Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * nodeModifyTable.c
4 : * routines to handle ModifyTable nodes.
5 : *
6 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : *
10 : * IDENTIFICATION
11 : * src/backend/executor/nodeModifyTable.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : /* INTERFACE ROUTINES
16 : * ExecInitModifyTable - initialize the ModifyTable node
17 : * ExecModifyTable - retrieve the next tuple from the node
18 : * ExecEndModifyTable - shut down the ModifyTable node
19 : * ExecReScanModifyTable - rescan the ModifyTable node
20 : *
21 : * NOTES
22 : * The ModifyTable node receives input from its outerPlan, which is
23 : * the data to insert for INSERT cases, the changed columns' new
24 : * values plus row-locating info for UPDATE and MERGE cases, or just the
25 : * row-locating info for DELETE cases.
26 : *
27 : * The relation to modify can be an ordinary table, a foreign table, or a
28 : * view. If it's a view, either it has sufficient INSTEAD OF triggers or
29 : * this node executes only MERGE ... DO NOTHING. If the original MERGE
30 : * targeted a view not in one of those two categories, earlier processing
31 : * already pointed the ModifyTable result relation to an underlying
32 : * relation of that other view. This node does process
33 : * ri_WithCheckOptions, which may have expressions from those other,
34 : * automatically updatable views.
35 : *
36 : * MERGE runs a join between the source relation and the target table.
37 : * If any WHEN NOT MATCHED [BY TARGET] clauses are present, then the join
38 : * is an outer join that might output tuples without a matching target
39 : * tuple. In this case, any unmatched target tuples will have NULL
40 : * row-locating info, and only INSERT can be run. But for matched target
41 : * tuples, the row-locating info is used to determine the tuple to UPDATE
42 : * or DELETE. When all clauses are WHEN MATCHED or WHEN NOT MATCHED BY
43 : * SOURCE, all tuples produced by the join will include a matching target
44 : * tuple, so all tuples contain row-locating info.
45 : *
46 : * If the query specifies RETURNING, then the ModifyTable returns a
47 : * RETURNING tuple after completing each row insert, update, or delete.
48 : * It must be called again to continue the operation. Without RETURNING,
49 : * we just loop within the node until all the work is done, then
50 : * return NULL. This avoids useless call/return overhead.
51 : */
52 :
53 : #include "postgres.h"
54 :
55 : #include "access/htup_details.h"
56 : #include "access/tableam.h"
57 : #include "access/xact.h"
58 : #include "commands/trigger.h"
59 : #include "executor/execPartition.h"
60 : #include "executor/executor.h"
61 : #include "executor/nodeModifyTable.h"
62 : #include "foreign/fdwapi.h"
63 : #include "miscadmin.h"
64 : #include "nodes/nodeFuncs.h"
65 : #include "optimizer/optimizer.h"
66 : #include "rewrite/rewriteHandler.h"
67 : #include "rewrite/rewriteManip.h"
68 : #include "storage/lmgr.h"
69 : #include "utils/builtins.h"
70 : #include "utils/datum.h"
71 : #include "utils/rel.h"
72 : #include "utils/snapmgr.h"
73 :
74 :
75 : typedef struct MTTargetRelLookup
76 : {
77 : Oid relationOid; /* hash key, must be first */
78 : int relationIndex; /* rel's index in resultRelInfo[] array */
79 : } MTTargetRelLookup;
80 :
81 : /*
82 : * Context struct for a ModifyTable operation, containing basic execution
83 : * state and some output variables populated by ExecUpdateAct() and
84 : * ExecDeleteAct() to report the result of their actions to callers.
85 : */
86 : typedef struct ModifyTableContext
87 : {
88 : /* Operation state */
89 : ModifyTableState *mtstate;
90 : EPQState *epqstate;
91 : EState *estate;
92 :
93 : /*
94 : * Slot containing tuple obtained from ModifyTable's subplan. Used to
95 : * access "junk" columns that are not going to be stored.
96 : */
97 : TupleTableSlot *planSlot;
98 :
99 : /*
100 : * Information about the changes that were made concurrently to a tuple
101 : * being updated or deleted
102 : */
103 : TM_FailureData tmfd;
104 :
105 : /*
106 : * The tuple deleted when doing a cross-partition UPDATE with a RETURNING
107 : * clause that refers to OLD columns (converted to the root's tuple
108 : * descriptor).
109 : */
110 : TupleTableSlot *cpDeletedSlot;
111 :
112 : /*
113 : * The tuple projected by the INSERT's RETURNING clause, when doing a
114 : * cross-partition UPDATE
115 : */
116 : TupleTableSlot *cpUpdateReturningSlot;
117 : } ModifyTableContext;
118 :
119 : /*
120 : * Context struct containing output data specific to UPDATE operations.
121 : */
122 : typedef struct UpdateContext
123 : {
124 : bool crossPartUpdate; /* was it a cross-partition update? */
125 : TU_UpdateIndexes updateIndexes; /* Which index updates are required? */
126 :
127 : /*
128 : * Lock mode to acquire on the latest tuple version before performing
129 : * EvalPlanQual on it
130 : */
131 : LockTupleMode lockmode;
132 : } UpdateContext;
133 :
134 :
135 : static void ExecBatchInsert(ModifyTableState *mtstate,
136 : ResultRelInfo *resultRelInfo,
137 : TupleTableSlot **slots,
138 : TupleTableSlot **planSlots,
139 : int numSlots,
140 : EState *estate,
141 : bool canSetTag);
142 : static void ExecPendingInserts(EState *estate);
143 : static void ExecCrossPartitionUpdateForeignKey(ModifyTableContext *context,
144 : ResultRelInfo *sourcePartInfo,
145 : ResultRelInfo *destPartInfo,
146 : ItemPointer tupleid,
147 : TupleTableSlot *oldslot,
148 : TupleTableSlot *newslot);
149 : static bool ExecOnConflictUpdate(ModifyTableContext *context,
150 : ResultRelInfo *resultRelInfo,
151 : ItemPointer conflictTid,
152 : TupleTableSlot *excludedSlot,
153 : bool canSetTag,
154 : TupleTableSlot **returning);
155 : static TupleTableSlot *ExecPrepareTupleRouting(ModifyTableState *mtstate,
156 : EState *estate,
157 : PartitionTupleRouting *proute,
158 : ResultRelInfo *targetRelInfo,
159 : TupleTableSlot *slot,
160 : ResultRelInfo **partRelInfo);
161 :
162 : static TupleTableSlot *ExecMerge(ModifyTableContext *context,
163 : ResultRelInfo *resultRelInfo,
164 : ItemPointer tupleid,
165 : HeapTuple oldtuple,
166 : bool canSetTag);
167 : static void ExecInitMerge(ModifyTableState *mtstate, EState *estate);
168 : static TupleTableSlot *ExecMergeMatched(ModifyTableContext *context,
169 : ResultRelInfo *resultRelInfo,
170 : ItemPointer tupleid,
171 : HeapTuple oldtuple,
172 : bool canSetTag,
173 : bool *matched);
174 : static TupleTableSlot *ExecMergeNotMatched(ModifyTableContext *context,
175 : ResultRelInfo *resultRelInfo,
176 : bool canSetTag);
177 :
178 :
179 : /*
180 : * Verify that the tuples to be produced by INSERT match the
181 : * target relation's rowtype
182 : *
183 : * We do this to guard against stale plans. If plan invalidation is
184 : * functioning properly then we should never get a failure here, but better
185 : * safe than sorry. Note that this is called after we have obtained lock
186 : * on the target rel, so the rowtype can't change underneath us.
187 : *
188 : * The plan output is represented by its targetlist, because that makes
189 : * handling the dropped-column case easier.
190 : *
191 : * We used to use this for UPDATE as well, but now the equivalent checks
192 : * are done in ExecBuildUpdateProjection.
193 : */
194 : static void
195 87026 : ExecCheckPlanOutput(Relation resultRel, List *targetList)
196 : {
197 87026 : TupleDesc resultDesc = RelationGetDescr(resultRel);
198 87026 : int attno = 0;
199 : ListCell *lc;
200 :
201 267924 : foreach(lc, targetList)
202 : {
203 180898 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
204 : Form_pg_attribute attr;
205 :
206 : Assert(!tle->resjunk); /* caller removed junk items already */
207 :
208 180898 : if (attno >= resultDesc->natts)
209 0 : ereport(ERROR,
210 : (errcode(ERRCODE_DATATYPE_MISMATCH),
211 : errmsg("table row type and query-specified row type do not match"),
212 : errdetail("Query has too many columns.")));
213 180898 : attr = TupleDescAttr(resultDesc, attno);
214 180898 : attno++;
215 :
216 : /*
217 : * Special cases here should match planner's expand_insert_targetlist.
218 : */
219 180898 : if (attr->attisdropped)
220 : {
221 : /*
222 : * For a dropped column, we can't check atttypid (it's likely 0).
223 : * In any case the planner has most likely inserted an INT4 null.
224 : * What we insist on is just *some* NULL constant.
225 : */
226 622 : if (!IsA(tle->expr, Const) ||
227 622 : !((Const *) tle->expr)->constisnull)
228 0 : ereport(ERROR,
229 : (errcode(ERRCODE_DATATYPE_MISMATCH),
230 : errmsg("table row type and query-specified row type do not match"),
231 : errdetail("Query provides a value for a dropped column at ordinal position %d.",
232 : attno)));
233 : }
234 180276 : else if (attr->attgenerated)
235 : {
236 : /*
237 : * For a generated column, the planner will have inserted a null
238 : * of the column's base type (to avoid possibly failing on domain
239 : * not-null constraints). It doesn't seem worth insisting on that
240 : * exact type though, since a null value is type-independent. As
241 : * above, just insist on *some* NULL constant.
242 : */
243 1122 : if (!IsA(tle->expr, Const) ||
244 1122 : !((Const *) tle->expr)->constisnull)
245 0 : ereport(ERROR,
246 : (errcode(ERRCODE_DATATYPE_MISMATCH),
247 : errmsg("table row type and query-specified row type do not match"),
248 : errdetail("Query provides a value for a generated column at ordinal position %d.",
249 : attno)));
250 : }
251 : else
252 : {
253 : /* Normal case: demand type match */
254 179154 : if (exprType((Node *) tle->expr) != attr->atttypid)
255 0 : ereport(ERROR,
256 : (errcode(ERRCODE_DATATYPE_MISMATCH),
257 : errmsg("table row type and query-specified row type do not match"),
258 : errdetail("Table has type %s at ordinal position %d, but query expects %s.",
259 : format_type_be(attr->atttypid),
260 : attno,
261 : format_type_be(exprType((Node *) tle->expr)))));
262 : }
263 : }
264 87026 : if (attno != resultDesc->natts)
265 0 : ereport(ERROR,
266 : (errcode(ERRCODE_DATATYPE_MISMATCH),
267 : errmsg("table row type and query-specified row type do not match"),
268 : errdetail("Query has too few columns.")));
269 87026 : }
270 :
271 : /*
272 : * ExecProcessReturning --- evaluate a RETURNING list
273 : *
274 : * context: context for the ModifyTable operation
275 : * resultRelInfo: current result rel
276 : * cmdType: operation/merge action performed (INSERT, UPDATE, or DELETE)
277 : * oldSlot: slot holding old tuple deleted or updated
278 : * newSlot: slot holding new tuple inserted or updated
279 : * planSlot: slot holding tuple returned by top subplan node
280 : *
281 : * Note: If oldSlot and newSlot are NULL, the FDW should have already provided
282 : * econtext's scan tuple and its old & new tuples are not needed (FDW direct-
283 : * modify is disabled if the RETURNING list refers to any OLD/NEW values).
284 : *
285 : * Returns a slot holding the result tuple
286 : */
287 : static TupleTableSlot *
288 8072 : ExecProcessReturning(ModifyTableContext *context,
289 : ResultRelInfo *resultRelInfo,
290 : CmdType cmdType,
291 : TupleTableSlot *oldSlot,
292 : TupleTableSlot *newSlot,
293 : TupleTableSlot *planSlot)
294 : {
295 8072 : EState *estate = context->estate;
296 8072 : ProjectionInfo *projectReturning = resultRelInfo->ri_projectReturning;
297 8072 : ExprContext *econtext = projectReturning->pi_exprContext;
298 :
299 : /* Make tuple and any needed join variables available to ExecProject */
300 8072 : switch (cmdType)
301 : {
302 6642 : case CMD_INSERT:
303 : case CMD_UPDATE:
304 : /* return new tuple by default */
305 6642 : if (newSlot)
306 6186 : econtext->ecxt_scantuple = newSlot;
307 6642 : break;
308 :
309 1430 : case CMD_DELETE:
310 : /* return old tuple by default */
311 1430 : if (oldSlot)
312 1192 : econtext->ecxt_scantuple = oldSlot;
313 1430 : break;
314 :
315 0 : default:
316 0 : elog(ERROR, "unrecognized commandType: %d", (int) cmdType);
317 : }
318 8072 : econtext->ecxt_outertuple = planSlot;
319 :
320 : /* Make old/new tuples available to ExecProject, if required */
321 8072 : if (oldSlot)
322 3818 : econtext->ecxt_oldtuple = oldSlot;
323 4254 : else if (projectReturning->pi_state.flags & EEO_FLAG_HAS_OLD)
324 180 : econtext->ecxt_oldtuple = ExecGetAllNullSlot(estate, resultRelInfo);
325 : else
326 4074 : econtext->ecxt_oldtuple = NULL; /* No references to OLD columns */
327 :
328 8072 : if (newSlot)
329 6186 : econtext->ecxt_newtuple = newSlot;
330 1886 : else if (projectReturning->pi_state.flags & EEO_FLAG_HAS_NEW)
331 132 : econtext->ecxt_newtuple = ExecGetAllNullSlot(estate, resultRelInfo);
332 : else
333 1754 : econtext->ecxt_newtuple = NULL; /* No references to NEW columns */
334 :
335 : /*
336 : * Tell ExecProject whether or not the OLD/NEW rows actually exist. This
337 : * information is required to evaluate ReturningExpr nodes and also in
338 : * ExecEvalSysVar() and ExecEvalWholeRowVar().
339 : */
340 8072 : if (oldSlot == NULL)
341 4254 : projectReturning->pi_state.flags |= EEO_FLAG_OLD_IS_NULL;
342 : else
343 3818 : projectReturning->pi_state.flags &= ~EEO_FLAG_OLD_IS_NULL;
344 :
345 8072 : if (newSlot == NULL)
346 1886 : projectReturning->pi_state.flags |= EEO_FLAG_NEW_IS_NULL;
347 : else
348 6186 : projectReturning->pi_state.flags &= ~EEO_FLAG_NEW_IS_NULL;
349 :
350 : /* Compute the RETURNING expressions */
351 8072 : return ExecProject(projectReturning);
352 : }
353 :
354 : /*
355 : * ExecCheckTupleVisible -- verify tuple is visible
356 : *
357 : * It would not be consistent with guarantees of the higher isolation levels to
358 : * proceed with avoiding insertion (taking speculative insertion's alternative
359 : * path) on the basis of another tuple that is not visible to MVCC snapshot.
360 : * Check for the need to raise a serialization failure, and do so as necessary.
361 : */
362 : static void
363 5246 : ExecCheckTupleVisible(EState *estate,
364 : Relation rel,
365 : TupleTableSlot *slot)
366 : {
367 5246 : if (!IsolationUsesXactSnapshot())
368 5182 : return;
369 :
370 64 : if (!table_tuple_satisfies_snapshot(rel, slot, estate->es_snapshot))
371 : {
372 : Datum xminDatum;
373 : TransactionId xmin;
374 : bool isnull;
375 :
376 40 : xminDatum = slot_getsysattr(slot, MinTransactionIdAttributeNumber, &isnull);
377 : Assert(!isnull);
378 40 : xmin = DatumGetTransactionId(xminDatum);
379 :
380 : /*
381 : * We should not raise a serialization failure if the conflict is
382 : * against a tuple inserted by our own transaction, even if it's not
383 : * visible to our snapshot. (This would happen, for example, if
384 : * conflicting keys are proposed for insertion in a single command.)
385 : */
386 40 : if (!TransactionIdIsCurrentTransactionId(xmin))
387 20 : ereport(ERROR,
388 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
389 : errmsg("could not serialize access due to concurrent update")));
390 : }
391 : }
392 :
393 : /*
394 : * ExecCheckTIDVisible -- convenience variant of ExecCheckTupleVisible()
395 : */
396 : static void
397 212 : ExecCheckTIDVisible(EState *estate,
398 : ResultRelInfo *relinfo,
399 : ItemPointer tid,
400 : TupleTableSlot *tempSlot)
401 : {
402 212 : Relation rel = relinfo->ri_RelationDesc;
403 :
404 : /* Redundantly check isolation level */
405 212 : if (!IsolationUsesXactSnapshot())
406 148 : return;
407 :
408 64 : if (!table_tuple_fetch_row_version(rel, tid, SnapshotAny, tempSlot))
409 0 : elog(ERROR, "failed to fetch conflicting tuple for ON CONFLICT");
410 64 : ExecCheckTupleVisible(estate, rel, tempSlot);
411 44 : ExecClearTuple(tempSlot);
412 : }
413 :
414 : /*
415 : * Initialize generated columns handling for a tuple
416 : *
417 : * This fills the resultRelInfo's ri_GeneratedExprsI/ri_NumGeneratedNeededI or
418 : * ri_GeneratedExprsU/ri_NumGeneratedNeededU fields, depending on cmdtype.
419 : * This is used only for stored generated columns.
420 : *
421 : * If cmdType == CMD_UPDATE, the ri_extraUpdatedCols field is filled too.
422 : * This is used by both stored and virtual generated columns.
423 : *
424 : * Note: usually, a given query would need only one of ri_GeneratedExprsI and
425 : * ri_GeneratedExprsU per result rel; but MERGE can need both, and so can
426 : * cross-partition UPDATEs, since a partition might be the target of both
427 : * UPDATE and INSERT actions.
428 : */
429 : void
430 59258 : ExecInitGenerated(ResultRelInfo *resultRelInfo,
431 : EState *estate,
432 : CmdType cmdtype)
433 : {
434 59258 : Relation rel = resultRelInfo->ri_RelationDesc;
435 59258 : TupleDesc tupdesc = RelationGetDescr(rel);
436 59258 : int natts = tupdesc->natts;
437 : ExprState **ri_GeneratedExprs;
438 : int ri_NumGeneratedNeeded;
439 : Bitmapset *updatedCols;
440 : MemoryContext oldContext;
441 :
442 : /* Nothing to do if no generated columns */
443 59258 : if (!(tupdesc->constr && (tupdesc->constr->has_generated_stored || tupdesc->constr->has_generated_virtual)))
444 58182 : return;
445 :
446 : /*
447 : * In an UPDATE, we can skip computing any generated columns that do not
448 : * depend on any UPDATE target column. But if there is a BEFORE ROW
449 : * UPDATE trigger, we cannot skip because the trigger might change more
450 : * columns.
451 : */
452 1076 : if (cmdtype == CMD_UPDATE &&
453 250 : !(rel->trigdesc && rel->trigdesc->trig_update_before_row))
454 206 : updatedCols = ExecGetUpdatedCols(resultRelInfo, estate);
455 : else
456 870 : updatedCols = NULL;
457 :
458 : /*
459 : * Make sure these data structures are built in the per-query memory
460 : * context so they'll survive throughout the query.
461 : */
462 1076 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
463 :
464 1076 : ri_GeneratedExprs = (ExprState **) palloc0(natts * sizeof(ExprState *));
465 1076 : ri_NumGeneratedNeeded = 0;
466 :
467 4140 : for (int i = 0; i < natts; i++)
468 : {
469 3070 : char attgenerated = TupleDescAttr(tupdesc, i)->attgenerated;
470 :
471 3070 : if (attgenerated)
472 : {
473 : Expr *expr;
474 :
475 : /* Fetch the GENERATED AS expression tree */
476 1166 : expr = (Expr *) build_column_default(rel, i + 1);
477 1166 : if (expr == NULL)
478 0 : elog(ERROR, "no generation expression found for column number %d of table \"%s\"",
479 : i + 1, RelationGetRelationName(rel));
480 :
481 : /*
482 : * If it's an update with a known set of update target columns,
483 : * see if we can skip the computation.
484 : */
485 1166 : if (updatedCols)
486 : {
487 220 : Bitmapset *attrs_used = NULL;
488 :
489 220 : pull_varattnos((Node *) expr, 1, &attrs_used);
490 :
491 220 : if (!bms_overlap(updatedCols, attrs_used))
492 24 : continue; /* need not update this column */
493 : }
494 :
495 : /* No luck, so prepare the expression for execution */
496 1142 : if (attgenerated == ATTRIBUTE_GENERATED_STORED)
497 : {
498 1058 : ri_GeneratedExprs[i] = ExecPrepareExpr(expr, estate);
499 1052 : ri_NumGeneratedNeeded++;
500 : }
501 :
502 : /* If UPDATE, mark column in resultRelInfo->ri_extraUpdatedCols */
503 1136 : if (cmdtype == CMD_UPDATE)
504 248 : resultRelInfo->ri_extraUpdatedCols =
505 248 : bms_add_member(resultRelInfo->ri_extraUpdatedCols,
506 : i + 1 - FirstLowInvalidHeapAttributeNumber);
507 : }
508 : }
509 :
510 1070 : if (ri_NumGeneratedNeeded == 0)
511 : {
512 : /* didn't need it after all */
513 42 : pfree(ri_GeneratedExprs);
514 42 : ri_GeneratedExprs = NULL;
515 : }
516 :
517 : /* Save in appropriate set of fields */
518 1070 : if (cmdtype == CMD_UPDATE)
519 : {
520 : /* Don't call twice */
521 : Assert(resultRelInfo->ri_GeneratedExprsU == NULL);
522 :
523 250 : resultRelInfo->ri_GeneratedExprsU = ri_GeneratedExprs;
524 250 : resultRelInfo->ri_NumGeneratedNeededU = ri_NumGeneratedNeeded;
525 :
526 250 : resultRelInfo->ri_extraUpdatedCols_valid = true;
527 : }
528 : else
529 : {
530 : /* Don't call twice */
531 : Assert(resultRelInfo->ri_GeneratedExprsI == NULL);
532 :
533 820 : resultRelInfo->ri_GeneratedExprsI = ri_GeneratedExprs;
534 820 : resultRelInfo->ri_NumGeneratedNeededI = ri_NumGeneratedNeeded;
535 : }
536 :
537 1070 : MemoryContextSwitchTo(oldContext);
538 : }
539 :
540 : /*
541 : * Compute stored generated columns for a tuple
542 : */
543 : void
544 1458 : ExecComputeStoredGenerated(ResultRelInfo *resultRelInfo,
545 : EState *estate, TupleTableSlot *slot,
546 : CmdType cmdtype)
547 : {
548 1458 : Relation rel = resultRelInfo->ri_RelationDesc;
549 1458 : TupleDesc tupdesc = RelationGetDescr(rel);
550 1458 : int natts = tupdesc->natts;
551 1458 : ExprContext *econtext = GetPerTupleExprContext(estate);
552 : ExprState **ri_GeneratedExprs;
553 : MemoryContext oldContext;
554 : Datum *values;
555 : bool *nulls;
556 :
557 : /* We should not be called unless this is true */
558 : Assert(tupdesc->constr && tupdesc->constr->has_generated_stored);
559 :
560 : /*
561 : * Initialize the expressions if we didn't already, and check whether we
562 : * can exit early because nothing needs to be computed.
563 : */
564 1458 : if (cmdtype == CMD_UPDATE)
565 : {
566 262 : if (resultRelInfo->ri_GeneratedExprsU == NULL)
567 200 : ExecInitGenerated(resultRelInfo, estate, cmdtype);
568 262 : if (resultRelInfo->ri_NumGeneratedNeededU == 0)
569 18 : return;
570 244 : ri_GeneratedExprs = resultRelInfo->ri_GeneratedExprsU;
571 : }
572 : else
573 : {
574 1196 : if (resultRelInfo->ri_GeneratedExprsI == NULL)
575 826 : ExecInitGenerated(resultRelInfo, estate, cmdtype);
576 : /* Early exit is impossible given the prior Assert */
577 : Assert(resultRelInfo->ri_NumGeneratedNeededI > 0);
578 1190 : ri_GeneratedExprs = resultRelInfo->ri_GeneratedExprsI;
579 : }
580 :
581 1434 : oldContext = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
582 :
583 1434 : values = palloc(sizeof(*values) * natts);
584 1434 : nulls = palloc(sizeof(*nulls) * natts);
585 :
586 1434 : slot_getallattrs(slot);
587 1434 : memcpy(nulls, slot->tts_isnull, sizeof(*nulls) * natts);
588 :
589 5364 : for (int i = 0; i < natts; i++)
590 : {
591 3954 : CompactAttribute *attr = TupleDescCompactAttr(tupdesc, i);
592 :
593 3954 : if (ri_GeneratedExprs[i])
594 : {
595 : Datum val;
596 : bool isnull;
597 :
598 : Assert(TupleDescAttr(tupdesc, i)->attgenerated == ATTRIBUTE_GENERATED_STORED);
599 :
600 1468 : econtext->ecxt_scantuple = slot;
601 :
602 1468 : val = ExecEvalExpr(ri_GeneratedExprs[i], econtext, &isnull);
603 :
604 : /*
605 : * We must make a copy of val as we have no guarantees about where
606 : * memory for a pass-by-reference Datum is located.
607 : */
608 1444 : if (!isnull)
609 1390 : val = datumCopy(val, attr->attbyval, attr->attlen);
610 :
611 1444 : values[i] = val;
612 1444 : nulls[i] = isnull;
613 : }
614 : else
615 : {
616 2486 : if (!nulls[i])
617 2336 : values[i] = datumCopy(slot->tts_values[i], attr->attbyval, attr->attlen);
618 : }
619 : }
620 :
621 1410 : ExecClearTuple(slot);
622 1410 : memcpy(slot->tts_values, values, sizeof(*values) * natts);
623 1410 : memcpy(slot->tts_isnull, nulls, sizeof(*nulls) * natts);
624 1410 : ExecStoreVirtualTuple(slot);
625 1410 : ExecMaterializeSlot(slot);
626 :
627 1410 : MemoryContextSwitchTo(oldContext);
628 : }
629 :
630 : /*
631 : * ExecInitInsertProjection
632 : * Do one-time initialization of projection data for INSERT tuples.
633 : *
634 : * INSERT queries may need a projection to filter out junk attrs in the tlist.
635 : *
636 : * This is also a convenient place to verify that the
637 : * output of an INSERT matches the target table.
638 : */
639 : static void
640 85980 : ExecInitInsertProjection(ModifyTableState *mtstate,
641 : ResultRelInfo *resultRelInfo)
642 : {
643 85980 : ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
644 85980 : Plan *subplan = outerPlan(node);
645 85980 : EState *estate = mtstate->ps.state;
646 85980 : List *insertTargetList = NIL;
647 85980 : bool need_projection = false;
648 : ListCell *l;
649 :
650 : /* Extract non-junk columns of the subplan's result tlist. */
651 264152 : foreach(l, subplan->targetlist)
652 : {
653 178172 : TargetEntry *tle = (TargetEntry *) lfirst(l);
654 :
655 178172 : if (!tle->resjunk)
656 178172 : insertTargetList = lappend(insertTargetList, tle);
657 : else
658 0 : need_projection = true;
659 : }
660 :
661 : /*
662 : * The junk-free list must produce a tuple suitable for the result
663 : * relation.
