Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * nodeModifyTable.c
4 : * routines to handle ModifyTable nodes.
5 : *
6 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : *
10 : * IDENTIFICATION
11 : * src/backend/executor/nodeModifyTable.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : /* INTERFACE ROUTINES
16 : * ExecInitModifyTable - initialize the ModifyTable node
17 : * ExecModifyTable - retrieve the next tuple from the node
18 : * ExecEndModifyTable - shut down the ModifyTable node
19 : * ExecReScanModifyTable - rescan the ModifyTable node
20 : *
21 : * NOTES
22 : * The ModifyTable node receives input from its outerPlan, which is
23 : * the data to insert for INSERT cases, the changed columns' new
24 : * values plus row-locating info for UPDATE and MERGE cases, or just the
25 : * row-locating info for DELETE cases.
26 : *
27 : * The relation to modify can be an ordinary table, a foreign table, or a
28 : * view. If it's a view, either it has sufficient INSTEAD OF triggers or
29 : * this node executes only MERGE ... DO NOTHING. If the original MERGE
30 : * targeted a view not in one of those two categories, earlier processing
31 : * already pointed the ModifyTable result relation to an underlying
32 : * relation of that other view. This node does process
33 : * ri_WithCheckOptions, which may have expressions from those other,
34 : * automatically updatable views.
35 : *
36 : * MERGE runs a join between the source relation and the target table.
37 : * If any WHEN NOT MATCHED [BY TARGET] clauses are present, then the join
38 : * is an outer join that might output tuples without a matching target
39 : * tuple. In this case, any unmatched target tuples will have NULL
40 : * row-locating info, and only INSERT can be run. But for matched target
41 : * tuples, the row-locating info is used to determine the tuple to UPDATE
42 : * or DELETE. When all clauses are WHEN MATCHED or WHEN NOT MATCHED BY
43 : * SOURCE, all tuples produced by the join will include a matching target
44 : * tuple, so all tuples contain row-locating info.
45 : *
46 : * If the query specifies RETURNING, then the ModifyTable returns a
47 : * RETURNING tuple after completing each row insert, update, or delete.
48 : * It must be called again to continue the operation. Without RETURNING,
49 : * we just loop within the node until all the work is done, then
50 : * return NULL. This avoids useless call/return overhead.
51 : */
52 :
53 : #include "postgres.h"
54 :
55 : #include "access/htup_details.h"
56 : #include "access/tableam.h"
57 : #include "access/xact.h"
58 : #include "commands/trigger.h"
59 : #include "executor/execPartition.h"
60 : #include "executor/executor.h"
61 : #include "executor/nodeModifyTable.h"
62 : #include "foreign/fdwapi.h"
63 : #include "miscadmin.h"
64 : #include "nodes/nodeFuncs.h"
65 : #include "optimizer/optimizer.h"
66 : #include "rewrite/rewriteHandler.h"
67 : #include "rewrite/rewriteManip.h"
68 : #include "storage/lmgr.h"
69 : #include "utils/builtins.h"
70 : #include "utils/datum.h"
71 : #include "utils/rel.h"
72 : #include "utils/snapmgr.h"
73 :
74 :
75 : typedef struct MTTargetRelLookup
76 : {
77 : Oid relationOid; /* hash key, must be first */
78 : int relationIndex; /* rel's index in resultRelInfo[] array */
79 : } MTTargetRelLookup;
80 :
81 : /*
82 : * Context struct for a ModifyTable operation, containing basic execution
83 : * state and some output variables populated by ExecUpdateAct() and
84 : * ExecDeleteAct() to report the result of their actions to callers.
85 : */
86 : typedef struct ModifyTableContext
87 : {
88 : /* Operation state */
89 : ModifyTableState *mtstate;
90 : EPQState *epqstate;
91 : EState *estate;
92 :
93 : /*
94 : * Slot containing tuple obtained from ModifyTable's subplan. Used to
95 : * access "junk" columns that are not going to be stored.
96 : */
97 : TupleTableSlot *planSlot;
98 :
99 : /*
100 : * Information about the changes that were made concurrently to a tuple
101 : * being updated or deleted
102 : */
103 : TM_FailureData tmfd;
104 :
105 : /*
106 : * The tuple deleted when doing a cross-partition UPDATE with a RETURNING
107 : * clause that refers to OLD columns (converted to the root's tuple
108 : * descriptor).
109 : */
110 : TupleTableSlot *cpDeletedSlot;
111 :
112 : /*
113 : * The tuple projected by the INSERT's RETURNING clause, when doing a
114 : * cross-partition UPDATE
115 : */
116 : TupleTableSlot *cpUpdateReturningSlot;
117 : } ModifyTableContext;
118 :
119 : /*
120 : * Context struct containing output data specific to UPDATE operations.
121 : */
122 : typedef struct UpdateContext
123 : {
124 : bool crossPartUpdate; /* was it a cross-partition update? */
125 : TU_UpdateIndexes updateIndexes; /* Which index updates are required? */
126 :
127 : /*
128 : * Lock mode to acquire on the latest tuple version before performing
129 : * EvalPlanQual on it
130 : */
131 : LockTupleMode lockmode;
132 : } UpdateContext;
133 :
134 :
135 : static void ExecBatchInsert(ModifyTableState *mtstate,
136 : ResultRelInfo *resultRelInfo,
137 : TupleTableSlot **slots,
138 : TupleTableSlot **planSlots,
139 : int numSlots,
140 : EState *estate,
141 : bool canSetTag);
142 : static void ExecPendingInserts(EState *estate);
143 : static void ExecCrossPartitionUpdateForeignKey(ModifyTableContext *context,
144 : ResultRelInfo *sourcePartInfo,
145 : ResultRelInfo *destPartInfo,
146 : ItemPointer tupleid,
147 : TupleTableSlot *oldslot,
148 : TupleTableSlot *newslot);
149 : static bool ExecOnConflictUpdate(ModifyTableContext *context,
150 : ResultRelInfo *resultRelInfo,
151 : ItemPointer conflictTid,
152 : TupleTableSlot *excludedSlot,
153 : bool canSetTag,
154 : TupleTableSlot **returning);
155 : static TupleTableSlot *ExecPrepareTupleRouting(ModifyTableState *mtstate,
156 : EState *estate,
157 : PartitionTupleRouting *proute,
158 : ResultRelInfo *targetRelInfo,
159 : TupleTableSlot *slot,
160 : ResultRelInfo **partRelInfo);
161 :
162 : static TupleTableSlot *ExecMerge(ModifyTableContext *context,
163 : ResultRelInfo *resultRelInfo,
164 : ItemPointer tupleid,
165 : HeapTuple oldtuple,
166 : bool canSetTag);
167 : static void ExecInitMerge(ModifyTableState *mtstate, EState *estate);
168 : static TupleTableSlot *ExecMergeMatched(ModifyTableContext *context,
169 : ResultRelInfo *resultRelInfo,
170 : ItemPointer tupleid,
171 : HeapTuple oldtuple,
172 : bool canSetTag,
173 : bool *matched);
174 : static TupleTableSlot *ExecMergeNotMatched(ModifyTableContext *context,
175 : ResultRelInfo *resultRelInfo,
176 : bool canSetTag);
177 :
178 :
179 : /*
180 : * Verify that the tuples to be produced by INSERT match the
181 : * target relation's rowtype
182 : *
183 : * We do this to guard against stale plans. If plan invalidation is
184 : * functioning properly then we should never get a failure here, but better
185 : * safe than sorry. Note that this is called after we have obtained lock
186 : * on the target rel, so the rowtype can't change underneath us.
187 : *
188 : * The plan output is represented by its targetlist, because that makes
189 : * handling the dropped-column case easier.
190 : *
191 : * We used to use this for UPDATE as well, but now the equivalent checks
192 : * are done in ExecBuildUpdateProjection.
193 : */
194 : static void
195 87358 : ExecCheckPlanOutput(Relation resultRel, List *targetList)
196 : {
197 87358 : TupleDesc resultDesc = RelationGetDescr(resultRel);
198 87358 : int attno = 0;
199 : ListCell *lc;
200 :
201 269368 : foreach(lc, targetList)
202 : {
203 182010 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
204 : Form_pg_attribute attr;
205 :
206 : Assert(!tle->resjunk); /* caller removed junk items already */
207 :
208 182010 : if (attno >= resultDesc->natts)
209 0 : ereport(ERROR,
210 : (errcode(ERRCODE_DATATYPE_MISMATCH),
211 : errmsg("table row type and query-specified row type do not match"),
212 : errdetail("Query has too many columns.")));
213 182010 : attr = TupleDescAttr(resultDesc, attno);
214 182010 : attno++;
215 :
216 : /*
217 : * Special cases here should match planner's expand_insert_targetlist.
218 : */
219 182010 : if (attr->attisdropped)
220 : {
221 : /*
222 : * For a dropped column, we can't check atttypid (it's likely 0).
223 : * In any case the planner has most likely inserted an INT4 null.
224 : * What we insist on is just *some* NULL constant.
225 : */
226 622 : if (!IsA(tle->expr, Const) ||
227 622 : !((Const *) tle->expr)->constisnull)
228 0 : ereport(ERROR,
229 : (errcode(ERRCODE_DATATYPE_MISMATCH),
230 : errmsg("table row type and query-specified row type do not match"),
231 : errdetail("Query provides a value for a dropped column at ordinal position %d.",
232 : attno)));
233 : }
234 181388 : else if (attr->attgenerated)
235 : {
236 : /*
237 : * For a generated column, the planner will have inserted a null
238 : * of the column's base type (to avoid possibly failing on domain
239 : * not-null constraints). It doesn't seem worth insisting on that
240 : * exact type though, since a null value is type-independent. As
241 : * above, just insist on *some* NULL constant.
242 : */
243 1104 : if (!IsA(tle->expr, Const) ||
244 1104 : !((Const *) tle->expr)->constisnull)
245 0 : ereport(ERROR,
246 : (errcode(ERRCODE_DATATYPE_MISMATCH),
247 : errmsg("table row type and query-specified row type do not match"),
248 : errdetail("Query provides a value for a generated column at ordinal position %d.",
249 : attno)));
250 : }
251 : else
252 : {
253 : /* Normal case: demand type match */
254 180284 : if (exprType((Node *) tle->expr) != attr->atttypid)
255 0 : ereport(ERROR,
256 : (errcode(ERRCODE_DATATYPE_MISMATCH),
257 : errmsg("table row type and query-specified row type do not match"),
258 : errdetail("Table has type %s at ordinal position %d, but query expects %s.",
259 : format_type_be(attr->atttypid),
260 : attno,
261 : format_type_be(exprType((Node *) tle->expr)))));
262 : }
263 : }
264 87358 : if (attno != resultDesc->natts)
265 0 : ereport(ERROR,
266 : (errcode(ERRCODE_DATATYPE_MISMATCH),
267 : errmsg("table row type and query-specified row type do not match"),
268 : errdetail("Query has too few columns.")));
269 87358 : }
270 :
271 : /*
272 : * ExecProcessReturning --- evaluate a RETURNING list
273 : *
274 : * context: context for the ModifyTable operation
275 : * resultRelInfo: current result rel
276 : * cmdType: operation/merge action performed (INSERT, UPDATE, or DELETE)
277 : * oldSlot: slot holding old tuple deleted or updated
278 : * newSlot: slot holding new tuple inserted or updated
279 : * planSlot: slot holding tuple returned by top subplan node
280 : *
281 : * Note: If oldSlot and newSlot are NULL, the FDW should have already provided
282 : * econtext's scan tuple and its old & new tuples are not needed (FDW direct-
283 : * modify is disabled if the RETURNING list refers to any OLD/NEW values).
284 : *
285 : * Returns a slot holding the result tuple
286 : */
287 : static TupleTableSlot *
288 8060 : ExecProcessReturning(ModifyTableContext *context,
289 : ResultRelInfo *resultRelInfo,
290 : CmdType cmdType,
291 : TupleTableSlot *oldSlot,
292 : TupleTableSlot *newSlot,
293 : TupleTableSlot *planSlot)
294 : {
295 8060 : EState *estate = context->estate;
296 8060 : ProjectionInfo *projectReturning = resultRelInfo->ri_projectReturning;
297 8060 : ExprContext *econtext = projectReturning->pi_exprContext;
298 :
299 : /* Make tuple and any needed join variables available to ExecProject */
300 8060 : switch (cmdType)
301 : {
302 6630 : case CMD_INSERT:
303 : case CMD_UPDATE:
304 : /* return new tuple by default */
305 6630 : if (newSlot)
306 6174 : econtext->ecxt_scantuple = newSlot;
307 6630 : break;
308 :
309 1430 : case CMD_DELETE:
310 : /* return old tuple by default */
311 1430 : if (oldSlot)
312 1192 : econtext->ecxt_scantuple = oldSlot;
313 1430 : break;
314 :
315 0 : default:
316 0 : elog(ERROR, "unrecognized commandType: %d", (int) cmdType);
317 : }
318 8060 : econtext->ecxt_outertuple = planSlot;
319 :
320 : /* Make old/new tuples available to ExecProject, if required */
321 8060 : if (oldSlot)
322 3806 : econtext->ecxt_oldtuple = oldSlot;
323 4254 : else if (projectReturning->pi_state.flags & EEO_FLAG_HAS_OLD)
324 180 : econtext->ecxt_oldtuple = ExecGetAllNullSlot(estate, resultRelInfo);
325 : else
326 4074 : econtext->ecxt_oldtuple = NULL; /* No references to OLD columns */
327 :
328 8060 : if (newSlot)
329 6174 : econtext->ecxt_newtuple = newSlot;
330 1886 : else if (projectReturning->pi_state.flags & EEO_FLAG_HAS_NEW)
331 132 : econtext->ecxt_newtuple = ExecGetAllNullSlot(estate, resultRelInfo);
332 : else
333 1754 : econtext->ecxt_newtuple = NULL; /* No references to NEW columns */
334 :
335 : /*
336 : * Tell ExecProject whether or not the OLD/NEW rows actually exist. This
337 : * information is required to evaluate ReturningExpr nodes and also in
338 : * ExecEvalSysVar() and ExecEvalWholeRowVar().
339 : */
340 8060 : if (oldSlot == NULL)
341 4254 : projectReturning->pi_state.flags |= EEO_FLAG_OLD_IS_NULL;
342 : else
343 3806 : projectReturning->pi_state.flags &= ~EEO_FLAG_OLD_IS_NULL;
344 :
345 8060 : if (newSlot == NULL)
346 1886 : projectReturning->pi_state.flags |= EEO_FLAG_NEW_IS_NULL;
347 : else
348 6174 : projectReturning->pi_state.flags &= ~EEO_FLAG_NEW_IS_NULL;
349 :
350 : /* Compute the RETURNING expressions */
351 8060 : return ExecProject(projectReturning);
352 : }
353 :
354 : /*
355 : * ExecCheckTupleVisible -- verify tuple is visible
356 : *
357 : * It would not be consistent with guarantees of the higher isolation levels to
358 : * proceed with avoiding insertion (taking speculative insertion's alternative
359 : * path) on the basis of another tuple that is not visible to MVCC snapshot.
360 : * Check for the need to raise a serialization failure, and do so as necessary.
361 : */
362 : static void
363 5244 : ExecCheckTupleVisible(EState *estate,
364 : Relation rel,
365 : TupleTableSlot *slot)
366 : {
367 5244 : if (!IsolationUsesXactSnapshot())
368 5180 : return;
369 :
370 64 : if (!table_tuple_satisfies_snapshot(rel, slot, estate->es_snapshot))
371 : {
372 : Datum xminDatum;
373 : TransactionId xmin;
374 : bool isnull;
375 :
376 40 : xminDatum = slot_getsysattr(slot, MinTransactionIdAttributeNumber, &isnull);
377 : Assert(!isnull);
378 40 : xmin = DatumGetTransactionId(xminDatum);
379 :
380 : /*
381 : * We should not raise a serialization failure if the conflict is
382 : * against a tuple inserted by our own transaction, even if it's not
383 : * visible to our snapshot. (This would happen, for example, if
384 : * conflicting keys are proposed for insertion in a single command.)
385 : */
386 40 : if (!TransactionIdIsCurrentTransactionId(xmin))
387 20 : ereport(ERROR,
388 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
389 : errmsg("could not serialize access due to concurrent update")));
390 : }
391 : }
392 :
393 : /*
394 : * ExecCheckTIDVisible -- convenience variant of ExecCheckTupleVisible()
395 : */
396 : static void
397 212 : ExecCheckTIDVisible(EState *estate,
398 : ResultRelInfo *relinfo,
399 : ItemPointer tid,
400 : TupleTableSlot *tempSlot)
401 : {
402 212 : Relation rel = relinfo->ri_RelationDesc;
403 :
404 : /* Redundantly check isolation level */
405 212 : if (!IsolationUsesXactSnapshot())
406 148 : return;
407 :
408 64 : if (!table_tuple_fetch_row_version(rel, tid, SnapshotAny, tempSlot))
409 0 : elog(ERROR, "failed to fetch conflicting tuple for ON CONFLICT");
410 64 : ExecCheckTupleVisible(estate, rel, tempSlot);
411 44 : ExecClearTuple(tempSlot);
412 : }
413 :
414 : /*
415 : * Initialize generated columns handling for a tuple
416 : *
417 : * This fills the resultRelInfo's ri_GeneratedExprsI/ri_NumGeneratedNeededI or
418 : * ri_GeneratedExprsU/ri_NumGeneratedNeededU fields, depending on cmdtype.
419 : * This is used only for stored generated columns.
420 : *
421 : * If cmdType == CMD_UPDATE, the ri_extraUpdatedCols field is filled too.
422 : * This is used by both stored and virtual generated columns.
423 : *
424 : * Note: usually, a given query would need only one of ri_GeneratedExprsI and
425 : * ri_GeneratedExprsU per result rel; but MERGE can need both, and so can
426 : * cross-partition UPDATEs, since a partition might be the target of both
427 : * UPDATE and INSERT actions.
428 : */
429 : void
430 59386 : ExecInitGenerated(ResultRelInfo *resultRelInfo,
431 : EState *estate,
432 : CmdType cmdtype)
433 : {
434 59386 : Relation rel = resultRelInfo->ri_RelationDesc;
435 59386 : TupleDesc tupdesc = RelationGetDescr(rel);
436 59386 : int natts = tupdesc->natts;
437 : ExprState **ri_GeneratedExprs;
438 : int ri_NumGeneratedNeeded;
439 : Bitmapset *updatedCols;
440 : MemoryContext oldContext;
441 :
442 : /* Nothing to do if no generated columns */
443 59386 : if (!(tupdesc->constr && (tupdesc->constr->has_generated_stored || tupdesc->constr->has_generated_virtual)))
444 58310 : return;
445 :
446 : /*
447 : * In an UPDATE, we can skip computing any generated columns that do not
448 : * depend on any UPDATE target column. But if there is a BEFORE ROW
449 : * UPDATE trigger, we cannot skip because the trigger might change more
450 : * columns.
451 : */
452 1076 : if (cmdtype == CMD_UPDATE &&
453 250 : !(rel->trigdesc && rel->trigdesc->trig_update_before_row))
454 206 : updatedCols = ExecGetUpdatedCols(resultRelInfo, estate);
455 : else
456 870 : updatedCols = NULL;
457 :
458 : /*
459 : * Make sure these data structures are built in the per-query memory
460 : * context so they'll survive throughout the query.
461 : */
462 1076 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
463 :
464 1076 : ri_GeneratedExprs = (ExprState **) palloc0(natts * sizeof(ExprState *));
465 1076 : ri_NumGeneratedNeeded = 0;
466 :
467 4140 : for (int i = 0; i < natts; i++)
468 : {
469 3070 : char attgenerated = TupleDescAttr(tupdesc, i)->attgenerated;
470 :
471 3070 : if (attgenerated)
472 : {
473 : Expr *expr;
474 :
475 : /* Fetch the GENERATED AS expression tree */
476 1166 : expr = (Expr *) build_column_default(rel, i + 1);
477 1166 : if (expr == NULL)
478 0 : elog(ERROR, "no generation expression found for column number %d of table \"%s\"",
479 : i + 1, RelationGetRelationName(rel));
480 :
481 : /*
482 : * If it's an update with a known set of update target columns,
483 : * see if we can skip the computation.
484 : */
485 1166 : if (updatedCols)
486 : {
487 220 : Bitmapset *attrs_used = NULL;
488 :
489 220 : pull_varattnos((Node *) expr, 1, &attrs_used);
490 :
491 220 : if (!bms_overlap(updatedCols, attrs_used))
492 24 : continue; /* need not update this column */
493 : }
494 :
495 : /* No luck, so prepare the expression for execution */
496 1142 : if (attgenerated == ATTRIBUTE_GENERATED_STORED)
497 : {
498 1058 : ri_GeneratedExprs[i] = ExecPrepareExpr(expr, estate);
499 1052 : ri_NumGeneratedNeeded++;
500 : }
501 :
502 : /* If UPDATE, mark column in resultRelInfo->ri_extraUpdatedCols */
503 1136 : if (cmdtype == CMD_UPDATE)
504 248 : resultRelInfo->ri_extraUpdatedCols =
505 248 : bms_add_member(resultRelInfo->ri_extraUpdatedCols,
506 : i + 1 - FirstLowInvalidHeapAttributeNumber);
507 : }
508 : }
509 :
510 1070 : if (ri_NumGeneratedNeeded == 0)
511 : {
512 : /* didn't need it after all */
513 42 : pfree(ri_GeneratedExprs);
514 42 : ri_GeneratedExprs = NULL;
515 : }
516 :
517 : /* Save in appropriate set of fields */
518 1070 : if (cmdtype == CMD_UPDATE)
519 : {
520 : /* Don't call twice */
521 : Assert(resultRelInfo->ri_GeneratedExprsU == NULL);
522 :
523 250 : resultRelInfo->ri_GeneratedExprsU = ri_GeneratedExprs;
524 250 : resultRelInfo->ri_NumGeneratedNeededU = ri_NumGeneratedNeeded;
525 :
526 250 : resultRelInfo->ri_extraUpdatedCols_valid = true;
527 : }
528 : else
529 : {
530 : /* Don't call twice */
531 : Assert(resultRelInfo->ri_GeneratedExprsI == NULL);
532 :
533 820 : resultRelInfo->ri_GeneratedExprsI = ri_GeneratedExprs;
534 820 : resultRelInfo->ri_NumGeneratedNeededI = ri_NumGeneratedNeeded;
535 : }
536 :
537 1070 : MemoryContextSwitchTo(oldContext);
538 : }
539 :
540 : /*
541 : * Compute stored generated columns for a tuple
542 : */
543 : void
544 1458 : ExecComputeStoredGenerated(ResultRelInfo *resultRelInfo,
545 : EState *estate, TupleTableSlot *slot,
546 : CmdType cmdtype)
547 : {
548 1458 : Relation rel = resultRelInfo->ri_RelationDesc;
549 1458 : TupleDesc tupdesc = RelationGetDescr(rel);
550 1458 : int natts = tupdesc->natts;
551 1458 : ExprContext *econtext = GetPerTupleExprContext(estate);
552 : ExprState **ri_GeneratedExprs;
553 : MemoryContext oldContext;
554 : Datum *values;
555 : bool *nulls;
556 :
557 : /* We should not be called unless this is true */
558 : Assert(tupdesc->constr && tupdesc->constr->has_generated_stored);
559 :
560 : /*
561 : * Initialize the expressions if we didn't already, and check whether we
562 : * can exit early because nothing needs to be computed.
563 : */
564 1458 : if (cmdtype == CMD_UPDATE)
565 : {
566 262 : if (resultRelInfo->ri_GeneratedExprsU == NULL)
567 200 : ExecInitGenerated(resultRelInfo, estate, cmdtype);
568 262 : if (resultRelInfo->ri_NumGeneratedNeededU == 0)
569 18 : return;
570 244 : ri_GeneratedExprs = resultRelInfo->ri_GeneratedExprsU;
571 : }
572 : else
573 : {
574 1196 : if (resultRelInfo->ri_GeneratedExprsI == NULL)
575 826 : ExecInitGenerated(resultRelInfo, estate, cmdtype);
576 : /* Early exit is impossible given the prior Assert */
577 : Assert(resultRelInfo->ri_NumGeneratedNeededI > 0);
578 1190 : ri_GeneratedExprs = resultRelInfo->ri_GeneratedExprsI;
579 : }
580 :
581 1434 : oldContext = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
582 :
583 1434 : values = palloc(sizeof(*values) * natts);
584 1434 : nulls = palloc(sizeof(*nulls) * natts);
585 :
586 1434 : slot_getallattrs(slot);
587 1434 : memcpy(nulls, slot->tts_isnull, sizeof(*nulls) * natts);
588 :
589 5364 : for (int i = 0; i < natts; i++)
590 : {
591 3954 : CompactAttribute *attr = TupleDescCompactAttr(tupdesc, i);
592 :
593 3954 : if (ri_GeneratedExprs[i])
594 : {
595 : Datum val;
596 : bool isnull;
597 :
598 : Assert(TupleDescAttr(tupdesc, i)->attgenerated == ATTRIBUTE_GENERATED_STORED);
599 :
600 1468 : econtext->ecxt_scantuple = slot;
601 :
602 1468 : val = ExecEvalExpr(ri_GeneratedExprs[i], econtext, &isnull);
603 :
604 : /*
605 : * We must make a copy of val as we have no guarantees about where
606 : * memory for a pass-by-reference Datum is located.
607 : */
608 1444 : if (!isnull)
609 1390 : val = datumCopy(val, attr->attbyval, attr->attlen);
610 :
611 1444 : values[i] = val;
612 1444 : nulls[i] = isnull;
613 : }
614 : else
615 : {
616 2486 : if (!nulls[i])
617 2336 : values[i] = datumCopy(slot->tts_values[i], attr->attbyval, attr->attlen);
618 : }
619 : }
620 :
621 1410 : ExecClearTuple(slot);
622 1410 : memcpy(slot->tts_values, values, sizeof(*values) * natts);
623 1410 : memcpy(slot->tts_isnull, nulls, sizeof(*nulls) * natts);
624 1410 : ExecStoreVirtualTuple(slot);
625 1410 : ExecMaterializeSlot(slot);
626 :
627 1410 : MemoryContextSwitchTo(oldContext);
628 : }
629 :
630 : /*
631 : * ExecInitInsertProjection
632 : * Do one-time initialization of projection data for INSERT tuples.
633 : *
634 : * INSERT queries may need a projection to filter out junk attrs in the tlist.
635 : *
636 : * This is also a convenient place to verify that the
637 : * output of an INSERT matches the target table.
638 : */
639 : static void
640 86312 : ExecInitInsertProjection(ModifyTableState *mtstate,
641 : ResultRelInfo *resultRelInfo)
642 : {
643 86312 : ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
644 86312 : Plan *subplan = outerPlan(node);
645 86312 : EState *estate = mtstate->ps.state;
646 86312 : List *insertTargetList = NIL;
647 86312 : bool need_projection = false;
648 : ListCell *l;
649 :
650 : /* Extract non-junk columns of the subplan's result tlist. */
651 265596 : foreach(l, subplan->targetlist)
652 : {
653 179284 : TargetEntry *tle = (TargetEntry *) lfirst(l);
654 :
655 179284 : if (!tle->resjunk)
656 179284 : insertTargetList = lappend(insertTargetList, tle);
657 : else
658 0 : need_projection = true;
659 : }
660 :
661 : /*
662 : * The junk-free list must produce a tuple suitable for the result
663 : * relation.
