LCOV - code coverage report
Current view: top level - src/backend/lib - integerset.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 248 254 97.6 %
Date: 2025-01-18 04:15:08 Functions: 16 16 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * integerset.c
       4             :  *    Data structure to hold a large set of 64-bit integers efficiently
       5             :  *
       6             :  * IntegerSet provides an in-memory data structure to hold a set of
       7             :  * arbitrary 64-bit integers.  Internally, the values are stored in a
       8             :  * B-tree, with a special packed representation at the leaf level using
       9             :  * the Simple-8b algorithm, which can pack clusters of nearby values
      10             :  * very tightly.
      11             :  *
      12             :  * Memory consumption depends on the number of values stored, but also
      13             :  * on how far the values are from each other.  In the best case, with
      14             :  * long runs of consecutive integers, memory consumption can be as low as
      15             :  * 0.1 bytes per integer.  In the worst case, if integers are more than
      16             :  * 2^32 apart, it uses about 8 bytes per integer.  In typical use, the
      17             :  * consumption per integer is somewhere between those extremes, depending
      18             :  * on the range of integers stored, and how "clustered" they are.
      19             :  *
      20             :  *
      21             :  * Interface
      22             :  * ---------
      23             :  *
      24             :  *  intset_create           - Create a new, empty set
      25             :  *  intset_add_member       - Add an integer to the set
      26             :  *  intset_is_member        - Test if an integer is in the set
      27             :  *  intset_begin_iterate    - Begin iterating through all integers in set
      28             :  *  intset_iterate_next     - Return next set member, if any
      29             :  *
      30             :  * intset_create() creates the set in the current memory context.  Subsequent
      31             :  * operations that add to the data structure will continue to allocate from
      32             :  * that same context, even if it's not current anymore.
      33             :  *
      34             :  * Note that there is no function to free an integer set.  If you need to do
      35             :  * that, create a dedicated memory context to hold it, and destroy the memory
      36             :  * context instead.
      37             :  *
      38             :  *
      39             :  * Limitations
      40             :  * -----------
      41             :  *
      42             :  * - Values must be added in order.  (Random insertions would require
      43             :  *   splitting nodes, which hasn't been implemented.)
      44             :  *
      45             :  * - Values cannot be added while iteration is in progress.
      46             :  *
      47             :  * - No support for removing values.
      48             :  *
      49             :  * None of these limitations are fundamental to the data structure, so they
      50             :  * could be lifted if needed, by writing some new code.  But the current
      51             :  * users of this facility don't need them.
      52             :  *
      53             :  *
      54             :  * References
      55             :  * ----------
      56             :  *
      57             :  * Simple-8b encoding is based on:
      58             :  *
      59             :  * Vo Ngoc Anh, Alistair Moffat, Index compression using 64-bit words,
      60             :  *   Software - Practice & Experience, v.40 n.2, p.131-147, February 2010
      61             :  *   (https://doi.org/10.1002/spe.948)
      62             :  *
      63             :  *
      64             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      65             :  * Portions Copyright (c) 1994, Regents of the University of California
      66             :  *
      67             :  * IDENTIFICATION
      68             :  *    src/backend/lib/integerset.c
      69             :  *
      70             :  *-------------------------------------------------------------------------
      71             :  */
      72             : #include "postgres.h"
      73             : 
      74             : #include "lib/integerset.h"
      75             : #include "utils/memutils.h"
      76             : 
      77             : 
      78             : /*
      79             :  * Maximum number of integers that can be encoded in a single Simple-8b
      80             :  * codeword. (Defined here before anything else, so that we can size arrays
      81             :  * using this.)
      82             :  */
      83             : #define SIMPLE8B_MAX_VALUES_PER_CODEWORD 240
      84             : 
      85             : /*
      86             :  * Parameters for shape of the in-memory B-tree.
      87             :  *
      88             :  * These set the size of each internal and leaf node.  They don't necessarily
      89             :  * need to be the same, because the tree is just an in-memory structure.
      90             :  * With the default 64, each node is about 1 kb.
      91             :  *
      92             :  * If you change these, you must recalculate MAX_TREE_LEVELS, too!
      93             :  */
      94             : #define MAX_INTERNAL_ITEMS  64
      95             : #define MAX_LEAF_ITEMS  64
      96             : 
      97             : /*
      98             :  * Maximum height of the tree.
      99             :  *
     100             :  * MAX_TREE_ITEMS is calculated from the "fan-out" of the B-tree.  The
     101             :  * theoretical maximum number of items that we can store in a set is 2^64,
     102             :  * so MAX_TREE_LEVELS should be set so that:
     103             :  *
     104             :  *   MAX_LEAF_ITEMS * MAX_INTERNAL_ITEMS ^ (MAX_TREE_LEVELS - 1) >= 2^64.
     105             :  *
     106             :  * In practice, we'll need far fewer levels, because you will run out of
     107             :  * memory long before reaching that number, but let's be conservative.
     108             :  */
     109             : #define MAX_TREE_LEVELS     11
     110             : 
     111             : /*
     112             :  * Node structures, for the in-memory B-tree.
     113             :  *
     114             :  * An internal node holds a number of downlink pointers to leaf nodes, or
     115             :  * to internal nodes on a lower level.  For each downlink, the key value
     116             :  * corresponding to the lower level node is stored in a sorted array.  The
     117             :  * stored key values are low keys.  In other words, if the downlink has value
     118             :  * X, then all items stored on that child are >= X.
     119             :  *
     120             :  * Each leaf node holds a number of "items", with a varying number of
     121             :  * integers packed into each item.  Each item consists of two 64-bit words:
     122             :  * The first word holds the first integer stored in the item, in plain format.
