LCOV - code coverage report
Current view: top level - src/backend/executor - nodeMemoize.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 282 341 82.7 %
Date: 2025-01-18 05:15:39 Functions: 18 19 94.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * nodeMemoize.c
       4             :  *    Routines to handle caching of results from parameterized nodes
       5             :  *
       6             :  * Portions Copyright (c) 2021-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/executor/nodeMemoize.c
      12             :  *
      13             :  * Memoize nodes are intended to sit above parameterized nodes in the plan
      14             :  * tree in order to cache results from them.  The intention here is that a
      15             :  * repeat scan with a parameter value that has already been seen by the node
      16             :  * can fetch tuples from the cache rather than having to re-scan the inner
      17             :  * node all over again.  The query planner may choose to make use of one of
      18             :  * these when it thinks rescans for previously seen values are likely enough
      19             :  * to warrant adding the additional node.
      20             :  *
      21             :  * The method of cache we use is a hash table.  When the cache fills, we never
      22             :  * spill tuples to disk, instead, we choose to evict the least recently used
      23             :  * cache entry from the cache.  We remember the least recently used entry by
      24             :  * always pushing new entries and entries we look for onto the tail of a
      25             :  * doubly linked list.  This means that older items always bubble to the top
      26             :  * of this LRU list.
      27             :  *
      28             :  * Sometimes our callers won't run their scans to completion. For example a
      29             :  * semi-join only needs to run until it finds a matching tuple, and once it
      30             :  * does, the join operator skips to the next outer tuple and does not execute
      31             :  * the inner side again on that scan.  Because of this, we must keep track of
      32             :  * when a cache entry is complete, and by default, we know it is when we run
      33             :  * out of tuples to read during the scan.  However, there are cases where we
      34             :  * can mark the cache entry as complete without exhausting the scan of all
      35             :  * tuples.  One case is unique joins, where the join operator knows that there
      36             :  * will only be at most one match for any given outer tuple.  In order to
      37             :  * support such cases we allow the "singlerow" option to be set for the cache.
      38             :  * This option marks the cache entry as complete after we read the first tuple
      39             :  * from the subnode.
      40             :  *
      41             :  * It's possible when we're filling the cache for a given set of parameters
      42             :  * that we're unable to free enough memory to store any more tuples.  If this
      43             :  * happens then we'll have already evicted all other cache entries.  When
      44             :  * caching another tuple would cause us to exceed our memory budget, we must
      45             :  * free the entry that we're currently populating and move the state machine
      46             :  * into MEMO_CACHE_BYPASS_MODE.  This means that we'll not attempt to cache
      47             :  * any further tuples for this particular scan.  We don't have the memory for
      48             :  * it.  The state machine will be reset again on the next rescan.  If the
      49             :  * memory requirements to cache the next parameter's tuples are less
      50             :  * demanding, then that may allow us to start putting useful entries back into
      51             :  * the cache again.
      52             :  *
      53             :  *
      54             :  * INTERFACE ROUTINES
      55             :  *      ExecMemoize         - lookup cache, exec subplan when not found
      56             :  *      ExecInitMemoize     - initialize node and subnodes
      57             :  *      ExecEndMemoize      - shutdown node and subnodes
      58             :  *      ExecReScanMemoize   - rescan the memoize node
      59             :  *
      60             :  *      ExecMemoizeEstimate     estimates DSM space needed for parallel plan
      61             :  *      ExecMemoizeInitializeDSM initialize DSM for parallel plan
      62             :  *      ExecMemoizeInitializeWorker attach to DSM info in parallel worker
      63             :  *      ExecMemoizeRetrieveInstrumentation get instrumentation from worker
      64             :  *-------------------------------------------------------------------------
      65             :  */
      66             : 
      67             : #include "postgres.h"
      68             : 
      69             : #include "common/hashfn.h"
      70             : #include "executor/executor.h"
      71             : #include "executor/nodeMemoize.h"
      72             : #include "lib/ilist.h"
      73             : #include "miscadmin.h"
      74             : #include "utils/datum.h"
      75             : #include "utils/lsyscache.h"
      76             : 
      77             : /* States of the ExecMemoize state machine */
      78             : #define MEMO_CACHE_LOOKUP           1   /* Attempt to perform a cache lookup */
      79             : #define MEMO_CACHE_FETCH_NEXT_TUPLE 2   /* Get another tuple from the cache */
      80             : #define MEMO_FILLING_CACHE          3   /* Read outer node to fill cache */
      81             : #define MEMO_CACHE_BYPASS_MODE      4   /* Bypass mode.  Just read from our
      82             :                                          * subplan without caching anything */
      83             : #define MEMO_END_OF_SCAN            5   /* Ready for rescan */
      84             : 
      85             : 
      86             : /* Helper macros for memory accounting */
      87             : #define EMPTY_ENTRY_MEMORY_BYTES(e)     (sizeof(MemoizeEntry) + \
      88             :                                          sizeof(MemoizeKey) + \
      89             :                                          (e)->key->params->t_len);
      90             : #define CACHE_TUPLE_BYTES(t)            (sizeof(MemoizeTuple) + \
      91             :                                          (t)->mintuple->t_len)
      92             : 
      93             :  /* MemoizeTuple Stores an individually cached tuple */
      94             : typedef struct MemoizeTuple
      95             : {
      96             :     MinimalTuple mintuple;      /* Cached tuple */
      97             :     struct MemoizeTuple *next;  /* The next tuple with the same parameter
      98             :                                  * values or NULL if it's the last one */
      99             : } MemoizeTuple;
     100             : 
     101             : /*
     102             :  * MemoizeKey
     103             :  * The hash table key for cached entries plus the LRU list link
     104             :  */
     105             : typedef struct MemoizeKey
     106             : {
     107             :     MinimalTuple params;
     108             :     dlist_node  lru_node;       /* Pointer to next/prev key in LRU list */
     109             : } MemoizeKey;
     110             : 
     111             : /*
     112             :  * MemoizeEntry
     113             :  *      The data struct that the cache hash table stores
     114             :  */
     115             : typedef struct MemoizeEntry
     116             : {
     117             :     MemoizeKey *key;            /* Hash key for hash table lookups */
     118             :     MemoizeTuple *tuplehead;    /* Pointer to the first tuple or NULL if no
     119             :                                  * tuples are cached for this entry */
     120             :     uint32      hash;           /* Hash value (cached) */
     121             :     char        status;         /* Hash status */
     122             :     bool        complete;       /* Did we read the outer plan to completion? */
     123             : } MemoizeEntry;
     124             : 
     125             : 
     126             : #define SH_PREFIX memoize
     127             : #define SH_ELEMENT_TYPE MemoizeEntry
     128             : #define SH_KEY_TYPE MemoizeKey *
     129             : #define SH_SCOPE static inline
     130             : #define SH_DECLARE
     131             : #include "lib/simplehash.h"
     132             : 
     133             : static uint32 MemoizeHash_hash(struct memoize_hash *tb,
     134             :                                const MemoizeKey *key);
     135             : static bool MemoizeHash_equal(struct memoize_hash *tb,
     136             :                               const MemoizeKey *key1,
     137             :                               const MemoizeKey *key2);
     138             : 
     139             : #define SH_PREFIX memoize
     140             : #define SH_ELEMENT_TYPE MemoizeEntry
     141             : #define SH_KEY_TYPE MemoizeKey *
     142             : #define SH_KEY key
     143             : #define SH_HASH_KEY(tb, key) MemoizeHash_hash(tb, key)
     144             : #define SH_EQUAL(tb, a, b) MemoizeHash_equal(tb, a, b)
     145             : #define SH_SCOPE static inline
     146             : #define SH_STORE_HASH
     147             : #define SH_GET_HASH(tb, a) a->hash
     148             : #define SH_DEFINE
     149             : #include "lib/simplehash.h"
     150             : 
     151             : /*
     152             :  * MemoizeHash_hash
     153             :  *      Hash function for simplehash hashtable.  'key' is unused here as we
     154             :  *      require that all table lookups first populate the MemoizeState's
     155             :  *      probeslot with the key values to be looked up.
