Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * nodeHash.c
4 : * Routines to hash relations for hashjoin
5 : *
6 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : *
10 : * IDENTIFICATION
11 : * src/backend/executor/nodeHash.c
12 : *
13 : * See note on parallelism in nodeHashjoin.c.
14 : *
15 : *-------------------------------------------------------------------------
16 : */
17 : /*
18 : * INTERFACE ROUTINES
19 : * MultiExecHash - generate an in-memory hash table of the relation
20 : * ExecInitHash - initialize node and subnodes
21 : * ExecEndHash - shutdown node and subnodes
22 : */
23 :
24 : #include "postgres.h"
25 :
26 : #include <math.h>
27 : #include <limits.h>
28 :
29 : #include "access/htup_details.h"
30 : #include "access/parallel.h"
31 : #include "catalog/pg_statistic.h"
32 : #include "commands/tablespace.h"
33 : #include "executor/executor.h"
34 : #include "executor/hashjoin.h"
35 : #include "executor/nodeHash.h"
36 : #include "executor/nodeHashjoin.h"
37 : #include "miscadmin.h"
38 : #include "port/pg_bitutils.h"
39 : #include "utils/dynahash.h"
40 : #include "utils/lsyscache.h"
41 : #include "utils/memutils.h"
42 : #include "utils/syscache.h"
43 : #include "utils/wait_event.h"
44 :
45 : static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
46 : static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
47 : static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable);
48 : static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable);
49 : static void ExecHashBuildSkewHash(HashState *hashstate,
50 : HashJoinTable hashtable, Hash *node,
51 : int mcvsToUse);
52 : static void ExecHashSkewTableInsert(HashJoinTable hashtable,
53 : TupleTableSlot *slot,
54 : uint32 hashvalue,
55 : int bucketNumber);
56 : static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);
57 :
58 : static void *dense_alloc(HashJoinTable hashtable, Size size);
59 : static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable,
60 : size_t size,
61 : dsa_pointer *shared);
62 : static void MultiExecPrivateHash(HashState *node);
63 : static void MultiExecParallelHash(HashState *node);
64 : static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable hashtable,
65 : int bucketno);
66 : static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable hashtable,
67 : HashJoinTuple tuple);
68 : static inline void ExecParallelHashPushTuple(dsa_pointer_atomic *head,
69 : HashJoinTuple tuple,
70 : dsa_pointer tuple_shared);
71 : static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
72 : static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable);
73 : static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable);
74 : static void ExecParallelHashRepartitionRest(HashJoinTable hashtable);
75 : static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable hashtable,
76 : dsa_pointer *shared);
77 : static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable,
78 : int batchno,
79 : size_t size);
80 : static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
81 : static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable);
82 :
83 :
84 : /* ----------------------------------------------------------------
85 : * ExecHash
86 : *
87 : * stub for pro forma compliance
88 : * ----------------------------------------------------------------
89 : */
90 : static TupleTableSlot *
91 0 : ExecHash(PlanState *pstate)
92 : {
93 0 : elog(ERROR, "Hash node does not support ExecProcNode call convention");
94 : return NULL;
95 : }
96 :
97 : /* ----------------------------------------------------------------
98 : * MultiExecHash
99 : *
100 : * build hash table for hashjoin, doing partitioning if more
101 : * than one batch is required.
102 : * ----------------------------------------------------------------
103 : */
104 : Node *
105 18830 : MultiExecHash(HashState *node)
106 : {
107 : /* must provide our own instrumentation support */
108 18830 : if (node->ps.instrument)
109 294 : InstrStartNode(node->ps.instrument);
110 :
111 18830 : if (node->parallel_state != NULL)
112 396 : MultiExecParallelHash(node);
113 : else
114 18434 : MultiExecPrivateHash(node);
115 :
116 : /* must provide our own instrumentation support */
117 18830 : if (node->ps.instrument)
118 294 : InstrStopNode(node->ps.instrument, node->hashtable->partialTuples);
119 :
120 : /*
121 : * We do not return the hash table directly because it's not a subtype of
122 : * Node, and so would violate the MultiExecProcNode API. Instead, our
123 : * parent Hashjoin node is expected to know how to fish it out of our node
124 : * state. Ugly but not really worth cleaning up, since Hashjoin knows
125 : * quite a bit more about Hash besides that.
126 : */
127 18830 : return NULL;
128 : }
129 :
130 : /* ----------------------------------------------------------------
131 : * MultiExecPrivateHash
132 : *
133 : * parallel-oblivious version, building a backend-private
134 : * hash table and (if necessary) batch files.
135 : * ----------------------------------------------------------------
136 : */
137 : static void
138 18434 : MultiExecPrivateHash(HashState *node)
139 : {
140 : PlanState *outerNode;
141 : HashJoinTable hashtable;
142 : TupleTableSlot *slot;
143 : ExprContext *econtext;
144 :
145 : /*
146 : * get state info from node
147 : */
148 18434 : outerNode = outerPlanState(node);
149 18434 : hashtable = node->hashtable;
150 :
151 : /*
152 : * set expression context
153 : */
154 18434 : econtext = node->ps.ps_ExprContext;
155 :
156 : /*
157 : * Get all tuples from the node below the Hash node and insert into the
158 : * hash table (or temp files).
159 : */
160 : for (;;)
161 7400726 : {
162 : bool isnull;
163 : Datum hashdatum;
164 :
165 7419160 : slot = ExecProcNode(outerNode);
166 7419160 : if (TupIsNull(slot))
167 : break;
168 : /* We have to compute the hash value */
169 7400726 : econtext->ecxt_outertuple = slot;
170 :
171 7400726 : ResetExprContext(econtext);
172 :
173 7400726 : hashdatum = ExecEvalExprSwitchContext(node->hash_expr, econtext,
174 : &isnull);
175 :
176 7400726 : if (!isnull)
177 : {
178 7400714 : uint32 hashvalue = DatumGetUInt32(hashdatum);
179 : int bucketNumber;
180 :
181 7400714 : bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
182 7400714 : if (bucketNumber != INVALID_SKEW_BUCKET_NO)
183 : {
184 : /* It's a skew tuple, so put it into that hash table */
185 588 : ExecHashSkewTableInsert(hashtable, slot, hashvalue,
186 : bucketNumber);
187 588 : hashtable->skewTuples += 1;
188 : }
189 : else
190 : {
191 : /* Not subject to skew optimization, so insert normally */
192 7400126 : ExecHashTableInsert(hashtable, slot, hashvalue);
193 : }
194 7400714 : hashtable->totalTuples += 1;
195 : }
196 : }
197 :
198 : /* resize the hash table if needed (NTUP_PER_BUCKET exceeded) */
199 18434 : if (hashtable->nbuckets != hashtable->nbuckets_optimal)
200 86 : ExecHashIncreaseNumBuckets(hashtable);
201 :
202 : /* Account for the buckets in spaceUsed (reported in EXPLAIN ANALYZE) */
203 18434 : hashtable->spaceUsed += hashtable->nbuckets * sizeof(HashJoinTuple);
204 18434 : if (hashtable->spaceUsed > hashtable->spacePeak)
205 18408 : hashtable->spacePeak = hashtable->spaceUsed;
206 :
207 18434 : hashtable->partialTuples = hashtable->totalTuples;
208 18434 : }
209 :
210 : /* ----------------------------------------------------------------
211 : * MultiExecParallelHash
212 : *
213 : * parallel-aware version, building a shared hash table and
214 : * (if necessary) batch files using the combined effort of
215 : * a set of co-operating backends.
216 : * ----------------------------------------------------------------
217 : */
218 : static void
219 396 : MultiExecParallelHash(HashState *node)
220 : {
221 : ParallelHashJoinState *pstate;
222 : PlanState *outerNode;
223 : HashJoinTable hashtable;
224 : TupleTableSlot *slot;
225 : ExprContext *econtext;
226 : uint32 hashvalue;
227 : Barrier *build_barrier;
228 : int i;
229 :
230 : /*
231 : * get state info from node
232 : */
233 396 : outerNode = outerPlanState(node);
234 396 : hashtable = node->hashtable;
235 :
236 : /*
237 : * set expression context
238 : */
239 396 : econtext = node->ps.ps_ExprContext;
240 :
241 : /*
242 : * Synchronize the parallel hash table build. At this stage we know that
243 : * the shared hash table has been or is being set up by
244 : * ExecHashTableCreate(), but we don't know if our peers have returned
245 : * from there or are here in MultiExecParallelHash(), and if so how far
246 : * through they are. To find out, we check the build_barrier phase then
247 : * and jump to the right step in the build algorithm.
248 : */
249 396 : pstate = hashtable->parallel_state;
250 396 : build_barrier = &pstate->build_barrier;
251 : Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATE);
252 396 : switch (BarrierPhase(build_barrier))
253 : {
254 168 : case PHJ_BUILD_ALLOCATE:
255 :
256 : /*
257 : * Either I just allocated the initial hash table in
258 : * ExecHashTableCreate(), or someone else is doing that. Either
259 : * way, wait for everyone to arrive here so we can proceed.
260 : */
261 168 : BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATE);
262 : /* Fall through. */
263 :
264 240 : case PHJ_BUILD_HASH_INNER:
265 :
266 : /*
267 : * It's time to begin hashing, or if we just arrived here then
268 : * hashing is already underway, so join in that effort. While
269 : * hashing we have to be prepared to help increase the number of
270 : * batches or buckets at any time, and if we arrived here when
271 : * that was already underway we'll have to help complete that work
272 : * immediately so that it's safe to access batches and buckets
273 : * below.
274 : */
275 240 : if (PHJ_GROW_BATCHES_PHASE(BarrierAttach(&pstate->grow_batches_barrier)) !=
276 : PHJ_GROW_BATCHES_ELECT)
277 0 : ExecParallelHashIncreaseNumBatches(hashtable);
278 240 : if (PHJ_GROW_BUCKETS_PHASE(BarrierAttach(&pstate->grow_buckets_barrier)) !=
279 : PHJ_GROW_BUCKETS_ELECT)
280 0 : ExecParallelHashIncreaseNumBuckets(hashtable);
281 240 : ExecParallelHashEnsureBatchAccessors(hashtable);
282 240 : ExecParallelHashTableSetCurrentBatch(hashtable, 0);
283 : for (;;)
284 2160132 : {
285 : bool isnull;
286 :
287 2160372 : slot = ExecProcNode(outerNode);
288 2160372 : if (TupIsNull(slot))
289 : break;
290 2160132 : econtext->ecxt_outertuple = slot;
291 :
292 2160132 : ResetExprContext(econtext);
293 :
294 2160132 : hashvalue = DatumGetUInt32(ExecEvalExprSwitchContext(node->hash_expr,
295 : econtext,
296 : &isnull));
297 :
298 2160132 : if (!isnull)
299 2160132 : ExecParallelHashTableInsert(hashtable, slot, hashvalue);
300 2160132 : hashtable->partialTuples++;
301 : }
302 :
303 : /*
304 : * Make sure that any tuples we wrote to disk are visible to
305 : * others before anyone tries to load them.
306 : */
307 1330 : for (i = 0; i < hashtable->nbatch; ++i)
308 1090 : sts_end_write(hashtable->batches[i].inner_tuples);
309 :
310 : /*
311 : * Update shared counters. We need an accurate total tuple count
312 : * to control the empty table optimization.
313 : */
314 240 : ExecParallelHashMergeCounters(hashtable);
315 :
316 240 : BarrierDetach(&pstate->grow_buckets_barrier);
317 240 : BarrierDetach(&pstate->grow_batches_barrier);
318 :
319 : /*
320 : * Wait for everyone to finish building and flushing files and
321 : * counters.
322 : */
323 240 : if (BarrierArriveAndWait(build_barrier,
324 : WAIT_EVENT_HASH_BUILD_HASH_INNER))
325 : {
326 : /*
327 : * Elect one backend to disable any further growth. Batches
328 : * are now fixed. While building them we made sure they'd fit
329 : * in our memory budget when we load them back in later (or we
330 : * tried to do that and gave up because we detected extreme
331 : * skew).
332 : */
333 168 : pstate->growth = PHJ_GROWTH_DISABLED;
334 : }
335 : }
336 :
337 : /*
338 : * We're not yet attached to a batch. We all agree on the dimensions and
339 : * number of inner tuples (for the empty table optimization).
340 : */
341 396 : hashtable->curbatch = -1;
342 396 : hashtable->nbuckets = pstate->nbuckets;
343 396 : hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
344 396 : hashtable->totalTuples = pstate->total_tuples;
345 :
346 : /*
347 : * Unless we're completely done and the batch state has been freed, make
348 : * sure we have accessors.
349 : */
350 396 : if (BarrierPhase(build_barrier) < PHJ_BUILD_FREE)
351 396 : ExecParallelHashEnsureBatchAccessors(hashtable);
352 :
353 : /*
354 : * The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
355 : * case, which will bring the build phase to PHJ_BUILD_RUN (if it isn't
356 : * there already).
357 : */
358 : Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASH_OUTER ||
359 : BarrierPhase(build_barrier) == PHJ_BUILD_RUN ||
360 : BarrierPhase(build_barrier) == PHJ_BUILD_FREE);
361 396 : }
362 :
363 : /* ----------------------------------------------------------------
364 : * ExecInitHash
365 : *
366 : * Init routine for Hash node
367 : * ----------------------------------------------------------------
368 : */
369 : HashState *
370 29412 : ExecInitHash(Hash *node, EState *estate, int eflags)
371 : {
372 : HashState *hashstate;
373 :
374 : /* check for unsupported flags */
375 : Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
376 :
377 : /*
378 : * create state structure
379 : */
380 29412 : hashstate = makeNode(HashState);
381 29412 : hashstate->ps.plan = (Plan *) node;
382 29412 : hashstate->ps.state = estate;
383 29412 : hashstate->ps.ExecProcNode = ExecHash;
384 : /* delay building hashtable until ExecHashTableCreate() in executor run */
385 29412 : hashstate->hashtable = NULL;
386 :
387 : /*
388 : * Miscellaneous initialization
389 : *
390 : * create expression context for node
391 : */
392 29412 : ExecAssignExprContext(estate, &hashstate->ps);
393 :
394 : /*
395 : * initialize child nodes
396 : */
397 29412 : outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
398 :
399 : /*
400 : * initialize our result slot and type. No need to build projection
401 : * because this node doesn't do projections.
402 : */
403 29412 : ExecInitResultTupleSlotTL(&hashstate->ps, &TTSOpsMinimalTuple);
404 29412 : hashstate->ps.ps_ProjInfo = NULL;
405 :
406 : Assert(node->plan.qual == NIL);
407 :
408 : /*
409 : * Delay initialization of hash_expr until ExecInitHashJoin(). We cannot
410 : * build the ExprState here as we don't yet know the join type we're going
411 : * to be hashing values for and we need to know that before calling
412 : * ExecBuildHash32Expr as the keep_nulls parameter depends on the join
413 : * type.
414 : */
415 29412 : hashstate->hash_expr = NULL;
416 :
417 29412 : return hashstate;
418 : }
419 :
420 : /* ---------------------------------------------------------------
421 : * ExecEndHash
422 : *
423 : * clean up routine for Hash node
424 : * ----------------------------------------------------------------
425 : */
426 : void
427 29300 : ExecEndHash(HashState *node)
428 : {
429 : PlanState *outerPlan;
430 :
431 : /*
432 : * shut down the subplan
433 : */
434 29300 : outerPlan = outerPlanState(node);
435 29300 : ExecEndNode(outerPlan);
436 29300 : }
437 :
438 :
439 : /* ----------------------------------------------------------------
440 : * ExecHashTableCreate
441 : *
442 : * create an empty hashtable data structure for hashjoin.
443 : * ----------------------------------------------------------------
444 : */
445 : HashJoinTable
446 18830 : ExecHashTableCreate(HashState *state)
447 : {
448 : Hash *node;
449 : HashJoinTable hashtable;
450 : Plan *outerNode;
451 : size_t space_allowed;
452 : int nbuckets;
453 : int nbatch;
454 : double rows;
455 : int num_skew_mcvs;
456 : int log2_nbuckets;
457 : MemoryContext oldcxt;
458 :
459 : /*
460 : * Get information about the size of the relation to be hashed (it's the
461 : * "outer" subtree of this node, but the inner relation of the hashjoin).
462 : * Compute the appropriate size of the hash table.
463 : */
464 18830 : node = (Hash *) state->ps.plan;
465 18830 : outerNode = outerPlan(node);
466 :
467 : /*
468 : * If this is shared hash table with a partial plan, then we can't use
469 : * outerNode->plan_rows to estimate its size. We need an estimate of the
470 : * total number of rows across all copies of the partial plan.
471 : */
472 18830 : rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;
473 :
474 18434 : ExecChooseHashTableSize(rows, outerNode->plan_width,
475 18830 : OidIsValid(node->skewTable),
476 18830 : state->parallel_state != NULL,
477 18830 : state->parallel_state != NULL ?