664 : */
665 86312 : ExecCheckPlanOutput(resultRelInfo->ri_RelationDesc, insertTargetList);
666 :
667 : /* We'll need a slot matching the table's format. */
668 86312 : resultRelInfo->ri_newTupleSlot =
669 86312 : table_slot_create(resultRelInfo->ri_RelationDesc,
670 : &estate->es_tupleTable);
671 :
672 : /* Build ProjectionInfo if needed (it probably isn't). */
673 86312 : if (need_projection)
674 : {
675 0 : TupleDesc relDesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
676 :
677 : /* need an expression context to do the projection */
678 0 : if (mtstate->ps.ps_ExprContext == NULL)
679 0 : ExecAssignExprContext(estate, &mtstate->ps);
680 :
681 0 : resultRelInfo->ri_projectNew =
682 0 : ExecBuildProjectionInfo(insertTargetList,
683 : mtstate->ps.ps_ExprContext,
684 : resultRelInfo->ri_newTupleSlot,
685 : &mtstate->ps,
686 : relDesc);
687 : }
688 :
689 86312 : resultRelInfo->ri_projectNewInfoValid = true;
690 86312 : }
691 :
692 : /*
693 : * ExecInitUpdateProjection
694 : * Do one-time initialization of projection data for UPDATE tuples.
695 : *
696 : * UPDATE always needs a projection, because (1) there's always some junk
697 : * attrs, and (2) we may need to merge values of not-updated columns from
698 : * the old tuple into the final tuple. In UPDATE, the tuple arriving from
699 : * the subplan contains only new values for the changed columns, plus row
700 : * identity info in the junk attrs.
701 : *
702 : * This is "one-time" for any given result rel, but we might touch more than
703 : * one result rel in the course of an inherited UPDATE, and each one needs
704 : * its own projection due to possible column order variation.
705 : *
706 : * This is also a convenient place to verify that the output of an UPDATE
707 : * matches the target table (ExecBuildUpdateProjection does that).
708 : */
709 : static void
710 13226 : ExecInitUpdateProjection(ModifyTableState *mtstate,
711 : ResultRelInfo *resultRelInfo)
712 : {
713 13226 : ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
714 13226 : Plan *subplan = outerPlan(node);
715 13226 : EState *estate = mtstate->ps.state;
716 13226 : TupleDesc relDesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
717 : int whichrel;
718 : List *updateColnos;
719 :
720 : /*
721 : * Usually, mt_lastResultIndex matches the target rel. If it happens not
722 : * to, we can get the index the hard way with an integer division.
723 : */
724 13226 : whichrel = mtstate->mt_lastResultIndex;
725 13226 : if (resultRelInfo != mtstate->resultRelInfo + whichrel)
726 : {
727 0 : whichrel = resultRelInfo - mtstate->resultRelInfo;
728 : Assert(whichrel >= 0 && whichrel < mtstate->mt_nrels);
729 : }
730 :
731 13226 : updateColnos = (List *) list_nth(mtstate->mt_updateColnosLists, whichrel);
732 :
733 : /*
734 : * For UPDATE, we use the old tuple to fill up missing values in the tuple
735 : * produced by the subplan to get the new tuple. We need two slots, both
736 : * matching the table's desired format.
737 : */
738 13226 : resultRelInfo->ri_oldTupleSlot =
739 13226 : table_slot_create(resultRelInfo->ri_RelationDesc,
740 : &estate->es_tupleTable);
741 13226 : resultRelInfo->ri_newTupleSlot =
742 13226 : table_slot_create(resultRelInfo->ri_RelationDesc,
743 : &estate->es_tupleTable);
744 :
745 : /* need an expression context to do the projection */
746 13226 : if (mtstate->ps.ps_ExprContext == NULL)
747 11836 : ExecAssignExprContext(estate, &mtstate->ps);
748 :
749 13226 : resultRelInfo->ri_projectNew =
750 13226 : ExecBuildUpdateProjection(subplan->targetlist,
751 : false, /* subplan did the evaluation */
752 : updateColnos,
753 : relDesc,
754 : mtstate->ps.ps_ExprContext,
755 : resultRelInfo->ri_newTupleSlot,
756 : &mtstate->ps);
757 :
758 13226 : resultRelInfo->ri_projectNewInfoValid = true;
759 13226 : }
760 :
761 : /*
762 : * ExecGetInsertNewTuple
763 : * This prepares a "new" tuple ready to be inserted into given result
764 : * relation, by removing any junk columns of the plan's output tuple
765 : * and (if necessary) coercing the tuple to the right tuple format.
766 : */
767 : static TupleTableSlot *
768 12191742 : ExecGetInsertNewTuple(ResultRelInfo *relinfo,
769 : TupleTableSlot *planSlot)
770 : {
771 12191742 : ProjectionInfo *newProj = relinfo->ri_projectNew;
772 : ExprContext *econtext;
773 :
774 : /*
775 : * If there's no projection to be done, just make sure the slot is of the
776 : * right type for the target rel. If the planSlot is the right type we
777 : * can use it as-is, else copy the data into ri_newTupleSlot.
778 : */
779 12191742 : if (newProj == NULL)
780 : {
781 12191742 : if (relinfo->ri_newTupleSlot->tts_ops != planSlot->tts_ops)
782 : {
783 11410646 : ExecCopySlot(relinfo->ri_newTupleSlot, planSlot);
784 11410646 : return relinfo->ri_newTupleSlot;
785 : }
786 : else
787 781096 : return planSlot;
788 : }
789 :
790 : /*
791 : * Else project; since the projection output slot is ri_newTupleSlot, this
792 : * will also fix any slot-type problem.
793 : *
794 : * Note: currently, this is dead code, because INSERT cases don't receive
795 : * any junk columns so there's never a projection to be done.
796 : */
797 0 : econtext = newProj->pi_exprContext;
798 0 : econtext->ecxt_outertuple = planSlot;
799 0 : return ExecProject(newProj);
800 : }
801 :
802 : /*
803 : * ExecGetUpdateNewTuple
804 : * This prepares a "new" tuple by combining an UPDATE subplan's output
805 : * tuple (which contains values of changed columns) with unchanged
806 : * columns taken from the old tuple.
807 : *
808 : * The subplan tuple might also contain junk columns, which are ignored.
809 : * Note that the projection also ensures we have a slot of the right type.
810 : */
811 : TupleTableSlot *
812 317858 : ExecGetUpdateNewTuple(ResultRelInfo *relinfo,
813 : TupleTableSlot *planSlot,
814 : TupleTableSlot *oldSlot)
815 : {
816 317858 : ProjectionInfo *newProj = relinfo->ri_projectNew;
817 : ExprContext *econtext;
818 :
819 : /* Use a few extra Asserts to protect against outside callers */
820 : Assert(relinfo->ri_projectNewInfoValid);
821 : Assert(planSlot != NULL && !TTS_EMPTY(planSlot));
822 : Assert(oldSlot != NULL && !TTS_EMPTY(oldSlot));
823 :
824 317858 : econtext = newProj->pi_exprContext;
825 317858 : econtext->ecxt_outertuple = planSlot;
826 317858 : econtext->ecxt_scantuple = oldSlot;
827 317858 : return ExecProject(newProj);
828 : }
829 :
830 : /* ----------------------------------------------------------------
831 : * ExecInsert
832 : *
833 : * For INSERT, we have to insert the tuple into the target relation
834 : * (or partition thereof) and insert appropriate tuples into the index
835 : * relations.
836 : *
837 : * slot contains the new tuple value to be stored.
838 : *
839 : * Returns RETURNING result if any, otherwise NULL.
840 : * *inserted_tuple is the tuple that's effectively inserted;
841 : * *insert_destrel is the relation where it was inserted.
842 : * These are only set on success.
843 : *
844 : * This may change the currently active tuple conversion map in
845 : * mtstate->mt_transition_capture, so the callers must take care to
846 : * save the previous value to avoid losing track of it.
847 : * ----------------------------------------------------------------
848 : */
849 : static TupleTableSlot *
850 12194524 : ExecInsert(ModifyTableContext *context,
851 : ResultRelInfo *resultRelInfo,
852 : TupleTableSlot *slot,
853 : bool canSetTag,
854 : TupleTableSlot **inserted_tuple,
855 : ResultRelInfo **insert_destrel)
856 : {
857 12194524 : ModifyTableState *mtstate = context->mtstate;
858 12194524 : EState *estate = context->estate;
859 : Relation resultRelationDesc;
860 12194524 : List *recheckIndexes = NIL;
861 12194524 : TupleTableSlot *planSlot = context->planSlot;
862 12194524 : TupleTableSlot *result = NULL;
863 : TransitionCaptureState *ar_insert_trig_tcs;
864 12194524 : ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
865 12194524 : OnConflictAction onconflict = node->onConflictAction;
866 12194524 : PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing;
867 : MemoryContext oldContext;
868 :
869 : /*
870 : * If the input result relation is a partitioned table, find the leaf
871 : * partition to insert the tuple into.
872 : */
873 12194524 : if (proute)
874 : {
875 : ResultRelInfo *partRelInfo;
876 :
877 732332 : slot = ExecPrepareTupleRouting(mtstate, estate, proute,
878 : resultRelInfo, slot,
879 : &partRelInfo);
880 732128 : resultRelInfo = partRelInfo;
881 : }
882 :
883 12194320 : ExecMaterializeSlot(slot);
884 :
885 12194320 : resultRelationDesc = resultRelInfo->ri_RelationDesc;
886 :
887 : /*
888 : * Open the table's indexes, if we have not done so already, so that we
889 : * can add new index entries for the inserted tuple.
890 : */
891 12194320 : if (resultRelationDesc->rd_rel->relhasindex &&
892 3103712 : resultRelInfo->ri_IndexRelationDescs == NULL)
893 31944 : ExecOpenIndices(resultRelInfo, onconflict != ONCONFLICT_NONE);
894 :
895 : /*
896 : * BEFORE ROW INSERT Triggers.
897 : *
898 : * Note: We fire BEFORE ROW TRIGGERS for every attempted insertion in an
899 : * INSERT ... ON CONFLICT statement. We cannot check for constraint
900 : * violations before firing these triggers, because they can change the
901 : * values to insert. Also, they can run arbitrary user-defined code with
902 : * side-effects that we can't cancel by just not inserting the tuple.
903 : */
904 12194320 : if (resultRelInfo->ri_TrigDesc &&
905 75172 : resultRelInfo->ri_TrigDesc->trig_insert_before_row)
906 : {
907 : /* Flush any pending inserts, so rows are visible to the triggers */
908 2054 : if (estate->es_insert_pending_result_relations != NIL)
909 6 : ExecPendingInserts(estate);
910 :
911 2054 : if (!ExecBRInsertTriggers(estate, resultRelInfo, slot))
912 200 : return NULL; /* "do nothing" */
913 : }
914 :
915 : /* INSTEAD OF ROW INSERT Triggers */
916 12194022 : if (resultRelInfo->ri_TrigDesc &&
917 74874 : resultRelInfo->ri_TrigDesc->trig_insert_instead_row)
918 : {
919 168 : if (!ExecIRInsertTriggers(estate, resultRelInfo, slot))
920 6 : return NULL; /* "do nothing" */
921 : }
922 12193854 : else if (resultRelInfo->ri_FdwRoutine)
923 : {
924 : /*
925 : * GENERATED expressions might reference the tableoid column, so
926 : * (re-)initialize tts_tableOid before evaluating them.
927 : */
928 2014 : slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
929 :
930 : /*
931 : * Compute stored generated columns
932 : */
933 2014 : if (resultRelationDesc->rd_att->constr &&
934 366 : resultRelationDesc->rd_att->constr->has_generated_stored)
935 8 : ExecComputeStoredGenerated(resultRelInfo, estate, slot,
936 : CMD_INSERT);
937 :
938 : /*
939 : * If the FDW supports batching, and batching is requested, accumulate
940 : * rows and insert them in batches. Otherwise use the per-row inserts.
941 : */
942 2014 : if (resultRelInfo->ri_BatchSize > 1)
943 : {
944 288 : bool flushed = false;
945 :
946 : /*
947 : * When we've reached the desired batch size, perform the
948 : * insertion.
949 : */
950 288 : if (resultRelInfo->ri_NumSlots == resultRelInfo->ri_BatchSize)
951 : {
952 20 : ExecBatchInsert(mtstate, resultRelInfo,
953 : resultRelInfo->ri_Slots,
954 : resultRelInfo->ri_PlanSlots,
955 : resultRelInfo->ri_NumSlots,
956 : estate, canSetTag);
957 20 : flushed = true;
958 : }
959 :
960 288 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
961 :
962 288 : if (resultRelInfo->ri_Slots == NULL)
963 : {
964 56 : resultRelInfo->ri_Slots = palloc(sizeof(TupleTableSlot *) *
965 28 : resultRelInfo->ri_BatchSize);
966 28 : resultRelInfo->ri_PlanSlots = palloc(sizeof(TupleTableSlot *) *
967 28 : resultRelInfo->ri_BatchSize);
968 : }
969 :
970 : /*
971 : * Initialize the batch slots. We don't know how many slots will
972 : * be needed, so we initialize them as the batch grows, and we
973 : * keep them across batches. To mitigate an inefficiency in how
974 : * resource owner handles objects with many references (as with
975 : * many slots all referencing the same tuple descriptor) we copy
976 : * the appropriate tuple descriptor for each slot.
977 : */
978 288 : if (resultRelInfo->ri_NumSlots >= resultRelInfo->ri_NumSlotsInitialized)
979 : {
980 142 : TupleDesc tdesc = CreateTupleDescCopy(slot->tts_tupleDescriptor);
981 : TupleDesc plan_tdesc =
982 142 : CreateTupleDescCopy(planSlot->tts_tupleDescriptor);
983 :
984 284 : resultRelInfo->ri_Slots[resultRelInfo->ri_NumSlots] =
985 142 : MakeSingleTupleTableSlot(tdesc, slot->tts_ops);
986 :
987 284 : resultRelInfo->ri_PlanSlots[resultRelInfo->ri_NumSlots] =
988 142 : MakeSingleTupleTableSlot(plan_tdesc, planSlot->tts_ops);
989 :
990 : /* remember how many batch slots we initialized */
991 142 : resultRelInfo->ri_NumSlotsInitialized++;
992 : }
993 :
994 288 : ExecCopySlot(resultRelInfo->ri_Slots[resultRelInfo->ri_NumSlots],
995 : slot);
996 :
997 288 : ExecCopySlot(resultRelInfo->ri_PlanSlots[resultRelInfo->ri_NumSlots],
998 : planSlot);
999 :
1000 : /*
1001 : * If these are the first tuples stored in the buffers, add the
1002 : * target rel and the mtstate to the
1003 : * es_insert_pending_result_relations and
1004 : * es_insert_pending_modifytables lists respectively, except in
1005 : * the case where flushing was done above, in which case they
1006 : * would already have been added to the lists, so no need to do
1007 : * this.
1008 : */
1009 288 : if (resultRelInfo->ri_NumSlots == 0 && !flushed)
1010 : {
1011 : Assert(!list_member_ptr(estate->es_insert_pending_result_relations,
1012 : resultRelInfo));
1013 36 : estate->es_insert_pending_result_relations =
1014 36 : lappend(estate->es_insert_pending_result_relations,
1015 : resultRelInfo);
1016 36 : estate->es_insert_pending_modifytables =
1017 36 : lappend(estate->es_insert_pending_modifytables, mtstate);
1018 : }
1019 : Assert(list_member_ptr(estate->es_insert_pending_result_relations,
1020 : resultRelInfo));
1021 :
1022 288 : resultRelInfo->ri_NumSlots++;
1023 :
1024 288 : MemoryContextSwitchTo(oldContext);
1025 :
1026 288 : return NULL;
1027 : }
1028 :
1029 : /*
1030 : * insert into foreign table: let the FDW do it
1031 : */
1032 1726 : slot = resultRelInfo->ri_FdwRoutine->ExecForeignInsert(estate,
1033 : resultRelInfo,
1034 : slot,
1035 : planSlot);
1036 :
1037 1720 : if (slot == NULL) /* "do nothing" */
1038 4 : return NULL;
1039 :
1040 : /*
1041 : * AFTER ROW Triggers or RETURNING expressions might reference the
1042 : * tableoid column, so (re-)initialize tts_tableOid before evaluating
1043 : * them. (This covers the case where the FDW replaced the slot.)
1044 : */
1045 1716 : slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
1046 : }
1047 : else
1048 : {
1049 : WCOKind wco_kind;
1050 :
1051 : /*
1052 : * Constraints and GENERATED expressions might reference the tableoid
1053 : * column, so (re-)initialize tts_tableOid before evaluating them.
1054 : */
1055 12191840 : slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
1056 :
1057 : /*
1058 : * Compute stored generated columns
1059 : */
1060 12191840 : if (resultRelationDesc->rd_att->constr &&
1061 3717402 : resultRelationDesc->rd_att->constr->has_generated_stored)
1062 1058 : ExecComputeStoredGenerated(resultRelInfo, estate, slot,
1063 : CMD_INSERT);
1064 :
1065 : /*
1066 : * Check any RLS WITH CHECK policies.
1067 : *
1068 : * Normally we should check INSERT policies. But if the insert is the
1069 : * result of a partition key update that moved the tuple to a new
1070 : * partition, we should instead check UPDATE policies, because we are
1071 : * executing policies defined on the target table, and not those
1072 : * defined on the child partitions.
1073 : *
1074 : * If we're running MERGE, we refer to the action that we're executing
1075 : * to know if we're doing an INSERT or UPDATE to a partition table.
1076 : */
1077 12191810 : if (mtstate->operation == CMD_UPDATE)
1078 782 : wco_kind = WCO_RLS_UPDATE_CHECK;
1079 12191028 : else if (mtstate->operation == CMD_MERGE)
1080 1760 : wco_kind = (mtstate->mt_merge_action->mas_action->commandType == CMD_UPDATE) ?
1081 1760 : WCO_RLS_UPDATE_CHECK : WCO_RLS_INSERT_CHECK;
1082 : else
1083 12189268 : wco_kind = WCO_RLS_INSERT_CHECK;
1084 :
1085 : /*
1086 : * ExecWithCheckOptions() will skip any WCOs which are not of the kind
1087 : * we are looking for at this point.
1088 : */
1089 12191810 : if (resultRelInfo->ri_WithCheckOptions != NIL)
1090 600 : ExecWithCheckOptions(wco_kind, resultRelInfo, slot, estate);
1091 :
1092 : /*
1093 : * Check the constraints of the tuple.
1094 : */
1095 12191618 : if (resultRelationDesc->rd_att->constr)
1096 3717270 : ExecConstraints(resultRelInfo, slot, estate);
1097 :
1098 : /*
1099 : * Also check the tuple against the partition constraint, if there is
1100 : * one; except that if we got here via tuple-routing, we don't need to
1101 : * if there's no BR trigger defined on the partition.
1102 : */
1103 12190912 : if (resultRelationDesc->rd_rel->relispartition &&
1104 734356 : (resultRelInfo->ri_RootResultRelInfo == NULL ||
1105 731538 : (resultRelInfo->ri_TrigDesc &&
1106 1574 : resultRelInfo->ri_TrigDesc->trig_insert_before_row)))
1107 3014 : ExecPartitionCheck(resultRelInfo, slot, estate, true);
1108 :
1109 12190744 : if (onconflict != ONCONFLICT_NONE && resultRelInfo->ri_NumIndices > 0)
1110 4112 : {
1111 : /* Perform a speculative insertion. */
1112 : uint32 specToken;
1113 : ItemPointerData conflictTid;
1114 : ItemPointerData invalidItemPtr;
1115 : bool specConflict;
1116 : List *arbiterIndexes;
1117 :
1118 9540 : ItemPointerSetInvalid(&invalidItemPtr);
1119 9540 : arbiterIndexes = resultRelInfo->ri_onConflictArbiterIndexes;
1120 :
1121 : /*
1122 : * Do a non-conclusive check for conflicts first.
1123 : *
1124 : * We're not holding any locks yet, so this doesn't guarantee that
1125 : * the later insert won't conflict. But it avoids leaving behind
1126 : * a lot of canceled speculative insertions, if you run a lot of
1127 : * INSERT ON CONFLICT statements that do conflict.
1128 : *
1129 : * We loop back here if we find a conflict below, either during
1130 : * the pre-check, or when we re-check after inserting the tuple
1131 : * speculatively. Better allow interrupts in case some bug makes
1132 : * this an infinite loop.
1133 : */
1134 10 : vlock:
1135 9550 : CHECK_FOR_INTERRUPTS();
1136 9550 : specConflict = false;
1137 9550 : if (!ExecCheckIndexConstraints(resultRelInfo, slot, estate,
1138 : &conflictTid, &invalidItemPtr,
1139 : arbiterIndexes))
1140 : {
1141 : /* committed conflict tuple found */
1142 5416 : if (onconflict == ONCONFLICT_UPDATE)
1143 : {
1144 : /*
1145 : * In case of ON CONFLICT DO UPDATE, execute the UPDATE
1146 : * part. Be prepared to retry if the UPDATE fails because
1147 : * of another concurrent UPDATE/DELETE to the conflict
1148 : * tuple.
1149 : */
1150 5204 : TupleTableSlot *returning = NULL;
1151 :
1152 5204 : if (ExecOnConflictUpdate(context, resultRelInfo,
1153 : &conflictTid, slot, canSetTag,
1154 : &returning))
1155 : {
1156 5126 : InstrCountTuples2(&mtstate->ps, 1);
1157 5126 : return returning;
1158 : }
1159 : else
1160 0 : goto vlock;
1161 : }
1162 : else
1163 : {
1164 : /*
1165 : * In case of ON CONFLICT DO NOTHING, do nothing. However,
1166 : * verify that the tuple is visible to the executor's MVCC
1167 : * snapshot at higher isolation levels.
1168 : *
1169 : * Using ExecGetReturningSlot() to store the tuple for the
1170 : * recheck isn't that pretty, but we can't trivially use
1171 : * the input slot, because it might not be of a compatible
1172 : * type. As there's no conflicting usage of
1173 : * ExecGetReturningSlot() in the DO NOTHING case...
1174 : */
1175 : Assert(onconflict == ONCONFLICT_NOTHING);
1176 212 : ExecCheckTIDVisible(estate, resultRelInfo, &conflictTid,
1177 : ExecGetReturningSlot(estate, resultRelInfo));
1178 192 : InstrCountTuples2(&mtstate->ps, 1);
1179 192 : return NULL;
1180 : }
1181 : }
1182 :
1183 : /*
1184 : * Before we start insertion proper, acquire our "speculative
1185 : * insertion lock". Others can use that to wait for us to decide
1186 : * if we're going to go ahead with the insertion, instead of
1187 : * waiting for the whole transaction to complete.
1188 : */
1189 4128 : specToken = SpeculativeInsertionLockAcquire(GetCurrentTransactionId());
1190 :
1191 : /* insert the tuple, with the speculative token */
1192 4128 : table_tuple_insert_speculative(resultRelationDesc, slot,
1193 : estate->es_output_cid,
1194 : 0,
1195 : NULL,
1196 : specToken);
1197 :
1198 : /* insert index entries for tuple */
1199 4128 : recheckIndexes = ExecInsertIndexTuples(resultRelInfo,
1200 : slot, estate, false, true,
1201 : &specConflict,
1202 : arbiterIndexes,
1203 : false);
1204 :
1205 : /* adjust the tuple's state accordingly */
1206 4122 : table_tuple_complete_speculative(resultRelationDesc, slot,
1207 4122 : specToken, !specConflict);
1208 :
1209 : /*
1210 : * Wake up anyone waiting for our decision. They will re-check
1211 : * the tuple, see that it's no longer speculative, and wait on our
1212 : * XID as if this was a regularly inserted tuple all along. Or if
1213 : * we killed the tuple, they will see it's dead, and proceed as if
1214 : * the tuple never existed.
1215 : */
1216 4122 : SpeculativeInsertionLockRelease(GetCurrentTransactionId());
1217 :
1218 : /*
1219 : * If there was a conflict, start from the beginning. We'll do
1220 : * the pre-check again, which will now find the conflicting tuple
1221 : * (unless it aborts before we get there).
1222 : */
1223 4122 : if (specConflict)
1224 : {
1225 10 : list_free(recheckIndexes);
1226 10 : goto vlock;
1227 : }
1228 :
1229 : /* Since there was no insertion conflict, we're done */
1230 : }
1231 : else
1232 : {
1233 : /* insert the tuple normally */
1234 12181204 : table_tuple_insert(resultRelationDesc, slot,
1235 : estate->es_output_cid,
1236 : 0, NULL);
1237 :
1238 : /* insert index entries for tuple */
1239 12181170 : if (resultRelInfo->ri_NumIndices > 0)
1240 3093604 : recheckIndexes = ExecInsertIndexTuples(resultRelInfo,
1241 : slot, estate, false,
1242 : false, NULL, NIL,
1243 : false);
1244 : }
1245 : }
1246 :
1247 12186576 : if (canSetTag)
1248 12185398 : (estate->es_processed)++;
1249 :
1250 : /*
1251 : * If this insert is the result of a partition key update that moved the
1252 : * tuple to a new partition, put this row into the transition NEW TABLE,
1253 : * if there is one. We need to do this separately for DELETE and INSERT
1254 : * because they happen on different tables.
1255 : */
1256 12186576 : ar_insert_trig_tcs = mtstate->mt_transition_capture;
1257 12186576 : if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture
1258 54 : && mtstate->mt_transition_capture->tcs_update_new_table)
1259 : {
1260 48 : ExecARUpdateTriggers(estate, resultRelInfo,
1261 : NULL, NULL,
1262 : NULL,
1263 : NULL,
1264 : slot,
1265 : NULL,
1266 48 : mtstate->mt_transition_capture,
1267 : false);
1268 :
1269 : /*
1270 : * We've already captured the NEW TABLE row, so make sure any AR
1271 : * INSERT trigger fired below doesn't capture it again.
1272 : */
1273 48 : ar_insert_trig_tcs = NULL;
1274 : }
1275 :
1276 : /* AFTER ROW INSERT Triggers */
1277 12186576 : ExecARInsertTriggers(estate, resultRelInfo, slot, recheckIndexes,
1278 : ar_insert_trig_tcs);
1279 :
1280 12186576 : list_free(recheckIndexes);
1281 :
1282 : /*
1283 : * Check any WITH CHECK OPTION constraints from parent views. We are
1284 : * required to do this after testing all constraints and uniqueness
1285 : * violations per the SQL spec, so we do it after actually inserting the
1286 : * record into the heap and all indexes.
1287 : *
1288 : * ExecWithCheckOptions will elog(ERROR) if a violation is found, so the
1289 : * tuple will never be seen, if it violates the WITH CHECK OPTION.
1290 : *
1291 : * ExecWithCheckOptions() will skip any WCOs which are not of the kind we
1292 : * are looking for at this point.
1293 : */
1294 12186576 : if (resultRelInfo->ri_WithCheckOptions != NIL)
1295 394 : ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate);
1296 :
1297 : /* Process RETURNING if present */
1298 12186430 : if (resultRelInfo->ri_projectReturning)
1299 : {
1300 3604 : TupleTableSlot *oldSlot = NULL;
1301 :
1302 : /*
1303 : * If this is part of a cross-partition UPDATE, and the RETURNING list
1304 : * refers to any OLD columns, ExecDelete() will have saved the tuple
1305 : * deleted from the original partition, which we must use here to
1306 : * compute the OLD column values. Otherwise, all OLD column values
1307 : * will be NULL.
1308 : */
1309 3604 : if (context->cpDeletedSlot)
1310 : {
1311 : TupleConversionMap *tupconv_map;
1312 :
1313 : /*
1314 : * Convert the OLD tuple to the new partition's format/slot, if
1315 : * needed. Note that ExecDelete() already converted it to the
1316 : * root's partition's format/slot.