     156             :  */
     157             : static uint32
     158      508486 : MemoizeHash_hash(struct memoize_hash *tb, const MemoizeKey *key)
     159             : {
     160      508486 :     MemoizeState *mstate = (MemoizeState *) tb->private_data;
     161      508486 :     ExprContext *econtext = mstate->ss.ps.ps_ExprContext;
     162             :     MemoryContext oldcontext;
     163      508486 :     TupleTableSlot *pslot = mstate->probeslot;
     164      508486 :     uint32      hashkey = 0;
     165      508486 :     int         numkeys = mstate->nkeys;
     166             : 
     167      508486 :     oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
     168             : 
     169      508486 :     if (mstate->binary_mode)
     170             :     {
     171      219742 :         for (int i = 0; i < numkeys; i++)
     172             :         {
     173             :             /* combine successive hashkeys by rotating */
     174      118172 :             hashkey = pg_rotate_left32(hashkey, 1);
     175             : 
     176      118172 :             if (!pslot->tts_isnull[i])   /* treat nulls as having hash key 0 */
     177             :             {
     178             :                 CompactAttribute *attr;
     179             :                 uint32      hkey;
     180             : 
     181      118172 :                 attr = TupleDescCompactAttr(pslot->tts_tupleDescriptor, i);
     182             : 
     183      118172 :                 hkey = datum_image_hash(pslot->tts_values[i], attr->attbyval, attr->attlen);
     184             : 
     185      118172 :                 hashkey ^= hkey;
     186             :             }
     187             :         }
     188             :     }
     189             :     else
     190             :     {
     191      406916 :         FmgrInfo   *hashfunctions = mstate->hashfunctions;
     192      406916 :         Oid        *collations = mstate->collations;
     193             : 
     194      814072 :         for (int i = 0; i < numkeys; i++)
     195             :         {
     196             :             /* combine successive hashkeys by rotating */
     197      407156 :             hashkey = pg_rotate_left32(hashkey, 1);
     198             : 
     199      407156 :             if (!pslot->tts_isnull[i])   /* treat nulls as having hash key 0 */
     200             :             {
     201             :                 uint32      hkey;
     202             : 
     203      406676 :                 hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i],
     204      406676 :                                                         collations[i], pslot->tts_values[i]));
     205      406676 :                 hashkey ^= hkey;
     206             :             }
     207             :         }
     208             :     }
     209             : 
     210      508486 :     MemoryContextSwitchTo(oldcontext);
     211      508486 :     return murmurhash32(hashkey);
     212             : }
     213             : 
     214             : /*
     215             :  * MemoizeHash_equal
     216             :  *      Equality function for confirming hash value matches during a hash
     217             :  *      table lookup.  'key2' is never used.  Instead the MemoizeState's
     218             :  *      probeslot is always populated with details of what's being looked up.
     219             :  */
     220             : static bool
     221      428848 : MemoizeHash_equal(struct memoize_hash *tb, const MemoizeKey *key1,
     222             :                   const MemoizeKey *key2)
     223             : {
     224      428848 :     MemoizeState *mstate = (MemoizeState *) tb->private_data;
     225      428848 :     ExprContext *econtext = mstate->ss.ps.ps_ExprContext;
     226      428848 :     TupleTableSlot *tslot = mstate->tableslot;
     227      428848 :     TupleTableSlot *pslot = mstate->probeslot;
     228             : 
     229             :     /* probeslot should have already been prepared by prepare_probe_slot() */
     230      428848 :     ExecStoreMinimalTuple(key1->params, tslot, false);
     231             : 
     232      428848 :     if (mstate->binary_mode)
     233             :     {
     234             :         MemoryContext oldcontext;
     235      100758 :         int         numkeys = mstate->nkeys;
     236      100758 :         bool        match = true;
     237             : 
     238      100758 :         oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
     239             : 
     240      100758 :         slot_getallattrs(tslot);
     241      100758 :         slot_getallattrs(pslot);
     242             : 
     243      217818 :         for (int i = 0; i < numkeys; i++)
     244             :         {
     245             :             CompactAttribute *attr;
     246             : 
     247      117060 :             if (tslot->tts_isnull[i] != pslot->tts_isnull[i])
     248             :             {
     249           0 :                 match = false;
     250           0 :                 break;
     251             :             }
     252             : 
     253             :             /* both NULL? they're equal */
     254      117060 :             if (tslot->tts_isnull[i])
     255           0 :                 continue;
     256             : 
     257             :             /* perform binary comparison on the two datums */
     258      117060 :             attr = TupleDescCompactAttr(tslot->tts_tupleDescriptor, i);
     259      117060 :             if (!datum_image_eq(tslot->tts_values[i], pslot->tts_values[i],
     260      117060 :                                 attr->attbyval, attr->attlen))
     261             :             {
     262           0 :                 match = false;
     263           0 :                 break;
     264             :             }
     265             :         }
     266             : 
     267      100758 :         MemoryContextSwitchTo(oldcontext);
     268      100758 :         return match;
     269             :     }
     270             :     else
     271             :     {
     272      328090 :         econtext->ecxt_innertuple = tslot;
     273      328090 :         econtext->ecxt_outertuple = pslot;
     274      328090 :         return ExecQual(mstate->cache_eq_expr, econtext);
     275             :     }
     276             : }
     277             : 
     278             : /*
     279             :  * Initialize the hash table to empty.  The MemoizeState's hashtable field
     280             :  * must point to NULL.
     281             :  */
     282             : static void
     283        1080 : build_hash_table(MemoizeState *mstate, uint32 size)
     284             : {
     285             :     Assert(mstate->hashtable == NULL);
     286             : 
     287             :     /* Make a guess at a good size when we're not given a valid size. */
     288        1080 :     if (size == 0)
     289           0 :         size = 1024;
     290             : 
     291             :     /* memoize_create will convert the size to a power of 2 */
     292        1080 :     mstate->hashtable = memoize_create(mstate->tableContext, size, mstate);
     293        1080 : }
     294             : 
     295             : /*
     296             :  * prepare_probe_slot
     297             :  *      Populate mstate's probeslot with the values from the tuple stored
     298             :  *      in 'key'.  If 'key' is NULL, then perform the population by evaluating
     299             :  *      mstate's param_exprs.
