Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * nodeHash.c
4 : * Routines to hash relations for hashjoin
5 : *
6 : * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : *
10 : * IDENTIFICATION
11 : * src/backend/executor/nodeHash.c
12 : *
13 : * See note on parallelism in nodeHashjoin.c.
14 : *
15 : *-------------------------------------------------------------------------
16 : */
17 : /*
18 : * INTERFACE ROUTINES
19 : * MultiExecHash - generate an in-memory hash table of the relation
20 : * ExecInitHash - initialize node and subnodes
21 : * ExecEndHash - shutdown node and subnodes
22 : */
23 :
24 : #include "postgres.h"
25 :
26 : #include <math.h>
27 : #include <limits.h>
28 :
29 : #include "access/htup_details.h"
30 : #include "access/parallel.h"
31 : #include "catalog/pg_statistic.h"
32 : #include "commands/tablespace.h"
33 : #include "executor/execdebug.h"
34 : #include "executor/hashjoin.h"
35 : #include "executor/nodeHash.h"
36 : #include "executor/nodeHashjoin.h"
37 : #include "miscadmin.h"
38 : #include "pgstat.h"
39 : #include "port/atomics.h"
40 : #include "port/pg_bitutils.h"
41 : #include "utils/dynahash.h"
42 : #include "utils/guc.h"
43 : #include "utils/lsyscache.h"
44 : #include "utils/memutils.h"
45 : #include "utils/syscache.h"
46 :
47 : static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
48 : static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
49 : static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable);
50 : static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable);
51 : static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node,
52 : int mcvsToUse);
53 : static void ExecHashSkewTableInsert(HashJoinTable hashtable,
54 : TupleTableSlot *slot,
55 : uint32 hashvalue,
56 : int bucketNumber);
57 : static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);
58 :
59 : static void *dense_alloc(HashJoinTable hashtable, Size size);
60 : static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable,
61 : size_t size,
62 : dsa_pointer *shared);
63 : static void MultiExecPrivateHash(HashState *node);
64 : static void MultiExecParallelHash(HashState *node);
65 : static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable hashtable,
66 : int bucketno);
67 : static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable hashtable,
68 : HashJoinTuple tuple);
69 : static inline void ExecParallelHashPushTuple(dsa_pointer_atomic *head,
70 : HashJoinTuple tuple,
71 : dsa_pointer tuple_shared);
72 : static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
73 : static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable);
74 : static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable);
75 : static void ExecParallelHashRepartitionRest(HashJoinTable hashtable);
76 : static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable hashtable,
77 : dsa_pointer *shared);
78 : static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable,
79 : int batchno,
80 : size_t size);
81 : static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
82 : static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable);
83 :
84 :
85 : /* ----------------------------------------------------------------
86 : * ExecHash
87 : *
88 : * stub for pro forma compliance
89 : * ----------------------------------------------------------------
90 : */
91 : static TupleTableSlot *
92 0 : ExecHash(PlanState *pstate)
93 : {
94 0 : elog(ERROR, "Hash node does not support ExecProcNode call convention");
95 : return NULL;
96 : }
97 :
98 : /* ----------------------------------------------------------------
99 : * MultiExecHash
100 : *
101 : * build hash table for hashjoin, doing partitioning if more
102 : * than one batch is required.
103 : * ----------------------------------------------------------------
104 : */
105 : Node *
106 19374 : MultiExecHash(HashState *node)
107 : {
108 : /* must provide our own instrumentation support */
109 19374 : if (node->ps.instrument)
110 294 : InstrStartNode(node->ps.instrument);
111 :
112 19374 : if (node->parallel_state != NULL)
113 398 : MultiExecParallelHash(node);
114 : else
115 18976 : MultiExecPrivateHash(node);
116 :
117 : /* must provide our own instrumentation support */
118 19374 : if (node->ps.instrument)
119 294 : InstrStopNode(node->ps.instrument, node->hashtable->partialTuples);
120 :
121 : /*
122 : * We do not return the hash table directly because it's not a subtype of
123 : * Node, and so would violate the MultiExecProcNode API. Instead, our
124 : * parent Hashjoin node is expected to know how to fish it out of our node
125 : * state. Ugly but not really worth cleaning up, since Hashjoin knows
126 : * quite a bit more about Hash besides that.
127 : */
128 19374 : return NULL;
129 : }
130 :
131 : /* ----------------------------------------------------------------
132 : * MultiExecPrivateHash
133 : *
134 : * parallel-oblivious version, building a backend-private
135 : * hash table and (if necessary) batch files.
136 : * ----------------------------------------------------------------
137 : */
138 : static void
139 18976 : MultiExecPrivateHash(HashState *node)
140 : {
141 : PlanState *outerNode;
142 : List *hashkeys;
143 : HashJoinTable hashtable;
144 : TupleTableSlot *slot;
145 : ExprContext *econtext;
146 : uint32 hashvalue;
147 :
148 : /*
149 : * get state info from node
150 : */
151 18976 : outerNode = outerPlanState(node);
152 18976 : hashtable = node->hashtable;
153 :
154 : /*
155 : * set expression context
156 : */
157 18976 : hashkeys = node->hashkeys;
158 18976 : econtext = node->ps.ps_ExprContext;
159 :
160 : /*
161 : * Get all tuples from the node below the Hash node and insert into the
162 : * hash table (or temp files).
163 : */
164 : for (;;)
165 : {
166 9270196 : slot = ExecProcNode(outerNode);
167 9270196 : if (TupIsNull(slot))
168 : break;
169 : /* We have to compute the hash value */
170 9251220 : econtext->ecxt_outertuple = slot;
171 9251220 : if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
172 9251220 : false, hashtable->keepNulls,
173 : &hashvalue))
174 : {
175 : int bucketNumber;
176 :
177 9251208 : bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
178 9251208 : if (bucketNumber != INVALID_SKEW_BUCKET_NO)
179 : {
180 : /* It's a skew tuple, so put it into that hash table */
181 588 : ExecHashSkewTableInsert(hashtable, slot, hashvalue,
182 : bucketNumber);
183 588 : hashtable->skewTuples += 1;
184 : }
185 : else
186 : {
187 : /* Not subject to skew optimization, so insert normally */
188 9250620 : ExecHashTableInsert(hashtable, slot, hashvalue);
189 : }
190 9251208 : hashtable->totalTuples += 1;
191 : }
192 : }
193 :
194 : /* resize the hash table if needed (NTUP_PER_BUCKET exceeded) */
195 18976 : if (hashtable->nbuckets != hashtable->nbuckets_optimal)
196 72 : ExecHashIncreaseNumBuckets(hashtable);
197 :
198 : /* Account for the buckets in spaceUsed (reported in EXPLAIN ANALYZE) */
199 18976 : hashtable->spaceUsed += hashtable->nbuckets * sizeof(HashJoinTuple);
200 18976 : if (hashtable->spaceUsed > hashtable->spacePeak)
201 18950 : hashtable->spacePeak = hashtable->spaceUsed;
202 :
203 18976 : hashtable->partialTuples = hashtable->totalTuples;
204 18976 : }
205 :
206 : /* ----------------------------------------------------------------
207 : * MultiExecParallelHash
208 : *
209 : * parallel-aware version, building a shared hash table and
210 : * (if necessary) batch files using the combined effort of
211 : * a set of co-operating backends.
212 : * ----------------------------------------------------------------
213 : */
214 : static void
215 398 : MultiExecParallelHash(HashState *node)
216 : {
217 : ParallelHashJoinState *pstate;
218 : PlanState *outerNode;
219 : List *hashkeys;
220 : HashJoinTable hashtable;
221 : TupleTableSlot *slot;
222 : ExprContext *econtext;
223 : uint32 hashvalue;
224 : Barrier *build_barrier;
225 : int i;
226 :
227 : /*
228 : * get state info from node
229 : */
230 398 : outerNode = outerPlanState(node);
231 398 : hashtable = node->hashtable;
232 :
233 : /*
234 : * set expression context
235 : */
236 398 : hashkeys = node->hashkeys;
237 398 : econtext = node->ps.ps_ExprContext;
238 :
239 : /*
240 : * Synchronize the parallel hash table build. At this stage we know that
241 : * the shared hash table has been or is being set up by
242 : * ExecHashTableCreate(), but we don't know if our peers have returned
243 : * from there or are here in MultiExecParallelHash(), and if so how far
244 : * through they are. To find out, we check the build_barrier phase then
245 : * and jump to the right step in the build algorithm.
246 : */
247 398 : pstate = hashtable->parallel_state;
248 398 : build_barrier = &pstate->build_barrier;
249 : Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATE);
250 398 : switch (BarrierPhase(build_barrier))
251 : {
252 168 : case PHJ_BUILD_ALLOCATE:
253 :
254 : /*
255 : * Either I just allocated the initial hash table in
256 : * ExecHashTableCreate(), or someone else is doing that. Either
257 : * way, wait for everyone to arrive here so we can proceed.
258 : */
259 168 : BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATE);
260 : /* Fall through. */
261 :
262 242 : case PHJ_BUILD_HASH_INNER:
263 :
264 : /*
265 : * It's time to begin hashing, or if we just arrived here then
266 : * hashing is already underway, so join in that effort. While
267 : * hashing we have to be prepared to help increase the number of
268 : * batches or buckets at any time, and if we arrived here when
269 : * that was already underway we'll have to help complete that work
270 : * immediately so that it's safe to access batches and buckets
271 : * below.
272 : */
273 242 : if (PHJ_GROW_BATCHES_PHASE(BarrierAttach(&pstate->grow_batches_barrier)) !=
274 : PHJ_GROW_BATCHES_ELECT)
275 0 : ExecParallelHashIncreaseNumBatches(hashtable);
276 242 : if (PHJ_GROW_BUCKETS_PHASE(BarrierAttach(&pstate->grow_buckets_barrier)) !=
277 : PHJ_GROW_BUCKETS_ELECT)
278 0 : ExecParallelHashIncreaseNumBuckets(hashtable);
279 242 : ExecParallelHashEnsureBatchAccessors(hashtable);
280 242 : ExecParallelHashTableSetCurrentBatch(hashtable, 0);
281 : for (;;)
282 : {
283 2160336 : slot = ExecProcNode(outerNode);
284 2160336 : if (TupIsNull(slot))
285 : break;
286 2160094 : econtext->ecxt_outertuple = slot;
287 2160094 : if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
288 2160094 : false, hashtable->keepNulls,
289 : &hashvalue))
290 2160094 : ExecParallelHashTableInsert(hashtable, slot, hashvalue);
291 2160094 : hashtable->partialTuples++;
292 : }
293 :
294 : /*
295 : * Make sure that any tuples we wrote to disk are visible to
296 : * others before anyone tries to load them.
297 : */
298 1350 : for (i = 0; i < hashtable->nbatch; ++i)
299 1108 : sts_end_write(hashtable->batches[i].inner_tuples);
300 :
301 : /*
302 : * Update shared counters. We need an accurate total tuple count
303 : * to control the empty table optimization.
304 : */
305 242 : ExecParallelHashMergeCounters(hashtable);
306 :
307 242 : BarrierDetach(&pstate->grow_buckets_barrier);
308 242 : BarrierDetach(&pstate->grow_batches_barrier);
309 :
310 : /*
311 : * Wait for everyone to finish building and flushing files and
312 : * counters.
313 : */
314 242 : if (BarrierArriveAndWait(build_barrier,
315 : WAIT_EVENT_HASH_BUILD_HASH_INNER))
316 : {
317 : /*
318 : * Elect one backend to disable any further growth. Batches
319 : * are now fixed. While building them we made sure they'd fit
320 : * in our memory budget when we load them back in later (or we
321 : * tried to do that and gave up because we detected extreme
322 : * skew).
323 : */
324 168 : pstate->growth = PHJ_GROWTH_DISABLED;
325 : }
326 : }
327 :
328 : /*
329 : * We're not yet attached to a batch. We all agree on the dimensions and
330 : * number of inner tuples (for the empty table optimization).
331 : */
332 398 : hashtable->curbatch = -1;
333 398 : hashtable->nbuckets = pstate->nbuckets;
334 398 : hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
335 398 : hashtable->totalTuples = pstate->total_tuples;
336 :
337 : /*
338 : * Unless we're completely done and the batch state has been freed, make
339 : * sure we have accessors.
340 : */
341 398 : if (BarrierPhase(build_barrier) < PHJ_BUILD_FREE)
342 398 : ExecParallelHashEnsureBatchAccessors(hashtable);
343 :
344 : /*
345 : * The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
346 : * case, which will bring the build phase to PHJ_BUILD_RUN (if it isn't
347 : * there already).
348 : */
349 : Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASH_OUTER ||
350 : BarrierPhase(build_barrier) == PHJ_BUILD_RUN ||
351 : BarrierPhase(build_barrier) == PHJ_BUILD_FREE);
352 398 : }
353 :
354 : /* ----------------------------------------------------------------
355 : * ExecInitHash
356 : *
357 : * Init routine for Hash node
358 : * ----------------------------------------------------------------
359 : */
360 : HashState *
361 27842 : ExecInitHash(Hash *node, EState *estate, int eflags)
362 : {
363 : HashState *hashstate;
364 :
365 : /* check for unsupported flags */
366 : Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
367 :
368 : /*
369 : * create state structure
370 : */
371 27842 : hashstate = makeNode(HashState);
372 27842 : hashstate->ps.plan = (Plan *) node;
373 27842 : hashstate->ps.state = estate;
374 27842 : hashstate->ps.ExecProcNode = ExecHash;
375 27842 : hashstate->hashtable = NULL;
376 27842 : hashstate->hashkeys = NIL; /* will be set by parent HashJoin */
377 :
378 : /*
379 : * Miscellaneous initialization
380 : *
381 : * create expression context for node
382 : */
383 27842 : ExecAssignExprContext(estate, &hashstate->ps);
384 :
385 : /*
386 : * initialize child nodes
387 : */
388 27842 : outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
389 :
390 : /*
391 : * initialize our result slot and type. No need to build projection
392 : * because this node doesn't do projections.
393 : */
394 27842 : ExecInitResultTupleSlotTL(&hashstate->ps, &TTSOpsMinimalTuple);
395 27842 : hashstate->ps.ps_ProjInfo = NULL;
396 :
397 : /*
398 : * initialize child expressions
399 : */
400 : Assert(node->plan.qual == NIL);
401 27842 : hashstate->hashkeys =
402 27842 : ExecInitExprList(node->hashkeys, (PlanState *) hashstate);
403 :
404 27842 : return hashstate;
405 : }
406 :
407 : /* ---------------------------------------------------------------
408 : * ExecEndHash
409 : *
410 : * clean up routine for Hash node
411 : * ----------------------------------------------------------------
412 : */
413 : void
414 27758 : ExecEndHash(HashState *node)
415 : {
416 : PlanState *outerPlan;
417 :
418 : /*
419 : * free exprcontext
420 : */
421 27758 : ExecFreeExprContext(&node->ps);
422 :
423 : /*
424 : * shut down the subplan
425 : */
426 27758 : outerPlan = outerPlanState(node);
427 27758 : ExecEndNode(outerPlan);
428 27758 : }
429 :
430 :
431 : /* ----------------------------------------------------------------
432 : * ExecHashTableCreate
433 : *
434 : * create an empty hashtable data structure for hashjoin.
435 : * ----------------------------------------------------------------
436 : */
437 : HashJoinTable
438 19374 : ExecHashTableCreate(HashState *state, List *hashOperators, List *hashCollations, bool keepNulls)
439 : {
440 : Hash *node;
441 : HashJoinTable hashtable;
442 : Plan *outerNode;
443 : size_t space_allowed;
444 : int nbuckets;
445 : int nbatch;
446 : double rows;
447 : int num_skew_mcvs;
448 : int log2_nbuckets;
449 : int nkeys;
450 : int i;
451 : ListCell *ho;
452 : ListCell *hc;
453 : MemoryContext oldcxt;
454 :
455 : /*
456 : * Get information about the size of the relation to be hashed (it's the
457 : * "outer" subtree of this node, but the inner relation of the hashjoin).
458 : * Compute the appropriate size of the hash table.
459 : */
460 19374 : node = (Hash *) state->ps.plan;
461 19374 : outerNode = outerPlan(node);
462 :
463 : /*
464 : * If this is shared hash table with a partial plan, then we can't use
465 : * outerNode->plan_rows to estimate its size. We need an estimate of the
466 : * total number of rows across all copies of the partial plan.
467 : */
468 19374 : rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;
469 :
470 18976 : ExecChooseHashTableSize(rows, outerNode->plan_width,
471 19374 : OidIsValid(node->skewTable),
472 19374 : state->parallel_state != NULL,
473 19374 : state->parallel_state != NULL ?
474 398 : state->parallel_state->nparticipants - 1 : 0,
475 : &space_allowed,
476 : &nbuckets, &nbatch, &num_skew_mcvs);
477 :
478 : /* nbuckets must be a power of 2 */
479 19374 : log2_nbuckets = my_log2(nbuckets);
480 : Assert(nbuckets == (1 << log2_nbuckets));
481 :
482 : /*
483 : * Initialize the hash table control block.
484 : *
485 : * The hashtable control block is just palloc'd from the executor's
486 : * per-query memory context. Everything else should be kept inside the
487 : * subsidiary hashCxt, batchCxt or spillCxt.