     123             :  * The second word contains between 0 and 240 more integers, packed using
     124             :  * Simple-8b encoding.  By storing the first integer in plain, unpacked,
     125             :  * format, we can use binary search to quickly find an item that holds (or
     126             :  * would hold) a particular integer.  And by storing the rest in packed form,
     127             :  * we still get pretty good memory density, if there are clusters of integers
     128             :  * with similar values.
     129             :  *
     130             :  * Each leaf node also has a pointer to the next leaf node, so that the leaf
     131             :  * nodes can be easily walked from beginning to end when iterating.
     132             :  */
     133             : typedef struct intset_node intset_node;
     134             : typedef struct intset_leaf_node intset_leaf_node;
     135             : typedef struct intset_internal_node intset_internal_node;
     136             : 
     137             : /* Common structure of both leaf and internal nodes. */
     138             : struct intset_node
     139             : {
     140             :     uint16      level;          /* tree level of this node */
     141             :     uint16      num_items;      /* number of items in this node */
     142             : };
     143             : 
     144             : /* Internal node */
     145             : struct intset_internal_node
     146             : {
     147             :     /* common header, must match intset_node */
     148             :     uint16      level;          /* >= 1 on internal nodes */
     149             :     uint16      num_items;
     150             : 
     151             :     /*
     152             :      * 'values' is an array of key values, and 'downlinks' are pointers to
     153             :      * lower-level nodes, corresponding to the key values.
     154             :      */
     155             :     uint64      values[MAX_INTERNAL_ITEMS];
     156             :     intset_node *downlinks[MAX_INTERNAL_ITEMS];
     157             : };
     158             : 
     159             : /* Leaf node */
     160             : typedef struct
     161             : {
     162             :     uint64      first;          /* first integer in this item */
     163             :     uint64      codeword;       /* simple8b encoded differences from 'first' */
     164             : } leaf_item;
     165             : 
     166             : #define MAX_VALUES_PER_LEAF_ITEM    (1 + SIMPLE8B_MAX_VALUES_PER_CODEWORD)
     167             : 
     168             : struct intset_leaf_node
     169             : {
     170             :     /* common header, must match intset_node */
     171             :     uint16      level;          /* 0 on leafs */
     172             :     uint16      num_items;
     173             : 
     174             :     intset_leaf_node *next;     /* right sibling, if any */
     175             : 
     176             :     leaf_item   items[MAX_LEAF_ITEMS];
     177             : };
     178             : 
     179             : /*
     180             :  * We buffer insertions in a simple array, before packing and inserting them
     181             :  * into the B-tree.  MAX_BUFFERED_VALUES sets the size of the buffer.  The
     182             :  * encoder assumes that it is large enough that we can always fill a leaf
     183             :  * item with buffered new items.  In other words, MAX_BUFFERED_VALUES must be
     184             :  * larger than MAX_VALUES_PER_LEAF_ITEM.  For efficiency, make it much larger.
     185             :  */
     186             : #define MAX_BUFFERED_VALUES         (MAX_VALUES_PER_LEAF_ITEM * 2)
     187             : 
     188             : /*
     189             :  * IntegerSet is the top-level object representing the set.
     190             :  *
     191             :  * The integers are stored in an in-memory B-tree structure, plus an array
     192             :  * for newly-added integers.  IntegerSet also tracks information about memory
     193             :  * usage, as well as the current position when iterating the set with
     194             :  * intset_begin_iterate / intset_iterate_next.
     195             :  */
     196             : struct IntegerSet
     197             : {
     198             :     /*
     199             :      * 'context' is the memory context holding this integer set and all its
     200             :      * tree nodes.
     201             :      *
     202             :      * 'mem_used' tracks the amount of memory used.  We don't do anything with
     203             :      * it in integerset.c itself, but the callers can ask for it with
     204             :      * intset_memory_usage().
     205             :      */
     206             :     MemoryContext context;
     207             :     uint64      mem_used;
     208             : 
     209             :     uint64      num_entries;    /* total # of values in the set */
     210             :     uint64      highest_value;  /* highest value stored in this set */
     211             : 
     212             :     /*
     213             :      * B-tree to hold the packed values.
     214             :      *
     215             :      * 'rightmost_nodes' hold pointers to the rightmost node on each level.
     216             :      * rightmost_parent[0] is rightmost leaf, rightmost_parent[1] is its
     217             :      * parent, and so forth, all the way up to the root. These are needed when
     218             :      * adding new values. (Currently, we require that new values are added at
     219             :      * the end.)
     220             :      */
     221             :     int         num_levels;     /* height of the tree */
     222             :     intset_node *root;          /* root node */
     223             :     intset_node *rightmost_nodes[MAX_TREE_LEVELS];
     224             :     intset_leaf_node *leftmost_leaf;    /* leftmost leaf node */
     225             : 
     226             :     /*
     227             :      * Holding area for new items that haven't been inserted to the tree yet.
     228             :      */
     229             :     uint64      buffered_values[MAX_BUFFERED_VALUES];
     230             :     int         num_buffered_values;
     231             : 
     232             :     /*
     233             :      * Iterator support.
     234             :      *
     235             :      * 'iter_values' is an array of integers ready to be returned to the
     236             :      * caller; 'iter_num_values' is the length of that array, and
     237             :      * 'iter_valueno' is the next index.  'iter_node' and 'iter_itemno' point
     238             :      * to the leaf node, and item within the leaf node, to get the next batch
     239             :      * of values from.
     240             :      *
     241             :      * Normally, 'iter_values' points to 'iter_values_buf', which holds items
     242             :      * decoded from a leaf item.  But after we have scanned the whole B-tree,
     243             :      * we iterate through all the unbuffered values, too, by pointing
     244             :      * iter_values to 'buffered_values'.