     300             :  */
     301             : static inline void
     302      508486 : prepare_probe_slot(MemoizeState *mstate, MemoizeKey *key)
     303             : {
     304      508486 :     TupleTableSlot *pslot = mstate->probeslot;
     305      508486 :     TupleTableSlot *tslot = mstate->tableslot;
     306      508486 :     int         numKeys = mstate->nkeys;
     307             : 
     308      508486 :     ExecClearTuple(pslot);
     309             : 
     310      508486 :     if (key == NULL)
     311             :     {
     312      506086 :         ExprContext *econtext = mstate->ss.ps.ps_ExprContext;
     313             :         MemoryContext oldcontext;
     314             : 
     315      506086 :         oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
     316             : 
     317             :         /* Set the probeslot's values based on the current parameter values */
     318     1029014 :         for (int i = 0; i < numKeys; i++)
     319      522928 :             pslot->tts_values[i] = ExecEvalExpr(mstate->param_exprs[i],
     320             :                                                 econtext,
     321      522928 :                                                 &pslot->tts_isnull[i]);
     322             : 
     323      506086 :         MemoryContextSwitchTo(oldcontext);
     324             :     }
     325             :     else
     326             :     {
     327             :         /* Process the key's MinimalTuple and store the values in probeslot */
     328        2400 :         ExecStoreMinimalTuple(key->params, tslot, false);
     329        2400 :         slot_getallattrs(tslot);
     330        2400 :         memcpy(pslot->tts_values, tslot->tts_values, sizeof(Datum) * numKeys);
     331        2400 :         memcpy(pslot->tts_isnull, tslot->tts_isnull, sizeof(bool) * numKeys);
     332             :     }
     333             : 
     334      508486 :     ExecStoreVirtualTuple(pslot);
     335      508486 : }
     336             : 
     337             : /*
     338             :  * entry_purge_tuples
     339             :  *      Remove all tuples from the cache entry pointed to by 'entry'.  This
     340             :  *      leaves an empty cache entry.  Also, update the memory accounting to
     341             :  *      reflect the removal of the tuples.
     342             :  */
     343             : static inline void
     344        2388 : entry_purge_tuples(MemoizeState *mstate, MemoizeEntry *entry)
     345             : {
     346        2388 :     MemoizeTuple *tuple = entry->tuplehead;
     347        2388 :     uint64      freed_mem = 0;
     348             : 
     349        4776 :     while (tuple != NULL)
     350             :     {
     351        2388 :         MemoizeTuple *next = tuple->next;
     352             : 
     353        2388 :         freed_mem += CACHE_TUPLE_BYTES(tuple);
     354             : 
     355             :         /* Free memory used for this tuple */
     356        2388 :         pfree(tuple->mintuple);
     357        2388 :         pfree(tuple);
     358             : 
     359        2388 :         tuple = next;
     360             :     }
     361             : 
     362        2388 :     entry->complete = false;
     363        2388 :     entry->tuplehead = NULL;
     364             : 
     365             :     /* Update the memory accounting */
     366        2388 :     mstate->mem_used -= freed_mem;
     367        2388 : }
     368             : 
     369             : /*
     370             :  * remove_cache_entry
     371             :  *      Remove 'entry' from the cache and free memory used by it.
     372             :  */
     373             : static void
     374        2388 : remove_cache_entry(MemoizeState *mstate, MemoizeEntry *entry)
     375             : {
     376        2388 :     MemoizeKey *key = entry->key;
     377             : 
     378        2388 :     dlist_delete(&entry->key->lru_node);
     379             : 
     380             :     /* Remove all of the tuples from this entry */
     381        2388 :     entry_purge_tuples(mstate, entry);
     382             : 
     383             :     /*
     384             :      * Update memory accounting. entry_purge_tuples should have already
     385             :      * subtracted the memory used for each cached tuple.  Here we just update
     386             :      * the amount used by the entry itself.
     387             :      */
     388        2388 :     mstate->mem_used -= EMPTY_ENTRY_MEMORY_BYTES(entry);
     389             : 
     390             :     /* Remove the entry from the cache */
     391        2388 :     memoize_delete_item(mstate->hashtable, entry);
     392             : 
     393        2388 :     pfree(key->params);
     394        2388 :     pfree(key);
     395        2388 : }
     396             : 
     397             : /*
     398             :  * cache_purge_all
     399             :  *      Remove all items from the cache
     400             :  */
     401             : static void
     402          18 : cache_purge_all(MemoizeState *mstate)
     403             : {
     404          18 :     uint64      evictions = 0;
     405             : 
     406          18 :     if (mstate->hashtable != NULL)
     407          12 :         evictions = mstate->hashtable->members;
     408             : 
     409             :     /*
     410             :      * Likely the most efficient way to remove all items is to just reset the
     411             :      * memory context for the cache and then rebuild a fresh hash table.  This
     412             :      * saves having to remove each item one by one and pfree each cached tuple
     413             :      */
     414          18 :     MemoryContextReset(mstate->tableContext);
     415             : 
     416             :     /* NULLify so we recreate the table on the next call */
     417          18 :     mstate->hashtable = NULL;
     418             : 
     419             :     /* reset the LRU list */
     420          18 :     dlist_init(&mstate->lru_list);
     421          18 :     mstate->last_tuple = NULL;
     422          18 :     mstate->entry = NULL;
     423             : 
     424          18 :     mstate->mem_used = 0;
     425             : 
     426             :     /* XXX should we add something new to track these purges? */
     427          18 :     mstate->stats.cache_evictions += evictions; /* Update Stats */
     428          18 : }
     429             : 
     430             : /*
     431             :  * cache_reduce_memory
     432             :  *      Evict older and less recently used items from the cache in order to
     433             :  *      reduce the memory consumption back to something below the
     434             :  *      MemoizeState's mem_limit.
     435             :  *
     436             :  * 'specialkey', if not NULL, causes the function to return false if the entry
     437             :  * which the key belongs to is removed from the cache.
     438             :  */
     439             : static bool
     440        2388 : cache_reduce_memory(MemoizeState *mstate, MemoizeKey *specialkey)
     441             : {
     442        2388 :     bool        specialkey_intact = true;   /* for now */
     443             :     dlist_mutable_iter iter;
     444        2388 :     uint64      evictions = 0;
     445             : 
     446             :     /* Update peak memory usage */
     447        2388 :     if (mstate->mem_used > mstate->stats.mem_peak)
     448           6 :         mstate->stats.mem_peak = mstate->mem_used;
     449             : 
     450             :     /* We expect only to be called when we've gone over budget on memory */
     451             :     Assert(mstate->mem_used > mstate->mem_limit);
     452             : 
     453             :     /* Start the eviction process starting at the head of the LRU list. */
     454        2388 :     dlist_foreach_modify(iter, &mstate->lru_list)
     455             :     {
     456        2388 :         MemoizeKey *key = dlist_container(MemoizeKey, lru_node, iter.cur);
     457             :         MemoizeEntry *entry;
     458             : 
     459             :         /*
     460             :          * Populate the hash probe slot in preparation for looking up this LRU
     461             :          * entry.