664 : */
665 85980 : ExecCheckPlanOutput(resultRelInfo->ri_RelationDesc, insertTargetList);
666 :
667 : /* We'll need a slot matching the table's format. */
668 85980 : resultRelInfo->ri_newTupleSlot =
669 85980 : table_slot_create(resultRelInfo->ri_RelationDesc,
670 : &estate->es_tupleTable);
671 :
672 : /* Build ProjectionInfo if needed (it probably isn't). */
673 85980 : if (need_projection)
674 : {
675 0 : TupleDesc relDesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
676 :
677 : /* need an expression context to do the projection */
678 0 : if (mtstate->ps.ps_ExprContext == NULL)
679 0 : ExecAssignExprContext(estate, &mtstate->ps);
680 :
681 0 : resultRelInfo->ri_projectNew =
682 0 : ExecBuildProjectionInfo(insertTargetList,
683 : mtstate->ps.ps_ExprContext,
684 : resultRelInfo->ri_newTupleSlot,
685 : &mtstate->ps,
686 : relDesc);
687 : }
688 :
689 85980 : resultRelInfo->ri_projectNewInfoValid = true;
690 85980 : }
691 :
692 : /*
693 : * ExecInitUpdateProjection
694 : * Do one-time initialization of projection data for UPDATE tuples.
695 : *
696 : * UPDATE always needs a projection, because (1) there's always some junk
697 : * attrs, and (2) we may need to merge values of not-updated columns from
698 : * the old tuple into the final tuple. In UPDATE, the tuple arriving from
699 : * the subplan contains only new values for the changed columns, plus row
700 : * identity info in the junk attrs.
701 : *
702 : * This is "one-time" for any given result rel, but we might touch more than
703 : * one result rel in the course of an inherited UPDATE, and each one needs
704 : * its own projection due to possible column order variation.
705 : *
706 : * This is also a convenient place to verify that the output of an UPDATE
707 : * matches the target table (ExecBuildUpdateProjection does that).
708 : */
709 : static void
710 13184 : ExecInitUpdateProjection(ModifyTableState *mtstate,
711 : ResultRelInfo *resultRelInfo)
712 : {
713 13184 : ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
714 13184 : Plan *subplan = outerPlan(node);
715 13184 : EState *estate = mtstate->ps.state;
716 13184 : TupleDesc relDesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
717 : int whichrel;
718 : List *updateColnos;
719 :
720 : /*
721 : * Usually, mt_lastResultIndex matches the target rel. If it happens not
722 : * to, we can get the index the hard way with an integer division.
723 : */
724 13184 : whichrel = mtstate->mt_lastResultIndex;
725 13184 : if (resultRelInfo != mtstate->resultRelInfo + whichrel)
726 : {
727 0 : whichrel = resultRelInfo - mtstate->resultRelInfo;
728 : Assert(whichrel >= 0 && whichrel < mtstate->mt_nrels);
729 : }
730 :
731 13184 : updateColnos = (List *) list_nth(mtstate->mt_updateColnosLists, whichrel);
732 :
733 : /*
734 : * For UPDATE, we use the old tuple to fill up missing values in the tuple
735 : * produced by the subplan to get the new tuple. We need two slots, both
736 : * matching the table's desired format.
737 : */
738 13184 : resultRelInfo->ri_oldTupleSlot =
739 13184 : table_slot_create(resultRelInfo->ri_RelationDesc,
740 : &estate->es_tupleTable);
741 13184 : resultRelInfo->ri_newTupleSlot =
742 13184 : table_slot_create(resultRelInfo->ri_RelationDesc,
743 : &estate->es_tupleTable);
744 :
745 : /* need an expression context to do the projection */
746 13184 : if (mtstate->ps.ps_ExprContext == NULL)
747 11790 : ExecAssignExprContext(estate, &mtstate->ps);
748 :
749 13184 : resultRelInfo->ri_projectNew =
750 13184 : ExecBuildUpdateProjection(subplan->targetlist,
751 : false, /* subplan did the evaluation */
752 : updateColnos,
753 : relDesc,
754 : mtstate->ps.ps_ExprContext,
755 : resultRelInfo->ri_newTupleSlot,
756 : &mtstate->ps);
757 :
758 13184 : resultRelInfo->ri_projectNewInfoValid = true;
759 13184 : }
760 :
761 : /*
762 : * ExecGetInsertNewTuple
763 : * This prepares a "new" tuple ready to be inserted into given result
764 : * relation, by removing any junk columns of the plan's output tuple
765 : * and (if necessary) coercing the tuple to the right tuple format.
766 : */
767 : static TupleTableSlot *
768 12156340 : ExecGetInsertNewTuple(ResultRelInfo *relinfo,
769 : TupleTableSlot *planSlot)
770 : {
771 12156340 : ProjectionInfo *newProj = relinfo->ri_projectNew;
772 : ExprContext *econtext;
773 :
774 : /*
775 : * If there's no projection to be done, just make sure the slot is of the
776 : * right type for the target rel. If the planSlot is the right type we
777 : * can use it as-is, else copy the data into ri_newTupleSlot.
778 : */
779 12156340 : if (newProj == NULL)
780 : {
781 12156340 : if (relinfo->ri_newTupleSlot->tts_ops != planSlot->tts_ops)
782 : {
783 11381244 : ExecCopySlot(relinfo->ri_newTupleSlot, planSlot);
784 11381244 : return relinfo->ri_newTupleSlot;
785 : }
786 : else
787 775096 : return planSlot;
788 : }
789 :
790 : /*
791 : * Else project; since the projection output slot is ri_newTupleSlot, this
792 : * will also fix any slot-type problem.
793 : *
794 : * Note: currently, this is dead code, because INSERT cases don't receive
795 : * any junk columns so there's never a projection to be done.
796 : */
797 0 : econtext = newProj->pi_exprContext;
798 0 : econtext->ecxt_outertuple = planSlot;
799 0 : return ExecProject(newProj);
800 : }
801 :
802 : /*
803 : * ExecGetUpdateNewTuple
804 : * This prepares a "new" tuple by combining an UPDATE subplan's output
805 : * tuple (which contains values of changed columns) with unchanged
806 : * columns taken from the old tuple.
807 : *
808 : * The subplan tuple might also contain junk columns, which are ignored.
809 : * Note that the projection also ensures we have a slot of the right type.
810 : */
811 : TupleTableSlot *
812 317290 : ExecGetUpdateNewTuple(ResultRelInfo *relinfo,
813 : TupleTableSlot *planSlot,
814 : TupleTableSlot *oldSlot)
815 : {
816 317290 : ProjectionInfo *newProj = relinfo->ri_projectNew;
817 : ExprContext *econtext;
818 :
819 : /* Use a few extra Asserts to protect against outside callers */
820 : Assert(relinfo->ri_projectNewInfoValid);
821 : Assert(planSlot != NULL && !TTS_EMPTY(planSlot));
822 : Assert(oldSlot != NULL && !TTS_EMPTY(oldSlot));
823 :
824 317290 : econtext = newProj->pi_exprContext;
825 317290 : econtext->ecxt_outertuple = planSlot;
826 317290 : econtext->ecxt_scantuple = oldSlot;
827 317290 : return ExecProject(newProj);
828 : }
829 :
830 : /* ----------------------------------------------------------------
831 : * ExecInsert
832 : *
833 : * For INSERT, we have to insert the tuple into the target relation
834 : * (or partition thereof) and insert appropriate tuples into the index
835 : * relations.
836 : *
837 : * slot contains the new tuple value to be stored.
838 : *
839 : * Returns RETURNING result if any, otherwise NULL.
840 : * *inserted_tuple is the tuple that's effectively inserted;
841 : * *insert_destrel is the relation where it was inserted.
842 : * These are only set on success.
843 : *
844 : * This may change the currently active tuple conversion map in
845 : * mtstate->mt_transition_capture, so the callers must take care to
846 : * save the previous value to avoid losing track of it.
847 : * ----------------------------------------------------------------
848 : */
849 : static TupleTableSlot *
850 12159122 : ExecInsert(ModifyTableContext *context,
851 : ResultRelInfo *resultRelInfo,
852 : TupleTableSlot *slot,
853 : bool canSetTag,
854 : TupleTableSlot **inserted_tuple,
855 : ResultRelInfo **insert_destrel)
856 : {
857 12159122 : ModifyTableState *mtstate = context->mtstate;
858 12159122 : EState *estate = context->estate;
859 : Relation resultRelationDesc;
860 12159122 : List *recheckIndexes = NIL;
861 12159122 : TupleTableSlot *planSlot = context->planSlot;
862 12159122 : TupleTableSlot *result = NULL;
863 : TransitionCaptureState *ar_insert_trig_tcs;
864 12159122 : ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
865 12159122 : OnConflictAction onconflict = node->onConflictAction;
866 12159122 : PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing;
867 : MemoryContext oldContext;
868 :
869 : /*
870 : * If the input result relation is a partitioned table, find the leaf
871 : * partition to insert the tuple into.
872 : */
873 12159122 : if (proute)
874 : {
875 : ResultRelInfo *partRelInfo;
876 :
877 726332 : slot = ExecPrepareTupleRouting(mtstate, estate, proute,
878 : resultRelInfo, slot,
879 : &partRelInfo);
880 726128 : resultRelInfo = partRelInfo;
881 : }
882 :
883 12158918 : ExecMaterializeSlot(slot);
884 :
885 12158918 : resultRelationDesc = resultRelInfo->ri_RelationDesc;
886 :
887 : /*
888 : * Open the table's indexes, if we have not done so already, so that we
889 : * can add new index entries for the inserted tuple.
890 : */
891 12158918 : if (resultRelationDesc->rd_rel->relhasindex &&
892 3099306 : resultRelInfo->ri_IndexRelationDescs == NULL)
893 31870 : ExecOpenIndices(resultRelInfo, onconflict != ONCONFLICT_NONE);
894 :
895 : /*
896 : * BEFORE ROW INSERT Triggers.
897 : *
898 : * Note: We fire BEFORE ROW TRIGGERS for every attempted insertion in an
899 : * INSERT ... ON CONFLICT statement. We cannot check for constraint
900 : * violations before firing these triggers, because they can change the
901 : * values to insert. Also, they can run arbitrary user-defined code with
902 : * side-effects that we can't cancel by just not inserting the tuple.
903 : */
904 12158918 : if (resultRelInfo->ri_TrigDesc &&
905 75172 : resultRelInfo->ri_TrigDesc->trig_insert_before_row)
906 : {
907 : /* Flush any pending inserts, so rows are visible to the triggers */
908 2054 : if (estate->es_insert_pending_result_relations != NIL)
909 6 : ExecPendingInserts(estate);
910 :
911 2054 : if (!ExecBRInsertTriggers(estate, resultRelInfo, slot))
912 200 : return NULL; /* "do nothing" */
913 : }
914 :
915 : /* INSTEAD OF ROW INSERT Triggers */
916 12158620 : if (resultRelInfo->ri_TrigDesc &&
917 74874 : resultRelInfo->ri_TrigDesc->trig_insert_instead_row)
918 : {
919 168 : if (!ExecIRInsertTriggers(estate, resultRelInfo, slot))
920 6 : return NULL; /* "do nothing" */
921 : }
922 12158452 : else if (resultRelInfo->ri_FdwRoutine)
923 : {
924 : /*
925 : * GENERATED expressions might reference the tableoid column, so
926 : * (re-)initialize tts_tableOid before evaluating them.
927 : */
928 2014 : slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
929 :
930 : /*
931 : * Compute stored generated columns
932 : */
933 2014 : if (resultRelationDesc->rd_att->constr &&
934 366 : resultRelationDesc->rd_att->constr->has_generated_stored)
935 8 : ExecComputeStoredGenerated(resultRelInfo, estate, slot,
936 : CMD_INSERT);
937 :
938 : /*
939 : * If the FDW supports batching, and batching is requested, accumulate
940 : * rows and insert them in batches. Otherwise use the per-row inserts.
941 : */
942 2014 : if (resultRelInfo->ri_BatchSize > 1)
943 : {
944 288 : bool flushed = false;
945 :
946 : /*
947 : * When we've reached the desired batch size, perform the
948 : * insertion.
949 : */
950 288 : if (resultRelInfo->ri_NumSlots == resultRelInfo->ri_BatchSize)
951 : {
952 20 : ExecBatchInsert(mtstate, resultRelInfo,
953 : resultRelInfo->ri_Slots,
954 : resultRelInfo->ri_PlanSlots,
955 : resultRelInfo->ri_NumSlots,
956 : estate, canSetTag);
957 20 : flushed = true;
958 : }
959 :
960 288 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
961 :
962 288 : if (resultRelInfo->ri_Slots == NULL)
963 : {
964 56 : resultRelInfo->ri_Slots = palloc(sizeof(TupleTableSlot *) *
965 28 : resultRelInfo->ri_BatchSize);
966 28 : resultRelInfo->ri_PlanSlots = palloc(sizeof(TupleTableSlot *) *
967 28 : resultRelInfo->ri_BatchSize);
968 : }
969 :
970 : /*
971 : * Initialize the batch slots. We don't know how many slots will
972 : * be needed, so we initialize them as the batch grows, and we
973 : * keep them across batches. To mitigate an inefficiency in how
974 : * resource owner handles objects with many references (as with
975 : * many slots all referencing the same tuple descriptor) we copy
976 : * the appropriate tuple descriptor for each slot.
977 : */
978 288 : if (resultRelInfo->ri_NumSlots >= resultRelInfo->ri_NumSlotsInitialized)
979 : {
980 142 : TupleDesc tdesc = CreateTupleDescCopy(slot->tts_tupleDescriptor);
981 : TupleDesc plan_tdesc =
982 142 : CreateTupleDescCopy(planSlot->tts_tupleDescriptor);
983 :
984 284 : resultRelInfo->ri_Slots[resultRelInfo->ri_NumSlots] =
985 142 : MakeSingleTupleTableSlot(tdesc, slot->tts_ops);
986 :
987 284 : resultRelInfo->ri_PlanSlots[resultRelInfo->ri_NumSlots] =
988 142 : MakeSingleTupleTableSlot(plan_tdesc, planSlot->tts_ops);
989 :
990 : /* remember how many batch slots we initialized */
991 142 : resultRelInfo->ri_NumSlotsInitialized++;
992 : }
993 :
994 288 : ExecCopySlot(resultRelInfo->ri_Slots[resultRelInfo->ri_NumSlots],
995 : slot);
996 :
997 288 : ExecCopySlot(resultRelInfo->ri_PlanSlots[resultRelInfo->ri_NumSlots],
998 : planSlot);
999 :
1000 : /*
1001 : * If these are the first tuples stored in the buffers, add the
1002 : * target rel and the mtstate to the
1003 : * es_insert_pending_result_relations and
1004 : * es_insert_pending_modifytables lists respectively, except in
1005 : * the case where flushing was done above, in which case they
1006 : * would already have been added to the lists, so no need to do
1007 : * this.
1008 : */
1009 288 : if (resultRelInfo->ri_NumSlots == 0 && !flushed)
1010 : {
1011 : Assert(!list_member_ptr(estate->es_insert_pending_result_relations,
1012 : resultRelInfo));
1013 36 : estate->es_insert_pending_result_relations =
1014 36 : lappend(estate->es_insert_pending_result_relations,
1015 : resultRelInfo);
1016 36 : estate->es_insert_pending_modifytables =
1017 36 : lappend(estate->es_insert_pending_modifytables, mtstate);
1018 : }
1019 : Assert(list_member_ptr(estate->es_insert_pending_result_relations,
1020 : resultRelInfo));
1021 :
1022 288 : resultRelInfo->ri_NumSlots++;
1023 :
1024 288 : MemoryContextSwitchTo(oldContext);
1025 :
1026 288 : return NULL;
1027 : }
1028 :
1029 : /*
1030 : * insert into foreign table: let the FDW do it
1031 : */
1032 1726 : slot = resultRelInfo->ri_FdwRoutine->ExecForeignInsert(estate,
1033 : resultRelInfo,
1034 : slot,
1035 : planSlot);
1036 :
1037 1720 : if (slot == NULL) /* "do nothing" */
1038 4 : return NULL;
1039 :
1040 : /*
1041 : * AFTER ROW Triggers or RETURNING expressions might reference the
1042 : * tableoid column, so (re-)initialize tts_tableOid before evaluating
1043 : * them. (This covers the case where the FDW replaced the slot.)
1044 : */
1045 1716 : slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
1046 : }
1047 : else
1048 : {
1049 : WCOKind wco_kind;
1050 :
1051 : /*
1052 : * Constraints and GENERATED expressions might reference the tableoid
1053 : * column, so (re-)initialize tts_tableOid before evaluating them.
1054 : */
1055 12156438 : slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
1056 :
1057 : /*
1058 : * Compute stored generated columns
1059 : */
1060 12156438 : if (resultRelationDesc->rd_att->constr &&
1061 3713094 : resultRelationDesc->rd_att->constr->has_generated_stored)
1062 1058 : ExecComputeStoredGenerated(resultRelInfo, estate, slot,
1063 : CMD_INSERT);
1064 :
1065 : /*
1066 : * Check any RLS WITH CHECK policies.
1067 : *
1068 : * Normally we should check INSERT policies. But if the insert is the
1069 : * result of a partition key update that moved the tuple to a new
1070 : * partition, we should instead check UPDATE policies, because we are
1071 : * executing policies defined on the target table, and not those
1072 : * defined on the child partitions.
1073 : *
1074 : * If we're running MERGE, we refer to the action that we're executing
1075 : * to know if we're doing an INSERT or UPDATE to a partition table.
1076 : */
1077 12156408 : if (mtstate->operation == CMD_UPDATE)
1078 782 : wco_kind = WCO_RLS_UPDATE_CHECK;
1079 12155626 : else if (mtstate->operation == CMD_MERGE)
1080 1760 : wco_kind = (mtstate->mt_merge_action->mas_action->commandType == CMD_UPDATE) ?
1081 1760 : WCO_RLS_UPDATE_CHECK : WCO_RLS_INSERT_CHECK;
1082 : else
1083 12153866 : wco_kind = WCO_RLS_INSERT_CHECK;
1084 :
1085 : /*
1086 : * ExecWithCheckOptions() will skip any WCOs which are not of the kind
1087 : * we are looking for at this point.
1088 : */
1089 12156408 : if (resultRelInfo->ri_WithCheckOptions != NIL)
1090 600 : ExecWithCheckOptions(wco_kind, resultRelInfo, slot, estate);
1091 :
1092 : /*
1093 : * Check the constraints of the tuple.
1094 : */
1095 12156216 : if (resultRelationDesc->rd_att->constr)
1096 3712962 : ExecConstraints(resultRelInfo, slot, estate);
1097 :
1098 : /*
1099 : * Also check the tuple against the partition constraint, if there is
1100 : * one; except that if we got here via tuple-routing, we don't need to
1101 : * if there's no BR trigger defined on the partition.
1102 : */
1103 12155510 : if (resultRelationDesc->rd_rel->relispartition &&
1104 728356 : (resultRelInfo->ri_RootResultRelInfo == NULL ||
1105 725538 : (resultRelInfo->ri_TrigDesc &&
1106 1574 : resultRelInfo->ri_TrigDesc->trig_insert_before_row)))
1107 3014 : ExecPartitionCheck(resultRelInfo, slot, estate, true);
1108 :
1109 12155342 : if (onconflict != ONCONFLICT_NONE && resultRelInfo->ri_NumIndices > 0)
1110 4112 : {
1111 : /* Perform a speculative insertion. */
1112 : uint32 specToken;
1113 : ItemPointerData conflictTid;
1114 : ItemPointerData invalidItemPtr;
1115 : bool specConflict;
1116 : List *arbiterIndexes;
1117 :
1118 9542 : ItemPointerSetInvalid(&invalidItemPtr);
1119 9542 : arbiterIndexes = resultRelInfo->ri_onConflictArbiterIndexes;
1120 :
1121 : /*
1122 : * Do a non-conclusive check for conflicts first.
1123 : *
1124 : * We're not holding any locks yet, so this doesn't guarantee that
1125 : * the later insert won't conflict. But it avoids leaving behind
1126 : * a lot of canceled speculative insertions, if you run a lot of
1127 : * INSERT ON CONFLICT statements that do conflict.
1128 : *
1129 : * We loop back here if we find a conflict below, either during
1130 : * the pre-check, or when we re-check after inserting the tuple
1131 : * speculatively. Better allow interrupts in case some bug makes
1132 : * this an infinite loop.
1133 : */
1134 10 : vlock:
1135 9552 : CHECK_FOR_INTERRUPTS();
1136 9552 : specConflict = false;
1137 9552 : if (!ExecCheckIndexConstraints(resultRelInfo, slot, estate,
1138 : &conflictTid, &invalidItemPtr,
1139 : arbiterIndexes))
1140 : {
1141 : /* committed conflict tuple found */
1142 5418 : if (onconflict == ONCONFLICT_UPDATE)
1143 : {
1144 : /*
1145 : * In case of ON CONFLICT DO UPDATE, execute the UPDATE
1146 : * part. Be prepared to retry if the UPDATE fails because
1147 : * of another concurrent UPDATE/DELETE to the conflict
1148 : * tuple.
1149 : */
1150 5206 : TupleTableSlot *returning = NULL;
1151 :
1152 5206 : if (ExecOnConflictUpdate(context, resultRelInfo,
1153 : &conflictTid, slot, canSetTag,
1154 : &returning))
1155 : {
1156 5128 : InstrCountTuples2(&mtstate->ps, 1);
1157 5128 : return returning;
1158 : }
1159 : else
1160 0 : goto vlock;
1161 : }
1162 : else
1163 : {
1164 : /*
1165 : * In case of ON CONFLICT DO NOTHING, do nothing. However,
1166 : * verify that the tuple is visible to the executor's MVCC
1167 : * snapshot at higher isolation levels.
1168 : *
1169 : * Using ExecGetReturningSlot() to store the tuple for the
1170 : * recheck isn't that pretty, but we can't trivially use
1171 : * the input slot, because it might not be of a compatible
1172 : * type. As there's no conflicting usage of
1173 : * ExecGetReturningSlot() in the DO NOTHING case...
1174 : */
1175 : Assert(onconflict == ONCONFLICT_NOTHING);
1176 212 : ExecCheckTIDVisible(estate, resultRelInfo, &conflictTid,
1177 : ExecGetReturningSlot(estate, resultRelInfo));
1178 192 : InstrCountTuples2(&mtstate->ps, 1);
1179 192 : return NULL;
1180 : }
1181 : }
1182 :
1183 : /*
1184 : * Before we start insertion proper, acquire our "speculative
1185 : * insertion lock". Others can use that to wait for us to decide
1186 : * if we're going to go ahead with the insertion, instead of
1187 : * waiting for the whole transaction to complete.
1188 : */
1189 4128 : specToken = SpeculativeInsertionLockAcquire(GetCurrentTransactionId());
1190 :
1191 : /* insert the tuple, with the speculative token */
1192 4128 : table_tuple_insert_speculative(resultRelationDesc, slot,
1193 : estate->es_output_cid,
1194 : 0,
1195 : NULL,
1196 : specToken);
1197 :
1198 : /* insert index entries for tuple */
1199 4128 : recheckIndexes = ExecInsertIndexTuples(resultRelInfo,
1200 : slot, estate, false, true,
1201 : &specConflict,
1202 : arbiterIndexes,
1203 : false);
1204 :
1205 : /* adjust the tuple's state accordingly */
1206 4122 : table_tuple_complete_speculative(resultRelationDesc, slot,
1207 4122 : specToken, !specConflict);
1208 :
1209 : /*
1210 : * Wake up anyone waiting for our decision. They will re-check
1211 : * the tuple, see that it's no longer speculative, and wait on our
1212 : * XID as if this was a regularly inserted tuple all along. Or if
1213 : * we killed the tuple, they will see it's dead, and proceed as if
1214 : * the tuple never existed.
1215 : */
1216 4122 : SpeculativeInsertionLockRelease(GetCurrentTransactionId());
1217 :
1218 : /*
1219 : * If there was a conflict, start from the beginning. We'll do
1220 : * the pre-check again, which will now find the conflicting tuple
1221 : * (unless it aborts before we get there).
1222 : */
1223 4122 : if (specConflict)
1224 : {
1225 10 : list_free(recheckIndexes);
1226 10 : goto vlock;
1227 : }
1228 :
1229 : /* Since there was no insertion conflict, we're done */
1230 : }
1231 : else
1232 : {
1233 : /* insert the tuple normally */
1234 12145800 : table_tuple_insert(resultRelationDesc, slot,
1235 : estate->es_output_cid,
1236 : 0, NULL);
1237 :
1238 : /* insert index entries for tuple */
1239 12145766 : if (resultRelInfo->ri_NumIndices > 0)
1240 3089196 : recheckIndexes = ExecInsertIndexTuples(resultRelInfo,
1241 : slot, estate, false,
1242 : false, NULL, NIL,
1243 : false);
1244 : }
1245 : }
1246 :
1247 12151172 : if (canSetTag)
1248 12149994 : (estate->es_processed)++;
1249 :
1250 : /*
1251 : * If this insert is the result of a partition key update that moved the
1252 : * tuple to a new partition, put this row into the transition NEW TABLE,
1253 : * if there is one. We need to do this separately for DELETE and INSERT
1254 : * because they happen on different tables.
1255 : */
1256 12151172 : ar_insert_trig_tcs = mtstate->mt_transition_capture;
1257 12151172 : if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture
1258 54 : && mtstate->mt_transition_capture->tcs_update_new_table)
1259 : {
1260 48 : ExecARUpdateTriggers(estate, resultRelInfo,
1261 : NULL, NULL,
1262 : NULL,
1263 : NULL,
1264 : slot,
1265 : NULL,
1266 48 : mtstate->mt_transition_capture,
1267 : false);
1268 :
1269 : /*
1270 : * We've already captured the NEW TABLE row, so make sure any AR
1271 : * INSERT trigger fired below doesn't capture it again.
1272 : */
1273 48 : ar_insert_trig_tcs = NULL;
1274 : }
1275 :
1276 : /* AFTER ROW INSERT Triggers */
1277 12151172 : ExecARInsertTriggers(estate, resultRelInfo, slot, recheckIndexes,
1278 : ar_insert_trig_tcs);
1279 :
1280 12151172 : list_free(recheckIndexes);
1281 :
1282 : /*
1283 : * Check any WITH CHECK OPTION constraints from parent views. We are
1284 : * required to do this after testing all constraints and uniqueness
1285 : * violations per the SQL spec, so we do it after actually inserting the
1286 : * record into the heap and all indexes.
1287 : *
1288 : * ExecWithCheckOptions will elog(ERROR) if a violation is found, so the
1289 : * tuple will never be seen, if it violates the WITH CHECK OPTION.
1290 : *
1291 : * ExecWithCheckOptions() will skip any WCOs which are not of the kind we
1292 : * are looking for at this point.
1293 : */
1294 12151172 : if (resultRelInfo->ri_WithCheckOptions != NIL)
1295 394 : ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate);
1296 :
1297 : /* Process RETURNING if present */
1298 12151026 : if (resultRelInfo->ri_projectReturning)
1299 : {
1300 3604 : TupleTableSlot *oldSlot = NULL;
1301 :
1302 : /*
1303 : * If this is part of a cross-partition UPDATE, and the RETURNING list
1304 : * refers to any OLD columns, ExecDelete() will have saved the tuple
1305 : * deleted from the original partition, which we must use here to
1306 : * compute the OLD column values. Otherwise, all OLD column values
1307 : * will be NULL.
1308 : */
1309 3604 : if (context->cpDeletedSlot)
1310 : {
1311 : TupleConversionMap *tupconv_map;
1312 :
1313 : /*
1314 : * Convert the OLD tuple to the new partition's format/slot, if
1315 : * needed. Note that ExecDelete() already converted it to the
1316 : * root's partition's format/slot.