     245             :      */
     246             :     bool        iter_active;    /* is iteration in progress? */
     247             : 
     248             :     const uint64 *iter_values;
     249             :     int         iter_num_values;    /* number of elements in 'iter_values' */
     250             :     int         iter_valueno;   /* next index into 'iter_values' */
     251             : 
     252             :     intset_leaf_node *iter_node;    /* current leaf node */
     253             :     int         iter_itemno;    /* next item in 'iter_node' to decode */
     254             : 
     255             :     uint64      iter_values_buf[MAX_VALUES_PER_LEAF_ITEM];
     256             : };
     257             : 
     258             : /*
     259             :  * Prototypes for internal functions.
     260             :  */
     261             : static void intset_update_upper(IntegerSet *intset, int level,
     262             :                                 intset_node *child, uint64 child_key);
     263             : static void intset_flush_buffered_values(IntegerSet *intset);
     264             : 
     265             : static int  intset_binsrch_uint64(uint64 item, uint64 *arr, int arr_elems,
     266             :                                   bool nextkey);
     267             : static int  intset_binsrch_leaf(uint64 item, leaf_item *arr, int arr_elems,
     268             :                                 bool nextkey);
     269             : 
     270             : static uint64 simple8b_encode(const uint64 *ints, int *num_encoded, uint64 base);
     271             : static int  simple8b_decode(uint64 codeword, uint64 *decoded, uint64 base);
     272             : static bool simple8b_contains(uint64 codeword, uint64 key, uint64 base);
     273             : 
     274             : 
     275             : /*
     276             :  * Create a new, initially empty, integer set.
     277             :  *
     278             :  * The integer set is created in the current memory context.
     279             :  * We will do all subsequent allocations in the same context, too, regardless
     280             :  * of which memory context is current when new integers are added to the set.
     281             :  */
     282             : IntegerSet *
     283         208 : intset_create(void)
     284             : {
     285             :     IntegerSet *intset;
     286             : 
     287         208 :     intset = (IntegerSet *) palloc(sizeof(IntegerSet));
     288         208 :     intset->context = CurrentMemoryContext;
     289         208 :     intset->mem_used = GetMemoryChunkSpace(intset);
     290             : 
     291         208 :     intset->num_entries = 0;
     292         208 :     intset->highest_value = 0;
     293             : 
     294         208 :     intset->num_levels = 0;
     295         208 :     intset->root = NULL;
     296         208 :     memset(intset->rightmost_nodes, 0, sizeof(intset->rightmost_nodes));
     297         208 :     intset->leftmost_leaf = NULL;
     298             : 
     299         208 :     intset->num_buffered_values = 0;
     300             : 
     301         208 :     intset->iter_active = false;
     302         208 :     intset->iter_node = NULL;
     303         208 :     intset->iter_itemno = 0;
     304         208 :     intset->iter_valueno = 0;
     305         208 :     intset->iter_num_values = 0;
     306         208 :     intset->iter_values = NULL;
     307             : 
     308         208 :     return intset;
     309             : }
     310             : 
     311             : /*
     312             :  * Allocate a new node.
     313             :  */
     314             : static intset_internal_node *
     315        6754 : intset_new_internal_node(IntegerSet *intset)
     316             : {
     317             :     intset_internal_node *n;
     318             : 
     319        6754 :     n = (intset_internal_node *) MemoryContextAlloc(intset->context,
     320             :                                                     sizeof(intset_internal_node));
     321        6754 :     intset->mem_used += GetMemoryChunkSpace(n);
     322             : 
     323        6754 :     n->level = 0;                /* caller must set */
     324        6754 :     n->num_items = 0;
     325             : 
     326        6754 :     return n;
     327             : }
     328             : 
     329             : static intset_leaf_node *
     330      423356 : intset_new_leaf_node(IntegerSet *intset)
     331             : {
     332             :     intset_leaf_node *n;
     333             : 
     334      423356 :     n = (intset_leaf_node *) MemoryContextAlloc(intset->context,
     335             :                                                 sizeof(intset_leaf_node));
     336      423356 :     intset->mem_used += GetMemoryChunkSpace(n);
     337             : 
     338      423356 :     n->level = 0;
     339      423356 :     n->num_items = 0;
     340      423356 :     n->next = NULL;
     341             : 
     342      423356 :     return n;
     343             : }
     344             : 
     345             : /*
     346             :  * Return the number of entries in the integer set.
     347             :  */
     348             : uint64
     349         120 : intset_num_entries(IntegerSet *intset)
     350             : {
     351         120 :     return intset->num_entries;
     352             : }
     353             : 
     354             : /*
     355             :  * Return the amount of memory used by the integer set.
     356             :  */
     357             : uint64
     358          10 : intset_memory_usage(IntegerSet *intset)
     359             : {
     360          10 :     return intset->mem_used;
     361             : }
     362             : 
     363             : /*
     364             :  * Add a value to the set.
     365             :  *
     366             :  * Values must be added in order.