     462             :          */
     463        2388 :         prepare_probe_slot(mstate, key);
     464             : 
     465             :         /*
     466             :          * Ideally the LRU list pointers would be stored in the entry itself
     467             :          * rather than in the key.  Unfortunately, we can't do that as the
     468             :          * simplehash.h code may resize the table and allocate new memory for
     469             :          * entries which would result in those pointers pointing to the old
     470             :          * buckets.  However, it's fine to use the key to store this as that's
     471             :          * only referenced by a pointer in the entry, which of course follows
     472             :          * the entry whenever the hash table is resized.  Since we only have a
     473             :          * pointer to the key here, we must perform a hash table lookup to
     474             :          * find the entry that the key belongs to.
     475             :          */
     476        2388 :         entry = memoize_lookup(mstate->hashtable, NULL);
     477             : 
     478             :         /*
     479             :          * Sanity check that we found the entry belonging to the LRU list
     480             :          * item.  A misbehaving hash or equality function could cause the
     481             :          * entry not to be found or the wrong entry to be found.
     482             :          */
     483        2388 :         if (unlikely(entry == NULL || entry->key != key))
     484           0 :             elog(ERROR, "could not find memoization table entry");
     485             : 
     486             :         /*
     487             :          * If we're being called to free memory while the cache is being
     488             :          * populated with new tuples, then we'd better take some care as we
     489             :          * could end up freeing the entry which 'specialkey' belongs to.
     490             :          * Generally callers will pass 'specialkey' as the key for the cache
     491             :          * entry which is currently being populated, so we must set
     492             :          * 'specialkey_intact' to false to inform the caller the specialkey
     493             :          * entry has been removed.
     494             :          */
     495        2388 :         if (key == specialkey)
     496           0 :             specialkey_intact = false;
     497             : 
     498             :         /*
     499             :          * Finally remove the entry.  This will remove from the LRU list too.
     500             :          */
     501        2388 :         remove_cache_entry(mstate, entry);
     502             : 
     503        2388 :         evictions++;
     504             : 
     505             :         /* Exit if we've freed enough memory */
     506        2388 :         if (mstate->mem_used <= mstate->mem_limit)
     507        2388 :             break;
     508             :     }
     509             : 
     510        2388 :     mstate->stats.cache_evictions += evictions; /* Update Stats */
     511             : 
     512        2388 :     return specialkey_intact;
     513             : }
     514             : 
     515             : /*
     516             :  * cache_lookup
     517             :  *      Perform a lookup to see if we've already cached tuples based on the
     518             :  *      scan's current parameters.  If we find an existing entry we move it to
     519             :  *      the end of the LRU list, set *found to true then return it.  If we
     520             :  *      don't find an entry then we create a new one and add it to the end of
     521             :  *      the LRU list.  We also update cache memory accounting and remove older
     522             :  *      entries if we go over the memory budget.  If we managed to free enough
     523             :  *      memory we return the new entry, else we return NULL.
     524             :  *
     525             :  * Callers can assume we'll never return NULL when *found is true.
     526             :  */
     527             : static MemoizeEntry *
     528      506086 : cache_lookup(MemoizeState *mstate, bool *found)
     529             : {
     530             :     MemoizeKey *key;
     531             :     MemoizeEntry *entry;
     532             :     MemoryContext oldcontext;
     533             : 
     534             :     /* prepare the probe slot with the current scan parameters */
     535      506086 :     prepare_probe_slot(mstate, NULL);
     536             : 
     537             :     /*
     538             :      * Add the new entry to the cache.  No need to pass a valid key since the
     539             :      * hash function uses mstate's probeslot, which we populated above.
     540             :      */
     541      506086 :     entry = memoize_insert(mstate->hashtable, NULL, found);
     542             : 
     543      506086 :     if (*found)
     544             :     {
     545             :         /*
     546             :          * Move existing entry to the tail of the LRU list to mark it as the
     547             :          * most recently used item.
     548             :          */
     549      426448 :         dlist_move_tail(&mstate->lru_list, &entry->key->lru_node);
     550             : 
     551      426448 :         return entry;
     552             :     }
     553             : 
     554       79638 :     oldcontext = MemoryContextSwitchTo(mstate->tableContext);
     555             : 
     556             :     /* Allocate a new key */
     557       79638 :     entry->key = key = (MemoizeKey *) palloc(sizeof(MemoizeKey));
     558       79638 :     key->params = ExecCopySlotMinimalTuple(mstate->probeslot);
     559             : 
     560             :     /* Update the total cache memory utilization */
     561       79638 :     mstate->mem_used += EMPTY_ENTRY_MEMORY_BYTES(entry);
     562             : 
     563             :     /* Initialize this entry */
     564       79638 :     entry->complete = false;
     565       79638 :     entry->tuplehead = NULL;
     566             : 
     567             :     /*
     568             :      * Since this is the most recently used entry, push this entry onto the
     569             :      * end of the LRU list.
     570             :      */
     571       79638 :     dlist_push_tail(&mstate->lru_list, &entry->key->lru_node);
     572             : 
     573       79638 :     mstate->last_tuple = NULL;
     574             : 
     575       79638 :     MemoryContextSwitchTo(oldcontext);
     576             : 
     577             :     /*
     578             :      * If we've gone over our memory budget, then we'll free up some space in
     579             :      * the cache.
     580             :      */
     581       79638 :     if (mstate->mem_used > mstate->mem_limit)
     582             :     {
     583             :         /*
     584             :          * Try to free up some memory.  It's highly unlikely that we'll fail
     585             :          * to do so here since the entry we've just added is yet to contain
     586             :          * any tuples and we're able to remove any other entry to reduce the
     587             :          * memory consumption.
     588             :          */
     589        2388 :         if (unlikely(!cache_reduce_memory(mstate, key)))
     590           0 :             return NULL;
     591             : 
     592             :         /*
     593             :          * The process of removing entries from the cache may have caused the
     594             :          * code in simplehash.h to shuffle elements to earlier buckets in the
     595             :          * hash table.  If it has, we'll need to find the entry again by
     596             :          * performing a lookup.  Fortunately, we can detect if this has
     597             :          * happened by seeing if the entry is still in use and that the key
     598             :          * pointer matches our expected key.
     599             :          */
     600        2388 :         if (entry->status != memoize_SH_IN_USE || entry->key != key)
     601             :         {
     602             :             /*
     603             :              * We need to repopulate the probeslot as lookups performed during
     604             :              * the cache evictions above will have stored some other key.
     605             :              */
     606          12 :             prepare_probe_slot(mstate, key);
     607             : 
     608             :             /* Re-find the newly added entry */
     609          12 :             entry = memoize_lookup(mstate->hashtable, NULL);
     610             :             Assert(entry != NULL);
     611             :         }
     612             :     }
     613             : 
     614       79638 :     return entry;
     615             : }
     616             : 
     617             : /*
     618             :  * cache_store_tuple
     619             :  *      Add the tuple stored in 'slot' to the mstate's current cache entry.
     620             :  *      The cache entry must have already been made with cache_lookup().
     621             :  *      mstate's last_tuple field must point to the tail of mstate->entry's
     622             :  *      list of tuples.
