Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * nodeWindowAgg.c
4 : * routines to handle WindowAgg nodes.
5 : *
6 : * A WindowAgg node evaluates "window functions" across suitable partitions
7 : * of the input tuple set. Any one WindowAgg works for just a single window
8 : * specification, though it can evaluate multiple window functions sharing
9 : * identical window specifications. The input tuples are required to be
10 : * delivered in sorted order, with the PARTITION BY columns (if any) as
11 : * major sort keys and the ORDER BY columns (if any) as minor sort keys.
12 : * (The planner generates a stack of WindowAggs with intervening Sort nodes
13 : * as needed, if a query involves more than one window specification.)
14 : *
15 : * Since window functions can require access to any or all of the rows in
16 : * the current partition, we accumulate rows of the partition into a
17 : * tuplestore. The window functions are called using the WindowObject API
18 : * so that they can access those rows as needed.
19 : *
20 : * We also support using plain aggregate functions as window functions.
21 : * For these, the regular Agg-node environment is emulated for each partition.
22 : * As required by the SQL spec, the output represents the value of the
23 : * aggregate function over all rows in the current row's window frame.
24 : *
25 : *
26 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
27 : * Portions Copyright (c) 1994, Regents of the University of California
28 : *
29 : * IDENTIFICATION
30 : * src/backend/executor/nodeWindowAgg.c
31 : *
32 : *-------------------------------------------------------------------------
33 : */
34 : #include "postgres.h"
35 :
36 : #include "access/htup_details.h"
37 : #include "catalog/objectaccess.h"
38 : #include "catalog/pg_aggregate.h"
39 : #include "catalog/pg_proc.h"
40 : #include "executor/executor.h"
41 : #include "executor/nodeWindowAgg.h"
42 : #include "miscadmin.h"
43 : #include "nodes/nodeFuncs.h"
44 : #include "optimizer/clauses.h"
45 : #include "optimizer/optimizer.h"
46 : #include "parser/parse_agg.h"
47 : #include "parser/parse_coerce.h"
48 : #include "utils/acl.h"
49 : #include "utils/builtins.h"
50 : #include "utils/datum.h"
51 : #include "utils/expandeddatum.h"
52 : #include "utils/lsyscache.h"
53 : #include "utils/memutils.h"
54 : #include "utils/regproc.h"
55 : #include "utils/syscache.h"
56 : #include "windowapi.h"
57 :
58 : /*
59 : * All the window function APIs are called with this object, which is passed
60 : * to window functions as fcinfo->context.
61 : */
62 : typedef struct WindowObjectData
63 : {
64 : NodeTag type;
65 : WindowAggState *winstate; /* parent WindowAggState */
66 : List *argstates; /* ExprState trees for fn's arguments */
67 : void *localmem; /* WinGetPartitionLocalMemory's chunk */
68 : int markptr; /* tuplestore mark pointer for this fn */
69 : int readptr; /* tuplestore read pointer for this fn */
70 : int64 markpos; /* row that markptr is positioned on */
71 : int64 seekpos; /* row that readptr is positioned on */
72 : } WindowObjectData;
73 :
74 : /*
75 : * We have one WindowStatePerFunc struct for each window function and
76 : * window aggregate handled by this node.
77 : */
78 : typedef struct WindowStatePerFuncData
79 : {
80 : /* Links to WindowFunc expr and state nodes this working state is for */
81 : WindowFuncExprState *wfuncstate;
82 : WindowFunc *wfunc;
83 :
84 : int numArguments; /* number of arguments */
85 :
86 : FmgrInfo flinfo; /* fmgr lookup data for window function */
87 :
88 : Oid winCollation; /* collation derived for window function */
89 :
90 : /*
91 : * We need the len and byval info for the result of each function in order
92 : * to know how to copy/delete values.
93 : */
94 : int16 resulttypeLen;
95 : bool resulttypeByVal;
96 :
97 : bool plain_agg; /* is it just a plain aggregate function? */
98 : int aggno; /* if so, index of its WindowStatePerAggData */
99 :
100 : WindowObject winobj; /* object used in window function API */
101 : } WindowStatePerFuncData;
102 :
103 : /*
104 : * For plain aggregate window functions, we also have one of these.
105 : */
106 : typedef struct WindowStatePerAggData
107 : {
108 : /* Oids of transition functions */
109 : Oid transfn_oid;
110 : Oid invtransfn_oid; /* may be InvalidOid */
111 : Oid finalfn_oid; /* may be InvalidOid */
112 :
113 : /*
114 : * fmgr lookup data for transition functions --- only valid when
115 : * corresponding oid is not InvalidOid. Note in particular that fn_strict
116 : * flags are kept here.
117 : */
118 : FmgrInfo transfn;
119 : FmgrInfo invtransfn;
120 : FmgrInfo finalfn;
121 :
122 : int numFinalArgs; /* number of arguments to pass to finalfn */
123 :
124 : /*
125 : * initial value from pg_aggregate entry
126 : */
127 : Datum initValue;
128 : bool initValueIsNull;
129 :
130 : /*
131 : * cached value for current frame boundaries
132 : */
133 : Datum resultValue;
134 : bool resultValueIsNull;
135 :
136 : /*
137 : * We need the len and byval info for the agg's input, result, and
138 : * transition data types in order to know how to copy/delete values.
139 : */
140 : int16 inputtypeLen,
141 : resulttypeLen,
142 : transtypeLen;
143 : bool inputtypeByVal,
144 : resulttypeByVal,
145 : transtypeByVal;
146 :
147 : int wfuncno; /* index of associated WindowStatePerFuncData */
148 :
149 : /* Context holding transition value and possibly other subsidiary data */
150 : MemoryContext aggcontext; /* may be private, or winstate->aggcontext */
151 :
152 : /* Current transition value */
153 : Datum transValue; /* current transition value */
154 : bool transValueIsNull;
155 :
156 : int64 transValueCount; /* number of currently-aggregated rows */
157 :
158 : /* Data local to eval_windowaggregates() */
159 : bool restart; /* need to restart this agg in this cycle? */
160 : } WindowStatePerAggData;
161 :
162 : static void initialize_windowaggregate(WindowAggState *winstate,
163 : WindowStatePerFunc perfuncstate,
164 : WindowStatePerAgg peraggstate);
165 : static void advance_windowaggregate(WindowAggState *winstate,
166 : WindowStatePerFunc perfuncstate,
167 : WindowStatePerAgg peraggstate);
168 : static bool advance_windowaggregate_base(WindowAggState *winstate,
169 : WindowStatePerFunc perfuncstate,
170 : WindowStatePerAgg peraggstate);
171 : static void finalize_windowaggregate(WindowAggState *winstate,
172 : WindowStatePerFunc perfuncstate,
173 : WindowStatePerAgg peraggstate,
174 : Datum *result, bool *isnull);
175 :
176 : static void eval_windowaggregates(WindowAggState *winstate);
177 : static void eval_windowfunction(WindowAggState *winstate,
178 : WindowStatePerFunc perfuncstate,
179 : Datum *result, bool *isnull);
180 :
181 : static void begin_partition(WindowAggState *winstate);
182 : static void spool_tuples(WindowAggState *winstate, int64 pos);
183 : static void release_partition(WindowAggState *winstate);
184 :
185 : static int row_is_in_frame(WindowAggState *winstate, int64 pos,
186 : TupleTableSlot *slot);
187 : static void update_frameheadpos(WindowAggState *winstate);
188 : static void update_frametailpos(WindowAggState *winstate);
189 : static void update_grouptailpos(WindowAggState *winstate);
190 :
191 : static WindowStatePerAggData *initialize_peragg(WindowAggState *winstate,
192 : WindowFunc *wfunc,
193 : WindowStatePerAgg peraggstate);
194 : static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
195 :
196 : static bool are_peers(WindowAggState *winstate, TupleTableSlot *slot1,
197 : TupleTableSlot *slot2);
198 : static bool window_gettupleslot(WindowObject winobj, int64 pos,
199 : TupleTableSlot *slot);
200 :
201 :
202 : /*
203 : * initialize_windowaggregate
204 : * parallel to initialize_aggregates in nodeAgg.c
205 : */
206 : static void
207 4010 : initialize_windowaggregate(WindowAggState *winstate,
208 : WindowStatePerFunc perfuncstate,
209 : WindowStatePerAgg peraggstate)
210 : {
211 : MemoryContext oldContext;
212 :
213 : /*
214 : * If we're using a private aggcontext, we may reset it here. But if the
215 : * context is shared, we don't know which other aggregates may still need
216 : * it, so we must leave it to the caller to reset at an appropriate time.
217 : */
218 4010 : if (peraggstate->aggcontext != winstate->aggcontext)
219 2916 : MemoryContextReset(peraggstate->aggcontext);
220 :
221 4010 : if (peraggstate->initValueIsNull)
222 1516 : peraggstate->transValue = peraggstate->initValue;
223 : else
224 : {
225 2494 : oldContext = MemoryContextSwitchTo(peraggstate->aggcontext);
226 4988 : peraggstate->transValue = datumCopy(peraggstate->initValue,
227 2494 : peraggstate->transtypeByVal,
228 2494 : peraggstate->transtypeLen);
229 2494 : MemoryContextSwitchTo(oldContext);
230 : }
231 4010 : peraggstate->transValueIsNull = peraggstate->initValueIsNull;
232 4010 : peraggstate->transValueCount = 0;
233 4010 : peraggstate->resultValue = (Datum) 0;
234 4010 : peraggstate->resultValueIsNull = true;
235 4010 : }
236 :
237 : /*
238 : * advance_windowaggregate
239 : * parallel to advance_aggregates in nodeAgg.c
240 : */
241 : static void
242 171388 : advance_windowaggregate(WindowAggState *winstate,
243 : WindowStatePerFunc perfuncstate,
244 : WindowStatePerAgg peraggstate)
245 : {
246 171388 : LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
247 171388 : WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate;
248 171388 : int numArguments = perfuncstate->numArguments;
249 : Datum newVal;
250 : ListCell *arg;
251 : int i;
252 : MemoryContext oldContext;
253 171388 : ExprContext *econtext = winstate->tmpcontext;
254 171388 : ExprState *filter = wfuncstate->aggfilter;
255 :
256 171388 : oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
257 :
258 : /* Skip anything FILTERed out */
259 171388 : if (filter)
260 : {
261 : bool isnull;
262 342 : Datum res = ExecEvalExpr(filter, econtext, &isnull);
263 :
264 342 : if (isnull || !DatumGetBool(res))
265 : {
266 162 : MemoryContextSwitchTo(oldContext);
267 162 : return;
268 : }
269 : }
270 :
271 : /* We start from 1, since the 0th arg will be the transition value */
272 171226 : i = 1;
273 282002 : foreach(arg, wfuncstate->args)
274 : {
275 110776 : ExprState *argstate = (ExprState *) lfirst(arg);
276 :
277 110776 : fcinfo->args[i].value = ExecEvalExpr(argstate, econtext,
278 : &fcinfo->args[i].isnull);
279 110776 : i++;
280 : }
281 :
282 171226 : if (peraggstate->transfn.fn_strict)
283 : {
284 : /*
285 : * For a strict transfn, nothing happens when there's a NULL input; we
286 : * just keep the prior transValue. Note transValueCount doesn't
287 : * change either.
288 : */
289 102208 : for (i = 1; i <= numArguments; i++)
290 : {
291 20942 : if (fcinfo->args[i].isnull)
292 : {
293 198 : MemoryContextSwitchTo(oldContext);
294 198 : return;
295 : }
296 : }
297 :
298 : /*
299 : * For strict transition functions with initial value NULL we use the
300 : * first non-NULL input as the initial state. (We already checked
301 : * that the agg's input type is binary-compatible with its transtype,
302 : * so straight copy here is OK.)
303 : *
304 : * We must copy the datum into aggcontext if it is pass-by-ref. We do
305 : * not need to pfree the old transValue, since it's NULL.
306 : */
307 81266 : if (peraggstate->transValueCount == 0 && peraggstate->transValueIsNull)
308 : {
309 454 : MemoryContextSwitchTo(peraggstate->aggcontext);
310 908 : peraggstate->transValue = datumCopy(fcinfo->args[1].value,
311 454 : peraggstate->transtypeByVal,
312 454 : peraggstate->transtypeLen);
313 454 : peraggstate->transValueIsNull = false;
314 454 : peraggstate->transValueCount = 1;
315 454 : MemoryContextSwitchTo(oldContext);
316 454 : return;
317 : }
318 :
319 80812 : if (peraggstate->transValueIsNull)
320 : {
321 : /*
322 : * Don't call a strict function with NULL inputs. Note it is
323 : * possible to get here despite the above tests, if the transfn is
324 : * strict *and* returned a NULL on a prior cycle. If that happens
325 : * we will propagate the NULL all the way to the end. That can
326 : * only happen if there's no inverse transition function, though,
327 : * since we disallow transitions back to NULL when there is one.
328 : */
329 0 : MemoryContextSwitchTo(oldContext);
330 : Assert(!OidIsValid(peraggstate->invtransfn_oid));
331 0 : return;
332 : }
333 : }
334 :
335 : /*
336 : * OK to call the transition function. Set winstate->curaggcontext while
337 : * calling it, for possible use by AggCheckCallContext.
338 : */
339 170574 : InitFunctionCallInfoData(*fcinfo, &(peraggstate->transfn),
340 : numArguments + 1,
341 : perfuncstate->winCollation,
342 : (Node *) winstate, NULL);
343 170574 : fcinfo->args[0].value = peraggstate->transValue;
344 170574 : fcinfo->args[0].isnull = peraggstate->transValueIsNull;
345 170574 : winstate->curaggcontext = peraggstate->aggcontext;
346 170574 : newVal = FunctionCallInvoke(fcinfo);
347 170562 : winstate->curaggcontext = NULL;
348 :
349 : /*
350 : * Moving-aggregate transition functions must not return null, see
351 : * advance_windowaggregate_base().
352 : */
353 170562 : if (fcinfo->isnull && OidIsValid(peraggstate->invtransfn_oid))
354 0 : ereport(ERROR,
355 : (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
356 : errmsg("moving-aggregate transition function must not return null")));
357 :
358 : /*
359 : * We must track the number of rows included in transValue, since to
360 : * remove the last input, advance_windowaggregate_base() mustn't call the
361 : * inverse transition function, but simply reset transValue back to its
362 : * initial value.
363 : */
364 170562 : peraggstate->transValueCount++;
365 :
366 : /*
367 : * If pass-by-ref datatype, must copy the new value into aggcontext and
368 : * free the prior transValue. But if transfn returned a pointer to its
369 : * first input, we don't need to do anything. Also, if transfn returned a
370 : * pointer to a R/W expanded object that is already a child of the
371 : * aggcontext, assume we can adopt that value without copying it. (See
372 : * comments for ExecAggCopyTransValue, which this code duplicates.)
373 : */
374 178920 : if (!peraggstate->transtypeByVal &&
375 8358 : DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue))
376 : {
377 960 : if (!fcinfo->isnull)
378 : {
379 960 : MemoryContextSwitchTo(peraggstate->aggcontext);
380 966 : if (DatumIsReadWriteExpandedObject(newVal,
381 : false,
382 960 : peraggstate->transtypeLen) &&
383 6 : MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext)
384 : /* do nothing */ ;
385 : else
386 954 : newVal = datumCopy(newVal,
387 954 : peraggstate->transtypeByVal,
388 954 : peraggstate->transtypeLen);
389 : }
390 960 : if (!peraggstate->transValueIsNull)
391 : {
392 900 : if (DatumIsReadWriteExpandedObject(peraggstate->transValue,
393 : false,
394 : peraggstate->transtypeLen))
395 0 : DeleteExpandedObject(peraggstate->transValue);
396 : else
397 900 : pfree(DatumGetPointer(peraggstate->transValue));
398 : }
399 : }
400 :
401 170562 : MemoryContextSwitchTo(oldContext);
402 170562 : peraggstate->transValue = newVal;
403 170562 : peraggstate->transValueIsNull = fcinfo->isnull;
404 : }
405 :
406 : /*
407 : * advance_windowaggregate_base
408 : * Remove the oldest tuple from an aggregation.
409 : *
410 : * This is very much like advance_windowaggregate, except that we will call
411 : * the inverse transition function (which caller must have checked is
412 : * available).
413 : *
414 : * Returns true if we successfully removed the current row from this
415 : * aggregate, false if not (in the latter case, caller is responsible
416 : * for cleaning up by restarting the aggregation).
417 : */
418 : static bool
419 4626 : advance_windowaggregate_base(WindowAggState *winstate,
420 : WindowStatePerFunc perfuncstate,
421 : WindowStatePerAgg peraggstate)
422 : {
423 4626 : LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
424 4626 : WindowFuncExprState *wfuncstate = perfuncstate->wfuncstate;
425 4626 : int numArguments = perfuncstate->numArguments;
426 : Datum newVal;
427 : ListCell *arg;
428 : int i;
429 : MemoryContext oldContext;
430 4626 : ExprContext *econtext = winstate->tmpcontext;
431 4626 : ExprState *filter = wfuncstate->aggfilter;
432 :
433 4626 : oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
434 :
435 : /* Skip anything FILTERed out */
436 4626 : if (filter)
437 : {
438 : bool isnull;
439 102 : Datum res = ExecEvalExpr(filter, econtext, &isnull);
440 :
441 102 : if (isnull || !DatumGetBool(res))
442 : {
443 48 : MemoryContextSwitchTo(oldContext);
444 48 : return true;
445 : }
446 : }
447 :
448 : /* We start from 1, since the 0th arg will be the transition value */
449 4578 : i = 1;
450 9138 : foreach(arg, wfuncstate->args)
451 : {
452 4560 : ExprState *argstate = (ExprState *) lfirst(arg);
453 :
454 4560 : fcinfo->args[i].value = ExecEvalExpr(argstate, econtext,
455 : &fcinfo->args[i].isnull);
456 4560 : i++;
457 : }
458 :
459 4578 : if (peraggstate->invtransfn.fn_strict)
460 : {
461 : /*
462 : * For a strict (inv)transfn, nothing happens when there's a NULL
463 : * input; we just keep the prior transValue. Note transValueCount
464 : * doesn't change either.
465 : */
466 5604 : for (i = 1; i <= numArguments; i++)
467 : {
468 2832 : if (fcinfo->args[i].isnull)
469 : {
470 78 : MemoryContextSwitchTo(oldContext);
471 78 : return true;
472 : }
473 : }
474 : }
475 :
476 : /* There should still be an added but not yet removed value */
477 : Assert(peraggstate->transValueCount > 0);
478 :
479 : /*
480 : * In moving-aggregate mode, the state must never be NULL, except possibly
481 : * before any rows have been aggregated (which is surely not the case at
482 : * this point). This restriction allows us to interpret a NULL result
483 : * from the inverse function as meaning "sorry, can't do an inverse
484 : * transition in this case". We already checked this in
485 : * advance_windowaggregate, but just for safety, check again.
486 : */
487 4500 : if (peraggstate->transValueIsNull)
488 0 : elog(ERROR, "aggregate transition value is NULL before inverse transition");
489 :
490 : /*
491 : * We mustn't use the inverse transition function to remove the last
492 : * input. Doing so would yield a non-NULL state, whereas we should be in
493 : * the initial state afterwards which may very well be NULL. So instead,
494 : * we simply re-initialize the aggregate in this case.