1317 : */
1318 44 : oldSlot = context->cpDeletedSlot;
1319 44 : tupconv_map = ExecGetRootToChildMap(resultRelInfo, estate);
1320 44 : if (tupconv_map != NULL)
1321 : {
1322 14 : oldSlot = execute_attr_map_slot(tupconv_map->attrMap,
1323 : oldSlot,
1324 : ExecGetReturningSlot(estate,
1325 : resultRelInfo));
1326 :
1327 14 : oldSlot->tts_tableOid = context->cpDeletedSlot->tts_tableOid;
1328 14 : ItemPointerCopy(&context->cpDeletedSlot->tts_tid, &oldSlot->tts_tid);
1329 : }
1330 : }
1331 :
1332 3604 : result = ExecProcessReturning(context, resultRelInfo, CMD_INSERT,
1333 : oldSlot, slot, planSlot);
1334 :
1335 : /*
1336 : * For a cross-partition UPDATE, release the old tuple, first making
1337 : * sure that the result slot has a local copy of any pass-by-reference
1338 : * values.
1339 : */
1340 3592 : if (context->cpDeletedSlot)
1341 : {
1342 44 : ExecMaterializeSlot(result);
1343 44 : ExecClearTuple(oldSlot);
1344 44 : if (context->cpDeletedSlot != oldSlot)
1345 14 : ExecClearTuple(context->cpDeletedSlot);
1346 44 : context->cpDeletedSlot = NULL;
1347 : }
1348 : }
1349 :
1350 12186418 : if (inserted_tuple)
1351 808 : *inserted_tuple = slot;
1352 12186418 : if (insert_destrel)
1353 808 : *insert_destrel = resultRelInfo;
1354 :
1355 12186418 : return result;
1356 : }
1357 :
1358 : /* ----------------------------------------------------------------
1359 : * ExecBatchInsert
1360 : *
1361 : * Insert multiple tuples in an efficient way.
1362 : * Currently, this handles inserting into a foreign table without
1363 : * RETURNING clause.
1364 : * ----------------------------------------------------------------
1365 : */
1366 : static void
1367 56 : ExecBatchInsert(ModifyTableState *mtstate,
1368 : ResultRelInfo *resultRelInfo,
1369 : TupleTableSlot **slots,
1370 : TupleTableSlot **planSlots,
1371 : int numSlots,
1372 : EState *estate,
1373 : bool canSetTag)
1374 : {
1375 : int i;
1376 56 : int numInserted = numSlots;
1377 56 : TupleTableSlot *slot = NULL;
1378 : TupleTableSlot **rslots;
1379 :
1380 : /*
1381 : * insert into foreign table: let the FDW do it
1382 : */
1383 56 : rslots = resultRelInfo->ri_FdwRoutine->ExecForeignBatchInsert(estate,
1384 : resultRelInfo,
1385 : slots,
1386 : planSlots,
1387 : &numInserted);
1388 :
1389 344 : for (i = 0; i < numInserted; i++)
1390 : {
1391 288 : slot = rslots[i];
1392 :
1393 : /*
1394 : * AFTER ROW Triggers might reference the tableoid column, so
1395 : * (re-)initialize tts_tableOid before evaluating them.
1396 : */
1397 288 : slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
1398 :
1399 : /* AFTER ROW INSERT Triggers */
1400 288 : ExecARInsertTriggers(estate, resultRelInfo, slot, NIL,
1401 288 : mtstate->mt_transition_capture);
1402 :
1403 : /*
1404 : * Check any WITH CHECK OPTION constraints from parent views. See the
1405 : * comment in ExecInsert.
1406 : */
1407 288 : if (resultRelInfo->ri_WithCheckOptions != NIL)
1408 0 : ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate);
1409 : }
1410 :
1411 56 : if (canSetTag && numInserted > 0)
1412 56 : estate->es_processed += numInserted;
1413 :
1414 : /* Clean up all the slots, ready for the next batch */
1415 344 : for (i = 0; i < numSlots; i++)
1416 : {
1417 288 : ExecClearTuple(slots[i]);
1418 288 : ExecClearTuple(planSlots[i]);
1419 : }
1420 56 : resultRelInfo->ri_NumSlots = 0;
1421 56 : }
1422 :
1423 : /*
1424 : * ExecPendingInserts -- flushes all pending inserts to the foreign tables
1425 : */
1426 : static void
1427 34 : ExecPendingInserts(EState *estate)
1428 : {
1429 : ListCell *l1,
1430 : *l2;
1431 :
1432 70 : forboth(l1, estate->es_insert_pending_result_relations,
1433 : l2, estate->es_insert_pending_modifytables)
1434 : {
1435 36 : ResultRelInfo *resultRelInfo = (ResultRelInfo *) lfirst(l1);
1436 36 : ModifyTableState *mtstate = (ModifyTableState *) lfirst(l2);
1437 :
1438 : Assert(mtstate);
1439 36 : ExecBatchInsert(mtstate, resultRelInfo,
1440 : resultRelInfo->ri_Slots,
1441 : resultRelInfo->ri_PlanSlots,
1442 : resultRelInfo->ri_NumSlots,
1443 36 : estate, mtstate->canSetTag);
1444 : }
1445 :
1446 34 : list_free(estate->es_insert_pending_result_relations);
1447 34 : list_free(estate->es_insert_pending_modifytables);
1448 34 : estate->es_insert_pending_result_relations = NIL;
1449 34 : estate->es_insert_pending_modifytables = NIL;
1450 34 : }
1451 :
1452 : /*
1453 : * ExecDeletePrologue -- subroutine for ExecDelete
1454 : *
1455 : * Prepare executor state for DELETE. Actually, the only thing we have to do
1456 : * here is execute BEFORE ROW triggers. We return false if one of them makes
1457 : * the delete a no-op; otherwise, return true.
1458 : */
1459 : static bool
1460 1647380 : ExecDeletePrologue(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
1461 : ItemPointer tupleid, HeapTuple oldtuple,
1462 : TupleTableSlot **epqreturnslot, TM_Result *result)
1463 : {
1464 1647380 : if (result)
1465 1556 : *result = TM_Ok;
1466 :
1467 : /* BEFORE ROW DELETE triggers */
1468 1647380 : if (resultRelInfo->ri_TrigDesc &&
1469 7002 : resultRelInfo->ri_TrigDesc->trig_delete_before_row)
1470 : {
1471 : /* Flush any pending inserts, so rows are visible to the triggers */
1472 346 : if (context->estate->es_insert_pending_result_relations != NIL)
1473 2 : ExecPendingInserts(context->estate);
1474 :
1475 330 : return ExecBRDeleteTriggers(context->estate, context->epqstate,
1476 : resultRelInfo, tupleid, oldtuple,
1477 : epqreturnslot, result, &context->tmfd,
1478 346 : context->mtstate->operation == CMD_MERGE);
1479 : }
1480 :
1481 1647034 : return true;
1482 : }
1483 :
1484 : /*
1485 : * ExecDeleteAct -- subroutine for ExecDelete
1486 : *
1487 : * Actually delete the tuple from a plain table.
1488 : *
1489 : * Caller is in charge of doing EvalPlanQual as necessary
1490 : */
1491 : static TM_Result
1492 1647202 : ExecDeleteAct(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
1493 : ItemPointer tupleid, bool changingPart)
1494 : {
1495 1647202 : EState *estate = context->estate;
1496 :
1497 1647202 : return table_tuple_delete(resultRelInfo->ri_RelationDesc, tupleid,
1498 : estate->es_output_cid,
1499 : estate->es_snapshot,
1500 : estate->es_crosscheck_snapshot,
1501 : true /* wait for commit */ ,
1502 : &context->tmfd,
1503 : changingPart);
1504 : }
1505 :
1506 : /*
1507 : * ExecDeleteEpilogue -- subroutine for ExecDelete
1508 : *
1509 : * Closing steps of tuple deletion; this invokes AFTER FOR EACH ROW triggers,
1510 : * including the UPDATE triggers if the deletion is being done as part of a
1511 : * cross-partition tuple move.
1512 : */
1513 : static void
1514 1647150 : ExecDeleteEpilogue(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
1515 : ItemPointer tupleid, HeapTuple oldtuple, bool changingPart)
1516 : {
1517 1647150 : ModifyTableState *mtstate = context->mtstate;
1518 1647150 : EState *estate = context->estate;
1519 : TransitionCaptureState *ar_delete_trig_tcs;
1520 :
1521 : /*
1522 : * If this delete is the result of a partition key update that moved the
1523 : * tuple to a new partition, put this row into the transition OLD TABLE,
1524 : * if there is one. We need to do this separately for DELETE and INSERT
1525 : * because they happen on different tables.
1526 : */
1527 1647150 : ar_delete_trig_tcs = mtstate->mt_transition_capture;
1528 1647150 : if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture &&
1529 54 : mtstate->mt_transition_capture->tcs_update_old_table)
1530 : {
1531 48 : ExecARUpdateTriggers(estate, resultRelInfo,
1532 : NULL, NULL,
1533 : tupleid, oldtuple,
1534 48 : NULL, NULL, mtstate->mt_transition_capture,
1535 : false);
1536 :
1537 : /*
1538 : * We've already captured the OLD TABLE row, so make sure any AR
1539 : * DELETE trigger fired below doesn't capture it again.
1540 : */
1541 48 : ar_delete_trig_tcs = NULL;
1542 : }
1543 :
1544 : /* AFTER ROW DELETE Triggers */
1545 1647150 : ExecARDeleteTriggers(estate, resultRelInfo, tupleid, oldtuple,
1546 : ar_delete_trig_tcs, changingPart);
1547 1647150 : }
1548 :
1549 : /* ----------------------------------------------------------------
1550 : * ExecDelete
1551 : *
1552 : * DELETE is like UPDATE, except that we delete the tuple and no
1553 : * index modifications are needed.
1554 : *
1555 : * When deleting from a table, tupleid identifies the tuple to delete and
1556 : * oldtuple is NULL. When deleting through a view INSTEAD OF trigger,
1557 : * oldtuple is passed to the triggers and identifies what to delete, and
1558 : * tupleid is invalid. When deleting from a foreign table, tupleid is
1559 : * invalid; the FDW has to figure out which row to delete using data from
1560 : * the planSlot. oldtuple is passed to foreign table triggers; it is
1561 : * NULL when the foreign table has no relevant triggers. We use
1562 : * tupleDeleted to indicate whether the tuple is actually deleted,
1563 : * callers can use it to decide whether to continue the operation. When
1564 : * this DELETE is a part of an UPDATE of partition-key, then the slot
1565 : * returned by EvalPlanQual() is passed back using output parameter
1566 : * epqreturnslot.
1567 : *
1568 : * Returns RETURNING result if any, otherwise NULL.
1569 : * ----------------------------------------------------------------
1570 : */
1571 : static TupleTableSlot *
1572 1646866 : ExecDelete(ModifyTableContext *context,
1573 : ResultRelInfo *resultRelInfo,
1574 : ItemPointer tupleid,
1575 : HeapTuple oldtuple,
1576 : bool processReturning,
1577 : bool changingPart,
1578 : bool canSetTag,
1579 : TM_Result *tmresult,
1580 : bool *tupleDeleted,
1581 : TupleTableSlot **epqreturnslot)
1582 : {
1583 1646866 : EState *estate = context->estate;
1584 1646866 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
1585 1646866 : TupleTableSlot *slot = NULL;
1586 : TM_Result result;
1587 : bool saveOld;
1588 :
1589 1646866 : if (tupleDeleted)
1590 1042 : *tupleDeleted = false;
1591 :
1592 : /*
1593 : * Prepare for the delete. This includes BEFORE ROW triggers, so we're
1594 : * done if it says we are.
1595 : */
1596 1646866 : if (!ExecDeletePrologue(context, resultRelInfo, tupleid, oldtuple,
1597 : epqreturnslot, tmresult))
1598 52 : return NULL;
1599 :
1600 : /* INSTEAD OF ROW DELETE Triggers */
1601 1646798 : if (resultRelInfo->ri_TrigDesc &&
1602 6878 : resultRelInfo->ri_TrigDesc->trig_delete_instead_row)
1603 48 : {
1604 : bool dodelete;
1605 :
1606 : Assert(oldtuple != NULL);
1607 54 : dodelete = ExecIRDeleteTriggers(estate, resultRelInfo, oldtuple);
1608 :
1609 54 : if (!dodelete) /* "do nothing" */
1610 6 : return NULL;
1611 : }
1612 1646744 : else if (resultRelInfo->ri_FdwRoutine)
1613 : {
1614 : /*
1615 : * delete from foreign table: let the FDW do it
1616 : *
1617 : * We offer the returning slot as a place to store RETURNING data,
1618 : * although the FDW can return some other slot if it wants.
1619 : */
1620 42 : slot = ExecGetReturningSlot(estate, resultRelInfo);
1621 42 : slot = resultRelInfo->ri_FdwRoutine->ExecForeignDelete(estate,
1622 : resultRelInfo,
1623 : slot,
1624 : context->planSlot);
1625 :
1626 42 : if (slot == NULL) /* "do nothing" */
1627 0 : return NULL;
1628 :
1629 : /*
1630 : * RETURNING expressions might reference the tableoid column, so
1631 : * (re)initialize tts_tableOid before evaluating them.
1632 : */
1633 42 : if (TTS_EMPTY(slot))
1634 6 : ExecStoreAllNullTuple(slot);
1635 :
1636 42 : slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
1637 : }
1638 : else
1639 : {
1640 : /*
1641 : * delete the tuple
1642 : *
1643 : * Note: if context->estate->es_crosscheck_snapshot isn't
1644 : * InvalidSnapshot, we check that the row to be deleted is visible to
1645 : * that snapshot, and throw a can't-serialize error if not. This is a
1646 : * special-case behavior needed for referential integrity updates in
1647 : * transaction-snapshot mode transactions.
1648 : */
1649 1646702 : ldelete:
1650 1646706 : result = ExecDeleteAct(context, resultRelInfo, tupleid, changingPart);
1651 :
1652 1646670 : if (tmresult)
1653 1008 : *tmresult = result;
1654 :
1655 1646670 : switch (result)
1656 : {
1657 30 : case TM_SelfModified:
1658 :
1659 : /*
1660 : * The target tuple was already updated or deleted by the
1661 : * current command, or by a later command in the current
1662 : * transaction. The former case is possible in a join DELETE
1663 : * where multiple tuples join to the same target tuple. This
1664 : * is somewhat questionable, but Postgres has always allowed
1665 : * it: we just ignore additional deletion attempts.
1666 : *
1667 : * The latter case arises if the tuple is modified by a
1668 : * command in a BEFORE trigger, or perhaps by a command in a
1669 : * volatile function used in the query. In such situations we
1670 : * should not ignore the deletion, but it is equally unsafe to
1671 : * proceed. We don't want to discard the original DELETE
1672 : * while keeping the triggered actions based on its deletion;
1673 : * and it would be no better to allow the original DELETE
1674 : * while discarding updates that it triggered. The row update
1675 : * carries some information that might be important according
1676 : * to business rules; so throwing an error is the only safe
1677 : * course.
1678 : *
1679 : * If a trigger actually intends this type of interaction, it
1680 : * can re-execute the DELETE and then return NULL to cancel
1681 : * the outer delete.
1682 : */
1683 30 : if (context->tmfd.cmax != estate->es_output_cid)
1684 6 : ereport(ERROR,
1685 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
1686 : errmsg("tuple to be deleted was already modified by an operation triggered by the current command"),
1687 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
1688 :
1689 : /* Else, already deleted by self; nothing to do */
1690 24 : return NULL;
1691 :
1692 1646576 : case TM_Ok:
1693 1646576 : break;
1694 :
1695 58 : case TM_Updated:
1696 : {
1697 : TupleTableSlot *inputslot;
1698 : TupleTableSlot *epqslot;
1699 :
1700 58 : if (IsolationUsesXactSnapshot())
1701 2 : ereport(ERROR,
1702 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1703 : errmsg("could not serialize access due to concurrent update")));
1704 :
1705 : /*
1706 : * Already know that we're going to need to do EPQ, so
1707 : * fetch tuple directly into the right slot.
1708 : */
1709 56 : EvalPlanQualBegin(context->epqstate);
1710 56 : inputslot = EvalPlanQualSlot(context->epqstate, resultRelationDesc,
1711 : resultRelInfo->ri_RangeTableIndex);
1712 :
1713 56 : result = table_tuple_lock(resultRelationDesc, tupleid,
1714 : estate->es_snapshot,
1715 : inputslot, estate->es_output_cid,
1716 : LockTupleExclusive, LockWaitBlock,
1717 : TUPLE_LOCK_FLAG_FIND_LAST_VERSION,
1718 : &context->tmfd);
1719 :
1720 52 : switch (result)
1721 : {
1722 46 : case TM_Ok:
1723 : Assert(context->tmfd.traversed);
1724 46 : epqslot = EvalPlanQual(context->epqstate,
1725 : resultRelationDesc,
1726 : resultRelInfo->ri_RangeTableIndex,
1727 : inputslot);
1728 46 : if (TupIsNull(epqslot))
1729 : /* Tuple not passing quals anymore, exiting... */
1730 30 : return NULL;
1731 :
1732 : /*
1733 : * If requested, skip delete and pass back the
1734 : * updated row.
1735 : */
1736 16 : if (epqreturnslot)
1737 : {
1738 12 : *epqreturnslot = epqslot;
1739 12 : return NULL;
1740 : }
1741 : else
1742 4 : goto ldelete;
1743 :
1744 4 : case TM_SelfModified:
1745 :
1746 : /*
1747 : * This can be reached when following an update
1748 : * chain from a tuple updated by another session,
1749 : * reaching a tuple that was already updated in
1750 : * this transaction. If previously updated by this
1751 : * command, ignore the delete, otherwise error
1752 : * out.
1753 : *
1754 : * See also TM_SelfModified response to
1755 : * table_tuple_delete() above.
1756 : */
1757 4 : if (context->tmfd.cmax != estate->es_output_cid)
1758 2 : ereport(ERROR,
1759 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
1760 : errmsg("tuple to be deleted was already modified by an operation triggered by the current command"),
1761 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
1762 2 : return NULL;
1763 :
1764 2 : case TM_Deleted:
1765 : /* tuple already deleted; nothing to do */
1766 2 : return NULL;
1767 :
1768 0 : default:
1769 :
1770 : /*
1771 : * TM_Invisible should be impossible because we're
1772 : * waiting for updated row versions, and would
1773 : * already have errored out if the first version
1774 : * is invisible.
1775 : *
1776 : * TM_Updated should be impossible, because we're
1777 : * locking the latest version via
1778 : * TUPLE_LOCK_FLAG_FIND_LAST_VERSION.
1779 : */
1780 0 : elog(ERROR, "unexpected table_tuple_lock status: %u",
1781 : result);
1782 : return NULL;
1783 : }
1784 :
1785 : Assert(false);
1786 : break;
1787 : }
1788 :
1789 6 : case TM_Deleted:
1790 6 : if (IsolationUsesXactSnapshot())
1791 0 : ereport(ERROR,
1792 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1793 : errmsg("could not serialize access due to concurrent delete")));
1794 : /* tuple already deleted; nothing to do */
1795 6 : return NULL;
1796 :
1797 0 : default:
1798 0 : elog(ERROR, "unrecognized table_tuple_delete status: %u",
1799 : result);
1800 : return NULL;
1801 : }
1802 :
1803 : /*
1804 : * Note: Normally one would think that we have to delete index tuples
1805 : * associated with the heap tuple now...
1806 : *
1807 : * ... but in POSTGRES, we have no need to do this because VACUUM will
1808 : * take care of it later. We can't delete index tuples immediately
1809 : * anyway, since the tuple is still visible to other transactions.
1810 : */
1811 : }
1812 :
1813 1646666 : if (canSetTag)
1814 1645474 : (estate->es_processed)++;
1815 :
1816 : /* Tell caller that the delete actually happened. */
1817 1646666 : if (tupleDeleted)
1818 964 : *tupleDeleted = true;
1819 :
1820 1646666 : ExecDeleteEpilogue(context, resultRelInfo, tupleid, oldtuple, changingPart);
1821 :
1822 : /*
1823 : * Process RETURNING if present and if requested.
1824 : *
1825 : * If this is part of a cross-partition UPDATE, and the RETURNING list
1826 : * refers to any OLD column values, save the old tuple here for later
1827 : * processing of the RETURNING list by ExecInsert().
1828 : */
1829 1646812 : saveOld = changingPart && resultRelInfo->ri_projectReturning &&
1830 146 : resultRelInfo->ri_projectReturning->pi_state.flags & EEO_FLAG_HAS_OLD;
1831 :
1832 1646666 : if (resultRelInfo->ri_projectReturning && (processReturning || saveOld))
1833 : {
1834 : /*
1835 : * We have to put the target tuple into a slot, which means first we
1836 : * gotta fetch it. We can use the trigger tuple slot.
1837 : */
1838 : TupleTableSlot *rslot;
1839 :
1840 1002 : if (resultRelInfo->ri_FdwRoutine)
1841 : {
1842 : /* FDW must have provided a slot containing the deleted row */
1843 : Assert(!TupIsNull(slot));
1844 : }
1845 : else
1846 : {
1847 988 : slot = ExecGetReturningSlot(estate, resultRelInfo);
1848 988 : if (oldtuple != NULL)
1849 : {
1850 24 : ExecForceStoreHeapTuple(oldtuple, slot, false);
1851 : }
1852 : else
1853 : {
1854 964 : if (!table_tuple_fetch_row_version(resultRelationDesc, tupleid,
1855 : SnapshotAny, slot))
1856 0 : elog(ERROR, "failed to fetch deleted tuple for DELETE RETURNING");
1857 : }
1858 : }
1859 :
1860 : /*
1861 : * If required, save the old tuple for later processing of the
1862 : * RETURNING list by ExecInsert().
1863 : */
1864 1002 : if (saveOld)
1865 : {
1866 : TupleConversionMap *tupconv_map;
1867 :
1868 : /*
1869 : * Convert the tuple into the root partition's format/slot, if
1870 : * needed. ExecInsert() will then convert it to the new
1871 : * partition's format/slot, if necessary.
1872 : */
1873 44 : tupconv_map = ExecGetChildToRootMap(resultRelInfo);
1874 44 : if (tupconv_map != NULL)
1875 : {
1876 18 : ResultRelInfo *rootRelInfo = context->mtstate->rootResultRelInfo;
1877 18 : TupleTableSlot *oldSlot = slot;
1878 :
1879 18 : slot = execute_attr_map_slot(tupconv_map->attrMap,
1880 : slot,
1881 : ExecGetReturningSlot(estate,
1882 : rootRelInfo));
1883 :
1884 18 : slot->tts_tableOid = oldSlot->tts_tableOid;
1885 18 : ItemPointerCopy(&oldSlot->tts_tid, &slot->tts_tid);
1886 : }
1887 :
1888 44 : context->cpDeletedSlot = slot;
1889 :
1890 44 : return NULL;
1891 : }
1892 :
1893 958 : rslot = ExecProcessReturning(context, resultRelInfo, CMD_DELETE,
1894 : slot, NULL, context->planSlot);
1895 :
1896 : /*
1897 : * Before releasing the target tuple again, make sure rslot has a
1898 : * local copy of any pass-by-reference values.
1899 : */
1900 958 : ExecMaterializeSlot(rslot);
1901 :
1902 958 : ExecClearTuple(slot);
1903 :
1904 958 : return rslot;
1905 : }
1906 :
1907 1645664 : return NULL;
1908 : }
1909 :
1910 : /*
1911 : * ExecCrossPartitionUpdate --- Move an updated tuple to another partition.
1912 : *
1913 : * This works by first deleting the old tuple from the current partition,
1914 : * followed by inserting the new tuple into the root parent table, that is,
1915 : * mtstate->rootResultRelInfo. It will be re-routed from there to the
1916 : * correct partition.
1917 : *
1918 : * Returns true if the tuple has been successfully moved, or if it's found
1919 : * that the tuple was concurrently deleted so there's nothing more to do
1920 : * for the caller.
1921 : *
1922 : * False is returned if the tuple we're trying to move is found to have been
1923 : * concurrently updated. In that case, the caller must check if the updated
1924 : * tuple that's returned in *retry_slot still needs to be re-routed, and call
1925 : * this function again or perform a regular update accordingly. For MERGE,
1926 : * the updated tuple is not returned in *retry_slot; it has its own retry
1927 : * logic.
1928 : */
1929 : static bool
1930 1090 : ExecCrossPartitionUpdate(ModifyTableContext *context,
1931 : ResultRelInfo *resultRelInfo,
1932 : ItemPointer tupleid, HeapTuple oldtuple,
1933 : TupleTableSlot *slot,
1934 : bool canSetTag,
1935 : UpdateContext *updateCxt,
1936 : TM_Result *tmresult,
1937 : TupleTableSlot **retry_slot,
1938 : TupleTableSlot **inserted_tuple,
1939 : ResultRelInfo **insert_destrel)
1940 : {
1941 1090 : ModifyTableState *mtstate = context->mtstate;
1942 1090 : EState *estate = mtstate->ps.state;
1943 : TupleConversionMap *tupconv_map;
1944 : bool tuple_deleted;
1945 1090 : TupleTableSlot *epqslot = NULL;
1946 :
1947 1090 : context->cpDeletedSlot = NULL;
1948 1090 : context->cpUpdateReturningSlot = NULL;
1949 1090 : *retry_slot = NULL;
1950 :
1951 : /*
1952 : * Disallow an INSERT ON CONFLICT DO UPDATE that causes the original row
1953 : * to migrate to a different partition. Maybe this can be implemented
1954 : * some day, but it seems a fringe feature with little redeeming value.
1955 : */
1956 1090 : if (((ModifyTable *) mtstate->ps.plan)->onConflictAction == ONCONFLICT_UPDATE)
1957 0 : ereport(ERROR,
1958 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1959 : errmsg("invalid ON UPDATE specification"),
1960 : errdetail("The result tuple would appear in a different partition than the original tuple.")));
1961 :
1962 : /*
1963 : * When an UPDATE is run directly on a leaf partition, simply fail with a
1964 : * partition constraint violation error.
1965 : */
1966 1090 : if (resultRelInfo == mtstate->rootResultRelInfo)
1967 48 : ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
1968 :
1969 : /* Initialize tuple routing info if not already done. */
1970 1042 : if (mtstate->mt_partition_tuple_routing == NULL)
1971 : {
1972 662 : Relation rootRel = mtstate->rootResultRelInfo->ri_RelationDesc;
1973 : MemoryContext oldcxt;
1974 :
1975 : /* Things built here have to last for the query duration. */
1976 662 : oldcxt = MemoryContextSwitchTo(estate->es_query_cxt);
1977 :
1978 662 : mtstate->mt_partition_tuple_routing =
1979 662 : ExecSetupPartitionTupleRouting(estate, rootRel);
1980 :
1981 : /*
1982 : * Before a partition's tuple can be re-routed, it must first be
1983 : * converted to the root's format, so we'll need a slot for storing
1984 : * such tuples.
1985 : */
1986 : Assert(mtstate->mt_root_tuple_slot == NULL);
1987 662 : mtstate->mt_root_tuple_slot = table_slot_create(rootRel, NULL);
1988 :
1989 662 : MemoryContextSwitchTo(oldcxt);
1990 : }
1991 :
1992 : /*
1993 : * Row movement, part 1. Delete the tuple, but skip RETURNING processing.
1994 : * We want to return rows from INSERT.
1995 : */
1996 1042 : ExecDelete(context, resultRelInfo,
1997 : tupleid, oldtuple,
1998 : false, /* processReturning */
1999 : true, /* changingPart */
2000 : false, /* canSetTag */
2001 : tmresult, &tuple_deleted, &epqslot);
2002 :
2003 : /*
2004 : * For some reason if DELETE didn't happen (e.g. trigger prevented it, or
2005 : * it was already deleted by self, or it was concurrently deleted by
2006 : * another transaction), then we should skip the insert as well;
2007 : * otherwise, an UPDATE could cause an increase in the total number of
2008 : * rows across all partitions, which is clearly wrong.
