Line data Source code
1 : /*------------------------------------------------------------------------- 2 : * 3 : * knapsack.c 4 : * Knapsack problem solver 5 : * 6 : * Given input vectors of integral item weights (must be >= 0) and values 7 : * (double >= 0), compute the set of items which produces the greatest total 8 : * value without exceeding a specified total weight; each item is included at 9 : * most once (this is the 0/1 knapsack problem). Weight 0 items will always be 10 : * included. 11 : * 12 : * The performance of this algorithm is pseudo-polynomial, O(nW) where W is the 13 : * weight limit. To use with non-integral weights or approximate solutions, 14 : * the caller should pre-scale the input weights to a suitable range. This 15 : * allows approximate solutions in polynomial time (the general case of the 16 : * exact problem is NP-hard). 17 : * 18 : * Copyright (c) 2017-2025, PostgreSQL Global Development Group 19 : * 20 : * IDENTIFICATION 21 : * src/backend/lib/knapsack.c 22 : * 23 : *------------------------------------------------------------------------- 24 : */ 25 : #include "postgres.h" 26 : 27 : #include <math.h> 28 : #include <limits.h> 29 : 30 : #include "lib/knapsack.h" 31 : #include "nodes/bitmapset.h" 32 : #include "utils/memutils.h" 33 : 34 : /* 35 : * DiscreteKnapsack 36 : * 37 : * The item_values input is optional; if omitted, all the items are assumed to 38 : * have value 1. 39 : * 40 : * Returns a Bitmapset of the 0..(n-1) indexes of the items chosen for 41 : * inclusion in the solution. 42 : * 43 : * This uses the usual dynamic-programming algorithm, adapted to reuse the 44 : * memory on each pass (by working from larger weights to smaller). At the 45 : * start of pass number i, the values[w] array contains the largest value 46 : * computed with total weight <= w, using only items with indices < i; and 47 : * sets[w] contains the bitmap of items actually used for that value. (The 48 : * bitmapsets are all pre-initialized with an unused high bit so that memory 49 : * allocation is done only once.) 50 : */ 51 : Bitmapset * 52 420 : DiscreteKnapsack(int max_weight, int num_items, 53 : int *item_weights, double *item_values) 54 : { 55 420 : MemoryContext local_ctx = AllocSetContextCreate(CurrentMemoryContext, 56 : "Knapsack", 57 : ALLOCSET_SMALL_SIZES); 58 420 : MemoryContext oldctx = MemoryContextSwitchTo(local_ctx); 59 : double *values; 60 : Bitmapset **sets; 61 : Bitmapset *result; 62 : int i, 63 : j; 64 : 65 : Assert(max_weight >= 0); 66 : Assert(num_items > 0 && item_weights); 67 : 68 420 : values = palloc((1 + max_weight) * sizeof(double)); 69 420 : sets = palloc((1 + max_weight) * sizeof(Bitmapset *)); 70 : 71 21960 : for (i = 0; i <= max_weight; ++i) 72 : { 73 21540 : values[i] = 0; 74 21540 : sets[i] = bms_make_singleton(num_items); 75 : } 76 : 77 1056 : for (i = 0; i < num_items; ++i) 78 : { 79 636 : int iw = item_weights[i]; 80 636 : double iv = item_values ? item_values[i] : 1; 81 : 82 39210 : for (j = max_weight; j >= iw; --j) 83 : { 84 38574 : int ow = j - iw; 85 : 86 38574 : if (values[j] <= values[ow] + iv) 87 : { 88 : /* copy sets[ow] to sets[j] without realloc */ 89 38574 : if (j != ow) 90 13164 : sets[j] = bms_replace_members(sets[j], sets[ow]); 91 : 92 38574 : sets[j] = bms_add_member(sets[j], i); 93 : 94 38574 : values[j] = values[ow] + iv; 95 : } 96 : } 97 : } 98 : 99 420 : MemoryContextSwitchTo(oldctx); 100 : 101 420 : result = bms_del_member(bms_copy(sets[max_weight]), num_items); 102 : 103 420 : MemoryContextDelete(local_ctx); 104 : 105 420 : return result; 106 : }