478 396 : state->parallel_state->nparticipants - 1 : 0,
479 : &space_allowed,
480 : &nbuckets, &nbatch, &num_skew_mcvs);
481 :
482 : /* nbuckets must be a power of 2 */
483 18830 : log2_nbuckets = my_log2(nbuckets);
484 : Assert(nbuckets == (1 << log2_nbuckets));
485 :
486 : /*
487 : * Initialize the hash table control block.
488 : *
489 : * The hashtable control block is just palloc'd from the executor's
490 : * per-query memory context. Everything else should be kept inside the
491 : * subsidiary hashCxt, batchCxt or spillCxt.
492 : */
493 18830 : hashtable = palloc_object(HashJoinTableData);
494 18830 : hashtable->nbuckets = nbuckets;
495 18830 : hashtable->nbuckets_original = nbuckets;
496 18830 : hashtable->nbuckets_optimal = nbuckets;
497 18830 : hashtable->log2_nbuckets = log2_nbuckets;
498 18830 : hashtable->log2_nbuckets_optimal = log2_nbuckets;
499 18830 : hashtable->buckets.unshared = NULL;
500 18830 : hashtable->skewEnabled = false;
501 18830 : hashtable->skewBucket = NULL;
502 18830 : hashtable->skewBucketLen = 0;
503 18830 : hashtable->nSkewBuckets = 0;
504 18830 : hashtable->skewBucketNums = NULL;
505 18830 : hashtable->nbatch = nbatch;
506 18830 : hashtable->curbatch = 0;
507 18830 : hashtable->nbatch_original = nbatch;
508 18830 : hashtable->nbatch_outstart = nbatch;
509 18830 : hashtable->growEnabled = true;
510 18830 : hashtable->totalTuples = 0;
511 18830 : hashtable->partialTuples = 0;
512 18830 : hashtable->skewTuples = 0;
513 18830 : hashtable->innerBatchFile = NULL;
514 18830 : hashtable->outerBatchFile = NULL;
515 18830 : hashtable->spaceUsed = 0;
516 18830 : hashtable->spacePeak = 0;
517 18830 : hashtable->spaceAllowed = space_allowed;
518 18830 : hashtable->spaceUsedSkew = 0;
519 18830 : hashtable->spaceAllowedSkew =
520 18830 : hashtable->spaceAllowed * SKEW_HASH_MEM_PERCENT / 100;
521 18830 : hashtable->chunks = NULL;
522 18830 : hashtable->current_chunk = NULL;
523 18830 : hashtable->parallel_state = state->parallel_state;
524 18830 : hashtable->area = state->ps.state->es_query_dsa;
525 18830 : hashtable->batches = NULL;
526 :
527 : #ifdef HJDEBUG
528 : printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
529 : hashtable, nbatch, nbuckets);
530 : #endif
531 :
532 : /*
533 : * Create temporary memory contexts in which to keep the hashtable working
534 : * storage. See notes in executor/hashjoin.h.
535 : */
536 18830 : hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
537 : "HashTableContext",
538 : ALLOCSET_DEFAULT_SIZES);
539 :
540 18830 : hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
541 : "HashBatchContext",
542 : ALLOCSET_DEFAULT_SIZES);
543 :
544 18830 : hashtable->spillCxt = AllocSetContextCreate(hashtable->hashCxt,
545 : "HashSpillContext",
546 : ALLOCSET_DEFAULT_SIZES);
547 :
548 : /* Allocate data that will live for the life of the hashjoin */
549 :
550 18830 : oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
551 :
552 18830 : if (nbatch > 1 && hashtable->parallel_state == NULL)
553 : {
554 : MemoryContext oldctx;
555 :
556 : /*
557 : * allocate and initialize the file arrays in hashCxt (not needed for
558 : * parallel case which uses shared tuplestores instead of raw files)
559 : */
560 110 : oldctx = MemoryContextSwitchTo(hashtable->spillCxt);
561 :
562 110 : hashtable->innerBatchFile = palloc0_array(BufFile *, nbatch);
563 110 : hashtable->outerBatchFile = palloc0_array(BufFile *, nbatch);
564 :
565 110 : MemoryContextSwitchTo(oldctx);
566 :
567 : /* The files will not be opened until needed... */
568 : /* ... but make sure we have temp tablespaces established for them */
569 110 : PrepareTempTablespaces();
570 : }
571 :
572 18830 : MemoryContextSwitchTo(oldcxt);
573 :
574 18830 : if (hashtable->parallel_state)
575 : {
576 396 : ParallelHashJoinState *pstate = hashtable->parallel_state;
577 : Barrier *build_barrier;
578 :
579 : /*
580 : * Attach to the build barrier. The corresponding detach operation is
581 : * in ExecHashTableDetach. Note that we won't attach to the
582 : * batch_barrier for batch 0 yet. We'll attach later and start it out
583 : * in PHJ_BATCH_PROBE phase, because batch 0 is allocated up front and
584 : * then loaded while hashing (the standard hybrid hash join
585 : * algorithm), and we'll coordinate that using build_barrier.
586 : */
587 396 : build_barrier = &pstate->build_barrier;
588 396 : BarrierAttach(build_barrier);
589 :
590 : /*
591 : * So far we have no idea whether there are any other participants,
592 : * and if so, what phase they are working on. The only thing we care
593 : * about at this point is whether someone has already created the
594 : * SharedHashJoinBatch objects and the hash table for batch 0. One
595 : * backend will be elected to do that now if necessary.
596 : */
597 564 : if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECT &&
598 168 : BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECT))
599 : {
600 168 : pstate->nbatch = nbatch;
601 168 : pstate->space_allowed = space_allowed;
602 168 : pstate->growth = PHJ_GROWTH_OK;
603 :
604 : /* Set up the shared state for coordinating batches. */
605 168 : ExecParallelHashJoinSetUpBatches(hashtable, nbatch);
606 :
607 : /*
608 : * Allocate batch 0's hash table up front so we can load it
609 : * directly while hashing.
610 : */
611 168 : pstate->nbuckets = nbuckets;
612 168 : ExecParallelHashTableAlloc(hashtable, 0);
613 : }
614 :
615 : /*
616 : * The next Parallel Hash synchronization point is in
617 : * MultiExecParallelHash(), which will progress it all the way to
618 : * PHJ_BUILD_RUN. The caller must not return control from this
619 : * executor node between now and then.
620 : */
621 : }
622 : else
623 : {
624 : /*
625 : * Prepare context for the first-scan space allocations; allocate the
626 : * hashbucket array therein, and set each bucket "empty".
627 : */
628 18434 : MemoryContextSwitchTo(hashtable->batchCxt);
629 :
630 18434 : hashtable->buckets.unshared = palloc0_array(HashJoinTuple, nbuckets);
631 :
632 : /*
633 : * Set up for skew optimization, if possible and there's a need for
634 : * more than one batch. (In a one-batch join, there's no point in
635 : * it.)
636 : */
637 18434 : if (nbatch > 1)
638 110 : ExecHashBuildSkewHash(state, hashtable, node, num_skew_mcvs);
639 :
640 18434 : MemoryContextSwitchTo(oldcxt);
641 : }
642 :
643 18830 : return hashtable;
644 : }
645 :
646 :
647 : /*
648 : * Compute appropriate size for hashtable given the estimated size of the
649 : * relation to be hashed (number of rows and average row width).
650 : *
651 : * This is exported so that the planner's costsize.c can use it.
652 : */
653 :
654 : /* Target bucket loading (tuples per bucket) */
655 : #define NTUP_PER_BUCKET 1
656 :
657 : void
658 572158 : ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
659 : bool try_combined_hash_mem,
660 : int parallel_workers,
661 : size_t *space_allowed,
662 : int *numbuckets,
663 : int *numbatches,
664 : int *num_skew_mcvs)
665 : {
666 : int tupsize;
667 : double inner_rel_bytes;
668 : size_t hash_table_bytes;
669 : size_t bucket_bytes;
670 : size_t max_pointers;
671 572158 : int nbatch = 1;
672 : int nbuckets;
673 : double dbuckets;
674 :
675 : /* Force a plausible relation size if no info */
676 572158 : if (ntuples <= 0.0)
677 150 : ntuples = 1000.0;
678 :
679 : /*
680 : * Estimate tupsize based on footprint of tuple in hashtable... note this
681 : * does not allow for any palloc overhead. The manipulations of spaceUsed
682 : * don't count palloc overhead either.
683 : */
684 572158 : tupsize = HJTUPLE_OVERHEAD +
685 572158 : MAXALIGN(SizeofMinimalTupleHeader) +
686 572158 : MAXALIGN(tupwidth);
687 572158 : inner_rel_bytes = ntuples * tupsize;
688 :
689 : /*
690 : * Compute in-memory hashtable size limit from GUCs.
691 : */
692 572158 : hash_table_bytes = get_hash_memory_limit();
693 :
694 : /*
695 : * Parallel Hash tries to use the combined hash_mem of all workers to
696 : * avoid the need to batch. If that won't work, it falls back to hash_mem
697 : * per worker and tries to process batches in parallel.
698 : */
699 572158 : if (try_combined_hash_mem)
700 : {
701 : /* Careful, this could overflow size_t */
702 : double newlimit;
703 :
704 12660 : newlimit = (double) hash_table_bytes * (double) (parallel_workers + 1);
705 12660 : newlimit = Min(newlimit, (double) SIZE_MAX);
706 12660 : hash_table_bytes = (size_t) newlimit;
707 : }
708 :
709 572158 : *space_allowed = hash_table_bytes;
710 :
711 : /*
712 : * If skew optimization is possible, estimate the number of skew buckets
713 : * that will fit in the memory allowed, and decrement the assumed space
714 : * available for the main hash table accordingly.
715 : *
716 : * We make the optimistic assumption that each skew bucket will contain
717 : * one inner-relation tuple. If that turns out to be low, we will recover
718 : * at runtime by reducing the number of skew buckets.
719 : *
720 : * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
721 : * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
722 : * will round up to the next power of 2 and then multiply by 4 to reduce
723 : * collisions.
724 : */
725 572158 : if (useskew)
726 : {
727 : size_t bytes_per_mcv;
728 : size_t skew_mcvs;
729 :
730 : /*----------
731 : * Compute number of MCVs we could hold in hash_table_bytes
732 : *
733 : * Divisor is:
734 : * size of a hash tuple +
735 : * worst-case size of skewBucket[] per MCV +
736 : * size of skewBucketNums[] entry +
737 : * size of skew bucket struct itself
738 : *----------
739 : */
740 568038 : bytes_per_mcv = tupsize +
741 : (8 * sizeof(HashSkewBucket *)) +
742 568038 : sizeof(int) +
743 : SKEW_BUCKET_OVERHEAD;
744 568038 : skew_mcvs = hash_table_bytes / bytes_per_mcv;
745 :
746 : /*
747 : * Now scale by SKEW_HASH_MEM_PERCENT (we do it in this order so as
748 : * not to worry about size_t overflow in the multiplication)
749 : */
750 568038 : skew_mcvs = (skew_mcvs * SKEW_HASH_MEM_PERCENT) / 100;
751 :
752 : /* Now clamp to integer range */
753 568038 : skew_mcvs = Min(skew_mcvs, INT_MAX);
754 :
755 568038 : *num_skew_mcvs = (int) skew_mcvs;
756 :
757 : /* Reduce hash_table_bytes by the amount needed for the skew table */
758 568038 : if (skew_mcvs > 0)
759 568038 : hash_table_bytes -= skew_mcvs * bytes_per_mcv;
760 : }
761 : else
762 4120 : *num_skew_mcvs = 0;
763 :
764 : /*
765 : * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
766 : * memory is filled, assuming a single batch; but limit the value so that
767 : * the pointer arrays we'll try to allocate do not exceed hash_table_bytes
768 : * nor MaxAllocSize.
769 : *
770 : * Note that both nbuckets and nbatch must be powers of 2 to make
771 : * ExecHashGetBucketAndBatch fast.
772 : */
773 572158 : max_pointers = hash_table_bytes / sizeof(HashJoinTuple);
774 572158 : max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
775 : /* If max_pointers isn't a power of 2, must round it down to one */
776 572158 : max_pointers = pg_prevpower2_size_t(max_pointers);
777 :
778 : /* Also ensure we avoid integer overflow in nbatch and nbuckets */
779 : /* (this step is redundant given the current value of MaxAllocSize) */
780 572158 : max_pointers = Min(max_pointers, INT_MAX / 2 + 1);
781 :
782 572158 : dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
783 572158 : dbuckets = Min(dbuckets, max_pointers);
784 572158 : nbuckets = (int) dbuckets;
785 : /* don't let nbuckets be really small, though ... */
786 572158 : nbuckets = Max(nbuckets, 1024);
787 : /* ... and force it to be a power of 2. */
788 572158 : nbuckets = pg_nextpower2_32(nbuckets);
789 :
790 : /*
791 : * If there's not enough space to store the projected number of tuples and
792 : * the required bucket headers, we will need multiple batches.
793 : */
794 572158 : bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
795 572158 : if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
796 : {
797 : /* We'll need multiple batches */
798 : size_t sbuckets;
799 : double dbatch;
800 : int minbatch;
801 : size_t bucket_size;
802 :
803 : /*
804 : * If Parallel Hash with combined hash_mem would still need multiple
805 : * batches, we'll have to fall back to regular hash_mem budget.
806 : */
807 4936 : if (try_combined_hash_mem)
808 : {
809 246 : ExecChooseHashTableSize(ntuples, tupwidth, useskew,
810 : false, parallel_workers,
811 : space_allowed,
812 : numbuckets,
813 : numbatches,
814 : num_skew_mcvs);
815 246 : return;
816 : }
817 :
818 : /*
819 : * Estimate the number of buckets we'll want to have when hash_mem is
820 : * entirely full. Each bucket will contain a bucket pointer plus
821 : * NTUP_PER_BUCKET tuples, whose projected size already includes
822 : * overhead for the hash code, pointer to the next tuple, etc.
823 : */
824 4690 : bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));
825 4690 : if (hash_table_bytes <= bucket_size)
826 0 : sbuckets = 1; /* avoid pg_nextpower2_size_t(0) */
827 : else
828 4690 : sbuckets = pg_nextpower2_size_t(hash_table_bytes / bucket_size);
829 4690 : sbuckets = Min(sbuckets, max_pointers);
830 4690 : nbuckets = (int) sbuckets;
831 4690 : nbuckets = pg_nextpower2_32(nbuckets);
832 4690 : bucket_bytes = nbuckets * sizeof(HashJoinTuple);
833 :
834 : /*
835 : * Buckets are simple pointers to hashjoin tuples, while tupsize
836 : * includes the pointer, hash code, and MinimalTupleData. So buckets
837 : * should never really exceed 25% of hash_mem (even for
838 : * NTUP_PER_BUCKET=1); except maybe for hash_mem values that are not
839 : * 2^N bytes, where we might get more because of doubling. So let's
840 : * look for 50% here.
841 : */
842 : Assert(bucket_bytes <= hash_table_bytes / 2);
843 :
844 : /* Calculate required number of batches. */
845 4690 : dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
846 4690 : dbatch = Min(dbatch, max_pointers);
847 4690 : minbatch = (int) dbatch;
848 4690 : nbatch = pg_nextpower2_32(Max(2, minbatch));
849 : }
850 :
851 : Assert(nbuckets > 0);
852 : Assert(nbatch > 0);
853 :
854 571912 : *numbuckets = nbuckets;
855 571912 : *numbatches = nbatch;
856 : }
857 :
858 :
859 : /* ----------------------------------------------------------------
860 : * ExecHashTableDestroy
861 : *
862 : * destroy a hash table
863 : * ----------------------------------------------------------------
864 : */
865 : void
866 18720 : ExecHashTableDestroy(HashJoinTable hashtable)
867 : {
868 : int i;
869 :
870 : /*
871 : * Make sure all the temp files are closed. We skip batch 0, since it
872 : * can't have any temp files (and the arrays might not even exist if
873 : * nbatch is only 1). Parallel hash joins don't use these files.