488 : */
489 19374 : hashtable = palloc_object(HashJoinTableData);
490 19374 : hashtable->nbuckets = nbuckets;
491 19374 : hashtable->nbuckets_original = nbuckets;
492 19374 : hashtable->nbuckets_optimal = nbuckets;
493 19374 : hashtable->log2_nbuckets = log2_nbuckets;
494 19374 : hashtable->log2_nbuckets_optimal = log2_nbuckets;
495 19374 : hashtable->buckets.unshared = NULL;
496 19374 : hashtable->keepNulls = keepNulls;
497 19374 : hashtable->skewEnabled = false;
498 19374 : hashtable->skewBucket = NULL;
499 19374 : hashtable->skewBucketLen = 0;
500 19374 : hashtable->nSkewBuckets = 0;
501 19374 : hashtable->skewBucketNums = NULL;
502 19374 : hashtable->nbatch = nbatch;
503 19374 : hashtable->curbatch = 0;
504 19374 : hashtable->nbatch_original = nbatch;
505 19374 : hashtable->nbatch_outstart = nbatch;
506 19374 : hashtable->growEnabled = true;
507 19374 : hashtable->totalTuples = 0;
508 19374 : hashtable->partialTuples = 0;
509 19374 : hashtable->skewTuples = 0;
510 19374 : hashtable->innerBatchFile = NULL;
511 19374 : hashtable->outerBatchFile = NULL;
512 19374 : hashtable->spaceUsed = 0;
513 19374 : hashtable->spacePeak = 0;
514 19374 : hashtable->spaceAllowed = space_allowed;
515 19374 : hashtable->spaceUsedSkew = 0;
516 19374 : hashtable->spaceAllowedSkew =
517 19374 : hashtable->spaceAllowed * SKEW_HASH_MEM_PERCENT / 100;
518 19374 : hashtable->chunks = NULL;
519 19374 : hashtable->current_chunk = NULL;
520 19374 : hashtable->parallel_state = state->parallel_state;
521 19374 : hashtable->area = state->ps.state->es_query_dsa;
522 19374 : hashtable->batches = NULL;
523 :
524 : #ifdef HJDEBUG
525 : printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
526 : hashtable, nbatch, nbuckets);
527 : #endif
528 :
529 : /*
530 : * Create temporary memory contexts in which to keep the hashtable working
531 : * storage. See notes in executor/hashjoin.h.
532 : */
533 19374 : hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
534 : "HashTableContext",
535 : ALLOCSET_DEFAULT_SIZES);
536 :
537 19374 : hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
538 : "HashBatchContext",
539 : ALLOCSET_DEFAULT_SIZES);
540 :
541 19374 : hashtable->spillCxt = AllocSetContextCreate(hashtable->hashCxt,
542 : "HashSpillContext",
543 : ALLOCSET_DEFAULT_SIZES);
544 :
545 : /* Allocate data that will live for the life of the hashjoin */
546 :
547 19374 : oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
548 :
549 : /*
550 : * Get info about the hash functions to be used for each hash key. Also
551 : * remember whether the join operators are strict.
552 : */
553 19374 : nkeys = list_length(hashOperators);
554 19374 : hashtable->outer_hashfunctions = palloc_array(FmgrInfo, nkeys);
555 19374 : hashtable->inner_hashfunctions = palloc_array(FmgrInfo, nkeys);
556 19374 : hashtable->hashStrict = palloc_array(bool, nkeys);
557 19374 : hashtable->collations = palloc_array(Oid, nkeys);
558 19374 : i = 0;
559 39976 : forboth(ho, hashOperators, hc, hashCollations)
560 : {
561 20602 : Oid hashop = lfirst_oid(ho);
562 : Oid left_hashfn;
563 : Oid right_hashfn;
564 :
565 20602 : if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
566 0 : elog(ERROR, "could not find hash function for hash operator %u",
567 : hashop);
568 20602 : fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
569 20602 : fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
570 20602 : hashtable->hashStrict[i] = op_strict(hashop);
571 20602 : hashtable->collations[i] = lfirst_oid(hc);
572 20602 : i++;
573 : }
574 :
575 19374 : if (nbatch > 1 && hashtable->parallel_state == NULL)
576 : {
577 : MemoryContext oldctx;
578 :
579 : /*
580 : * allocate and initialize the file arrays in hashCxt (not needed for
581 : * parallel case which uses shared tuplestores instead of raw files)
582 : */
583 110 : oldctx = MemoryContextSwitchTo(hashtable->spillCxt);
584 :
585 110 : hashtable->innerBatchFile = palloc0_array(BufFile *, nbatch);
586 110 : hashtable->outerBatchFile = palloc0_array(BufFile *, nbatch);
587 :
588 110 : MemoryContextSwitchTo(oldctx);
589 :
590 : /* The files will not be opened until needed... */
591 : /* ... but make sure we have temp tablespaces established for them */
592 110 : PrepareTempTablespaces();
593 : }
594 :
595 19374 : MemoryContextSwitchTo(oldcxt);
596 :
597 19374 : if (hashtable->parallel_state)
598 : {
599 398 : ParallelHashJoinState *pstate = hashtable->parallel_state;
600 : Barrier *build_barrier;
601 :
602 : /*
603 : * Attach to the build barrier. The corresponding detach operation is
604 : * in ExecHashTableDetach. Note that we won't attach to the
605 : * batch_barrier for batch 0 yet. We'll attach later and start it out
606 : * in PHJ_BATCH_PROBE phase, because batch 0 is allocated up front and
607 : * then loaded while hashing (the standard hybrid hash join
608 : * algorithm), and we'll coordinate that using build_barrier.
609 : */
610 398 : build_barrier = &pstate->build_barrier;
611 398 : BarrierAttach(build_barrier);
612 :
613 : /*
614 : * So far we have no idea whether there are any other participants,
615 : * and if so, what phase they are working on. The only thing we care
616 : * about at this point is whether someone has already created the
617 : * SharedHashJoinBatch objects and the hash table for batch 0. One
618 : * backend will be elected to do that now if necessary.
619 : */
620 566 : if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECT &&
621 168 : BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECT))
622 : {
623 168 : pstate->nbatch = nbatch;
624 168 : pstate->space_allowed = space_allowed;
625 168 : pstate->growth = PHJ_GROWTH_OK;
626 :
627 : /* Set up the shared state for coordinating batches. */
628 168 : ExecParallelHashJoinSetUpBatches(hashtable, nbatch);
629 :
630 : /*
631 : * Allocate batch 0's hash table up front so we can load it
632 : * directly while hashing.
633 : */
634 168 : pstate->nbuckets = nbuckets;
635 168 : ExecParallelHashTableAlloc(hashtable, 0);
636 : }
637 :
638 : /*
639 : * The next Parallel Hash synchronization point is in
640 : * MultiExecParallelHash(), which will progress it all the way to
641 : * PHJ_BUILD_RUN. The caller must not return control from this
642 : * executor node between now and then.
643 : */
644 : }
645 : else
646 : {
647 : /*
648 : * Prepare context for the first-scan space allocations; allocate the
649 : * hashbucket array therein, and set each bucket "empty".
650 : */
651 18976 : MemoryContextSwitchTo(hashtable->batchCxt);
652 :
653 18976 : hashtable->buckets.unshared = palloc0_array(HashJoinTuple, nbuckets);
654 :
655 : /*
656 : * Set up for skew optimization, if possible and there's a need for
657 : * more than one batch. (In a one-batch join, there's no point in
658 : * it.)
659 : */
660 18976 : if (nbatch > 1)
661 110 : ExecHashBuildSkewHash(hashtable, node, num_skew_mcvs);
662 :
663 18976 : MemoryContextSwitchTo(oldcxt);
664 : }
665 :
666 19374 : return hashtable;
667 : }
668 :
669 :
670 : /*
671 : * Compute appropriate size for hashtable given the estimated size of the
672 : * relation to be hashed (number of rows and average row width).
673 : *
674 : * This is exported so that the planner's costsize.c can use it.
675 : */
676 :
677 : /* Target bucket loading (tuples per bucket) */
678 : #define NTUP_PER_BUCKET 1
679 :
680 : void
681 456540 : ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
682 : bool try_combined_hash_mem,
683 : int parallel_workers,
684 : size_t *space_allowed,
685 : int *numbuckets,
686 : int *numbatches,
687 : int *num_skew_mcvs)
688 : {
689 : int tupsize;
690 : double inner_rel_bytes;
691 : size_t hash_table_bytes;
692 : size_t bucket_bytes;
693 : size_t max_pointers;
694 456540 : int nbatch = 1;
695 : int nbuckets;
696 : double dbuckets;
697 :
698 : /* Force a plausible relation size if no info */
699 456540 : if (ntuples <= 0.0)
700 150 : ntuples = 1000.0;
701 :
702 : /*
703 : * Estimate tupsize based on footprint of tuple in hashtable... note this
704 : * does not allow for any palloc overhead. The manipulations of spaceUsed
705 : * don't count palloc overhead either.
706 : */
707 456540 : tupsize = HJTUPLE_OVERHEAD +
708 456540 : MAXALIGN(SizeofMinimalTupleHeader) +
709 456540 : MAXALIGN(tupwidth);
710 456540 : inner_rel_bytes = ntuples * tupsize;
711 :
712 : /*
713 : * Compute in-memory hashtable size limit from GUCs.
714 : */
715 456540 : hash_table_bytes = get_hash_memory_limit();
716 :
717 : /*
718 : * Parallel Hash tries to use the combined hash_mem of all workers to
719 : * avoid the need to batch. If that won't work, it falls back to hash_mem
720 : * per worker and tries to process batches in parallel.
721 : */
722 456540 : if (try_combined_hash_mem)
723 : {
724 : /* Careful, this could overflow size_t */
725 : double newlimit;
726 :
727 11588 : newlimit = (double) hash_table_bytes * (double) (parallel_workers + 1);
728 11588 : newlimit = Min(newlimit, (double) SIZE_MAX);
729 11588 : hash_table_bytes = (size_t) newlimit;
730 : }
731 :
732 456540 : *space_allowed = hash_table_bytes;
733 :
734 : /*
735 : * If skew optimization is possible, estimate the number of skew buckets
736 : * that will fit in the memory allowed, and decrement the assumed space
737 : * available for the main hash table accordingly.
738 : *
739 : * We make the optimistic assumption that each skew bucket will contain
740 : * one inner-relation tuple. If that turns out to be low, we will recover
741 : * at runtime by reducing the number of skew buckets.
742 : *
743 : * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
744 : * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
745 : * will round up to the next power of 2 and then multiply by 4 to reduce
746 : * collisions.
747 : */
748 456540 : if (useskew)
749 : {
750 : size_t bytes_per_mcv;
751 : size_t skew_mcvs;
752 :
753 : /*----------
754 : * Compute number of MCVs we could hold in hash_table_bytes
755 : *
756 : * Divisor is:
757 : * size of a hash tuple +
758 : * worst-case size of skewBucket[] per MCV +
759 : * size of skewBucketNums[] entry +
760 : * size of skew bucket struct itself
761 : *----------
762 : */
763 453070 : bytes_per_mcv = tupsize +
764 : (8 * sizeof(HashSkewBucket *)) +
765 453070 : sizeof(int) +
766 : SKEW_BUCKET_OVERHEAD;
767 453070 : skew_mcvs = hash_table_bytes / bytes_per_mcv;
768 :
769 : /*
770 : * Now scale by SKEW_HASH_MEM_PERCENT (we do it in this order so as
771 : * not to worry about size_t overflow in the multiplication)
772 : */
773 453070 : skew_mcvs = (skew_mcvs * SKEW_HASH_MEM_PERCENT) / 100;
774 :
775 : /* Now clamp to integer range */
776 453070 : skew_mcvs = Min(skew_mcvs, INT_MAX);
777 :
778 453070 : *num_skew_mcvs = (int) skew_mcvs;
779 :
780 : /* Reduce hash_table_bytes by the amount needed for the skew table */
781 453070 : if (skew_mcvs > 0)
782 453070 : hash_table_bytes -= skew_mcvs * bytes_per_mcv;
783 : }
784 : else
785 3470 : *num_skew_mcvs = 0;
786 :
787 : /*
788 : * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
789 : * memory is filled, assuming a single batch; but limit the value so that
790 : * the pointer arrays we'll try to allocate do not exceed hash_table_bytes
791 : * nor MaxAllocSize.
792 : *
793 : * Note that both nbuckets and nbatch must be powers of 2 to make
794 : * ExecHashGetBucketAndBatch fast.
795 : */
796 456540 : max_pointers = hash_table_bytes / sizeof(HashJoinTuple);
797 456540 : max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
798 : /* If max_pointers isn't a power of 2, must round it down to one */
799 456540 : max_pointers = pg_prevpower2_size_t(max_pointers);
800 :
801 : /* Also ensure we avoid integer overflow in nbatch and nbuckets */
802 : /* (this step is redundant given the current value of MaxAllocSize) */
803 456540 : max_pointers = Min(max_pointers, INT_MAX / 2 + 1);
804 :
805 456540 : dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
806 456540 : dbuckets = Min(dbuckets, max_pointers);
807 456540 : nbuckets = (int) dbuckets;
808 : /* don't let nbuckets be really small, though ... */
809 456540 : nbuckets = Max(nbuckets, 1024);
810 : /* ... and force it to be a power of 2. */
811 456540 : nbuckets = pg_nextpower2_32(nbuckets);
812 :
813 : /*
814 : * If there's not enough space to store the projected number of tuples and
815 : * the required bucket headers, we will need multiple batches.
816 : */
817 456540 : bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
818 456540 : if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
819 : {
820 : /* We'll need multiple batches */
821 : size_t sbuckets;
822 : double dbatch;
823 : int minbatch;
824 : size_t bucket_size;
825 :
826 : /*
827 : * If Parallel Hash with combined hash_mem would still need multiple
828 : * batches, we'll have to fall back to regular hash_mem budget.
829 : */
830 4386 : if (try_combined_hash_mem)
831 : {
832 246 : ExecChooseHashTableSize(ntuples, tupwidth, useskew,
833 : false, parallel_workers,
834 : space_allowed,
835 : numbuckets,
836 : numbatches,
837 : num_skew_mcvs);
838 246 : return;
839 : }
840 :
841 : /*
842 : * Estimate the number of buckets we'll want to have when hash_mem is
843 : * entirely full. Each bucket will contain a bucket pointer plus
844 : * NTUP_PER_BUCKET tuples, whose projected size already includes
845 : * overhead for the hash code, pointer to the next tuple, etc.
846 : */
847 4140 : bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));
848 4140 : if (hash_table_bytes <= bucket_size)
849 0 : sbuckets = 1; /* avoid pg_nextpower2_size_t(0) */
850 : else
851 4140 : sbuckets = pg_nextpower2_size_t(hash_table_bytes / bucket_size);
852 4140 : sbuckets = Min(sbuckets, max_pointers);
853 4140 : nbuckets = (int) sbuckets;
854 4140 : nbuckets = pg_nextpower2_32(nbuckets);
855 4140 : bucket_bytes = nbuckets * sizeof(HashJoinTuple);
856 :
857 : /*
858 : * Buckets are simple pointers to hashjoin tuples, while tupsize
859 : * includes the pointer, hash code, and MinimalTupleData. So buckets
860 : * should never really exceed 25% of hash_mem (even for
861 : * NTUP_PER_BUCKET=1); except maybe for hash_mem values that are not
862 : * 2^N bytes, where we might get more because of doubling. So let's
863 : * look for 50% here.
864 : */
865 : Assert(bucket_bytes <= hash_table_bytes / 2);
866 :
867 : /* Calculate required number of batches. */
868 4140 : dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
869 4140 : dbatch = Min(dbatch, max_pointers);
870 4140 : minbatch = (int) dbatch;
871 4140 : nbatch = pg_nextpower2_32(Max(2, minbatch));
872 : }
873 :
874 : Assert(nbuckets > 0);
875 : Assert(nbatch > 0);
876 :
877 456294 : *numbuckets = nbuckets;
878 456294 : *numbatches = nbatch;
879 : }
880 :
881 :
882 : /* ----------------------------------------------------------------
883 : * ExecHashTableDestroy
884 : *
885 : * destroy a hash table
886 : * ----------------------------------------------------------------
887 : */
888 : void
889 19290 : ExecHashTableDestroy(HashJoinTable hashtable)
890 : {
891 : int i;
892 :
893 : /*
894 : * Make sure all the temp files are closed. We skip batch 0, since it
895 : * can't have any temp files (and the arrays might not even exist if
896 : * nbatch is only 1). Parallel hash joins don't use these files.