2009 : *
2010 : * For a normal UPDATE, the case where the tuple has been the subject of a
2011 : * concurrent UPDATE or DELETE would be handled by the EvalPlanQual
2012 : * machinery, but for an UPDATE that we've translated into a DELETE from
2013 : * this partition and an INSERT into some other partition, that's not
2014 : * available, because CTID chains can't span relation boundaries. We
2015 : * mimic the semantics to a limited extent by skipping the INSERT if the
2016 : * DELETE fails to find a tuple. This ensures that two concurrent
2017 : * attempts to UPDATE the same tuple at the same time can't turn one tuple
2018 : * into two, and that an UPDATE of a just-deleted tuple can't resurrect
2019 : * it.
2020 : */
2021 1040 : if (!tuple_deleted)
2022 : {
2023 : /*
2024 : * epqslot will be typically NULL. But when ExecDelete() finds that
2025 : * another transaction has concurrently updated the same row, it
2026 : * re-fetches the row, skips the delete, and epqslot is set to the
2027 : * re-fetched tuple slot. In that case, we need to do all the checks
2028 : * again. For MERGE, we leave everything to the caller (it must do
2029 : * additional rechecking, and might end up executing a different
2030 : * action entirely).
2031 : */
2032 76 : if (mtstate->operation == CMD_MERGE)
2033 34 : return *tmresult == TM_Ok;
2034 42 : else if (TupIsNull(epqslot))
2035 36 : return true;
2036 : else
2037 : {
2038 : /* Fetch the most recent version of old tuple. */
2039 : TupleTableSlot *oldSlot;
2040 :
2041 : /* ... but first, make sure ri_oldTupleSlot is initialized. */
2042 6 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
2043 0 : ExecInitUpdateProjection(mtstate, resultRelInfo);
2044 6 : oldSlot = resultRelInfo->ri_oldTupleSlot;
2045 6 : if (!table_tuple_fetch_row_version(resultRelInfo->ri_RelationDesc,
2046 : tupleid,
2047 : SnapshotAny,
2048 : oldSlot))
2049 0 : elog(ERROR, "failed to fetch tuple being updated");
2050 : /* and project the new tuple to retry the UPDATE with */
2051 6 : *retry_slot = ExecGetUpdateNewTuple(resultRelInfo, epqslot,
2052 : oldSlot);
2053 6 : return false;
2054 : }
2055 : }
2056 :
2057 : /*
2058 : * resultRelInfo is one of the per-relation resultRelInfos. So we should
2059 : * convert the tuple into root's tuple descriptor if needed, since
2060 : * ExecInsert() starts the search from root.
2061 : */
2062 964 : tupconv_map = ExecGetChildToRootMap(resultRelInfo);
2063 964 : if (tupconv_map != NULL)
2064 314 : slot = execute_attr_map_slot(tupconv_map->attrMap,
2065 : slot,
2066 : mtstate->mt_root_tuple_slot);
2067 :
2068 : /* Tuple routing starts from the root table. */
2069 836 : context->cpUpdateReturningSlot =
2070 964 : ExecInsert(context, mtstate->rootResultRelInfo, slot, canSetTag,
2071 : inserted_tuple, insert_destrel);
2072 :
2073 : /*
2074 : * Reset the transition state that may possibly have been written by
2075 : * INSERT.
2076 : */
2077 836 : if (mtstate->mt_transition_capture)
2078 54 : mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
2079 :
2080 : /* We're done moving. */
2081 836 : return true;
2082 : }
2083 :
2084 : /*
2085 : * ExecUpdatePrologue -- subroutine for ExecUpdate
2086 : *
2087 : * Prepare executor state for UPDATE. This includes running BEFORE ROW
2088 : * triggers. We return false if one of them makes the update a no-op;
2089 : * otherwise, return true.
2090 : */
2091 : static bool
2092 325006 : ExecUpdatePrologue(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
2093 : ItemPointer tupleid, HeapTuple oldtuple, TupleTableSlot *slot,
2094 : TM_Result *result)
2095 : {
2096 325006 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
2097 :
2098 325006 : if (result)
2099 2134 : *result = TM_Ok;
2100 :
2101 325006 : ExecMaterializeSlot(slot);
2102 :
2103 : /*
2104 : * Open the table's indexes, if we have not done so already, so that we
2105 : * can add new index entries for the updated tuple.
2106 : */
2107 325006 : if (resultRelationDesc->rd_rel->relhasindex &&
2108 234042 : resultRelInfo->ri_IndexRelationDescs == NULL)
2109 8774 : ExecOpenIndices(resultRelInfo, false);
2110 :
2111 : /* BEFORE ROW UPDATE triggers */
2112 325006 : if (resultRelInfo->ri_TrigDesc &&
2113 6254 : resultRelInfo->ri_TrigDesc->trig_update_before_row)
2114 : {
2115 : /* Flush any pending inserts, so rows are visible to the triggers */
2116 2560 : if (context->estate->es_insert_pending_result_relations != NIL)
2117 2 : ExecPendingInserts(context->estate);
2118 :
2119 2536 : return ExecBRUpdateTriggers(context->estate, context->epqstate,
2120 : resultRelInfo, tupleid, oldtuple, slot,
2121 : result, &context->tmfd,
2122 2560 : context->mtstate->operation == CMD_MERGE);
2123 : }
2124 :
2125 322446 : return true;
2126 : }
2127 :
2128 : /*
2129 : * ExecUpdatePrepareSlot -- subroutine for ExecUpdateAct
2130 : *
2131 : * Apply the final modifications to the tuple slot before the update.
2132 : * (This is split out because we also need it in the foreign-table code path.)
2133 : */
2134 : static void
2135 324732 : ExecUpdatePrepareSlot(ResultRelInfo *resultRelInfo,
2136 : TupleTableSlot *slot,
2137 : EState *estate)
2138 : {
2139 324732 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
2140 :
2141 : /*
2142 : * Constraints and GENERATED expressions might reference the tableoid
2143 : * column, so (re-)initialize tts_tableOid before evaluating them.
2144 : */
2145 324732 : slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
2146 :
2147 : /*
2148 : * Compute stored generated columns
2149 : */
2150 324732 : if (resultRelationDesc->rd_att->constr &&
2151 197164 : resultRelationDesc->rd_att->constr->has_generated_stored)
2152 258 : ExecComputeStoredGenerated(resultRelInfo, estate, slot,
2153 : CMD_UPDATE);
2154 324732 : }
2155 :
2156 : /*
2157 : * ExecUpdateAct -- subroutine for ExecUpdate
2158 : *
2159 : * Actually update the tuple, when operating on a plain table. If the
2160 : * table is a partition, and the command was called referencing an ancestor
2161 : * partitioned table, this routine migrates the resulting tuple to another
2162 : * partition.
2163 : *
2164 : * The caller is in charge of keeping indexes current as necessary. The
2165 : * caller is also in charge of doing EvalPlanQual if the tuple is found to
2166 : * be concurrently updated. However, in case of a cross-partition update,
2167 : * this routine does it.
2168 : */
2169 : static TM_Result
2170 324540 : ExecUpdateAct(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
2171 : ItemPointer tupleid, HeapTuple oldtuple, TupleTableSlot *slot,
2172 : bool canSetTag, UpdateContext *updateCxt)
2173 : {
2174 324540 : EState *estate = context->estate;
2175 324540 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
2176 : bool partition_constraint_failed;
2177 : TM_Result result;
2178 :
2179 324540 : updateCxt->crossPartUpdate = false;
2180 :
2181 : /*
2182 : * If we move the tuple to a new partition, we loop back here to recompute
2183 : * GENERATED values (which are allowed to be different across partitions)
2184 : * and recheck any RLS policies and constraints. We do not fire any
2185 : * BEFORE triggers of the new partition, however.
2186 : */
2187 324546 : lreplace:
2188 : /* Fill in GENERATEd columns */
2189 324546 : ExecUpdatePrepareSlot(resultRelInfo, slot, estate);
2190 :
2191 : /* ensure slot is independent, consider e.g. EPQ */
2192 324546 : ExecMaterializeSlot(slot);
2193 :
2194 : /*
2195 : * If partition constraint fails, this row might get moved to another
2196 : * partition, in which case we should check the RLS CHECK policy just
2197 : * before inserting into the new partition, rather than doing it here.
2198 : * This is because a trigger on that partition might again change the row.
2199 : * So skip the WCO checks if the partition constraint fails.
2200 : */
2201 324546 : partition_constraint_failed =
2202 327260 : resultRelationDesc->rd_rel->relispartition &&
2203 2714 : !ExecPartitionCheck(resultRelInfo, slot, estate, false);
2204 :
2205 : /* Check any RLS UPDATE WITH CHECK policies */
2206 324546 : if (!partition_constraint_failed &&
2207 323456 : resultRelInfo->ri_WithCheckOptions != NIL)
2208 : {
2209 : /*
2210 : * ExecWithCheckOptions() will skip any WCOs which are not of the kind
2211 : * we are looking for at this point.
2212 : */
2213 492 : ExecWithCheckOptions(WCO_RLS_UPDATE_CHECK,
2214 : resultRelInfo, slot, estate);
2215 : }
2216 :
2217 : /*
2218 : * If a partition check failed, try to move the row into the right
2219 : * partition.
2220 : */
2221 324492 : if (partition_constraint_failed)
2222 : {
2223 : TupleTableSlot *inserted_tuple,
2224 : *retry_slot;
2225 1090 : ResultRelInfo *insert_destrel = NULL;
2226 :
2227 : /*
2228 : * ExecCrossPartitionUpdate will first DELETE the row from the
2229 : * partition it's currently in and then insert it back into the root
2230 : * table, which will re-route it to the correct partition. However,
2231 : * if the tuple has been concurrently updated, a retry is needed.
2232 : */
2233 1090 : if (ExecCrossPartitionUpdate(context, resultRelInfo,
2234 : tupleid, oldtuple, slot,
2235 : canSetTag, updateCxt,
2236 : &result,
2237 : &retry_slot,
2238 : &inserted_tuple,
2239 : &insert_destrel))
2240 : {
2241 : /* success! */
2242 896 : updateCxt->crossPartUpdate = true;
2243 :
2244 : /*
2245 : * If the partitioned table being updated is referenced in foreign
2246 : * keys, queue up trigger events to check that none of them were
2247 : * violated. No special treatment is needed in
2248 : * non-cross-partition update situations, because the leaf
2249 : * partition's AR update triggers will take care of that. During
2250 : * cross-partition updates implemented as delete on the source
2251 : * partition followed by insert on the destination partition,
2252 : * AR-UPDATE triggers of the root table (that is, the table
2253 : * mentioned in the query) must be fired.
2254 : *
2255 : * NULL insert_destrel means that the move failed to occur, that
2256 : * is, the update failed, so no need to anything in that case.
2257 : */
2258 896 : if (insert_destrel &&
2259 808 : resultRelInfo->ri_TrigDesc &&
2260 362 : resultRelInfo->ri_TrigDesc->trig_update_after_row)
2261 300 : ExecCrossPartitionUpdateForeignKey(context,
2262 : resultRelInfo,
2263 : insert_destrel,
2264 : tupleid, slot,
2265 : inserted_tuple);
2266 :
2267 900 : return TM_Ok;
2268 : }
2269 :
2270 : /*
2271 : * No luck, a retry is needed. If running MERGE, we do not do so
2272 : * here; instead let it handle that on its own rules.
2273 : */
2274 16 : if (context->mtstate->operation == CMD_MERGE)
2275 10 : return result;
2276 :
2277 : /*
2278 : * ExecCrossPartitionUpdate installed an updated version of the new
2279 : * tuple in the retry slot; start over.
2280 : */
2281 6 : slot = retry_slot;
2282 6 : goto lreplace;
2283 : }
2284 :
2285 : /*
2286 : * Check the constraints of the tuple. We've already checked the
2287 : * partition constraint above; however, we must still ensure the tuple
2288 : * passes all other constraints, so we will call ExecConstraints() and
2289 : * have it validate all remaining checks.
2290 : */
2291 323402 : if (resultRelationDesc->rd_att->constr)
2292 196540 : ExecConstraints(resultRelInfo, slot, estate);
2293 :
2294 : /*
2295 : * replace the heap tuple
2296 : *
2297 : * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check that
2298 : * the row to be updated is visible to that snapshot, and throw a
2299 : * can't-serialize error if not. This is a special-case behavior needed
2300 : * for referential integrity updates in transaction-snapshot mode
2301 : * transactions.
2302 : */
2303 323328 : result = table_tuple_update(resultRelationDesc, tupleid, slot,
2304 : estate->es_output_cid,
2305 : estate->es_snapshot,
2306 : estate->es_crosscheck_snapshot,
2307 : true /* wait for commit */ ,
2308 : &context->tmfd, &updateCxt->lockmode,
2309 : &updateCxt->updateIndexes);
2310 :
2311 323304 : return result;
2312 : }
2313 :
2314 : /*
2315 : * ExecUpdateEpilogue -- subroutine for ExecUpdate
2316 : *
2317 : * Closing steps of updating a tuple. Must be called if ExecUpdateAct
2318 : * returns indicating that the tuple was updated.
2319 : */
2320 : static void
2321 323358 : ExecUpdateEpilogue(ModifyTableContext *context, UpdateContext *updateCxt,
2322 : ResultRelInfo *resultRelInfo, ItemPointer tupleid,
2323 : HeapTuple oldtuple, TupleTableSlot *slot)
2324 : {
2325 323358 : ModifyTableState *mtstate = context->mtstate;
2326 323358 : List *recheckIndexes = NIL;
2327 :
2328 : /* insert index entries for tuple if necessary */
2329 323358 : if (resultRelInfo->ri_NumIndices > 0 && (updateCxt->updateIndexes != TU_None))
2330 177312 : recheckIndexes = ExecInsertIndexTuples(resultRelInfo,
2331 : slot, context->estate,
2332 : true, false,
2333 : NULL, NIL,
2334 177312 : (updateCxt->updateIndexes == TU_Summarizing));
2335 :
2336 : /* AFTER ROW UPDATE Triggers */
2337 323266 : ExecARUpdateTriggers(context->estate, resultRelInfo,
2338 : NULL, NULL,
2339 : tupleid, oldtuple, slot,
2340 : recheckIndexes,
2341 323266 : mtstate->operation == CMD_INSERT ?
2342 : mtstate->mt_oc_transition_capture :
2343 : mtstate->mt_transition_capture,
2344 : false);
2345 :
2346 323266 : list_free(recheckIndexes);
2347 :
2348 : /*
2349 : * Check any WITH CHECK OPTION constraints from parent views. We are
2350 : * required to do this after testing all constraints and uniqueness
2351 : * violations per the SQL spec, so we do it after actually updating the
2352 : * record in the heap and all indexes.
2353 : *
2354 : * ExecWithCheckOptions() will skip any WCOs which are not of the kind we
2355 : * are looking for at this point.
2356 : */
2357 323266 : if (resultRelInfo->ri_WithCheckOptions != NIL)
2358 466 : ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo,
2359 : slot, context->estate);
2360 323184 : }
2361 :
2362 : /*
2363 : * Queues up an update event using the target root partitioned table's
2364 : * trigger to check that a cross-partition update hasn't broken any foreign
2365 : * keys pointing into it.
2366 : */
2367 : static void
2368 300 : ExecCrossPartitionUpdateForeignKey(ModifyTableContext *context,
2369 : ResultRelInfo *sourcePartInfo,
2370 : ResultRelInfo *destPartInfo,
2371 : ItemPointer tupleid,
2372 : TupleTableSlot *oldslot,
2373 : TupleTableSlot *newslot)
2374 : {
2375 : ListCell *lc;
2376 : ResultRelInfo *rootRelInfo;
2377 : List *ancestorRels;
2378 :
2379 300 : rootRelInfo = sourcePartInfo->ri_RootResultRelInfo;
2380 300 : ancestorRels = ExecGetAncestorResultRels(context->estate, sourcePartInfo);
2381 :
2382 : /*
2383 : * For any foreign keys that point directly into a non-root ancestors of
2384 : * the source partition, we can in theory fire an update event to enforce
2385 : * those constraints using their triggers, if we could tell that both the
2386 : * source and the destination partitions are under the same ancestor. But
2387 : * for now, we simply report an error that those cannot be enforced.
2388 : */
2389 654 : foreach(lc, ancestorRels)
2390 : {
2391 360 : ResultRelInfo *rInfo = lfirst(lc);
2392 360 : TriggerDesc *trigdesc = rInfo->ri_TrigDesc;
2393 360 : bool has_noncloned_fkey = false;
2394 :
2395 : /* Root ancestor's triggers will be processed. */
2396 360 : if (rInfo == rootRelInfo)
2397 294 : continue;
2398 :
2399 66 : if (trigdesc && trigdesc->trig_update_after_row)
2400 : {
2401 228 : for (int i = 0; i < trigdesc->numtriggers; i++)
2402 : {
2403 168 : Trigger *trig = &trigdesc->triggers[i];
2404 :
2405 174 : if (!trig->tgisclone &&
2406 6 : RI_FKey_trigger_type(trig->tgfoid) == RI_TRIGGER_PK)
2407 : {
2408 6 : has_noncloned_fkey = true;
2409 6 : break;
2410 : }
2411 : }
2412 : }
2413 :
2414 66 : if (has_noncloned_fkey)
2415 6 : ereport(ERROR,
2416 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2417 : errmsg("cannot move tuple across partitions when a non-root ancestor of the source partition is directly referenced in a foreign key"),
2418 : errdetail("A foreign key points to ancestor \"%s\" but not the root ancestor \"%s\".",
2419 : RelationGetRelationName(rInfo->ri_RelationDesc),
2420 : RelationGetRelationName(rootRelInfo->ri_RelationDesc)),
2421 : errhint("Consider defining the foreign key on table \"%s\".",
2422 : RelationGetRelationName(rootRelInfo->ri_RelationDesc))));
2423 : }
2424 :
2425 : /* Perform the root table's triggers. */
2426 294 : ExecARUpdateTriggers(context->estate,
2427 : rootRelInfo, sourcePartInfo, destPartInfo,
2428 : tupleid, NULL, newslot, NIL, NULL, true);
2429 294 : }
2430 :
2431 : /* ----------------------------------------------------------------
2432 : * ExecUpdate
2433 : *
2434 : * note: we can't run UPDATE queries with transactions
2435 : * off because UPDATEs are actually INSERTs and our
2436 : * scan will mistakenly loop forever, updating the tuple
2437 : * it just inserted.. This should be fixed but until it
2438 : * is, we don't want to get stuck in an infinite loop
2439 : * which corrupts your database..
2440 : *
2441 : * When updating a table, tupleid identifies the tuple to update and
2442 : * oldtuple is NULL. When updating through a view INSTEAD OF trigger,
2443 : * oldtuple is passed to the triggers and identifies what to update, and
2444 : * tupleid is invalid. When updating a foreign table, tupleid is
2445 : * invalid; the FDW has to figure out which row to update using data from
2446 : * the planSlot. oldtuple is passed to foreign table triggers; it is
2447 : * NULL when the foreign table has no relevant triggers.
2448 : *
2449 : * oldSlot contains the old tuple value.
2450 : * slot contains the new tuple value to be stored.
2451 : * planSlot is the output of the ModifyTable's subplan; we use it
2452 : * to access values from other input tables (for RETURNING),
2453 : * row-ID junk columns, etc.
2454 : *
2455 : * Returns RETURNING result if any, otherwise NULL. On exit, if tupleid
2456 : * had identified the tuple to update, it will identify the tuple
2457 : * actually updated after EvalPlanQual.
2458 : * ----------------------------------------------------------------
2459 : */
2460 : static TupleTableSlot *
2461 322872 : ExecUpdate(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
2462 : ItemPointer tupleid, HeapTuple oldtuple, TupleTableSlot *oldSlot,
2463 : TupleTableSlot *slot, bool canSetTag)
2464 : {
2465 322872 : EState *estate = context->estate;
2466 322872 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
2467 322872 : UpdateContext updateCxt = {0};
2468 : TM_Result result;
2469 :
2470 : /*
2471 : * abort the operation if not running transactions
2472 : */
2473 322872 : if (IsBootstrapProcessingMode())
2474 0 : elog(ERROR, "cannot UPDATE during bootstrap");
2475 :
2476 : /*
2477 : * Prepare for the update. This includes BEFORE ROW triggers, so we're
2478 : * done if it says we are.
2479 : */
2480 322872 : if (!ExecUpdatePrologue(context, resultRelInfo, tupleid, oldtuple, slot, NULL))
2481 132 : return NULL;
2482 :
2483 : /* INSTEAD OF ROW UPDATE Triggers */
2484 322716 : if (resultRelInfo->ri_TrigDesc &&
2485 5746 : resultRelInfo->ri_TrigDesc->trig_update_instead_row)
2486 : {
2487 126 : if (!ExecIRUpdateTriggers(estate, resultRelInfo,
2488 : oldtuple, slot))
2489 18 : return NULL; /* "do nothing" */
2490 : }
2491 322590 : else if (resultRelInfo->ri_FdwRoutine)
2492 : {
2493 : /* Fill in GENERATEd columns */
2494 186 : ExecUpdatePrepareSlot(resultRelInfo, slot, estate);
2495 :
2496 : /*
2497 : * update in foreign table: let the FDW do it
2498 : */
2499 186 : slot = resultRelInfo->ri_FdwRoutine->ExecForeignUpdate(estate,
2500 : resultRelInfo,
2501 : slot,
2502 : context->planSlot);
2503 :
2504 186 : if (slot == NULL) /* "do nothing" */
2505 2 : return NULL;
2506 :
2507 : /*
2508 : * AFTER ROW Triggers or RETURNING expressions might reference the
2509 : * tableoid column, so (re-)initialize tts_tableOid before evaluating
2510 : * them. (This covers the case where the FDW replaced the slot.)
2511 : */
2512 184 : slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
2513 : }
2514 : else
2515 : {
2516 : ItemPointerData lockedtid;
2517 :
2518 : /*
2519 : * If we generate a new candidate tuple after EvalPlanQual testing, we
2520 : * must loop back here to try again. (We don't need to redo triggers,
2521 : * however. If there are any BEFORE triggers then trigger.c will have
2522 : * done table_tuple_lock to lock the correct tuple, so there's no need
2523 : * to do them again.)
2524 : */
2525 322404 : redo_act:
2526 322502 : lockedtid = *tupleid;
2527 322502 : result = ExecUpdateAct(context, resultRelInfo, tupleid, oldtuple, slot,
2528 : canSetTag, &updateCxt);
2529 :
2530 : /*
2531 : * If ExecUpdateAct reports that a cross-partition update was done,
2532 : * then the RETURNING tuple (if any) has been projected and there's
2533 : * nothing else for us to do.
2534 : */
2535 322186 : if (updateCxt.crossPartUpdate)
2536 884 : return context->cpUpdateReturningSlot;
2537 :
2538 321430 : switch (result)
2539 : {
2540 84 : case TM_SelfModified:
2541 :
2542 : /*
2543 : * The target tuple was already updated or deleted by the
2544 : * current command, or by a later command in the current
2545 : * transaction. The former case is possible in a join UPDATE
2546 : * where multiple tuples join to the same target tuple. This
2547 : * is pretty questionable, but Postgres has always allowed it:
2548 : * we just execute the first update action and ignore
2549 : * additional update attempts.
2550 : *
2551 : * The latter case arises if the tuple is modified by a
2552 : * command in a BEFORE trigger, or perhaps by a command in a
2553 : * volatile function used in the query. In such situations we
2554 : * should not ignore the update, but it is equally unsafe to
2555 : * proceed. We don't want to discard the original UPDATE
2556 : * while keeping the triggered actions based on it; and we
2557 : * have no principled way to merge this update with the
2558 : * previous ones. So throwing an error is the only safe
2559 : * course.
2560 : *
2561 : * If a trigger actually intends this type of interaction, it
2562 : * can re-execute the UPDATE (assuming it can figure out how)
2563 : * and then return NULL to cancel the outer update.
2564 : */
2565 84 : if (context->tmfd.cmax != estate->es_output_cid)
2566 6 : ereport(ERROR,
2567 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
2568 : errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
2569 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
2570 :
2571 : /* Else, already updated by self; nothing to do */
2572 78 : return NULL;
2573 :
2574 321188 : case TM_Ok:
2575 321188 : break;
2576 :
2577 150 : case TM_Updated:
2578 : {
2579 : TupleTableSlot *inputslot;
2580 : TupleTableSlot *epqslot;
2581 :
2582 150 : if (IsolationUsesXactSnapshot())
2583 4 : ereport(ERROR,
2584 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
2585 : errmsg("could not serialize access due to concurrent update")));
2586 :
2587 : /*
2588 : * Already know that we're going to need to do EPQ, so
2589 : * fetch tuple directly into the right slot.
2590 : */
2591 146 : inputslot = EvalPlanQualSlot(context->epqstate, resultRelationDesc,
2592 : resultRelInfo->ri_RangeTableIndex);
2593 :
2594 146 : result = table_tuple_lock(resultRelationDesc, tupleid,
2595 : estate->es_snapshot,
2596 : inputslot, estate->es_output_cid,
2597 : updateCxt.lockmode, LockWaitBlock,
2598 : TUPLE_LOCK_FLAG_FIND_LAST_VERSION,
2599 : &context->tmfd);
2600 :
2601 142 : switch (result)
2602 : {
2603 132 : case TM_Ok:
2604 : Assert(context->tmfd.traversed);
2605 :
2606 132 : epqslot = EvalPlanQual(context->epqstate,
2607 : resultRelationDesc,
2608 : resultRelInfo->ri_RangeTableIndex,
2609 : inputslot);
2610 132 : if (TupIsNull(epqslot))
2611 : /* Tuple not passing quals anymore, exiting... */
2612 34 : return NULL;
2613 :
2614 : /* Make sure ri_oldTupleSlot is initialized. */
2615 98 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
2616 0 : ExecInitUpdateProjection(context->mtstate,
2617 : resultRelInfo);
2618 :
2619 98 : if (resultRelInfo->ri_needLockTagTuple)
2620 : {
2621 2 : UnlockTuple(resultRelationDesc,
2622 : &lockedtid, InplaceUpdateTupleLock);
2623 2 : LockTuple(resultRelationDesc,
2624 : tupleid, InplaceUpdateTupleLock);
2625 : }
2626 :
2627 : /* Fetch the most recent version of old tuple. */
2628 98 : oldSlot = resultRelInfo->ri_oldTupleSlot;
2629 98 : if (!table_tuple_fetch_row_version(resultRelationDesc,
2630 : tupleid,
2631 : SnapshotAny,
2632 : oldSlot))
2633 0 : elog(ERROR, "failed to fetch tuple being updated");
2634 98 : slot = ExecGetUpdateNewTuple(resultRelInfo,
2635 : epqslot, oldSlot);
2636 98 : goto redo_act;
2637 :
2638 2 : case TM_Deleted:
2639 : /* tuple already deleted; nothing to do */
2640 2 : return NULL;
2641 :
2642 8 : case TM_SelfModified:
2643 :
2644 : /*
2645 : * This can be reached when following an update
2646 : * chain from a tuple updated by another session,
2647 : * reaching a tuple that was already updated in
2648 : * this transaction. If previously modified by
2649 : * this command, ignore the redundant update,
2650 : * otherwise error out.
2651 : *
2652 : * See also TM_SelfModified response to
2653 : * table_tuple_update() above.