1317 : */
1318 44 : oldSlot = context->cpDeletedSlot;
1319 44 : tupconv_map = ExecGetRootToChildMap(resultRelInfo, estate);
1320 44 : if (tupconv_map != NULL)
1321 : {
1322 14 : oldSlot = execute_attr_map_slot(tupconv_map->attrMap,
1323 : oldSlot,
1324 : ExecGetReturningSlot(estate,
1325 : resultRelInfo));
1326 :
1327 14 : oldSlot->tts_tableOid = context->cpDeletedSlot->tts_tableOid;
1328 14 : ItemPointerCopy(&context->cpDeletedSlot->tts_tid, &oldSlot->tts_tid);
1329 : }
1330 : }
1331 :
1332 3604 : result = ExecProcessReturning(context, resultRelInfo, CMD_INSERT,
1333 : oldSlot, slot, planSlot);
1334 :
1335 : /*
1336 : * For a cross-partition UPDATE, release the old tuple, first making
1337 : * sure that the result slot has a local copy of any pass-by-reference
1338 : * values.
1339 : */
1340 3592 : if (context->cpDeletedSlot)
1341 : {
1342 44 : ExecMaterializeSlot(result);
1343 44 : ExecClearTuple(oldSlot);
1344 44 : if (context->cpDeletedSlot != oldSlot)
1345 14 : ExecClearTuple(context->cpDeletedSlot);
1346 44 : context->cpDeletedSlot = NULL;
1347 : }
1348 : }
1349 :
1350 12151014 : if (inserted_tuple)
1351 808 : *inserted_tuple = slot;
1352 12151014 : if (insert_destrel)
1353 808 : *insert_destrel = resultRelInfo;
1354 :
1355 12151014 : return result;
1356 : }
1357 :
1358 : /* ----------------------------------------------------------------
1359 : * ExecBatchInsert
1360 : *
1361 : * Insert multiple tuples in an efficient way.
1362 : * Currently, this handles inserting into a foreign table without
1363 : * RETURNING clause.
1364 : * ----------------------------------------------------------------
1365 : */
1366 : static void
1367 56 : ExecBatchInsert(ModifyTableState *mtstate,
1368 : ResultRelInfo *resultRelInfo,
1369 : TupleTableSlot **slots,
1370 : TupleTableSlot **planSlots,
1371 : int numSlots,
1372 : EState *estate,
1373 : bool canSetTag)
1374 : {
1375 : int i;
1376 56 : int numInserted = numSlots;
1377 56 : TupleTableSlot *slot = NULL;
1378 : TupleTableSlot **rslots;
1379 :
1380 : /*
1381 : * insert into foreign table: let the FDW do it
1382 : */
1383 56 : rslots = resultRelInfo->ri_FdwRoutine->ExecForeignBatchInsert(estate,
1384 : resultRelInfo,
1385 : slots,
1386 : planSlots,
1387 : &numInserted);
1388 :
1389 344 : for (i = 0; i < numInserted; i++)
1390 : {
1391 288 : slot = rslots[i];
1392 :
1393 : /*
1394 : * AFTER ROW Triggers might reference the tableoid column, so
1395 : * (re-)initialize tts_tableOid before evaluating them.
1396 : */
1397 288 : slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
1398 :
1399 : /* AFTER ROW INSERT Triggers */
1400 288 : ExecARInsertTriggers(estate, resultRelInfo, slot, NIL,
1401 288 : mtstate->mt_transition_capture);
1402 :
1403 : /*
1404 : * Check any WITH CHECK OPTION constraints from parent views. See the
1405 : * comment in ExecInsert.
1406 : */
1407 288 : if (resultRelInfo->ri_WithCheckOptions != NIL)
1408 0 : ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate);
1409 : }
1410 :
1411 56 : if (canSetTag && numInserted > 0)
1412 56 : estate->es_processed += numInserted;
1413 :
1414 : /* Clean up all the slots, ready for the next batch */
1415 344 : for (i = 0; i < numSlots; i++)
1416 : {
1417 288 : ExecClearTuple(slots[i]);
1418 288 : ExecClearTuple(planSlots[i]);
1419 : }
1420 56 : resultRelInfo->ri_NumSlots = 0;
1421 56 : }
1422 :
1423 : /*
1424 : * ExecPendingInserts -- flushes all pending inserts to the foreign tables
1425 : */
1426 : static void
1427 34 : ExecPendingInserts(EState *estate)
1428 : {
1429 : ListCell *l1,
1430 : *l2;
1431 :
1432 70 : forboth(l1, estate->es_insert_pending_result_relations,
1433 : l2, estate->es_insert_pending_modifytables)
1434 : {
1435 36 : ResultRelInfo *resultRelInfo = (ResultRelInfo *) lfirst(l1);
1436 36 : ModifyTableState *mtstate = (ModifyTableState *) lfirst(l2);
1437 :
1438 : Assert(mtstate);
1439 36 : ExecBatchInsert(mtstate, resultRelInfo,
1440 : resultRelInfo->ri_Slots,
1441 : resultRelInfo->ri_PlanSlots,
1442 : resultRelInfo->ri_NumSlots,
1443 36 : estate, mtstate->canSetTag);
1444 : }
1445 :
1446 34 : list_free(estate->es_insert_pending_result_relations);
1447 34 : list_free(estate->es_insert_pending_modifytables);
1448 34 : estate->es_insert_pending_result_relations = NIL;
1449 34 : estate->es_insert_pending_modifytables = NIL;
1450 34 : }
1451 :
1452 : /*
1453 : * ExecDeletePrologue -- subroutine for ExecDelete
1454 : *
1455 : * Prepare executor state for DELETE. Actually, the only thing we have to do
1456 : * here is execute BEFORE ROW triggers. We return false if one of them makes
1457 : * the delete a no-op; otherwise, return true.
1458 : */
1459 : static bool
1460 1646048 : ExecDeletePrologue(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
1461 : ItemPointer tupleid, HeapTuple oldtuple,
1462 : TupleTableSlot **epqreturnslot, TM_Result *result)
1463 : {
1464 1646048 : if (result)
1465 1556 : *result = TM_Ok;
1466 :
1467 : /* BEFORE ROW DELETE triggers */
1468 1646048 : if (resultRelInfo->ri_TrigDesc &&
1469 7002 : resultRelInfo->ri_TrigDesc->trig_delete_before_row)
1470 : {
1471 : /* Flush any pending inserts, so rows are visible to the triggers */
1472 346 : if (context->estate->es_insert_pending_result_relations != NIL)
1473 2 : ExecPendingInserts(context->estate);
1474 :
1475 346 : return ExecBRDeleteTriggers(context->estate, context->epqstate,
1476 : resultRelInfo, tupleid, oldtuple,
1477 : epqreturnslot, result, &context->tmfd);
1478 : }
1479 :
1480 1645702 : return true;
1481 : }
1482 :
1483 : /*
1484 : * ExecDeleteAct -- subroutine for ExecDelete
1485 : *
1486 : * Actually delete the tuple from a plain table.
1487 : *
1488 : * Caller is in charge of doing EvalPlanQual as necessary
1489 : */
1490 : static TM_Result
1491 1645870 : ExecDeleteAct(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
1492 : ItemPointer tupleid, bool changingPart)
1493 : {
1494 1645870 : EState *estate = context->estate;
1495 :
1496 1645870 : return table_tuple_delete(resultRelInfo->ri_RelationDesc, tupleid,
1497 : estate->es_output_cid,
1498 : estate->es_snapshot,
1499 : estate->es_crosscheck_snapshot,
1500 : true /* wait for commit */ ,
1501 : &context->tmfd,
1502 : changingPart);
1503 : }
1504 :
1505 : /*
1506 : * ExecDeleteEpilogue -- subroutine for ExecDelete
1507 : *
1508 : * Closing steps of tuple deletion; this invokes AFTER FOR EACH ROW triggers,
1509 : * including the UPDATE triggers if the deletion is being done as part of a
1510 : * cross-partition tuple move.
1511 : */
1512 : static void
1513 1645818 : ExecDeleteEpilogue(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
1514 : ItemPointer tupleid, HeapTuple oldtuple, bool changingPart)
1515 : {
1516 1645818 : ModifyTableState *mtstate = context->mtstate;
1517 1645818 : EState *estate = context->estate;
1518 : TransitionCaptureState *ar_delete_trig_tcs;
1519 :
1520 : /*
1521 : * If this delete is the result of a partition key update that moved the
1522 : * tuple to a new partition, put this row into the transition OLD TABLE,
1523 : * if there is one. We need to do this separately for DELETE and INSERT
1524 : * because they happen on different tables.
1525 : */
1526 1645818 : ar_delete_trig_tcs = mtstate->mt_transition_capture;
1527 1645818 : if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture &&
1528 54 : mtstate->mt_transition_capture->tcs_update_old_table)
1529 : {
1530 48 : ExecARUpdateTriggers(estate, resultRelInfo,
1531 : NULL, NULL,
1532 : tupleid, oldtuple,
1533 48 : NULL, NULL, mtstate->mt_transition_capture,
1534 : false);
1535 :
1536 : /*
1537 : * We've already captured the OLD TABLE row, so make sure any AR
1538 : * DELETE trigger fired below doesn't capture it again.
1539 : */
1540 48 : ar_delete_trig_tcs = NULL;
1541 : }
1542 :
1543 : /* AFTER ROW DELETE Triggers */
1544 1645818 : ExecARDeleteTriggers(estate, resultRelInfo, tupleid, oldtuple,
1545 : ar_delete_trig_tcs, changingPart);
1546 1645818 : }
1547 :
1548 : /* ----------------------------------------------------------------
1549 : * ExecDelete
1550 : *
1551 : * DELETE is like UPDATE, except that we delete the tuple and no
1552 : * index modifications are needed.
1553 : *
1554 : * When deleting from a table, tupleid identifies the tuple to delete and
1555 : * oldtuple is NULL. When deleting through a view INSTEAD OF trigger,
1556 : * oldtuple is passed to the triggers and identifies what to delete, and
1557 : * tupleid is invalid. When deleting from a foreign table, tupleid is
1558 : * invalid; the FDW has to figure out which row to delete using data from
1559 : * the planSlot. oldtuple is passed to foreign table triggers; it is
1560 : * NULL when the foreign table has no relevant triggers. We use
1561 : * tupleDeleted to indicate whether the tuple is actually deleted,
1562 : * callers can use it to decide whether to continue the operation. When
1563 : * this DELETE is a part of an UPDATE of partition-key, then the slot
1564 : * returned by EvalPlanQual() is passed back using output parameter
1565 : * epqreturnslot.
1566 : *
1567 : * Returns RETURNING result if any, otherwise NULL.
1568 : * ----------------------------------------------------------------
1569 : */
1570 : static TupleTableSlot *
1571 1645534 : ExecDelete(ModifyTableContext *context,
1572 : ResultRelInfo *resultRelInfo,
1573 : ItemPointer tupleid,
1574 : HeapTuple oldtuple,
1575 : bool processReturning,
1576 : bool changingPart,
1577 : bool canSetTag,
1578 : TM_Result *tmresult,
1579 : bool *tupleDeleted,
1580 : TupleTableSlot **epqreturnslot)
1581 : {
1582 1645534 : EState *estate = context->estate;
1583 1645534 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
1584 1645534 : TupleTableSlot *slot = NULL;
1585 : TM_Result result;
1586 : bool saveOld;
1587 :
1588 1645534 : if (tupleDeleted)
1589 1042 : *tupleDeleted = false;
1590 :
1591 : /*
1592 : * Prepare for the delete. This includes BEFORE ROW triggers, so we're
1593 : * done if it says we are.
1594 : */
1595 1645534 : if (!ExecDeletePrologue(context, resultRelInfo, tupleid, oldtuple,
1596 : epqreturnslot, tmresult))
1597 52 : return NULL;
1598 :
1599 : /* INSTEAD OF ROW DELETE Triggers */
1600 1645466 : if (resultRelInfo->ri_TrigDesc &&
1601 6878 : resultRelInfo->ri_TrigDesc->trig_delete_instead_row)
1602 48 : {
1603 : bool dodelete;
1604 :
1605 : Assert(oldtuple != NULL);
1606 54 : dodelete = ExecIRDeleteTriggers(estate, resultRelInfo, oldtuple);
1607 :
1608 54 : if (!dodelete) /* "do nothing" */
1609 6 : return NULL;
1610 : }
1611 1645412 : else if (resultRelInfo->ri_FdwRoutine)
1612 : {
1613 : /*
1614 : * delete from foreign table: let the FDW do it
1615 : *
1616 : * We offer the returning slot as a place to store RETURNING data,
1617 : * although the FDW can return some other slot if it wants.
1618 : */
1619 42 : slot = ExecGetReturningSlot(estate, resultRelInfo);
1620 42 : slot = resultRelInfo->ri_FdwRoutine->ExecForeignDelete(estate,
1621 : resultRelInfo,
1622 : slot,
1623 : context->planSlot);
1624 :
1625 42 : if (slot == NULL) /* "do nothing" */
1626 0 : return NULL;
1627 :
1628 : /*
1629 : * RETURNING expressions might reference the tableoid column, so
1630 : * (re)initialize tts_tableOid before evaluating them.
1631 : */
1632 42 : if (TTS_EMPTY(slot))
1633 6 : ExecStoreAllNullTuple(slot);
1634 :
1635 42 : slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
1636 : }
1637 : else
1638 : {
1639 : /*
1640 : * delete the tuple
1641 : *
1642 : * Note: if context->estate->es_crosscheck_snapshot isn't
1643 : * InvalidSnapshot, we check that the row to be deleted is visible to
1644 : * that snapshot, and throw a can't-serialize error if not. This is a
1645 : * special-case behavior needed for referential integrity updates in
1646 : * transaction-snapshot mode transactions.
1647 : */
1648 1645370 : ldelete:
1649 1645374 : result = ExecDeleteAct(context, resultRelInfo, tupleid, changingPart);
1650 :
1651 1645338 : if (tmresult)
1652 1008 : *tmresult = result;
1653 :
1654 1645338 : switch (result)
1655 : {
1656 30 : case TM_SelfModified:
1657 :
1658 : /*
1659 : * The target tuple was already updated or deleted by the
1660 : * current command, or by a later command in the current
1661 : * transaction. The former case is possible in a join DELETE
1662 : * where multiple tuples join to the same target tuple. This
1663 : * is somewhat questionable, but Postgres has always allowed
1664 : * it: we just ignore additional deletion attempts.
1665 : *
1666 : * The latter case arises if the tuple is modified by a
1667 : * command in a BEFORE trigger, or perhaps by a command in a
1668 : * volatile function used in the query. In such situations we
1669 : * should not ignore the deletion, but it is equally unsafe to
1670 : * proceed. We don't want to discard the original DELETE
1671 : * while keeping the triggered actions based on its deletion;
1672 : * and it would be no better to allow the original DELETE
1673 : * while discarding updates that it triggered. The row update
1674 : * carries some information that might be important according
1675 : * to business rules; so throwing an error is the only safe
1676 : * course.
1677 : *
1678 : * If a trigger actually intends this type of interaction, it
1679 : * can re-execute the DELETE and then return NULL to cancel
1680 : * the outer delete.
1681 : */
1682 30 : if (context->tmfd.cmax != estate->es_output_cid)
1683 6 : ereport(ERROR,
1684 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
1685 : errmsg("tuple to be deleted was already modified by an operation triggered by the current command"),
1686 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
1687 :
1688 : /* Else, already deleted by self; nothing to do */
1689 24 : return NULL;
1690 :
1691 1645244 : case TM_Ok:
1692 1645244 : break;
1693 :
1694 58 : case TM_Updated:
1695 : {
1696 : TupleTableSlot *inputslot;
1697 : TupleTableSlot *epqslot;
1698 :
1699 58 : if (IsolationUsesXactSnapshot())
1700 2 : ereport(ERROR,
1701 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1702 : errmsg("could not serialize access due to concurrent update")));
1703 :
1704 : /*
1705 : * Already know that we're going to need to do EPQ, so
1706 : * fetch tuple directly into the right slot.
1707 : */
1708 56 : EvalPlanQualBegin(context->epqstate);
1709 56 : inputslot = EvalPlanQualSlot(context->epqstate, resultRelationDesc,
1710 : resultRelInfo->ri_RangeTableIndex);
1711 :
1712 56 : result = table_tuple_lock(resultRelationDesc, tupleid,
1713 : estate->es_snapshot,
1714 : inputslot, estate->es_output_cid,
1715 : LockTupleExclusive, LockWaitBlock,
1716 : TUPLE_LOCK_FLAG_FIND_LAST_VERSION,
1717 : &context->tmfd);
1718 :
1719 52 : switch (result)
1720 : {
1721 46 : case TM_Ok:
1722 : Assert(context->tmfd.traversed);
1723 46 : epqslot = EvalPlanQual(context->epqstate,
1724 : resultRelationDesc,
1725 : resultRelInfo->ri_RangeTableIndex,
1726 : inputslot);
1727 46 : if (TupIsNull(epqslot))
1728 : /* Tuple not passing quals anymore, exiting... */
1729 30 : return NULL;
1730 :
1731 : /*
1732 : * If requested, skip delete and pass back the
1733 : * updated row.
1734 : */
1735 16 : if (epqreturnslot)
1736 : {
1737 12 : *epqreturnslot = epqslot;
1738 12 : return NULL;
1739 : }
1740 : else
1741 4 : goto ldelete;
1742 :
1743 4 : case TM_SelfModified:
1744 :
1745 : /*
1746 : * This can be reached when following an update
1747 : * chain from a tuple updated by another session,
1748 : * reaching a tuple that was already updated in
1749 : * this transaction. If previously updated by this
1750 : * command, ignore the delete, otherwise error
1751 : * out.
1752 : *
1753 : * See also TM_SelfModified response to
1754 : * table_tuple_delete() above.
1755 : */
1756 4 : if (context->tmfd.cmax != estate->es_output_cid)
1757 2 : ereport(ERROR,
1758 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
1759 : errmsg("tuple to be deleted was already modified by an operation triggered by the current command"),
1760 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
1761 2 : return NULL;
1762 :
1763 2 : case TM_Deleted:
1764 : /* tuple already deleted; nothing to do */
1765 2 : return NULL;
1766 :
1767 0 : default:
1768 :
1769 : /*
1770 : * TM_Invisible should be impossible because we're
1771 : * waiting for updated row versions, and would
1772 : * already have errored out if the first version
1773 : * is invisible.
1774 : *
1775 : * TM_Updated should be impossible, because we're
1776 : * locking the latest version via
1777 : * TUPLE_LOCK_FLAG_FIND_LAST_VERSION.
1778 : */
1779 0 : elog(ERROR, "unexpected table_tuple_lock status: %u",
1780 : result);
1781 : return NULL;
1782 : }
1783 :
1784 : Assert(false);
1785 : break;
1786 : }
1787 :
1788 6 : case TM_Deleted:
1789 6 : if (IsolationUsesXactSnapshot())
1790 0 : ereport(ERROR,
1791 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1792 : errmsg("could not serialize access due to concurrent delete")));
1793 : /* tuple already deleted; nothing to do */
1794 6 : return NULL;
1795 :
1796 0 : default:
1797 0 : elog(ERROR, "unrecognized table_tuple_delete status: %u",
1798 : result);
1799 : return NULL;
1800 : }
1801 :
1802 : /*
1803 : * Note: Normally one would think that we have to delete index tuples
1804 : * associated with the heap tuple now...
1805 : *
1806 : * ... but in POSTGRES, we have no need to do this because VACUUM will
1807 : * take care of it later. We can't delete index tuples immediately
1808 : * anyway, since the tuple is still visible to other transactions.
1809 : */
1810 : }
1811 :
1812 1645334 : if (canSetTag)
1813 1644142 : (estate->es_processed)++;
1814 :
1815 : /* Tell caller that the delete actually happened. */
1816 1645334 : if (tupleDeleted)
1817 964 : *tupleDeleted = true;
1818 :
1819 1645334 : ExecDeleteEpilogue(context, resultRelInfo, tupleid, oldtuple, changingPart);
1820 :
1821 : /*
1822 : * Process RETURNING if present and if requested.
1823 : *
1824 : * If this is part of a cross-partition UPDATE, and the RETURNING list
1825 : * refers to any OLD column values, save the old tuple here for later
1826 : * processing of the RETURNING list by ExecInsert().
1827 : */
1828 1645480 : saveOld = changingPart && resultRelInfo->ri_projectReturning &&
1829 146 : resultRelInfo->ri_projectReturning->pi_state.flags & EEO_FLAG_HAS_OLD;
1830 :
1831 1645334 : if (resultRelInfo->ri_projectReturning && (processReturning || saveOld))
1832 : {
1833 : /*
1834 : * We have to put the target tuple into a slot, which means first we
1835 : * gotta fetch it. We can use the trigger tuple slot.
1836 : */
1837 : TupleTableSlot *rslot;
1838 :
1839 1002 : if (resultRelInfo->ri_FdwRoutine)
1840 : {
1841 : /* FDW must have provided a slot containing the deleted row */
1842 : Assert(!TupIsNull(slot));
1843 : }
1844 : else
1845 : {
1846 988 : slot = ExecGetReturningSlot(estate, resultRelInfo);
1847 988 : if (oldtuple != NULL)
1848 : {
1849 24 : ExecForceStoreHeapTuple(oldtuple, slot, false);
1850 : }
1851 : else
1852 : {
1853 964 : if (!table_tuple_fetch_row_version(resultRelationDesc, tupleid,
1854 : SnapshotAny, slot))
1855 0 : elog(ERROR, "failed to fetch deleted tuple for DELETE RETURNING");
1856 : }
1857 : }
1858 :
1859 : /*
1860 : * If required, save the old tuple for later processing of the
1861 : * RETURNING list by ExecInsert().
1862 : */
1863 1002 : if (saveOld)
1864 : {
1865 : TupleConversionMap *tupconv_map;
1866 :
1867 : /*
1868 : * Convert the tuple into the root partition's format/slot, if
1869 : * needed. ExecInsert() will then convert it to the new
1870 : * partition's format/slot, if necessary.
1871 : */
1872 44 : tupconv_map = ExecGetChildToRootMap(resultRelInfo);
1873 44 : if (tupconv_map != NULL)
1874 : {
1875 18 : ResultRelInfo *rootRelInfo = context->mtstate->rootResultRelInfo;
1876 18 : TupleTableSlot *oldSlot = slot;
1877 :
1878 18 : slot = execute_attr_map_slot(tupconv_map->attrMap,
1879 : slot,
1880 : ExecGetReturningSlot(estate,
1881 : rootRelInfo));
1882 :
1883 18 : slot->tts_tableOid = oldSlot->tts_tableOid;
1884 18 : ItemPointerCopy(&oldSlot->tts_tid, &slot->tts_tid);
1885 : }
1886 :
1887 44 : context->cpDeletedSlot = slot;
1888 :
1889 44 : return NULL;
1890 : }
1891 :
1892 958 : rslot = ExecProcessReturning(context, resultRelInfo, CMD_DELETE,
1893 : slot, NULL, context->planSlot);
1894 :
1895 : /*
1896 : * Before releasing the target tuple again, make sure rslot has a
1897 : * local copy of any pass-by-reference values.
1898 : */
1899 958 : ExecMaterializeSlot(rslot);
1900 :
1901 958 : ExecClearTuple(slot);
1902 :
1903 958 : return rslot;
1904 : }
1905 :
1906 1644332 : return NULL;
1907 : }
1908 :
1909 : /*
1910 : * ExecCrossPartitionUpdate --- Move an updated tuple to another partition.
1911 : *
1912 : * This works by first deleting the old tuple from the current partition,
1913 : * followed by inserting the new tuple into the root parent table, that is,
1914 : * mtstate->rootResultRelInfo. It will be re-routed from there to the
1915 : * correct partition.
1916 : *
1917 : * Returns true if the tuple has been successfully moved, or if it's found
1918 : * that the tuple was concurrently deleted so there's nothing more to do
1919 : * for the caller.
1920 : *
1921 : * False is returned if the tuple we're trying to move is found to have been
1922 : * concurrently updated. In that case, the caller must check if the updated
1923 : * tuple that's returned in *retry_slot still needs to be re-routed, and call
1924 : * this function again or perform a regular update accordingly. For MERGE,
1925 : * the updated tuple is not returned in *retry_slot; it has its own retry
1926 : * logic.
1927 : */
1928 : static bool
1929 1090 : ExecCrossPartitionUpdate(ModifyTableContext *context,
1930 : ResultRelInfo *resultRelInfo,
1931 : ItemPointer tupleid, HeapTuple oldtuple,
1932 : TupleTableSlot *slot,
1933 : bool canSetTag,
1934 : UpdateContext *updateCxt,
1935 : TM_Result *tmresult,
1936 : TupleTableSlot **retry_slot,
1937 : TupleTableSlot **inserted_tuple,
1938 : ResultRelInfo **insert_destrel)
1939 : {
1940 1090 : ModifyTableState *mtstate = context->mtstate;
1941 1090 : EState *estate = mtstate->ps.state;
1942 : TupleConversionMap *tupconv_map;
1943 : bool tuple_deleted;
1944 1090 : TupleTableSlot *epqslot = NULL;
1945 :
1946 1090 : context->cpDeletedSlot = NULL;
1947 1090 : context->cpUpdateReturningSlot = NULL;
1948 1090 : *retry_slot = NULL;
1949 :
1950 : /*
1951 : * Disallow an INSERT ON CONFLICT DO UPDATE that causes the original row
1952 : * to migrate to a different partition. Maybe this can be implemented
1953 : * some day, but it seems a fringe feature with little redeeming value.
1954 : */
1955 1090 : if (((ModifyTable *) mtstate->ps.plan)->onConflictAction == ONCONFLICT_UPDATE)
1956 0 : ereport(ERROR,
1957 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1958 : errmsg("invalid ON UPDATE specification"),
1959 : errdetail("The result tuple would appear in a different partition than the original tuple.")));
1960 :
1961 : /*
1962 : * When an UPDATE is run directly on a leaf partition, simply fail with a
1963 : * partition constraint violation error.
1964 : */
1965 1090 : if (resultRelInfo == mtstate->rootResultRelInfo)
1966 48 : ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
1967 :
1968 : /* Initialize tuple routing info if not already done. */
1969 1042 : if (mtstate->mt_partition_tuple_routing == NULL)
1970 : {
1971 662 : Relation rootRel = mtstate->rootResultRelInfo->ri_RelationDesc;
1972 : MemoryContext oldcxt;
1973 :
1974 : /* Things built here have to last for the query duration. */
1975 662 : oldcxt = MemoryContextSwitchTo(estate->es_query_cxt);
1976 :
1977 662 : mtstate->mt_partition_tuple_routing =
1978 662 : ExecSetupPartitionTupleRouting(estate, rootRel);
1979 :
1980 : /*
1981 : * Before a partition's tuple can be re-routed, it must first be
1982 : * converted to the root's format, so we'll need a slot for storing
1983 : * such tuples.
1984 : */
1985 : Assert(mtstate->mt_root_tuple_slot == NULL);
1986 662 : mtstate->mt_root_tuple_slot = table_slot_create(rootRel, NULL);
1987 :
1988 662 : MemoryContextSwitchTo(oldcxt);
1989 : }
1990 :
1991 : /*
1992 : * Row movement, part 1. Delete the tuple, but skip RETURNING processing.
1993 : * We want to return rows from INSERT.
1994 : */
1995 1042 : ExecDelete(context, resultRelInfo,
1996 : tupleid, oldtuple,
1997 : false, /* processReturning */
1998 : true, /* changingPart */
1999 : false, /* canSetTag */
2000 : tmresult, &tuple_deleted, &epqslot);
2001 :
2002 : /*
2003 : * For some reason if DELETE didn't happen (e.g. trigger prevented it, or
2004 : * it was already deleted by self, or it was concurrently deleted by
2005 : * another transaction), then we should skip the insert as well;
2006 : * otherwise, an UPDATE could cause an increase in the total number of
2007 : * rows across all partitions, which is clearly wrong.