897 : */
898 19290 : if (hashtable->innerBatchFile != NULL)
899 : {
900 1388 : for (i = 1; i < hashtable->nbatch; i++)
901 : {
902 1224 : if (hashtable->innerBatchFile[i])
903 0 : BufFileClose(hashtable->innerBatchFile[i]);
904 1224 : if (hashtable->outerBatchFile[i])
905 0 : BufFileClose(hashtable->outerBatchFile[i]);
906 : }
907 : }
908 :
909 : /* Release working memory (batchCxt is a child, so it goes away too) */
910 19290 : MemoryContextDelete(hashtable->hashCxt);
911 :
912 : /* And drop the control block */
913 19290 : pfree(hashtable);
914 19290 : }
915 :
916 : /*
917 : * ExecHashIncreaseNumBatches
918 : * increase the original number of batches in order to reduce
919 : * current memory consumption
920 : */
921 : static void
922 449136 : ExecHashIncreaseNumBatches(HashJoinTable hashtable)
923 : {
924 449136 : int oldnbatch = hashtable->nbatch;
925 449136 : int curbatch = hashtable->curbatch;
926 : int nbatch;
927 : long ninmemory;
928 : long nfreed;
929 : HashMemoryChunk oldchunks;
930 :
931 : /* do nothing if we've decided to shut off growth */
932 449136 : if (!hashtable->growEnabled)
933 449020 : return;
934 :
935 : /* safety check to avoid overflow */
936 116 : if (oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void *) * 2)))
937 0 : return;
938 :
939 116 : nbatch = oldnbatch * 2;
940 : Assert(nbatch > 1);
941 :
942 : #ifdef HJDEBUG
943 : printf("Hashjoin %p: increasing nbatch to %d because space = %zu\n",
944 : hashtable, nbatch, hashtable->spaceUsed);
945 : #endif
946 :
947 116 : if (hashtable->innerBatchFile == NULL)
948 : {
949 54 : MemoryContext oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
950 :
951 : /* we had no file arrays before */
952 54 : hashtable->innerBatchFile = palloc0_array(BufFile *, nbatch);
953 54 : hashtable->outerBatchFile = palloc0_array(BufFile *, nbatch);
954 :
955 54 : MemoryContextSwitchTo(oldcxt);
956 :
957 : /* time to establish the temp tablespaces, too */
958 54 : PrepareTempTablespaces();
959 : }
960 : else
961 : {
962 : /* enlarge arrays and zero out added entries */
963 62 : hashtable->innerBatchFile = repalloc0_array(hashtable->innerBatchFile, BufFile *, oldnbatch, nbatch);
964 62 : hashtable->outerBatchFile = repalloc0_array(hashtable->outerBatchFile, BufFile *, oldnbatch, nbatch);
965 : }
966 :
967 116 : hashtable->nbatch = nbatch;
968 :
969 : /*
970 : * Scan through the existing hash table entries and dump out any that are
971 : * no longer of the current batch.
972 : */
973 116 : ninmemory = nfreed = 0;
974 :
975 : /* If know we need to resize nbuckets, we can do it while rebatching. */
976 116 : if (hashtable->nbuckets_optimal != hashtable->nbuckets)
977 : {
978 : /* we never decrease the number of buckets */
979 : Assert(hashtable->nbuckets_optimal > hashtable->nbuckets);
980 :
981 54 : hashtable->nbuckets = hashtable->nbuckets_optimal;
982 54 : hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
983 :
984 54 : hashtable->buckets.unshared =
985 54 : repalloc_array(hashtable->buckets.unshared,
986 : HashJoinTuple, hashtable->nbuckets);
987 : }
988 :
989 : /*
990 : * We will scan through the chunks directly, so that we can reset the
991 : * buckets now and not have to keep track which tuples in the buckets have
992 : * already been processed. We will free the old chunks as we go.
993 : */
994 116 : memset(hashtable->buckets.unshared, 0,
995 116 : sizeof(HashJoinTuple) * hashtable->nbuckets);
996 116 : oldchunks = hashtable->chunks;
997 116 : hashtable->chunks = NULL;
998 :
999 : /* so, let's scan through the old chunks, and all tuples in each chunk */
1000 580 : while (oldchunks != NULL)
1001 : {
1002 464 : HashMemoryChunk nextchunk = oldchunks->next.unshared;
1003 :
1004 : /* position within the buffer (up to oldchunks->used) */
1005 464 : size_t idx = 0;
1006 :
1007 : /* process all tuples stored in this chunk (and then free it) */
1008 316828 : while (idx < oldchunks->used)
1009 : {
1010 316364 : HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(oldchunks) + idx);
1011 316364 : MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1012 316364 : int hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
1013 : int bucketno;
1014 : int batchno;
1015 :
1016 316364 : ninmemory++;
1017 316364 : ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1018 : &bucketno, &batchno);
1019 :
1020 316364 : if (batchno == curbatch)
1021 : {
1022 : /* keep tuple in memory - copy it into the new chunk */
1023 : HashJoinTuple copyTuple;
1024 :
1025 121786 : copyTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1026 121786 : memcpy(copyTuple, hashTuple, hashTupleSize);
1027 :
1028 : /* and add it back to the appropriate bucket */
1029 121786 : copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1030 121786 : hashtable->buckets.unshared[bucketno] = copyTuple;
1031 : }
1032 : else
1033 : {
1034 : /* dump it out */
1035 : Assert(batchno > curbatch);
1036 194578 : ExecHashJoinSaveTuple(HJTUPLE_MINTUPLE(hashTuple),
1037 : hashTuple->hashvalue,
1038 194578 : &hashtable->innerBatchFile[batchno],
1039 : hashtable);
1040 :
1041 194578 : hashtable->spaceUsed -= hashTupleSize;
1042 194578 : nfreed++;
1043 : }
1044 :
1045 : /* next tuple in this chunk */
1046 316364 : idx += MAXALIGN(hashTupleSize);
1047 :
1048 : /* allow this loop to be cancellable */
1049 316364 : CHECK_FOR_INTERRUPTS();
1050 : }
1051 :
1052 : /* we're done with this chunk - free it and proceed to the next one */
1053 464 : pfree(oldchunks);
1054 464 : oldchunks = nextchunk;
1055 : }
1056 :
1057 : #ifdef HJDEBUG
1058 : printf("Hashjoin %p: freed %ld of %ld tuples, space now %zu\n",
1059 : hashtable, nfreed, ninmemory, hashtable->spaceUsed);
1060 : #endif
1061 :
1062 : /*
1063 : * If we dumped out either all or none of the tuples in the table, disable
1064 : * further expansion of nbatch. This situation implies that we have
1065 : * enough tuples of identical hashvalues to overflow spaceAllowed.
1066 : * Increasing nbatch will not fix it since there's no way to subdivide the
1067 : * group any more finely. We have to just gut it out and hope the server
1068 : * has enough RAM.
1069 : */
1070 116 : if (nfreed == 0 || nfreed == ninmemory)
1071 : {
1072 26 : hashtable->growEnabled = false;
1073 : #ifdef HJDEBUG
1074 : printf("Hashjoin %p: disabling further increase of nbatch\n",
1075 : hashtable);
1076 : #endif
1077 : }
1078 : }
1079 :
1080 : /*
1081 : * ExecParallelHashIncreaseNumBatches
1082 : * Every participant attached to grow_batches_barrier must run this
1083 : * function when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
1084 : */
1085 : static void
1086 52 : ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
1087 : {
1088 52 : ParallelHashJoinState *pstate = hashtable->parallel_state;
1089 :
1090 : Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASH_INNER);
1091 :
1092 : /*
1093 : * It's unlikely, but we need to be prepared for new participants to show
1094 : * up while we're in the middle of this operation so we need to switch on
1095 : * barrier phase here.
1096 : */
1097 52 : switch (PHJ_GROW_BATCHES_PHASE(BarrierPhase(&pstate->grow_batches_barrier)))
1098 : {
1099 52 : case PHJ_GROW_BATCHES_ELECT:
1100 :
1101 : /*
1102 : * Elect one participant to prepare to grow the number of batches.
1103 : * This involves reallocating or resetting the buckets of batch 0
1104 : * in preparation for all participants to begin repartitioning the
1105 : * tuples.
1106 : */
1107 52 : if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1108 : WAIT_EVENT_HASH_GROW_BATCHES_ELECT))
1109 : {
1110 : dsa_pointer_atomic *buckets;
1111 : ParallelHashJoinBatch *old_batch0;
1112 : int new_nbatch;
1113 : int i;
1114 :
1115 : /* Move the old batch out of the way. */
1116 50 : old_batch0 = hashtable->batches[0].shared;
1117 50 : pstate->old_batches = pstate->batches;
1118 50 : pstate->old_nbatch = hashtable->nbatch;
1119 50 : pstate->batches = InvalidDsaPointer;
1120 :
1121 : /* Free this backend's old accessors. */
1122 50 : ExecParallelHashCloseBatchAccessors(hashtable);
1123 :
1124 : /* Figure out how many batches to use. */
1125 50 : if (hashtable->nbatch == 1)
1126 : {
1127 : /*
1128 : * We are going from single-batch to multi-batch. We need
1129 : * to switch from one large combined memory budget to the
1130 : * regular hash_mem budget.
1131 : */
1132 36 : pstate->space_allowed = get_hash_memory_limit();
1133 :
1134 : /*
1135 : * The combined hash_mem of all participants wasn't
1136 : * enough. Therefore one batch per participant would be
1137 : * approximately equivalent and would probably also be
1138 : * insufficient. So try two batches per participant,
1139 : * rounded up to a power of two.
1140 : */
1141 36 : new_nbatch = pg_nextpower2_32(pstate->nparticipants * 2);
1142 : }
1143 : else
1144 : {
1145 : /*
1146 : * We were already multi-batched. Try doubling the number
1147 : * of batches.
1148 : */
1149 14 : new_nbatch = hashtable->nbatch * 2;
1150 : }
1151 :
1152 : /* Allocate new larger generation of batches. */
1153 : Assert(hashtable->nbatch == pstate->nbatch);
1154 50 : ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
1155 : Assert(hashtable->nbatch == pstate->nbatch);
1156 :
1157 : /* Replace or recycle batch 0's bucket array. */
1158 50 : if (pstate->old_nbatch == 1)
1159 : {
1160 : double dtuples;
1161 : double dbuckets;
1162 : int new_nbuckets;
1163 :
1164 : /*
1165 : * We probably also need a smaller bucket array. How many
1166 : * tuples do we expect per batch, assuming we have only
1167 : * half of them so far? Normally we don't need to change
1168 : * the bucket array's size, because the size of each batch
1169 : * stays the same as we add more batches, but in this
1170 : * special case we move from a large batch to many smaller
1171 : * batches and it would be wasteful to keep the large
1172 : * array.
1173 : */
1174 36 : dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;
1175 36 : dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
1176 36 : dbuckets = Min(dbuckets,
1177 : MaxAllocSize / sizeof(dsa_pointer_atomic));
1178 36 : new_nbuckets = (int) dbuckets;
1179 36 : new_nbuckets = Max(new_nbuckets, 1024);
1180 36 : new_nbuckets = pg_nextpower2_32(new_nbuckets);
1181 36 : dsa_free(hashtable->area, old_batch0->buckets);
1182 72 : hashtable->batches[0].shared->buckets =
1183 36 : dsa_allocate(hashtable->area,
1184 : sizeof(dsa_pointer_atomic) * new_nbuckets);
1185 : buckets = (dsa_pointer_atomic *)
1186 36 : dsa_get_address(hashtable->area,
1187 36 : hashtable->batches[0].shared->buckets);
1188 110628 : for (i = 0; i < new_nbuckets; ++i)
1189 110592 : dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1190 36 : pstate->nbuckets = new_nbuckets;
1191 : }
1192 : else
1193 : {
1194 : /* Recycle the existing bucket array. */
1195 14 : hashtable->batches[0].shared->buckets = old_batch0->buckets;
1196 : buckets = (dsa_pointer_atomic *)
1197 14 : dsa_get_address(hashtable->area, old_batch0->buckets);
1198 53262 : for (i = 0; i < hashtable->nbuckets; ++i)
1199 53248 : dsa_pointer_atomic_write(&buckets[i], InvalidDsaPointer);
1200 : }
1201 :
1202 : /* Move all chunks to the work queue for parallel processing. */
1203 50 : pstate->chunk_work_queue = old_batch0->chunks;
1204 :
1205 : /* Disable further growth temporarily while we're growing. */
1206 50 : pstate->growth = PHJ_GROWTH_DISABLED;
1207 : }
1208 : else
1209 : {
1210 : /* All other participants just flush their tuples to disk. */
1211 2 : ExecParallelHashCloseBatchAccessors(hashtable);
1212 : }
1213 : /* Fall through. */
1214 :
1215 : case PHJ_GROW_BATCHES_REALLOCATE:
1216 : /* Wait for the above to be finished. */
1217 52 : BarrierArriveAndWait(&pstate->grow_batches_barrier,
1218 : WAIT_EVENT_HASH_GROW_BATCHES_REALLOCATE);
1219 : /* Fall through. */
1220 :
1221 52 : case PHJ_GROW_BATCHES_REPARTITION:
1222 : /* Make sure that we have the current dimensions and buckets. */
1223 52 : ExecParallelHashEnsureBatchAccessors(hashtable);
1224 52 : ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1225 : /* Then partition, flush counters. */
1226 52 : ExecParallelHashRepartitionFirst(hashtable);
1227 52 : ExecParallelHashRepartitionRest(hashtable);
1228 52 : ExecParallelHashMergeCounters(hashtable);
1229 : /* Wait for the above to be finished. */
1230 52 : BarrierArriveAndWait(&pstate->grow_batches_barrier,
1231 : WAIT_EVENT_HASH_GROW_BATCHES_REPARTITION);
1232 : /* Fall through. */
1233 :
1234 52 : case PHJ_GROW_BATCHES_DECIDE:
1235 :
1236 : /*
1237 : * Elect one participant to clean up and decide whether further
1238 : * repartitioning is needed, or should be disabled because it's
1239 : * not helping.
1240 : */
1241 52 : if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1242 : WAIT_EVENT_HASH_GROW_BATCHES_DECIDE))
1243 : {
1244 50 : bool space_exhausted = false;
1245 50 : bool extreme_skew_detected = false;
1246 :
1247 : /* Make sure that we have the current dimensions and buckets. */
1248 50 : ExecParallelHashEnsureBatchAccessors(hashtable);
1249 50 : ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1250 :
1251 : /* Are any of the new generation of batches exhausted? */
1252 370 : for (int i = 0; i < hashtable->nbatch; ++i)
1253 : {
1254 320 : ParallelHashJoinBatch *batch = hashtable->batches[i].shared;
1255 :
1256 320 : if (batch->space_exhausted ||
1257 320 : batch->estimated_size > pstate->space_allowed)
1258 : {
1259 : int parent;
1260 :
1261 24 : space_exhausted = true;
1262 :
1263 : /*
1264 : * Did this batch receive ALL of the tuples from its
1265 : * parent batch? That would indicate that further
1266 : * repartitioning isn't going to help (the hash values
1267 : * are probably all the same).
1268 : */
1269 24 : parent = i % pstate->old_nbatch;
1270 24 : if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples)
1271 24 : extreme_skew_detected = true;
1272 : }
1273 : }
1274 :
1275 : /* Don't keep growing if it's not helping or we'd overflow. */
1276 50 : if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2)
1277 24 : pstate->growth = PHJ_GROWTH_DISABLED;
1278 26 : else if (space_exhausted)
1279 0 : pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
1280 : else
1281 26 : pstate->growth = PHJ_GROWTH_OK;
1282 :
1283 : /* Free the old batches in shared memory. */
1284 50 : dsa_free(hashtable->area, pstate->old_batches);
1285 50 : pstate->old_batches = InvalidDsaPointer;
1286 : }
1287 : /* Fall through. */
1288 :
1289 : case PHJ_GROW_BATCHES_FINISH:
1290 : /* Wait for the above to complete. */
1291 52 : BarrierArriveAndWait(&pstate->grow_batches_barrier,
1292 : WAIT_EVENT_HASH_GROW_BATCHES_FINISH);
1293 : }
1294 52 : }
1295 :
1296 : /*
1297 : * Repartition the tuples currently loaded into memory for inner batch 0
1298 : * because the number of batches has been increased. Some tuples are retained
1299 : * in memory and some are written out to a later batch.
1300 : */
1301 : static void
1302 52 : ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
1303 : {
1304 : dsa_pointer chunk_shared;
1305 : HashMemoryChunk chunk;
1306 :
1307 : Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);
1308 :
1309 342 : while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared)))
1310 : {
1311 290 : size_t idx = 0;
1312 :
1313 : /* Repartition all tuples in this chunk. */
1314 222320 : while (idx < chunk->used)
1315 : {
1316 222030 : HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1317 222030 : MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1318 : HashJoinTuple copyTuple;
1319 : dsa_pointer shared;
1320 : int bucketno;
1321 : int batchno;
1322 :
1323 222030 : ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1324 : &bucketno, &batchno);
1325 :
1326 : Assert(batchno < hashtable->nbatch);
1327 222030 : if (batchno == 0)
1328 : {
1329 : /* It still belongs in batch 0. Copy to a new chunk. */
1330 : copyTuple =
1331 51416 : ExecParallelHashTupleAlloc(hashtable,
1332 51416 : HJTUPLE_OVERHEAD + tuple->t_len,
1333 : &shared);
1334 51416 : copyTuple->hashvalue = hashTuple->hashvalue;
1335 51416 : memcpy(HJTUPLE_MINTUPLE(copyTuple), tuple, tuple->t_len);
1336 51416 : ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1337 : copyTuple, shared);
1338 : }
1339 : else
1340 : {
1341 170614 : size_t tuple_size =
1342 170614 : MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1343 :
1344 : /* It belongs in a later batch. */
1345 170614 : hashtable->batches[batchno].estimated_size += tuple_size;
1346 170614 : sts_puttuple(hashtable->batches[batchno].inner_tuples,
1347 170614 : &hashTuple->hashvalue, tuple);
1348 : }
1349 :
1350 : /* Count this tuple. */
1351 222030 : ++hashtable->batches[0].old_ntuples;
1352 222030 : ++hashtable->batches[batchno].ntuples;
1353 :
1354 222030 : idx += MAXALIGN(HJTUPLE_OVERHEAD +
1355 : HJTUPLE_MINTUPLE(hashTuple)->t_len);
1356 : }
1357 :
1358 : /* Free this chunk. */
1359 290 : dsa_free(hashtable->area, chunk_shared);
1360 :
1361 290 : CHECK_FOR_INTERRUPTS();
1362 : }
1363 52 : }
1364 :
1365 : /*
1366 : * Help repartition inner batches 1..n.