     367             :  */
     368             : void
     369   326008290 : intset_add_member(IntegerSet *intset, uint64 x)
     370             : {
     371   326008290 :     if (intset->iter_active)
     372           0 :         elog(ERROR, "cannot add new values to integer set while iteration is in progress");
     373             : 
     374   326008290 :     if (x <= intset->highest_value && intset->num_entries > 0)
     375           0 :         elog(ERROR, "cannot add value to integer set out of order");
     376             : 
     377   326008290 :     if (intset->num_buffered_values >= MAX_BUFFERED_VALUES)
     378             :     {
     379             :         /* Time to flush our buffer */
     380     1134006 :         intset_flush_buffered_values(intset);
     381             :         Assert(intset->num_buffered_values < MAX_BUFFERED_VALUES);
     382             :     }
     383             : 
     384             :     /* Add it to the buffer of newly-added values */
     385   326008290 :     intset->buffered_values[intset->num_buffered_values] = x;
     386   326008290 :     intset->num_buffered_values++;
     387   326008290 :     intset->num_entries++;
     388   326008290 :     intset->highest_value = x;
     389   326008290 : }
     390             : 
     391             : /*
     392             :  * Take a batch of buffered values, and pack them into the B-tree.
     393             :  */
     394             : static void
     395     1134006 : intset_flush_buffered_values(IntegerSet *intset)
     396             : {
     397     1134006 :     uint64     *values = intset->buffered_values;
     398     1134006 :     uint64      num_values = intset->num_buffered_values;
     399     1134006 :     int         num_packed = 0;
     400             :     intset_leaf_node *leaf;
     401             : 
     402     1134006 :     leaf = (intset_leaf_node *) intset->rightmost_nodes[0];
     403             : 
     404             :     /*
     405             :      * If the tree is completely empty, create the first leaf page, which is
     406             :      * also the root.
     407             :      */
     408     1134006 :     if (leaf == NULL)
     409             :     {
     410             :         /*
     411             :          * This is the very first item in the set.
     412             :          *
     413             :          * Allocate root node. It's also a leaf.
     414             :          */
     415          28 :         leaf = intset_new_leaf_node(intset);
     416             : 
     417          28 :         intset->root = (intset_node *) leaf;
     418          28 :         intset->leftmost_leaf = leaf;
     419          28 :         intset->rightmost_nodes[0] = (intset_node *) leaf;
     420          28 :         intset->num_levels = 1;
     421             :     }
     422             : 
     423             :     /*
     424             :      * If there are less than MAX_VALUES_PER_LEAF_ITEM values in the buffer,
     425             :      * stop.  In most cases, we cannot encode that many values in a single
     426             :      * value, but this way, the encoder doesn't have to worry about running
     427             :      * out of input.
     428             :      */
     429    28227806 :     while (num_values - num_packed >= MAX_VALUES_PER_LEAF_ITEM)
     430             :     {
     431             :         leaf_item   item;
     432             :         int         num_encoded;
     433             : 
     434             :         /*
     435             :          * Construct the next leaf item, packing as many buffered values as
     436             :          * possible.
     437             :          */
     438    27093800 :         item.first = values[num_packed];
     439    27093800 :         item.codeword = simple8b_encode(&values[num_packed + 1],
     440             :                                         &num_encoded,
     441             :                                         item.first);
     442             : 
     443             :         /*
     444             :          * Add the item to the node, allocating a new node if the old one is
     445             :          * full.
     446             :          */
     447    27093800 :         if (leaf->num_items >= MAX_LEAF_ITEMS)
     448             :         {
     449             :             /* Allocate new leaf and link it to the tree */
     450      423328 :             intset_leaf_node *old_leaf = leaf;
     451             : 
     452      423328 :             leaf = intset_new_leaf_node(intset);
     453      423328 :             old_leaf->next = leaf;
     454      423328 :             intset->rightmost_nodes[0] = (intset_node *) leaf;
     455      423328 :             intset_update_upper(intset, 1, (intset_node *) leaf, item.first);
     456             :         }
     457    27093800 :         leaf->items[leaf->num_items++] = item;
     458             : 
     459    27093800 :         num_packed += 1 + num_encoded;
     460             :     }
     461             : 
     462             :     /*
     463             :      * Move any remaining buffered values to the beginning of the array.
     464             :      */
     465     1134006 :     if (num_packed < intset->num_buffered_values)
     466             :     {
     467     1084210 :         memmove(&intset->buffered_values[0],
     468     1084210 :                 &intset->buffered_values[num_packed],
     469     1084210 :                 (intset->num_buffered_values - num_packed) * sizeof(uint64));
     470             :     }
     471     1134006 :     intset->num_buffered_values -= num_packed;
     472     1134006 : }
     473             : 
     474             : /*
     475             :  * Insert a downlink into parent node, after creating a new node.
     476             :  *
     477             :  * Recurses if the parent node is full, too.
     478             :  */
     479             : static void
     480      430032 : intset_update_upper(IntegerSet *intset, int level, intset_node *child,
     481             :                     uint64 child_key)
     482             : {
     483             :     intset_internal_node *parent;
     484             : 
     485             :     Assert(level > 0);
     486             : 
     487             :     /*
     488             :      * Create a new root node, if necessary.
     489             :      */
     490      430032 :     if (level >= intset->num_levels)
     491             :     {
     492          50 :         intset_node *oldroot = intset->root;
     493             :         uint64      downlink_key;
     494             : 
     495             :         /* MAX_TREE_LEVELS should be more than enough, this shouldn't happen */
     496          50 :         if (intset->num_levels == MAX_TREE_LEVELS)
     497           0 :             elog(ERROR, "could not expand integer set, maximum number of levels reached");
     498          50 :         intset->num_levels++;
     499             : 
     500             :         /*
     501             :          * Get the first value on the old root page, to be used as the
     502             :          * downlink.