2008 : *
2009 : * For a normal UPDATE, the case where the tuple has been the subject of a
2010 : * concurrent UPDATE or DELETE would be handled by the EvalPlanQual
2011 : * machinery, but for an UPDATE that we've translated into a DELETE from
2012 : * this partition and an INSERT into some other partition, that's not
2013 : * available, because CTID chains can't span relation boundaries. We
2014 : * mimic the semantics to a limited extent by skipping the INSERT if the
2015 : * DELETE fails to find a tuple. This ensures that two concurrent
2016 : * attempts to UPDATE the same tuple at the same time can't turn one tuple
2017 : * into two, and that an UPDATE of a just-deleted tuple can't resurrect
2018 : * it.
2019 : */
2020 1040 : if (!tuple_deleted)
2021 : {
2022 : /*
2023 : * epqslot will be typically NULL. But when ExecDelete() finds that
2024 : * another transaction has concurrently updated the same row, it
2025 : * re-fetches the row, skips the delete, and epqslot is set to the
2026 : * re-fetched tuple slot. In that case, we need to do all the checks
2027 : * again. For MERGE, we leave everything to the caller (it must do
2028 : * additional rechecking, and might end up executing a different
2029 : * action entirely).
2030 : */
2031 76 : if (mtstate->operation == CMD_MERGE)
2032 34 : return *tmresult == TM_Ok;
2033 42 : else if (TupIsNull(epqslot))
2034 36 : return true;
2035 : else
2036 : {
2037 : /* Fetch the most recent version of old tuple. */
2038 : TupleTableSlot *oldSlot;
2039 :
2040 : /* ... but first, make sure ri_oldTupleSlot is initialized. */
2041 6 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
2042 0 : ExecInitUpdateProjection(mtstate, resultRelInfo);
2043 6 : oldSlot = resultRelInfo->ri_oldTupleSlot;
2044 6 : if (!table_tuple_fetch_row_version(resultRelInfo->ri_RelationDesc,
2045 : tupleid,
2046 : SnapshotAny,
2047 : oldSlot))
2048 0 : elog(ERROR, "failed to fetch tuple being updated");
2049 : /* and project the new tuple to retry the UPDATE with */
2050 6 : *retry_slot = ExecGetUpdateNewTuple(resultRelInfo, epqslot,
2051 : oldSlot);
2052 6 : return false;
2053 : }
2054 : }
2055 :
2056 : /*
2057 : * resultRelInfo is one of the per-relation resultRelInfos. So we should
2058 : * convert the tuple into root's tuple descriptor if needed, since
2059 : * ExecInsert() starts the search from root.
2060 : */
2061 964 : tupconv_map = ExecGetChildToRootMap(resultRelInfo);
2062 964 : if (tupconv_map != NULL)
2063 314 : slot = execute_attr_map_slot(tupconv_map->attrMap,
2064 : slot,
2065 : mtstate->mt_root_tuple_slot);
2066 :
2067 : /* Tuple routing starts from the root table. */
2068 836 : context->cpUpdateReturningSlot =
2069 964 : ExecInsert(context, mtstate->rootResultRelInfo, slot, canSetTag,
2070 : inserted_tuple, insert_destrel);
2071 :
2072 : /*
2073 : * Reset the transition state that may possibly have been written by
2074 : * INSERT.
2075 : */
2076 836 : if (mtstate->mt_transition_capture)
2077 54 : mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
2078 :
2079 : /* We're done moving. */
2080 836 : return true;
2081 : }
2082 :
2083 : /*
2084 : * ExecUpdatePrologue -- subroutine for ExecUpdate
2085 : *
2086 : * Prepare executor state for UPDATE. This includes running BEFORE ROW
2087 : * triggers. We return false if one of them makes the update a no-op;
2088 : * otherwise, return true.
2089 : */
2090 : static bool
2091 324436 : ExecUpdatePrologue(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
2092 : ItemPointer tupleid, HeapTuple oldtuple, TupleTableSlot *slot,
2093 : TM_Result *result)
2094 : {
2095 324436 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
2096 :
2097 324436 : if (result)
2098 2134 : *result = TM_Ok;
2099 :
2100 324436 : ExecMaterializeSlot(slot);
2101 :
2102 : /*
2103 : * Open the table's indexes, if we have not done so already, so that we
2104 : * can add new index entries for the updated tuple.
2105 : */
2106 324436 : if (resultRelationDesc->rd_rel->relhasindex &&
2107 233500 : resultRelInfo->ri_IndexRelationDescs == NULL)
2108 8736 : ExecOpenIndices(resultRelInfo, false);
2109 :
2110 : /* BEFORE ROW UPDATE triggers */
2111 324436 : if (resultRelInfo->ri_TrigDesc &&
2112 6254 : resultRelInfo->ri_TrigDesc->trig_update_before_row)
2113 : {
2114 : /* Flush any pending inserts, so rows are visible to the triggers */
2115 2560 : if (context->estate->es_insert_pending_result_relations != NIL)
2116 2 : ExecPendingInserts(context->estate);
2117 :
2118 2560 : return ExecBRUpdateTriggers(context->estate, context->epqstate,
2119 : resultRelInfo, tupleid, oldtuple, slot,
2120 : result, &context->tmfd);
2121 : }
2122 :
2123 321876 : return true;
2124 : }
2125 :
2126 : /*
2127 : * ExecUpdatePrepareSlot -- subroutine for ExecUpdateAct
2128 : *
2129 : * Apply the final modifications to the tuple slot before the update.
2130 : * (This is split out because we also need it in the foreign-table code path.)
2131 : */
2132 : static void
2133 324166 : ExecUpdatePrepareSlot(ResultRelInfo *resultRelInfo,
2134 : TupleTableSlot *slot,
2135 : EState *estate)
2136 : {
2137 324166 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
2138 :
2139 : /*
2140 : * Constraints and GENERATED expressions might reference the tableoid
2141 : * column, so (re-)initialize tts_tableOid before evaluating them.
2142 : */
2143 324166 : slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
2144 :
2145 : /*
2146 : * Compute stored generated columns
2147 : */
2148 324166 : if (resultRelationDesc->rd_att->constr &&
2149 196624 : resultRelationDesc->rd_att->constr->has_generated_stored)
2150 258 : ExecComputeStoredGenerated(resultRelInfo, estate, slot,
2151 : CMD_UPDATE);
2152 324166 : }
2153 :
2154 : /*
2155 : * ExecUpdateAct -- subroutine for ExecUpdate
2156 : *
2157 : * Actually update the tuple, when operating on a plain table. If the
2158 : * table is a partition, and the command was called referencing an ancestor
2159 : * partitioned table, this routine migrates the resulting tuple to another
2160 : * partition.
2161 : *
2162 : * The caller is in charge of keeping indexes current as necessary. The
2163 : * caller is also in charge of doing EvalPlanQual if the tuple is found to
2164 : * be concurrently updated. However, in case of a cross-partition update,
2165 : * this routine does it.
2166 : */
2167 : static TM_Result
2168 323974 : ExecUpdateAct(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
2169 : ItemPointer tupleid, HeapTuple oldtuple, TupleTableSlot *slot,
2170 : bool canSetTag, UpdateContext *updateCxt)
2171 : {
2172 323974 : EState *estate = context->estate;
2173 323974 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
2174 : bool partition_constraint_failed;
2175 : TM_Result result;
2176 :
2177 323974 : updateCxt->crossPartUpdate = false;
2178 :
2179 : /*
2180 : * If we move the tuple to a new partition, we loop back here to recompute
2181 : * GENERATED values (which are allowed to be different across partitions)
2182 : * and recheck any RLS policies and constraints. We do not fire any
2183 : * BEFORE triggers of the new partition, however.
2184 : */
2185 323980 : lreplace:
2186 : /* Fill in GENERATEd columns */
2187 323980 : ExecUpdatePrepareSlot(resultRelInfo, slot, estate);
2188 :
2189 : /* ensure slot is independent, consider e.g. EPQ */
2190 323980 : ExecMaterializeSlot(slot);
2191 :
2192 : /*
2193 : * If partition constraint fails, this row might get moved to another
2194 : * partition, in which case we should check the RLS CHECK policy just
2195 : * before inserting into the new partition, rather than doing it here.
2196 : * This is because a trigger on that partition might again change the row.
2197 : * So skip the WCO checks if the partition constraint fails.
2198 : */
2199 323980 : partition_constraint_failed =
2200 326694 : resultRelationDesc->rd_rel->relispartition &&
2201 2714 : !ExecPartitionCheck(resultRelInfo, slot, estate, false);
2202 :
2203 : /* Check any RLS UPDATE WITH CHECK policies */
2204 323980 : if (!partition_constraint_failed &&
2205 322890 : resultRelInfo->ri_WithCheckOptions != NIL)
2206 : {
2207 : /*
2208 : * ExecWithCheckOptions() will skip any WCOs which are not of the kind
2209 : * we are looking for at this point.
2210 : */
2211 492 : ExecWithCheckOptions(WCO_RLS_UPDATE_CHECK,
2212 : resultRelInfo, slot, estate);
2213 : }
2214 :
2215 : /*
2216 : * If a partition check failed, try to move the row into the right
2217 : * partition.
2218 : */
2219 323926 : if (partition_constraint_failed)
2220 : {
2221 : TupleTableSlot *inserted_tuple,
2222 : *retry_slot;
2223 1090 : ResultRelInfo *insert_destrel = NULL;
2224 :
2225 : /*
2226 : * ExecCrossPartitionUpdate will first DELETE the row from the
2227 : * partition it's currently in and then insert it back into the root
2228 : * table, which will re-route it to the correct partition. However,
2229 : * if the tuple has been concurrently updated, a retry is needed.
2230 : */
2231 1090 : if (ExecCrossPartitionUpdate(context, resultRelInfo,
2232 : tupleid, oldtuple, slot,
2233 : canSetTag, updateCxt,
2234 : &result,
2235 : &retry_slot,
2236 : &inserted_tuple,
2237 : &insert_destrel))
2238 : {
2239 : /* success! */
2240 896 : updateCxt->crossPartUpdate = true;
2241 :
2242 : /*
2243 : * If the partitioned table being updated is referenced in foreign
2244 : * keys, queue up trigger events to check that none of them were
2245 : * violated. No special treatment is needed in
2246 : * non-cross-partition update situations, because the leaf
2247 : * partition's AR update triggers will take care of that. During
2248 : * cross-partition updates implemented as delete on the source
2249 : * partition followed by insert on the destination partition,
2250 : * AR-UPDATE triggers of the root table (that is, the table
2251 : * mentioned in the query) must be fired.
2252 : *
2253 : * NULL insert_destrel means that the move failed to occur, that
2254 : * is, the update failed, so no need to anything in that case.
2255 : */
2256 896 : if (insert_destrel &&
2257 808 : resultRelInfo->ri_TrigDesc &&
2258 362 : resultRelInfo->ri_TrigDesc->trig_update_after_row)
2259 300 : ExecCrossPartitionUpdateForeignKey(context,
2260 : resultRelInfo,
2261 : insert_destrel,
2262 : tupleid, slot,
2263 : inserted_tuple);
2264 :
2265 900 : return TM_Ok;
2266 : }
2267 :
2268 : /*
2269 : * No luck, a retry is needed. If running MERGE, we do not do so
2270 : * here; instead let it handle that on its own rules.
2271 : */
2272 16 : if (context->mtstate->operation == CMD_MERGE)
2273 10 : return result;
2274 :
2275 : /*
2276 : * ExecCrossPartitionUpdate installed an updated version of the new
2277 : * tuple in the retry slot; start over.
2278 : */
2279 6 : slot = retry_slot;
2280 6 : goto lreplace;
2281 : }
2282 :
2283 : /*
2284 : * Check the constraints of the tuple. We've already checked the
2285 : * partition constraint above; however, we must still ensure the tuple
2286 : * passes all other constraints, so we will call ExecConstraints() and
2287 : * have it validate all remaining checks.
2288 : */
2289 322836 : if (resultRelationDesc->rd_att->constr)
2290 196000 : ExecConstraints(resultRelInfo, slot, estate);
2291 :
2292 : /*
2293 : * replace the heap tuple
2294 : *
2295 : * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check that
2296 : * the row to be updated is visible to that snapshot, and throw a
2297 : * can't-serialize error if not. This is a special-case behavior needed
2298 : * for referential integrity updates in transaction-snapshot mode
2299 : * transactions.
2300 : */
2301 322762 : result = table_tuple_update(resultRelationDesc, tupleid, slot,
2302 : estate->es_output_cid,
2303 : estate->es_snapshot,
2304 : estate->es_crosscheck_snapshot,
2305 : true /* wait for commit */ ,
2306 : &context->tmfd, &updateCxt->lockmode,
2307 : &updateCxt->updateIndexes);
2308 :
2309 322738 : return result;
2310 : }
2311 :
2312 : /*
2313 : * ExecUpdateEpilogue -- subroutine for ExecUpdate
2314 : *
2315 : * Closing steps of updating a tuple. Must be called if ExecUpdateAct
2316 : * returns indicating that the tuple was updated.
2317 : */
2318 : static void
2319 322788 : ExecUpdateEpilogue(ModifyTableContext *context, UpdateContext *updateCxt,
2320 : ResultRelInfo *resultRelInfo, ItemPointer tupleid,
2321 : HeapTuple oldtuple, TupleTableSlot *slot)
2322 : {
2323 322788 : ModifyTableState *mtstate = context->mtstate;
2324 322788 : List *recheckIndexes = NIL;
2325 :
2326 : /* insert index entries for tuple if necessary */
2327 322788 : if (resultRelInfo->ri_NumIndices > 0 && (updateCxt->updateIndexes != TU_None))
2328 177402 : recheckIndexes = ExecInsertIndexTuples(resultRelInfo,
2329 : slot, context->estate,
2330 : true, false,
2331 : NULL, NIL,
2332 177402 : (updateCxt->updateIndexes == TU_Summarizing));
2333 :
2334 : /* AFTER ROW UPDATE Triggers */
2335 322696 : ExecARUpdateTriggers(context->estate, resultRelInfo,
2336 : NULL, NULL,
2337 : tupleid, oldtuple, slot,
2338 : recheckIndexes,
2339 322696 : mtstate->operation == CMD_INSERT ?
2340 : mtstate->mt_oc_transition_capture :
2341 : mtstate->mt_transition_capture,
2342 : false);
2343 :
2344 322696 : list_free(recheckIndexes);
2345 :
2346 : /*
2347 : * Check any WITH CHECK OPTION constraints from parent views. We are
2348 : * required to do this after testing all constraints and uniqueness
2349 : * violations per the SQL spec, so we do it after actually updating the
2350 : * record in the heap and all indexes.
2351 : *
2352 : * ExecWithCheckOptions() will skip any WCOs which are not of the kind we
2353 : * are looking for at this point.
2354 : */
2355 322696 : if (resultRelInfo->ri_WithCheckOptions != NIL)
2356 466 : ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo,
2357 : slot, context->estate);
2358 322614 : }
2359 :
2360 : /*
2361 : * Queues up an update event using the target root partitioned table's
2362 : * trigger to check that a cross-partition update hasn't broken any foreign
2363 : * keys pointing into it.
2364 : */
2365 : static void
2366 300 : ExecCrossPartitionUpdateForeignKey(ModifyTableContext *context,
2367 : ResultRelInfo *sourcePartInfo,
2368 : ResultRelInfo *destPartInfo,
2369 : ItemPointer tupleid,
2370 : TupleTableSlot *oldslot,
2371 : TupleTableSlot *newslot)
2372 : {
2373 : ListCell *lc;
2374 : ResultRelInfo *rootRelInfo;
2375 : List *ancestorRels;
2376 :
2377 300 : rootRelInfo = sourcePartInfo->ri_RootResultRelInfo;
2378 300 : ancestorRels = ExecGetAncestorResultRels(context->estate, sourcePartInfo);
2379 :
2380 : /*
2381 : * For any foreign keys that point directly into a non-root ancestors of
2382 : * the source partition, we can in theory fire an update event to enforce
2383 : * those constraints using their triggers, if we could tell that both the
2384 : * source and the destination partitions are under the same ancestor. But
2385 : * for now, we simply report an error that those cannot be enforced.
2386 : */
2387 654 : foreach(lc, ancestorRels)
2388 : {
2389 360 : ResultRelInfo *rInfo = lfirst(lc);
2390 360 : TriggerDesc *trigdesc = rInfo->ri_TrigDesc;
2391 360 : bool has_noncloned_fkey = false;
2392 :
2393 : /* Root ancestor's triggers will be processed. */
2394 360 : if (rInfo == rootRelInfo)
2395 294 : continue;
2396 :
2397 66 : if (trigdesc && trigdesc->trig_update_after_row)
2398 : {
2399 228 : for (int i = 0; i < trigdesc->numtriggers; i++)
2400 : {
2401 168 : Trigger *trig = &trigdesc->triggers[i];
2402 :
2403 174 : if (!trig->tgisclone &&
2404 6 : RI_FKey_trigger_type(trig->tgfoid) == RI_TRIGGER_PK)
2405 : {
2406 6 : has_noncloned_fkey = true;
2407 6 : break;
2408 : }
2409 : }
2410 : }
2411 :
2412 66 : if (has_noncloned_fkey)
2413 6 : ereport(ERROR,
2414 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2415 : errmsg("cannot move tuple across partitions when a non-root ancestor of the source partition is directly referenced in a foreign key"),
2416 : errdetail("A foreign key points to ancestor \"%s\" but not the root ancestor \"%s\".",
2417 : RelationGetRelationName(rInfo->ri_RelationDesc),
2418 : RelationGetRelationName(rootRelInfo->ri_RelationDesc)),
2419 : errhint("Consider defining the foreign key on table \"%s\".",
2420 : RelationGetRelationName(rootRelInfo->ri_RelationDesc))));
2421 : }
2422 :
2423 : /* Perform the root table's triggers. */
2424 294 : ExecARUpdateTriggers(context->estate,
2425 : rootRelInfo, sourcePartInfo, destPartInfo,
2426 : tupleid, NULL, newslot, NIL, NULL, true);
2427 294 : }
2428 :
2429 : /* ----------------------------------------------------------------
2430 : * ExecUpdate
2431 : *
2432 : * note: we can't run UPDATE queries with transactions
2433 : * off because UPDATEs are actually INSERTs and our
2434 : * scan will mistakenly loop forever, updating the tuple
2435 : * it just inserted.. This should be fixed but until it
2436 : * is, we don't want to get stuck in an infinite loop
2437 : * which corrupts your database..
2438 : *
2439 : * When updating a table, tupleid identifies the tuple to update and
2440 : * oldtuple is NULL. When updating through a view INSTEAD OF trigger,
2441 : * oldtuple is passed to the triggers and identifies what to update, and
2442 : * tupleid is invalid. When updating a foreign table, tupleid is
2443 : * invalid; the FDW has to figure out which row to update using data from
2444 : * the planSlot. oldtuple is passed to foreign table triggers; it is
2445 : * NULL when the foreign table has no relevant triggers.
2446 : *
2447 : * oldSlot contains the old tuple value.
2448 : * slot contains the new tuple value to be stored.
2449 : * planSlot is the output of the ModifyTable's subplan; we use it
2450 : * to access values from other input tables (for RETURNING),
2451 : * row-ID junk columns, etc.
2452 : *
2453 : * Returns RETURNING result if any, otherwise NULL. On exit, if tupleid
2454 : * had identified the tuple to update, it will identify the tuple
2455 : * actually updated after EvalPlanQual.
2456 : * ----------------------------------------------------------------
2457 : */
2458 : static TupleTableSlot *
2459 322302 : ExecUpdate(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
2460 : ItemPointer tupleid, HeapTuple oldtuple, TupleTableSlot *oldSlot,
2461 : TupleTableSlot *slot, bool canSetTag)
2462 : {
2463 322302 : EState *estate = context->estate;
2464 322302 : Relation resultRelationDesc = resultRelInfo->ri_RelationDesc;
2465 322302 : UpdateContext updateCxt = {0};
2466 : TM_Result result;
2467 :
2468 : /*
2469 : * abort the operation if not running transactions
2470 : */
2471 322302 : if (IsBootstrapProcessingMode())
2472 0 : elog(ERROR, "cannot UPDATE during bootstrap");
2473 :
2474 : /*
2475 : * Prepare for the update. This includes BEFORE ROW triggers, so we're
2476 : * done if it says we are.
2477 : */
2478 322302 : if (!ExecUpdatePrologue(context, resultRelInfo, tupleid, oldtuple, slot, NULL))
2479 132 : return NULL;
2480 :
2481 : /* INSTEAD OF ROW UPDATE Triggers */
2482 322146 : if (resultRelInfo->ri_TrigDesc &&
2483 5746 : resultRelInfo->ri_TrigDesc->trig_update_instead_row)
2484 : {
2485 126 : if (!ExecIRUpdateTriggers(estate, resultRelInfo,
2486 : oldtuple, slot))
2487 18 : return NULL; /* "do nothing" */
2488 : }
2489 322020 : else if (resultRelInfo->ri_FdwRoutine)
2490 : {
2491 : /* Fill in GENERATEd columns */
2492 186 : ExecUpdatePrepareSlot(resultRelInfo, slot, estate);
2493 :
2494 : /*
2495 : * update in foreign table: let the FDW do it
2496 : */
2497 186 : slot = resultRelInfo->ri_FdwRoutine->ExecForeignUpdate(estate,
2498 : resultRelInfo,
2499 : slot,
2500 : context->planSlot);
2501 :
2502 186 : if (slot == NULL) /* "do nothing" */
2503 2 : return NULL;
2504 :
2505 : /*
2506 : * AFTER ROW Triggers or RETURNING expressions might reference the
2507 : * tableoid column, so (re-)initialize tts_tableOid before evaluating
2508 : * them. (This covers the case where the FDW replaced the slot.)
2509 : */
2510 184 : slot->tts_tableOid = RelationGetRelid(resultRelationDesc);
2511 : }
2512 : else
2513 : {
2514 : ItemPointerData lockedtid;
2515 :
2516 : /*
2517 : * If we generate a new candidate tuple after EvalPlanQual testing, we
2518 : * must loop back here to try again. (We don't need to redo triggers,
2519 : * however. If there are any BEFORE triggers then trigger.c will have
2520 : * done table_tuple_lock to lock the correct tuple, so there's no need
2521 : * to do them again.)
2522 : */
2523 321834 : redo_act:
2524 321936 : lockedtid = *tupleid;
2525 321936 : result = ExecUpdateAct(context, resultRelInfo, tupleid, oldtuple, slot,
2526 : canSetTag, &updateCxt);
2527 :
2528 : /*
2529 : * If ExecUpdateAct reports that a cross-partition update was done,
2530 : * then the RETURNING tuple (if any) has been projected and there's
2531 : * nothing else for us to do.
2532 : */
2533 321620 : if (updateCxt.crossPartUpdate)
2534 884 : return context->cpUpdateReturningSlot;
2535 :
2536 320864 : switch (result)
2537 : {
2538 84 : case TM_SelfModified:
2539 :
2540 : /*
2541 : * The target tuple was already updated or deleted by the
2542 : * current command, or by a later command in the current
2543 : * transaction. The former case is possible in a join UPDATE
2544 : * where multiple tuples join to the same target tuple. This
2545 : * is pretty questionable, but Postgres has always allowed it:
2546 : * we just execute the first update action and ignore
2547 : * additional update attempts.
2548 : *
2549 : * The latter case arises if the tuple is modified by a
2550 : * command in a BEFORE trigger, or perhaps by a command in a
2551 : * volatile function used in the query. In such situations we
2552 : * should not ignore the update, but it is equally unsafe to
2553 : * proceed. We don't want to discard the original UPDATE
2554 : * while keeping the triggered actions based on it; and we
2555 : * have no principled way to merge this update with the
2556 : * previous ones. So throwing an error is the only safe
2557 : * course.
2558 : *
2559 : * If a trigger actually intends this type of interaction, it
2560 : * can re-execute the UPDATE (assuming it can figure out how)
2561 : * and then return NULL to cancel the outer update.
2562 : */
2563 84 : if (context->tmfd.cmax != estate->es_output_cid)
2564 6 : ereport(ERROR,
2565 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
2566 : errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
2567 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
2568 :
2569 : /* Else, already updated by self; nothing to do */
2570 78 : return NULL;
2571 :
2572 320618 : case TM_Ok:
2573 320618 : break;
2574 :
2575 154 : case TM_Updated:
2576 : {
2577 : TupleTableSlot *inputslot;
2578 : TupleTableSlot *epqslot;
2579 :
2580 154 : if (IsolationUsesXactSnapshot())
2581 4 : ereport(ERROR,
2582 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
2583 : errmsg("could not serialize access due to concurrent update")));
2584 :
2585 : /*
2586 : * Already know that we're going to need to do EPQ, so
2587 : * fetch tuple directly into the right slot.
2588 : */
2589 150 : inputslot = EvalPlanQualSlot(context->epqstate, resultRelationDesc,
2590 : resultRelInfo->ri_RangeTableIndex);
2591 :
2592 150 : result = table_tuple_lock(resultRelationDesc, tupleid,
2593 : estate->es_snapshot,
2594 : inputslot, estate->es_output_cid,
2595 : updateCxt.lockmode, LockWaitBlock,
2596 : TUPLE_LOCK_FLAG_FIND_LAST_VERSION,
2597 : &context->tmfd);
2598 :
2599 146 : switch (result)
2600 : {
2601 136 : case TM_Ok:
2602 : Assert(context->tmfd.traversed);
2603 :
2604 136 : epqslot = EvalPlanQual(context->epqstate,
2605 : resultRelationDesc,
2606 : resultRelInfo->ri_RangeTableIndex,
2607 : inputslot);
2608 136 : if (TupIsNull(epqslot))
2609 : /* Tuple not passing quals anymore, exiting... */
2610 34 : return NULL;
2611 :
2612 : /* Make sure ri_oldTupleSlot is initialized. */
2613 102 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
2614 0 : ExecInitUpdateProjection(context->mtstate,
2615 : resultRelInfo);
2616 :
2617 102 : if (resultRelInfo->ri_needLockTagTuple)
2618 : {
2619 2 : UnlockTuple(resultRelationDesc,
2620 : &lockedtid, InplaceUpdateTupleLock);
2621 2 : LockTuple(resultRelationDesc,
2622 : tupleid, InplaceUpdateTupleLock);
2623 : }
2624 :
2625 : /* Fetch the most recent version of old tuple. */
2626 102 : oldSlot = resultRelInfo->ri_oldTupleSlot;
2627 102 : if (!table_tuple_fetch_row_version(resultRelationDesc,
2628 : tupleid,
2629 : SnapshotAny,
2630 : oldSlot))
2631 0 : elog(ERROR, "failed to fetch tuple being updated");
2632 102 : slot = ExecGetUpdateNewTuple(resultRelInfo,
2633 : epqslot, oldSlot);
2634 102 : goto redo_act;
2635 :
2636 2 : case TM_Deleted:
2637 : /* tuple already deleted; nothing to do */
2638 2 : return NULL;
2639 :
2640 8 : case TM_SelfModified:
2641 :
2642 : /*
2643 : * This can be reached when following an update
2644 : * chain from a tuple updated by another session,
2645 : * reaching a tuple that was already updated in
2646 : * this transaction. If previously modified by
2647 : * this command, ignore the redundant update,
2648 : * otherwise error out.
2649 : *
2650 : * See also TM_SelfModified response to
2651 : * table_tuple_update() above.