1367 : */
1368 : static void
1369 52 : ExecParallelHashRepartitionRest(HashJoinTable hashtable)
1370 : {
1371 52 : ParallelHashJoinState *pstate = hashtable->parallel_state;
1372 52 : int old_nbatch = pstate->old_nbatch;
1373 : SharedTuplestoreAccessor **old_inner_tuples;
1374 : ParallelHashJoinBatch *old_batches;
1375 : int i;
1376 :
1377 : /* Get our hands on the previous generation of batches. */
1378 : old_batches = (ParallelHashJoinBatch *)
1379 52 : dsa_get_address(hashtable->area, pstate->old_batches);
1380 52 : old_inner_tuples = palloc0_array(SharedTuplestoreAccessor *, old_nbatch);
1381 116 : for (i = 1; i < old_nbatch; ++i)
1382 : {
1383 64 : ParallelHashJoinBatch *shared =
1384 64 : NthParallelHashJoinBatch(old_batches, i);
1385 :
1386 64 : old_inner_tuples[i] = sts_attach(ParallelHashJoinBatchInner(shared),
1387 : ParallelWorkerNumber + 1,
1388 : &pstate->fileset);
1389 : }
1390 :
1391 : /* Join in the effort to repartition them. */
1392 116 : for (i = 1; i < old_nbatch; ++i)
1393 : {
1394 : MinimalTuple tuple;
1395 : uint32 hashvalue;
1396 :
1397 : /* Scan one partition from the previous generation. */
1398 64 : sts_begin_parallel_scan(old_inner_tuples[i]);
1399 172650 : while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue)))
1400 : {
1401 172586 : size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1402 : int bucketno;
1403 : int batchno;
1404 :
1405 : /* Decide which partition it goes to in the new generation. */
1406 172586 : ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
1407 : &batchno);
1408 :
1409 172586 : hashtable->batches[batchno].estimated_size += tuple_size;
1410 172586 : ++hashtable->batches[batchno].ntuples;
1411 172586 : ++hashtable->batches[i].old_ntuples;
1412 :
1413 : /* Store the tuple its new batch. */
1414 172586 : sts_puttuple(hashtable->batches[batchno].inner_tuples,
1415 : &hashvalue, tuple);
1416 :
1417 172586 : CHECK_FOR_INTERRUPTS();
1418 : }
1419 64 : sts_end_parallel_scan(old_inner_tuples[i]);
1420 : }
1421 :
1422 52 : pfree(old_inner_tuples);
1423 52 : }
1424 :
1425 : /*
1426 : * Transfer the backend-local per-batch counters to the shared totals.
1427 : */
1428 : static void
1429 294 : ExecParallelHashMergeCounters(HashJoinTable hashtable)
1430 : {
1431 294 : ParallelHashJoinState *pstate = hashtable->parallel_state;
1432 : int i;
1433 :
1434 294 : LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
1435 294 : pstate->total_tuples = 0;
1436 1754 : for (i = 0; i < hashtable->nbatch; ++i)
1437 : {
1438 1460 : ParallelHashJoinBatchAccessor *batch = &hashtable->batches[i];
1439 :
1440 1460 : batch->shared->size += batch->size;
1441 1460 : batch->shared->estimated_size += batch->estimated_size;
1442 1460 : batch->shared->ntuples += batch->ntuples;
1443 1460 : batch->shared->old_ntuples += batch->old_ntuples;
1444 1460 : batch->size = 0;
1445 1460 : batch->estimated_size = 0;
1446 1460 : batch->ntuples = 0;
1447 1460 : batch->old_ntuples = 0;
1448 1460 : pstate->total_tuples += batch->shared->ntuples;
1449 : }
1450 294 : LWLockRelease(&pstate->lock);
1451 294 : }
1452 :
1453 : /*
1454 : * ExecHashIncreaseNumBuckets
1455 : * increase the original number of buckets in order to reduce
1456 : * number of tuples per bucket
1457 : */
1458 : static void
1459 72 : ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
1460 : {
1461 : HashMemoryChunk chunk;
1462 :
1463 : /* do nothing if not an increase (it's called increase for a reason) */
1464 72 : if (hashtable->nbuckets >= hashtable->nbuckets_optimal)
1465 0 : return;
1466 :
1467 : #ifdef HJDEBUG
1468 : printf("Hashjoin %p: increasing nbuckets %d => %d\n",
1469 : hashtable, hashtable->nbuckets, hashtable->nbuckets_optimal);
1470 : #endif
1471 :
1472 72 : hashtable->nbuckets = hashtable->nbuckets_optimal;
1473 72 : hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
1474 :
1475 : Assert(hashtable->nbuckets > 1);
1476 : Assert(hashtable->nbuckets <= (INT_MAX / 2));
1477 : Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));
1478 :
1479 : /*
1480 : * Just reallocate the proper number of buckets - we don't need to walk
1481 : * through them - we can walk the dense-allocated chunks (just like in
1482 : * ExecHashIncreaseNumBatches, but without all the copying into new
1483 : * chunks)
1484 : */
1485 72 : hashtable->buckets.unshared =
1486 72 : repalloc_array(hashtable->buckets.unshared,
1487 : HashJoinTuple, hashtable->nbuckets);
1488 :
1489 72 : memset(hashtable->buckets.unshared, 0,
1490 72 : hashtable->nbuckets * sizeof(HashJoinTuple));
1491 :
1492 : /* scan through all tuples in all chunks to rebuild the hash table */
1493 1008 : for (chunk = hashtable->chunks; chunk != NULL; chunk = chunk->next.unshared)
1494 : {
1495 : /* process all tuples stored in this chunk */
1496 936 : size_t idx = 0;
1497 :
1498 720936 : while (idx < chunk->used)
1499 : {
1500 720000 : HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1501 : int bucketno;
1502 : int batchno;
1503 :
1504 720000 : ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1505 : &bucketno, &batchno);
1506 :
1507 : /* add the tuple to the proper bucket */
1508 720000 : hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1509 720000 : hashtable->buckets.unshared[bucketno] = hashTuple;
1510 :
1511 : /* advance index past the tuple */
1512 720000 : idx += MAXALIGN(HJTUPLE_OVERHEAD +
1513 : HJTUPLE_MINTUPLE(hashTuple)->t_len);
1514 : }
1515 :
1516 : /* allow this loop to be cancellable */
1517 936 : CHECK_FOR_INTERRUPTS();
1518 : }
1519 : }
1520 :
1521 : static void
1522 144 : ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
1523 : {
1524 144 : ParallelHashJoinState *pstate = hashtable->parallel_state;
1525 : int i;
1526 : HashMemoryChunk chunk;
1527 : dsa_pointer chunk_s;
1528 :
1529 : Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASH_INNER);
1530 :
1531 : /*
1532 : * It's unlikely, but we need to be prepared for new participants to show
1533 : * up while we're in the middle of this operation so we need to switch on
1534 : * barrier phase here.
1535 : */
1536 144 : switch (PHJ_GROW_BUCKETS_PHASE(BarrierPhase(&pstate->grow_buckets_barrier)))
1537 : {
1538 144 : case PHJ_GROW_BUCKETS_ELECT:
1539 : /* Elect one participant to prepare to increase nbuckets. */
1540 144 : if (BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1541 : WAIT_EVENT_HASH_GROW_BUCKETS_ELECT))
1542 : {
1543 : size_t size;
1544 : dsa_pointer_atomic *buckets;
1545 :
1546 : /* Double the size of the bucket array. */
1547 108 : pstate->nbuckets *= 2;
1548 108 : size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
1549 108 : hashtable->batches[0].shared->size += size / 2;
1550 108 : dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
1551 216 : hashtable->batches[0].shared->buckets =
1552 108 : dsa_allocate(hashtable->area, size);
1553 : buckets = (dsa_pointer_atomic *)
1554 108 : dsa_get_address(hashtable->area,
1555 108 : hashtable->batches[0].shared->buckets);
1556 933996 : for (i = 0; i < pstate->nbuckets; ++i)
1557 933888 : dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1558 :
1559 : /* Put the chunk list onto the work queue. */
1560 108 : pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;
1561 :
1562 : /* Clear the flag. */
1563 108 : pstate->growth = PHJ_GROWTH_OK;
1564 : }
1565 : /* Fall through. */
1566 :
1567 : case PHJ_GROW_BUCKETS_REALLOCATE:
1568 : /* Wait for the above to complete. */
1569 144 : BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1570 : WAIT_EVENT_HASH_GROW_BUCKETS_REALLOCATE);
1571 : /* Fall through. */
1572 :
1573 144 : case PHJ_GROW_BUCKETS_REINSERT:
1574 : /* Reinsert all tuples into the hash table. */
1575 144 : ExecParallelHashEnsureBatchAccessors(hashtable);
1576 144 : ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1577 808 : while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s)))
1578 : {
1579 664 : size_t idx = 0;
1580 :
1581 543816 : while (idx < chunk->used)
1582 : {
1583 543152 : HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1584 543152 : dsa_pointer shared = chunk_s + HASH_CHUNK_HEADER_SIZE + idx;
1585 : int bucketno;
1586 : int batchno;
1587 :
1588 543152 : ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1589 : &bucketno, &batchno);
1590 : Assert(batchno == 0);
1591 :
1592 : /* add the tuple to the proper bucket */
1593 543152 : ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1594 : hashTuple, shared);
1595 :
1596 : /* advance index past the tuple */
1597 543152 : idx += MAXALIGN(HJTUPLE_OVERHEAD +
1598 : HJTUPLE_MINTUPLE(hashTuple)->t_len);
1599 : }
1600 :
1601 : /* allow this loop to be cancellable */
1602 664 : CHECK_FOR_INTERRUPTS();
1603 : }
1604 144 : BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1605 : WAIT_EVENT_HASH_GROW_BUCKETS_REINSERT);
1606 : }
1607 144 : }
1608 :
1609 : /*
1610 : * ExecHashTableInsert
1611 : * insert a tuple into the hash table depending on the hash value
1612 : * it may just go to a temp file for later batches
1613 : *
1614 : * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
1615 : * tuple; the minimal case in particular is certain to happen while reloading
1616 : * tuples from batch files. We could save some cycles in the regular-tuple
1617 : * case by not forcing the slot contents into minimal form; not clear if it's
1618 : * worth the messiness required.
1619 : */
1620 : void
1621 11682946 : ExecHashTableInsert(HashJoinTable hashtable,
1622 : TupleTableSlot *slot,
1623 : uint32 hashvalue)
1624 : {
1625 : bool shouldFree;
1626 11682946 : MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1627 : int bucketno;
1628 : int batchno;
1629 :
1630 11682946 : ExecHashGetBucketAndBatch(hashtable, hashvalue,
1631 : &bucketno, &batchno);
1632 :
1633 : /*
1634 : * decide whether to put the tuple in the hash table or a temp file
1635 : */
1636 11682946 : if (batchno == hashtable->curbatch)
1637 : {
1638 : /*
1639 : * put the tuple in hash table
1640 : */
1641 : HashJoinTuple hashTuple;
1642 : int hashTupleSize;
1643 9445408 : double ntuples = (hashtable->totalTuples - hashtable->skewTuples);
1644 :
1645 : /* Create the HashJoinTuple */
1646 9445408 : hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
1647 9445408 : hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1648 :
1649 9445408 : hashTuple->hashvalue = hashvalue;
1650 9445408 : memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1651 :
1652 : /*
1653 : * We always reset the tuple-matched flag on insertion. This is okay
1654 : * even when reloading a tuple from a batch file, since the tuple
1655 : * could not possibly have been matched to an outer tuple before it
1656 : * went into the batch file.
1657 : */
1658 9445408 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1659 :
1660 : /* Push it onto the front of the bucket's list */
1661 9445408 : hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1662 9445408 : hashtable->buckets.unshared[bucketno] = hashTuple;
1663 :
1664 : /*
1665 : * Increase the (optimal) number of buckets if we just exceeded the
1666 : * NTUP_PER_BUCKET threshold, but only when there's still a single
1667 : * batch.
1668 : */
1669 9445408 : if (hashtable->nbatch == 1 &&
1670 6898682 : ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
1671 : {
1672 : /* Guard against integer overflow and alloc size overflow */
1673 180 : if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
1674 180 : hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
1675 : {
1676 180 : hashtable->nbuckets_optimal *= 2;
1677 180 : hashtable->log2_nbuckets_optimal += 1;
1678 : }
1679 : }
1680 :
1681 : /* Account for space used, and back off if we've used too much */
1682 9445408 : hashtable->spaceUsed += hashTupleSize;
1683 9445408 : if (hashtable->spaceUsed > hashtable->spacePeak)
1684 7489330 : hashtable->spacePeak = hashtable->spaceUsed;
1685 9445408 : if (hashtable->spaceUsed +
1686 9445408 : hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
1687 9445408 : > hashtable->spaceAllowed)
1688 449136 : ExecHashIncreaseNumBatches(hashtable);
1689 : }
1690 : else
1691 : {
1692 : /*
1693 : * put the tuple into a temp file for later batches
1694 : */
1695 : Assert(batchno > hashtable->curbatch);
1696 2237538 : ExecHashJoinSaveTuple(tuple,
1697 : hashvalue,
1698 2237538 : &hashtable->innerBatchFile[batchno],
1699 : hashtable);
1700 : }
1701 :
1702 11682946 : if (shouldFree)
1703 9220264 : heap_free_minimal_tuple(tuple);
1704 11682946 : }
1705 :
1706 : /*
1707 : * ExecParallelHashTableInsert
1708 : * insert a tuple into a shared hash table or shared batch tuplestore
1709 : */
1710 : void
1711 2160094 : ExecParallelHashTableInsert(HashJoinTable hashtable,
1712 : TupleTableSlot *slot,
1713 : uint32 hashvalue)
1714 : {
1715 : bool shouldFree;
1716 2160094 : MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1717 : dsa_pointer shared;
1718 : int bucketno;
1719 : int batchno;
1720 :
1721 2160448 : retry:
1722 2160448 : ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1723 :
1724 2160448 : if (batchno == 0)
1725 : {
1726 : HashJoinTuple hashTuple;
1727 :
1728 : /* Try to load it into memory. */
1729 : Assert(BarrierPhase(&hashtable->parallel_state->build_barrier) ==
1730 : PHJ_BUILD_HASH_INNER);
1731 1246858 : hashTuple = ExecParallelHashTupleAlloc(hashtable,
1732 1246858 : HJTUPLE_OVERHEAD + tuple->t_len,
1733 : &shared);
1734 1246858 : if (hashTuple == NULL)
1735 324 : goto retry;
1736 :
1737 : /* Store the hash value in the HashJoinTuple header. */
1738 1246534 : hashTuple->hashvalue = hashvalue;
1739 1246534 : memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1740 1246534 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1741 :
1742 : /* Push it onto the front of the bucket's list */
1743 1246534 : ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1744 : hashTuple, shared);
1745 : }
1746 : else
1747 : {
1748 913590 : size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1749 :
1750 : Assert(batchno > 0);
1751 :
1752 : /* Try to preallocate space in the batch if necessary. */
1753 913590 : if (hashtable->batches[batchno].preallocated < tuple_size)
1754 : {
1755 1750 : if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size))
1756 30 : goto retry;
1757 : }
1758 :
1759 : Assert(hashtable->batches[batchno].preallocated >= tuple_size);
1760 913560 : hashtable->batches[batchno].preallocated -= tuple_size;
1761 913560 : sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue,
1762 : tuple);
1763 : }
1764 2160094 : ++hashtable->batches[batchno].ntuples;
1765 :
1766 2160094 : if (shouldFree)
1767 2160094 : heap_free_minimal_tuple(tuple);
1768 2160094 : }
1769 :
1770 : /*
1771 : * Insert a tuple into the current hash table. Unlike
1772 : * ExecParallelHashTableInsert, this version is not prepared to send the tuple
1773 : * to other batches or to run out of memory, and should only be called with
1774 : * tuples that belong in the current batch once growth has been disabled.
1775 : */
1776 : void
1777 1084174 : ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable,
1778 : TupleTableSlot *slot,
1779 : uint32 hashvalue)
1780 : {
1781 : bool shouldFree;
1782 1084174 : MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1783 : HashJoinTuple hashTuple;
1784 : dsa_pointer shared;
1785 : int batchno;
1786 : int bucketno;
1787 :
1788 1084174 : ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1789 : Assert(batchno == hashtable->curbatch);
1790 1084174 : hashTuple = ExecParallelHashTupleAlloc(hashtable,
1791 1084174 : HJTUPLE_OVERHEAD + tuple->t_len,
1792 : &shared);
1793 1084174 : hashTuple->hashvalue = hashvalue;
1794 1084174 : memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1795 1084174 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1796 1084174 : ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1797 : hashTuple, shared);
1798 :
1799 1084174 : if (shouldFree)
1800 0 : heap_free_minimal_tuple(tuple);
1801 1084174 : }
1802 :
1803 : /*
1804 : * ExecHashGetHashValue
1805 : * Compute the hash value for a tuple
1806 : *
1807 : * The tuple to be tested must be in econtext->ecxt_outertuple (thus Vars in
1808 : * the hashkeys expressions need to have OUTER_VAR as varno). If outer_tuple
1809 : * is false (meaning it's the HashJoin's inner node, Hash), econtext,
1810 : * hashkeys, and slot need to be from Hash, with hashkeys/slot referencing and
1811 : * being suitable for tuples from the node below the Hash. Conversely, if
1812 : * outer_tuple is true, econtext is from HashJoin, and hashkeys/slot need to
1813 : * be appropriate for tuples from HashJoin's outer node.