495 : */
496 4500 : if (peraggstate->transValueCount == 1)
497 : {
498 90 : MemoryContextSwitchTo(oldContext);
499 90 : initialize_windowaggregate(winstate,
500 90 : &winstate->perfunc[peraggstate->wfuncno],
501 : peraggstate);
502 90 : return true;
503 : }
504 :
505 : /*
506 : * OK to call the inverse transition function. Set
507 : * winstate->curaggcontext while calling it, for possible use by
508 : * AggCheckCallContext.
509 : */
510 4410 : InitFunctionCallInfoData(*fcinfo, &(peraggstate->invtransfn),
511 : numArguments + 1,
512 : perfuncstate->winCollation,
513 : (Node *) winstate, NULL);
514 4410 : fcinfo->args[0].value = peraggstate->transValue;
515 4410 : fcinfo->args[0].isnull = peraggstate->transValueIsNull;
516 4410 : winstate->curaggcontext = peraggstate->aggcontext;
517 4410 : newVal = FunctionCallInvoke(fcinfo);
518 4410 : winstate->curaggcontext = NULL;
519 :
520 : /*
521 : * If the function returns NULL, report failure, forcing a restart.
522 : */
523 4410 : if (fcinfo->isnull)
524 : {
525 246 : MemoryContextSwitchTo(oldContext);
526 246 : return false;
527 : }
528 :
529 : /* Update number of rows included in transValue */
530 4164 : peraggstate->transValueCount--;
531 :
532 : /*
533 : * If pass-by-ref datatype, must copy the new value into aggcontext and
534 : * free the prior transValue. But if invtransfn returned a pointer to its
535 : * first input, we don't need to do anything. Also, if invtransfn
536 : * returned a pointer to a R/W expanded object that is already a child of
537 : * the aggcontext, assume we can adopt that value without copying it. (See
538 : * comments for ExecAggCopyTransValue, which this code duplicates.)
539 : *
540 : * Note: the checks for null values here will never fire, but it seems
541 : * best to have this stanza look just like advance_windowaggregate.
542 : */
543 6294 : if (!peraggstate->transtypeByVal &&
544 2130 : DatumGetPointer(newVal) != DatumGetPointer(peraggstate->transValue))
545 : {
546 666 : if (!fcinfo->isnull)
547 : {
548 666 : MemoryContextSwitchTo(peraggstate->aggcontext);
549 666 : if (DatumIsReadWriteExpandedObject(newVal,
550 : false,
551 666 : peraggstate->transtypeLen) &&
552 0 : MemoryContextGetParent(DatumGetEOHP(newVal)->eoh_context) == CurrentMemoryContext)
553 : /* do nothing */ ;
554 : else
555 666 : newVal = datumCopy(newVal,
556 666 : peraggstate->transtypeByVal,
557 666 : peraggstate->transtypeLen);
558 : }
559 666 : if (!peraggstate->transValueIsNull)
560 : {
561 666 : if (DatumIsReadWriteExpandedObject(peraggstate->transValue,
562 : false,
563 : peraggstate->transtypeLen))
564 0 : DeleteExpandedObject(peraggstate->transValue);
565 : else
566 666 : pfree(DatumGetPointer(peraggstate->transValue));
567 : }
568 : }
569 :
570 4164 : MemoryContextSwitchTo(oldContext);
571 4164 : peraggstate->transValue = newVal;
572 4164 : peraggstate->transValueIsNull = fcinfo->isnull;
573 :
574 4164 : return true;
575 : }
576 :
577 : /*
578 : * finalize_windowaggregate
579 : * parallel to finalize_aggregate in nodeAgg.c
580 : */
581 : static void
582 10590 : finalize_windowaggregate(WindowAggState *winstate,
583 : WindowStatePerFunc perfuncstate,
584 : WindowStatePerAgg peraggstate,
585 : Datum *result, bool *isnull)
586 : {
587 : MemoryContext oldContext;
588 :
589 10590 : oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
590 :
591 : /*
592 : * Apply the agg's finalfn if one is provided, else return transValue.
593 : */
594 10590 : if (OidIsValid(peraggstate->finalfn_oid))
595 : {
596 5884 : LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
597 5884 : int numFinalArgs = peraggstate->numFinalArgs;
598 : bool anynull;
599 : int i;
600 :
601 5884 : InitFunctionCallInfoData(fcinfodata.fcinfo, &(peraggstate->finalfn),
602 : numFinalArgs,
603 : perfuncstate->winCollation,
604 : (Node *) winstate, NULL);
605 5884 : fcinfo->args[0].value =
606 5884 : MakeExpandedObjectReadOnly(peraggstate->transValue,
607 : peraggstate->transValueIsNull,
608 : peraggstate->transtypeLen);
609 5884 : fcinfo->args[0].isnull = peraggstate->transValueIsNull;
610 5884 : anynull = peraggstate->transValueIsNull;
611 :
612 : /* Fill any remaining argument positions with nulls */
613 5984 : for (i = 1; i < numFinalArgs; i++)
614 : {
615 100 : fcinfo->args[i].value = (Datum) 0;
616 100 : fcinfo->args[i].isnull = true;
617 100 : anynull = true;
618 : }
619 :
620 5884 : if (fcinfo->flinfo->fn_strict && anynull)
621 : {
622 : /* don't call a strict function with NULL inputs */
623 0 : *result = (Datum) 0;
624 0 : *isnull = true;
625 : }
626 : else
627 : {
628 : Datum res;
629 :
630 5884 : winstate->curaggcontext = peraggstate->aggcontext;
631 5884 : res = FunctionCallInvoke(fcinfo);
632 5872 : winstate->curaggcontext = NULL;
633 5872 : *isnull = fcinfo->isnull;
634 5872 : *result = MakeExpandedObjectReadOnly(res,
635 : fcinfo->isnull,
636 : peraggstate->resulttypeLen);
637 : }
638 : }
639 : else
640 : {
641 4706 : *result =
642 4706 : MakeExpandedObjectReadOnly(peraggstate->transValue,
643 : peraggstate->transValueIsNull,
644 : peraggstate->transtypeLen);
645 4706 : *isnull = peraggstate->transValueIsNull;
646 : }
647 :
648 10578 : MemoryContextSwitchTo(oldContext);
649 10578 : }
650 :
651 : /*
652 : * eval_windowaggregates
653 : * evaluate plain aggregates being used as window functions
654 : *
655 : * This differs from nodeAgg.c in two ways. First, if the window's frame
656 : * start position moves, we use the inverse transition function (if it exists)
657 : * to remove rows from the transition value. And second, we expect to be
658 : * able to call aggregate final functions repeatedly after aggregating more
659 : * data onto the same transition value. This is not a behavior required by
660 : * nodeAgg.c.
661 : */
662 : static void
663 154168 : eval_windowaggregates(WindowAggState *winstate)
664 : {
665 : WindowStatePerAgg peraggstate;
666 : int wfuncno,
667 : numaggs,
668 : numaggs_restart,
669 : i;
670 : int64 aggregatedupto_nonrestarted;
671 : MemoryContext oldContext;
672 : ExprContext *econtext;
673 : WindowObject agg_winobj;
674 : TupleTableSlot *agg_row_slot;
675 : TupleTableSlot *temp_slot;
676 :
677 154168 : numaggs = winstate->numaggs;
678 154168 : if (numaggs == 0)
679 0 : return; /* nothing to do */
680 :
681 : /* final output execution is in ps_ExprContext */
682 154168 : econtext = winstate->ss.ps.ps_ExprContext;
683 154168 : agg_winobj = winstate->agg_winobj;
684 154168 : agg_row_slot = winstate->agg_row_slot;
685 154168 : temp_slot = winstate->temp_slot_1;
686 :
687 : /*
688 : * If the window's frame start clause is UNBOUNDED_PRECEDING and no
689 : * exclusion clause is specified, then the window frame consists of a
690 : * contiguous group of rows extending forward from the start of the
691 : * partition, and rows only enter the frame, never exit it, as the current
692 : * row advances forward. This makes it possible to use an incremental
693 : * strategy for evaluating aggregates: we run the transition function for
694 : * each row added to the frame, and run the final function whenever we
695 : * need the current aggregate value. This is considerably more efficient
696 : * than the naive approach of re-running the entire aggregate calculation
697 : * for each current row. It does assume that the final function doesn't
698 : * damage the running transition value, but we have the same assumption in
699 : * nodeAgg.c too (when it rescans an existing hash table).
700 : *
701 : * If the frame start does sometimes move, we can still optimize as above
702 : * whenever successive rows share the same frame head, but if the frame
703 : * head moves beyond the previous head we try to remove those rows using
704 : * the aggregate's inverse transition function. This function restores
705 : * the aggregate's current state to what it would be if the removed row
706 : * had never been aggregated in the first place. Inverse transition
707 : * functions may optionally return NULL, indicating that the function was
708 : * unable to remove the tuple from aggregation. If this happens, or if
709 : * the aggregate doesn't have an inverse transition function at all, we
710 : * must perform the aggregation all over again for all tuples within the
711 : * new frame boundaries.
712 : *
713 : * If there's any exclusion clause, then we may have to aggregate over a
714 : * non-contiguous set of rows, so we punt and recalculate for every row.
715 : * (For some frame end choices, it might be that the frame is always
716 : * contiguous anyway, but that's an optimization to investigate later.)
717 : *
718 : * In many common cases, multiple rows share the same frame and hence the
719 : * same aggregate value. (In particular, if there's no ORDER BY in a RANGE
720 : * window, then all rows are peers and so they all have window frame equal
721 : * to the whole partition.) We optimize such cases by calculating the
722 : * aggregate value once when we reach the first row of a peer group, and
723 : * then returning the saved value for all subsequent rows.
724 : *
725 : * 'aggregatedupto' keeps track of the first row that has not yet been
726 : * accumulated into the aggregate transition values. Whenever we start a
727 : * new peer group, we accumulate forward to the end of the peer group.
728 : */
729 :
730 : /*
731 : * First, update the frame head position.
732 : *
733 : * The frame head should never move backwards, and the code below wouldn't
734 : * cope if it did, so for safety we complain if it does.
735 : */
736 154168 : update_frameheadpos(winstate);
737 154162 : if (winstate->frameheadpos < winstate->aggregatedbase)
738 0 : elog(ERROR, "window frame head moved backward");
739 :
740 : /*
741 : * If the frame didn't change compared to the previous row, we can re-use
742 : * the result values that were previously saved at the bottom of this
743 : * function. Since we don't know the current frame's end yet, this is not
744 : * possible to check for fully. But if the frame end mode is UNBOUNDED
745 : * FOLLOWING or CURRENT ROW, no exclusion clause is specified, and the
746 : * current row lies within the previous row's frame, then the two frames'
747 : * ends must coincide. Note that on the first row aggregatedbase ==
748 : * aggregatedupto, meaning this test must fail, so we don't need to check
749 : * the "there was no previous row" case explicitly here.
750 : */
751 154162 : if (winstate->aggregatedbase == winstate->frameheadpos &&
752 150384 : (winstate->frameOptions & (FRAMEOPTION_END_UNBOUNDED_FOLLOWING |
753 148464 : FRAMEOPTION_END_CURRENT_ROW)) &&
754 148464 : !(winstate->frameOptions & FRAMEOPTION_EXCLUSION) &&
755 148284 : winstate->aggregatedbase <= winstate->currentpos &&
756 148248 : winstate->aggregatedupto > winstate->currentpos)
757 : {
758 290624 : for (i = 0; i < numaggs; i++)
759 : {
760 145318 : peraggstate = &winstate->peragg[i];
761 145318 : wfuncno = peraggstate->wfuncno;
762 145318 : econtext->ecxt_aggvalues[wfuncno] = peraggstate->resultValue;
763 145318 : econtext->ecxt_aggnulls[wfuncno] = peraggstate->resultValueIsNull;
764 : }
765 145306 : return;
766 : }
767 :
768 : /*----------
769 : * Initialize restart flags.
770 : *
771 : * We restart the aggregation:
772 : * - if we're processing the first row in the partition, or
773 : * - if the frame's head moved and we cannot use an inverse
774 : * transition function, or
775 : * - we have an EXCLUSION clause, or
776 : * - if the new frame doesn't overlap the old one
777 : *
778 : * Note that we don't strictly need to restart in the last case, but if
779 : * we're going to remove all rows from the aggregation anyway, a restart
780 : * surely is faster.
781 : *----------
782 : */
783 8856 : numaggs_restart = 0;
784 19470 : for (i = 0; i < numaggs; i++)
785 : {
786 10614 : peraggstate = &winstate->peragg[i];
787 10614 : if (winstate->currentpos == 0 ||
788 8600 : (winstate->aggregatedbase != winstate->frameheadpos &&
789 5206 : !OidIsValid(peraggstate->invtransfn_oid)) ||
790 8524 : (winstate->frameOptions & FRAMEOPTION_EXCLUSION) ||
791 7408 : winstate->aggregatedupto <= winstate->frameheadpos)
792 : {
793 3674 : peraggstate->restart = true;
794 3674 : numaggs_restart++;
795 : }
796 : else
797 6940 : peraggstate->restart = false;
798 : }
799 :
800 : /*
801 : * If we have any possibly-moving aggregates, attempt to advance
802 : * aggregatedbase to match the frame's head by removing input rows that
803 : * fell off the top of the frame from the aggregations. This can fail,
804 : * i.e. advance_windowaggregate_base() can return false, in which case
805 : * we'll restart that aggregate below.
806 : */
807 12024 : while (numaggs_restart < numaggs &&
808 8530 : winstate->aggregatedbase < winstate->frameheadpos)
809 : {
810 : /*
811 : * Fetch the next tuple of those being removed. This should never fail
812 : * as we should have been here before.
813 : */
814 3168 : if (!window_gettupleslot(agg_winobj, winstate->aggregatedbase,
815 : temp_slot))
816 0 : elog(ERROR, "could not re-fetch previously fetched frame row");
817 :
818 : /* Set tuple context for evaluation of aggregate arguments */
819 3168 : winstate->tmpcontext->ecxt_outertuple = temp_slot;
820 :
821 : /*
822 : * Perform the inverse transition for each aggregate function in the
823 : * window, unless it has already been marked as needing a restart.
824 : */
825 7806 : for (i = 0; i < numaggs; i++)
826 : {
827 : bool ok;
828 :
829 4638 : peraggstate = &winstate->peragg[i];
830 4638 : if (peraggstate->restart)
831 12 : continue;
832 :
833 4626 : wfuncno = peraggstate->wfuncno;
834 4626 : ok = advance_windowaggregate_base(winstate,
835 4626 : &winstate->perfunc[wfuncno],
836 : peraggstate);
837 4626 : if (!ok)
838 : {
839 : /* Inverse transition function has failed, must restart */
840 246 : peraggstate->restart = true;
841 246 : numaggs_restart++;
842 : }
843 : }
844 :
845 : /* Reset per-input-tuple context after each tuple */
846 3168 : ResetExprContext(winstate->tmpcontext);
847 :
848 : /* And advance the aggregated-row state */
849 3168 : winstate->aggregatedbase++;
850 3168 : ExecClearTuple(temp_slot);
851 : }
852 :
853 : /*
854 : * If we successfully advanced the base rows of all the aggregates,
855 : * aggregatedbase now equals frameheadpos; but if we failed for any, we
856 : * must forcibly update aggregatedbase.
857 : */
858 8856 : winstate->aggregatedbase = winstate->frameheadpos;
859 :
860 : /*
861 : * If we created a mark pointer for aggregates, keep it pushed up to frame
862 : * head, so that tuplestore can discard unnecessary rows.
863 : */
864 8856 : if (agg_winobj->markptr >= 0)
865 6224 : WinSetMarkPosition(agg_winobj, winstate->frameheadpos);
866 :
867 : /*
868 : * Now restart the aggregates that require it.
869 : *
870 : * We assume that aggregates using the shared context always restart if
871 : * *any* aggregate restarts, and we may thus clean up the shared
872 : * aggcontext if that is the case. Private aggcontexts are reset by
873 : * initialize_windowaggregate() if their owning aggregate restarts. If we
874 : * aren't restarting an aggregate, we need to free any previously saved
875 : * result for it, else we'll leak memory.
876 : */
877 8856 : if (numaggs_restart > 0)
878 3732 : MemoryContextReset(winstate->aggcontext);
879 19470 : for (i = 0; i < numaggs; i++)
880 : {
881 10614 : peraggstate = &winstate->peragg[i];
882 :
883 : /* Aggregates using the shared ctx must restart if *any* agg does */
884 : Assert(peraggstate->aggcontext != winstate->aggcontext ||
885 : numaggs_restart == 0 ||
886 : peraggstate->restart);
887 :
888 10614 : if (peraggstate->restart)
889 : {
890 3920 : wfuncno = peraggstate->wfuncno;
891 3920 : initialize_windowaggregate(winstate,
892 3920 : &winstate->perfunc[wfuncno],
893 : peraggstate);
894 : }
895 6694 : else if (!peraggstate->resultValueIsNull)
896 : {
897 6460 : if (!peraggstate->resulttypeByVal)
898 2152 : pfree(DatumGetPointer(peraggstate->resultValue));
899 6460 : peraggstate->resultValue = (Datum) 0;
900 6460 : peraggstate->resultValueIsNull = true;
901 : }
902 : }
903 :
904 : /*
905 : * Non-restarted aggregates now contain the rows between aggregatedbase
906 : * (i.e., frameheadpos) and aggregatedupto, while restarted aggregates
907 : * contain no rows. If there are any restarted aggregates, we must thus
908 : * begin aggregating anew at frameheadpos, otherwise we may simply
909 : * continue at aggregatedupto. We must remember the old value of
910 : * aggregatedupto to know how long to skip advancing non-restarted
911 : * aggregates. If we modify aggregatedupto, we must also clear
912 : * agg_row_slot, per the loop invariant below.
913 : */
914 8856 : aggregatedupto_nonrestarted = winstate->aggregatedupto;
915 8856 : if (numaggs_restart > 0 &&
916 3732 : winstate->aggregatedupto != winstate->frameheadpos)
917 : {
918 1424 : winstate->aggregatedupto = winstate->frameheadpos;
919 1424 : ExecClearTuple(agg_row_slot);
920 : }
921 :
922 : /*
923 : * Advance until we reach a row not in frame (or end of partition).
924 : *
925 : * Note the loop invariant: agg_row_slot is either empty or holds the row
926 : * at position aggregatedupto. We advance aggregatedupto after processing
927 : * a row.
928 : */
929 : for (;;)
930 170752 : {
931 : int ret;
932 :
933 : /* Fetch next row if we didn't already */
934 179608 : if (TupIsNull(agg_row_slot))
935 : {
936 175746 : if (!window_gettupleslot(agg_winobj, winstate->aggregatedupto,
937 : agg_row_slot))
938 4130 : break; /* must be end of partition */
939 : }
940 :
941 : /*
942 : * Exit loop if no more rows can be in frame. Skip aggregation if
943 : * current row is not in frame but there might be more in the frame.