     623             :  */
     624             : static bool
     625       72842 : cache_store_tuple(MemoizeState *mstate, TupleTableSlot *slot)
     626             : {
     627             :     MemoizeTuple *tuple;
     628       72842 :     MemoizeEntry *entry = mstate->entry;
     629             :     MemoryContext oldcontext;
     630             : 
     631             :     Assert(slot != NULL);
     632             :     Assert(entry != NULL);
     633             : 
     634       72842 :     oldcontext = MemoryContextSwitchTo(mstate->tableContext);
     635             : 
     636       72842 :     tuple = (MemoizeTuple *) palloc(sizeof(MemoizeTuple));
     637       72842 :     tuple->mintuple = ExecCopySlotMinimalTuple(slot);
     638       72842 :     tuple->next = NULL;
     639             : 
     640             :     /* Account for the memory we just consumed */
     641       72842 :     mstate->mem_used += CACHE_TUPLE_BYTES(tuple);
     642             : 
     643       72842 :     if (entry->tuplehead == NULL)
     644             :     {
     645             :         /*
     646             :          * This is the first tuple for this entry, so just point the list head
     647             :          * to it.
     648             :          */
     649       72384 :         entry->tuplehead = tuple;
     650             :     }
     651             :     else
     652             :     {
     653             :         /* push this tuple onto the tail of the list */
     654         458 :         mstate->last_tuple->next = tuple;
     655             :     }
     656             : 
     657       72842 :     mstate->last_tuple = tuple;
     658       72842 :     MemoryContextSwitchTo(oldcontext);
     659             : 
     660             :     /*
     661             :      * If we've gone over our memory budget then free up some space in the
     662             :      * cache.
     663             :      */
     664       72842 :     if (mstate->mem_used > mstate->mem_limit)
     665             :     {
     666           0 :         MemoizeKey *key = entry->key;
     667             : 
     668           0 :         if (!cache_reduce_memory(mstate, key))
     669           0 :             return false;
     670             : 
     671             :         /*
     672             :          * The process of removing entries from the cache may have caused the
     673             :          * code in simplehash.h to shuffle elements to earlier buckets in the
     674             :          * hash table.  If it has, we'll need to find the entry again by
     675             :          * performing a lookup.  Fortunately, we can detect if this has
     676             :          * happened by seeing if the entry is still in use and that the key
     677             :          * pointer matches our expected key.
     678             :          */
     679           0 :         if (entry->status != memoize_SH_IN_USE || entry->key != key)
     680             :         {
     681             :             /*
     682             :              * We need to repopulate the probeslot as lookups performed during
     683             :              * the cache evictions above will have stored some other key.
     684             :              */
     685           0 :             prepare_probe_slot(mstate, key);
     686             : 
     687             :             /* Re-find the entry */
     688           0 :             mstate->entry = entry = memoize_lookup(mstate->hashtable, NULL);
     689             :             Assert(entry != NULL);
     690             :         }
     691             :     }
     692             : 
     693       72842 :     return true;
     694             : }
     695             : 
     696             : static TupleTableSlot *
     697      664242 : ExecMemoize(PlanState *pstate)
     698             : {
     699      664242 :     MemoizeState *node = castNode(MemoizeState, pstate);
     700      664242 :     ExprContext *econtext = node->ss.ps.ps_ExprContext;
     701             :     PlanState  *outerNode;
     702             :     TupleTableSlot *slot;
     703             : 
     704      664242 :     CHECK_FOR_INTERRUPTS();
     705             : 
     706             :     /*
     707             :      * Reset per-tuple memory context to free any expression evaluation
     708             :      * storage allocated in the previous tuple cycle.
     709             :      */
     710      664242 :     ResetExprContext(econtext);
     711             : 
     712      664242 :     switch (node->mstatus)
     713             :     {
     714      506086 :         case MEMO_CACHE_LOOKUP:
     715             :             {
     716             :                 MemoizeEntry *entry;
     717             :                 TupleTableSlot *outerslot;
     718             :                 bool        found;
     719             : 
     720             :                 Assert(node->entry == NULL);
     721             : 
     722             :                 /* first call? we'll need a hash table. */
     723      506086 :                 if (unlikely(node->hashtable == NULL))
     724        1080 :                     build_hash_table(node, ((Memoize *) pstate->plan)->est_entries);
     725             : 
     726             :                 /*
     727             :                  * We're only ever in this state for the first call of the
     728             :                  * scan.  Here we have a look to see if we've already seen the
     729             :                  * current parameters before and if we have already cached a
     730             :                  * complete set of records that the outer plan will return for
     731             :                  * these parameters.
     732             :                  *
     733             :                  * When we find a valid cache entry, we'll return the first
     734             :                  * tuple from it. If not found, we'll create a cache entry and
     735             :                  * then try to fetch a tuple from the outer scan.  If we find
     736             :                  * one there, we'll try to cache it.
     737             :                  */
     738             : 
     739             :                 /* see if we've got anything cached for the current parameters */
     740      506086 :                 entry = cache_lookup(node, &found);
     741             : 
     742      506086 :                 if (found && entry->complete)
     743             :                 {
     744      426448 :                     node->stats.cache_hits += 1; /* stats update */
     745             : 
     746             :                     /*
     747             :                      * Set last_tuple and entry so that the state
     748             :                      * MEMO_CACHE_FETCH_NEXT_TUPLE can easily find the next
     749             :                      * tuple for these parameters.
     750             :                      */
     751      426448 :                     node->last_tuple = entry->tuplehead;
     752      426448 :                     node->entry = entry;
     753             : 
     754             :                     /* Fetch the first cached tuple, if there is one */
     755      426448 :                     if (entry->tuplehead)
     756             :                     {
     757      139810 :                         node->mstatus = MEMO_CACHE_FETCH_NEXT_TUPLE;
     758             : 
     759      139810 :                         slot = node->ss.ps.ps_ResultTupleSlot;
     760      139810 :                         ExecStoreMinimalTuple(entry->tuplehead->mintuple,
     761             :                                               slot, false);
     762             : 
     763      139810 :                         return slot;
     764             :                     }
     765             : 
     766             :                     /* The cache entry is void of any tuples. */
     767      286638 :                     node->mstatus = MEMO_END_OF_SCAN;
     768      286638 :                     return NULL;
     769             :                 }
     770             : 
     771             :                 /* Handle cache miss */
     772       79638 :                 node->stats.cache_misses += 1;   /* stats update */
     773             : 
     774       79638 :                 if (found)
     775             :                 {
     776             :                     /*
     777             :                      * A cache entry was found, but the scan for that entry
     778             :                      * did not run to completion.  We'll just remove all
     779             :                      * tuples and start again.  It might be tempting to
     780             :                      * continue where we left off, but there's no guarantee
     781             :                      * the outer node will produce the tuples in the same
     782             :                      * order as it did last time.
     783             :                      */
     784           0 :                     entry_purge_tuples(node, entry);
     785             :                 }
     786             : 
     787             :                 /* Scan the outer node for a tuple to cache */
     788       79638 :                 outerNode = outerPlanState(node);
     789       79638 :                 outerslot = ExecProcNode(outerNode);
     790       79638 :                 if (TupIsNull(outerslot))
     791             :                 {
     792             :                     /*
     793             :                      * cache_lookup may have returned NULL due to failure to
     794             :                      * free enough cache space, so ensure we don't do anything
     795             :                      * here that assumes it worked. There's no need to go into
     796             :                      * bypass mode here as we're setting mstatus to end of
     797             :                      * scan.