2654 : */
2655 8 : if (context->tmfd.cmax != estate->es_output_cid)
2656 2 : ereport(ERROR,
2657 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
2658 : errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
2659 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
2660 6 : return NULL;
2661 :
2662 0 : default:
2663 : /* see table_tuple_lock call in ExecDelete() */
2664 0 : elog(ERROR, "unexpected table_tuple_lock status: %u",
2665 : result);
2666 : return NULL;
2667 : }
2668 : }
2669 :
2670 : break;
2671 :
2672 8 : case TM_Deleted:
2673 8 : if (IsolationUsesXactSnapshot())
2674 0 : ereport(ERROR,
2675 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
2676 : errmsg("could not serialize access due to concurrent delete")));
2677 : /* tuple already deleted; nothing to do */
2678 8 : return NULL;
2679 :
2680 0 : default:
2681 0 : elog(ERROR, "unrecognized table_tuple_update status: %u",
2682 : result);
2683 : return NULL;
2684 : }
2685 : }
2686 :
2687 321468 : if (canSetTag)
2688 320870 : (estate->es_processed)++;
2689 :
2690 321468 : ExecUpdateEpilogue(context, &updateCxt, resultRelInfo, tupleid, oldtuple,
2691 : slot);
2692 :
2693 : /* Process RETURNING if present */
2694 321306 : if (resultRelInfo->ri_projectReturning)
2695 2394 : return ExecProcessReturning(context, resultRelInfo, CMD_UPDATE,
2696 : oldSlot, slot, context->planSlot);
2697 :
2698 318912 : return NULL;
2699 : }
2700 :
2701 : /*
2702 : * ExecOnConflictUpdate --- execute UPDATE of INSERT ON CONFLICT DO UPDATE
2703 : *
2704 : * Try to lock tuple for update as part of speculative insertion. If
2705 : * a qual originating from ON CONFLICT DO UPDATE is satisfied, update
2706 : * (but still lock row, even though it may not satisfy estate's
2707 : * snapshot).
2708 : *
2709 : * Returns true if we're done (with or without an update), or false if
2710 : * the caller must retry the INSERT from scratch.
2711 : */
2712 : static bool
2713 5204 : ExecOnConflictUpdate(ModifyTableContext *context,
2714 : ResultRelInfo *resultRelInfo,
2715 : ItemPointer conflictTid,
2716 : TupleTableSlot *excludedSlot,
2717 : bool canSetTag,
2718 : TupleTableSlot **returning)
2719 : {
2720 5204 : ModifyTableState *mtstate = context->mtstate;
2721 5204 : ExprContext *econtext = mtstate->ps.ps_ExprContext;
2722 5204 : Relation relation = resultRelInfo->ri_RelationDesc;
2723 5204 : ExprState *onConflictSetWhere = resultRelInfo->ri_onConflict->oc_WhereClause;
2724 5204 : TupleTableSlot *existing = resultRelInfo->ri_onConflict->oc_Existing;
2725 : TM_FailureData tmfd;
2726 : LockTupleMode lockmode;
2727 : TM_Result test;
2728 : Datum xminDatum;
2729 : TransactionId xmin;
2730 : bool isnull;
2731 :
2732 : /*
2733 : * Parse analysis should have blocked ON CONFLICT for all system
2734 : * relations, which includes these. There's no fundamental obstacle to
2735 : * supporting this; we'd just need to handle LOCKTAG_TUPLE like the other
2736 : * ExecUpdate() caller.
2737 : */
2738 : Assert(!resultRelInfo->ri_needLockTagTuple);
2739 :
2740 : /* Determine lock mode to use */
2741 5204 : lockmode = ExecUpdateLockMode(context->estate, resultRelInfo);
2742 :
2743 : /*
2744 : * Lock tuple for update. Don't follow updates when tuple cannot be
2745 : * locked without doing so. A row locking conflict here means our
2746 : * previous conclusion that the tuple is conclusively committed is not
2747 : * true anymore.
2748 : */
2749 5204 : test = table_tuple_lock(relation, conflictTid,
2750 5204 : context->estate->es_snapshot,
2751 5204 : existing, context->estate->es_output_cid,
2752 : lockmode, LockWaitBlock, 0,
2753 : &tmfd);
2754 5204 : switch (test)
2755 : {
2756 5180 : case TM_Ok:
2757 : /* success! */
2758 5180 : break;
2759 :
2760 24 : case TM_Invisible:
2761 :
2762 : /*
2763 : * This can occur when a just inserted tuple is updated again in
2764 : * the same command. E.g. because multiple rows with the same
2765 : * conflicting key values are inserted.
2766 : *
2767 : * This is somewhat similar to the ExecUpdate() TM_SelfModified
2768 : * case. We do not want to proceed because it would lead to the
2769 : * same row being updated a second time in some unspecified order,
2770 : * and in contrast to plain UPDATEs there's no historical behavior
2771 : * to break.
2772 : *
2773 : * It is the user's responsibility to prevent this situation from
2774 : * occurring. These problems are why the SQL standard similarly
2775 : * specifies that for SQL MERGE, an exception must be raised in
2776 : * the event of an attempt to update the same row twice.
2777 : */
2778 24 : xminDatum = slot_getsysattr(existing,
2779 : MinTransactionIdAttributeNumber,
2780 : &isnull);
2781 : Assert(!isnull);
2782 24 : xmin = DatumGetTransactionId(xminDatum);
2783 :
2784 24 : if (TransactionIdIsCurrentTransactionId(xmin))
2785 24 : ereport(ERROR,
2786 : (errcode(ERRCODE_CARDINALITY_VIOLATION),
2787 : /* translator: %s is a SQL command name */
2788 : errmsg("%s command cannot affect row a second time",
2789 : "ON CONFLICT DO UPDATE"),
2790 : errhint("Ensure that no rows proposed for insertion within the same command have duplicate constrained values.")));
2791 :
2792 : /* This shouldn't happen */
2793 0 : elog(ERROR, "attempted to lock invisible tuple");
2794 : break;
2795 :
2796 0 : case TM_SelfModified:
2797 :
2798 : /*
2799 : * This state should never be reached. As a dirty snapshot is used
2800 : * to find conflicting tuples, speculative insertion wouldn't have
2801 : * seen this row to conflict with.
2802 : */
2803 0 : elog(ERROR, "unexpected self-updated tuple");
2804 : break;
2805 :
2806 0 : case TM_Updated:
2807 0 : if (IsolationUsesXactSnapshot())
2808 0 : ereport(ERROR,
2809 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
2810 : errmsg("could not serialize access due to concurrent update")));
2811 :
2812 : /*
2813 : * As long as we don't support an UPDATE of INSERT ON CONFLICT for
2814 : * a partitioned table we shouldn't reach to a case where tuple to
2815 : * be lock is moved to another partition due to concurrent update
2816 : * of the partition key.
2817 : */
2818 : Assert(!ItemPointerIndicatesMovedPartitions(&tmfd.ctid));
2819 :
2820 : /*
2821 : * Tell caller to try again from the very start.
2822 : *
2823 : * It does not make sense to use the usual EvalPlanQual() style
2824 : * loop here, as the new version of the row might not conflict
2825 : * anymore, or the conflicting tuple has actually been deleted.
2826 : */
2827 0 : ExecClearTuple(existing);
2828 0 : return false;
2829 :
2830 0 : case TM_Deleted:
2831 0 : if (IsolationUsesXactSnapshot())
2832 0 : ereport(ERROR,
2833 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
2834 : errmsg("could not serialize access due to concurrent delete")));
2835 :
2836 : /* see TM_Updated case */
2837 : Assert(!ItemPointerIndicatesMovedPartitions(&tmfd.ctid));
2838 0 : ExecClearTuple(existing);
2839 0 : return false;
2840 :
2841 0 : default:
2842 0 : elog(ERROR, "unrecognized table_tuple_lock status: %u", test);
2843 : }
2844 :
2845 : /* Success, the tuple is locked. */
2846 :
2847 : /*
2848 : * Verify that the tuple is visible to our MVCC snapshot if the current
2849 : * isolation level mandates that.
2850 : *
2851 : * It's not sufficient to rely on the check within ExecUpdate() as e.g.
2852 : * CONFLICT ... WHERE clause may prevent us from reaching that.
2853 : *
2854 : * This means we only ever continue when a new command in the current
2855 : * transaction could see the row, even though in READ COMMITTED mode the
2856 : * tuple will not be visible according to the current statement's
2857 : * snapshot. This is in line with the way UPDATE deals with newer tuple
2858 : * versions.
2859 : */
2860 5180 : ExecCheckTupleVisible(context->estate, relation, existing);
2861 :
2862 : /*
2863 : * Make tuple and any needed join variables available to ExecQual and
2864 : * ExecProject. The EXCLUDED tuple is installed in ecxt_innertuple, while
2865 : * the target's existing tuple is installed in the scantuple. EXCLUDED
2866 : * has been made to reference INNER_VAR in setrefs.c, but there is no
2867 : * other redirection.
2868 : */
2869 5180 : econtext->ecxt_scantuple = existing;
2870 5180 : econtext->ecxt_innertuple = excludedSlot;
2871 5180 : econtext->ecxt_outertuple = NULL;
2872 :
2873 5180 : if (!ExecQual(onConflictSetWhere, econtext))
2874 : {
2875 32 : ExecClearTuple(existing); /* see return below */
2876 32 : InstrCountFiltered1(&mtstate->ps, 1);
2877 32 : return true; /* done with the tuple */
2878 : }
2879 :
2880 5148 : if (resultRelInfo->ri_WithCheckOptions != NIL)
2881 : {
2882 : /*
2883 : * Check target's existing tuple against UPDATE-applicable USING
2884 : * security barrier quals (if any), enforced here as RLS checks/WCOs.
2885 : *
2886 : * The rewriter creates UPDATE RLS checks/WCOs for UPDATE security
2887 : * quals, and stores them as WCOs of "kind" WCO_RLS_CONFLICT_CHECK,
2888 : * but that's almost the extent of its special handling for ON
2889 : * CONFLICT DO UPDATE.
2890 : *
2891 : * The rewriter will also have associated UPDATE applicable straight
2892 : * RLS checks/WCOs for the benefit of the ExecUpdate() call that
2893 : * follows. INSERTs and UPDATEs naturally have mutually exclusive WCO
2894 : * kinds, so there is no danger of spurious over-enforcement in the
2895 : * INSERT or UPDATE path.
2896 : */
2897 60 : ExecWithCheckOptions(WCO_RLS_CONFLICT_CHECK, resultRelInfo,
2898 : existing,
2899 : mtstate->ps.state);
2900 : }
2901 :
2902 : /* Project the new tuple version */
2903 5124 : ExecProject(resultRelInfo->ri_onConflict->oc_ProjInfo);
2904 :
2905 : /*
2906 : * Note that it is possible that the target tuple has been modified in
2907 : * this session, after the above table_tuple_lock. We choose to not error
2908 : * out in that case, in line with ExecUpdate's treatment of similar cases.
2909 : * This can happen if an UPDATE is triggered from within ExecQual(),
2910 : * ExecWithCheckOptions() or ExecProject() above, e.g. by selecting from a
2911 : * wCTE in the ON CONFLICT's SET.
2912 : */
2913 :
2914 : /* Execute UPDATE with projection */
2915 10218 : *returning = ExecUpdate(context, resultRelInfo,
2916 : conflictTid, NULL, existing,
2917 5124 : resultRelInfo->ri_onConflict->oc_ProjSlot,
2918 : canSetTag);
2919 :
2920 : /*
2921 : * Clear out existing tuple, as there might not be another conflict among
2922 : * the next input rows. Don't want to hold resources till the end of the
2923 : * query. First though, make sure that the returning slot, if any, has a
2924 : * local copy of any OLD pass-by-reference values, if it refers to any OLD
2925 : * columns.
2926 : */
2927 5094 : if (*returning != NULL &&
2928 220 : resultRelInfo->ri_projectReturning->pi_state.flags & EEO_FLAG_HAS_OLD)
2929 6 : ExecMaterializeSlot(*returning);
2930 :
2931 5094 : ExecClearTuple(existing);
2932 :
2933 5094 : return true;
2934 : }
2935 :
2936 : /*
2937 : * Perform MERGE.
2938 : */
2939 : static TupleTableSlot *
2940 15032 : ExecMerge(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
2941 : ItemPointer tupleid, HeapTuple oldtuple, bool canSetTag)
2942 : {
2943 15032 : TupleTableSlot *rslot = NULL;
2944 : bool matched;
2945 :
2946 : /*-----
2947 : * If we are dealing with a WHEN MATCHED case, tupleid or oldtuple is
2948 : * valid, depending on whether the result relation is a table or a view.
2949 : * We execute the first action for which the additional WHEN MATCHED AND
2950 : * quals pass. If an action without quals is found, that action is
2951 : * executed.
2952 : *
2953 : * Similarly, in the WHEN NOT MATCHED BY SOURCE case, tupleid or oldtuple
2954 : * is valid, and we look at the given WHEN NOT MATCHED BY SOURCE actions
2955 : * in sequence until one passes. This is almost identical to the WHEN
2956 : * MATCHED case, and both cases are handled by ExecMergeMatched().
2957 : *
2958 : * Finally, in the WHEN NOT MATCHED [BY TARGET] case, both tupleid and
2959 : * oldtuple are invalid, and we look at the given WHEN NOT MATCHED [BY
2960 : * TARGET] actions in sequence until one passes.
2961 : *
2962 : * Things get interesting in case of concurrent update/delete of the
2963 : * target tuple. Such concurrent update/delete is detected while we are
2964 : * executing a WHEN MATCHED or WHEN NOT MATCHED BY SOURCE action.
2965 : *
2966 : * A concurrent update can:
2967 : *
2968 : * 1. modify the target tuple so that the results from checking any
2969 : * additional quals attached to WHEN MATCHED or WHEN NOT MATCHED BY
2970 : * SOURCE actions potentially change, but the result from the join
2971 : * quals does not change.
2972 : *
2973 : * In this case, we are still dealing with the same kind of match
2974 : * (MATCHED or NOT MATCHED BY SOURCE). We recheck the same list of
2975 : * actions from the start and choose the first one that satisfies the
2976 : * new target tuple.
2977 : *
2978 : * 2. modify the target tuple in the WHEN MATCHED case so that the join
2979 : * quals no longer pass and hence the source and target tuples no
2980 : * longer match.
2981 : *
2982 : * In this case, we are now dealing with a NOT MATCHED case, and we
2983 : * process both WHEN NOT MATCHED BY SOURCE and WHEN NOT MATCHED [BY
2984 : * TARGET] actions. First ExecMergeMatched() processes the list of
2985 : * WHEN NOT MATCHED BY SOURCE actions in sequence until one passes,
2986 : * then ExecMergeNotMatched() processes any WHEN NOT MATCHED [BY
2987 : * TARGET] actions in sequence until one passes. Thus we may execute
2988 : * two actions; one of each kind.
2989 : *
2990 : * Thus we support concurrent updates that turn MATCHED candidate rows
2991 : * into NOT MATCHED rows. However, we do not attempt to support cases
2992 : * that would turn NOT MATCHED rows into MATCHED rows, or which would
2993 : * cause a target row to match a different source row.
2994 : *
2995 : * A concurrent delete changes a WHEN MATCHED case to WHEN NOT MATCHED
2996 : * [BY TARGET].
2997 : *
2998 : * ExecMergeMatched() takes care of following the update chain and
2999 : * re-finding the qualifying WHEN MATCHED or WHEN NOT MATCHED BY SOURCE
3000 : * action, as long as the target tuple still exists. If the target tuple
3001 : * gets deleted or a concurrent update causes the join quals to fail, it
3002 : * returns a matched status of false and we call ExecMergeNotMatched().
3003 : * Given that ExecMergeMatched() always makes progress by following the
3004 : * update chain and we never switch from ExecMergeNotMatched() to
3005 : * ExecMergeMatched(), there is no risk of a livelock.
3006 : */
3007 15032 : matched = tupleid != NULL || oldtuple != NULL;
3008 15032 : if (matched)
3009 12360 : rslot = ExecMergeMatched(context, resultRelInfo, tupleid, oldtuple,
3010 : canSetTag, &matched);
3011 :
3012 : /*
3013 : * Deal with the NOT MATCHED case (either a NOT MATCHED tuple from the
3014 : * join, or a previously MATCHED tuple for which ExecMergeMatched() set
3015 : * "matched" to false, indicating that it no longer matches).
3016 : */
3017 14942 : if (!matched)
3018 : {
3019 : /*
3020 : * If a concurrent update turned a MATCHED case into a NOT MATCHED
3021 : * case, and we have both WHEN NOT MATCHED BY SOURCE and WHEN NOT
3022 : * MATCHED [BY TARGET] actions, and there is a RETURNING clause,
3023 : * ExecMergeMatched() may have already executed a WHEN NOT MATCHED BY
3024 : * SOURCE action, and computed the row to return. If so, we cannot
3025 : * execute a WHEN NOT MATCHED [BY TARGET] action now, so mark it as
3026 : * pending (to be processed on the next call to ExecModifyTable()).
3027 : * Otherwise, just process the action now.
3028 : */
3029 2688 : if (rslot == NULL)
3030 2686 : rslot = ExecMergeNotMatched(context, resultRelInfo, canSetTag);
3031 : else
3032 2 : context->mtstate->mt_merge_pending_not_matched = context->planSlot;
3033 : }
3034 :
3035 14882 : return rslot;
3036 : }
3037 :
3038 : /*
3039 : * Check and execute the first qualifying MATCHED or NOT MATCHED BY SOURCE
3040 : * action, depending on whether the join quals are satisfied. If the target
3041 : * relation is a table, the current target tuple is identified by tupleid.
3042 : * Otherwise, if the target relation is a view, oldtuple is the current target
3043 : * tuple from the view.
3044 : *
3045 : * We start from the first WHEN MATCHED or WHEN NOT MATCHED BY SOURCE action
3046 : * and check if the WHEN quals pass, if any. If the WHEN quals for the first
3047 : * action do not pass, we check the second, then the third and so on. If we
3048 : * reach the end without finding a qualifying action, we return NULL.
3049 : * Otherwise, we execute the qualifying action and return its RETURNING
3050 : * result, if any, or NULL.
3051 : *
3052 : * On entry, "*matched" is assumed to be true. If a concurrent update or
3053 : * delete is detected that causes the join quals to no longer pass, we set it
3054 : * to false, indicating that the caller should process any NOT MATCHED [BY
3055 : * TARGET] actions.
3056 : *
3057 : * After a concurrent update, we restart from the first action to look for a
3058 : * new qualifying action to execute. If the join quals originally passed, and
3059 : * the concurrent update caused them to no longer pass, then we switch from
3060 : * the MATCHED to the NOT MATCHED BY SOURCE list of actions before restarting
3061 : * (and setting "*matched" to false). As a result we may execute a WHEN NOT
3062 : * MATCHED BY SOURCE action, and set "*matched" to false, causing the caller
3063 : * to also execute a WHEN NOT MATCHED [BY TARGET] action.
3064 : */
3065 : static TupleTableSlot *
3066 12360 : ExecMergeMatched(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
3067 : ItemPointer tupleid, HeapTuple oldtuple, bool canSetTag,
3068 : bool *matched)
3069 : {
3070 12360 : ModifyTableState *mtstate = context->mtstate;
3071 12360 : List **mergeActions = resultRelInfo->ri_MergeActions;
3072 : ItemPointerData lockedtid;
3073 : List *actionStates;
3074 12360 : TupleTableSlot *newslot = NULL;
3075 12360 : TupleTableSlot *rslot = NULL;
3076 12360 : EState *estate = context->estate;
3077 12360 : ExprContext *econtext = mtstate->ps.ps_ExprContext;
3078 : bool isNull;
3079 12360 : EPQState *epqstate = &mtstate->mt_epqstate;
3080 : ListCell *l;
3081 :
3082 : /* Expect matched to be true on entry */
3083 : Assert(*matched);
3084 :
3085 : /*
3086 : * If there are no WHEN MATCHED or WHEN NOT MATCHED BY SOURCE actions, we
3087 : * are done.
3088 : */
3089 12360 : if (mergeActions[MERGE_WHEN_MATCHED] == NIL &&
3090 1200 : mergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] == NIL)
3091 528 : return NULL;
3092 :
3093 : /*
3094 : * Make tuple and any needed join variables available to ExecQual and
3095 : * ExecProject. The target's existing tuple is installed in the scantuple.
3096 : * This target relation's slot is required only in the case of a MATCHED
3097 : * or NOT MATCHED BY SOURCE tuple and UPDATE/DELETE actions.
3098 : */
3099 11832 : econtext->ecxt_scantuple = resultRelInfo->ri_oldTupleSlot;
3100 11832 : econtext->ecxt_innertuple = context->planSlot;
3101 11832 : econtext->ecxt_outertuple = NULL;
3102 :
3103 : /*
3104 : * This routine is only invoked for matched target rows, so we should
3105 : * either have the tupleid of the target row, or an old tuple from the
3106 : * target wholerow junk attr.
3107 : */
3108 : Assert(tupleid != NULL || oldtuple != NULL);
3109 11832 : ItemPointerSetInvalid(&lockedtid);
3110 11832 : if (oldtuple != NULL)
3111 : {
3112 : Assert(!resultRelInfo->ri_needLockTagTuple);
3113 96 : ExecForceStoreHeapTuple(oldtuple, resultRelInfo->ri_oldTupleSlot,
3114 : false);
3115 : }
3116 : else
3117 : {
3118 11736 : if (resultRelInfo->ri_needLockTagTuple)
3119 : {
3120 : /*
3121 : * This locks even for CMD_DELETE, for CMD_NOTHING, and for tuples
3122 : * that don't match mas_whenqual. MERGE on system catalogs is a
3123 : * minor use case, so don't bother optimizing those.
3124 : */
3125 7806 : LockTuple(resultRelInfo->ri_RelationDesc, tupleid,
3126 : InplaceUpdateTupleLock);
3127 7806 : lockedtid = *tupleid;
3128 : }
3129 11736 : if (!table_tuple_fetch_row_version(resultRelInfo->ri_RelationDesc,
3130 : tupleid,
3131 : SnapshotAny,
3132 : resultRelInfo->ri_oldTupleSlot))
3133 0 : elog(ERROR, "failed to fetch the target tuple");
3134 : }
3135 :
3136 : /*
3137 : * Test the join condition. If it's satisfied, perform a MATCHED action.
3138 : * Otherwise, perform a NOT MATCHED BY SOURCE action.
3139 : *
3140 : * Note that this join condition will be NULL if there are no NOT MATCHED
3141 : * BY SOURCE actions --- see transform_MERGE_to_join(). In that case, we
3142 : * need only consider MATCHED actions here.
3143 : */
3144 11832 : if (ExecQual(resultRelInfo->ri_MergeJoinCondition, econtext))
3145 11650 : actionStates = mergeActions[MERGE_WHEN_MATCHED];
3146 : else
3147 182 : actionStates = mergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE];
3148 :
3149 11832 : lmerge_matched:
3150 :
3151 21154 : foreach(l, actionStates)
3152 : {
3153 11960 : MergeActionState *relaction = (MergeActionState *) lfirst(l);
3154 11960 : CmdType commandType = relaction->mas_action->commandType;
3155 : TM_Result result;
3156 11960 : UpdateContext updateCxt = {0};
3157 :
3158 : /*
3159 : * Test condition, if any.
3160 : *
3161 : * In the absence of any condition, we perform the action
3162 : * unconditionally (no need to check separately since ExecQual() will
3163 : * return true if there are no conditions to evaluate).
3164 : */
3165 11960 : if (!ExecQual(relaction->mas_whenqual, econtext))
3166 9258 : continue;
3167 :
3168 : /*
3169 : * Check if the existing target tuple meets the USING checks of
3170 : * UPDATE/DELETE RLS policies. If those checks fail, we throw an
3171 : * error.
3172 : *
3173 : * The WITH CHECK quals for UPDATE RLS policies are applied in
3174 : * ExecUpdateAct() and hence we need not do anything special to handle
3175 : * them.
3176 : *
3177 : * NOTE: We must do this after WHEN quals are evaluated, so that we
3178 : * check policies only when they matter.
3179 : */
3180 2702 : if (resultRelInfo->ri_WithCheckOptions && commandType != CMD_NOTHING)
3181 : {
3182 90 : ExecWithCheckOptions(commandType == CMD_UPDATE ?
3183 : WCO_RLS_MERGE_UPDATE_CHECK : WCO_RLS_MERGE_DELETE_CHECK,
3184 : resultRelInfo,
3185 : resultRelInfo->ri_oldTupleSlot,
3186 90 : context->mtstate->ps.state);
3187 : }
3188 :
3189 : /* Perform stated action */
3190 2678 : switch (commandType)
3191 : {
3192 2134 : case CMD_UPDATE:
3193 :
3194 : /*
3195 : * Project the output tuple, and use that to update the table.
3196 : * We don't need to filter out junk attributes, because the
3197 : * UPDATE action's targetlist doesn't have any.
3198 : */
3199 2134 : newslot = ExecProject(relaction->mas_proj);
3200 :
3201 2134 : mtstate->mt_merge_action = relaction;
3202 2134 : if (!ExecUpdatePrologue(context, resultRelInfo,
3203 : tupleid, NULL, newslot, &result))
3204 : {
3205 18 : if (result == TM_Ok)
3206 156 : goto out; /* "do nothing" */
3207 :
3208 12 : break; /* concurrent update/delete */
3209 : }
3210 :
3211 : /* INSTEAD OF ROW UPDATE Triggers */
3212 2116 : if (resultRelInfo->ri_TrigDesc &&
3213 334 : resultRelInfo->ri_TrigDesc->trig_update_instead_row)
3214 : {
3215 78 : if (!ExecIRUpdateTriggers(estate, resultRelInfo,
3216 : oldtuple, newslot))
3217 0 : goto out; /* "do nothing" */
3218 : }
3219 : else
3220 : {
3221 : /* checked ri_needLockTagTuple above */
3222 : Assert(oldtuple == NULL);
3223 :
3224 2038 : result = ExecUpdateAct(context, resultRelInfo, tupleid,
3225 : NULL, newslot, canSetTag,
3226 : &updateCxt);
3227 :
3228 : /*
3229 : * As in ExecUpdate(), if ExecUpdateAct() reports that a
3230 : * cross-partition update was done, then there's nothing
3231 : * else for us to do --- the UPDATE has been turned into a
3232 : * DELETE and an INSERT, and we must not perform any of
3233 : * the usual post-update tasks. Also, the RETURNING tuple
3234 : * (if any) has been projected, so we can just return
3235 : * that.