1814 : *
1815 : * A true result means the tuple's hash value has been successfully computed
1816 : * and stored at *hashvalue. A false result means the tuple cannot match
1817 : * because it contains a null attribute, and hence it should be discarded
1818 : * immediately. (If keep_nulls is true then false is never returned.)
1819 : */
1820 : bool
1821 26599514 : ExecHashGetHashValue(HashJoinTable hashtable,
1822 : ExprContext *econtext,
1823 : List *hashkeys,
1824 : bool outer_tuple,
1825 : bool keep_nulls,
1826 : uint32 *hashvalue)
1827 : {
1828 26599514 : uint32 hashkey = 0;
1829 : FmgrInfo *hashfunctions;
1830 : ListCell *hk;
1831 26599514 : int i = 0;
1832 : MemoryContext oldContext;
1833 :
1834 : /*
1835 : * We reset the eval context each time to reclaim any memory leaked in the
1836 : * hashkey expressions.
1837 : */
1838 26599514 : ResetExprContext(econtext);
1839 :
1840 26599514 : oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
1841 :
1842 26599514 : if (outer_tuple)
1843 15188200 : hashfunctions = hashtable->outer_hashfunctions;
1844 : else
1845 11411314 : hashfunctions = hashtable->inner_hashfunctions;
1846 :
1847 54780286 : foreach(hk, hashkeys)
1848 : {
1849 28181598 : ExprState *keyexpr = (ExprState *) lfirst(hk);
1850 : Datum keyval;
1851 : bool isNull;
1852 :
1853 : /* combine successive hashkeys by rotating */
1854 28181598 : hashkey = pg_rotate_left32(hashkey, 1);
1855 :
1856 : /*
1857 : * Get the join attribute value of the tuple
1858 : */
1859 28181598 : keyval = ExecEvalExpr(keyexpr, econtext, &isNull);
1860 :
1861 : /*
1862 : * If the attribute is NULL, and the join operator is strict, then
1863 : * this tuple cannot pass the join qual so we can reject it
1864 : * immediately (unless we're scanning the outside of an outer join, in
1865 : * which case we must not reject it). Otherwise we act like the
1866 : * hashcode of NULL is zero (this will support operators that act like
1867 : * IS NOT DISTINCT, though not any more-random behavior). We treat
1868 : * the hash support function as strict even if the operator is not.
1869 : *
1870 : * Note: currently, all hashjoinable operators must be strict since
1871 : * the hash index AM assumes that. However, it takes so little extra
1872 : * code here to allow non-strict that we may as well do it.
1873 : */
1874 28181598 : if (isNull)
1875 : {
1876 1058 : if (hashtable->hashStrict[i] && !keep_nulls)
1877 : {
1878 826 : MemoryContextSwitchTo(oldContext);
1879 826 : return false; /* cannot match */
1880 : }
1881 : /* else, leave hashkey unmodified, equivalent to hashcode 0 */
1882 : }
1883 : else
1884 : {
1885 : /* Compute the hash function */
1886 : uint32 hkey;
1887 :
1888 28180540 : hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i], hashtable->collations[i], keyval));
1889 28180540 : hashkey ^= hkey;
1890 : }
1891 :
1892 28180772 : i++;
1893 : }
1894 :
1895 26598688 : MemoryContextSwitchTo(oldContext);
1896 :
1897 26598688 : *hashvalue = hashkey;
1898 26598688 : return true;
1899 : }
1900 :
1901 : /*
1902 : * ExecHashGetBucketAndBatch
1903 : * Determine the bucket number and batch number for a hash value
1904 : *
1905 : * Note: on-the-fly increases of nbatch must not change the bucket number
1906 : * for a given hash code (since we don't move tuples to different hash
1907 : * chains), and must only cause the batch number to remain the same or
1908 : * increase. Our algorithm is
1909 : * bucketno = hashvalue MOD nbuckets
1910 : * batchno = ROR(hashvalue, log2_nbuckets) MOD nbatch
1911 : * where nbuckets and nbatch are both expected to be powers of 2, so we can
1912 : * do the computations by shifting and masking. (This assumes that all hash
1913 : * functions are good about randomizing all their output bits, else we are
1914 : * likely to have very skewed bucket or batch occupancy.)
1915 : *
1916 : * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
1917 : * bucket count growth. Once we start batching, the value is fixed and does
1918 : * not change over the course of the join (making it possible to compute batch
1919 : * number the way we do here).
1920 : *
1921 : * nbatch is always a power of 2; we increase it only by doubling it. This
1922 : * effectively adds one more bit to the top of the batchno. In very large
1923 : * joins, we might run out of bits to add, so we do this by rotating the hash
1924 : * value. This causes batchno to steal bits from bucketno when the number of
1925 : * virtual buckets exceeds 2^32. It's better to have longer bucket chains
1926 : * than to lose the ability to divide batches.
1927 : */
1928 : void
1929 34759404 : ExecHashGetBucketAndBatch(HashJoinTable hashtable,
1930 : uint32 hashvalue,
1931 : int *bucketno,
1932 : int *batchno)
1933 : {
1934 34759404 : uint32 nbuckets = (uint32) hashtable->nbuckets;
1935 34759404 : uint32 nbatch = (uint32) hashtable->nbatch;
1936 :
1937 34759404 : if (nbatch > 1)
1938 : {
1939 13342930 : *bucketno = hashvalue & (nbuckets - 1);
1940 13342930 : *batchno = pg_rotate_right32(hashvalue,
1941 13342930 : hashtable->log2_nbuckets) & (nbatch - 1);
1942 : }
1943 : else
1944 : {
1945 21416474 : *bucketno = hashvalue & (nbuckets - 1);
1946 21416474 : *batchno = 0;
1947 : }
1948 34759404 : }
1949 :
1950 : /*
1951 : * ExecScanHashBucket
1952 : * scan a hash bucket for matches to the current outer tuple
1953 : *
1954 : * The current outer tuple must be stored in econtext->ecxt_outertuple.
1955 : *
1956 : * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1957 : * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1958 : * for the latter.
1959 : */
1960 : bool
1961 17154314 : ExecScanHashBucket(HashJoinState *hjstate,
1962 : ExprContext *econtext)
1963 : {
1964 17154314 : ExprState *hjclauses = hjstate->hashclauses;
1965 17154314 : HashJoinTable hashtable = hjstate->hj_HashTable;
1966 17154314 : HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1967 17154314 : uint32 hashvalue = hjstate->hj_CurHashValue;
1968 :
1969 : /*
1970 : * hj_CurTuple is the address of the tuple last returned from the current
1971 : * bucket, or NULL if it's time to start scanning a new bucket.
1972 : *
1973 : * If the tuple hashed to a skew bucket then scan the skew bucket
1974 : * otherwise scan the standard hashtable bucket.
1975 : */
1976 17154314 : if (hashTuple != NULL)
1977 4126958 : hashTuple = hashTuple->next.unshared;
1978 13027356 : else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)
1979 2400 : hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
1980 : else
1981 13024956 : hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
1982 :
1983 22232846 : while (hashTuple != NULL)
1984 : {
1985 12885998 : if (hashTuple->hashvalue == hashvalue)
1986 : {
1987 : TupleTableSlot *inntuple;
1988 :
1989 : /* insert hashtable's tuple into exec slot so ExecQual sees it */
1990 7807472 : inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
1991 : hjstate->hj_HashTupleSlot,
1992 : false); /* do not pfree */
1993 7807472 : econtext->ecxt_innertuple = inntuple;
1994 :
1995 7807472 : if (ExecQualAndReset(hjclauses, econtext))
1996 : {
1997 7807466 : hjstate->hj_CurTuple = hashTuple;
1998 7807466 : return true;
1999 : }
2000 : }
2001 :
2002 5078532 : hashTuple = hashTuple->next.unshared;
2003 : }
2004 :
2005 : /*
2006 : * no match
2007 : */
2008 9346848 : return false;
2009 : }
2010 :
2011 : /*
2012 : * ExecParallelScanHashBucket
2013 : * scan a hash bucket for matches to the current outer tuple
2014 : *
2015 : * The current outer tuple must be stored in econtext->ecxt_outertuple.
2016 : *
2017 : * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2018 : * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2019 : * for the latter.
2020 : */
2021 : bool
2022 4200054 : ExecParallelScanHashBucket(HashJoinState *hjstate,
2023 : ExprContext *econtext)
2024 : {
2025 4200054 : ExprState *hjclauses = hjstate->hashclauses;
2026 4200054 : HashJoinTable hashtable = hjstate->hj_HashTable;
2027 4200054 : HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2028 4200054 : uint32 hashvalue = hjstate->hj_CurHashValue;
2029 :
2030 : /*
2031 : * hj_CurTuple is the address of the tuple last returned from the current
2032 : * bucket, or NULL if it's time to start scanning a new bucket.
2033 : */
2034 4200054 : if (hashTuple != NULL)
2035 2040024 : hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2036 : else
2037 2160030 : hashTuple = ExecParallelHashFirstTuple(hashtable,
2038 : hjstate->hj_CurBucketNo);
2039 :
2040 5600842 : while (hashTuple != NULL)
2041 : {
2042 3440812 : if (hashTuple->hashvalue == hashvalue)
2043 : {
2044 : TupleTableSlot *inntuple;
2045 :
2046 : /* insert hashtable's tuple into exec slot so ExecQual sees it */
2047 2040024 : inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2048 : hjstate->hj_HashTupleSlot,
2049 : false); /* do not pfree */
2050 2040024 : econtext->ecxt_innertuple = inntuple;
2051 :
2052 2040024 : if (ExecQualAndReset(hjclauses, econtext))
2053 : {
2054 2040024 : hjstate->hj_CurTuple = hashTuple;
2055 2040024 : return true;
2056 : }
2057 : }
2058 :
2059 1400788 : hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2060 : }
2061 :
2062 : /*
2063 : * no match
2064 : */
2065 2160030 : return false;
2066 : }
2067 :
2068 : /*
2069 : * ExecPrepHashTableForUnmatched
2070 : * set up for a series of ExecScanHashTableForUnmatched calls
2071 : */
2072 : void
2073 4834 : ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
2074 : {
2075 : /*----------
2076 : * During this scan we use the HashJoinState fields as follows:
2077 : *
2078 : * hj_CurBucketNo: next regular bucket to scan
2079 : * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
2080 : * hj_CurTuple: last tuple returned, or NULL to start next bucket
2081 : *----------
2082 : */
2083 4834 : hjstate->hj_CurBucketNo = 0;
2084 4834 : hjstate->hj_CurSkewBucketNo = 0;
2085 4834 : hjstate->hj_CurTuple = NULL;
2086 4834 : }
2087 :
2088 : /*
2089 : * Decide if this process is allowed to run the unmatched scan. If so, the
2090 : * batch barrier is advanced to PHJ_BATCH_SCAN and true is returned.
2091 : * Otherwise the batch is detached and false is returned.
2092 : */
2093 : bool
2094 72 : ExecParallelPrepHashTableForUnmatched(HashJoinState *hjstate)
2095 : {
2096 72 : HashJoinTable hashtable = hjstate->hj_HashTable;
2097 72 : int curbatch = hashtable->curbatch;
2098 72 : ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
2099 :
2100 : Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE);
2101 :
2102 : /*
2103 : * It would not be deadlock-free to wait on the batch barrier, because it
2104 : * is in PHJ_BATCH_PROBE phase, and thus processes attached to it have
2105 : * already emitted tuples. Therefore, we'll hold a wait-free election:
2106 : * only one process can continue to the next phase, and all others detach
2107 : * from this batch. They can still go any work on other batches, if there
2108 : * are any.
2109 : */
2110 72 : if (!BarrierArriveAndDetachExceptLast(&batch->batch_barrier))
2111 : {
2112 : /* This process considers the batch to be done. */
2113 6 : hashtable->batches[hashtable->curbatch].done = true;
2114 :
2115 : /* Make sure any temporary files are closed. */
2116 6 : sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
2117 6 : sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
2118 :
2119 : /*
2120 : * Track largest batch we've seen, which would normally happen in
2121 : * ExecHashTableDetachBatch().
2122 : */
2123 6 : hashtable->spacePeak =
2124 6 : Max(hashtable->spacePeak,
2125 : batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
2126 6 : hashtable->curbatch = -1;
2127 6 : return false;
2128 : }
2129 :
2130 : /* Now we are alone with this batch. */
2131 : Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_SCAN);
2132 :
2133 : /*
2134 : * Has another process decided to give up early and command all processes
2135 : * to skip the unmatched scan?
2136 : */
2137 66 : if (batch->skip_unmatched)
2138 : {
2139 0 : hashtable->batches[hashtable->curbatch].done = true;
2140 0 : ExecHashTableDetachBatch(hashtable);
2141 0 : return false;
2142 : }
2143 :
2144 : /* Now prepare the process local state, just as for non-parallel join. */
2145 66 : ExecPrepHashTableForUnmatched(hjstate);
2146 :
2147 66 : return true;
2148 : }
2149 :
2150 : /*
2151 : * ExecScanHashTableForUnmatched
2152 : * scan the hash table for unmatched inner tuples
2153 : *
2154 : * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2155 : * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2156 : * for the latter.
2157 : */
2158 : bool
2159 748538 : ExecScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
2160 : {
2161 748538 : HashJoinTable hashtable = hjstate->hj_HashTable;
2162 748538 : HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2163 :
2164 : for (;;)
2165 : {
2166 : /*
2167 : * hj_CurTuple is the address of the tuple last returned from the
2168 : * current bucket, or NULL if it's time to start scanning a new
2169 : * bucket.
2170 : */
2171 6571002 : if (hashTuple != NULL)
2172 743770 : hashTuple = hashTuple->next.unshared;
2173 5827232 : else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2174 : {
2175 5822470 : hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
2176 5822470 : hjstate->hj_CurBucketNo++;
2177 : }
2178 4762 : else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets)
2179 : {
2180 0 : int j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];
2181 :
2182 0 : hashTuple = hashtable->skewBucket[j]->tuples;
2183 0 : hjstate->hj_CurSkewBucketNo++;
2184 : }
2185 : else
2186 4762 : break; /* finished all buckets */
2187 :
2188 6933378 : while (hashTuple != NULL)
2189 : {
2190 1110914 : if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
2191 : {
2192 : TupleTableSlot *inntuple;
2193 :
2194 : /* insert hashtable's tuple into exec slot */
2195 743776 : inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2196 : hjstate->hj_HashTupleSlot,
2197 : false); /* do not pfree */
2198 743776 : econtext->ecxt_innertuple = inntuple;
2199 :
2200 : /*
2201 : * Reset temp memory each time; although this function doesn't
2202 : * do any qual eval, the caller will, so let's keep it
2203 : * parallel to ExecScanHashBucket.
2204 : */
2205 743776 : ResetExprContext(econtext);
2206 :
2207 743776 : hjstate->hj_CurTuple = hashTuple;
2208 743776 : return true;
2209 : }
2210 :
2211 367138 : hashTuple = hashTuple->next.unshared;
2212 : }
2213 :
2214 : /* allow this loop to be cancellable */
2215 5822464 : CHECK_FOR_INTERRUPTS();
2216 : }
2217 :
2218 : /*
2219 : * no more unmatched tuples
2220 : */
2221 4762 : return false;
2222 : }
2223 :
2224 : /*
2225 : * ExecParallelScanHashTableForUnmatched
2226 : * scan the hash table for unmatched inner tuples, in parallel join
2227 : *
2228 : * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2229 : * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2230 : * for the latter.
2231 : */
2232 : bool
2233 120072 : ExecParallelScanHashTableForUnmatched(HashJoinState *hjstate,
2234 : ExprContext *econtext)
2235 : {
2236 120072 : HashJoinTable hashtable = hjstate->hj_HashTable;
2237 120072 : HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2238 :
2239 : for (;;)
2240 : {
2241 : /*
2242 : * hj_CurTuple is the address of the tuple last returned from the
2243 : * current bucket, or NULL if it's time to start scanning a new
2244 : * bucket.
2245 : */
2246 734472 : if (hashTuple != NULL)
2247 120006 : hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2248 614466 : else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2249 614400 : hashTuple = ExecParallelHashFirstTuple(hashtable,
2250 614400 : hjstate->hj_CurBucketNo++);
2251 : else
2252 66 : break; /* finished all buckets */
2253 :
2254 974406 : while (hashTuple != NULL)
2255 : {
2256 360006 : if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
2257 : {
2258 : TupleTableSlot *inntuple;
2259 :
2260 : /* insert hashtable's tuple into exec slot */
2261 120006 : inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2262 : hjstate->hj_HashTupleSlot,
2263 : false); /* do not pfree */
2264 120006 : econtext->ecxt_innertuple = inntuple;
2265 :
2266 : /*
2267 : * Reset temp memory each time; although this function doesn't
2268 : * do any qual eval, the caller will, so let's keep it
2269 : * parallel to ExecScanHashBucket.