874 : */
875 18720 : if (hashtable->innerBatchFile != NULL)
876 : {
877 1372 : for (i = 1; i < hashtable->nbatch; i++)
878 : {
879 1210 : if (hashtable->innerBatchFile[i])
880 0 : BufFileClose(hashtable->innerBatchFile[i]);
881 1210 : if (hashtable->outerBatchFile[i])
882 0 : BufFileClose(hashtable->outerBatchFile[i]);
883 : }
884 : }
885 :
886 : /* Release working memory (batchCxt is a child, so it goes away too) */
887 18720 : MemoryContextDelete(hashtable->hashCxt);
888 :
889 : /* And drop the control block */
890 18720 : pfree(hashtable);
891 18720 : }
892 :
893 : /*
894 : * ExecHashIncreaseNumBatches
895 : * increase the original number of batches in order to reduce
896 : * current memory consumption
897 : */
898 : static void
899 449130 : ExecHashIncreaseNumBatches(HashJoinTable hashtable)
900 : {
901 449130 : int oldnbatch = hashtable->nbatch;
902 449130 : int curbatch = hashtable->curbatch;
903 : int nbatch;
904 : long ninmemory;
905 : long nfreed;
906 : HashMemoryChunk oldchunks;
907 :
908 : /* do nothing if we've decided to shut off growth */
909 449130 : if (!hashtable->growEnabled)
910 449020 : return;
911 :
912 : /* safety check to avoid overflow */
913 110 : if (oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void *) * 2)))
914 0 : return;
915 :
916 110 : nbatch = oldnbatch * 2;
917 : Assert(nbatch > 1);
918 :
919 : #ifdef HJDEBUG
920 : printf("Hashjoin %p: increasing nbatch to %d because space = %zu\n",
921 : hashtable, nbatch, hashtable->spaceUsed);
922 : #endif
923 :
924 110 : if (hashtable->innerBatchFile == NULL)
925 : {
926 52 : MemoryContext oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
927 :
928 : /* we had no file arrays before */
929 52 : hashtable->innerBatchFile = palloc0_array(BufFile *, nbatch);
930 52 : hashtable->outerBatchFile = palloc0_array(BufFile *, nbatch);
931 :
932 52 : MemoryContextSwitchTo(oldcxt);
933 :
934 : /* time to establish the temp tablespaces, too */
935 52 : PrepareTempTablespaces();
936 : }
937 : else
938 : {
939 : /* enlarge arrays and zero out added entries */
940 58 : hashtable->innerBatchFile = repalloc0_array(hashtable->innerBatchFile, BufFile *, oldnbatch, nbatch);
941 58 : hashtable->outerBatchFile = repalloc0_array(hashtable->outerBatchFile, BufFile *, oldnbatch, nbatch);
942 : }
943 :
944 110 : hashtable->nbatch = nbatch;
945 :
946 : /*
947 : * Scan through the existing hash table entries and dump out any that are
948 : * no longer of the current batch.
949 : */
950 110 : ninmemory = nfreed = 0;
951 :
952 : /* If know we need to resize nbuckets, we can do it while rebatching. */
953 110 : if (hashtable->nbuckets_optimal != hashtable->nbuckets)
954 : {
955 : /* we never decrease the number of buckets */
956 : Assert(hashtable->nbuckets_optimal > hashtable->nbuckets);
957 :
958 52 : hashtable->nbuckets = hashtable->nbuckets_optimal;
959 52 : hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
960 :
961 52 : hashtable->buckets.unshared =
962 52 : repalloc_array(hashtable->buckets.unshared,
963 : HashJoinTuple, hashtable->nbuckets);
964 : }
965 :
966 : /*
967 : * We will scan through the chunks directly, so that we can reset the
968 : * buckets now and not have to keep track which tuples in the buckets have
969 : * already been processed. We will free the old chunks as we go.
970 : */
971 110 : memset(hashtable->buckets.unshared, 0,
972 110 : sizeof(HashJoinTuple) * hashtable->nbuckets);
973 110 : oldchunks = hashtable->chunks;
974 110 : hashtable->chunks = NULL;
975 :
976 : /* so, let's scan through the old chunks, and all tuples in each chunk */
977 550 : while (oldchunks != NULL)
978 : {
979 440 : HashMemoryChunk nextchunk = oldchunks->next.unshared;
980 :
981 : /* position within the buffer (up to oldchunks->used) */
982 440 : size_t idx = 0;
983 :
984 : /* process all tuples stored in this chunk (and then free it) */
985 300418 : while (idx < oldchunks->used)
986 : {
987 299978 : HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(oldchunks) + idx);
988 299978 : MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
989 299978 : int hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
990 : int bucketno;
991 : int batchno;
992 :
993 299978 : ninmemory++;
994 299978 : ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
995 : &bucketno, &batchno);
996 :
997 299978 : if (batchno == curbatch)
998 : {
999 : /* keep tuple in memory - copy it into the new chunk */
1000 : HashJoinTuple copyTuple;
1001 :
1002 113678 : copyTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1003 113678 : memcpy(copyTuple, hashTuple, hashTupleSize);
1004 :
1005 : /* and add it back to the appropriate bucket */
1006 113678 : copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1007 113678 : hashtable->buckets.unshared[bucketno] = copyTuple;
1008 : }
1009 : else
1010 : {
1011 : /* dump it out */
1012 : Assert(batchno > curbatch);
1013 186300 : ExecHashJoinSaveTuple(HJTUPLE_MINTUPLE(hashTuple),
1014 : hashTuple->hashvalue,
1015 186300 : &hashtable->innerBatchFile[batchno],
1016 : hashtable);
1017 :
1018 186300 : hashtable->spaceUsed -= hashTupleSize;
1019 186300 : nfreed++;
1020 : }
1021 :
1022 : /* next tuple in this chunk */
1023 299978 : idx += MAXALIGN(hashTupleSize);
1024 :
1025 : /* allow this loop to be cancellable */
1026 299978 : CHECK_FOR_INTERRUPTS();
1027 : }
1028 :
1029 : /* we're done with this chunk - free it and proceed to the next one */
1030 440 : pfree(oldchunks);
1031 440 : oldchunks = nextchunk;
1032 : }
1033 :
1034 : #ifdef HJDEBUG
1035 : printf("Hashjoin %p: freed %ld of %ld tuples, space now %zu\n",
1036 : hashtable, nfreed, ninmemory, hashtable->spaceUsed);
1037 : #endif
1038 :
1039 : /*
1040 : * If we dumped out either all or none of the tuples in the table, disable
1041 : * further expansion of nbatch. This situation implies that we have
1042 : * enough tuples of identical hashvalues to overflow spaceAllowed.
1043 : * Increasing nbatch will not fix it since there's no way to subdivide the
1044 : * group any more finely. We have to just gut it out and hope the server
1045 : * has enough RAM.
1046 : */
1047 110 : if (nfreed == 0 || nfreed == ninmemory)
1048 : {
1049 26 : hashtable->growEnabled = false;
1050 : #ifdef HJDEBUG
1051 : printf("Hashjoin %p: disabling further increase of nbatch\n",
1052 : hashtable);
1053 : #endif
1054 : }
1055 : }
1056 :
1057 : /*
1058 : * ExecParallelHashIncreaseNumBatches
1059 : * Every participant attached to grow_batches_barrier must run this
1060 : * function when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
1061 : */
1062 : static void
1063 50 : ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
1064 : {
1065 50 : ParallelHashJoinState *pstate = hashtable->parallel_state;
1066 :
1067 : Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASH_INNER);
1068 :
1069 : /*
1070 : * It's unlikely, but we need to be prepared for new participants to show
1071 : * up while we're in the middle of this operation so we need to switch on
1072 : * barrier phase here.
1073 : */
1074 50 : switch (PHJ_GROW_BATCHES_PHASE(BarrierPhase(&pstate->grow_batches_barrier)))
1075 : {
1076 50 : case PHJ_GROW_BATCHES_ELECT:
1077 :
1078 : /*
1079 : * Elect one participant to prepare to grow the number of batches.
1080 : * This involves reallocating or resetting the buckets of batch 0
1081 : * in preparation for all participants to begin repartitioning the
1082 : * tuples.
1083 : */
1084 50 : if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1085 : WAIT_EVENT_HASH_GROW_BATCHES_ELECT))
1086 : {
1087 : dsa_pointer_atomic *buckets;
1088 : ParallelHashJoinBatch *old_batch0;
1089 : int new_nbatch;
1090 : int i;
1091 :
1092 : /* Move the old batch out of the way. */
1093 50 : old_batch0 = hashtable->batches[0].shared;
1094 50 : pstate->old_batches = pstate->batches;
1095 50 : pstate->old_nbatch = hashtable->nbatch;
1096 50 : pstate->batches = InvalidDsaPointer;
1097 :
1098 : /* Free this backend's old accessors. */
1099 50 : ExecParallelHashCloseBatchAccessors(hashtable);
1100 :
1101 : /* Figure out how many batches to use. */
1102 50 : if (hashtable->nbatch == 1)
1103 : {
1104 : /*
1105 : * We are going from single-batch to multi-batch. We need
1106 : * to switch from one large combined memory budget to the
1107 : * regular hash_mem budget.
1108 : */
1109 36 : pstate->space_allowed = get_hash_memory_limit();
1110 :
1111 : /*
1112 : * The combined hash_mem of all participants wasn't
1113 : * enough. Therefore one batch per participant would be
1114 : * approximately equivalent and would probably also be
1115 : * insufficient. So try two batches per participant,
1116 : * rounded up to a power of two.
1117 : */
1118 36 : new_nbatch = pg_nextpower2_32(pstate->nparticipants * 2);
1119 : }
1120 : else
1121 : {
1122 : /*
1123 : * We were already multi-batched. Try doubling the number
1124 : * of batches.
1125 : */
1126 14 : new_nbatch = hashtable->nbatch * 2;
1127 : }
1128 :
1129 : /* Allocate new larger generation of batches. */
1130 : Assert(hashtable->nbatch == pstate->nbatch);
1131 50 : ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
1132 : Assert(hashtable->nbatch == pstate->nbatch);
1133 :
1134 : /* Replace or recycle batch 0's bucket array. */
1135 50 : if (pstate->old_nbatch == 1)
1136 : {
1137 : double dtuples;
1138 : double dbuckets;
1139 : int new_nbuckets;
1140 : uint32 max_buckets;
1141 :
1142 : /*
1143 : * We probably also need a smaller bucket array. How many
1144 : * tuples do we expect per batch, assuming we have only
1145 : * half of them so far? Normally we don't need to change
1146 : * the bucket array's size, because the size of each batch
1147 : * stays the same as we add more batches, but in this
1148 : * special case we move from a large batch to many smaller
1149 : * batches and it would be wasteful to keep the large
1150 : * array.
1151 : */
1152 36 : dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;
1153 :
1154 : /*
1155 : * We need to calculate the maximum number of buckets to
1156 : * stay within the MaxAllocSize boundary. Round the
1157 : * maximum number to the previous power of 2 given that
1158 : * later we round the number to the next power of 2.
1159 : */
1160 36 : max_buckets = pg_prevpower2_32((uint32)
1161 : (MaxAllocSize / sizeof(dsa_pointer_atomic)));
1162 36 : dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
1163 36 : dbuckets = Min(dbuckets, max_buckets);
1164 36 : new_nbuckets = (int) dbuckets;
1165 36 : new_nbuckets = Max(new_nbuckets, 1024);
1166 36 : new_nbuckets = pg_nextpower2_32(new_nbuckets);
1167 36 : dsa_free(hashtable->area, old_batch0->buckets);
1168 72 : hashtable->batches[0].shared->buckets =
1169 36 : dsa_allocate(hashtable->area,
1170 : sizeof(dsa_pointer_atomic) * new_nbuckets);
1171 : buckets = (dsa_pointer_atomic *)
1172 36 : dsa_get_address(hashtable->area,
1173 36 : hashtable->batches[0].shared->buckets);
1174 110628 : for (i = 0; i < new_nbuckets; ++i)
1175 110592 : dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1176 36 : pstate->nbuckets = new_nbuckets;
1177 : }
1178 : else
1179 : {
1180 : /* Recycle the existing bucket array. */
1181 14 : hashtable->batches[0].shared->buckets = old_batch0->buckets;
1182 : buckets = (dsa_pointer_atomic *)
1183 14 : dsa_get_address(hashtable->area, old_batch0->buckets);
1184 53262 : for (i = 0; i < hashtable->nbuckets; ++i)
1185 53248 : dsa_pointer_atomic_write(&buckets[i], InvalidDsaPointer);
1186 : }
1187 :
1188 : /* Move all chunks to the work queue for parallel processing. */
1189 50 : pstate->chunk_work_queue = old_batch0->chunks;
1190 :
1191 : /* Disable further growth temporarily while we're growing. */
1192 50 : pstate->growth = PHJ_GROWTH_DISABLED;
1193 : }
1194 : else
1195 : {
1196 : /* All other participants just flush their tuples to disk. */
1197 0 : ExecParallelHashCloseBatchAccessors(hashtable);
1198 : }
1199 : /* Fall through. */
1200 :
1201 : case PHJ_GROW_BATCHES_REALLOCATE:
1202 : /* Wait for the above to be finished. */
1203 50 : BarrierArriveAndWait(&pstate->grow_batches_barrier,
1204 : WAIT_EVENT_HASH_GROW_BATCHES_REALLOCATE);
1205 : /* Fall through. */
1206 :
1207 50 : case PHJ_GROW_BATCHES_REPARTITION:
1208 : /* Make sure that we have the current dimensions and buckets. */
1209 50 : ExecParallelHashEnsureBatchAccessors(hashtable);
1210 50 : ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1211 : /* Then partition, flush counters. */
1212 50 : ExecParallelHashRepartitionFirst(hashtable);
1213 50 : ExecParallelHashRepartitionRest(hashtable);
1214 50 : ExecParallelHashMergeCounters(hashtable);
1215 : /* Wait for the above to be finished. */
1216 50 : BarrierArriveAndWait(&pstate->grow_batches_barrier,
1217 : WAIT_EVENT_HASH_GROW_BATCHES_REPARTITION);
1218 : /* Fall through. */
1219 :
1220 50 : case PHJ_GROW_BATCHES_DECIDE:
1221 :
1222 : /*
1223 : * Elect one participant to clean up and decide whether further
1224 : * repartitioning is needed, or should be disabled because it's
1225 : * not helping.
1226 : */
1227 50 : if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1228 : WAIT_EVENT_HASH_GROW_BATCHES_DECIDE))
1229 : {
1230 : ParallelHashJoinBatch *old_batches;
1231 50 : bool space_exhausted = false;
1232 50 : bool extreme_skew_detected = false;
1233 :
1234 : /* Make sure that we have the current dimensions and buckets. */
1235 50 : ExecParallelHashEnsureBatchAccessors(hashtable);
1236 50 : ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1237 :
1238 50 : old_batches = dsa_get_address(hashtable->area, pstate->old_batches);
1239 :
1240 : /* Are any of the new generation of batches exhausted? */
1241 370 : for (int i = 0; i < hashtable->nbatch; ++i)
1242 : {
1243 : ParallelHashJoinBatch *batch;
1244 : ParallelHashJoinBatch *old_batch;
1245 : int parent;
1246 :
1247 320 : batch = hashtable->batches[i].shared;
1248 320 : if (batch->space_exhausted ||
1249 320 : batch->estimated_size > pstate->space_allowed)
1250 24 : space_exhausted = true;
1251 :
1252 320 : parent = i % pstate->old_nbatch;
1253 320 : old_batch = NthParallelHashJoinBatch(old_batches, parent);
1254 320 : if (old_batch->space_exhausted ||
1255 100 : batch->estimated_size > pstate->space_allowed)
1256 : {
1257 : /*
1258 : * Did this batch receive ALL of the tuples from its
1259 : * parent batch? That would indicate that further
1260 : * repartitioning isn't going to help (the hash values
1261 : * are probably all the same).
1262 : */
1263 220 : if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples)
1264 24 : extreme_skew_detected = true;
1265 : }
1266 : }
1267 :
1268 : /* Don't keep growing if it's not helping or we'd overflow. */
1269 50 : if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2)
1270 24 : pstate->growth = PHJ_GROWTH_DISABLED;
1271 26 : else if (space_exhausted)
1272 0 : pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
1273 : else
1274 26 : pstate->growth = PHJ_GROWTH_OK;
1275 :
1276 : /* Free the old batches in shared memory. */
1277 50 : dsa_free(hashtable->area, pstate->old_batches);
1278 50 : pstate->old_batches = InvalidDsaPointer;
1279 : }
1280 : /* Fall through. */
1281 :
1282 : case PHJ_GROW_BATCHES_FINISH:
1283 : /* Wait for the above to complete. */
1284 50 : BarrierArriveAndWait(&pstate->grow_batches_barrier,
1285 : WAIT_EVENT_HASH_GROW_BATCHES_FINISH);
1286 : }
1287 50 : }
1288 :
1289 : /*
1290 : * Repartition the tuples currently loaded into memory for inner batch 0
1291 : * because the number of batches has been increased. Some tuples are retained
1292 : * in memory and some are written out to a later batch.