944 : */
945 175478 : ret = row_is_in_frame(winstate, winstate->aggregatedupto, agg_row_slot);
946 175466 : if (ret < 0)
947 4702 : break;
948 170764 : if (ret == 0)
949 1896 : goto next_tuple;
950 :
951 : /* Set tuple context for evaluation of aggregate arguments */
952 168868 : winstate->tmpcontext->ecxt_outertuple = agg_row_slot;
953 :
954 : /* Accumulate row into the aggregates */
955 360954 : for (i = 0; i < numaggs; i++)
956 : {
957 192098 : peraggstate = &winstate->peragg[i];
958 :
959 : /* Non-restarted aggs skip until aggregatedupto_nonrestarted */
960 192098 : if (!peraggstate->restart &&
961 120362 : winstate->aggregatedupto < aggregatedupto_nonrestarted)
962 20710 : continue;
963 :
964 171388 : wfuncno = peraggstate->wfuncno;
965 171388 : advance_windowaggregate(winstate,
966 171388 : &winstate->perfunc[wfuncno],
967 : peraggstate);
968 : }
969 :
970 168856 : next_tuple:
971 : /* Reset per-input-tuple context after each tuple */
972 170752 : ResetExprContext(winstate->tmpcontext);
973 :
974 : /* And advance the aggregated-row state */
975 170752 : winstate->aggregatedupto++;
976 170752 : ExecClearTuple(agg_row_slot);
977 : }
978 :
979 : /* The frame's end is not supposed to move backwards, ever */
980 : Assert(aggregatedupto_nonrestarted <= winstate->aggregatedupto);
981 :
982 : /*
983 : * finalize aggregates and fill result/isnull fields.
984 : */
985 19410 : for (i = 0; i < numaggs; i++)
986 : {
987 : Datum *result;
988 : bool *isnull;
989 :
990 10590 : peraggstate = &winstate->peragg[i];
991 10590 : wfuncno = peraggstate->wfuncno;
992 10590 : result = &econtext->ecxt_aggvalues[wfuncno];
993 10590 : isnull = &econtext->ecxt_aggnulls[wfuncno];
994 10590 : finalize_windowaggregate(winstate,
995 10590 : &winstate->perfunc[wfuncno],
996 : peraggstate,
997 : result, isnull);
998 :
999 : /*
1000 : * save the result in case next row shares the same frame.
1001 : *
1002 : * XXX in some framing modes, eg ROWS/END_CURRENT_ROW, we can know in
1003 : * advance that the next row can't possibly share the same frame. Is
1004 : * it worth detecting that and skipping this code?
1005 : */
1006 10578 : if (!peraggstate->resulttypeByVal && !*isnull)
1007 : {
1008 2752 : oldContext = MemoryContextSwitchTo(peraggstate->aggcontext);
1009 2752 : peraggstate->resultValue =
1010 2752 : datumCopy(*result,
1011 2752 : peraggstate->resulttypeByVal,
1012 2752 : peraggstate->resulttypeLen);
1013 2752 : MemoryContextSwitchTo(oldContext);
1014 : }
1015 : else
1016 : {
1017 7826 : peraggstate->resultValue = *result;
1018 : }
1019 10578 : peraggstate->resultValueIsNull = *isnull;
1020 : }
1021 : }
1022 :
1023 : /*
1024 : * eval_windowfunction
1025 : *
1026 : * Arguments of window functions are not evaluated here, because a window
1027 : * function can need random access to arbitrary rows in the partition.
1028 : * The window function uses the special WinGetFuncArgInPartition and
1029 : * WinGetFuncArgInFrame functions to evaluate the arguments for the rows
1030 : * it wants.
1031 : */
1032 : static void
1033 814980 : eval_windowfunction(WindowAggState *winstate, WindowStatePerFunc perfuncstate,
1034 : Datum *result, bool *isnull)
1035 : {
1036 814980 : LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
1037 : MemoryContext oldContext;
1038 :
1039 814980 : oldContext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
1040 :
1041 : /*
1042 : * We don't pass any normal arguments to a window function, but we do pass
1043 : * it the number of arguments, in order to permit window function
1044 : * implementations to support varying numbers of arguments. The real info
1045 : * goes through the WindowObject, which is passed via fcinfo->context.
1046 : */
1047 814980 : InitFunctionCallInfoData(*fcinfo, &(perfuncstate->flinfo),
1048 : perfuncstate->numArguments,
1049 : perfuncstate->winCollation,
1050 : (Node *) perfuncstate->winobj, NULL);
1051 : /* Just in case, make all the regular argument slots be null */
1052 1007820 : for (int argno = 0; argno < perfuncstate->numArguments; argno++)
1053 192840 : fcinfo->args[argno].isnull = true;
1054 : /* Window functions don't have a current aggregate context, either */
1055 814980 : winstate->curaggcontext = NULL;
1056 :
1057 814980 : *result = FunctionCallInvoke(fcinfo);
1058 814890 : *isnull = fcinfo->isnull;
1059 :
1060 : /*
1061 : * The window function might have returned a pass-by-ref result that's
1062 : * just a pointer into one of the WindowObject's temporary slots. That's
1063 : * not a problem if it's the only window function using the WindowObject;
1064 : * but if there's more than one function, we'd better copy the result to
1065 : * ensure it's not clobbered by later window functions.
1066 : */
1067 814890 : if (!perfuncstate->resulttypeByVal && !fcinfo->isnull &&
1068 1020 : winstate->numfuncs > 1)
1069 108 : *result = datumCopy(*result,
1070 108 : perfuncstate->resulttypeByVal,
1071 108 : perfuncstate->resulttypeLen);
1072 :
1073 814890 : MemoryContextSwitchTo(oldContext);
1074 814890 : }
1075 :
1076 : /*
1077 : * prepare_tuplestore
1078 : * Prepare the tuplestore and all of the required read pointers for the
1079 : * WindowAggState's frameOptions.
1080 : *
1081 : * Note: We use pg_noinline to avoid bloating the calling function with code
1082 : * which is only called once.
1083 : */
1084 : static pg_noinline void
1085 2084 : prepare_tuplestore(WindowAggState *winstate)
1086 : {
1087 2084 : WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
1088 2084 : int frameOptions = winstate->frameOptions;
1089 2084 : int numfuncs = winstate->numfuncs;
1090 :
1091 : /* we shouldn't be called if this was done already */
1092 : Assert(winstate->buffer == NULL);
1093 :
1094 : /* Create new tuplestore */
1095 2084 : winstate->buffer = tuplestore_begin_heap(false, false, work_mem);
1096 :
1097 : /*
1098 : * Set up read pointers for the tuplestore. The current pointer doesn't
1099 : * need BACKWARD capability, but the per-window-function read pointers do,
1100 : * and the aggregate pointer does if we might need to restart aggregation.
1101 : */
1102 2084 : winstate->current_ptr = 0; /* read pointer 0 is pre-allocated */
1103 :
1104 : /* reset default REWIND capability bit for current ptr */
1105 2084 : tuplestore_set_eflags(winstate->buffer, 0);
1106 :
1107 : /* create read pointers for aggregates, if needed */
1108 2084 : if (winstate->numaggs > 0)
1109 : {
1110 1112 : WindowObject agg_winobj = winstate->agg_winobj;
1111 1112 : int readptr_flags = 0;
1112 :
1113 : /*
1114 : * If the frame head is potentially movable, or we have an EXCLUSION
1115 : * clause, we might need to restart aggregation ...
1116 : */
1117 1112 : if (!(frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING) ||
1118 378 : (frameOptions & FRAMEOPTION_EXCLUSION))
1119 : {
1120 : /* ... so create a mark pointer to track the frame head */
1121 752 : agg_winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer, 0);
1122 : /* and the read pointer will need BACKWARD capability */
1123 752 : readptr_flags |= EXEC_FLAG_BACKWARD;
1124 : }
1125 :
1126 1112 : agg_winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer,
1127 : readptr_flags);
1128 : }
1129 :
1130 : /* create mark and read pointers for each real window function */
1131 4786 : for (int i = 0; i < numfuncs; i++)
1132 : {
1133 2702 : WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);
1134 :
1135 2702 : if (!perfuncstate->plain_agg)
1136 : {
1137 1506 : WindowObject winobj = perfuncstate->winobj;
1138 :
1139 1506 : winobj->markptr = tuplestore_alloc_read_pointer(winstate->buffer,
1140 : 0);
1141 1506 : winobj->readptr = tuplestore_alloc_read_pointer(winstate->buffer,
1142 : EXEC_FLAG_BACKWARD);
1143 : }
1144 : }
1145 :
1146 : /*
1147 : * If we are in RANGE or GROUPS mode, then determining frame boundaries
1148 : * requires physical access to the frame endpoint rows, except in certain
1149 : * degenerate cases. We create read pointers to point to those rows, to
1150 : * simplify access and ensure that the tuplestore doesn't discard the
1151 : * endpoint rows prematurely. (Must create pointers in exactly the same
1152 : * cases that update_frameheadpos and update_frametailpos need them.)
1153 : */
1154 2084 : winstate->framehead_ptr = winstate->frametail_ptr = -1; /* if not used */
1155 :
1156 2084 : if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
1157 : {
1158 1232 : if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) &&
1159 68 : node->ordNumCols != 0) ||
1160 1164 : (frameOptions & FRAMEOPTION_START_OFFSET))
1161 722 : winstate->framehead_ptr =
1162 722 : tuplestore_alloc_read_pointer(winstate->buffer, 0);
1163 1232 : if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) &&
1164 462 : node->ordNumCols != 0) ||
1165 924 : (frameOptions & FRAMEOPTION_END_OFFSET))
1166 1022 : winstate->frametail_ptr =
1167 1022 : tuplestore_alloc_read_pointer(winstate->buffer, 0);
1168 : }
1169 :
1170 : /*
1171 : * If we have an exclusion clause that requires knowing the boundaries of
1172 : * the current row's peer group, we create a read pointer to track the
1173 : * tail position of the peer group (i.e., first row of the next peer
1174 : * group). The head position does not require its own pointer because we
1175 : * maintain that as a side effect of advancing the current row.
1176 : */
1177 2084 : winstate->grouptail_ptr = -1;
1178 :
1179 2084 : if ((frameOptions & (FRAMEOPTION_EXCLUDE_GROUP |
1180 180 : FRAMEOPTION_EXCLUDE_TIES)) &&
1181 180 : node->ordNumCols != 0)
1182 : {
1183 168 : winstate->grouptail_ptr =
1184 168 : tuplestore_alloc_read_pointer(winstate->buffer, 0);
1185 : }
1186 2084 : }
1187 :
1188 : /*
1189 : * begin_partition
1190 : * Start buffering rows of the next partition.
1191 : */
1192 : static void
1193 3418 : begin_partition(WindowAggState *winstate)
1194 : {
1195 3418 : PlanState *outerPlan = outerPlanState(winstate);
1196 3418 : int numfuncs = winstate->numfuncs;
1197 :
1198 3418 : winstate->partition_spooled = false;
1199 3418 : winstate->framehead_valid = false;
1200 3418 : winstate->frametail_valid = false;
1201 3418 : winstate->grouptail_valid = false;
1202 3418 : winstate->spooled_rows = 0;
1203 3418 : winstate->currentpos = 0;
1204 3418 : winstate->frameheadpos = 0;
1205 3418 : winstate->frametailpos = 0;
1206 3418 : winstate->currentgroup = 0;
1207 3418 : winstate->frameheadgroup = 0;
1208 3418 : winstate->frametailgroup = 0;
1209 3418 : winstate->groupheadpos = 0;
1210 3418 : winstate->grouptailpos = -1; /* see update_grouptailpos */
1211 3418 : ExecClearTuple(winstate->agg_row_slot);
1212 3418 : if (winstate->framehead_slot)
1213 1024 : ExecClearTuple(winstate->framehead_slot);
1214 3418 : if (winstate->frametail_slot)
1215 1696 : ExecClearTuple(winstate->frametail_slot);
1216 :
1217 : /*
1218 : * If this is the very first partition, we need to fetch the first input
1219 : * row to store in first_part_slot.
1220 : */
1221 3418 : if (TupIsNull(winstate->first_part_slot))
1222 : {
1223 2162 : TupleTableSlot *outerslot = ExecProcNode(outerPlan);
1224 :
1225 2162 : if (!TupIsNull(outerslot))
1226 2144 : ExecCopySlot(winstate->first_part_slot, outerslot);
1227 : else
1228 : {
1229 : /* outer plan is empty, so we have nothing to do */
1230 18 : winstate->partition_spooled = true;
1231 18 : winstate->more_partitions = false;
1232 18 : return;
1233 : }
1234 : }
1235 :
1236 : /* Create new tuplestore if not done already. */
1237 3400 : if (unlikely(winstate->buffer == NULL))
1238 2084 : prepare_tuplestore(winstate);
1239 :
1240 3400 : winstate->next_partition = false;
1241 :
1242 3400 : if (winstate->numaggs > 0)
1243 : {
1244 1846 : WindowObject agg_winobj = winstate->agg_winobj;
1245 :
1246 : /* reset mark and see positions for aggregate functions */
1247 1846 : agg_winobj->markpos = -1;
1248 1846 : agg_winobj->seekpos = -1;
1249 :
1250 : /* Also reset the row counters for aggregates */
1251 1846 : winstate->aggregatedbase = 0;
1252 1846 : winstate->aggregatedupto = 0;
1253 : }
1254 :
1255 : /* reset mark and seek positions for each real window function */
1256 7688 : for (int i = 0; i < numfuncs; i++)
1257 : {
1258 4288 : WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);
1259 :
1260 4288 : if (!perfuncstate->plain_agg)
1261 : {
1262 2268 : WindowObject winobj = perfuncstate->winobj;
1263 :
1264 2268 : winobj->markpos = -1;
1265 2268 : winobj->seekpos = -1;
1266 : }
1267 : }
1268 :
1269 : /*
1270 : * Store the first tuple into the tuplestore (it's always available now;
1271 : * we either read it above, or saved it at the end of previous partition)
1272 : */
1273 3400 : tuplestore_puttupleslot(winstate->buffer, winstate->first_part_slot);
1274 3400 : winstate->spooled_rows++;
1275 : }
1276 :
1277 : /*
1278 : * Read tuples from the outer node, up to and including position 'pos', and
1279 : * store them into the tuplestore. If pos is -1, reads the whole partition.
1280 : */
1281 : static void
1282 1683264 : spool_tuples(WindowAggState *winstate, int64 pos)
1283 : {
1284 1683264 : WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
1285 : PlanState *outerPlan;
1286 : TupleTableSlot *outerslot;
1287 : MemoryContext oldcontext;
1288 :
1289 1683264 : if (!winstate->buffer)
1290 6 : return; /* just a safety check */
1291 1683258 : if (winstate->partition_spooled)
1292 111216 : return; /* whole partition done already */
1293 :
1294 : /*
1295 : * When in pass-through mode we can just exhaust all tuples in the current
1296 : * partition. We don't need these tuples for any further window function
1297 : * evaluation, however, we do need to keep them around if we're not the
1298 : * top-level window as another WindowAgg node above must see these.
1299 : */
1300 1572042 : if (winstate->status != WINDOWAGG_RUN)
1301 : {
1302 : Assert(winstate->status == WINDOWAGG_PASSTHROUGH ||
1303 : winstate->status == WINDOWAGG_PASSTHROUGH_STRICT);
1304 :
1305 30 : pos = -1;
1306 : }
1307 :
1308 : /*
1309 : * If the tuplestore has spilled to disk, alternate reading and writing
1310 : * becomes quite expensive due to frequent buffer flushes. It's cheaper
1311 : * to force the entire partition to get spooled in one go.
1312 : *
1313 : * XXX this is a horrid kluge --- it'd be better to fix the performance
1314 : * problem inside tuplestore. FIXME
1315 : */
1316 1572012 : else if (!tuplestore_in_memory(winstate->buffer))
1317 12 : pos = -1;
1318 :
1319 1572042 : outerPlan = outerPlanState(winstate);
1320 :
1321 : /* Must be in query context to call outerplan */
1322 1572042 : oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
1323 :
1324 2533200 : while (winstate->spooled_rows <= pos || pos == -1)
1325 : {
1326 964408 : outerslot = ExecProcNode(outerPlan);
1327 964408 : if (TupIsNull(outerslot))
1328 : {
1329 : /* reached the end of the last partition */
1330 1994 : winstate->partition_spooled = true;
1331 1994 : winstate->more_partitions = false;
1332 1994 : break;
1333 : }
1334 :
1335 962414 : if (node->partNumCols > 0)
1336 : {
1337 135674 : ExprContext *econtext = winstate->tmpcontext;
1338 :
1339 135674 : econtext->ecxt_innertuple = winstate->first_part_slot;
1340 135674 : econtext->ecxt_outertuple = outerslot;
1341 :
1342 : /* Check if this tuple still belongs to the current partition */
1343 135674 : if (!ExecQualAndReset(winstate->partEqfunction, econtext))
1344 : {
1345 : /*
1346 : * end of partition; copy the tuple for the next cycle.
1347 : */
1348 1256 : ExecCopySlot(winstate->first_part_slot, outerslot);
1349 1256 : winstate->partition_spooled = true;
1350 1256 : winstate->more_partitions = true;
1351 1256 : break;
1352 : }
1353 : }
1354 :
1355 : /*
1356 : * Remember the tuple unless we're the top-level window and we're in
1357 : * pass-through mode.
1358 : */
1359 961158 : if (winstate->status != WINDOWAGG_PASSTHROUGH_STRICT)
1360 : {
1361 : /* Still in partition, so save it into the tuplestore */
1362 961146 : tuplestore_puttupleslot(winstate->buffer, outerslot);
1363 961146 : winstate->spooled_rows++;
1364 : }
1365 : }
1366 :
1367 1572042 : MemoryContextSwitchTo(oldcontext);
1368 : }
1369 :
1370 : /*
1371 : * release_partition
1372 : * clear information kept within a partition, including
1373 : * tuplestore and aggregate results.
1374 : */
1375 : static void
1376 5670 : release_partition(WindowAggState *winstate)
1377 : {
1378 : int i;
1379 :
1380 12744 : for (i = 0; i < winstate->numfuncs; i++)
1381 : {
1382 7074 : WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);
1383 :
1384 : /* Release any partition-local state of this window function */
1385 7074 : if (perfuncstate->winobj)
1386 3612 : perfuncstate->winobj->localmem = NULL;
1387 : }
1388 :
1389 : /*
1390 : * Release all partition-local memory (in particular, any partition-local
1391 : * state that we might have trashed our pointers to in the above loop, and
1392 : * any aggregate temp data). We don't rely on retail pfree because some
1393 : * aggregates might have allocated data we don't have direct pointers to.
1394 : */
1395 5670 : MemoryContextReset(winstate->partcontext);
1396 5670 : MemoryContextReset(winstate->aggcontext);
1397 9132 : for (i = 0; i < winstate->numaggs; i++)
1398 : {
1399 3462 : if (winstate->peragg[i].aggcontext != winstate->aggcontext)
1400 1926 : MemoryContextReset(winstate->peragg[i].aggcontext);
1401 : }
1402 :
1403 5670 : if (winstate->buffer)
1404 3304 : tuplestore_clear(winstate->buffer);
1405 5670 : winstate->partition_spooled = false;
1406 5670 : winstate->next_partition = true;
1407 5670 : }
1408 :
1409 : /*
1410 : * row_is_in_frame
1411 : * Determine whether a row is in the current row's window frame according
1412 : * to our window framing rule
1413 : *
1414 : * The caller must have already determined that the row is in the partition
1415 : * and fetched it into a slot. This function just encapsulates the framing
1416 : * rules.