2652 : */
2653 8 : if (context->tmfd.cmax != estate->es_output_cid)
2654 2 : ereport(ERROR,
2655 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
2656 : errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
2657 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
2658 6 : return NULL;
2659 :
2660 0 : default:
2661 : /* see table_tuple_lock call in ExecDelete() */
2662 0 : elog(ERROR, "unexpected table_tuple_lock status: %u",
2663 : result);
2664 : return NULL;
2665 : }
2666 : }
2667 :
2668 : break;
2669 :
2670 8 : case TM_Deleted:
2671 8 : if (IsolationUsesXactSnapshot())
2672 0 : ereport(ERROR,
2673 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
2674 : errmsg("could not serialize access due to concurrent delete")));
2675 : /* tuple already deleted; nothing to do */
2676 8 : return NULL;
2677 :
2678 0 : default:
2679 0 : elog(ERROR, "unrecognized table_tuple_update status: %u",
2680 : result);
2681 : return NULL;
2682 : }
2683 : }
2684 :
2685 320898 : if (canSetTag)
2686 320300 : (estate->es_processed)++;
2687 :
2688 320898 : ExecUpdateEpilogue(context, &updateCxt, resultRelInfo, tupleid, oldtuple,
2689 : slot);
2690 :
2691 : /* Process RETURNING if present */
2692 320736 : if (resultRelInfo->ri_projectReturning)
2693 2408 : return ExecProcessReturning(context, resultRelInfo, CMD_UPDATE,
2694 : oldSlot, slot, context->planSlot);
2695 :
2696 318328 : return NULL;
2697 : }
2698 :
2699 : /*
2700 : * ExecOnConflictUpdate --- execute UPDATE of INSERT ON CONFLICT DO UPDATE
2701 : *
2702 : * Try to lock tuple for update as part of speculative insertion. If
2703 : * a qual originating from ON CONFLICT DO UPDATE is satisfied, update
2704 : * (but still lock row, even though it may not satisfy estate's
2705 : * snapshot).
2706 : *
2707 : * Returns true if we're done (with or without an update), or false if
2708 : * the caller must retry the INSERT from scratch.
2709 : */
2710 : static bool
2711 5206 : ExecOnConflictUpdate(ModifyTableContext *context,
2712 : ResultRelInfo *resultRelInfo,
2713 : ItemPointer conflictTid,
2714 : TupleTableSlot *excludedSlot,
2715 : bool canSetTag,
2716 : TupleTableSlot **returning)
2717 : {
2718 5206 : ModifyTableState *mtstate = context->mtstate;
2719 5206 : ExprContext *econtext = mtstate->ps.ps_ExprContext;
2720 5206 : Relation relation = resultRelInfo->ri_RelationDesc;
2721 5206 : ExprState *onConflictSetWhere = resultRelInfo->ri_onConflict->oc_WhereClause;
2722 5206 : TupleTableSlot *existing = resultRelInfo->ri_onConflict->oc_Existing;
2723 : TM_FailureData tmfd;
2724 : LockTupleMode lockmode;
2725 : TM_Result test;
2726 : Datum xminDatum;
2727 : TransactionId xmin;
2728 : bool isnull;
2729 :
2730 : /*
2731 : * Parse analysis should have blocked ON CONFLICT for all system
2732 : * relations, which includes these. There's no fundamental obstacle to
2733 : * supporting this; we'd just need to handle LOCKTAG_TUPLE like the other
2734 : * ExecUpdate() caller.
2735 : */
2736 : Assert(!resultRelInfo->ri_needLockTagTuple);
2737 :
2738 : /* Determine lock mode to use */
2739 5206 : lockmode = ExecUpdateLockMode(context->estate, resultRelInfo);
2740 :
2741 : /*
2742 : * Lock tuple for update. Don't follow updates when tuple cannot be
2743 : * locked without doing so. A row locking conflict here means our
2744 : * previous conclusion that the tuple is conclusively committed is not
2745 : * true anymore.
2746 : */
2747 5206 : test = table_tuple_lock(relation, conflictTid,
2748 5206 : context->estate->es_snapshot,
2749 5206 : existing, context->estate->es_output_cid,
2750 : lockmode, LockWaitBlock, 0,
2751 : &tmfd);
2752 5206 : switch (test)
2753 : {
2754 5182 : case TM_Ok:
2755 : /* success! */
2756 5182 : break;
2757 :
2758 24 : case TM_Invisible:
2759 :
2760 : /*
2761 : * This can occur when a just inserted tuple is updated again in
2762 : * the same command. E.g. because multiple rows with the same
2763 : * conflicting key values are inserted.
2764 : *
2765 : * This is somewhat similar to the ExecUpdate() TM_SelfModified
2766 : * case. We do not want to proceed because it would lead to the
2767 : * same row being updated a second time in some unspecified order,
2768 : * and in contrast to plain UPDATEs there's no historical behavior
2769 : * to break.
2770 : *
2771 : * It is the user's responsibility to prevent this situation from
2772 : * occurring. These problems are why the SQL standard similarly
2773 : * specifies that for SQL MERGE, an exception must be raised in
2774 : * the event of an attempt to update the same row twice.
2775 : */
2776 24 : xminDatum = slot_getsysattr(existing,
2777 : MinTransactionIdAttributeNumber,
2778 : &isnull);
2779 : Assert(!isnull);
2780 24 : xmin = DatumGetTransactionId(xminDatum);
2781 :
2782 24 : if (TransactionIdIsCurrentTransactionId(xmin))
2783 24 : ereport(ERROR,
2784 : (errcode(ERRCODE_CARDINALITY_VIOLATION),
2785 : /* translator: %s is a SQL command name */
2786 : errmsg("%s command cannot affect row a second time",
2787 : "ON CONFLICT DO UPDATE"),
2788 : errhint("Ensure that no rows proposed for insertion within the same command have duplicate constrained values.")));
2789 :
2790 : /* This shouldn't happen */
2791 0 : elog(ERROR, "attempted to lock invisible tuple");
2792 : break;
2793 :
2794 0 : case TM_SelfModified:
2795 :
2796 : /*
2797 : * This state should never be reached. As a dirty snapshot is used
2798 : * to find conflicting tuples, speculative insertion wouldn't have
2799 : * seen this row to conflict with.
2800 : */
2801 0 : elog(ERROR, "unexpected self-updated tuple");
2802 : break;
2803 :
2804 0 : case TM_Updated:
2805 0 : if (IsolationUsesXactSnapshot())
2806 0 : ereport(ERROR,
2807 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
2808 : errmsg("could not serialize access due to concurrent update")));
2809 :
2810 : /*
2811 : * As long as we don't support an UPDATE of INSERT ON CONFLICT for
2812 : * a partitioned table we shouldn't reach to a case where tuple to
2813 : * be lock is moved to another partition due to concurrent update
2814 : * of the partition key.
2815 : */
2816 : Assert(!ItemPointerIndicatesMovedPartitions(&tmfd.ctid));
2817 :
2818 : /*
2819 : * Tell caller to try again from the very start.
2820 : *
2821 : * It does not make sense to use the usual EvalPlanQual() style
2822 : * loop here, as the new version of the row might not conflict
2823 : * anymore, or the conflicting tuple has actually been deleted.
2824 : */
2825 0 : ExecClearTuple(existing);
2826 0 : return false;
2827 :
2828 0 : case TM_Deleted:
2829 0 : if (IsolationUsesXactSnapshot())
2830 0 : ereport(ERROR,
2831 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
2832 : errmsg("could not serialize access due to concurrent delete")));
2833 :
2834 : /* see TM_Updated case */
2835 : Assert(!ItemPointerIndicatesMovedPartitions(&tmfd.ctid));
2836 0 : ExecClearTuple(existing);
2837 0 : return false;
2838 :
2839 0 : default:
2840 0 : elog(ERROR, "unrecognized table_tuple_lock status: %u", test);
2841 : }
2842 :
2843 : /* Success, the tuple is locked. */
2844 :
2845 : /*
2846 : * Verify that the tuple is visible to our MVCC snapshot if the current
2847 : * isolation level mandates that.
2848 : *
2849 : * It's not sufficient to rely on the check within ExecUpdate() as e.g.
2850 : * CONFLICT ... WHERE clause may prevent us from reaching that.
2851 : *
2852 : * This means we only ever continue when a new command in the current
2853 : * transaction could see the row, even though in READ COMMITTED mode the
2854 : * tuple will not be visible according to the current statement's
2855 : * snapshot. This is in line with the way UPDATE deals with newer tuple
2856 : * versions.
2857 : */
2858 5182 : ExecCheckTupleVisible(context->estate, relation, existing);
2859 :
2860 : /*
2861 : * Make tuple and any needed join variables available to ExecQual and
2862 : * ExecProject. The EXCLUDED tuple is installed in ecxt_innertuple, while
2863 : * the target's existing tuple is installed in the scantuple. EXCLUDED
2864 : * has been made to reference INNER_VAR in setrefs.c, but there is no
2865 : * other redirection.
2866 : */
2867 5182 : econtext->ecxt_scantuple = existing;
2868 5182 : econtext->ecxt_innertuple = excludedSlot;
2869 5182 : econtext->ecxt_outertuple = NULL;
2870 :
2871 5182 : if (!ExecQual(onConflictSetWhere, econtext))
2872 : {
2873 32 : ExecClearTuple(existing); /* see return below */
2874 32 : InstrCountFiltered1(&mtstate->ps, 1);
2875 32 : return true; /* done with the tuple */
2876 : }
2877 :
2878 5150 : if (resultRelInfo->ri_WithCheckOptions != NIL)
2879 : {
2880 : /*
2881 : * Check target's existing tuple against UPDATE-applicable USING
2882 : * security barrier quals (if any), enforced here as RLS checks/WCOs.
2883 : *
2884 : * The rewriter creates UPDATE RLS checks/WCOs for UPDATE security
2885 : * quals, and stores them as WCOs of "kind" WCO_RLS_CONFLICT_CHECK,
2886 : * but that's almost the extent of its special handling for ON
2887 : * CONFLICT DO UPDATE.
2888 : *
2889 : * The rewriter will also have associated UPDATE applicable straight
2890 : * RLS checks/WCOs for the benefit of the ExecUpdate() call that
2891 : * follows. INSERTs and UPDATEs naturally have mutually exclusive WCO
2892 : * kinds, so there is no danger of spurious over-enforcement in the
2893 : * INSERT or UPDATE path.
2894 : */
2895 60 : ExecWithCheckOptions(WCO_RLS_CONFLICT_CHECK, resultRelInfo,
2896 : existing,
2897 : mtstate->ps.state);
2898 : }
2899 :
2900 : /* Project the new tuple version */
2901 5126 : ExecProject(resultRelInfo->ri_onConflict->oc_ProjInfo);
2902 :
2903 : /*
2904 : * Note that it is possible that the target tuple has been modified in
2905 : * this session, after the above table_tuple_lock. We choose to not error
2906 : * out in that case, in line with ExecUpdate's treatment of similar cases.
2907 : * This can happen if an UPDATE is triggered from within ExecQual(),
2908 : * ExecWithCheckOptions() or ExecProject() above, e.g. by selecting from a
2909 : * wCTE in the ON CONFLICT's SET.
2910 : */
2911 :
2912 : /* Execute UPDATE with projection */
2913 10222 : *returning = ExecUpdate(context, resultRelInfo,
2914 : conflictTid, NULL, existing,
2915 5126 : resultRelInfo->ri_onConflict->oc_ProjSlot,
2916 : canSetTag);
2917 :
2918 : /*
2919 : * Clear out existing tuple, as there might not be another conflict among
2920 : * the next input rows. Don't want to hold resources till the end of the
2921 : * query. First though, make sure that the returning slot, if any, has a
2922 : * local copy of any OLD pass-by-reference values, if it refers to any OLD
2923 : * columns.
2924 : */
2925 5096 : if (*returning != NULL &&
2926 222 : resultRelInfo->ri_projectReturning->pi_state.flags & EEO_FLAG_HAS_OLD)
2927 6 : ExecMaterializeSlot(*returning);
2928 :
2929 5096 : ExecClearTuple(existing);
2930 :
2931 5096 : return true;
2932 : }
2933 :
2934 : /*
2935 : * Perform MERGE.
2936 : */
2937 : static TupleTableSlot *
2938 14990 : ExecMerge(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
2939 : ItemPointer tupleid, HeapTuple oldtuple, bool canSetTag)
2940 : {
2941 14990 : TupleTableSlot *rslot = NULL;
2942 : bool matched;
2943 :
2944 : /*-----
2945 : * If we are dealing with a WHEN MATCHED case, tupleid or oldtuple is
2946 : * valid, depending on whether the result relation is a table or a view.
2947 : * We execute the first action for which the additional WHEN MATCHED AND
2948 : * quals pass. If an action without quals is found, that action is
2949 : * executed.
2950 : *
2951 : * Similarly, in the WHEN NOT MATCHED BY SOURCE case, tupleid or oldtuple
2952 : * is valid, and we look at the given WHEN NOT MATCHED BY SOURCE actions
2953 : * in sequence until one passes. This is almost identical to the WHEN
2954 : * MATCHED case, and both cases are handled by ExecMergeMatched().
2955 : *
2956 : * Finally, in the WHEN NOT MATCHED [BY TARGET] case, both tupleid and
2957 : * oldtuple are invalid, and we look at the given WHEN NOT MATCHED [BY
2958 : * TARGET] actions in sequence until one passes.
2959 : *
2960 : * Things get interesting in case of concurrent update/delete of the
2961 : * target tuple. Such concurrent update/delete is detected while we are
2962 : * executing a WHEN MATCHED or WHEN NOT MATCHED BY SOURCE action.
2963 : *
2964 : * A concurrent update can:
2965 : *
2966 : * 1. modify the target tuple so that the results from checking any
2967 : * additional quals attached to WHEN MATCHED or WHEN NOT MATCHED BY
2968 : * SOURCE actions potentially change, but the result from the join
2969 : * quals does not change.
2970 : *
2971 : * In this case, we are still dealing with the same kind of match
2972 : * (MATCHED or NOT MATCHED BY SOURCE). We recheck the same list of
2973 : * actions from the start and choose the first one that satisfies the
2974 : * new target tuple.
2975 : *
2976 : * 2. modify the target tuple in the WHEN MATCHED case so that the join
2977 : * quals no longer pass and hence the source and target tuples no
2978 : * longer match.
2979 : *
2980 : * In this case, we are now dealing with a NOT MATCHED case, and we
2981 : * process both WHEN NOT MATCHED BY SOURCE and WHEN NOT MATCHED [BY
2982 : * TARGET] actions. First ExecMergeMatched() processes the list of
2983 : * WHEN NOT MATCHED BY SOURCE actions in sequence until one passes,
2984 : * then ExecMergeNotMatched() processes any WHEN NOT MATCHED [BY
2985 : * TARGET] actions in sequence until one passes. Thus we may execute
2986 : * two actions; one of each kind.
2987 : *
2988 : * Thus we support concurrent updates that turn MATCHED candidate rows
2989 : * into NOT MATCHED rows. However, we do not attempt to support cases
2990 : * that would turn NOT MATCHED rows into MATCHED rows, or which would
2991 : * cause a target row to match a different source row.
2992 : *
2993 : * A concurrent delete changes a WHEN MATCHED case to WHEN NOT MATCHED
2994 : * [BY TARGET].
2995 : *
2996 : * ExecMergeMatched() takes care of following the update chain and
2997 : * re-finding the qualifying WHEN MATCHED or WHEN NOT MATCHED BY SOURCE
2998 : * action, as long as the target tuple still exists. If the target tuple
2999 : * gets deleted or a concurrent update causes the join quals to fail, it
3000 : * returns a matched status of false and we call ExecMergeNotMatched().
3001 : * Given that ExecMergeMatched() always makes progress by following the
3002 : * update chain and we never switch from ExecMergeNotMatched() to
3003 : * ExecMergeMatched(), there is no risk of a livelock.
3004 : */
3005 14990 : matched = tupleid != NULL || oldtuple != NULL;
3006 14990 : if (matched)
3007 12318 : rslot = ExecMergeMatched(context, resultRelInfo, tupleid, oldtuple,
3008 : canSetTag, &matched);
3009 :
3010 : /*
3011 : * Deal with the NOT MATCHED case (either a NOT MATCHED tuple from the
3012 : * join, or a previously MATCHED tuple for which ExecMergeMatched() set
3013 : * "matched" to false, indicating that it no longer matches).
3014 : */
3015 14900 : if (!matched)
3016 : {
3017 : /*
3018 : * If a concurrent update turned a MATCHED case into a NOT MATCHED
3019 : * case, and we have both WHEN NOT MATCHED BY SOURCE and WHEN NOT
3020 : * MATCHED [BY TARGET] actions, and there is a RETURNING clause,
3021 : * ExecMergeMatched() may have already executed a WHEN NOT MATCHED BY
3022 : * SOURCE action, and computed the row to return. If so, we cannot
3023 : * execute a WHEN NOT MATCHED [BY TARGET] action now, so mark it as
3024 : * pending (to be processed on the next call to ExecModifyTable()).
3025 : * Otherwise, just process the action now.
3026 : */
3027 2688 : if (rslot == NULL)
3028 2686 : rslot = ExecMergeNotMatched(context, resultRelInfo, canSetTag);
3029 : else
3030 2 : context->mtstate->mt_merge_pending_not_matched = context->planSlot;
3031 : }
3032 :
3033 14840 : return rslot;
3034 : }
3035 :
3036 : /*
3037 : * Check and execute the first qualifying MATCHED or NOT MATCHED BY SOURCE
3038 : * action, depending on whether the join quals are satisfied. If the target
3039 : * relation is a table, the current target tuple is identified by tupleid.
3040 : * Otherwise, if the target relation is a view, oldtuple is the current target
3041 : * tuple from the view.
3042 : *
3043 : * We start from the first WHEN MATCHED or WHEN NOT MATCHED BY SOURCE action
3044 : * and check if the WHEN quals pass, if any. If the WHEN quals for the first
3045 : * action do not pass, we check the second, then the third and so on. If we
3046 : * reach the end without finding a qualifying action, we return NULL.
3047 : * Otherwise, we execute the qualifying action and return its RETURNING
3048 : * result, if any, or NULL.
3049 : *
3050 : * On entry, "*matched" is assumed to be true. If a concurrent update or
3051 : * delete is detected that causes the join quals to no longer pass, we set it
3052 : * to false, indicating that the caller should process any NOT MATCHED [BY
3053 : * TARGET] actions.
3054 : *
3055 : * After a concurrent update, we restart from the first action to look for a
3056 : * new qualifying action to execute. If the join quals originally passed, and
3057 : * the concurrent update caused them to no longer pass, then we switch from
3058 : * the MATCHED to the NOT MATCHED BY SOURCE list of actions before restarting
3059 : * (and setting "*matched" to false). As a result we may execute a WHEN NOT
3060 : * MATCHED BY SOURCE action, and set "*matched" to false, causing the caller
3061 : * to also execute a WHEN NOT MATCHED [BY TARGET] action.
3062 : */
3063 : static TupleTableSlot *
3064 12318 : ExecMergeMatched(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
3065 : ItemPointer tupleid, HeapTuple oldtuple, bool canSetTag,
3066 : bool *matched)
3067 : {
3068 12318 : ModifyTableState *mtstate = context->mtstate;
3069 12318 : List **mergeActions = resultRelInfo->ri_MergeActions;
3070 : ItemPointerData lockedtid;
3071 : List *actionStates;
3072 12318 : TupleTableSlot *newslot = NULL;
3073 12318 : TupleTableSlot *rslot = NULL;
3074 12318 : EState *estate = context->estate;
3075 12318 : ExprContext *econtext = mtstate->ps.ps_ExprContext;
3076 : bool isNull;
3077 12318 : EPQState *epqstate = &mtstate->mt_epqstate;
3078 : ListCell *l;
3079 :
3080 : /* Expect matched to be true on entry */
3081 : Assert(*matched);
3082 :
3083 : /*
3084 : * If there are no WHEN MATCHED or WHEN NOT MATCHED BY SOURCE actions, we
3085 : * are done.
3086 : */
3087 12318 : if (mergeActions[MERGE_WHEN_MATCHED] == NIL &&
3088 1200 : mergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] == NIL)
3089 528 : return NULL;
3090 :
3091 : /*
3092 : * Make tuple and any needed join variables available to ExecQual and
3093 : * ExecProject. The target's existing tuple is installed in the scantuple.
3094 : * This target relation's slot is required only in the case of a MATCHED
3095 : * or NOT MATCHED BY SOURCE tuple and UPDATE/DELETE actions.
3096 : */
3097 11790 : econtext->ecxt_scantuple = resultRelInfo->ri_oldTupleSlot;
3098 11790 : econtext->ecxt_innertuple = context->planSlot;
3099 11790 : econtext->ecxt_outertuple = NULL;
3100 :
3101 : /*
3102 : * This routine is only invoked for matched target rows, so we should
3103 : * either have the tupleid of the target row, or an old tuple from the
3104 : * target wholerow junk attr.
3105 : */
3106 : Assert(tupleid != NULL || oldtuple != NULL);
3107 11790 : ItemPointerSetInvalid(&lockedtid);
3108 11790 : if (oldtuple != NULL)
3109 : {
3110 : Assert(!resultRelInfo->ri_needLockTagTuple);
3111 96 : ExecForceStoreHeapTuple(oldtuple, resultRelInfo->ri_oldTupleSlot,
3112 : false);
3113 : }
3114 : else
3115 : {
3116 11694 : if (resultRelInfo->ri_needLockTagTuple)
3117 : {
3118 : /*
3119 : * This locks even for CMD_DELETE, for CMD_NOTHING, and for tuples
3120 : * that don't match mas_whenqual. MERGE on system catalogs is a
3121 : * minor use case, so don't bother optimizing those.
3122 : */
3123 7764 : LockTuple(resultRelInfo->ri_RelationDesc, tupleid,
3124 : InplaceUpdateTupleLock);
3125 7764 : lockedtid = *tupleid;
3126 : }
3127 11694 : if (!table_tuple_fetch_row_version(resultRelInfo->ri_RelationDesc,
3128 : tupleid,
3129 : SnapshotAny,
3130 : resultRelInfo->ri_oldTupleSlot))
3131 0 : elog(ERROR, "failed to fetch the target tuple");
3132 : }
3133 :
3134 : /*
3135 : * Test the join condition. If it's satisfied, perform a MATCHED action.
3136 : * Otherwise, perform a NOT MATCHED BY SOURCE action.
3137 : *
3138 : * Note that this join condition will be NULL if there are no NOT MATCHED
3139 : * BY SOURCE actions --- see transform_MERGE_to_join(). In that case, we
3140 : * need only consider MATCHED actions here.
3141 : */
3142 11790 : if (ExecQual(resultRelInfo->ri_MergeJoinCondition, econtext))
3143 11608 : actionStates = mergeActions[MERGE_WHEN_MATCHED];
3144 : else
3145 182 : actionStates = mergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE];
3146 :
3147 11790 : lmerge_matched:
3148 :
3149 21070 : foreach(l, actionStates)
3150 : {
3151 11918 : MergeActionState *relaction = (MergeActionState *) lfirst(l);
3152 11918 : CmdType commandType = relaction->mas_action->commandType;
3153 : TM_Result result;
3154 11918 : UpdateContext updateCxt = {0};
3155 :
3156 : /*
3157 : * Test condition, if any.
3158 : *
3159 : * In the absence of any condition, we perform the action
3160 : * unconditionally (no need to check separately since ExecQual() will
3161 : * return true if there are no conditions to evaluate).
3162 : */
3163 11918 : if (!ExecQual(relaction->mas_whenqual, econtext))
3164 9216 : continue;
3165 :
3166 : /*
3167 : * Check if the existing target tuple meets the USING checks of
3168 : * UPDATE/DELETE RLS policies. If those checks fail, we throw an
3169 : * error.
3170 : *
3171 : * The WITH CHECK quals for UPDATE RLS policies are applied in
3172 : * ExecUpdateAct() and hence we need not do anything special to handle
3173 : * them.
3174 : *
3175 : * NOTE: We must do this after WHEN quals are evaluated, so that we
3176 : * check policies only when they matter.
3177 : */
3178 2702 : if (resultRelInfo->ri_WithCheckOptions && commandType != CMD_NOTHING)
3179 : {
3180 90 : ExecWithCheckOptions(commandType == CMD_UPDATE ?
3181 : WCO_RLS_MERGE_UPDATE_CHECK : WCO_RLS_MERGE_DELETE_CHECK,
3182 : resultRelInfo,
3183 : resultRelInfo->ri_oldTupleSlot,
3184 90 : context->mtstate->ps.state);
3185 : }
3186 :
3187 : /* Perform stated action */
3188 2678 : switch (commandType)
3189 : {
3190 2134 : case CMD_UPDATE:
3191 :
3192 : /*
3193 : * Project the output tuple, and use that to update the table.
3194 : * We don't need to filter out junk attributes, because the
3195 : * UPDATE action's targetlist doesn't have any.
3196 : */
3197 2134 : newslot = ExecProject(relaction->mas_proj);
3198 :
3199 2134 : mtstate->mt_merge_action = relaction;
3200 2134 : if (!ExecUpdatePrologue(context, resultRelInfo,
3201 : tupleid, NULL, newslot, &result))
3202 : {
3203 18 : if (result == TM_Ok)
3204 156 : goto out; /* "do nothing" */
3205 :
3206 12 : break; /* concurrent update/delete */
3207 : }
3208 :
3209 : /* INSTEAD OF ROW UPDATE Triggers */
3210 2116 : if (resultRelInfo->ri_TrigDesc &&
3211 334 : resultRelInfo->ri_TrigDesc->trig_update_instead_row)
3212 : {
3213 78 : if (!ExecIRUpdateTriggers(estate, resultRelInfo,
3214 : oldtuple, newslot))
3215 0 : goto out; /* "do nothing" */
3216 : }
3217 : else
3218 : {
3219 : /* checked ri_needLockTagTuple above */
3220 : Assert(oldtuple == NULL);
3221 :
3222 2038 : result = ExecUpdateAct(context, resultRelInfo, tupleid,
3223 : NULL, newslot, canSetTag,
3224 : &updateCxt);
3225 :
3226 : /*
3227 : * As in ExecUpdate(), if ExecUpdateAct() reports that a
3228 : * cross-partition update was done, then there's nothing
3229 : * else for us to do --- the UPDATE has been turned into a
3230 : * DELETE and an INSERT, and we must not perform any of
3231 : * the usual post-update tasks. Also, the RETURNING tuple
3232 : * (if any) has been projected, so we can just return
3233 : * that.
3234 : */
3235 2018 : if (updateCxt.crossPartUpdate)
3236 : {
3237 134 : mtstate->mt_merge_updated += 1;
3238 134 : rslot = context->cpUpdateReturningSlot;
3239 134 : goto out;
3240 : }
3241 : }
3242 :
3243 1962 : if (result == TM_Ok)
3244 : {
3245 1890 : ExecUpdateEpilogue(context, &updateCxt, resultRelInfo,
3246 : tupleid, NULL, newslot);
3247 1878 : mtstate->mt_merge_updated += 1;
3248 : }
3249 1950 : break;
3250 :
3251 514 : case CMD_DELETE:
3252 514 : mtstate->mt_merge_action = relaction;
3253 514 : if (!ExecDeletePrologue(context, resultRelInfo, tupleid,
3254 : NULL, NULL, &result))
3255 : {
3256 12 : if (result == TM_Ok)
3257 6 : goto out; /* "do nothing" */
3258 :
3259 6 : break; /* concurrent update/delete */
3260 : }
3261 :
3262 : /* INSTEAD OF ROW DELETE Triggers */
3263 502 : if (resultRelInfo->ri_TrigDesc &&
3264 44 : resultRelInfo->ri_TrigDesc->trig_delete_instead_row)
3265 : {
3266 6 : if (!ExecIRDeleteTriggers(estate, resultRelInfo,
3267 : oldtuple))
3268 0 : goto out; /* "do nothing" */
3269 : }
3270 : else
3271 : {
3272 : /* checked ri_needLockTagTuple above */
3273 : Assert(oldtuple == NULL);
3274 :
3275 496 : result = ExecDeleteAct(context, resultRelInfo, tupleid,
3276 : false);
3277 : }
3278 :
3279 502 : if (result == TM_Ok)
3280 : {
3281 484 : ExecDeleteEpilogue(context, resultRelInfo, tupleid, NULL,
3282 : false);
3283 484 : mtstate->mt_merge_deleted += 1;
3284 : }
3285 502 : break;
3286 :
3287 30 : case CMD_NOTHING:
3288 : /* Doing nothing is always OK */
3289 30 : result = TM_Ok;
3290 30 : break;
3291 :
3292 0 : default:
3293 0 : elog(ERROR, "unknown action in MERGE WHEN clause");
3294 : }
3295 :
3296 2500 : switch (result)
3297 : {
3298 2392 : case TM_Ok:
3299 : /* all good; perform final actions */
3300 2392 : if (canSetTag && commandType != CMD_NOTHING)
3301 2344 : (estate->es_processed)++;
3302 :
3303 2392 : break;
3304 :
3305 32 : case TM_SelfModified:
3306 :
3307 : /*
3308 : * The target tuple was already updated or deleted by the
3309 : * current command, or by a later command in the current
3310 : * transaction. The former case is explicitly disallowed by
3311 : * the SQL standard for MERGE, which insists that the MERGE
3312 : * join condition should not join a target row to more than
3313 : * one source row.