3236 : */
3237 2018 : if (updateCxt.crossPartUpdate)
3238 : {
3239 134 : mtstate->mt_merge_updated += 1;
3240 134 : rslot = context->cpUpdateReturningSlot;
3241 134 : goto out;
3242 : }
3243 : }
3244 :
3245 1962 : if (result == TM_Ok)
3246 : {
3247 1890 : ExecUpdateEpilogue(context, &updateCxt, resultRelInfo,
3248 : tupleid, NULL, newslot);
3249 1878 : mtstate->mt_merge_updated += 1;
3250 : }
3251 1950 : break;
3252 :
3253 514 : case CMD_DELETE:
3254 514 : mtstate->mt_merge_action = relaction;
3255 514 : if (!ExecDeletePrologue(context, resultRelInfo, tupleid,
3256 : NULL, NULL, &result))
3257 : {
3258 12 : if (result == TM_Ok)
3259 6 : goto out; /* "do nothing" */
3260 :
3261 6 : break; /* concurrent update/delete */
3262 : }
3263 :
3264 : /* INSTEAD OF ROW DELETE Triggers */
3265 502 : if (resultRelInfo->ri_TrigDesc &&
3266 44 : resultRelInfo->ri_TrigDesc->trig_delete_instead_row)
3267 : {
3268 6 : if (!ExecIRDeleteTriggers(estate, resultRelInfo,
3269 : oldtuple))
3270 0 : goto out; /* "do nothing" */
3271 : }
3272 : else
3273 : {
3274 : /* checked ri_needLockTagTuple above */
3275 : Assert(oldtuple == NULL);
3276 :
3277 496 : result = ExecDeleteAct(context, resultRelInfo, tupleid,
3278 : false);
3279 : }
3280 :
3281 502 : if (result == TM_Ok)
3282 : {
3283 484 : ExecDeleteEpilogue(context, resultRelInfo, tupleid, NULL,
3284 : false);
3285 484 : mtstate->mt_merge_deleted += 1;
3286 : }
3287 502 : break;
3288 :
3289 30 : case CMD_NOTHING:
3290 : /* Doing nothing is always OK */
3291 30 : result = TM_Ok;
3292 30 : break;
3293 :
3294 0 : default:
3295 0 : elog(ERROR, "unknown action in MERGE WHEN clause");
3296 : }
3297 :
3298 2500 : switch (result)
3299 : {
3300 2392 : case TM_Ok:
3301 : /* all good; perform final actions */
3302 2392 : if (canSetTag && commandType != CMD_NOTHING)
3303 2342 : (estate->es_processed)++;
3304 :
3305 2392 : break;
3306 :
3307 32 : case TM_SelfModified:
3308 :
3309 : /*
3310 : * The target tuple was already updated or deleted by the
3311 : * current command, or by a later command in the current
3312 : * transaction. The former case is explicitly disallowed by
3313 : * the SQL standard for MERGE, which insists that the MERGE
3314 : * join condition should not join a target row to more than
3315 : * one source row.
3316 : *
3317 : * The latter case arises if the tuple is modified by a
3318 : * command in a BEFORE trigger, or perhaps by a command in a
3319 : * volatile function used in the query. In such situations we
3320 : * should not ignore the MERGE action, but it is equally
3321 : * unsafe to proceed. We don't want to discard the original
3322 : * MERGE action while keeping the triggered actions based on
3323 : * it; and it would be no better to allow the original MERGE
3324 : * action while discarding the updates that it triggered. So
3325 : * throwing an error is the only safe course.
3326 : */
3327 32 : if (context->tmfd.cmax != estate->es_output_cid)
3328 12 : ereport(ERROR,
3329 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
3330 : errmsg("tuple to be updated or deleted was already modified by an operation triggered by the current command"),
3331 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
3332 :
3333 20 : if (TransactionIdIsCurrentTransactionId(context->tmfd.xmax))
3334 20 : ereport(ERROR,
3335 : (errcode(ERRCODE_CARDINALITY_VIOLATION),
3336 : /* translator: %s is a SQL command name */
3337 : errmsg("%s command cannot affect row a second time",
3338 : "MERGE"),
3339 : errhint("Ensure that not more than one source row matches any one target row.")));
3340 :
3341 : /* This shouldn't happen */
3342 0 : elog(ERROR, "attempted to update or delete invisible tuple");
3343 : break;
3344 :
3345 10 : case TM_Deleted:
3346 10 : if (IsolationUsesXactSnapshot())
3347 0 : ereport(ERROR,
3348 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
3349 : errmsg("could not serialize access due to concurrent delete")));
3350 :
3351 : /*
3352 : * If the tuple was already deleted, set matched to false to
3353 : * let caller handle it under NOT MATCHED [BY TARGET] clauses.
3354 : */
3355 10 : *matched = false;
3356 10 : goto out;
3357 :
3358 66 : case TM_Updated:
3359 : {
3360 : bool was_matched;
3361 : Relation resultRelationDesc;
3362 : TupleTableSlot *epqslot,
3363 : *inputslot;
3364 : LockTupleMode lockmode;
3365 :
3366 : /*
3367 : * The target tuple was concurrently updated by some other
3368 : * transaction. If we are currently processing a MATCHED
3369 : * action, use EvalPlanQual() with the new version of the
3370 : * tuple and recheck the join qual, to detect a change
3371 : * from the MATCHED to the NOT MATCHED cases. If we are
3372 : * already processing a NOT MATCHED BY SOURCE action, we
3373 : * skip this (cannot switch from NOT MATCHED BY SOURCE to
3374 : * MATCHED).
3375 : */
3376 66 : was_matched = relaction->mas_action->matchKind == MERGE_WHEN_MATCHED;
3377 66 : resultRelationDesc = resultRelInfo->ri_RelationDesc;
3378 66 : lockmode = ExecUpdateLockMode(estate, resultRelInfo);
3379 :
3380 66 : if (was_matched)
3381 66 : inputslot = EvalPlanQualSlot(epqstate, resultRelationDesc,
3382 : resultRelInfo->ri_RangeTableIndex);
3383 : else
3384 0 : inputslot = resultRelInfo->ri_oldTupleSlot;
3385 :
3386 66 : result = table_tuple_lock(resultRelationDesc, tupleid,
3387 : estate->es_snapshot,
3388 : inputslot, estate->es_output_cid,
3389 : lockmode, LockWaitBlock,
3390 : TUPLE_LOCK_FLAG_FIND_LAST_VERSION,
3391 : &context->tmfd);
3392 66 : switch (result)
3393 : {
3394 64 : case TM_Ok:
3395 :
3396 : /*
3397 : * If the tuple was updated and migrated to
3398 : * another partition concurrently, the current
3399 : * MERGE implementation can't follow. There's
3400 : * probably a better way to handle this case, but
3401 : * it'd require recognizing the relation to which
3402 : * the tuple moved, and setting our current
3403 : * resultRelInfo to that.
3404 : */
3405 64 : if (ItemPointerIndicatesMovedPartitions(&context->tmfd.ctid))
3406 0 : ereport(ERROR,
3407 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
3408 : errmsg("tuple to be merged was already moved to another partition due to concurrent update")));
3409 :
3410 : /*
3411 : * If this was a MATCHED case, use EvalPlanQual()
3412 : * to recheck the join condition.
3413 : */
3414 64 : if (was_matched)
3415 : {
3416 64 : epqslot = EvalPlanQual(epqstate,
3417 : resultRelationDesc,
3418 : resultRelInfo->ri_RangeTableIndex,
3419 : inputslot);
3420 :
3421 : /*
3422 : * If the subplan didn't return a tuple, then
3423 : * we must be dealing with an inner join for
3424 : * which the join condition no longer matches.
3425 : * This can only happen if there are no NOT
3426 : * MATCHED actions, and so there is nothing
3427 : * more to do.
3428 : */
3429 64 : if (TupIsNull(epqslot))
3430 0 : goto out;
3431 :
3432 : /*
3433 : * If we got a NULL ctid from the subplan, the
3434 : * join quals no longer pass and we switch to
3435 : * the NOT MATCHED BY SOURCE case.
3436 : */
3437 64 : (void) ExecGetJunkAttribute(epqslot,
3438 64 : resultRelInfo->ri_RowIdAttNo,
3439 : &isNull);
3440 64 : if (isNull)
3441 4 : *matched = false;
3442 :
3443 : /*
3444 : * Otherwise, recheck the join quals to see if
3445 : * we need to switch to the NOT MATCHED BY
3446 : * SOURCE case.
3447 : */
3448 64 : if (resultRelInfo->ri_needLockTagTuple)
3449 : {
3450 2 : if (ItemPointerIsValid(&lockedtid))
3451 2 : UnlockTuple(resultRelInfo->ri_RelationDesc, &lockedtid,
3452 : InplaceUpdateTupleLock);
3453 2 : LockTuple(resultRelInfo->ri_RelationDesc, &context->tmfd.ctid,
3454 : InplaceUpdateTupleLock);
3455 2 : lockedtid = context->tmfd.ctid;
3456 : }
3457 64 : if (!table_tuple_fetch_row_version(resultRelationDesc,
3458 : &context->tmfd.ctid,
3459 : SnapshotAny,
3460 : resultRelInfo->ri_oldTupleSlot))
3461 0 : elog(ERROR, "failed to fetch the target tuple");
3462 :
3463 64 : if (*matched)
3464 60 : *matched = ExecQual(resultRelInfo->ri_MergeJoinCondition,
3465 : econtext);
3466 :
3467 : /* Switch lists, if necessary */
3468 64 : if (!*matched)
3469 6 : actionStates = mergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE];
3470 : }
3471 :
3472 : /*
3473 : * Loop back and process the MATCHED or NOT
3474 : * MATCHED BY SOURCE actions from the start.
3475 : */
3476 64 : goto lmerge_matched;
3477 :
3478 0 : case TM_Deleted:
3479 :
3480 : /*
3481 : * tuple already deleted; tell caller to run NOT
3482 : * MATCHED [BY TARGET] actions
3483 : */
3484 0 : *matched = false;
3485 0 : goto out;
3486 :
3487 2 : case TM_SelfModified:
3488 :
3489 : /*
3490 : * This can be reached when following an update
3491 : * chain from a tuple updated by another session,
3492 : * reaching a tuple that was already updated or
3493 : * deleted by the current command, or by a later
3494 : * command in the current transaction. As above,
3495 : * this should always be treated as an error.
3496 : */
3497 2 : if (context->tmfd.cmax != estate->es_output_cid)
3498 0 : ereport(ERROR,
3499 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
3500 : errmsg("tuple to be updated or deleted was already modified by an operation triggered by the current command"),
3501 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
3502 :
3503 2 : if (TransactionIdIsCurrentTransactionId(context->tmfd.xmax))
3504 2 : ereport(ERROR,
3505 : (errcode(ERRCODE_CARDINALITY_VIOLATION),
3506 : /* translator: %s is a SQL command name */
3507 : errmsg("%s command cannot affect row a second time",
3508 : "MERGE"),
3509 : errhint("Ensure that not more than one source row matches any one target row.")));
3510 :
3511 : /* This shouldn't happen */
3512 0 : elog(ERROR, "attempted to update or delete invisible tuple");
3513 : goto out;
3514 :
3515 0 : default:
3516 : /* see table_tuple_lock call in ExecDelete() */
3517 0 : elog(ERROR, "unexpected table_tuple_lock status: %u",
3518 : result);
3519 : goto out;
3520 : }
3521 : }
3522 :
3523 0 : case TM_Invisible:
3524 : case TM_WouldBlock:
3525 : case TM_BeingModified:
3526 : /* these should not occur */
3527 0 : elog(ERROR, "unexpected tuple operation result: %d", result);
3528 : break;
3529 : }
3530 :
3531 : /* Process RETURNING if present */
3532 2392 : if (resultRelInfo->ri_projectReturning)
3533 : {
3534 410 : switch (commandType)
3535 : {
3536 176 : case CMD_UPDATE:
3537 176 : rslot = ExecProcessReturning(context,
3538 : resultRelInfo,
3539 : CMD_UPDATE,
3540 : resultRelInfo->ri_oldTupleSlot,
3541 : newslot,
3542 : context->planSlot);
3543 176 : break;
3544 :
3545 234 : case CMD_DELETE:
3546 234 : rslot = ExecProcessReturning(context,
3547 : resultRelInfo,
3548 : CMD_DELETE,
3549 : resultRelInfo->ri_oldTupleSlot,
3550 : NULL,
3551 : context->planSlot);
3552 234 : break;
3553 :
3554 0 : case CMD_NOTHING:
3555 0 : break;
3556 :
3557 0 : default:
3558 0 : elog(ERROR, "unrecognized commandType: %d",
3559 : (int) commandType);
3560 : }
3561 : }
3562 :
3563 : /*
3564 : * We've activated one of the WHEN clauses, so we don't search
3565 : * further. This is required behaviour, not an optimization.
3566 : */
3567 2392 : break;
3568 : }
3569 :
3570 : /*
3571 : * Successfully executed an action or no qualifying action was found.
3572 : */
3573 11742 : out:
3574 11742 : if (ItemPointerIsValid(&lockedtid))
3575 7806 : UnlockTuple(resultRelInfo->ri_RelationDesc, &lockedtid,
3576 : InplaceUpdateTupleLock);
3577 11742 : return rslot;
3578 : }
3579 :
3580 : /*
3581 : * Execute the first qualifying NOT MATCHED [BY TARGET] action.
3582 : */
3583 : static TupleTableSlot *
3584 2688 : ExecMergeNotMatched(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
3585 : bool canSetTag)
3586 : {
3587 2688 : ModifyTableState *mtstate = context->mtstate;
3588 2688 : ExprContext *econtext = mtstate->ps.ps_ExprContext;
3589 : List *actionStates;
3590 2688 : TupleTableSlot *rslot = NULL;
3591 : ListCell *l;
3592 :
3593 : /*
3594 : * For INSERT actions, the root relation's merge action is OK since the
3595 : * INSERT's targetlist and the WHEN conditions can only refer to the
3596 : * source relation and hence it does not matter which result relation we
3597 : * work with.
3598 : *
3599 : * XXX does this mean that we can avoid creating copies of actionStates on
3600 : * partitioned tables, for not-matched actions?
3601 : */
3602 2688 : actionStates = resultRelInfo->ri_MergeActions[MERGE_WHEN_NOT_MATCHED_BY_TARGET];
3603 :
3604 : /*
3605 : * Make source tuple available to ExecQual and ExecProject. We don't need
3606 : * the target tuple, since the WHEN quals and targetlist can't refer to
3607 : * the target columns.
3608 : */
3609 2688 : econtext->ecxt_scantuple = NULL;
3610 2688 : econtext->ecxt_innertuple = context->planSlot;
3611 2688 : econtext->ecxt_outertuple = NULL;
3612 :
3613 3558 : foreach(l, actionStates)
3614 : {
3615 2688 : MergeActionState *action = (MergeActionState *) lfirst(l);
3616 2688 : CmdType commandType = action->mas_action->commandType;
3617 : TupleTableSlot *newslot;
3618 :
3619 : /*
3620 : * Test condition, if any.
3621 : *
3622 : * In the absence of any condition, we perform the action
3623 : * unconditionally (no need to check separately since ExecQual() will
3624 : * return true if there are no conditions to evaluate).
3625 : */
3626 2688 : if (!ExecQual(action->mas_whenqual, econtext))
3627 870 : continue;
3628 :
3629 : /* Perform stated action */
3630 1818 : switch (commandType)
3631 : {
3632 1818 : case CMD_INSERT:
3633 :
3634 : /*
3635 : * Project the tuple. In case of a partitioned table, the
3636 : * projection was already built to use the root's descriptor,
3637 : * so we don't need to map the tuple here.
3638 : */
3639 1818 : newslot = ExecProject(action->mas_proj);
3640 1818 : mtstate->mt_merge_action = action;
3641 :
3642 1818 : rslot = ExecInsert(context, mtstate->rootResultRelInfo,
3643 : newslot, canSetTag, NULL, NULL);
3644 1758 : mtstate->mt_merge_inserted += 1;
3645 1758 : break;
3646 0 : case CMD_NOTHING:
3647 : /* Do nothing */
3648 0 : break;
3649 0 : default:
3650 0 : elog(ERROR, "unknown action in MERGE WHEN NOT MATCHED clause");
3651 : }
3652 :
3653 : /*
3654 : * We've activated one of the WHEN clauses, so we don't search
3655 : * further. This is required behaviour, not an optimization.
3656 : */
3657 1758 : break;
3658 : }
3659 :
3660 2628 : return rslot;
3661 : }
3662 :
3663 : /*
3664 : * Initialize state for execution of MERGE.
3665 : */
3666 : void
3667 1536 : ExecInitMerge(ModifyTableState *mtstate, EState *estate)
3668 : {
3669 1536 : List *mergeActionLists = mtstate->mt_mergeActionLists;
3670 1536 : List *mergeJoinConditions = mtstate->mt_mergeJoinConditions;
3671 1536 : ResultRelInfo *rootRelInfo = mtstate->rootResultRelInfo;
3672 : ResultRelInfo *resultRelInfo;
3673 : ExprContext *econtext;
3674 : ListCell *lc;
3675 : int i;
3676 :
3677 1536 : if (mergeActionLists == NIL)
3678 0 : return;
3679 :
3680 1536 : mtstate->mt_merge_subcommands = 0;
3681 :
3682 1536 : if (mtstate->ps.ps_ExprContext == NULL)
3683 1276 : ExecAssignExprContext(estate, &mtstate->ps);
3684 1536 : econtext = mtstate->ps.ps_ExprContext;
3685 :
3686 : /*
3687 : * Create a MergeActionState for each action on the mergeActionList and
3688 : * add it to either a list of matched actions or not-matched actions.
3689 : *
3690 : * Similar logic appears in ExecInitPartitionInfo(), so if changing
3691 : * anything here, do so there too.
3692 : */
3693 1536 : i = 0;
3694 3304 : foreach(lc, mergeActionLists)
3695 : {
3696 1768 : List *mergeActionList = lfirst(lc);
3697 : Node *joinCondition;
3698 : TupleDesc relationDesc;
3699 : ListCell *l;
3700 :
3701 1768 : joinCondition = (Node *) list_nth(mergeJoinConditions, i);
3702 1768 : resultRelInfo = mtstate->resultRelInfo + i;
3703 1768 : i++;
3704 1768 : relationDesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
3705 :
3706 : /* initialize slots for MERGE fetches from this rel */
3707 1768 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
3708 1768 : ExecInitMergeTupleSlots(mtstate, resultRelInfo);
3709 :
3710 : /* initialize state for join condition checking */
3711 1768 : resultRelInfo->ri_MergeJoinCondition =
3712 1768 : ExecInitQual((List *) joinCondition, &mtstate->ps);
3713 :
3714 4864 : foreach(l, mergeActionList)
3715 : {
3716 3096 : MergeAction *action = (MergeAction *) lfirst(l);
3717 : MergeActionState *action_state;
3718 : TupleTableSlot *tgtslot;
3719 : TupleDesc tgtdesc;
3720 :
3721 : /*
3722 : * Build action merge state for this rel. (For partitions,
3723 : * equivalent code exists in ExecInitPartitionInfo.)
3724 : */
3725 3096 : action_state = makeNode(MergeActionState);
3726 3096 : action_state->mas_action = action;
3727 3096 : action_state->mas_whenqual = ExecInitQual((List *) action->qual,
3728 : &mtstate->ps);
3729 :
3730 : /*
3731 : * We create three lists - one for each MergeMatchKind - and stick
3732 : * the MergeActionState into the appropriate list.
3733 : */
3734 6192 : resultRelInfo->ri_MergeActions[action->matchKind] =
3735 3096 : lappend(resultRelInfo->ri_MergeActions[action->matchKind],
3736 : action_state);
3737 :
3738 3096 : switch (action->commandType)
3739 : {
3740 1046 : case CMD_INSERT:
3741 : /* INSERT actions always use rootRelInfo */
3742 1046 : ExecCheckPlanOutput(rootRelInfo->ri_RelationDesc,
3743 : action->targetList);
3744 :
3745 : /*
3746 : * If the MERGE targets a partitioned table, any INSERT
3747 : * actions must be routed through it, not the child
3748 : * relations. Initialize the routing struct and the root
3749 : * table's "new" tuple slot for that, if not already done.
3750 : * The projection we prepare, for all relations, uses the
3751 : * root relation descriptor, and targets the plan's root
3752 : * slot. (This is consistent with the fact that we
3753 : * checked the plan output to match the root relation,
3754 : * above.)
3755 : */
3756 1046 : if (rootRelInfo->ri_RelationDesc->rd_rel->relkind ==
3757 : RELKIND_PARTITIONED_TABLE)
3758 : {
3759 328 : if (mtstate->mt_partition_tuple_routing == NULL)
3760 : {
3761 : /*
3762 : * Initialize planstate for routing if not already
3763 : * done.
3764 : *
3765 : * Note that the slot is managed as a standalone
3766 : * slot belonging to ModifyTableState, so we pass
3767 : * NULL for the 2nd argument.
3768 : */
3769 154 : mtstate->mt_root_tuple_slot =
3770 154 : table_slot_create(rootRelInfo->ri_RelationDesc,
3771 : NULL);
3772 154 : mtstate->mt_partition_tuple_routing =
3773 154 : ExecSetupPartitionTupleRouting(estate,
3774 : rootRelInfo->ri_RelationDesc);
3775 : }
3776 328 : tgtslot = mtstate->mt_root_tuple_slot;
3777 328 : tgtdesc = RelationGetDescr(rootRelInfo->ri_RelationDesc);
3778 : }
3779 : else
3780 : {
3781 : /*
3782 : * If the MERGE targets an inherited table, we insert
3783 : * into the root table, so we must initialize its
3784 : * "new" tuple slot, if not already done, and use its
3785 : * relation descriptor for the projection.
3786 : *
3787 : * For non-inherited tables, rootRelInfo and
3788 : * resultRelInfo are the same, and the "new" tuple
3789 : * slot will already have been initialized.
3790 : */
3791 718 : if (rootRelInfo->ri_newTupleSlot == NULL)
3792 36 : rootRelInfo->ri_newTupleSlot =
3793 36 : table_slot_create(rootRelInfo->ri_RelationDesc,
3794 : &estate->es_tupleTable);
3795 :
3796 718 : tgtslot = rootRelInfo->ri_newTupleSlot;
3797 718 : tgtdesc = RelationGetDescr(rootRelInfo->ri_RelationDesc);
3798 : }
3799 :
3800 1046 : action_state->mas_proj =
3801 1046 : ExecBuildProjectionInfo(action->targetList, econtext,
3802 : tgtslot,
3803 : &mtstate->ps,
3804 : tgtdesc);
3805 :
3806 1046 : mtstate->mt_merge_subcommands |= MERGE_INSERT;
3807 1046 : break;
3808 1534 : case CMD_UPDATE:
3809 1534 : action_state->mas_proj =
3810 1534 : ExecBuildUpdateProjection(action->targetList,
3811 : true,
3812 : action->updateColnos,
3813 : relationDesc,
3814 : econtext,
3815 : resultRelInfo->ri_newTupleSlot,
3816 : &mtstate->ps);
3817 1534 : mtstate->mt_merge_subcommands |= MERGE_UPDATE;
3818 1534 : break;
3819 452 : case CMD_DELETE:
3820 452 : mtstate->mt_merge_subcommands |= MERGE_DELETE;
3821 452 : break;
3822 64 : case CMD_NOTHING:
3823 64 : break;
3824 0 : default:
3825 0 : elog(ERROR, "unknown action in MERGE WHEN clause");
3826 : break;
3827 : }
3828 : }
3829 : }
3830 :
3831 : /*
3832 : * If the MERGE targets an inherited table, any INSERT actions will use
3833 : * rootRelInfo, and rootRelInfo will not be in the resultRelInfo array.
3834 : * Therefore we must initialize its WITH CHECK OPTION constraints and
3835 : * RETURNING projection, as ExecInitModifyTable did for the resultRelInfo
3836 : * entries.
3837 : *
3838 : * Note that the planner does not build a withCheckOptionList or
3839 : * returningList for the root relation, but as in ExecInitPartitionInfo,
3840 : * we can use the first resultRelInfo entry as a reference to calculate
3841 : * the attno's for the root table.
3842 : */
3843 1536 : if (rootRelInfo != mtstate->resultRelInfo &&
3844 238 : rootRelInfo->ri_RelationDesc->rd_rel->relkind != RELKIND_PARTITIONED_TABLE &&
3845 48 : (mtstate->mt_merge_subcommands & MERGE_INSERT) != 0)
3846 : {
3847 36 : ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
3848 36 : Relation rootRelation = rootRelInfo->ri_RelationDesc;
3849 36 : Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
3850 36 : int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
3851 36 : AttrMap *part_attmap = NULL;
3852 : bool found_whole_row;
3853 :
3854 36 : if (node->withCheckOptionLists != NIL)
3855 : {
3856 : List *wcoList;
3857 18 : List *wcoExprs = NIL;
3858 :
3859 : /* There should be as many WCO lists as result rels */
3860 : Assert(list_length(node->withCheckOptionLists) ==
3861 : list_length(node->resultRelations));
3862 :
3863 : /*
3864 : * Use the first WCO list as a reference. In the most common case,
3865 : * this will be for the same relation as rootRelInfo, and so there
3866 : * will be no need to adjust its attno's.
3867 : */
3868 18 : wcoList = linitial(node->withCheckOptionLists);
3869 18 : if (rootRelation != firstResultRel)
3870 : {
3871 : /* Convert any Vars in it to contain the root's attno's */
3872 : part_attmap =
3873 18 : build_attrmap_by_name(RelationGetDescr(rootRelation),
3874 : RelationGetDescr(firstResultRel),
3875 : false);
3876 :
3877 : wcoList = (List *)
3878 18 : map_variable_attnos((Node *) wcoList,
3879 : firstVarno, 0,
3880 : part_attmap,
3881 18 : RelationGetForm(rootRelation)->reltype,
3882 : &found_whole_row);
3883 : }
3884 :
3885 90 : foreach(lc, wcoList)
3886 : {
3887 72 : WithCheckOption *wco = lfirst_node(WithCheckOption, lc);
3888 72 : ExprState *wcoExpr = ExecInitQual(castNode(List, wco->qual),
3889 : &mtstate->ps);
3890 :
3891 72 : wcoExprs = lappend(wcoExprs, wcoExpr);
3892 : }
3893 :
3894 18 : rootRelInfo->ri_WithCheckOptions = wcoList;
3895 18 : rootRelInfo->ri_WithCheckOptionExprs = wcoExprs;
3896 : }
3897 :
3898 36 : if (node->returningLists != NIL)
3899 : {
3900 : List *returningList;
3901 :
3902 : /* There should be as many returning lists as result rels */
3903 : Assert(list_length(node->returningLists) ==
3904 : list_length(node->resultRelations));
3905 :
3906 : /*
3907 : * Use the first returning list as a reference. In the most common
3908 : * case, this will be for the same relation as rootRelInfo, and so
3909 : * there will be no need to adjust its attno's.
3910 : */
3911 6 : returningList = linitial(node->returningLists);
3912 6 : if (rootRelation != firstResultRel)
3913 : {
3914 : /* Convert any Vars in it to contain the root's attno's */
3915 6 : if (part_attmap == NULL)
3916 : part_attmap =
3917 0 : build_attrmap_by_name(RelationGetDescr(rootRelation),
3918 : RelationGetDescr(firstResultRel),
3919 : false);
3920 :
3921 : returningList = (List *)
3922 6 : map_variable_attnos((Node *) returningList,
3923 : firstVarno, 0,
3924 : part_attmap,
3925 6 : RelationGetForm(rootRelation)->reltype,
3926 : &found_whole_row);
3927 : }
3928 6 : rootRelInfo->ri_returningList = returningList;
3929 :
3930 : /* Initialize the RETURNING projection */
3931 6 : rootRelInfo->ri_projectReturning =
3932 6 : ExecBuildProjectionInfo(returningList, econtext,
3933 : mtstate->ps.ps_ResultTupleSlot,
3934 : &mtstate->ps,
3935 : RelationGetDescr(rootRelation));
3936 : }
3937 : }
3938 : }
3939 :
3940 : /*
3941 : * Initializes the tuple slots in a ResultRelInfo for any MERGE action.
3942 : *
3943 : * We mark 'projectNewInfoValid' even though the projections themselves
3944 : * are not initialized here.