2270 : */
2271 120006 : ResetExprContext(econtext);
2272 :
2273 120006 : hjstate->hj_CurTuple = hashTuple;
2274 120006 : return true;
2275 : }
2276 :
2277 240000 : hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2278 : }
2279 :
2280 : /* allow this loop to be cancellable */
2281 614400 : CHECK_FOR_INTERRUPTS();
2282 : }
2283 :
2284 : /*
2285 : * no more unmatched tuples
2286 : */
2287 66 : return false;
2288 : }
2289 :
2290 : /*
2291 : * ExecHashTableReset
2292 : *
2293 : * reset hash table header for new batch
2294 : */
2295 : void
2296 1224 : ExecHashTableReset(HashJoinTable hashtable)
2297 : {
2298 : MemoryContext oldcxt;
2299 1224 : int nbuckets = hashtable->nbuckets;
2300 :
2301 : /*
2302 : * Release all the hash buckets and tuples acquired in the prior pass, and
2303 : * reinitialize the context for a new pass.
2304 : */
2305 1224 : MemoryContextReset(hashtable->batchCxt);
2306 1224 : oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
2307 :
2308 : /* Reallocate and reinitialize the hash bucket headers. */
2309 1224 : hashtable->buckets.unshared = palloc0_array(HashJoinTuple, nbuckets);
2310 :
2311 1224 : hashtable->spaceUsed = 0;
2312 :
2313 1224 : MemoryContextSwitchTo(oldcxt);
2314 :
2315 : /* Forget the chunks (the memory was freed by the context reset above). */
2316 1224 : hashtable->chunks = NULL;
2317 1224 : }
2318 :
2319 : /*
2320 : * ExecHashTableResetMatchFlags
2321 : * Clear all the HeapTupleHeaderHasMatch flags in the table
2322 : */
2323 : void
2324 6 : ExecHashTableResetMatchFlags(HashJoinTable hashtable)
2325 : {
2326 : HashJoinTuple tuple;
2327 : int i;
2328 :
2329 : /* Reset all flags in the main table ... */
2330 6150 : for (i = 0; i < hashtable->nbuckets; i++)
2331 : {
2332 6156 : for (tuple = hashtable->buckets.unshared[i]; tuple != NULL;
2333 12 : tuple = tuple->next.unshared)
2334 12 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2335 : }
2336 :
2337 : /* ... and the same for the skew buckets, if any */
2338 6 : for (i = 0; i < hashtable->nSkewBuckets; i++)
2339 : {
2340 0 : int j = hashtable->skewBucketNums[i];
2341 0 : HashSkewBucket *skewBucket = hashtable->skewBucket[j];
2342 :
2343 0 : for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared)
2344 0 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2345 : }
2346 6 : }
2347 :
2348 :
2349 : void
2350 998 : ExecReScanHash(HashState *node)
2351 : {
2352 998 : PlanState *outerPlan = outerPlanState(node);
2353 :
2354 : /*
2355 : * if chgParam of subnode is not null then plan will be re-scanned by
2356 : * first ExecProcNode.
2357 : */
2358 998 : if (outerPlan->chgParam == NULL)
2359 0 : ExecReScan(outerPlan);
2360 998 : }
2361 :
2362 :
2363 : /*
2364 : * ExecHashBuildSkewHash
2365 : *
2366 : * Set up for skew optimization if we can identify the most common values
2367 : * (MCVs) of the outer relation's join key. We make a skew hash bucket
2368 : * for the hash value of each MCV, up to the number of slots allowed
2369 : * based on available memory.
2370 : */
2371 : static void
2372 110 : ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node, int mcvsToUse)
2373 : {
2374 : HeapTupleData *statsTuple;
2375 : AttStatsSlot sslot;
2376 :
2377 : /* Do nothing if planner didn't identify the outer relation's join key */
2378 110 : if (!OidIsValid(node->skewTable))
2379 72 : return;
2380 : /* Also, do nothing if we don't have room for at least one skew bucket */
2381 110 : if (mcvsToUse <= 0)
2382 0 : return;
2383 :
2384 : /*
2385 : * Try to find the MCV statistics for the outer relation's join key.
2386 : */
2387 110 : statsTuple = SearchSysCache3(STATRELATTINH,
2388 : ObjectIdGetDatum(node->skewTable),
2389 110 : Int16GetDatum(node->skewColumn),
2390 110 : BoolGetDatum(node->skewInherit));
2391 110 : if (!HeapTupleIsValid(statsTuple))
2392 72 : return;
2393 :
2394 38 : if (get_attstatsslot(&sslot, statsTuple,
2395 : STATISTIC_KIND_MCV, InvalidOid,
2396 : ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
2397 : {
2398 : double frac;
2399 : int nbuckets;
2400 : FmgrInfo *hashfunctions;
2401 : int i;
2402 :
2403 6 : if (mcvsToUse > sslot.nvalues)
2404 0 : mcvsToUse = sslot.nvalues;
2405 :
2406 : /*
2407 : * Calculate the expected fraction of outer relation that will
2408 : * participate in the skew optimization. If this isn't at least
2409 : * SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
2410 : */
2411 6 : frac = 0;
2412 132 : for (i = 0; i < mcvsToUse; i++)
2413 126 : frac += sslot.numbers[i];
2414 6 : if (frac < SKEW_MIN_OUTER_FRACTION)
2415 : {
2416 0 : free_attstatsslot(&sslot);
2417 0 : ReleaseSysCache(statsTuple);
2418 0 : return;
2419 : }
2420 :
2421 : /*
2422 : * Okay, set up the skew hashtable.
2423 : *
2424 : * skewBucket[] is an open addressing hashtable with a power of 2 size
2425 : * that is greater than the number of MCV values. (This ensures there
2426 : * will be at least one null entry, so searches will always
2427 : * terminate.)
2428 : *
2429 : * Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
2430 : * MaxAllocSize/sizeof(void *)/8, but that is not currently possible
2431 : * since we limit pg_statistic entries to much less than that.
2432 : */
2433 6 : nbuckets = pg_nextpower2_32(mcvsToUse + 1);
2434 : /* use two more bits just to help avoid collisions */
2435 6 : nbuckets <<= 2;
2436 :
2437 6 : hashtable->skewEnabled = true;
2438 6 : hashtable->skewBucketLen = nbuckets;
2439 :
2440 : /*
2441 : * We allocate the bucket memory in the hashtable's batch context. It
2442 : * is only needed during the first batch, and this ensures it will be
2443 : * automatically removed once the first batch is done.
2444 : */
2445 6 : hashtable->skewBucket = (HashSkewBucket **)
2446 6 : MemoryContextAllocZero(hashtable->batchCxt,
2447 : nbuckets * sizeof(HashSkewBucket *));
2448 6 : hashtable->skewBucketNums = (int *)
2449 6 : MemoryContextAllocZero(hashtable->batchCxt,
2450 : mcvsToUse * sizeof(int));
2451 :
2452 6 : hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket *)
2453 6 : + mcvsToUse * sizeof(int);
2454 6 : hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket *)
2455 6 : + mcvsToUse * sizeof(int);
2456 6 : if (hashtable->spaceUsed > hashtable->spacePeak)
2457 6 : hashtable->spacePeak = hashtable->spaceUsed;
2458 :
2459 : /*
2460 : * Create a skew bucket for each MCV hash value.
2461 : *
2462 : * Note: it is very important that we create the buckets in order of
2463 : * decreasing MCV frequency. If we have to remove some buckets, they
2464 : * must be removed in reverse order of creation (see notes in
2465 : * ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
2466 : * be removed first.
2467 : */
2468 6 : hashfunctions = hashtable->outer_hashfunctions;
2469 :
2470 132 : for (i = 0; i < mcvsToUse; i++)
2471 : {
2472 : uint32 hashvalue;
2473 : int bucket;
2474 :
2475 126 : hashvalue = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[0],
2476 126 : hashtable->collations[0],
2477 126 : sslot.values[i]));
2478 :
2479 : /*
2480 : * While we have not hit a hole in the hashtable and have not hit
2481 : * the desired bucket, we have collided with some previous hash
2482 : * value, so try the next bucket location. NB: this code must
2483 : * match ExecHashGetSkewBucket.
2484 : */
2485 126 : bucket = hashvalue & (nbuckets - 1);
2486 126 : while (hashtable->skewBucket[bucket] != NULL &&
2487 0 : hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2488 0 : bucket = (bucket + 1) & (nbuckets - 1);
2489 :
2490 : /*
2491 : * If we found an existing bucket with the same hashvalue, leave
2492 : * it alone. It's okay for two MCVs to share a hashvalue.
2493 : */
2494 126 : if (hashtable->skewBucket[bucket] != NULL)
2495 0 : continue;
2496 :
2497 : /* Okay, create a new skew bucket for this hashvalue. */
2498 252 : hashtable->skewBucket[bucket] = (HashSkewBucket *)
2499 126 : MemoryContextAlloc(hashtable->batchCxt,
2500 : sizeof(HashSkewBucket));
2501 126 : hashtable->skewBucket[bucket]->hashvalue = hashvalue;
2502 126 : hashtable->skewBucket[bucket]->tuples = NULL;
2503 126 : hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
2504 126 : hashtable->nSkewBuckets++;
2505 126 : hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
2506 126 : hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
2507 126 : if (hashtable->spaceUsed > hashtable->spacePeak)
2508 126 : hashtable->spacePeak = hashtable->spaceUsed;
2509 : }
2510 :
2511 6 : free_attstatsslot(&sslot);
2512 : }
2513 :
2514 38 : ReleaseSysCache(statsTuple);
2515 : }
2516 :
2517 : /*
2518 : * ExecHashGetSkewBucket
2519 : *
2520 : * Returns the index of the skew bucket for this hashvalue,
2521 : * or INVALID_SKEW_BUCKET_NO if the hashvalue is not
2522 : * associated with any active skew bucket.
2523 : */
2524 : int
2525 25908786 : ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
2526 : {
2527 : int bucket;
2528 :
2529 : /*
2530 : * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
2531 : * particular, this happens after the initial batch is done).
2532 : */
2533 25908786 : if (!hashtable->skewEnabled)
2534 25788786 : return INVALID_SKEW_BUCKET_NO;
2535 :
2536 : /*
2537 : * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
2538 : */
2539 120000 : bucket = hashvalue & (hashtable->skewBucketLen - 1);
2540 :
2541 : /*
2542 : * While we have not hit a hole in the hashtable and have not hit the
2543 : * desired bucket, we have collided with some other hash value, so try the
2544 : * next bucket location.
2545 : */
2546 127830 : while (hashtable->skewBucket[bucket] != NULL &&
2547 10818 : hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2548 7830 : bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
2549 :
2550 : /*
2551 : * Found the desired bucket?
2552 : */
2553 120000 : if (hashtable->skewBucket[bucket] != NULL)
2554 2988 : return bucket;
2555 :
2556 : /*
2557 : * There must not be any hashtable entry for this hash value.
2558 : */
2559 117012 : return INVALID_SKEW_BUCKET_NO;
2560 : }
2561 :
2562 : /*
2563 : * ExecHashSkewTableInsert
2564 : *
2565 : * Insert a tuple into the skew hashtable.
2566 : *
2567 : * This should generally match up with the current-batch case in
2568 : * ExecHashTableInsert.
2569 : */
2570 : static void
2571 588 : ExecHashSkewTableInsert(HashJoinTable hashtable,
2572 : TupleTableSlot *slot,
2573 : uint32 hashvalue,
2574 : int bucketNumber)
2575 : {
2576 : bool shouldFree;
2577 588 : MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
2578 : HashJoinTuple hashTuple;
2579 : int hashTupleSize;
2580 :
2581 : /* Create the HashJoinTuple */
2582 588 : hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2583 588 : hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
2584 : hashTupleSize);
2585 588 : hashTuple->hashvalue = hashvalue;
2586 588 : memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
2587 588 : HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
2588 :
2589 : /* Push it onto the front of the skew bucket's list */
2590 588 : hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
2591 588 : hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
2592 : Assert(hashTuple != hashTuple->next.unshared);
2593 :
2594 : /* Account for space used, and back off if we've used too much */
2595 588 : hashtable->spaceUsed += hashTupleSize;
2596 588 : hashtable->spaceUsedSkew += hashTupleSize;
2597 588 : if (hashtable->spaceUsed > hashtable->spacePeak)
2598 432 : hashtable->spacePeak = hashtable->spaceUsed;
2599 690 : while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
2600 102 : ExecHashRemoveNextSkewBucket(hashtable);
2601 :
2602 : /* Check we are not over the total spaceAllowed, either */
2603 588 : if (hashtable->spaceUsed > hashtable->spaceAllowed)
2604 0 : ExecHashIncreaseNumBatches(hashtable);
2605 :
2606 588 : if (shouldFree)
2607 588 : heap_free_minimal_tuple(tuple);
2608 588 : }
2609 :
2610 : /*
2611 : * ExecHashRemoveNextSkewBucket
2612 : *
2613 : * Remove the least valuable skew bucket by pushing its tuples into
2614 : * the main hash table.
2615 : */
2616 : static void
2617 102 : ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
2618 : {
2619 : int bucketToRemove;
2620 : HashSkewBucket *bucket;
2621 : uint32 hashvalue;
2622 : int bucketno;
2623 : int batchno;
2624 : HashJoinTuple hashTuple;
2625 :
2626 : /* Locate the bucket to remove */
2627 102 : bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
2628 102 : bucket = hashtable->skewBucket[bucketToRemove];
2629 :
2630 : /*
2631 : * Calculate which bucket and batch the tuples belong to in the main
2632 : * hashtable. They all have the same hash value, so it's the same for all
2633 : * of them. Also note that it's not possible for nbatch to increase while
2634 : * we are processing the tuples.
2635 : */
2636 102 : hashvalue = bucket->hashvalue;
2637 102 : ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
2638 :
2639 : /* Process all tuples in the bucket */
2640 102 : hashTuple = bucket->tuples;
2641 450 : while (hashTuple != NULL)
2642 : {
2643 348 : HashJoinTuple nextHashTuple = hashTuple->next.unshared;
2644 : MinimalTuple tuple;
2645 : Size tupleSize;
2646 :
2647 : /*
2648 : * This code must agree with ExecHashTableInsert. We do not use
2649 : * ExecHashTableInsert directly as ExecHashTableInsert expects a
2650 : * TupleTableSlot while we already have HashJoinTuples.
2651 : */
2652 348 : tuple = HJTUPLE_MINTUPLE(hashTuple);
2653 348 : tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2654 :
2655 : /* Decide whether to put the tuple in the hash table or a temp file */
2656 348 : if (batchno == hashtable->curbatch)
2657 : {
2658 : /* Move the tuple to the main hash table */
2659 : HashJoinTuple copyTuple;
2660 :
2661 : /*
2662 : * We must copy the tuple into the dense storage, else it will not
2663 : * be found by, eg, ExecHashIncreaseNumBatches.
2664 : */
2665 138 : copyTuple = (HashJoinTuple) dense_alloc(hashtable, tupleSize);
2666 138 : memcpy(copyTuple, hashTuple, tupleSize);
2667 138 : pfree(hashTuple);
2668 :
2669 138 : copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
2670 138 : hashtable->buckets.unshared[bucketno] = copyTuple;
2671 :
2672 : /* We have reduced skew space, but overall space doesn't change */
2673 138 : hashtable->spaceUsedSkew -= tupleSize;
2674 : }
2675 : else
2676 : {
2677 : /* Put the tuple into a temp file for later batches */
2678 : Assert(batchno > hashtable->curbatch);
2679 210 : ExecHashJoinSaveTuple(tuple, hashvalue,
2680 210 : &hashtable->innerBatchFile[batchno],
2681 : hashtable);
2682 210 : pfree(hashTuple);
2683 210 : hashtable->spaceUsed -= tupleSize;
2684 210 : hashtable->spaceUsedSkew -= tupleSize;
2685 : }
2686 :
2687 348 : hashTuple = nextHashTuple;
2688 :
2689 : /* allow this loop to be cancellable */
2690 348 : CHECK_FOR_INTERRUPTS();
2691 : }
2692 :
2693 : /*
2694 : * Free the bucket struct itself and reset the hashtable entry to NULL.
2695 : *
2696 : * NOTE: this is not nearly as simple as it looks on the surface, because
2697 : * of the possibility of collisions in the hashtable. Suppose that hash
2698 : * values A and B collide at a particular hashtable entry, and that A was
2699 : * entered first so B gets shifted to a different table entry. If we were
2700 : * to remove A first then ExecHashGetSkewBucket would mistakenly start
2701 : * reporting that B is not in the hashtable, because it would hit the NULL
2702 : * before finding B. However, we always remove entries in the reverse
2703 : * order of creation, so this failure cannot happen.
2704 : */
2705 102 : hashtable->skewBucket[bucketToRemove] = NULL;
2706 102 : hashtable->nSkewBuckets--;
2707 102 : pfree(bucket);
2708 102 : hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
2709 102 : hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;
2710 :
2711 : /*
2712 : * If we have removed all skew buckets then give up on skew optimization.
2713 : * Release the arrays since they aren't useful any more.
2714 : */
2715 102 : if (hashtable->nSkewBuckets == 0)
2716 : {
2717 0 : hashtable->skewEnabled = false;
2718 0 : pfree(hashtable->skewBucket);
2719 0 : pfree(hashtable->skewBucketNums);
2720 0 : hashtable->skewBucket = NULL;
2721 0 : hashtable->skewBucketNums = NULL;
2722 0 : hashtable->spaceUsed -= hashtable->spaceUsedSkew;
2723 0 : hashtable->spaceUsedSkew = 0;
2724 : }
2725 102 : }
2726 :
2727 : /*
2728 : * Reserve space in the DSM segment for instrumentation data.