     503             :          */
     504          50 :         if (intset->root->level == 0)
     505          20 :             downlink_key = ((intset_leaf_node *) oldroot)->items[0].first;
     506             :         else
     507          30 :             downlink_key = ((intset_internal_node *) oldroot)->values[0];
     508             : 
     509          50 :         parent = intset_new_internal_node(intset);
     510          50 :         parent->level = level;
     511          50 :         parent->values[0] = downlink_key;
     512          50 :         parent->downlinks[0] = oldroot;
     513          50 :         parent->num_items = 1;
     514             : 
     515          50 :         intset->root = (intset_node *) parent;
     516          50 :         intset->rightmost_nodes[level] = (intset_node *) parent;
     517             :     }
     518             : 
     519             :     /*
     520             :      * Place the downlink on the parent page.
     521             :      */
     522      430032 :     parent = (intset_internal_node *) intset->rightmost_nodes[level];
     523             : 
     524      430032 :     if (parent->num_items < MAX_INTERNAL_ITEMS)
     525             :     {
     526      423328 :         parent->values[parent->num_items] = child_key;
     527      423328 :         parent->downlinks[parent->num_items] = child;
     528      423328 :         parent->num_items++;
     529             :     }
     530             :     else
     531             :     {
     532             :         /*
     533             :          * Doesn't fit.  Allocate new parent, with the downlink as the first
     534             :          * item on it, and recursively insert the downlink to the new parent
     535             :          * to the grandparent.
     536             :          */
     537        6704 :         parent = intset_new_internal_node(intset);
     538        6704 :         parent->level = level;
     539        6704 :         parent->values[0] = child_key;
     540        6704 :         parent->downlinks[0] = child;
     541        6704 :         parent->num_items = 1;
     542             : 
     543        6704 :         intset->rightmost_nodes[level] = (intset_node *) parent;
     544             : 
     545        6704 :         intset_update_upper(intset, level + 1, (intset_node *) parent, child_key);
     546             :     }
     547      430032 : }
     548             : 
     549             : /*
     550             :  * Does the set contain the given value?
     551             :  */
     552             : bool
     553     1806492 : intset_is_member(IntegerSet *intset, uint64 x)
     554             : {
     555             :     intset_node *node;
     556             :     intset_leaf_node *leaf;
     557             :     int         level;
     558             :     int         itemno;
     559             :     leaf_item  *item;
     560             : 
     561             :     /*
     562             :      * The value might be in the buffer of newly-added values.
     563             :      */
     564     1806492 :     if (intset->num_buffered_values > 0 && x >= intset->buffered_values[0])
     565             :     {
     566      201986 :         itemno = intset_binsrch_uint64(x,
     567      201986 :                                        intset->buffered_values,
     568             :                                        intset->num_buffered_values,
     569             :                                        false);
     570      201986 :         if (itemno >= intset->num_buffered_values)
     571       33410 :             return false;
     572             :         else
     573      168576 :             return (intset->buffered_values[itemno] == x);
     574             :     }
     575             : 
     576             :     /*
     577             :      * Start from the root, and walk down the B-tree to find the right leaf
     578             :      * node.
     579             :      */
     580     1604506 :     if (!intset->root)
     581         180 :         return false;
     582     1604326 :     node = intset->root;
     583     6008398 :     for (level = intset->num_levels - 1; level > 0; level--)
     584             :     {
     585     4404076 :         intset_internal_node *n = (intset_internal_node *) node;
     586             : 
     587             :         Assert(node->level == level);
     588             : 
     589     4404076 :         itemno = intset_binsrch_uint64(x, n->values, n->num_items, true);
     590     4404076 :         if (itemno == 0)
     591           4 :             return false;
     592     4404072 :         node = n->downlinks[itemno - 1];
     593             :     }
     594             :     Assert(node->level == 0);
     595     1604322 :     leaf = (intset_leaf_node *) node;
     596             : 
     597             :     /*
     598             :      * Binary search to find the right item on the leaf page
     599             :      */
     600     1604322 :     itemno = intset_binsrch_leaf(x, leaf->items, leaf->num_items, true);
     601     1604322 :     if (itemno == 0)
     602          18 :         return false;
     603     1604304 :     item = &leaf->items[itemno - 1];
     604             : 
     605             :     /* Is this a match to the first value on the item? */
     606     1604304 :     if (item->first == x)
     607        3324 :         return true;
     608             :     Assert(x > item->first);
     609             : 
     610             :     /* Is it in the packed codeword? */
     611     1600980 :     if (simple8b_contains(item->codeword, x, item->first))
     612      300510 :         return true;
     613             : 
     614     1300470 :     return false;
     615             : }
     616             : 
     617             : /*
     618             :  * Begin in-order scan through all the values.
     619             :  *
     620             :  * While the iteration is in-progress, you cannot add new values to the set.
     621             :  */
     622             : void
     623         124 : intset_begin_iterate(IntegerSet *intset)
     624             : {
     625             :     /* Note that we allow an iteration to be abandoned midway */
     626         124 :     intset->iter_active = true;
     627         124 :     intset->iter_node = intset->leftmost_leaf;
     628         124 :     intset->iter_itemno = 0;
     629         124 :     intset->iter_valueno = 0;
     630         124 :     intset->iter_num_values = 0;
     631         124 :     intset->iter_values = intset->iter_values_buf;
     632         124 : }
     633             : 
     634             : /*
     635             :  * Returns the next integer, when iterating.
     636             :  *
     637             :  * intset_begin_iterate() must be called first.  intset_iterate_next() returns
     638             :  * the next value in the set.  Returns true, if there was another value, and
     639             :  * stores the value in *next.  Otherwise, returns false.