3314 : *
3315 : * The latter case arises if the tuple is modified by a
3316 : * command in a BEFORE trigger, or perhaps by a command in a
3317 : * volatile function used in the query. In such situations we
3318 : * should not ignore the MERGE action, but it is equally
3319 : * unsafe to proceed. We don't want to discard the original
3320 : * MERGE action while keeping the triggered actions based on
3321 : * it; and it would be no better to allow the original MERGE
3322 : * action while discarding the updates that it triggered. So
3323 : * throwing an error is the only safe course.
3324 : */
3325 32 : if (context->tmfd.cmax != estate->es_output_cid)
3326 12 : ereport(ERROR,
3327 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
3328 : errmsg("tuple to be updated or deleted was already modified by an operation triggered by the current command"),
3329 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
3330 :
3331 20 : if (TransactionIdIsCurrentTransactionId(context->tmfd.xmax))
3332 20 : ereport(ERROR,
3333 : (errcode(ERRCODE_CARDINALITY_VIOLATION),
3334 : /* translator: %s is a SQL command name */
3335 : errmsg("%s command cannot affect row a second time",
3336 : "MERGE"),
3337 : errhint("Ensure that not more than one source row matches any one target row.")));
3338 :
3339 : /* This shouldn't happen */
3340 0 : elog(ERROR, "attempted to update or delete invisible tuple");
3341 : break;
3342 :
3343 10 : case TM_Deleted:
3344 10 : if (IsolationUsesXactSnapshot())
3345 0 : ereport(ERROR,
3346 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
3347 : errmsg("could not serialize access due to concurrent delete")));
3348 :
3349 : /*
3350 : * If the tuple was already deleted, set matched to false to
3351 : * let caller handle it under NOT MATCHED [BY TARGET] clauses.
3352 : */
3353 10 : *matched = false;
3354 10 : goto out;
3355 :
3356 66 : case TM_Updated:
3357 : {
3358 : bool was_matched;
3359 : Relation resultRelationDesc;
3360 : TupleTableSlot *epqslot,
3361 : *inputslot;
3362 : LockTupleMode lockmode;
3363 :
3364 : /*
3365 : * The target tuple was concurrently updated by some other
3366 : * transaction. If we are currently processing a MATCHED
3367 : * action, use EvalPlanQual() with the new version of the
3368 : * tuple and recheck the join qual, to detect a change
3369 : * from the MATCHED to the NOT MATCHED cases. If we are
3370 : * already processing a NOT MATCHED BY SOURCE action, we
3371 : * skip this (cannot switch from NOT MATCHED BY SOURCE to
3372 : * MATCHED).
3373 : */
3374 66 : was_matched = relaction->mas_action->matchKind == MERGE_WHEN_MATCHED;
3375 66 : resultRelationDesc = resultRelInfo->ri_RelationDesc;
3376 66 : lockmode = ExecUpdateLockMode(estate, resultRelInfo);
3377 :
3378 66 : if (was_matched)
3379 66 : inputslot = EvalPlanQualSlot(epqstate, resultRelationDesc,
3380 : resultRelInfo->ri_RangeTableIndex);
3381 : else
3382 0 : inputslot = resultRelInfo->ri_oldTupleSlot;
3383 :
3384 66 : result = table_tuple_lock(resultRelationDesc, tupleid,
3385 : estate->es_snapshot,
3386 : inputslot, estate->es_output_cid,
3387 : lockmode, LockWaitBlock,
3388 : TUPLE_LOCK_FLAG_FIND_LAST_VERSION,
3389 : &context->tmfd);
3390 66 : switch (result)
3391 : {
3392 64 : case TM_Ok:
3393 :
3394 : /*
3395 : * If the tuple was updated and migrated to
3396 : * another partition concurrently, the current
3397 : * MERGE implementation can't follow. There's
3398 : * probably a better way to handle this case, but
3399 : * it'd require recognizing the relation to which
3400 : * the tuple moved, and setting our current
3401 : * resultRelInfo to that.
3402 : */
3403 64 : if (ItemPointerIndicatesMovedPartitions(&context->tmfd.ctid))
3404 0 : ereport(ERROR,
3405 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
3406 : errmsg("tuple to be merged was already moved to another partition due to concurrent update")));
3407 :
3408 : /*
3409 : * If this was a MATCHED case, use EvalPlanQual()
3410 : * to recheck the join condition.
3411 : */
3412 64 : if (was_matched)
3413 : {
3414 64 : epqslot = EvalPlanQual(epqstate,
3415 : resultRelationDesc,
3416 : resultRelInfo->ri_RangeTableIndex,
3417 : inputslot);
3418 :
3419 : /*
3420 : * If the subplan didn't return a tuple, then
3421 : * we must be dealing with an inner join for
3422 : * which the join condition no longer matches.
3423 : * This can only happen if there are no NOT
3424 : * MATCHED actions, and so there is nothing
3425 : * more to do.
3426 : */
3427 64 : if (TupIsNull(epqslot))
3428 0 : goto out;
3429 :
3430 : /*
3431 : * If we got a NULL ctid from the subplan, the
3432 : * join quals no longer pass and we switch to
3433 : * the NOT MATCHED BY SOURCE case.
3434 : */
3435 64 : (void) ExecGetJunkAttribute(epqslot,
3436 64 : resultRelInfo->ri_RowIdAttNo,
3437 : &isNull);
3438 64 : if (isNull)
3439 4 : *matched = false;
3440 :
3441 : /*
3442 : * Otherwise, recheck the join quals to see if
3443 : * we need to switch to the NOT MATCHED BY
3444 : * SOURCE case.
3445 : */
3446 64 : if (resultRelInfo->ri_needLockTagTuple)
3447 : {
3448 2 : if (ItemPointerIsValid(&lockedtid))
3449 2 : UnlockTuple(resultRelInfo->ri_RelationDesc, &lockedtid,
3450 : InplaceUpdateTupleLock);
3451 2 : LockTuple(resultRelInfo->ri_RelationDesc, &context->tmfd.ctid,
3452 : InplaceUpdateTupleLock);
3453 2 : lockedtid = context->tmfd.ctid;
3454 : }
3455 64 : if (!table_tuple_fetch_row_version(resultRelationDesc,
3456 : &context->tmfd.ctid,
3457 : SnapshotAny,
3458 : resultRelInfo->ri_oldTupleSlot))
3459 0 : elog(ERROR, "failed to fetch the target tuple");
3460 :
3461 64 : if (*matched)
3462 60 : *matched = ExecQual(resultRelInfo->ri_MergeJoinCondition,
3463 : econtext);
3464 :
3465 : /* Switch lists, if necessary */
3466 64 : if (!*matched)
3467 6 : actionStates = mergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE];
3468 : }
3469 :
3470 : /*
3471 : * Loop back and process the MATCHED or NOT
3472 : * MATCHED BY SOURCE actions from the start.
3473 : */
3474 64 : goto lmerge_matched;
3475 :
3476 0 : case TM_Deleted:
3477 :
3478 : /*
3479 : * tuple already deleted; tell caller to run NOT
3480 : * MATCHED [BY TARGET] actions
3481 : */
3482 0 : *matched = false;
3483 0 : goto out;
3484 :
3485 2 : case TM_SelfModified:
3486 :
3487 : /*
3488 : * This can be reached when following an update
3489 : * chain from a tuple updated by another session,
3490 : * reaching a tuple that was already updated or
3491 : * deleted by the current command, or by a later
3492 : * command in the current transaction. As above,
3493 : * this should always be treated as an error.
3494 : */
3495 2 : if (context->tmfd.cmax != estate->es_output_cid)
3496 0 : ereport(ERROR,
3497 : (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
3498 : errmsg("tuple to be updated or deleted was already modified by an operation triggered by the current command"),
3499 : errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
3500 :
3501 2 : if (TransactionIdIsCurrentTransactionId(context->tmfd.xmax))
3502 2 : ereport(ERROR,
3503 : (errcode(ERRCODE_CARDINALITY_VIOLATION),
3504 : /* translator: %s is a SQL command name */
3505 : errmsg("%s command cannot affect row a second time",
3506 : "MERGE"),
3507 : errhint("Ensure that not more than one source row matches any one target row.")));
3508 :
3509 : /* This shouldn't happen */
3510 0 : elog(ERROR, "attempted to update or delete invisible tuple");
3511 : goto out;
3512 :
3513 0 : default:
3514 : /* see table_tuple_lock call in ExecDelete() */
3515 0 : elog(ERROR, "unexpected table_tuple_lock status: %u",
3516 : result);
3517 : goto out;
3518 : }
3519 : }
3520 :
3521 0 : case TM_Invisible:
3522 : case TM_WouldBlock:
3523 : case TM_BeingModified:
3524 : /* these should not occur */
3525 0 : elog(ERROR, "unexpected tuple operation result: %d", result);
3526 : break;
3527 : }
3528 :
3529 : /* Process RETURNING if present */
3530 2392 : if (resultRelInfo->ri_projectReturning)
3531 : {
3532 408 : switch (commandType)
3533 : {
3534 174 : case CMD_UPDATE:
3535 174 : rslot = ExecProcessReturning(context,
3536 : resultRelInfo,
3537 : CMD_UPDATE,
3538 : resultRelInfo->ri_oldTupleSlot,
3539 : newslot,
3540 : context->planSlot);
3541 174 : break;
3542 :
3543 234 : case CMD_DELETE:
3544 234 : rslot = ExecProcessReturning(context,
3545 : resultRelInfo,
3546 : CMD_DELETE,
3547 : resultRelInfo->ri_oldTupleSlot,
3548 : NULL,
3549 : context->planSlot);
3550 234 : break;
3551 :
3552 0 : case CMD_NOTHING:
3553 0 : break;
3554 :
3555 0 : default:
3556 0 : elog(ERROR, "unrecognized commandType: %d",
3557 : (int) commandType);
3558 : }
3559 : }
3560 :
3561 : /*
3562 : * We've activated one of the WHEN clauses, so we don't search
3563 : * further. This is required behaviour, not an optimization.
3564 : */
3565 2392 : break;
3566 : }
3567 :
3568 : /*
3569 : * Successfully executed an action or no qualifying action was found.
3570 : */
3571 11700 : out:
3572 11700 : if (ItemPointerIsValid(&lockedtid))
3573 7764 : UnlockTuple(resultRelInfo->ri_RelationDesc, &lockedtid,
3574 : InplaceUpdateTupleLock);
3575 11700 : return rslot;
3576 : }
3577 :
3578 : /*
3579 : * Execute the first qualifying NOT MATCHED [BY TARGET] action.
3580 : */
3581 : static TupleTableSlot *
3582 2688 : ExecMergeNotMatched(ModifyTableContext *context, ResultRelInfo *resultRelInfo,
3583 : bool canSetTag)
3584 : {
3585 2688 : ModifyTableState *mtstate = context->mtstate;
3586 2688 : ExprContext *econtext = mtstate->ps.ps_ExprContext;
3587 : List *actionStates;
3588 2688 : TupleTableSlot *rslot = NULL;
3589 : ListCell *l;
3590 :
3591 : /*
3592 : * For INSERT actions, the root relation's merge action is OK since the
3593 : * INSERT's targetlist and the WHEN conditions can only refer to the
3594 : * source relation and hence it does not matter which result relation we
3595 : * work with.
3596 : *
3597 : * XXX does this mean that we can avoid creating copies of actionStates on
3598 : * partitioned tables, for not-matched actions?
3599 : */
3600 2688 : actionStates = resultRelInfo->ri_MergeActions[MERGE_WHEN_NOT_MATCHED_BY_TARGET];
3601 :
3602 : /*
3603 : * Make source tuple available to ExecQual and ExecProject. We don't need
3604 : * the target tuple, since the WHEN quals and targetlist can't refer to
3605 : * the target columns.
3606 : */
3607 2688 : econtext->ecxt_scantuple = NULL;
3608 2688 : econtext->ecxt_innertuple = context->planSlot;
3609 2688 : econtext->ecxt_outertuple = NULL;
3610 :
3611 3558 : foreach(l, actionStates)
3612 : {
3613 2688 : MergeActionState *action = (MergeActionState *) lfirst(l);
3614 2688 : CmdType commandType = action->mas_action->commandType;
3615 : TupleTableSlot *newslot;
3616 :
3617 : /*
3618 : * Test condition, if any.
3619 : *
3620 : * In the absence of any condition, we perform the action
3621 : * unconditionally (no need to check separately since ExecQual() will
3622 : * return true if there are no conditions to evaluate).
3623 : */
3624 2688 : if (!ExecQual(action->mas_whenqual, econtext))
3625 870 : continue;
3626 :
3627 : /* Perform stated action */
3628 1818 : switch (commandType)
3629 : {
3630 1818 : case CMD_INSERT:
3631 :
3632 : /*
3633 : * Project the tuple. In case of a partitioned table, the
3634 : * projection was already built to use the root's descriptor,
3635 : * so we don't need to map the tuple here.
3636 : */
3637 1818 : newslot = ExecProject(action->mas_proj);
3638 1818 : mtstate->mt_merge_action = action;
3639 :
3640 1818 : rslot = ExecInsert(context, mtstate->rootResultRelInfo,
3641 : newslot, canSetTag, NULL, NULL);
3642 1758 : mtstate->mt_merge_inserted += 1;
3643 1758 : break;
3644 0 : case CMD_NOTHING:
3645 : /* Do nothing */
3646 0 : break;
3647 0 : default:
3648 0 : elog(ERROR, "unknown action in MERGE WHEN NOT MATCHED clause");
3649 : }
3650 :
3651 : /*
3652 : * We've activated one of the WHEN clauses, so we don't search
3653 : * further. This is required behaviour, not an optimization.
3654 : */
3655 1758 : break;
3656 : }
3657 :
3658 2628 : return rslot;
3659 : }
3660 :
3661 : /*
3662 : * Initialize state for execution of MERGE.
3663 : */
3664 : void
3665 1534 : ExecInitMerge(ModifyTableState *mtstate, EState *estate)
3666 : {
3667 1534 : List *mergeActionLists = mtstate->mt_mergeActionLists;
3668 1534 : List *mergeJoinConditions = mtstate->mt_mergeJoinConditions;
3669 1534 : ResultRelInfo *rootRelInfo = mtstate->rootResultRelInfo;
3670 : ResultRelInfo *resultRelInfo;
3671 : ExprContext *econtext;
3672 : ListCell *lc;
3673 : int i;
3674 :
3675 1534 : if (mergeActionLists == NIL)
3676 0 : return;
3677 :
3678 1534 : mtstate->mt_merge_subcommands = 0;
3679 :
3680 1534 : if (mtstate->ps.ps_ExprContext == NULL)
3681 1278 : ExecAssignExprContext(estate, &mtstate->ps);
3682 1534 : econtext = mtstate->ps.ps_ExprContext;
3683 :
3684 : /*
3685 : * Create a MergeActionState for each action on the mergeActionList and
3686 : * add it to either a list of matched actions or not-matched actions.
3687 : *
3688 : * Similar logic appears in ExecInitPartitionInfo(), so if changing
3689 : * anything here, do so there too.
3690 : */
3691 1534 : i = 0;
3692 3300 : foreach(lc, mergeActionLists)
3693 : {
3694 1766 : List *mergeActionList = lfirst(lc);
3695 : Node *joinCondition;
3696 : TupleDesc relationDesc;
3697 : ListCell *l;
3698 :
3699 1766 : joinCondition = (Node *) list_nth(mergeJoinConditions, i);
3700 1766 : resultRelInfo = mtstate->resultRelInfo + i;
3701 1766 : i++;
3702 1766 : relationDesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
3703 :
3704 : /* initialize slots for MERGE fetches from this rel */
3705 1766 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
3706 1766 : ExecInitMergeTupleSlots(mtstate, resultRelInfo);
3707 :
3708 : /* initialize state for join condition checking */
3709 1766 : resultRelInfo->ri_MergeJoinCondition =
3710 1766 : ExecInitQual((List *) joinCondition, &mtstate->ps);
3711 :
3712 4856 : foreach(l, mergeActionList)
3713 : {
3714 3090 : MergeAction *action = (MergeAction *) lfirst(l);
3715 : MergeActionState *action_state;
3716 : TupleTableSlot *tgtslot;
3717 : TupleDesc tgtdesc;
3718 :
3719 : /*
3720 : * Build action merge state for this rel. (For partitions,
3721 : * equivalent code exists in ExecInitPartitionInfo.)
3722 : */
3723 3090 : action_state = makeNode(MergeActionState);
3724 3090 : action_state->mas_action = action;
3725 3090 : action_state->mas_whenqual = ExecInitQual((List *) action->qual,
3726 : &mtstate->ps);
3727 :
3728 : /*
3729 : * We create three lists - one for each MergeMatchKind - and stick
3730 : * the MergeActionState into the appropriate list.
3731 : */
3732 6180 : resultRelInfo->ri_MergeActions[action->matchKind] =
3733 3090 : lappend(resultRelInfo->ri_MergeActions[action->matchKind],
3734 : action_state);
3735 :
3736 3090 : switch (action->commandType)
3737 : {
3738 1046 : case CMD_INSERT:
3739 : /* INSERT actions always use rootRelInfo */
3740 1046 : ExecCheckPlanOutput(rootRelInfo->ri_RelationDesc,
3741 : action->targetList);
3742 :
3743 : /*
3744 : * If the MERGE targets a partitioned table, any INSERT
3745 : * actions must be routed through it, not the child
3746 : * relations. Initialize the routing struct and the root
3747 : * table's "new" tuple slot for that, if not already done.
3748 : * The projection we prepare, for all relations, uses the
3749 : * root relation descriptor, and targets the plan's root
3750 : * slot. (This is consistent with the fact that we
3751 : * checked the plan output to match the root relation,
3752 : * above.)
3753 : */
3754 1046 : if (rootRelInfo->ri_RelationDesc->rd_rel->relkind ==
3755 : RELKIND_PARTITIONED_TABLE)
3756 : {
3757 328 : if (mtstate->mt_partition_tuple_routing == NULL)
3758 : {
3759 : /*
3760 : * Initialize planstate for routing if not already
3761 : * done.
3762 : *
3763 : * Note that the slot is managed as a standalone
3764 : * slot belonging to ModifyTableState, so we pass
3765 : * NULL for the 2nd argument.
3766 : */
3767 154 : mtstate->mt_root_tuple_slot =
3768 154 : table_slot_create(rootRelInfo->ri_RelationDesc,
3769 : NULL);
3770 154 : mtstate->mt_partition_tuple_routing =
3771 154 : ExecSetupPartitionTupleRouting(estate,
3772 : rootRelInfo->ri_RelationDesc);
3773 : }
3774 328 : tgtslot = mtstate->mt_root_tuple_slot;
3775 328 : tgtdesc = RelationGetDescr(rootRelInfo->ri_RelationDesc);
3776 : }
3777 : else
3778 : {
3779 : /*
3780 : * If the MERGE targets an inherited table, we insert
3781 : * into the root table, so we must initialize its
3782 : * "new" tuple slot, if not already done, and use its
3783 : * relation descriptor for the projection.
3784 : *
3785 : * For non-inherited tables, rootRelInfo and
3786 : * resultRelInfo are the same, and the "new" tuple
3787 : * slot will already have been initialized.
3788 : */
3789 718 : if (rootRelInfo->ri_newTupleSlot == NULL)
3790 36 : rootRelInfo->ri_newTupleSlot =
3791 36 : table_slot_create(rootRelInfo->ri_RelationDesc,
3792 : &estate->es_tupleTable);
3793 :
3794 718 : tgtslot = rootRelInfo->ri_newTupleSlot;
3795 718 : tgtdesc = RelationGetDescr(rootRelInfo->ri_RelationDesc);
3796 : }
3797 :
3798 1046 : action_state->mas_proj =
3799 1046 : ExecBuildProjectionInfo(action->targetList, econtext,
3800 : tgtslot,
3801 : &mtstate->ps,
3802 : tgtdesc);
3803 :
3804 1046 : mtstate->mt_merge_subcommands |= MERGE_INSERT;
3805 1046 : break;
3806 1528 : case CMD_UPDATE:
3807 1528 : action_state->mas_proj =
3808 1528 : ExecBuildUpdateProjection(action->targetList,
3809 : true,
3810 : action->updateColnos,
3811 : relationDesc,
3812 : econtext,
3813 : resultRelInfo->ri_newTupleSlot,
3814 : &mtstate->ps);
3815 1528 : mtstate->mt_merge_subcommands |= MERGE_UPDATE;
3816 1528 : break;
3817 452 : case CMD_DELETE:
3818 452 : mtstate->mt_merge_subcommands |= MERGE_DELETE;
3819 452 : break;
3820 64 : case CMD_NOTHING:
3821 64 : break;
3822 0 : default:
3823 0 : elog(ERROR, "unknown action in MERGE WHEN clause");
3824 : break;
3825 : }
3826 : }
3827 : }
3828 :
3829 : /*
3830 : * If the MERGE targets an inherited table, any INSERT actions will use
3831 : * rootRelInfo, and rootRelInfo will not be in the resultRelInfo array.
3832 : * Therefore we must initialize its WITH CHECK OPTION constraints and
3833 : * RETURNING projection, as ExecInitModifyTable did for the resultRelInfo
3834 : * entries.
3835 : *
3836 : * Note that the planner does not build a withCheckOptionList or
3837 : * returningList for the root relation, but as in ExecInitPartitionInfo,
3838 : * we can use the first resultRelInfo entry as a reference to calculate
3839 : * the attno's for the root table.
3840 : */
3841 1534 : if (rootRelInfo != mtstate->resultRelInfo &&
3842 238 : rootRelInfo->ri_RelationDesc->rd_rel->relkind != RELKIND_PARTITIONED_TABLE &&
3843 48 : (mtstate->mt_merge_subcommands & MERGE_INSERT) != 0)
3844 : {
3845 36 : ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
3846 36 : Relation rootRelation = rootRelInfo->ri_RelationDesc;
3847 36 : Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
3848 36 : int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
3849 36 : AttrMap *part_attmap = NULL;
3850 : bool found_whole_row;
3851 :
3852 36 : if (node->withCheckOptionLists != NIL)
3853 : {
3854 : List *wcoList;
3855 18 : List *wcoExprs = NIL;
3856 :
3857 : /* There should be as many WCO lists as result rels */
3858 : Assert(list_length(node->withCheckOptionLists) ==
3859 : list_length(node->resultRelations));
3860 :
3861 : /*
3862 : * Use the first WCO list as a reference. In the most common case,
3863 : * this will be for the same relation as rootRelInfo, and so there
3864 : * will be no need to adjust its attno's.
3865 : */
3866 18 : wcoList = linitial(node->withCheckOptionLists);
3867 18 : if (rootRelation != firstResultRel)
3868 : {
3869 : /* Convert any Vars in it to contain the root's attno's */
3870 : part_attmap =
3871 18 : build_attrmap_by_name(RelationGetDescr(rootRelation),
3872 : RelationGetDescr(firstResultRel),
3873 : false);
3874 :
3875 : wcoList = (List *)
3876 18 : map_variable_attnos((Node *) wcoList,
3877 : firstVarno, 0,
3878 : part_attmap,
3879 18 : RelationGetForm(rootRelation)->reltype,
3880 : &found_whole_row);
3881 : }
3882 :
3883 90 : foreach(lc, wcoList)
3884 : {
3885 72 : WithCheckOption *wco = lfirst_node(WithCheckOption, lc);
3886 72 : ExprState *wcoExpr = ExecInitQual(castNode(List, wco->qual),
3887 : &mtstate->ps);
3888 :
3889 72 : wcoExprs = lappend(wcoExprs, wcoExpr);
3890 : }
3891 :
3892 18 : rootRelInfo->ri_WithCheckOptions = wcoList;
3893 18 : rootRelInfo->ri_WithCheckOptionExprs = wcoExprs;
3894 : }
3895 :
3896 36 : if (node->returningLists != NIL)
3897 : {
3898 : List *returningList;
3899 :
3900 : /* There should be as many returning lists as result rels */
3901 : Assert(list_length(node->returningLists) ==
3902 : list_length(node->resultRelations));
3903 :
3904 : /*
3905 : * Use the first returning list as a reference. In the most common
3906 : * case, this will be for the same relation as rootRelInfo, and so
3907 : * there will be no need to adjust its attno's.
3908 : */
3909 6 : returningList = linitial(node->returningLists);
3910 6 : if (rootRelation != firstResultRel)
3911 : {
3912 : /* Convert any Vars in it to contain the root's attno's */
3913 6 : if (part_attmap == NULL)
3914 : part_attmap =
3915 0 : build_attrmap_by_name(RelationGetDescr(rootRelation),
3916 : RelationGetDescr(firstResultRel),
3917 : false);
3918 :
3919 : returningList = (List *)
3920 6 : map_variable_attnos((Node *) returningList,
3921 : firstVarno, 0,
3922 : part_attmap,
3923 6 : RelationGetForm(rootRelation)->reltype,
3924 : &found_whole_row);
3925 : }
3926 6 : rootRelInfo->ri_returningList = returningList;
3927 :
3928 : /* Initialize the RETURNING projection */
3929 6 : rootRelInfo->ri_projectReturning =
3930 6 : ExecBuildProjectionInfo(returningList, econtext,
3931 : mtstate->ps.ps_ResultTupleSlot,
3932 : &mtstate->ps,
3933 : RelationGetDescr(rootRelation));
3934 : }
3935 : }
3936 : }
3937 :
3938 : /*
3939 : * Initializes the tuple slots in a ResultRelInfo for any MERGE action.
3940 : *
3941 : * We mark 'projectNewInfoValid' even though the projections themselves
3942 : * are not initialized here.