     798             :                      */
     799        7254 :                     if (likely(entry))
     800        7254 :                         entry->complete = true;
     801             : 
     802        7254 :                     node->mstatus = MEMO_END_OF_SCAN;
     803        7254 :                     return NULL;
     804             :                 }
     805             : 
     806       72384 :                 node->entry = entry;
     807             : 
     808             :                 /*
     809             :                  * If we failed to create the entry or failed to store the
     810             :                  * tuple in the entry, then go into bypass mode.
     811             :                  */
     812       72384 :                 if (unlikely(entry == NULL ||
     813             :                              !cache_store_tuple(node, outerslot)))
     814             :                 {
     815           0 :                     node->stats.cache_overflows += 1;    /* stats update */
     816             : 
     817           0 :                     node->mstatus = MEMO_CACHE_BYPASS_MODE;
     818             : 
     819             :                     /*
     820             :                      * No need to clear out last_tuple as we'll stay in bypass
     821             :                      * mode until the end of the scan.
     822             :                      */
     823             :                 }
     824             :                 else
     825             :                 {
     826             :                     /*
     827             :                      * If we only expect a single row from this scan then we
     828             :                      * can mark that we're not expecting more.  This allows
     829             :                      * cache lookups to work even when the scan has not been
     830             :                      * executed to completion.
     831             :                      */
     832       72384 :                     entry->complete = node->singlerow;
     833       72384 :                     node->mstatus = MEMO_FILLING_CACHE;
     834             :                 }
     835             : 
     836       72384 :                 slot = node->ss.ps.ps_ResultTupleSlot;
     837       72384 :                 ExecCopySlot(slot, outerslot);
     838       72384 :                 return slot;
     839             :             }
     840             : 
     841       90276 :         case MEMO_CACHE_FETCH_NEXT_TUPLE:
     842             :             {
     843             :                 /* We shouldn't be in this state if these are not set */
     844             :                 Assert(node->entry != NULL);
     845             :                 Assert(node->last_tuple != NULL);
     846             : 
     847             :                 /* Skip to the next tuple to output */
     848       90276 :                 node->last_tuple = node->last_tuple->next;
     849             : 
     850             :                 /* No more tuples in the cache */
     851       90276 :                 if (node->last_tuple == NULL)
     852             :                 {
     853       85080 :                     node->mstatus = MEMO_END_OF_SCAN;
     854       85080 :                     return NULL;
     855             :                 }
     856             : 
     857        5196 :                 slot = node->ss.ps.ps_ResultTupleSlot;
     858        5196 :                 ExecStoreMinimalTuple(node->last_tuple->mintuple, slot,
     859             :                                       false);
     860             : 
     861        5196 :                 return slot;
     862             :             }
     863             : 
     864       67880 :         case MEMO_FILLING_CACHE:
     865             :             {
     866             :                 TupleTableSlot *outerslot;
     867       67880 :                 MemoizeEntry *entry = node->entry;
     868             : 
     869             :                 /* entry should already have been set by MEMO_CACHE_LOOKUP */
     870             :                 Assert(entry != NULL);
     871             : 
     872             :                 /*
     873             :                  * When in the MEMO_FILLING_CACHE state, we've just had a
     874             :                  * cache miss and are populating the cache with the current
     875             :                  * scan tuples.
     876             :                  */
     877       67880 :                 outerNode = outerPlanState(node);
     878       67880 :                 outerslot = ExecProcNode(outerNode);
     879       67880 :                 if (TupIsNull(outerslot))
     880             :                 {
     881             :                     /* No more tuples.  Mark it as complete */
     882       67422 :                     entry->complete = true;
     883       67422 :                     node->mstatus = MEMO_END_OF_SCAN;
     884       67422 :                     return NULL;
     885             :                 }
     886             : 
     887             :                 /*
     888             :                  * Validate if the planner properly set the singlerow flag. It
     889             :                  * should only set that if each cache entry can, at most,
     890             :                  * return 1 row.
     891             :                  */
     892         458 :                 if (unlikely(entry->complete))
     893           0 :                     elog(ERROR, "cache entry already complete");
     894             : 
     895             :                 /* Record the tuple in the current cache entry */
     896         458 :                 if (unlikely(!cache_store_tuple(node, outerslot)))
     897             :                 {
     898             :                     /* Couldn't store it?  Handle overflow */
     899           0 :                     node->stats.cache_overflows += 1;    /* stats update */
     900             : 
     901           0 :                     node->mstatus = MEMO_CACHE_BYPASS_MODE;
     902             : 
     903             :                     /*
     904             :                      * No need to clear out entry or last_tuple as we'll stay
     905             :                      * in bypass mode until the end of the scan.
     906             :                      */
     907             :                 }
     908             : 
     909         458 :                 slot = node->ss.ps.ps_ResultTupleSlot;
     910         458 :                 ExecCopySlot(slot, outerslot);
     911         458 :                 return slot;
     912             :             }
     913             : 
     914           0 :         case MEMO_CACHE_BYPASS_MODE:
     915             :             {
     916             :                 TupleTableSlot *outerslot;
     917             : 
     918             :                 /*
     919             :                  * When in bypass mode we just continue to read tuples without
     920             :                  * caching.  We need to wait until the next rescan before we
     921             :                  * can come out of this mode.
     922             :                  */
     923           0 :                 outerNode = outerPlanState(node);
     924           0 :                 outerslot = ExecProcNode(outerNode);
     925           0 :                 if (TupIsNull(outerslot))
     926             :                 {
     927           0 :                     node->mstatus = MEMO_END_OF_SCAN;
     928           0 :                     return NULL;
     929             :                 }
     930             : 
     931           0 :                 slot = node->ss.ps.ps_ResultTupleSlot;
     932           0 :                 ExecCopySlot(slot, outerslot);
     933           0 :                 return slot;
     934             :             }
     935             : 
     936           0 :         case MEMO_END_OF_SCAN:
     937             : 
     938             :             /*
     939             :              * We've already returned NULL for this scan, but just in case
     940             :              * something calls us again by mistake.
     941             :              */
     942           0 :             return NULL;
     943             : 
     944           0 :         default:
     945           0 :             elog(ERROR, "unrecognized memoize state: %d",
     946             :                  (int) node->mstatus);
     947             :             return NULL;
     948             :     }                           /* switch */
     949             : }
     950             : 
     951             : MemoizeState *
     952        1372 : ExecInitMemoize(Memoize *node, EState *estate, int eflags)
     953             : {
     954        1372 :     MemoizeState *mstate = makeNode(MemoizeState);
     955             :     Plan       *outerNode;
     956             :     int         i;
     957             :     int         nkeys;
     958             :     Oid        *eqfuncoids;
     959             : 
     960             :     /* check for unsupported flags */
     961             :     Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
     962             : 
     963        1372 :     mstate->ss.ps.plan = (Plan *) node;
     964        1372 :     mstate->ss.ps.state = estate;
     965        1372 :     mstate->ss.ps.ExecProcNode = ExecMemoize;
     966             : 
     967             :     /*
     968             :      * Miscellaneous initialization
     969             :      *
     970             :      * create expression context for node
     971             :      */
     972        1372 :     ExecAssignExprContext(estate, &mstate->ss.ps);
     973             : 
     974        1372 :     outerNode = outerPlan(node);
     975        1372 :     outerPlanState(mstate) = ExecInitNode(outerNode, estate, eflags);
     976             : 
     977             :     /*
     978             :      * Initialize return slot and type. No need to initialize projection info
     979             :      * because this node doesn't do projections.