1293 : */
1294 : static void
1295 50 : ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
1296 : {
1297 : dsa_pointer chunk_shared;
1298 : HashMemoryChunk chunk;
1299 :
1300 : Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);
1301 :
1302 342 : while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared)))
1303 : {
1304 292 : size_t idx = 0;
1305 :
1306 : /* Repartition all tuples in this chunk. */
1307 223162 : while (idx < chunk->used)
1308 : {
1309 222870 : HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1310 222870 : MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1311 : HashJoinTuple copyTuple;
1312 : dsa_pointer shared;
1313 : int bucketno;
1314 : int batchno;
1315 :
1316 222870 : ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1317 : &bucketno, &batchno);
1318 :
1319 : Assert(batchno < hashtable->nbatch);
1320 222870 : if (batchno == 0)
1321 : {
1322 : /* It still belongs in batch 0. Copy to a new chunk. */
1323 : copyTuple =
1324 51834 : ExecParallelHashTupleAlloc(hashtable,
1325 51834 : HJTUPLE_OVERHEAD + tuple->t_len,
1326 : &shared);
1327 51834 : copyTuple->hashvalue = hashTuple->hashvalue;
1328 51834 : memcpy(HJTUPLE_MINTUPLE(copyTuple), tuple, tuple->t_len);
1329 51834 : ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1330 : copyTuple, shared);
1331 : }
1332 : else
1333 : {
1334 171036 : size_t tuple_size =
1335 171036 : MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1336 :
1337 : /* It belongs in a later batch. */
1338 171036 : hashtable->batches[batchno].estimated_size += tuple_size;
1339 171036 : sts_puttuple(hashtable->batches[batchno].inner_tuples,
1340 171036 : &hashTuple->hashvalue, tuple);
1341 : }
1342 :
1343 : /* Count this tuple. */
1344 222870 : ++hashtable->batches[0].old_ntuples;
1345 222870 : ++hashtable->batches[batchno].ntuples;
1346 :
1347 222870 : idx += MAXALIGN(HJTUPLE_OVERHEAD +
1348 : HJTUPLE_MINTUPLE(hashTuple)->t_len);
1349 : }
1350 :
1351 : /* Free this chunk. */
1352 292 : dsa_free(hashtable->area, chunk_shared);
1353 :
1354 292 : CHECK_FOR_INTERRUPTS();
1355 : }
1356 50 : }
1357 :
1358 : /*
1359 : * Help repartition inner batches 1..n.
1360 : */
1361 : static void
1362 50 : ExecParallelHashRepartitionRest(HashJoinTable hashtable)
1363 : {
1364 50 : ParallelHashJoinState *pstate = hashtable->parallel_state;
1365 50 : int old_nbatch = pstate->old_nbatch;
1366 : SharedTuplestoreAccessor **old_inner_tuples;
1367 : ParallelHashJoinBatch *old_batches;
1368 : int i;
1369 :
1370 : /* Get our hands on the previous generation of batches. */
1371 : old_batches = (ParallelHashJoinBatch *)
1372 50 : dsa_get_address(hashtable->area, pstate->old_batches);
1373 50 : old_inner_tuples = palloc0_array(SharedTuplestoreAccessor *, old_nbatch);
1374 100 : for (i = 1; i < old_nbatch; ++i)
1375 : {
1376 50 : ParallelHashJoinBatch *shared =
1377 50 : NthParallelHashJoinBatch(old_batches, i);
1378 :
1379 50 : old_inner_tuples[i] = sts_attach(ParallelHashJoinBatchInner(shared),
1380 : ParallelWorkerNumber + 1,
1381 : &pstate->fileset);
1382 : }
1383 :
1384 : /* Join in the effort to repartition them. */
1385 100 : for (i = 1; i < old_nbatch; ++i)
1386 : {
1387 : MinimalTuple tuple;
1388 : uint32 hashvalue;
1389 :
1390 : /* Scan one partition from the previous generation. */
1391 50 : sts_begin_parallel_scan(old_inner_tuples[i]);
1392 178642 : while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue)))
1393 : {
1394 178592 : size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1395 : int bucketno;
1396 : int batchno;
1397 :
1398 : /* Decide which partition it goes to in the new generation. */
1399 178592 : ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
1400 : &batchno);
1401 :
1402 178592 : hashtable->batches[batchno].estimated_size += tuple_size;
1403 178592 : ++hashtable->batches[batchno].ntuples;
1404 178592 : ++hashtable->batches[i].old_ntuples;
1405 :
1406 : /* Store the tuple its new batch. */
1407 178592 : sts_puttuple(hashtable->batches[batchno].inner_tuples,
1408 : &hashvalue, tuple);
1409 :
1410 178592 : CHECK_FOR_INTERRUPTS();
1411 : }
1412 50 : sts_end_parallel_scan(old_inner_tuples[i]);
1413 : }
1414 :
1415 50 : pfree(old_inner_tuples);
1416 50 : }
1417 :
1418 : /*
1419 : * Transfer the backend-local per-batch counters to the shared totals.
1420 : */
1421 : static void
1422 290 : ExecParallelHashMergeCounters(HashJoinTable hashtable)
1423 : {
1424 290 : ParallelHashJoinState *pstate = hashtable->parallel_state;
1425 : int i;
1426 :
1427 290 : LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
1428 290 : pstate->total_tuples = 0;
1429 1700 : for (i = 0; i < hashtable->nbatch; ++i)
1430 : {
1431 1410 : ParallelHashJoinBatchAccessor *batch = &hashtable->batches[i];
1432 :
1433 1410 : batch->shared->size += batch->size;
1434 1410 : batch->shared->estimated_size += batch->estimated_size;
1435 1410 : batch->shared->ntuples += batch->ntuples;
1436 1410 : batch->shared->old_ntuples += batch->old_ntuples;
1437 1410 : batch->size = 0;
1438 1410 : batch->estimated_size = 0;
1439 1410 : batch->ntuples = 0;
1440 1410 : batch->old_ntuples = 0;
1441 1410 : pstate->total_tuples += batch->shared->ntuples;
1442 : }
1443 290 : LWLockRelease(&pstate->lock);
1444 290 : }
1445 :
1446 : /*
1447 : * ExecHashIncreaseNumBuckets
1448 : * increase the original number of buckets in order to reduce
1449 : * number of tuples per bucket
1450 : */
1451 : static void
1452 86 : ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
1453 : {
1454 : HashMemoryChunk chunk;
1455 :
1456 : /* do nothing if not an increase (it's called increase for a reason) */
1457 86 : if (hashtable->nbuckets >= hashtable->nbuckets_optimal)
1458 0 : return;
1459 :
1460 : #ifdef HJDEBUG
1461 : printf("Hashjoin %p: increasing nbuckets %d => %d\n",
1462 : hashtable, hashtable->nbuckets, hashtable->nbuckets_optimal);
1463 : #endif
1464 :
1465 86 : hashtable->nbuckets = hashtable->nbuckets_optimal;
1466 86 : hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
1467 :
1468 : Assert(hashtable->nbuckets > 1);
1469 : Assert(hashtable->nbuckets <= (INT_MAX / 2));
1470 : Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));
1471 :
1472 : /*
1473 : * Just reallocate the proper number of buckets - we don't need to walk
1474 : * through them - we can walk the dense-allocated chunks (just like in
1475 : * ExecHashIncreaseNumBatches, but without all the copying into new
1476 : * chunks)
1477 : */
1478 86 : hashtable->buckets.unshared =
1479 86 : repalloc_array(hashtable->buckets.unshared,
1480 : HashJoinTuple, hashtable->nbuckets);
1481 :
1482 86 : memset(hashtable->buckets.unshared, 0,
1483 86 : hashtable->nbuckets * sizeof(HashJoinTuple));
1484 :
1485 : /* scan through all tuples in all chunks to rebuild the hash table */
1486 1064 : for (chunk = hashtable->chunks; chunk != NULL; chunk = chunk->next.unshared)
1487 : {
1488 : /* process all tuples stored in this chunk */
1489 978 : size_t idx = 0;
1490 :
1491 750990 : while (idx < chunk->used)
1492 : {
1493 750012 : HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1494 : int bucketno;
1495 : int batchno;
1496 :
1497 750012 : ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1498 : &bucketno, &batchno);
1499 :
1500 : /* add the tuple to the proper bucket */
1501 750012 : hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1502 750012 : hashtable->buckets.unshared[bucketno] = hashTuple;
1503 :
1504 : /* advance index past the tuple */
1505 750012 : idx += MAXALIGN(HJTUPLE_OVERHEAD +
1506 : HJTUPLE_MINTUPLE(hashTuple)->t_len);
1507 : }
1508 :
1509 : /* allow this loop to be cancellable */
1510 978 : CHECK_FOR_INTERRUPTS();
1511 : }
1512 : }
1513 :
1514 : static void
1515 140 : ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
1516 : {
1517 140 : ParallelHashJoinState *pstate = hashtable->parallel_state;
1518 : int i;
1519 : HashMemoryChunk chunk;
1520 : dsa_pointer chunk_s;
1521 :
1522 : Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASH_INNER);
1523 :
1524 : /*
1525 : * It's unlikely, but we need to be prepared for new participants to show
1526 : * up while we're in the middle of this operation so we need to switch on
1527 : * barrier phase here.
1528 : */
1529 140 : switch (PHJ_GROW_BUCKETS_PHASE(BarrierPhase(&pstate->grow_buckets_barrier)))
1530 : {
1531 140 : case PHJ_GROW_BUCKETS_ELECT:
1532 : /* Elect one participant to prepare to increase nbuckets. */
1533 140 : if (BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1534 : WAIT_EVENT_HASH_GROW_BUCKETS_ELECT))
1535 : {
1536 : size_t size;
1537 : dsa_pointer_atomic *buckets;
1538 :
1539 : /* Double the size of the bucket array. */
1540 108 : pstate->nbuckets *= 2;
1541 108 : size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
1542 108 : hashtable->batches[0].shared->size += size / 2;
1543 108 : dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
1544 216 : hashtable->batches[0].shared->buckets =
1545 108 : dsa_allocate(hashtable->area, size);
1546 : buckets = (dsa_pointer_atomic *)
1547 108 : dsa_get_address(hashtable->area,
1548 108 : hashtable->batches[0].shared->buckets);
1549 933996 : for (i = 0; i < pstate->nbuckets; ++i)
1550 933888 : dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1551 :
1552 : /* Put the chunk list onto the work queue. */
1553 108 : pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;
1554 :
1555 : /* Clear the flag. */
1556 108 : pstate->growth = PHJ_GROWTH_OK;
1557 : }
1558 : /* Fall through. */
1559 :
1560 : case PHJ_GROW_BUCKETS_REALLOCATE:
1561 : /* Wait for the above to complete. */
1562 140 : BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1563 : WAIT_EVENT_HASH_GROW_BUCKETS_REALLOCATE);
1564 : /* Fall through. */
1565 :
1566 140 : case PHJ_GROW_BUCKETS_REINSERT:
1567 : /* Reinsert all tuples into the hash table. */
1568 140 : ExecParallelHashEnsureBatchAccessors(hashtable);
1569 140 : ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1570 804 : while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s)))
1571 : {
1572 664 : size_t idx = 0;
1573 :
1574 543660 : while (idx < chunk->used)
1575 : {
1576 542996 : HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1577 542996 : dsa_pointer shared = chunk_s + HASH_CHUNK_HEADER_SIZE + idx;
1578 : int bucketno;
1579 : int batchno;
1580 :
1581 542996 : ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1582 : &bucketno, &batchno);
1583 : Assert(batchno == 0);
1584 :
1585 : /* add the tuple to the proper bucket */
1586 542996 : ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1587 : hashTuple, shared);
1588 :
1589 : /* advance index past the tuple */
1590 542996 : idx += MAXALIGN(HJTUPLE_OVERHEAD +
1591 : HJTUPLE_MINTUPLE(hashTuple)->t_len);
1592 : }
1593 :
1594 : /* allow this loop to be cancellable */
1595 664 : CHECK_FOR_INTERRUPTS();
1596 : }
1597 140 : BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1598 : WAIT_EVENT_HASH_GROW_BUCKETS_REINSERT);
1599 : }
1600 140 : }
1601 :
1602 : /*
1603 : * ExecHashTableInsert
1604 : * insert a tuple into the hash table depending on the hash value
1605 : * it may just go to a temp file for later batches
1606 : *
1607 : * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
1608 : * tuple; the minimal case in particular is certain to happen while reloading
1609 : * tuples from batch files. We could save some cycles in the regular-tuple
1610 : * case by not forcing the slot contents into minimal form; not clear if it's
1611 : * worth the messiness required.
1612 : */
1613 : void
1614 9787760 : ExecHashTableInsert(HashJoinTable hashtable,
1615 : TupleTableSlot *slot,
1616 : uint32 hashvalue)
1617 : {
1618 : bool shouldFree;
1619 9787760 : MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1620 : int bucketno;
1621 : int batchno;
1622 :
1623 9787760 : ExecHashGetBucketAndBatch(hashtable, hashvalue,
1624 : &bucketno, &batchno);
1625 :
1626 : /*
1627 : * decide whether to put the tuple in the hash table or a temp file
1628 : */
1629 9787760 : if (batchno == hashtable->curbatch)
1630 : {
1631 : /*
1632 : * put the tuple in hash table
1633 : */
1634 : HashJoinTuple hashTuple;
1635 : int hashTupleSize;
1636 7586636 : double ntuples = (hashtable->totalTuples - hashtable->skewTuples);
1637 :
1638 : /* Create the HashJoinTuple */
1639 7586636 : hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
1640 7586636 : hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1641 :
1642 7586636 : hashTuple->hashvalue = hashvalue;
1643 7586636 : memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1644 :
1645 : /*
1646 : * We always reset the tuple-matched flag on insertion. This is okay
1647 : * even when reloading a tuple from a batch file, since the tuple
1648 : * could not possibly have been matched to an outer tuple before it
1649 : * went into the batch file.
1650 : */
1651 7586636 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1652 :
1653 : /* Push it onto the front of the bucket's list */
1654 7586636 : hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1655 7586636 : hashtable->buckets.unshared[bucketno] = hashTuple;
1656 :
1657 : /*
1658 : * Increase the (optimal) number of buckets if we just exceeded the
1659 : * NTUP_PER_BUCKET threshold, but only when there's still a single
1660 : * batch.
1661 : */
1662 7586636 : if (hashtable->nbatch == 1 &&
1663 5082726 : ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
1664 : {
1665 : /* Guard against integer overflow and alloc size overflow */
1666 190 : if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
1667 190 : hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
1668 : {
1669 190 : hashtable->nbuckets_optimal *= 2;
1670 190 : hashtable->log2_nbuckets_optimal += 1;
1671 : }
1672 : }
1673 :
1674 : /* Account for space used, and back off if we've used too much */
1675 7586636 : hashtable->spaceUsed += hashTupleSize;
1676 7586636 : if (hashtable->spaceUsed > hashtable->spacePeak)
1677 5673374 : hashtable->spacePeak = hashtable->spaceUsed;
1678 7586636 : if (hashtable->spaceUsed +
1679 7586636 : hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
1680 7586636 : > hashtable->spaceAllowed)
1681 449130 : ExecHashIncreaseNumBatches(hashtable);
1682 : }
1683 : else
1684 : {
1685 : /*
1686 : * put the tuple into a temp file for later batches
1687 : */
1688 : Assert(batchno > hashtable->curbatch);
1689 2201124 : ExecHashJoinSaveTuple(tuple,
1690 : hashvalue,
1691 2201124 : &hashtable->innerBatchFile[batchno],
1692 : hashtable);
1693 : }
1694 :
1695 9787760 : if (shouldFree)
1696 7360078 : heap_free_minimal_tuple(tuple);
1697 9787760 : }
1698 :
1699 : /*
1700 : * ExecParallelHashTableInsert
1701 : * insert a tuple into a shared hash table or shared batch tuplestore
1702 : */
1703 : void
1704 2160132 : ExecParallelHashTableInsert(HashJoinTable hashtable,
1705 : TupleTableSlot *slot,
1706 : uint32 hashvalue)
1707 : {
1708 : bool shouldFree;
1709 2160132 : MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1710 : dsa_pointer shared;
1711 : int bucketno;
1712 : int batchno;
1713 :
1714 2160480 : retry:
1715 2160480 : ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1716 :
1717 2160480 : if (batchno == 0)
1718 : {
1719 : HashJoinTuple hashTuple;
1720 :
1721 : /* Try to load it into memory. */
1722 : Assert(BarrierPhase(&hashtable->parallel_state->build_barrier) ==
1723 : PHJ_BUILD_HASH_INNER);
1724 1247314 : hashTuple = ExecParallelHashTupleAlloc(hashtable,
1725 1247314 : HJTUPLE_OVERHEAD + tuple->t_len,
1726 : &shared);
1727 1247314 : if (hashTuple == NULL)
1728 320 : goto retry;
1729 :
1730 : /* Store the hash value in the HashJoinTuple header. */
1731 1246994 : hashTuple->hashvalue = hashvalue;
1732 1246994 : memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1733 1246994 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1734 :
1735 : /* Push it onto the front of the bucket's list */
1736 1246994 : ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1737 : hashTuple, shared);
1738 : }
1739 : else
1740 : {
1741 913166 : size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1742 :
1743 : Assert(batchno > 0);
1744 :
1745 : /* Try to preallocate space in the batch if necessary. */
1746 913166 : if (hashtable->batches[batchno].preallocated < tuple_size)
1747 : {
1748 1724 : if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size))
1749 28 : goto retry;
1750 : }
1751 :
1752 : Assert(hashtable->batches[batchno].preallocated >= tuple_size);
1753 913138 : hashtable->batches[batchno].preallocated -= tuple_size;
1754 913138 : sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue,
1755 : tuple);
1756 : }
1757 2160132 : ++hashtable->batches[batchno].ntuples;
1758 :
1759 2160132 : if (shouldFree)
1760 2160132 : heap_free_minimal_tuple(tuple);
1761 2160132 : }
1762 :
1763 : /*
1764 : * Insert a tuple into the current hash table. Unlike
1765 : * ExecParallelHashTableInsert, this version is not prepared to send the tuple
1766 : * to other batches or to run out of memory, and should only be called with
1767 : * tuples that belong in the current batch once growth has been disabled.
