             rel->reltarget->cost.per_tuple += cost.per_tuple;
    6324             :         }
    6325             :         else
    6326             :         {
    6327             :             /*
    6328             :              * We could be looking at an expression pulled up from a subquery,
    6329             :              * or a ROW() representing a whole-row child Var, etc.  Do what we
    6330             :              * can using the expression type information.
    6331             :              */
    6332             :             int32       item_width;
    6333             :             QualCost    cost;
    6334             : 
    6335       22382 :             item_width = get_typavgwidth(exprType(node), exprTypmod(node));
    6336             :             Assert(item_width > 0);
    6337       22382 :             tuple_width += item_width;
    6338             :             /* Not entirely clear if we need to account for cost, but do so */
    6339       22382 :             cost_qual_eval_node(&cost, node, root);
    6340       22382 :             rel->reltarget->cost.startup += cost.startup;
    6341       22382 :             rel->reltarget->cost.per_tuple += cost.per_tuple;
    6342             :         }
    6343             :     }
    6344             : 
    6345             :     /*
    6346             :      * If we have a whole-row reference, estimate its width as the sum of
    6347             :      * per-column widths plus heap tuple header overhead.
    6348             :      */
    6349      532892 :     if (have_wholerow_var)
    6350             :     {
    6351        3060 :         int64       wholerow_width = MAXALIGN(SizeofHeapTupleHeader);
    6352             : 
    6353        3060 :         if (reloid != InvalidOid)
    6354             :         {
    6355             :             /* Real relation, so estimate true tuple width */
    6356        2392 :             wholerow_width += get_relation_data_width(reloid,
    6357        2392 :                                                       rel->attr_widths - rel->min_attr);
    6358             :         }
    6359             :         else
    6360             :         {
    6361             :             /* Do what we can with info for a phony rel */
    6362             :             AttrNumber  i;
    6363             : 
    6364        1814 :             for (i = 1; i <= rel->max_attr; i++)
    6365        1146 :                 wholerow_width += rel->attr_widths[i - rel->min_attr];
    6366             :         }
    6367             : 
    6368        3060 :         rel->attr_widths[0 - rel->min_attr] = clamp_width_est(wholerow_width);
    6369             : 
    6370             :         /*
    6371             :          * Include the whole-row Var as part of the output tuple.  Yes, that
    6372             :          * really is what happens at runtime.
    6373             :          */
    6374        3060 :         tuple_width += wholerow_width;
    6375             :     }
    6376             : 
    6377      532892 :     rel->reltarget->width = clamp_width_est(tuple_width);
    6378      532892 : }
    6379             : 
    6380             : /*
    6381             :  * set_pathtarget_cost_width
    6382             :  *      Set the estimated eval cost and output width of a PathTarget tlist.
    6383             :  *
    6384             :  * As a notational convenience, returns the same PathTarget pointer passed in.
    6385             :  *
    6386             :  * Most, though not quite all, uses of this function occur after we've run
    6387             :  * set_rel_width() for base relations; so we can usually obtain cached width
    6388             :  * estimates for Vars.  If we can't, fall back on datatype-based width
    6389             :  * estimates.  Present early-planning uses of PathTargets don't need accurate
    6390             :  * widths badly enough to justify going to the catalogs for better data.
    6391             :  */
    6392             : PathTarget *
    6393      637824 : set_pathtarget_cost_width(PlannerInfo *root, PathTarget *target)
    6394             : {
    6395      637824 :     int64       tuple_width = 0;
    6396             :     ListCell   *lc;
    6397             : 
    6398             :     /* Vars are assumed to have cost zero, but other exprs do not */
    6399      637824 :     target->cost.startup = 0;
    6400      637824 :     target->cost.per_tuple = 0;
    6401             : 
    6402     2199854 :     foreach(lc, target->exprs)
    6403             :     {
    6404     1562030 :         Node       *node = (Node *) lfirst(lc);
    6405             : 
    6406     1562030 :         tuple_width += get_expr_width(root, node);
    6407             : 
    6408             :         /* For non-Vars, account for evaluation cost */
    6409     1562030 :         if (!IsA(node, Var))
    6410             :         {
    6411             :             QualCost    cost;
    6412             : 
    6413      674686 :             cost_qual_eval_node(&cost, node, root);
    6414      674686 :             target->cost.startup += cost.startup;
    6415      674686 :             target->cost.per_tuple += cost.per_tuple;
    6416             :         }
    6417             :     }
    6418             : 
    6419      637824 :     target->width = clamp_width_est(tuple_width);
    6420             : 
    6421      637824 :     return target;
    6422             : }
    6423             : 
    6424             : /*
    6425             :  * get_expr_width
    6426             :  *      Estimate the width of the given expr attempting to use the width
    6427             :  *      cached in a Var's owning RelOptInfo, else fallback on the type's
    6428             :  *      average width when unable to or when the given Node is not a Var.