1417 : *
1418 : * Returns:
1419 : * -1, if the row is out of frame and no succeeding rows can be in frame
1420 : * 0, if the row is out of frame but succeeding rows might be in frame
1421 : * 1, if the row is in frame
1422 : *
1423 : * May clobber winstate->temp_slot_2.
1424 : */
1425 : static int
1426 183602 : row_is_in_frame(WindowAggState *winstate, int64 pos, TupleTableSlot *slot)
1427 : {
1428 183602 : int frameOptions = winstate->frameOptions;
1429 :
1430 : Assert(pos >= 0); /* else caller error */
1431 :
1432 : /*
1433 : * First, check frame starting conditions. We might as well delegate this
1434 : * to update_frameheadpos always; it doesn't add any notable cost.
1435 : */
1436 183602 : update_frameheadpos(winstate);
1437 183602 : if (pos < winstate->frameheadpos)
1438 144 : return 0;
1439 :
1440 : /*
1441 : * Okay so far, now check frame ending conditions. Here, we avoid calling
1442 : * update_frametailpos in simple cases, so as not to spool tuples further
1443 : * ahead than necessary.
1444 : */
1445 183458 : if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
1446 : {
1447 152046 : if (frameOptions & FRAMEOPTION_ROWS)
1448 : {
1449 : /* rows after current row are out of frame */
1450 2208 : if (pos > winstate->currentpos)
1451 972 : return -1;
1452 : }
1453 149838 : else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
1454 : {
1455 : /* following row that is not peer is out of frame */
1456 149838 : if (pos > winstate->currentpos &&
1457 146486 : !are_peers(winstate, slot, winstate->ss.ss_ScanTupleSlot))
1458 1264 : return -1;
1459 : }
1460 : else
1461 : Assert(false);
1462 : }
1463 31412 : else if (frameOptions & FRAMEOPTION_END_OFFSET)
1464 : {
1465 17934 : if (frameOptions & FRAMEOPTION_ROWS)
1466 : {
1467 3948 : int64 offset = DatumGetInt64(winstate->endOffsetValue);
1468 :
1469 : /* rows after current row + offset are out of frame */
1470 3948 : if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
1471 114 : offset = -offset;
1472 :
1473 3948 : if (pos > winstate->currentpos + offset)
1474 1152 : return -1;
1475 : }
1476 13986 : else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
1477 : {
1478 : /* hard cases, so delegate to update_frametailpos */
1479 13986 : update_frametailpos(winstate);
1480 13944 : if (pos >= winstate->frametailpos)
1481 1470 : return -1;
1482 : }
1483 : else
1484 : Assert(false);
1485 : }
1486 :
1487 : /* Check exclusion clause */
1488 178558 : if (frameOptions & FRAMEOPTION_EXCLUDE_CURRENT_ROW)
1489 : {
1490 2466 : if (pos == winstate->currentpos)
1491 420 : return 0;
1492 : }
1493 176092 : else if ((frameOptions & FRAMEOPTION_EXCLUDE_GROUP) ||
1494 173230 : ((frameOptions & FRAMEOPTION_EXCLUDE_TIES) &&
1495 2970 : pos != winstate->currentpos))
1496 : {
1497 5292 : WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
1498 :
1499 : /* If no ORDER BY, all rows are peers with each other */
1500 5292 : if (node->ordNumCols == 0)
1501 468 : return 0;
1502 : /* Otherwise, check the group boundaries */
1503 4824 : if (pos >= winstate->groupheadpos)
1504 : {
1505 2592 : update_grouptailpos(winstate);
1506 2592 : if (pos < winstate->grouptailpos)
1507 1008 : return 0;
1508 : }
1509 : }
1510 :
1511 : /* If we get here, it's in frame */
1512 176662 : return 1;
1513 : }
1514 :
1515 : /*
1516 : * update_frameheadpos
1517 : * make frameheadpos valid for the current row
1518 : *
1519 : * Note that frameheadpos is computed without regard for any window exclusion
1520 : * clause; the current row and/or its peers are considered part of the frame
1521 : * for this purpose even if they must be excluded later.
1522 : *
1523 : * May clobber winstate->temp_slot_2.
1524 : */
1525 : static void
1526 348692 : update_frameheadpos(WindowAggState *winstate)
1527 : {
1528 348692 : WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
1529 348692 : int frameOptions = winstate->frameOptions;
1530 : MemoryContext oldcontext;
1531 :
1532 348692 : if (winstate->framehead_valid)
1533 189790 : return; /* already known for current row */
1534 :
1535 : /* We may be called in a short-lived context */
1536 158902 : oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
1537 :
1538 158902 : if (frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING)
1539 : {
1540 : /* In UNBOUNDED PRECEDING mode, frame head is always row 0 */
1541 148622 : winstate->frameheadpos = 0;
1542 148622 : winstate->framehead_valid = true;
1543 : }
1544 10280 : else if (frameOptions & FRAMEOPTION_START_CURRENT_ROW)
1545 : {
1546 2804 : if (frameOptions & FRAMEOPTION_ROWS)
1547 : {
1548 : /* In ROWS mode, frame head is the same as current */
1549 2376 : winstate->frameheadpos = winstate->currentpos;
1550 2376 : winstate->framehead_valid = true;
1551 : }
1552 428 : else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
1553 : {
1554 : /* If no ORDER BY, all rows are peers with each other */
1555 428 : if (node->ordNumCols == 0)
1556 : {
1557 0 : winstate->frameheadpos = 0;
1558 0 : winstate->framehead_valid = true;
1559 0 : MemoryContextSwitchTo(oldcontext);
1560 0 : return;
1561 : }
1562 :
1563 : /*
1564 : * In RANGE or GROUPS START_CURRENT_ROW mode, frame head is the
1565 : * first row that is a peer of current row. We keep a copy of the
1566 : * last-known frame head row in framehead_slot, and advance as
1567 : * necessary. Note that if we reach end of partition, we will
1568 : * leave frameheadpos = end+1 and framehead_slot empty.
1569 : */
1570 428 : tuplestore_select_read_pointer(winstate->buffer,
1571 : winstate->framehead_ptr);
1572 428 : if (winstate->frameheadpos == 0 &&
1573 212 : TupIsNull(winstate->framehead_slot))
1574 : {
1575 : /* fetch first row into framehead_slot, if we didn't already */
1576 82 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1577 : winstate->framehead_slot))
1578 0 : elog(ERROR, "unexpected end of tuplestore");
1579 : }
1580 :
1581 744 : while (!TupIsNull(winstate->framehead_slot))
1582 : {
1583 744 : if (are_peers(winstate, winstate->framehead_slot,
1584 : winstate->ss.ss_ScanTupleSlot))
1585 428 : break; /* this row is the correct frame head */
1586 : /* Note we advance frameheadpos even if the fetch fails */
1587 316 : winstate->frameheadpos++;
1588 316 : spool_tuples(winstate, winstate->frameheadpos);
1589 316 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1590 : winstate->framehead_slot))
1591 0 : break; /* end of partition */
1592 : }
1593 428 : winstate->framehead_valid = true;
1594 : }
1595 : else
1596 : Assert(false);
1597 : }
1598 7476 : else if (frameOptions & FRAMEOPTION_START_OFFSET)
1599 : {
1600 7476 : if (frameOptions & FRAMEOPTION_ROWS)
1601 : {
1602 : /* In ROWS mode, bound is physically n before/after current */
1603 1572 : int64 offset = DatumGetInt64(winstate->startOffsetValue);
1604 :
1605 1572 : if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
1606 1512 : offset = -offset;
1607 :
1608 1572 : winstate->frameheadpos = winstate->currentpos + offset;
1609 : /* frame head can't go before first row */
1610 1572 : if (winstate->frameheadpos < 0)
1611 228 : winstate->frameheadpos = 0;
1612 1344 : else if (winstate->frameheadpos > winstate->currentpos + 1)
1613 : {
1614 : /* make sure frameheadpos is not past end of partition */
1615 0 : spool_tuples(winstate, winstate->frameheadpos - 1);
1616 0 : if (winstate->frameheadpos > winstate->spooled_rows)
1617 0 : winstate->frameheadpos = winstate->spooled_rows;
1618 : }
1619 1572 : winstate->framehead_valid = true;
1620 : }
1621 5904 : else if (frameOptions & FRAMEOPTION_RANGE)
1622 : {
1623 : /*
1624 : * In RANGE START_OFFSET mode, frame head is the first row that
1625 : * satisfies the in_range constraint relative to the current row.
1626 : * We keep a copy of the last-known frame head row in
1627 : * framehead_slot, and advance as necessary. Note that if we
1628 : * reach end of partition, we will leave frameheadpos = end+1 and
1629 : * framehead_slot empty.
1630 : */
1631 4524 : int sortCol = node->ordColIdx[0];
1632 : bool sub,
1633 : less;
1634 :
1635 : /* We must have an ordering column */
1636 : Assert(node->ordNumCols == 1);
1637 :
1638 : /* Precompute flags for in_range checks */
1639 4524 : if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
1640 3702 : sub = true; /* subtract startOffset from current row */
1641 : else
1642 822 : sub = false; /* add it */
1643 4524 : less = false; /* normally, we want frame head >= sum */
1644 : /* If sort order is descending, flip both flags */
1645 4524 : if (!winstate->inRangeAsc)
1646 : {
1647 654 : sub = !sub;
1648 654 : less = true;
1649 : }
1650 :
1651 4524 : tuplestore_select_read_pointer(winstate->buffer,
1652 : winstate->framehead_ptr);
1653 4524 : if (winstate->frameheadpos == 0 &&
1654 2502 : TupIsNull(winstate->framehead_slot))
1655 : {
1656 : /* fetch first row into framehead_slot, if we didn't already */
1657 570 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1658 : winstate->framehead_slot))
1659 0 : elog(ERROR, "unexpected end of tuplestore");
1660 : }
1661 :
1662 7266 : while (!TupIsNull(winstate->framehead_slot))
1663 : {
1664 : Datum headval,
1665 : currval;
1666 : bool headisnull,
1667 : currisnull;
1668 :
1669 7062 : headval = slot_getattr(winstate->framehead_slot, sortCol,
1670 : &headisnull);
1671 7062 : currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol,
1672 : &currisnull);
1673 7062 : if (headisnull || currisnull)
1674 : {
1675 : /* order of the rows depends only on nulls_first */
1676 108 : if (winstate->inRangeNullsFirst)
1677 : {
1678 : /* advance head if head is null and curr is not */
1679 48 : if (!headisnull || currisnull)
1680 : break;
1681 : }
1682 : else
1683 : {
1684 : /* advance head if head is not null and curr is null */
1685 60 : if (headisnull || !currisnull)
1686 : break;
1687 : }
1688 : }
1689 : else
1690 : {
1691 6954 : if (DatumGetBool(FunctionCall5Coll(&winstate->startInRangeFunc,
1692 : winstate->inRangeColl,
1693 : headval,
1694 : currval,
1695 : winstate->startOffsetValue,
1696 : BoolGetDatum(sub),
1697 : BoolGetDatum(less))))
1698 4170 : break; /* this row is the correct frame head */
1699 : }
1700 : /* Note we advance frameheadpos even if the fetch fails */
1701 2796 : winstate->frameheadpos++;
1702 2796 : spool_tuples(winstate, winstate->frameheadpos);
1703 2796 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1704 : winstate->framehead_slot))
1705 54 : break; /* end of partition */
1706 : }
1707 4476 : winstate->framehead_valid = true;
1708 : }
1709 1380 : else if (frameOptions & FRAMEOPTION_GROUPS)
1710 : {
1711 : /*
1712 : * In GROUPS START_OFFSET mode, frame head is the first row of the
1713 : * first peer group whose number satisfies the offset constraint.
1714 : * We keep a copy of the last-known frame head row in
1715 : * framehead_slot, and advance as necessary. Note that if we
1716 : * reach end of partition, we will leave frameheadpos = end+1 and
1717 : * framehead_slot empty.
1718 : */
1719 1380 : int64 offset = DatumGetInt64(winstate->startOffsetValue);
1720 : int64 minheadgroup;
1721 :
1722 1380 : if (frameOptions & FRAMEOPTION_START_OFFSET_PRECEDING)
1723 1128 : minheadgroup = winstate->currentgroup - offset;
1724 : else
1725 252 : minheadgroup = winstate->currentgroup + offset;
1726 :
1727 1380 : tuplestore_select_read_pointer(winstate->buffer,
1728 : winstate->framehead_ptr);
1729 1380 : if (winstate->frameheadpos == 0 &&
1730 750 : TupIsNull(winstate->framehead_slot))
1731 : {
1732 : /* fetch first row into framehead_slot, if we didn't already */
1733 372 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1734 : winstate->framehead_slot))
1735 0 : elog(ERROR, "unexpected end of tuplestore");
1736 : }
1737 :
1738 2142 : while (!TupIsNull(winstate->framehead_slot))
1739 : {
1740 2118 : if (winstate->frameheadgroup >= minheadgroup)
1741 1320 : break; /* this row is the correct frame head */
1742 798 : ExecCopySlot(winstate->temp_slot_2, winstate->framehead_slot);
1743 : /* Note we advance frameheadpos even if the fetch fails */
1744 798 : winstate->frameheadpos++;
1745 798 : spool_tuples(winstate, winstate->frameheadpos);
1746 798 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1747 : winstate->framehead_slot))
1748 36 : break; /* end of partition */
1749 762 : if (!are_peers(winstate, winstate->temp_slot_2,
1750 : winstate->framehead_slot))
1751 522 : winstate->frameheadgroup++;
1752 : }
1753 1380 : ExecClearTuple(winstate->temp_slot_2);
1754 1380 : winstate->framehead_valid = true;
1755 : }
1756 : else
1757 : Assert(false);
1758 : }
1759 : else
1760 : Assert(false);
1761 :
1762 158854 : MemoryContextSwitchTo(oldcontext);
1763 : }
1764 :
1765 : /*
1766 : * update_frametailpos
1767 : * make frametailpos valid for the current row
1768 : *
1769 : * Note that frametailpos is computed without regard for any window exclusion
1770 : * clause; the current row and/or its peers are considered part of the frame
1771 : * for this purpose even if they must be excluded later.
1772 : *
1773 : * May clobber winstate->temp_slot_2.
1774 : */
1775 : static void
1776 148688 : update_frametailpos(WindowAggState *winstate)
1777 : {
1778 148688 : WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
1779 148688 : int frameOptions = winstate->frameOptions;
1780 : MemoryContext oldcontext;
1781 :
1782 148688 : if (winstate->frametail_valid)
1783 17820 : return; /* already known for current row */
1784 :
1785 : /* We may be called in a short-lived context */
1786 130868 : oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
1787 :
1788 130868 : if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
1789 : {
1790 : /* In UNBOUNDED FOLLOWING mode, all partition rows are in frame */
1791 180 : spool_tuples(winstate, -1);
1792 180 : winstate->frametailpos = winstate->spooled_rows;
1793 180 : winstate->frametail_valid = true;
1794 : }
1795 130688 : else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
1796 : {
1797 124304 : if (frameOptions & FRAMEOPTION_ROWS)
1798 : {
1799 : /* In ROWS mode, exactly the rows up to current are in frame */
1800 120 : winstate->frametailpos = winstate->currentpos + 1;
1801 120 : winstate->frametail_valid = true;
1802 : }
1803 124184 : else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
1804 : {
1805 : /* If no ORDER BY, all rows are peers with each other */
1806 124184 : if (node->ordNumCols == 0)
1807 : {
1808 60 : spool_tuples(winstate, -1);
1809 60 : winstate->frametailpos = winstate->spooled_rows;
1810 60 : winstate->frametail_valid = true;
1811 60 : MemoryContextSwitchTo(oldcontext);
1812 60 : return;
1813 : }
1814 :
1815 : /*
1816 : * In RANGE or GROUPS END_CURRENT_ROW mode, frame end is the last
1817 : * row that is a peer of current row, frame tail is the row after
1818 : * that (if any). We keep a copy of the last-known frame tail row
1819 : * in frametail_slot, and advance as necessary. Note that if we
1820 : * reach end of partition, we will leave frametailpos = end+1 and
1821 : * frametail_slot empty.
1822 : */
1823 124124 : tuplestore_select_read_pointer(winstate->buffer,
1824 : winstate->frametail_ptr);
1825 124124 : if (winstate->frametailpos == 0 &&
1826 676 : TupIsNull(winstate->frametail_slot))
1827 : {
1828 : /* fetch first row into frametail_slot, if we didn't already */
1829 676 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1830 : winstate->frametail_slot))
1831 0 : elog(ERROR, "unexpected end of tuplestore");
1832 : }
1833 :
1834 247584 : while (!TupIsNull(winstate->frametail_slot))
1835 : {
1836 223464 : if (winstate->frametailpos > winstate->currentpos &&
1837 219700 : !are_peers(winstate, winstate->frametail_slot,
1838 : winstate->ss.ss_ScanTupleSlot))
1839 99340 : break; /* this row is the frame tail */
1840 : /* Note we advance frametailpos even if the fetch fails */
1841 124124 : winstate->frametailpos++;
1842 124124 : spool_tuples(winstate, winstate->frametailpos);
1843 124124 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1844 : winstate->frametail_slot))
1845 664 : break; /* end of partition */
1846 : }
1847 124124 : winstate->frametail_valid = true;
1848 : }
1849 : else
1850 : Assert(false);
1851 : }
1852 6384 : else if (frameOptions & FRAMEOPTION_END_OFFSET)
1853 : {
1854 6384 : if (frameOptions & FRAMEOPTION_ROWS)
1855 : {
1856 : /* In ROWS mode, bound is physically n before/after current */
1857 180 : int64 offset = DatumGetInt64(winstate->endOffsetValue);
1858 :
1859 180 : if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
1860 0 : offset = -offset;
1861 :
1862 180 : winstate->frametailpos = winstate->currentpos + offset + 1;
1863 : /* smallest allowable value of frametailpos is 0 */
1864 180 : if (winstate->frametailpos < 0)
1865 0 : winstate->frametailpos = 0;
1866 180 : else if (winstate->frametailpos > winstate->currentpos + 1)
1867 : {
1868 : /* make sure frametailpos is not past end of partition */
1869 180 : spool_tuples(winstate, winstate->frametailpos - 1);
1870 180 : if (winstate->frametailpos > winstate->spooled_rows)
1871 36 : winstate->frametailpos = winstate->spooled_rows;
1872 : }
1873 180 : winstate->frametail_valid = true;
1874 : }
1875 6204 : else if (frameOptions & FRAMEOPTION_RANGE)
1876 : {
1877 : /*
1878 : * In RANGE END_OFFSET mode, frame end is the last row that
1879 : * satisfies the in_range constraint relative to the current row,
1880 : * frame tail is the row after that (if any). We keep a copy of
1881 : * the last-known frame tail row in frametail_slot, and advance as
1882 : * necessary. Note that if we reach end of partition, we will
1883 : * leave frametailpos = end+1 and frametail_slot empty.