1768 : */
1769 : void
1770 1084174 : ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable,
1771 : TupleTableSlot *slot,
1772 : uint32 hashvalue)
1773 : {
1774 : bool shouldFree;
1775 1084174 : MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1776 : HashJoinTuple hashTuple;
1777 : dsa_pointer shared;
1778 : int batchno;
1779 : int bucketno;
1780 :
1781 1084174 : ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1782 : Assert(batchno == hashtable->curbatch);
1783 1084174 : hashTuple = ExecParallelHashTupleAlloc(hashtable,
1784 1084174 : HJTUPLE_OVERHEAD + tuple->t_len,
1785 : &shared);
1786 1084174 : hashTuple->hashvalue = hashvalue;
1787 1084174 : memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1788 1084174 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1789 1084174 : ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1790 : hashTuple, shared);
1791 :
1792 1084174 : if (shouldFree)
1793 0 : heap_free_minimal_tuple(tuple);
1794 1084174 : }
1795 :
1796 :
1797 : /*
1798 : * ExecHashGetBucketAndBatch
1799 : * Determine the bucket number and batch number for a hash value
1800 : *
1801 : * Note: on-the-fly increases of nbatch must not change the bucket number
1802 : * for a given hash code (since we don't move tuples to different hash
1803 : * chains), and must only cause the batch number to remain the same or
1804 : * increase. Our algorithm is
1805 : * bucketno = hashvalue MOD nbuckets
1806 : * batchno = ROR(hashvalue, log2_nbuckets) MOD nbatch
1807 : * where nbuckets and nbatch are both expected to be powers of 2, so we can
1808 : * do the computations by shifting and masking. (This assumes that all hash
1809 : * functions are good about randomizing all their output bits, else we are
1810 : * likely to have very skewed bucket or batch occupancy.)
1811 : *
1812 : * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
1813 : * bucket count growth. Once we start batching, the value is fixed and does
1814 : * not change over the course of the join (making it possible to compute batch
1815 : * number the way we do here).
1816 : *
1817 : * nbatch is always a power of 2; we increase it only by doubling it. This
1818 : * effectively adds one more bit to the top of the batchno. In very large
1819 : * joins, we might run out of bits to add, so we do this by rotating the hash
1820 : * value. This causes batchno to steal bits from bucketno when the number of
1821 : * virtual buckets exceeds 2^32. It's better to have longer bucket chains
1822 : * than to lose the ability to divide batches.
1823 : */
1824 : void
1825 33248896 : ExecHashGetBucketAndBatch(HashJoinTable hashtable,
1826 : uint32 hashvalue,
1827 : int *bucketno,
1828 : int *batchno)
1829 : {
1830 33248896 : uint32 nbuckets = (uint32) hashtable->nbuckets;
1831 33248896 : uint32 nbatch = (uint32) hashtable->nbatch;
1832 :
1833 33248896 : if (nbatch > 1)
1834 : {
1835 13254158 : *bucketno = hashvalue & (nbuckets - 1);
1836 13254158 : *batchno = pg_rotate_right32(hashvalue,
1837 13254158 : hashtable->log2_nbuckets) & (nbatch - 1);
1838 : }
1839 : else
1840 : {
1841 19994738 : *bucketno = hashvalue & (nbuckets - 1);
1842 19994738 : *batchno = 0;
1843 : }
1844 33248896 : }
1845 :
1846 : /*
1847 : * ExecScanHashBucket
1848 : * scan a hash bucket for matches to the current outer tuple
1849 : *
1850 : * The current outer tuple must be stored in econtext->ecxt_outertuple.
1851 : *
1852 : * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1853 : * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1854 : * for the latter.
1855 : */
1856 : bool
1857 17870218 : ExecScanHashBucket(HashJoinState *hjstate,
1858 : ExprContext *econtext)
1859 : {
1860 17870218 : ExprState *hjclauses = hjstate->hashclauses;
1861 17870218 : HashJoinTable hashtable = hjstate->hj_HashTable;
1862 17870218 : HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1863 17870218 : uint32 hashvalue = hjstate->hj_CurHashValue;
1864 :
1865 : /*
1866 : * hj_CurTuple is the address of the tuple last returned from the current
1867 : * bucket, or NULL if it's time to start scanning a new bucket.
1868 : *
1869 : * If the tuple hashed to a skew bucket then scan the skew bucket
1870 : * otherwise scan the standard hashtable bucket.
1871 : */
1872 17870218 : if (hashTuple != NULL)
1873 4478532 : hashTuple = hashTuple->next.unshared;
1874 13391686 : else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)
1875 2400 : hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
1876 : else
1877 13389286 : hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
1878 :
1879 22017790 : while (hashTuple != NULL)
1880 : {
1881 12055710 : if (hashTuple->hashvalue == hashvalue)
1882 : {
1883 : TupleTableSlot *inntuple;
1884 :
1885 : /* insert hashtable's tuple into exec slot so ExecQual sees it */
1886 7908150 : inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
1887 : hjstate->hj_HashTupleSlot,
1888 : false); /* do not pfree */
1889 7908150 : econtext->ecxt_innertuple = inntuple;
1890 :
1891 7908150 : if (ExecQualAndReset(hjclauses, econtext))
1892 : {
1893 7908138 : hjstate->hj_CurTuple = hashTuple;
1894 7908138 : return true;
1895 : }
1896 : }
1897 :
1898 4147572 : hashTuple = hashTuple->next.unshared;
1899 : }
1900 :
1901 : /*
1902 : * no match
1903 : */
1904 9962080 : return false;
1905 : }
1906 :
1907 : /*
1908 : * ExecParallelScanHashBucket
1909 : * scan a hash bucket for matches to the current outer tuple
1910 : *
1911 : * The current outer tuple must be stored in econtext->ecxt_outertuple.
1912 : *
1913 : * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1914 : * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1915 : * for the latter.
1916 : */
1917 : bool
1918 4200054 : ExecParallelScanHashBucket(HashJoinState *hjstate,
1919 : ExprContext *econtext)
1920 : {
1921 4200054 : ExprState *hjclauses = hjstate->hashclauses;
1922 4200054 : HashJoinTable hashtable = hjstate->hj_HashTable;
1923 4200054 : HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1924 4200054 : uint32 hashvalue = hjstate->hj_CurHashValue;
1925 :
1926 : /*
1927 : * hj_CurTuple is the address of the tuple last returned from the current
1928 : * bucket, or NULL if it's time to start scanning a new bucket.
1929 : */
1930 4200054 : if (hashTuple != NULL)
1931 2040024 : hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
1932 : else
1933 2160030 : hashTuple = ExecParallelHashFirstTuple(hashtable,
1934 : hjstate->hj_CurBucketNo);
1935 :
1936 5600842 : while (hashTuple != NULL)
1937 : {
1938 3440812 : if (hashTuple->hashvalue == hashvalue)
1939 : {
1940 : TupleTableSlot *inntuple;
1941 :
1942 : /* insert hashtable's tuple into exec slot so ExecQual sees it */
1943 2040024 : inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
1944 : hjstate->hj_HashTupleSlot,
1945 : false); /* do not pfree */
1946 2040024 : econtext->ecxt_innertuple = inntuple;
1947 :
1948 2040024 : if (ExecQualAndReset(hjclauses, econtext))
1949 : {
1950 2040024 : hjstate->hj_CurTuple = hashTuple;
1951 2040024 : return true;
1952 : }
1953 : }
1954 :
1955 1400788 : hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
1956 : }
1957 :
1958 : /*
1959 : * no match
1960 : */
1961 2160030 : return false;
1962 : }
1963 :
1964 : /*
1965 : * ExecPrepHashTableForUnmatched
1966 : * set up for a series of ExecScanHashTableForUnmatched calls
1967 : */
1968 : void
1969 3614 : ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
1970 : {
1971 : /*----------
1972 : * During this scan we use the HashJoinState fields as follows:
1973 : *
1974 : * hj_CurBucketNo: next regular bucket to scan
1975 : * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
1976 : * hj_CurTuple: last tuple returned, or NULL to start next bucket
1977 : *----------
1978 : */
1979 3614 : hjstate->hj_CurBucketNo = 0;
1980 3614 : hjstate->hj_CurSkewBucketNo = 0;
1981 3614 : hjstate->hj_CurTuple = NULL;
1982 3614 : }
1983 :
1984 : /*
1985 : * Decide if this process is allowed to run the unmatched scan. If so, the
1986 : * batch barrier is advanced to PHJ_BATCH_SCAN and true is returned.
1987 : * Otherwise the batch is detached and false is returned.
1988 : */
1989 : bool
1990 70 : ExecParallelPrepHashTableForUnmatched(HashJoinState *hjstate)
1991 : {
1992 70 : HashJoinTable hashtable = hjstate->hj_HashTable;
1993 70 : int curbatch = hashtable->curbatch;
1994 70 : ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
1995 :
1996 : Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE);
1997 :
1998 : /*
1999 : * It would not be deadlock-free to wait on the batch barrier, because it
2000 : * is in PHJ_BATCH_PROBE phase, and thus processes attached to it have
2001 : * already emitted tuples. Therefore, we'll hold a wait-free election:
2002 : * only one process can continue to the next phase, and all others detach
2003 : * from this batch. They can still go any work on other batches, if there
2004 : * are any.
2005 : */
2006 70 : if (!BarrierArriveAndDetachExceptLast(&batch->batch_barrier))
2007 : {
2008 : /* This process considers the batch to be done. */
2009 4 : hashtable->batches[hashtable->curbatch].done = true;
2010 :
2011 : /* Make sure any temporary files are closed. */
2012 4 : sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
2013 4 : sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
2014 :
2015 : /*
2016 : * Track largest batch we've seen, which would normally happen in
2017 : * ExecHashTableDetachBatch().
2018 : */
2019 4 : hashtable->spacePeak =
2020 4 : Max(hashtable->spacePeak,
2021 : batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
2022 4 : hashtable->curbatch = -1;
2023 4 : return false;
2024 : }
2025 :
2026 : /* Now we are alone with this batch. */
2027 : Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_SCAN);
2028 :
2029 : /*
2030 : * Has another process decided to give up early and command all processes
2031 : * to skip the unmatched scan?
2032 : */
2033 66 : if (batch->skip_unmatched)
2034 : {
2035 0 : hashtable->batches[hashtable->curbatch].done = true;
2036 0 : ExecHashTableDetachBatch(hashtable);
2037 0 : return false;
2038 : }
2039 :
2040 : /* Now prepare the process local state, just as for non-parallel join. */
2041 66 : ExecPrepHashTableForUnmatched(hjstate);
2042 :
2043 66 : return true;
2044 : }
2045 :
2046 : /*
2047 : * ExecScanHashTableForUnmatched
2048 : * scan the hash table for unmatched inner tuples
2049 : *
2050 : * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2051 : * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2052 : * for the latter.
2053 : */
2054 : bool
2055 358148 : ExecScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
2056 : {
2057 358148 : HashJoinTable hashtable = hjstate->hj_HashTable;
2058 358148 : HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2059 :
2060 : for (;;)
2061 : {
2062 : /*
2063 : * hj_CurTuple is the address of the tuple last returned from the
2064 : * current bucket, or NULL if it's time to start scanning a new
2065 : * bucket.
2066 : */
2067 5091560 : if (hashTuple != NULL)
2068 354600 : hashTuple = hashTuple->next.unshared;
2069 4736960 : else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2070 : {
2071 4733424 : hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
2072 4733424 : hjstate->hj_CurBucketNo++;
2073 : }
2074 3536 : else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets)
2075 : {
2076 0 : int j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];
2077 :
2078 0 : hashTuple = hashtable->skewBucket[j]->tuples;
2079 0 : hjstate->hj_CurSkewBucketNo++;
2080 : }
2081 : else
2082 3536 : break; /* finished all buckets */
2083 :
2084 5485990 : while (hashTuple != NULL)
2085 : {
2086 752578 : if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
2087 : {
2088 : TupleTableSlot *inntuple;
2089 :
2090 : /* insert hashtable's tuple into exec slot */
2091 354612 : inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2092 : hjstate->hj_HashTupleSlot,
2093 : false); /* do not pfree */
2094 354612 : econtext->ecxt_innertuple = inntuple;
2095 :
2096 : /*
2097 : * Reset temp memory each time; although this function doesn't
2098 : * do any qual eval, the caller will, so let's keep it
2099 : * parallel to ExecScanHashBucket.
2100 : */
2101 354612 : ResetExprContext(econtext);
2102 :
2103 354612 : hjstate->hj_CurTuple = hashTuple;
2104 354612 : return true;
2105 : }
2106 :
2107 397966 : hashTuple = hashTuple->next.unshared;
2108 : }
2109 :
2110 : /* allow this loop to be cancellable */
2111 4733412 : CHECK_FOR_INTERRUPTS();
2112 : }
2113 :
2114 : /*
2115 : * no more unmatched tuples
2116 : */
2117 3536 : return false;
2118 : }
2119 :
2120 : /*
2121 : * ExecParallelScanHashTableForUnmatched
2122 : * scan the hash table for unmatched inner tuples, in parallel join
2123 : *
2124 : * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2125 : * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2126 : * for the latter.
2127 : */
2128 : bool
2129 120072 : ExecParallelScanHashTableForUnmatched(HashJoinState *hjstate,
2130 : ExprContext *econtext)
2131 : {
2132 120072 : HashJoinTable hashtable = hjstate->hj_HashTable;
2133 120072 : HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2134 :
2135 : for (;;)
2136 : {
2137 : /*
2138 : * hj_CurTuple is the address of the tuple last returned from the
2139 : * current bucket, or NULL if it's time to start scanning a new
2140 : * bucket.
2141 : */
2142 734472 : if (hashTuple != NULL)
2143 120006 : hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2144 614466 : else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2145 614400 : hashTuple = ExecParallelHashFirstTuple(hashtable,
2146 614400 : hjstate->hj_CurBucketNo++);
2147 : else
2148 66 : break; /* finished all buckets */
2149 :
2150 974406 : while (hashTuple != NULL)
2151 : {
2152 360006 : if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
2153 : {
2154 : TupleTableSlot *inntuple;
2155 :
2156 : /* insert hashtable's tuple into exec slot */
2157 120006 : inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2158 : hjstate->hj_HashTupleSlot,
2159 : false); /* do not pfree */
2160 120006 : econtext->ecxt_innertuple = inntuple;
2161 :
2162 : /*
2163 : * Reset temp memory each time; although this function doesn't
2164 : * do any qual eval, the caller will, so let's keep it
2165 : * parallel to ExecScanHashBucket.
2166 : */
2167 120006 : ResetExprContext(econtext);
2168 :
2169 120006 : hjstate->hj_CurTuple = hashTuple;
2170 120006 : return true;
2171 : }
2172 :
2173 240000 : hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2174 : }
2175 :
2176 : /* allow this loop to be cancellable */
2177 614400 : CHECK_FOR_INTERRUPTS();
2178 : }
2179 :
2180 : /*
2181 : * no more unmatched tuples
2182 : */
2183 66 : return false;
2184 : }
2185 :
2186 : /*
2187 : * ExecHashTableReset
2188 : *
2189 : * reset hash table header for new batch
2190 : */
2191 : void
2192 1210 : ExecHashTableReset(HashJoinTable hashtable)
2193 : {
2194 : MemoryContext oldcxt;
2195 1210 : int nbuckets = hashtable->nbuckets;
2196 :
2197 : /*
2198 : * Release all the hash buckets and tuples acquired in the prior pass, and
2199 : * reinitialize the context for a new pass.
2200 : */
2201 1210 : MemoryContextReset(hashtable->batchCxt);
2202 1210 : oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
2203 :
2204 : /* Reallocate and reinitialize the hash bucket headers. */
2205 1210 : hashtable->buckets.unshared = palloc0_array(HashJoinTuple, nbuckets);
2206 :
2207 1210 : hashtable->spaceUsed = 0;
2208 :
2209 1210 : MemoryContextSwitchTo(oldcxt);
2210 :
2211 : /* Forget the chunks (the memory was freed by the context reset above). */
2212 1210 : hashtable->chunks = NULL;
2213 1210 : }
2214 :
2215 : /*
2216 : * ExecHashTableResetMatchFlags
2217 : * Clear all the HeapTupleHeaderHasMatch flags in the table
2218 : */
2219 : void
2220 70 : ExecHashTableResetMatchFlags(HashJoinTable hashtable)
2221 : {
2222 : HashJoinTuple tuple;
2223 : int i;
2224 :
2225 : /* Reset all flags in the main table ... */
2226 71750 : for (i = 0; i < hashtable->nbuckets; i++)
2227 : {
2228 72014 : for (tuple = hashtable->buckets.unshared[i]; tuple != NULL;
2229 334 : tuple = tuple->next.unshared)
2230 334 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2231 : }
2232 :
2233 : /* ... and the same for the skew buckets, if any */
2234 70 : for (i = 0; i < hashtable->nSkewBuckets; i++)
2235 : {
2236 0 : int j = hashtable->skewBucketNums[i];
2237 0 : HashSkewBucket *skewBucket = hashtable->skewBucket[j];
2238 :
2239 0 : for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared)
2240 0 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2241 : }
2242 70 : }
2243 :
2244 :
2245 : void
2246 1332 : ExecReScanHash(HashState *node)
2247 : {
2248 1332 : PlanState *outerPlan = outerPlanState(node);
2249 :
2250 : /*
2251 : * if chgParam of subnode is not null then plan will be re-scanned by
2252 : * first ExecProcNode.