    6429             :  */
    6430             : static int32
    6431     1896162 : get_expr_width(PlannerInfo *root, const Node *expr)
    6432             : {
    6433             :     int32       width;
    6434             : 
    6435     1896162 :     if (IsA(expr, Var))
    6436             :     {
    6437     1208554 :         const Var  *var = (const Var *) expr;
    6438             : 
    6439             :         /* We should not see any upper-level Vars here */
    6440             :         Assert(var->varlevelsup == 0);
    6441             : 
    6442             :         /* Try to get data from RelOptInfo cache */
    6443     1208554 :         if (!IS_SPECIAL_VARNO(var->varno) &&
    6444     1202664 :             var->varno < root->simple_rel_array_size)
    6445             :         {
    6446     1202664 :             RelOptInfo *rel = root->simple_rel_array[var->varno];
    6447             : 
    6448     1202664 :             if (rel != NULL &&
    6449     1184744 :                 var->varattno >= rel->min_attr &&
    6450     1184744 :                 var->varattno <= rel->max_attr)
    6451             :             {
    6452     1184744 :                 int         ndx = var->varattno - rel->min_attr;
    6453             : 
    6454     1184744 :                 if (rel->attr_widths[ndx] > 0)
    6455     1152370 :                     return rel->attr_widths[ndx];
    6456             :             }
    6457             :         }
    6458             : 
    6459             :         /*
    6460             :          * No cached data available, so estimate using just the type info.
    6461             :          */
    6462       56184 :         width = get_typavgwidth(var->vartype, var->vartypmod);
    6463             :         Assert(width > 0);
    6464             : 
    6465       56184 :         return width;
    6466             :     }
    6467             : 
    6468      687608 :     width = get_typavgwidth(exprType(expr), exprTypmod(expr));
    6469             :     Assert(width > 0);
    6470      687608 :     return width;
    6471             : }
    6472             : 
    6473             : /*
    6474             :  * relation_byte_size
    6475             :  *    Estimate the storage space in bytes for a given number of tuples
    6476             :  *    of a given width (size in bytes).
    6477             :  */
    6478             : static double
    6479     5085080 : relation_byte_size(double tuples, int width)
    6480             : {
    6481     5085080 :     return tuples * (MAXALIGN(width) + MAXALIGN(SizeofHeapTupleHeader));
    6482             : }
    6483             : 
    6484             : /*
    6485             :  * page_size
    6486             :  *    Returns an estimate of the number of pages covered by a given
    6487             :  *    number of tuples of a given width (size in bytes).
    6488             :  */
    6489             : static double
    6490        9292 : page_size(double tuples, int width)
    6491             : {
    6492        9292 :     return ceil(relation_byte_size(tuples, width) / BLCKSZ);
    6493             : }
    6494             : 
    6495             : /*
    6496             :  * Estimate the fraction of the work that each worker will do given the
    6497             :  * number of workers budgeted for the path.
    6498             :  */
    6499             : static double
    6500      468754 : get_parallel_divisor(Path *path)
    6501             : {
    6502      468754 :     double      parallel_divisor = path->parallel_workers;
    6503             : 
    6504             :     /*
    6505             :      * Early experience with parallel query suggests that when there is only
    6506             :      * one worker, the leader often makes a very substantial contribution to
    6507             :      * executing the parallel portion of the plan, but as more workers are
    6508             :      * added, it does less and less, because it's busy reading tuples from the
    6509             :      * workers and doing whatever non-parallel post-processing is needed.  By
    6510             :      * the time we reach 4 workers, the leader no longer makes a meaningful
    6511             :      * contribution.  Thus, for now, estimate that the leader spends 30% of
    6512             :      * its time servicing each worker, and the remainder executing the
    6513             :      * parallel plan.
    6514             :      */
    6515      468754 :     if (parallel_leader_participation)
    6516             :     {
    6517             :         double      leader_contribution;
    6518             : 
    6519      467524 :         leader_contribution = 1.0 - (0.3 * path->parallel_workers);
    6520      467524 :         if (leader_contribution > 0)
    6521      464944 :             parallel_divisor += leader_contribution;
    6522             :     }
    6523             : 
    6524      468754 :     return parallel_divisor;
    6525             : }
    6526             : 
    6527             : /*
    6528             :  * compute_bitmap_pages
    6529             :  *    Estimate number of pages fetched from heap in a bitmap heap scan.
    6530             :  *
    6531             :  * 'baserel' is the relation to be scanned
    6532             :  * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths
    6533             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
    6534             :  *      estimates of caching behavior
    6535             :  *
    6536             :  * If cost_p isn't NULL, the indexTotalCost estimate is returned in *cost_p.
    6537             :  * If tuples_p isn't NULL, the tuples_fetched estimate is returned in *tuples_p.
    6538             :  */
    6539             : double
    6540      703916 : compute_bitmap_pages(PlannerInfo *root, RelOptInfo *baserel,
    6541             :                      Path *bitmapqual, double loop_count,
    6542             :                      Cost *cost_p, double *tuples_p)
    6543             : {
    6544             :     Cost        indexTotalCost;
    6545             :     Selectivity indexSelectivity;
    6546             :     double      T;
    6547             :     double      pages_fetched;
    6548             :     double      tuples_fetched;
    6549             :     double      heap_pages;
    6550             :     double      maxentries;
    6551             : 
    6552             :     /*
    6553             :      * Fetch total cost of obtaining the bitmap, as well as its total
    6554             :      * selectivity.