3943 : */
3944 : void
3945 1790 : ExecInitMergeTupleSlots(ModifyTableState *mtstate,
3946 : ResultRelInfo *resultRelInfo)
3947 : {
3948 1790 : EState *estate = mtstate->ps.state;
3949 :
3950 : Assert(!resultRelInfo->ri_projectNewInfoValid);
3951 :
3952 1790 : resultRelInfo->ri_oldTupleSlot =
3953 1790 : table_slot_create(resultRelInfo->ri_RelationDesc,
3954 : &estate->es_tupleTable);
3955 1790 : resultRelInfo->ri_newTupleSlot =
3956 1790 : table_slot_create(resultRelInfo->ri_RelationDesc,
3957 : &estate->es_tupleTable);
3958 1790 : resultRelInfo->ri_projectNewInfoValid = true;
3959 1790 : }
3960 :
3961 : /*
3962 : * Process BEFORE EACH STATEMENT triggers
3963 : */
3964 : static void
3965 114096 : fireBSTriggers(ModifyTableState *node)
3966 : {
3967 114096 : ModifyTable *plan = (ModifyTable *) node->ps.plan;
3968 114096 : ResultRelInfo *resultRelInfo = node->rootResultRelInfo;
3969 :
3970 114096 : switch (node->operation)
3971 : {
3972 87154 : case CMD_INSERT:
3973 87154 : ExecBSInsertTriggers(node->ps.state, resultRelInfo);
3974 87142 : if (plan->onConflictAction == ONCONFLICT_UPDATE)
3975 834 : ExecBSUpdateTriggers(node->ps.state,
3976 : resultRelInfo);
3977 87142 : break;
3978 13474 : case CMD_UPDATE:
3979 13474 : ExecBSUpdateTriggers(node->ps.state, resultRelInfo);
3980 13474 : break;
3981 12084 : case CMD_DELETE:
3982 12084 : ExecBSDeleteTriggers(node->ps.state, resultRelInfo);
3983 12084 : break;
3984 1384 : case CMD_MERGE:
3985 1384 : if (node->mt_merge_subcommands & MERGE_INSERT)
3986 770 : ExecBSInsertTriggers(node->ps.state, resultRelInfo);
3987 1384 : if (node->mt_merge_subcommands & MERGE_UPDATE)
3988 936 : ExecBSUpdateTriggers(node->ps.state, resultRelInfo);
3989 1384 : if (node->mt_merge_subcommands & MERGE_DELETE)
3990 368 : ExecBSDeleteTriggers(node->ps.state, resultRelInfo);
3991 1384 : break;
3992 0 : default:
3993 0 : elog(ERROR, "unknown operation");
3994 : break;
3995 : }
3996 114084 : }
3997 :
3998 : /*
3999 : * Process AFTER EACH STATEMENT triggers
4000 : */
4001 : static void
4002 110838 : fireASTriggers(ModifyTableState *node)
4003 : {
4004 110838 : ModifyTable *plan = (ModifyTable *) node->ps.plan;
4005 110838 : ResultRelInfo *resultRelInfo = node->rootResultRelInfo;
4006 :
4007 110838 : switch (node->operation)
4008 : {
4009 84860 : case CMD_INSERT:
4010 84860 : if (plan->onConflictAction == ONCONFLICT_UPDATE)
4011 732 : ExecASUpdateTriggers(node->ps.state,
4012 : resultRelInfo,
4013 732 : node->mt_oc_transition_capture);
4014 84860 : ExecASInsertTriggers(node->ps.state, resultRelInfo,
4015 84860 : node->mt_transition_capture);
4016 84860 : break;
4017 12766 : case CMD_UPDATE:
4018 12766 : ExecASUpdateTriggers(node->ps.state, resultRelInfo,
4019 12766 : node->mt_transition_capture);
4020 12766 : break;
4021 11978 : case CMD_DELETE:
4022 11978 : ExecASDeleteTriggers(node->ps.state, resultRelInfo,
4023 11978 : node->mt_transition_capture);
4024 11978 : break;
4025 1234 : case CMD_MERGE:
4026 1234 : if (node->mt_merge_subcommands & MERGE_DELETE)
4027 332 : ExecASDeleteTriggers(node->ps.state, resultRelInfo,
4028 332 : node->mt_transition_capture);
4029 1234 : if (node->mt_merge_subcommands & MERGE_UPDATE)
4030 840 : ExecASUpdateTriggers(node->ps.state, resultRelInfo,
4031 840 : node->mt_transition_capture);
4032 1234 : if (node->mt_merge_subcommands & MERGE_INSERT)
4033 702 : ExecASInsertTriggers(node->ps.state, resultRelInfo,
4034 702 : node->mt_transition_capture);
4035 1234 : break;
4036 0 : default:
4037 0 : elog(ERROR, "unknown operation");
4038 : break;
4039 : }
4040 110838 : }
4041 :
4042 : /*
4043 : * Set up the state needed for collecting transition tuples for AFTER
4044 : * triggers.
4045 : */
4046 : static void
4047 114438 : ExecSetupTransitionCaptureState(ModifyTableState *mtstate, EState *estate)
4048 : {
4049 114438 : ModifyTable *plan = (ModifyTable *) mtstate->ps.plan;
4050 114438 : ResultRelInfo *targetRelInfo = mtstate->rootResultRelInfo;
4051 :
4052 : /* Check for transition tables on the directly targeted relation. */
4053 114438 : mtstate->mt_transition_capture =
4054 114438 : MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc,
4055 114438 : RelationGetRelid(targetRelInfo->ri_RelationDesc),
4056 : mtstate->operation);
4057 114438 : if (plan->operation == CMD_INSERT &&
4058 87156 : plan->onConflictAction == ONCONFLICT_UPDATE)
4059 834 : mtstate->mt_oc_transition_capture =
4060 834 : MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc,
4061 834 : RelationGetRelid(targetRelInfo->ri_RelationDesc),
4062 : CMD_UPDATE);
4063 114438 : }
4064 :
4065 : /*
4066 : * ExecPrepareTupleRouting --- prepare for routing one tuple
4067 : *
4068 : * Determine the partition in which the tuple in slot is to be inserted,
4069 : * and return its ResultRelInfo in *partRelInfo. The return value is
4070 : * a slot holding the tuple of the partition rowtype.
4071 : *
4072 : * This also sets the transition table information in mtstate based on the
4073 : * selected partition.
4074 : */
4075 : static TupleTableSlot *
4076 726332 : ExecPrepareTupleRouting(ModifyTableState *mtstate,
4077 : EState *estate,
4078 : PartitionTupleRouting *proute,
4079 : ResultRelInfo *targetRelInfo,
4080 : TupleTableSlot *slot,
4081 : ResultRelInfo **partRelInfo)
4082 : {
4083 : ResultRelInfo *partrel;
4084 : TupleConversionMap *map;
4085 :
4086 : /*
4087 : * Lookup the target partition's ResultRelInfo. If ExecFindPartition does
4088 : * not find a valid partition for the tuple in 'slot' then an error is
4089 : * raised. An error may also be raised if the found partition is not a
4090 : * valid target for INSERTs. This is required since a partitioned table
4091 : * UPDATE to another partition becomes a DELETE+INSERT.
4092 : */
4093 726332 : partrel = ExecFindPartition(mtstate, targetRelInfo, proute, slot, estate);
4094 :
4095 : /*
4096 : * If we're capturing transition tuples, we might need to convert from the
4097 : * partition rowtype to root partitioned table's rowtype. But if there
4098 : * are no BEFORE triggers on the partition that could change the tuple, we
4099 : * can just remember the original unconverted tuple to avoid a needless
4100 : * round trip conversion.
4101 : */
4102 726128 : if (mtstate->mt_transition_capture != NULL)
4103 : {
4104 : bool has_before_insert_row_trig;
4105 :
4106 192 : has_before_insert_row_trig = (partrel->ri_TrigDesc &&
4107 42 : partrel->ri_TrigDesc->trig_insert_before_row);
4108 :
4109 150 : mtstate->mt_transition_capture->tcs_original_insert_tuple =
4110 150 : !has_before_insert_row_trig ? slot : NULL;
4111 : }
4112 :
4113 : /*
4114 : * Convert the tuple, if necessary.
4115 : */
4116 726128 : map = ExecGetRootToChildMap(partrel, estate);
4117 726128 : if (map != NULL)
4118 : {
4119 68460 : TupleTableSlot *new_slot = partrel->ri_PartitionTupleSlot;
4120 :
4121 68460 : slot = execute_attr_map_slot(map->attrMap, slot, new_slot);
4122 : }
4123 :
4124 726128 : *partRelInfo = partrel;
4125 726128 : return slot;
4126 : }
4127 :
4128 : /* ----------------------------------------------------------------
4129 : * ExecModifyTable
4130 : *
4131 : * Perform table modifications as required, and return RETURNING results
4132 : * if needed.
4133 : * ----------------------------------------------------------------
4134 : */
4135 : static TupleTableSlot *
4136 122938 : ExecModifyTable(PlanState *pstate)
4137 : {
4138 122938 : ModifyTableState *node = castNode(ModifyTableState, pstate);
4139 : ModifyTableContext context;
4140 122938 : EState *estate = node->ps.state;
4141 122938 : CmdType operation = node->operation;
4142 : ResultRelInfo *resultRelInfo;
4143 : PlanState *subplanstate;
4144 : TupleTableSlot *slot;
4145 : TupleTableSlot *oldSlot;
4146 : ItemPointerData tuple_ctid;
4147 : HeapTupleData oldtupdata;
4148 : HeapTuple oldtuple;
4149 : ItemPointer tupleid;
4150 : bool tuplock;
4151 :
4152 122938 : CHECK_FOR_INTERRUPTS();
4153 :
4154 : /*
4155 : * This should NOT get called during EvalPlanQual; we should have passed a
4156 : * subplan tree to EvalPlanQual, instead. Use a runtime test not just
4157 : * Assert because this condition is easy to miss in testing. (Note:
4158 : * although ModifyTable should not get executed within an EvalPlanQual
4159 : * operation, we do have to allow it to be initialized and shut down in
4160 : * case it is within a CTE subplan. Hence this test must be here, not in
4161 : * ExecInitModifyTable.)
4162 : */
4163 122938 : if (estate->es_epq_active != NULL)
4164 0 : elog(ERROR, "ModifyTable should not be called during EvalPlanQual");
4165 :
4166 : /*
4167 : * If we've already completed processing, don't try to do more. We need
4168 : * this test because ExecPostprocessPlan might call us an extra time, and
4169 : * our subplan's nodes aren't necessarily robust against being called
4170 : * extra times.
4171 : */
4172 122938 : if (node->mt_done)
4173 794 : return NULL;
4174 :
4175 : /*
4176 : * On first call, fire BEFORE STATEMENT triggers before proceeding.
4177 : */
4178 122144 : if (node->fireBSTriggers)
4179 : {
4180 114096 : fireBSTriggers(node);
4181 114084 : node->fireBSTriggers = false;
4182 : }
4183 :
4184 : /* Preload local variables */
4185 122132 : resultRelInfo = node->resultRelInfo + node->mt_lastResultIndex;
4186 122132 : subplanstate = outerPlanState(node);
4187 :
4188 : /* Set global context */
4189 122132 : context.mtstate = node;
4190 122132 : context.epqstate = &node->mt_epqstate;
4191 122132 : context.estate = estate;
4192 :
4193 : /*
4194 : * Fetch rows from subplan, and execute the required table modification
4195 : * for each row.
4196 : */
4197 : for (;;)
4198 : {
4199 : /*
4200 : * Reset the per-output-tuple exprcontext. This is needed because
4201 : * triggers expect to use that context as workspace. It's a bit ugly
4202 : * to do this below the top level of the plan, however. We might need
4203 : * to rethink this later.
4204 : */
4205 14244950 : ResetPerTupleExprContext(estate);
4206 :
4207 : /*
4208 : * Reset per-tuple memory context used for processing on conflict and
4209 : * returning clauses, to free any expression evaluation storage
4210 : * allocated in the previous cycle.
4211 : */
4212 14244950 : if (pstate->ps_ExprContext)
4213 351582 : ResetExprContext(pstate->ps_ExprContext);
4214 :
4215 : /*
4216 : * If there is a pending MERGE ... WHEN NOT MATCHED [BY TARGET] action
4217 : * to execute, do so now --- see the comments in ExecMerge().
4218 : */
4219 14244950 : if (node->mt_merge_pending_not_matched != NULL)
4220 : {
4221 2 : context.planSlot = node->mt_merge_pending_not_matched;
4222 2 : context.cpDeletedSlot = NULL;
4223 :
4224 2 : slot = ExecMergeNotMatched(&context, node->resultRelInfo,
4225 2 : node->canSetTag);
4226 :
4227 : /* Clear the pending action */
4228 2 : node->mt_merge_pending_not_matched = NULL;
4229 :
4230 : /*
4231 : * If we got a RETURNING result, return it to the caller. We'll
4232 : * continue the work on next call.
4233 : */
4234 2 : if (slot)
4235 2 : return slot;
4236 :
4237 0 : continue; /* continue with the next tuple */
4238 : }
4239 :
4240 : /* Fetch the next row from subplan */
4241 14244948 : context.planSlot = ExecProcNode(subplanstate);
4242 14244530 : context.cpDeletedSlot = NULL;
4243 :
4244 : /* No more tuples to process? */
4245 14244530 : if (TupIsNull(context.planSlot))
4246 : break;
4247 :
4248 : /*
4249 : * When there are multiple result relations, each tuple contains a
4250 : * junk column that gives the OID of the rel from which it came.
4251 : * Extract it and select the correct result relation.
4252 : */
4253 14133692 : if (AttributeNumberIsValid(node->mt_resultOidAttno))
4254 : {
4255 : Datum datum;
4256 : bool isNull;
4257 : Oid resultoid;
4258 :
4259 5160 : datum = ExecGetJunkAttribute(context.planSlot, node->mt_resultOidAttno,
4260 : &isNull);
4261 5160 : if (isNull)
4262 : {
4263 : /*
4264 : * For commands other than MERGE, any tuples having InvalidOid
4265 : * for tableoid are errors. For MERGE, we may need to handle
4266 : * them as WHEN NOT MATCHED clauses if any, so do that.
4267 : *
4268 : * Note that we use the node's toplevel resultRelInfo, not any
4269 : * specific partition's.
4270 : */
4271 508 : if (operation == CMD_MERGE)
4272 : {
4273 508 : EvalPlanQualSetSlot(&node->mt_epqstate, context.planSlot);
4274 :
4275 508 : slot = ExecMerge(&context, node->resultRelInfo,
4276 508 : NULL, NULL, node->canSetTag);
4277 :
4278 : /*
4279 : * If we got a RETURNING result, return it to the caller.
4280 : * We'll continue the work on next call.
4281 : */
4282 496 : if (slot)
4283 38 : return slot;
4284 :
4285 458 : continue; /* continue with the next tuple */
4286 : }
4287 :
4288 0 : elog(ERROR, "tableoid is NULL");
4289 : }
4290 4652 : resultoid = DatumGetObjectId(datum);
4291 :
4292 : /* If it's not the same as last time, we need to locate the rel */
4293 4652 : if (resultoid != node->mt_lastResultOid)
4294 3178 : resultRelInfo = ExecLookupResultRelByOid(node, resultoid,
4295 : false, true);
4296 : }
4297 :
4298 : /*
4299 : * If resultRelInfo->ri_usesFdwDirectModify is true, all we need to do
4300 : * here is compute the RETURNING expressions.
4301 : */
4302 14133184 : if (resultRelInfo->ri_usesFdwDirectModify)
4303 : {
4304 : Assert(resultRelInfo->ri_projectReturning);
4305 :
4306 : /*
4307 : * A scan slot containing the data that was actually inserted,
4308 : * updated or deleted has already been made available to
4309 : * ExecProcessReturning by IterateDirectModify, so no need to
4310 : * provide it here. The individual old and new slots are not
4311 : * needed, since direct-modify is disabled if the RETURNING list
4312 : * refers to OLD/NEW values.
4313 : */
4314 : Assert((resultRelInfo->ri_projectReturning->pi_state.flags & EEO_FLAG_HAS_OLD) == 0 &&
4315 : (resultRelInfo->ri_projectReturning->pi_state.flags & EEO_FLAG_HAS_NEW) == 0);
4316 :
4317 694 : slot = ExecProcessReturning(&context, resultRelInfo, operation,
4318 : NULL, NULL, context.planSlot);
4319 :
4320 694 : return slot;
4321 : }
4322 :
4323 14132490 : EvalPlanQualSetSlot(&node->mt_epqstate, context.planSlot);
4324 14132490 : slot = context.planSlot;
4325 :
4326 14132490 : tupleid = NULL;
4327 14132490 : oldtuple = NULL;
4328 :
4329 : /*
4330 : * For UPDATE/DELETE/MERGE, fetch the row identity info for the tuple
4331 : * to be updated/deleted/merged. For a heap relation, that's a TID;
4332 : * otherwise we may have a wholerow junk attr that carries the old
4333 : * tuple in toto. Keep this in step with the part of
4334 : * ExecInitModifyTable that sets up ri_RowIdAttNo.
4335 : */
4336 14132490 : if (operation == CMD_UPDATE || operation == CMD_DELETE ||
4337 : operation == CMD_MERGE)
4338 : {
4339 : char relkind;
4340 : Datum datum;
4341 : bool isNull;
4342 :
4343 1976150 : relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
4344 1976150 : if (relkind == RELKIND_RELATION ||
4345 562 : relkind == RELKIND_MATVIEW ||
4346 : relkind == RELKIND_PARTITIONED_TABLE)
4347 : {
4348 : /* ri_RowIdAttNo refers to a ctid attribute */
4349 : Assert(AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo));
4350 1975594 : datum = ExecGetJunkAttribute(slot,
4351 1975594 : resultRelInfo->ri_RowIdAttNo,
4352 : &isNull);
4353 :
4354 : /*
4355 : * For commands other than MERGE, any tuples having a null row
4356 : * identifier are errors. For MERGE, we may need to handle
4357 : * them as WHEN NOT MATCHED clauses if any, so do that.
4358 : *
4359 : * Note that we use the node's toplevel resultRelInfo, not any
4360 : * specific partition's.
4361 : */
4362 1975594 : if (isNull)
4363 : {
4364 2116 : if (operation == CMD_MERGE)
4365 : {
4366 2116 : EvalPlanQualSetSlot(&node->mt_epqstate, context.planSlot);
4367 :
4368 2116 : slot = ExecMerge(&context, node->resultRelInfo,
4369 2116 : NULL, NULL, node->canSetTag);
4370 :
4371 : /*
4372 : * If we got a RETURNING result, return it to the
4373 : * caller. We'll continue the work on next call.
4374 : */
4375 2074 : if (slot)
4376 120 : return slot;
4377 :
4378 1996 : continue; /* continue with the next tuple */
4379 : }
4380 :
4381 0 : elog(ERROR, "ctid is NULL");
4382 : }
4383 :
4384 1973478 : tupleid = (ItemPointer) DatumGetPointer(datum);
4385 1973478 : tuple_ctid = *tupleid; /* be sure we don't free ctid!! */
4386 1973478 : tupleid = &tuple_ctid;
4387 : }
4388 :
4389 : /*
4390 : * Use the wholerow attribute, when available, to reconstruct the
4391 : * old relation tuple. The old tuple serves one or both of two
4392 : * purposes: 1) it serves as the OLD tuple for row triggers, 2) it
4393 : * provides values for any unchanged columns for the NEW tuple of
4394 : * an UPDATE, because the subplan does not produce all the columns
4395 : * of the target table.
4396 : *
4397 : * Note that the wholerow attribute does not carry system columns,
4398 : * so foreign table triggers miss seeing those, except that we
4399 : * know enough here to set t_tableOid. Quite separately from
4400 : * this, the FDW may fetch its own junk attrs to identify the row.
4401 : *
4402 : * Other relevant relkinds, currently limited to views, always
4403 : * have a wholerow attribute.
4404 : */
4405 556 : else if (AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo))
4406 : {
4407 530 : datum = ExecGetJunkAttribute(slot,
4408 530 : resultRelInfo->ri_RowIdAttNo,
4409 : &isNull);
4410 :
4411 : /*
4412 : * For commands other than MERGE, any tuples having a null row
4413 : * identifier are errors. For MERGE, we may need to handle
4414 : * them as WHEN NOT MATCHED clauses if any, so do that.
4415 : *
4416 : * Note that we use the node's toplevel resultRelInfo, not any
4417 : * specific partition's.
4418 : */
4419 530 : if (isNull)
4420 : {
4421 48 : if (operation == CMD_MERGE)
4422 : {
4423 48 : EvalPlanQualSetSlot(&node->mt_epqstate, context.planSlot);
4424 :
4425 48 : slot = ExecMerge(&context, node->resultRelInfo,
4426 48 : NULL, NULL, node->canSetTag);
4427 :
4428 : /*
4429 : * If we got a RETURNING result, return it to the
4430 : * caller. We'll continue the work on next call.
4431 : */
4432 42 : if (slot)
4433 12 : return slot;
4434 :
4435 30 : continue; /* continue with the next tuple */
4436 : }
4437 :
4438 0 : elog(ERROR, "wholerow is NULL");
4439 : }
4440 :
4441 482 : oldtupdata.t_data = DatumGetHeapTupleHeader(datum);
4442 482 : oldtupdata.t_len =
4443 482 : HeapTupleHeaderGetDatumLength(oldtupdata.t_data);
4444 482 : ItemPointerSetInvalid(&(oldtupdata.t_self));
4445 : /* Historically, view triggers see invalid t_tableOid. */
4446 482 : oldtupdata.t_tableOid =
4447 482 : (relkind == RELKIND_VIEW) ? InvalidOid :
4448 206 : RelationGetRelid(resultRelInfo->ri_RelationDesc);
4449 :
4450 482 : oldtuple = &oldtupdata;
4451 : }
4452 : else
4453 : {
4454 : /* Only foreign tables are allowed to omit a row-ID attr */
4455 : Assert(relkind == RELKIND_FOREIGN_TABLE);
4456 : }
4457 : }
4458 :
4459 14130326 : switch (operation)
4460 : {
4461 12156340 : case CMD_INSERT:
4462 : /* Initialize projection info if first time for this table */
4463 12156340 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
4464 85980 : ExecInitInsertProjection(node, resultRelInfo);
4465 12156340 : slot = ExecGetInsertNewTuple(resultRelInfo, context.planSlot);
4466 12156340 : slot = ExecInsert(&context, resultRelInfo, slot,
4467 12156340 : node->canSetTag, NULL, NULL);
4468 12154238 : break;
4469 :
4470 317176 : case CMD_UPDATE:
4471 317176 : tuplock = false;
4472 :
4473 : /* Initialize projection info if first time for this table */
4474 317176 : if (unlikely(!resultRelInfo->ri_projectNewInfoValid))
4475 13184 : ExecInitUpdateProjection(node, resultRelInfo);
4476 :
4477 : /*
4478 : * Make the new tuple by combining plan's output tuple with
4479 : * the old tuple being updated.
4480 : */
4481 317176 : oldSlot = resultRelInfo->ri_oldTupleSlot;
4482 317176 : if (oldtuple != NULL)
4483 : {
4484 : Assert(!resultRelInfo->ri_needLockTagTuple);
4485 : /* Use the wholerow junk attr as the old tuple. */
4486 314 : ExecForceStoreHeapTuple(oldtuple, oldSlot, false);
4487 : }
4488 : else
4489 : {
4490 : /* Fetch the most recent version of old tuple. */
4491 316862 : Relation relation = resultRelInfo->ri_RelationDesc;
4492 :
4493 316862 : if (resultRelInfo->ri_needLockTagTuple)
4494 : {
4495 24670 : LockTuple(relation, tupleid, InplaceUpdateTupleLock);
4496 24670 : tuplock = true;
4497 : }
4498 316862 : if (!table_tuple_fetch_row_version(relation, tupleid,
4499 : SnapshotAny,
4500 : oldSlot))
4501 0 : elog(ERROR, "failed to fetch tuple being updated");
4502 : }
4503 317176 : slot = ExecGetUpdateNewTuple(resultRelInfo, context.planSlot,
4504 : oldSlot);
4505 :
4506 : /* Now apply the update. */
4507 317176 : slot = ExecUpdate(&context, resultRelInfo, tupleid, oldtuple,
4508 317176 : oldSlot, slot, node->canSetTag);
4509 316676 : if (tuplock)
4510 24670 : UnlockTuple(resultRelInfo->ri_RelationDesc, tupleid,
4511 : InplaceUpdateTupleLock);
4512 316676 : break;
4513 :
4514 1644492 : case CMD_DELETE:
4515 1644492 : slot = ExecDelete(&context, resultRelInfo, tupleid, oldtuple,
4516 1644492 : true, false, node->canSetTag, NULL, NULL, NULL);
4517 1644428 : break;
4518 :
4519 12318 : case CMD_MERGE:
4520 12318 : slot = ExecMerge(&context, resultRelInfo, tupleid, oldtuple,
4521 12318 : node->canSetTag);
4522 12228 : break;
4523 :
4524 0 : default:
4525 0 : elog(ERROR, "unknown operation");
4526 : break;
4527 : }
4528 :
4529 : /*
4530 : * If we got a RETURNING result, return it to caller. We'll continue
4531 : * the work on next call.
4532 : */
4533 14127570 : if (slot)
4534 7206 : return slot;
4535 : }
4536 :
4537 : /*
4538 : * Insert remaining tuples for batch insert.
4539 : */
4540 110838 : if (estate->es_insert_pending_result_relations != NIL)
4541 24 : ExecPendingInserts(estate);
4542 :
4543 : /*
4544 : * We're done, but fire AFTER STATEMENT triggers before exiting.
4545 : */
4546 110838 : fireASTriggers(node);
4547 :
4548 110838 : node->mt_done = true;
4549 :
4550 110838 : return NULL;
4551 : }
4552 :
4553 : /*
4554 : * ExecLookupResultRelByOid
4555 : * If the table with given OID is among the result relations to be
4556 : * updated by the given ModifyTable node, return its ResultRelInfo.
4557 : *
4558 : * If not found, return NULL if missing_ok, else raise error.
4559 : *
4560 : * If update_cache is true, then upon successful lookup, update the node's
4561 : * one-element cache. ONLY ExecModifyTable may pass true for this.
4562 : */
4563 : ResultRelInfo *
4564 9952 : ExecLookupResultRelByOid(ModifyTableState *node, Oid resultoid,
4565 : bool missing_ok, bool update_cache)
4566 : {
4567 9952 : if (node->mt_resultOidHash)
4568 : {
4569 : /* Use the pre-built hash table to locate the rel */
4570 : MTTargetRelLookup *mtlookup;
4571 :
4572 : mtlookup = (MTTargetRelLookup *)
4573 0 : hash_search(node->mt_resultOidHash, &resultoid, HASH_FIND, NULL);
4574 0 : if (mtlookup)
4575 : {
4576 0 : if (update_cache)
4577 : {
4578 0 : node->mt_lastResultOid = resultoid;
4579 0 : node->mt_lastResultIndex = mtlookup->relationIndex;
4580 : }
4581 0 : return node->resultRelInfo + mtlookup->relationIndex;
4582 : }
4583 : }
4584 : else
4585 : {
4586 : /* With few target rels, just search the ResultRelInfo array */
4587 18768 : for (int ndx = 0; ndx < node->mt_nrels; ndx++)
4588 : {
4589 12494 : ResultRelInfo *rInfo = node->resultRelInfo + ndx;
4590 :
4591 12494 : if (RelationGetRelid(rInfo->ri_RelationDesc) == resultoid)
4592 : {
4593 3678 : if (update_cache)
4594 : {
4595 3178 : node->mt_lastResultOid = resultoid;
4596 3178 : node->mt_lastResultIndex = ndx;
4597 : }
4598 3678 : return rInfo;
4599 : }
4600 : }
4601 : }
4602 :
4603 6274 : if (!missing_ok)
4604 0 : elog(ERROR, "incorrect result relation OID %u", resultoid);
4605 6274 : return NULL;
4606 : }
4607 :
4608 : /* ----------------------------------------------------------------
4609 : * ExecInitModifyTable
4610 : * ----------------------------------------------------------------
4611 : */
4612 : ModifyTableState *
4613 115464 : ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
4614 : {
4615 : ModifyTableState *mtstate;
4616 115464 : Plan *subplan = outerPlan(node);
4617 115464 : CmdType operation = node->operation;
4618 115464 : int total_nrels = list_length(node->resultRelations);
4619 : int nrels;
4620 115464 : List *resultRelations = NIL;
4621 115464 : List *withCheckOptionLists = NIL;
4622 115464 : List *returningLists = NIL;
4623 115464 : List *updateColnosLists = NIL;
4624 115464 : List *mergeActionLists = NIL;
4625 115464 : List *mergeJoinConditions = NIL;
4626 : ResultRelInfo *resultRelInfo;
4627 : List *arowmarks;
4628 : ListCell *l;
4629 : int i;
4630 : Relation rel;
4631 :
4632 : /* check for unsupported flags */
4633 : Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
4634 :
4635 : /*
4636 : * Only consider unpruned relations for initializing their ResultRelInfo
4637 : * struct and other fields such as withCheckOptions, etc.