2253 : */
2254 1332 : if (outerPlan->chgParam == NULL)
2255 30 : ExecReScan(outerPlan);
2256 1332 : }
2257 :
2258 :
2259 : /*
2260 : * ExecHashBuildSkewHash
2261 : *
2262 : * Set up for skew optimization if we can identify the most common values
2263 : * (MCVs) of the outer relation's join key. We make a skew hash bucket
2264 : * for the hash value of each MCV, up to the number of slots allowed
2265 : * based on available memory.
2266 : */
2267 : static void
2268 110 : ExecHashBuildSkewHash(HashState *hashstate, HashJoinTable hashtable,
2269 : Hash *node, int mcvsToUse)
2270 : {
2271 : HeapTupleData *statsTuple;
2272 : AttStatsSlot sslot;
2273 :
2274 : /* Do nothing if planner didn't identify the outer relation's join key */
2275 110 : if (!OidIsValid(node->skewTable))
2276 72 : return;
2277 : /* Also, do nothing if we don't have room for at least one skew bucket */
2278 110 : if (mcvsToUse <= 0)
2279 0 : return;
2280 :
2281 : /*
2282 : * Try to find the MCV statistics for the outer relation's join key.
2283 : */
2284 110 : statsTuple = SearchSysCache3(STATRELATTINH,
2285 : ObjectIdGetDatum(node->skewTable),
2286 110 : Int16GetDatum(node->skewColumn),
2287 110 : BoolGetDatum(node->skewInherit));
2288 110 : if (!HeapTupleIsValid(statsTuple))
2289 72 : return;
2290 :
2291 38 : if (get_attstatsslot(&sslot, statsTuple,
2292 : STATISTIC_KIND_MCV, InvalidOid,
2293 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
2294 : {
2295 : double frac;
2296 : int nbuckets;
2297 : int i;
2298 :
2299 6 : if (mcvsToUse > sslot.nvalues)
2300 0 : mcvsToUse = sslot.nvalues;
2301 :
2302 : /*
2303 : * Calculate the expected fraction of outer relation that will
2304 : * participate in the skew optimization. If this isn't at least
2305 : * SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
2306 : */
2307 6 : frac = 0;
2308 132 : for (i = 0; i < mcvsToUse; i++)
2309 126 : frac += sslot.numbers[i];
2310 6 : if (frac < SKEW_MIN_OUTER_FRACTION)
2311 : {
2312 0 : free_attstatsslot(&sslot);
2313 0 : ReleaseSysCache(statsTuple);
2314 0 : return;
2315 : }
2316 :
2317 : /*
2318 : * Okay, set up the skew hashtable.
2319 : *
2320 : * skewBucket[] is an open addressing hashtable with a power of 2 size
2321 : * that is greater than the number of MCV values. (This ensures there
2322 : * will be at least one null entry, so searches will always
2323 : * terminate.)
2324 : *
2325 : * Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
2326 : * MaxAllocSize/sizeof(void *)/8, but that is not currently possible
2327 : * since we limit pg_statistic entries to much less than that.
2328 : */
2329 6 : nbuckets = pg_nextpower2_32(mcvsToUse + 1);
2330 : /* use two more bits just to help avoid collisions */
2331 6 : nbuckets <<= 2;
2332 :
2333 6 : hashtable->skewEnabled = true;
2334 6 : hashtable->skewBucketLen = nbuckets;
2335 :
2336 : /*
2337 : * We allocate the bucket memory in the hashtable's batch context. It
2338 : * is only needed during the first batch, and this ensures it will be
2339 : * automatically removed once the first batch is done.
2340 : */
2341 6 : hashtable->skewBucket = (HashSkewBucket **)
2342 6 : MemoryContextAllocZero(hashtable->batchCxt,
2343 : nbuckets * sizeof(HashSkewBucket *));
2344 6 : hashtable->skewBucketNums = (int *)
2345 6 : MemoryContextAllocZero(hashtable->batchCxt,
2346 : mcvsToUse * sizeof(int));
2347 :
2348 6 : hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket *)
2349 6 : + mcvsToUse * sizeof(int);
2350 6 : hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket *)
2351 6 : + mcvsToUse * sizeof(int);
2352 6 : if (hashtable->spaceUsed > hashtable->spacePeak)
2353 6 : hashtable->spacePeak = hashtable->spaceUsed;
2354 :
2355 : /*
2356 : * Create a skew bucket for each MCV hash value.
2357 : *
2358 : * Note: it is very important that we create the buckets in order of
2359 : * decreasing MCV frequency. If we have to remove some buckets, they
2360 : * must be removed in reverse order of creation (see notes in
2361 : * ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
2362 : * be removed first.
2363 : */
2364 :
2365 132 : for (i = 0; i < mcvsToUse; i++)
2366 : {
2367 : uint32 hashvalue;
2368 : int bucket;
2369 :
2370 126 : hashvalue = DatumGetUInt32(FunctionCall1Coll(hashstate->skew_hashfunction,
2371 : hashstate->skew_collation,
2372 126 : sslot.values[i]));
2373 :
2374 : /*
2375 : * While we have not hit a hole in the hashtable and have not hit
2376 : * the desired bucket, we have collided with some previous hash
2377 : * value, so try the next bucket location. NB: this code must
2378 : * match ExecHashGetSkewBucket.
2379 : */
2380 126 : bucket = hashvalue & (nbuckets - 1);
2381 126 : while (hashtable->skewBucket[bucket] != NULL &&
2382 0 : hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2383 0 : bucket = (bucket + 1) & (nbuckets - 1);
2384 :
2385 : /*
2386 : * If we found an existing bucket with the same hashvalue, leave
2387 : * it alone. It's okay for two MCVs to share a hashvalue.
2388 : */
2389 126 : if (hashtable->skewBucket[bucket] != NULL)
2390 0 : continue;
2391 :
2392 : /* Okay, create a new skew bucket for this hashvalue. */
2393 252 : hashtable->skewBucket[bucket] = (HashSkewBucket *)
2394 126 : MemoryContextAlloc(hashtable->batchCxt,
2395 : sizeof(HashSkewBucket));
2396 126 : hashtable->skewBucket[bucket]->hashvalue = hashvalue;
2397 126 : hashtable->skewBucket[bucket]->tuples = NULL;
2398 126 : hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
2399 126 : hashtable->nSkewBuckets++;
2400 126 : hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
2401 126 : hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
2402 126 : if (hashtable->spaceUsed > hashtable->spacePeak)
2403 126 : hashtable->spacePeak = hashtable->spaceUsed;
2404 : }
2405 :
2406 6 : free_attstatsslot(&sslot);
2407 : }
2408 :
2409 38 : ReleaseSysCache(statsTuple);
2410 : }
2411 :
2412 : /*
2413 : * ExecHashGetSkewBucket
2414 : *
2415 : * Returns the index of the skew bucket for this hashvalue,
2416 : * or INVALID_SKEW_BUCKET_NO if the hashvalue is not
2417 : * associated with any active skew bucket.
2418 : */
2419 : int
2420 24422622 : ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
2421 : {
2422 : int bucket;
2423 :
2424 : /*
2425 : * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
2426 : * particular, this happens after the initial batch is done).
2427 : */
2428 24422622 : if (!hashtable->skewEnabled)
2429 24302622 : return INVALID_SKEW_BUCKET_NO;
2430 :
2431 : /*
2432 : * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
2433 : */
2434 120000 : bucket = hashvalue & (hashtable->skewBucketLen - 1);
2435 :
2436 : /*
2437 : * While we have not hit a hole in the hashtable and have not hit the
2438 : * desired bucket, we have collided with some other hash value, so try the
2439 : * next bucket location.
2440 : */
2441 127830 : while (hashtable->skewBucket[bucket] != NULL &&
2442 10818 : hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2443 7830 : bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
2444 :
2445 : /*
2446 : * Found the desired bucket?
2447 : */
2448 120000 : if (hashtable->skewBucket[bucket] != NULL)
2449 2988 : return bucket;
2450 :
2451 : /*
2452 : * There must not be any hashtable entry for this hash value.
2453 : */
2454 117012 : return INVALID_SKEW_BUCKET_NO;
2455 : }
2456 :
2457 : /*
2458 : * ExecHashSkewTableInsert
2459 : *
2460 : * Insert a tuple into the skew hashtable.
2461 : *
2462 : * This should generally match up with the current-batch case in
2463 : * ExecHashTableInsert.
2464 : */
2465 : static void
2466 588 : ExecHashSkewTableInsert(HashJoinTable hashtable,
2467 : TupleTableSlot *slot,
2468 : uint32 hashvalue,
2469 : int bucketNumber)
2470 : {
2471 : bool shouldFree;
2472 588 : MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
2473 : HashJoinTuple hashTuple;
2474 : int hashTupleSize;
2475 :
2476 : /* Create the HashJoinTuple */
2477 588 : hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2478 588 : hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
2479 : hashTupleSize);
2480 588 : hashTuple->hashvalue = hashvalue;
2481 588 : memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
2482 588 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
2483 :
2484 : /* Push it onto the front of the skew bucket's list */
2485 588 : hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
2486 588 : hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
2487 : Assert(hashTuple != hashTuple->next.unshared);
2488 :
2489 : /* Account for space used, and back off if we've used too much */
2490 588 : hashtable->spaceUsed += hashTupleSize;
2491 588 : hashtable->spaceUsedSkew += hashTupleSize;
2492 588 : if (hashtable->spaceUsed > hashtable->spacePeak)
2493 432 : hashtable->spacePeak = hashtable->spaceUsed;
2494 690 : while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
2495 102 : ExecHashRemoveNextSkewBucket(hashtable);
2496 :
2497 : /* Check we are not over the total spaceAllowed, either */
2498 588 : if (hashtable->spaceUsed > hashtable->spaceAllowed)
2499 0 : ExecHashIncreaseNumBatches(hashtable);
2500 :
2501 588 : if (shouldFree)
2502 588 : heap_free_minimal_tuple(tuple);
2503 588 : }
2504 :
2505 : /*
2506 : * ExecHashRemoveNextSkewBucket
2507 : *
2508 : * Remove the least valuable skew bucket by pushing its tuples into
2509 : * the main hash table.
2510 : */
2511 : static void
2512 102 : ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
2513 : {
2514 : int bucketToRemove;
2515 : HashSkewBucket *bucket;
2516 : uint32 hashvalue;
2517 : int bucketno;
2518 : int batchno;
2519 : HashJoinTuple hashTuple;
2520 :
2521 : /* Locate the bucket to remove */
2522 102 : bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
2523 102 : bucket = hashtable->skewBucket[bucketToRemove];
2524 :
2525 : /*
2526 : * Calculate which bucket and batch the tuples belong to in the main
2527 : * hashtable. They all have the same hash value, so it's the same for all
2528 : * of them. Also note that it's not possible for nbatch to increase while
2529 : * we are processing the tuples.
2530 : */
2531 102 : hashvalue = bucket->hashvalue;
2532 102 : ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
2533 :
2534 : /* Process all tuples in the bucket */
2535 102 : hashTuple = bucket->tuples;
2536 450 : while (hashTuple != NULL)
2537 : {
2538 348 : HashJoinTuple nextHashTuple = hashTuple->next.unshared;
2539 : MinimalTuple tuple;
2540 : Size tupleSize;
2541 :
2542 : /*
2543 : * This code must agree with ExecHashTableInsert. We do not use
2544 : * ExecHashTableInsert directly as ExecHashTableInsert expects a
2545 : * TupleTableSlot while we already have HashJoinTuples.
2546 : */
2547 348 : tuple = HJTUPLE_MINTUPLE(hashTuple);
2548 348 : tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2549 :
2550 : /* Decide whether to put the tuple in the hash table or a temp file */
2551 348 : if (batchno == hashtable->curbatch)
2552 : {
2553 : /* Move the tuple to the main hash table */
2554 : HashJoinTuple copyTuple;
2555 :
2556 : /*
2557 : * We must copy the tuple into the dense storage, else it will not
2558 : * be found by, eg, ExecHashIncreaseNumBatches.
2559 : */
2560 138 : copyTuple = (HashJoinTuple) dense_alloc(hashtable, tupleSize);
2561 138 : memcpy(copyTuple, hashTuple, tupleSize);
2562 138 : pfree(hashTuple);
2563 :
2564 138 : copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
2565 138 : hashtable->buckets.unshared[bucketno] = copyTuple;
2566 :
2567 : /* We have reduced skew space, but overall space doesn't change */
2568 138 : hashtable->spaceUsedSkew -= tupleSize;
2569 : }
2570 : else
2571 : {
2572 : /* Put the tuple into a temp file for later batches */
2573 : Assert(batchno > hashtable->curbatch);
2574 210 : ExecHashJoinSaveTuple(tuple, hashvalue,
2575 210 : &hashtable->innerBatchFile[batchno],
2576 : hashtable);
2577 210 : pfree(hashTuple);
2578 210 : hashtable->spaceUsed -= tupleSize;
2579 210 : hashtable->spaceUsedSkew -= tupleSize;
2580 : }
2581 :
2582 348 : hashTuple = nextHashTuple;
2583 :
2584 : /* allow this loop to be cancellable */
2585 348 : CHECK_FOR_INTERRUPTS();
2586 : }
2587 :
2588 : /*
2589 : * Free the bucket struct itself and reset the hashtable entry to NULL.
2590 : *
2591 : * NOTE: this is not nearly as simple as it looks on the surface, because
2592 : * of the possibility of collisions in the hashtable. Suppose that hash
2593 : * values A and B collide at a particular hashtable entry, and that A was
2594 : * entered first so B gets shifted to a different table entry. If we were
2595 : * to remove A first then ExecHashGetSkewBucket would mistakenly start
2596 : * reporting that B is not in the hashtable, because it would hit the NULL
2597 : * before finding B. However, we always remove entries in the reverse
2598 : * order of creation, so this failure cannot happen.
2599 : */
2600 102 : hashtable->skewBucket[bucketToRemove] = NULL;
2601 102 : hashtable->nSkewBuckets--;
2602 102 : pfree(bucket);
2603 102 : hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
2604 102 : hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;
2605 :
2606 : /*
2607 : * If we have removed all skew buckets then give up on skew optimization.
2608 : * Release the arrays since they aren't useful any more.
2609 : */
2610 102 : if (hashtable->nSkewBuckets == 0)
2611 : {
2612 0 : hashtable->skewEnabled = false;
2613 0 : pfree(hashtable->skewBucket);
2614 0 : pfree(hashtable->skewBucketNums);
2615 0 : hashtable->skewBucket = NULL;
2616 0 : hashtable->skewBucketNums = NULL;
2617 0 : hashtable->spaceUsed -= hashtable->spaceUsedSkew;
2618 0 : hashtable->spaceUsedSkew = 0;
2619 : }
2620 102 : }
2621 :
2622 : /*
2623 : * Reserve space in the DSM segment for instrumentation data.
2624 : */
2625 : void
2626 192 : ExecHashEstimate(HashState *node, ParallelContext *pcxt)
2627 : {
2628 : size_t size;
2629 :
2630 : /* don't need this if not instrumenting or no workers */
2631 192 : if (!node->ps.instrument || pcxt->nworkers == 0)
2632 108 : return;
2633 :
2634 84 : size = mul_size(pcxt->nworkers, sizeof(HashInstrumentation));
2635 84 : size = add_size(size, offsetof(SharedHashInfo, hinstrument));
2636 84 : shm_toc_estimate_chunk(&pcxt->estimator, size);
2637 84 : shm_toc_estimate_keys(&pcxt->estimator, 1);
2638 : }
2639 :
2640 : /*
2641 : * Set up a space in the DSM for all workers to record instrumentation data
2642 : * about their hash table.