     640             :  */
     641             : bool
     642   353525310 : intset_iterate_next(IntegerSet *intset, uint64 *next)
     643             : {
     644             :     Assert(intset->iter_active);
     645             :     for (;;)
     646             :     {
     647             :         /* Return next iter_values[] entry if any */
     648   353525310 :         if (intset->iter_valueno < intset->iter_num_values)
     649             :         {
     650   326008066 :             *next = intset->iter_values[intset->iter_valueno++];
     651   326008066 :             return true;
     652             :         }
     653             : 
     654             :         /* Decode next item in current leaf node, if any */
     655    27517244 :         if (intset->iter_node &&
     656    27517156 :             intset->iter_itemno < intset->iter_node->num_items)
     657             :         {
     658             :             leaf_item  *item;
     659             :             int         num_decoded;
     660             : 
     661    27093800 :             item = &intset->iter_node->items[intset->iter_itemno++];
     662             : 
     663    27093800 :             intset->iter_values_buf[0] = item->first;
     664    27093800 :             num_decoded = simple8b_decode(item->codeword,
     665             :                                           &intset->iter_values_buf[1],
     666             :                                           item->first);
     667    27093800 :             intset->iter_num_values = num_decoded + 1;
     668    27093800 :             intset->iter_valueno = 0;
     669    27093800 :             continue;
     670             :         }
     671             : 
     672             :         /* No more items on this leaf, step to next node */
     673      423444 :         if (intset->iter_node)
     674             :         {
     675      423356 :             intset->iter_node = intset->iter_node->next;
     676      423356 :             intset->iter_itemno = 0;
     677      423356 :             continue;
     678             :         }
     679             : 
     680             :         /*
     681             :          * We have reached the end of the B-tree.  But we might still have
     682             :          * some integers in the buffer of newly-added values.
     683             :          */
     684          88 :         if (intset->iter_values == (const uint64 *) intset->iter_values_buf)
     685             :         {
     686          54 :             intset->iter_values = intset->buffered_values;
     687          54 :             intset->iter_num_values = intset->num_buffered_values;
     688          54 :             intset->iter_valueno = 0;
     689          54 :             continue;
     690             :         }
     691             : 
     692          34 :         break;
     693             :     }
     694             : 
     695             :     /* No more results. */
     696          34 :     intset->iter_active = false;
     697          34 :     *next = 0;                  /* prevent uninitialized-variable warnings */
     698          34 :     return false;
     699             : }
     700             : 
     701             : /*
     702             :  * intset_binsrch_uint64() -- search a sorted array of uint64s
     703             :  *
     704             :  * Returns the first position with key equal or less than the given key.
     705             :  * The returned position would be the "insert" location for the given key,
     706             :  * that is, the position where the new key should be inserted to.
     707             :  *
     708             :  * 'nextkey' affects the behavior on equal keys.  If true, and there is an
     709             :  * equal key in the array, this returns the position immediately after the
     710             :  * equal key.  If false, this returns the position of the equal key itself.
     711             :  */
     712             : static int
     713     4606062 : intset_binsrch_uint64(uint64 item, uint64 *arr, int arr_elems, bool nextkey)
     714             : {
     715             :     int         low,
     716             :                 high,
     717             :                 mid;
     718             : 
     719     4606062 :     low = 0;
     720     4606062 :     high = arr_elems;
     721    27975948 :     while (high > low)
     722             :     {
     723    23369886 :         mid = low + (high - low) / 2;
     724             : 
     725    23369886 :         if (nextkey)
     726             :         {
     727    22453562 :             if (item >= arr[mid])
     728    11133834 :                 low = mid + 1;
     729             :             else
     730    11319728 :                 high = mid;
     731             :         }
     732             :         else
     733             :         {
     734      916324 :             if (item > arr[mid])
     735      507394 :                 low = mid + 1;
     736             :             else
     737      408930 :                 high = mid;
     738             :         }
     739             :     }
     740             : 
     741     4606062 :     return low;
     742             : }
     743             : 
     744             : /* same, but for an array of leaf items */
     745             : static int
     746     1604322 : intset_binsrch_leaf(uint64 item, leaf_item *arr, int arr_elems, bool nextkey)
     747             : {
     748             :     int         low,
     749             :                 high,
     750             :                 mid;
     751             : 
     752     1604322 :     low = 0;
     753     1604322 :     high = arr_elems;
     754    11253488 :     while (high > low)
     755             :     {
     756     9649166 :         mid = low + (high - low) / 2;
     757             : 
     758     9649166 :         if (nextkey)
     759             :         {
     760     9649166 :             if (item >= arr[mid].first)
     761     4874058 :                 low = mid + 1;
     762             :             else
     763     4775108 :                 high = mid;
     764             :         }
     765             :         else
     766             :         {
     767           0 :             if (item > arr[mid].first)
     768           0 :                 low = mid + 1;
     769             :             else
     770           0 :                 high = mid;
     771             :         }
     772             :     }
     773             : 
     774     1604322 :     return low;
     775             : }
     776             : 
     777             : /*
     778             :  * Simple-8b encoding.
     779             :  *
     780             :  * The simple-8b algorithm packs between 1 and 240 integers into 64-bit words,
     781             :  * called "codewords".  The number of integers packed into a single codeword
     782             :  * depends on the integers being packed; small integers are encoded using
     783             :  * fewer bits than large integers.  A single codeword can store a single
     784             :  * 60-bit integer, or two 30-bit integers, for example.
     785             :  *
     786             :  * Since we're storing a unique, sorted, set of integers, we actually encode
     787             :  * the *differences* between consecutive integers.  That way, clusters of
     788             :  * integers that are close to each other are packed efficiently, regardless
     789             :  * of their absolute values.