1884 : */
1885 4884 : int sortCol = node->ordColIdx[0];
1886 : bool sub,
1887 : less;
1888 :
1889 : /* We must have an ordering column */
1890 : Assert(node->ordNumCols == 1);
1891 :
1892 : /* Precompute flags for in_range checks */
1893 4884 : if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
1894 912 : sub = true; /* subtract endOffset from current row */
1895 : else
1896 3972 : sub = false; /* add it */
1897 4884 : less = true; /* normally, we want frame tail <= sum */
1898 : /* If sort order is descending, flip both flags */
1899 4884 : if (!winstate->inRangeAsc)
1900 : {
1901 690 : sub = !sub;
1902 690 : less = false;
1903 : }
1904 :
1905 4884 : tuplestore_select_read_pointer(winstate->buffer,
1906 : winstate->frametail_ptr);
1907 4884 : if (winstate->frametailpos == 0 &&
1908 822 : TupIsNull(winstate->frametail_slot))
1909 : {
1910 : /* fetch first row into frametail_slot, if we didn't already */
1911 588 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1912 : winstate->frametail_slot))
1913 0 : elog(ERROR, "unexpected end of tuplestore");
1914 : }
1915 :
1916 9006 : while (!TupIsNull(winstate->frametail_slot))
1917 : {
1918 : Datum tailval,
1919 : currval;
1920 : bool tailisnull,
1921 : currisnull;
1922 :
1923 7440 : tailval = slot_getattr(winstate->frametail_slot, sortCol,
1924 : &tailisnull);
1925 7440 : currval = slot_getattr(winstate->ss.ss_ScanTupleSlot, sortCol,
1926 : &currisnull);
1927 7440 : if (tailisnull || currisnull)
1928 : {
1929 : /* order of the rows depends only on nulls_first */
1930 108 : if (winstate->inRangeNullsFirst)
1931 : {
1932 : /* advance tail if tail is null or curr is not */
1933 48 : if (!tailisnull)
1934 3270 : break;
1935 : }
1936 : else
1937 : {
1938 : /* advance tail if tail is not null or curr is null */
1939 60 : if (!currisnull)
1940 36 : break;
1941 : }
1942 : }
1943 : else
1944 : {
1945 7332 : if (!DatumGetBool(FunctionCall5Coll(&winstate->endInRangeFunc,
1946 : winstate->inRangeColl,
1947 : tailval,
1948 : currval,
1949 : winstate->endOffsetValue,
1950 : BoolGetDatum(sub),
1951 : BoolGetDatum(less))))
1952 2730 : break; /* this row is the correct frame tail */
1953 : }
1954 : /* Note we advance frametailpos even if the fetch fails */
1955 4602 : winstate->frametailpos++;
1956 4602 : spool_tuples(winstate, winstate->frametailpos);
1957 4602 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1958 : winstate->frametail_slot))
1959 480 : break; /* end of partition */
1960 : }
1961 4836 : winstate->frametail_valid = true;
1962 : }
1963 1320 : else if (frameOptions & FRAMEOPTION_GROUPS)
1964 : {
1965 : /*
1966 : * In GROUPS END_OFFSET mode, frame end is the last row of the
1967 : * last peer group whose number satisfies the offset constraint,
1968 : * and frame tail is the row after that (if any). We keep a copy
1969 : * of the last-known frame tail row in frametail_slot, and advance
1970 : * as necessary. Note that if we reach end of partition, we will
1971 : * leave frametailpos = end+1 and frametail_slot empty.
1972 : */
1973 1320 : int64 offset = DatumGetInt64(winstate->endOffsetValue);
1974 : int64 maxtailgroup;
1975 :
1976 1320 : if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
1977 72 : maxtailgroup = winstate->currentgroup - offset;
1978 : else
1979 1248 : maxtailgroup = winstate->currentgroup + offset;
1980 :
1981 1320 : tuplestore_select_read_pointer(winstate->buffer,
1982 : winstate->frametail_ptr);
1983 1320 : if (winstate->frametailpos == 0 &&
1984 384 : TupIsNull(winstate->frametail_slot))
1985 : {
1986 : /* fetch first row into frametail_slot, if we didn't already */
1987 366 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
1988 : winstate->frametail_slot))
1989 0 : elog(ERROR, "unexpected end of tuplestore");
1990 : }
1991 :
1992 2268 : while (!TupIsNull(winstate->frametail_slot))
1993 : {
1994 2040 : if (winstate->frametailgroup > maxtailgroup)
1995 744 : break; /* this row is the correct frame tail */
1996 1296 : ExecCopySlot(winstate->temp_slot_2, winstate->frametail_slot);
1997 : /* Note we advance frametailpos even if the fetch fails */
1998 1296 : winstate->frametailpos++;
1999 1296 : spool_tuples(winstate, winstate->frametailpos);
2000 1296 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
2001 : winstate->frametail_slot))
2002 348 : break; /* end of partition */
2003 948 : if (!are_peers(winstate, winstate->temp_slot_2,
2004 : winstate->frametail_slot))
2005 600 : winstate->frametailgroup++;
2006 : }
2007 1320 : ExecClearTuple(winstate->temp_slot_2);
2008 1320 : winstate->frametail_valid = true;
2009 : }
2010 : else
2011 : Assert(false);
2012 : }
2013 : else
2014 : Assert(false);
2015 :
2016 130760 : MemoryContextSwitchTo(oldcontext);
2017 : }
2018 :
2019 : /*
2020 : * update_grouptailpos
2021 : * make grouptailpos valid for the current row
2022 : *
2023 : * May clobber winstate->temp_slot_2.
2024 : */
2025 : static void
2026 4872 : update_grouptailpos(WindowAggState *winstate)
2027 : {
2028 4872 : WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
2029 : MemoryContext oldcontext;
2030 :
2031 4872 : if (winstate->grouptail_valid)
2032 3954 : return; /* already known for current row */
2033 :
2034 : /* We may be called in a short-lived context */
2035 918 : oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
2036 :
2037 : /* If no ORDER BY, all rows are peers with each other */
2038 918 : if (node->ordNumCols == 0)
2039 : {
2040 0 : spool_tuples(winstate, -1);
2041 0 : winstate->grouptailpos = winstate->spooled_rows;
2042 0 : winstate->grouptail_valid = true;
2043 0 : MemoryContextSwitchTo(oldcontext);
2044 0 : return;
2045 : }
2046 :
2047 : /*
2048 : * Because grouptail_valid is reset only when current row advances into a
2049 : * new peer group, we always reach here knowing that grouptailpos needs to
2050 : * be advanced by at least one row. Hence, unlike the otherwise similar
2051 : * case for frame tail tracking, we do not need persistent storage of the
2052 : * group tail row.
2053 : */
2054 : Assert(winstate->grouptailpos <= winstate->currentpos);
2055 918 : tuplestore_select_read_pointer(winstate->buffer,
2056 : winstate->grouptail_ptr);
2057 : for (;;)
2058 : {
2059 : /* Note we advance grouptailpos even if the fetch fails */
2060 1758 : winstate->grouptailpos++;
2061 1758 : spool_tuples(winstate, winstate->grouptailpos);
2062 1758 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
2063 : winstate->temp_slot_2))
2064 258 : break; /* end of partition */
2065 1500 : if (winstate->grouptailpos > winstate->currentpos &&
2066 1242 : !are_peers(winstate, winstate->temp_slot_2,
2067 : winstate->ss.ss_ScanTupleSlot))
2068 660 : break; /* this row is the group tail */
2069 : }
2070 918 : ExecClearTuple(winstate->temp_slot_2);
2071 918 : winstate->grouptail_valid = true;
2072 :
2073 918 : MemoryContextSwitchTo(oldcontext);
2074 : }
2075 :
2076 : /*
2077 : * calculate_frame_offsets
2078 : * Determine the startOffsetValue and endOffsetValue values for the
2079 : * WindowAgg's frame options.
2080 : */
2081 : static pg_noinline void
2082 2162 : calculate_frame_offsets(PlanState *pstate)
2083 : {
2084 2162 : WindowAggState *winstate = castNode(WindowAggState, pstate);
2085 : ExprContext *econtext;
2086 2162 : int frameOptions = winstate->frameOptions;
2087 : Datum value;
2088 : bool isnull;
2089 : int16 len;
2090 : bool byval;
2091 :
2092 : /* Ensure we've not been called before for this scan */
2093 : Assert(winstate->all_first);
2094 :
2095 2162 : econtext = winstate->ss.ps.ps_ExprContext;
2096 :
2097 2162 : if (frameOptions & FRAMEOPTION_START_OFFSET)
2098 : {
2099 : Assert(winstate->startOffset != NULL);
2100 816 : value = ExecEvalExprSwitchContext(winstate->startOffset,
2101 : econtext,
2102 : &isnull);
2103 816 : if (isnull)
2104 0 : ereport(ERROR,
2105 : (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
2106 : errmsg("frame starting offset must not be null")));
2107 : /* copy value into query-lifespan context */
2108 816 : get_typlenbyval(exprType((Node *) winstate->startOffset->expr),
2109 : &len,
2110 : &byval);
2111 816 : winstate->startOffsetValue = datumCopy(value, byval, len);
2112 816 : if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS))
2113 : {
2114 : /* value is known to be int8 */
2115 300 : int64 offset = DatumGetInt64(value);
2116 :
2117 300 : if (offset < 0)
2118 0 : ereport(ERROR,
2119 : (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
2120 : errmsg("frame starting offset must not be negative")));
2121 : }
2122 : }
2123 :
2124 2162 : if (frameOptions & FRAMEOPTION_END_OFFSET)
2125 : {
2126 : Assert(winstate->endOffset != NULL);
2127 912 : value = ExecEvalExprSwitchContext(winstate->endOffset,
2128 : econtext,
2129 : &isnull);
2130 912 : if (isnull)
2131 0 : ereport(ERROR,
2132 : (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
2133 : errmsg("frame ending offset must not be null")));
2134 : /* copy value into query-lifespan context */
2135 912 : get_typlenbyval(exprType((Node *) winstate->endOffset->expr),
2136 : &len,
2137 : &byval);
2138 912 : winstate->endOffsetValue = datumCopy(value, byval, len);
2139 912 : if (frameOptions & (FRAMEOPTION_ROWS | FRAMEOPTION_GROUPS))
2140 : {
2141 : /* value is known to be int8 */
2142 330 : int64 offset = DatumGetInt64(value);
2143 :
2144 330 : if (offset < 0)
2145 0 : ereport(ERROR,
2146 : (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
2147 : errmsg("frame ending offset must not be negative")));
2148 : }
2149 : }
2150 2162 : winstate->all_first = false;
2151 2162 : }
2152 :
2153 : /* -----------------
2154 : * ExecWindowAgg
2155 : *
2156 : * ExecWindowAgg receives tuples from its outer subplan and
2157 : * stores them into a tuplestore, then processes window functions.
2158 : * This node doesn't reduce nor qualify any row so the number of
2159 : * returned rows is exactly the same as its outer subplan's result.
2160 : * -----------------
2161 : */
2162 : static TupleTableSlot *
2163 846300 : ExecWindowAgg(PlanState *pstate)
2164 : {
2165 846300 : WindowAggState *winstate = castNode(WindowAggState, pstate);
2166 : TupleTableSlot *slot;
2167 : ExprContext *econtext;
2168 : int i;
2169 : int numfuncs;
2170 :
2171 846300 : CHECK_FOR_INTERRUPTS();
2172 :
2173 846300 : if (winstate->status == WINDOWAGG_DONE)
2174 0 : return NULL;
2175 :
2176 : /*
2177 : * Compute frame offset values, if any, during first call (or after a
2178 : * rescan). These are assumed to hold constant throughout the scan; if
2179 : * user gives us a volatile expression, we'll only use its initial value.
2180 : */
2181 846300 : if (unlikely(winstate->all_first))
2182 2162 : calculate_frame_offsets(pstate);
2183 :
2184 : /* We need to loop as the runCondition or qual may filter out tuples */
2185 : for (;;)
2186 : {
2187 846432 : if (winstate->next_partition)
2188 : {
2189 : /* Initialize for first partition and set current row = 0 */
2190 2162 : begin_partition(winstate);
2191 : /* If there are no input rows, we'll detect that and exit below */
2192 : }
2193 : else
2194 : {
2195 : /* Advance current row within partition */
2196 844270 : winstate->currentpos++;
2197 : /* This might mean that the frame moves, too */
2198 844270 : winstate->framehead_valid = false;
2199 844270 : winstate->frametail_valid = false;
2200 : /* we don't need to invalidate grouptail here; see below */
2201 : }
2202 :
2203 : /*
2204 : * Spool all tuples up to and including the current row, if we haven't
2205 : * already
2206 : */
2207 846432 : spool_tuples(winstate, winstate->currentpos);
2208 :
2209 : /* Move to the next partition if we reached the end of this partition */
2210 846432 : if (winstate->partition_spooled &&
2211 56580 : winstate->currentpos >= winstate->spooled_rows)
2212 : {
2213 3238 : release_partition(winstate);
2214 :
2215 3238 : if (winstate->more_partitions)
2216 : {
2217 1256 : begin_partition(winstate);
2218 : Assert(winstate->spooled_rows > 0);
2219 :
2220 : /* Come out of pass-through mode when changing partition */
2221 1256 : winstate->status = WINDOWAGG_RUN;
2222 : }
2223 : else
2224 : {
2225 : /* No further partitions? We're done */
2226 1982 : winstate->status = WINDOWAGG_DONE;
2227 1982 : return NULL;
2228 : }
2229 : }
2230 :
2231 : /* final output execution is in ps_ExprContext */
2232 844450 : econtext = winstate->ss.ps.ps_ExprContext;
2233 :
2234 : /* Clear the per-output-tuple context for current row */
2235 844450 : ResetExprContext(econtext);
2236 :
2237 : /*
2238 : * Read the current row from the tuplestore, and save in
2239 : * ScanTupleSlot. (We can't rely on the outerplan's output slot
2240 : * because we may have to read beyond the current row. Also, we have
2241 : * to actually copy the row out of the tuplestore, since window
2242 : * function evaluation might cause the tuplestore to dump its state to
2243 : * disk.)
2244 : *
2245 : * In GROUPS mode, or when tracking a group-oriented exclusion clause,
2246 : * we must also detect entering a new peer group and update associated
2247 : * state when that happens. We use temp_slot_2 to temporarily hold
2248 : * the previous row for this purpose.
2249 : *
2250 : * Current row must be in the tuplestore, since we spooled it above.
2251 : */
2252 844450 : tuplestore_select_read_pointer(winstate->buffer, winstate->current_ptr);
2253 844450 : if ((winstate->frameOptions & (FRAMEOPTION_GROUPS |
2254 : FRAMEOPTION_EXCLUDE_GROUP |
2255 2898 : FRAMEOPTION_EXCLUDE_TIES)) &&
2256 2898 : winstate->currentpos > 0)
2257 : {
2258 2358 : ExecCopySlot(winstate->temp_slot_2, winstate->ss.ss_ScanTupleSlot);
2259 2358 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
2260 : winstate->ss.ss_ScanTupleSlot))
2261 0 : elog(ERROR, "unexpected end of tuplestore");
2262 2358 : if (!are_peers(winstate, winstate->temp_slot_2,
2263 : winstate->ss.ss_ScanTupleSlot))
2264 : {
2265 1242 : winstate->currentgroup++;
2266 1242 : winstate->groupheadpos = winstate->currentpos;
2267 1242 : winstate->grouptail_valid = false;
2268 : }
2269 2358 : ExecClearTuple(winstate->temp_slot_2);
2270 : }
2271 : else
2272 : {
2273 842092 : if (!tuplestore_gettupleslot(winstate->buffer, true, true,
2274 : winstate->ss.ss_ScanTupleSlot))
2275 0 : elog(ERROR, "unexpected end of tuplestore");
2276 : }
2277 :
2278 : /* don't evaluate the window functions when we're in pass-through mode */
2279 844450 : if (winstate->status == WINDOWAGG_RUN)
2280 : {
2281 : /*
2282 : * Evaluate true window functions
2283 : */
2284 844384 : numfuncs = winstate->numfuncs;
2285 1815212 : for (i = 0; i < numfuncs; i++)
2286 : {
2287 970918 : WindowStatePerFunc perfuncstate = &(winstate->perfunc[i]);
2288 :
2289 970918 : if (perfuncstate->plain_agg)
2290 155938 : continue;
2291 814980 : eval_windowfunction(winstate, perfuncstate,
2292 814980 : &(econtext->ecxt_aggvalues[perfuncstate->wfuncstate->wfuncno]),
2293 814980 : &(econtext->ecxt_aggnulls[perfuncstate->wfuncstate->wfuncno]));
2294 : }
2295 :
2296 : /*
2297 : * Evaluate aggregates
2298 : */
2299 844294 : if (winstate->numaggs > 0)
2300 154168 : eval_windowaggregates(winstate);
2301 : }
2302 :
2303 : /*
2304 : * If we have created auxiliary read pointers for the frame or group
2305 : * boundaries, force them to be kept up-to-date, because we don't know
2306 : * whether the window function(s) will do anything that requires that.
2307 : * Failing to advance the pointers would result in being unable to
2308 : * trim data from the tuplestore, which is bad. (If we could know in
2309 : * advance whether the window functions will use frame boundary info,
2310 : * we could skip creating these pointers in the first place ... but
2311 : * unfortunately the window function API doesn't require that.)
2312 : */
2313 844318 : if (winstate->framehead_ptr >= 0)
2314 6236 : update_frameheadpos(winstate);
2315 844318 : if (winstate->frametail_ptr >= 0)
2316 130280 : update_frametailpos(winstate);
2317 844318 : if (winstate->grouptail_ptr >= 0)
2318 1500 : update_grouptailpos(winstate);
2319 :
2320 : /*
2321 : * Truncate any no-longer-needed rows from the tuplestore.
2322 : */
2323 844318 : tuplestore_trim(winstate->buffer);
2324 :
2325 : /*
2326 : * Form and return a projection tuple using the windowfunc results and
2327 : * the current row. Setting ecxt_outertuple arranges that any Vars
2328 : * will be evaluated with respect to that row.
2329 : */
2330 844318 : econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
2331 :
2332 844318 : slot = ExecProject(winstate->ss.ps.ps_ProjInfo);
2333 :
2334 844318 : if (winstate->status == WINDOWAGG_RUN)
2335 : {
2336 844252 : econtext->ecxt_scantuple = slot;
2337 :
2338 : /*
2339 : * Now evaluate the run condition to see if we need to go into
2340 : * pass-through mode, or maybe stop completely.
2341 : */
2342 844252 : if (!ExecQual(winstate->runcondition, econtext))
2343 : {
2344 : /*
2345 : * Determine which mode to move into. If there is no
2346 : * PARTITION BY clause and we're the top-level WindowAgg then
2347 : * we're done. This tuple and any future tuples cannot
2348 : * possibly match the runcondition. However, when there is a
2349 : * PARTITION BY clause or we're not the top-level window we
2350 : * can't just stop as we need to either process other
2351 : * partitions or ensure WindowAgg nodes above us receive all
2352 : * of the tuples they need to process their WindowFuncs.