4638 : *
4639 : * Note: We must avoid pruning every result relation. This is important
4640 : * for MERGE, since even if every result relation is pruned from the
4641 : * subplan, there might still be NOT MATCHED rows, for which there may be
4642 : * INSERT actions to perform. To allow these actions to be found, at
4643 : * least one result relation must be kept. Also, when inserting into a
4644 : * partitioned table, ExecInitPartitionInfo() needs a ResultRelInfo struct
4645 : * as a reference for building the ResultRelInfo of the target partition.
4646 : * In either case, it doesn't matter which result relation is kept, so we
4647 : * just keep the first one, if all others have been pruned. See also,
4648 : * ExecDoInitialPruning(), which ensures that this first result relation
4649 : * has been locked.
4650 : */
4651 115464 : i = 0;
4652 233422 : foreach(l, node->resultRelations)
4653 : {
4654 117958 : Index rti = lfirst_int(l);
4655 : bool keep_rel;
4656 :
4657 117958 : keep_rel = bms_is_member(rti, estate->es_unpruned_relids);
4658 117958 : if (!keep_rel && i == total_nrels - 1 && resultRelations == NIL)
4659 : {
4660 : /* all result relations pruned; keep the first one */
4661 48 : keep_rel = true;
4662 48 : rti = linitial_int(node->resultRelations);
4663 48 : i = 0;
4664 : }
4665 :
4666 117958 : if (keep_rel)
4667 : {
4668 117874 : resultRelations = lappend_int(resultRelations, rti);
4669 117874 : if (node->withCheckOptionLists)
4670 : {
4671 1430 : List *withCheckOptions = list_nth_node(List,
4672 : node->withCheckOptionLists,
4673 : i);
4674 :
4675 1430 : withCheckOptionLists = lappend(withCheckOptionLists, withCheckOptions);
4676 : }
4677 117874 : if (node->returningLists)
4678 : {
4679 5022 : List *returningList = list_nth_node(List,
4680 : node->returningLists,
4681 : i);
4682 :
4683 5022 : returningLists = lappend(returningLists, returningList);
4684 : }
4685 117874 : if (node->updateColnosLists)
4686 : {
4687 15888 : List *updateColnosList = list_nth(node->updateColnosLists, i);
4688 :
4689 15888 : updateColnosLists = lappend(updateColnosLists, updateColnosList);
4690 : }
4691 117874 : if (node->mergeActionLists)
4692 : {
4693 1766 : List *mergeActionList = list_nth(node->mergeActionLists, i);
4694 :
4695 1766 : mergeActionLists = lappend(mergeActionLists, mergeActionList);
4696 : }
4697 117874 : if (node->mergeJoinConditions)
4698 : {
4699 1766 : List *mergeJoinCondition = list_nth(node->mergeJoinConditions, i);
4700 :
4701 1766 : mergeJoinConditions = lappend(mergeJoinConditions, mergeJoinCondition);
4702 : }
4703 : }
4704 117958 : i++;
4705 : }
4706 115464 : nrels = list_length(resultRelations);
4707 : Assert(nrels > 0);
4708 :
4709 : /*
4710 : * create state structure
4711 : */
4712 115464 : mtstate = makeNode(ModifyTableState);
4713 115464 : mtstate->ps.plan = (Plan *) node;
4714 115464 : mtstate->ps.state = estate;
4715 115464 : mtstate->ps.ExecProcNode = ExecModifyTable;
4716 :
4717 115464 : mtstate->operation = operation;
4718 115464 : mtstate->canSetTag = node->canSetTag;
4719 115464 : mtstate->mt_done = false;
4720 :
4721 115464 : mtstate->mt_nrels = nrels;
4722 115464 : mtstate->resultRelInfo = (ResultRelInfo *)
4723 115464 : palloc(nrels * sizeof(ResultRelInfo));
4724 :
4725 115464 : mtstate->mt_merge_pending_not_matched = NULL;
4726 115464 : mtstate->mt_merge_inserted = 0;
4727 115464 : mtstate->mt_merge_updated = 0;
4728 115464 : mtstate->mt_merge_deleted = 0;
4729 115464 : mtstate->mt_updateColnosLists = updateColnosLists;
4730 115464 : mtstate->mt_mergeActionLists = mergeActionLists;
4731 115464 : mtstate->mt_mergeJoinConditions = mergeJoinConditions;
4732 :
4733 : /*----------
4734 : * Resolve the target relation. This is the same as:
4735 : *
4736 : * - the relation for which we will fire FOR STATEMENT triggers,
4737 : * - the relation into whose tuple format all captured transition tuples
4738 : * must be converted, and
4739 : * - the root partitioned table used for tuple routing.
4740 : *
4741 : * If it's a partitioned or inherited table, the root partition or
4742 : * appendrel RTE doesn't appear elsewhere in the plan and its RT index is
4743 : * given explicitly in node->rootRelation. Otherwise, the target relation
4744 : * is the sole relation in the node->resultRelations list and, since it can
4745 : * never be pruned, also in the resultRelations list constructed above.
4746 : *----------
4747 : */
4748 115464 : if (node->rootRelation > 0)
4749 : {
4750 : Assert(bms_is_member(node->rootRelation, estate->es_unpruned_relids));
4751 2852 : mtstate->rootResultRelInfo = makeNode(ResultRelInfo);
4752 2852 : ExecInitResultRelation(estate, mtstate->rootResultRelInfo,
4753 : node->rootRelation);
4754 : }
4755 : else
4756 : {
4757 : Assert(list_length(node->resultRelations) == 1);
4758 : Assert(list_length(resultRelations) == 1);
4759 112612 : mtstate->rootResultRelInfo = mtstate->resultRelInfo;
4760 112612 : ExecInitResultRelation(estate, mtstate->resultRelInfo,
4761 112612 : linitial_int(resultRelations));
4762 : }
4763 :
4764 : /* set up epqstate with dummy subplan data for the moment */
4765 115464 : EvalPlanQualInit(&mtstate->mt_epqstate, estate, NULL, NIL,
4766 : node->epqParam, resultRelations);
4767 115464 : mtstate->fireBSTriggers = true;
4768 :
4769 : /*
4770 : * Build state for collecting transition tuples. This requires having a
4771 : * valid trigger query context, so skip it in explain-only mode.
4772 : */
4773 115464 : if (!(eflags & EXEC_FLAG_EXPLAIN_ONLY))
4774 114438 : ExecSetupTransitionCaptureState(mtstate, estate);
4775 :
4776 : /*
4777 : * Open all the result relations and initialize the ResultRelInfo structs.
4778 : * (But root relation was initialized above, if it's part of the array.)
4779 : * We must do this before initializing the subplan, because direct-modify
4780 : * FDWs expect their ResultRelInfos to be available.
4781 : */
4782 115464 : resultRelInfo = mtstate->resultRelInfo;
4783 115464 : i = 0;
4784 233014 : foreach(l, resultRelations)
4785 : {
4786 117868 : Index resultRelation = lfirst_int(l);
4787 117868 : List *mergeActions = NIL;
4788 :
4789 117868 : if (mergeActionLists)
4790 1766 : mergeActions = list_nth(mergeActionLists, i);
4791 :
4792 117868 : if (resultRelInfo != mtstate->rootResultRelInfo)
4793 : {
4794 5256 : ExecInitResultRelation(estate, resultRelInfo, resultRelation);
4795 :
4796 : /*
4797 : * For child result relations, store the root result relation
4798 : * pointer. We do so for the convenience of places that want to
4799 : * look at the query's original target relation but don't have the
4800 : * mtstate handy.
4801 : */
4802 5256 : resultRelInfo->ri_RootResultRelInfo = mtstate->rootResultRelInfo;
4803 : }
4804 :
4805 : /* Initialize the usesFdwDirectModify flag */
4806 117868 : resultRelInfo->ri_usesFdwDirectModify =
4807 117868 : bms_is_member(i, node->fdwDirectModifyPlans);
4808 :
4809 : /*
4810 : * Verify result relation is a valid target for the current operation
4811 : */
4812 117868 : CheckValidResultRel(resultRelInfo, operation, mergeActions);
4813 :
4814 117550 : resultRelInfo++;
4815 117550 : i++;
4816 : }
4817 :
4818 : /*
4819 : * Now we may initialize the subplan.
4820 : */
4821 115146 : outerPlanState(mtstate) = ExecInitNode(subplan, estate, eflags);
4822 :
4823 : /*
4824 : * Do additional per-result-relation initialization.
4825 : */
4826 232662 : for (i = 0; i < nrels; i++)
4827 : {
4828 117516 : resultRelInfo = &mtstate->resultRelInfo[i];
4829 :
4830 : /* Let FDWs init themselves for foreign-table result rels */
4831 117516 : if (!resultRelInfo->ri_usesFdwDirectModify &&
4832 117308 : resultRelInfo->ri_FdwRoutine != NULL &&
4833 322 : resultRelInfo->ri_FdwRoutine->BeginForeignModify != NULL)
4834 : {
4835 322 : List *fdw_private = (List *) list_nth(node->fdwPrivLists, i);
4836 :
4837 322 : resultRelInfo->ri_FdwRoutine->BeginForeignModify(mtstate,
4838 : resultRelInfo,
4839 : fdw_private,
4840 : i,
4841 : eflags);
4842 : }
4843 :
4844 : /*
4845 : * For UPDATE/DELETE/MERGE, find the appropriate junk attr now, either
4846 : * a 'ctid' or 'wholerow' attribute depending on relkind. For foreign
4847 : * tables, the FDW might have created additional junk attr(s), but
4848 : * those are no concern of ours.
4849 : */
4850 117516 : if (operation == CMD_UPDATE || operation == CMD_DELETE ||
4851 : operation == CMD_MERGE)
4852 : {
4853 : char relkind;
4854 :
4855 30088 : relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
4856 30088 : if (relkind == RELKIND_RELATION ||
4857 680 : relkind == RELKIND_MATVIEW ||
4858 : relkind == RELKIND_PARTITIONED_TABLE)
4859 : {
4860 29444 : resultRelInfo->ri_RowIdAttNo =
4861 29444 : ExecFindJunkAttributeInTlist(subplan->targetlist, "ctid");
4862 29444 : if (!AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo))
4863 0 : elog(ERROR, "could not find junk ctid column");
4864 : }
4865 644 : else if (relkind == RELKIND_FOREIGN_TABLE)
4866 : {
4867 : /*
4868 : * We don't support MERGE with foreign tables for now. (It's
4869 : * problematic because the implementation uses CTID.)
4870 : */
4871 : Assert(operation != CMD_MERGE);
4872 :
4873 : /*
4874 : * When there is a row-level trigger, there should be a
4875 : * wholerow attribute. We also require it to be present in
4876 : * UPDATE and MERGE, so we can get the values of unchanged
4877 : * columns.
4878 : */
4879 356 : resultRelInfo->ri_RowIdAttNo =
4880 356 : ExecFindJunkAttributeInTlist(subplan->targetlist,
4881 : "wholerow");
4882 356 : if ((mtstate->operation == CMD_UPDATE || mtstate->operation == CMD_MERGE) &&
4883 202 : !AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo))
4884 0 : elog(ERROR, "could not find junk wholerow column");
4885 : }
4886 : else
4887 : {
4888 : /* Other valid target relkinds must provide wholerow */
4889 288 : resultRelInfo->ri_RowIdAttNo =
4890 288 : ExecFindJunkAttributeInTlist(subplan->targetlist,
4891 : "wholerow");
4892 288 : if (!AttributeNumberIsValid(resultRelInfo->ri_RowIdAttNo))
4893 0 : elog(ERROR, "could not find junk wholerow column");
4894 : }
4895 : }
4896 : }
4897 :
4898 : /*
4899 : * If this is an inherited update/delete/merge, there will be a junk
4900 : * attribute named "tableoid" present in the subplan's targetlist. It
4901 : * will be used to identify the result relation for a given tuple to be
4902 : * updated/deleted/merged.
4903 : */
4904 115146 : mtstate->mt_resultOidAttno =
4905 115146 : ExecFindJunkAttributeInTlist(subplan->targetlist, "tableoid");
4906 : Assert(AttributeNumberIsValid(mtstate->mt_resultOidAttno) || total_nrels == 1);
4907 115146 : mtstate->mt_lastResultOid = InvalidOid; /* force lookup at first tuple */
4908 115146 : mtstate->mt_lastResultIndex = 0; /* must be zero if no such attr */
4909 :
4910 : /* Get the root target relation */
4911 115146 : rel = mtstate->rootResultRelInfo->ri_RelationDesc;
4912 :
4913 : /*
4914 : * Build state for tuple routing if it's a partitioned INSERT. An UPDATE
4915 : * or MERGE might need this too, but only if it actually moves tuples
4916 : * between partitions; in that case setup is done by
4917 : * ExecCrossPartitionUpdate.
4918 : */
4919 115146 : if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
4920 : operation == CMD_INSERT)
4921 3898 : mtstate->mt_partition_tuple_routing =
4922 3898 : ExecSetupPartitionTupleRouting(estate, rel);
4923 :
4924 : /*
4925 : * Initialize any WITH CHECK OPTION constraints if needed.
4926 : */
4927 115146 : resultRelInfo = mtstate->resultRelInfo;
4928 116576 : foreach(l, withCheckOptionLists)
4929 : {
4930 1430 : List *wcoList = (List *) lfirst(l);
4931 1430 : List *wcoExprs = NIL;
4932 : ListCell *ll;
4933 :
4934 3914 : foreach(ll, wcoList)
4935 : {
4936 2484 : WithCheckOption *wco = (WithCheckOption *) lfirst(ll);
4937 2484 : ExprState *wcoExpr = ExecInitQual((List *) wco->qual,
4938 : &mtstate->ps);
4939 :
4940 2484 : wcoExprs = lappend(wcoExprs, wcoExpr);
4941 : }
4942 :
4943 1430 : resultRelInfo->ri_WithCheckOptions = wcoList;
4944 1430 : resultRelInfo->ri_WithCheckOptionExprs = wcoExprs;
4945 1430 : resultRelInfo++;
4946 : }
4947 :
4948 : /*
4949 : * Initialize RETURNING projections if needed.
4950 : */
4951 115146 : if (returningLists)
4952 : {
4953 : TupleTableSlot *slot;
4954 : ExprContext *econtext;
4955 :
4956 : /*
4957 : * Initialize result tuple slot and assign its rowtype using the plan
4958 : * node's declared targetlist, which the planner set up to be the same
4959 : * as the first (before runtime pruning) RETURNING list. We assume
4960 : * all the result rels will produce compatible output.
4961 : */
4962 4676 : ExecInitResultTupleSlotTL(&mtstate->ps, &TTSOpsVirtual);
4963 4676 : slot = mtstate->ps.ps_ResultTupleSlot;
4964 :
4965 : /* Need an econtext too */
4966 4676 : if (mtstate->ps.ps_ExprContext == NULL)
4967 4676 : ExecAssignExprContext(estate, &mtstate->ps);
4968 4676 : econtext = mtstate->ps.ps_ExprContext;
4969 :
4970 : /*
4971 : * Build a projection for each result rel.
4972 : */
4973 4676 : resultRelInfo = mtstate->resultRelInfo;
4974 9698 : foreach(l, returningLists)
4975 : {
4976 5022 : List *rlist = (List *) lfirst(l);
4977 :
4978 5022 : resultRelInfo->ri_returningList = rlist;
4979 5022 : resultRelInfo->ri_projectReturning =
4980 5022 : ExecBuildProjectionInfo(rlist, econtext, slot, &mtstate->ps,
4981 5022 : resultRelInfo->ri_RelationDesc->rd_att);
4982 5022 : resultRelInfo++;
4983 : }
4984 : }
4985 : else
4986 : {
4987 : /*
4988 : * We still must construct a dummy result tuple type, because InitPlan
4989 : * expects one (maybe should change that?).
4990 : */
4991 110470 : ExecInitResultTypeTL(&mtstate->ps);
4992 :
4993 110470 : mtstate->ps.ps_ExprContext = NULL;
4994 : }
4995 :
4996 : /* Set the list of arbiter indexes if needed for ON CONFLICT */
4997 115146 : resultRelInfo = mtstate->resultRelInfo;
4998 115146 : if (node->onConflictAction != ONCONFLICT_NONE)
4999 : {
5000 : /* insert may only have one relation, inheritance is not expanded */
5001 : Assert(total_nrels == 1);
5002 1356 : resultRelInfo->ri_onConflictArbiterIndexes = node->arbiterIndexes;
5003 : }
5004 :
5005 : /*
5006 : * If needed, Initialize target list, projection and qual for ON CONFLICT
5007 : * DO UPDATE.
5008 : */
5009 115146 : if (node->onConflictAction == ONCONFLICT_UPDATE)
5010 : {
5011 912 : OnConflictSetState *onconfl = makeNode(OnConflictSetState);
5012 : ExprContext *econtext;
5013 : TupleDesc relationDesc;
5014 :
5015 : /* already exists if created by RETURNING processing above */
5016 912 : if (mtstate->ps.ps_ExprContext == NULL)
5017 632 : ExecAssignExprContext(estate, &mtstate->ps);
5018 :
5019 912 : econtext = mtstate->ps.ps_ExprContext;
5020 912 : relationDesc = resultRelInfo->ri_RelationDesc->rd_att;
5021 :
5022 : /* create state for DO UPDATE SET operation */
5023 912 : resultRelInfo->ri_onConflict = onconfl;
5024 :
5025 : /* initialize slot for the existing tuple */
5026 912 : onconfl->oc_Existing =
5027 912 : table_slot_create(resultRelInfo->ri_RelationDesc,
5028 912 : &mtstate->ps.state->es_tupleTable);
5029 :
5030 : /*
5031 : * Create the tuple slot for the UPDATE SET projection. We want a slot
5032 : * of the table's type here, because the slot will be used to insert
5033 : * into the table, and for RETURNING processing - which may access
5034 : * system attributes.
5035 : */
5036 912 : onconfl->oc_ProjSlot =
5037 912 : table_slot_create(resultRelInfo->ri_RelationDesc,
5038 912 : &mtstate->ps.state->es_tupleTable);
5039 :
5040 : /* build UPDATE SET projection state */
5041 912 : onconfl->oc_ProjInfo =
5042 912 : ExecBuildUpdateProjection(node->onConflictSet,
5043 : true,
5044 : node->onConflictCols,
5045 : relationDesc,
5046 : econtext,
5047 : onconfl->oc_ProjSlot,
5048 : &mtstate->ps);
5049 :
5050 : /* initialize state to evaluate the WHERE clause, if any */
5051 912 : if (node->onConflictWhere)
5052 : {
5053 : ExprState *qualexpr;
5054 :
5055 176 : qualexpr = ExecInitQual((List *) node->onConflictWhere,
5056 : &mtstate->ps);
5057 176 : onconfl->oc_WhereClause = qualexpr;
5058 : }
5059 : }
5060 :
5061 : /*
5062 : * If we have any secondary relations in an UPDATE or DELETE, they need to
5063 : * be treated like non-locked relations in SELECT FOR UPDATE, i.e., the
5064 : * EvalPlanQual mechanism needs to be told about them. This also goes for
5065 : * the source relations in a MERGE. Locate the relevant ExecRowMarks.
5066 : */
5067 115146 : arowmarks = NIL;
5068 117956 : foreach(l, node->rowMarks)
5069 : {
5070 2810 : PlanRowMark *rc = lfirst_node(PlanRowMark, l);
5071 : ExecRowMark *erm;
5072 : ExecAuxRowMark *aerm;
5073 :
5074 : /*
5075 : * Ignore "parent" rowmarks, because they are irrelevant at runtime.
5076 : * Also ignore the rowmarks belonging to child tables that have been
5077 : * pruned in ExecDoInitialPruning().
5078 : */
5079 2810 : if (rc->isParent ||
5080 2668 : !bms_is_member(rc->rti, estate->es_unpruned_relids))
5081 596 : continue;
5082 :
5083 : /* Find ExecRowMark and build ExecAuxRowMark */
5084 2214 : erm = ExecFindRowMark(estate, rc->rti, false);
5085 2214 : aerm = ExecBuildAuxRowMark(erm, subplan->targetlist);
5086 2214 : arowmarks = lappend(arowmarks, aerm);
5087 : }
5088 :
5089 : /* For a MERGE command, initialize its state */
5090 115146 : if (mtstate->operation == CMD_MERGE)
5091 1534 : ExecInitMerge(mtstate, estate);
5092 :
5093 115146 : EvalPlanQualSetPlan(&mtstate->mt_epqstate, subplan, arowmarks);
5094 :
5095 : /*
5096 : * If there are a lot of result relations, use a hash table to speed the
5097 : * lookups. If there are not a lot, a simple linear search is faster.
5098 : *
5099 : * It's not clear where the threshold is, but try 64 for starters. In a
5100 : * debugging build, use a small threshold so that we get some test
5101 : * coverage of both code paths.
5102 : */
5103 : #ifdef USE_ASSERT_CHECKING
5104 : #define MT_NRELS_HASH 4
5105 : #else
5106 : #define MT_NRELS_HASH 64
5107 : #endif
5108 115146 : if (nrels >= MT_NRELS_HASH)
5109 : {
5110 : HASHCTL hash_ctl;
5111 :
5112 0 : hash_ctl.keysize = sizeof(Oid);
5113 0 : hash_ctl.entrysize = sizeof(MTTargetRelLookup);
5114 0 : hash_ctl.hcxt = CurrentMemoryContext;
5115 0 : mtstate->mt_resultOidHash =
5116 0 : hash_create("ModifyTable target hash",
5117 : nrels, &hash_ctl,
5118 : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
5119 0 : for (i = 0; i < nrels; i++)
5120 : {
5121 : Oid hashkey;
5122 : MTTargetRelLookup *mtlookup;
5123 : bool found;
5124 :
5125 0 : resultRelInfo = &mtstate->resultRelInfo[i];
5126 0 : hashkey = RelationGetRelid(resultRelInfo->ri_RelationDesc);
5127 : mtlookup = (MTTargetRelLookup *)
5128 0 : hash_search(mtstate->mt_resultOidHash, &hashkey,
5129 : HASH_ENTER, &found);
5130 : Assert(!found);
5131 0 : mtlookup->relationIndex = i;
5132 : }
5133 : }
5134 : else
5135 115146 : mtstate->mt_resultOidHash = NULL;
5136 :
5137 : /*
5138 : * Determine if the FDW supports batch insert and determine the batch size
5139 : * (a FDW may support batching, but it may be disabled for the
5140 : * server/table).
5141 : *
5142 : * We only do this for INSERT, so that for UPDATE/DELETE the batch size
5143 : * remains set to 0.
5144 : */
5145 115146 : if (operation == CMD_INSERT)
5146 : {
5147 : /* insert may only have one relation, inheritance is not expanded */
5148 : Assert(total_nrels == 1);
5149 87428 : resultRelInfo = mtstate->resultRelInfo;
5150 87428 : if (!resultRelInfo->ri_usesFdwDirectModify &&
5151 87428 : resultRelInfo->ri_FdwRoutine != NULL &&
5152 174 : resultRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize &&
5153 174 : resultRelInfo->ri_FdwRoutine->ExecForeignBatchInsert)
5154 : {
5155 174 : resultRelInfo->ri_BatchSize =
5156 174 : resultRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(resultRelInfo);
5157 174 : Assert(resultRelInfo->ri_BatchSize >= 1);
5158 : }
5159 : else
5160 87254 : resultRelInfo->ri_BatchSize = 1;
5161 : }
5162 :
5163 : /*
5164 : * Lastly, if this is not the primary (canSetTag) ModifyTable node, add it
5165 : * to estate->es_auxmodifytables so that it will be run to completion by
5166 : * ExecPostprocessPlan. (It'd actually work fine to add the primary
5167 : * ModifyTable node too, but there's no need.) Note the use of lcons not
5168 : * lappend: we need later-initialized ModifyTable nodes to be shut down
5169 : * before earlier ones. This ensures that we don't throw away RETURNING
5170 : * rows that need to be seen by a later CTE subplan.
5171 : */
5172 115146 : if (!mtstate->canSetTag)
5173 942 : estate->es_auxmodifytables = lcons(mtstate,
5174 : estate->es_auxmodifytables);
5175 :
5176 115146 : return mtstate;
5177 : }
5178 :
5179 : /* ----------------------------------------------------------------
5180 : * ExecEndModifyTable
5181 : *
5182 : * Shuts down the plan.
5183 : *
5184 : * Returns nothing of interest.
5185 : * ----------------------------------------------------------------
5186 : */
5187 : void
5188 110788 : ExecEndModifyTable(ModifyTableState *node)
5189 : {
5190 : int i;
5191 :
5192 : /*
5193 : * Allow any FDWs to shut down
5194 : */
5195 223644 : for (i = 0; i < node->mt_nrels; i++)
5196 : {
5197 : int j;
5198 112856 : ResultRelInfo *resultRelInfo = node->resultRelInfo + i;
5199 :
5200 112856 : if (!resultRelInfo->ri_usesFdwDirectModify &&
5201 112664 : resultRelInfo->ri_FdwRoutine != NULL &&
5202 302 : resultRelInfo->ri_FdwRoutine->EndForeignModify != NULL)
5203 302 : resultRelInfo->ri_FdwRoutine->EndForeignModify(node->ps.state,
5204 : resultRelInfo);
5205 :
5206 : /*
5207 : * Cleanup the initialized batch slots. This only matters for FDWs
5208 : * with batching, but the other cases will have ri_NumSlotsInitialized
5209 : * == 0.
5210 : */
5211 112912 : for (j = 0; j < resultRelInfo->ri_NumSlotsInitialized; j++)
5212 : {
5213 56 : ExecDropSingleTupleTableSlot(resultRelInfo->ri_Slots[j]);
5214 56 : ExecDropSingleTupleTableSlot(resultRelInfo->ri_PlanSlots[j]);
5215 : }
5216 : }
5217 :
5218 : /*
5219 : * Close all the partitioned tables, leaf partitions, and their indices
5220 : * and release the slot used for tuple routing, if set.
5221 : */
5222 110788 : if (node->mt_partition_tuple_routing)
5223 : {
5224 3964 : ExecCleanupTupleRouting(node, node->mt_partition_tuple_routing);
5225 :
5226 3964 : if (node->mt_root_tuple_slot)
5227 644 : ExecDropSingleTupleTableSlot(node->mt_root_tuple_slot);
5228 : }
5229 :
5230 : /*
5231 : * Terminate EPQ execution if active
5232 : */
5233 110788 : EvalPlanQualEnd(&node->mt_epqstate);
5234 :
5235 : /*
5236 : * shut down subplan
5237 : */
5238 110788 : ExecEndNode(outerPlanState(node));
5239 110788 : }
5240 :
5241 : void
5242 0 : ExecReScanModifyTable(ModifyTableState *node)
5243 : {
5244 : /*
5245 : * Currently, we don't need to support rescan on ModifyTable nodes. The
5246 : * semantics of that would be a bit debatable anyway.
5247 : */
5248 0 : elog(ERROR, "ExecReScanModifyTable is not implemented");
5249 : }
|