     980             :      */
     981        1372 :     ExecInitResultTupleSlotTL(&mstate->ss.ps, &TTSOpsMinimalTuple);
     982        1372 :     mstate->ss.ps.ps_ProjInfo = NULL;
     983             : 
     984             :     /*
     985             :      * Initialize scan slot and type.
     986             :      */
     987        1372 :     ExecCreateScanSlotFromOuterPlan(estate, &mstate->ss, &TTSOpsMinimalTuple);
     988             : 
     989             :     /*
     990             :      * Set the state machine to lookup the cache.  We won't find anything
     991             :      * until we cache something, but this saves a special case to create the
     992             :      * first entry.
     993             :      */
     994        1372 :     mstate->mstatus = MEMO_CACHE_LOOKUP;
     995             : 
     996        1372 :     mstate->nkeys = nkeys = node->numKeys;
     997        1372 :     mstate->hashkeydesc = ExecTypeFromExprList(node->param_exprs);
     998        1372 :     mstate->tableslot = MakeSingleTupleTableSlot(mstate->hashkeydesc,
     999             :                                                  &TTSOpsMinimalTuple);
    1000        1372 :     mstate->probeslot = MakeSingleTupleTableSlot(mstate->hashkeydesc,
    1001             :                                                  &TTSOpsVirtual);
    1002             : 
    1003        1372 :     mstate->param_exprs = (ExprState **) palloc(nkeys * sizeof(ExprState *));
    1004        1372 :     mstate->collations = node->collations;    /* Just point directly to the plan
    1005             :                                              * data */
    1006        1372 :     mstate->hashfunctions = (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
    1007             : 
    1008        1372 :     eqfuncoids = palloc(nkeys * sizeof(Oid));
    1009             : 
    1010        2786 :     for (i = 0; i < nkeys; i++)
    1011             :     {
    1012        1414 :         Oid         hashop = node->hashOperators[i];
    1013             :         Oid         left_hashfn;
    1014             :         Oid         right_hashfn;
    1015        1414 :         Expr       *param_expr = (Expr *) list_nth(node->param_exprs, i);
    1016             : 
    1017        1414 :         if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
    1018           0 :             elog(ERROR, "could not find hash function for hash operator %u",
    1019             :                  hashop);
    1020             : 
    1021        1414 :         fmgr_info(left_hashfn, &mstate->hashfunctions[i]);
    1022             : 
    1023        1414 :         mstate->param_exprs[i] = ExecInitExpr(param_expr, (PlanState *) mstate);
    1024        1414 :         eqfuncoids[i] = get_opcode(hashop);
    1025             :     }
    1026             : 
    1027        2744 :     mstate->cache_eq_expr = ExecBuildParamSetEqual(mstate->hashkeydesc,
    1028             :                                                    &TTSOpsMinimalTuple,
    1029             :                                                    &TTSOpsVirtual,
    1030             :                                                    eqfuncoids,
    1031        1372 :                                                    node->collations,
    1032        1372 :                                                    node->param_exprs,
    1033             :                                                    (PlanState *) mstate);
    1034             : 
    1035        1372 :     pfree(eqfuncoids);
    1036        1372 :     mstate->mem_used = 0;
    1037             : 
    1038             :     /* Limit the total memory consumed by the cache to this */
    1039        1372 :     mstate->mem_limit = get_hash_memory_limit();
    1040             : 
    1041             :     /* A memory context dedicated for the cache */
    1042        1372 :     mstate->tableContext = AllocSetContextCreate(CurrentMemoryContext,
    1043             :                                                  "MemoizeHashTable",
    1044             :                                                  ALLOCSET_DEFAULT_SIZES);
    1045             : 
    1046        1372 :     dlist_init(&mstate->lru_list);
    1047        1372 :     mstate->last_tuple = NULL;
    1048        1372 :     mstate->entry = NULL;
    1049             : 
    1050             :     /*
    1051             :      * Mark if we can assume the cache entry is completed after we get the
    1052             :      * first record for it.  Some callers might not call us again after
    1053             :      * getting the first match. e.g. A join operator performing a unique join
    1054             :      * is able to skip to the next outer tuple after getting the first
    1055             :      * matching inner tuple.  In this case, the cache entry is complete after
    1056             :      * getting the first tuple.  This allows us to mark it as so.
    1057             :      */
    1058        1372 :     mstate->singlerow = node->singlerow;
    1059        1372 :     mstate->keyparamids = node->keyparamids;
    1060             : 
    1061             :     /*
    1062             :      * Record if the cache keys should be compared bit by bit, or logically
    1063             :      * using the type's hash equality operator
    1064             :      */
    1065        1372 :     mstate->binary_mode = node->binary_mode;
    1066             : 
    1067             :     /* Zero the statistics counters */
    1068        1372 :     memset(&mstate->stats, 0, sizeof(MemoizeInstrumentation));
    1069             : 
    1070             :     /*
    1071             :      * Because it may require a large allocation, we delay building of the
    1072             :      * hash table until executor run.
    1073             :      */
    1074        1372 :     mstate->hashtable = NULL;
    1075             : 
    1076        1372 :     return mstate;
    1077             : }
    1078             : 
    1079             : void
    1080        1372 : ExecEndMemoize(MemoizeState *node)
    1081             : {
    1082             : #ifdef USE_ASSERT_CHECKING
    1083             :     /* Validate the memory accounting code is correct in assert builds. */
    1084             :     if (node->hashtable != NULL)
    1085             :     {
    1086             :         int         count;
    1087             :         uint64      mem = 0;
    1088             :         memoize_iterator i;
    1089             :         MemoizeEntry *entry;
    1090             : 
    1091             :         memoize_start_iterate(node->hashtable, &i);
    1092             : 
    1093             :         count = 0;
    1094             :         while ((entry = memoize_iterate(node->hashtable, &i)) != NULL)
    1095             :         {
    1096             :             MemoizeTuple *tuple = entry->tuplehead;
    1097             : 
    1098             :             mem += EMPTY_ENTRY_MEMORY_BYTES(entry);
    1099             :             while (tuple != NULL)
    1100             :             {
    1101             :                 mem += CACHE_TUPLE_BYTES(tuple);
    1102             :                 tuple = tuple->next;
    1103             :             }
    1104             :             count++;
    1105             :         }
    1106             : 
    1107             :         Assert(count == node->hashtable->members);
    1108             :         Assert(mem == node->mem_used);
    1109             :     }
    1110             : #endif
    1111             : 
    1112             :     /*
    1113             :      * When ending a parallel worker, copy the statistics gathered by the
    1114             :      * worker back into shared memory so that it can be picked up by the main
    1115             :      * process to report in EXPLAIN ANALYZE.