     790             :  *
     791             :  * In Simple-8b, each codeword consists of a 4-bit selector, which indicates
     792             :  * how many integers are encoded in the codeword, and the encoded integers are
     793             :  * packed into the remaining 60 bits.  The selector allows for 16 different
     794             :  * ways of using the remaining 60 bits, called "modes".  The number of integers
     795             :  * packed into a single codeword in each mode is listed in the simple8b_modes
     796             :  * table below.  For example, consider the following codeword:
     797             :  *
     798             :  *      20-bit integer       20-bit integer       20-bit integer
     799             :  * 1101 00000000000000010010 01111010000100100000 00000000000000010100
     800             :  * ^
     801             :  * selector
     802             :  *
     803             :  * The selector 1101 is 13 in decimal.  From the modes table below, we see
     804             :  * that it means that the codeword encodes three 20-bit integers.  In decimal,
     805             :  * those integers are 18, 500000 and 20.  Because we encode deltas rather than
     806             :  * absolute values, the actual values that they represent are 18, 500018 and
     807             :  * 500038.
     808             :  *
     809             :  * Modes 0 and 1 are a bit special; they encode a run of 240 or 120 zeroes
     810             :  * (which means 240 or 120 consecutive integers, since we're encoding the
     811             :  * deltas between integers), without using the rest of the codeword bits
     812             :  * for anything.
     813             :  *
     814             :  * Simple-8b cannot encode integers larger than 60 bits.  Values larger than
     815             :  * that are always stored in the 'first' field of a leaf item, never in the
     816             :  * packed codeword.  If there is a sequence of integers that are more than
     817             :  * 2^60 apart, the codeword will go unused on those items.  To represent that,
     818             :  * we use a magic EMPTY_CODEWORD codeword value.
     819             :  */
     820             : static const struct simple8b_mode
     821             : {
     822             :     uint8       bits_per_int;
     823             :     uint8       num_ints;
     824             : }           simple8b_modes[17] =
     825             : 
     826             : {
     827             :     {0, 240},                   /* mode  0: 240 zeroes */
     828             :     {0, 120},                   /* mode  1: 120 zeroes */
     829             :     {1, 60},                    /* mode  2: sixty 1-bit integers */
     830             :     {2, 30},                    /* mode  3: thirty 2-bit integers */
     831             :     {3, 20},                    /* mode  4: twenty 3-bit integers */
     832             :     {4, 15},                    /* mode  5: fifteen 4-bit integers */
     833             :     {5, 12},                    /* mode  6: twelve 5-bit integers */
     834             :     {6, 10},                    /* mode  7: ten 6-bit integers */
     835             :     {7, 8},                     /* mode  8: eight 7-bit integers (four bits
     836             :                                  * are wasted) */
     837             :     {8, 7},                     /* mode  9: seven 8-bit integers (four bits
     838             :                                  * are wasted) */
     839             :     {10, 6},                    /* mode 10: six 10-bit integers */
     840             :     {12, 5},                    /* mode 11: five 12-bit integers */
     841             :     {15, 4},                    /* mode 12: four 15-bit integers */
     842             :     {20, 3},                    /* mode 13: three 20-bit integers */
     843             :     {30, 2},                    /* mode 14: two 30-bit integers */
     844             :     {60, 1},                    /* mode 15: one 60-bit integer */
     845             : 
     846             :     {0, 0}                      /* sentinel value */
     847             : };
     848             : 
     849             : /*
     850             :  * EMPTY_CODEWORD is a special value, used to indicate "no values".
     851             :  * It is used if the next value is too large to be encoded with Simple-8b.
     852             :  *
     853             :  * This value looks like a mode-0 codeword, but we can distinguish it
     854             :  * because a regular mode-0 codeword would have zeroes in the unused bits.
     855             :  */
     856             : #define EMPTY_CODEWORD      UINT64CONST(0x0FFFFFFFFFFFFFFF)
     857             : 
     858             : /*
     859             :  * Encode a number of integers into a Simple-8b codeword.
     860             :  *
     861             :  * (What we actually encode are deltas between successive integers.
     862             :  * "base" is the value before ints[0].)
     863             :  *
     864             :  * The input array must contain at least SIMPLE8B_MAX_VALUES_PER_CODEWORD
     865             :  * elements, ensuring that we can produce a full codeword.
     866             :  *
     867             :  * Returns the encoded codeword, and sets *num_encoded to the number of
     868             :  * input integers that were encoded.  That can be zero, if the first delta
     869             :  * is too large to be encoded.
     870             :  */
     871             : static uint64
     872    27093800 : simple8b_encode(const uint64 *ints, int *num_encoded, uint64 base)
     873             : {
     874             :     int         selector;
     875             :     int         nints;
     876             :     int         bits;
     877             :     uint64      diff;
     878             :     uint64      last_val;
     879             :     uint64      codeword;
     880             :     int         i;
     881             : 
     882             :     Assert(ints[0] > base);
     883             : 
     884             :     /*
     885             :      * Select the "mode" to use for this codeword.
     886             :      *
     887             :      * In each iteration, check if the next value can be represented in the
     888             :      * current mode we're considering.  If it's too large, then step up the
     889             :      * mode to a wider one, and repeat.  If it fits, move on to the next
     890             :      * integer.  Repeat until the codeword is full, given the current mode.
     891             :      *
     892             :      * Note that we don't have any way to represent unused slots in the
     893             :      * codeword, so we require each codeword to be "full".  It is always
     894             :      * possible to produce a full codeword unless the very first delta is too
     895             :      * large to be encoded.  For example, if the first delta is small but the
     896             :      * second is too large to be encoded, we'll end up using the last "mode",
     897             :      * which has nints == 1.