3945 : */
3946 : void
3947 1792 : ExecInitMergeTupleSlots(ModifyTableState *mtstate,
3948 : ResultRelInfo *resultRelInfo)
3949 : {
3950 1792 : EState *estate = mtstate->ps.state;
3951 :
3952 : Assert(!resultRelInfo->ri_projectNewInfoValid);
3953 :
3954 1792 : resultRelInfo->ri_oldTupleSlot =
3955 1792 : table_slot_create(resultRelInfo->ri_RelationDesc,
3956 : &estate->es_tupleTable);
3957 1792 : resultRelInfo->ri_newTupleSlot =
3958 1792 : table_slot_create(resultRelInfo->ri_RelationDesc,
3959 : &estate->es_tupleTable);
3960 1792 : resultRelInfo->ri_projectNewInfoValid = true;
3961 1792 : }
3962 :
3963 : /*
3964 : * Process BEFORE EACH STATEMENT triggers
3965 : */
3966 : static void
3967 114492 : fireBSTriggers(ModifyTableState *node)
3968 : {
3969 114492 : ModifyTable *plan = (ModifyTable *) node->ps.plan;
3970 114492 : ResultRelInfo *resultRelInfo = node->rootResultRelInfo;
3971 :
3972 114492 : switch (node->operation)
3973 : {
3974 87506 : case CMD_INSERT:
3975 87506 : ExecBSInsertTriggers(node->ps.state, resultRelInfo);
3976 87494 : if (plan->onConflictAction == ONCONFLICT_UPDATE)
3977 832 : ExecBSUpdateTriggers(node->ps.state,
3978 : resultRelInfo);
3979 87494 : break;
3980 13516 : case CMD_UPDATE:
3981 13516 : ExecBSUpdateTriggers(node->ps.state, resultRelInfo);
3982 13516 : break;
3983 12086 : case CMD_DELETE:
3984 12086 : ExecBSDeleteTriggers(node->ps.state, resultRelInfo);
3985 12086 : break;
3986 1384 : case CMD_MERGE:
3987 1384 : if (node->mt_merge_subcommands & MERGE_INSERT)
3988 770 : ExecBSInsertTriggers(node->ps.state, resultRelInfo);
3989 1384 : if (node->mt_merge_subcommands & MERGE_UPDATE)
3990 936 : ExecBSUpdateTriggers(node->ps.state, resultRelInfo);
3991 1384 : if (node->mt_merge_subcommands & MERGE_DELETE)
3992 368 : ExecBSDeleteTriggers(node->ps.state, resultRelInfo);
3993 1384 : break;
3994 0 : default:
3995 0 : elog(ERROR, "unknown operation");
3996 : break;
3997 : }
3998 114480 : }
3999 :
4000 : /*
4001 : * Process AFTER EACH STATEMENT triggers
4002 : */
4003 : static void
4004 111234 : fireASTriggers(ModifyTableState *node)
4005 : {
4006 111234 : ModifyTable *plan = (ModifyTable *) node->ps.plan;
4007 111234 : ResultRelInfo *resultRelInfo = node->rootResultRelInfo;
4008 :
4009 111234 : switch (node->operation)
4010 : {
4011 85212 : case CMD_INSERT:
4012 85212 : if (plan->onConflictAction == ONCONFLICT_UPDATE)
4013 730 : ExecASUpdateTriggers(node->ps.state,
4014 : resultRelInfo,
4015 730 : node->mt_oc_transition_capture);
4016 85212 : ExecASInsertTriggers(node->ps.state, resultRelInfo,
4017 85212 : node->mt_transition_capture);
4018 85212 : break;
4019 12808 : case CMD_UPDATE:
4020 12808 : ExecASUpdateTriggers(node->ps.state, resultRelInfo,
4021 12808 : node->mt_transition_capture);
4022 12808 : break;
4023 11980 : case CMD_DELETE:
4024 11980 : ExecASDeleteTriggers(node->ps.state, resultRelInfo,
4025 11980 : node->mt_transition_capture);
4026 11980 : break;
4027 1234 : case CMD_MERGE:
4028 1234 : if (node->mt_merge_subcommands & MERGE_DELETE)
4029 332 : ExecASDeleteTriggers(node->ps.state, resultRelInfo,
4030 332 : node->mt_transition_capture);
4031 1234 : if (node->mt_merge_subcommands & MERGE_UPDATE)
4032 840 : ExecASUpdateTriggers(node->ps.state, resultRelInfo,
4033 840 : node->mt_transition_capture);
4034 1234 : if (node->mt_merge_subcommands & MERGE_INSERT)
4035 702 : ExecASInsertTriggers(node->ps.state, resultRelInfo,
4036 702 : node->mt_transition_capture);
4037 1234 : break;
4038 0 : default:
4039 0 : elog(ERROR, "unknown operation");
4040 : break;
4041 : }
4042 111234 : }
4043 :
4044 : /*
4045 : * Set up the state needed for collecting transition tuples for AFTER
4046 : * triggers.
4047 : */
4048 : static void
4049 114836 : ExecSetupTransitionCaptureState(ModifyTableState *mtstate, EState *estate)
4050 : {
4051 114836 : ModifyTable *plan = (ModifyTable *) mtstate->ps.plan;
4052 114836 : ResultRelInfo *targetRelInfo = mtstate->rootResultRelInfo;
4053 :
4054 : /* Check for transition tables on the directly targeted relation. */
4055 114836 : mtstate->mt_transition_capture =
4056 114836 : MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc,
4057 114836 : RelationGetRelid(targetRelInfo->ri_RelationDesc),
4058 : mtstate->operation);
4059 114836 : if (plan->operation == CMD_INSERT &&
4060 87508 : plan->onConflictAction == ONCONFLICT_UPDATE)
4061 832 : mtstate->mt_oc_transition_capture =
4062 832 : MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc,
4063 832 : RelationGetRelid(targetRelInfo->ri_RelationDesc),
4064 : CMD_UPDATE);
4065 114836 : }
4066 :
4067 : /*
4068 : * ExecPrepareTupleRouting --- prepare for routing one tuple
4069 : *
4070 : * Determine the partition in which the tuple in slot is to be inserted,
4071 : * and return its ResultRelInfo in *partRelInfo. The return value is
4072 : * a slot holding the tuple of the partition rowtype.
4073 : *
4074 : * This also sets the transition table information in mtstate based on the
4075 : * selected partition.
4076 : */
4077 : static TupleTableSlot *
4078 732332 : ExecPrepareTupleRouting(ModifyTableState *mtstate,
4079 : EState *estate,
4080 : PartitionTupleRouting *proute,
4081 : ResultRelInfo *targetRelInfo,
4082 : TupleTableSlot *slot,
4083 : ResultRelInfo **partRelInfo)
4084 : {
4085 : ResultRelInfo *partrel;
4086 : TupleConversionMap *map;
4087 :
4088 : /*
4089 : * Lookup the target partition's ResultRelInfo. If ExecFindPartition does
4090 : * not find a valid partition for the tuple in 'slot' then an error is
4091 : * raised. An error may also be raised if the found partition is not a
4092 : * valid target for INSERTs. This is required since a partitioned table
4093 : * UPDATE to another partition becomes a DELETE+INSERT.
4094 : */
4095 732332 : partrel = ExecFindPartition(mtstate, targetRelInfo, proute, slot, estate);
4096 :
4097 : /*
4098 : * If we're capturing transition tuples, we might need to convert from the
4099 : * partition rowtype to root partitioned table's rowtype. But if there
4100 : * are no BEFORE triggers on the partition that could change the tuple, we
4101 : * can just remember the original unconverted tuple to avoid a needless
4102 : * round trip conversion.
4103 : */
4104 732128 : if (mtstate->mt_transition_capture != NULL)
4105 : {
4106 : bool has_before_insert_row_trig;
4107 :
4108 192 : has_before_insert_row_trig = (partrel->ri_TrigDesc &&
4109 42 : partrel->ri_TrigDesc->trig_insert_before_row);
4110 :
4111 150 : mtstate->mt_transition_capture->tcs_original_insert_tuple =
4112 150 : !has_before_insert_row_trig ? slot : NULL;
4113 : }
4114 :
4115 : /*
4116 : * Convert the tuple, if necessary.
4117 : */
4118 732128 : map = ExecGetRootToChildMap(partrel, estate);
4119 732128 : if (map != NULL)
4120 : {
4121 68460 : TupleTableSlot *new_slot = partrel->ri_PartitionTupleSlot;
4122 :
4123 68460 : slot = execute_attr_map_slot(map->attrMap, slot, new_slot);
4124 : }
4125 :
4126 732128 : *partRelInfo = partrel;
4127 732128 : return slot;
4128 : }
4129 :
4130 : /* ----------------------------------------------------------------
4131 : * ExecModifyTable
4132 : *
4133 : * Perform table modifications as required, and return RETURNING results
4134 : * if needed.
4135 : * ----------------------------------------------------------------
4136 : */
4137 : static TupleTableSlot *
4138 123324 : ExecModifyTable(PlanState *pstate)
4139 : {
4140 123324 : ModifyTableState *node = castNode(ModifyTableState, pstate);
4141 : ModifyTableContext context;
4142 123324 : EState *estate = node->ps.state;
4143 123324 : CmdType operation = node->operation;
4144 : ResultRelInfo *resultRelInfo;
4145 : PlanState *subplanstate;
4146 : TupleTableSlot *slot;
4147 : TupleTableSlot *oldSlot;
4148 : ItemPointerData tuple_ctid;
4149 : HeapTupleData oldtupdata;
4150 : HeapTuple oldtuple;
4151 : ItemPointer tupleid;
4152 : bool tuplock;
4153 :
4154 123324 : CHECK_FOR_INTERRUPTS();
4155 :
4156 : /*
4157 : * This should NOT get called during EvalPlanQual; we should have passed a
4158 : * subplan tree to EvalPlanQual, instead. Use a runtime test not just
4159 : * Assert because this condition is easy to miss in testing. (Note:
4160 : * although ModifyTable should not get executed within an EvalPlanQual
4161 : * operation, we do have to allow it to be initialized and shut down in
4162 : * case it is within a CTE subplan. Hence this test must be here, not in
4163 : * ExecInitModifyTable.)
4164 : */
4165 123324 : if (estate->es_epq_active != NULL)
4166 0 : elog(ERROR, "ModifyTable should not be called during EvalPlanQual");
4167 :
4168 : /*
4169 : * If we've already completed processing, don't try to do more. We need
4170 : * this test because ExecPostprocessPlan might call us an extra time, and
4171 : * our subplan's nodes aren't necessarily robust against being called
4172 : * extra times.
4173 : */
4174 123324 : if (node->mt_done)
4175 796 : return NULL;
4176 :
4177 : /*
4178 : * On first call, fire BEFORE STATEMENT triggers before proceeding.
4179 : */
4180 122528 : if (node->fireBSTriggers)
4181 : {
4182 114492 : fireBSTriggers(node);
4183 114480 : node->fireBSTriggers = false;
4184 : }
4185 :
4186 : /* Preload local variables */
4187 122516 : resultRelInfo = node->resultRelInfo + node->mt_lastResultIndex;
4188 122516 : subplanstate = outerPlanState(node);
4189 :
4190 : /* Set global context */
4191 122516 : context.mtstate = node;
4192 122516 : context.epqstate = &node->mt_epqstate;
4193 122516 : context.estate = estate;
4194 :
4195 : /*
4196 : * Fetch rows from subplan, and execute the required table modification
4197 : * for each row.
4198 : */
4199 : for (;;)
4200 : {
4201 : /*
4202 : * Reset the per-output-tuple exprcontext. This is needed because
4203 : * triggers expect to use that context as workspace. It's a bit ugly
4204 : * to do this below the top level of the plan, however. We might need
4205 : * to rethink this later.
4206 : */
4207 14282694 : ResetPerTupleExprContext(estate);
4208 :
4209 : /*
4210 : * Reset per-tuple memory context used for processing on conflict and
4211 : * returning clauses, to free any expression evaluation storage
4212 : * allocated in the previous cycle.
4213 : */
4214 14282694 : if (pstate->ps_ExprContext)
4215 352188 : ResetExprContext(pstate->ps_ExprContext);
4216 :
4217 : /*
4218 : * If there is a pending MERGE ... WHEN NOT MATCHED [BY TARGET] action
4219 : * to execute, do so now --- see the comments in ExecMerge().
4220 : */
4221 14282694 : if (node->mt_merge_pending_not_matched != NULL)
4222 : {
4223 2 : context.planSlot = node->mt_merge_pending_not_matched;
4224 2 : context.cpDeletedSlot = NULL;
4225 :
4226 2 : slot = ExecMergeNotMatched(&context, node->resultRelInfo,
4227 2 : node->canSetTag);
4228 :
4229 : /* Clear the pending action */
4230 2 : node->mt_merge_pending_not_matched = NULL;
4231 :
4232 : /*
4233 : * If we got a RETURNING result, return it to the caller. We'll
4234 : * continue the work on next call.
4235 : */
4236 2 : if (slot)
4237 2 : return slot;
4238 :
4239 0 : continue; /* continue with the next tuple */
4240 : }
4241 :
4242 : /* Fetch the next row from subplan */
4243 14282692 : context.planSlot = ExecProcNode(subplanstate);
4244 14282274 : context.cpDeletedSlot = NULL;
4245 :
4246 : /* No more tuples to process? */
4247 14282274 : if (TupIsNull(context.planSlot))
4248 : break;
4249 :
4250 : /*
4251 : * When there are multiple result relations, each tuple contains a
4252 : * junk column that gives the OID of the rel from which it came.
4253 : * Extract it and select the correct result relation.
4254 : */
4255 14171040 : if (AttributeNumberIsValid(node->mt_resultOidAttno))
4256 : {
4257 : Datum datum;
4258 : bool isNull;
4259 : Oid resultoid;
4260 :
4261 5160 : datum = ExecGetJunkAttribute(context.planSlot, node->mt_resultOidAttno,
4262 : &isNull);
4263 5160 : if (isNull)
4264 : {
4265 : /*
4266 : * For commands other than MERGE, any tuples having InvalidOid
4267 : * for tableoid are errors. For MERGE, we may need to handle
4268 : * them as WHEN NOT MATCHED clauses if any, so do that.
4269 : *
4270 : * Note that we use the node's toplevel resultRelInfo, not any
4271 : * specific partition's.
4272 : */
4273 508 : if (operation == CMD_MERGE)
4274 : {
4275 508 : EvalPlanQualSetSlot(&node->mt_epqstate, context.planSlot);
4276 :
4277 508 : slot = ExecMerge(&context, node->resultRelInfo,
4278 508 : NULL, NULL, node->canSetTag);
4279 :
4280 : /*
4281 : * If we got a RETURNING result, return it to the caller.
4282 : * We'll continue the work on next call.
4283 : */
4284 496 : if (slot)
4285 38 : return slot;
4286 :
4287 458 : continue; /* continue with the next tuple */
4288 : }
4289 :
4290 0 : elog(ERROR, "tableoid is NULL");
4291 : }
4292 4652 : resultoid = DatumGetObjectId(datum);
4293 :
4294 : /* If it's not the same as last time, we need to locate the rel */
4295 4652 : if (resultoid != node->mt_lastResultOid)
4296 3178 : resultRelInfo = ExecLookupResultRelByOid(node, resultoid,
4297 : false, true);
4298 : }
4299 :
4300 : /*
4301 : * If resultRelInfo->ri_usesFdwDirectModify is true, all we need to do
4302 : * here is compute the RETURNING expressions.
4303 : */
4304 14170532 : if (resultRelInfo->ri_usesFdwDirectModify)
4305 : {
4306 : Assert(resultRelInfo->ri_projectReturning);
4307 :
4308 : /*
4309 : * A scan slot containing the data that was actually inserted,
4310 : * updated or deleted has already been made available to
4311 : * ExecProcessReturning by IterateDirectModify, so no need to
4312 : * provide it here. The individual old and new slots are not
4313 : * needed, since direct-modify is disabled if the RETURNING list
4314 : * refers to OLD/NEW values.
4315 : */
4316 : Assert((resultRelInfo->ri_projectReturning->pi_state.flags & EEO_FLAG_HAS_OLD) == 0 &&
4317 : (resultRelInfo->ri_projectReturning->pi_state.flags & EEO_FLAG_HAS_NEW) == 0);
4318 :
4319 694 : slot = ExecProcessReturning(&context, resultRelInfo, operation,
4320 : NULL, NULL, context.planSlot);
4321 :
4322 694 : return slot;
4323 : }
4324 :
4325 14169838 : EvalPlanQualSetSlot(&node->mt_epqstate, context.planSlot);
4326 14169838 : slot = context.planSlot;
4327 :
4328 14169838 : tupleid = NULL;
4329 14169838 : oldtuple = NULL;
4330 :
4331 : /*
4332 : * For UPDATE/DELETE/MERGE, fetch the row identity info for the tuple
4333 : * to be updated/deleted/merged. For a heap relation, that's a TID;
4334 : * otherwise we may have a wholerow junk attr that carries the old
4335 : * tuple in toto. Keep this in step with the part of
4336 : * ExecInitModifyTable that sets up ri_RowIdAttNo.
4337 : */
4338 14169838 : if (operation == CMD_UPDATE || operation == CMD_DELETE ||
4339 : operation == CMD_MERGE)
4340 : {
4341 : char relkind;
4342 : Datum datum;
4343 : bool isNull;
4344 :
4345 1978096 : relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
4346 1978096 : if (relkind == RELKIND_RELATION ||
4347 562 : relkind == RELKIND_MATVIEW ||
4348 : relkind == RELKIND_PARTITIONED_TABLE)
4349 : {
4350 : /* ri_RowIdAttNo refers to a ctid attribute */
4351 : Assert(AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo));
4352 1977540 : datum = ExecGetJunkAttribute(slot,
4353 1977540 : resultRelInfo->ri_RowIdAttNo,
4354 : &isNull);
4355 :
4356 : /*
4357 : * For commands other than MERGE, any tuples having a null row
4358 : * identifier are errors. For MERGE, we may need to handle
4359 : * them as WHEN NOT MATCHED clauses if any, so do that.
4360 : *
4361 : * Note that we use the node's toplevel resultRelInfo, not any
4362 : * specific partition's.
4363 : */
4364 1977540 : if (isNull)
4365 : {
4366 2116 : if (operation == CMD_MERGE)
4367 : {
4368 2116 : EvalPlanQualSetSlot(&node->mt_epqstate, context.planSlot);
4369 :
4370 2116 : slot = ExecMerge(&context, node->resultRelInfo,
4371 2116 : NULL, NULL, node->canSetTag);
4372 :
4373 : /*
4374 : * If we got a RETURNING result, return it to the
4375 : * caller. We'll continue the work on next call.
4376 : */
4377 2074 : if (slot)
4378 120 : return slot;
4379 :
4380 1996 : continue; /* continue with the next tuple */
4381 : }
4382 :
4383 0 : elog(ERROR, "ctid is NULL");
4384 : }
4385 :
4386 1975424 : tupleid = (ItemPointer) DatumGetPointer(datum);
4387 1975424 : tuple_ctid = *tupleid; /* be sure we don't free ctid!! */
4388 1975424 : tupleid = &tuple_ctid;
4389 : }
4390 :
4391 : /*
4392 : * Use the wholerow attribute, when available, to reconstruct the
4393 : * old relation tuple. The old tuple serves one or both of two
4394 : * purposes: 1) it serves as the OLD tuple for row triggers, 2) it
4395 : * provides values for any unchanged columns for the NEW tuple of
4396 : * an UPDATE, because the subplan does not produce all the columns
4397 : * of the target table.
4398 : *
4399 : * Note that the wholerow attribute does not carry system columns,
4400 : * so foreign table triggers miss seeing those, except that we
4401 : * know enough here to set t_tableOid. Quite separately from
4402 : * this, the FDW may fetch its own junk attrs to identify the row.
4403 : *
4404 : * Other relevant relkinds, currently limited to views, always
4405 : * have a wholerow attribute.
4406 : */
4407 556 : else if (AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo))
4408 : {
4409 530 : datum = ExecGetJunkAttribute(slot,
4410 530 : resultRelInfo->ri_RowIdAttNo,
4411 : &isNull);
4412 :
4413 : /*
4414 : * For commands other than MERGE, any tuples having a null row
4415 : * identifier are errors. For MERGE, we may need to handle
4416 : * them as WHEN NOT MATCHED clauses if any, so do that.
4417 : *
4418 : * Note that we use the node's toplevel resultRelInfo, not any
4419 : * specific partition's.
4420 : */
4421 530 : if (isNull)
4422 : {
4423 48 : if (operation == CMD_MERGE)
4424 : {
4425 48 : EvalPlanQualSetSlot(&node->mt_epqstate, context.planSlot);
4426 :
4427 48 : slot = ExecMerge(&context, node->resultRelInfo,
4428 48 : NULL, NULL, node->canSetTag);
4429 :
4430 : /*
4431 : * If we got a RETURNING result, return it to the
4432 : * caller. We'll continue the work on next call.
4433 : */
4434 42 : if (slot)
4435 12 : return slot;
4436 :
4437 30 : continue; /* continue with the next tuple */
4438 : }
4439 :
4440 0 : elog(ERROR, "wholerow is NULL");
4441 : }
4442 :
4443 482 : oldtupdata.t_data = DatumGetHeapTupleHeader(datum);
4444 482 : oldtupdata.t_len =
4445 482 : HeapTupleHeaderGetDatumLength(oldtupdata.t_data);
4446 482 : ItemPointerSetInvalid(&(oldtupdata.t_self));
4447 : /* Historically, view triggers see invalid t_tableOid. */
4448 482 : oldtupdata.t_tableOid =
4449 482 : (relkind == RELKIND_VIEW) ? InvalidOid :
4450 206 : RelationGetRelid(resultRelInfo->ri_RelationDesc);
4451 :
4452 482 : oldtuple = &oldtupdata;
4453 : }
4454 : else
4455 : {
4456 : /* Only foreign tables are allowed to omit a row-ID attr */
4457 : Assert(relkind == RELKIND_FOREIGN_TABLE);
4458 : }
4459 : }
4460 :
4461 14167674 : switch (operation)
4462 : {
4463 12191742 : case CMD_INSERT:
4464 : /* Initialize projection info if first time for this table */
4465 12191742 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
4466 86312 : ExecInitInsertProjection(node, resultRelInfo);
4467 12191742 : slot = ExecGetInsertNewTuple(resultRelInfo, context.planSlot);
4468 12191742 : slot = ExecInsert(&context, resultRelInfo, slot,
4469 12191742 : node->canSetTag, NULL, NULL);
4470 12189640 : break;
4471 :
4472 317748 : case CMD_UPDATE:
4473 317748 : tuplock = false;
4474 :
4475 : /* Initialize projection info if first time for this table */
4476 317748 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
4477 13226 : ExecInitUpdateProjection(node, resultRelInfo);
4478 :
4479 : /*
4480 : * Make the new tuple by combining plan's output tuple with
4481 : * the old tuple being updated.
4482 : */
4483 317748 : oldSlot = resultRelInfo->ri_oldTupleSlot;
4484 317748 : if (oldtuple != NULL)
4485 : {
4486 : Assert(!resultRelInfo->ri_needLockTagTuple);
4487 : /* Use the wholerow junk attr as the old tuple. */
4488 314 : ExecForceStoreHeapTuple(oldtuple, oldSlot, false);
4489 : }
4490 : else
4491 : {
4492 : /* Fetch the most recent version of old tuple. */
4493 317434 : Relation relation = resultRelInfo->ri_RelationDesc;
4494 :
4495 317434 : if (resultRelInfo->ri_needLockTagTuple)
4496 : {
4497 25208 : LockTuple(relation, tupleid, InplaceUpdateTupleLock);
4498 25208 : tuplock = true;
4499 : }
4500 317434 : if (!table_tuple_fetch_row_version(relation, tupleid,
4501 : SnapshotAny,
4502 : oldSlot))
4503 0 : elog(ERROR, "failed to fetch tuple being updated");
4504 : }
4505 317748 : slot = ExecGetUpdateNewTuple(resultRelInfo, context.planSlot,
4506 : oldSlot);
4507 :
4508 : /* Now apply the update. */
4509 317748 : slot = ExecUpdate(&context, resultRelInfo, tupleid, oldtuple,
4510 317748 : oldSlot, slot, node->canSetTag);
4511 317248 : if (tuplock)
4512 25208 : UnlockTuple(resultRelInfo->ri_RelationDesc, tupleid,
4513 : InplaceUpdateTupleLock);
4514 317248 : break;
4515 :
4516 1645824 : case CMD_DELETE:
4517 1645824 : slot = ExecDelete(&context, resultRelInfo, tupleid, oldtuple,
4518 1645824 : true, false, node->canSetTag, NULL, NULL, NULL);
4519 1645760 : break;
4520 :
4521 12360 : case CMD_MERGE:
4522 12360 : slot = ExecMerge(&context, resultRelInfo, tupleid, oldtuple,
4523 12360 : node->canSetTag);
4524 12270 : break;
4525 :
4526 0 : default:
4527 0 : elog(ERROR, "unknown operation");
4528 : break;
4529 : }
4530 :
4531 : /*
4532 : * If we got a RETURNING result, return it to caller. We'll continue
4533 : * the work on next call.
4534 : */
4535 14164918 : if (slot)
4536 7194 : return slot;
4537 : }
4538 :
4539 : /*
4540 : * Insert remaining tuples for batch insert.
4541 : */
4542 111234 : if (estate->es_insert_pending_result_relations != NIL)
4543 24 : ExecPendingInserts(estate);
4544 :
4545 : /*
4546 : * We're done, but fire AFTER STATEMENT triggers before exiting.
4547 : */
4548 111234 : fireASTriggers(node);
4549 :
4550 111234 : node->mt_done = true;
4551 :
4552 111234 : return NULL;
4553 : }
4554 :
4555 : /*
4556 : * ExecLookupResultRelByOid
4557 : * If the table with given OID is among the result relations to be
4558 : * updated by the given ModifyTable node, return its ResultRelInfo.
4559 : *
4560 : * If not found, return NULL if missing_ok, else raise error.
4561 : *
4562 : * If update_cache is true, then upon successful lookup, update the node's
4563 : * one-element cache. ONLY ExecModifyTable may pass true for this.
4564 : */
4565 : ResultRelInfo *
4566 9984 : ExecLookupResultRelByOid(ModifyTableState *node, Oid resultoid,
4567 : bool missing_ok, bool update_cache)
4568 : {
4569 9984 : if (node->mt_resultOidHash)
4570 : {
4571 : /* Use the pre-built hash table to locate the rel */
4572 : MTTargetRelLookup *mtlookup;
4573 :
4574 : mtlookup = (MTTargetRelLookup *)
4575 0 : hash_search(node->mt_resultOidHash, &resultoid, HASH_FIND, NULL);
4576 0 : if (mtlookup)
4577 : {
4578 0 : if (update_cache)
4579 : {
4580 0 : node->mt_lastResultOid = resultoid;
4581 0 : node->mt_lastResultIndex = mtlookup->relationIndex;
4582 : }
4583 0 : return node->resultRelInfo + mtlookup->relationIndex;
4584 : }
4585 : }
4586 : else
4587 : {
4588 : /* With few target rels, just search the ResultRelInfo array */
4589 18812 : for (int ndx = 0; ndx < node->mt_nrels; ndx++)
4590 : {
4591 12506 : ResultRelInfo *rInfo = node->resultRelInfo + ndx;
4592 :
4593 12506 : if (RelationGetRelid(rInfo->ri_RelationDesc) == resultoid)
4594 : {
4595 3678 : if (update_cache)
4596 : {
4597 3178 : node->mt_lastResultOid = resultoid;
4598 3178 : node->mt_lastResultIndex = ndx;
4599 : }
4600 3678 : return rInfo;
4601 : }
4602 : }
4603 : }
4604 :
4605 6306 : if (!missing_ok)
4606 0 : elog(ERROR, "incorrect result relation OID %u", resultoid);
4607 6306 : return NULL;
4608 : }
4609 :
4610 : /* ----------------------------------------------------------------
4611 : * ExecInitModifyTable
4612 : * ----------------------------------------------------------------
4613 : */
4614 : ModifyTableState *
4615 115862 : ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
4616 : {
4617 : ModifyTableState *mtstate;
4618 115862 : Plan *subplan = outerPlan(node);
4619 115862 : CmdType operation = node->operation;
4620 115862 : int total_nrels = list_length(node->resultRelations);
4621 : int nrels;
4622 115862 : List *resultRelations = NIL;
4623 115862 : List *withCheckOptionLists = NIL;
4624 115862 : List *returningLists = NIL;
4625 115862 : List *updateColnosLists = NIL;
4626 115862 : List *mergeActionLists = NIL;
4627 115862 : List *mergeJoinConditions = NIL;
4628 : ResultRelInfo *resultRelInfo;
4629 : List *arowmarks;
4630 : ListCell *l;
4631 : int i;
4632 : Relation rel;
4633 :
4634 : /* check for unsupported flags */
4635 : Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
4636 :
4637 : /*
4638 : * Only consider unpruned relations for initializing their ResultRelInfo
4639 : * struct and other fields such as withCheckOptions, etc.