2643 : */
2644 : void
2645 192 : ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
2646 : {
2647 : size_t size;
2648 :
2649 : /* don't need this if not instrumenting or no workers */
2650 192 : if (!node->ps.instrument || pcxt->nworkers == 0)
2651 108 : return;
2652 :
2653 84 : size = offsetof(SharedHashInfo, hinstrument) +
2654 84 : pcxt->nworkers * sizeof(HashInstrumentation);
2655 84 : node->shared_info = (SharedHashInfo *) shm_toc_allocate(pcxt->toc, size);
2656 :
2657 : /* Each per-worker area must start out as zeroes. */
2658 84 : memset(node->shared_info, 0, size);
2659 :
2660 84 : node->shared_info->num_workers = pcxt->nworkers;
2661 84 : shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id,
2662 84 : node->shared_info);
2663 : }
2664 :
2665 : /*
2666 : * Locate the DSM space for hash table instrumentation data that we'll write
2667 : * to at shutdown time.
2668 : */
2669 : void
2670 546 : ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
2671 : {
2672 : SharedHashInfo *shared_info;
2673 :
2674 : /* don't need this if not instrumenting */
2675 546 : if (!node->ps.instrument)
2676 294 : return;
2677 :
2678 : /*
2679 : * Find our entry in the shared area, and set up a pointer to it so that
2680 : * we'll accumulate stats there when shutting down or rebuilding the hash
2681 : * table.
2682 : */
2683 : shared_info = (SharedHashInfo *)
2684 252 : shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
2685 252 : node->hinstrument = &shared_info->hinstrument[ParallelWorkerNumber];
2686 : }
2687 :
2688 : /*
2689 : * Collect EXPLAIN stats if needed, saving them into DSM memory if
2690 : * ExecHashInitializeWorker was called, or local storage if not. In the
2691 : * parallel case, this must be done in ExecShutdownHash() rather than
2692 : * ExecEndHash() because the latter runs after we've detached from the DSM
2693 : * segment.
2694 : */
2695 : void
2696 25556 : ExecShutdownHash(HashState *node)
2697 : {
2698 : /* Allocate save space if EXPLAIN'ing and we didn't do so already */
2699 25556 : if (node->ps.instrument && !node->hinstrument)
2700 108 : node->hinstrument = palloc0_object(HashInstrumentation);
2701 : /* Now accumulate data for the current (final) hash table */
2702 25556 : if (node->hinstrument && node->hashtable)
2703 294 : ExecHashAccumInstrumentation(node->hinstrument, node->hashtable);
2704 25556 : }
2705 :
2706 : /*
2707 : * Retrieve instrumentation data from workers before the DSM segment is
2708 : * detached, so that EXPLAIN can access it.
2709 : */
2710 : void
2711 84 : ExecHashRetrieveInstrumentation(HashState *node)
2712 : {
2713 84 : SharedHashInfo *shared_info = node->shared_info;
2714 : size_t size;
2715 :
2716 84 : if (shared_info == NULL)
2717 0 : return;
2718 :
2719 : /* Replace node->shared_info with a copy in backend-local memory. */
2720 84 : size = offsetof(SharedHashInfo, hinstrument) +
2721 84 : shared_info->num_workers * sizeof(HashInstrumentation);
2722 84 : node->shared_info = palloc(size);
2723 84 : memcpy(node->shared_info, shared_info, size);
2724 : }
2725 :
2726 : /*
2727 : * Accumulate instrumentation data from 'hashtable' into an
2728 : * initially-zeroed HashInstrumentation struct.
2729 : *
2730 : * This is used to merge information across successive hash table instances
2731 : * within a single plan node. We take the maximum values of each interesting
2732 : * number. The largest nbuckets and largest nbatch values might have occurred
2733 : * in different instances, so there's some risk of confusion from reporting
2734 : * unrelated numbers; but there's a bigger risk of misdiagnosing a performance
2735 : * issue if we don't report the largest values. Similarly, we want to report
2736 : * the largest spacePeak regardless of whether it happened in the same
2737 : * instance as the largest nbuckets or nbatch. All the instances should have
2738 : * the same nbuckets_original and nbatch_original; but there's little value
2739 : * in depending on that here, so handle them the same way.
2740 : */
2741 : void
2742 294 : ExecHashAccumInstrumentation(HashInstrumentation *instrument,
2743 : HashJoinTable hashtable)
2744 : {
2745 294 : instrument->nbuckets = Max(instrument->nbuckets,
2746 : hashtable->nbuckets);
2747 294 : instrument->nbuckets_original = Max(instrument->nbuckets_original,
2748 : hashtable->nbuckets_original);
2749 294 : instrument->nbatch = Max(instrument->nbatch,
2750 : hashtable->nbatch);
2751 294 : instrument->nbatch_original = Max(instrument->nbatch_original,
2752 : hashtable->nbatch_original);
2753 294 : instrument->space_peak = Max(instrument->space_peak,
2754 : hashtable->spacePeak);
2755 294 : }
2756 :
2757 : /*
2758 : * Allocate 'size' bytes from the currently active HashMemoryChunk
2759 : */
2760 : static void *
2761 7700452 : dense_alloc(HashJoinTable hashtable, Size size)
2762 : {
2763 : HashMemoryChunk newChunk;
2764 : char *ptr;
2765 :
2766 : /* just in case the size is not already aligned properly */
2767 7700452 : size = MAXALIGN(size);
2768 :
2769 : /*
2770 : * If tuple size is larger than threshold, allocate a separate chunk.
2771 : */
2772 7700452 : if (size > HASH_CHUNK_THRESHOLD)
2773 : {
2774 : /* allocate new chunk and put it at the beginning of the list */
2775 0 : newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2776 : HASH_CHUNK_HEADER_SIZE + size);
2777 0 : newChunk->maxlen = size;
2778 0 : newChunk->used = size;
2779 0 : newChunk->ntuples = 1;
2780 :
2781 : /*
2782 : * Add this chunk to the list after the first existing chunk, so that
2783 : * we don't lose the remaining space in the "current" chunk.
2784 : */
2785 0 : if (hashtable->chunks != NULL)
2786 : {
2787 0 : newChunk->next = hashtable->chunks->next;
2788 0 : hashtable->chunks->next.unshared = newChunk;
2789 : }
2790 : else
2791 : {
2792 0 : newChunk->next.unshared = hashtable->chunks;
2793 0 : hashtable->chunks = newChunk;
2794 : }
2795 :
2796 0 : return HASH_CHUNK_DATA(newChunk);
2797 : }
2798 :
2799 : /*
2800 : * See if we have enough space for it in the current chunk (if any). If
2801 : * not, allocate a fresh chunk.
2802 : */
2803 7700452 : if ((hashtable->chunks == NULL) ||
2804 7682104 : (hashtable->chunks->maxlen - hashtable->chunks->used) < size)
2805 : {
2806 : /* allocate new chunk and put it at the beginning of the list */
2807 28048 : newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2808 : HASH_CHUNK_HEADER_SIZE + HASH_CHUNK_SIZE);
2809 :
2810 28048 : newChunk->maxlen = HASH_CHUNK_SIZE;
2811 28048 : newChunk->used = size;
2812 28048 : newChunk->ntuples = 1;
2813 :
2814 28048 : newChunk->next.unshared = hashtable->chunks;
2815 28048 : hashtable->chunks = newChunk;
2816 :
2817 28048 : return HASH_CHUNK_DATA(newChunk);
2818 : }
2819 :
2820 : /* There is enough space in the current chunk, let's add the tuple */
2821 7672404 : ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
2822 7672404 : hashtable->chunks->used += size;
2823 7672404 : hashtable->chunks->ntuples += 1;
2824 :
2825 : /* return pointer to the start of the tuple memory */
2826 7672404 : return ptr;
2827 : }
2828 :
2829 : /*
2830 : * Allocate space for a tuple in shared dense storage. This is equivalent to
2831 : * dense_alloc but for Parallel Hash using shared memory.
2832 : *
2833 : * While loading a tuple into shared memory, we might run out of memory and
2834 : * decide to repartition, or determine that the load factor is too high and
2835 : * decide to expand the bucket array, or discover that another participant has
2836 : * commanded us to help do that. Return NULL if number of buckets or batches
2837 : * has changed, indicating that the caller must retry (considering the
2838 : * possibility that the tuple no longer belongs in the same batch).
2839 : */
2840 : static HashJoinTuple
2841 2383322 : ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size,
2842 : dsa_pointer *shared)
2843 : {
2844 2383322 : ParallelHashJoinState *pstate = hashtable->parallel_state;
2845 : dsa_pointer chunk_shared;
2846 : HashMemoryChunk chunk;
2847 : Size chunk_size;
2848 : HashJoinTuple result;
2849 2383322 : int curbatch = hashtable->curbatch;
2850 :
2851 2383322 : size = MAXALIGN(size);
2852 :
2853 : /*
2854 : * Fast path: if there is enough space in this backend's current chunk,
2855 : * then we can allocate without any locking.
2856 : */
2857 2383322 : chunk = hashtable->current_chunk;
2858 2383322 : if (chunk != NULL &&
2859 2382344 : size <= HASH_CHUNK_THRESHOLD &&
2860 2382344 : chunk->maxlen - chunk->used >= size)
2861 : {
2862 :
2863 2379580 : chunk_shared = hashtable->current_chunk_shared;
2864 : Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
2865 2379580 : *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE + chunk->used;
2866 2379580 : result = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + chunk->used);
2867 2379580 : chunk->used += size;
2868 :
2869 : Assert(chunk->used <= chunk->maxlen);
2870 : Assert(result == dsa_get_address(hashtable->area, *shared));
2871 :
2872 2379580 : return result;
2873 : }
2874 :
2875 : /* Slow path: try to allocate a new chunk. */
2876 3742 : LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
2877 :
2878 : /*
2879 : * Check if we need to help increase the number of buckets or batches.
2880 : */
2881 3742 : if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
2882 3706 : pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2883 : {
2884 176 : ParallelHashGrowth growth = pstate->growth;
2885 :
2886 176 : hashtable->current_chunk = NULL;
2887 176 : LWLockRelease(&pstate->lock);
2888 :
2889 : /* Another participant has commanded us to help grow. */
2890 176 : if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
2891 36 : ExecParallelHashIncreaseNumBatches(hashtable);
2892 140 : else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2893 140 : ExecParallelHashIncreaseNumBuckets(hashtable);
2894 :
2895 : /* The caller must retry. */
2896 176 : return NULL;
2897 : }
2898 :
2899 : /* Oversized tuples get their own chunk. */
2900 3566 : if (size > HASH_CHUNK_THRESHOLD)
2901 48 : chunk_size = size + HASH_CHUNK_HEADER_SIZE;
2902 : else
2903 3518 : chunk_size = HASH_CHUNK_SIZE;
2904 :
2905 : /* Check if it's time to grow batches or buckets. */
2906 3566 : if (pstate->growth != PHJ_GROWTH_DISABLED)
2907 : {
2908 : Assert(curbatch == 0);
2909 : Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASH_INNER);
2910 :
2911 : /*
2912 : * Check if our space limit would be exceeded. To avoid choking on
2913 : * very large tuples or very low hash_mem setting, we'll always allow
2914 : * each backend to allocate at least one chunk.
2915 : */
2916 1818 : if (hashtable->batches[0].at_least_one_chunk &&
2917 1444 : hashtable->batches[0].shared->size +
2918 1444 : chunk_size > pstate->space_allowed)
2919 : {
2920 36 : pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
2921 36 : hashtable->batches[0].shared->space_exhausted = true;
2922 36 : LWLockRelease(&pstate->lock);
2923 :
2924 36 : return NULL;
2925 : }
2926 :
2927 : /* Check if our load factor limit would be exceeded. */
2928 1782 : if (hashtable->nbatch == 1)
2929 : {
2930 1554 : hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
2931 1554 : hashtable->batches[0].ntuples = 0;
2932 : /* Guard against integer overflow and alloc size overflow */
2933 1554 : if (hashtable->batches[0].shared->ntuples + 1 >
2934 1554 : hashtable->nbuckets * NTUP_PER_BUCKET &&
2935 108 : hashtable->nbuckets < (INT_MAX / 2) &&
2936 108 : hashtable->nbuckets * 2 <=
2937 : MaxAllocSize / sizeof(dsa_pointer_atomic))
2938 : {
2939 108 : pstate->growth = PHJ_GROWTH_NEED_MORE_BUCKETS;
2940 108 : LWLockRelease(&pstate->lock);
2941 :
2942 108 : return NULL;
2943 : }
2944 : }
2945 : }
2946 :
2947 : /* We are cleared to allocate a new chunk. */
2948 3422 : chunk_shared = dsa_allocate(hashtable->area, chunk_size);
2949 3422 : hashtable->batches[curbatch].shared->size += chunk_size;
2950 3422 : hashtable->batches[curbatch].at_least_one_chunk = true;
2951 :
2952 : /* Set up the chunk. */
2953 3422 : chunk = (HashMemoryChunk) dsa_get_address(hashtable->area, chunk_shared);
2954 3422 : *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE;
2955 3422 : chunk->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
2956 3422 : chunk->used = size;
2957 :
2958 : /*
2959 : * Push it onto the list of chunks, so that it can be found if we need to
2960 : * increase the number of buckets or batches (batch 0 only) and later for
2961 : * freeing the memory (all batches).
2962 : */
2963 3422 : chunk->next.shared = hashtable->batches[curbatch].shared->chunks;
2964 3422 : hashtable->batches[curbatch].shared->chunks = chunk_shared;
2965 :
2966 3422 : if (size <= HASH_CHUNK_THRESHOLD)
2967 : {
2968 : /*
2969 : * Make this the current chunk so that we can use the fast path to
2970 : * fill the rest of it up in future calls.
2971 : */
2972 3386 : hashtable->current_chunk = chunk;
2973 3386 : hashtable->current_chunk_shared = chunk_shared;
2974 : }
2975 3422 : LWLockRelease(&pstate->lock);
2976 :
2977 : Assert(HASH_CHUNK_DATA(chunk) == dsa_get_address(hashtable->area, *shared));
2978 3422 : result = (HashJoinTuple) HASH_CHUNK_DATA(chunk);
2979 :
2980 3422 : return result;
2981 : }
2982 :
2983 : /*
2984 : * One backend needs to set up the shared batch state including tuplestores.
2985 : * Other backends will ensure they have correctly configured accessors by
2986 : * called ExecParallelHashEnsureBatchAccessors().
2987 : */
2988 : static void
2989 218 : ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
2990 : {
2991 218 : ParallelHashJoinState *pstate = hashtable->parallel_state;
2992 : ParallelHashJoinBatch *batches;
2993 : MemoryContext oldcxt;
2994 : int i;
2995 :
2996 : Assert(hashtable->batches == NULL);
2997 :
2998 : /* Allocate space. */
2999 218 : pstate->batches =
3000 218 : dsa_allocate0(hashtable->area,
3001 : EstimateParallelHashJoinBatch(hashtable) * nbatch);
3002 218 : pstate->nbatch = nbatch;
3003 218 : batches = dsa_get_address(hashtable->area, pstate->batches);
3004 :
3005 : /*
3006 : * Use hash join spill memory context to allocate accessors, including
3007 : * buffers for the temporary files.
3008 : */
3009 218 : oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
3010 :
3011 : /* Allocate this backend's accessor array. */
3012 218 : hashtable->nbatch = nbatch;
3013 218 : hashtable->batches =
3014 218 : palloc0_array(ParallelHashJoinBatchAccessor, hashtable->nbatch);
3015 :
3016 : /* Set up the shared state, tuplestores and backend-local accessors. */
3017 1084 : for (i = 0; i < hashtable->nbatch; ++i)
3018 : {
3019 866 : ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3020 866 : ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
3021 : char name[MAXPGPATH];
3022 :
3023 : /*
3024 : * All members of shared were zero-initialized. We just need to set
3025 : * up the Barrier.
3026 : */
3027 866 : BarrierInit(&shared->batch_barrier, 0);
3028 866 : if (i == 0)
3029 : {
3030 : /* Batch 0 doesn't need to be loaded. */
3031 218 : BarrierAttach(&shared->batch_barrier);
3032 872 : while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBE)
3033 654 : BarrierArriveAndWait(&shared->batch_barrier, 0);
3034 218 : BarrierDetach(&shared->batch_barrier);
3035 : }
3036 :
3037 : /* Initialize accessor state. All members were zero-initialized. */
3038 866 : accessor->shared = shared;
3039 :
3040 : /* Initialize the shared tuplestores. */
3041 866 : snprintf(name, sizeof(name), "i%dof%d", i, hashtable->nbatch);
3042 866 : accessor->inner_tuples =
3043 866 : sts_initialize(ParallelHashJoinBatchInner(shared),
3044 : pstate->nparticipants,
3045 : ParallelWorkerNumber + 1,
3046 : sizeof(uint32),
3047 : SHARED_TUPLESTORE_SINGLE_PASS,
3048 : &pstate->fileset,
3049 : name);
3050 866 : snprintf(name, sizeof(name), "o%dof%d", i, hashtable->nbatch);
3051 866 : accessor->outer_tuples =
3052 866 : sts_initialize(ParallelHashJoinBatchOuter(shared,
3053 : pstate->nparticipants),
3054 : pstate->nparticipants,
3055 : ParallelWorkerNumber + 1,
3056 : sizeof(uint32),
3057 : SHARED_TUPLESTORE_SINGLE_PASS,
3058 : &pstate->fileset,
3059 : name);
3060 : }
3061 :
3062 218 : MemoryContextSwitchTo(oldcxt);
3063 218 : }
3064 :
3065 : /*
3066 : * Free the current set of ParallelHashJoinBatchAccessor objects.