2729 : */
2730 : void
2731 192 : ExecHashEstimate(HashState *node, ParallelContext *pcxt)
2732 : {
2733 : size_t size;
2734 :
2735 : /* don't need this if not instrumenting or no workers */
2736 192 : if (!node->ps.instrument || pcxt->nworkers == 0)
2737 108 : return;
2738 :
2739 84 : size = mul_size(pcxt->nworkers, sizeof(HashInstrumentation));
2740 84 : size = add_size(size, offsetof(SharedHashInfo, hinstrument));
2741 84 : shm_toc_estimate_chunk(&pcxt->estimator, size);
2742 84 : shm_toc_estimate_keys(&pcxt->estimator, 1);
2743 : }
2744 :
2745 : /*
2746 : * Set up a space in the DSM for all workers to record instrumentation data
2747 : * about their hash table.
2748 : */
2749 : void
2750 192 : ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
2751 : {
2752 : size_t size;
2753 :
2754 : /* don't need this if not instrumenting or no workers */
2755 192 : if (!node->ps.instrument || pcxt->nworkers == 0)
2756 108 : return;
2757 :
2758 84 : size = offsetof(SharedHashInfo, hinstrument) +
2759 84 : pcxt->nworkers * sizeof(HashInstrumentation);
2760 84 : node->shared_info = (SharedHashInfo *) shm_toc_allocate(pcxt->toc, size);
2761 :
2762 : /* Each per-worker area must start out as zeroes. */
2763 84 : memset(node->shared_info, 0, size);
2764 :
2765 84 : node->shared_info->num_workers = pcxt->nworkers;
2766 84 : shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id,
2767 84 : node->shared_info);
2768 : }
2769 :
2770 : /*
2771 : * Locate the DSM space for hash table instrumentation data that we'll write
2772 : * to at shutdown time.
2773 : */
2774 : void
2775 548 : ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
2776 : {
2777 : SharedHashInfo *shared_info;
2778 :
2779 : /* don't need this if not instrumenting */
2780 548 : if (!node->ps.instrument)
2781 296 : return;
2782 :
2783 : /*
2784 : * Find our entry in the shared area, and set up a pointer to it so that
2785 : * we'll accumulate stats there when shutting down or rebuilding the hash
2786 : * table.
2787 : */
2788 : shared_info = (SharedHashInfo *)
2789 252 : shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
2790 252 : node->hinstrument = &shared_info->hinstrument[ParallelWorkerNumber];
2791 : }
2792 :
2793 : /*
2794 : * Collect EXPLAIN stats if needed, saving them into DSM memory if
2795 : * ExecHashInitializeWorker was called, or local storage if not. In the
2796 : * parallel case, this must be done in ExecShutdownHash() rather than
2797 : * ExecEndHash() because the latter runs after we've detached from the DSM
2798 : * segment.
2799 : */
2800 : void
2801 24862 : ExecShutdownHash(HashState *node)
2802 : {
2803 : /* Allocate save space if EXPLAIN'ing and we didn't do so already */
2804 24862 : if (node->ps.instrument && !node->hinstrument)
2805 108 : node->hinstrument = palloc0_object(HashInstrumentation);
2806 : /* Now accumulate data for the current (final) hash table */
2807 24862 : if (node->hinstrument && node->hashtable)
2808 294 : ExecHashAccumInstrumentation(node->hinstrument, node->hashtable);
2809 24862 : }
2810 :
2811 : /*
2812 : * Retrieve instrumentation data from workers before the DSM segment is
2813 : * detached, so that EXPLAIN can access it.
2814 : */
2815 : void
2816 84 : ExecHashRetrieveInstrumentation(HashState *node)
2817 : {
2818 84 : SharedHashInfo *shared_info = node->shared_info;
2819 : size_t size;
2820 :
2821 84 : if (shared_info == NULL)
2822 0 : return;
2823 :
2824 : /* Replace node->shared_info with a copy in backend-local memory. */
2825 84 : size = offsetof(SharedHashInfo, hinstrument) +
2826 84 : shared_info->num_workers * sizeof(HashInstrumentation);
2827 84 : node->shared_info = palloc(size);
2828 84 : memcpy(node->shared_info, shared_info, size);
2829 : }
2830 :
2831 : /*
2832 : * Accumulate instrumentation data from 'hashtable' into an
2833 : * initially-zeroed HashInstrumentation struct.
2834 : *
2835 : * This is used to merge information across successive hash table instances
2836 : * within a single plan node. We take the maximum values of each interesting
2837 : * number. The largest nbuckets and largest nbatch values might have occurred
2838 : * in different instances, so there's some risk of confusion from reporting
2839 : * unrelated numbers; but there's a bigger risk of misdiagnosing a performance
2840 : * issue if we don't report the largest values. Similarly, we want to report
2841 : * the largest spacePeak regardless of whether it happened in the same
2842 : * instance as the largest nbuckets or nbatch. All the instances should have
2843 : * the same nbuckets_original and nbatch_original; but there's little value
2844 : * in depending on that here, so handle them the same way.
2845 : */
2846 : void
2847 294 : ExecHashAccumInstrumentation(HashInstrumentation *instrument,
2848 : HashJoinTable hashtable)
2849 : {
2850 294 : instrument->nbuckets = Max(instrument->nbuckets,
2851 : hashtable->nbuckets);
2852 294 : instrument->nbuckets_original = Max(instrument->nbuckets_original,
2853 : hashtable->nbuckets_original);
2854 294 : instrument->nbatch = Max(instrument->nbatch,
2855 : hashtable->nbatch);
2856 294 : instrument->nbatch_original = Max(instrument->nbatch_original,
2857 : hashtable->nbatch_original);
2858 294 : instrument->space_peak = Max(instrument->space_peak,
2859 : hashtable->spacePeak);
2860 294 : }
2861 :
2862 : /*
2863 : * Allocate 'size' bytes from the currently active HashMemoryChunk
2864 : */
2865 : static void *
2866 9567332 : dense_alloc(HashJoinTable hashtable, Size size)
2867 : {
2868 : HashMemoryChunk newChunk;
2869 : char *ptr;
2870 :
2871 : /* just in case the size is not already aligned properly */
2872 9567332 : size = MAXALIGN(size);
2873 :
2874 : /*
2875 : * If tuple size is larger than threshold, allocate a separate chunk.
2876 : */
2877 9567332 : if (size > HASH_CHUNK_THRESHOLD)
2878 : {
2879 : /* allocate new chunk and put it at the beginning of the list */
2880 0 : newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2881 : HASH_CHUNK_HEADER_SIZE + size);
2882 0 : newChunk->maxlen = size;
2883 0 : newChunk->used = size;
2884 0 : newChunk->ntuples = 1;
2885 :
2886 : /*
2887 : * Add this chunk to the list after the first existing chunk, so that
2888 : * we don't lose the remaining space in the "current" chunk.
2889 : */
2890 0 : if (hashtable->chunks != NULL)
2891 : {
2892 0 : newChunk->next = hashtable->chunks->next;
2893 0 : hashtable->chunks->next.unshared = newChunk;
2894 : }
2895 : else
2896 : {
2897 0 : newChunk->next.unshared = hashtable->chunks;
2898 0 : hashtable->chunks = newChunk;
2899 : }
2900 :
2901 0 : return HASH_CHUNK_DATA(newChunk);
2902 : }
2903 :
2904 : /*
2905 : * See if we have enough space for it in the current chunk (if any). If
2906 : * not, allocate a fresh chunk.
2907 : */
2908 9567332 : if ((hashtable->chunks == NULL) ||
2909 9548190 : (hashtable->chunks->maxlen - hashtable->chunks->used) < size)
2910 : {
2911 : /* allocate new chunk and put it at the beginning of the list */
2912 31660 : newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2913 : HASH_CHUNK_HEADER_SIZE + HASH_CHUNK_SIZE);
2914 :
2915 31660 : newChunk->maxlen = HASH_CHUNK_SIZE;
2916 31660 : newChunk->used = size;
2917 31660 : newChunk->ntuples = 1;
2918 :
2919 31660 : newChunk->next.unshared = hashtable->chunks;
2920 31660 : hashtable->chunks = newChunk;
2921 :
2922 31660 : return HASH_CHUNK_DATA(newChunk);
2923 : }
2924 :
2925 : /* There is enough space in the current chunk, let's add the tuple */
2926 9535672 : ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
2927 9535672 : hashtable->chunks->used += size;
2928 9535672 : hashtable->chunks->ntuples += 1;
2929 :
2930 : /* return pointer to the start of the tuple memory */
2931 9535672 : return ptr;
2932 : }
2933 :
2934 : /*
2935 : * Allocate space for a tuple in shared dense storage. This is equivalent to
2936 : * dense_alloc but for Parallel Hash using shared memory.
2937 : *
2938 : * While loading a tuple into shared memory, we might run out of memory and
2939 : * decide to repartition, or determine that the load factor is too high and
2940 : * decide to expand the bucket array, or discover that another participant has
2941 : * commanded us to help do that. Return NULL if number of buckets or batches
2942 : * has changed, indicating that the caller must retry (considering the
2943 : * possibility that the tuple no longer belongs in the same batch).
2944 : */
2945 : static HashJoinTuple
2946 2382448 : ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size,
2947 : dsa_pointer *shared)
2948 : {
2949 2382448 : ParallelHashJoinState *pstate = hashtable->parallel_state;
2950 : dsa_pointer chunk_shared;
2951 : HashMemoryChunk chunk;
2952 : Size chunk_size;
2953 : HashJoinTuple result;
2954 2382448 : int curbatch = hashtable->curbatch;
2955 :
2956 2382448 : size = MAXALIGN(size);
2957 :
2958 : /*
2959 : * Fast path: if there is enough space in this backend's current chunk,
2960 : * then we can allocate without any locking.
2961 : */
2962 2382448 : chunk = hashtable->current_chunk;
2963 2382448 : if (chunk != NULL &&
2964 2381468 : size <= HASH_CHUNK_THRESHOLD &&
2965 2381468 : chunk->maxlen - chunk->used >= size)
2966 : {
2967 :
2968 2378700 : chunk_shared = hashtable->current_chunk_shared;
2969 : Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
2970 2378700 : *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE + chunk->used;
2971 2378700 : result = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + chunk->used);
2972 2378700 : chunk->used += size;
2973 :
2974 : Assert(chunk->used <= chunk->maxlen);
2975 : Assert(result == dsa_get_address(hashtable->area, *shared));
2976 :
2977 2378700 : return result;
2978 : }
2979 :
2980 : /* Slow path: try to allocate a new chunk. */
2981 3748 : LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
2982 :
2983 : /*
2984 : * Check if we need to help increase the number of buckets or batches.
2985 : */
2986 3748 : if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
2987 3712 : pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2988 : {
2989 180 : ParallelHashGrowth growth = pstate->growth;
2990 :
2991 180 : hashtable->current_chunk = NULL;
2992 180 : LWLockRelease(&pstate->lock);
2993 :
2994 : /* Another participant has commanded us to help grow. */
2995 180 : if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
2996 36 : ExecParallelHashIncreaseNumBatches(hashtable);
2997 144 : else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2998 144 : ExecParallelHashIncreaseNumBuckets(hashtable);
2999 :
3000 : /* The caller must retry. */
3001 180 : return NULL;
3002 : }
3003 :
3004 : /* Oversized tuples get their own chunk. */
3005 3568 : if (size > HASH_CHUNK_THRESHOLD)
3006 48 : chunk_size = size + HASH_CHUNK_HEADER_SIZE;
3007 : else
3008 3520 : chunk_size = HASH_CHUNK_SIZE;
3009 :
3010 : /* Check if it's time to grow batches or buckets. */
3011 3568 : if (pstate->growth != PHJ_GROWTH_DISABLED)
3012 : {
3013 : Assert(curbatch == 0);
3014 : Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASH_INNER);
3015 :
3016 : /*
3017 : * Check if our space limit would be exceeded. To avoid choking on
3018 : * very large tuples or very low hash_mem setting, we'll always allow
3019 : * each backend to allocate at least one chunk.
3020 : */
3021 1820 : if (hashtable->batches[0].at_least_one_chunk &&
3022 1442 : hashtable->batches[0].shared->size +
3023 1442 : chunk_size > pstate->space_allowed)
3024 : {
3025 36 : pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
3026 36 : hashtable->batches[0].shared->space_exhausted = true;
3027 36 : LWLockRelease(&pstate->lock);
3028 :
3029 36 : return NULL;
3030 : }
3031 :
3032 : /* Check if our load factor limit would be exceeded. */
3033 1784 : if (hashtable->nbatch == 1)
3034 : {
3035 1556 : hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
3036 1556 : hashtable->batches[0].ntuples = 0;
3037 : /* Guard against integer overflow and alloc size overflow */
3038 1556 : if (hashtable->batches[0].shared->ntuples + 1 >
3039 1556 : hashtable->nbuckets * NTUP_PER_BUCKET &&
3040 108 : hashtable->nbuckets < (INT_MAX / 2) &&
3041 108 : hashtable->nbuckets * 2 <=
3042 : MaxAllocSize / sizeof(dsa_pointer_atomic))
3043 : {
3044 108 : pstate->growth = PHJ_GROWTH_NEED_MORE_BUCKETS;
3045 108 : LWLockRelease(&pstate->lock);
3046 :
3047 108 : return NULL;
3048 : }
3049 : }
3050 : }
3051 :
3052 : /* We are cleared to allocate a new chunk. */
3053 3424 : chunk_shared = dsa_allocate(hashtable->area, chunk_size);
3054 3424 : hashtable->batches[curbatch].shared->size += chunk_size;
3055 3424 : hashtable->batches[curbatch].at_least_one_chunk = true;
3056 :
3057 : /* Set up the chunk. */
3058 3424 : chunk = (HashMemoryChunk) dsa_get_address(hashtable->area, chunk_shared);
3059 3424 : *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE;
3060 3424 : chunk->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
3061 3424 : chunk->used = size;
3062 :
3063 : /*
3064 : * Push it onto the list of chunks, so that it can be found if we need to
3065 : * increase the number of buckets or batches (batch 0 only) and later for
3066 : * freeing the memory (all batches).
3067 : */
3068 3424 : chunk->next.shared = hashtable->batches[curbatch].shared->chunks;
3069 3424 : hashtable->batches[curbatch].shared->chunks = chunk_shared;
3070 :
3071 3424 : if (size <= HASH_CHUNK_THRESHOLD)
3072 : {
3073 : /*
3074 : * Make this the current chunk so that we can use the fast path to
3075 : * fill the rest of it up in future calls.
3076 : */
3077 3388 : hashtable->current_chunk = chunk;
3078 3388 : hashtable->current_chunk_shared = chunk_shared;
3079 : }
3080 3424 : LWLockRelease(&pstate->lock);
3081 :
3082 : Assert(HASH_CHUNK_DATA(chunk) == dsa_get_address(hashtable->area, *shared));
3083 3424 : result = (HashJoinTuple) HASH_CHUNK_DATA(chunk);
3084 :
3085 3424 : return result;
3086 : }
3087 :
3088 : /*
3089 : * One backend needs to set up the shared batch state including tuplestores.
3090 : * Other backends will ensure they have correctly configured accessors by
3091 : * called ExecParallelHashEnsureBatchAccessors().
3092 : */
3093 : static void
3094 218 : ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
3095 : {
3096 218 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3097 : ParallelHashJoinBatch *batches;
3098 : MemoryContext oldcxt;
3099 : int i;
3100 :
3101 : Assert(hashtable->batches == NULL);
3102 :
3103 : /* Allocate space. */
3104 218 : pstate->batches =
3105 218 : dsa_allocate0(hashtable->area,
3106 : EstimateParallelHashJoinBatch(hashtable) * nbatch);
3107 218 : pstate->nbatch = nbatch;
3108 218 : batches = dsa_get_address(hashtable->area, pstate->batches);
3109 :
3110 : /*
3111 : * Use hash join spill memory context to allocate accessors, including
3112 : * buffers for the temporary files.
3113 : */
3114 218 : oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
3115 :
3116 : /* Allocate this backend's accessor array. */
3117 218 : hashtable->nbatch = nbatch;
3118 218 : hashtable->batches =
3119 218 : palloc0_array(ParallelHashJoinBatchAccessor, hashtable->nbatch);
3120 :
3121 : /* Set up the shared state, tuplestores and backend-local accessors. */
3122 1084 : for (i = 0; i < hashtable->nbatch; ++i)
3123 : {
3124 866 : ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3125 866 : ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
3126 : char name[MAXPGPATH];
3127 :
3128 : /*
3129 : * All members of shared were zero-initialized. We just need to set
3130 : * up the Barrier.
3131 : */
3132 866 : BarrierInit(&shared->batch_barrier, 0);
3133 866 : if (i == 0)
3134 : {
3135 : /* Batch 0 doesn't need to be loaded. */
3136 218 : BarrierAttach(&shared->batch_barrier);
3137 872 : while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBE)
3138 654 : BarrierArriveAndWait(&shared->batch_barrier, 0);
3139 218 : BarrierDetach(&shared->batch_barrier);
3140 : }
3141 :
3142 : /* Initialize accessor state. All members were zero-initialized. */
3143 866 : accessor->shared = shared;
3144 :
3145 : /* Initialize the shared tuplestores. */
3146 866 : snprintf(name, sizeof(name), "i%dof%d", i, hashtable->nbatch);
3147 866 : accessor->inner_tuples =
3148 866 : sts_initialize(ParallelHashJoinBatchInner(shared),
3149 : pstate->nparticipants,
3150 : ParallelWorkerNumber + 1,
3151 : sizeof(uint32),
3152 : SHARED_TUPLESTORE_SINGLE_PASS,
3153 : &pstate->fileset,
3154 : name);
3155 866 : snprintf(name, sizeof(name), "o%dof%d", i, hashtable->nbatch);
3156 866 : accessor->outer_tuples =
3157 866 : sts_initialize(ParallelHashJoinBatchOuter(shared,
3158 : pstate->nparticipants),
3159 : pstate->nparticipants,
3160 : ParallelWorkerNumber + 1,
3161 : sizeof(uint32),
3162 : SHARED_TUPLESTORE_SINGLE_PASS,
3163 : &pstate->fileset,
3164 : name);
3165 : }
3166 :
3167 218 : MemoryContextSwitchTo(oldcxt);
3168 218 : }
3169 :
3170 : /*
3171 : * Free the current set of ParallelHashJoinBatchAccessor objects.