    1116             :      */
    1117        1372 :     if (node->shared_info != NULL && IsParallelWorker())
    1118             :     {
    1119             :         MemoizeInstrumentation *si;
    1120             : 
    1121             :         /* Make mem_peak available for EXPLAIN */
    1122           0 :         if (node->stats.mem_peak == 0)
    1123           0 :             node->stats.mem_peak = node->mem_used;
    1124             : 
    1125             :         Assert(ParallelWorkerNumber <= node->shared_info->num_workers);
    1126           0 :         si = &node->shared_info->sinstrument[ParallelWorkerNumber];
    1127           0 :         memcpy(si, &node->stats, sizeof(MemoizeInstrumentation));
    1128             :     }
    1129             : 
    1130             :     /* Remove the cache context */
    1131        1372 :     MemoryContextDelete(node->tableContext);
    1132             : 
    1133             :     /*
    1134             :      * shut down the subplan
    1135             :      */
    1136        1372 :     ExecEndNode(outerPlanState(node));
    1137        1372 : }
    1138             : 
    1139             : void
    1140      506086 : ExecReScanMemoize(MemoizeState *node)
    1141             : {
    1142      506086 :     PlanState  *outerPlan = outerPlanState(node);
    1143             : 
    1144             :     /* Mark that we must lookup the cache for a new set of parameters */
    1145      506086 :     node->mstatus = MEMO_CACHE_LOOKUP;
    1146             : 
    1147             :     /* nullify pointers used for the last scan */
    1148      506086 :     node->entry = NULL;
    1149      506086 :     node->last_tuple = NULL;
    1150             : 
    1151             :     /*
    1152             :      * if chgParam of subnode is not null then plan will be re-scanned by
    1153             :      * first ExecProcNode.
    1154             :      */
    1155      506086 :     if (outerPlan->chgParam == NULL)
    1156           0 :         ExecReScan(outerPlan);
    1157             : 
    1158             :     /*
    1159             :      * Purge the entire cache if a parameter changed that is not part of the
    1160             :      * cache key.
    1161             :      */
    1162      506086 :     if (bms_nonempty_difference(outerPlan->chgParam, node->keyparamids))
    1163          18 :         cache_purge_all(node);
    1164      506086 : }
    1165             : 
    1166             : /*
    1167             :  * ExecEstimateCacheEntryOverheadBytes
    1168             :  *      For use in the query planner to help it estimate the amount of memory
    1169             :  *      required to store a single entry in the cache.
    1170             :  */
    1171             : double
    1172      232666 : ExecEstimateCacheEntryOverheadBytes(double ntuples)
    1173             : {
    1174      232666 :     return sizeof(MemoizeEntry) + sizeof(MemoizeKey) + sizeof(MemoizeTuple) *
    1175             :         ntuples;
    1176             : }
    1177             : 
    1178             : /* ----------------------------------------------------------------
    1179             :  *                      Parallel Query Support
    1180             :  * ----------------------------------------------------------------
    1181             :  */
    1182             : 
    1183             :  /* ----------------------------------------------------------------
    1184             :   *     ExecMemoizeEstimate
    1185             :   *
    1186             :   *     Estimate space required to propagate memoize statistics.
    1187             :   * ----------------------------------------------------------------
    1188             :   */
    1189             : void
    1190           6 : ExecMemoizeEstimate(MemoizeState *node, ParallelContext *pcxt)
    1191             : {
    1192             :     Size        size;
    1193             : 
    1194             :     /* don't need this if not instrumenting or no workers */
    1195           6 :     if (!node->ss.ps.instrument || pcxt->nworkers == 0)
    1196           6 :         return;
    1197             : 
    1198           0 :     size = mul_size(pcxt->nworkers, sizeof(MemoizeInstrumentation));
    1199           0 :     size = add_size(size, offsetof(SharedMemoizeInfo, sinstrument));
    1200           0 :     shm_toc_estimate_chunk(&pcxt->estimator, size);
    1201           0 :     shm_toc_estimate_keys(&pcxt->estimator, 1);
    1202             : }
    1203             : 
    1204             : /* ----------------------------------------------------------------
    1205             :  *      ExecMemoizeInitializeDSM
    1206             :  *
    1207             :  *      Initialize DSM space for memoize statistics.
    1208             :  * ----------------------------------------------------------------
    1209             :  */
    1210             : void
    1211           6 : ExecMemoizeInitializeDSM(MemoizeState *node, ParallelContext *pcxt)
    1212             : {
    1213             :     Size        size;
    1214             : 
    1215             :     /* don't need this if not instrumenting or no workers */
    1216           6 :     if (!node->ss.ps.instrument || pcxt->nworkers == 0)
    1217           6 :         return;
    1218             : 
    1219           0 :     size = offsetof(SharedMemoizeInfo, sinstrument)
    1220           0 :         + pcxt->nworkers * sizeof(MemoizeInstrumentation);
    1221           0 :     node->shared_info = shm_toc_allocate(pcxt->toc, size);
    1222             :     /* ensure any unfilled slots will contain zeroes */
    1223           0 :     memset(node->shared_info, 0, size);
    1224           0 :     node->shared_info->num_workers = pcxt->nworkers;
    1225           0 :     shm_toc_insert(pcxt->toc, node->ss.ps.plan->plan_node_id,
    1226           0 :                    node->shared_info);
    1227             : }
    1228             : 
    1229             : /* ----------------------------------------------------------------
    1230             :  *      ExecMemoizeInitializeWorker
    1231             :  *
    1232             :  *      Attach worker to DSM space for memoize statistics.
    1233             :  * ----------------------------------------------------------------
    1234             :  */
    1235             : void
    1236          12 : ExecMemoizeInitializeWorker(MemoizeState *node, ParallelWorkerContext *pwcxt)
    1237             : {
    1238          12 :     node->shared_info =
    1239          12 :         shm_toc_lookup(pwcxt->toc, node->ss.ps.plan->plan_node_id, true);
    1240          12 : }
    1241             : 
    1242             : /* ----------------------------------------------------------------
    1243             :  *      ExecMemoizeRetrieveInstrumentation
    1244             :  *
    1245             :  *      Transfer memoize statistics from DSM to private memory.
    1246             :  * ----------------------------------------------------------------
    1247             :  */
    1248             : void
    1249           0 : ExecMemoizeRetrieveInstrumentation(MemoizeState *node)
    1250             : {
    1251             :     Size        size;
    1252             :     SharedMemoizeInfo *si;
    1253             : 
    1254           0 :     if (node->shared_info == NULL)
    1255           0 :         return;
    1256             : 
    1257           0 :     size = offsetof(SharedMemoizeInfo, sinstrument)
    1258           0 :         + node->shared_info->num_workers * sizeof(MemoizeInstrumentation);
    1259           0 :     si = palloc(size);
    1260           0 :     memcpy(si, node->shared_info, size);
    1261           0 :     node->shared_info = si;
    1262             : }

Generated by: LCOV version 1.14