2353 : */
2354 132 : if (winstate->use_pass_through)
2355 : {
2356 : /*
2357 : * When switching into a pass-through mode, we'd better
2358 : * NULLify the aggregate results as these are no longer
2359 : * updated and NULLifying them avoids the old stale
2360 : * results lingering. Some of these might be byref types
2361 : * so we can't have them pointing to free'd memory. The
2362 : * planner insisted that quals used in the runcondition
2363 : * are strict, so the top-level WindowAgg will always
2364 : * filter these NULLs out in the filter clause.
2365 : */
2366 90 : numfuncs = winstate->numfuncs;
2367 264 : for (i = 0; i < numfuncs; i++)
2368 : {
2369 174 : econtext->ecxt_aggvalues[i] = (Datum) 0;
2370 174 : econtext->ecxt_aggnulls[i] = true;
2371 : }
2372 :
2373 : /*
2374 : * STRICT pass-through mode is required for the top window
2375 : * when there is a PARTITION BY clause. Otherwise we must
2376 : * ensure we store tuples that don't match the
2377 : * runcondition so they're available to WindowAggs above.
2378 : */
2379 90 : if (winstate->top_window)
2380 : {
2381 72 : winstate->status = WINDOWAGG_PASSTHROUGH_STRICT;
2382 72 : continue;
2383 : }
2384 : else
2385 : {
2386 18 : winstate->status = WINDOWAGG_PASSTHROUGH;
2387 : }
2388 : }
2389 : else
2390 : {
2391 : /*
2392 : * Pass-through not required. We can just return NULL.
2393 : * Nothing else will match the runcondition.
2394 : */
2395 42 : winstate->status = WINDOWAGG_DONE;
2396 42 : return NULL;
2397 : }
2398 : }
2399 :
2400 : /*
2401 : * Filter out any tuples we don't need in the top-level WindowAgg.
2402 : */
2403 844138 : if (!ExecQual(winstate->ss.ps.qual, econtext))
2404 : {
2405 18 : InstrCountFiltered1(winstate, 1);
2406 18 : continue;
2407 : }
2408 :
2409 844120 : break;
2410 : }
2411 :
2412 : /*
2413 : * When not in WINDOWAGG_RUN mode, we must still return this tuple if
2414 : * we're anything apart from the top window.
2415 : */
2416 66 : else if (!winstate->top_window)
2417 24 : break;
2418 : }
2419 :
2420 844144 : return slot;
2421 : }
2422 :
2423 : /* -----------------
2424 : * ExecInitWindowAgg
2425 : *
2426 : * Creates the run-time information for the WindowAgg node produced by the
2427 : * planner and initializes its outer subtree
2428 : * -----------------
2429 : */
2430 : WindowAggState *
2431 2486 : ExecInitWindowAgg(WindowAgg *node, EState *estate, int eflags)
2432 : {
2433 : WindowAggState *winstate;
2434 : Plan *outerPlan;
2435 : ExprContext *econtext;
2436 : ExprContext *tmpcontext;
2437 : WindowStatePerFunc perfunc;
2438 : WindowStatePerAgg peragg;
2439 2486 : int frameOptions = node->frameOptions;
2440 : int numfuncs,
2441 : wfuncno,
2442 : numaggs,
2443 : aggno;
2444 : TupleDesc scanDesc;
2445 : ListCell *l;
2446 :
2447 : /* check for unsupported flags */
2448 : Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
2449 :
2450 : /*
2451 : * create state structure
2452 : */
2453 2486 : winstate = makeNode(WindowAggState);
2454 2486 : winstate->ss.ps.plan = (Plan *) node;
2455 2486 : winstate->ss.ps.state = estate;
2456 2486 : winstate->ss.ps.ExecProcNode = ExecWindowAgg;
2457 :
2458 : /* copy frame options to state node for easy access */
2459 2486 : winstate->frameOptions = frameOptions;
2460 :
2461 : /*
2462 : * Create expression contexts. We need two, one for per-input-tuple
2463 : * processing and one for per-output-tuple processing. We cheat a little
2464 : * by using ExecAssignExprContext() to build both.
2465 : */
2466 2486 : ExecAssignExprContext(estate, &winstate->ss.ps);
2467 2486 : tmpcontext = winstate->ss.ps.ps_ExprContext;
2468 2486 : winstate->tmpcontext = tmpcontext;
2469 2486 : ExecAssignExprContext(estate, &winstate->ss.ps);
2470 :
2471 : /* Create long-lived context for storage of partition-local memory etc */
2472 2486 : winstate->partcontext =
2473 2486 : AllocSetContextCreate(CurrentMemoryContext,
2474 : "WindowAgg Partition",
2475 : ALLOCSET_DEFAULT_SIZES);
2476 :
2477 : /*
2478 : * Create mid-lived context for aggregate trans values etc.
2479 : *
2480 : * Note that moving aggregates each use their own private context, not
2481 : * this one.
2482 : */
2483 2486 : winstate->aggcontext =
2484 2486 : AllocSetContextCreate(CurrentMemoryContext,
2485 : "WindowAgg Aggregates",
2486 : ALLOCSET_DEFAULT_SIZES);
2487 :
2488 : /* Only the top-level WindowAgg may have a qual */
2489 : Assert(node->plan.qual == NIL || node->topWindow);
2490 :
2491 : /* Initialize the qual */
2492 2486 : winstate->ss.ps.qual = ExecInitQual(node->plan.qual,
2493 : (PlanState *) winstate);
2494 :
2495 : /*
2496 : * Setup the run condition, if we received one from the query planner.
2497 : * When set, this may allow us to move into pass-through mode so that we
2498 : * don't have to perform any further evaluation of WindowFuncs in the
2499 : * current partition or possibly stop returning tuples altogether when all
2500 : * tuples are in the same partition.
2501 : */
2502 2486 : winstate->runcondition = ExecInitQual(node->runCondition,
2503 : (PlanState *) winstate);
2504 :
2505 : /*
2506 : * When we're not the top-level WindowAgg node or we are but have a
2507 : * PARTITION BY clause we must move into one of the WINDOWAGG_PASSTHROUGH*
2508 : * modes when the runCondition becomes false.
2509 : */
2510 2486 : winstate->use_pass_through = !node->topWindow || node->partNumCols > 0;
2511 :
2512 : /* remember if we're the top-window or we are below the top-window */
2513 2486 : winstate->top_window = node->topWindow;
2514 :
2515 : /*
2516 : * initialize child nodes
2517 : */
2518 2486 : outerPlan = outerPlan(node);
2519 2486 : outerPlanState(winstate) = ExecInitNode(outerPlan, estate, eflags);
2520 :
2521 : /*
2522 : * initialize source tuple type (which is also the tuple type that we'll
2523 : * store in the tuplestore and use in all our working slots).
2524 : */
2525 2486 : ExecCreateScanSlotFromOuterPlan(estate, &winstate->ss, &TTSOpsMinimalTuple);
2526 2486 : scanDesc = winstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor;
2527 :
2528 : /* the outer tuple isn't the child's tuple, but always a minimal tuple */
2529 2486 : winstate->ss.ps.outeropsset = true;
2530 2486 : winstate->ss.ps.outerops = &TTSOpsMinimalTuple;
2531 2486 : winstate->ss.ps.outeropsfixed = true;
2532 :
2533 : /*
2534 : * tuple table initialization
2535 : */
2536 2486 : winstate->first_part_slot = ExecInitExtraTupleSlot(estate, scanDesc,
2537 : &TTSOpsMinimalTuple);
2538 2486 : winstate->agg_row_slot = ExecInitExtraTupleSlot(estate, scanDesc,
2539 : &TTSOpsMinimalTuple);
2540 2486 : winstate->temp_slot_1 = ExecInitExtraTupleSlot(estate, scanDesc,
2541 : &TTSOpsMinimalTuple);
2542 2486 : winstate->temp_slot_2 = ExecInitExtraTupleSlot(estate, scanDesc,
2543 : &TTSOpsMinimalTuple);
2544 :
2545 : /*
2546 : * create frame head and tail slots only if needed (must create slots in
2547 : * exactly the same cases that update_frameheadpos and update_frametailpos
2548 : * need them)
2549 : */
2550 2486 : winstate->framehead_slot = winstate->frametail_slot = NULL;
2551 :
2552 2486 : if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
2553 : {
2554 1472 : if (((frameOptions & FRAMEOPTION_START_CURRENT_ROW) &&
2555 76 : node->ordNumCols != 0) ||
2556 1396 : (frameOptions & FRAMEOPTION_START_OFFSET))
2557 742 : winstate->framehead_slot = ExecInitExtraTupleSlot(estate, scanDesc,
2558 : &TTSOpsMinimalTuple);
2559 1472 : if (((frameOptions & FRAMEOPTION_END_CURRENT_ROW) &&
2560 688 : node->ordNumCols != 0) ||
2561 1030 : (frameOptions & FRAMEOPTION_END_OFFSET))
2562 1168 : winstate->frametail_slot = ExecInitExtraTupleSlot(estate, scanDesc,
2563 : &TTSOpsMinimalTuple);
2564 : }
2565 :
2566 : /*
2567 : * Initialize result slot, type and projection.
2568 : */
2569 2486 : ExecInitResultTupleSlotTL(&winstate->ss.ps, &TTSOpsVirtual);
2570 2486 : ExecAssignProjectionInfo(&winstate->ss.ps, NULL);
2571 :
2572 : /* Set up data for comparing tuples */
2573 2486 : if (node->partNumCols > 0)
2574 620 : winstate->partEqfunction =
2575 620 : execTuplesMatchPrepare(scanDesc,
2576 : node->partNumCols,
2577 620 : node->partColIdx,
2578 620 : node->partOperators,
2579 620 : node->partCollations,
2580 : &winstate->ss.ps);
2581 :
2582 2486 : if (node->ordNumCols > 0)
2583 2078 : winstate->ordEqfunction =
2584 2078 : execTuplesMatchPrepare(scanDesc,
2585 : node->ordNumCols,
2586 2078 : node->ordColIdx,
2587 2078 : node->ordOperators,
2588 2078 : node->ordCollations,
2589 : &winstate->ss.ps);
2590 :
2591 : /*
2592 : * WindowAgg nodes use aggvalues and aggnulls as well as Agg nodes.
2593 : */
2594 2486 : numfuncs = winstate->numfuncs;
2595 2486 : numaggs = winstate->numaggs;
2596 2486 : econtext = winstate->ss.ps.ps_ExprContext;
2597 2486 : econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numfuncs);
2598 2486 : econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numfuncs);
2599 :
2600 : /*
2601 : * allocate per-wfunc/per-agg state information.
2602 : */
2603 2486 : perfunc = (WindowStatePerFunc) palloc0(sizeof(WindowStatePerFuncData) * numfuncs);
2604 2486 : peragg = (WindowStatePerAgg) palloc0(sizeof(WindowStatePerAggData) * numaggs);
2605 2486 : winstate->perfunc = perfunc;
2606 2486 : winstate->peragg = peragg;
2607 :
2608 2486 : wfuncno = -1;
2609 2486 : aggno = -1;
2610 5650 : foreach(l, winstate->funcs)
2611 : {
2612 3164 : WindowFuncExprState *wfuncstate = (WindowFuncExprState *) lfirst(l);
2613 3164 : WindowFunc *wfunc = wfuncstate->wfunc;
2614 : WindowStatePerFunc perfuncstate;
2615 : AclResult aclresult;
2616 : int i;
2617 :
2618 3164 : if (wfunc->winref != node->winref) /* planner screwed up? */
2619 0 : elog(ERROR, "WindowFunc with winref %u assigned to WindowAgg with winref %u",
2620 : wfunc->winref, node->winref);
2621 :
2622 : /* Look for a previous duplicate window function */
2623 3974 : for (i = 0; i <= wfuncno; i++)
2624 : {
2625 816 : if (equal(wfunc, perfunc[i].wfunc) &&
2626 6 : !contain_volatile_functions((Node *) wfunc))
2627 6 : break;
2628 : }
2629 3164 : if (i <= wfuncno)
2630 : {
2631 : /* Found a match to an existing entry, so just mark it */
2632 6 : wfuncstate->wfuncno = i;
2633 6 : continue;
2634 : }
2635 :
2636 : /* Nope, so assign a new PerAgg record */
2637 3158 : perfuncstate = &perfunc[++wfuncno];
2638 :
2639 : /* Mark WindowFunc state node with assigned index in the result array */
2640 3158 : wfuncstate->wfuncno = wfuncno;
2641 :
2642 : /* Check permission to call window function */
2643 3158 : aclresult = object_aclcheck(ProcedureRelationId, wfunc->winfnoid, GetUserId(),
2644 : ACL_EXECUTE);
2645 3158 : if (aclresult != ACLCHECK_OK)
2646 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
2647 0 : get_func_name(wfunc->winfnoid));
2648 3158 : InvokeFunctionExecuteHook(wfunc->winfnoid);
2649 :
2650 : /* Fill in the perfuncstate data */
2651 3158 : perfuncstate->wfuncstate = wfuncstate;
2652 3158 : perfuncstate->wfunc = wfunc;
2653 3158 : perfuncstate->numArguments = list_length(wfuncstate->args);
2654 3158 : perfuncstate->winCollation = wfunc->inputcollid;
2655 :
2656 3158 : get_typlenbyval(wfunc->wintype,
2657 : &perfuncstate->resulttypeLen,
2658 : &perfuncstate->resulttypeByVal);
2659 :
2660 : /*
2661 : * If it's really just a plain aggregate function, we'll emulate the
2662 : * Agg environment for it.
2663 : */
2664 3158 : perfuncstate->plain_agg = wfunc->winagg;
2665 3158 : if (wfunc->winagg)
2666 : {
2667 : WindowStatePerAgg peraggstate;
2668 :
2669 1448 : perfuncstate->aggno = ++aggno;
2670 1448 : peraggstate = &winstate->peragg[aggno];
2671 1448 : initialize_peragg(winstate, wfunc, peraggstate);
2672 1448 : peraggstate->wfuncno = wfuncno;
2673 : }
2674 : else
2675 : {
2676 1710 : WindowObject winobj = makeNode(WindowObjectData);
2677 :
2678 1710 : winobj->winstate = winstate;
2679 1710 : winobj->argstates = wfuncstate->args;
2680 1710 : winobj->localmem = NULL;
2681 1710 : perfuncstate->winobj = winobj;
2682 :
2683 : /* It's a real window function, so set up to call it. */
2684 1710 : fmgr_info_cxt(wfunc->winfnoid, &perfuncstate->flinfo,
2685 : econtext->ecxt_per_query_memory);
2686 1710 : fmgr_info_set_expr((Node *) wfunc, &perfuncstate->flinfo);
2687 : }
2688 : }
2689 :
2690 : /* Update numfuncs, numaggs to match number of unique functions found */
2691 2486 : winstate->numfuncs = wfuncno + 1;
2692 2486 : winstate->numaggs = aggno + 1;
2693 :
2694 : /* Set up WindowObject for aggregates, if needed */
2695 2486 : if (winstate->numaggs > 0)
2696 : {
2697 1364 : WindowObject agg_winobj = makeNode(WindowObjectData);
2698 :
2699 1364 : agg_winobj->winstate = winstate;
2700 1364 : agg_winobj->argstates = NIL;
2701 1364 : agg_winobj->localmem = NULL;
2702 : /* make sure markptr = -1 to invalidate. It may not get used */
2703 1364 : agg_winobj->markptr = -1;
2704 1364 : agg_winobj->readptr = -1;
2705 1364 : winstate->agg_winobj = agg_winobj;
2706 : }
2707 :
2708 : /* Set the status to running */
2709 2486 : winstate->status = WINDOWAGG_RUN;
2710 :
2711 : /* initialize frame bound offset expressions */
2712 2486 : winstate->startOffset = ExecInitExpr((Expr *) node->startOffset,
2713 : (PlanState *) winstate);
2714 2486 : winstate->endOffset = ExecInitExpr((Expr *) node->endOffset,
2715 : (PlanState *) winstate);
2716 :
2717 : /* Lookup in_range support functions if needed */
2718 2486 : if (OidIsValid(node->startInRangeFunc))
2719 522 : fmgr_info(node->startInRangeFunc, &winstate->startInRangeFunc);
2720 2486 : if (OidIsValid(node->endInRangeFunc))
2721 588 : fmgr_info(node->endInRangeFunc, &winstate->endInRangeFunc);
2722 2486 : winstate->inRangeColl = node->inRangeColl;
2723 2486 : winstate->inRangeAsc = node->inRangeAsc;
2724 2486 : winstate->inRangeNullsFirst = node->inRangeNullsFirst;
2725 :
2726 2486 : winstate->all_first = true;
2727 2486 : winstate->partition_spooled = false;
2728 2486 : winstate->more_partitions = false;
2729 2486 : winstate->next_partition = true;
2730 :
2731 2486 : return winstate;
2732 : }
2733 :
2734 : /* -----------------
2735 : * ExecEndWindowAgg
2736 : * -----------------
2737 : */
2738 : void
2739 2354 : ExecEndWindowAgg(WindowAggState *node)
2740 : {
2741 : PlanState *outerPlan;
2742 : int i;
2743 :
2744 2354 : if (node->buffer != NULL)
2745 : {
2746 1952 : tuplestore_end(node->buffer);
2747 :
2748 : /* nullify so that release_partition skips the tuplestore_clear() */
2749 1952 : node->buffer = NULL;
2750 : }
2751 :
2752 2354 : release_partition(node);
2753 :
2754 3760 : for (i = 0; i < node->numaggs; i++)
2755 : {
2756 1406 : if (node->peragg[i].aggcontext != node->aggcontext)
2757 780 : MemoryContextDelete(node->peragg[i].aggcontext);
2758 : }
2759 2354 : MemoryContextDelete(node->partcontext);
2760 2354 : MemoryContextDelete(node->aggcontext);
2761 :
2762 2354 : pfree(node->perfunc);
2763 2354 : pfree(node->peragg);
2764 :
2765 2354 : outerPlan = outerPlanState(node);
2766 2354 : ExecEndNode(outerPlan);
2767 2354 : }
2768 :
2769 : /* -----------------
2770 : * ExecReScanWindowAgg
2771 : * -----------------
2772 : */
2773 : void
2774 78 : ExecReScanWindowAgg(WindowAggState *node)
2775 : {
2776 78 : PlanState *outerPlan = outerPlanState(node);
2777 78 : ExprContext *econtext = node->ss.ps.ps_ExprContext;
2778 :
2779 78 : node->status = WINDOWAGG_RUN;
2780 78 : node->all_first = true;
2781 :
2782 : /* release tuplestore et al */
2783 78 : release_partition(node);
2784 :
2785 : /* release all temp tuples, but especially first_part_slot */
2786 78 : ExecClearTuple(node->ss.ss_ScanTupleSlot);
2787 78 : ExecClearTuple(node->first_part_slot);
2788 78 : ExecClearTuple(node->agg_row_slot);
2789 78 : ExecClearTuple(node->temp_slot_1);
2790 78 : ExecClearTuple(node->temp_slot_2);
2791 78 : if (node->framehead_slot)
2792 0 : ExecClearTuple(node->framehead_slot);
2793 78 : if (node->frametail_slot)
2794 6 : ExecClearTuple(node->frametail_slot);
2795 :
2796 : /* Forget current wfunc values */
2797 156 : MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numfuncs);
2798 78 : MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numfuncs);
2799 :
2800 : /*
2801 : * if chgParam of subnode is not null then plan will be re-scanned by
2802 : * first ExecProcNode.