3172 : */
3173 : static void
3174 52 : ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
3175 : {
3176 : int i;
3177 :
3178 168 : for (i = 0; i < hashtable->nbatch; ++i)
3179 : {
3180 : /* Make sure no files are left open. */
3181 116 : sts_end_write(hashtable->batches[i].inner_tuples);
3182 116 : sts_end_write(hashtable->batches[i].outer_tuples);
3183 116 : sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3184 116 : sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3185 : }
3186 52 : pfree(hashtable->batches);
3187 52 : hashtable->batches = NULL;
3188 52 : }
3189 :
3190 : /*
3191 : * Make sure this backend has up-to-date accessors for the current set of
3192 : * batches.
3193 : */
3194 : static void
3195 886 : ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
3196 : {
3197 886 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3198 : ParallelHashJoinBatch *batches;
3199 : MemoryContext oldcxt;
3200 : int i;
3201 :
3202 886 : if (hashtable->batches != NULL)
3203 : {
3204 654 : if (hashtable->nbatch == pstate->nbatch)
3205 654 : return;
3206 0 : ExecParallelHashCloseBatchAccessors(hashtable);
3207 : }
3208 :
3209 : /*
3210 : * We should never see a state where the batch-tracking array is freed,
3211 : * because we should have given up sooner if we join when the build
3212 : * barrier has reached the PHJ_BUILD_FREE phase.
3213 : */
3214 : Assert(DsaPointerIsValid(pstate->batches));
3215 :
3216 : /*
3217 : * Use hash join spill memory context to allocate accessors, including
3218 : * buffers for the temporary files.
3219 : */
3220 232 : oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
3221 :
3222 : /* Allocate this backend's accessor array. */
3223 232 : hashtable->nbatch = pstate->nbatch;
3224 232 : hashtable->batches =
3225 232 : palloc0_array(ParallelHashJoinBatchAccessor, hashtable->nbatch);
3226 :
3227 : /* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
3228 : batches = (ParallelHashJoinBatch *)
3229 232 : dsa_get_address(hashtable->area, pstate->batches);
3230 :
3231 : /* Set up the accessor array and attach to the tuplestores. */
3232 1286 : for (i = 0; i < hashtable->nbatch; ++i)
3233 : {
3234 1054 : ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3235 1054 : ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
3236 :
3237 1054 : accessor->shared = shared;
3238 1054 : accessor->preallocated = 0;
3239 1054 : accessor->done = false;
3240 1054 : accessor->outer_eof = false;
3241 1054 : accessor->inner_tuples =
3242 1054 : sts_attach(ParallelHashJoinBatchInner(shared),
3243 : ParallelWorkerNumber + 1,
3244 : &pstate->fileset);
3245 1054 : accessor->outer_tuples =
3246 1054 : sts_attach(ParallelHashJoinBatchOuter(shared,
3247 : pstate->nparticipants),
3248 : ParallelWorkerNumber + 1,
3249 : &pstate->fileset);
3250 : }
3251 :
3252 232 : MemoryContextSwitchTo(oldcxt);
3253 : }
3254 :
3255 : /*
3256 : * Allocate an empty shared memory hash table for a given batch.
3257 : */
3258 : void
3259 766 : ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
3260 : {
3261 766 : ParallelHashJoinBatch *batch = hashtable->batches[batchno].shared;
3262 : dsa_pointer_atomic *buckets;
3263 766 : int nbuckets = hashtable->parallel_state->nbuckets;
3264 : int i;
3265 :
3266 766 : batch->buckets =
3267 766 : dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
3268 : buckets = (dsa_pointer_atomic *)
3269 766 : dsa_get_address(hashtable->area, batch->buckets);
3270 3148542 : for (i = 0; i < nbuckets; ++i)
3271 3147776 : dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
3272 766 : }
3273 :
3274 : /*
3275 : * If we are currently attached to a shared hash join batch, detach. If we
3276 : * are last to detach, clean up.
3277 : */
3278 : void
3279 19338 : ExecHashTableDetachBatch(HashJoinTable hashtable)
3280 : {
3281 19338 : if (hashtable->parallel_state != NULL &&
3282 1274 : hashtable->curbatch >= 0)
3283 : {
3284 876 : int curbatch = hashtable->curbatch;
3285 876 : ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
3286 876 : bool attached = true;
3287 :
3288 : /* Make sure any temporary files are closed. */
3289 876 : sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
3290 876 : sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
3291 :
3292 : /* After attaching we always get at least to PHJ_BATCH_PROBE. */
3293 : Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE ||
3294 : BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_SCAN);
3295 :
3296 : /*
3297 : * If we're abandoning the PHJ_BATCH_PROBE phase early without having
3298 : * reached the end of it, it means the plan doesn't want any more
3299 : * tuples, and it is happy to abandon any tuples buffered in this
3300 : * process's subplans. For correctness, we can't allow any process to
3301 : * execute the PHJ_BATCH_SCAN phase, because we will never have the
3302 : * complete set of match bits. Therefore we skip emitting unmatched
3303 : * tuples in all backends (if this is a full/right join), as if those
3304 : * tuples were all due to be emitted by this process and it has
3305 : * abandoned them too.
3306 : */
3307 876 : if (BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE &&
3308 810 : !hashtable->batches[curbatch].outer_eof)
3309 : {
3310 : /*
3311 : * This flag may be written to by multiple backends during
3312 : * PHJ_BATCH_PROBE phase, but will only be read in PHJ_BATCH_SCAN
3313 : * phase so requires no extra locking.
3314 : */
3315 0 : batch->skip_unmatched = true;
3316 : }
3317 :
3318 : /*
3319 : * Even if we aren't doing a full/right outer join, we'll step through
3320 : * the PHJ_BATCH_SCAN phase just to maintain the invariant that
3321 : * freeing happens in PHJ_BATCH_FREE, but that'll be wait-free.
3322 : */
3323 876 : if (BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE)
3324 810 : attached = BarrierArriveAndDetachExceptLast(&batch->batch_barrier);
3325 876 : if (attached && BarrierArriveAndDetach(&batch->batch_barrier))
3326 : {
3327 : /*
3328 : * We are not longer attached to the batch barrier, but we're the
3329 : * process that was chosen to free resources and it's safe to
3330 : * assert the current phase. The ParallelHashJoinBatch can't go
3331 : * away underneath us while we are attached to the build barrier,
3332 : * making this access safe.
3333 : */
3334 : Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_FREE);
3335 :
3336 : /* Free shared chunks and buckets. */
3337 3898 : while (DsaPointerIsValid(batch->chunks))
3338 : {
3339 : HashMemoryChunk chunk =
3340 3134 : dsa_get_address(hashtable->area, batch->chunks);
3341 3134 : dsa_pointer next = chunk->next.shared;
3342 :
3343 3134 : dsa_free(hashtable->area, batch->chunks);
3344 3134 : batch->chunks = next;
3345 : }
3346 764 : if (DsaPointerIsValid(batch->buckets))
3347 : {
3348 764 : dsa_free(hashtable->area, batch->buckets);
3349 764 : batch->buckets = InvalidDsaPointer;
3350 : }
3351 : }
3352 :
3353 : /*
3354 : * Track the largest batch we've been attached to. Though each
3355 : * backend might see a different subset of batches, explain.c will
3356 : * scan the results from all backends to find the largest value.
3357 : */
3358 876 : hashtable->spacePeak =
3359 876 : Max(hashtable->spacePeak,
3360 : batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
3361 :
3362 : /* Remember that we are not attached to a batch. */
3363 876 : hashtable->curbatch = -1;
3364 : }
3365 19338 : }
3366 :
3367 : /*
3368 : * Detach from all shared resources. If we are last to detach, clean up.
3369 : */
3370 : void
3371 18462 : ExecHashTableDetach(HashJoinTable hashtable)
3372 : {
3373 18462 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3374 :
3375 : /*
3376 : * If we're involved in a parallel query, we must either have gotten all
3377 : * the way to PHJ_BUILD_RUN, or joined too late and be in PHJ_BUILD_FREE.
3378 : */
3379 : Assert(!pstate ||
3380 : BarrierPhase(&pstate->build_barrier) >= PHJ_BUILD_RUN);
3381 :
3382 18462 : if (pstate && BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_RUN)
3383 : {
3384 : int i;
3385 :
3386 : /* Make sure any temporary files are closed. */
3387 398 : if (hashtable->batches)
3388 : {
3389 2202 : for (i = 0; i < hashtable->nbatch; ++i)
3390 : {
3391 1804 : sts_end_write(hashtable->batches[i].inner_tuples);
3392 1804 : sts_end_write(hashtable->batches[i].outer_tuples);
3393 1804 : sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3394 1804 : sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3395 : }
3396 : }
3397 :
3398 : /* If we're last to detach, clean up shared memory. */
3399 398 : if (BarrierArriveAndDetach(&pstate->build_barrier))
3400 : {
3401 : /*
3402 : * Late joining processes will see this state and give up
3403 : * immediately.
3404 : */
3405 : Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_FREE);
3406 :
3407 168 : if (DsaPointerIsValid(pstate->batches))
3408 : {
3409 168 : dsa_free(hashtable->area, pstate->batches);
3410 168 : pstate->batches = InvalidDsaPointer;
3411 : }
3412 : }
3413 : }
3414 18462 : hashtable->parallel_state = NULL;
3415 18462 : }
3416 :
3417 : /*
3418 : * Get the first tuple in a given bucket identified by number.
3419 : */
3420 : static inline HashJoinTuple
3421 2774430 : ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
3422 : {
3423 : HashJoinTuple tuple;
3424 : dsa_pointer p;
3425 :
3426 : Assert(hashtable->parallel_state);
3427 2774430 : p = dsa_pointer_atomic_read(&hashtable->buckets.shared[bucketno]);
3428 2774430 : tuple = (HashJoinTuple) dsa_get_address(hashtable->area, p);
3429 :
3430 2774430 : return tuple;
3431 : }
3432 :
3433 : /*
3434 : * Get the next tuple in the same bucket as 'tuple'.
3435 : */
3436 : static inline HashJoinTuple
3437 3800818 : ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
3438 : {
3439 : HashJoinTuple next;
3440 :
3441 : Assert(hashtable->parallel_state);
3442 3800818 : next = (HashJoinTuple) dsa_get_address(hashtable->area, tuple->next.shared);
3443 :
3444 3800818 : return next;
3445 : }
3446 :
3447 : /*
3448 : * Insert a tuple at the front of a chain of tuples in DSA memory atomically.
3449 : */
3450 : static inline void
3451 2926206 : ExecParallelHashPushTuple(dsa_pointer_atomic *head,
3452 : HashJoinTuple tuple,
3453 : dsa_pointer tuple_shared)
3454 : {
3455 : for (;;)
3456 : {
3457 2926206 : tuple->next.shared = dsa_pointer_atomic_read(head);
3458 2926206 : if (dsa_pointer_atomic_compare_exchange(head,
3459 2926206 : &tuple->next.shared,
3460 : tuple_shared))
3461 2925276 : break;
3462 : }
3463 2925276 : }
3464 :
3465 : /*
3466 : * Prepare to work on a given batch.
3467 : */
3468 : void
3469 1980 : ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
3470 : {
3471 : Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);
3472 :
3473 1980 : hashtable->curbatch = batchno;
3474 1980 : hashtable->buckets.shared = (dsa_pointer_atomic *)
3475 1980 : dsa_get_address(hashtable->area,
3476 1980 : hashtable->batches[batchno].shared->buckets);
3477 1980 : hashtable->nbuckets = hashtable->parallel_state->nbuckets;
3478 1980 : hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
3479 1980 : hashtable->current_chunk = NULL;
3480 1980 : hashtable->current_chunk_shared = InvalidDsaPointer;
3481 1980 : hashtable->batches[batchno].at_least_one_chunk = false;
3482 1980 : }
3483 :
3484 : /*
3485 : * Take the next available chunk from the queue of chunks being worked on in
3486 : * parallel. Return NULL if there are none left. Otherwise return a pointer
3487 : * to the chunk, and set *shared to the DSA pointer to the chunk.
3488 : */
3489 : static HashMemoryChunk
3490 1150 : ExecParallelHashPopChunkQueue(HashJoinTable hashtable, dsa_pointer *shared)
3491 : {
3492 1150 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3493 : HashMemoryChunk chunk;
3494 :
3495 1150 : LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3496 1150 : if (DsaPointerIsValid(pstate->chunk_work_queue))
3497 : {
3498 954 : *shared = pstate->chunk_work_queue;
3499 : chunk = (HashMemoryChunk)
3500 954 : dsa_get_address(hashtable->area, *shared);
3501 954 : pstate->chunk_work_queue = chunk->next.shared;
3502 : }
3503 : else
3504 196 : chunk = NULL;
3505 1150 : LWLockRelease(&pstate->lock);
3506 :
3507 1150 : return chunk;
3508 : }
3509 :
3510 : /*
3511 : * Increase the space preallocated in this backend for a given inner batch by
3512 : * at least a given amount. This allows us to track whether a given batch
3513 : * would fit in memory when loaded back in. Also increase the number of
3514 : * batches or buckets if required.
3515 : *
3516 : * This maintains a running estimation of how much space will be taken when we
3517 : * load the batch back into memory by simulating the way chunks will be handed
3518 : * out to workers. It's not perfectly accurate because the tuples will be
3519 : * packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
3520 : * it should be pretty close. It tends to overestimate by a fraction of a
3521 : * chunk per worker since all workers gang up to preallocate during hashing,
3522 : * but workers tend to reload batches alone if there are enough to go around,
3523 : * leaving fewer partially filled chunks. This effect is bounded by
3524 : * nparticipants.
3525 : *
3526 : * Return false if the number of batches or buckets has changed, and the
3527 : * caller should reconsider which batch a given tuple now belongs in and call
3528 : * again.
3529 : */
3530 : static bool
3531 1750 : ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
3532 : {
3533 1750 : ParallelHashJoinState *pstate = hashtable->parallel_state;
3534 1750 : ParallelHashJoinBatchAccessor *batch = &hashtable->batches[batchno];
3535 1750 : size_t want = Max(size, HASH_CHUNK_SIZE - HASH_CHUNK_HEADER_SIZE);
3536 :
3537 : Assert(batchno > 0);
3538 : Assert(batchno < hashtable->nbatch);
3539 : Assert(size == MAXALIGN(size));
3540 :
3541 1750 : LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3542 :
3543 : /* Has another participant commanded us to help grow? */
3544 1750 : if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
3545 1734 : pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3546 : {
3547 16 : ParallelHashGrowth growth = pstate->growth;
3548 :
3549 16 : LWLockRelease(&pstate->lock);
3550 16 : if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
3551 16 : ExecParallelHashIncreaseNumBatches(hashtable);
3552 0 : else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3553 0 : ExecParallelHashIncreaseNumBuckets(hashtable);
3554 :
3555 16 : return false;
3556 : }
3557 :
3558 1734 : if (pstate->growth != PHJ_GROWTH_DISABLED &&
3559 1506 : batch->at_least_one_chunk &&
3560 706 : (batch->shared->estimated_size + want + HASH_CHUNK_HEADER_SIZE
3561 706 : > pstate->space_allowed))
3562 : {
3563 : /*
3564 : * We have determined that this batch would exceed the space budget if
3565 : * loaded into memory. Command all participants to help repartition.
3566 : */
3567 14 : batch->shared->space_exhausted = true;
3568 14 : pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
3569 14 : LWLockRelease(&pstate->lock);
3570 :
3571 14 : return false;
3572 : }
3573 :
3574 1720 : batch->at_least_one_chunk = true;
3575 1720 : batch->shared->estimated_size += want + HASH_CHUNK_HEADER_SIZE;
3576 1720 : batch->preallocated = want;
3577 1720 : LWLockRelease(&pstate->lock);
3578 :
3579 1720 : return true;
3580 : }
3581 :
3582 : /*
3583 : * Calculate the limit on how much memory can be used by Hash and similar
3584 : * plan types. This is work_mem times hash_mem_multiplier, and is
3585 : * expressed in bytes.
3586 : *
3587 : * Exported for use by the planner, as well as other hash-like executor
3588 : * nodes. This is a rather random place for this, but there is no better
3589 : * place.
3590 : */
3591 : size_t
3592 906640 : get_hash_memory_limit(void)
3593 : {
3594 : double mem_limit;
3595 :
3596 : /* Do initial calculation in double arithmetic */
3597 906640 : mem_limit = (double) work_mem * hash_mem_multiplier * 1024.0;
3598 :
3599 : /* Clamp in case it doesn't fit in size_t */
3600 906640 : mem_limit = Min(mem_limit, (double) SIZE_MAX);
3601 :
3602 906640 : return (size_t) mem_limit;
3603 : }
|