3067 : */
3068 : static void
3069 52 : ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
3070 : {
3071 : int i;
3072 :
3073 168 : for (i = 0; i < hashtable->nbatch; ++i)
3074 : {
3075 : /* Make sure no files are left open. */
3076 116 : sts_end_write(hashtable->batches[i].inner_tuples);
3077 116 : sts_end_write(hashtable->batches[i].outer_tuples);
3078 116 : sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3079 116 : sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3080 : }
3081 52 : pfree(hashtable->batches);
3082 52 : hashtable->batches = NULL;
3083 52 : }
3084 :
3085 : /*
3086 : * Make sure this backend has up-to-date accessors for the current set of
3087 : * batches.
3088 : */
3089 : static void
3090 876 : ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
3091 : {
3092 876 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3093 : ParallelHashJoinBatch *batches;
3094 : MemoryContext oldcxt;
3095 : int i;
3096 :
3097 876 : if (hashtable->batches != NULL)
3098 : {
3099 648 : if (hashtable->nbatch == pstate->nbatch)
3100 646 : return;
3101 2 : ExecParallelHashCloseBatchAccessors(hashtable);
3102 : }
3103 :
3104 : /*
3105 : * We should never see a state where the batch-tracking array is freed,
3106 : * because we should have given up sooner if we join when the build
3107 : * barrier has reached the PHJ_BUILD_FREE phase.
3108 : */
3109 : Assert(DsaPointerIsValid(pstate->batches));
3110 :
3111 : /*
3112 : * Use hash join spill memory context to allocate accessors, including
3113 : * buffers for the temporary files.
3114 : */
3115 230 : oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
3116 :
3117 : /* Allocate this backend's accessor array. */
3118 230 : hashtable->nbatch = pstate->nbatch;
3119 230 : hashtable->batches =
3120 230 : palloc0_array(ParallelHashJoinBatchAccessor, hashtable->nbatch);
3121 :
3122 : /* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
3123 : batches = (ParallelHashJoinBatch *)
3124 230 : dsa_get_address(hashtable->area, pstate->batches);
3125 :
3126 : /* Set up the accessor array and attach to the tuplestores. */
3127 1282 : for (i = 0; i < hashtable->nbatch; ++i)
3128 : {
3129 1052 : ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3130 1052 : ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
3131 :
3132 1052 : accessor->shared = shared;
3133 1052 : accessor->preallocated = 0;
3134 1052 : accessor->done = false;
3135 1052 : accessor->outer_eof = false;
3136 1052 : accessor->inner_tuples =
3137 1052 : sts_attach(ParallelHashJoinBatchInner(shared),
3138 : ParallelWorkerNumber + 1,
3139 : &pstate->fileset);
3140 1052 : accessor->outer_tuples =
3141 1052 : sts_attach(ParallelHashJoinBatchOuter(shared,
3142 : pstate->nparticipants),
3143 : ParallelWorkerNumber + 1,
3144 : &pstate->fileset);
3145 : }
3146 :
3147 230 : MemoryContextSwitchTo(oldcxt);
3148 : }
3149 :
3150 : /*
3151 : * Allocate an empty shared memory hash table for a given batch.
3152 : */
3153 : void
3154 766 : ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
3155 : {
3156 766 : ParallelHashJoinBatch *batch = hashtable->batches[batchno].shared;
3157 : dsa_pointer_atomic *buckets;
3158 766 : int nbuckets = hashtable->parallel_state->nbuckets;
3159 : int i;
3160 :
3161 766 : batch->buckets =
3162 766 : dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
3163 : buckets = (dsa_pointer_atomic *)
3164 766 : dsa_get_address(hashtable->area, batch->buckets);
3165 3148542 : for (i = 0; i < nbuckets; ++i)
3166 3147776 : dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
3167 766 : }
3168 :
3169 : /*
3170 : * If we are currently attached to a shared hash join batch, detach. If we
3171 : * are last to detach, clean up.
3172 : */
3173 : void
3174 18478 : ExecHashTableDetachBatch(HashJoinTable hashtable)
3175 : {
3176 18478 : if (hashtable->parallel_state != NULL &&
3177 1286 : hashtable->curbatch >= 0)
3178 : {
3179 890 : int curbatch = hashtable->curbatch;
3180 890 : ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
3181 890 : bool attached = true;
3182 :
3183 : /* Make sure any temporary files are closed. */
3184 890 : sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
3185 890 : sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
3186 :
3187 : /* After attaching we always get at least to PHJ_BATCH_PROBE. */
3188 : Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE ||
3189 : BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_SCAN);
3190 :
3191 : /*
3192 : * If we're abandoning the PHJ_BATCH_PROBE phase early without having
3193 : * reached the end of it, it means the plan doesn't want any more
3194 : * tuples, and it is happy to abandon any tuples buffered in this
3195 : * process's subplans. For correctness, we can't allow any process to
3196 : * execute the PHJ_BATCH_SCAN phase, because we will never have the
3197 : * complete set of match bits. Therefore we skip emitting unmatched
3198 : * tuples in all backends (if this is a full/right join), as if those
3199 : * tuples were all due to be emitted by this process and it has
3200 : * abandoned them too.
3201 : */
3202 890 : if (BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE &&
3203 824 : !hashtable->batches[curbatch].outer_eof)
3204 : {
3205 : /*
3206 : * This flag may be written to by multiple backends during
3207 : * PHJ_BATCH_PROBE phase, but will only be read in PHJ_BATCH_SCAN
3208 : * phase so requires no extra locking.
3209 : */
3210 0 : batch->skip_unmatched = true;
3211 : }
3212 :
3213 : /*
3214 : * Even if we aren't doing a full/right outer join, we'll step through
3215 : * the PHJ_BATCH_SCAN phase just to maintain the invariant that
3216 : * freeing happens in PHJ_BATCH_FREE, but that'll be wait-free.
3217 : */
3218 890 : if (BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE)
3219 824 : attached = BarrierArriveAndDetachExceptLast(&batch->batch_barrier);
3220 890 : if (attached && BarrierArriveAndDetach(&batch->batch_barrier))
3221 : {
3222 : /*
3223 : * We are not longer attached to the batch barrier, but we're the
3224 : * process that was chosen to free resources and it's safe to
3225 : * assert the current phase. The ParallelHashJoinBatch can't go
3226 : * away underneath us while we are attached to the build barrier,
3227 : * making this access safe.
3228 : */
3229 : Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_FREE);
3230 :
3231 : /* Free shared chunks and buckets. */
3232 3896 : while (DsaPointerIsValid(batch->chunks))
3233 : {
3234 : HashMemoryChunk chunk =
3235 3130 : dsa_get_address(hashtable->area, batch->chunks);
3236 3130 : dsa_pointer next = chunk->next.shared;
3237 :
3238 3130 : dsa_free(hashtable->area, batch->chunks);
3239 3130 : batch->chunks = next;
3240 : }
3241 766 : if (DsaPointerIsValid(batch->buckets))
3242 : {
3243 766 : dsa_free(hashtable->area, batch->buckets);
3244 766 : batch->buckets = InvalidDsaPointer;
3245 : }
3246 : }
3247 :
3248 : /*
3249 : * Track the largest batch we've been attached to. Though each
3250 : * backend might see a different subset of batches, explain.c will
3251 : * scan the results from all backends to find the largest value.
3252 : */
3253 890 : hashtable->spacePeak =
3254 890 : Max(hashtable->spacePeak,
3255 : batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
3256 :
3257 : /* Remember that we are not attached to a batch. */
3258 890 : hashtable->curbatch = -1;
3259 : }
3260 18478 : }
3261 :
3262 : /*
3263 : * Detach from all shared resources. If we are last to detach, clean up.
3264 : */
3265 : void
3266 17588 : ExecHashTableDetach(HashJoinTable hashtable)
3267 : {
3268 17588 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3269 :
3270 : /*
3271 : * If we're involved in a parallel query, we must either have gotten all
3272 : * the way to PHJ_BUILD_RUN, or joined too late and be in PHJ_BUILD_FREE.
3273 : */
3274 : Assert(!pstate ||
3275 : BarrierPhase(&pstate->build_barrier) >= PHJ_BUILD_RUN);
3276 :
3277 17588 : if (pstate && BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_RUN)
3278 : {
3279 : int i;
3280 :
3281 : /* Make sure any temporary files are closed. */
3282 396 : if (hashtable->batches)
3283 : {
3284 2198 : for (i = 0; i < hashtable->nbatch; ++i)
3285 : {
3286 1802 : sts_end_write(hashtable->batches[i].inner_tuples);
3287 1802 : sts_end_write(hashtable->batches[i].outer_tuples);
3288 1802 : sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3289 1802 : sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3290 : }
3291 : }
3292 :
3293 : /* If we're last to detach, clean up shared memory. */
3294 396 : if (BarrierArriveAndDetach(&pstate->build_barrier))
3295 : {
3296 : /*
3297 : * Late joining processes will see this state and give up
3298 : * immediately.
3299 : */
3300 : Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_FREE);
3301 :
3302 168 : if (DsaPointerIsValid(pstate->batches))
3303 : {
3304 168 : dsa_free(hashtable->area, pstate->batches);
3305 168 : pstate->batches = InvalidDsaPointer;
3306 : }
3307 : }
3308 : }
3309 17588 : hashtable->parallel_state = NULL;
3310 17588 : }
3311 :
3312 : /*
3313 : * Get the first tuple in a given bucket identified by number.
3314 : */
3315 : static inline HashJoinTuple
3316 2774430 : ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
3317 : {
3318 : HashJoinTuple tuple;
3319 : dsa_pointer p;
3320 :
3321 : Assert(hashtable->parallel_state);
3322 2774430 : p = dsa_pointer_atomic_read(&hashtable->buckets.shared[bucketno]);
3323 2774430 : tuple = (HashJoinTuple) dsa_get_address(hashtable->area, p);
3324 :
3325 2774430 : return tuple;
3326 : }
3327 :
3328 : /*
3329 : * Get the next tuple in the same bucket as 'tuple'.
3330 : */
3331 : static inline HashJoinTuple
3332 3800818 : ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
3333 : {
3334 : HashJoinTuple next;
3335 :
3336 : Assert(hashtable->parallel_state);
3337 3800818 : next = (HashJoinTuple) dsa_get_address(hashtable->area, tuple->next.shared);
3338 :
3339 3800818 : return next;
3340 : }
3341 :
3342 : /*
3343 : * Insert a tuple at the front of a chain of tuples in DSA memory atomically.
3344 : */
3345 : static inline void
3346 2934266 : ExecParallelHashPushTuple(dsa_pointer_atomic *head,
3347 : HashJoinTuple tuple,
3348 : dsa_pointer tuple_shared)
3349 : {
3350 : for (;;)
3351 : {
3352 2934266 : tuple->next.shared = dsa_pointer_atomic_read(head);
3353 2934266 : if (dsa_pointer_atomic_compare_exchange(head,
3354 2934266 : &tuple->next.shared,
3355 : tuple_shared))
3356 2925998 : break;
3357 : }
3358 2925998 : }
3359 :
3360 : /*
3361 : * Prepare to work on a given batch.
3362 : */
3363 : void
3364 1986 : ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
3365 : {
3366 : Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);
3367 :
3368 1986 : hashtable->curbatch = batchno;
3369 1986 : hashtable->buckets.shared = (dsa_pointer_atomic *)
3370 1986 : dsa_get_address(hashtable->area,
3371 1986 : hashtable->batches[batchno].shared->buckets);
3372 1986 : hashtable->nbuckets = hashtable->parallel_state->nbuckets;
3373 1986 : hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
3374 1986 : hashtable->current_chunk = NULL;
3375 1986 : hashtable->current_chunk_shared = InvalidDsaPointer;
3376 1986 : hashtable->batches[batchno].at_least_one_chunk = false;
3377 1986 : }
3378 :
3379 : /*
3380 : * Take the next available chunk from the queue of chunks being worked on in
3381 : * parallel. Return NULL if there are none left. Otherwise return a pointer
3382 : * to the chunk, and set *shared to the DSA pointer to the chunk.
3383 : */
3384 : static HashMemoryChunk
3385 1146 : ExecParallelHashPopChunkQueue(HashJoinTable hashtable, dsa_pointer *shared)
3386 : {
3387 1146 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3388 : HashMemoryChunk chunk;
3389 :
3390 1146 : LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3391 1146 : if (DsaPointerIsValid(pstate->chunk_work_queue))
3392 : {
3393 956 : *shared = pstate->chunk_work_queue;
3394 : chunk = (HashMemoryChunk)
3395 956 : dsa_get_address(hashtable->area, *shared);
3396 956 : pstate->chunk_work_queue = chunk->next.shared;
3397 : }
3398 : else
3399 190 : chunk = NULL;
3400 1146 : LWLockRelease(&pstate->lock);
3401 :
3402 1146 : return chunk;
3403 : }
3404 :
3405 : /*
3406 : * Increase the space preallocated in this backend for a given inner batch by
3407 : * at least a given amount. This allows us to track whether a given batch
3408 : * would fit in memory when loaded back in. Also increase the number of
3409 : * batches or buckets if required.
3410 : *
3411 : * This maintains a running estimation of how much space will be taken when we
3412 : * load the batch back into memory by simulating the way chunks will be handed
3413 : * out to workers. It's not perfectly accurate because the tuples will be
3414 : * packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
3415 : * it should be pretty close. It tends to overestimate by a fraction of a
3416 : * chunk per worker since all workers gang up to preallocate during hashing,
3417 : * but workers tend to reload batches alone if there are enough to go around,
3418 : * leaving fewer partially filled chunks. This effect is bounded by
3419 : * nparticipants.
3420 : *
3421 : * Return false if the number of batches or buckets has changed, and the
3422 : * caller should reconsider which batch a given tuple now belongs in and call
3423 : * again.
3424 : */
3425 : static bool
3426 1724 : ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
3427 : {
3428 1724 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3429 1724 : ParallelHashJoinBatchAccessor *batch = &hashtable->batches[batchno];
3430 1724 : size_t want = Max(size, HASH_CHUNK_SIZE - HASH_CHUNK_HEADER_SIZE);
3431 :
3432 : Assert(batchno > 0);
3433 : Assert(batchno < hashtable->nbatch);
3434 : Assert(size == MAXALIGN(size));
3435 :
3436 1724 : LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3437 :
3438 : /* Has another participant commanded us to help grow? */
3439 1724 : if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
3440 1710 : pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3441 : {
3442 14 : ParallelHashGrowth growth = pstate->growth;
3443 :
3444 14 : LWLockRelease(&pstate->lock);
3445 14 : if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
3446 14 : ExecParallelHashIncreaseNumBatches(hashtable);
3447 0 : else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3448 0 : ExecParallelHashIncreaseNumBuckets(hashtable);
3449 :
3450 14 : return false;
3451 : }
3452 :
3453 1710 : if (pstate->growth != PHJ_GROWTH_DISABLED &&
3454 1482 : batch->at_least_one_chunk &&
3455 702 : (batch->shared->estimated_size + want + HASH_CHUNK_HEADER_SIZE
3456 702 : > pstate->space_allowed))
3457 : {
3458 : /*
3459 : * We have determined that this batch would exceed the space budget if
3460 : * loaded into memory. Command all participants to help repartition.
3461 : */
3462 14 : batch->shared->space_exhausted = true;
3463 14 : pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
3464 14 : LWLockRelease(&pstate->lock);
3465 :
3466 14 : return false;
3467 : }
3468 :
3469 1696 : batch->at_least_one_chunk = true;
3470 1696 : batch->shared->estimated_size += want + HASH_CHUNK_HEADER_SIZE;
3471 1696 : batch->preallocated = want;
3472 1696 : LWLockRelease(&pstate->lock);
3473 :
3474 1696 : return true;
3475 : }
3476 :
3477 : /*
3478 : * Calculate the limit on how much memory can be used by Hash and similar
3479 : * plan types. This is work_mem times hash_mem_multiplier, and is
3480 : * expressed in bytes.
3481 : *
3482 : * Exported for use by the planner, as well as other hash-like executor
3483 : * nodes. This is a rather random place for this, but there is no better
3484 : * place.
3485 : */
3486 : size_t
3487 1126660 : get_hash_memory_limit(void)
3488 : {
3489 : double mem_limit;
3490 :
3491 : /* Do initial calculation in double arithmetic */
3492 1126660 : mem_limit = (double) work_mem * hash_mem_multiplier * 1024.0;
3493 :
3494 : /* Clamp in case it doesn't fit in size_t */
3495 1126660 : mem_limit = Min(mem_limit, (double) SIZE_MAX);
3496 :
3497 1126660 : return (size_t) mem_limit;
3498 : }
|