2803 : */
2804 78 : if (outerPlan->chgParam == NULL)
2805 6 : ExecReScan(outerPlan);
2806 78 : }
2807 :
2808 : /*
2809 : * initialize_peragg
2810 : *
2811 : * Almost same as in nodeAgg.c, except we don't support DISTINCT currently.
2812 : */
2813 : static WindowStatePerAggData *
2814 1448 : initialize_peragg(WindowAggState *winstate, WindowFunc *wfunc,
2815 : WindowStatePerAgg peraggstate)
2816 : {
2817 : Oid inputTypes[FUNC_MAX_ARGS];
2818 : int numArguments;
2819 : HeapTuple aggTuple;
2820 : Form_pg_aggregate aggform;
2821 : Oid aggtranstype;
2822 : AttrNumber initvalAttNo;
2823 : AclResult aclresult;
2824 : bool use_ma_code;
2825 : Oid transfn_oid,
2826 : invtransfn_oid,
2827 : finalfn_oid;
2828 : bool finalextra;
2829 : char finalmodify;
2830 : Expr *transfnexpr,
2831 : *invtransfnexpr,
2832 : *finalfnexpr;
2833 : Datum textInitVal;
2834 : int i;
2835 : ListCell *lc;
2836 :
2837 1448 : numArguments = list_length(wfunc->args);
2838 :
2839 1448 : i = 0;
2840 2770 : foreach(lc, wfunc->args)
2841 : {
2842 1322 : inputTypes[i++] = exprType((Node *) lfirst(lc));
2843 : }
2844 :
2845 1448 : aggTuple = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(wfunc->winfnoid));
2846 1448 : if (!HeapTupleIsValid(aggTuple))
2847 0 : elog(ERROR, "cache lookup failed for aggregate %u",
2848 : wfunc->winfnoid);
2849 1448 : aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
2850 :
2851 : /*
2852 : * Figure out whether we want to use the moving-aggregate implementation,
2853 : * and collect the right set of fields from the pg_aggregate entry.
2854 : *
2855 : * It's possible that an aggregate would supply a safe moving-aggregate
2856 : * implementation and an unsafe normal one, in which case our hand is
2857 : * forced. Otherwise, if the frame head can't move, we don't need
2858 : * moving-aggregate code. Even if we'd like to use it, don't do so if the
2859 : * aggregate's arguments (and FILTER clause if any) contain any calls to
2860 : * volatile functions. Otherwise, the difference between restarting and
2861 : * not restarting the aggregation would be user-visible.
2862 : *
2863 : * We also don't risk using moving aggregates when there are subplans in
2864 : * the arguments or FILTER clause. This is partly because
2865 : * contain_volatile_functions() doesn't look inside subplans; but there
2866 : * are other reasons why a subplan's output might be volatile. For
2867 : * example, syncscan mode can render the results nonrepeatable.
2868 : */
2869 1448 : if (!OidIsValid(aggform->aggminvtransfn))
2870 184 : use_ma_code = false; /* sine qua non */
2871 1264 : else if (aggform->aggmfinalmodify == AGGMODIFY_READ_ONLY &&
2872 1264 : aggform->aggfinalmodify != AGGMODIFY_READ_ONLY)
2873 0 : use_ma_code = true; /* decision forced by safety */
2874 1264 : else if (winstate->frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING)
2875 460 : use_ma_code = false; /* non-moving frame head */
2876 804 : else if (contain_volatile_functions((Node *) wfunc))
2877 12 : use_ma_code = false; /* avoid possible behavioral change */
2878 792 : else if (contain_subplans((Node *) wfunc))
2879 0 : use_ma_code = false; /* subplans might contain volatile functions */
2880 : else
2881 792 : use_ma_code = true; /* yes, let's use it */
2882 1448 : if (use_ma_code)
2883 : {
2884 792 : peraggstate->transfn_oid = transfn_oid = aggform->aggmtransfn;
2885 792 : peraggstate->invtransfn_oid = invtransfn_oid = aggform->aggminvtransfn;
2886 792 : peraggstate->finalfn_oid = finalfn_oid = aggform->aggmfinalfn;
2887 792 : finalextra = aggform->aggmfinalextra;
2888 792 : finalmodify = aggform->aggmfinalmodify;
2889 792 : aggtranstype = aggform->aggmtranstype;
2890 792 : initvalAttNo = Anum_pg_aggregate_aggminitval;
2891 : }
2892 : else
2893 : {
2894 656 : peraggstate->transfn_oid = transfn_oid = aggform->aggtransfn;
2895 656 : peraggstate->invtransfn_oid = invtransfn_oid = InvalidOid;
2896 656 : peraggstate->finalfn_oid = finalfn_oid = aggform->aggfinalfn;
2897 656 : finalextra = aggform->aggfinalextra;
2898 656 : finalmodify = aggform->aggfinalmodify;
2899 656 : aggtranstype = aggform->aggtranstype;
2900 656 : initvalAttNo = Anum_pg_aggregate_agginitval;
2901 : }
2902 :
2903 : /*
2904 : * ExecInitWindowAgg already checked permission to call aggregate function
2905 : * ... but we still need to check the component functions
2906 : */
2907 :
2908 : /* Check that aggregate owner has permission to call component fns */
2909 : {
2910 : HeapTuple procTuple;
2911 : Oid aggOwner;
2912 :
2913 1448 : procTuple = SearchSysCache1(PROCOID,
2914 : ObjectIdGetDatum(wfunc->winfnoid));
2915 1448 : if (!HeapTupleIsValid(procTuple))
2916 0 : elog(ERROR, "cache lookup failed for function %u",
2917 : wfunc->winfnoid);
2918 1448 : aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner;
2919 1448 : ReleaseSysCache(procTuple);
2920 :
2921 1448 : aclresult = object_aclcheck(ProcedureRelationId, transfn_oid, aggOwner,
2922 : ACL_EXECUTE);
2923 1448 : if (aclresult != ACLCHECK_OK)
2924 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
2925 0 : get_func_name(transfn_oid));
2926 1448 : InvokeFunctionExecuteHook(transfn_oid);
2927 :
2928 1448 : if (OidIsValid(invtransfn_oid))
2929 : {
2930 792 : aclresult = object_aclcheck(ProcedureRelationId, invtransfn_oid, aggOwner,
2931 : ACL_EXECUTE);
2932 792 : if (aclresult != ACLCHECK_OK)
2933 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
2934 0 : get_func_name(invtransfn_oid));
2935 792 : InvokeFunctionExecuteHook(invtransfn_oid);
2936 : }
2937 :
2938 1448 : if (OidIsValid(finalfn_oid))
2939 : {
2940 836 : aclresult = object_aclcheck(ProcedureRelationId, finalfn_oid, aggOwner,
2941 : ACL_EXECUTE);
2942 836 : if (aclresult != ACLCHECK_OK)
2943 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
2944 0 : get_func_name(finalfn_oid));
2945 836 : InvokeFunctionExecuteHook(finalfn_oid);
2946 : }
2947 : }
2948 :
2949 : /*
2950 : * If the selected finalfn isn't read-only, we can't run this aggregate as
2951 : * a window function. This is a user-facing error, so we take a bit more
2952 : * care with the error message than elsewhere in this function.
2953 : */
2954 1448 : if (finalmodify != AGGMODIFY_READ_ONLY)
2955 0 : ereport(ERROR,
2956 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2957 : errmsg("aggregate function %s does not support use as a window function",
2958 : format_procedure(wfunc->winfnoid))));
2959 :
2960 : /* Detect how many arguments to pass to the finalfn */
2961 1448 : if (finalextra)
2962 26 : peraggstate->numFinalArgs = numArguments + 1;
2963 : else
2964 1422 : peraggstate->numFinalArgs = 1;
2965 :
2966 : /* resolve actual type of transition state, if polymorphic */
2967 1448 : aggtranstype = resolve_aggregate_transtype(wfunc->winfnoid,
2968 : aggtranstype,
2969 : inputTypes,
2970 : numArguments);
2971 :
2972 : /* build expression trees using actual argument & result types */
2973 1448 : build_aggregate_transfn_expr(inputTypes,
2974 : numArguments,
2975 : 0, /* no ordered-set window functions yet */
2976 : false, /* no variadic window functions yet */
2977 : aggtranstype,
2978 : wfunc->inputcollid,
2979 : transfn_oid,
2980 : invtransfn_oid,
2981 : &transfnexpr,
2982 : &invtransfnexpr);
2983 :
2984 : /* set up infrastructure for calling the transfn(s) and finalfn */
2985 1448 : fmgr_info(transfn_oid, &peraggstate->transfn);
2986 1448 : fmgr_info_set_expr((Node *) transfnexpr, &peraggstate->transfn);
2987 :
2988 1448 : if (OidIsValid(invtransfn_oid))
2989 : {
2990 792 : fmgr_info(invtransfn_oid, &peraggstate->invtransfn);
2991 792 : fmgr_info_set_expr((Node *) invtransfnexpr, &peraggstate->invtransfn);
2992 : }
2993 :
2994 1448 : if (OidIsValid(finalfn_oid))
2995 : {
2996 836 : build_aggregate_finalfn_expr(inputTypes,
2997 : peraggstate->numFinalArgs,
2998 : aggtranstype,
2999 : wfunc->wintype,
3000 : wfunc->inputcollid,
3001 : finalfn_oid,
3002 : &finalfnexpr);
3003 836 : fmgr_info(finalfn_oid, &peraggstate->finalfn);
3004 836 : fmgr_info_set_expr((Node *) finalfnexpr, &peraggstate->finalfn);
3005 : }
3006 :
3007 : /* get info about relevant datatypes */
3008 1448 : get_typlenbyval(wfunc->wintype,
3009 : &peraggstate->resulttypeLen,
3010 : &peraggstate->resulttypeByVal);
3011 1448 : get_typlenbyval(aggtranstype,
3012 : &peraggstate->transtypeLen,
3013 : &peraggstate->transtypeByVal);
3014 :
3015 : /*
3016 : * initval is potentially null, so don't try to access it as a struct
3017 : * field. Must do it the hard way with SysCacheGetAttr.
3018 : */
3019 1448 : textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple, initvalAttNo,
3020 : &peraggstate->initValueIsNull);
3021 :
3022 1448 : if (peraggstate->initValueIsNull)
3023 754 : peraggstate->initValue = (Datum) 0;
3024 : else
3025 694 : peraggstate->initValue = GetAggInitVal(textInitVal,
3026 : aggtranstype);
3027 :
3028 : /*
3029 : * If the transfn is strict and the initval is NULL, make sure input type
3030 : * and transtype are the same (or at least binary-compatible), so that
3031 : * it's OK to use the first input value as the initial transValue. This
3032 : * should have been checked at agg definition time, but we must check
3033 : * again in case the transfn's strictness property has been changed.
3034 : */
3035 1448 : if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull)
3036 : {
3037 152 : if (numArguments < 1 ||
3038 152 : !IsBinaryCoercible(inputTypes[0], aggtranstype))
3039 0 : ereport(ERROR,
3040 : (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
3041 : errmsg("aggregate %u needs to have compatible input type and transition type",
3042 : wfunc->winfnoid)));
3043 : }
3044 :
3045 : /*
3046 : * Insist that forward and inverse transition functions have the same
3047 : * strictness setting. Allowing them to differ would require handling
3048 : * more special cases in advance_windowaggregate and
3049 : * advance_windowaggregate_base, for no discernible benefit. This should
3050 : * have been checked at agg definition time, but we must check again in
3051 : * case either function's strictness property has been changed.
3052 : */
3053 1448 : if (OidIsValid(invtransfn_oid) &&
3054 792 : peraggstate->transfn.fn_strict != peraggstate->invtransfn.fn_strict)
3055 0 : ereport(ERROR,
3056 : (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
3057 : errmsg("strictness of aggregate's forward and inverse transition functions must match")));
3058 :
3059 : /*
3060 : * Moving aggregates use their own aggcontext.
3061 : *
3062 : * This is necessary because they might restart at different times, so we
3063 : * might never be able to reset the shared context otherwise. We can't
3064 : * make it the aggregates' responsibility to clean up after themselves,
3065 : * because strict aggregates must be restarted whenever we remove their
3066 : * last non-NULL input, which the aggregate won't be aware is happening.
3067 : * Also, just pfree()ing the transValue upon restarting wouldn't help,
3068 : * since we'd miss any indirectly referenced data. We could, in theory,
3069 : * make the memory allocation rules for moving aggregates different than
3070 : * they have historically been for plain aggregates, but that seems grotty
3071 : * and likely to lead to memory leaks.
3072 : */
3073 1448 : if (OidIsValid(invtransfn_oid))
3074 792 : peraggstate->aggcontext =
3075 792 : AllocSetContextCreate(CurrentMemoryContext,
3076 : "WindowAgg Per Aggregate",
3077 : ALLOCSET_DEFAULT_SIZES);
3078 : else
3079 656 : peraggstate->aggcontext = winstate->aggcontext;
3080 :
3081 1448 : ReleaseSysCache(aggTuple);
3082 :
3083 1448 : return peraggstate;
3084 : }
3085 :
3086 : static Datum
3087 694 : GetAggInitVal(Datum textInitVal, Oid transtype)
3088 : {
3089 : Oid typinput,
3090 : typioparam;
3091 : char *strInitVal;
3092 : Datum initVal;
3093 :
3094 694 : getTypeInputInfo(transtype, &typinput, &typioparam);
3095 694 : strInitVal = TextDatumGetCString(textInitVal);
3096 694 : initVal = OidInputFunctionCall(typinput, strInitVal,
3097 : typioparam, -1);
3098 694 : pfree(strInitVal);
3099 694 : return initVal;
3100 : }
3101 :
3102 : /*
3103 : * are_peers
3104 : * compare two rows to see if they are equal according to the ORDER BY clause
3105 : *
3106 : * NB: this does not consider the window frame mode.
3107 : */
3108 : static bool
3109 537546 : are_peers(WindowAggState *winstate, TupleTableSlot *slot1,
3110 : TupleTableSlot *slot2)
3111 : {
3112 537546 : WindowAgg *node = (WindowAgg *) winstate->ss.ps.plan;
3113 537546 : ExprContext *econtext = winstate->tmpcontext;
3114 :
3115 : /* If no ORDER BY, all rows are peers with each other */
3116 537546 : if (node->ordNumCols == 0)
3117 24994 : return true;
3118 :
3119 512552 : econtext->ecxt_outertuple = slot1;
3120 512552 : econtext->ecxt_innertuple = slot2;
3121 512552 : return ExecQualAndReset(winstate->ordEqfunction, econtext);
3122 : }
3123 :
3124 : /*
3125 : * window_gettupleslot
3126 : * Fetch the pos'th tuple of the current partition into the slot,
3127 : * using the winobj's read pointer
3128 : *
3129 : * Returns true if successful, false if no such row
3130 : */
3131 : static bool
3132 700872 : window_gettupleslot(WindowObject winobj, int64 pos, TupleTableSlot *slot)
3133 : {
3134 700872 : WindowAggState *winstate = winobj->winstate;
3135 : MemoryContext oldcontext;
3136 :
3137 : /* often called repeatedly in a row */
3138 700872 : CHECK_FOR_INTERRUPTS();
3139 :
3140 : /* Don't allow passing -1 to spool_tuples here */
3141 700872 : if (pos < 0)
3142 312 : return false;
3143 :
3144 : /* If necessary, fetch the tuple into the spool */
3145 700560 : spool_tuples(winstate, pos);
3146 :
3147 700560 : if (pos >= winstate->spooled_rows)
3148 4568 : return false;
3149 :
3150 695992 : if (pos < winobj->markpos)
3151 0 : elog(ERROR, "cannot fetch row before WindowObject's mark position");
3152 :
3153 695992 : oldcontext = MemoryContextSwitchTo(winstate->ss.ps.ps_ExprContext->ecxt_per_query_memory);
3154 :
3155 695992 : tuplestore_select_read_pointer(winstate->buffer, winobj->readptr);
3156 :
3157 : /*
3158 : * Advance or rewind until we are within one tuple of the one we want.
3159 : */
3160 695992 : if (winobj->seekpos < pos - 1)
3161 : {
3162 2256 : if (!tuplestore_skiptuples(winstate->buffer,
3163 2256 : pos - 1 - winobj->seekpos,
3164 : true))
3165 0 : elog(ERROR, "unexpected end of tuplestore");
3166 2256 : winobj->seekpos = pos - 1;
3167 : }
3168 693736 : else if (winobj->seekpos > pos + 1)
3169 : {
3170 2742 : if (!tuplestore_skiptuples(winstate->buffer,
3171 2742 : winobj->seekpos - (pos + 1),
3172 : false))
3173 0 : elog(ERROR, "unexpected end of tuplestore");
3174 2742 : winobj->seekpos = pos + 1;
3175 : }
3176 690994 : else if (winobj->seekpos == pos)
3177 : {
3178 : /*
3179 : * There's no API to refetch the tuple at the current position. We
3180 : * have to move one tuple forward, and then one backward. (We don't
3181 : * do it the other way because we might try to fetch the row before
3182 : * our mark, which isn't allowed.) XXX this case could stand to be
3183 : * optimized.
3184 : */
3185 172256 : tuplestore_advance(winstate->buffer, true);
3186 172256 : winobj->seekpos++;
3187 : }
3188 :
3189 : /*
3190 : * Now we should be on the tuple immediately before or after the one we
3191 : * want, so just fetch forwards or backwards as appropriate.
3192 : *
3193 : * Notice that we tell tuplestore_gettupleslot to make a physical copy of
3194 : * the fetched tuple. This ensures that the slot's contents remain valid
3195 : * through manipulations of the tuplestore, which some callers depend on.
3196 : */
3197 695992 : if (winobj->seekpos > pos)
3198 : {
3199 175128 : if (!tuplestore_gettupleslot(winstate->buffer, false, true, slot))
3200 0 : elog(ERROR, "unexpected end of tuplestore");
3201 175128 : winobj->seekpos--;
3202 : }
3203 : else
3204 : {
3205 520864 : if (!tuplestore_gettupleslot(winstate->buffer, true, true, slot))
3206 0 : elog(ERROR, "unexpected end of tuplestore");
3207 520864 : winobj->seekpos++;
3208 : }
3209 :
3210 : Assert(winobj->seekpos == pos);
3211 :
3212 695992 : MemoryContextSwitchTo(oldcontext);
3213 :
3214 695992 : return true;
3215 : }
3216 :
3217 :
3218 : /***********************************************************************
3219 : * API exposed to window functions
3220 : ***********************************************************************/
3221 :
3222 :
3223 : /*
3224 : * WinGetPartitionLocalMemory
3225 : * Get working memory that lives till end of partition processing
3226 : *
3227 : * On first call within a given partition, this allocates and zeroes the
3228 : * requested amount of space. Subsequent calls just return the same chunk.
3229 : *
3230 : * Memory obtained this way is normally used to hold state that should be
3231 : * automatically reset for each new partition. If a window function wants
3232 : * to hold state across the whole query, fcinfo->fn_extra can be used in the
3233 : * usual way for that.