     898             :      */
     899    27093800 :     selector = 0;
     900    27093800 :     nints = simple8b_modes[0].num_ints;
     901    27093800 :     bits = simple8b_modes[0].bits_per_int;
     902    27093800 :     diff = ints[0] - base - 1;
     903    27093800 :     last_val = ints[0];
     904    27093800 :     i = 0;                      /* number of deltas we have accepted */
     905             :     for (;;)
     906             :     {
     907   691891160 :         if (diff >= (UINT64CONST(1) << bits))
     908             :         {
     909             :             /* too large, step up to next mode */
     910   297985970 :             selector++;
     911   297985970 :             nints = simple8b_modes[selector].num_ints;
     912   297985970 :             bits = simple8b_modes[selector].bits_per_int;
     913             :             /* we might already have accepted enough deltas for this mode */
     914   297985970 :             if (i >= nints)
     915    12999830 :                 break;
     916             :         }
     917             :         else
     918             :         {
     919             :             /* accept this delta; then done if codeword is full */
     920   393905190 :             i++;
     921   393905190 :             if (i >= nints)
     922    14093970 :                 break;
     923             :             /* examine next delta */
     924             :             Assert(ints[i] > last_val);
     925   379811220 :             diff = ints[i] - last_val - 1;
     926   379811220 :             last_val = ints[i];
     927             :         }
     928             :     }
     929             : 
     930    27093800 :     if (nints == 0)
     931             :     {
     932             :         /*
     933             :          * The first delta is too large to be encoded with Simple-8b.
     934             :          *
     935             :          * If there is at least one not-too-large integer in the input, we
     936             :          * will encode it using mode 15 (or a more compact mode).  Hence, we
     937             :          * can only get here if the *first* delta is >= 2^60.
     938             :          */
     939             :         Assert(i == 0);
     940           8 :         *num_encoded = 0;
     941           8 :         return EMPTY_CODEWORD;
     942             :     }
     943             : 
     944             :     /*
     945             :      * Encode the integers using the selected mode.  Note that we shift them
     946             :      * into the codeword in reverse order, so that they will come out in the
     947             :      * correct order in the decoder.
     948             :      */
     949    27093792 :     codeword = 0;
     950    27093792 :     if (bits > 0)
     951             :     {
     952   275002100 :         for (i = nints - 1; i > 0; i--)
     953             :         {
     954   248007906 :             diff = ints[i] - ints[i - 1] - 1;
     955   248007906 :             codeword |= diff;
     956   248007906 :             codeword <<= bits;
     957             :         }
     958    26994194 :         diff = ints[0] - base - 1;
     959    26994194 :         codeword |= diff;
     960             :     }
     961             : 
     962             :     /* add selector to the codeword, and return */
     963    27093792 :     codeword |= (uint64) selector << 60;
     964             : 
     965    27093792 :     *num_encoded = nints;
     966    27093792 :     return codeword;
     967             : }
     968             : 
     969             : /*
     970             :  * Decode a codeword into an array of integers.
     971             :  * Returns the number of integers decoded.
     972             :  */
     973             : static int
     974    27093800 : simple8b_decode(uint64 codeword, uint64 *decoded, uint64 base)
     975             : {
     976    27093800 :     int         selector = (codeword >> 60);
     977    27093800 :     int         nints = simple8b_modes[selector].num_ints;
     978    27093800 :     int         bits = simple8b_modes[selector].bits_per_int;
     979    27093800 :     uint64      mask = (UINT64CONST(1) << bits) - 1;
     980             :     uint64      curr_value;
     981             : 
     982    27093800 :     if (codeword == EMPTY_CODEWORD)
     983           8 :         return 0;
     984             : 
     985    27093792 :     curr_value = base;
     986   325999412 :     for (int i = 0; i < nints; i++)
     987             :     {
     988   298905620 :         uint64      diff = codeword & mask;
     989             : 
     990   298905620 :         curr_value += 1 + diff;
     991   298905620 :         decoded[i] = curr_value;
     992   298905620 :         codeword >>= bits;
     993             :     }
     994    27093792 :     return nints;
     995             : }
     996             : 
     997             : /*
     998             :  * This is very similar to simple8b_decode(), but instead of decoding all
     999             :  * the values to an array, it just checks if the given "key" is part of
    1000             :  * the codeword.
    1001             :  */
    1002             : static bool
    1003     1600980 : simple8b_contains(uint64 codeword, uint64 key, uint64 base)
    1004             : {
    1005     1600980 :     int         selector = (codeword >> 60);
    1006     1600980 :     int         nints = simple8b_modes[selector].num_ints;
    1007     1600980 :     int         bits = simple8b_modes[selector].bits_per_int;
    1008             : 
    1009     1600980 :     if (codeword == EMPTY_CODEWORD)
    1010          16 :         return false;
    1011             : 
    1012     1600964 :     if (bits == 0)
    1013             :     {
    1014             :         /* Special handling for 0-bit cases. */
    1015      199142 :         return (key - base) <= nints;
    1016             :     }
    1017             :     else
    1018             :     {
    1019     1401822 :         uint64      mask = (UINT64CONST(1) << bits) - 1;
    1020             :         uint64      curr_value;
    1021             : 
    1022     1401822 :         curr_value = base;
    1023    10422046 :         for (int i = 0; i < nints; i++)
    1024             :         {
    1025     9704466 :             uint64      diff = codeword & mask;
    1026             : 
    1027     9704466 :             curr_value += 1 + diff;
    1028             : 
    1029     9704466 :             if (curr_value >= key)
    1030             :             {
    1031      684242 :                 if (curr_value == key)
    1032      101368 :                     return true;
    1033             :                 else
    1034      582874 :                     return false;
    1035             :             }
    1036             : 
    1037     9020224 :             codeword >>= bits;
    1038             :         }
    1039             :     }
    1040      717580 :     return false;
    1041             : }

Generated by: LCOV version 1.14