    6555             :      */
    6556      703916 :     cost_bitmap_tree_node(bitmapqual, &indexTotalCost, &indexSelectivity);
    6557             : 
    6558             :     /*
    6559             :      * Estimate number of main-table pages fetched.
    6560             :      */
    6561      703916 :     tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
    6562             : 
    6563      703916 :     T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
    6564             : 
    6565             :     /*
    6566             :      * For a single scan, the number of heap pages that need to be fetched is
    6567             :      * the same as the Mackert and Lohman formula for the case T <= b (ie, no
    6568             :      * re-reads needed).
    6569             :      */
    6570      703916 :     pages_fetched = (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
    6571             : 
    6572             :     /*
    6573             :      * Calculate the number of pages fetched from the heap.  Then based on
    6574             :      * current work_mem estimate get the estimated maxentries in the bitmap.
    6575             :      * (Note that we always do this calculation based on the number of pages
    6576             :      * that would be fetched in a single iteration, even if loop_count > 1.
    6577             :      * That's correct, because only that number of entries will be stored in
    6578             :      * the bitmap at one time.)
    6579             :      */
    6580      703916 :     heap_pages = Min(pages_fetched, baserel->pages);
    6581      703916 :     maxentries = tbm_calculate_entries(work_mem * (Size) 1024);
    6582             : 
    6583      703916 :     if (loop_count > 1)
    6584             :     {
    6585             :         /*
    6586             :          * For repeated bitmap scans, scale up the number of tuples fetched in
    6587             :          * the Mackert and Lohman formula by the number of scans, so that we
    6588             :          * estimate the number of pages fetched by all the scans. Then
    6589             :          * pro-rate for one scan.
    6590             :          */
    6591      147722 :         pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
    6592             :                                             baserel->pages,
    6593             :                                             get_indexpath_pages(bitmapqual),
    6594             :                                             root);
    6595      147722 :         pages_fetched /= loop_count;
    6596             :     }
    6597             : 
    6598      703916 :     if (pages_fetched >= T)
    6599       71830 :         pages_fetched = T;
    6600             :     else
    6601      632086 :         pages_fetched = ceil(pages_fetched);
    6602             : 
    6603      703916 :     if (maxentries < heap_pages)
    6604             :     {
    6605             :         double      exact_pages;
    6606             :         double      lossy_pages;
    6607             : 
    6608             :         /*
    6609             :          * Crude approximation of the number of lossy pages.  Because of the
    6610             :          * way tbm_lossify() is coded, the number of lossy pages increases
    6611             :          * very sharply as soon as we run short of memory; this formula has
    6612             :          * that property and seems to perform adequately in testing, but it's
    6613             :          * possible we could do better somehow.
    6614             :          */
    6615          18 :         lossy_pages = Max(0, heap_pages - maxentries / 2);
    6616          18 :         exact_pages = heap_pages - lossy_pages;
    6617             : 
    6618             :         /*
    6619             :          * If there are lossy pages then recompute the number of tuples
    6620             :          * processed by the bitmap heap node.  We assume here that the chance
    6621             :          * of a given tuple coming from an exact page is the same as the
    6622             :          * chance that a given page is exact.  This might not be true, but
    6623             :          * it's not clear how we can do any better.
    6624             :          */
    6625          18 :         if (lossy_pages > 0)
    6626             :             tuples_fetched =
    6627          18 :                 clamp_row_est(indexSelectivity *
    6628          18 :                               (exact_pages / heap_pages) * baserel->tuples +
    6629          18 :                               (lossy_pages / heap_pages) * baserel->tuples);
    6630             :     }
    6631             : 
    6632      703916 :     if (cost_p)
    6633      557624 :         *cost_p = indexTotalCost;
    6634      703916 :     if (tuples_p)
    6635      557624 :         *tuples_p = tuples_fetched;
    6636             : 
    6637      703916 :     return pages_fetched;
    6638             : }
    6639             : 
    6640             : /*
    6641             :  * compute_gather_rows
    6642             :  *    Estimate number of rows for gather (merge) nodes.
    6643             :  *
    6644             :  * In a parallel plan, each worker's row estimate is determined by dividing the
    6645             :  * total number of rows by parallel_divisor, which accounts for the leader's
    6646             :  * contribution in addition to the number of workers.  Accordingly, when
    6647             :  * estimating the number of rows for gather (merge) nodes, we multiply the rows
    6648             :  * per worker by the same parallel_divisor to undo the division.
    6649             :  */
    6650             : double
    6651       44338 : compute_gather_rows(Path *path)
    6652             : {
    6653             :     Assert(path->parallel_workers > 0);
    6654             : 
    6655       44338 :     return clamp_row_est(path->rows * get_parallel_divisor(path));
    6656             : }

Generated by: LCOV version 1.16