3234 : */
3235 : void *
3236 331470 : WinGetPartitionLocalMemory(WindowObject winobj, Size sz)
3237 : {
3238 : Assert(WindowObjectIsValid(winobj));
3239 331470 : if (winobj->localmem == NULL)
3240 444 : winobj->localmem =
3241 444 : MemoryContextAllocZero(winobj->winstate->partcontext, sz);
3242 331470 : return winobj->localmem;
3243 : }
3244 :
3245 : /*
3246 : * WinGetCurrentPosition
3247 : * Return the current row's position (counting from 0) within the current
3248 : * partition.
3249 : */
3250 : int64
3251 757650 : WinGetCurrentPosition(WindowObject winobj)
3252 : {
3253 : Assert(WindowObjectIsValid(winobj));
3254 757650 : return winobj->winstate->currentpos;
3255 : }
3256 :
3257 : /*
3258 : * WinGetPartitionRowCount
3259 : * Return total number of rows contained in the current partition.
3260 : *
3261 : * Note: this is a relatively expensive operation because it forces the
3262 : * whole partition to be "spooled" into the tuplestore at once. Once
3263 : * executed, however, additional calls within the same partition are cheap.
3264 : */
3265 : int64
3266 162 : WinGetPartitionRowCount(WindowObject winobj)
3267 : {
3268 : Assert(WindowObjectIsValid(winobj));
3269 162 : spool_tuples(winobj->winstate, -1);
3270 162 : return winobj->winstate->spooled_rows;
3271 : }
3272 :
3273 : /*
3274 : * WinSetMarkPosition
3275 : * Set the "mark" position for the window object, which is the oldest row
3276 : * number (counting from 0) it is allowed to fetch during all subsequent
3277 : * operations within the current partition.
3278 : *
3279 : * Window functions do not have to call this, but are encouraged to move the
3280 : * mark forward when possible to keep the tuplestore size down and prevent
3281 : * having to spill rows to disk.
3282 : */
3283 : void
3284 819698 : WinSetMarkPosition(WindowObject winobj, int64 markpos)
3285 : {
3286 : WindowAggState *winstate;
3287 :
3288 : Assert(WindowObjectIsValid(winobj));
3289 819698 : winstate = winobj->winstate;
3290 :
3291 819698 : if (markpos < winobj->markpos)
3292 0 : elog(ERROR, "cannot move WindowObject's mark position backward");
3293 819698 : tuplestore_select_read_pointer(winstate->buffer, winobj->markptr);
3294 819698 : if (markpos > winobj->markpos)
3295 : {
3296 814160 : tuplestore_skiptuples(winstate->buffer,
3297 814160 : markpos - winobj->markpos,
3298 : true);
3299 814160 : winobj->markpos = markpos;
3300 : }
3301 819698 : tuplestore_select_read_pointer(winstate->buffer, winobj->readptr);
3302 819698 : if (markpos > winobj->seekpos)
3303 : {
3304 462190 : tuplestore_skiptuples(winstate->buffer,
3305 462190 : markpos - winobj->seekpos,
3306 : true);
3307 462190 : winobj->seekpos = markpos;
3308 : }
3309 819698 : }
3310 :
3311 : /*
3312 : * WinRowsArePeers
3313 : * Compare two rows (specified by absolute position in partition) to see
3314 : * if they are equal according to the ORDER BY clause.
3315 : *
3316 : * NB: this does not consider the window frame mode.
3317 : */
3318 : bool
3319 165306 : WinRowsArePeers(WindowObject winobj, int64 pos1, int64 pos2)
3320 : {
3321 : WindowAggState *winstate;
3322 : WindowAgg *node;
3323 : TupleTableSlot *slot1;
3324 : TupleTableSlot *slot2;
3325 : bool res;
3326 :
3327 : Assert(WindowObjectIsValid(winobj));
3328 165306 : winstate = winobj->winstate;
3329 165306 : node = (WindowAgg *) winstate->ss.ps.plan;
3330 :
3331 : /* If no ORDER BY, all rows are peers; don't bother to fetch them */
3332 165306 : if (node->ordNumCols == 0)
3333 0 : return true;
3334 :
3335 : /*
3336 : * Note: OK to use temp_slot_2 here because we aren't calling any
3337 : * frame-related functions (those tend to clobber temp_slot_2).
3338 : */
3339 165306 : slot1 = winstate->temp_slot_1;
3340 165306 : slot2 = winstate->temp_slot_2;
3341 :
3342 165306 : if (!window_gettupleslot(winobj, pos1, slot1))
3343 0 : elog(ERROR, "specified position is out of window: " INT64_FORMAT,
3344 : pos1);
3345 165306 : if (!window_gettupleslot(winobj, pos2, slot2))
3346 0 : elog(ERROR, "specified position is out of window: " INT64_FORMAT,
3347 : pos2);
3348 :
3349 165306 : res = are_peers(winstate, slot1, slot2);
3350 :
3351 165306 : ExecClearTuple(slot1);
3352 165306 : ExecClearTuple(slot2);
3353 :
3354 165306 : return res;
3355 : }
3356 :
3357 : /*
3358 : * WinGetFuncArgInPartition
3359 : * Evaluate a window function's argument expression on a specified
3360 : * row of the partition. The row is identified in lseek(2) style,
3361 : * i.e. relative to the current, first, or last row.
3362 : *
3363 : * argno: argument number to evaluate (counted from 0)
3364 : * relpos: signed rowcount offset from the seek position
3365 : * seektype: WINDOW_SEEK_CURRENT, WINDOW_SEEK_HEAD, or WINDOW_SEEK_TAIL
3366 : * set_mark: If the row is found and set_mark is true, the mark is moved to
3367 : * the row as a side-effect.
3368 : * isnull: output argument, receives isnull status of result
3369 : * isout: output argument, set to indicate whether target row position
3370 : * is out of partition (can pass NULL if caller doesn't care about this)
3371 : *
3372 : * Specifying a nonexistent row is not an error, it just causes a null result
3373 : * (plus setting *isout true, if isout isn't NULL).
3374 : */
3375 : Datum
3376 182826 : WinGetFuncArgInPartition(WindowObject winobj, int argno,
3377 : int relpos, int seektype, bool set_mark,
3378 : bool *isnull, bool *isout)
3379 : {
3380 : WindowAggState *winstate;
3381 : ExprContext *econtext;
3382 : TupleTableSlot *slot;
3383 : bool gottuple;
3384 : int64 abs_pos;
3385 :
3386 : Assert(WindowObjectIsValid(winobj));
3387 182826 : winstate = winobj->winstate;
3388 182826 : econtext = winstate->ss.ps.ps_ExprContext;
3389 182826 : slot = winstate->temp_slot_1;
3390 :
3391 182826 : switch (seektype)
3392 : {
3393 182826 : case WINDOW_SEEK_CURRENT:
3394 182826 : abs_pos = winstate->currentpos + relpos;
3395 182826 : break;
3396 0 : case WINDOW_SEEK_HEAD:
3397 0 : abs_pos = relpos;
3398 0 : break;
3399 0 : case WINDOW_SEEK_TAIL:
3400 0 : spool_tuples(winstate, -1);
3401 0 : abs_pos = winstate->spooled_rows - 1 + relpos;
3402 0 : break;
3403 0 : default:
3404 0 : elog(ERROR, "unrecognized window seek type: %d", seektype);
3405 : abs_pos = 0; /* keep compiler quiet */
3406 : break;
3407 : }
3408 :
3409 182826 : gottuple = window_gettupleslot(winobj, abs_pos, slot);
3410 :
3411 182826 : if (!gottuple)
3412 : {
3413 354 : if (isout)
3414 354 : *isout = true;
3415 354 : *isnull = true;
3416 354 : return (Datum) 0;
3417 : }
3418 : else
3419 : {
3420 182472 : if (isout)
3421 182472 : *isout = false;
3422 182472 : if (set_mark)
3423 182316 : WinSetMarkPosition(winobj, abs_pos);
3424 182472 : econtext->ecxt_outertuple = slot;
3425 182472 : return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
3426 : econtext, isnull);
3427 : }
3428 : }
3429 :
3430 : /*
3431 : * WinGetFuncArgInFrame
3432 : * Evaluate a window function's argument expression on a specified
3433 : * row of the window frame. The row is identified in lseek(2) style,
3434 : * i.e. relative to the first or last row of the frame. (We do not
3435 : * support WINDOW_SEEK_CURRENT here, because it's not very clear what
3436 : * that should mean if the current row isn't part of the frame.)
3437 : *
3438 : * argno: argument number to evaluate (counted from 0)
3439 : * relpos: signed rowcount offset from the seek position
3440 : * seektype: WINDOW_SEEK_HEAD or WINDOW_SEEK_TAIL
3441 : * set_mark: If the row is found/in frame and set_mark is true, the mark is
3442 : * moved to the row as a side-effect.
3443 : * isnull: output argument, receives isnull status of result
3444 : * isout: output argument, set to indicate whether target row position
3445 : * is out of frame (can pass NULL if caller doesn't care about this)
3446 : *
3447 : * Specifying a nonexistent or not-in-frame row is not an error, it just
3448 : * causes a null result (plus setting *isout true, if isout isn't NULL).
3449 : *
3450 : * Note that some exclusion-clause options lead to situations where the
3451 : * rows that are in-frame are not consecutive in the partition. But we
3452 : * count only in-frame rows when measuring relpos.
3453 : *
3454 : * The set_mark flag is interpreted as meaning that the caller will specify
3455 : * a constant (or, perhaps, monotonically increasing) relpos in successive
3456 : * calls, so that *if there is no exclusion clause* there will be no need
3457 : * to fetch a row before the previously fetched row. But we do not expect
3458 : * the caller to know how to account for exclusion clauses. Therefore,
3459 : * if there is an exclusion clause we take responsibility for adjusting the
3460 : * mark request to something that will be safe given the above assumption
3461 : * about relpos.
3462 : */
3463 : Datum
3464 8628 : WinGetFuncArgInFrame(WindowObject winobj, int argno,
3465 : int relpos, int seektype, bool set_mark,
3466 : bool *isnull, bool *isout)
3467 : {
3468 : WindowAggState *winstate;
3469 : ExprContext *econtext;
3470 : TupleTableSlot *slot;
3471 : int64 abs_pos;
3472 : int64 mark_pos;
3473 :
3474 : Assert(WindowObjectIsValid(winobj));
3475 8628 : winstate = winobj->winstate;
3476 8628 : econtext = winstate->ss.ps.ps_ExprContext;
3477 8628 : slot = winstate->temp_slot_1;
3478 :
3479 8628 : switch (seektype)
3480 : {
3481 0 : case WINDOW_SEEK_CURRENT:
3482 0 : elog(ERROR, "WINDOW_SEEK_CURRENT is not supported for WinGetFuncArgInFrame");
3483 : abs_pos = mark_pos = 0; /* keep compiler quiet */
3484 : break;
3485 4206 : case WINDOW_SEEK_HEAD:
3486 : /* rejecting relpos < 0 is easy and simplifies code below */
3487 4206 : if (relpos < 0)
3488 0 : goto out_of_frame;
3489 4206 : update_frameheadpos(winstate);
3490 4164 : abs_pos = winstate->frameheadpos + relpos;
3491 4164 : mark_pos = abs_pos;
3492 :
3493 : /*
3494 : * Account for exclusion option if one is active, but advance only
3495 : * abs_pos not mark_pos. This prevents changes of the current
3496 : * row's peer group from resulting in trying to fetch a row before
3497 : * some previous mark position.
3498 : *
3499 : * Note that in some corner cases such as current row being
3500 : * outside frame, these calculations are theoretically too simple,
3501 : * but it doesn't matter because we'll end up deciding the row is
3502 : * out of frame. We do not attempt to avoid fetching rows past
3503 : * end of frame; that would happen in some cases anyway.
3504 : */
3505 4164 : switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION)
3506 : {
3507 3504 : case 0:
3508 : /* no adjustment needed */
3509 3504 : break;
3510 240 : case FRAMEOPTION_EXCLUDE_CURRENT_ROW:
3511 240 : if (abs_pos >= winstate->currentpos &&
3512 186 : winstate->currentpos >= winstate->frameheadpos)
3513 66 : abs_pos++;
3514 240 : break;
3515 120 : case FRAMEOPTION_EXCLUDE_GROUP:
3516 120 : update_grouptailpos(winstate);
3517 120 : if (abs_pos >= winstate->groupheadpos &&
3518 72 : winstate->grouptailpos > winstate->frameheadpos)
3519 : {
3520 72 : int64 overlapstart = Max(winstate->groupheadpos,
3521 : winstate->frameheadpos);
3522 :
3523 72 : abs_pos += winstate->grouptailpos - overlapstart;
3524 : }
3525 120 : break;
3526 300 : case FRAMEOPTION_EXCLUDE_TIES:
3527 300 : update_grouptailpos(winstate);
3528 300 : if (abs_pos >= winstate->groupheadpos &&
3529 204 : winstate->grouptailpos > winstate->frameheadpos)
3530 : {
3531 84 : int64 overlapstart = Max(winstate->groupheadpos,
3532 : winstate->frameheadpos);
3533 :
3534 84 : if (abs_pos == overlapstart)
3535 84 : abs_pos = winstate->currentpos;
3536 : else
3537 0 : abs_pos += winstate->grouptailpos - overlapstart - 1;
3538 : }
3539 300 : break;
3540 0 : default:
3541 0 : elog(ERROR, "unrecognized frame option state: 0x%x",
3542 : winstate->frameOptions);
3543 : break;
3544 : }
3545 4164 : break;
3546 4422 : case WINDOW_SEEK_TAIL:
3547 : /* rejecting relpos > 0 is easy and simplifies code below */
3548 4422 : if (relpos > 0)
3549 0 : goto out_of_frame;
3550 4422 : update_frametailpos(winstate);
3551 4416 : abs_pos = winstate->frametailpos - 1 + relpos;
3552 :
3553 : /*
3554 : * Account for exclusion option if one is active. If there is no
3555 : * exclusion, we can safely set the mark at the accessed row. But
3556 : * if there is, we can only mark the frame start, because we can't
3557 : * be sure how far back in the frame the exclusion might cause us
3558 : * to fetch in future. Furthermore, we have to actually check
3559 : * against frameheadpos here, since it's unsafe to try to fetch a
3560 : * row before frame start if the mark might be there already.
3561 : */
3562 4416 : switch (winstate->frameOptions & FRAMEOPTION_EXCLUSION)
3563 : {
3564 3936 : case 0:
3565 : /* no adjustment needed */
3566 3936 : mark_pos = abs_pos;
3567 3936 : break;
3568 120 : case FRAMEOPTION_EXCLUDE_CURRENT_ROW:
3569 120 : if (abs_pos <= winstate->currentpos &&
3570 12 : winstate->currentpos < winstate->frametailpos)
3571 12 : abs_pos--;
3572 120 : update_frameheadpos(winstate);
3573 120 : if (abs_pos < winstate->frameheadpos)
3574 6 : goto out_of_frame;
3575 114 : mark_pos = winstate->frameheadpos;
3576 114 : break;
3577 240 : case FRAMEOPTION_EXCLUDE_GROUP:
3578 240 : update_grouptailpos(winstate);
3579 240 : if (abs_pos < winstate->grouptailpos &&
3580 54 : winstate->groupheadpos < winstate->frametailpos)
3581 : {
3582 54 : int64 overlapend = Min(winstate->grouptailpos,
3583 : winstate->frametailpos);
3584 :
3585 54 : abs_pos -= overlapend - winstate->groupheadpos;
3586 : }
3587 240 : update_frameheadpos(winstate);
3588 240 : if (abs_pos < winstate->frameheadpos)
3589 54 : goto out_of_frame;
3590 186 : mark_pos = winstate->frameheadpos;
3591 186 : break;
3592 120 : case FRAMEOPTION_EXCLUDE_TIES:
3593 120 : update_grouptailpos(winstate);
3594 120 : if (abs_pos < winstate->grouptailpos &&
3595 36 : winstate->groupheadpos < winstate->frametailpos)
3596 : {
3597 36 : int64 overlapend = Min(winstate->grouptailpos,
3598 : winstate->frametailpos);
3599 :
3600 36 : if (abs_pos == overlapend - 1)
3601 36 : abs_pos = winstate->currentpos;
3602 : else
3603 0 : abs_pos -= overlapend - 1 - winstate->groupheadpos;
3604 : }
3605 120 : update_frameheadpos(winstate);
3606 120 : if (abs_pos < winstate->frameheadpos)
3607 0 : goto out_of_frame;
3608 120 : mark_pos = winstate->frameheadpos;
3609 120 : break;
3610 0 : default:
3611 0 : elog(ERROR, "unrecognized frame option state: 0x%x",
3612 : winstate->frameOptions);
3613 : mark_pos = 0; /* keep compiler quiet */
3614 : break;
3615 : }
3616 4356 : break;
3617 0 : default:
3618 0 : elog(ERROR, "unrecognized window seek type: %d", seektype);
3619 : abs_pos = mark_pos = 0; /* keep compiler quiet */
3620 : break;
3621 : }
3622 :
3623 8520 : if (!window_gettupleslot(winobj, abs_pos, slot))
3624 396 : goto out_of_frame;
3625 :
3626 : /* The code above does not detect all out-of-frame cases, so check */
3627 8124 : if (row_is_in_frame(winstate, abs_pos, slot) <= 0)
3628 300 : goto out_of_frame;
3629 :
3630 7794 : if (isout)
3631 0 : *isout = false;
3632 7794 : if (set_mark)
3633 7752 : WinSetMarkPosition(winobj, mark_pos);
3634 7794 : econtext->ecxt_outertuple = slot;
3635 7794 : return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
3636 : econtext, isnull);
3637 :
3638 756 : out_of_frame:
3639 756 : if (isout)
3640 0 : *isout = true;
3641 756 : *isnull = true;
3642 756 : return (Datum) 0;
3643 : }
3644 :
3645 : /*
3646 : * WinGetFuncArgCurrent
3647 : * Evaluate a window function's argument expression on the current row.
3648 : *
3649 : * argno: argument number to evaluate (counted from 0)
3650 : * isnull: output argument, receives isnull status of result
3651 : *
3652 : * Note: this isn't quite equivalent to WinGetFuncArgInPartition or
3653 : * WinGetFuncArgInFrame targeting the current row, because it will succeed
3654 : * even if the WindowObject's mark has been set beyond the current row.
3655 : * This should generally be used for "ordinary" arguments of a window
3656 : * function, such as the offset argument of lead() or lag().
3657 : */
3658 : Datum
3659 1164 : WinGetFuncArgCurrent(WindowObject winobj, int argno, bool *isnull)
3660 : {
3661 : WindowAggState *winstate;
3662 : ExprContext *econtext;
3663 :
3664 : Assert(WindowObjectIsValid(winobj));
3665 1164 : winstate = winobj->winstate;
3666 :
3667 1164 : econtext = winstate->ss.ps.ps_ExprContext;
3668 :
3669 1164 : econtext->ecxt_outertuple = winstate->ss.ss_ScanTupleSlot;
3670 1164 : return ExecEvalExpr((ExprState *) list_nth(winobj->argstates, argno),
3671 : econtext, isnull);
3672 : }
|