4640 : *
4641 : * Note: We must avoid pruning every result relation. This is important
4642 : * for MERGE, since even if every result relation is pruned from the
4643 : * subplan, there might still be NOT MATCHED rows, for which there may be
4644 : * INSERT actions to perform. To allow these actions to be found, at
4645 : * least one result relation must be kept. Also, when inserting into a
4646 : * partitioned table, ExecInitPartitionInfo() needs a ResultRelInfo struct
4647 : * as a reference for building the ResultRelInfo of the target partition.
4648 : * In either case, it doesn't matter which result relation is kept, so we
4649 : * just keep the first one, if all others have been pruned. See also,
4650 : * ExecDoInitialPruning(), which ensures that this first result relation
4651 : * has been locked.
4652 : */
4653 115862 : i = 0;
4654 234218 : foreach(l, node->resultRelations)
4655 : {
4656 118356 : Index rti = lfirst_int(l);
4657 : bool keep_rel;
4658 :
4659 118356 : keep_rel = bms_is_member(rti, estate->es_unpruned_relids);
4660 118356 : if (!keep_rel && i == total_nrels - 1 && resultRelations == NIL)
4661 : {
4662 : /* all result relations pruned; keep the first one */
4663 48 : keep_rel = true;
4664 48 : rti = linitial_int(node->resultRelations);
4665 48 : i = 0;
4666 : }
4667 :
4668 118356 : if (keep_rel)
4669 : {
4670 118272 : resultRelations = lappend_int(resultRelations, rti);
4671 118272 : if (node->withCheckOptionLists)
4672 : {
4673 1430 : List *withCheckOptions = list_nth_node(List,
4674 : node->withCheckOptionLists,
4675 : i);
4676 :
4677 1430 : withCheckOptionLists = lappend(withCheckOptionLists, withCheckOptions);
4678 : }
4679 118272 : if (node->returningLists)
4680 : {
4681 5020 : List *returningList = list_nth_node(List,
4682 : node->returningLists,
4683 : i);
4684 :
4685 5020 : returningLists = lappend(returningLists, returningList);
4686 : }
4687 118272 : if (node->updateColnosLists)
4688 : {
4689 15930 : List *updateColnosList = list_nth(node->updateColnosLists, i);
4690 :
4691 15930 : updateColnosLists = lappend(updateColnosLists, updateColnosList);
4692 : }
4693 118272 : if (node->mergeActionLists)
4694 : {
4695 1768 : List *mergeActionList = list_nth(node->mergeActionLists, i);
4696 :
4697 1768 : mergeActionLists = lappend(mergeActionLists, mergeActionList);
4698 : }
4699 118272 : if (node->mergeJoinConditions)
4700 : {
4701 1768 : List *mergeJoinCondition = list_nth(node->mergeJoinConditions, i);
4702 :
4703 1768 : mergeJoinConditions = lappend(mergeJoinConditions, mergeJoinCondition);
4704 : }
4705 : }
4706 118356 : i++;
4707 : }
4708 115862 : nrels = list_length(resultRelations);
4709 : Assert(nrels > 0);
4710 :
4711 : /*
4712 : * create state structure
4713 : */
4714 115862 : mtstate = makeNode(ModifyTableState);
4715 115862 : mtstate->ps.plan = (Plan *) node;
4716 115862 : mtstate->ps.state = estate;
4717 115862 : mtstate->ps.ExecProcNode = ExecModifyTable;
4718 :
4719 115862 : mtstate->operation = operation;
4720 115862 : mtstate->canSetTag = node->canSetTag;
4721 115862 : mtstate->mt_done = false;
4722 :
4723 115862 : mtstate->mt_nrels = nrels;
4724 115862 : mtstate->resultRelInfo = (ResultRelInfo *)
4725 115862 : palloc(nrels * sizeof(ResultRelInfo));
4726 :
4727 115862 : mtstate->mt_merge_pending_not_matched = NULL;
4728 115862 : mtstate->mt_merge_inserted = 0;
4729 115862 : mtstate->mt_merge_updated = 0;
4730 115862 : mtstate->mt_merge_deleted = 0;
4731 115862 : mtstate->mt_updateColnosLists = updateColnosLists;
4732 115862 : mtstate->mt_mergeActionLists = mergeActionLists;
4733 115862 : mtstate->mt_mergeJoinConditions = mergeJoinConditions;
4734 :
4735 : /*----------
4736 : * Resolve the target relation. This is the same as:
4737 : *
4738 : * - the relation for which we will fire FOR STATEMENT triggers,
4739 : * - the relation into whose tuple format all captured transition tuples
4740 : * must be converted, and
4741 : * - the root partitioned table used for tuple routing.
4742 : *
4743 : * If it's a partitioned or inherited table, the root partition or
4744 : * appendrel RTE doesn't appear elsewhere in the plan and its RT index is
4745 : * given explicitly in node->rootRelation. Otherwise, the target relation
4746 : * is the sole relation in the node->resultRelations list and, since it can
4747 : * never be pruned, also in the resultRelations list constructed above.
4748 : *----------
4749 : */
4750 115862 : if (node->rootRelation > 0)
4751 : {
4752 : Assert(bms_is_member(node->rootRelation, estate->es_unpruned_relids));
4753 2852 : mtstate->rootResultRelInfo = makeNode(ResultRelInfo);
4754 2852 : ExecInitResultRelation(estate, mtstate->rootResultRelInfo,
4755 : node->rootRelation);
4756 : }
4757 : else
4758 : {
4759 : Assert(list_length(node->resultRelations) == 1);
4760 : Assert(list_length(resultRelations) == 1);
4761 113010 : mtstate->rootResultRelInfo = mtstate->resultRelInfo;
4762 113010 : ExecInitResultRelation(estate, mtstate->resultRelInfo,
4763 113010 : linitial_int(resultRelations));
4764 : }
4765 :
4766 : /* set up epqstate with dummy subplan data for the moment */
4767 115862 : EvalPlanQualInit(&mtstate->mt_epqstate, estate, NULL, NIL,
4768 : node->epqParam, resultRelations);
4769 115862 : mtstate->fireBSTriggers = true;
4770 :
4771 : /*
4772 : * Build state for collecting transition tuples. This requires having a
4773 : * valid trigger query context, so skip it in explain-only mode.
4774 : */
4775 115862 : if (!(eflags & EXEC_FLAG_EXPLAIN_ONLY))
4776 114836 : ExecSetupTransitionCaptureState(mtstate, estate);
4777 :
4778 : /*
4779 : * Open all the result relations and initialize the ResultRelInfo structs.
4780 : * (But root relation was initialized above, if it's part of the array.)
4781 : * We must do this before initializing the subplan, because direct-modify
4782 : * FDWs expect their ResultRelInfos to be available.
4783 : */
4784 115862 : resultRelInfo = mtstate->resultRelInfo;
4785 115862 : i = 0;
4786 233810 : foreach(l, resultRelations)
4787 : {
4788 118266 : Index resultRelation = lfirst_int(l);
4789 118266 : List *mergeActions = NIL;
4790 :
4791 118266 : if (mergeActionLists)
4792 1768 : mergeActions = list_nth(mergeActionLists, i);
4793 :
4794 118266 : if (resultRelInfo != mtstate->rootResultRelInfo)
4795 : {
4796 5256 : ExecInitResultRelation(estate, resultRelInfo, resultRelation);
4797 :
4798 : /*
4799 : * For child result relations, store the root result relation
4800 : * pointer. We do so for the convenience of places that want to
4801 : * look at the query's original target relation but don't have the
4802 : * mtstate handy.
4803 : */
4804 5256 : resultRelInfo->ri_RootResultRelInfo = mtstate->rootResultRelInfo;
4805 : }
4806 :
4807 : /* Initialize the usesFdwDirectModify flag */
4808 118266 : resultRelInfo->ri_usesFdwDirectModify =
4809 118266 : bms_is_member(i, node->fdwDirectModifyPlans);
4810 :
4811 : /*
4812 : * Verify result relation is a valid target for the current operation
4813 : */
4814 118266 : CheckValidResultRel(resultRelInfo, operation, mergeActions);
4815 :
4816 117948 : resultRelInfo++;
4817 117948 : i++;
4818 : }
4819 :
4820 : /*
4821 : * Now we may initialize the subplan.
4822 : */
4823 115544 : outerPlanState(mtstate) = ExecInitNode(subplan, estate, eflags);
4824 :
4825 : /*
4826 : * Do additional per-result-relation initialization.
4827 : */
4828 233458 : for (i = 0; i < nrels; i++)
4829 : {
4830 117914 : resultRelInfo = &mtstate->resultRelInfo[i];
4831 :
4832 : /* Let FDWs init themselves for foreign-table result rels */
4833 117914 : if (!resultRelInfo->ri_usesFdwDirectModify &&
4834 117706 : resultRelInfo->ri_FdwRoutine != NULL &&
4835 322 : resultRelInfo->ri_FdwRoutine->BeginForeignModify != NULL)
4836 : {
4837 322 : List *fdw_private = (List *) list_nth(node->fdwPrivLists, i);
4838 :
4839 322 : resultRelInfo->ri_FdwRoutine->BeginForeignModify(mtstate,
4840 : resultRelInfo,
4841 : fdw_private,
4842 : i,
4843 : eflags);
4844 : }
4845 :
4846 : /*
4847 : * For UPDATE/DELETE/MERGE, find the appropriate junk attr now, either
4848 : * a 'ctid' or 'wholerow' attribute depending on relkind. For foreign
4849 : * tables, the FDW might have created additional junk attr(s), but
4850 : * those are no concern of ours.
4851 : */
4852 117914 : if (operation == CMD_UPDATE || operation == CMD_DELETE ||
4853 : operation == CMD_MERGE)
4854 : {
4855 : char relkind;
4856 :
4857 30134 : relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
4858 30134 : if (relkind == RELKIND_RELATION ||
4859 680 : relkind == RELKIND_MATVIEW ||
4860 : relkind == RELKIND_PARTITIONED_TABLE)
4861 : {
4862 29490 : resultRelInfo->ri_RowIdAttNo =
4863 29490 : ExecFindJunkAttributeInTlist(subplan->targetlist, "ctid");
4864 29490 : if (!AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo))
4865 0 : elog(ERROR, "could not find junk ctid column");
4866 : }
4867 644 : else if (relkind == RELKIND_FOREIGN_TABLE)
4868 : {
4869 : /*
4870 : * We don't support MERGE with foreign tables for now. (It's
4871 : * problematic because the implementation uses CTID.)
4872 : */
4873 : Assert(operation != CMD_MERGE);
4874 :
4875 : /*
4876 : * When there is a row-level trigger, there should be a
4877 : * wholerow attribute. We also require it to be present in
4878 : * UPDATE and MERGE, so we can get the values of unchanged
4879 : * columns.
4880 : */
4881 356 : resultRelInfo->ri_RowIdAttNo =
4882 356 : ExecFindJunkAttributeInTlist(subplan->targetlist,
4883 : "wholerow");
4884 356 : if ((mtstate->operation == CMD_UPDATE || mtstate->operation == CMD_MERGE) &&
4885 202 : !AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo))
4886 0 : elog(ERROR, "could not find junk wholerow column");
4887 : }
4888 : else
4889 : {
4890 : /* Other valid target relkinds must provide wholerow */
4891 288 : resultRelInfo->ri_RowIdAttNo =
4892 288 : ExecFindJunkAttributeInTlist(subplan->targetlist,
4893 : "wholerow");
4894 288 : if (!AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo))
4895 0 : elog(ERROR, "could not find junk wholerow column");
4896 : }
4897 : }
4898 : }
4899 :
4900 : /*
4901 : * If this is an inherited update/delete/merge, there will be a junk
4902 : * attribute named "tableoid" present in the subplan's targetlist. It
4903 : * will be used to identify the result relation for a given tuple to be
4904 : * updated/deleted/merged.
4905 : */
4906 115544 : mtstate->mt_resultOidAttno =
4907 115544 : ExecFindJunkAttributeInTlist(subplan->targetlist, "tableoid");
4908 : Assert(AttributeNumberIsValid(mtstate->mt_resultOidAttno) || total_nrels == 1);
4909 115544 : mtstate->mt_lastResultOid = InvalidOid; /* force lookup at first tuple */
4910 115544 : mtstate->mt_lastResultIndex = 0; /* must be zero if no such attr */
4911 :
4912 : /* Get the root target relation */
4913 115544 : rel = mtstate->rootResultRelInfo->ri_RelationDesc;
4914 :
4915 : /*
4916 : * Build state for tuple routing if it's a partitioned INSERT. An UPDATE
4917 : * or MERGE might need this too, but only if it actually moves tuples
4918 : * between partitions; in that case setup is done by
4919 : * ExecCrossPartitionUpdate.
4920 : */
4921 115544 : if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
4922 : operation == CMD_INSERT)
4923 3904 : mtstate->mt_partition_tuple_routing =
4924 3904 : ExecSetupPartitionTupleRouting(estate, rel);
4925 :
4926 : /*
4927 : * Initialize any WITH CHECK OPTION constraints if needed.
4928 : */
4929 115544 : resultRelInfo = mtstate->resultRelInfo;
4930 116974 : foreach(l, withCheckOptionLists)
4931 : {
4932 1430 : List *wcoList = (List *) lfirst(l);
4933 1430 : List *wcoExprs = NIL;
4934 : ListCell *ll;
4935 :
4936 3914 : foreach(ll, wcoList)
4937 : {
4938 2484 : WithCheckOption *wco = (WithCheckOption *) lfirst(ll);
4939 2484 : ExprState *wcoExpr = ExecInitQual((List *) wco->qual,
4940 : &mtstate->ps);
4941 :
4942 2484 : wcoExprs = lappend(wcoExprs, wcoExpr);
4943 : }
4944 :
4945 1430 : resultRelInfo->ri_WithCheckOptions = wcoList;
4946 1430 : resultRelInfo->ri_WithCheckOptionExprs = wcoExprs;
4947 1430 : resultRelInfo++;
4948 : }
4949 :
4950 : /*
4951 : * Initialize RETURNING projections if needed.
4952 : */
4953 115544 : if (returningLists)
4954 : {
4955 : TupleTableSlot *slot;
4956 : ExprContext *econtext;
4957 :
4958 : /*
4959 : * Initialize result tuple slot and assign its rowtype using the plan
4960 : * node's declared targetlist, which the planner set up to be the same
4961 : * as the first (before runtime pruning) RETURNING list. We assume
4962 : * all the result rels will produce compatible output.
4963 : */
4964 4674 : ExecInitResultTupleSlotTL(&mtstate->ps, &TTSOpsVirtual);
4965 4674 : slot = mtstate->ps.ps_ResultTupleSlot;
4966 :
4967 : /* Need an econtext too */
4968 4674 : if (mtstate->ps.ps_ExprContext == NULL)
4969 4674 : ExecAssignExprContext(estate, &mtstate->ps);
4970 4674 : econtext = mtstate->ps.ps_ExprContext;
4971 :
4972 : /*
4973 : * Build a projection for each result rel.
4974 : */
4975 4674 : resultRelInfo = mtstate->resultRelInfo;
4976 9694 : foreach(l, returningLists)
4977 : {
4978 5020 : List *rlist = (List *) lfirst(l);
4979 :
4980 5020 : resultRelInfo->ri_returningList = rlist;
4981 5020 : resultRelInfo->ri_projectReturning =
4982 5020 : ExecBuildProjectionInfo(rlist, econtext, slot, &mtstate->ps,
4983 5020 : resultRelInfo->ri_RelationDesc->rd_att);
4984 5020 : resultRelInfo++;
4985 : }
4986 : }
4987 : else
4988 : {
4989 : /*
4990 : * We still must construct a dummy result tuple type, because InitPlan
4991 : * expects one (maybe should change that?).
4992 : */
4993 110870 : ExecInitResultTypeTL(&mtstate->ps);
4994 :
4995 110870 : mtstate->ps.ps_ExprContext = NULL;
4996 : }
4997 :
4998 : /* Set the list of arbiter indexes if needed for ON CONFLICT */
4999 115544 : resultRelInfo = mtstate->resultRelInfo;
5000 115544 : if (node->onConflictAction != ONCONFLICT_NONE)
5001 : {
5002 : /* insert may only have one relation, inheritance is not expanded */
5003 : Assert(total_nrels == 1);
5004 1354 : resultRelInfo->ri_onConflictArbiterIndexes = node->arbiterIndexes;
5005 : }
5006 :
5007 : /*
5008 : * If needed, Initialize target list, projection and qual for ON CONFLICT
5009 : * DO UPDATE.
5010 : */
5011 115544 : if (node->onConflictAction == ONCONFLICT_UPDATE)
5012 : {
5013 910 : OnConflictSetState *onconfl = makeNode(OnConflictSetState);
5014 : ExprContext *econtext;
5015 : TupleDesc relationDesc;
5016 :
5017 : /* already exists if created by RETURNING processing above */
5018 910 : if (mtstate->ps.ps_ExprContext == NULL)
5019 632 : ExecAssignExprContext(estate, &mtstate->ps);
5020 :
5021 910 : econtext = mtstate->ps.ps_ExprContext;
5022 910 : relationDesc = resultRelInfo->ri_RelationDesc->rd_att;
5023 :
5024 : /* create state for DO UPDATE SET operation */
5025 910 : resultRelInfo->ri_onConflict = onconfl;
5026 :
5027 : /* initialize slot for the existing tuple */
5028 910 : onconfl->oc_Existing =
5029 910 : table_slot_create(resultRelInfo->ri_RelationDesc,
5030 910 : &mtstate->ps.state->es_tupleTable);
5031 :
5032 : /*
5033 : * Create the tuple slot for the UPDATE SET projection. We want a slot
5034 : * of the table's type here, because the slot will be used to insert
5035 : * into the table, and for RETURNING processing - which may access
5036 : * system attributes.
5037 : */
5038 910 : onconfl->oc_ProjSlot =
5039 910 : table_slot_create(resultRelInfo->ri_RelationDesc,
5040 910 : &mtstate->ps.state->es_tupleTable);
5041 :
5042 : /* build UPDATE SET projection state */
5043 910 : onconfl->oc_ProjInfo =
5044 910 : ExecBuildUpdateProjection(node->onConflictSet,
5045 : true,
5046 : node->onConflictCols,
5047 : relationDesc,
5048 : econtext,
5049 : onconfl->oc_ProjSlot,
5050 : &mtstate->ps);
5051 :
5052 : /* initialize state to evaluate the WHERE clause, if any */
5053 910 : if (node->onConflictWhere)
5054 : {
5055 : ExprState *qualexpr;
5056 :
5057 176 : qualexpr = ExecInitQual((List *) node->onConflictWhere,
5058 : &mtstate->ps);
5059 176 : onconfl->oc_WhereClause = qualexpr;
5060 : }
5061 : }
5062 :
5063 : /*
5064 : * If we have any secondary relations in an UPDATE or DELETE, they need to
5065 : * be treated like non-locked relations in SELECT FOR UPDATE, i.e., the
5066 : * EvalPlanQual mechanism needs to be told about them. This also goes for
5067 : * the source relations in a MERGE. Locate the relevant ExecRowMarks.
5068 : */
5069 115544 : arowmarks = NIL;
5070 118354 : foreach(l, node->rowMarks)
5071 : {
5072 2810 : PlanRowMark *rc = lfirst_node(PlanRowMark, l);
5073 : ExecRowMark *erm;
5074 : ExecAuxRowMark *aerm;
5075 :
5076 : /*
5077 : * Ignore "parent" rowmarks, because they are irrelevant at runtime.
5078 : * Also ignore the rowmarks belonging to child tables that have been
5079 : * pruned in ExecDoInitialPruning().
5080 : */
5081 2810 : if (rc->isParent ||
5082 2668 : !bms_is_member(rc->rti, estate->es_unpruned_relids))
5083 596 : continue;
5084 :
5085 : /* Find ExecRowMark and build ExecAuxRowMark */
5086 2214 : erm = ExecFindRowMark(estate, rc->rti, false);
5087 2214 : aerm = ExecBuildAuxRowMark(erm, subplan->targetlist);
5088 2214 : arowmarks = lappend(arowmarks, aerm);
5089 : }
5090 :
5091 : /* For a MERGE command, initialize its state */
5092 115544 : if (mtstate->operation == CMD_MERGE)
5093 1536 : ExecInitMerge(mtstate, estate);
5094 :
5095 115544 : EvalPlanQualSetPlan(&mtstate->mt_epqstate, subplan, arowmarks);
5096 :
5097 : /*
5098 : * If there are a lot of result relations, use a hash table to speed the
5099 : * lookups. If there are not a lot, a simple linear search is faster.
5100 : *
5101 : * It's not clear where the threshold is, but try 64 for starters. In a
5102 : * debugging build, use a small threshold so that we get some test
5103 : * coverage of both code paths.
5104 : */
5105 : #ifdef USE_ASSERT_CHECKING
5106 : #define MT_NRELS_HASH 4
5107 : #else
5108 : #define MT_NRELS_HASH 64
5109 : #endif
5110 115544 : if (nrels >= MT_NRELS_HASH)
5111 : {
5112 : HASHCTL hash_ctl;
5113 :
5114 0 : hash_ctl.keysize = sizeof(Oid);
5115 0 : hash_ctl.entrysize = sizeof(MTTargetRelLookup);
5116 0 : hash_ctl.hcxt = CurrentMemoryContext;
5117 0 : mtstate->mt_resultOidHash =
5118 0 : hash_create("ModifyTable target hash",
5119 : nrels, &hash_ctl,
5120 : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
5121 0 : for (i = 0; i < nrels; i++)
5122 : {
5123 : Oid hashkey;
5124 : MTTargetRelLookup *mtlookup;
5125 : bool found;
5126 :
5127 0 : resultRelInfo = &mtstate->resultRelInfo[i];
5128 0 : hashkey = RelationGetRelid(resultRelInfo->ri_RelationDesc);
5129 : mtlookup = (MTTargetRelLookup *)
5130 0 : hash_search(mtstate->mt_resultOidHash, &hashkey,
5131 : HASH_ENTER, &found);
5132 : Assert(!found);
5133 0 : mtlookup->relationIndex = i;
5134 : }
5135 : }
5136 : else
5137 115544 : mtstate->mt_resultOidHash = NULL;
5138 :
5139 : /*
5140 : * Determine if the FDW supports batch insert and determine the batch size
5141 : * (a FDW may support batching, but it may be disabled for the
5142 : * server/table).
5143 : *
5144 : * We only do this for INSERT, so that for UPDATE/DELETE the batch size
5145 : * remains set to 0.
5146 : */
5147 115544 : if (operation == CMD_INSERT)
5148 : {
5149 : /* insert may only have one relation, inheritance is not expanded */
5150 : Assert(total_nrels == 1);
5151 87780 : resultRelInfo = mtstate->resultRelInfo;
5152 87780 : if (!resultRelInfo->ri_usesFdwDirectModify &&
5153 87780 : resultRelInfo->ri_FdwRoutine != NULL &&
5154 174 : resultRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize &&
5155 174 : resultRelInfo->ri_FdwRoutine->ExecForeignBatchInsert)
5156 : {
5157 174 : resultRelInfo->ri_BatchSize =
5158 174 : resultRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(resultRelInfo);
5159 174 : Assert(resultRelInfo->ri_BatchSize >= 1);
5160 : }
5161 : else
5162 87606 : resultRelInfo->ri_BatchSize = 1;
5163 : }
5164 :
5165 : /*
5166 : * Lastly, if this is not the primary (canSetTag) ModifyTable node, add it
5167 : * to estate->es_auxmodifytables so that it will be run to completion by
5168 : * ExecPostprocessPlan. (It'd actually work fine to add the primary
5169 : * ModifyTable node too, but there's no need.) Note the use of lcons not
5170 : * lappend: we need later-initialized ModifyTable nodes to be shut down
5171 : * before earlier ones. This ensures that we don't throw away RETURNING
5172 : * rows that need to be seen by a later CTE subplan.
5173 : */
5174 115544 : if (!mtstate->canSetTag)
5175 946 : estate->es_auxmodifytables = lcons(mtstate,
5176 : estate->es_auxmodifytables);
5177 :
5178 115544 : return mtstate;
5179 : }
5180 :
5181 : /* ----------------------------------------------------------------
5182 : * ExecEndModifyTable
5183 : *
5184 : * Shuts down the plan.
5185 : *
5186 : * Returns nothing of interest.
5187 : * ----------------------------------------------------------------
5188 : */
5189 : void
5190 111186 : ExecEndModifyTable(ModifyTableState *node)
5191 : {
5192 : int i;
5193 :
5194 : /*
5195 : * Allow any FDWs to shut down
5196 : */
5197 224440 : for (i = 0; i < node->mt_nrels; i++)
5198 : {
5199 : int j;
5200 113254 : ResultRelInfo *resultRelInfo = node->resultRelInfo + i;
5201 :
5202 113254 : if (!resultRelInfo->ri_usesFdwDirectModify &&
5203 113062 : resultRelInfo->ri_FdwRoutine != NULL &&
5204 302 : resultRelInfo->ri_FdwRoutine->EndForeignModify != NULL)
5205 302 : resultRelInfo->ri_FdwRoutine->EndForeignModify(node->ps.state,
5206 : resultRelInfo);
5207 :
5208 : /*
5209 : * Cleanup the initialized batch slots. This only matters for FDWs
5210 : * with batching, but the other cases will have ri_NumSlotsInitialized
5211 : * == 0.
5212 : */
5213 113310 : for (j = 0; j < resultRelInfo->ri_NumSlotsInitialized; j++)
5214 : {
5215 56 : ExecDropSingleTupleTableSlot(resultRelInfo->ri_Slots[j]);
5216 56 : ExecDropSingleTupleTableSlot(resultRelInfo->ri_PlanSlots[j]);
5217 : }
5218 : }
5219 :
5220 : /*
5221 : * Close all the partitioned tables, leaf partitions, and their indices
5222 : * and release the slot used for tuple routing, if set.
5223 : */
5224 111186 : if (node->mt_partition_tuple_routing)
5225 : {
5226 3970 : ExecCleanupTupleRouting(node, node->mt_partition_tuple_routing);
5227 :
5228 3970 : if (node->mt_root_tuple_slot)
5229 644 : ExecDropSingleTupleTableSlot(node->mt_root_tuple_slot);
5230 : }
5231 :
5232 : /*
5233 : * Terminate EPQ execution if active
5234 : */
5235 111186 : EvalPlanQualEnd(&node->mt_epqstate);
5236 :
5237 : /*
5238 : * shut down subplan
5239 : */
5240 111186 : ExecEndNode(outerPlanState(node));
5241 111186 : }
5242 :
5243 : void
5244 0 : ExecReScanModifyTable(ModifyTableState *node)
5245 : {
5246 : /*
5247 : * Currently, we don't need to support rescan on ModifyTable nodes. The
5248 : * semantics of that would be a bit debatable anyway.
5249 : */
5250 0 : elog(ERROR, "ExecReScanModifyTable is not implemented");
5251 : }
|